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"Only when you climb the highest mountain, will you be aware of the 
vastness that lies around you. " 

Oscar Wilde, 1854-1 900. 

0 0 0  cl cl CI 0 

Chinese Proverb - It is better to ask a question and look a fool forfive minutes, than not 
to ask a question at all and be a fool for the rest of your life. 

Heaven and Hell - In heaven you are faced with an infinite number of solvable problems 
and in hell you are faced with an infinite number of unsolvable 
problems. 



Principal notation 

a length 
b breadth 
c wave velocity, distance 
d diameter 
h depth 
j number of joints 
I length 
m mass, modular ratio, 

number of numbers 
n frequency, load factor, distance 
p pressure 
q shearing force per unit length 
r radius 
s distance 
t thickness 
u displacement 
v displacement, velocity 
w displacement, load intensity, 

x coordinate 
y coordinate 
z coordinate 

force 

a coefficient of linear expansion 
y shearing strain 
6 deflection 
E direct strain 
q efficiency 
8 temperature, angle of twist 
v Poisson’s ratio 

[k] element stiffness matrix 
[ m] elemental mass matrix 

A area 
C complementary energy 
D diameter 
E young’s modulus 
F shearing force 
G shearing modulus 
H force 
I second moment of area 
J torsion constant 
K bulk modulus 
L length 
A4 bending moment 
P force 
Q force 
R force, radius 
S force 
T torque 
U strain energy 
V force, volume, velocity 
W work done, force 
X force 
Y force 
2 section modulus, force 

p density 
o direct stress 
T shearing stress 
w angular velocity 
A deflection 
@ step-function 

[ K] system stiffness matrix 
[MI system mass matrix 



Note on SI units 

The units used throughout the book are those of the Systeme Internationale d’Unites; this is 
usually referred to as the SI system. In the field of the strength of materials and structures we 
are concerned with the following basic units of the SI system: 

length metre (m) 
mass kilogramme (kg) 
time second (s) 
temperature kelvin (K) 

There are two further basic units of the SI system - electric current and luminous intensity - 
which we need not consider for our present purposes, since these do not enter the field of the 
strength of materials and structures. For temperatures we shall use conventional degrees 
centigrade (“C), since we shall be concerned with temperature changes rather than absolute 
temperatures. The units which we derive from the basic SI units, and which are relevant to out 
fielf of study, are: 

force newton (N) kg .m .s-? 
work, energy joule (J) kg.m’.s-’ = Nm 
power watt (W) kg.m2.s-’ = Js-’ 
frequency hertz (Hz) cycle per second 
pressure Pascal (Pa) N.m-’ = lo-’ bar 

The acceleration due to gravity is taken as: 

g = 9 . 8 1 m ~ - ~  

Linear distances are expressed in metres and multiples or divisions of 1 O3 of metres, i.e. 

Kilometre (km) IO’ m 
metre (m) l m  
millimetre (mm m 

In many problems of stress analysis these are not convenient units, and others, such as the 
centimetre (cm), which is lo-’ m, are more appropriate. 

The unit of force, the newton (N), is the force required to give unit acceleration (ms-’) to 
unit mass kg). In terms of newtons the common force units in the foot-pound-second-system 
(with g = 9.8 1 ms?) are 

1 Ib.wt = 4.45 newtons (N) 

1 ton.wt = 9.96 x IO’ newtons (N) 



x iv Note on SI units 

In general, decimal multiples in the SI system are taken in units of IO3. The prefixes we make 
most use of are: 

kilo k 1 o3 
mega M 1 o6 
gigs G 1 o9 

Thus: 
1 ton.wt = 9.96 kN 

The unit of force, the newton (N), is used for external loads and internal forces, such as 
shearing forces. Torques and bending of moments are expressed in newton-metres (Nm). 

An important unit in the strength of materials and structures is stress. In the foot-pound- 
second system, stresses are commonly expressed in Ib.wt/in2, and tons/in2. In the SI system 
these take the values: 

1 Ib.wt/in2 = 6.89 x 103 N/m2 = 6.89 kN/m2 

1 ton.wt/in2 = 15.42 x 106N/m2 = 15.42 MN/m2 

Yield stresses of the common metallic materials are in the range: 

200 MN/m2 to 750 MN/m2 

Again, Young's modulus for steel becomes: 

Estee, = 30 x 106 Ib.wt/in2 = 207 GN/mZ 

Thus, working and yield stresses will usually be expressed in MN/m2 units, while Young's 
modulus will usually be given in GN/m2 units. 



Preface 

This new edition is updated by Professor Ross, and whle it retains much of the basic and 
traditional work in Case & Chllver’s Strength of Materials and Structures, it introduces modem 
numerical techques, such as matrix and finite element methods. 

Additionally, because of the difficulties experienced by many of today’s students with basic 
traditional mathematics, the book includes an introductory chapter which covers in some detail the 
application of elementary mathematics to some problems involving simple statics. 

The 197 1 ehtion was begun by Mr. John Case and Lord Chlver but, because of the death of 
Mr. John Case, it was completed by Lord Chlver. 

Whereas many of the chapters are retained in their 197 1 version, much tuning has been applied 
to some chapters, plus the inclusion of other important topics, such as the plastic theory of rigid 
jointed frames, the torsion of non-circular sections, thick shells, flat plates and the stress analysis 
of composites. 

The book covers most of the requirements for an engineering undergraduate course on strength 
of materials and structures. 

The introductory chapter presents much of the mathematics required for solving simple 
problems in statics. 

Chapter 1 provides a simple introduction to direct stresses and discusses some of the 
hdamental features under the title: Strength of materials and structures. 

Chapter 2 is on pin-jointed frames and shows how to calculate the internal forces in some 
simple pin-jointed trusses. Chapter 3 introduces shearing stresses and Chapter 4 discusses the 
modes of failure of some structural joints. 

Chapter 5 is on two-dimensional stress and strain systems and Chapter 6 is on thin walled 
circular cylindrical and spherical pressure vessels. 

Chapter 7 deals with bending moments and shearing forces in beams, whch are extended in 
Chapters 13 and 14 to include beam deflections. Chapter 8 is on geometrical properties. 

Chapters 9 and 10 cover direct and shear stresses due to the bending of beams, which are 
extended in Chapter 13. Chapter 11 is on beam theory for beams made from two dissimilar 
materials. Chapter 15 introduces the plastic hinge theory and Chapter 16 introduces stresses due 
to torsion. Chapter 17 is on energy methods and, among other applications, introduces the plastic 
design of rigid-jointed plane frames. 

Chapter 18 is on elastic buckling. 
Chapter 19 is on flat plate theory and Chapter 20 is on the torsion of non-circular sections. 

Chapter 22 introduces matrix algebra and Chapter 23 introduces the matrix displacement 

Chapter 24 introduces the finite element method and in Chapter 25 this method is extended to 
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Chapter 21 is on thick cylinders and spheres. 

method. 

cover the vibrations of complex structures. 
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Introduction 

1.1 Introduction 

Stress analysis is an important part of engineering science, as failure of most engineering 
components is usually due to stress. The component under a stress investigation can vary from the 
legs of an integrated circuit to the legs of an offshore drilling rig, or from a submarine pressure hull 
to the fuselage of a jumbo jet aircraft. 

The present chapter will commence with elementary trigonometric definitions and show how 
elementary trigonometry can be used for analysing simple pin-jointed frameworks (or trusses). 
The chapter will then be extended to define couples and show the reader how to take moments. 

1.2 Trigonometrical definitions 

Figure 1.1 Right-angled triangle. 

With reference to Figure I. 1 ,  

sin8 = bc/ac 

cos8 = ab/ac (1.1) 

tan0 = bdab 

For a triangle without a right angle in it, as shown in Figure 1.2, the sine and cosine rules can be 
used to determine the lengths of unknown sides or the value of unknown angles. 



2 Introduction 

Figure 1.2. Triangle with no right angle. 

The sine rule states that: 
C 

(1.2) - - - - -  - a b - 
sin A sin B sin C 

where 
a = length of side BC; opposite the angle A 

b = length of side AC; opposite the angle B 

c = length of side AB; opposite the angle C 

The cosine rule states that: 

a’ = b2 + c2 -2bc cos A 

1.3 Vectors and scalars 

A scalar is a quantity which has magnitude but no direction, such as a mass, length and time. A 
vector is a quantity which has magnitude and direction, such as weight, force, velocity and 
acceleration. 

NB It is interesting to note that the moment of a couple, (Section 1.6) and energy 
(Chapter 17), have the same units; but a moment of a couple is a vector quantity and 
energy is a scilar quantity. 

1.4 Newton’s laws of motion 

These are very important in engineering mechanics, as they form the very fundamentals of this 
topic. 

Newton’s three laws of motion were first published by Sir l s a c  Newton in The frincipia in 
1687, and they can be expressed as follows: 
(1) Every body continues in its state of rest or uniform motion in a straight line, unless it is 

compelled by an external force to change that state. 
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(2) The rate of change of momentum of a body with respect to time, is proportional to the 
resultant force, and takes place in a direction of which the resultant force acts. 

Action and reaction are equal and opposite. (3) 

1.5 Elementary statics 

The trigonometrical formulae of 1.2 can be used in statics. Consider the force F acting on an angle 
8 to the horizontal, as shown by Figure 1.3(a). Now as the force F is a vector, (i.e. it has magnitude 
and direction), it can be represented as being equivalent to its horizontal and vertical components, 
namely FH and F,, respectively, as shown by Figure 1.3(b). These horizontal and vertical 
components are also vectors, as they have magnitude and direction. 

NB If F is drawn to scale, it is possible to obtain FH and F ,  from the scaled drawing. 

(a) (b) 

Figure 1.3 Resolving a force. 

From elementary trigonometry 

- F~ = case 
F 

:. FH = F cos &horizontal component of F 

Similarly, 

5 = sin e 
F 

:. F ,  = F sin e-vertical component of F 



4 Introduction 

Problem 1.1 Determine the forces in the plane pin-jointed framework shown below. 

1 r I, I ("01 I C  

Solution 

Assume all unknown forces in each member are in tension, i.e. the internal force in each 
member is pulling away from its nearest joint, as shown below. 

Isolate joint A and consider equilibrium around the joint, 
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Resolving forces vertically 
From Section 1.7 

upward forces = downward forces 
0 = 5 + F2 COS 30 

5 
cos 30 

The negative sign for F2 indicates that h s  member is in compression. 

Resolving forces horizontally 
From Section 1.7 

F = -- = -5.77kN(cornpression) or 2 

forces to the left = forces to the right 
F,  + F , ~ i n 3 0  = O  
F,  = - F2 sin 30 = 5.77 sin 30 

F, = 2.887 kN (tension) 

The force diagram is as follows: 

Another method of determining the internal forces in the truss shown on page 4 is through the 
use of the triangle of forces. For h s  method, the magnitude and the direction of the known force, 
namely the 5kN load in h s  case, must be drawn to scale. 
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To complete the triangle, the directions of the unknown forces, namely F, and F2 must be drawn, 
as shown above. The directions of these forces can then be drawn by adding the arrowheads to the 
triangle so that the arrowheads are either all in a clockwise direction or, alternatively, all in a 
counter-clockwise direction. 

Applying the sine rule to the triangle of forces above, 

5 4 - = -  
sin60 sin 30 

5 x  05 
0.866 

= 2.887 kN : . F ,  = -  

Similarly by applying the sine rule: 

5 - = F2 
sin 60 sin 90 

= 5.77 kN 
5 

0.866 
:_ F2 = - 

These forces can now be transferred to the joint A of the pin-jointed truss below, where it can be 
seen that the member with the load F, is in tension, and that the member with the load F2 is in 
compression. 

This is known as a free body diagram. 

1.6 Couples 

A couple can be described as the moment produced by two equal and opposite forces acting 
together, as shown in Figure 1.4 where, 

the moment at the couple = M = F x 1 (N.m) 
F = force (N) 
I = lever length (m) 
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Figure 1.4 A clockwise couple. 

For the counter-clockwise couple of Figure 1.5, 

M = FCOS 0 x 1 

where F cos 0 = the force acting perpendicularly to the lever of length 1. 

NB The components of force F sin 0 will simply place the lever in tension, and will not cause 
a moment. 

Figure 1.5 A counter-clockwise couple. 

It should be noted from Figure 1.4 that the lever can be described as the perpendicular distance 
between the line of action of the two forces causing the couple. 

Furthermore, in Figure 1.5, although the above definition still applies, the same value of couple 
can be calculated, if the lever is chosen as the perpendicular distance between the components of 
the force that are perpendicular to the lever, and the forces acting on this lever are in fact those 
components of force. 
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1.7 Equilibrium 

This section will be limited to one- or two-dimensional systems, where all the forces and couples 
will be acting in on plane; such a system of forces is called a coplanar system. 

In two dimensions, equilibrium is acheved when the following laws are satisfied: 

(1) 

( 2 )  

( 3 )  

To demonstrate the use of these two-dimensional laws of equilibrium, the following problems will 
be considered. 

upward forces = downward forces 

forces to the left = forces to the right 

clockwise couples = counter-clockwise couples. 

Problem 1.2 Determine the values of the reactions R, and RE, when a beam is simply- 
supported at its ends and subjected to a downward force of 5 kN. 

Solution 

For this problem, it will be necessary to take moments. By taking moments, it is meant that the 
values of the moments must be considered about a suitable position. 

Suitable positions for takmg moments on this beam are A and B. This is because, if moments 
are taken about A, the unknown section R, will have no lever and hence, no moment about A, 
thereby simplifying the arithmetic. Similarly, by talung moments about B, the unknown RE will 
have no lever and hence, no moment about B, thereby simplifying the arithmetic. 
Taking moments about B 

clockwise moments = counter-clockwise moments 

R , x ( 4 + 2 )  = 5 x 2  

or R, = 1016 
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RA = 1.667 kN 

Resolving forces vem'cally 
upward forces = downward forces 

R , + R ,  = 5 

or R, = 5 - R, = 5 - 1.667 

R,  = 3.333kN 

Problem 1.3 Determine the values of the reactions of R, and R,  for the simply-supported 
beam shown. 

Solution 

Taking moments about B 
clockwise couples = counter-clockwise couples 

R A x 4  = 3 ~ 6 + 1 0 ~ 2  

18 + 20 
RA = - 

4 

RA = 9.5 kN 

Resolving forces vertically 
R A + R B  = 3 + 1 0  

or R,  = 13 - 9.5 = 3.5 kN 

Further problems (answers on page 691) 

Problem 1.4 Determine the reactions RA and R, for the simply-supported beams. 
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Problem 1.5 Determine the forces the pin-jointed trusses shown. 



Further problems 1 1  



I Tension and compression: 
direct stresses 

1 .I Introduction 

The strength of a material, whatever its nature, is defined largely by the internal stresses, or 
intensities of force, in the material. A knowledge of these stresses is essential to the safe design 
of a machine, aircraft, or any type of structure. Most practical structures consist of complex 
arrangements of many component members; an aircraft fuselage, for example, usually consists of 
an elaborate system of interconnected sheeting, longitudmal stringers, and transverse rings. The 
detailed stress analysis of such a structure is a difficult task, even when the loading condhons are 
simple. The problem is complicated further because the loads experienced by a structure are 
variable and sometimes unpredictable. We shall be concerned mainly with stresses in materials 
under relatively simple loading conditions; we begin with a discussion of the behaviour of a 
stretched wire, and introduce the concepts of direct stress and strain. 

1.2 Stretching of a steel wire 

One of the simplest loading conditions of a material is that of tension, in which the fibres of the 
material are stretched. Consider, for example, a long steel wire held rigidly at its upper end, Figure 
1.1, and loaded by a mass hung from the lower end. If vertical movements of the lower end are 
observed during loading it will be found that the wire is stretched by a small, but measurable, 
amount from its original unloaded length. The material of the wire is composed of a large number 
of small crystals which are only visible under a microscopic study; these crystals have irregularly 
shaped boundaries, and largely random orientations with respect to each other; as loads are applied 
to the wire, the crystal structure of the metal is distorted. 

Figure 1.1 Stretching of a steel wire under end load. 



Stretching of a steel wire 13 

For small loads it is found that the extension of the wire is roughly proportional to the applied load, 
Figure 1.2. This linear relationship between load and extension was discovered by Robert Hooke 
in 1678; a material showing this characteristic is said to obey Hooke's law. 

As the tensile load in the wire is increased, a stage is reached where the material ceases to show 
this linear characteristic; the corresponding point on the load-extension curve of Figure 1.2 is 
known as the limit of proportionality. If the wire is made from a hgh-strength steel then the 
load-extension curve up to the breakingpoint has the form shown in Figure 1.2. Beyond the limit 
of proportionality the extension of the wire increases non-linearly up to the elastic limit and, 
eventually, the breaking point. 

The elastic h u t  is important because it divides the load-extension curve into two regions. For 
loads up to the elastic limit, the wire returns to its original unstretched length on removal of the 
loads; tlus properly of a material to recover its original form on removal of the loads is known as 
elasticity; the steel wire behaves, in fact, as a still elastic spring. When loads are applied above the 
elastic limit, and are then removed, it is found that the wire recovers only part of its extension and 
is stretched permanently; in tlus condition the wire is said to have undergone an inelastic, or 
plastic, extension. For most materials, the limit of proportionality and the elastic limit are assumed 
to have the same value. 

In the case of elastic extensions, work performed in stretching the wire is stored as strain 
energy in the material; this energy is recovered when the loads are removed. During inelastic 
extensions, work is performed in makmg permanent changes in the internal structure of the 
material; not all the work performed during an inelastic extension is recoverable on removal of the 
loads; this energy reappears in other forms, mainly as heat. 

The load-extension curve of Figure 1.2 is not typical of all materials; it is reasonably typical, 
however, of the behaviour of brittle materials, which are discussed more fully in Section 1.5. An 
important feature of most engineering materials is that they behave elastically up to the limit of 
proportionality, that is, all extensions are recoverable for loads up to this limit. The concepts of 
linearity and elasticity' form the basis of the theory of small deformations in stressed materials. 

Figure 1.2 Load-extension curve for a steel wire, showing the limit of linear-elastic 
behaviour (or limit of proportionality) and the breaking point. 

'The definition of elasticity requires only that the extensions are recoverable on removal of the loads; this does not preclus 
the possibility of a non-linear relation between load and extension . 
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1.3 Tensile and compressive stresses 

The wire of Figure 1.1 was pulled by the action of a mass attached to the lower end; in this 
condition the wire is in tension. Consider a cylindrical bar ab, Figure 1.3, which has a uniform 
cross-section throughout its length. Suppose that at each end of the bar the cross-section is dwided 
into small elements of equal area; the cross-sections are taken normal to the longitudinal axis of 
the bar. To each of these elemental areas an equal tensile load is applied normal to the cross- 
section and parallel to the longitudinal axis of the bar. The bar is then uniformly stressed in 
tension. 

Suppose the total load on the end cross-sections is P; if an imaginary break is made 
perpendicular to the axis of the bar at the section c, Figure 1.3, then equal forces P are required at 
the section c to maintain equilibrium of the lengths ac and cb. This is equally true for any section 
across the bar, and hence on any imaginary section perpendicular to the axis of the bar there is a 
total force P. 

When tensile tests are carried out on steel wires of the same material, but of different cross- 
sectional area, the breaking loads are found to be proportional approximately to the respective 
cross-sectional areas of the wires. This is so because the tensile strength is governed by the 
intensity of force on a normal cross-section of a wire, and not by the total force. Thls intensity of 
force is known as stress; in Figure 1.3 the tensile stress (T at any normal cross-section of the bar 
is 

P 
A (1.1) ( T = -  

where P is the total force on a cross-section and A is the area of the cross-section. 

Figure 1.3 Cylindrical bar under uniform tensile stress; there is a similar state of 
tensile stress over any imaginary normal cross-section. 
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In Figure 1.3 uniform stressing of the bar was ensured by applying equal loads to equal small areas 
at the ends of the bar. In general we are not dealing with equal force intensities of this type, and 
a more precise definition of stress is required. Suppose 6A is an element of area of the cross- 
section of the bar, Figure 1.4; if the normal force acting on thls element is 6P, then the tensile stress 
at this point of the cross-section is defined as the limiting value of the ratio (6P/6A) as 6A becomes 
infinitesimally small. Thus 

. . 6 P  d P  
is = Limit -= - 

6A-0 6 A  dA ( 1 4  

Thls definition of stress is used in studying problems of non-uniform stress distribution in 
materials. 

Figure 1.4 Normal load on an element of area of the cross-section. 

When the forces P in Figure 1.3 are reversed in direction at each end of the bar they tend to 
compress the bar; the loads then give rise to compressive stresses. Tensile and compressive 
stresses are together referred to as direct (or normal) stresses, because they act perpendicularly to 
the surface. 

Problem 1.1 A steel bar of rectangular cross-section, 3 cm by 2 cm, carries an axial load of 
30 kN. Estimate the average tensile stress over a normal cross-section of the 
bar. 
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Solution 

The area of a normal cross-section of the bar is 

Tension and compression: direct stresses 

A = 0.03 x 0.02 = 0.6 x lO-3 m2 

The average tensile stress over this cross-section is then 

P - 3 o x  io3 
A 0.6 x 10-~ 

0 = - -  = ~ o M N / ~ ’  

Problem 1.2 A steel bolt, 2.50 cm in diameter, cames a tensile load of 40 kN. Estimate the 
average tensile stress at the section a and at the screwed section b, where the 
diameter at the root of the thread is 2.10 cm. 

Solution 

The cross-sectional area of the bolt at the section a is 

Il 
Aa = - (0.025)2 = 0.491 x lO-3  m2 

4 

The average tensile stress at A is then 

P 
A, 0.491 x lO-3 

40 x io3 
= 81.4 M N h 2  = , = - =  

The cross-sectional area at the root of the thread, section b, is 

A, = - (0.021)2 = 0.346 x lO-3 m2 
x 

4 

The average tensile stress over this section is 

40 x io3 
- = 115.6 M N h 2  

P 
A, 0.346 x lO-3 ‘ b  = - -  
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1.4 Tensile and compressive strains 

In the steel wire experiment of Figure 1.1 we discussed the extension of the whole wire. If we 
measure the extension of, say, the lowest quarter-length of the wire we find that for a given load 
it is equal to a quarter of the extension of the whole wire. In general we find that, at a given load, 
the ratio of the extension of any length to that length is constant for all parts of the wire; this ratio 
is known as the tensile strain. 

Suppose the initial unstrained length of the wire is Lo, and the e is the extension due to 
straining; the tensile strain E is defined as 

e 
(13  E = -  

LO 

Thls definition of strain is useful only for small distortions, in which the extension e is small 
compared with the original length Lo; this definition is adequate for the study of most engineering 
problems, where we are concerned with values of E of the order 0.001, or so. 

If a material is compressed the resulting strain is defined in a similar way, except that e is the 
contraction of a length. 

We note that strain is a Ron-dimensional quantity, being the ratio of the extension, or 
contraction, of a bar to its original length. 

Problem 1.3 A cylindrical block is 30 cm long and has a circular cross-section 10 cm in 
diameter. It carries a total compressive load of 70 kN, and under this load it 
contracts by 0.02 cm. Estimate the average compressive stress over a normal 
cross-section and the compressive strain. 

Solution 

The area of a normal cross-section is 

4 
?c 

A = -  (0.10)2 = 7.85 x 10-’m2 
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The average compressive stress over this cross-section is then 

Tension and compression: direct stresses 

P 70 x io3 
A 7.85 x 10-~  = 8.92MN/m2 - = - -  - 

The average compressive strain over the length of the cylinder is 

0.02 x 1o-2 = 0.67 x 10-3 E =  
30 x lo-* 

1.5 Stress-strain curves for brittle materials 

Many of the characteristics of a material can be deduced from the tensile test. In the experiment 
of Figure 1.1 we measured the extensions of the wire for increasing loads; it is more convenient 
to compare materials in terms of stresses and strains, rather than loads and extensions of a 
particular specimen of a material. 

The tensile stress-struin curve for a hgh-strength steel has the form shown in Figure 1 3. The 
stress at any stage is the ratio of the load of the original cross-sectional area of the test specimen; 
the strain is the elongation of a unit length of the test specimen. For stresses up to about 750 
MNlm2 the stress-strain curve is linear, showing that the material obeys Hooke’s law in this range; 
the material is also elastic in this range, and no permanent extensions remain after removal of the 
stresses. The ratio of stress to strain for this linear region is usually about 200 GN/m2 for steels; 
this ratio is known as Young’s modulus and is denoted by E. The strain at the limit of 
proportionality is of the order 0.003, and is small compared with strains of the order 0.100 at 
fracture. 

Figure 1.5 Tensile stress-strain curve for a high-strength steel. 
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We note that Young’s modulus has the units of a stress; the value of E defines the constant in the 
linear relation between stress and strain in the elastic range of the material. We have 

for the linear-elastic range. If P is the total tensile load in a bar, A its cross-sectional area, and Lo 
its length, then 

(J P I A  
E e I L ,  

E = - = -  

where e is the extension of the length Lo. Thus the expansion is given by 

PLO e = -  
EA 

If the material is stressed beyond the linear-elastic range the limit of proportionality is 
exceeded, and the strains increase non-linearly with the stresses. Moreover, removal of the stress 
leaves the material with some permanent extension; h range is then bothnon-linear and inelastic. 
The maximum stress attained may be of the order of 1500 MNlm’, and the total extension, or 
elongation, at this stage may be of the order of 10%. 

The curve of Figure 1.5 is typical of the behaviour of brittle materials-as, for example, area 
characterized by small permanent elongation at the breaking point; in the case of metals this is 
usually lo%, or less. 

When a material is stressed beyond the limit of proportionality and is then unloaded, permanent 
deformations of the material take place. Suppose the tensile test-specimen of Figure 1.5 is stressed 
beyond the limit of proportionality, (point a in Figure lA), to a point b on the stress-strain 
diagram. If the stress is now removed, the stress-strain relation follows the curve bc; when the 
stress is completely removed there is a residual strain given by the intercept Oc on the &-axis. If 
the stress is applied again, the stress-strain relation follows the curve cd initially, and finally the 
curve df to the breaking point. Both the unloading curve bc and the reloading curve cd are 
approximately parallel to the elastic line Oa; they are curved slightly in opposite directions. The 
process of unloading and reloading, bcd, had little or no effect on the stress at the breaking point, 
the stress-strain curve being interrupted by only a small amount bd, Figure 1.6. 

The stress-strain curves of brittle materials for tension and compression are usually similar in 
form, although the stresses at the limit of proportionality and at fracture may be very different for 
the two loading conditions. Typical tensile and compressive stress-strain curves for concrete are 
shown in Figure 1.7; the maximum stress attainable in tension is only about one-tenth of that in 
compression, although the slopes of the stress-strain curves in the region of zero stress are nearly 
equal. 
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Figure 1.6 Unloading and reloading of a material in the inelastic range; the paths bc 
and cd are approximately parallel to the linear-elastic line oa. 

Figure 1.7 Typical compressive and tensile stress-strain cuwes for concrete, showing 
the comparative weakness of concrete in tension. 

1.6 Ductile materials /see Section 1.8) 

A brittle material is one showing relatively little elongation at fracture in the tensile test; by 
contrast some materials, such as mild steel, copper, and synthetic polymers, may be stretched 
appreciably before breaking. These latter materials are ductile in character. 

If tensile and compressive tests are made on a mild steel, the resulting stress-strain curves are 
different in form from those of a brittle material, such as a high-strength steel. If a tensile test 
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specimen of mild steel is loaded axially, the stress-strain curve is linear and elastic up to a point 
a, Figure 1.8; the small strain region of Figure 1.8. is reproduced to a larger scale in Figure 1.3. 
The ratio of stress to strain, or Young’s modulus, for the linear portion Oa is usually about 
200 GN/m2, ie, 200 x109 N/m2. The tensile stress at the point a is of order 300 MN/m2, i.e. 
300 x lo6 N/m2. If the test specimen is strained beyond the point a, Figures 1.8 and 1.9, the stress 
must be reduced almost immediately to maintain equilibrium; the reduction of stress, ab, takes 
place rapidly, and the form of the curve ab is lfficult to define precisely. Continued straining 
proceeds at a roughly constant stress along bc. In the range of strains from a to c the material is 
said to yield; a is the upper yieldpoint, and b the lower yieldpoint. Yielding at constant stress 
along bc proceeds usually to a strain about 40 times greater than that at a; beyond the point c the 
material strain-hardens, and stress again increases with strain where the slope from c to d is about 
1150th that from 0 to a.  The stress for a tensile specimen attains a maximum value at d if the stress 
is evaluated on the basis of the original cross-sectional area of the bar; the stress corresponding to 
the point d is known as the ultimate stress, (T,,,, of the material. From d to f there is a reduction in 
the nominal stress until fracture occurs at$ The ultimate stress in tension is attained at a stage 
when necking begins; this is a reduction of area at a relatively weak cross-section of the test 
specimen. It is usual to measure the diameter of the neck after fracture, and to evaluate a true stress 
at fracture, based on the breakmg load and the reduced cross-sectional area at the neck. Necking 
and considerable elongation before fracture are characteristics of ductile materials; there is little 
or no necking at fracture for brittle materials. 

Figure 1.8 Tensile stress-strain curve for an 
annealed mild steel, showing the drop in stress at 
yielding from the upper yield point a to the lower 

yield point b. 

Figure 1.9 Upper and lower yield points of a 
mild steel. 

Compressive tests of mild steel give stress-strain curves similar to those for tension. If we 
consider tensile stresses and strains as positive, and compressive stresses and strains as negative, 
we can plot the tensile and compressive stress-strain curves on the same diagram; Figure 1.10 
shows the stress-strain curves for an annealed mild steel. In determining the stress-strain curves 
experimentally, it is important to ensure that the bar is loaded axially; with even small eccentricities 
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of loading the stress distribution over any cross-section of the bar is non-uniform, and the upper 
yield point stress is not attained in all fibres of the material simultaneously. For this reason the 
lower yield point stress is taken usually as a more realistic definition of yielding of the material. 

Some ductile materials show no clearly defined upper yield stress; for these materials the limit 
ofproportionality may be lower than the stress for continuous yielding. The termyieldstress refers 
to the stress for continuous yielding of a material; this implies the lower yield stress for a material 
in which an upper yield point exists; the yield stress is denoted by oy. 

Tensile failures of some steel bars are shown in Figure 1.1 1; specimen (ii) is a brittle material, 
showing little or no necking at the fractured section; specimens (i) and (iii) are ductile steels 
showing a characteristic necking at the fractured sections. The tensile specimens of Figure 1.12 
show the forms of failure in a ductile steel and a ductile light-alloy material; the steel specimen (i) 
fails at a necked section in the form of a ‘cup and cone’; in the case of the light-alloy bar, two 
‘cups’ are formed. The compressive failure of a brittle cast iron is shown in Figure 1.13. In the 
case of a mild steel, failure in compression occurs in a ‘barrel-lke’ fashion, as shown in 
Figure 1.14. 

Figure 1.10 Tensile and compressive stress-strain curves for an annealed 
mild steel; in the annealed condition the yield stresses in tension and 

Compression are approximately equal. 

The stress-strain curves discussed in the preceding paragraph refer to static tests carried out at 
negligible speed. When stresses are applied rapidly the yield stress and ultimate stresses ofmetallic 
materials are usually raised. At a strain rate of 100 per second the yield stress of a mild steel may 
be twice that at negligible speed. 
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(ii) 

(iii) 

Figure 1.11 Tensile failures in steel specimens showing necking in mild steel, (i) and (iii), 
and brittle fracture in high-strength steel, (ii). 

(ii) 

Figure 1.12 Necking in tensile failures of ductile materials. 
(i) Mild-steel specimen showing ‘cup and cone’ at the broken section. 
(ii) Aluminium-alloy specimen showing double ‘cup’ type of failure. 

Figure 1.13 Failure in compression of a 
circular specimen of cast iron, showing fracture 

on a diagonal plane. 

Figure 1.14 Barrel-like failure in a compressed 
specimen of mild steel. 
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Problem 1.4 

Tension and compression: direct stresses 

A tensile test is carried out on a bar of mild steel of diameter 2 cm. The bar 
yields under a load of 80 kN. It reaches a maximum load of 150 kN, and 
breaks finally at a load of 70 kN. 

Estimate: 

(1) 
(ii) the ultimate tensile stress; 
(iii) 

the tensile stress at the yield point; 

the average stress at the breakmg point, if the diameter of the 
fractured neck is 1 cm. 

Solution 

The original cross-section of the bar is 

A 
= - (0.020)2 = 0.314 x m z  

4 

(i) The average tensile stress at yielding is then 

= 254 MNIm’, p y  - 80 x 103 
% = - -  

A0 0.314 x 

where P, = load at the yield point 

(ii) The ultimate stress is the nominal stress at the maximum load, i.e., 

where P,, = maximum load 

(iii) The cross-sectional area in the fractured neck is 

Af = - (0.010)2 = 0.0785 x m 2  A 

4 

The average stress at the breaking point is then 

= 892 MN/m2, - pf = 70 x 10) 
Of - - 

Af 0.0785 x 

where PI = final breaking load. 
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Problem 1.5 A circular bar of diameter 2.50 cm is subjected to an axial tension of 20 kN. 
If the material is elastic with a Young's modulus E = 70 GN/m2, estimate the 
percentage elongation. 

Solution 

The cross-sectional area of the bar is 

I[ A = - (0.025)2 = 0.491 x lO-3 m 2  
4 

The average tensile stress is then 

= 40.7 MN/mz p -  20 x IO3 
( I = - -  

A 0.491 x l O - 3  

The longitudinal tensile strain will therefore be 

= 0.582 x io-3 0 -  40.7 x IO6 & = - -  

E 70 x 109 

The percentage elongation will therefore be 

(0.582 x lO-3) 100 = 0.058% 

ProDlem 1.6 The piston of a hydraulic ram is 40 cm diameter, and the piston rod 6 cm 
diameter. The water pressure is 1 MN/mz. Estimate the stress in the piston 
rod and the elongation of a length of 1 m of the rod when the piston is under 
pressure from the piston-rod side. Take Young's modulus as E = 200 GN/m*. 
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Solution 

The pressure on the back of the piston acts on a net area 

Tension and compression: direct stresses 

IC x - [(0.40)2 - (0.06)2] = - (0.46) (0.34) = 0.123 m 2  
4 4 

The load on the piston is then 

P = (1) (0.123) = 0.123 MN 

Area of the piston rod is 

x A = - (0.060)2 = 0.283 x m 2  
4 

The average tensile stress in the rod is then 

From equation (1.6), the elongation of a length L = 1 m is 

- - (43.5 x 106) (1) 
200 x 109 

= 0.218 x m 

= 0.0218 cm 

Problem 1.7 The steel wire working a signal is 750 m long and 0.5 cm diameter. 
Assuming a pull on the wire of 1.5 kN, find the movement which must be 
given to the signal-box end of the wire if the movement at the signal end is 
to be 17.5 cm. Take Young’s modulus as 200 GN/m2. 
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Solution 

If 6(cm) is the movement at the signal-box end, the actual stretch of the wire is e = (6 - 17.5)cm 

The longitudinal strain is then 

(6 - 17.5) lo-' 
E =  

750 

Now the cross-sectional area of the wire is 

I[ A = - (0.005)2 = 0.0196 x lO-3 m 2  
4 

The longitudinal strain can also be defrned in terms of the tensile load, namely, 

e -  p -  1.5 x io3 
L EA (200 x io9) (0.0196 x io-3) 

E = - - - -  

= 0.383 x lO-3 

On equating these two values of E, 

(6 - 17'5) 1o-2 
= 0.383 x 10-3 

750 

The equation gives 

6 = 46.2 cm 
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Problem 1.8 

Tension and compression: direct stresses 

A circular, metal rod of diameter 1 cm is loaded in tension. When the 
tensile load is 5kN, the extension of a 25 cm length is measured accurately 
and found to be 0.0227 cm. Estimate the value of Young’s modulus, E, of 
the metal. 

Solution 

The cross-sectional area is 

x A = - (0.01)2 = 0.0785 x l O - 3  m 2  
4 

The tensile stress is then 

= 63.7 MN/m2 p -  5 x 103 = = - -  
A 0.0785 x lO-3 

The measured tensile strain is 

& = - -  e -  0.0227 x 1O-2 = 0.910 x 10-3 
L 25 x 1O-2 

Then Young’s modulus is defined by 

E = - -  = -  63*7 x lo6 = 70 GN/m2 
E 0.91 x lO-3 

A straight, uniform rod of length L rotates at uniform angular speed u about 
an axis through one end and perpendicular to its length. Estimate the 
maximum tensile stress generated in the rod and the elongation of the rod at 
this speed. The density of the material is p and Young’s modulus is E. 

Problem 1.9 
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Solution 

Suppose the radial lsplacement of any point a distance r from the axis of rotation is u.  The 
radial displacement a distance r + 6r) from 0 is then (u + 6u), and the elemental length 6r of the 
rod is stretched therefore an amount 6u. The longitudinal strain of th~s element is therefore 

- du 
sI - o 6r dr 

E = Limit- - - 

The longitudinal stress in the elemental length is then 

du 
0 = EE = E -  

dr 

If A is the cross-sectional area of the rod, the longitudinal load at any radius r is then 

du 
dr 

P =  OA = EA-  

The centrifugal force acting on the elemental length 6r is 

(pA6r) wzr 

Then, for radial equilibrium of the elemental length, 

6P + p A o z  r 6r = 0 

This gives 

- -  dp - -pAo2r 
a? 

On integrating, we have 

1 
2 

P = - - p A o 2 r 2  + C  

where C is an arbitrary constant; if P = 0 at the remote end, r = L, of the rod, then 

1 

2 
C = - pAo2L2 
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and 

The tensile stress at any radius is then 

This is greatest at the axis of rotation, r = 0, so that 

The longitudinal stress, 0, is defined by 

du 
dr 

o = E -  

so 

On integrating, 

where D is an arbitrary constant; if there is no radial movement at 0, then u = 0 at = r = 0, and 
we have D = 0. 

Thus 

At the remote end, r = L, 

p w2 L 3  
U L  = 

2E 3E 
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1.7 Proof stresses 

Many materials show no well-defmed yield stresses when tested in tension or compression. A 
typical stress-strain curve for an aluminium alloy is shown in Figure 1.1 5. 

Figure 1.15 Proof stresses of an aluminium-alloy material; the proof stress is found 
by drawing the line parallel to the linear-elastic line at the appropriate proof strain. 

The limit of proportionality is in the region of 300 MNlm2, but the exact position of this limit is 
difficult to determine experimentally. To overcome this problem a proof stress is defined; the 
0.1% proof stress required to produce a permanent strain of 0.001 (or 0.1%) on removal of the 
stress. Suppose we draw a line from the point 0.001 on the strain axis, Figure 1.15, parallel to 
the elastic line of the material; the point where this line cuts the stress-strain curve defines the 
proof stress. The 0.2% proof stress is defined in a similar way. 

1.8 Ductility measurement 

The Ductility value of a material can be described as the ability of the material to suffer plastic 
deformation whle still being able to resist applied loading. The more ductile a material is the 
more it is said to have the ability to deform under applied loading. 

The ductility of a metal is usually measured by its percentage reduction in cross-sectional 
area or by its percentage increase in length, i.e. 

('41 - '4d x 100% 

( L ,  - L F )  x 100% 

'41 
percentage reduction in area = 

and 

Ll 
percentage increase in length = 

where 
A,  = initial cross-sectional area of the tensile specimen 

A ,  = final cross-sectional area of the tensile specimen 

L, = initial gauge length of the tensile specimen 

L,  = final gauge length of the tensile specimen 
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Place LI 

UK 4Jarea 

USA 4.5 1 Jarea 

Europe 5.65Jarea 

It should be emphasised that the shape of the tensile specimen plays a major role on the 
measurement of the ductility and some typical relationships between length and character for 
tensile specimens i.e. given in Table 1.1 

bronze and cast iron have low ductility. 
Materials such as copper and mild steel have high ductility and brittle materials such as 

L I 4 *  

3.54 

4.0 

5 .O 

area = cross-sectional area 

* 0, = initial diameter of the tensile specimen 

1.9 Working stresses 

In many engineering problems the loads sustained by a component of a machine or structure 
are reasonably well-defined; for example, the lower stanchions of a tall buildmg support the 
weight of material forming the upper storeys. The stresses which are present in a component, 
under normal working conditions, are called the working stresses; the ratio of the yield stress, 
oy, of a material to the largest working stress, ow, in the component is the stress factor against 
yielding. The stress factor on yielding is then 

If the material has no well-defined yield point, it is more convenient to use the proof stress, op; 
the stress factor on proof stress is then 

Some writers refer to the stress factor defined above as a ‘safety factor’. It is preferable, 
however, to avoid any reference to ‘safe’ stresses, as the degree of safety in any practical 
problem is difficult to define. The present writers prefer the term ‘stress factor’ as this defines 
more precisely that the worlung stress is compared with the yield, or proof stress of the 
material. Another reason for using ‘stress factor’ will become more evident after the reader has 
studied Section 1.10. 
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1.1 0 Load factors 

The stress fucior in a component gives an indication of the working stresses in relation to the 
yield, or proof, stress of the material. In practical problems working stresses can only be 
estimated approximately in stress calculations. For this reason the stress factor may give little 
indication of the degree of safety of a component. 

A more realistic estimate of safety can be made by finding the extent to which the workmg 
loads on a component may be increased before collapse or fracture occurs. Consider, for 
example, the continuous beam in Figure 1.16, resting on three supports. Under working 
conditions the beam carries lateral loads P,, P2 and P3, Figure l.l6(i). If all these loads can be 
increased simultaneously by a factor n before collapse occurs, the load factor against collapse is 
n. In some complex structural systems, as for example continuous beams, the collapse loads, 
such as nP1, "Pi and nP,, can be estimated reasonably accurately; the value of the load factor 
can then be deduced to give working loads PI, P2 and P3. 

Figure 1.16 Factored loads on a continuous beam. 
(i) Working loads. (ii) Factored working loads leading to collapse. 

1 .I 1 Lateral strains due to direct stresses 

When a bar of a material is stretched longitudinally-as in a tensile test-the bar extends in the 
direction of the applied load. This longitudinal extension is accompanied by a lateral contraction 
of the bar, as shown in Figure 1.17. In the linear-elastic range of a material the lateral strain is 
proportional to the longitudinal strain; if E, is the longitudinal strain of the bar, then the lateral 
strain is 

Er = VEX (1.9) 

The constant v in this relationshp is known as Poisson 's ratio, and for most metals it has a 
value of about 0.3 in the linear-elastic range; it cannot exceed a value of 0.5. For concrete it has 
a value of about 0.1. If the longitudinal strain is tensile, the lateral strain is a contraction; for a 
compressed bar there is a lateral expansion. 
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Figure 1.17 The Poisson ratio effect leading to lateral contraction of a bar in tension. 

With a knowledge of the lateral contraction of a stretched bar it is possible to calculate the change 
in volume due to straining. The bar of Figure 1.17 is assumed to have a square cross-section of 
side a; Lo is the unstrained length of the bar. When strained longitudinally an amount E,, the 
corresponding lateral strain of contractions is E ~ .  The bar extends therefore an amount &Ao, and 
each side of the cross-section contracts an amount E,Q. The volume of the bar before stretching is 

vo = aZLo 

After straining the volume is 

v = (a -&Yay (Lo + E, Lo) 

v = a2Lo(1 - E Y y  (1 +E,) = V0(1 -Ey)2 (1 + Ey) 

which may be written 

If E, and E~ are small quantities compared to unit, we may write 

( 1 - E y ) 2 ( 1 + E , )  = ( 1 - 2 E y ) ( 1 + E , )  = I + E , - 2 E y  

ignoring squares and products of E, and E ~ .  The volume after straining is then 

v = V0(l+E,-2Ey) 

The volumetric strain is defined as the ratio of the change of volume to the original volume, and 
is therefore 

v- V" 

61 
(1.10) - -  - Ex - 2 E)' 
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If E,, = v E~ then the volumetric strain is E, (1 - 2v). Equation (1.10) shows why v cannot be greater 
than 0.5; if it were, then under compressive hydrostatic stress a positive volumetric strain will 
result, whch is impossible. 

Problem 1.10 A bar of steel, having a rectangular cross-section 7.5 cm by 2.5 cm, carries an 
axial tensile load of 180 kN. Estimate the decrease in the length of the sides of 
the cross-section if Young’s modulus, E, is 200 GN/m2 and Poisson’s ratio, v, 
is 0.3. 

Solution 

The cross-sectional area is 

A = (0.075) (0.025) = 1.875 x m2 

The average longitudinal tensile stress is 

The longitudmal tensile strain is therefore 

The lateral strain is therefore 

VE = 0.3(0.48 x = 0.144 x 

The 7.5 cm side then contracts by an amount 

(0.075) (0.144 x = 0.0108 x m 
= 0.00108cm 

The 2.5 cm side contracts by an amount 

(0.025) (0.144 x = 0.0036 x m 
= 0.00036cm 



36 Tension and compression: direct stresses 

1 . I2  Strength properties of some engineering materials 

The mechanical properties of some engineering materials are given in Table 1.2. Most of the 
materials are in common engineering use, including a number of relatively new and important 
materials; namely glass-fibre composites, carbon-fibre composites and boron composites. In the 
case of some brittle materials, such as cast iron and concrete, the ultimate stress in tension is 
considerably smaller than in compression. 

Composite materials, such as glass fibre reinforced plastics, (GRP), carbon-fibre reinforced 
plastics (CFRP), boron-fibre remforced plastics, ‘Kevlar’ and metal-matrix composites are likely 
to revolutionise the design and construction of many structures in the 2 1 st century. The glass fibres 
used in GRP are usually made from a borosilicate glass, similar to the glass used for cooking 
utensils. Borosilicate glass fibres are usually produced in ‘E’ glass or glass that has good electrical 
resistance. A very strong form of borosilicate glass fibre appears in the form of ‘S’ glass which 
is much more expensive than ‘E’ glass. 

Some carbon fibres, namely high modulus (HM) carbon fibres , have a tensile modulus much 
larger than high strength steels, whereas other carbon fibres have a very high tensile strength (HS) 
much larger than hgh  tensile steels. 

Currently ‘S’ glass is some eight times more expensive than ‘E’ glass and HS carbon is about 
50 times more expensive than ‘E’ glass. HM carbon is some 250 times more expensive than ‘E’ 
glass while ‘Kevlar’ is some 15 times more expensive than ‘E’ glass. 

1 . I3  Weight and stiffness economy of materials 

In some machme components and structures it is important that the weight of material should be 
as small as possible. This is particularly true of aircraft, submarines and rockets, for example, in 
which less structural weight leads to a larger pay-load. If odt is the ultimate stress of a material in 
tension and p is its density, then a measure of the strength economy is the ratio 

The materials shown in Table 1.2 are compared on the basis of strength economy in Table 1.3 from 
which it is clear that the modern fibre-reinforced composites offer distinct savings in weight over 
the more common materials in engineering use. 

In some engineering applications, stiffness rather than strength is required of materials; th is  is 
so in structures likely to buckle and components governed by deflection limitations. A measure of 
the stiffness economy of a material is the ratio 

some values ofwhich are shown in Table 1.2. Boron composites and carbon-fibre composites show 
outstanding stiffness properties, whereas glass-fibre composites fall more into line with the best 
materials already in common use. 
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1.14 Strain energy and work done in the tensile test 

As a tensile specimen extends under load, the forces applied to the ends of the test specimen move 
through small distances. These forces perform work in stretchmg the bar. If, at a tensile load P, 
the bar is stretched a small additional amount 6e, Figure 1.18, then the work done on the bar is 
approximately P6e 

Figure 1.18 Work done in stretching a bar through a small extension, 6e. 

The total work done in extending the bar to the extension e is then 

W = 1 Pde,  (1.11) 

u = w =  ] P d e  (1.12) 

0 

which is the area under the P-e curve up to the stretched condition. If the limit of proportionality 
is not exceeded, the work done in extending the bar is stored as strain energy, which is directly 
recoverable on removal of the load. For h s  case, the strain energy, U, is 

0 

But in the linear-elastic range of the material, we have from equation (1.6) that 

e = -  PLLl 
EA 

where Lo is the initial length of the bar, A is its cross-sectional area and E is Young's modulus. 
Then equation ( 1.12) becomes 

u = j , e ,  = a ( e 2 )  (1.13) 
LO 2LO 

0 
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In terms of P 

- -(P) (1.14) 
EA 
2Lo 2 EA 

u = -(ez) - Lo 

Now (P/A) is the tensile stress e in the bar, and so we may write 

o 2  

2 E  2 E  
(1.15) ALO u = - ( 0 2 )  =-  x thevolume 

Moreover, as AL, is the original volume of the bar, the strain ,energy per unit volume is 

(1.16) 
o 2  - 
2E 

When the limit of proportionality of a material is exceeded, the work done in extending the bar is 
still given by equation (1.11); however, not all this work is stored as strain energy; some of the 
work done is used in producing permanent &tortions in the material, the work reappearing largely 
in the form of heat. Suppose a mild-steel bar is stressed beyond the yield point, Figure 1.19, and 
up to the point where strain-hardening begins; the strain at the limit of proportionality is small 
compared with h s  large inelastic strain; the work done per unit volume in producing a strain E is 
approximately 

w = C y &  (1.17) 

in which e,, is the yield stress of the material. This work is considerably greater than that required 
to reach the limit of proportionality. A ductile material of this type is useful in absorbing relatively 
large amounts of work before breakmg. 

Figure 1.19 Work done in stretching a mild-steel bar; the work done during plastic 
deformation is very considerable compared with the elastic strain energy. 
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1 . I5  Initial stresses 

It frequently happens that, before any load is applied to some part of a machme or structure, it is 
already in a state of stress. In other words, the component is initially stressed before external 
forces are applied. Bolted joints and connections, for example, involve bolts whch are pre- 
tensioned; subsequent loading may, or may not, affect the tension in a bolt. Most forms of welded 
connections introduce initial stresses around the welds, unless the whole connection is stress 
relieved by a suitable heat treatment; in such cases, the initial stresses are not usually known with 
any real accuracy. Initial stresses can also be used to considerable effect in strengthening certain 
materials; for example, concrete can be made a more effective material by precompression in the 
form of prestressed concrete. The problems solved below are statically indeterminate 
(see Chapter 2) and therefore require compatibility considerations as well as equilibrium 
considerations. 

Problem 1.1 1 A 2.5 cm dnmeter steel bolt passes through a steel tube 5 cm internal diameter, 
6.25 cm external diameter, and 40 cm long. The bolt is then tightened up onto 
the tube through rigid end blocks until the tensile force in the bolts is 40 kN. 
The distance between the head of the bolt and the nut is 50 cm. If an external 
force of 30 kN is applied to the end blocks, tending to pull them apart, estimate 
the resulting tensile force in the bolt. 

Solution: 

The cross-sectional area of the bolt is 
a - (0.025)2 = 0.491 x lO-3 m 2  
4 

The cross-sectional are of the tube is 
II 5c - [(0.0625)2 - (0.050)’] = - (0.1125) (0.0125) = 0.110 x lO-2 m 2  
4 4 

Before the external load of 30 kN is applied, the bolt and tube carry internal loads of 40 kN. When 
the external load of 30 kN is applied, suppose the tube and bolt are each stretched by amounts 6; 
suppose further that the change of load in the bolt is (A&, tensile, and the change of load in the 
tube is (AP),, tensile. 



42 Tension and compression: direct stresses 

Then for compatibility, the elastic stretch of each component due to the additional external load 
of 30 kN is 

( W ) h  (0.50) (M) ,  (0.40) 
6=-= 

(0.491 x lO-3) E 

where E is Young's modulus. Then 

(0.110 x lo-*) E 

(AP), = 0.357 (AP), 

But for equilibrium of internal and external forces, 

(AP),, + (AP), = 30 kN 

These two equations give 

(AP),, = 7.89 kN, (AP), = 22.11 kN 

The resulting tensile force in the bolt is 

40 + (AI'),, = 47.89 kN 

1 . I6  Composite bars in tension or compression 

A composite bar is one made of two materials, such as steel rods embedded in concrete. The 
construction of the bar is such that constituent components extend or contract equally under load. 
To illustrate the behaviour of such bars consider a rod made of two materials, 1 and 2, Figure 1.20; 
A,,  A, are the cross-sectional areas of the bars, and E,, E, are the values of Young's modulus. We 
imagine the bars to be rigidly connected together at the ends; then for compatibility, the 
longitudinal strains to be the same when the composite bar is stretched we must have 

(1.18) 61 = 2  & =  - -  - -  
E ,  E, 
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Figure 1.20 Composite bar in tension; if the bars are connected rigidly 
at their ends, they suffer the same extensions. 

where 0, and oz are the stresses in the two bars. But from equilibrium considerations, 

P = (T, A, + 6, A, 

Equations (1.18) and (1.19) give 

(1.19) 

(1.20) PE, 
A, E,  + A2 E2 

, (-J, = 
PE, 

A, E, + A2 E2 
0, = 

Problem 1.12 A concrete column, 50 cm square, is reinforced with four steel rods, each 
2.5 cm in diameter, embedded in the concrete near the comers of the square. 
If Young's modulus for steel is 200 GN/mz and that for concrete is 14 GN/mz, 
estimate the compressive stresses in the steel and concrete when the total thrust 
on the column is 1 MN. 

Solution 

Suppose subscripts c and s refer to concrete and steel, respectively. The cross-sectional area of 
steel is 

As = 4 5 (0.025)* = 1.96 x l O - 3  m 2  
[4 I 
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and the cross-sectional area of concrete is 
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A ,  = (0.50)2 - A, = 0.248 m 2  

Equations (1.20) then give 

0, = = 3.62 MN/m2 1 o6 
(0.248) + (1.96 x lO-3) - 

(2::) 

= 51.76 MN/m2 1 o6 
0, = 

(0.248) (2) + (1.96 x lO-3) 

Problem 1.13 A uniform beam weighing 500 N is held in a horizontal position by three 
vertical wires, one attached to each end of the beam, and one at the mid-length. 
The outer wires are brass of diameter 0.125 cm, and the central wire is of steel 
of diameter 0.0625 cm. If the beam is rigid and the wires are of the same 
length, and unstressed before the beam is attached, estimate the stresses in the 
wires. Young's modulus for brass is 85 GN/m2 and for steel is 200 GN/m*. 

Solution 

On considering the two outer brass wires together, we may take the system as a composite one 
consisting of a single brass member and a steel member. The area of the steel member is 

IC A, = - (0.625 x 10-312 = 0.306 x 1O-6 m 2  
4 

The total area of the two brass members is 

A,, = 2 [: (1.25 x 10-3p] = 2.45 x 1O-6 m 2  
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Equations (1.20) then give, for the steel wire 

= 370 MN/mz 500 
0, = 

(0.306 x + (2.45 x 

and for the brass wires 

= 158 MN/m2 500 
Ob = 

(0.306 x (E) + (2.45 x 

1 . I7  Temperature stresses 

When the temperature of a body is raised, or lowered, the material expands, or contracts. If this 
expansion or contraction is wholly or partially resisted, stresses are set up in the body. Consider 
a long bar of a material; suppose Lo is the length of the bar at a temperature e,, and that a is the 
coefficient of linear expansion of the material. The bar is now subjected to an increase 8 in 
temperature. If the bar is completely free to expand, its length increases by d 0 8 ,  and the length 
becomes Lo (1 + a8) were compressed to a length Lo; in th is case the compressive strain is 

a Lo 6 
E =  = a6 

Lo (1 + a6) 

since a8 is small compared with unity; the corresponding stress is 

(T = EE = a 8 E  (1.21) 

By a similar argument the tensile stress set up in a constrained bar by a fall 8 in temperature is a8 
E. It is assumed that the material remains elastic. 

In the case of steel a = 1.3 x per "C; the product aE is approximately 2.6 MN/m2 per "C, 
so that a change in temperature of 4°C produces a stress of approximately 10 h4N/m2 if the bar is 
completely restrained. 

1 .I 8 Temperature stresses in composite bars 

In a component or structure made wholly of one material, temperature stresses arise only if external 
restraints prevent thermal expansion or contraction. In composite bars made of materials with 
different rates of thermal expansion, internal stresses can be set up by temperature changes; these 
stresses occur independently of those due to external restraints. 

Consider, for example, a simple composite bar consisting of two members-a solid circular bar, 
1, contained inside a circular tube, 2, Figure 1.2 1. The materials of the bar and tube have 
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different coefficients of linear expansion, a, and q, respectively. If the ends of the bar and tube 
are attached rigidly to each other, longitudinal stresses are set up by a change of temperature. 
Suppose firstly, however, that the bar and tube are quite free of each other; if Lo is the original 
length of each bar, Figure 1.21, the extensions due to a temperature increase 0 are a, 015, and a, 
OLo, Figure 1.21(ii). The difference in lengths of the two members is (a, - q) 0L,; this is now 
eliminated by compressing the inner bar with a force P, and pulling the outer tube with an equal 
force P, Figure 1.2l(iii). 

(1) (ii) (iii) 

Figure 1.21 Temperature stress in a composite bar. 

If A ,  and E, are the cross-sectional area and Young's modulus, respectively, of the inner bar, and 
A, and E, refer to the outer tube, then the contraction of the inner bar to P is 

PLO 

E ,  A ,  
e ,  = - 

and the extension of the outer tube due to P is 

PLO 

E, A ,  
e2 = - 

Then from compatibility considerations, the difference in lengths (a, - %) OL, is eliminated 
completely when 

(a ,  - q) 8Lo = e ,  + e, 
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On substituting for e, + e2, we have 

The force P is induced by the temperature change 8 if the ends of the two members are attached 
rigidly to each other; from equation (1.22), P has the value 

(1.23) 

An internal load is only set up if a, is different from q. 

Problem 1.1 4 An aluminium rod 2.2 cm diameter is screwed at the ends, and passes through 
a steel tube 2.5 cm internal diameter and 0.3 cm thick. Both are heated to a 
temperature of 140"C, when the nuts on the rod are screwed lightly on to the 
ends of the tube. Estimate the stress in the rod when the common temperature 
has fallen to 20°C. For steel, E = 200 GN/m2 and a = 1.2 ~ 1 0 . ~  per "C, and 
for aluminium, E = 70 GN/m2 and a = 2.3 x per "C, where E is Young's 
modulus and a is the coefficient of linear expansion. 

Solution 

Let subscript a refer to the aluminium rod and subscripts to the steel tube. The problem is similar 
to the one discussed in Section 1.17, except that the composite rod has its temperature lowered, in 
this case from 140°C to 20°C. From equation (1.23), the common force between the two 
components is 

@a - as) 0 

(EA),  (EA), 

P =  
1 1 - + -  

The stress in the rod is therefore 

Now 

(EA) ,  = (70 x io9) - (0.022)~ = 26.6 MN [: 1 
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Again 
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(EA), = (200 x lo’) [n (0.028) (0.003)] = 52.8 MN 

Then 
- -  P - 12.3 - 1.2) 10-~]  (70 x 10’) (120) = 61.4 MN,m2 
A ,  

1 +(%) 

1 . I9  Circular ring under radial pressure 

When a thin circular ring is loaded radially, a circumferential force is set up in the ring; this force 
extends the circumference of the ring, wbch in turn leads to an increase in the radius of the ring. 
Consider a thm ring of mean radius r, Figure 1.22(i), acted upon by an internal radial force of 
intensity p per unit length of the boundary. If the ring is cut across a diameter, Figure 1.22(ii), 
circumferential forces P are required at the cut sections of the ring to maintain equilibrium of the 
half-ring. For equilibrium 

2P = 2pr 

P = pr (1.24) 

A section may be taken across any diameter, leading to the same result; we conclude, therefore, 
that P is the circumferential tension in all parts of the ring. 

If A is the cross-sectional area of the ring at any point of the circumference, then the tensile 
circumferential stress in the ring is 

so that 

(1.25) p P‘ o = - = -  
A A  

Figure 1.22 Thin circular ring under uniform radial loading, 
leading to a uniform circumferential tension. 

If the cross-section is a rectangle of breadth b, (normal to the plane of Figure 1.22), and duchess 
t ,  (in the plane of Figure 1.22), then 
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(1.26) Pr 
bt 

( J = -  

Circumferential stresses of a similar type are set up in a circular ring rotating about an axis through 
its centre. We suppose the ring is a uniform circular one, having a cross-sectional area A at any 
point, and that it is rotating about its central axis at uniform angular velocity o. If p is the density 
of the material of the ring, then the centrifugal force on a unit length of the circumference is 

p A o 2 r  

In equation (1.25) we put this equal to p; thus, the circumferential tensile stress in the ring is 

(1.27) 2 2  l J = - -  pr - p a  r 
A 

which we see is independent of the actual cross-sectional area. Now, or is the circumferential 
velocity, V(say), of the ring, so 

0 = pv 2 (1.28) 

For steel we have p = 7840 kg/m3; to produce a tensile stress of 10 MN/m2, the circumferential 
velocity must be 

v =  E = j,,.,,., = 35.7 m/s  
7840 

Problem 1.1 5 A circular cylinder, containing oil, has an internal bore of 30 cm diameter. The 
cylinder is 1.25 cm thick. If the tensile stress in the cylinder must not exceed 
75 MN/m2, estimate the maximum load Wwhch may be supported on a piston 
sliding in the cylinder. 
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Solution 

A load Won the piston generates an internal pressure p given by 

w = x r ’ p  

where r is the radius of the cylinder. In this case 

w -  W 
P = - -  

x r z  A (0.150)’ 

A unit length of the cylinder is equivalent to a circular ring subjected to an internal load o f p  per 
unit length of circumference. The circumferential load set up by p in this ring is, from equation 
(1.24), 

P = pr = p (0.150) 

The circumferential stress is, therefore, 

o = - - - -  p -  - 80P 
1 X t  0.0125 

where t is the thickness of the wall of the cylinder. If o is limited to 75 MN/m2, then 

80P = 75 x lo6 

But 

12 w 
(0.150)’ 

80P = 80 [p (0.150)] = 12p = 

Then 

12w = 75 x 1 0 6  
A (0.150)’ 

giving 

W = 441 kN 

Problem 1.1 6 An aluminium-alloy cylinder o f  internal diameter 10.000 cm and wall thickness 
0.50 cm is shrunk onto a steel cylinder of external diameter 10.004 cm and wall 
thickness 0.50 cm. If the values of Young’s modulus for the alloy and the steel 
are 70 GN/m2 and 200 GN/m2, respectively, estimate the circumferential 
stresses in the cylinders and the radial pressure between the cylinders. 
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Solution 

We take unit lengths of the cylinders as behaving like thin circular rings. After the s w i n g  
operation, we suppose p is the radial between the cylinders. The mean radius of the steel tube is 

[10.004 - 0.501 = 4.75 cm 

The compressive circumferential stress in the steel tube is then 

P‘ - P (0.0475) 
= 9.5p o s = - -  

t 0.0050 

The circumferential strain in the steel tube is then 

os - 9 . 5 0 ~  
E s = - -  

E S  200 x io9 

The mean radius of the alloy tube is 

[lO.OOO + 0.501 = 5.25 cm 

The tensile circumferential stress in the alloy tube is then 

The circumferential strain in the alloy tube is then 

The circumferential expansion of the alloy tube is 

2x r E, 

so the mean radius increases effectively by an amount 

6, = r E ,  = 0.0525 E ,  

Similarly, the mean radius of the steel tube contracts by an amount 

6s = r cS = 0.0475 es 
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For the shrinking operation to be carried out we must have that the initial lack of fit, 6, is given by 

6 = 6, + 6, 

Then 

6, + 6, = 0.002 x 10-2 

On substituting for 6, and 6,, we have 

0.0525 [ ] + 0.0475 [ 9'50p ] = 0.002 x lo-' 
70 x 109 200 x io9 

This gives 

p = 1.97 MN/m2 

The compressive circumferential stress in the steel cylinder is then 

os = 9 . 5 0 ~  = 18.7 MN/m2 

The tensile circumferential stress in the alloy cylinder is 

o, = 1 0 . 5 ~  = 20.7 MN/m2 

1.20 Creep of materials under sustained stresses 

At ordinary laboratory temperatures most metals will sustain stresses below the limit of 
proportionality for long periods without showing additional measurable strains. At these 
temperatures metals deform continuously when stressed above the elastic range. This process of 
continuous inelastic strain is called creep. At high temperatures metals lose some of their elastic 
properties, and creep under constant stress takes place more rapidly. 

When a tensile specimen of a metal is tested at a high temperature under a constant load, the 
strain assumes instantaneously some value E,, Figure 1.23. If the initial strain is in the inelastic 
range of the material then creep takes place under constant stress. At first the creep rate is fairly 
rapid, but diminishes until a point a is reached on-the strain-time curve, Figure 1.23; the point a 
is a point of inflection in this curve, and continued application of the load increases the creep rate 
until fracture of the specimen occurs at b. 

At ordinary temperatures concrete shows creep properties; these may be important in pre- 
stressed members, where some of the initial stresses in the concrete may be lost after a long period 
due to creep. Composites are also vulnerable to creep and this must be considered when using 
them for construction. 
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Figure 1.23 Creep curve for a material in the inelastic range; E, is the instantaneous plastic strain. 

1.21 Fatigue under repeated stresses  

When a material is subjected to repeated cyclic loading, it can fail at a stress which may be much 
less than the material's yield stress. The problem that occurs here, is that the structure might have 
minute cracks in it or other stress raisers. Under repeated cyclic loading the large stresses that 
occur at these stress concentrations cause the cracks to grow, until fracture eventually occurs. 
Materials likely to suffer fatigue include aluminium alloys and composites; see Figure 1.24. 

Failure of a material after a large number of cycles of tensile stress occurs with little, or no, 
permanent set; fractures show the characteristics of brittle materials. Fatigue is primarily a 
problem of repeated tensile stresses; th ls is due probably to the fact that microscopic cracks in a 
material can propagate more easily when the material is stressed in tension. In the case of steels 
it is found that there is a critical stress-called the endurance l imitbelow which fluctuating 
stresses cannot cause a fatigue failure; titanium alloys show a similar phenomenon. No such 
en&inr-no, 1:m:t h-c hnnn fniincl f n n r  nthnnr nnn-fn-n,>e m n t - l c  * n A  nthnr m*tnnr;olc 

Figure 1.24 Comparison of the fatigue strengths of metals under repeated tensile stresses. 
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Further problems (answers on page 691) 

Tension and compression: direct stresses 

1.17 

1.18 

1.19 

1.20 

1.21 

1.22 

The piston rod of a double-acting hydraulic cylinder is 20 cm diameter and 4 m long. 
The piston has a diameter of 40 cm, and is subjected to 10 MN/m2 water pressure on one 
side and 3 MN/m2 on the other. On the return stroke these pressures are interchanged. 
Estimate the maximum stress occurring in the piston-rod, and the change of length of the 
rod between two strokes, allowing for the area of piston-rod on one side of the piston. 
Take E = 200 GN/m*. (We) 
A uniform steel rope 250 m long hangs down a shaft. Find the elongation of the first 125 
m at the top if the density of steel is 7840 kg/m3 and Young's modulus is 200 GN/m*. 
(Cam bridge) 

A steel wire, 150 m long, weighs 20 N per metre length. It is placed on a horizontal 
floor and pulled slowly along by a horizontal force applied to one end. If this force 
measures 600 N, estimate the increase in length of the wire due to its being towed, 
assuming a uniform coefficient of friction. Take the density of steel as 7840 kg/m3 and 
Young's modulus as 200 GN/m2. (RNEC) 

The hoisting rope for a mine shaft is to lift a cage of weight W. The rope is of variable 
section so that the stress on every section is equal to (T when the rope is fully extended. 
If p is the density of the material of the rope, show that the cross-sectional area A at a 
height z above the cage is 

To enable two walls, 10 m apart, to give mutual support they are stayed together by a 2.5 
cm diameter steel tension rod with screwed ends, plates and nuts. The rod is heated to 
100°C when the nuts are screwed up. If the walls yield, relatively, by 0.5 cm when the 
rod cools to 15"C, find the pull of rod at that temperature. The coefficient of linear 
expansion of steel is a = 1.2 x per "C, and Young's modulus E = 200 GN/m2. 
(RNEC) 

A steel tube 3 cm diameter, 0.25 cm thick and 4 m long, is covered and lined throughout 
with copper tubes 0.2 cm thick. The three tubes are f d y  joined together at their ends. 
The compound tube is then raised in temperature by 100°C. Find the stresses in the steel 
and copper, and the increase in length of the tube, will prevent its expansion? Assume 
E = 200 GN/m2 for steel and E = 110 GN/mZ for copper; the coefficients of linear 
expansion of steel and copper are 1.2 x per "C, respectively. per "C and 1.9 x 
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2.1 Introduction 

In problems of stress analysis we discriminate between two types of structure; in the first, the 
forces in the structure can be determined by considering only its statical equilibrium. Such a 
structure is said to be statically determinate. The second type of structure is said to be statically 
indeterminate. In the case of the latter type of structure, the forces in the structure cannot be 
obtained by considerations of statical equilibrium alone. This is because there are more unknown 
forces than there are simultaneous equations obtained from considerations of statical equilibrium 
alone. For statically indeterminate structures, other methods have to be used to obtain the 
additional number of the required simultaneous equations; one such method is to consider 
compatibility, as was adopted in Chapter 1. In h s  chapter, we will consider statically determinate 
frames and one simple statically indeterminate frame. 

Figure 2.1 shows a rigid beam BD supported by two vertical wires BF and DG; the beam carries 
a force of 4W at C. We suppose the wires extend by negligibly small amounts, so that the 
geometrical configuration of the structure is practically unaffected; then for equilibrium the forces 
in the wires must be 3 Win BF and W in DG. As the forces in the wires are known, it is a simple 
matter to calculate their extensions and hence to determine the displacement of any point of the 
beam. The calculation of the forces in the wires and structure of Figure 2.1 is said to be statically 
determinate. If, however, the rigid beam be supported by three wires, with an additional wire, say, 
between H and J in Figure 2.1, then the forces in the three wires cannot be solved by considering 
statical equilibrium alone; this gives a second type of stress analysis problem, which is discussed 
more fully in Section 2.5; such a structure is statically indeterminate. 

Figure 2.1 Statically determinate system of a beam supported by two wires. 
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2.2 Statically determinate pin-jointed frames 

By afiame we mean a structure whxh is composed of straight bars joined together at their ends. 
A pin-jointedji-ame or truss is one in which no bending actions can be transmitted from one bar 
to another as described in the introductory chapter; ideally this could be achieved if the bars were 
joined together through pin-joints. If the frame has just sufficient bars or rods to prevent collapse 
without the application of external forces, it is said to be simply-shfl, when there are more bars or 
rods than this, the frame is said to be redundant. A redundant framework is said to contain one or 
more redundant members, where the latter are not required for the framework to be classified as 
a framework, as distinct from being a mechanism. It should be emphasised, however, that if a 
redundant member is removed from the framework, the stresses in the remaining members of the 
framework may become so large that the framework collapses. A redundant member of a 
framework does not necessarily have a zero internal force in it. Definite relations exist which must 
be satisfied by the numbers of bars and joints if a frame is said fo be simply-sm, or statically 
determinate. 

In the plane frame of Figure 2.2, BC is one member. To locate the joint D relative to BC 
requires two members, namely, BD and CD; to locate another joint F requires two further 
members, namely, CF and DF. Obviously, for each new joint of the frame, two new members are 
required. If m be the total number of members, including BC, and j is the total number of joints, 
we must have 

m = 2j - 3 ,  (2.1) 

if the frame is to be sunply-stiff or statically determinate. 

and equation (2.1) becomes, omitting member BC, and joints B and C, 
When the frame is rigidly attached to a wall, say at B and C, BC is not part of the frame as such, 

m = 2j (2.2) 

These conditions must be satisfied, but they may not necessarily ensure that the frame is simply- 
stiff. For example, the frames of Figures 2.2 and 2.3 have the same numbers of members and 
joints; the frame of Figure 2.2 is simply-stiff. The fiame of Figure 2.3 is not simply-stiff, since a 
mechanism can be formed with pivots at D, G, J ,  F. Thus, although a frame having j joints must 
have at least (2j - 3) members, the mode of arrangement of these members is important. 

Figure 2.2 Simply-stiff plane frame built up Figure 2.3 Rearrangement of the members 
from a basic triangle BCD. of Figure 2.2 to give a mechanism. 
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For a pin-jointed space frame attached to three joints in a rigid wall, the condition for the frame to 
be simply-stiff is 

m = 3j (2.3) 

where m is the total number of members, and j is the total number of joints, exclusive of the three 
joints in the rigid wall. When a space frame is not rigidly attached to a wall, the condition becomes 

m = 3j - 6 ,  (2.4) 

where m is the total number of members in the frame, andj the total number of joints. 

2.3 The method of joints 

This method can only be used to determine the internal forces in the members of statically 
determinate pin-jointed trusses. It consists of isolating each joint of the framework in the form of 
afree-body diagram and then by considering equilibrium at each of these joints, the forces in the 
members of the framework can be determined. Initially, all unknown forces in the members of the 
framework are assumed to be in tension, and before analysing each joint it should be ensured that 
each joint does not have more than two unknown forces. 

To demonstrate the method, the following example will be considered. 

Problem 2.1 Using the method of joints, determine the member forces of the plane pin- 
jointed truss of Figure 2.4. 

Figure 2.4 Pin-jointed truss. 
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Solution 

Assume all unknown internal forces are in tension, because if they are in compression, their signs 
will be negative. 

As each joint must only have two unknown forces acting on it, it will be necessary to determine 
the values of RA. RE and HE, prior to using the method of joints. 

Resolving the forces horizontally 
forces to the left = forces to the right 

3 = HE 

:. HE = 3 kN 

Taking moments about B 
clockwise moments = counter-clockwise moments 

R A x 8 + 3 x  2.311 = 5 x 4 +  6 x 2  

:. R, = 25.0718 = 3.13 kN 

Resolving forces vertically 
upward forces = downward forces 

R A + R E  = 5 + 6  

or R, = 1 1  - 3.13 = 7.87 kN 

Isolatejoint A and consider equilibrium, as shown by the following free-body diagram. 
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Resolving forces vertically 
upward forces = downward forces 

3.13 + FADsin 30 = 0 

or FAD = -6.26 kN (compression) 

NB The negative sign for this force denotes that this member is in compression, and such a 
member is called a strut. 

Resolving forces horizontally 
forces to the right 

FAc + FAD cos30 = 0 

= forces to the left 

or FAc = 6.26 x 0.866 

FAc = 5.42 kN(tension) 

NB Thepositive sign for h s  force denotes that this member if in tension, and such a member 
is called a tie. 

It is possible now to analyse joint D,  because F A D  is known and therefore the joint has only two 
unknown forces acting on it, as shown by the free-body diagram. 

Resolving vertically 
upward forces = downward forces 

FDE sin 30 = FAD sin30+ F, sin 30 

or FDE = -6.26 + FK (2.5) 
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Resolving horizontally 
forces to the left = forces to the right 

FAD COS 30 = F D E  COS 30 + FX COS 30 

or FDE = -6.26- FX (2.6) 

Equating (2.5) and (2.6) 

-6.26 i- FX = -6.26 - FK 

or F, = 0 (2.7) 

Substituting equation (2.7) into equation (2.5) 

F D E  = -6.26 kN (compression) 

It is now possible to examine joint E,  as it has two unknown forces acting on it, as shown: 

Resolving horizontally 
forces to the left = forces to the right 

FDE cos30 = FEF cos30+ 3 

or FEF = -6.26 - 310.866 

FEF = -9.72 kN (compression) 

Resolving vertically 
upward forces = downward forces 

0 = 5 i- FDE sin 30 i- FcE + FEF sin 30 

FcE = -5  + 6.26 x 0.5 + 9.72 x 0.5 

FcE = 3 kN (tension) 
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It is now possible to analyse either joint F or joint C, as each of these joints has only got two 
unknown forces acting on it. Consider joint F, 

Resolving horizontally 
forces to the left = forces to the right 

FEF COS 30 -+ FcF COS 30 = FBF cos 30 

:. FBF = -9.72 f FcF (2.8) 

Resolving verticallj 
upward forces = downward forces 

FEF sin 30 = FcF sin 30 -+ FBF sin 30 + 6 

or FBF x 0.5 = -9.72 x 0.5 - 0.5 FcF - 6 

:. FBF = -21.72 - FcF (2.9) 

Equating (2.8) and (2.9) 

-9.72 f FcF = -21.72 - FcF 

:. FcF = -6  kN (compression) (2.10) 

Substituting equation (2.10) into equation (2.8) 

FBF = -9.72 - 6 = -15.72 kN (compression) 

Consider joint B to determine the remaining unknown force, namely Fsc, 
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Resolving horizontally 
forces to the left = forces to the right 

FBF COS 30 + FBc + 3 = 0 

:. FBc = -3 + 15.72 x 0.866 = kN (tension) 

Here are the magnitudes and ‘directions’ of the internal forces in this truss: 

2.4 The method of sections 

This method is useful if it is required to determine the internal forces in only a few members. The 
process is to make an imaginary cut across the framework, and then by considering equilibrium, 
to determine the internal forces in the members that lie across this path. In this method, it is only 
possible to examine a section that has a maximum of three unknown internal forces, and here 
again, it is convenient to assume that all unknown forces are in tension. 

To demonstrate the method, an imaginary cut will be made through members DE, CD and AC 
of the truss of Figure 2.4, as shown by the free-body diagram of Figure 2.5 

Figure 2.5 Free-body diagram. 
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Taking moments about D 
counter-clockwise couples = clockwise couples 

FACx 1.55 = 3.13 * 2 

:. FA, = 5.42 kN 

NB It was convenient to take moments about D, as there were two unknown forces acting 
through this point and therefore, the arithmetic was simplified. 

Resolving vertically 
upward forces = downward forces 

FDE sin30 + 3.13 = F,sin30 

Resolving horizontally 
forces to the right = forces to the left 

FDE cos 30 + F,, cos 30 + FA, = 0 

:. FK = -5.4210.866 - FDE 

or F,, = -6.26 - FDE 

Equating (2.1 1) and (2.12) 

FDE = -6.26 kN 

Substituting equation (2.13) into equation (2.1 1) 

F,, = 0 kN 

These values can be seen to be the same as those obtained by the method of joints. 

2.5 A statically indeterminate problem 

(2.1 1) 

(2.12) 

(2.13) 

In Section 2.1 we mentioned a type of stress analysis problem in which internal stresses are not 
calculable on considering statical equilibrium alone; such problems are statically indeterminate. 
Consider therigid beam BD of Figure 2.6 which is supported on three wires; suppose the tensions 
in the wires are T,, T, and T,. Then by resolving forces vertically, we have 

T, + T, + T, = 4W (2.14) 
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and by taking moments about the point C, we get 

TI - T, - 3T, = 0 (2.15) 

From these equilibrium equations alone we cannot derive the values of the three tensile forces TI ,  
T,, T,; a third equation is found by discussing the extensions of the wires or considering 
compatibility. If the wires extend by amounts e,, e,, e,, we must have from Figure 2.6(ii) that 

e, + e, = 2e, (2.16) 

because the beam BD is rigid. Suppose the wires are all of the same material and cross-sectional 
area, and that they remain elastic. Then we may write 

e, = AT, , e, = AT,, e3 = AT,, (2.17) 

where 1 is a constant common to the three wires. Then equation (2.16) may be written 

TI + T, = 2 T, (2.18) 

Figure 2.6 A simple statically indeterminate system consisting 
of a rigid beam supported by three extensible wires. 

The three equations (2.14), (2.15) and (2.18) then give 

4w W 
T = -  T, = - (2.19) 

7w 
TI = - 

12 z 12 12 

Equation (2.16) is a condition which the extensions of the wires must satisfy; it is called a strain 
compatibility condition. Statically indeterminate problems are soluble if strain compatibilities are 
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considered as well as statical equilibrium. 

Further problems (answers on page 691) 

2.2 Determine the internal forces in the plane pin-jointed trusses shown below: 

2.3 The plane pin-jointed truss below is f d y  pinned at A and B and subjected to two point 
loads at the joint F. 

Using any method, determine the forces in all the members, stating whether they are 
tensile or compressive. (Portsmouth 1982) 
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2.4 A plane pin-jointed truss is f m l y  pinned at its base, as shown below. 

Determine the forces in the members of this truss, stating whether they are in tension or 
compression. (Portsmouth 1980) 

2.5 Determine the internal forces in the pin-jointed truss, below, which is known as a Warren 
girder. 



3 Shearing stress 

3.1 Introduction 

In Chapter 1 we made a study of tensile and compressive stresses, which we called direct stresses. 
There is another type of stress which plays a vital role in the behaviour of materials, especially 
metals. 

Consider a thin block of material, Figure 3.1, whch is glued to a table; suppose a thin plate is 
now glued to the upper surface of the block. If a horizontal force F is applied to the plate, the plate 
will tend to slide along the top of the block of material, and the block itself will tend to slide along 
the table. Provided the glued surfaces remain intact, the table resists the sliding of the block, and 
the block resists the sliding of the plate on its upper surface. Ifwe consider the block to be divided 
by any imaginary horizontal plane, such as ab, the part of the block above this plane will be trying 
to slide over the part below the plane. The material on each side of this plane will be trying to slide 
over the part below the plane. The material on each side of this plane is said to be subjected to a 
shearing action; the stresses arising from these actions are called shearing stresses. Shearing 
stresses act tangential to the surface, unllke direct stresses which act perpendicular to the surface. 

Figure 3.1 Shearing stresses caused 
by shearing forces. 

Figure 3.2 Shearing stresses in a rivet; shearing 
forces F is transmitted over the face ab of the 

rivet. 

In general, a pair of garden shears cuts the sterns of shrubs through shearing action and not 
bending action. Shearing stresses arise in many other practical problem. Figure 3.2 shows two 
flat plates held together by a single rivet, and carrying a tensile force F. We imagine the rivet 
divided into two portions by the plane ab; then the upper half of the rivet is tending to slide over 
the lower half, and a shearing stress is set up in the plane ab. Figure 3.3 shows a circular shaft a,  
with a collar c, held in bearing b, one end of the shaft being pushed with a force F; in this case 
there is, firstly, a tendency for the shaft to be pushed bodily through the collar, thereby inducing 
shearing stresses over the cylindncal surfaces d of the shaft and the collar; secondly, there is a 
tendency for the collar to push through the bearing, so that shearing stresses are set up on 
cylindrical surfaces such as e in the bearing. As a thud example, consider the case of a steel bolt 
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in the end of a bar of wood, Figure 3.4, the bolt being pulled by forces F; suppose the grain of the 
wood runs parallel to the length of the bar; then if the forces Fare large enough the block abed will 
be pushed out, shearing taking place along the planes ab and cd. 

Figure 3.3 Thrust on the collar of a shaft, generating 
shearing stress over the planes d. 

Figure 3.4 Tearing of the end of a timber member by a steel bolt, 
generating a shearing action on the planes ab and cd. 

3.2 Measurement of shearing stress 

Shearing stress on any surface is defined as the intensity of shearing force tangential to the surface. 
If the block of material of Figure 3.1 has an area A over any section such as ab, the average 
shearing stress T over the section ab is 

F 
A ‘ T = -  (3.1) 

In many cases the shearing force is not dstributed uniformly over any section; if 6F  is the shearing 
force on any elemental area 6A of a section, the shearing stress on that elemental area is 

6F dF 
T = Limit - = - 

S A + O  6 A  d4 (3.2) 

Problem 3.1 Three steel plates are held together by a 1.5 cm diameter rivet. If the load 
transmitted is 50 kN, estimate the shearing stress in the rivet. 
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Solution 

There is a tendency to shear across the planes in the rivet shown by broken lines. The area 
resisting shear is twice the cross-sectional area of the rivet; the cross-sectional area of the rivet is 

n 
A = - (0.015)2 = 0.177 x l O - 3  m2 

4 

The average shearing stress in the rivet is then 

25 x lo3 
= 141 m / m 2  

F 

A 0.177 x l O - 3  
T =  - =  

Problem 3.2 Two steel rods are connected by a cotter joint. If the shearing strength of the 
steel used in the rods and the cotter is 150 MN/m2, estimate which part of the 
joint is more prone to shearing failure. 

Solution 

Shearing failure may occur in the following ways: 

(i) Shearing of the cotter in the planes ab and cd. 
The area resisting shear is 2@772h) = 2(0.075 (0.015) = 2.25 x l O - 3  m2 
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For a shearing failure on these planes, the tensile force is 

P = T A  = (150 x IO6) (2.25 x lO-3) = 338 kN 

(ii) By the cotter tearing through the ends of the socket q, i.e. by shearing the planes efand gh. 
The total area resisting shear is 

A = 4(0.030) (0.035) = 4.20 x l O - 3  m2 

For a shearing failure on these planes 

P = TA = (150 x lo6) (4.20 x lO-3) = 630 kN 

(iii) By the cotter tearing through the ends of the rodp, i.e. by shearing in the planes kl and mn. 
The total area resisting shear is 

A = 2(0.035) (0.060) = 4.20 x lO-3  m2 

For a shearing failure on these planes 

P = TA = (150 x IO6) (4.20 x lO-3) = 630kN 

Thus, the connection is most vulnerable to shearing failure in the cotter itself, as discussed 
in (i); the tensile load for shearing failure is 338 kN. 

Problem 3.3 A lever is keyed to a shaft 4 cm in diameter, the width ofthe key being 1.25 cm 
and its length 5 cm. What load P can be applied at an ann of a = 1 m if the 
average shearing stress in the key is not to exceed 60 MN/m*? 

Solution 

The torque applied to the shaft is Pa. If this is resisted by a shearing force F on the plane ab of the 
key, then 

Fr = Pa 

where r is the radius of the shaft. Then 



Complementary shearing stress 71 

F = - - - -  Pa - P(1) - 5op 
r (0.02) 

The area resisting shear in the key is 

A = 0.0125 x 0.050 = 0.625 x lO-3 m 2  

The permissible shearing force on the plane ab of the key is then 

F = TA = (60 x lo6) (0.625 x lO-3) = 37.5 kN 

The permissible value of P is then 

F 
50 

P = - = 7 5 0 N  

3.3 Complementary shearing stress  

Let us return now to the consideration of the block shown in Figure 3.1. We have seen that 
horizontal planes, such as ab, are subjected to shearing stresses. In fact the state of stress is rather 
more complex than we have supposed, because for rotational equilibrium of the whole block an 
external couple is required to balance the couple due to the shearing forces F. Suppose the material 
of the block is divided into a number of rectangular elements, as shown by the full lines of Figure 
3.5. Under the actions of the shearing forces F, which together constitute a couple, the elements 
will tend to take up the positions shown by the broken lines in Figure 3.5. It will be seen that there 
is a tendency for the vertical faces of the elements to slide over each other. Actually the ends of 
the elements do not slide over each other in this way, but the tendency to so do shows that the 
shearing stress in horizontal planes is accompanied by shearing stresses in vertical planes 
perpendicular to the applied shearing forces. This is true of all cases of shearing action: a given 
shearing stress acting on one plane is always accompanied by a complementary shearing stress on 
planes at right angles to the plane on which the given stress acts. 

Figure 3.5 Tendency for a set of disconnected blocks 
to rotate when shearing forces are applied. 

Consider now the equilibrium of one of the elementary blocks of Figure 3.5. Let T~ be the 
shearing stress on the horizontal faces of the element, and T,,~ the complementary shearing stress' 

'Notice that the first suffix x shows the direction, the second the plane on which the stress acts; thus T~~ acts in 
direction of x axis on planes y = constant. 
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on vertical faces of the element, Figure 3.6. Suppose a is the length of the element, b its height, 
and that it has unit thickness. The total shearing force on the upper and lower faces is then 

Txy”  a x 1 = UT, 

while the total shearing force on the end faces is 

Tyx x b x 1 = bTYX 

For rotational equilibrium of the element we then have 

(UT,) x b = (hYJ x u 

and thus 

7, = Tyx 

Figure 3.6 Complementary shearing stresses over the faces 
of a block when they are connected. 

We see then that, whenever there is a shearing stress over a plane passing through a given line, 
there must be an equal complementary shearing stress on a plane perpendicular to the given plane, 
and passing through the given line. The directions of the two shearing stresses must be either both 
towards, or both away from, the line of intersection of the two planes in which they act. 

It is extremely important to appreciate the existence of the complementary shearing stress, for 
its necessary presence has a direct effect on the maximum stress in the material, as we shall see 
later in Chapter 5. 
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3.4 Shearing strain 

Shearing stresses in a material give rise to shearing strains. Consider a rectangular block of 
material, Figure 3.7, subjected to shearing stresses T in one plane. The shearing stresses hstort the 
rectangular face of the block into a parallelogram. If the right-angles at the comers of the face 
change by amounts y, then y is the shearing strain. The angle y is measured in radians, and is non- 
dimensional therefore. 

Figure 3.7 Shearing strain in a rectangular block; small values of y lead 
to a negligible change of volume in shear straining. 

For many materials shearing strain is linearly proportional to shearing stress withm certain limits. 
This linear dependence is similar to the case of drect tension and compression. Within the limits 
of proportionality 

T = G ~ ,  (3.3) 

where G is the shearing modulus or modulus of rigidity, and is similar to Young's modulus E, for 
direct tension and compression. For most materials E is about 2.5 times greater than G. 

It should be noted that no volume changes occur as a result of shearing stresses acting alone. 
In Figure 3.7 the volume of the strained block is approximately equal to the volume of the original 
rectangular prism if the angular strain y is small. 

3.5 Strain energy due to shearing actions 

In shearing the rectangular prism of Figure 3.7, the forces acting on the upper and lower faces 
undergo displacements. Work is done, therefore, during these displacements. If the strains are 
kept within the elastic limit the work done is recoverable, and is stored in the form of strain energy. 
Suppose all edges of the prism of Figure 3.7 are of unit length; then the prism has unit volume, and 
the shearing forces on the sheared faces are 7. Now suppose T is increased by a small amount, 
causing a small increment of shearing strain 6y. The work done on the prism during this small 
change is 76y, as the force 7 moves through a distance 6y. The total work done in producing a 
shearing strain y is then 

1.4 
0 
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While the material remains elastic, we have from equation (3.3) that T = Gy, and the work done 
is stored as strain energy; the strain energy is therefore 

1.4 = I@. = ; C y 2  (3.4) 
0 0 

per unit volume. In terms of T this becomes 

2 

= shear strain energy per unit volume (3.5) 
1 2 7  -@ =- 
2 2G 

Further problems (answers on page 691) 

3.4 Rivet holes 2.5 cm diameter are punched in a steel plate 1 cm thick. The shearing 
strength of the plate is 300 hIN/m2. Find the average compressive stress in the punch at 
the time of punching. 

The diameter of the bolt circle of a flanged coupling for a shaft 12.5 cm in diameter is 
37.5 cm. There are six bolts 2.5 cm diameter. What power can be transmitted at 150 
revlmin if the shearing stress in the bolts is not to exceed 60 MNIm2? 

A pellet canying the stnking needle of a fuse has a mass of 0.1 kg; it is prevented from 
moving longitudinally relative to the body of the fuse by a copper pin A of diameter 0.05 
cm. It is prevented from turning relative to the body of the fuse by a steel stud B. A fits 
loosely in the pellet so that no stress comes on A due to rotation. If the copper shears at 
150 MNIm2, find the retardation of the shell necessary to shear A .  (RNC) 

3.5 

3.6 

3.7 A lever is secured to a shaft by a taper pin through the boss of the lever. The shaft is 4 
cm diameter and the mean diameter of the pin is 1 cm. What torque can be applied to 
the lever without causing the average shearing stress in the pin to exceed 60 MN/m2. 
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3.8 A cotter joint connects two circular rods in tension. Taking the tensile strength of the 
rods as 350 MN/m2, the shearing strength of the cotter 275 MN/m2, the permissible 
bearing pressure between surfaces in contact 700 MN/mz, the shearing strength of the rod 
ends 185 MN/m2, calculate suitable dimensions for the joint so that it may be equally 
strong against the possible types of failure. Take the thickness of the cotter = d/4, and 
the taper of the cotter 1 in 48. 

3.9 A horizontal arm, capable of rotation about a vertical shaft, cames a mass of 2.5 kg, 
bolted to it by a 1 cm bolt at a distance 50 cm from the axis of the shaft. The axis of the 
bolt is vertical. If the ultimate shearing strength of the bolt is 50 MN/m2, at what speed 
will the bolt snap? (RNEC) 

A copper disc 10 cm in diameter and 0.0125 cm thick, is fitted in the casing of an air 
compressor, so as to blow and safeguard the cast-iron case in the event of a serious 
compressed air leak. If pressure inside the case is suddenly built up by a burst cooling 
coil, calculate at what pressure the disc will blow out, assuming that failure occurs by 
shear round the edges of the disc, and that copper will normally fail under a shearing 
stress of 120 MN/m2. (RNEC) 

3.10 



4 Joints and connections 

4.1 Importance of connections 

Many engineering structures and machines consist of components suitably connected through 
carefully designed joints. In metallic materials, these joints may take a number of different forms, 
as for example welded joints, bolted joints and riveted joints. In general, such joints are stressed 
in complex ways, and it is not usually possible to calculate stresses accurately because of the 
geometrical discontinuities in the region of a joint. For this reason, good design of connections is 
a mixture of stress analysis and experience of the behaviour of actual joints; this is particularly true 
of connections subjected to repeated loads. 

Bolted joints are widely used in structural steel work and recently the performance of such 
joints has been greatly improved by the introduction of high-tensile, friction-grip bolts. Welded 
joints are widely used in steel structures, as for example, in shp  construction. Riveted joints are 
still widely used in aircraft-skin construction in light-alloy materials. Epoxy resin glues are often 
used in the aeronautical field to bond metals. 

4.2 Modes of failure of simple bolted and riveted joints 

One of the simplest types of joint between two plates of material is a bolted or riveted lap joint, 
Figure 4.1. 

Figure 4.1 Single-bolted lap joint under tensile load. 
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We shall discuss the forms of failure of the joint assuming it is bolted, but the analysis can be 
extended in principle to the case of a riveted connection. Consider a joint between two wide plates, 
Figure 4.1; suppose the plates are each of thickness t, and that they are connected together with a 
single line of bolts, giving a total overlap of breadth 2a. Suppose also that the bolts are each of 
diameter d, and that their centres are a distance b apart along the line of bolts; the line of bolts is 
a distance a from the edge of each plate. It is assumed that a bolt fills a hole, so that the holes in 
the plates are also of diameter d. 

We consider all possible simple modes of failure when each plate carries a tensile load of P per 
unit width of plate: 

Figure 4.2 Failure by shearing of the bolts. 

(1) The bolts may fail by shearing, as shown in Figure 4.2; if T, is the maximum shearing stress 
the bolts will withstand, the total shearing force required to shear a bolt is 

T, X [$) 
Now, the load carried by a single bolt is Pb, so that a failure of this type occurs when 

Pb = T, [ $) 

l h s  gives 

p = -  nd2 T, (4.1) 
4b 

(2) The bearing pressure between the bolts and the plates may become excessive; the total 
bearing load taken by a bolt is Pb, Figure 4.3, so that the average bearing pressure between 
a bolt and its surrounding hole is 

Pb - 
td 
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If Pb is the pressure at which either the bolt or the hole fails in bearing, a failure of this type occurs 
when: 

(4 3 Pb td p =  - 
b 

(1) (ii) 

Figure 4.3 (i) Bearing pressure on the holes of the upper plate. 
(ii) Bearing pressures on a bolt. 

(3) Tensile failures may occur in the plates; clearly the most heavily stressed regions of the plates 
are on sections such as ee, Figure 4.4, through the line of bolts. The average tensile stress 
on the reduced area of plate through this section is 

Pb 
(b - d)t  

Figure 4.4 Tensile failures in the plates. 
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If the material of the plate has an ultimate tensile stress of qlt, then a tensile failure occurs when 

(4.3) 
0 ult t (b  - d )  P =  

b 

(4) Shearing of the plates may occur on planes such as cc, Figure 4.5, with the result that the 
whole block of material cccc is sheared out of the plate. If r2 is the maximum shearing stress 
of the material of the plates, th~s mode of failure occurs when 

Pb = T~ x 2at 

Figure 4.5 Shearing failure in the plates. Figure 4.6 Tensile failures at the free 
edges of the plates. 

This gives 

(4.4) 
p = -  2, T2 

b 

( 5 )  The plates may fail due to the development of large tensile stresses in the regions of points 
such asj; Figure 4.6. The failing load in this condition is difficult to estimate, and we do not 
attempt the calculation at this stage. 

In riveted joints it is found from tests on mild-steel plates and rivets that if the centre of a rivet hole 
is not less than 1 !4 times the rivet hole diameter from the edge of the plate, then failure of the plate 
by shearing, as discussed in (4) and (3, does not occur. Thus, if for mild-steel plates and rivets, 

a 2 1% (4.5) 
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we can disregard the modes of failure discussed in (4) and (5). In the case of wrought aluminium 
alloys, the corresponding value of a is 

a 2 2d (4.6) 

We have assumed, in discussing the modes of failure, that all load applied to the two plates of 
Figure 4.1 is transmitted in shear through the bolts or rivets. This is so only if there is a negligible 
frictional force between the two plates. If hot-driven rivets are used, appreciable frictional forces 
are set up on cooling; these forces play a vital part in the behaviour of the connection. With cold- 
driven rivets the frictional force is usually small, and may be neglected. 

Problem 4.1 Two steel plates, each 1 cm thick, are connected by riveting them between 
cover plates each 0.6 cm thick. The rivets are 1.6 cm diameter. The tensile 
stress in the plates must not exceed 140 MN/mz, and the shearing stress in the 
rivets must not exceed 75 MN/mz. Find the proportions of the joint so that it 
shall be equally strong in shear and tension, and estimate the bearing pressure 
between the rivets and the plates. 

Solution 

Suppose b is the rivet pitch, and that P is the tensile load per metre carried by the connection. Then 
the tensile load on one rivet is Pb. The cover plates, taken together, are thicker than the main 
plates, and may be disregarded therefore, in the strength calculations. We imagine there is no 
restriction on the distance from the rivets to the extreme edges of the main plates and cover plates; 
we may disregard then any possibility of shearing or tensile failure on the free edges of the plates. 

There are then two possible modes of failure: 

(1) Tensile failure of the main plates may occur on sections such as aa. The area resisting 
tension is 

0.010 (b - 0.016) mz 
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The permissible tensile load is, therefore, 

Pb = (140 x lo6) [0.010 ( b  - 0.016)] N per rivet 

The rivets may fail by shearing. The area of each rivet is (2) 

x 
-(0.016)2 = 0201 x m2 
4 

The permissible load per rivet is then 

Pb = 2(75 x lo6) (0.201 x N 

as each rivet is in double shear. 

If the joint is equally strong in tension and shear , we have, from (1) and (2), 

(140 x lo6) [0.010 ( b  - 0.016)] = 2(75 x lo6) (0.201 x 

This gives 

b = 0.038 m 

Now 

Pb = 2(75 x lo6) (0.201 x = 30.2 kN 

The average bearing pressure between the main plates and rivets is 

30'2 lo3 = 189 MN/m2 
(0.016) (0.010) 

4.3 Efficiency of a connection 

After analysing the connection of Figure 4.1, suppose we find that in the weakest mode of failure 
the carrying capacity of the joint is Po. If the two plates were continuous through the connection, 
that is, if there were no overlap or bolts, the strength of the plates in tension would be 

where q,, is the ultimate tensile stress of the material of the plates. The ratio 
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is known as the eficiency of the connection; clearly, q defines the extent to which the strength of 
the connection attains the full strength of the continuous plates. Joint efficiencies are also 
described in Chapter 6. 

Problem 4.2 

Solution 

The permissible tensile load per rivet is 30.2 kN. For a continuous joint the tensile load which 
could be carried by a 3.8 cm width of main plate is 

What is the efficiency of the joint of Problem 4.1? 

(0.038) (0.010) (140 ~ 1 0 ~ )  = 53.2 kN 

Then 

30.2 
53.2 

q = - = 0.57, or 57% 

4.4 Group-bolted and -riveted joints 

When two members are connected by cover plates bolted or riveted in the manner shown in Figure 
4.7, the joint is said to be group-bolted or -riveted. 

The greatest efficiency of the joint shown in Figure 4.7 is obtained when the bolts or rivets are 
re-arranged in the form shown in Figure 4.8, where it is supposed six bolts or rivets are required 
each side of the join. The loss of cross-section in the main members, on the line a, is that due to 
one bolt or rivet hole. If the load is assumed to be equally distributed among the bolts or rivets, 
the bolt or rivet on the line Q will take one-sixth of the total load, so that the tension in the main 
plates, across b, will be 516th~ of the total. 

Figure 4.7 A group-bolted or -riveted joiit,. 
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Figure 4.8 Joint with tapered cover plates. 

But this section is reduced by two bolt or rivet holes, so that, relatively, it is as strong as the section 
a, and so on: the reduction of the nett cross-section of the main plates increases as the load carried 
by these plates decreases. Thus a more efficient joint is obtained than when the bolts or rivets are 
arranged as in Figure 4.7. 

4.5 Eccentric loading of bolted and riveted connections 

Structural connections are commonly required to transmit moments as well as axial forces. Figure 
4.9 shows the connection between a bracket and a stanchion; the bracket is attached to the 
stanchion through a system of six bolts or rivets, a vertical load P is applied to the bracket. 
Suppose the bolts or rivets are all of the same diameter. The load P is then replaced by a parallel 
load P applied to the centroid C of the rivet system, together with a moment Pe about the centroid 
Figure 4.9(ii); e is the perpendicular distance from C onto the line of action of P. 

Figure 4.9 Eccentrically loaded connection leading to a bending 
action on the group of bolts, as well as a shearing action. 

Consider separately the effects of the load P at C and the moment Pe. We assume that P is 
distributed equally amongst the bolts or rivets as a shearing force parallel to the line of action of P .  
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The moment Pe is assumed to induce a shearing force F i n  any bolt or rivet perpendicular to the 
line joining C to the bolt or rivet; moreover the force F is assumed to be proportional to the 
distance r from the bolt or rivet to C, (Figure 4.10). 

Figure 4.10 Assumed forces on the bolts. 

For equilibrium we have 

P e =  ZFr 

If F= kr, where k is constant for all rivets, then 

P e =  k Z l f  

Thus, we have 

Pe 
Cr2 

The force on a rivet is 

k = -  

Pe 
(4.8) F = k r =  - 

Zr2 r 

The resultant force on a bolt or rivet is then the vector sum of the forces due to P and Pe. 

Problem 4.3 A bracket is bolted to a vertical stanchon and carries a vertical load of 50 kN. 
Assuming that the total shearing stress in a bolt is proportional to the relative 
displacement of the bracket and the stanchion in the neighbourhood of the bolt, 
find the load carried by each of the bolts. (Cambridge) 
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Solution 

The centroid of the bolt system is at the point C. For bolt a 

r = aC = [(0.050)' + (0.075)']" = 0.0902 m 

For bolt b, 

r = b C =  a C =  0.0902m 

For bolts d andf; 

r = 0.050 m 

For bolts g and h, 

r =  gC= a C =  0.0902m 

Then 

23 = 4(0.0902)' + 2(0.050)' = 0.0376 m' 

Now 

e = 0.225m and P=5OlcN 

Then 

Pe = (0.225) (50 x lo3) = 11.25 x lo3 Nm 
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The loads on the bolts a, b g, h ,  due to the couple Pe alone, are then 

Pe 11.25 x lo3 - (0.0902) = 28.0 kN z r 2  r = 0.0376 

These loads are at right-angles to Ca, Cb, Cg and Ch, respectively. The corresponding loads on 
the bolts d and f are 

1125 x lo3 (0.050) = 15.0kN 
Pe 

g r  = 0.0376 

perpendicular to Cd and Cf; respectively. 

The load on each bolt due to the vertical shearing force of 50 kN alone is 

50 x lo’ = 8.33 x lo3 N = 8.33kN 
6 

This force acts vertically downwards on each bolt. The resultant loads on all the rivets are found 
by drawing parallelograms of forces as follows: 

r 

Bolts Resultant Load 

a andg 24.3 kN 
b and h 33.5 kN 

n 6.7 kN 
f 23.3 kN 
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butt weld and thefillet weld; Figure 4.1 1 shows two plates connected by a butt weld; the plates are 
tapered at the joint to give sufficient space for the weld material. If the plates carry a tensile load 
the weld material carries largely tensile stresses. Figure 4.12 shows two plates connected by fillet 
welds; if the joint carries a tensile load the welds carry largely shearing stresses, although the state 
of stress in the welds is complex, and tensile stresses may also be present. Fillet welds of the type 
indicated in Figure 4.12 transmit force between the two plates by shearing actions within the welds; 
if the weld has the triangular cross-section shown in Figure 4.13(i), the shearing stress is greatest 
across the narrowest section of the weld, having a thickness t /&?.  This section is called the throat 
of the weld. In Figure 4.13(ii), the weld has the same thickness t at all sections. To estimate 
approximately the strength of the welds in Figure 4.13 it is assumed that failure of the welds takes 
place by shearing across the throats of the welds. 

Figure 4.11 Butt weld between two plates. 

Figure 4.12 Fillet welds in a plate connection. Figure 4.13 Throat of a fillet weld. 

Problem 4.4 A steel strip 5 cm wide is fillet-welded to a steel plate over a length of 7.5 cm 
and across the ends of the strip. The connection carries a tensile load of 
100 kN. Find a suitable size of the fillet weld if longitudinal welds can be 
stressed to 75 MNIm2 and the transverse welds to 100 MN/m2. 
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Solution 

Suppose the throat thickness of the fillet-welds is t. Then the longitudinal welds carry a shearing 
force 

TA = (75 x lo6) (0.075 x 2t)= (11.25 x lo6) t N  

The transverse welds carry a shearing force 

TA = (100 x lo6) (0.050 x 2t)= (10 x lo6) t N  

Then 
(11.25 x lo6) t + (10 x lo6) t= 100 x 10' 

and therefore, 

t = -  loo x lO-3 = 4.71 x lO-3 m = 0.471cm 
2 1.25 

The fillet size is then 

t fi = 0.67 cm 

Problem 4.5 Two metal plates of the same material and of equal breadth are fillet welded at 
a lap joint. The one plate has a thickness t, and the other a thickness t2. 
Compare the shearing forces transmitted through the welds, when the 
connection is under a tensile force P. 
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Solution 

89 

The sections of the plates between the welds will stretch by approximately the same amounts; thus, 
these sections will suffer the same strains and, as they are the same materials, they will also suffer 
the same stresses. If a shearing force Fa is transmitted by the one weld and a shearing force Fb by 
the other, then the tensile force over the section A in the one plate is F, and over the section B in 
the other plate is Fb. If the plates have the same breadth and are to carry equal tensile stresses over 
the sections A and B, we have 

and thus 

We also have 

Fa + Fb = P 

and so 

P and Fb = - P Fa = - 
1 + -  

t z  1 + -  

1, t 2  

4.7 Welded connections under bending actions 

Where a welded connection is required to transmit a bending moment we adopt a simple empirical 
method of analysis similar to that for bolted and riveted connections discussed in Section 4.5. We 
assume that the shearing stress in the weld is proportional to the distance of any part of the weld 
from the centroid of the weld. Consider, for example, a plate which is welded to a stanchion and 
which carries a bendmg moment M in the plane of the welds, Figure 4.14. We suppose the fillet- 
welds are of uniform thickness t around the parameter of a rectangle of sides u and b. At any point 
of the weld we take the shearing stress, T, as acting normal to the line joining that point to the 
centroid C of the weld. If 6A is an elemental area of weld at any point, then 
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Figure 4.14 A plate fillet welded to a column, 
and transmitting a bending moment M. 

If 

T = k r  

then 

M = p i 4  = k l  

where J is the polar second moment of area of the weld about the axis through C and normal to the 
plane of the weld. Thus 

M k =  - 
J 

Mr 
J 

and 

(4.9) T =  - 

According to this simple empirical theory, the greatest stresses occur at points of the weld most 
remote from the centroid C. 

Problem 4.6 Two steel plates are connected together by 0.5 cm fillet welds. Estimate the 
maximum shearing stress in the welds if the joint cames a bending moment of 
2500 Nm. 
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Solution 

The centroid of the welds is at the centre of an 8 cm square. Suppose t is the throat or thickness 
of the welds. The second moment of area of the weld about Cx or Cy is 

= zy = [+ (t)  (o.0s)3] + 2[(t) (0.08) (0.04)2] 

= (0.341 x c m4 

The polar second moment of area about an axis through C is then 

J = Z, + Z, = 2(0.341 x 10”) t = (0.682 x tm‘ 

Now t = 0.005/ 6n1 , and so 

J = 2.41 x IO4 m‘ 

The shearing stress in the weld at any radius r is 

This is greatest at the comers of the square where it has the value 

M 0.08 - 2500 0.08 
= 7 [ 71 - 2.41 x [ 71 
= 58.6 MN/m2 

Further problems (unswers on puge 692) 

4.7 Two plates, each 1 cm thick are connected by riveting a single cover strap to the plates 
through two rows of rivets in each plate. The diameter of the rivets is 2 cm, and the 
distance between rivet centres along the breadth ofthe connection is 12.5 cm. Assuming 
the other unstated dimensions are adequate, calculate the strength of the joint per metre 
breadth, in tension, allowing 75 MN/m2 shearing stress in the rivets and a tensile stress 
of 90 MN/m2 in the plates. (Cambridge) 

4.8 A flat steel bar is attached to a gusset plate by eight bolts. At the section AB the gusset 
plate exerts on the flat bar a vertical shearing force F and a counter-clockwise couple M. 
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Assuming that the gusset plate, relative to the flat bar, undergoes a minute rotation about 
a point 0 on the line of the two middle rivets, also that the loads on the rivets are due to 
and proportional to the relative movement of the plates at the rivet holes, prove that 

4M + 3aF 
4M + 6aF 

x = - a x  

Prove also that the horizoiltal and vertical components of the load on the top right-hand 
rivet are 

2M + 3aF and 4M + 9aF 
24a 24a 

respectively. 

A steel strip of cross-section 5 cm by 1.25 cm is bolted to two copper strips, each of 
cross-section 5 cm by 0.9375 cm, there being two bolts on the line of pull. Show that, 
neglecting friction and the deformation of the bolts, a pull applied to the joint will be 
shared by the bolts in the ratio 3 to 4. Assume that E for steel is twice E for copper. 

Two flat bars are riveted together using cover plates, x being the pitch of the rivets in a 
direction at right angles to the plane of the figure. Assuming that the rivets themselves 
do not deform, show that the load taken by the rivets (1) is tPx / (t + 2t') and that the 
rivets (2) are free from load. 

4.9 

4.1 0 
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Two tie bars are connected together by 0.5 cm fillet welds around the end of one bar, and 
around the inside of a slot machined in the same bar. Estimate the strength of the 
connection in tension if the shearing stresses in the welds are limited to 75 MN/m*. 

4.1 1 

4.12 A bracket plate is welded to the face of a column and carries a vertical load P. 
Determine the value of P such that the maximum shearing stress in the 1 cm weld is 
75 MN/mz. (Bristol) 



5 Analysis of stress and strain 

5.1 Introduction 

Up to the present we have confined our attention to considerations of simple direct and shearing 
stresses. But in most practical problems we have to deal with combinations of these stresses. 

The strengths and elastic properties of materials are determined usually by simple tensile and 
compressive tests. How are we to make use of the results of such tests when we know that stress 
in a given practical problem is compounded from a tensile stress in one direction, a compressive 
stress in some other direction, and a shearing stress in a third direction? Clearly we cannot make 
tests of a material under all possible combinations of stress to determine its strength. It is essential, 
in fact, to study stresses and strains in more general terms; the analysis which follows should be 
regarded as having a direct and important bearing on practical strength problems, and is not merely 
a display of mathematical ingenuity. 

5.2 Shearing stresses in a tensile test specimen 

A long uniform bar, Figure 5.1, has a rectangular cross-section of area A .  The edges of the bar are 
parallel to perpendicular axes Ox, QY, Oz. The bar is uniformly stressed in tension in the x- 
direction, the tensile stress on a cross-section of the bar parallel to Ox being ox. Consider the 
stresses acting on an inclined cross-section of the bar; an inclined plane is taken at an angle 0 to 
the yz-plane. The resultant force at the end cross-section of the bar is acting parallel to Ox. 

P = Ao, 

Figure 5.1 Stresses on an inclined plane through a tensile test piece. 

For equilibrium the resultant force parallel to Ox on an inclined cross-section is also P = Ao,. At 
the inclined cross-section in Figure 5.1, resolve the force Ao, into two components-one 
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perpendicular, and the other tangential, to the inclined cross-section, the latter component acting 
parallel to the xz-plane. These two components have values, respectively, of 

Ao, cos 0 and Ao, sin 0 

The area of the inclined cross-section is 

A sec 0 

so that the normal and tangential stresses acting on the inclined cross-section are 

A o ,  sin0 
A sec0 

T =  = o x  cos0 sin0 

o is the direct stress and T the shearing stress on the inclined plane. It should be noted that the 
stresses on an inclined plane are not simply the resolutions of ox perpendicular and tangential to 
that plane; the important point in Figure 5.1 is that the area of an inclined cross-section of the bar 
is different from that of a normal cross-section. The shearing stress T may be written in the form 

T = cr, case sine = + o x  sin28 

At 0 = 0" the cross-section is perpendicular to the axis of the bar, and T = 0; T increases as 0 
increases until it attains a maximum of !4 ox at 6 = 45 " ; T then diminishes as 0 increases further 
until it is again zero at 0 = 90". Thus on any inclined cross-section of a tensile test-piece, shearing 
stresses are always present; the shearing stresses are greatest on planes at 45 " to the longitudinal 
axis of the bar. 

Problem 5.1 A bar of cross-section 2.25 cm by 2.25 cm is subjected to an axial pull of 
20 kN. Calculate the normal stress and shearing stress on a plane the normal 
to which makes an angle of 60" with the axis of the bar, the plane being 
perpendicular to one face of the bar. 

Solution 

We have 0 = 60", P = 20 kN and A = 0.507 xlO-'  m2. Then 

o x  = 2o lo3 = 39.4 m / m 2  
0.507 x 

The normal stress on the oblique plane is 

o = o x  cos2 60' = -$ = 9.85MNIm' 
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The shearing stress on the oblique plane is 

fo,sin120° = f ( 3 9 . 4 ~  1 0 6 ) g =  17.05MN/m2 

5.3 Strain figures in mild steel; Luder's lines 

If a tensile specimen of mild steel is well polished and then stressed, it will be found that, when the 
specimen yields, a pattern of fine lines appears on the polished surface; these lines intersect roughly 
at right-angles to each other, and at 45" approximately to the longitudinal axis of the bar; these 
lines were first observed by Luder in 1854. Luder's lines on a tensile specimen of mild steel are 
shown in Figure 5.2. These strain figures suggest that yielding of the material consists of slip along 
the planes of greatest shearing stress; a single line represents a slip band, containing a large number 
of metal crystals. 

Figure 5.2 Liider's lines in the yielding of a steel bar in tension. 

5.4 Failure of materials in compression 

Shearing stresses are also developed in a bar under uniform compression. The failure of some 
materials in compression is due to the development of critical shearing stresses on planes inclined 
to the direction of compression. Figure 5.3 shows two failures of compressed timbers; failure is 
due primarily to breakdown in shear on planes inclined to the direction of compression. 
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Figure 5.3 Failures of compressed specimens of timber, 
showing breakdown of the material in shear. 

5.5 General two-dimensional stress system 

A two-dimensional stress system is one in which the stresses at any point in a body act in the same 
plane. Consider a thin rectangular block of material, abcd, two faces of which are parallel to the 
xy-plane, Figure 5.4. A two-dimensional state of stress exists if the stresses on the remaining four 
faces are parallel to the xy-plane. In general, suppose theforces acting on the faces are P, Q, R, 
S, parallel to the xy-plane, Figure 5.4. Each of these forces can be resolved into components P,, 
P, etc., Figure 5.5. The perpendicular components give rise to direct stresses, and the tangential 
components to shearing stresses. 

The system of forces in Figure 5.5 is now replaced by its equivalent system of stresses; the 
rectangular block of Figure 5.6 is in uniform state of two-dimensional stress; over the two faces 
parallel to Ox are direct and shearing stresses oy and T,~, respectively. The hckness is assumed 
to be 1 unit of length, for convenience, the other sides having lengths a and b. Equilibrium of the 
block in the x- andy-directions is already ensured; for rotational equilibrium of the block in the xy- 
plane we must have 

[ T ~  (a x l)] x b = [ T , ~  (b  x l)] x a 
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Figure 5.4 Resultant force acting on the faces Figure 5.5 Components of resultant 
forces parallel to 0, and 0,. of a ‘twodimensional’ rectangular block. 

ThUS ( U b ) T v  = ( U b ) T y x  

or ‘IT = 7yx (5.3) 

Then the shearing stresses on perpendicular planes are equal and complementary as we found in 
the simpler case of pure shear in Section 3.3. 

Figure 5.6 General two-dimensional Figure 5.7 Stresses on an inclined 
state of stress. plane in a two-dimensional stress system. 

5.6 Stresses on an inclined plane 

Consider the stresses acting on an inclined plane of the uniformly stressed rectangular block of 
Figure 5.6; the inclined plane makes an angle 6 with O,, and cuts off a ‘triangular’ block, Figure 
5.7. The length of the hypotenuse is c, and the thickness of the block is taken again as one unit of 
length, for convenience. The values of direct stress, 0, and shearing stress, T, on the inclined plane 
are found by considering equilibrium of the triangular block. The direct stress acts along the 
normal to the inclined plane. Resolve the forces on the three sides of the block parallel to this 
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normal: then 

a (c.i) = a, (c  case case) + oy (c sine sine) + Tv (c case sine) + TV (c  sine case) 

This gives 

0 = ox cos2 e + 0, Sin2 8 + 2T, sin e COS e (5.4) 

Now resolve forces in a direction parallel to the inclined plane: 

T. (C  1) = -0, (c case sine) + oY (c sine case) + Txy (c case case) - T ~  (c sine sine) 

This gives 

T = -0, case sine + oY sine case + Tv(COS2e - sin2e) 

The expressions for a and T are written more conveniently in the forms: 

a = %(ax + 0,) + %(ax - 0,) cos28 + T~ sin2e 

T = -%(ax - oy) sin28 + T~ cos20 

The shearing stress T vanishes when 

that is, when 

These may be written 

(5.7) 
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In a two-dimensional stress system there are thus two planes, separated by go", on which the 
shearing stress is zero. These planes are called theprincipalplanes, and the corresponding values 
of o are called the principal stresses. The direct stress ts is a maximum when 

- -  do - -(ox - a,,) sin28 + 2TT c o s ~  = o 
de 

that is, when 

2 5  w e  = - 
ox - oy 

which is identical with equation (5.8),  defining the directions of the principal stresses; thus the 
principal stresses are also the maximum and minimum direct stresses in the material. 

5.7 Values of the principal stresses 

The directions of the principal planes are given by equation (5.8). For any two-dimensional stress 
system, in which the values of ox, cry and T~ are known, tan28 is calculable; two values of 8, 
separated by go", can then be found. The principal stresses are then calculated by substituting 
these vales of 8 into equation (5.6). 

Alternatively, the principal stresses can be calculated more directly without finding the 
principal planes. Earlier we defined a principal plane as one on which there is no shearing stress; 
in Figure 5.8 it is assumed that no shearing stress acts on a plane at im angle 8 to QY. 

Figure 5.8 A principal stress acting on an inclined plane; 
there is no shearing stress T associated with a principal stress o. 

For equilibrium of the triangular block in the x-direction, 

~ ( c  case) - 0, (c case) = T~ (c sine) 

and so 
o-o,= ~ , t a n e  (5.10) 
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For equilibrium of the block in the y-direction 
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and thus 

o - oy = T,COte (5.1 1) 

On eliminating 8 between equations (5.10) and (5.1 1); by multiplying these equations together, we 
get 

(0 - 0,) (o - oy) = T2xv 

This equation is quadratic in o; the solutions are 
~~ 

o, = + (ox + oy) + +,(crx - c r y ) 2  + 4 7 ~  = maximum principal stress 

(5.12) 

which are the values of the principal stresses; these stresses occur on mutually perpendicular 
planes. 

5.8 Maximum shearing stress 

The principal planes define directions of zero shearing stress; on some intermediate plane the 
shearing stress attains a maximum value. The shearing stress is given by equation (5.7); T attains 
a maximum value with respect to 0 when 

i.e., when 

The planes of maximum shearing stress are inclined then at 45" to the principal planes. On 
substituting this value of cot 28 into equation (5.7), the maximum numerical value of T is 
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Tm, = /[+(ox - 41' + [%I2 (5.13) 

But from equations (5.12), 

where o, and o2 are the principal stresses of the stress system. Then by adding together the two 
equations on the right hand side, we get 

and equation (5.13) becomes 

1 
T"ax = T(0, - 0 2 )  (5.14) 

The maximum shearing stress is therefore half the difference between the principal stresses of the 
system. 

Problem 5.2 At a point of a material the two-dimensional stress system is defined by 

ox = 60.0 MN/m2, tensile 

oy = 45.0 MN/m2, compressive 

T, = 37.5 MN/m2, shearing 

where ox, o,,, 'I, refer to Figure 5.7. Evaluate the values and directions of the 
principal s&esses. What is the greatest shearing stress? 

Solution 

Now, we have 

-Lo  * (  +d y ) =  + (60.0 - 45.0) = 7.5 MN/m' 

+(ox - o Y )  = 4 (60.0 + 45.0) = 52.5 MN/m2 
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Then, from equations (5.12), 

oI = 7.5+ [ ( 5 2 5 ) 2  + (375)2]i = 7.5+64.4 = 71.9MN/m2 

0 2  = 7.5 - [(525)2 + (375)2]' = 7.5 - 64.4 = -56.9MN/m2 
I 
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From equation (5.8) 

Thus, 

28 = tar-' (0.714) = 35.5" or 215.5" 

Then 

€4 = 17.8" or 107.8' 

From equation (5.14) 

T , , , ~  = L(ol - 02) = 1(71.9+56.9) = 64.4 MN/m* 2 2 

This maximum shearing stress occurs on planes at 45 " to those of the principal stresses. 

5.9 Mohr's circle of stress 

A geometrical interpretation of equations (5.6) and (5.7) leads to a simple method of stress 
analysis. Now, we have found already that 

Take two perpendicular axes 00, &, Figure 5.9; on h s  co-ordinate system set off the point having 
co-ordinates (ox, TJ and (o,,, - TJ, corresponding to the known stresses in the x- andy-directions. 
The line PQ joining these two points is bisected by the Oa axis at a point 0'. With a centre at 0', 
construct a circle passing through P and Q. The stresses o and T on a plane at an angle 8 to Oy are 
found by setting off a radius of the circle at an angle 28 to PQ, Figure 5.9; 28 is measured in a 
clockwise direction from 0' P. 
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Figure 5.9 Mohr's circle of stress. The points P and Q correspond to the 
stress states (ox, rv) and (o,,, - rv) respectively, and are diametrically opposite; 

the state of stress (0, r) on a plane inclined at an angle 0 to 9, is given by the point R. 

The co-ordinates of the point R(o, T) give the direct and shearing stresses on the plane. We may 
write the above equations in the forms 

o - Z(or 1 + o,,) = +(or - O , ) C O S ~ ~  + T~ sin20 

-r = l(or-a,)sin2e-T,cos2e 2 

Square each equation and add; then we have 

[,-L(q+ 2 0 y ) r + T 2  = [+(ox- O.")l'+[.^l' (5.15) 

Thus all corresponding values of o and T lie on a circle of radius 

r +-oy) ]  + T L  

with its centre at the point (%[or + a,,], 0), Figure 5.9. 

This circle defining all possible states of stress is known as Mohr's Circle ofstress; the principal 
stresses are defined by the points A and E,  at which T = 0. The maximum shearing stress, which 
is given by the point C, is clearly the radius of the circle. 

Problem 5.3 At a point of a material the stresses forming a two-dimensional system are 
shown in Figure 5.10. Using Mohr's circle of stress, determine the magnitudes 
and directions of the principal stresses. Determine also the value of the 
maximum shearing stress. 
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Figure 5.10. Stress at a point. 

Solution 

FromFigure 5.10, the shearing stresses acting in conjunction with (T, are counter-clockwise, hence, 
T~ is said to be positive on the vertical planes. Similarly, the shearing stresses acting in conjunction 
with T~ are clockwise, hence, T~ is said to be negative on the horizontal planes. 

On the (T - T diagram of Figure 5.1 1, construct a circle with the line joining the point (ox, T ~ )  
or (50,20) and the point ((T,,, - T ~ )  or (30,-20) as the diameter, as shown by A and B, respectively 

Figure 5.11 Problem 5.3. 

The principal stresses and their directions can be obtained from a scaled drawing, but we shall 
calculate (T,, (T, etc. 

DA = 20 MPa 
OD = (3, = 50 MPa 
OG = cry = 30MPa 
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= 40 MPa (OD + OG) - (50 + 30) 
2 2 

CD = OD - OC = 50 - 40 = 10MPa 

o c = - -  

A C ~  = CD' + D A ~  

= I O 2  + 202 

or AC = 22.36 MPa 

crl = OE = OC + AC = 40 + 22.36 

cr, = 62.36 MPa 

o2 = OF = OC - AC 

= 40 - 22.36 

or c2 = 17.64 MPa 

28 = tan-' (z) 
= tan-' (E) = 63.43' 

:. 8 = 31.7" see below 

Maximum shear stress = T~~ = AC = 22.36 MPa which occurs on planes at 45 O to those of the 
principal stresses. 
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At a point of a material the two-dimensional state of stress is shown in 
Figure 5.12. Determine o,, ozr 8 and T- 

Problem 5.4 

Figure 5.12 Stress at a p i n t .  

Solution 

On the o-T diagram of Figure 5.13, construct a circle with the line joining the point (o* T,) or (30, 
20) to the point (cry, -7,) or (-10, -20), as the diameter, as shown by the points A and B 
respectively. It should be noted that T~ is positive on the vertical planes of Figure 5.12, as these 
shearing stresses are causing a counter-clockwise rotation; vice-versa for the shearing stresses on 
the horizontal planes. 

Figure 5.13 Problem 5.4. 
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From Figure 5.13, 

AD = = 20 

OD = ox = 30 

OE = o,, = -10 

oc = - (OD + OE) - (30 - 10) 
2 2 

or OC = 10 

CD = OD - OC = 30 - 10 = 20 

AC2 = CD2 + AD2 

= 202 + 202 = 800 

or AC = 28.28 

o1 = OF = OC + AC = 10 + 28.28 

or (rl = 38.3 MPa 

ct = OG = OC - AC 

= 10 - 28.3 

or o2 = -18.3 MPa 

:. 8 = 22.5 (see below) 

T- = Maximushearingstress = AC 
L~ = 28.3 MPa acting on planes at 45" to o, and 02. or 
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5.10 Strains in an inclined direction 

For two-dimensional system of strains the direct and shearing strains in any direction are known 
if the dxect and shearing strains in two mutually perpendicular directions are given. Consider a 
rectangular element of material, OABC, in the xy-plane, Figure 5.14, it is required to find the direct 
and shearing strains in the direction of the diagonal OB, when the direct and shearing strains in the 
directions Ox, Oy are given. Suppose E, is the strain in the direction Ox, E, the strain in the 
direction Oy, and y, the shearing strain relative to Ox and Oy. 

Figure 5.14 Strains in an inclined direction; strains in the directions 0, and 0, and 
defined by E,, E, and y,, lead to strains E ,  y along the inclined direction OB. 

All the strains are considered to be small; in Figure 5.14, if the diagonal OB of the rectangle is 
taken to be of unit length, the sides OA, OB are of lengths sine, cos0, respectively, in which 8 is 
the angle OB makes with Ox. In the strained condition OA extends a small amount E~ sine, OC 
extends a small amount E, cod ,  and due to shearing strain OA rotates through a small angle y,. 
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If the point B moves to point B', the movement of B parallel to Ox is 

E, cos0 + y,,, sine 

and the movement parallel to Oy is 

E,, sine 

Then the movement of B parallel to OB is 

Since the strains are small, this is equal to the extension of the OB in the strained condition; but OB 
is of unit length, so that the extension is also the direct strain in the direction OB. If the direct 
strain in the direction OB is denoted by E, then 

This may be written in the form 

2 2 
E = E, cos 8 +E,, sin 8 + y, s inecose  

and also in the form 

This is similar in form to equation (5.6), defining the direct stress on an inclined plane; E, and E~ 

replace ox and o,,, respectively, and %yv replaces T ~ .  
To evaluate the shearing strain in the direction OB we consider the displacements of the point 

D, the foot of the perpendicular from C to OB, in the strained condition, Figure 5.10. The point 
D, is displaced to a point 0'; we have seen that OB extends an amount E, so that OD extends an 
amount 

2 
E OD = E cos e 

During straining the line CD rotates anti-clockwise through a small angle 

E, cos2e - E COS* e 
= (E, - E)  cote 

cos0 sine 

At the same time OB rotates in a clockwise direction through a small angle 

(E, case + y sine) sine - (E,, sine) cose 
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The amount by whch the angle ODC diminishes during straining is the shearing strain y in the 
direction OB. Thus 

y = - (E, - E) cote - (E, case + y, sine) sine + ( E ~  sine) case 

y = -2 (~ ,  - E ~ )  case sine + y, (cos2 e - sin2 e) 
On substituting for E from equation (5.16) we have 

which may be written 

= - 1 (&, - sin28 +  COS^ (5.17) 2 

This is similar in form to equation (5.7) defining the shearing stress on an inclined plane; a, and 
oy in that equation are replaced by E, and respectively, and T, by %y,. 

5.11 Mohr's circle of strain 

The direct and shearing strains in an inclined direction are given by relations which are similar to 
equations (5.6) and (5.7) for the direct and shearing stresses on an inclined plane. This suggests 
that the strains in any direction can be represented graphically in a similar way to the stress system. 
We may write equations (5.16) and (5.17) in the forms 

1 1 1 
E - -(ex + E,,) = -(E, - E,,)COS~B + -y 

2 2 2 ?  

1 1 1 
2 2 2 

-Y = --(E* - &,,)sin2e + --~,cos~B 

Square each equation, and then add; we have 

2 2 2 2 

[E -+(Ex+..)] + [+Y] = [$(Ex- E.)] + [ + Y X Y ]  

1 Thus all values of E and ZY lie on a circle of radius 

with its centre at the point 

Thls circle defining all possible states of strain is usually called Mohr's circle of strain. For given 
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values of E,, E~ and y, it is constructed in the following way: two mutually perpendicular axes, E 

and %y, are set up, Figure 5.15; the points (E~, %y,) and (E~, - %yv) are located; the line joining 
these points is a diameter of the circle of strain. The values of E and %y in an inclined direction 
making an angle 8 with Ox (Figure 5.10) are given by the points on the circle at the ends of a 
diameter makmg an angle 28 with PQ; the angle 28 is measured clockwise. 

We note that the maximum and minimum values of E, given by E, and F+ in Figure 5.15, occur 
when %y is zero; E,, F+ are calledprincipal strains, and occur for directions in whch there is no 
shearing strain. 

Figure 5.15 Mohr’s circle of strain; the diagram is similar to the circle of stress, 
except that %y is plotted along the ordinates and not y. 

An important feature of h s  strain analysis is that we have nof assumed that the strains are elastic; 
we have taken them to be small, however, with this limitation Mohr’s circle of strain is applicable 
to both elastic and inelastic problems. 

5.12 Elastic stress-strain relations 

When a point of a body is acted upon by stresses ox and oy in mutually perpendicular directions 
the strains are found by superposing the strains due to o, and oy acting separately. 

Figure 5.16 Strains in a two-dimensional linear-elastic stress system; the strains can be regarded 
as compounded of two systems corresponding to uni-axial tension in the x- and y- directions. 

The rectangular element of material in Figure 5.16(i) is subjected to a tensile stress ox in the x 
direction; the tensile strain in the x-direction is 
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and the compressive strain in the y-direction is 

in which E is Young's modulus, and v is Poisson's ratio (see section 1.10). If the element is 
subjected to a tensile stress oy in the y-direction as in Figure 5.12(ii), the compressive strain in the 
x-direction is 

-- v=Y 

E 

and the tensile strain in the y-hection is 

- =Y 

E 

These elastic strains are small, and the state of strain due to both stresses ox and oy, acting 
simultaneously, as in Figure 5.16(iii), is found by superposing the strains of Figures 5.16(i) and 
(ii); taking tensile strain as positive and compressive strain as negative, the strains in the x- andy- 
directions are given, respectively, by 

=Y - - VOX 
EY = - 

E E  

On multiplying each equation by E, we have 

(5.18) 

(5.19) 

These are the elastic stress-strain relations for two-dimensional system of direct stresses. When 



114 Analysis of stress and strain 

a shearing stress T~ is present in addition to the direct stresses IS, and cry, as in Figure 5.17, the 
shearing stress T~ is assumed to have no effect on the direct strains E, and E~ caused by ox and oy. 

Figure 5.17 Shearing strain in a two-dimensional system. 

Similarly, the direct stresses IS, and isy are assumed to have no effect on the shearing strain y, due 
to T ~ .  When shearing stresses are present, as well as direct stresses, there is therefore an additional 
stress-strain relation having the form in which G is the shearing modulus. 

5 - G - -  

y, 

Then, in addition to equations (5.19) we have the relation 

‘5q = e x . ”  (5.20) 

5.1 3 Principal stresses and strains 

We have seen that in a two-dimensional system of stresses there are always two mutually 
perpendicular directions in which there are no shearing stresses; the direct stresses on these planes 
were referred to as principal stresses, IS, and IS*. As there are no shearing stresses in these two 
mutually perpendicular directions, there are also no shearing strains; for the principal directions 
the corresponding direct strains are given by 

E E ~  = 0 ,  - vo2 

E E ~  = o2 - v q  
(5.21) 

The direct strains, E,, E,, are the principal strains already discussed in Mohr‘s circle of strain. It 
follows that the principal strains occur in directions parallel to the principal stresses. 
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5.14 Relation between E, G and v 

Consider an element of material subjected to a tensile stress ci, in one direction together with a 
compressive stress oo in a mutually perpendicular direction, Figure 5.18(i). The Mohr's circle for 
this state of stress has the form shown in Figure 5.18(ii); the circle of stress has a centre at the 
origin and a radius of 0,. The direct and shearing stresses on an inclined plane are given by the co- 
ordinates of a point on the circle; in particular we note that there is no direct stress when 28 = 90°, 
that is, when 8 = 45" in Figure 5.18(i). 

Figure 5.18 (i) A stress system consisting of tensile and compressive 
stresses of equal magnitude, but acting in mutually perpendicular directions. 

(ii) Mohr's circle of stress for this system. 

Moreover when 8 = 45 O ,  the shearing stress on this plane is of magnitude o0. We conclude then 
that a state of equal and opposite tension and compression, as indicated in Figure 5.18(i), is 
equivalent, from the stress standpoint, to a condition of simple shearing in directions at 45", the 
shearing stresses having the same magnitudes as the direct stresses (T, (Figure 5.19). This system 
of stresses is called pure shear. 

Figure 5.19 Pure Shear. Equality of (i) equal and opposite tensile and compressive stresses and 
(ii) pure shearing stress. 

If the material is elastic, the strains E, and E~ caused by the direct stresses (T, are, from equations 
(5.1% 
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1 =0 

E E E,, = - (-Oo - VQ0) = -- (1 + V) 

If the sides of the element are of unit length, the work done in drstorting the element is 
2 

1 1 0 0  

2 2 ' '  E 
= - O o E x - d  E = - ( ( l + V )  (5.22) 

per unit volume of the material. 
In the state of pure shearing under stresses o,, the shearing strain is given by equation (5.20), 

0 0  
Y, = - 

G 

The work done in distorting an element of sides unit length is 
2 

1 0 0  

2 2G 
w = - boy, = - (5.23) 

per unit volume of the material. As the one state of stress is equivalent to the other, the values of 
work done per unit volume of the material are equal. Then 

2 2 
0 0  0 0  - ( l + v )  = - 
E 2G 

and hence 

E = 2G(1 + V) (5.24) 

Thus v can be calculated from measured values E and G. 

the form 
The shearing stress-strain relation is given by equation (5.20), which may now be written in 

Ey, = 2(1 + v)r, (5.25) 
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For most metals v is approximately 0.3; then, approximately, 

E = 2(1 + v)G = 2.6G 
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(5.26) 

Problem 5.5 From tests on a magnesium alloy it is found that E is 45 GNIm’ and G is 
17 GN/m*. Estimate the value of Poisson’s ratio. 

Solution 

From equation (5.24), 

v = - -  E 1 = - -  45 1 = 1.32 - 1 
2G 34 

Then 

v = 0.32 

Problem 5.6 A thm sheet of material is subjected to a tensile stress of 80 MNIm’, in a certain 
direction. One surface of the sheet is polished, and on this surface fme lines are 
ruled to form a square of side 5 cm, one diagonal of the square being parallel 
to the direction of the tensile stresses. If E = 200 GN/m’, and v = 0.3, 
estimate the alteration in the lengths of the sides of the square, and the changes 
in the angles at the comers of the square. 

Solution 

The diagonal parallel to the tensile stresses increases in length by an amount 

The diagonal perpendicular to the tensile stresses diminishes in length by an amount 

0.3 (28.3 x = 8.50 x m 

The change in the corner angles is then 

1 1 - [(28.3 + 8.50)10-6] - = 52.0 x radians = 0.0405” 
0.05 fi 
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The angles in the line of pull are diminished by h s  amount, and the others increased by the same 
amount. The increase in length of each side is 

1 - [(28.3 - 8.50)10-6] = 7.00 x 1O-6 m 
2 4  

5.1 5 Strain ‘rosettes’ 

To determine the stresses in a material under practical loadmg conditions, the strains are measured 
by means of small gauges; many types of gauges have been devised, but perhaps the most 
convenient is the electrical resistance strain gauge, consisting of a short length of fine wire which 
is glued to the surface of the material. The resistance of the wire changes by small amounts as the 
wire is stretched, so that as the surface of the material is strained the gauge indicates a change of 
resistance which is measurable on a Wheatstone bridge. The lengths of wire resistance strain 
gauges can be as small as 0.4 mm, and they are therefore extremely useful in measuring local 
strains. 

Figure 5.20 Finding the principal strains in a two-dimensional system by recording 
three linear strains, E,, E, and E, in the vicinity of a point. 

The state of strain at a point of a material is defined in the two-dimensional case if the direct 
strains, E, and E ~ ,  and the shearing strain, y9, are known. Unfortunately, the shearing strain y, is 
not readily measured; it is possible, however, to measure the direct strains in three different 
directions by means of strain gauges. Suppose E,, E, are the unknown principal strains in a two- 
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dimensional system, Figure 5.20. Then from equation (5.16) we have that the measured direct 
strains E,, and E, in directions inclined at 0, (e + a), (e + a + p) to E, are 

E, = + E 2 ) +  - E ~ ) C O ~  

& b  = +-(E1 + c 2 ) +  +(c2 - E ~ ) c o s ~ ( ~  + a) (5.27) 

E, = +(c l  + c 2 ) +  +(cl - E ~ ) c o s ~ ( ~  + a  + p) 

In practice the directions of the principal strains are not known usually; but if the three direct 
strains E,, and E, are measured in known directions, then the three unknowns in equations (5.27) 
are 

e l ,  e2 and 8 

Three strain gauges arranged so that a = p = 45" form a 45" rosette, Figure 5.22. Equations 
(5.27) become 

1 1 
2 2 

E, = - ( E ~  + E ~ )  + - (E]  - E ~ )  COSB (5.28a) 

(5.28b) 
1 1 
2 2 

= - ( E ~  + E ~ )  - -(E] - E ? )  sin28 

(5.28~) 
1 1 
2 2 

E, = E ~ )  C O S ~ C I  

Adding together equations (5.28a) and (5.28c), we get 

E, + E, = E,  + E *  (5.29) 

Equation (5.29) is known as thefirst invariant ofstrain, which states that the sum of two mutually 
perpendicular normal strains is a constant. 

From equations (5.28a) and (5.28b). 

1 1 
- e2)  sin28 = eh - (el - e 2 )  

1 
- EJ COSD = - E ,  + 1 (el + e2) 

(5.3 Oa) 

(5.30b) 
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Dividing equation (5.30a) by (5.30b), we obtain 
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1 
‘h - $ 1  + ‘2) 

-Ea + $1 + ‘2) 

tan20 = (5.31) 
1 

Substituting equation (5.29) into (5.31) 

(5.32) 
(‘a - 2Eb + ‘ c )  tan20 = 

(Ea - E,) 

To determine E, and c2 in terms of the known strains, namely E, E~ and E,, put equation (5.32) in 
the form of the mathematical triangle of Figure 5.2 1. 

Figure 5.21 Mathematical triangle from equation (5.32). 

2 2 2  2 2  * + 4 E h  + E, - 4EaEh - 4ebE, + 2EaE, + Ea 4. Eb - 2EaEh 

= fi /(‘a - ‘ b y  + (&c - ‘h)2 

Ea - ‘c 

fi /(&a - ‘ b y  + (‘E - ‘ b y  

:. c o s 2 0  = (5.33) 

Ea - 2 E b  + E, 

and sin28 = (5.34) 
fi /(‘a - ‘h)Z + (&c - ‘ b y  
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Substituting equations (5.33) and (5.34) into equations (5.30a) and (5.30b) and solving, 

fi (5.35) 1 
'1 = #a + ~ c )  + 1 /(&a - & b y  + (E, - ~ h y  

E2 = 3, + Ec) - - fi $/(Ea - Eby + kc - EJ (5.36) 
2 

8 is the angle between the directions of E, and E,, and is measured clockwise from the direction of 
E,. 

Figure 5.22 A 45" strain rosette. Figure 5.23 Alternative arrangements 
of 120" rosettes. 

The alternative arrangements of gauges in Figure 5.23 correspond to 120" rosettes. On putting 
a = f3 = 120" inequations(5.27), we have 

(5.37a) 
1 1 
2 2 

1 1 
2 2 

1 1 
2 

E, = - ( E ~ + E ~ )  + - ( E ~ -  E ~ )   COS^^ 

& b  = --(cl+ c 2 ) -  - ( E ~ -  2 -cos28- -sin20 (5.37b) 
2 

(5.37c) 

E ,i: . " I  
E )[; v 2 

E, = -(cl t c 2 )  - ?(E' - 2 -COS 28 + --sin20 
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Equations (5.37b) and (5.37~) can be written in the forms 

2 
1 
2 

Adding together equations (5.37a), (5.38a) and (5.38b), we get: 

3 
2 

EU + Eh + Ec = - (E, + E*) 

or 

2 
3 

El + E2 = - (En + Eh + E c )  

Taking away equation (5.38b) from (5.38a), 

Taking away equation (5.38b) from (5.37a) 

Dividing equation (5.41) by (5.40) 

or 

(5.38a) 

(5.38b) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 
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To determine E, and E* in terms of the measured strains, namely E,, E~ and E,, put equation (5.42) 
in the form of the mathematical triangle of Figure 5.24. 

1 
& I  = -(Eu + & b  + E‘) + - 

3 3 1  
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These give 
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E 
o1 = - (El + ve,) 

(€2 i. V&*) 

1 - 3  

E o2 = - 
1 - 9  

(5.47) 

Equations (5.18) and (5.47) are for the plane stress condition, which is a two-dimensional system 
of stress, as discussed in Section 5.12. 

Another two-dimensional system is known as a plane strain condition, which is a two- 
dimensional system of strain and a three-dimensional system of stress, as in Figure 5.25, where 

o vox 
E E E  

EL = 0 = I - - - v o y  _. (5.48a) 

vox voz 
€y  - - - O Y - - - -  

E E E  
(5.48b) 

VC 
(5.48~) ox v=y - 2 

Ex = - - -  E E E  

Figure 5.25 Plane strain condition. 

From equation (5.48a) 

0, = v (ox + cy) (5.49) 



Strain ‘rosettes’ 

Substituting equation (5.49) into equations (5.48b) and (5.48c), we get, 

= - ( l  or -2)--(1 v‘Y + v )  
E E 

Multiplying equation (5.50a) by (1 - ?)/( 1 + v) v we get 

Adding equation (5.50b) to (5.51), we get 

(1 - ”) -VO Oy (1 - v’y 
- &  + &  = - 2 ( l + v ) +  
(1 + v)v E E(l + v)v 

-2 (1 + v)oy oy (1 - 2y 
or (1 - v) EY + VEX = + 

E E ( l  + v )  

or E [(1 - v) + V E ~ ]  = - OY [-v’ (1 + v)’ + (1 - v’y] 
(1 + v) 

or E [( 1 - v ) + V E , ]  = o, , [ -v2(1  + v )  + ( 1  - v )  (1 - v 

= o y [ - v 2 - v 3 + l - v - v 2 + v  31 

= o,( l -  v - 2 v 2 )  
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(5.50a) 

(5.5 Ob) 

(5.51) 

(5.52a) 
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= c r y  (1+ v ) ( l -  2v)  

E[(1- V) E,,+ V E X  1 
:. cry = 

(1 + v) (1 - 2v) 

Similarly 

E [ ( l -  v) E, + V E y l  
ox = 

(1 + v) (1 - 2v) 
(5.52b) 

Obviously the values of E and v must be known before the stresses can be estimated from either 
equations (5.19), (5.47) or (5.52). 

5.1 6 Strain energy for a two-dimensional stress system 

If G, and o2 are the principal stresses in a two-dimensional stress system, the corresponding 
principal strains for an elastic material are, from equations (5.21), 

1 
= 2 (GI - vo2) 

Consider a cube of material having sides of unit length, and therefore having also unit volume. 
The edges parallel to the direction of o, extend amounts E,, and those parallel to the direction of 
G, by amounts E*. The work done by the stresses o, and o, during straining is then 

1 1 w = - o l & i + - o  & 
2 2 2 2  

per unit volume of material. On substituting for E, and E, we have 

This is equal to the strain energy Uper unit volume; thus 

1 7 ’  u = - [o; + 0; - 2voi 02] 
2E 

(5.53) 
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5.1 7 Three-dimensional stress systems 

In any two-dimensional stress system we found there were two mutually perpendicular directions 
in which only direct stresses, o1 and 02, acted; these were called the principal stresses. In any three- 
dimensional stress system we can always find three mutually perpendicular directions in which 
only direct stresses, ol, o2 and o, in Figure 5.26,  are acting. No shearing stresses act on the faces 
of a rectangular block having its edges parallel to the axes 1, 2 and 3 in Figure 5 .26 .  These direct 
stresses are again called principal stresses. 

If o1 > o2 > (r,, then the three-dimensional stress system can be represented in the form of 
Mohr's circles, as shown in Figure 5.27. Circle a passes through the points o1 and o2 on the o-axis, 
and defines all states of stress on planes parallel to the axis 3 ,  Figure 5.26,  but inclined to axis 1 
and axis 2 ,  respectively. 

Figure 5.26 Principal stresses in a three-dimensional system. 

Figure 5.27 Mohr's circle of stress for a three- Figure 5.28 Two-dimensional stress 
dimensional system; circle a is the Mohr's circle of the system as a particular case of a three- 
two-dimensional system ol, 0,; b corresponds to o,, o3 dimensional system with one of the 
and c to o,, ol. The resultant direct and tangential stress three principal stresses equal to zero. 
on any plane through the point must correspond to a 
point P lying on or between the three circles. 
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Circle c, having a diameter (a, - aJ, embraces the two smaller circles. For a plane inclined to 
all three axes the stresses are defined by a point such as P within the shaded area in Figure 5.27. 
The maximum shearing stress is 

and occurs on a plane parallel to the axis 2. 
From our discussion of three-dimensional stress systems we note that when one of the 

principal stresses, a3 say, is zero, Figure 5.28, we have a two-dimensional system of stresses cr,, 
a2; the maximum shearing stresses in the planes 1-2,2-3,3-1 are, respectively, 

Suppose, initially, that cr, and a2 are both tensile and that a, > a,; then the greatest of the three 
maximum shearing stresses is ?4 a, which occurs in the 2-3 plane. If, on the other hand, a, is 
tensile and a2 is compressive, the greatest of the maximum shearing stresses is % (ar - 0,) and 
occurs in the 1-2 plane. 

We conclude from this that the presence of a zero stress in a direction perpendicular to a two- 
dimensional stress system may have an important effect on the maximum shearing stresses in the 
material and cannot be disregarded therefore. The direct strains corresponding to ci,, a, and a3 
for an elastic material are found by taking account of the Poisson ratio effects in the three 
directions; the principal strains in the directions 1 , 2  and 3 are, respectively, 

1 
E 

E2 = - (a2 - vag - V a l )  

1 
E 

E3 = - (a3 - V a l  - VOz) 

The strain energy stored per unit volume of the material is 

1 1 1 u = - a l & l + - a  & + - a  3 3  & 
2 2 2 z  2 

In terms of a,, a2 and a3, this becomes 
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5.18 Volumetric strain in a material under hydrostatic pressure 

A material under the action of equal compressive stresses (s in three mutually perpenlcular 
directions, Figure 5.29, is subjected to a hydrostatic pressure, 0. The term hydrostatic is used 
because the material is subjected to the same stresses as would occur if it were immersed in a fluid 
at a considerable depth. 

Figure 5.29 Region of a material under a hydrostatic pressure. 

If the initial volume of the material is V,, and if h s  diminishes an amount 6 Vdue to the hydrostatic 
pressure, the volumetric strain is 

6V - 
vo 

The ratio of the hydrostatic pressure, 0, to the volumetric strain, 6Y,’Vo, is called the bulk 
modulus of the material, and is denoted by K. Then 

(s K = -  
(5 .55)  [:) 

If the material remains elastic under hydrostatic pressure, the strain in each of the three mutually 
perpendicular directions is 

0 v0 v(s E = - - + + - + -  
E E E  

(s 
= -- (1 - 2v) 

E 
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because there are two Poisson ratio effects on the strain in any of the three directions. If we 
consider a cube of material having sides of unit length in the unstrained condition, the volume of 
the strained cube is 
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(1 - E)3 

Now E is small, so that this may be written approximately 

1 - 3 E  

The change in volume of a unit volume is then 

3 E  

which is therefore the volumetric strain. Then equation (5.55) gives the relationship 

0 -  0 -  E K = - - - -  
- 3 ~  3(1 - 2 ~ )  

We should expect the volume of a material to diminish under a hydrostatic pressure. In general, 
if K is always positive, we must have 

1 - 2 v > o  

or 

1 v < -  
2 

Then Poisson's ratio is always less than %. For plastic strains of a metallic material there is a 
negligible change of volume, the Poisson's ratio is equal to %, approximately. 

5.19 Strain energy of distortion 

In the three-dimensional stress system of Figure 5.22 we may consider the principal stress 0, to be 
the resultant of stresses 

and stresses 

1 
3 - (20, - 0 2  - 0 3 )  
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since 

1 1 
3 3 
- (GI + Is2 + 03) + - (20, - G2 - 03) = 0, 
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Similarly, we write 

1 1 
3 

o2 = - (0, + 0* + 03) + (202 - (r3 - 0)) 

1 1 
3 

0 3  = - (0, + o2 + 03) + 7 (203 - 0, - 02) 

Now, the component '13 (oI + o2 + u2) which occurs in cl, o2 and 03, represents a hydrostatic tensile 
stress; the strains associated with this stress give rise to no distortion, i.e., a cube of material under 
stress Y3 (oI + o2 + 03) in three mutually perpendicular directions is strained into a cube. The 
remaining components of oI, o2 and 03, are 

The strain energy associated with these stresses, which are the only stresses giving rise to 
distortion, is called the strain energy of distortion. The strains due to these distorting stresses are 

1 1 
3E 6G E ,  

= - (1 + v) (20, - 0* - 03) = - [(o, - 02) + (0, - G3)] 

1 1 
3E 6G E 2  = - (1 + v) (20, - G3 - 0,) = - [(02 - 03) + (c2 - GI)] 

1 1 
3E 6G E 3  

= - (1 + v) (203 - 0, - G 2 )  = - [(03 - 0]) + (a3 - 02)] 

The strain energy of distortion is therefore 

1 
36G 

U[) = - [pol - o2 - G3)2 + (202 - (T3 - 0,y + (2D3 - 0, - 02r] 

per unit volume. Then 

(5 .56)  
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For a two-dimensional stress system, 0, (say) = 0, and U, reduces to 
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1 
UD = 12G [(GI - 0*)2 + 0: + 43 

We shall see later that the strain energy of distortion plays an important part in the yielding of 
ductile materials under combined stresses. 

5.20 Isotropic, orthotropic and anisotropic 

A material is said to be isotropic when its material properties are the same in all directions. An 
orthotropic material is said to exhlbit symmetric material properties about three mutually 
perpendicular planes. In two dimensions, typical orthotropic materials are in the form of many 
composites. An anisotropic material is a material that ef ibi ts  different material properties in all 
directions. 

5.21 Fibre composites 

Fibre composites are very important for structures which require a large strength:weight ratio, 
especially when the weight of the structure is at a premium. They are likely to become even more 
important in the 2 1 st century and will probably revolutionise the design and construction of aircraft, 
rockets, submarines and warships. 

To represent the elasticity of a composite, tensile modulus is used in preference to Young’s 
modulus of elasticity. Additionally, as most composites are usually assumed to be of orthotropic 
form, their material properties in one direction, (say) ‘x’ are likely to be different to a direction 
perpendicular to the ‘x’ direction, (say) ‘y’. Composites usually consist of several layers of fibre 
matting, set in a resin, as shown by Figure 5.30. To gain maximum strength the layers of fibre 
matting are laid in different directions. In this Chapter, the term lamina or ply will be used to 
describe a single layer of the composite structure and the term laminate or composite will be used 
to define the entire mixture of plies and resin. 

If the material properties of the fibre composite are orthogonal, the following relationship 
applies: 

V, Ey = V, E, (5.57) 

Figure 5.30 Five layers of fibre reinforcement. 
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where 
E, = tensile modulus in the x-direction. 
E,, = tensile modulus in the y-direction. 

vx = Poisson's ratio due to the effects of ox 
vv = Poisson's ratio due to the effects of cy 

ox = duect stress in the local x-direction. 
oy = direct stress in the localy-direction. 1 see Figure 5.3 1 

Figure 5.31 A lamina from a composite. 

It is evident from the theory of Section 5.12 that the following relationshps between stress and 
strain apply for orthotropic materials: 

ox vyo,, 
e x  = - - -  

Ex Ey 

= y - vx', 

E y  E x  

( 5 . 5 8 )  
o 

&Y 

(5 .59)  
- 5 Y, - - 

GXV 

where 

ex = direct strain in the x-direction 

E" = direct strain in the y-direction 

y, = shear strain in the x-y plane 

Solving equations (5.58), the following alternative relationship is obtained: 
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In matrix form, equations (5.58) and (5.59) can be written as 

where [s] is the compliance matrix. 

From equations (5.59) and (5.60) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

where 
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Q66 = Gx.v = shear modulus 

(5.64) 

[Q] = thestifiessmatrix 

= the inverse of [SI 

The problem with the above relationships are that they are all in the local co-ordinate system of the 
lamina, namely x and y. However, as each layer of fibres may have a different direction for its 
local co-ordinate system, it will be necessary to refer all relationships to a fixed global system, 
namely, X and Y, as shown by Figure 5.3 1. 

Now from equations (5.4) and (5.5) 

2 o x  = o x  cos2 e + o y  sin e + 2r, sine case 
o y  = o x  + 90° = o x  sin2 8 + a y  cos 8 - 2 r m  sin0 cos0 

T~ = - o x  sin6 cos6 + m y  sine cos6 + r X Y  

(5 .65)  2 

where ox, oy and 'I, are local stresses and ox, o, and r, are global or reference stresses; in matrix 
form equations (5.65) appear as: 
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= Ei c’ s2 2sc 
s’ c’ -2sc : -sc sc (c’ - s 

(5.66) 

(5.67) 

(5.68) 

where 

c2 s2 2sc c2 s2 - 2sc 

-sc sc (c2-s2) 

Similarly from Section (5.10) 

E, = E X  cos 8 + E y  sin e + yxr sine wse 2 2 

E~ = E~ sin2e + c y  ms2e  - y x r  sine case (5.70) 

1 yxy  = - 2 E x  sine  COS^ + 2cy sine case + yxr  ws2e - sin2e ( 
or, in matrix form, 

- - 

c2 s’ sc 
s’ c’ -sc 
-2sc 2sc (c’ - s’ 

(5.71) 

(5.72) 
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Now from equation (5.63), 

(4 = rQl{Ew] 

(4 = [QI [ m I ] { E X Y I  

(4 = [4{4 

but from equation (5.72), 

but from equation (5.67), 

... [DC] (0 X Y )  = [Q] [DCI] {EH) 

or 

( ~ H )  = [XI-' [e] [ W ] ( ~ r n )  

or 

( O H ]  = [Q']{EH) 

where 

[Q'] = 

1 1 1 
711 412 416 

1 I 1 
721 q22 q 2 6  

1 1 1 
761 q62 966 
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(5.73) 

(5.74) 

qll  I 1  = - [E, cos4 e + E~ sin4 e + (2v, E,, + 4 y ~ )  cos2~sin28] 

Y 

1 I 1  
Y 

qI2 = qZ1 = - [v, E,, ( C O S ~ B  + sin4e) + (E, + E" - 4yG) cos2e sin20] 
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I 1  

Y 
916 I -  - q61 = - [cos3e sine (Ex - v$,, - 2yG) - cos8 sin3@ (E,, - v$,,, - 2yG)] 

q22 I 1  = - [Ev cos4 8 + E, sin4 e + sin2B cos2 e (2v& + 4yG)] 

Y .  

q26 1 -  - q62 I 1  = - [COS e sin3 8 (Ex - vg,, - 2yG) - cos3 8 sin 8 (Ev - v, E,, - 2yG)] 

Y 

1 1 .  = - [sm2e cos2 e ( E ~  + E, - 2vx E, - 2yG) + y~ (cos4 e + sin4 e)] 
966 

Y 

where 

y = (1 - vr v,) 

Similarly, to obtain the global strains of the lamina or ply of Figure 5.32 in terms of the global 
stresses, consider equation (5.61), as follows. 

Now 

(Em) = ['J +rv} 

so that from equation (5.67) 

(Ex,} = [SI WI (oxy} 

and from equation (5.72) 

(5.75) 

where 



I 
11 ';2 ','6 

[''I = 1:; Si, si,- 
'l2 si,a 

(i) Section through the laminate (ii) strain distribution (iii) stress distribution 

Figure 5.33 In-plane stresses and strains in a laminate. 

= [Del]' 1'1 [''I 
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As the load P is in-plane and symmetrical, the strain distribution across the laminate will be 
constant, as shown by Figure 5.33(ii). However, as the stiffness of each layer is different the 
stresses in each layer will be different, as shown by Figure 5.33(iii). Now, in order to define the 
overall equivalent stress-strain behaviour of a laminate, it will be necessary to adopt the equivalent 
average stresses or in matrix form o,',, o; and T ~ ' ;  these are obtained as follows: 

h h h 
2 2 2 

-_ -- -_ 

or in matrix form 

but from equation (5.74) 

(5.76) 
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However, as [ E ~  E, yH]' is not a function of 'z', equation (5.76) can be written as follows: 

where 

h 
2 

-- 

h - 

or, in general, 

(5.77) 

(5.78) 
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For the kth lamina of the laminate, the q1 terms are constant, hence the integrals for the A terms can 
be replaced by summations: 

(5.79) 

and similarly for the other values of A,, 

where 

h, 

q,,(k) = kth value of qi  I 

v, 

= thickness of the kth lamina or ply 

= (2hJh) = the volume fraction in the kth lamina 

Once the srzfiness matrix [ A ]  is obtained, it can be inverted to obtain the compliance matrix [a]  and 
hence, the equivalent material for the laminate properties are as follows: 

E , = - ,  1 E , = - - ,  1 G x y = -  1 , v x = -  -a12 and vY = - -a12 
a,  I a22 a66 a ,  1 a22 

Experience has shown that the diagonal terms in the laminate's stiffness matrix are considerably 
larger than the off-diagonal terms, so that E, etc. can be approximated by 

E, c v k  EX(kC) Cos40k 

where k refers to the kth lamina of the laminate. 

5.23 Equivalent elastic constants for problems involving bending 
and twisting 

For problems in this category, the equivalent stress resultants for the laminate are o i ,  o;, Tmi, M i ,  
M; and Mml, where the former three symbols are in-plane and the latter three are out-of-plane 
bending and twisting terms. 
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The equivalent stress-strain relationships for the laminate are: 

or [ = 

A B D  B1 ax2 
- 2 W  

ay2 

-2a2w 
axay 

B D  A "It1 
where [E]' = [E, yX]' 

r -gW -aZw -2a2w 

A ,  are as described in Section 5.21. 

h - 

h 
2 
- 

1 D, = - 1 ql; z 2  dz 
h 3  -h - 

2 

1 1 
D , , = - ?  h 3  k = i  q r / ( k )  (hk 'k' + 

(5.80) 

(5.81) 
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where 

w = out-of-plane deflection 

n 

k = thekthplyorlamina 

z, 

= number of laminates or plies 

= distance of the centre plane of the kth ply 

For symmetrical laminates, B, = 0, however, for design purposes, the following relationship is 
often used: 

where 

[u] = [A]-' (see Section 5.21) 

Another way of looking at the components of [D] are as follows: 

(5.82) 

where k = thekthply 

I, = the second moment of area of the kth ply or lamina about the neutral axis of the 
laminate or composite 

the second moment of area of the entire laminate or composite about the neutral 
axis 

1- = 

5.24 Yielding of ductile materials under com bined stresses 

It was noted in Section 5.3 that when a polished bar of mild steel is loaded in tension, strain figures 
are observable on the surface of the bar after the yield point has been exceeded. The figures take 
the form of 'lines' inclined at about 45" to the axis of the bar; tfus direction corresponds to the 
planes of maximum shearing stress in the bar; the 'lines' are, in fact, bands of metal crystals 
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shearing over similar bands. That yieldmg takes place in this way suggests that the crystal 
structure of the metal is relatively weak in shear; yielding takes the form of sliding of one crystal 
plane over another, and not the tearing apart of two crystal planes. 

This form of behaviour-yielding by a shearing action-is typical of ductile materials. We 
note firstly that ifa material is subjected to a hydrostatic pressure (I, the three principal stresses (I,, 
cr2 and (I, in a three-dimensional system are each equal to (I. A state of stress of h s  sort exists in 
a solid sphere of material subjected to an external pressure (I, Figure 5.34. As the three principal 
stresses are equal in magnitude, there are no shearing stresses in the material; if yielding is 
governed by the presence of shearing on some planes in a material, then no yielding is theoretically 
possible when the material is under hydrostatic pressure. 

Figure 5.34 A solid sphere of material under hydrostatic pressure. 

For a two-dimensional stress system one of the three principal stresses of a three-dimensional 
system is zero. We consider now the yielding of a mild steel under different combinations of the 
principal stresses, (I, and 02, of a two-dimensional system; in discussing the problem we keep in 
mind the presence of a zero stress perpendicular to the plane of (I, and 02, Figure 5.27. 

Figure 5.35 Yield envelope of a two Figure 5.36 In a two-dimensional stress 
system, one of the three principal stresses - 

(aj say) is zero. 
dimensional stress system when the material 
yields according to the maximum shearing 

stress criterion. 



146 Analysis of stress and strain 

Suppose we conduct a simple tension test on the material; we may put o2 = 0, and yielding occurs 
when o, = cry, (say) 

This yielding condition corresponds to the point A in Figure 5.35. If the material has similar 
properties in tension and compression, yielding under a compressive stress o, occurs when o, = 
-cry; this condition corresponds to the point C in Figure 5.35. We could, however, perform the 
tension and compression tests in the direction of oz, Figure 5.35; if the material is isotropic -that 
is, it has the same properties in all directions-yielding occurs at the yield stress oy; we can thus 
derive points B and D in the yield diagram, Figure 5.35. 

We consider now yielding of the material when both Q, and 02, Figure 5.36, are present; we 
shall assume that yielding of the mild steel occurs when the maximum shearing stress attains a 
critical value; from the simple tensile test, the maximum shearing stress at yielding is 

1 
%l, = y or 

which we shall take as the critical value. Suppose that o, > 02, and that both principal stresses are 
tensile; the maximum shearing stress is 

1 1 
2 

T,, = - (ol - 0) = 2 o1 

and occurs in the 3-1 plane of Figure 5.36; T- attains the critical value when 

1 -  1 T o1 - - or, or o1 = or 
2 

Thus, yielding for these stress conditions is unaffected by oz. In Figure 5.35, these stress 
conditions are given by the line AH. If we consider similarly the case when o1 and o2 are both 
tensile, but o2 > (I,, yielding occurs when o2 = ay, giving the line BH in Figure 5.35. 

Figure 5.37 Plane of yielding when both Figure 5.38 Plane of yielding when the 
principal stresses tensile and (J, > 02. principal stresses are of opposite sign. 

By making the stresses both compressive, we can derive in a similar fashion the lines CF and DF 
of Figure 5.36. 



Yielding of ductile materials under combined stresses I47 

But when 6, is tensile and o2 is compressive, Figure 5.36, the maximum shearing stress occurs in 
the 1-2 plane, and has the value 

Yielding occurs when 

1 (ol - 02) = - 1 cy, or o1 - o2 = oy 

2 

This corresponds to the line AD of Figure 5.36. Similarly, when o, is compressive and o2 is tensile, 
yielding occurs when corresponding to the line BC of Figure 5.36. 

The hexagon AHBCFD of Figure 5.36 is called a yield locus, because it defines all combinations 
of 6, and o2 giving yieldmg of mild steel; for any state of stress within the hexagon the material 
remains elastic; for this reason the hexagon is also sometimes called a yield envelope. The 
criterion ofyielding used in the derivation of the hexagon of Figure 5.36 was that of maximum 
shearing stress; the use of h s  criterion was first suggested by Tresca in 1878. 

Not all ductile metals obey the maximum shearing stress criterion; the yielding of some metals, 
including certain steels and alloys of aluminium, is governed by a critical value of the strain energy 
of distortion. For a two-dimensional stress system the strain energy of distortion per unit of 
volume of the material is given by equation (5.83). In the simple tension test for which o2 = 0, 
say, yielding occurs when 6, = oy. The critical value of U, is therefore 

2 
1 1 GY 

6G 6G 6G 
u, = - [o: - G I  o2 + o;] = - [o; - cy (0) + 021 = - 

Then for other combinations of o1 and 02, yielding occurs when 

(5.83) 2 2 2 o1 - GI o2 + o2 = oy 

The yield locus given by this equation is an ellipse with major and minor axes inclined at 45 O to 
the directions of oI and 02, Figure 5.39. This locus was first suggested by von Mises in 1913. 

For a three-dimensional system the yield locus corresponding to the strain energy of distortion 
is of the form 

(ol - 02)' + (02 - 03)2 + (03 - o,r = constant 

l k s  relation defines the surface of a cylinder of circular cross-section, with its central axis on the 
line 0, = o2 = 0,; the axis of the cylinder passes through the origin of the o,, 02, u, co-ordinate 
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system, and is inclined at equal angles to the axes (I~, o2 and (I~, Figure 5.40. When (I, is zero, 
critical values of 6, and cr2 lie on an ellipse in the cs,-02 plane, corresponding to the ellipse of 
Fimre 5.39. 

Figure 5.39 The von Mises yield locus for a Figure 5.40 The von Mises yield locus for a 
two-dimensional system of stresses. three-dimensional stress system. 

I 

Figure 5.41 The maximum shearing stress (or Tresca) yield locus 
for a three-dimensional stress system. 

When a material obeys the maximum shearing stress criterion, the three-dimensional yield 
locus is a regular hexagonal cylinder with its central axis on the line (I, = c2 = o3 = 0, Figure 
5.40. When o3 is zero, the locus is an irregular hexagon, of the form already discussed in Figure 
5.36. 

The surfaces of the yield loci in Figures 5.40 and 5.41 extend indefinitely parallel to the line 
crI = (I* = 03, which we call the hydrostatic stress line. Hydrostatic stress itself cannot cause 
yielding, and no yielding occurs at other stresses provided these fall within the cylinders of Figures 
5.40 and 5.41. 
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The problem with the maximum principal stress and maximum principal strain theories is that they 
break down in the hydrostatic stress case; this is because under hydrostatic stress, failure does not 
occur as there is no shear stress. It must be pointed out that under uniaxial tensile stress, all the 
major theories give the same predictions for elastic failure, hence, all apply in the uniaxial case. 
However, in the case of a ductile specimen under pure torsion, the maximum shear stress theory 
predicts that yield occurs when the maximum shear reaches 0.5 cry, but in practice, yield occurs 
when the maximum shear stress reaches 0.577 of the yield stress. This last condition is only 
satisfied by the von Mises or &stortion energy theory and for this reason, this theory is currently 
very much in favour for ductile materials. 

Another interpretation of the von Mises or distortion energy theory is that yield occurs when 
the von Mises stress, namely om, reaches yield. 

In three dimensions, o,, is calculated as follows: 

CYUrn = Ac1 - 02), +(ol - “ 3 ) 2  + ( O Z  - “:)]/J; 

In two-dimensions, o3 = 0, therefore equation (5.84) becomes: 

(5.84) 

2 
“urn = /(“? + “ 2  - “ 1  “ 2 )  (5.85) 

5.25 Elastic breakdown and failure of brittle material 

Unlike ductile materials the failure of brittle materials occurs at relatively low strains, and there 
is little, or no, permanent yielding on the planes of maximum shearing stress. 

Some brittle materials, such as cast iron and concrete, contain large numbers of holes and 
microscopic cracks in their structures. These are believed to give rise to high stress concentrations, 
thereby causing local failure of the material. These stress concentrations are llkely to have a 
greater effect in reducing tensile strength than compressive strength; a general characteristic of 
brittle materials is that they are relatively weak in tension. For this reason elastic breakdown and 
failure in a brittle material are governed largely by the maximum principal tensile stress; as an 
example of the application of this criterion consider a concrete: in simple tension the breaking 
stress is about 1.5 MN/m2, whereas in compression it is found to be about 30 MN/m2, or 20 times 
as great; in pure shear the breaking stress would be of the order of 1.5 MN/m2, because the 
principal stresses are of the same magnitude, and one of these stresses is tensile, Figure 5.42. 
Cracking in the concrete would occur on planes inclined at 45” to the directions of the applied 
shearing stresses. 
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Figure 5.42 Elastic breakdown of a brittle metal under shearing stresses (pure shear). 

5.26 Failure of composites 

Accurate prediction of the failure of laminates is a much more difficult task than it is for steels and 
aluminium alloys. The failure load of the laminate is also dependent on whether the laminate is 
under in-plane loading, or bending or shear. Additionally, under compression, individual plies can 
buckle through a microscopic form of beam-column buckling (see Chapter 18). In general, it is 
better to depend on experimental data than purely on theories of elastic failure. Theories, however, 
exist and Hill, Ami and Tsai produced theories based on the von Mises theory of yield. One such 
popular two-dimensional theory is the Azzi-Tsai theory, as follows: 

2 2 2 

(5.86) ox cy - + - =  ox ay Txy , - + - -  
x 2  Y Z  x2  s2 

where Xand Yare the uniaxial strengths related to ox and o,, respectively and S is the shear strength 
in the x-y directions, whch are not principal planes. 

For the isotropic case, where X = Y = or and S = or/ J3, equation (5.86) reduces to the von 
Mises form: 

2 2  2 2 
0, + oy - 0, 0." + 3Tv = or 

andwheno, = o, ando, = o , so tha t~ , . ,  = 0,weget 
2 2  2 o, + oz - o, o2 = or [See equation (5 .85 ) ]  

Further problems (answers on page 692) 

5.7 A tie-bar of steel has a cross-section 15 cm by 2 cm, and carries a tensile load of 200 kN. 
Find the stress normal to a plane making an angle of 30" with the cross-section and the 
shearing stress on this plane. (Cambridge) 
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5.8 A rivet is under the action of shearing stress of 60 MN/mz and a tensile stress, due to 
contraction, of 45 MN/m2. Determine the magnitude and direction of the greatest tensile 
and shearing stresses in the rivet. (RNEC) 

5.9 A propeller shaft is subjected to an end thrust producing a stress of 90 MN/m2, and the 
maximum shearing stress arising from torsion is 60 MN/m2. Calculate the magnitudes 
of the principal stresses. (Cambridge) 

At a point in a vertical cross-section of a beam there is a resultant stress of 75 MN/m2, 
whch is inclined upwards at 35 " to the horizontal. On the horizontal plane through the 
point there is only shearing stress. Find in magnitude and direction, the resultant stress 
on the plane which is inclined at 40 " to the vertical and 95 " to the resultant stress. 
(Cambridge) 

5.1 0 

5.11 A plate is subjected to two mutually perpendicular stresses, one compressive of 45 
MN/m2, the other tensile of 75 MN/m2, and a shearing stress, parallel to these directions, 
of 45 MN/m2. Find the principal stresses and strains, taking Poisson's ratio as 0.3 and 
E = 200 GN/m2. (Cambridge) 

5.1 2 At a point in a material the three principal stresses acting in directions Ox, O,,, O,, have 
the values 75, 0 and -45 MN/m2, respectively. Determine the normal and shearing 
stresses for a plane perpendicular to the xz-plane inclined at 30" to the xy-plane. 
(Cam bridge) 



6 Thin shells under internal pressure 

6.1 Thin cylindrical shell of circular cross-section 

A problem in which combined stresses are present is that of a cylindrical shell under internal 
pressure. Suppose a long circular shell is subjected to an internal pressurep, which may be due 
to a fluid or gas enclosed w i b  the cyhder, Figure 6.1. The internal pressure acting on the long 
sides of the cylinder gives rise to a circumferential stress in the wall of the cylinder; if the ends of 
the cylinder are closed, the pressure acting on these ends is transmitted to the walls of the cylinder, 
thus producing a longitudinal stress in the walls. 

Figure 6.2 Circumferential and longitudinal 
stresses in a thin cylinder with closed ends 

under internal pressure. 
Figure 6.1 Long thin cylindrical shell with 

closed ends under internal pressure. 

Suppose r is the mean radius of the cylinder, and that its thickness t is small compared with r. 
Consider a unit length of the cylinder remote from the closed ends, Figure 6.2; suppose we cut t h ~ s  
unit length with a diametral plane, as in Figure 6.2. The tensile stresses acting on the cut sections 
are o,, acting circumferentially, and 02, acting longitudinally. There is an internal pressure p on 
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the inside of the half-shell. Consider equilibrium of the half-shell in a plane perpendcular to the 
axis of the cylinder, as in Figure 6.3; the total force due to the internal pressure p in the direction 
OA is 

p x (2r x 1) 

because we are dealing with a unit length of the cylinder. This force is opposed by the stresses a,; 
for equilibrium we must have 

p x (2r x 1) = ai x 2(t x 1) 

Then 

(6.1) P' a, = - 
t 

We shall call this the circumferential (or hoop) stress. 

Figure 6.3 Derivation of circumferential stress. Figure 6.4 Derivation of longitudinal stress. 

Now consider any transverse cross-section of the cylinder remote from the ends, Figure 6.4; the 
total longitudinal force on each closed end due to internal pressure is 

p x x J  

At any section this is resisted by the internal stresses a2, Figure 6.4. For equilibrium we must have 

p x  nJ = a2 x 2xrt 

which gives 

(6.2) 
Pr a2 = - 
2t 
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We shall call this the longitudinal stress. Thus the longitudinal stress, (T~ ,  is only half the 
circumferential stress, 0,. 

The stresses acting on an element of the wall of the cylinder consist of a circumferential stress 
oI, a longitudinal stress ( T ~ ,  and a radial stressp on the internal face of the element, Figure 6.5. As 
(r/t) is very much greater than unity, p is small compared with (T] and 02. The state of stress in the 
wall of the cylinder approximates then to a simple two-dimensional system with principal stresses 
IS] and c2. 

Thin shells under internal pressure 

(ii) (iii) 

Figure 6.5 Stresses acting on an element of the wall of a circular 
cylindrical shell with closed ends under internal pressure. 

The maximum shearing stress in the plane of (T, and ( T ~  is therefore 
1 r 

4t 
Tma = z(", - 02) = 2- 

This is not, however, the maximum shearing stress in the wall of the cylinder, for, in the plane of 
0, and p, the maximum shearing stress is 
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1 P r  
2 2t 

Tma = -@,) = - (6.3) 

sincep is negligible compared with G,; again, in the plane of o2 andp, the maximum shearing stress 
is 

1 P' 
2 4t 

T m m  = - ( 0 2 )  = - 

The greatest of these maximum shearing stresses is given by equation (6.3); it occurs on a plane 
at 45" to the tangent and parallel to the longitudinal axis of the cylinder, Figure 6.5(iii). 

The circumferential and longitudinal stresses are accompanied by direct strains. If the material 
of the cylinder is elastic, the corresponding strains are given by 

E l  = -(q 1 - Y O 2 )  = E ( b T V )  1 
E Et 

The circumference of the cylinder increases therefore by a small amount 2nrs,; the increase in 
mean radius is therefore 'E, The increase in length of a unit length of the cylinder is E,, so the 
change in internal volume of a unit length of the cylinder is 

6~ = n (r + re1? (1 + E ~ )  - x r 2  

The volumetric strain is therefore 

- -  6V - (I + E l ?  (1 + E2) - 1 
nr 

But E ,  and q are small quantities, so the volumetric strain is 

(I + El? (I + E2) - 1 t (1 + 2E1) (1 + E2) - 1 

= 2E1 + E2 

In terms of G, and o2 this becomes 
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Problem 6.1 A thin cylindrical shell has an internal diameter of 20 cm, and is 0.5 cm thick. 
It is subjected to an internal pressure of 3.5 MN/m2. Estimate the 
circumferential and longitudinal stresses if the ends of the cylinders are closed. 

Solution 

From equations (6.1) and (6.2), 

0, = F = (3.5 x lo6) (0.1025)/(0.005) = 71.8 MN/m2 
c 

and 

o2 = F = (3.5 x lo6) (0.1025)/(0.010) = 35.9 MN/m2 
2t 

Problem 6.2 If the ends of the cylinder in Problem 6.1 are closed by pistons sliding in the 
cylinder, estimate the circumferential and longitudinal stresses. 

Solution 

The effect of taking the end pressure on sliding pistons is to remove the force on the cylinder 
causing longitudinal stress. As in Problem 6.1, the circumferential stress is 

c1 = 71.8 MN/mz 

but the longitudinal stress is zero. 

Problem 6.3 A pipe of internal diameter 10 cm, and 0.3 cm thick is made of mild-steel 
having a tensile yield stress of 375 MN/m2. What is the m a x i m u  permissible 
internal pressure if the stress factor on the maximum shearing stress is to be 4? 

Solution 

The greatest allowable maximum shearing stress is 

+(+ x 375 x lo6) = 46.9 MN/m2 

The greatest shearing stress in the cylinder is 

0.0°3 x (46.9 x lo6) = 5.46 MN / m2 2t 
r 0.05 15 

Then p = - ( ~ - ) =  
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Two boiler plates, each 1 cm thick, are connected by a double-riveted butt 
joint with two cover plates, each 0.6 cm thlck. The rivets are 2 cm diameter 
and their pitch is 0.90 cm. The internal diameter of the boiler is 1.25 m, and 
the pressure is 0.8 MN/mz. Estimate the shearing stress in the rivets, and the 
tensile stresses in the boiler plates and cover plates. 

Problem 6.4 

Solution / 

Suppose the rivets are staggered on each side of the joint. Then a single rivet takes the 
circumferential load associated with a % (0.090) = 0.045 m length of boiler. The load on a rivet 
is 

- 1.25) (0.045) (0.8 x lo6) = 22.5 kN 
[:( 1 

Area of a rivet is 
IT - (0.02)2 = 0.3 14 x lO-3  m2 
4 

The load of 22.5 kN is taken in double shear, and the shearing stress in the rivet is then 
1 - (22.5 x lo3) l(0.314 x lO-3) = 35.8 MN/m’ 
2 

The rivet holes in the plates give rise to a loss in plate width of 2 cm in each 9 cm of rivet line. The 
effective area of boiler plate in a 9 cm length is then 

(0.010) (0.090 - 0.020) = (0.010) (0.070) = 0.7 x l O - 3  m’ 

The tensile load taken by this area is 
1 - (1.25) (0.090) (0.8 x lo6) = 45.0kN 
2 

The average circumferential stress in the boiler plates is therefore 

= 6 4 . 2 ~ ~ 1 r n ’  
45.0 x io3 
0.7 x 1 0 - ~  

0, = 
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This occurs in the region of the riveted connection. 
circumferential tensile stress is 

Ol = - 

Remote from the connection, the 

pr = (0.8 lo6) (0.625) = 50.0 m/m~ 
t (0.010) 

In the cover plates, the circumferential tensile stress is 

45'0 lo3 = 53.6 M N / m 2  
2(0.006) (0.070) 

The longitudinal tensile stresses in the plates in the region of the connection are difficult to 
estimate; except very near to the rivet holes, the stress will be 

o2 = E = 25.0 MN/m2 
2t 

Problem 6.5 A long steel tube, 7.5 cm internal diameter and 0.15 cm h c k ,  has closed ends, 
and is subjected to an internal fluid pressure of 3 MN/m2. If E = 200 GN/mZ, 
and v = 0.3, estimate the percentage increase in internal volume of the tube. 

Solution 

The circumferential tensile stress is 

The longitudinal tensile stress is 

o2 = E = 38.3 MN/m2 
2t 

The circumferential strain is 

and the longitudinal strain is 

1 
E 

E2 = - (Dl - VO,)  
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The volumetric strain is then 

159 

1 
E 

2E1 + E2 = - [201 - 2va2 + (T2 - vo,] 

1 
E 

= - [(r, (2 - v) + (T2 (1 - 2v)j 

Thus 

(76.6 x IO6) [(2 - 0.3) + (1 - 0.6)] 2E1 + E2 = 
200 x 109 

The percentage increase in volume is therefore 0.0727% 

Problem 6.6 An air vessel, whch is made of steel, is 2 m long; it has an external diameter 
of 45 cm and is 1 cm h c k .  Find the increase of external diameter and the 
increase of length when charged to an internal air pressure of 1 MN/m*. 

Solution 

For steel, we take 

E = 200 GN/m2 , v = 0.3 

The mean radius of the vessel is r = 0.225 m; the circumferential stress is then 

The longitudinal stress is 

o2 = E = 11.25 MN/m* 
2t 

The circumferential strain is therefore 
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(22.5 x lo6) (0.85) 
E E 

= 0.957 x 

The longitudinal strain is 

(22.5 x IO6) (0.2) 
200 x 109 

= 0.225 x 

The increase in external diameter is then 

0.450 (0.957 x = 0.430 x m 

= 0.0043 cm 

The increase in length is 

2 (0.225 x = 0.450 x m 

= 0.0045 cm 

Problem 6.7 A thin cylindncal shell is subjected to internal fluid pressure, the ends being 
closed by: 

(a) two watertight pistons attached to a common piston rod; 

(b) flangedends. 

Find the increase in internal diameter in each case, given that the internal 
diameter is 20 cm, thickness is 0.5 cm, Poisson’s ratio is 0.3, Young’s modulus 
is 200 GN/m2, and the internal pressure is 3.5 h4N/m2. (RNC) 

Solution 

We have 

p = 3.5 MN/m2,  r = 0.1 m , t = 0.005 m 



Thin cylindrical shell of circular cross-section 

In both cases the circumferential stress is 

(a) In this case there is no longitudmal stress. The circumferential strain is then 

The increase of internal diameter is 

0.2 (0.35 x = 0.07 x m = 0.007 cm 

(b) In this case the longitudmal stress is 

o2 = = 35 m / m 2  
2t 

The circumferential strain is therefore 
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= 0.85 (0.35 x = 0.298 x 

The increase of internal diameter is therefore 

0.2 (0.298 x = 0.0596 x m = 0.00596 cm 

Equations (6.1) and (6.2) are for determining stress in perfect thm-walled circular cylindncal shells. 
If, however, the circular cylinder is fabricated, so that its joints are weaker than the rest of the 
vessel, then equations (6.1) and (6.2) take on the following modified forms: 

(6.6) 
Pr ol = hoop or circumferential stress = - 
' l L t  

P' o2 = longitudinal stress = - 
2% t 
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where 

Thin shells under internal pressure 

7, = circumferential joint efficiency < 1 

qL = longitudinal joint efficiency s 1 

NB The circumferential stress is associated with the longitudinal joint efficiency, and the 
longitudinal stress is associated with the circumferential joint efficiency. 

6.2 Thin spherical shell 

We consider next a thin spherical shell of means radius r, and thickness t ,  which is subjected to an 
internal pressure p .  Consider any diameter plane through the shell, Figure 6.6; the total force 
normal to this plane due top  acting on a hemisphere is 

p x nr2 

t i> (ii) 

Figure 6.6 Membrane stresses in a thin spherical shell under internal pressure. 

This is opposed by a tensile stress (I in the walls of the shell. By symmetry (I is the same at all 
points of the shell; for equilibrium of the hemisphere we must have 

p x nr2 = (I x 2nrt 

This gives 

(6.8) 
( I = -  Pr 

2t 

At any point of the shell the direct stress (I has the same magnitude in all directions in the plane of 
the surface of the shell; the state of stress is shown in Figure 6.6(ii). A s p  is small compared with 
(I, the maximum shearing stress occurs on planes at 45' to the tangent plane at any point. 

I f  the shell remains elastic, the circumference of the sphere in any diametral plane is strained 
an amount 
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(6.9) 
1 (s 

E E 
E = - ((3 - v(3) = (1 - v) - 

The volumetric strain of the enclosed volume of the sphere is therefore 

(6.10) (s PY 3~ = 3(1 - V) - = 3(1 - V) - 
E 2Et 

Equation (6.8) is intended for determining membrane stresses in a perfect thin-walled spherical 
shell. If, however, the spherical shell is fabricated, so that its joint is weaker than the remainder of 
the shell, then equation (6.8) takes on the following modified form: 

(6.1 1) Pr 
(s = stress = - 

211t 

where 
q = joint efficiency s 1 

6.3 Cylindrical shell with hemispherical ends 

Some pressure vessels are fabricated with hemispherical ends; this has the advantage of reducing 
the bending stresses in the cylinder when the ends are flat. Suppose the thicknesses t ,  and t2 of the 
cylindrical section and the hemispherical end, respectively (Figure 6.7), are proportioned so that 
the radial expansion is the same for both cylinder and hemisphere; in this way we eliminate bending 
stresses at the junction of the two parts. 

Figure 6.7 Cylindrical shell with hemispherical ends, 
so designed as to minimise the effects of bending stresses. 

From equations (6.4), the circumferential strain in the cylinder is 

E( ,  - 9 
Et,  

and from equation (6.7) the circumferential strain in the hemisphere is 
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Pr 
(1 - 4% 

-(1 Pr - ,.) 1 = -(1 P' - v) 
If these strains are equal, then 

Et, 2 Et, 

This gives 

2 - v  
(6.12) r l  - 

f2 I - v  
- - -  

For most metals v is approximately 0.3, so an average value of (t,lt,) is 1.7/0.7 + 2.4. The 
hemispherical end is therefore thinner than the cylindrical section. 

6.4 Bending stresses in thin-walled circular cylinders 

The theory presented in Section 6.1 is based on membrane theory and neglects bending stresses due 
to end effects and ring stiffness. To demonstrate these effects, Figures 6.9 to 6.13 show plots of the 
theoretical predictions for a ring stiffened circular cylinde? together with experimental values, 
shown by crosses. This ring stiffened cylinder, wlmh was known as Model No. 2, was firmly fxed 
at its ends, and subjected to an external pressure of 0.6895 MPa (100 psi), as shown by Figure 6.8. 

t = 0.08 N = number of ring stiffeners 
E = Young'smodulus = 71 GPa u = Poisson'sratio = 0.3 

Figure 6.8 Details of model No. 2 (mm). 
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The theoretical analysis was based on beam on elastic foundations, and is described by Ross3. 

Figure 6.9 Deflection of longitudinal generator at 0.6895 MPa (100 psi), Model No. 2. 

Figure 6.10 Longitudinal stress of the outermost fibre at 0.6895 MPa ( 1  00 psi), Model No. 2. 

3R0ss, C T F, Pressure vessels under externalpressure. Elsevier Applied Science 1990. 
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Figure 6.1 1 Circumferential stress of the outermost fibre at 0.6895 MPa (1 00 psi), Model No. 2. 

Figure 6.12 Longitudinal stress of the innermost fibre at 0.6895 MPa (100 psi), Model No. 2. 
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Figure 6.13 Circumferential stress of the innermost fibre at 0.6895 MPa (100 psi), Model No.2. 

From Figures 6.9 to 6.13, it can be seen that bending stresses in thin-walled circular cylinders are 
very localised. 

Further problems (answers on page 692) 

6.8 A pipe has an internal diameter of 10 cm and is 0.5 cm thick. What is the maximum 
allowable internal pressure if the maximum shearing stress does not exceed 55 MN/m2? 
Assume a uniform distribution of stress over the cross-section. (Cambridge) 

A :ong boiler tube has to withstand an internal test pressure of 4 MN/m2, when the mean 
circumferential stress must not exceed 120 MN/mz. The internal diameter of the tube is 
5 cm and the density is 7840 kg/m3. Find the mass of the tube per metre run. (RNEC) 

A long, steel tube, 7.5 cm internal diameter and 0.15 cm thick, is plugged at the ends and 
subjected to internal fluid pressure such that the maximum direct stress in the tube is 120 
MN/m2. Assuming v = 0.3 and E = 200 GN/m2, find the percentage increase in the 
capacity of the tube. (RNC) 

A copper pipe 15 cm internal diameter and 0.3 cm thick is closely wound with a single 
layer of steel wire of diameter 0.18 cm, the initial tension of the wire being 10 N. If the 
)ipe is subjected to an internal pressure of 3 MN/mZ find the stress in the copper and in 
the wire (a) when the temperature is the same as when the tube was wound, (b) when the 
temperature throughout is raised 200°C. E for steel = 200 GN/m2, E for copper = 100 
GN/mZ, coefficient of linear expansion for steel = 11 x 1O-6, for copper 18 x 1O-6 per 
l "C. (Cambridge) 

A thin spherical copper shell of internal diameter 30 cm and thickness 0.16 cm is just full 
of water at atmospheric pressure. Find how much the internal pressure will be increased 

6.9 

6.10 

6.1 1 

6.1 2 
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if 25 cc of water are pumped in. Take v = 0.3 for copper and K = 2 GNIm' for water. 
(Cam bridge) 

6.13 A spherical shell of 60 cm diameter is made of steel 0.6 cm thick. It is closed when just 
full of water at 15"C, and the temperature is raised to 35°C. For this range of 
temperature, water at atmospheric pressure increases 0.0059 per unit volume. Find the 
stress induced in the steel. The bulk modulus of water is 2 GNIm', E for steel is 
200 GNIm', and the coefficient of linear expansion of steel is 12 x per 1 "C, and 
Poisson's ratio = 0.3. (Cambridge) 



7 Bending moments and shearing forces 

7.1 Introduction 

In Chapter 1 we discussed the stresses set up in a bar due to axial forces of tension and 
compression. When a bar carries lateral forces, two important types of loading action are set up 
at any section: these are a bending moment and a shearing force. 

Consider first the simple case of a beam which is fixed rigidly at one end B and is quite free at 
its remote end D, Figure 7.1 ; such a beam is called a cantilever, a familiar example of which is a 
fishing rod held at one end. Imagine that the cantilever is horizontal, with one end B embedded 
in a wall, and that a lateral force W is applied at the remote end D. Suppose the cantilever is 
dwided into two lengths by an imaginary section C; the lengths BC and CD must individually be 
in a state of statical equilibrium. If we neglect the mass of the cantilever itself, the loading actions 
over the section C of CD balance the actions of the force Wat C. The length CD of the cantilever 
is in equilibrium if we apply an upwards vertical force F and an anti-clockwise couple A4 at C; F 
is equal in magnitude to W, and M is equal to W(L - z), where z is measured from B. The force F 
at Cis  called a shearing force, and the couple M is a bending moment. 

Figure 7.1 Bending moment and shearing Figure 7.2 Cantilever with and inclined 
force in a simple cantilever beam. end load. 

But at the imaginary section C of the cantilever, the actions F and M on CD are provided by 
the length BC of the cantilever. In fact, equal and opposite actions F and M are applied by CD to 
BC. For the length BC, the actions at Care a downwards shearing force F, and a clockwise couple 
M. 
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When the cantilever carries external loads which are not applied normally to the axis of the 
beam, Figure 7.2, axial forces are set up in the beam. If W is inclined at an angle 8 to the axis of 
the beam, Figure 7.2, the axial thrust in the beam at any section is 

P = w COS e (7.1) 

The bending moment and shearing force at a section a distance z from the built-in end are 

M = ~ ( L - z )  sin 8 F = W sin 8 (7.2) 

7.2 Concentrated and distributed loads 

A concentrated load on a beam is one whch can be regarded as acting wholly at one point of the 
beam. For the purposes of calculation such a load is localised at a point of the beam; in reality this 
would imply an infinitely large bearing pressure on the beam at the point of application of a 
concentrated load. All loads must be distributed in practice over perhaps only a small length of 
beam, thereby giving a finite bearing pressure. Concentrated loads arise frequently on a beam 
where the beam is connected to other transverse beams. 

In practice there are many examples of distributed loads: they arise when a wall is built on a 
girder; they occur also in many problems of fluid pressure, such as wind pressure on a tall building, 
and aerodynamic forces on an aircraft wing. 

7.3 Relation between the intensity of loading, the shearing force, 
and bending moment in a straight beam 

Consider a straight beam under any system of lateral loads and external couples, Figure 7.3; an 
element length 6z of the beam at a distance z from one end is acted upon by an external lateral load, 
and internal bending moments and shearing forces. Suppose external lateral loads are distributed 
so that the intensity of loading on the elemental length 6z is w. 

Figure 7.3 Shearing and bending actions on an elemental length of a straight beam. 
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Then the external vertical force on the element is W ~ Z ,  Figure 7.3; this is reacted by an internal 
bending moment M and shearing force F on one face of the element, and M + 6M and F + 6F on 
the other face of the element. For vertical equilibrium of the element we have 

( F  + 6F) - F + W ~ Z  = 0 

If 6z is infinitesimally small, 

- -  dF - -w 
dz 

Suppose th ls relation is integrated between the limits z ,  and z,, then 

If F ,  and F, are the shearing forces at z = z ,  and z = z2 respectively, then 

(F ,  - F , )  = -E. 
or 

F ,  - F, = 

(7.3) 

(7.4) 

Then, the decrease of shearing force from z ,  to z2 is equal to the area below the load distribution 
curve over this length of the beam, or the difference between F ,  and F2 is the net lateral load over 
this length of the beam. 

Furthermore, for rotational equilibrium of the elemental length 6z, 

(F  + 6F) 6~ - ( M  + 6M) + M + ~ d z  (3 c) = 0 

Then, to the first order of small quantities, 

F ~ z  - 6M = 0 

Then, in the limit as 6z approaches zero, 

On integrating between the limits z = z ,  and z = z2, we have 

[:zydM = 
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where M, and M2 are the values M at z = z1 and z = z,, respectively. Then the increase of 
bending moment from zl to z, is the area below the shearing force curve for that length of the beam. 

Equations (7.4) and (7.6) are extremely useful for finding the bending moments and shearing 
forces in beams with irregularly distributed loads. From equation (7.4) the shearing force F a t  a 
section distance z from one end of the beam is 

F = 4 - wdz I[ 
On substituting this value of F into equation (7.6), 

M 2 - M 1  = 

Thus 

(7.7) 

From equation (7.5) we have that the bending moment Mhas a stationary value when the shearing 
force F is zero. Equations (7.3) and (7.5) give 

For the directions of M, F and w considered in Figure 7.3, M is mathematically a maximum, since 
&M/d? is negative; the significance of the word mathematically will be made clearer in Section 
7.8. 

All the relations developed in this section are merely statements of statical equilibrium, and are 
therefore true independently of the state of the material of the beam. 

7.4 Sign conventions for bending moments and shearing forces 

The bending moments on the elemental length 6z of Figure 7.3 tend to make the beam concave on 
its upper surface and convex on its lower surface; such bending moments are sometimes called 
sagging bending moments. The shearing forces on the elemental length tend to rotate the element 
in a clockwise sense. In deriving the equations in this section it is assumed implicitly, therefore, 
that 
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(i) downwards vertical loads are positive; 

(ii) sagging bending moments are positive; and 

(iii) clockwise shearing forces are positive. 

These sign conventions are shown in Figure 7.4. Any other system of sign conventions can be 
used, provided the signs of the loads, bending moments and shearing forces are considered when 
equations (7.3) and (7.5) are applied to any particular problem. 

Figure 7.4 Positive values of w, F and M, (i) downward vertical loading, 
(ii) clockwise shearing forces, (iii) sagging bending-moment. 

Figures that show graphlcally the variations of bending moment and shearing force along the 
length of a beam are called bending moment diagrams and shearing force diagrams. Sagging 
bending moments are considered positive, and clockwise shearing forces taken as positive. The 
two quantities are plotted above the centre line of the beam when positive, and below when 
negative. Before we can calculate the stresses and deformations of beams, we must be able to find 
the bending moment and shearing force at any section. 

7.5 Cantilevers 

A cantilever is a beam supported at one end only; for example, the beam already discussed in 
Section 7.1, and shown in Figure 7.1, is held rigidly at B. Consider first the cantilever shown in 
Figure 7.5(a), which carries a concentrated lateral load W at the free end. The bending moment 
at a section a distance z from B is 

M = -W(L-z )  

the negative sign occurring since the moment is hogging, as shown in Figure 7.5(b). The variation 
of bending moment is linear, as shown in Figure 7.5(c). The shearing force at any section is 

F = +W 
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the shearing force being positive as it is clockwise, as shown in Figure 7.5(d). The shearing force 
is constant throughout the length of the cantilever. We note that 

- -  d M - W = F  
dz 

Further dF/dz = 0, as there are no lateral loads between B and D. 

shown in Figure 7 4 e )  
The bending moment diagram is shown in Figure 7.5(c) and the shearing force diagram is 

Figure 7.5 Bending-moment and shearing-force diagrams for a cantilever 
with a concentrated load at the free end. 

Now consider a cantilever carrying a uniformly distributed downwards vertical load of intensity 
w, Figure 7.6(a). The shearing force at a distance z from B is 

F = +w(L - 2 )  

as shown in Figure 7.6 (d). The bending moment at a distance z from B is 

M = -1 w(t - z)* 
2 

as shown inFigure 7.6(b). The shearing force varies linearly and the bending moment parabolically 
along the length of the beam, as shown in Figure 7.6(e) and 7.6(c), respectively. We see that 

- -  dM - 4 L  - z )  = +F 
dz 
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Figure 7.6 Bending-moment and shearing-force diagrams for a 
cantilever under uniformly distributed load. 

Problem 7.1 A cantilever 5 m long carries a uniformly distributed vertical load 480 N per 
metre from C from H, and a concentrated vertical load of 1000 N at its mid- 
length, D. Construct the shearing force and bending moment diagrams. 
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Solution 

The shearing force due to the distributed load increases uniformly from zero at H to + 1920 N at 
C, and remains constant at +1920 N from C to B; this is shown by the lines (i). Due to the 
concentrated load at D, the shearing force is zero from H to D, and equal to +lo00 N from D to B, 
as shown by lines (ii). Adding the two together we get the total shearing force shown by lines (iii). 

Bending moments and shearing forces 

The bending moment due to the distributed load increases parabolically from zero at H to 

1 
2 

--(480)(4)’ = -3840 Nm 

2t C. The total load on CH is 1920 N with its centre of gravity 3 m from B; thus the bending 
moment at B due to this load is 

-(1920)(3) = -5760 Nm 

From C to B the bending moment increases uniformly, giving lines (i). The bending moment due 
to the concentrated load increases uniformly from zero at D to 

-(1000)(2.5) = -2500 Nm 

at B, as shown by lines (ii). Combining (i) and (ii), the total bending moment is given by (iii). 

The method used here for determining shearing-force and bendmg-moment diagrams is known as 
the principle of superposition. 
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7.6 Cantilever with non-uniformly distributed load 

Where a cantilever carries a distributed lateral load of variable intensity, we can find the bending 
moments and shearing forces from equations (7.4) and (7.6). When the loading intensity w cannot 
be expressed as a simple analytic function of z, equations (7.4) and (7.6) can be integrated 
numerically. 

Problem 7.2 A cantilever of length 10 m, built in at its left end, carries a distributed lateral 
load of varying intensity w N per metre length. Construct curves of shearing 
force and bending moment in the cantilever. 

Solution 

If z is the distance from the free end of cantilever, the shearing force at a distance z from the free 
end is 

F = wdz 6 
We find first the shearing force F by numerical integration of the w-curve. The greatest force 
occurs at the built-in end, and has the value 

F,, i 3400N 

The bending moment at a section a distance z from the free end is 

M = - Fdz 6 
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and is found therefore by numerical integration of the F-curve. The greatest bending moment 
occurs at the built-in end, and has the value 

M,, = 22500Nm 

NB It should be noted that by inspection the bending moment and the shearing force at the 
free end of the cantilever are zero; these are boundary conditions. 

7.7 Simply-supported beams 

By simply-supported we mean that the supports are of such a nature that they do not apply any 
resistance to bending of a beam; for instance, knife-edges or fnctionless pins perpendicular to the 
plane of bending cannot transmit couples to a beam. The remarks concerning bending moments 
and shearing forces, which were made in Section 7.5 in relation to cantilevers, apply equally to 
beams simply-supported at each end, or with any conditions of end support. 

As an example, consider the beam shown in Figure 7.7(a), which is simply-supported at B and 
C, and cames a vertical load W a distance a from B. If the ends are simply-supported no bending 
moments are applied to the beam at B and C. By taking moments about B and C we find that the 
reactions at these supports are 

W W a  - - ( L - a ) a d -  
L L 

respectively. Now consider a section of the beam a distance z from B; ifz < a, the bending moment 
and shearing force are 

wz 
L L 

M = +- (L - a), F = +E (L - a), as shown by Figures 7.7(b) and 7.7(d) 

If z > a, 

The bending moment and shearing force diagrams show discontinuities at z =a; the maximum 
bending moment occurs under the load W, and has the value 

W a  
L 

M,, = - (L - a) (7.10) 
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Figure 7.7 Bending-moment and shearing-force diagrams for a 
simply-supported beam with a single concentrated lateral load. 

The simply-supported beam of Figure 7.8(a) carries a uniformly-distributed load of intensity w. 
The vertical reactions at B and Care %wL. Consider a section at a distance z from B. The bending 
moment at this section is 

1 1 
2 2 

1 
2 

M = -WLZ - -WZ’ 

= -wz (L  - z) 

as shown in Figure 7.8(b) and the shearing force is 
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as shown in Figure 7.8(d). 

Figure 7.8 Bending-moment and shearing-force diagrams for a 
simply-supported beam with a uniformly distributed lateral load. 

The bending moment is a maximum at z = Y L ,  where 

(7.1 1) WL 2 M,, = - 
8 
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Atz = %L,wenotethat 

- -  - + F = O  dM 
dz 

The bending moment diagram is shown in Figure 7.8(c) and the shearing force diagram is shown 
in Figure 7.8(e). 

Problem 7.3 A simply-supported beam carries concentrated lateral loads at C and D, and a 
uniformly distributed lateral load over the length DF. Construct the bending 
moment and shearing force diagrams. 

Solution 

First we calculate the vertical reactions at B and F. On taking moments about F, 

60 R, = (200 x lo3) (45) + (50 x lo3) (30) + (300 x lo3) (15) = 15 000 x lo3 

Then 
R, = 250kN 

and 
R, = (200 x io3) + (50  x io3) + (300 x 10’) - R, = 300 k~ 

The bending moment varies linearly between B and C, and between C and D, and parabolically 
from D to F. The maximum bending moment is 4.5 MNm, and occurs at D. The maximum 
shearing force is 300 kN, and occurs at F. 
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Problem 7.4 

Bending moments and shearing forces 

A beam rests on knife-edges at each end, and cames a clockwise moment M, 
at B, and an anticlockwise moment M, at C. Construct bending moment and 
shearing force diagrams for the beam. 

Solution 

Suppose R, and R ,  are vertical reactions at B and C; then for statical equilibrium of the beam 

1 

L 
R = - R  c = - ( M c - % )  

B 

The shearing force at all sections is then 

F = R, = - ( M c  - M B )  
1 

L 

The bending moment a distance z from B is 

M = M, + R , z  = - ( L -  M B  z )  + - Mcz 
L L 

so M vanes linearly between B and C. 

Problem 7.5 A simply-supported beam cames a couple Mo applied at a point distant a from 
B. Construct bending moment and shearing force diagrams for the beam. 
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Solution 

The vertical reactions R at B and C are equal and opposite. For statical equilibrium of BC, 

M,= RL, or R = M, 
L 

The shearing force at all sections is 

F = - R  = -% 
L 

as shown in Figure (d), above. The bending moment at z < a is 

M = -& = -Moz 
L 

as shown in Figure (c), above, and for z > a 

M = - R z + M o = M o  1 - 1  ( 1) 
as shown in Figure (c), above. 

7.8 Simply-supported beam carrying a uniformly distributed load 
and end couples 

Consider a simply-supported beam BC, carrying a uniformly distributed load w per unit length, and 
couples MB and M, applied to ends, Figure 7.9(i). The reactions R, and R ,  can be found directly 
by taking moments about B and C in turn; we have 
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(7.12) 

Bending moments 
due to walone 

Bending moments 
due to positive 
MB and Mc alone 

Combined bending 
moments 

Figure 7.9 Simply-supported beam with uniformly distributed lateral load and end couples. 

These give the shearing forces at the end of the beam, and the shearing force at any point of the 
beam can be deduced, Figure 7.9(ii). In discussing bending moments we consider the total loading 
actiom on the beam as the superposition of a uniformly distributed load and end couples; the 
distributed load gives rise to a parabolic bending moment curve, BDC in Figure 7.9(iii), whereas 
the end couples MB and M, give the straight line HJ, Figure 7.9(iv). The combined effects of the 
lateral load and the end couples give the curve BHDYC, Figure 7.9(v). The bending moment at 
a distance z from B is 
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(7.13) 4 - z  (L - z) + - 1 4 3  M = -wz (L - z)  + - 
2 L L 

The ‘maximum’ bending moment occurs when 

- -  dM - + ( L - Z z ) - - + - -  1 MB M, = 0 
cir 2 L L 

that is, when 

( M B  - MC) 
1 1 r = - L - -  
2 W L  

The value of M for this value of z is 

2 
(7.14) 

- 1  2 1 1 
Mmax -swL + T ( M B + M C ) + - ( M B -  M C )  

2wL2 

Thls, however, is only a mathematical ‘maximum’; if MB or M, is negative, the numerically 
greatest bending moment may occur at B or C. Care should therefore be taken to find the truly 
greatest bending moment in the beam. 

7.9 Points of inflection 

When either, or both, of the end couples in Figure 7.9 is reversed in direction, there is at least one 
section of the beam where the bendmg moment is zero. 

Figure 7.10 Single point of inflection in a beam. 

In Figure 7.10 the end couple MB is applied in an anticlockwise direction; the bending moment at 
a distance z from B is 
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M = -wz 1 (L - z )  - - ME ( L  - z)  + - MCJ (7.15) 
2 L L 

and th ls  is zero when 

(7.16) 2 4  [ME + M.i) + - = 0 ( wL2 W 

z 2 - Z L  1 + - ( M B - M C j + -  2 [ wL2 W 

2 z 2 - Z L  1 + -  

The distance PB is the relevant root of this quadratic equation. 
When the end couple M, is also reversed in direction, Figure 7.1 1, there are two points, P and 

Q, in the beam at which the bending moment is zero. The distances P and Q from B are given by 
the roots of the equation 

(7.17) 2MB = 0 

L 2  M B -  MC ME - MC (7.18) 
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7.10 Simply-supported beam with a uniformly distributed load over 
part of a span 

The beam BCDF, shown in Figure 7.12, carries a uniformly distributed vertical load w per unit 
length over the portion CD. On takmg moments about B and F, 

bw bw 
31 2L 

V,  = - (b + 2c), VF = - (b + 2a) (7.19) 

Figure 7.1 2 Shearing-force and bending-moment diagrams for simply-supported beam 
with distributed load over part of the span. 

The bending moments at C and D are 

baw 
2L 

M, = aV, = - (b + 2c) 

bcw 
2L 

MD = cVF = - (b + 2a) (7.20) 

The bending moments in BC and FD vary linearly. The bending moment in CD, at a distance z 
from C, is 

(7.21) 
Z 1 

2 
M = [ 1 - t) M, + b M,, + -wz (b - z) 
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Then 

1 1 * = - (MD - M,) + -w (b - 22) 
a2 b 2 

On substituting for M, and MD from equations (7.20) 

bw 1 - (c - u) + --w (b  - 22) dM - 

a!? 2L 2 
- -  

At C, z = 0, and 

bw - (b + 2c) = VB 
a!? 2L 
dM - - -  

But V, is the slope of the line BG in the bending moment diagram, so the curve of equation (7.21) 
is tangential to BG at G. Similarly, the curve of equation (7.2 1) is tangential to FJa t  J. Between 
C and D the bending moment varies parabolically; the simplest method of constructing the 
bendmg moment diagram for CD is to produce BG and FJ to meet at H, and then to draw a 
parabola between G and J ,  having tangents BG and FJ. 

7.1 1 Simply-supported beam with non-uniformly distributed load 

Suppose a simply-supported beam of span L,  Figure 7.13, carries a lateral distributed load of 
variable intensity w. Then, from equation (7.4), if F is the shearing force a distance z from B, 

Ibz w* F , - F  = 

Figure 7.13 Simply-supported beam with lateral load of varying intensity. 
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where F, is the shearing force at z = 0. Then 

(7.22) 1,' wdz 
F = F o -  

Furthermore, from equation (7.6), the bending moment a distance z from B is 

M = Mo + F+ - loz S,' w&& (7.23) 

where Mo is the bending moment at z = 0. However, as the beam is simply-supported at z = 0, 
we have M, = 0, and so 

The end z = L is also simply-supported, so for this end M = 0; then 

F& - loL S,'w&dz = o 

This gives 

(7.24) 

Equations (7.22), (7.23) and (7.24) may be used in the graphlcal solution of problems in which 
w is not an analytic function of z. The value of F, is found firstly from equation (7.24); numerical 
integrations then give the values of F and M, from equations (7.22) and (7.23), respectively. 

7.12 Plane curved beams 

Consider a beam BCD, Figure 7.14, which is curved in the plane of the figure. The beam is loaded 
so that no twisting occurs, and bending is confined to the plane of Figure 7.14. Suppose an 
imaginary cross-section of the beam is taken at C; statical equilibrium of the length CD of the 
beam is ensured if, in general, a force and a couple act at C; it is convenient to consider the 
resultant force at Cas consisting of two components-an axial force P, acting along the centre line 
of the beam, and a lateral force F, acting along the normal to the centre line of the beam. The 
couple M at C acts about an axis perpendicular to the plane of bending and passing through the 
centre line of the beam. The actions at Con the length BC of the beam, are equal and opposite to 
those at C on the length CD. 

As before the couple M is the bending moment in the beam at C, and the lateral force F is the 
shearing force. 
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As an example, consider the beam of Figure 7.15, which has a centre line of constant radius R. 
The beam carries a radial load W at its free end. Consider a section of the beam at some angular 
position 0: for statical equilibrium of the length of the bar shown in Figure 7.15(ii), 

M = WRsin0 

F = Wcos0 

P = wsine (7.25) 

Figure 7.14 Bending and shearing actions in Figure 7.15 Plane curved beam of circular 
a plane curved beam. form carrying an end load. 

Consider again, the beam shown in Figure 7.16, consisting of two straight limbs, BC and CD, 
connected at C. In CD the bending moment varies linearly, from zero at D to 70 000 Nm at C. 
In BC the bending moment is constant and equal to 70 000 Nm. In Figure 7.17 the bending 
moments are plotted on the concave sides of the bent limbs; this is equivalent to following the sign 
convention of Section 7.4, that sagging bending moments are positive. 

Figure 7.16 Bending moments in a bracket. 
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AB is a vertical post of a crane; the sockets at A and B offer no constraint 
against flexure. The horizontal arm CD is hinged to AB at C and supported by 
the strut FE which is freely hinged at its two extremities to AB and CD. 
Construct the bending moment diagrams for AB and CD. (Cambridge) 

Problem 7.6 

Solution 

It is clear from considering the equilibrium of the whole crane that the horizontal reactions at A 
and B must be equal and opposite, and that the couple due to them must equal the moment of the 
20 kN force. Let R be the magnitude of the horizontal reactions at A and B, then 

7R = 7(20000) 

and therefore 

R = 20000 N 

Let P = the pull in CE, and Q = the thrust in FE. Then taking moments about C for the rod CD 
we have 

4~ sine = ~ ( ~ O O O O )  

and therefore 

Q = 58300 N 

Resolving horizontally for AB we have 

1 
2 

P = Q case = - (70000) cote = 46700 N 

The vertical reaction at E = Q sine = 35 000 N. 
We can now draw the bending moment diagrams for AB and CD, considering only the forces 

at right-angles to each beam; let us take CD first. CD is a beam freely supported at C and E and 
loaded at D. The bending moment at E = 3 x 20 000 = 60 000 Nm, to which value it rises 
uniformly from zero at D; from E to C the bending moment decreases uniformly to zero. 



192 

AB is supported at A and B and loaded with equal and opposite loads at C and F. 

The bending moment at C is 

Bending moments and shearing forces 

(2) (20 000) = 40 000 Nm. 

The bending moment at F is 

(2) (-20 000) = -40 000 Nm. 

At any point z between C and F, the bending moment is 

M = 20 000 (Z + 2) - 46 7002 = 40 000 - 26 7002 

In the bending moment diagram positive bending moments are those which make the beam 
concave to the left, and are plotted to the left in the figure. 

7.13 More general case of bending of a curved bar 

In Figure 7.17, OBC represents the centre line of a beam of any shape; the line OBC is curved in 
space in general. Suppose the beam carries any system of external loads; consider the actions over 
a section of the beam at B.  For statical equilibrium of BC we require at B a force and a couple. 

The force is resolved into two components-an axial force P along the centre line of the beam, 
and a shearing force F normal to the centre line; the couple is resolved into two components-a 
torque T about the centre line of the beam, and a bending moment M about an axis perpendicular 
to the centre line. The axis of M is not necessarily coincident with the axis of F. 

Fig. 7.17 Lateral loading of a curved beam. 

Problem 7.7 The centre line of a beam is curved in the plane xz with a radius a. Find the 
loading actions at any section of the beam when a concentrated load W is 
applied at C in a direction parallel to y o .  
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Solution 

Consider any section at an angular position 0 in the xz-plane; there is no axial force on the centre 
line, and the shearing force at any section is W. The torque about he centre line is 

w ( ~  - u cod)  = wu (1 - case) 

The bending moment acts about the radws, and has the value 

wu sine 

Problem 7.8 The axis of a beam consists of two lines BC and CD in a horizontal plane and 
at right angles to each other. Estimate the greatest bending moment and torque 
when the beam carries a vertical load of 10 kN at D. 

Solution 

Consider the statical equilibrium of DC alone; there is no torque in DC, and the only internal 
actions at C in DC are a shearing force of 10 kN and a bending moment of 50 kNm. Now reverse 
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the actions at C on DC and consider these reversed actions at C on BC. Equilibrium of BC is 
ensured if there is a shearing force of 10 kN at B, a bending moment of 70 kNm, and a torque of 
50 kNm. 

7.14 Rolling loads and influence lines 

In the design of bridge girders it is frequently necessary to know the maximum bending moment 
and shearing force which each section will have to bear when a travelling load, such as a train, 
passes from one end of the bridge to the other. The diagrams which we have considered so far 
show the simultaneous values of the bending moment, or shearing force, for all sections of the 
beam with the loads in one fixed position; we shall now see how to construct a diagram which 
shows the greatest value of these quantities for all positions of the loads. These diagrams are 
called maximum bending moment or maximum shearing force, diagrams. 

We assume that the loads on a beam are moving slowly; then there are negligible inertia effects 
from the mass of the beam and any moving masses. 

7.15 A single concentrated load traversing a beam 

Suppose a single concentrated vertical load W travels slowly along a beam BC, whch is simply- 
supported at each end, Figure 7.18(i). If a is the distance of the load from B, the reactions at B and 
C are 

Wa R, = (L - a) R, = - 
L L 

The bending moment at a distance z from B, is 

wz 
L 

M = - ( L - a ) f o r z < a  

Wa 
L 

M = - ( L - z ) f o r z > a  

(7.26) 

(7.27) 

Consider the load rolling slowly from C to B: initially z < a, and the bending moment, given by 
equation 7.26, increases as a decreases; when a = z, 

wz 
L 

M = - ( L - z )  (7.28) 

As W proceeds further, we have z > a, and the bending moment, given by equation (7.27), 
decreases as a decreases further. 
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Figure 7.18 Bending moments and shearing forces due to a rolling load 
traversing a simply-supported beam. 

Clearly, equation 7.28 is the greatest bending moment which can occur at the section; thus, for any 
section a distance z from B, the maximum bending moment that can be induced is 

w z  
L 

Mm, = - (L  - 2) (7.29) 

and this occurs when the load W is at that section of the beam. The variation of M,, for different 
values ofz is shown in Figure 7.18(ii); the curve of M,, is a parabola, attaining a peak value when 
z = U, for which 

WL 
4 

Mm, = - 

The shearing force a distance z from B is 

F = R, = 4 4 : ( ~ - a )  for z < a  (7.30) 
L 

Wa 
L 

F = -R, = -- for z > a (7.31) 

Consider again a load rolling slowly from C to B; initially z < a,  and the shearing force, given by 
equation (7.30), is positive and increases as a diminishes. The greatest positive shearing force 
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occurs just before the load W passes the section under consideration; it has the value 

Bending moments and shearing forces 

F,,(+) = E (L - z) (7.32) 
L 

After the load has passed the section being considered, that is, when z > a, the shearing force, 
given by equation (7.3 1) is negative and decreases as a diminishes further. The greatest negative 
shearing force occurs when the load W has just passed the section at a distance z; it has the value 

wz 
L 

Fmm(-) = -- (7.33) 

The variations of maximum positive and negative shearing forces are shown in Figure 7.18(iii). 

7.16 Influence lines of bending moment and shearing force 

A c w e  that shows the value of the bending moment at a given section of a beam, for all positions 
of a travelling load, is called the bending-moment influence line for that section; similarly, a curve 
that shows the shearing force at the section for all positions of the load is called the shearing force 
influence line for the section. The distinction between influence lines and maximum bending- 
moment (or shearing force) diagrams must be carefully noted: for a given load there will be only 
one maximum bending-moment diagram for the beam, but an infinite number ofbending-moment 
influence linpa n m p  fnr pirh c e r t i n n  nf thn helm 

Figure 7.19 (i) Single rolling load on a simply-supported beam. (ii) Bending-moment 
influence line for section C. (iii) Shearing force influence line for Section C. 
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Consider a simply-supported beam, Figure 7.19, carrying a single concentrated load, W. As the 
load rolls across the beam, the bending moments at a section C of the beam vary with the position 
of the load. Suppose W is a distance z from B; then the bending moment at a section C is given 
by 

wz 
L 

M = - ( L -  a )  for z < a 

and 
Wa 
L 

M = -(L-z) for z > a  

The first of these equations gives the straight line BH in Figure 7.19(ii), and the second the line 
HD. The mfluence line for bendmg moments at C is then BHD; the bending moment is greatest 
when the load acts at the section. 

Again, the shearing force at C is 

wz 
L 

F =  -- for z < a 

W 
L 

and F = +-(L-Z) for z > a  

These relationshps give the lines BFCGD for the shearing force influence line for C. There is an 
abrupt change of shearing force as the load W crosses the section C. 
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Further problems (answers on page 692) 

7.9 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Bending moments and shearing forces 

Draw the shearing-force and bending-moment diagrams for the following beams: 

A cantilever of length 20 m carrying a load of 10 kN at a distance of 15 m from the 
supported end. 
A cantilever of length 20 m carrying a load of 10 kN uniformly distributed over the 
inner 15 m of its length. 
A cantilever of length 12 m carrying a load of 8 kN, applied 5 m from the supported 
end, and a load of 2kNlm over its whole length. 
A beam, 20 m span, simply-supported at each end and carrying a vertical load of 20 
kN at a distance 5 m from one support. 
A beam, 16 m span, simply-supported at each end and carrying a vertical load of 2.5 
kN at a distance of 4 m from one support and the beam itself weighing 500 N per 
metre. 

A pair of lock gates are strengthened by two girders AC and BC. If the load on each 
girder amounts to 15 kN per metre run, find the bending moment at the middle of 

7.10 

,""L -:-,la- /P,....z.";,J~"l 

7.1 1 A girder ABCDE bears on a wall for a length BC and is prevented from overturning 
by a holding-down bolt at A .  The packing under BC is so arranged that the pressure 
over the bearing is uniformly distributed and the 30 kN load may also be taken as a 
uniformly distributed load. Neglecting the mass of the beam, draw its bending 
moment and shearing force diagrams. (Cambridge) 

7.12 Draw the bending moment and shearing force diagrams for the beam shown. The 
beam is supported horizontally by the strut DE, hinged at one end to a wall, and at the 
other end to the projection CD which is firmly fixed at right angles to AB. The beam 
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is freely hinged to the wall at B. The masses of the beam and strut can be neglected. 
(Cam bridge) 

7.1 3 A timber dam is made of planking backed by vertical piles. The piles are built-in at 
the section A where they enter the ground and they are supported by horizontal struts 
whose centre lines are 10 m above A .  The piles are spaced 1 m apart between centres 
and the depth of water against the dem ;E 10 m -. - ~ 

u 

Assuming that the thrust in the strut is two-sevenths the total water pressure 
resisted by each pile, sketch the form of the bending moment and shearing 
force diagrams for a pile. Determine the magnitude of the bending moment 
at A and the position of the section which is free from bending moment. 
(Cam bridge) 

7.1 4 Thc load distribution (fill lines) and upward water thrust (dotted lines) for a ship are 
given, the numbers indicating kN per metre run. Draw the bending moment diagram 
for the ship. (Cambridge) 



8 Geometrical properties of cross-sections 

8.1 Introduction 

The strength of a component of a structure is dependent on the geometrical properties of its cross- 
section in addition to its material and other properties. For example, a beam with a large cross- 
section will, in general, be able to resist a bending moment more readily than a beam with a smaller 
cross-section. Typical cross-section of structural members are shown in Figure 8.1. 

(a) Rectangle @) Circle (c) ‘I’ beam (d) ‘Tee’ beam (e) Angie bar 

Figure 8.1 Some typical cross-sections of structural components. 

The cross-section of Figure 8.l(c) is also called a rolled steeljoist (RSJ); it is used extensively 
in structural engineering. It is quite common to make cross-sections of metai structural members 
inthe formofthe cross-sections ofFigure 8.l(c) to (e), as suchcross-sectionsare structurallymore 
efficient in bending than cross-sections such as Figures 8.l(a) and (b). Wooden beams are usually 
of rectangular cross-section and not of the forms shown in Figures 8.l(c) to (e). This is because 
wooden beams have grain and will have lines of weakness along their grain if constructed as in 
Figures 8.l(c) to (e). 

8.2 Centroid 

The position of the centroid of a cross-section is the centre of the moment of area of the cross- 
section. If the cross-section is constructed from a homogeneous material, its centroid will lie at the 
same position as its centre of gravity. 
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Figure 8.2 Cross-section. 

Let G denote the position of the centroid of the plane lamina of Figure 8.2. At the centroid the 
moment of area is zero, so that the following equations apply 

Z x  dA = Z y d A  = 0 (8.1) 

where dA = elemental area of the lamina 

x = horizontal distance of dA from G 

y = vertical distance of dA from G 

8.3 Centroidal axes 

These are the axes that pass through the centroid. 

8.4 Second moment of area (I) 

The second moments of area of the !amina about the x - x and y - y axes, respectively, are given 
by 

1, = C y 2  dA = second moment of area about x - x 

Zw = C x2 dA = second moment of area about y - y 

(8.2) 

(8.3) 

Now from Pythagoras’ theorem 

x2+y2 = ? 

:. E x ’  d~ + C y 2  d~ = C r 2  d~ 

or Zp+Zn = J (8.4) 
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Figure 8.3 Cross-section. 

where 

J = polar second moment of area 

= C r 2  d~ (8 .5 )  

Equation (8.4) is known as theperpendicular axes theorem which states that the sum of the second 
moments of area of two mutually perpendicular axes of a lamina is equal to the polar second 
moment of area about a point where these two axes cross. 

8.5 Parallel axes theorem 

Consider the lamina of Figure 8.4, where the x-x axis passes through its centroid. Suppose that 
I, is known and that I, is required, where the X-X axis lies parallel to the x-x axis and at a 
perpendicular distance h from it. 

Figure 8.4 Parallel axes. 
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Now from equation (8.2) 

I, = Cy’ d A  

and 
In = C ( y +  h)’ d A  

= E (‘y’ + h2 + 2 hy) dA, 

but C 2 hy d A  = 0, as ‘y ’ is measured from the centroid. 

but 
I, = Cy’ d A  

:. In = I, + h’ C dA 

= I, + h’ A 

where 
A = areaoflamina = C d A  

Equation (8.9) is known as theparallel axes theorem, whch states that the second moment of area 
about the X-X axis is equal to the second moment of area about the x-x axis + h’ x A ,  where x-x 
and X-X are parallel. 

h = the perpendicular distance between the x-x and X-X axes. 

I, = the second moment of area about x-x 

In = the second moment of area about X-X 

The importance of the parallel axes theorem is that it is useful for calculating second moments of 
area of sections of RSJs, tees, angle bars etc. The geometrical properties of several cross-sections 
will now be determined. 

Problem 8.1 Determine the second moment of area of the rectangular section about its 
centroid (x-x) axis and its base (X-X ) axis; see Figure 8.5. Hence or 
otherwise, verify the parallel axes theorem. 
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Figure 8.5 Rectangular section. 

Solution 

From equation (8.2) 

I*, = [y2 dA = [-; Y 2  (B dy) 

(8.10) = -b3y  2B 
= B[$E/2 3 

Zxx = BD3/12 (about centroid) 

Zm = ID'' (y + DI2)' B dy 
-D/2 

= B ID/2 (y' + D2/4 + Dy) 4 
-DR 

(8.11) 
3 DZy @,2 I' 

= B [: +. - 4 + TrDI2 
Ixy = BD313 (about base) 

To verify the parallel axes theorem, 
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from equation (8.9) 

I, = Ixx + h 2  x A 

2 
= -+(:) BD 3 x B D  

12 

= BD3 112 ( 1  + :) 
I, = BD3/3 QED 

Problem 8.2 Detennine the second moment of area about x-x, of the circular cross-section 
of Figure 8.6. Using the perpendicular axes theorem, determine the polar 
second moment of area, namely ‘J’. 

Figure 8.6 Circular section. 

Solution 

From the theory of a circle, 

2 i - y ’  = R2 

or 9 = R 2 - 2  (8.12) 

Let x = Rcoscp (seeFigure 8.6) 

:. y’ = R2 - R2 cos2 cp (8.13) 

= R2sin2cp (8.14) 
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or y = Rsincp 

and - -  dy - Rcoscp 
4 

or dy = Rcoscp dcp 

Now A = area of circle 
R 

= 4 l x d y  
0 

= 4 R coscp Rcoscp dcp 
0 

H I 2  

7 
= 4R2 ]cos2 cp dcp 

0 

1 + cos24 
but cos2cp = 

2 
z 1 2  

= 2R2 [(:+ 0) - (o+ o)] 

or A = x R 2  QED 

NOW I, = 4 y x dy 

Substituting equations (8.14), (8.13) and (8.16) into equation (8.18), we get 

R 1 2  0 

X I 2  

I,  = 4 R2 sin2cp Rcoscp Rcoscp dcp 
0 

n12 

I 
= 4R4 I sin2cp cos2cp dcp 

0 

but sin2 = (1 - COS 2 9)/2 

(8.15) 

(8.16) 

(8.17) 

(8.18) 
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and cos’cp = (1 + cos 2cp)12 

X I 2  

0 
:. I, = R4 I (1 - COS 2 ~ )  (1 + COS 2cp) d cp 

X I 2  

0 
= R4 (1 - cos’2~)  d cp 

1 + cos 441 
2 

but cos’2cp = 

1 d T  
- R 4 = r  [ 1 -  1 + c o s 4 $  

1, - 2 
0 

sin 49 4 - 9 1 2 -  - 

= P [ ( x 1 2 -  XI4 - 0) - (0 -0 -O) ]  

or Ixx = xR414 = xD4164 

where 

D = diameter = 2R 

As the circle is symmetrical about x-x and y-y 

IH = Ixx = nD4164 

From the perpendicular axes theorem of equation (8.4), 

J = polar second moment of area 

= I, + I, = x D 4 / 6 4 + x  D4164 

(8.19) 

(8.20) 

or J = x D 4 1 3 2  = xR412 
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Problem 8.3 Determine the second moment of area about its centroid of the RSJ of Figure 
8.7. 

Figure 8.7 RSJ. 

Solution 

I, = ‘I’ of outer rectangle (abcd) about x-x minus the sum of the 1’s of the two inner 
rectangles (efgh and jklm) about x-x. 

0.11 x 0.23 2 x 0.05 x 0.173 - - - 
12 12 

= 7.333 x 10.~  - 4.094 x io-5 

or I, = 3.739 x 10-’m4 

Problem 8.4 Determine I..- for the cross-section of the RSJ as shown in Figure 8.8. 

Figure 8.8 RSJ (dimensions in metres). 
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Col. 3 Col. 4 Col. 5 

Y aY au’ 

0.1775 2.929 x 10 ‘ 5.199 x 

0.095 1.425 x 1.354 x 10 

0.01 4.2 x 10.’ 4.2 10 ’ 
- 

Z ay = 4.77 x Z ay = 6.595 x 

10 ‘ 1 0 . ~  

Solution 

Col. 6 

i = bbl,, 

0.11 X 0.0153/12 = 3 x 10 

0.01 X 0.153/12 = 2.812 x 

0.21 x 0.02~/12 = 1.4 x 10.’ 

T3 i = 2.982 x 

The calculation will be carried out with the aid of Table 8.1. It should be emphasised that this 
method is suitable for almost any computer spreadsheet. To aid this calculation, the RSJ will be 
subdwided into three rectangular elements, as shown in Figure 8.8. 

Col. 1 

Element 

Col. 2 

a = bd 

0.11 x 0.015 
= 0.00165 

0.01 x 0.15 
= 0.0015 

0.02 x 0.21 
= 0.0042 

Z a =  
0.00735 

u = area of an element (column 2) 

y = vertical distance of the local centroid of an element from XX (column 3) 

uy = the product a x y (column 4 = column 2 x column 3) 

u 9  = the product a x y x y (column 5 = column 3 x column 4) 

i 

b = ‘width’ of element (horizontal dimension) 

d 

C = summationofthecolumn 

y 

= the second moment of area of an element about its own local centroid = bd3i12 

= ‘depth’ of element (vertical dimension) 

- 
= distance of centroid of the cross-section about XX 

= Z u y i Z a  

= 4.774 x 10-4/0.00735 = 0.065 m 

(8.21) 

(8.22) 
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Now from equation (8.9) 

I, = Cay’ + X i  

= 6.595 x lO-5 + 2.982 x 1O-6 (8.23) 

I, = 6.893 x lO-5 m4 

From the parallel axes theorem (8.9), 
- 

I,, = I, - y ’ C a  

= 6.893 x lO-5 - 0.065’ x 0.00735 (8.24) 

or Ixx = 3.788 x l O - 5  m4 

Further problems (for answers, seepage 692) 

8.5 Determine I, for the thin-walled sections shown in Figures 8.9(a) to 8.9(c), where the 
wall thicknesses are 0.01 m. 

Dimensions are in metres. I, = second moment of area about a horizontal axis passing 
through the centroid. 

NB 

(4 (b) (c )  

Figure 8.9 Thin-walled sections. 
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8.6 Determine I ,  for the thm-walled sections shown in Figure 8.10, which have wall 
thicknesses of 0.01 m. 

(a) (b) 

Figure 8.10 

8.7 Determine the position of the centroid of the section shown in Figure 8.1 1, namely y. 
Determine also I, for this section. 

Figure 8.11 Isosceles triangular section. 



9 Longitudinal stresses in beams 

9.1 Introduction 

We have seen that when a straight beam carries lateral loads the actions over any cross-section of 
the beam comprise a bending moment and shearing force; we have also seen how to estimate the 
magnitudes of these actions. The next step in discussing the strength of beams is to consider the 
stresses caused by these actions. 

As a simple instance consider a cantilever carrying a concentrated load Wat its free end, Figure 
9.1. At sections of the beam remote from the fiee end the upper longitudinal fibres of the beam 
are stretched, i.e. tensile stresses are induced; the lower fibres are compressed. There is thus a 
variation of h e c t  stress throughout the depth of any section of the beam. In any cross-section of 
the beam, as in Figure 9.2, the upper fibres whch are stretched longitudinally contract laterally 
owing to the Poisson ratio effect, while the lower fibres extend laterally; thus the whole cross- 
section of the beam is distorted. 

In addition to longitudinal direct stresses in the beam, there are also shearing stresses over any 
cross-section of the beam. h most engineering problems shearing distortions in beams are 
relatively unimportant; this is not true, however, of shearing stresses. 

Figure 9.1 Bending strains in a Figure 9.2 Cross-sectional distortion of 
loaded cantilever. a bent beam. 

9.2 Pure bending of a rectangular beam 

An elementary bending problem is that of a rectangular beam under end couples. Consider a 
straight uniform beam having a rectangular cross-section ofbreadth b and depth h, Figure 9.3; the 
axes of symmetry of the cross-section are Cx, Cy. 

A long length of the beam is bent in theyz-plane, Figure 9.4, in such a way that the longitudinal 
centroidal axis, Cz, remains unstretched and takes up a curve of uniform radius of curvature, R. 

We consider an elemental length Sz of the beam, remote from the ends; in the unloaded 
condition, AB and FD are transverse sections at the ends of the elemental length, and these sections 
are initially parallel. In the bent form we assume that planes such as AB and FD remain flat 
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planes; A ’B ’and F ‘D ‘in Figure 9.4 are therefore cross-sections of the bent beam, but are no 
longer parallel to each other. 

Figure 9.3 Cross-section of a 
rectangular beam. 

Figure 9.4 Beam bent to a uniform radius of 
curvature R in the yz-plane. 

In the bent form, some of the longitudinal fibres, such as A ‘F ; are stretched, whereas others, 
such as B ‘D ’are compressed. The unstrained middle surface of the beam is known as the neutral 
axis. Now consider an elemental fibre HJof the beam, parallel to the longitudinal axis Cz, Figure 
9.5; this fibre is at a distance y from the neutral surface and on the tension side of the beam. The 
original length of the fibre HJ in the unstrained beam is Sz; the strained length is 

1 1  - 6Z H J  - ( R + y ) -  
R 

because the angle between A ’B ’and F ‘D ‘in Figure 9.4 and 9.5 is (6zR).  Then during bending 
HJ stretches an amount 

6Z Y H’J’ - HJ = (R + y )  - - SZ = - 6~ 
R R 

The longitudinal strain of the fibre HJ is therefore 

E = ( ; t iz)  / s z  = - Y 
R 
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Figure 9.5 Stresses on a bent element of the beam. 

Then the longitudinal strain at any fibre is proportional to the distance of that fibre from the neutral 
surface; over the compressed fibres, on the lower side of the beam, the strains are of course 
negative. 

If the material of the beam remains elastic during bending then the longitudinal stress on the 
fibre HJ is 

(9.1) 
o = E c = -  EY 

R 

The distribution of longitudinal stresses over the cross-section takes the form shown in Figure 9.6; 
because of the symmetrical distribution ofthese stresses about Cx, there is no resultant longitudinal 
thrust on the cross-section of the beam. The resultant hogging moment is 

1 + -h 

M = /-i ObYdV (9.2) 
2 

On substituting for o from equation (9.1), we have 
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(9.3) 
EIX 

R - 1 h  R 

*L 
M = “[ 2 by2& = __ 

Figure 9.6 Distribution of bending stresses giving zero resultant 
longitudinal force and a resultant couple M. 

where I, is the second moment of area of the cross-section about Cx. From equations (9.1) and 
(9.3), we have 

A4 
(9.4) 

- _ - _ -  D -  E -  
Y R 4 

We deduce that a uniform radius of curvature, R, of the centroidal axis Cz can be sustained by end 
couples M, applied about the axes Cx at the ends of the beam. 

Equation (9.3) implies a linear relationship between M, the applied moment, and (l/R), the 
curvature of the beam. The constant EI, in this linear relationship is called the bending stiffness 
or sometimes thejlexural stiffness of the beam; thls stiffness is the product of Young’s modulus, 
E,  and the second moment of area, Ix, of the cross-section about the axis of bending. 

Problem 9.1 A steel bar of rectangular cross-section, 10 cm deep and 5 cm wide, is bent in 
the planes of the longer sides. Estimate the greatest allowable bending moment 
if the bending stresses are not to exceed 150 MN/m2 in tension and 
compression. 
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Solution 

The bending moment is applied about Cx. The second moment of area about h s  axis is 

1 
12 

Z, = - (0.05) (0.10)3 = 4.16 x m2 

The bending stress, o, at a fibre a distancey from Cx is, by equation (9.4) 

where M is the applied moment. If the greatest stresses are not to exceed 150 MN/m2, we must 
have 

- M y  2 150 MN/m* 

The greatest bending stresses occur in the extreme fibres where y = 5 cm. Then 

(150 lo6) 1, - (150 x lo6) (4.16 x 

(0.05) (0.05) 
M <  - 

= 12500 Nm 

The greatest allowable bending moment is therefore 12 500 Nm. (The second moment of area 
about Cy is 

1 
12 

Zy = - (0.10) (0.05)3 = 1.04 x m2 

The greatest allowable bending moment about Cy is 

(150 lo6) IY - (150 x lo6) (1.04 x 

(0.025) (0.025) 
M = - -  

= 6250 Nm 

which is only half that about Cx. 

9.3 Bending of a beam about a principal axis 

In section 9.2 we considered the bending of a straight beam of rectangular cross-section; this form 
of cross-section has two axes of symmetry. More generally we are concerned with sections having 
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only one, or no, axis of symmetry. 
Consider a long straight uniform beam having any cross-sectional form, Figure 9.7; the axes 

Cx and Cy are principal axes of the cross-section. The principal axes of a cross-section are those 
centroid axes for which the product second moments of area are zero. In Figure 9.7, C is the 
centroidal of the cross-section; Cz is the longitudinal centroidal axis. 

Figure 9.7 General cross-sectional Figure 9.8 Elemental length of a beam. 
form of a beam. 

When end couples Mare applied to the beam, we assume as before that transverse sections of the 
beam remain plane during bending. Suppose further that, if the beam is bent in the yz-plane only, 
there is a neutral axis C ' x  ; Figure 9.7, which is parallel to Cx and is unstrained; radius of 
curvature of this neutral surface is R, Figure 9.8. As before, the strain in a longitudinal fibre at a 
distance y 'from C ' x  'is 

- Y '  & - -  
R 

If the material of the beam remains elastic during bending the longitudinal stress on this fibre is 

o = -  EY I 

R 

If there is to be no resultant longitudinal thrust on the beam at any transverse section we must have 

/ A  ob@' = 0 

Where b is the breadth of an elemental strip of the cross-section parallel to Cx, and the integration 
is performed over the whole cross-sectional area, A. But 

E obdy' = - / y'bdy' 
/ A  R A  

This can be zero only if C ' x  'is a centroidal axis; now, Cx is a principal axis, and is therefore a 
centroidal axis, so that C ' x  'and Cx are coincident, and the neutral axis is Cx in any cross-section 
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of the beam. The total moment about Cx of the internal stresses is 

E 
R A  

M = lA o b y 4  = - [ by2+ 

But J A  by dy is the second moment of area of the cross-section about Cx; if h s  is denoted by I,, 
then 

(9.5) 
M = -  EIX 

R 

The stress in any fibre a distance y from Cx is 

(9.6) 
o = - - -  EY - MY 

R I X  

No moment about Cy is implied by this stress system, for 

/AmdA = -/-xydA E = 0 
R A  

because Cx and Cy are principal axes for which J A  xy dA, or the product second moment of area, 
is zero; 6A is an element of area of the cross-section. 

9.4 Beams having two axes of symmetry in the cross-section 

Many cross-sectional forms used in practice have two axes of symmetry; examples are the 
I-section and circular sections, Figure 9.9, besides the rectangular beam already discussed. 

Figure 9.9 (i) I-section beam. (ii) Solid circular cross-section. 
(iii) Hollow circular cross-section. 

An axis of symmetry of a cross-section is also a principal axis; then for bending about the axis Cx 
we have, from equation (9.6), 
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(9.7) 
o = E y = -  %Y 

RX I,  

where R, is the radius of curvature in the yz-plane, M, is the moment about Cx, and I, is the second 
moment of area about Cx. Similarly for bending by a couple My about Cy, 

(9.8) 
o = - - -  Ex - MYx 

RY 'Y  

where R,, is the radius of curvature in the xz-plane, and I, is the second moment of area about Cy. 
The longitudinal centroid axis is Cz. From equations (9.7) and (9.8) we see that the greatest 
bending stresses occur in the extreme longitudinal fibres of the beams. 

Problem 9.2 A light-alloy I-beam of 10 cm overall depth has flanges of overall breadth 5 cm 
and thickness 0.625 cm, the thlckness of the web is 0.475 cm. If the bending 
stresses are not to exceed 150 MN/m2 in tension and compression estimate the 
greatest moments which may be applied about the principal axes of the cross- 
section. 

Solution 

Consider, first, bending about Cx. From equation (8. lo), the second moment of area about Cx is 

I, = 0.05 x 0.13/12 - (0.05 - 0.00475) x (0.1 - 2 x 0.00625)3/12 

= 4.167 x 1O-6 - 0.04525 x 0.087S3/12 

= 4.167 x 1O-6 - 2.526 x 1O-6 

I ,  = 1.641 x 1O-6 m 4  

The above calculation has been obtained by taking away the second moments of area of the two 
inner rectangles from the second moment of area of the outer rectangle, as previously 
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demonstrated in Chapter 8. The allowable moment M, is 

& f x = - -  Orx - (150 x lo6) (1.64 x 1O-6) = 4926 Nm 
Y 0.05 

Second, for bending about Cy. 
I,, = (0.1-2~0.00625) x 0.004753 / 12+2 x 0.00625 x 0.0S3 / 12 

The first term, which is the contribution of the web, is negligible compared with the second. With 
sufficient accuracy 

Zy = 2( $) (0.00625) (0.05)3 = 0.130 x 1O-6 m 4  

The allowable moment about Cy is 

GIy - (150 x lo6) (0.130 x l@-6) = 780 Nm 
% = - -  X 0.025 

Problem 9.3 A steel scaffold tube has an external diameter of 5 cm, and a thickness of 0.5 
cm. Estimate the allowable bending moment on the tube if the bending stresses 
are limited to 100 MN/m2. 

Solution 

From equation (8.19), the second moment of area about a centroid axis Cx is 
7c 4 4 

4 

The allowable bending moment about Cx is 

I ,  = -[(0.025) - (0.020) ] = 0.181 x 1o-6 m4 

(100 x lo6) (0.181 x 1O-6) = 724 Nm M, = 
0.025 
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9.5 Beams having only one axis of symmetry 

Other common sections in use, as shown in Figure 9.10, have only one axis of symmetry Cx. In 
each of these, Cx is the axis of symmetry, and Cx and Cy are both principal axes. When bending 
moments M, and My are applied about Cx and Cy, respectively, the bending stresses are again 
given by equations (9.7) and (9.8). However, an important feature of beams of this type is that 
their behaviour in bending when shearing forces are also present is not as simple as that of beams 
having two axes of symmetry. This problem is discussed in Chapter 10. 

Figure 9.10 (i) Channel section. (ii) Equal angle section. (iii) T-secuon. 

Problem 9.4 A T-section of uniform thickness 1 cm has a flange breadth of 10 cm and an 
overall depth of 10 cm. Estimate the allowable bending moments about the 
principal axes if the bending stresses are limited to 150 MN/m2. 

Solution 

Suppose 7 is the distance of the principal axis Cx from the remote edge of the flange. The total 
area of the section is 

A = (0.10) (0.01) + (0.09) (0.01) = 1.90 x lO-3 m 2  

OII taking first moments of areas about the upper edge of the flange, 

A i  = (O.lO)(O.Ol)(O.OOS) + (0.09)(0.01)(0.055) = 0.0545 x 10-3m3 
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Then 

- 0.0545 x = 0.0287 
Y =  

1.9 10-3 

The second moment of area of the flange about Cx is 

1 - (0.10) (0.01)3 + (0.10) (0.01) (0.0237)' = 0.570 x m 4  
12 

The second moment of area of the web about Cx is 

1 - (0.01) (0.09)3 + (0.09) (0.01) (0.0263)' = 1.230 x m 4  
12 

Then 

1, = (0.570 + 1.230) = 1.800 x m4 

For bending about Cx, the greatest bending stress occurs at the toe of the web, as shown in the 
figure. The maximum allowable moment is 

(150 x lo6) (1.800 x 
= 3790 Nm M, = 

0.07 13 

The bending stress in the extreme fibres of the flange is only 60.4 MN/m2 at this bending moment. 
The second moment of area about Cy is 

1 1 
12 12 

I,, = - (0.01) (0.10)3 + - (0.09) (0.01)3 = 0.841 x m 4  

The T-section is symmetrical about Cy, and for bending about this axis equal tensile and 
compressive stresses are induced in the extreme fibres of the flange; the greatest allowable moment 
is 

= 2520 Nm (150 x lo6) (0.841 x M,, = 
0.05 

9.6 More general case of pure bending 

In the analysis of the preceding sections we have assumed either that the cross-section has two 
axes of symmetry, or that bending takes place about a principal axis. In the more general case we 
are interested in bending stress in the beam when moments are applied about any axis of the cross- 



More general case of pure bending 223 

section. Consider a long uniform beam, Figure 9.11, having any cross-section; the centroid of a 
cross-section is C, and Cz is the longitudinal axis of the beam; Cx and Cy are any two mutually 
perpendicular axes in the cross-section. The axes Cx, Cy and Cz are therefore centroidal axes of 
the beam. 

Figure 9.11 Co-ordinate system for a beam of any cross-sectional form. 

We suppose first that the beam is bent in the yz-plane only, in such a way that the axis Cz takes 
up the form of a circular arc of radius R,, Figure 9.12. Suppose further there is no longitudinal 
strain of Cx; this axis is then a neutral axis. The strain at a distance y from the neutral axis is 

E = -  Y 
RX 

If the material of a beam is elastic, the longitudinal stress in this fibre is 

o = -  EY 
RX 

Figure 9.12 Bending in the yz-plane. Figure 9.13 Bending moments about the 
axes C, and Cy. 

Suppose 6A is a small element of area of the cross-section of the beam acted upon by the direct 
stress 6, Figures 9.12 and 9.13. Then the total thrust on any cross-section in the direction Cz is 



224 Longitudinal stresses in beams 

where the integration is performed over the whole area A of the beam. But, as Cx is a centriodal 
axis, we have 

JAY& = 0 

and no resultant longitudinal thrust is implied by the stresses cs. The moment about Cx due to the 
stresses cs is 

E EIX 

Rx A RX 
Mx = JAW& = -1 y*dA = - (9.9) 

where I, is the second moment of area of the cross-section about Cx. For the resultant moment 
about Cy we have 

(9.10) My = I , c s x d A  = - J  E X y d A  - - - EIV 
Rx A RX 

where I, is the product second moment of area of the cross-section about Cx and Cy. Unless I, 
is zero, in which case Cx and Cy are the principal axes, bending in the yz-plane implies not only 
a couple M, about the Cx axis, but also a couple My about Cy. 

Figure 9.14 Bending in the xz-plane. 

When the beam is bent in the xz-plane only, Figure 9.14, so that Cz again lies in the neutral 
surface, and takes up a curve of radius R,,, the longitudinal stress in a fibre a distance x from the 
neutral axis is 
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The thrust implied by these stresses is again zero as 

I,odA = -[ E X d A  = 0 
RY A 

because Cy is a centroidal axis of the cross-section. The bending moment about Cy due to stresses 
o is 

E 

R.V 

where I, is the second moment of area of the cross-section about Cy. Furthermore, 

(9.1 1 )  

(9.12) 

where I, is again the product second moment of area. 

Cy, respectively, are 
If we now superimpose the two loading conditions, the total moments about the axes Cx and 

EIx EIv 
Mx = -i- 

RX RY 

EIY EIv 
MY = -i- 

RY RX 

These equations may be rearranged in the forms 

- -  1 -  M x  'y - My 4 y  

Rx E (Ix Iy - IxL) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

where ( l /RJ  and ( l /RJ  are the curvatures in the yz-and xz-planes caused by any set of moments 
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M, and My. If C, and Cy are the principal centroid axes then IT = 0, and equations (9.15) and 
(9.16) reduce to 

(9.17) 1 - MY - - -  1 -  MX 

RX EIx ’ RY E’Y 

- - -  

In general we require a knowledge of three geometrical properties of the cross-section, namely Z, 
I, and I,. The resultant longitudinal stress at any point (x, y )  of the cross-section of the beam is 

Ex Ey x ( M y  I x  - M x  Ixy)+Y( M x  I y  - M y  I x y  ) 
(9.18) (3 = -+-= 

Ry Rx ( Ix I y  - I x y  * )  

This stress is zero for points of the cross-section on the line 

X(!” Ix - Mx 1,) + y (Mx ‘y - !” 1,) = O (9.19) 

which is the equation of the unstressed fibre, or neutral axis, of the beam. 

Problem 9.5 The I-section of Problem 9.2 is bent by couples of 2500 Nm about Cx and 500 
Nm about Cy. Estimate the maximum bending stress in the cross-section, and 
find the equation of the neutral axis of the beam. 
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Solution 

From Problem 9.2 

Ix  = 1.641 x m4,  Iy = 0.130 x m 4  

For bending about Cx the bending stresses in the extreme fibres of the flanges are 

For bending about Cy the bending stresses at the extreme ends of the flanges are 

On superposing the stresses due to the separate moments, the stress at the comer a is tensile, and 
of magnitude 

oa = (76.1 + 96.1) = 172.2 m / m 2  

The total stress at the comer a 'is also 172.2 MN/m2, but compressive. The total stress at the 
comer b is compressive, and of magnitude 

cr,, = (96.1 - 76.1) = 20.2 MN/m2 

The total stress at the comer b 'is also 20.0 MN/m2, but tensile. The equation of the neutral axis 
is given by 

X M ,  Ix + yMx Iv = 0 

Then 

The greatest bending stresses occur at points most remote from the neutral axis; these are the 
points a and a < the greatest bending stresses are therefore + 172.2 MN/m'. 
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9.7 Elastic section modulus 

For bending of a section about a principal axis Cx, the longitudinal bending stress at a fibre a 
distance y from Cx, due to a moment M, is from equation (9.18) (in which we put IV = 0 and My 
= 01, 

where I, is the second moment of area about Cx. The greatest bending stress occurs at the fibre 
most remote from Cx. If the distance to the extreme fibre is y,,, the maximum bending stress is 

The allowable moment for a given value of om is therefore 

The geometrical quantity (IJy-) is the elastic section modulus, and is denoted by Z,. 

(9.20) 

(9.21) 

The allowable bending moment is therefore the product of a geometrical quantity, Z,, and the 
maximum allowable stress, om. The quantity Z, a,, is frequently called the elastic moment of 
resistance. 

Problem 9.6 A steel I-beam is to be designed to carry a bending moment of los Nm, and the 
maximum bending stress is not to exceed 150 MN/m2. Estimate the required 
elastic section modulus, and find a suitable beam. 

Solution 

The required elastic section modulus is 

= 0.667 x m 3  z , = - -  M -  105 

o 150 x lo6 
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The elastic section modulus of a 22.8 cm by 17.8 cm standard steel I-beam about its axis of 
greatest bending stdfhess is 0.759 x lo-’ m’, which is a suitable beam. 

9.8 Longitudinal stresses while shearing forces are present 

The analysis of the proceeding paragraphs deals with longitudinal stresses in beams under uniform 
bending moment. No shearing forces are present at cross-sections of the beam in this case. 

When a beam carries lateral forces, bending moments may vary along the length of the beam. 
Under these conditions we may assume with sufficient accuracy in most engineering problems that 
the longitudinal stresses at any section are dependant only on the bending moment at that section, 
and are unaffected by the shearing force at that section. 

Where a shearing force is present at the section of a beam, an elemental length of the beam 
undergoes a slight shearing distortion; these shearing distortions make a negligible contribution 
to the total deflection of the beam in most engineering problems. 

Problem 9.7 A 4 m length of the I-beam of Problem 9.2 is simply-supported at each end. 
What maximum central lateral load may be applied if the bending stresses are 
not to exceed 150 MNIm’? 

Solution 

Suppose W is the central load. If this is applied in the plane of the web, then bending takes place 
about Cx. The maximum bending moment is 

1 
2 

M, = -W(2) = W N m  

From Problem 9.2, 

I, = 1.641 x 1O-6 m 4  
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Then, the greatest bending stress is 

f J = - -  Mx Ymax - (w) (0.05) 
I ,  1.641 x 1O-6 

If this is equal to 150 MN/m2, then 

= 4920 N (I50 x lo6) (1.641 x 1O-6) 
0.05 

w =  

Problem 9.8 If  the bending stresses are again limited to 150 MN/m2, what total uniformly- 
distributed load may be applied to the beam of Problem 9.7? 

Solution 

The maximum bending moment occurs at mid-span, and has the value 

WL 1 
8 2 

M, = - = - W N m  

Then 

-w 1 = (150 x IO6) (1.641 x 1O-6) = 4920 N 
2 0.05 

and 

W = 9840 N 

9.9 Calculation of the principal second moments of area 

In problems of bending involving beams of unsymmetrical cross-section we have frequently to 
find the principal axes of the cross-section. 

Suppose Cx and Cy are any two centroidal axes of the cross-section of the beam, Figure 9.15. 
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Figure 9.15 Derivation of the principal axes of a section. 

If 6A is an elemental area of the cross-section at the point (x, y) ,  then the property of the axes Cx 
and Cy is that 

/ A X d A  = / A Y d A  = O 

The second moments of area about the axes Cx and Cy, respectively, are 

zx = / A  y2dA, Iy = I, xzdA (9.22) 

The product second moment of area is 

4." = I, XYd (9.23) 

Now consider two mutually perpendicular axes Cx 'and Cy < which are the principal axes of 
bending, inclined at an angle 0 to the axes Cx and Cy. A point having co-ordinates (x ,  y )  in the xy- 
system, now has co-ordinates (x  ; y 3 in the x 'y '-system. Further, we have 

X I  = x cos8 + y sine 

y' = y cos8 - x sine 

The second moment of area of the cross-section about Cx 'is 

IT, = 1, y'12dA 

which becomes 
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This may be written 

Similarly, the second moment of area about Cy 'is 

Then 

I,,, = I,, cos2e + 21,.,, case sine + I, sin2e 

Finally, the product second moment of area about Cx 'and Cy 'is 

Then 

I , , = I~ sine case + I cos2e - sin2e - I case sine 
= Y  4 ) Y  

(9.24) 

(9.25) 

(9.26) 

We note from equations (9.24) and (9.25), that 

I,, + Iy ,  = I, + I ,  (9.27) 

that is, the sum ofthe second moments of area about any perpendicular axes is independent of 8. 
The sum is in fact the polar second moment of area, or the second moment of area about an axis 
through C, perpendicular to the xy-plane. 

We may write equation (9.26) in the form 
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(9.28) 1 
2 zX,,,/ = - F~ - z,) sin 28 + zv cos 28 

The principal axes Cx 'and Cy 'are defined as those for which IxL I = 0; then for the principal axes 

1 - (zI - I,) sin 28 + COS 28 = o 
2 

or 

(9.29) 

This relationshlp gives two values of 0 differing by 90". On malung use of equation (9.27), we 
may write equations (9.24) and (9.25) in the forms 

(9.30) 

Now 

1 + (rX + zy) COS 28 . (/x - 1,) 
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1 1 
4 2 

1 1 
2 

-- (zX - I,P cos' 28 + - ( I ~  - I,) cos 28 . 'I.v . sin 28 

-2 zX," (zX + ZJ sin 28 + - z~! ( I ~  - 'J sin 28 cos 28 - I; sin2 28 

I 1 = - ( I ~  + I$ - T ( I ~  - z,,? cos' 28 - zX; sin' 28 
4 

+ Ixy (IX - fv) sin 28 COS 28 

or 

1)' (9.3 1) 
2 

I ~ ,  I , , ,=[+(I~ + I J ]  -{+[(I. -1,,)co~2e-2z,~in2e 

From equation (9.29), the mathematical triangle of the figure below is obtained: 

From the mathematical triangle 

(/v - 4)  
COS 28 = 

/- 

6 7 F - q  
2 IX? and sin 28 = 
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2 Ix#  I y .  = I I - I  X Y  Xy 
or 

Substituting equation (9.27) into equation (9.32) we get 

2 
(rx + IY - ZY/) IY/ = I, ‘” - IV 

or IY2/ - Q + l y )  ‘,I + Cr, ‘v - 43 

Similarly, 

IX2/ - (4 + ‘v) 1,) + (Ix ‘v - I;), 

(9.32) 

(9.3 3 a) 

(9.33b) 

which are both quadratic equations. 

where I = a principal second moment of area 
In general, equations (9.33a) and (9.33b) can be written as the following quadratic equation, 

I 2  - (Ix + IY) 1 + (I, /” - 1;) = 0 (9.34) 
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Then 

I = 1 2 (I, + I,) f 4- (9.35) 

which may be written 

1 
I = - 2 (I, - Iy)* J- (9.36) 

Equations (9.30) and (9.26) may be written in the form 

1 I y  - - 2 (  I x + I y  ) = $(I, - 1 , ) ) w s 2 e -  rV sin28 

1 
2 

I , ~  = -( z, - I,,) sin 28 + I~ cos 28 (9.37) 

Square each equation, and then add; we have 
2 2 [~x~-3(1.-Iy)] +[I”’ , ’ ]  = [+(IX - 1,)12 +[zxy]2 (9.38) 

Figure 9.1 6 Graphical representation of the second moments of area. 

Then I,, 1, p I lie on a circle of radius 

I [; ( I x  - G I  + [I$ (9.39) 

and centre 
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[+ ( rx  + ZY), 01 (9.40) 

in the I, ,, Z, ,y I diagram. 
Suppose OIx and OZx 'u are  mutually perpendicular axes; then equation (9.38) has the graphical 

representation shown in Figure 9.16. To find the principal second moments of area, locate the 
points (I, Z,) and (I,, - I,) in the (I, I ZxJ. .) plane. With the line joining these points as a diameter 
construct a circle. The principal second moments of area, Z, and Z,, are given by the points where 
the circle cuts the axis OZx . Figure 9.16 might be referred to as the circle of second moments of 
area. 

Problem 9.9 An unequal angle section of uniform hckness 0.5 cm has legs of iengths 6 cm 
and 4 cm. Estimate the positions of the principal axes, and the principal second 
moments of area. 

Solution 

Firstly, find the position of the centroid of the cross-section. Total area is 

A = (0.06) (0.005) + (0.035) (0.005) 

= 0.475 x l O - 3  m z  

Now 

& = (0.055) (0.005) (0.0025) + (0.04) (0.005) (0.02) 

= 4.69 x 1O-6 m 3  
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Then 

Again 

A: = (0.035) (0.005) (0.0025) + (0.06) (0,005) (0.03) = 9.44 x m 3  

Then 

Now 

1 1 - (0.005) (0.06)3 + - (0.035) (0.005)3 - (0.475 x 
3 3 fx = (0.01985)’ 

= 0.174 x m 4  

and 

1 1 
3 3 

f, = -(0.005)(0.04)’ + -(0.055)(0.005)’ - (0.475 x 10-3)(0.00986)2 

= 0.063 x m 4  

With the axes Cx and Cy having the positive directions shown, 

= 1 ([(0.04 - i), - (-;)’I [(0.005 - y)’ - (-,)’I 
4 

+ [(0.005 - 3’ - (-ir] [(0.06 - ,)I - (-; + O.O05)’]]r 

= -0.06 x low6 m 4  
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From equation (9.29), 

Then 

28 = 47.2" 

and 

e = 23.6" 

From equations (9.36) the principal second moments of area are 

= 0.2173 or 0.0197 x m 4  

9.10 Elastic strain energy of bending 

As couples are applied to a beam, strain energy is stored in the fibres. Consider an elemental 
length 6z of a beam, which is bent about a principal axis Cx by a moment M,, Figure 9.17. During 
bending, the moments M, at each end of the element are displaced with respect to each other an 
angular amount 

6 Z  
f j x -  

RX 

where R, is the radius of curvature in the yz-plane. But from equation (9.6) 

(9.41) 

and thus 



240 Longitudinal stresses in beams 

M, 6z 

Er, 
(9.42) e = -  

Figure 9.17 Bent form of an elemental length of beam. 

As there is a linear relation between 9 and M,, the total work done by the moments M, during 
bending of the element is 

Mx2 6z 
(9.43) 1 

2 2EIx 
- MX0 = - 

which is equal to the strain energy of bending of the element. For a uniform beam of length L 
under a moment M,, constant throughout its length, the bending strain energy is then 

M,’ L u = -  
2EIx (9.44) 

When the bending moment varies along the length, the total bending strain energy is 
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M,' dr 
(9.45) 

u = f L 2 y  

where the integration is canied out over the whole length L of the beam. 

9.1 1 Change of cross-section in pure bending 

In Section 9.1 we pointed out the change which takes place in the shape of the cross-section when 
a beam is bent. Th~s  change involves lnfmitesimal lateral strains in the beam. The upper and 
lower edges of a cross-section which was originally rectangular, are strained into concentric 
circular arcs with their centre on the opposite side of the beam to the axis of bending. The upper 
and lower surfaces of the beam then have anticlastic curvature, the general nature of the strain 
being as shown in Figure 9.18. The anticlastic curvature effect can be readily observed by bending 
a flat piece of india-rubber. If the beam is bent to a mean radius R,  we find that cross-sections are 
bent to a mean radius (Wv). 

Figure 9.18 Anticlastic curvature in the cross-section of a bent rectangular beam. 

Problem 9.10 What load can a beam 4 m long carry at its centre, if the cross-section is a 
hollow square 30 cm by 30 cm outside and 4 cm thick, the permissible 
longitudinal stress being 75 MN/m*? 

Solution 

We must find the second moment of area of cross-section about its neutral axis. The inside is a 
square 22 cm by 22 cm. Then 

1 - (0.34 - O Z 4 )  = 0.47 x l O - 3  m 4  
12 

The length of the beam is 4 m; therefore if W N be a concentrated load at the middle, the 
maximum bending moment is 
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WL 
4 

Mx = - = WNm 

Hence the maximum stress is 

MXY W(0.15) ( J = - =  
4 0.47 x l O - 3  

If (J = 75 MN/m2 we must therefore have 

(75 x io6) (0.47 x io-3) = 235 kN w =  
0.15 

Problem 9.1 1 Estimate the elastic section modulus and the maximurn longitudinal stress in 
a built-up I-girder, with equal flanges carrying a load of 50 kN per metre run, 
with a clear span of 20 m. The web is of thickness 1.25 cm and the depth 
between flanges 2 m. Each flange consists of four 1 cm plates 65 cm wide, and 
is attached to the web by angle iron sections 10 cm by 10 cm by 1.25 cm thick. 
(Cam bridge) 

Solution 

The second moment of area of each flange about Cx is 

(0.04) (0.65) (1.02)2 = 0.0270 m 4  

The second moment of area of the web about Cx is 
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1 - (0.0125) (2)3 = 0.0083 m 4  
12 

The horizontal part of each angle section has an area 0.00125 m2, and its centroid is 0.944 m from 
the neutral axis. Therefore the corresponding second moment of area is approximately 

(0.00125) (0.994)2 = 0.0012 m 4  

The area of the vertical part of each angle section is 0.001093 m2, and its centroid is 0.944 m from 
the neutral axis. Therefore the corresponding second moment of area is approximately 

(0.001093) (0.944)2 = 0.00097 m 4  

The second moment of area of the whole section of the angle section about Cx is then 

0.0012 + 0.00097 = 0.0022 m 4  

The second moment of area of the whole cross-section of the beam is then 

I, = 2 (0.0270) + (0.0083) + 4 (0.0022) 

= 0.0711 m 4  

The elastic section modulus is therefore 

0.07 1 1 
1.04 

Ze = - = 0.0684 m 3  

The bending moment at the mid-span is 

The greatest longitudinal stress is then 
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Further problems (answers on page 692) 

9.12 A beam of I-section is 25 cm deep and has equal flanges 10 cm broad. The web is 0.75 
cm h c k  and the flanges 1.25 cm h c k .  If the beam may be stressed in bending to 120 
MNIm2, what bending moment will it carry? (Cambridge) 

The front-axle beam of a motor vehicle carries the loads shown. The axle is of I-section: 
flanges 7.5 cm by 2.5 cm, web 5 cm by 2.5 cm. Calculate the tensile stress at the bottom 
of the axle beam. (Cambridge) 

9.13 

9.14 A water trough 8 m long, is simply-supported at the ends. It is supported at its 
extremities and is filled with water. If the metal has a density 7840 kg/m3, and the water 
a density 1000 kg/m3, calculate the greatest longitudinal stress for the middle cross- 
section of the trough. (Cambridge) 

9.1 5 A built-up steel I-girder is 2 m deep over the flanges, each of which consists of four 1 
cm plates, 1 m wide, riveted together. The web is 1 cm thick and is attached to the 
flanges by four 9 cm by 9 cm by 1 cm angle sections. The girder has a clear run of 30 
m between the supports and carries a superimposed load of 60 kN per metre. Find the 
maximum longitudinal stress. (Cambridge) 

A beam rests on supports 3 m apart carries a load of 10 kN uniformly distributed. The 
beam is rectangular in section 7.5 cm deep. How wide should it be if the skin-stress 
must not exceed 60 MNIm’? (RNEC) 

9.1 6 



10 Shearing stresses in beams 

10.1 Introduction 

We referred earlier to the existence of longitudinal direct stresses in a cantilever with a lateral load 
at the free end; on a closer study we found that these stresses are distributed linearly over the cross- 
section of a beam carrying a uniform bending moment. In general we are dealing with bending 
problems in whch there are shearing forces present at any cross-section, as well as bending 
moments. Inpractice we find that the longitudinal direct stresses in the beam are almost unaffected 
by the shearing force at any section, and are governed largely by the magnitude of the bending 
moment at that section. Consider again the bending of a cantilever with a concentrated lateral load 
F, at the free end, Figure 10.1; Suppose the beam is of rectangular cross-section. If we cut the 
beam at any transverse cross-section, we must apply bending moments M and shearing forces F 
at the section to maintain equilibrium. The bending moment Mis distributed over the cross-section 
in the form of longitudinal direct stresses, as already discussed. 

Figure 10.1 Shearing actions in a cantilever carrying an end load. 

The shearing force F is distributed in the form of shearing stresses T, acting tangentially to the 
cross-section of the beam; the form of the distribution of T is dependent on the shape of the cross- 
section of the beam, and on the direction of application of the shearing force F. An interesting 
feature of these shearing stresses is that, as they give rise to complementary shearing stresses, we 
find that shearing stresses are also set up in longitudinal planes parallel to the axis of the beam. 

10.2 Shearing stresses in a beam of narrow rectangular 
cross -sect ion 

We consider first the simple problem of a cantilever of narrow rectangular cross-section, carrying 
a concentrated lateral load F at the free end, Figure 10.2; h is the depth of the cross-section, and 
c is the thickness, Figure 10.3; the depth is assumed to be large compared with the thickness. The 
load is applied in a direction parallel to the longer side h.  
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Figure 10.3 Shearing actions on an elemental length of a beam 
of narrow rectangular cross-section. 

Consider an elem.enta1 length 6z of the beam at a distance z from the loaded end. On the face BC 
of the element the hogging bending moment is 

M = Fz 

We suppose the longitudinal stress (I at a distance y from the centroidal axis Cx is the same as that 
for uniform bending of the element. Then 

# - J = -  MY = Fyz 
4 I ,  

Where I, is the second moment of area about the centroidal axis of bending, Cx, which is also a 
neutral axis . On the face DE of the element the bending moment has increased to 

M + 6M = F (z + 6z) 

The longitudinal bending stress at a distancey from the neutral axis has increased correspondingly 
to 
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Now consider a depth of the beam contained between the upper extreme fibre BD, given by 
y = !&, and the fibre GH, given by y = y,, Figure 10.3(ii). The total longitudinal force on the face 
BG due to bending stresses o is 

By a similar argument we have that the total force on the face DH due to bending stresses o + 60 
is 

These longitudinal force, which act in opposite directions, are not quite in balance; they differ by 
a small amount 

Now the upper surface BD is completely free of shearing stress, and this out-of-balance force can 
only be equilibrated by a shearing force on the face GH. We suppose this shearing force is 
distributed uniformly over the face GH; the shearing stress on this face is then 

= - ( 4 - Y : )  F h 2  

2 5  

(10.1) 

This shearing stress acts on a plane parallel to the neutral surface of the beam; it gives rise therefore 
to a complementary shearing stress T at a point of the cross-section a distance y, from the neutral 
axis, and acting tangentially to the cross-section. Our analysis gives then the variation of shearing 
stress over the depth of the cross-section. For this simple type of cross-section 

1 
12 

I, = - h 3 t  

and so 
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2 

t = - ( Q - y ; )  6F h 2  
= - [ - - [ $ ) I  6F ht 4 1 

(10.2) 
h 3t 

We note firstly that t is independent of z; this is so because the resultant shearing force is the same 
for all cross-sections, and is equal to F. The resultant shearing force implied by the variation of t 
is 

+w2 tt& = - 6F h f-w2 +w2[+ - [?)2]41 = F 
f-w2 

The shearing stresses t are sufficient then to balance the force F applied to every cross-section of 
the beam. 

Figure 10.4 Variation of shearing stresses over the depth of a beam 
of rectangular cross-section. 

The variation o f t  over the cross-section of the beam is parabolic, Figure 10.4; t attains a 
maximum value on the neutral axis of the beam, where y, = 0, and 

3F 
2ht 

(10.3) - -  
tmax - 

The shearing stresses must necessarily be zero at the extreme fibres as there can be no 
complementary shearing stresses in the longitudinal direction on the upper and lower surfaces of 
the beam. 

In the case of a cantilever with a single concentrated load F at the free end the shearing force 
is the same for all cross-sections, and the distribution of shearing stresses is also the same for all 
cross-sections. In a more general case the shearing force is variable from one cross-section to 
another: in this case the value of F to be used is the shearing force at the section being considered. 

10.3 Beam of any cross-section having one axis of symmetry 

We are concerned generally with more complex cross-sectional forms than narrow rectangles. 
Consider a beam having a uniform cross-section which is symmetrical about Cy, Figure 10.5. 
Suppose, as before, that the beam is a cantilever carrying an end load F acting parallel to Cy and 
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passing through the centroid C of the cross-section. Then Cx is the axis of bending. 

distance z from the free end of the cantilever, the bending moment is 
Consider an elemental length 6z of the beam; on the near face of this element, which is at a 

M = Fz 

This gives rise to bending stresses in the cross-section; the longitudinal bending stress at a point 
of the cross-section a distance y fiom the neutral axis Cx is 

( - J = -  M y = &  
I X  I X  

Figure 10.5 Shearing stresses in a bent beam having one axis of symmetry. 

Now consider a section of the element cut offby the cylindrical surface BDEGHJ, Figure lOS(iii), 
which is parallel to Cz. Suppose A is the area of each end of this cylindrical element; then the total 
longitudinal force on the end BDE due to bending stresses is 

JAG& = -1 Fz yd4 

I x  A 

where 6A is an element of the area A, and y is the distance of this element from the neutral axis Cx. 
The total longitudinal force on the remote end GHJ due to bending stresses is 

F 
(0 + 60) d4 = - (z + 6z) I, yd4 

[A I X  

as the bending moment at this section is 

M + 6M = F(z + 6z) 

The tension loads at the ends of the element BDEGHJ differ by an amount 

F 6 Z  

- [A yd4 
I X  
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If 7 is the distance of the centroid of the area A from Cx, then 

s, Y& = A i  

The out-of-balance tension load is equilibrated by a shearing force over the cylindncal surface 
BDEGHJ. 

This shearing force is then 

and acts along the surface BDEGHJand parallel to Cz. The total shearing force per unit length of 
the beam is 

F6z - FA; 

I X  I X  

q = - A Y / ~ z  = - (10.4) 

If b is the length of the curve BDE, or GHJ, then the average shearing stress over the surface 
BDEGHJ is 

(10.5) 

When b is small compared with the other linear dimensions of the cross-section we find that the 
shearing stress is nearly uniformly distributed over the surfaces of the type BDEGHJ. This is the 
case in thin-walled beams, such as I-sections and channel sections. 

10.4 Shearing stresses in an I-beam 

As an application of the general method developed in the preceding paragraph, consider the 
shearing stresses induced in a thin-walled I-beam carrying a concentrated load F a t  the free end, 
acting parallel to Cy, Figure 10.6. The cross-section has two axes of symmetry Cx and Cy; the 
flanges are of breadth b, and the distance between the centres of the flanges is h;  the flanges and 
web are assumed to be of uniform thickness t. 

Equation (10.4) gives the shearing force q per unit length of beam at any region of the cross- 
section. Consider firstly a point I of the flange at a distance s, from a free edge, Figure 10.6(iii); 
the area of flange cut off by a section through the point I is 

A = s,t 

The distance of the centroid of this area from the neutral axis Cx is 
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1 - 
Y y ,  = -h 

2 I 

Figure 10.6 Flexural shearing stresses in an I-beam. 

Then from equation (10.4), the shearing force at point I of the cross-section is 

Fs,th 
4 = -  (10.6) 

21, 

If the wall thickness t is small compared with the other linear dimensions of the cross-section, we 
may assume that q is distributed uniformly over the wall hckness t; the shearing stress is then 

T = A = -  (10.7) 
Fs,h 

t 21, 

at point I. At the free edge, given by s, = 0, we have T = 0, since there can be no longitudinal 
shearing stress on a free edge of the cross-section. The shearing stress T increases linearly in 
intensity as s, increases from zero to %b; at the junction of web and flanges s,  = %b, and 

Fbh 
(10.8) T = -  

41, 

As the cross-section is symmetrical about Cy, the shearing stress in the adjacent flange also 
increases linearly from zero at the free edge. 

Consider secondly a section through the web at the point 2 at a distance s, from the junctions 
of the flanges and web. In evaluating Ayfor this section we must consider the total area cut off by 
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the section through the point 2. However, we can evaluate Ay for the component areas cut off by 
the section through the point 2; we have 

A; = (bt) + + (s2t) (9 - t2) 
1 
2 

= -t [bh + s2 (h - sJ] 

The from equation (10.4), 

Ft q = - [bh + s2 (h - s2)] 
2 4  

If th is  shearing force is assumed to be uniformly distributed as a shearing stress, then 

F 
T = 3 = - [bh + s2 (h - sz)] (10.9) 

t 21, 

At the junction of web and flanges s2 = 0, and 

Fbh 
(10.10) T = -  

21, 

At the neutral axis, s2 = !4h, and 

(10.11) 
T = -[I Fbh +;I 

21, 

Figure 10.7 Variation of shearing stresses in an I-beam. 
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We notice that T varies parabolically throughout the depth of the web, attaining a maximum 
value at s2 = YJz, the neutral axis, Figure 10.7. In any cross-section of the beam the shearing 
stresses vary in the form shown; in the flanges the stresses are parallel to Cx, and contribute 
nothing to the total force on the section parallel to Cy. 

At the junctions of the web and flanges the shearing stress in the web is twice the shearing 
stresses in the flanges. The reason for th ls is easily seen by considering the equilibrium conditions 
at h s  junction. Consider a unit length of the beam along the line of the junction, Figure 10.8; the 
shearing stresses in the flanges are 

Fbh 
(10.12) T,- = - 

41, 

while the shearing stress in the web we have estimated to be 

Fbh 
Tw = - (10.13) 

21, 

For longitudinal equilibrium of a unit length of the junction of web and flanges, we have 

2[./ x (t x l)] = '5, x (t x 1) 

which gives 

Tw = 2Tf (10.14) 

Figure 10.8 Equilibrium of shearing forces at the junction 
of the web and flanges of an I-beam. 

Tlvs is true, in fact, for the relations we have derived above; longitudinal equilibrium is ensured 
at any section of the cross-section in our treatment of the problem. If the flanges and web were of 
different thicknesses, $and tw, respectively, the equilibrium condition at the junction would be 

2Tf fj = TH'fW 
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Then 

The implication of this equilibrium condition is that at a junction, such as that of the flanges and 
web of an I-section, the sum of the shearing forces per unit length for the components meeting at 
that junction is zero when account is taken of the relevant directions of these shearing forces. For 
a junction 

CTt = 0 (10.16) 

where T is the shearing stress in an element at the junction, and t is the hckness of the element; 
the summation is camed out for all elements meeting at the junction. 

For an I-section carrying a shearing force acting parallel to the web we see that the maximum 
shearing stress occurs at the middle of the web, and is given by equation (10.1 1 ) .  Now, f, for the 
section is given approximately by 

Then 

6Fb 1 + hl4b 
Tmax = h2t [ 1 + 6 b h ]  

(10.17) 

(10.18) 

The total shearing force in the web of the beam parallel to Cy is F, if this were distributed 
uniformly over the depth of the web the average shearing stress would be 

F 
T,, = - 

ht 

Then for the particular case when h = 36, we have 

Then T, is only one-sixth or about 17% gre 

(10.19) 

(10.20) 

ter than the mean shearing stress over the web. 

Problem 10.1 The web of a girder of I-section is 45 cm deep and 1 cm thick; the flanges are 
each 22.5 cm wide by 1.25 cm thick. The girder at some particular section has 
to withstand a total shearing force of 200 kN. Calculate the shearing stresses 
at the top and middle of the web. (Cambridge) 
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Solution 

The second moment of area of the web about the centroidal axis is 

1 - (0,010) (0.45)3 = 0.0760 x lO-3 m 4  
12 

The second moment of are of each flange about the centroidal axis is 

(0.225) (0.0125) (0.231)2 = 0.150 x lo-’ m 4  

The total second moment of area is then 

II = [0.076 + 2(0.150)] lo-’ = 0.376 x lO-3 m 4  

At a distance y above the neutral axis, the shearing stress from equation ( 10.9) is 

T = F [ b h  + f P) +] 
200 x io3 

212 

- - 1 1 (0.225) (0.4625) + - (0.4625)2 - y 2  [ 4 2 x 0.376 x lO-3 

where 

At the top of the web, we have y = 0.23 1 m, and 

s2 = hI2 - y 

T = 27.7MNIm2 
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While at the middle of the web, where y = 0, we have 

T = 41.9 MN/m2 

10.5 Principal stresses in beams 

We have shown how to find separately the longitudinal stress at any point in a beam due to bending 
moment, and the mean horizontal and vertical shearing stresses, but it does not follow that these 
are the greatest direct or shearing stresses. Within the limits of our present theory we can employ 
the formulae of Sections 5.7 and 5.8 to find the principal stresses and the maximum shearing stress. 

We can draw, on a side elevation of the beam, lines showing the direction of the principal 
stresses. Such lines are called the lines ofprincipal stress; they are such that the tangent at any 
point gives the direction of principal stress. As an example, the lines of principal stress have been 
drawn in Figure 10.9 for a simply-supported beam of uniform rectangular cross-section, carrying 
a uniformly distributed load. The stresses are a maximum where the tangents to the curves are 
parallel to the axis of the beam, and diminish to zero when the curves cut the faces of the beam at 
right angles. On the neutral axis, where the stress is one of shear, the principal stress curves cut 
the axis at 45". 

Figure 10.9 Principal stress lines in a simply-supported rectangular beam 
carrying a uniformly distributed load. 

Problem 10.2 The flanges of an I-girder are 30 cm wide by 2.5 cm h c k  and the web is 60 cm 
deep by 1.25 cm h c k .  At a particular section the sagging bending moment is 
500 kNm and the shearing force is 500 kN. Consider a point in the section at 
the top of the web and calculate for h s  point; (i) the longitudinal stress, (ii) the 
shearing stress, (iii) the principal stresses. (Cambridge) 

Solution 

First calculate the second moment of area about the neutral axis; the second moment of area of the 
web is 

1 - (0.0125) (0.6)3 = 0.225 x lO-3 m 4  
12 

The second moment of area of each flange is 

(0.3) (0.025) (0.3125)* = 0.733 x lO-3 m 4  
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The total second moment of area is then 

Zx = [0.225 + 2(0.733)j10-3 = 1.691 x lo-) m 4  

Next, for a point at the top of the web, 

A i  = (0.3 x 0.025) (0.3125) = 2.34 x lO-3  m 4  

Then, for h s  point, with M = 500 kNm we have 

o = - -  Mv - (500 x lo)) (0.3' = 88.6 m / m 2  (compressive) 
I X  1.691 x lO-3 

FA? - (500 x 103) (2.34 x io-)) = 55.3 m.m2 T = - -  

4 t (1.691 x IO-)) (0.0125) 

The principal stresses are then 
1 - 1 0 f [t d + .']r = (-44.3 f 70.9) MN/m2 

2 

= 26.6 and -115.2 MN/m2 

It should be noticed that the greater principal stress is about 30% greater than the longitudinal 
stress. At the top of the flange the longitudinal stress is -96 MN/m2, so the greatest principal stress 
at the top of the web is 20% greater than the maximum longitudmal stress. 
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10.6 Superimposed beams 

If we make a beam by placing one member on the top of another, Figure 10.10, there will be a 
tendency, under the action of lateral loads for the two members to slide over each other along the 
plane of contact AB, Figure 10.10. Unless this sliding action is prevented in some way, the one 
beam will act independently of the other; when there is no shearing connection between the beams 
along AB, the strength of the compound beam is the sum of the strengths of the separate beams. 

However, if the sliding action is resisted, the compound beam behaves more nearly as a solid 
member; for elastic bending the permissible moment is proportional to the elastic section modulus. 

Figure 10.10 Sliding action between two beams superimposed 
without shearing connections. 

In the case of two equal beams of rectangular cross-section, the elastic section modulus of each 
beam is 

bh ' 
6 
- 

where b is the breadth and h is the depth of each beam. For two such beams, placed one on the 
other, without shearing connection, the elastic section modulus is 

1 1 2 x - bh2 = - bh2 
6 3 

If the two beams have a rigid shearing connection, the effective depth is 2h, and the elastic section 
modulus is 

1 2 -b(2h)' = -bh2 
6 3 

The elastic section modulus, and therefore the permissible bending moment, is doubled by 
providing a shearing connection between the two beams. In the case of steel beams, the flanges 
along the plane of contact AB, may be riveted, bolted, or welded together. 
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10.7 Shearing stresses in a channel section; shear centre 

We have discussed the general case of shearing stresses in the bending of a beam having an axis 
of symmetry in the cross-section; we assumed that the shearing forces were applied parallel to this 
axis of symmetry. This is a relatively simple problem to treat because there can be no twisting of 
the beam when a shearing force is applied parallel to the axis of symmetry. We consider now the 
case when the shearing force is applied at right angles to an axis of symmetry of the cross-section. 
Consider for example a channel section having an axis Cx of symmetry in the cross-section, Figure 
10.1 1; the section is of uniform wall-thickness t, b is the total breadth of each flange, and h is the 
distance between the flanges; Cis the centroid of the cross-section. Suppose the beam is supported 
at one end, and that a shearing force F is applied at the free end in a direction parallel to Cy. We 
apply this shearing force at a point 0 on Cx such that no torsion of the channel occurs, Figure 
10.12; if F is applied considerably to the left of C, twisting obviously will occur in a couriter- 
clockwise direction; if F is applied considerably to the right then twisting occurs in a clockwise 
direction. There is some intermediate position of 0 for which no twisting occurs; as we shall see 
this position is not coincident with the centroid C. 

Figure 10.11 Shearing of a channel cantilever. 

The problem is greatly simplified if we assume that F is applied at a point 0 on Cx to give no 
torsion of the channel; suppose 0 is a distance e from the centre of the web, Figure 10.12. 

Figure 10.12 Shearing stress at any point of a channel beam. 
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At any section of the beam there are only bending actions present; therefore, we can again use the 
relation 

FA! 

1, 
4 = -  (10.21) 

At a &stance s, from the free edge of a flange 

At a distance s2 along the web from the junction of web and flange 

Ft 
42 = - [bh + s2 (h - .?,I 

2 4  

The shearing stress in flange is 

and in the web is 

F 
T 2 = - -  - - [bh + s2 (h - s2)] 

t 2 4  

The shearing stress T, in the flanges increases linearly from zero at the free edges to a maximum 
at the comers; the variation of shearing stress T* in the web is parabolic in form, attaining a 
maximum value 

(10.22) 

at the mid-depth of the web, Figure 10.13. The shearing stresses T, in the flanges imply total 
shearing forces of amounts 

Fht Fb 'ht -p, cis, = - 
2I, 0 41, 

(10.23) 
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Figure 10.13 Variation of shearing stresses over the cross-section of a channel beam; 
e is the distance to the stress centre 0. 

acting parallel to the centre lines of the flanges; the total shearing forces in the two flanges are in 
opposite directions. If the distribution of shearing stresses T, and T* is statically equivalent to the 
applied shearing force F, we have, on taking moments about B- the centre of the w e b  that 

Fb2h2t 
.h = 

Fb 2 ht 
Fe = - 

41, 41, 

(10.24) 
b2h2t 

Then e = - 
whch, as we should expect, is independent of F. We note that 0 is remote from the centroid C of 
the cross-section; the point 0 is usually called the shear centre; it is the point of the cross-section 
through which the resultant shearing force must pass if bending is to occur without torsion of the 
beam. 

41x 

Problem 10.3 Determine the maximum value of the shearing stress and the shear centre 
position ‘e’ for the thin-walled split tube in the figure below. 
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Solution 

Consider an infinitesimally small element of the tube wall at an angle cp 

1 y d4 = ,fo’ R sincp . ( t  . R . dq)  

= R 2  t [ - C O S C ~ ~  

= R’ t [ -COSV - ( - I ) ]  

= R’ t (1 - COSC~)  

At cp, the shearing stress ‘5, is given by 

(10.25) 

Now I ,  = pa2 

= R3 t sin’cpdcp r 
2 1 - cos2cp 

but sin cp = 
2 

sin 2 q  
2 

R’ t 

2 
= - [(2n - 0 )  - (0 - o)] 



Further problems 

or Ix = nR3 t 

263 

(10.26) 

Substituting equation (10.26) into (10.254 we get 

(1 - coscp) FR 
Tq = - 

nR3 t 
(10.27) 

F 
1cR t 

= - (1 - coscp) 

T ~ , , . , ~ )  occurs when cp = 1c 

- A -  (10.28) P LP 
T ,+ax) = - (1 + 1) = - 

1cR t 1cR t 

To determine the shear centre position, take moments about the point '0'. 

i.e. Fe = Io2' T~ (t R dcp) R 

FR 
= - [(2n - 

7t 
0)  - 

:. e = 2R 

Further problems (answers on page 692) 

10.4 A plate web girder consists of four plates, in each flange, of 30 cm width. The web is 
60 cm deep, 2 cm thick and is connected to the flanges by 10 cm by 10 cm by 1.25 crn 
angles, riveted with 2 cm diameter rivets. Assuming the maximum bending moment to 
be 1000 kNm, and the shearing force to be 380 kN, obtain suitable dimensions for (i) the 
thickness of the flange plates, (ii) the pitch of the rivets. Take the tensile stress as 100 
MN/m2, and the shearing stress in the rivets as 75 h4N/m2. (RNEC) 
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10.5 In a small gantry for unloading goods from a railway waggon, it is proposed to carry the 
lifting tackle on a steel joist, 24 cm by 10 cm, of weight 320 N/m, supported at the ends, 
and of effective length 5 m. The equivalent dead load on the joist due to the load to be 
raised is 30 kN, and th is may act at any point of the middle 4 m. By considering the 
fibre stress and the shear, examine whether the joist is suitable. The flanges are 10 cm 
by 1.2 cm, and the web is 0.75 cm thick. The allowable fibre stress is 1 15 MNIm2, and 
the allowable shearing stress 75 MNIm’. (Cambridge) 

A girder of I-section has a web 60 cm by 1.25 cm and flanges 30 cm by 2.5 cm. The 
girder is subjected at a bending moment of 300 kNm and a shearing force of 1000 kN 
at a particular section. Calculate how much of the shearing force is carried by the web, 
and how much of the bending moment by the flanges. (Cambridge) 

The shearing force at a given section of a built-up I-girder is 1000 kN and the depth of 
the web is 2 m. The web is joined to the flanges by fillet welds. Determine the thickness 
of the web plate and the thickness of the welds, allowing a shearing stress of 75 MN/m2 
in both the web and welds. 

A thin metal pipe of mean radius R, thickness t and length L, has its ends closed and is 
full of water. If the ends are simply-supported, estimate the form of the distribution of 
shearing stresses over a section near one support, ignoring the intrinsic weight of the 
pipe. 

A compound girder consists of a 45 cm by 18 cm steel joist, of weight 1000 N/m, with 
a steel plate 25 cm by 3 cm welded to each flange. If the ends are simply-supported and 
the effective span is 10 m, what is the maximum uniformly distributed load which can 
be supported by the girder? What weld thicknesses are required to support this load? 

Allowable longitudinal stress in plates = 1 10 MN/m* 
Allowable shearing stress in welds = 60 MN/m2 
Allowable shearing stress in web of girder = 75 MN/mZ 

10.6 

10.7 

10.8 

10.9 
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10.10 Determine the maximum value of the shearing stresses and the positions of the shear 
centres for the thin-walled tubes shown in the figures below. 

(a) (b) 



11 Beams of two materials 

1 1  .I Introduction 

Some beams used in engineering structures are composed of two materials. A timber joist, for 
example, may be reinforced by bolting steel plates to the flanges. Plain concrete has little or no 
tensile strength, and beams of this material are reinforced therefore with steel rods or wires in the 
tension fibres. In beams of these types there is a composite action between the two materials. 

11.2 Transformed sect ions 

The composite beam shown in Figure 1 1.1 consists of a rectangular timber joist of breadth b and 
depth h, reinforced with two steel plates of depth h and thickness t. 

Figure 11.1  Timber beam reinforced with steel side plates. 

Consider the behaviour of the composite beam under the action of a bending moment Mapplied 
about Cx; if the timber beam is bent into a curve of radius R, then, from equation (9.5), the bending 
moment carried by the timber beam is 

(11.1) 
(Ell ,  

M, = - 
R 

where (El), is the bending stiffness of the timber beam. If the steel plates are attached to the timber 
beam by bolting, or glueing, or some other means, the steel plates are bent to the same radius of 
curvature R as the timber beam. The bending moment carried by the two steel plates is then 
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where (EZ), is the bending stiffness of the two steel plates. The total bending moment is then 

1 
R 

M = M, + M, = - [(Ed, + (Ed,] 

Th~s gives 

1 -  M 
R (El), + (Ed, 
- -  (.I 1.2) 

Clearly, the beam behaves as though the total bending stiffness EI were 

EI = (EO, + (EO, (11.3) 

If E, and E, are the values of Young's modulus for timber and steel, respectively, and if Z, and I, are 
the second moments of area about Cx of the timber and steel beams, respectively, we have 

EI = (ET), + (EO, = E$, + E,I, (11.4) 

Then 

EI = E, + [ :) I,] (11.5) 

If Z, is multiplied by (Ell?,,), which is the ratio of Young's moduli for the two materials, then from 
equation (1 1.5) we see that the composite beam may be treated as wholly timber, having an 
equivalent second moment of area 

z1 + [ 3 z, (11.6) 

This is equivalent to treating the beam of Figure 1 1.2(i) with reinforcing plates made of timber, but 
having thicknesses 
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as shown in Figure 11.2(ii); the equivalent timber beam of Figure 11.2(ii) is the transformed 
section of the beam. In this case the beam has been transformed wholly to timber. Equally the 
beam may be transformed wholly to steel, as shown in Figure 1 1.2(iii). For bending about Cx the 
breadths of the component beams are factored to find the transformed section; the depth h of the 
beam is unaffected. 

Figure 11.2 (i) Composite beam of timber and steel bent about Cr. 
(ii) Equivalent timber beam. (iii) Equivalent steel beam. 

The bending stress 0, in the fibre of the timber core of the beam a distance y from the neutral 
axis is 

Y 0, = M, - 
4 

Now, from equations (1 1.1) and (1 1.2) 

(E4 f 1 
M, = -, M = - [ (Edf  + (E41 

R R 

and on eliminating R, 
M 

1 + -  

MI = 
E, 5 (11.7) 

E ,  If 

Then 

M y  - MY Gf = - 
I 1 [ 1 + - ]  E, 1 s  I f + ( $ ) I S  (11.8) 

El 4 
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the bending stresses in the timber core are found therefore by considering the total bending 
moment Mto be carried by the transformed timber beam of Figure 1 1.2(ii). The longitudinal strain 
at the distance y from the neutral axis Cx is 

E = - -  =I - MY 
EI E, 4 + Es 1 s  

Then at the distance y from the neutral axis the stress in the steel reinforcing plates is 

0, = Esc = MY 
(11.9) 

1 s  + [ 9 4 

because the strains in the steel and timber are the same at the same dlstancey from the neutral axis. 
This condltion of equal strain is implied in the assumption made earlier that the steel and the timber 
components of the beam are bent to the same radius of curvature R. 

Problem 11.1 A composite beam consists of a timber joist, 15 cm by 10 cm, to whch 
reinforcing steel plates, !4 cm thick, are attached. Estimate the maximum 
bending moment which may be applied about Cx, if the bending stress in the 
timber is not to exceed 5 MN/mz, and that in the steel 120 MN/m*. Take E/E, 
= 20. 

Solution 

The maximum bending stresses occur in the extreme fibres. If the stress in the timber is 5 MN/mz, 
the stress in the steel at the same distance from Cx is 

ES 

El 
5 x lo6 x - = 100 x lo6 N/m2 = 100 h4N/m2 

Thus when the maximum timber stress is attained, the maximum steel stress is only 100 MN/mz. 
If the maximumpennissible stress of 120 MN/mZ were attained in the steel, the stress in the timber 
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would exceed 5 h4N/m2, which is not pennissible. The maximum bending moment gives therefore 
a stress in the timber of 5 h4N/mz. The second moment of area about Cx of the equivalent timber 
beam is 

1 (0.010) (0.15)3 x 20 1 Ix ~ - (0.10) (0.15)3 + - 
12 12 

= 0.0842 x lO-3 m 4  

For a maximum stress in the timber of 5 MN/m2, the moment is 

(5 x lo6) (0.0842 x lO-3) = 5610 Nm M =  
0.075 

11.3 Timber beam with reinforcing steel flange plates 

In Section 1 1.2 we discussed the composite bending action of a timber be,m reinforced with steel 
plates over the depth of the beam. A similar bending problem arises when the timber joist is 
reinforced on its upper and lower faces with steel plates, as shown if Figure 1 1.3(i); the timber web 
of the composite beam may be transformed into steel to give the equivalent steel section of Figure 
1 1.3(ii); alternatively, the steel flanges may be replaced by equivalent timber flanges to give the 
equivalent timber beam of Figure 11.3(iii). The problem is then treated in the same way as the 
beam in Section 1 1.2; the stresses in the timber and steel are calculated from the second moment 
of area of the transformed timber and steel sections. 

Figure 11.3 (i) Timber beam with reinforced steel flange plates. 
(ii) Equivalent steel I-beam. (iii) Equivalent timber I-beam. 

An important difference, however, between the composite actions of the beams of Figures 1 1.2 
and 1 1.3 lies in their behaviour under shearing forces. The two beams, used as cantilevers carrying 
end loads F, are shown in Figure 1 1.4; for the timber joist reinforced over the depth, Figure 1 1.4(i), 
there are no shearing actions between the timber and the steel plates, except near the loaded ends 
of the cantilever. 
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However, for the joist of Figure 1 1.4(ii), a shearing force is transmitted between the timber and 
the steel flanges at all sections of the beam. In the particular case of thin reinforcing flanges, it is 
sufficiently accurate to assume that the shearing actions in the cantilever of Figure 11.4(ii) are 
resisted largely by the timber joist; on considering the equilibrium of a unit length of the composite 
beam, equilibrium is ensured if a shearing force ( F A )  per unit length of beam is transmitted 
between the timber joist and the reinforcing flanges, Figure 11.5. This shearing force must be 
carried by bolts, glue or some other suitable means. The end deflections of the cantilevers shown 
in Figure 1 1.4 may be difficult to estimate; this is due to the fact that account may have to be taken 
of the shearing distortions of the timber beams. 

Figure 11.4 composite beams under shearing action, showing 
(i) steel and timber both resisting shear and (ii) timber alone resisting shear. 

Figure 11.5 Shearing actions in a timber joist with reinforcing steel flanges. 

Problem 11.2 A timber joist 15 cm by 7.5 cm has reinforcing steel flange plates 1.25 cm 
h c k .  The composite beam is 3 m long, simply-supported at each end, and 
carries a uniformly distributed lateral load of 10 kN. Estimate the maximum 
bending stresses in the steel and timber, and the intensity of shearing force 
transmitted between the steel plates and the timber. Take EJE, = 20. 
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Solution 

The second moment of area of the equivalent steel section is 

(0.075) (0.15)3 + 2[ (0.0125) (0.075)3] = 11.6 x m4 1 
The maximum bending moment is 

The maximum bendmg stress in the steel is then 

The bendmg stress in the steel at the junction of web and flange is 

(3750) (0.0750) = 24.2 m / m 2  0, = 
(11.6 x 

The stress in the timber at this junction is then 

E, 1 
E, 20 

G, = - x G, = - (24.2) = 1.2 MN/m2 

On the assumption that the shearing forces at any section of the beam area taken largely by the 
timber, the shearing force between the timber and steel plates is 

(5 x lo3) / (0.15) = 33.3 kN/m 

because the maximum shearing force in the beam is 5 kN. 

11.4 Ordinary reinforced concrete 

It was noted in Chapter 1 that concrete is a brittle material which is weak in tension. Consequently 
a beam composed only of concrete has little or no bending strength since cracking occurs in the 
extreme tension fibres in the early stages of loading. To overcome this weakness steel rods are 
embedded in the tension fibres of a concrete beam; if concrete is cast around a steel rod, on setting 
the concrete shrinks and grips the steel rod. It happens that the coefficients of linear expansion of 
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concrete and steel are very nearly equal; consequently, negligible stresses are set up by temperature 
changes. 

Figure 11.6 Simple rectangular concrete beam with reinforcing steel in the tension flange. 

The bending of an ordinary reinforced concrete beam may be treated on the basis of transformed 
sections. Consider the beam of rectangular cross-section shown in Figure 1 1.6. The breadth of the 
concrete is b, and h is the depth of the steel reinforcement below the upper extreme fibres. The 
beam is bent so that tensile stresses occur in the lower fibres. The total area of cross-section of the 
steel reinforcing rods is A; the rods are placed longitudinally in the beam. The beam is now bent 
so that Ox becomes a neutral axis, compressive stresses being induced in the concrete above Ox. 
We assume that concrete below the neutral axis cracks in tension, and is thxefore ineffectual; we 
neglect the contribution of the concrete below Ox to the bending strength of the beam. Suppose 
m is the ratio of Young's modulus of steel, E,, to Young's modulus of concrete, E,; then 

(11.10) 
E, 

E, 
m = -  

If the area A of steel is transformed to concrete, its eqwgalent area is mA; the equivalent concrete 
beam then has the form shown in Figure 11.6(ii). The depth of the neutral axis Ox below the 
extreme upper fibres is n. The equivalent concrete area mA on the tension side of the beam is 
concentrated approximately at a depth h. 

We have that the neutral axis of the beam occurs at the centroid of the equivalent concrete 
beam; then 

1 
2 

bn x -n = mA (h - n) 

Thus n is the root of the quadratic equation 

(1 1.1 1) 
1 - b n 2 + m A n - m A h  = 0 
2 
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The relevant root is 

(11.12) 

The second moment of area of the equivalent concrete beam about its centroidal axis is 

(11.13) 
1 
3 

I ,  = - bn3 + mA ( h  - n)’ 

The maximum compressive stress induced in the upper extreme fibres of the concrete is 

Mn 
(3, = - (11.14) 

I C  

M h  - n )  x -  E, - - mMh - n )  
(3, = 

1, E ,  I C  

(11.15) 

Problem 11.3 A rectangular concrete beam is 30 cm wide and 45 cm deep to the steel 
reinforcement. The direct stresses are limited to 115 MN/m2 in the steel and 
6.5 MN/m2 in the concrete, and the modular ratio is 15. What is the area of 
steel remforcement if both steel and concrete are fully stressed? Estimate the 
permissible bending moment for this condition. 

Solution 

From equations ( 1 1.14) and ( 1 1.15) 

= 115 MN/m2 M h  - n) 
(3, = 

bn - + A (h - n)* 
3m 

and 

= 6.5 MNlm’ Mn 
1 - bn3 + mA (h  - n)’ 
3 

(3, = 

Then 
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M ( h  - n) - Mn 
115 6.5 

- -  

Hence 

- 0.458 h - n = 1.18n and - - - - n -  
h 2.18 

Then 

n = 0.458 x 0.45 = 0.206 m 

From equation (1 1.1 1) 

Then 

bh - 0.387 x 0.30 x 0.45 = 1.75 10-3 , 2  A = 0.387 - - 
2m 30 

As the maximum allowable stresses of both the steel and concrete are attained, the allowable 
bending moment may be elevated on the basis of either the steel or the concrete stress. The second 
moment of area of the equivalent concrete beam is 

1 
3 

I, = - bn3 + mA (h - n)’ 

1 
3 

= - (0.30) (0.206)3 + 15(0.00174) (0.244)2 = 2.42 x m 2  

The permissible bending moment is 

O I  = - = (6.5 x IO6) (2.42 x 

Y C  (0.206) 
= 76.4 kNm 

Problem 11.4 A rectangular concrete beam has a breadth of 30 cm and is 45 cm deep to the 
steel reinforcement, which consists of two 2.5 cm diameter bars. Estimate the 
permissible bending moment if the stresses are limited to 1 15 MN/m2 and 6.5 
MN/m2 in the steel and concrete, respectively, and if the modular ratio is 15. 
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Solution 

The area of steel reinforcement is A = 2(n/4)(0.025)' = 0.982 x mz. From equation (1 1.12) 

Now 

Then 

I 

= 0.1091 [(I  + l)i - 11 = 0.370 
h 0.1091 

Thus 

n = 0.370h = 0.167 m 

The second moment of area of the equivalent concrete beam is 

1 
3 

Zc = - bn3 + mA (h - n)' 

= (0.30) (0.167)3 + 15 (0.982 x (0.283)2 
3 

= (0.466 + 1.180) m 4  

= 1.646 x m 4  

If the maximum allowable concrete stress is attained, the permissible moment is 

O I  
M = 2 = (6.5 x lo6) (1.646 x 

= 64 kNm 
n 0.167 

If the maximum allowable steel stress is attained, the permissible moment is 

= 44.6 kNm 0 s  IC = (115 x lo6) (1.646 x M =  
m(h - n) 15(0.283) 
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Steel is therefore the limiting material, and the permissible bending moment is 

M = 44.6 kNm 

Problem 11.5 A rectangular concrete beam, 30 cm wide, is reinforced on the tension side with 
four 2.5 cm diameter steel rods at a depth of 45 cm, and on the compression 
side with two 2.5 diameter rods at a depth of 5 cm. Estimate the permissible 
bending moment if the stresses in the concrete are not to exceed 6.5 MN/m2 and 
in the steel 115 MNIm2. The modular ratio is 15. 

Solution 

The area of steel reinforcement is 1.964 x lO-3  m2 on the tension side, and 0.982 x lO-3 m2 on the 
compression side. The cross-sectional area of the equivalent concrete beam is 

(0.30)n + (m - 1)(0.000982) + m(0.001964) = (0.30n + 0.0433)m’ 

The position of the neutral axis is obtained by talung moments, as follows: 

(0.30)n( 5) + (m - 1)(0.000982)(0.05) + m(0.001964)(0.45) 

= (0.30n + 0.0433)n 

This reduces to 

n 2  - 0.288n - 0.093 = 0 

giving 

n = -0.144 * 0.337 

The relevant root is n = 0.193 m 
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The second moment of area of the equivalent concrete beam is 

1 
3 

(0.720 + 0.281 + 1.950)10-3 

I ,  = -(0.30)n3 + (m-l)(0.000982)(~-0.05)~ + m(0.001964)(0.45-~)~ 

= 

= 2.95 x l O - 3  m 4  

If the maximum allowable concrete stress is attained, the permissible moment is 

M = L -  (3 I ,  - (6.5 x IO6) (2.95 x lO-3) = 99.3 kNm 
n 0.193 

If the maximum allowable steel stress is attained, the permissible moment is 

0 s  I C  - (115 x IO6) (2.95 x l O - 3 )  = 88.0 kNm M =  - 
m(0.45 - H) 15j0.257) 

Thus, steel is the limiting material, and the allowable moment is 88.0 kNm. 

Problem 11.6 A steel I-section, 12.5 cm by 7.5 cm, is encased in a rectangular concrete beam 
of breadth 20 cm and depth 30 cm to the lower flange of the I-section. 
Estimate the position of the neutral axis of the composite beam, a-id find the 
permissible bending moment if the steel stress is not to exceed 1 15 MN/m2 and 
the concrete stress 6.5 MN/m2. The modular ratio is 15. The area of the steel 
beam is 0.0021 1 m' and its second moment of area about its minor axis is 
5.70 x 1O-6 m'. 

Solution 

The area of the equivalent steel beam is 
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15 
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The position of the neutral axis is obtained by taking moments, as follows: 

(Is 0.20n + 0.00211)n = (T) (h) + (0.00211) (0.2375) 

This reduces to 

n 2  + 0.316n - 0.075 = 0 

The relevant root of which is 

n = 0.158 m 

The second moment of area of the equivalent steel beam is 

0.20 (0.158)3 + (0.00211) (0.0795)* = 0.0366 x m 4  
Is = T (  1 5 )  

The allowable bending moment on the basis of the steel stress is 

- = 29.7 kNm 0 3  Is - (115 x lo6) (0.0366 x M =  
(0.30 - n) 0.142 

If the maximum allowable concrete stress is 6.5 MN/m2, the maximum allowable compressive 
stress in the equivalent steel beam is 

m (6.5 x lo6) = 57.5 MN/mZ 

On this basis, the maximum allowable moment is 

= 22.6 kNm (97.5 x lo6) (0.0366 x M =  
0.158 

Concrete is therefore the limiting material, and the maximum allowable moment is 

M = 22.6 kNm 
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Problem 11.7 A reinforced concrete T-beam contains 1 . 2 5 ~  lO-3  m2 of steel reinforcement on 
the tension side. If the steel stress is limited to 115 MN/m2 and the concrete 
stress to 6.5 MN/m2, estimate the permissible bending moment. The modular 
ratio is 15. 

Solution 

Suppose the neutral axis falls below the underside of the flange. The area of the equivalent 
concrete beam is 

( 0 . 6 0 ) ~  - 0.45(n - 0.10) + (0.00125)15 = 0.15n + 0.0638 m 2  

The position of the neutral axis is obtained by talung moments, as follows: 

( 0 . 6 0 ~ )  ( i n )  + (0.00125)(15)(0.30) - 0.45(n - 0.10) 

= (0.15n + 0.0638)n 

(n + 0.10) k) 
This reduces to 

n z  + 0.850n - 0.1044 = 0 

the relevant root of which is n = 0.109 m whxh agrees with our assumption earlier that the neutral 
axis lies below the flange. 

The second moment of area of the equivalent concrete beam is 

1 1 - (0.60) (n3) - - (0.45) (n - 0.10)3 + 0.00125 (15) (0.30 - n)* 
3 3 

= (0.259 + 0.000 + 0.685) lO-3 m 4  

= 0.944 x l O - 3  m 4  

1, = 

If the maximum allowable concrete stress is attained, the permissible moment is 

M = L -  c~ 1, - (6.5 x 106)(0.944 x lO-3) = 56.3 kNm 
n 0.109 
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If the maximum allowable steel stress is attained, the permissible moment is 

0 s  *c (115 x 106)(0.944 x lO-3) = 37.9 kNm M = - =  
m(0.30 - n) 15(0.191) 

Steel is therefore the limiting material, and the permissible bending moment is 37.9 kNm. 

Further Problems (answers on puge 693) 

11.8 A concrete beam of rectangular section is 10 cm wide and is reinforced with steel bars 
whose axes are 30 cm below the top of the beam. Estimate the required total area of the 
cross-section of the steel if the maximum compressive stress in the concrete is to be 7.5 
MN/m2 and the tensile stress in the steel is 135 MN/m2 beam is subjected to pure 
bendmg. What bending moment would the beam withstand when in this condition? 
Assume that Young's modulus for steel is 15 times that for concrete and that concrete can 
sustain no tensile stresses. (Cambridge) 

A reinforced concrete T-beam carries a uniformly distributed super-load on a simply- 
supported span of 8 m. The stresses in the steel and concrete are not to exceed 125 
MN/m2 and 7 MN/m2, respectively. The modular ratio is 15, and the density of concrete 
is 2400 kg/m3. Determine the permissible super-load. (Nottingham) 

11.9 

11.10 A wooden joist 15 cm deep by 7.5 cm wide is reinforced by glueing to its lower face a 
steel strip 7.5 cm wide by 0.3 cm tluck. The joist is simply-supported over a span of 3 
m, and carries a uniformly hstributed load of 5000 N. Find the maximum direct stresses 
in the wood and steel and the maximum shearing stress in the glue. Take E/E, = 20. 
(Cam bridge) 

A timber beam is 15 cm deep by 10 cm wide, and carries a central load of 30 kN at the 
centre of a 3 m span; the beam is simply-supported at each end. The timber is reinforced 
with flat steel plates 10 cm wide by 1.25 cm thick bolted to the upper and lower surfaces 
of the beam. Taking E for steel as 200 GN/m2 and E for timber as 1 GN/m2, estimate 

1 1.1 1 
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(0  
(ii) 
(iii) 
(iv) 

the maximum direct stress in the steel strips; 
the average shearing stress in the timber; 
the shearing load transmitted by the bolts; 
the bending and shearing deflections at the centre of the beam. 



12 Bending stresses and direct stresses 
corn bined 

12.1 Introduction 

Many instances arise in practice where a member undergoes bending combined with a thrust or 
pull. If a member carries a thrust, direct longitudinal stresses are set up; if a bending moment is 
now superimposed on the member at some section, additional longitudinal stresses are induced. 

In th is chapter we shall be concerned with the combined bending and thrust of short stocky 
members; in such cases the presence of a thrust does not lead to overall instability of the member. 
Buckling of beams under end thrust is discussed later in Chapter 18. 

12.2 Combined bending and thrust of a stocky strut 

Consider a short column of rectangular cross-section, Figure 17 l(i). The column carries an axial 
compressive load P, together with bending moment M, at some section, applied about the 
centroidal axis Cx. 

(1) (11) (111) (IV) 

Figure 12.1 Combined bending and thrust of a rectangular cross-section beam. 

The area of the column is A,  and I, is the second moment of the area about Cx. If P acts alone, 
the average longitudinal stress over the section is 

P 
A 

-- 

the stress being compressive. If the couple M acts alone, and if the material remains elastic, the 
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longitudinal stress in any fibre a distance y from Cx is 

Bending stresses and direct stresses combined 

-- w 
I, 

for positive values of y. We assume now that the combined effect of the thrust and the bending 
moment is the sum of the separate effects of P and M. The stresses due to P and M acting 
separately are shown in Figure 12.l(iii) and (iv). On combining the two stress systems, the 
resultant stress in any fibre is 

(12.1) (r = - - - -  P M Y  
A I, 

Clearly the greatest compressive stress occurs in the upper extreme fibres, and has the value 

P Mh 
A 2 5  (12.2) - - -  omax - - - 

In the lower fibres of the beamy is negative; in the extreme lower fibres 

P M h  
A 2Zr (12.3) (r = - - + -  

which is compressive or tensile depending upon whether (Mh/21,) is less than or greater than (PIA). 
The two possible types of stress distribution are shown in Figure 12.2(i) and (ii). When (Mh/zI,) 
< (P/A), the stresses are compressive for all parts of the cross-section, Figure 12.2(1). When 
(MW2ZX) > (P/A), the stress is zero at a distance (PZJAM) below the centre line of the beam, Figure 
122(ii); this defines the position of the neutral axis of the column, or the axis of zero strain. In 
Figure 12.2(i) the imaginary neutral axis is also a distance (PZJAM) from the centre line, but it lies 
outside the cross-section. 

1'1 

Figure 12.2 Position of the neutral axis for combined bending and thrust. 
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12.3 Eccentric thrust 

We can use the analysis of Section 12.2 to find the stresses due to the eccentric thrust. The column 
of rectangular cross-section shown in Figure 12.3(i) cames a thrust P, which can be regarded as 
concentrated at tk- point D, whch lies on the centroidal axis Cy, at a distance ev from C, Figure 
12.3(ii). The eccentric load P is statically equivalent to an axial thrust P and a bending moment 
Pe, applied about Cx, Figure 12.3(iii). Then, from equation (12. l), the longitudinal stress any fibre 
is 

A eyY 
(12.4) 

c = - - - -  P PeyY - - -p(I-T) 
A 4 A 

I I 

w-b- 
I I 

Figure 12.3 Column of rectangular cross-section carrying an eccentric thrust. 

We are interested frequently in the condition that no tensile stresses occur in the column; 
clearly, tensile stresses are most likely to occur in the lowest extreme fibres, where 

0 = -E[l-$?)  A (12.5) 

This stress is tensile if 

A e y h  
- >  1 (12.6) 

21, 

that is, if 

6eY - >  1 
h 

or 

(12.7) 
1 
6 

e,, = -h  
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Now suppose the thrust P is applied eccentrically about both centroidal axes, at a distance e, 
from the axis Cy and a distance e, from the axis Cx, Figure 12.4. We replace the eccentric thrust 
P by an axial thrust P at C, together with couples Pe, and Pe, about Cx and Cy, respectively. 

Figure 12.4 Core of a rectangular cross-section. Figure 12.5 Core of a circular cross-section. 

The resultant compressive stress at any fibre defined by co-ordinate (x,  y )  is 

P Pe,x pe.”Y 

A ’” I* 
(r = - _ - - -  - 

(12.8) 

= - - 1 + - + Y  P [ A;x iri] 
A 1, 

Suppose e, and e, are both positive; then a tensile stress is more llkely to occur at the comer B of 
the rectangle. The stress at B is tensile when 

Ae,b Ae,h 
1 - -  . < o  (12.9) 

21” 21, 

On substituting for A ,  I, and I,,, this becomes 

6ex 6e 

h h 
1 ---‘<O (12.10) 

If P is applied at a point on the side of the line HG remote from C, this inequality is satisfied, and 
the stress at B becomes tensile, regardless of the value of P. Similarly, the lines HJ, J F  and FG 
define limits on the point of  application of P for the development of tensile stresses at the other 
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three comers of the column. Clearly, if no tensile stresses are to be induced at all, the load P must 
not be applied outside the parallelogram FGHJ in Figure 12.4; the region FGHJ is known as the 
core ofthe section. For the rectangular section of Figure 12.4 the core is a parallelogram with 
diagonals of lengths V3h and %b. 

For a column with a circular cross-section of radius R, Figure 12.5, the tensile stress is most 
likely to develop at a point B on the perimeter diametrically opposed to the point of application of 
P. The stress at B is 

(r = - - + +  P PeR - - -- y1 -7) (12.11) 
A I A 

where I is the second moment of area about a diameter. Tensile stresses are developed if 

(12.12) - AeR > 1 
I 

On substituting for A and I, this becomes 

4e - >  1 
R 

or 

R 
4 

e > -  (12.13) 

The core of the section is then a circle of radius %R. 

Problem 12.1 Find the maximum stress on the section A B  of the clamp when a pressure of 
2500 N is exerted by the screw. The section is rectangular 2.5 cm by 1 cm. 
(Cam bridge) 

Solution 

The section A B  is subjected to a tension of 2500 N, and a bending moment (2500)(0.10) = 250 
Nm. The area of the section = 0.25 x l O - 3  m2. The direct tensile stress = (2500)/(0.25 x lO-3) 
= 10 MN/m2. The second moment of area = 1/12 (0.01)(0.025)3 = 13.02 x lO-9  m'. 

Therefore, the maximum bending stresses due to the couple of 250 Nm are equal to 
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(250)(0*0125) = 240 mlm2 

(13.02 x 10-9) 

Hence the maximum tensile stress on the section is 

(240 + 10) = 250 MN/m2 

The maximum compressive stress is 

(240 - 10) = 230 MN/m2 

Problem 12.2 A masonry pier has a cross-section 3 m by 2 m, and is subjected to a load of 
1000 kN, the line of the resultant being 1.80 m from one of the shorter sides, 
and 0.85 m from one of the longer sides. Find the maximum tensile and 
compressive stresses produced. (Cambridge) 

Solution 

P represents the line of action of the thrust. The bending moments are 

(0.15)(1000 x IO3) = 150 kNm about OX 

(0.30)(1000 x lo3) = 300 kNm about OY 

Now, 

1 
12 

1 
12 

Z, = - (3)(2)3 = 2 m4 

1, = - (2)(3)3 = 4.5 m4  

The cross-sectional area is 

A = (3)(2) = 6 m 2  
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For a point whose co-ordinates are (x, y )  the compressive stress is 

+x+- 
Ae ZY x Aevy)  1, 

(r = -‘(l A 

1 + - + ” )  2.5 20 
( x  

cB = -106 ( 1 + 5 3 + x) = -0.342 m / m 2  

which gives 

1000 x 103 o = -  
6 

The compressive stress is a maximum at B, where x = 1.5 m and y = 1 m. Then 

6 20 

ThestressatD,wherex = -1Smandy  = - lm , i s  

1 o6 3 
6 

o,, = -- ( 1  - 3 - $) = +0.008 MN/m2 

which is the maximum tensile stress. 

12.4 Prestressed concrete beams 

The simple analysis of Section 12.2 is useful for problems of pre-stressed concrete beams. A 
concrete beam, unreinforced with steel, can withstand negligible bending loads because concrete 
is so weak in tension. But if the beam be pre-compressed in some way, the tensile stresses induced 
by bending actions are countered by the compressive stresses already present. In Figure 12.6, for 
example, a line of blocks carries an axial thrust; if this is sufficiently large, the line of blocks can 
be used in the same way as a solid beam. 

Figure 12.6 Bending strength of a pre- 
compressed line of blocks. 

Figure 12.7 Concrete beam with axial pre-compression. 
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Suppose a concrete beam of rectangular cross-section, Figure 12.7, carries some system of 
lateral loads and is supported at its ends. An axial pre-compression P is applied at the ends. If A4 
is the sagging moment at any cross-section, the greatest compressive stress occurs in the extreme 
top fibres, and has the value 

(12.14) 
0 = -[$+i;r) Mh 

0 = -[;-I Mh 

The stress in the extreme bottom fibres is 

(12.15) 

Now suppose the maximum compressive stress in the concrete is limited to G,, and the maximum 
tensile stress to 02. Then we must have 

2 0 ,  (12.16) 
P M h  
A 21x 
- + -  

and 

2 o2 (12.17) 
P M h  
A 21x 

-- + - 

Then the design conditions are 

P 
2 0, -- (12.18) 

Mh - 
21, A 

P 
5 G2 +- (12.19) 

Mh - 
21, A 

Figure 12.8 Optimum conditions for a 
beam with axial pre-compression. 
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These two inequalities are shown graphically in Figure 12.8, in which (P/A) is plotted against 
(MW21,). Usually o2 is of the order of one-tenth of o] .  The optimum condtions satisfying both 
inequalities occur at the point B; the maximum bending moment which can be given by 

(01 + %) (12.20) 
- -  m -  

I X  

that is, 

(12.21) 1, 
~ m a x  = - (01 + 5)  h 

The required axial thrust for this load is 

1 
2 

P = -A (ol - .*) (12.22) 

Some advantage is gained by pre-compressing the beam eccentrically; in Figure 12.9(i) a beam of 
rectangular cross-section cames a thrust P at a depth (1/6)h below the centre line. As we saw in 
Section 12.3, this lies on the edge of the core of cross-section, and no tensile stresses are induced. 
In the upper extreme fibres the longitudinal stress is zero, and in the lower extreme fibres the 
compressive stress is 2P/A, Figure 12.9(i). 

.,I. Alh 

Figure 12.9 Concrete beam with eccentric pre-compression. 

NOW suppose a sagging bending moment M is superimposed on the beam; the extreme fibre 
stresses due to M are (Mh/2Ix) tensile on the lower and compressive on the upper fibres, Figure 
12.9(ii). I f  

2 p  - Mh 
A 21, 

(12.23) - - -  
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then the resultant stresses, Figure 12.9(iii), are zero in the extreme lower fibres and a compressive 
stress of (MW2I3 in the extreme upper fibres. If this latter compressive stress does not exceed o,, 
the allowable stress in concrete, the design is safe. The maximum allowable value of M is 

0 1  (12.24) M = -  2 4  
h 

As o2 in equation (12.21) is considerably less then a,, the bending moment given by equation 
(12.21) is approximately half that given by equation (12.24). Thus pre-compression by an 
eccentric load gives a considerably higher bending strength. 

In practice the thrust is applied to the beam either externally through rigid supports, or by 
means of a stretched high-tensile steel wire passing through the beam and anchored at each end. 

Further problems (answers on page 693) 

12.3 The single rope of a cantilever crane supports a load of 200 kN and passes over two 
pulleys and then vertically down the axis of the crane to the hoisting apparatus. The 
section AB of the crane is a hollow rectangle. The outside dimensions are 37.5 cm and 
75 cm and the material is 2.5 cm thick all round, and the longer dimension is in the 
direction AB. Calculate the maximum tensile and compressive stresses set up in the 
section, and locate the position of the neutral axis. (Cambridge) 

12.4 The horizontal cross-section of the cast-iron standard of a vertical dnlling machme has 
the form shown. The line of thrust of the drill passes through P. Find the greatest value 
the thrust may have without the tensile stress exceeding 15 MN/m2. What will be the 
stress along the face AB? (Cambridge) 
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12.5 A vertical masonry c h e y  has a internal diameter d,  and an external diameter d,. The 
base of the chimney is given a horizontal acceleration a m / d ,  and the whole chimney 
moves horizontally with this acceleration. Show that at a section at depth h below the 
top of the chimney, the resultant normal force acts at a distance ah/2g from the centre 
of the section. If the chimney behaves as an elastic solid, show that at a depth g(dt  + 
d,2)/4ado below the top, tensile stress will be developed in the material. (Cambridge) 

A llnk of a valve gear has to be curved in one plane, for the sake of clearance. Estimate 
the maximum tensile and compressive stress in the llnk if the thrust is 2500 N. 
(Cam bridge) 

12.6 

12.7 A cast-iron crank has a section on the line AB of the form shown. Show how to 
determine the greatest compressive and tensile stresses at AB, normal to the section, due 
to the thrust P of the connecting rod at the angle cp shown. 

If the stresses at the section must not exceed 75 MNIm2, either in tension or 
compression, find the maximum value of the thrust P. (Cambridge) 
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12.8 

Bending stresses and direct stresses combined 

The load on the bearing of a cast-iron bracket is 5 kN. The form of the section AB is 
given. Calculate the greatest tensile stress across the section AB and the distance of the 
neutral axis of the section from the centre of gravity of the section. (Cambridge) 



13 Deflections of beams 

13.1 Introduction 

In Chapter 7 we showed that the loading actions at any section of a simply-supported beam or 
cantilever can be resolved into a bending moment and a shearing force. Subsequently, inChapters 
9 and 10, we discussed ways of estimating the stresses due to these bending moments and shearing 
forces. There is, however, another aspect of the problem of bending which remains to be treated, 
namely, the calculation of the stifiess of a beam. In most practical cases, it is necessary that a 
beam should be not only strong enough for its purpose, but also that it should have the requisite 
stiffness, that is, it should not deflect from its original position by more than a certain amount. 
Again, there are certain types ofbeams, such as those camed by more than two supports and beams 
with their ends held in such a way that they must keep their original directions, for which we 
cannot calculate bending moments and shearing forces without studying the deformations of the 
axis of the beam; these problems are statically indeterminate, in fact. 

In this chapter we consider methods of finding the deflected form of a beam under a given 
system of external loads and having known conditions of support. 

13.2 Elastic bending of straight beams 

It was shown in Section 9.2 that a straight beam of uniform cross-section, when subjected to end 
couples A4 applied about a principal axis, bends into a circular arc of radius R, given by 

1 M  
R EI 
- - -  - (13.1) 

where EI, which is the product of Young's modulus E and the second moment of area I about the 
relevant principal axis, is the flexural stiffness of the beam; equation ( 13.1) holds only for elastic 
bending. 

Where a beam is subjected to shearing forces, as well as bending moments, the axis of the beam 
is no longer bent to a circular arc. To deal with this type of problem, we assume that equation 
(13.1) still defines the radius of curvature at any point of the beam where the bending moment is 
M. This implies that where the bending moment varies from one section of the beam to another, 
the radius of curvature also vanes from section to section, in accordance with equation (13.1). 

In the unstrained condition of the beam, Cz is the longitudinal centroidal axis, Figure 13.1, and 
Cx, Cy are the principal axes in the cross-section. The co-ordinate axes Cx, Cy are so arranged that 
the y-axis is vertically downwards. This is convenient as most practical loading conditions give 
rise to vertically downwards deflections. Suppose bending moments are applied about axes 
parallel to Cx, so that bending is restricted to the yz-plane, because Cx and Cy are principal axes. 
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Figure 13.1 Longitudinal and principal Figure 13.2 Displacements of the longitudinal 
centroidal axes for a straight beam. axis of the beam. 

Consider a short length of the unstrained beam, corresponding with D F  on the axis Cz, Figure 13.2. 
In the strained condition D and F are dsplaced to D' and F', respectively, which lies in the yz- 
plane. Any point such as D on the axis Cz is displaced by an amount v parallel to Cy; it is also 
hsplaced a small, but negligible, amount parallel to Cz. 

The radius of curvature R at any section of the beam is then given by 

d2v  - 
1 -  dz2 

(13.2) - -  
R 

* [1 + ( $)2r 
We are concerned generally with only small deflections, in which v is small; thls implies that 
(dv/dz) is small, and that ( d ~ / d z ) ~  is negligible compared with unity. Then, with sufficient 
accuracy, we may write 

d 2 v  1 
R dz2 

(13.3) - = f- 

The equations (13.1) and (1 3.3) give 

d ' v  
dz2 

(13.4) & E I - =  A4 

We must now consider whether the positive or negative sign is relevant in this equation; we have 
already adopted the convention in Section 7.4 that sagging bending moments are positive. When 
a length of the beam is subjected to sagging bending moments, as in Figure 13.3, the value of 
(dv/dz) along the length diminishes as z increases; hence a sagging moment implies that the 
curvature is negative. Then 

(13.5) 
d 2 v  
dz' 

E I - = - M  

where M is the sagging bending moment. 



Elastic bending of straight beams 297 

Figure 13.3 Curvature induced by sagging Figure 13.4 Deflected form of a beam in 
bending moment. pure bending. 

Where the beam is loaded on its axis of shear centres, so that no twisting occurs, M may be written 
in terms of shearing force F and intensity w of vertical loading at any section. From equation (7.9) 
we have 

- - - -  d 2 M  - dF - -w 
dz2 a2 

On substituting for M from equation (1 3.5), we have 

(13.6) - [ - E l $ ]  d2 = 5 = -w 
dz2  

Thls relation is true if EI vanes from one section of a beam to another. Where El is constant along 
the length of a beam, 

d4v - dF 
dz4 dz 

(13.7) - E l -  - - = -w 

As an example of the use of equation (13.4), consider the case of a uniform beam carrying couples 
M at its ends, Figure 13.4. The bending moment at any section is M, so the beam is under a 
constant bendmg moment. Equation (13.5) gives 

d2v - 

dz2  
E I -  - -M 

On integrating once, we have 

dv EI - 
dz = -Mz + A  (13.8) 
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where A is a constant. On integrating once more 

(13.9) 
1 
2 

EIv = -- Mz’ + AI + B 

where B is another constant. If we measure v relative to a line CD joining the ends of the beam, 
vis zero at each end. Then v = 0, for z = 0 and z = L. 

On substituting these two conditions into equation (13.9), we have 

1 
2 

B = 0 and A = -ML 

The equation (13.9) may be written 

(13.10) 
1 EIv = -Mz(L - Z) 
2 

At the mid-length, z = U., and 

(13.11) ML 2 v = -  
8EI 

which is the greatest deflection. At the ends z = 0 and z = L/2, 

(13.12) d v -  ML dv ML 
(iz 2 EI a!? 2 EI 
- at C; - = -- at D - -  

It is important to appreciate that equation (13.3), expressing the radius of curvature R in terms of 
v, is only true if the displacement v is small. 

Figure 13.5 Distortion of a beam in pure bending. 
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We can study more accurately the pure bending of a beam by considering it to be deformed into 
the arc of a circle, Figure 13.5; as the bending moment M is constant at all sections of the beam, 
the radius of curvature R is the same for all sections. If L is the length between the ends, Figure 
13.5, and D is the mid-point, 

OB = 4-j 

Thus the central deflection v, is 

v = BD = R - \IR2 - ( L 2 / 4 )  

Then 

v = i i  

Suppose W R  is considerably less than unity; then 

which can be written 

1 v = - 1  I + - +  . . .  L 2  L 2  
8R 4 R  

But 

and so 

v = ML - i l + -  M ~ L ~  + . . . I  
8EI 4(E42 

(13.13) 

Clearly, if (L2/4Rz) is negligible compared with unity we have, approximately, 

which agrees with equation (1 3.1 1). The more accurate equation (13.13) shows that, when (Lz/4R2) 
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is not negligible, the relationshp between v and A4 is non-linear; for all practical purposes this 
refinement is unimportant, and we find simple linear relationships of the type of equation (1 3.1 1) 
are sufficiently accurate for engineering purposes. 

13.3 Simply-supported beam carrying a uniformly distributed load 

A beam of uniform flexural stiffness EI and span L is simply-supported at its ends, Figure 13.6; 
it carries a uniformly distributed lateral load of w per unit length, whch induces bending in the yz 
plane only. Then the reactions at the ends are each equal to %wL; if z is measured from the end 
C, the bending moment at a distance z from C is 

1 1 2  

2 2 
M = -WLZ - -WZ 

Figure 13.6 Simply-supported beam carrying a uniformly supported load. 

Then from equation ( 13 S), 

d2v 1 1 
dz2  2 2 

E l -  = -M = -- WLZ + - wz2 

On integrating, 

+ A  dv WLZ 2 wz 3 EI- = - - + -  
dz 4 6 

and 

+ A z + B  (1 3.14) 
wLz3 wz4 

12 24 
EIv = -- + - 

Suppose v = 0 at the ends z = 0 and z = L; then 

B = 0, and A = wL’I24 
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Then equation (13.14) becomes 

(13.15) 
wz EZv = - [L’ - 2Lz2 + z’] 
24 

The deflection at the mid-length, z = Y . ,  is 

(1 3.16) 5wL4 v = -  
3 84 El 

13.4 Cantilever with a concentrated load 

A uniform cantilever of flexural stiffness Eland length L carries a vertical concentrated load Wat 
the free end, Figure 13.7. The bending moment a distance z from the built-in end is 

M = -W(L - z )  

Figure 13.7 Cantilever carrying a vertical load at the remote end. 

Hence equation ( 13.5) gives 

d2v 
dz2 

EZ- = W(L - Z) 

Then 

E I k  = w ( L z  - i Z 2 )  -L A (13.17) 
dz 

and 
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EIv = W( ;Lz2 - iz3) + Az + B 

At the end z = 0, there is zero slope in the deflected form, so that dv/dz = 0; then equation 
(13.17) gives A = 0. Furthermore, at z = 0 there is also no deflection, so that B = 0. Then 

wz 2 EIv = - (3L - Z) 
6 

Atthe free end,^ = L, 

WL 3 
VI. = - 

3 EI 
(13.18) 

The slope of the beam at the free end is 

0, = (2) ? = L  2EI 
(13.19) 

- WL2 - -  

When the cantilever is loaded at some point between the ends, at a distance a, say, from the 
built-in support, Figure 13.8, the beam between G and D carries no bending moments and therefore 
remains straight. The deflection at G can be deduced from equation (13.18); for z = a, 

(13.20) w a  3 v, = - 
3 E/ 

and the slope at z = a is 

(13.21) Wa 2 

2EI 
eo = - 

Then the deflection at the free end D of the cantilever is 

Figure 13.8 Cantilever with a load applied between the ends. 
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W a  ’ 
3EI 2EI 

V L  = - wu3 + ( L  - a)  - 

- -  wu2 ( 3 ~  - a) 

(13.22) 
- 

6EI 

13.5 Cantilever with a uniformly distributed load 

A uniform cantilever, Figure 13.9, carries a uniformly distributed load of w per unit length over 
the whole of its length. The bending moment at a distance z from C is 

1 
2 

M = --w ( L  - z)’ 

Then, from equation (13.5), 

d‘v 1 1 
dz’ 2 2 

EI- = -W ( L  - z)’ = -W (L2 - ~ L z  + z’) 

Figure 13.9 Cantilever carrying a uniformly distributed load. 

Thus 

EI- = -w L’z - Lz2  + -z3 + A * dz 2 7 3 7 
and 

2 2  1 I’ 3 12 ’ 1  1 EIv = -w -L’z’ - -Lz3 + -z4 + Az  + B 

At the built end, z = 0, and we have 
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- -  & - O  and v = O  
CL 

ThusA = B = 0. Then 

1 
24 

E ~ v  = -W (6L2z2 - 4Lz3 + z4) 

At the free end, D, the vertical deflection is 

(13.23) WL 4 
VL = - 

8EI 

13.6 Propped cantilever with distributed load 

The uniform cantilever of Figure 13.1 O(i) carries a uniformly distributed load w and is supported 
on a rigid knife edge at the end D. Suppose P is the force on the support at D. Then we regard 
Figure 13.10(i) as the superposition of the effects of P and w acting separately. 

Figure 13.10 (i) Uniformly loaded cantilever propped at one end. 
(ii) Deflections due to w alone. (iii) Deflections due to P alone. 

If w acts alone, the deflection at D is given by equation (13.23), and has the value 

WL 4 v ,  = - 
8EI 

If the reaction P acted alone, there would be an upward deflection 

PL 3 v* = - 
3 EI 
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at D. If the support maintains zero deflection at D, 

v , - v 2  = 0 

Thls gives 

P L 3  - WL - - -  
3EI 8EI 

or 

3wL p = -  
8 

(13.24) 

Problem 13.1 A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i) 
Calculate the deflection due to a load of 1 kN hung on the end of the rod. The 
weight of the rod may be neglected. (ii) If a vertical steel wire 3 m long, 0.25 
cm diameter, supports the end of the cantilever, being taut but unstressed 
before the load is applied, calculate the end deflection on application of the 
load. TakeE = 200GN/m2. (RNEC) 

Solution 

(1) The second moment of are of the cross-section is 

I, = - (0.050)4 = 0.307 x m 4  T 

64 

The deflection at the end is then 

(ii) Let T = tension in the wire; the area of cross-section of the wire is 4.90 x 

elongation ofthe wire is then 
m2. The 

e = - -  - T(3) 
EA (200 x 109)(4.90 x 

The load on the end of the cantilever is then (1000 - T), and this produces a deflection of 

(1000 - fi(2)3 v =  
3(200 x 109)(0.307 x 
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If this equals the stretching of the wire, then 

(1000 - 71(2)3 - - T(3) 
3(200 x 109)(0.307 x 1O-6) (200 x 109)(4.90 x 1O-6) 

This gives T = 934 N, and the deflection of the cantilever becomes 

v =  (66)(2)3 = 0.00276 m 
3(200 x 109)(0.307 x 1O-6) 

Problem 13.2 A platform carrying a uniformly distributed load rests on two cantilevers 
projecting a distance 1 m from a wall. The distance between the two cantilevers 
is %1. In what ratio might the load on the platform be increased if the ends 
were supported by a cross girder of the same section as the cantilevers, resting 
on a rigid column in the centre, as shown? It may be assumed that when there 
is no load on the platform the cantilevers just touch the cross girder without 
pressure. (Cambridge) 

Solution 

Let 
Then the maximum bending moment = %w, 12. 
Let w, = the safe load when supported, 

w, = the safe load per unit length on each cantilever when unsupported. 

6 = the deflection of the end of each cantilever, 
I/tR = the pressure between each cantilever and the cross girder. 

Then the pressure is 

3 3 E16 - -  R - - w,l -- 
2 8 - I’ 
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We see from the figure above that 

(R/2)(1/4)3 - R13 
i s =  - -  

3 EI 3 84 EI 

I having the same value for the cantilevers and cross girder. Substituting this value of 6 

R - 3w21 R - - - - -  

2 8 128 

or 

48 
65 

R = -w21 

The upward pressure on the end of each cantilever is YJ? = 24wJ/65, giving a bending moment 
at the wall equal to 24wJ2/65. The bending moment of opposite sign due to the distributed load 
is %wJ2. Hence it is clear that the maximum bending moment due to both acting together must 
occur at the wall and is equal to (% - 24/65) wJ2 = (17/130) wJ2. If h s  is to be equal to % wIZ2, 
we must have w, = (65/17) w,; in other words, the load on the platform can be increased in the 
ratio 65/17, or nearly 4/1. The bending moment at the centre of the cross girder is 6~~1’165, which 
is less than that at the wall. 

13.7 Simply-supported beam carrying a concentrated lateral load 

Consider a beam of uniform flexural stiffness EI and length L, which is simply-supported at its 
ends C and G, Figure 13.1 1. The beam carries a concentrated lateral load W at a distance a from 
C. Then the reactions at C and G are 

Wa v, = E (L  - u) vc = - 
L L 

Figure 13.1 1 Deflections of a simply-supported beam 
carrying a concentrated lateral load. 

Now consider a section of the beam a distance z from C; if z < a, the bending moment at the 
section is 
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M = v c z  

Deflections of beams 

and ifz > a, 

M = V , Z -  Mz - a) 

Then 

d2v 
dz2 

EI- = -V, z for z < a 

and 

E& = -vC z + ~ ( z  - a) for z > a 
dz2 

On integrating these equations, we have 

1 dv 
dz 2 (13.25) EI- = --Vc z 2  + A  for z < a 

dv 1 

dz 2 
E I -  = --Vcz2 + W ( i z 2  -az) +A' for z > a 

and 

1 
6 

EIv = --Vc z 3  + AZ + B for z < a 

(13.26) 

(13.27) 

+A'z + B' for z>a (13.28) 

In these equations A, B, A '  and B' are arbitrary constants. Now for z = a the values of v given by 
equations (13.27) and(13.28) are equal, and the slopes given by equations (13.25) and(13.26) are 
also equal, as there is continuity of the deflected form of the beam through the point D. Then 

1 1 
6 

--vc a 3  + A a  + B = - -Vc 6 a 3  + W($-13 - t . 3 )  + A i a  + B i  

and 
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These two equations give 

(13.29) 

Ai the extreme ends of the beam v = 0, so that when z = 0 equation (1 3.27) gives B = 0, and when 
z =L,  equation (13.28) gives 

We have finally, 

1 W A = -V, L 2  -- (L - a)’ 
6 6L 

B = O  

But Vc = W(L - a)/L, so that equations (13.30) become 

Wa 
6L 

A = - (L  - a)(2L - a) 

B = O  

(13.30) 

(13.31) 
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Then equations (13.27) and (13.28) may be written 

1 W 
6 L  6 L  

E I V =  ~ L ’ - ~ u L + u ~  z f o r z < a  

W W 
6 L  6 

EIv = - -(L - a)z3  t - (z’ - 3 m 2 )  

The second relation, for z > a, may be written 

3 (2L2 - 3aL+ u2 W 
E I v =  - - ( L - a ) z 3 + -  

6 L  6 L  

(13.32) 

(13.33) 

(13.34) 

Then equations (13.32) and (13.33) differ only by the last term of equation (13.34); ifthe last term 
of equation (13.34) is discarded when z < a,  then equation (13.34) may be used to define the 
deflected form in all parts of the beam. 

On putting z = a,  the deflection at the loaded point D is 

wa2 ( L  - .)2 
V D  = 

3 EIL 

When W is at the centre of the beam, a = %L, and 

WL 
V D  = - 

48EI 

(13.35) 

(13.36) 

This is the maximum deflection of the beam only when a = %L. 

13.8 Macaulay’s method 

The observation that equations (13.32) and (13.33) differ only by the last term of equation (13.34) 
leads to Macaulay‘s method, which ignores terms which are negative withm the Macaulay brackets. 
That is, if the term [z -a ]  in equation (13.34) is negative, it is ignored, so that equation (13.34) can 
be used for the whole beam. The method will be demonstrated by applying it to a few examples. 

Consider the beam shown in Figure 13.12, which is simply-supported at its ends and loaded 
with a concentrated load W. 
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Figure 13.12 Form of step-function used in deflection analysis of a beam. 

By taking moments, it can be seen that 

v, = w ( L  - a ) / L  (13.37) 

and the bending moment when z < a is 

M = vcz (13.38) 

Then bending moment when z > a is 

M = vc z - W(Z - a) (13.39) 

Now 

d2v 
dz2 

El - = -M 

hence, the Macaulay method allows us to express this relationship as follows 

a < z < L - - - - - - - z <  = a - _ - - _ _ - *  - - -__  - - - - -  

(13.40) +w [z - a] 
d’v 

dz’ 
EI - = -Vc z 

On integrating equation (13.40), we get 

(13.41) v, z 2  W + A  +- [z - a]’ dv 
dz 2 2 

E / -  1 -- 

(13.42) 
-v z3 W 

EIV = C + A ~ + B  ++-.I’ 
6 6 and 
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The term on the right of equations ( 13.40) and ( 13.4 1) must be integrated by the manner shown, 
so that the arbitrary constants A and B apply when z < a and also when z > a. The square brackets 
[ ] are called Macaulay brackets and do not appi'y when the term inside them is negative. 

The two boundary conditions are: 

a t z  = 0, v = 0 and a t z  = L ,  v = 0 

Applying the first boundary condition to equation (13.42), we get 

B = O  

Applying the second boundary condition to equation (13.42), we get 

0 = -V, L 3 / 6  + AL + W (L - ~ ) ~ / 6  

or AL = W (L - a) L3/ (6L)  - W (L  - ~ ) ~ / 6  

or A = W (L - a) L/6 - W (L  - u ) ~ / ( ~ L )  

- - W (L - a) {L - (L - a)Z/L} 
6 

:. EIv = -W(L - a)z3 / (6L)  

+ w(L - a) (4 - (L - u ) ~ / L } x / ~  

+ W[Z - aF/6 

On putting z = a, we get the deflection at D, namely v, 

i e. V D  = (L  - a) { - a 3 / L  + (L - (L - a)2/L) a + 0) 
6EI 

= wL - a) { -a3/L + (L - ( L 2  - 2aL + a2)/L) a} 
6EI 

= N L  - a) ( -a3/L + La - La + 2a2 - a3/L) 
6EI 

HqL - a)? a 2  or V D  = 
3 EIL 
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If W is placed centrally, so that a = W2, 

w( L -  L / 2)2 ( L  / 2 )  
V D  = 

3 EIL 

(13.43) 

13.9 Simply-supported beam with distributed load over a portion of 
the span 

Suppose that the load is w per unit length over the portion DG, Figure 13.13; the reactions at the 
ends of the beam are 

W vC = - (L  - a)2 
2L 

W vc = - (p - a 2 )  
2L 

The bending moment at a &stance z from C is 

where the square brackets are Macaulay brackets, which only apply when the term inside them is 
positive. 

M = - ( L - a ) 2 z - ~ [ z - a ] 2  W 

2L i.e. 

U)‘ z Hence EI-=-(L- d’v -w 
&2 2 L  

d v w  
so that EI-=  - ( L - a ) ’ z 2 + A  

& 4L 

and 
-W 

EIv = - ( L - a ) ’ z 3 t  A z t  B 
12L 

+ “[.-.IZ 
2 

+“[.-a]’ 
6 

W 
t -[z- .I4 

24 

(13.44) 

(13.45) 

(13.46) 
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Figure 13.13 Load extending to one support. 

The boundary conditions are that when 

z = 0 ,  v = 0 andwhen z = L ,  v = 0 

Applying the first boundary condition to equation (13.46), we get 

B = O  

Applying the second boundary condition to equation ( 1  3.46), we get 
W 2 W 4 o = - - ( L - U )  L ~ + A L + - ( L - u )  
12 24 

W 2 W 4 
: . A  = - ( L - U )  L - - ( L - U )  

12 24 L 

= - " (  L-a)  2 {  2 L 2 - ( k ? ) 2 }  

1 = - (L-u)2 (2L2-L2-u*  W +2uL 

A = - (L-u)2 (  W L 2 + 2 L u - u 2 )  

EIv = - ( L - a ) 2 z 3 + - ( L - a )  -W W 2 ( L 2 +  2 L u - a 2 ) z  

24 L 

24 L 

24 L 
or 

The equation for the deflection curve is then: 

2 L  24 L 

(13.47) 
+-[,-.I4 W 

24 

where the square brackets in equation (13.47) are Macaulay brackets. 
When the load does not extend to either support, Figure 13.14(i), the result of equation ( 1  3.47) 

may be used by superposing an upwards distributed load of w per unit length over the length GH 
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on a downwards distributed load of w per unit length over DH, Figure 13.14(ii). Due to the 
downwards distributed load alone 

1 EIv =-(L-u) -W 2 z ~ + - ( L - u ) ~ ( L ~ + ~ L u - u ~  W z 
2 L  24 L 

+ q - q  (13.48) 
24 

where the square brackets in equation (13.48) are Macaulay brackets. 

Figure 13.14 Load not extending to either support. 

Due to the upwards distributed load 

1 EZv = - ( L - b ) 2 z 3 - - ( L - b ) 2 ( L 2 + 2 L 6 - b 2  W W z 
2L 24 L 

(13.49) 
--[z- W bI4 

24 

where the square brackets in equation (1 3.49) are Macaulay brackets. 
On superposing the two deflected forms, the resultant deflection is given by 

W 3 wz 
EIv = - - ( b - ~ )  (2L-U- 6) + - 

2L 24 L 

{(L-.)2 ( f . 2  + 2La  -a’ )  -(L-b)2 ( L2 -b 2Lb 4 2 ) )  (13.50) 

+-+14 W - --[z-~I~ W 

24 
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where the square brackets of equation (13.50) are Macaulay brackets and must be ignored if the 
term inside them becomes negative. 

13.10 Simply-supported beam with a couple applied at an 
intermediate point 

The simply-supported beam of Figure 13.15 carries a couple M, applied to the beam at a point a 
distance u from C. The vertical reactions at each end are (MJL). The bending moment a distance 
z from C is 

(13.51) M 2  M = - + Mu [z - u]" 
L 

Figure 13.15 Beam with a couple applied at a point in the span. 

The term on the right of equation (1 3.5 1) is so written, so that equation (1 3.5 1) applied over the 
whole length of the beam. 

Hence, 
c - - - - - - - - - z < = u - - - - - - - - - -  - c - - - - - -  a < z < L - - - - -  - 

d'v Maz 
E l - = -  - Ma [ z -  U ] O  

dz2 L 

dv Maz2 
dz 2L 

... El  - = - + A  - M a [ Z - U ]  (13.52) 

(13.53) Ma 
3 

- -[z- u]' 
2 

and 

The boundary conditions are that 

EIv = - Maz t Azt B 
6 L  

v = 0 at z = O  andat z = L  

From the first boundary condition, we get 

B = O  
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From the second boundary condition, we get 

M k '  -4 
0 = - + AL - (L - a)' 

6 2 

- M k  Ma :. A = - + - (L - a)' 
6 2L 

Ma - (-L' + 3L' + 30' - 6aL) 
6L 

= 

Ma - (2L' - 6La + 3 ~ ' )  
6L 

= 

2L2-6La+3a  2 )  +- -";"-[,-a12 
6 L  6 L  

where the square brackets in equation (13.54) are Macaulay brackets. 
The deflection at D, when z = a, is 

Mila 
VD = - (L - a) (L - 2 4  

3 EIL 

(13.54) 

(13.55) 

Problem 13.3 A steel beam rests on two supports 6 m apart, and carries a uniformly 
distributed load of 10 kN per metre run. The second moment of area of the 
cross-section is 1 x m4 and E = 200 GN/m2. Estimate the maximum 
deflection. 

Solution 

The greatest deflection occurs at mid-length and has the value given by equation (1 3.16): 

= 0.00844 m 5wL4 - 5(100 x 10)) (6)4 
y = - -  

384EI 384(200 x 10') (1 x lo-)) 
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Problem 13.4 A uniform, simply-supported beam of span L carries a uniformly distributed 
lateral load of w per unit length. It is propped on a knife-edge support at a 
distance a from one end. Estimate the vertical force on the prop. 

WL 
8 

R = -  
1 - 2 [;)2 + [$ 

E ( ,  - $ L 
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Solution 

From section 13.7, the lateral deflection at any point is given by 

W wa 
6L  6L 

W wz = wa 

EIV = --(L - a)z3 + - b ~ *  - ~ U L  + a*)z for z > a 

wa3 for z > a EIv = --(L - a)z3  +- ( z  - 3a) +-(2L2 + a2)z - - 
6L 6 6L 6 

Let us suppose first that a > %L, when we would expect the greatest deflection to occur in the 
range z < a;  over this range 

wa m, W 
dz 2L 6L  

(L  - a)z2 + - (2L' - 3aL + a * )  E I -  = -- 

This is zero when 

W 
2L 6L  

-- ( L  - a ) z 2  + 5 ( 2 ~ 3  - 3 a ~  + a 2 )  = o 

i.e. when 

1 
3 

(L  - a)z2 = -a (2LZ - 3aL + a*)  

or when 

z = 4- 

G- 
If this gives a root in the range z < a, then 

- (2L - a)  < a 

and 2L - a  < 3a, or a > %L. This is compatible with our earlier suppositions. Then, with a > %L, 
the greatest deflection occurs at the point 
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1 - 
z = [(a/3) (2L - a)I2 and has the value 

vmax = - w a  (2L - a) (L - a) 4- 
9LEI 

If a < %L, the greatest deflection occurs in the range z > a; in this case we replace a by (L - a), 
whence the greatest deflection occurs at the point 

z = ,/-,andhasthevalue 

v,, - - = 9LEI ( L 2  - q- 3 
13.11 Beam with end couples and distributed load 

Suppose the ends of the beam CD, Figure 13.16, rest on knife-edges, and carry couples M, and MP 
If, in addition, the beam carries a uniformly distributed lateral load w per unit length, the bending 
moment a distance z from C is 

Mc z 1  M = - ( L - z ) + M , - + - w z ( L - z )  
L L 2  

The equation of the deflection curve is then given by 

d2v - Mc z 1  

d Z 2  L L 2  
Ef - - -- ( L  - Z )  - MD - - - wz ( L  - Z) 

Then 

E I -  * - -  - % ( L z  - T z 2 )  1 
- ?(:) MD - ? w ( $  1 - $) + A  dZ L 

Figure 13.16 Simply-supported beam carrying a uniformly suuuorted load. 
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and 

(13.56) 

If the ends of the beam remain at the same level, v = 0 for z = 0 and z = L. Then B = 0 and 

Then 

+ Z  
24 

+ 

The slopes at the ends are 

= - L ( 8 4 .  + 4MD + wL2) ( z)z=o 24EI 

= -- L ( 4 4  + 8MD + wL2) 
24EI 

Suppose that the end D of the beam now slnks an amount 6 downwards relative to C. Then at v =L 
we have v = 6, instead of v = 0. In equation (13.56), A is then given by 

1 1 1 
3 6 24 

AL = E16 + -M&’ + -Md2 + -wL4 

For the slopes at the ends we have 

L 6 
= - (8M, + 4MD + wL2) + - (s)z=o 24EI L 

6 
24EI L 

(4Mc + 8M, + wL2) + - L - -- 

(13.57) 
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13.12 Beams with non-uniformly distributed load 

When a beam carries a load which is not uniformly distributed the methods of the previous articles 
can still be employed if M and JMdz are both integrable functions of z, for we have in all cases 

d2v 
dz' 

-EI - = M 

which can be written in the form 

"(") = -- M 
d z d z  EI 

If I is uniform along the beam the first integral of this is 

m, - = A - ' [ M &  EI (13.58) G5 

where A is a constant. The second integral is 

1 
E/ 

v = AZ + B - - [[Mdzdz (13.59) 

If M and J M  dz are integrable function of z the process of finding v can be continued analytically, 
the constants A and B being found from the terminal conditions. Failing this the integrations must 
be performed graphically or numerically. This is most readily done by plotting the bending- 
moment curve, and from that deducing a curve of areas representing J M  dz. From this curve a 
third is deduced representing J J M  dz dz. 

Problem 13.6 A uniform, simply-supported beam carries a distributed lateral load varying in 
intensity from w, at one end to 2w0 at the other. Calculate the greatest lateral 
deflection in the beam. 

Solution 

The vertical reactions at 0 and A are (213) wJ and (516) wJ. The bending moment at any section 
a distance z from 0 is then 
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2 1 W G 3  M = -w,Lz - T W G ~  - - 
3 6L 

Then 

On integrating once, 

where C, is a constant. On integrating further, * + c,z + c2 w&3 W#4 
EIv = -IT - - -  

24 120L 

where C, is a further constant. If v = 0 at z = L, we have 

11 
180 

C, = --w,,L3 and C, = 0 

Then 

11 W , L Z ~  wG4 wG5 
EIv = - w&’z - - - - + - 

180 9 24 120L 

The greatest deflection occurs at dv/dz = 0, i.e. when 

W,LZ* W G 3  W#4 - - 11 w * L 3 - - + - + -  - 

180 3 6 24L 

or when 

+ 60(;)3 - 120(;)2 + 22 = 

The relevant root of this equation is z/L =OS06 which gives the point of maximum deflection neai 
to the mid-length. The maximum deflection is 
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7.03 w, L4 wo L4 v,, i --- - 0.0195- 
360 EI EI 

This is negligibly different from the deflection at mid-span, which is 
5w0L4 

(VIz = L / 2  = - 
256EI 

13.13 Cantilever with irregular loading 

In Figure 13.17(i) a cantilever is free at D and built-in to a rigid wall at C. The bending moment 
curve is DM of Figure 13.17(ii); the bending moments are assumed to be hogging, and are 
therefore negative. The curve CH represents JtM dz, and its ordinates are drawn downwards 
because M is negative. The curve CG is then constructed from CH by finding 

1 [Mi&& 
Inequation(l3.51),theconstantsAandBarebothzeroas v = Oanddvldz = Oatz = 0. Then 
CD is the base line for both curves. 

Figure 13.17 Cantilever carrying any system of lateral loads. 

13.14 Beams of varying section 

When the second moment of area of a beam varies from one section to another, equations (1 3.58) 
and (13.59) take the forms 

- -  dV - A - L J ?  
dz E 
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and 

v = A z + B - -  1 r,+ 
E 

The general method of procedure follows the same lines as before. If (M/I) and J(M/l)dz are 
integrable functions of z, then (dv/dz) and v may be evaluated analytically; otherwise graphical or 
numerical methods must be employed, when a curve of (M/I) must be taken as the starting point 
instead of a curve of M. 

Problem 13.7 A cantilever strip has a length L, a constant breadth b and thickness t varying 
in such a way that when the cantilever carries a lateral end load W, the centre 
line of the strip is bent into a circular arc. Find the form of variation of the 
thckness t. 

Solution 

The second moment of area, I, at any section is 

1 
12 

I = -bt3 

The bending moment at any section is (- Wz), so that 

d2v 

dz2 
El- = WZ 

Then 

d2v - wz - - -  
rL2 E l  

If the cantilever is bent into a circular arc, then d*v/dZ' is constant, and we must have 
wz 
EI 
- -  - constant 
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This requires that 

Z - -  - constant 
I 

or I " 2  

Thus, 
1 - bt' ot z 

12 

1 
or t " z3 

Any variation of the form 
1 

t = to ($7 

where to is the thickness at the built-in end will lead to bending in the form of a circular arc. 

Problem 13.8 The curve M ,  below, represents the bending moment at any section of a timber 
cantilever of variable bending stiffness. The second moments of area are given 
in the table below. Taking E = 11 GN/m2, deduce the deflection curve. 

z(frornsupportedend)(rn) 0 0.1 0.2 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.7 
I (m') 50.8 27.4 17.4 12.25 5.65 3.23 1.69 0.783 0.278 0.074 0.0298 0 x 1 0 ~ 4  
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Solution 

The first step is to calculate M/I at each section and to plot the M/I curve. We next plot the area 
under this curve at any section to give the curve 

I 

From this, the curve 

is plotted to give the deflected form 

The maximum deflection at the free end of the cantilever is 

300 lo6 = 0.0272 m 1 v = - (300 x lo6) = 
E 11 x 109 

13.1 5 Non-uniformly distributed load and terminal couples; 
the method of moment-areas 

Consider a simply-supported beam carrying end moments M, and M,, as in Figure 13.16, and a 
distributed load of varying intensity w. Suppose M, is the bending moment at any section due to 
the load w acting alone on the beam. Then 

MD ( L  - z )  + - 2  
Mc M = M o + -  
L L 

The differential equation for the deflection curve is 

The integral between the limits z = 0 and z = L is 

(13.60) 

(13.61) 
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Again, on multiplying equation ( 13.60) by z,  we have 

But 

(13.62) 

Thus, on integrating equation (13.62), 

(13.63) 

But if v = 0 when z = 0 and z =L, then equation (13.63) becomes 

Then 

MDL M c L  1 
Mozdz 

: = L  3EI 6EI EIL 
(13.64) 

On substituting this value of (dddz),  into equation (13.61), 

M,L 1 L 1 L  
M c L  - - - -I Mozdz - -1 M0z& (13.65) (2) :=0 = 6EI El o EIL o 

the integral J: Mo dz is the area of the bending moment curve due to the load w alone; M, zdz 
is the moment of h s  area about the end z = 0 of the beam. If A is the area of the bending moment 
diagram due to the lateral loads only, and z is the distance of its centroid from z = 0, then 

A = [Modz ,  z - = L f M o z d z  
A 

and equations (13.64) and (13.65) may be written 
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(13.66) 

(13.67) 

The method of analysis, malung use of A and Z, is known as the method of moment-areas; it can 
be extended to deal with most problems of beam deflections. 

When the section of the beam is not constant, equation ( 13.60) becomes 

The slopes at the ends of the beam are then given by 

and 

It is necessary to plot five curves of (Mdl), (l/l), (do, (;/l), (M,@) and to find their areas. 
As an example of the use of equations (13.66) and (13.67), consider the beam of Figure 

13.18(i), which carries end couples, Mc and MD, and a concentrated load Wat a distance a from C. 
The bending moment diagram for W acting alone is the triangle CBD, Figure 13.18(ii). The 

area of this triangle is 

w a  A = -L - ( L  - a )  = - ( L  - a )  
2 ' (7) 2 

To evaluate its first moment about C, divide the triangle into two right-angled triangles, having 
centroids at G, and G,, respectively. Then 
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1 wu 
2 

1 

- 
Az = --a [ - L (L  - .I] $ + + [L - u]  [F (L - 41 [; (L + zul] 

= - wu ( L z  - 2). 
6 

Figure 13.18 Moment-area solution of a beam carrying end couples 
and a concentrated load. 

Then equations (13.66) and (13.67) give 

M& MDL wu - + - + - (a2  - 3aL + 2L2) = (3 = 0 3EI 6EI 6EIL 

H=,, - 6EI 3EI 6EIL 
M 4  - ML4 - wu - -  - - -(L? - U Z )  

Problem 13.9 Determine the deflection of the free end of the stepped cantilever shown in 
Figure 13.19(a). 

Solution 
The bending moment diagram is shown in Figure 13.19(b) and the M/I diagram 
is shown in Figure 13.19(c). 
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Figure 13.19 Stepped cantilever. 

From equation (13.61) 

E1 z - - v = - moment of area of the bending moment diagram ( 2  1: 
1 
E 

L 
or [ z 5 - V) = -- x moment of area of the MII diagram 

0 

Consider the moment of area of MI1 about the point A ,  because we know that 

m, - and v = 0 at the point B 
dz 

:. [. d, dv - .] - b x - dv - .A] 

z = L  dz z = o  

- - - x - x - x - + - x - x - + - x - x  L 2 L WL L 3 L  WL L ($+$.$)I 
- E 2 1  1 I" 4 3 2 61 2 4 61 4 
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or 

o+v, = w.'[L+L+L.(;+;)] E1 24 16 24 

- &[L+-+- 
EI 24 16 1 144 5 ,  

- 

5WL3 
V A  = - 

36EI 

Problem 13.10 Determine the deflection of the free end of the varying depth cantilever shown 
in Figure 13.20(a) 

(c)Mil qramx(Wn) 

Figure 13.20 Varying depth cantilever. 

Solution 

Taking the moment of area of the M/I diagram about A ,  we eliminate v, and dv/dz at B, because 
they are both zero. Additionally, as the M/I diagram is numerical, we can use numerical 
integration, namely Simpsons rule, as shown in Table 13.1. 



Ordinate Mn z m 
1 0 0 0 
2 0.208 WWI W 4  0.052 WL'/I 
3 0.25 WL/I W2 0.125 WL*/I 
4 0.25 WWI 3L/4 0.188 WL*/I 
5 0.2 WWI L 0.2 WP/I  

Figure 13.21 Shearing distortions in a Figure 13.22 Shearing deflection at the 
cantilever. neutral axis of a beam. 

SM f(m) 
1 0 
4 0.208 WL'/I 
2 0.25 WL'/I 
4 0.752 WL2/I 
1 0.2 WL?I 

Z 1.41 WL2B 
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Suppose the shearing stress at the neutral axis of the beam is T ~ ” ,  then the shearing strain at the 
neutral axis is 

T~~ 

G 
YN, = - (13.68) 

where G is the shearing modulus. The additional deflection arising from shearing of the cross- 
section is then 

sz TN.4 

G 
6vs = yNA sz = - 

Then 

For a cantilever of thin rectangular cross-section, Section 10.2, 

3F 
T~~ = - 2ht 

where h is the depth of the cross-section, and t is the thickness. Then 

*s - 3F - - -  
a5 2Ght 

Then 

vs = - 3Fz + A  
2Ght 

At z = 0, there is no shearing deflection, so A = 0. At the end z = L, 

3 FL 
2Ght 

(VJr.  = - 

The bending deflection at the free end, z = L, is 

FL3 - 4FL 
3 E1 Eh 3t 

(v),* = - - - 

(13.69) 

(13.70) 

(13.71) 

(13.72) 

(13.73) 
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Then the total end deflection is 

335 

4FL3 3FL 
VL = -i- Eh3t 2Ght 

(13.74) 

For most materials (3EBG) is of order unity, so the contribution of the shear to the total deflection 
is equal approximately to (h/L)’. Clearly, the shearing deflection is important only for deep beams. 

Table 13.2 provides a summary of the maximum bending moments and lateral deflections for 
some statically determinate beams. 

Problem 13.1 1 A 1.5 m length of the beam of Problem 1 1.2 is simply-supported at each end, 
and carries concentrated lateral load of 10 kN at the mid-span. Compare the 
central deflections due to bending and shearing. 

Solution 

From Problem 11.2, the second moment of area of the equivalent steel I-beam is 12.1 x 
The central deflection due to bending is, therefore, 

m4. 

wz3 - (10 x lo3) (1.5)3 = 0.290 x m ‘ B = - -  48Es 1, 48 (200 x 10’) (12.1 x 

The average shearing stress in the timber is 

lo’ = 0.445 MN/m2 
(0.15) (0.075) 

If the shearing modulus for timber is 

4 x lo9 N/m2 

the shearing strain in the timber is 
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The resulting central deflection due to shearing is 

v, = y x 0.75 = (0.111 x lO-3 )  (0.75) = 0.0833 x l O - 3  m 

Table 13.2 Bendine moment and deflections for some simple beams 

Thus, the shearing deflection is nearly 30% of the bending deflection. The estimated total central 
deflection is 

v = vB + vs = 0.373 x l O - 3  m 
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Further problems (answers on page 693) 

13.12 A straight girder of uniform section and length L rests on supports at the ends, and is 
propped up by a third support in the middle. The weight of the girder and its load is w 
per unit length. If the central support does not yield, prove that it takes a load equal to 
(5/8)wL. 

A horizontal steel girder of uniform section, 15 m long, is supported at its extremities 
and carries loads of 120 kN and 80 kN concentrated at points 3 m and 5 m from the two 
ends, respectively. I for the section of the girder is 1.67 x l O - 3  m' and E = 200 GN/m2. 
Calculate the deflections of the girder at points under the two loads. (Cambridge) 

A wooden mast, with a uniform diameter of 30 cm, is built into a concrete block, and is 
subjected to a horizontal pull at point 10 m from the ground. The wire guy A is to be 
adjusted so that it becomes taut and begins to take part of the load when the mast is 
loaded to a maximum stress of 7 MN/m2. 

Estimate the slack in the guy when the mast is unloaded. Take E for timber = 10 GN/m*. 
(Cam bridge) 

13.1 3 

13.14 

13.1 5 A bridge across a river has a span 21, and is constructed with beams resting on the banks 
and supported at the middle on a pontoon. When the bridge is unloaded the three 
supports are all at the same level, and the pontoon is such that the vertical displacement 
is equal to the load on it multiplied by a constant 2.. Show that the load on the pontoon, 
due to a concentrated load W, placed one-quarter of the way along the bridge, is given 
by 

11w 
6EIA 

, , ( I  + F )  

where I is the second moment of area of the section of the beams. (Cambridge) 
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13.1 6 Two equal steel beams are built-in at one end and connected by a steel rod as shown. 
Show that the pull in the tie rod is 

5 W l 3  

32 (3 + I)) 
P =  

where d is the diameter of the rod, and 1 is the second moment of area of the section of 
each beam about its neutral axis. (Cambridge) 



14 Built-in and continuous beams 

14.1 Introduction 

In all our investigations of the stresses and deflections of beams having two supports, we have 
supposed that the supports exercise no constraint on bending of the beam, i.e. the axis of the beam 
has been assumed free to take up any inclination to the line of supports. This has been necessary 
because, without knowing how to deal with the deformation of the axis of the beam, we were not 
in a position to find the bending moments on a beam when the supports constrain the direction of 
the axis. We shall now investigate this problem. When the ends of a beam are fEed in direction 
so that the axis of the beam has to retain its original direction at the points of support, the beam is 
said to be built-in or direction fmed. 

Consider a straight beam resting on two supports A and B (Figure 14.1) and carrying vertical 
loads. If there is no constraint on the axis of the beam, it will become curved in the manner shown 
by broken lines, the extremities of the beam rising off the supports. 

Figure 14.1 Beam with end couples. 

In order to make the ends of the beam lie flat on the horizontal supports, we shall have to apply 
couples as shown by MI and M2. If the beam is finny built into two walls, or bolted down to two 
piers, or in any way held so that the axis cannot tip up at the ends in the manner indicated, the 
couples such as MI and M2 are supplied by the resistance of the supports to deformation. These 
couples are termed fuced-end moments, and the main problem of the built-in beam is the 
determination of these couples; when we have found these we can draw the bending moment 
diagram and calculate the stresses in the usual way. The couples MI and M2 in Figure 14.1 must 
be such as to produce curvature in the opposite direction to that caused by the loads. 

14.2 Built-in beam with a single concentrated load 

We may deduce the bending moments in a built-in beam under any conditions of lateral loading 
from the case of a beam under a single concentrated lateral load. 
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W ( l - f ) + ( V )  

Figure 14.2 Built-in beam carrying a single lateral load. 

Consider a uniform beam, of flexural stiffness EI, and length L, which is built-in to end 
supports C and G, Figure 14.2. Suppose a concentrated vertical load Wis applied to the beam at 
a distance a from C. If M, and M, are the restraining moments at the supports, then the vertical 
reaction is at C is 

w 1 - -  + - ( M , - M , )  ( ;) ; 
The bending moment in the beam at a &stance z from C is therefore 

c _ - - - - _ - - _  - z < = a -  - - - - - - - - - + c - - a < z < = L -  - - 

M = k(1 -;) + ; 4 4 c - M G ) / z - M c  -W [z - a] 

Then, for the deflected form of the beam, the displacement is given by 

c - - - - - - - - - - z < = a - - - - - - - - - - -  - - -  a < z < = L - - -  

1 
.,"1.(1-3.;(M.-M.,,}= dz2 - + M c  + W [ Z - a ]  (14.1) 

E I - = - { W ( l - ~ ) + y ( M c - M G ) } ;  d= + M c z + A  
2 

or 
dv 1 z 2  W 

+ -[z-  a]* (14.2) 

Elv = - { W ( l - ~ ) + + ( M c - M G ) ) ~  + 2 + A z + B  +$[.-a]3 (14.3) 

and 
3 M,z2 



Built-in beam with a single concentrated load 34 1 

Two suitable boundary conditions are: 

when z = 0, v = dv/dz = 0 

As the Macaulay brackets will be negative when these boundary conditions are substituted, the 
terms on the right of equations (14.2) and (14.3) can be ignored, hence 

A = B = O  

Two other boundary conditions are: 

at z = L, v = dv/dz = 0, 

whch on substituting into equations (14.2) and (14.3) give the following two simultaneous 
equations: 

-[(I-;) + + ( ~ ~ - ~ ~ ~ ~ + . . + - ( ~ - U r  W = 0 

-[+ - ;) + +(MC - M314-1 + - MCL2 + W ( L  - a)’ = 0 

2 

6 6 6 

These simultaneous equations give 

M, = W u ( q 2  (14.4) 

2 

MG = W(L - a) [;) (14.5) 

Figure 14.3 Variation in bending moment in a built-in beam 
carrying a concentrated load at mid-length. 
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M, and M, are referred to as the faed-end moments of the beam; M, is measured anticlockwise, 
and M, clockwise. 

In the particular case when the load W is applied at the mid-length, a = YX., and 
WL 
8 

M ,  = MG = - 

The bending moment in the beam vary linearly from hogging moments of WL/8 at each end to a 
sagging moment of WL/8 at the mid-length, Figure 14.3. There are points of contraflexure, or zero 
bending moment, at distances L/4 from each end. 

14.3 Fixed-end moments for other loading conditions 

The built-in beam of Figure 14.4 carries a uniformly distributed load of w per unit length over the 
section of the beam from z = a to z = b. 

Figure 14.4 Distributed load over part of the span of a built-in beam. 

Consider the loading on an elemental length 6z of the beam; the vertical load on the element is wdz, 
and this induces a retraining moment at C of amount 

z (L  - z)2 
L Z  

6M, = w6z 

from equation (14.4). 
The total moment at C due to all loads is 

M, = [ab ; z (L  - z)2dz 

M, = - - ( b 2  - .’) - - (b3  - 4 +- (b4 - ..,I 
which gives 

1 
(14.6) 

2 L  
L2 w [: 3 4 
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M, may be found similarly. When the load covers the whole of the span, a = 0 and b = L, and 
equation (14.6) reduces to 

(14.7) 
W L  2 M, = - 
12 

In this particular case, M, = M,; the variation of bending moment is parabolic, and of the form 
shown in Figure 14.5; the bending moment at the mid-length is wL”24, so the fixed-end moments 
are also the greatest bending moments in the beam. 

Figure 14.5 Variation of bending moment in a built-in beam 
carrying a uniformly distributed load over the whole span. 

The points of contraflexure, or points of zero bending moment, occur at a distance 

L ( 3 - 4 3  (14.8) 
6 

from each end of the beam. 
When a built-in beam carries a number of concentrated lateral loads, W,, W2, and W,, Figure 

14.6, the fixed-end moments are found by adding together the fixed-end moments due to the loads 
acting separately. For example, 

(14.9) M, = c Wra, - 
r = 1.2.3 [ L E a r l ’  

for the case shown in Figure 14.6. 

Figure 14.6 Built-in beam carrying a number of concentrated loads. 
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We may treat the case of a concentrated couple M, applied a distance a from the end C, Figure 
14.7, as a limiting case of two equal and opposite loads Wa small distance 6a apart. The fured-end 
moment at C is 

( L  - a - 6a)2 Wa W(a + 6a) 
L 2  L 2  

M, = - - ( L  - a)2 + 

If 6a is small, 

Wa W 
M, = -- (L - a)’ + - [ a ( ~  - U ) ~  + 6~ (L - U ) ( L  - 3a)] 

L 2  L 2  

which gives 

ma 
L 2  

M, = - (L - a)(L - 3a) 

Figure 14.7 Built-in beam carrying a concentrated couple. 

But if 6a is small, M, is statically equivalent to the couple Wda, and 

(14.10) 
MO M, = - (L - a)(L - 3 4  
L 2  

Similarly, 

(14.11) 
MO M,; = - aj2L - 3 4  
L 2  

14.4 Disadvantages of built-in beams 

The results we have obtained above show that a beam which has its ends firmly fured in direction 
is both stronger and stiffer than the same beam with its ends simply-supported. On h s  account 
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it might be supposed that beams would always have their ends built-in whenever possible; in 
practice it is not often done. There are several objections to built-in beams: in the first place a 
small subsidence of one of the supports will tend to set up large stresses, and, in erection, the 
supports must be aligned with the utmost accuracy; changes of temperature also tend to set up large 
stresses. Again, in the case of live loads passing over bridges, the frequent fluctuations of bending 
moment, and vibrations, would quickly tend to make the degree of fixing at the ends extremely 
uncertain. 

Most of these objections can be obviated by employing the double cantilever construction. As 
the bending moments at the ends of a built-in beam are of opposite sign to those in the central part 
of the beam, there must be points of mflexion, i.e. points where the bending moment is zero. At 
these points a hinged joint might be made in the beam, the axis of the hinge being parallel to the 
bending axis, because there is no bending moment to resist. If this is done at each point of 
inflexion, the beam will appear as a central girder freely supported by two end cantilevers; the 
bendmg moment curve and deflection curve will be exactly the same as if the beam were solid and 
built in. With this construction the beam is able to adjust itself to changes of temperature or 
subsistence of the supports. 

14.5 Effect of sinking of supports 

When the ends of a beam are prevented from rotating but allowed to deflect with respect to each 
other, bending moments are set up in the beam. The uniform beam of Figure 14.8 is displaced so 
that no rotations occur at the ends but the remote end is displaced downwards an amount 6 relative 
to c. 

The end reactions consist of equal couples M, and equal and opposite shearing forces 2MJL, 
because the system is antisymmetric about the mid-point of the beam. The half-length of the beam 
behaves as a cantilever carrying an end load 2M& then, from equation ( 13.1 8), 

(2MJL)(L/2)* - M& * 
- -  

1 - t i =  
2 3EI 12EI 

Figure 14.8 End moments induced by the sinking of the supports of a built-in beam. 
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Therefore 

6EI6 
L 2  

M, = - (14.12) 

For a downwards deflection 6, the induced end moments are both anticlockwise; these moments 
must be superimposed on the fixed-end moments due to any external lateral loads on the beam. 

Problem 14.1 A horizontal beam 6 m long is built-in at each end. The elastic section modulus 
is 0 .933~ m3. Estimate the uniformly-distributed load over the whole span 
causing an elastic bending stress of 150 MN/m2. 

Solution 

The maximum bending moments occur at the built-in ends, and have value 

WL 

12 
MmaX = - 

If the bending stress is 150 MN/m2, 

M,, = - " - - oZ, = (150 x lo6) (0.933 x = 140kNm 
Y 

Then 

= - 12 (Mmm) = 46.7 kN/m 

L ?  

14.6 Continuous beam 

When the same beam runs across three or more supports it is spoken of as a continuous beam. 
Suppose we have three spans, as in Figure 14.9, each bridged by a separate beam; the beams will 
bend independently in the manner shown. In order to make the axes of the three beams form a 
single continuous curve across the supports B and C, we shall have to apply to each beam couples 
acting as shown by the arrows. When the beam is one continuous girder these couples, on any bay 
such as BC, are supplied by the action of the adjacent bays. Thus AB and CD, bending downwards 
under their own loads, try to bend BC upwards, as shown by the broken curve, thus applying the 
couples MB and M, to the bay BC. This upward bending is of course opposed by the down load 
on BC, and the general result is that the beam takes up a sinuous form, being, in general, concave 
upwards over the middle portion of each bay and convex upwards over the supports. 
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Figure 14.9 Bending moments at the supports of a continuous beam. 

In order to draw the bending moment diagram for a continuous beam we must first find the couples 
such as M, and M,. In some cases there may also be external couples applied to the beam, at the 
supports, by the action of other members of the structure. 

When the bending moments at the supports have been found, the bending moment and shearing 
force diagrams can be drawn for each bay according to the methods discussed in Chapter 7. 

14.7 Slopedeflection equations for a single beam 

In dealing with continuous beams we can make frequent use of the end slope and deflection 
properties of a single beam under any conditions of lateral loading. The uniform beam of Figure 
14.10(i) carries any system of lateral loads; the ends are supported in an arbitrary fashion, the 
displacements and moments being as shown in the figure. In addition there are lateral forces at the 
supports. The rotations at the supports are 8, and e,, respectively, reckoned positive if clockwise; 
MA and M, are also taken positive clockwise for our present purposes. The displacements 6, and 
6, are taken positive downwards. 

The loaded beam of Figure 14.10(i) may be regarded as the superposition of the loading 
conditions of Figures 14.10(ii) and (iii). In Figure 14.10(ii) the beam is built-in at each end; the 
moments at each end are easily calculable from the methods discussed in Sections 14.2 and 14.3. 
The fmed-end moments for this condition will be denoted by MFA and MFB. In Figure 14.1O(iii) 
the beam carries no external loads between its ends, but end displacements and rotations are the 
same as those in Figure 14.10(i); the end couples for this condition are MA’ and M,’. The 
superposition of Figures 14.10(ii) and (iii) gives the external loading and end conditions of Figure 
14.10(i). We must find then the end couples in Figure 14.lO(iii); from equations (13.49), putting 
w = 0, we have 

M,IL ~3 1 
(b - 6,) - + -  

e’ = X - 6EI L 

MiL M 2  1 
(%i - %) e, = - - + - + -  

6EI 3EI L 

Then 
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1 1 
L 6EI 

1 L 
L 6EI 

e, + - pA - 6,) = - ( 2 ~ ;  - M;) 

e, + - pA - 8,) = - ( 2 ~ ;  - M;) 

Figure 14.10 The single beam under any conditions of lateral load and end support shown in 
(i) can be regarded as the superposition of the built-in end beam of 
(ii) and the beam with end couples and end deformations of (iii). 

But for the superposition we have 
I MA/ = MA - MFA MB = MB - MFB 

Thus 

L 
(14.13) 

1 
9'4 + -(%f-b) L = - [ 2 ( M , - M , ) - ( M , - M F B ) ]  6 E l  

9 ,  + -(b-b) L = - [ 2 ( M , - M , ) - ( M , - M , ) ]  6 E l  
L 

(14.14) 
1 

These are known as the slope-deflection equations; they give the values of the unknown moments, 
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MA and MB. These equations will be used in the matrix displacement method of Chapter 23. 

encastrk beams. 
Table 14.1 provides a summary of the end fming moments and maximum deflections for some 

Table 14.1 End fixing moments and maximum deflections for some encastri beams 

Further problems (answers on page 693) 

14.2 A beam 8 m span is built-in at the ends, and carries a load of 60 kN at the centre, and 
loads of 30 kN, 2 m from each end. Calculate the maximum bending moment and the 
positions of the points of inflexion. 

A girder of span 7 m is built-in at each end and cames two loads of 80 kN and 120 kN 
respectively placed at 2 m and 4 m from the left end. Find the bending moments at the 
ends and centre, and the points of contraflexure. (Birmingham) 

14.3 



15 Plastic bending of mild-steel beams 

15.1 Introduction 

We have seen that in the bending of a beam the greatest direct stresses occur in the extreme 
longitudinal fibres; when these stresses attain the yield-point values, or exceed the limit of 
proportionality, the distribution of stresses over the depth of the beams no longer remains linear, 
as in the case of elastic bending. 

The general problem of the plastic bending of beams is complicated; plastic bending of a beam 
is governed by the forms of the stress-strain curves of the material in tension and compression. 
Mild steel, which is used extensively as a structural material, has tensile and compressive 
properties which lend themselves to a relatively simple treatment of the plastic bending of beams 
of this material. The tensile and compressive stress-strain curves for an annealed mild steel have 
the forms shown in Figure 15.1; in the elastic range Young's modulus is the same for tension and 
compression, and of the order of 300 MNIm2. The yield point corresponds to a strain of the order 
0.001 5. When the strain corresponding with the upper yield point is exceeded straining takes place 
continuously at a constant lower yield stress until a strain of about 0.015 is attained; at this stage 
further straining is accompanied by an increase in stress, and the material is said to strain-harden. 
This region of strain-hardening begins at strains about ten times larger than the strains at the yield 
point of the material. 

Figure 15.1 Tensile and compressive stress-strain curves of an annealed mild steel. 

In applying these stress-strain curves to the plastic bending of mild-steel beams we simplify the 
problem by ignoring the upper yield point of the material; we assume the material is elastic, with 
a Young's modulus E, up to a yield stress 0,; Figure 15.2. We assume that the yield stress, cy, and 
Young's modulus, E, are the same for tension and compression. These idealised stress-strain 
curves for tension and compression are then similar in form. 
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Figure 15.2 Idealized tensile and compressive stress-strain curves of annealed mild steel. 

15.2 Beam of rectangular cross-section 

As an example of the application of these idealised stress-strain curves for mild steel, consider the 
uniform bending of a beam of rectangular cross-section; b is the breadth of the cross-section and 
h its depth, Figure 15.3(i). Equal and opposite moments Mare applied to the ends of a length of 
the beam. We found that in the elastic bending of a rectangular beam there is a linear distribution 
of direct stresses over a cross-section of the beam; an axis at the mid-depth of the cross-section is 
unstrained and therefore a neutral axis. The stresses are greatest in the extreme fibres of the beam; 
the yield stress, oy, is attained in the extreme fibres, Figure 15.3(ii), when 

20,I M = - -  - My (say) 
h 

where I is the second moment of area of the cross-section about the axis of bending. But 
I = bh3/12, and so 

1 
6 

M y  = -bh20y  (15.1) 

As the beam is bent beyond this initial yielding condition, experiment shows that plane cross- 
sections of the beam remain nearly plane as in the case of elastic bending. The centroidal axis 
remains a neutral axis during inelastic bending, and the greatest strains occur in the extreme tension 
and compression fibres. But the stresses in these extreme fibres cannot exceed oy, the yield stress; 
at an intermediate stage in the bending of the beam the central core is still elastic, but the extreme 
fibres have yielded and become plastic, Figure 15.3(iii). 
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Figure 15.3 Stages in the elastic and plastic bending of a rectangular mild-steel beam. 

If the curvature of the beam is increased the elastic core is diminished in depth; finally a 
condition is reached where the elastic core is reduced to negligible proportions, and the beam is 
more or less wholly plastic, Figure 15.3(iv); in this final condition there is still a central unstrained, 
or neutral, axis; fibres above the neutral axis are stressed to the yield point in tension, whereas 
fibres below the neutral axis to the yield point are in compression. In the ultimate fully plastic 
condition the resultant longitudmal tension in the upper half-depth of the beam is 

1 - bho, 
2 

There is an equal resultant compression in the lower half-depth. There is, therefore, no resultant 
longitudinal thrust in the beam; the bendmg moment for this fully plastic condition is 

(15.2) Mp = ( ; b h o , ) ( f h )  = -bh20, 1 
4 

This ultimate moment is usually called thefirllyplastic moment of the beam; comparing equations 
(15.1) and (15.2) we get 

(15.3) 
3 

Mp = TMy 
Thus plastic collapse of a rectangular beam occurs at a moment 50% greater than the bending 
moment at initial yielding of the beam. 

15.3 Elastic-plastic bending of a rectangular mild-steel beam 

In section 15.2 we introduced the concept of a fully plastic moment, Mm of a rmld-steel beam; this 
moment is attained when all longitudinal fibres of the beam are stressed into the plastic range of 
the material. Between the stage at which the yield stress is first exceeded and the ultimate stage 
at which the fully plastic moment is attained, some fibres at the centre of the beam are elastic and 
those remote from the centre are plastic. At an intermediate stage the bending is elastic-plastic. 
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Figure 15.4 Elastic-plastic bending of a rectangular section beam. 

Consider again a mild-steel beam of rectangular cross-section, Figure 15.4, which is bent about 
the centroidal axis Cx. In the elastic-plastic range, a central region of depth h, remains elastic; 
the yield stress a,is attained in fibres beyond h s  central elastic core. If the central region of depth 
h, behaves as an elastic beam, the r a d u  of curvature, R, is given by 

E 
(15.4) 20, - 

h0 R 
- - -  

where E is Young's modulus in the elastic range of the material. Then 

LKO, 
h, = - (15.5) 

E 

Now, the bending moment carried by the elastic cor: of the beam is 

bhi 

6 
M, = Or - (15.6) 

and the moment due to the stresses in the extreme plastic regions is 

M2 = ..[$ - $1 (15.7) 

The total moment is, therefore, 

M = M, + M, = 0 ~ 4  bh ' + O y  [b: - - $1 
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whch gives 

(15.8) 

But the fully plastic moment, Mp, of the beam is 

Thus equation (15.8) may be written 

M = M p l  - -  I :;I 
On substituting for h,  from equation (15.5), 

At the onset of plasticity in the beam, 

- - - -  h - 'OY - (i) (say) 
Y R E 

Then equation ( 15.10) may be written 

1 (hlR): 

Mf 3 (hlR)' 
- -  M -  1 - - -  

(15.9) 

(15.10) 

(15.11) 

(15.12) 

Values of (M/Mp) for different values of (h/R)/(h/R), are given in Figure 15.5; the elastic limit of 
the beam is reached when 

2 
3 

M = -Mp = MY (say) 

As M is increased beyond My, the fully plastic moment M p  is approached rapidly with increase of 
curvature (I&) of the beam; M is greater than 99% of the fully plastic moment when the curvature 
is only five times as large as the curvature at the onset of plasticity. 
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Figure 15.5 Moment-curvature relation for the elastic-plastic 
bending of a rectangular mild-steel beam. 

15.4 Fully plastic moment of an I-section; shape factor 

The cross-sectional dimensions of an I-section are shown in Figure 15.6; in the fully plastic 
condition, the centroidal axis Cx is a neutral axis of bending. The tensile fibres of the beam all 
carry the same stress or; the total longitudinal force in the upper flange is 

Grbt/ 

and its moment about Cx is 

orb{ 3h - +/) = Za,btf 1 (h - t,) 

Similarly, the total force in the tensile side of the web is 

or(; - t/) tw 

and its moment about Cx is 

1 ' ( i  ) *  8 
70' -h - tf t,,, = -ort,,(h - 2tJ' 

The compressed longitudinal fibres contribute moments of the same magnitudes. The total 
moment carried by the beam is therefore 
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(15.13) I 1 
M,, = o,bgh - t,) + -tw (h - 2fx [ 4 

Figure 15.6 Fully plastic moment of an I-section beam. 

In the case of elastic bending we defined the elastic section modulus, Z,, as a geometrical 
property, which, when multiplied by the allowable bending stress, gives the allowable bending 
moment on the beam. In equation ( 15.13) suppose 

(15.14) 
1 
4 Z, = b$(h - t,) + -tw (h - 2'1 

Then Z, is the plastic section modulus of the I-beam, and 

Mp = oyzp (15.15) 

As a particular case consider an I-section having dimensions: 

h = 20cm, 

b = lOcm, 

t, = 0.70cm 

fr = 1.00cm 

Then 

1 
4 

Z,, = (0.1)(0.010)(0.2 - 0.010) + -(0.007)(0.2 - 0.020)2 = 0.247 x l O - 3  m 3  

The elastic section modulus is approximately 

Z, = 0.225 x l O - 3  m 3  

If M, is the bending moment at which the yield stress o, is first reached in the extreme fibres of the 
beam, then 
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zp 0247 
(15.16) - - - - -  - - 1.10 M P  - -  

M y  Z, 0225 

Thus, in this case, the fully plastic moment is only 10% greater than the moment at initial yielding. 
The ratio (Z&J is sometimes called the shapefactor. 

15.5 More general case of plastic bending 

In the case of the rectangular and I-section beams treated so far, the neutral axis of bending 
coincided with an axis of symmetry of the cross-section. For a section that is unsymmetrical about 
the axis of bending, the position of the neutral axis must be found first. The beam in Figure 15.7 
has one axis of symmetry, Oy; the beam is bent into the fully plastic condition about Ox, whch is 
perpendicular to Oy. The axis Ox is the neutral axis of bending; the total longitudinal force on the 
fibres above Ox is A l a ,  where A ,  is the area of the cross-section of the beam above Ox. If A2 is 
the area of the cross-section below Ox, the total longitudinal force on the fibres below Ox is A p U  
If there is no resultant longitudinal thrust in the beam, then 

A 0  = A o  1 Y  2 Y  

that is, 

A ,  = A ,  (15.17) 

Figure 15.7 Plastic bending of a beam having one axis of symmetry in the 
cross-section, but unsymmetrical about the axis of bending. 

The neutral axis Ox divides the beam cross-section into equal areas, therefore. If the total area 
of cross-section is A ,  then 

1 
1 2 2  

A = A  = - A  
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Then 
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1 
2 

A , o ,  = A,o, = -Ao, 

Suppose C, is the centroid of the area A ,  and C, the centroid of A,; if the centroids C, and C, are 
distances F, and y2, respectively, from the neutral axis Ox, then 

(15.18) 
1 

Mp = ,A.,(Y, + E )  

The plastic section modulus is 

(15.19) 
MP I - -  
0, 2 

Z,, = - = - A (  y ,  + y, ) 

Problem 15.1 A 10 cm by 10 cm T-section is of uniform thickness 1.25 cm. Estimate the 
plastic section modulus for bending about an axis perpendicular to the web. 

Solution 

The neutral axis of plastic bending divides the section into equal areas. If the neutral axis is a 
distance h below the extreme edge of the flange, 

(O.l)h = (0.0875)(0.0125) + (0.1)(0.0125 - h)  

Then 

h = 0.0117 m 

Then 
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Mp = -(0.1)(0.0117)'oy 1 + -(0.0875)(0.0008)'oy 1 
2 2 

1 
2 

+ -(0.0883)2(0.0 1230, 

= (0.0557 x 10-3)o, 

The plastic section modulus is then 

The elastic section modulus is 

Ze = 0.0311 x m 3  

Then 

15.6 Comparison of elastic and plastic section moduli 

For bending of a beam about a centroidal axis Cx, the elastic section modulus is 

I z, = - 
Y,, 

(15.20) 

where I is the second moment of area of the cross-section about the axis of bending, andy,, is the 
distance of the extreme fibre from the axis of bending. 

From equation (15.19) the plastic section modulus of a beam is 

1 -  - 
A Z P  = -( Y, + Y2 ) (15.21) 

Values of Z, and Z, for some simple cross-sectional forms are shown in Table 15.1. In the solid 
rectangular and circular sections Z,, is considerably greater than Z,; the difference between Z,, and 
Z, is less marked in the case of thin-walled sections. 
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Table 15.1 Comparison of elastic and plastic section moduli for some simple cross-sectional forms 
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15.7 Regions of plasticity in a simply-supported beam 

The mild-steel beam shown in Figure 15.8 has a rectangular cross-section; it is simply-supported 
at each end, and carries a central lateral load W. The variation of bendmg moment has the form 
shown in Figure 15.8@); the greatest bending moment occurs under the central load and has the 
value W 4 .  From the preceding analysis we see that a section may take an increasing bending 
moment until the fully plastic moment Mp of the section is reached. The ultimate strength of the 
beam is reached therefore when 

(15.22) 
WL 
4 

Mp = - 

Figure 15.8 Plastic bending of a simply-supported beam. 

If b is the breadth and h the depth of the rectangular cross-section, the bending moment, My, 
at which the yield stress, or, is frrst attained in the extreme fibres is 

M y  = O y -  6 - TM' bh2 - 2 

At the ultimate strength of the beam 

(15.23) w = - 4 4  - - #iyT] bh 2 

L 

The beam is wholly elastic for a distance of 

(15.24) 2(L )  = -L 1 
3 2  3 

from each end support, Figure 15.9, as the bending moments in these regions are not greater than 
My. The middle-hrd length of the beam is in an elastic-plastic state; in this central region 
consider a transverse section a-a of the beam, a distance z from the mid-length. The bending 
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moment at this section is 
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M = &(fL - 2 )  (15.25) 
2 

If Whas attained its ultimate value given by equation (15.22), 

M = Z M p ( t L - 2 )  L (15.26) 

Suppose the depth of the elastic core of the beam at this section is h,  Figure 15.9; then from 
equation (15.9), 

M = M p  1 - -  [ :;I 

Figure 15.9 Regions of plasticity in a simply-supported beam carrying a 
distributed load; in the figure the depth of the beam is exaggerated. 

On substituting this value of M into equation (15.26), we have 

I - -  h,Z = I - -  22 (15.27) 
3h’ L 

and thus 

(15.28) 6h’ z h,Z = - 
L 
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The total depth h, of the elastic core varies parabolically with z, therefore; from equation (1 5.28), 
h, = h when z = 1/6L. The regions of full plasticity are wedge-shaped; the shapes of the regions 
developed in an actual mild-steel beam may be affected by, first, the stress-concentrations under 
the central load W, and, second, the presence of shearing stresses on sections such as a-a, Figure 
15.9; equation (15.28) is true strictly for conditions of pure bending only. 

For a simply-supported rectangular beam carrying a total uniformly distributed load W, Figure 
15.10, the bending moment at the mid-length is 

WL 

8 
M ,  = - 

at the ultimate load-carrying capacity of the beam. At a transverse section a-a, a distance z from 
the mid-length, the moment is 

M = “(L’ 8 L  - 4z2) = F (L2 - 4z2) = Mp[l-4(:)2] (15.29) 

Figure 15.10 Regions of plasticity in a simply-supported beam carrying a 
distributed load; in the figure the depth of the beam is exaggerated. 

From equation (15.9), the depth h, of the elastic core at the section a-a is given by 

M = Mp 1 - -  [ :j 
Then 

hi = 12h2 (;)* 
or 



364 Plastic bending of mild-steel beams 

h, = 2& h(:) (15.30) 

The limit of the wholly elastic length of the beam is given by h = h,  or z = W(2 4). The regions 
of plasticity near the mid-section are triangular-shaped, Figure 15.10. 

15.8 Plastic collapse of a built-in beam 

A uniform beam of length L is built-in at each end to rigid walls, and carries a uniformly 
distributed load w per unit length, Figure 15.1 1. If the material remains elastic, the bending 
moment at each end is wL2/12, and at the mid-length wL2/24. The bending moment is therefore 
greatest at the end supports; if yielding occurs first at a bending moment My, then the lateral load 
at this stage is given by 

WL 2 My = - 
12 

(15.31) 

Figure 15.11 Plastic regions of a uniformly loaded built-in beam. 

or 

1 2 4  
WL = - (15.32) 

L 
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If the load w is increased beyond the limit of elasticity, plastic hinges first develop at the remote 
ends. The beam only becomes a mechanism when a h r d  plastic hinge develops at the mid-length. 
On considering the statical equilibrium of a half-span of the beam we find that the moments at the 
ends and the mid-length, for plastic hinges at these sections, are 

(15.33) W L  2 MI. = - 
16 

or 

16M, 

L 
W L  = - (15.34) 

Clearly, the load causing complete collapse is at least one-third greater than that at which initial 
yielding begins because Mp is greater than My. 

Another method ofplastically analysing the beam of Figure 15.1 1 is by the principle of virtual 
work described in Chapter 17. In this case the beam is assumed to collapse in the form of a 
mechanism, when three plastic hmges form, as shown in Figure 15.12. 

As the beam is encastrk at both ends, it is statically indeterminate to the second degree, 
therefore three hinges are required to change it from a beam structure to a mechanism. 

Figure 15.12 Plastic collapse of a beam. 

Thus, because the beam cannot resist further loading at the three hinges, the slightest increase 
in load causes the hinges to rotate like 'rusty' hinges. Additionally, as the bending moment 
mstribution is constant during this collapse, the curvature of the beam remains constant during 
collapse. Hence, for the purpose of analysis, the beam's two sections can be assumed to remain 
straight during collapse. 

Work done by the three hinges during collapse 

= MpO + Mp 20 + MpO (15.35) 
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Work done by the distributed load 

L 
4 

W L  x -e 

Equating (15.35) and (15.36) 

W L  W L  

4 16 
4Mp8 = -8 or Mp = - 

(15.36) 

(15.37) 

which is identical to equation (15.33). This method of solution is discussed in greater detail in 
Chapter 17. 

Further problems (answers on page 693) 

15.2 

15.3 

15.4 

15.5 

15.6 

15.7 

A uniform mild-steel beam A B  is 4 m long; it is built-in at A and simply-supported at B .  
It carries a single concentrated load at a point 1.5 m from A .  if the plastic section 
modulus of the beam is 0.433 x 10.’ m’, and the yield stress of the material is 235 
MN/m2, estimate the value of the concentrated load causing plastic collapse. 

A uniform mild-steel beam is supported on four knife edges equally spaced a distance 
8 m apart. Estimate the intensity of uniformly distributed lateral load over the whole 
length causing collapse, if the plastic section modulus of the beam is 1.690 x 10.’ m’, 
and the yield stress of the material is 235 MN/m2. 

A uniform beam rests on three supports A, B and C with two spans each 5 m long. The 
collapse load is to be 100 kN per metre, and oy = 235 MN/mZ. What will be a suitable 
mild-steel section using a shape factor 1.15? 

If, in Problem 15.4, A B  is 8 m and B C  is 7 m, and the collapse loads are to be 100 kN/m 
on AB, 50 kN/m on BC, find a suitable mild-steel section I-beam, with o,, = 235 
MN/m2. 

A continuous beam ABCQ has spans each 8 m long, it is 45 cm by 15 cm, with flanges 
2.5 cm thick and web 1 em thick. Find the collapse load if the whole beam cames a 
uniformly-distributed load. Which spans collapse? oy = 235 MN/m2. 

A mild-steel beam 5 cm square section is subjected to a thrust of 200 kN acting in the 
plane of one of the principal axes, but may be eccentric. What eccentricity will cause 
the whole section to become plastic if oy = 235 MN/mZ? 



16 Torsion of circular shafts and 
t h i n-wal led tubes 

16.1 Introduction 

In Chapter 3 we introduced the concepts of shearing stress and shearing strain; these have an 
important application in torsion problems. Such problems arise in shafts transmitting .heavy 
torques, in eccentrically loaded beams, in aircraft wings and fuselages, and many other instances. 
These problems are very complex in general, and at th~s elementary stage we can go no further than 
studying uniform torsion of circular shafts, thin-walled tubes, and thin-walled open sections. 

16.2 Torsion of a thin circular tube 

The simplest torsion problem is that of the twisting of a uniform thin circular tube; the tube shown 
in Figure 16.1 is of thickness f, and the mean radius of the wall is r, L is the length of the tube. 
Shearing stresses T are applied around the circumference of the tube at each end, and in opposite 
directions. 

Figure 16.1 Torsion of a thin-walled circular tube. 

If the stresses T are uniform around the boundary, the total torque Tat each end of the tube is 

T = (25rrt) Tr = 2xr2  t T (16.1) 

Thus the shearing stress around the Circumference due to an applied torque Tis 

(16.2) 
T 

T = -  
2nr2t 
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We consider next the strains caused by these shearing stresses. We note firstly that 
complementary shearing stresses are set up in the wall parallel to the longitudinal axis of the tube. 
If 6s is a small length of the circumference then an element of the wall ABCD, Figure 16.1, is in 
a state of pure shearing stress. If the remote end of the tube is assumed not to twist, then the 
longitudinal element ABCD is distorted into the parallelogram ABC'D', Figure 16.1, the angle of 
shearing strain being 

T 
Y = -  (1 6.3) G 

if the material is elastic, and has a shearing (or rigidity) modulus G. But if 8 is the angle of twist 
of the near end of the tube we have 

yL  = re  (16.4) 

Hence 

(1 6.5) e = -  YL = & 
r Gr 

It is sometimes more convenient to defme the twist of the tube as the rate of change of twist per 
unit length; this is given by (WL), and from equation (16.5) this is equal to 

T 
(16.6) - - -  0 -  

L Gr 

16.3 Torsion of solid circular shafts 

The torsion of a thm circular tube is a relatively simple problem as the shearing stress may be 
assumed constant throughout the wall thickness. The case of a solid circular shaft is more complex 
because the shearing stresses are variable over the cross-section of the shaft. The solid circular 
shaft of Figure 16.2 has a length L and radius a in the cross-section. 

Figure 16.2 Torsion of a solid circular shaft. 
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When equal and opposite torques Tare applied at each end about a longitudinal axis we assume 
that 

0)  the twisting is uniform along the shaft, that is, all normal cross-sections the same 
distance apart suffer equal relative rotation; 

(ii) cross-sections remain plane during twisting; and 

(iii) rahi remain straight during twisting. 

If 8 is the relative angle of twist of the two ends of the sha 
elemental tube of hckness 6r and at radius r is 

?-e 
y = -  L 

then the shearing strain y of an 

(16.7) 

If the material is elastic, and has a shearing (or rigidity) modulus G, Section 3.4, then the 
circumferential shearing stress on this elemental tube is 

The thickness of the elemental tube is 6r, so the total torque on this tube is 

(21cr6r)rr = 2nr2r6r 

The total torque on the shaft is then 

T = /oa27cr2rdr 

On substituting for T from equation (16.8), we have 

T = 2n($) loa r3dr 

(16.8) 

(16.9) 

Now 

(16.10) 
na 

2 
271 La r3dr  = - 

This is the polar second moment of area of the cross-section about an axis through the centre, and 
is usually denoted by J. Then equation (1 6.9) may be written 

GJB 
L 

T = -  (16.11) 



370 

We may combine equations (1 6.8) and (16.1 1) in the form 
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GO I ’ -  T -  
J r L ( 1 6.1 2) - - - - -  

We see from equation (1 6.8) that T increases linearly with r, from zero at the centre of the shaft to 
GaB/L at the circumference. Along any radius ofthe cross-section, the shearing stresses are normal 
to the radius and in the plane of the cross-section, Figure 16.3. 

16.4 Torsion of a hollow circular shaft 

It frequently arises that a torque is transmitted by a hollow circular shaft. Suppose a,  and u2 are 
the internal and external radii, respectively, of such a shaft, Figure 16.4. We make the same 
general assumptions as in the torsion of a solid circular shaft. If r is the shearing stress at radius 
r, the total torque on the shaft is 

T = fa: 2 ~ r ~ ~ d r  (16.13) 

Figure 16.3 Variation of shearing stresses Figure 16.4 Cross-section of a hollow 
over the cross-section for elastic torsion of a 

solid circular bar. 
circular shaft. 

If we assume, as before, that radii remain straight during twisting, and that the material is elastic, 
we have 

GA 
L 

T = -  

Then equation (1 6.13) becomes 

(16.14) 
T = [: (T) 25rr3dr = - GJB 

L 

where 
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J = Jo: 2xr3dr (16.15) 

Here, J is the polar second moment of area or, more generally, the torsion constant of the cross- 
section about an axis through the centre; J has the value 

J = [ y  2xr3dr = E (a; - a:) 
2 

(16.16) 

Thus, for both hollow and solid shafts, we have the relationship 

T -  T -  G9 
J r L 
- - - - -  

Problem 16.1 What torque, applied to a hollow circular shaft of 25 cm outside diameter and 
17.5 cm inside diameter will produce a maximum shearing stress of 75 MN/m2 
in the material (Cambridge) 

So Iution 

We have 

r, = 12.5 cm, rz = 8.75 cm 

Then 

x J = - [(0.125)4 - (0.0875)4] = 0.292 x m4 
2 

If the shearing stress is limited to 75 MN/m*, the torque is 

Problem 16.2 A ship's propeller shaft has external and internal diameters of 25 cm and 15 cm. 
What power can be transmitted at 1 10 rev/minute with a maximum shearing 
stress of 75 MN/m2, and what will then be the twist in degrees of a 10 m length 
of the shaft? G = 80 GN/m2. (Cambridge) 
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Solution 

In this case 

rl = 0.125 m, r2 = 0.075 m, I = 10 m 

x J = - [(0.125)4 - (0.075)4] = 0.335 x m 4  
2 

Then 

At 110 rev/min the power generated is 

The angle of twist is 

= 0.075 radians = 4.3" e = - -  TL - (201 x io3) (IO) 
GJ (80 x io9) (0.335 x 10-3) 

Problem 16.3 A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the 
ratio of the external to internal lameters being 2 to 1. Find the size of the 
hollow shaft if the maximum shearing stress is to be the same as for the solid 
shaft. What percentage economy in mass will th~s change effect? (Cambridge) 

Solution 

Let r be the inside ra lus  of the new shafi; then = 2r the outside radius of the new shaft 

7t J for the new shaft = - (16r4 - r4) = 7 . 5 7 ~ ~  
2 

7t J for the old shaft = - x (0.125)4 = 0.384 x m 4  
2 
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If Tis the applied torque, the maximum shearing stress for the old shaft is 

T(0.125) 
0.384 x 

and that for the new one is 

If these are equal, 

T(0.125) - T(2r) 
0.384 x 7.5xr4 

- -  

Then 

r3  = 0.261 x m 3  

or r = 0.640m 

Hence the internal diameter will be 0.128 m and the external diameter 0.256 m. 

area of new cross-section - (0.128)2 - (0.064)* - o.785 
area of old cross-section (0.125)2 

- ~ -  

Thus, the saving in mass is about 21%. 

Problem 16.4 A shp's propeller shaft transmits 7.5 x lo6 W at 240 rev/min. The shaft has an 
internal diameter of 15 cm. Calculate the minimum permissible external 
diameter if the shearing stress in the shaft is to be limited to 150 MN/m*. 
(Cam bridge) 

Solution 

If Tis the torque on the shaft, then 

Thus 

T = 298 kNm 
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If dl is the outside diameter of the shaft, then 
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1[ J = - (d: - 0.1504) m 4  
32 

If the shearing stress is limited to 150 MN/m2, then 

- -  Td' - 150 x lo6 w 

Thus, 

Td, = (300 x 106)J 

On substituting for J and T 

(298 x 103)d, = (300 x lo6) ($) (d: - 0.1504) 

This gives 

[L)4-3[L)-I 0.150 0.150 = 0 

On solving thls by trial-and-error, we get 

d, = 1.54(0.150) = 0.231 m 

or d ,  = 23.1 cm 

16.5 Principal stresses in a twisted shaft 

It is important to appreciate that uniform torsion of circular shafts, of the form discussed in Section 
16.3, involves no shearing between concentric elemental tubes of the shaft. Shearing stresses T 
occur in a cross-section of the shaft, and complementary shearing stresses parallel to the 
longitudinal axis, Figure 16.5. 

Figure 16.5 Principal stresses in the outer surface of a twisted circular shaft. 
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An element ABCD in the surface of the shaft is in a state of pure shear. The principal plane 
makes angles of 45" with the axis of the shaft, therefore, and the principal stresses are +T. If the 
element ABCD is square, then the principal planes are AC and BD. The direct stress on AC is 
compressive and of magnitude r; the direct stress on BD is tensile and of the same magnitude. 
Principal planes such as AC cut the surface of the shaft in a helix; for a brittle material, weak in 
tension, we should expect breakdown in a torsion test to occur by tensile fracture along planes such 
as BD. The failure of a twisted bar of a brittle material is shown in Figure 16.6. 

Figure 16.6 Failure in torsion of a circular bar of brittle cast iron, showing a tendency 
to tensile fracture across a helix on the surface of the specimen. 

The torsional failure of ductile materials occurs when the shearing stresses attain the yield stress 
of the material. The greatest shearing stresses in a circular shaft occur in a cross-section and along 
the length of the shaft. A circular bar of a ductile material usually fails by breaking off over a 
normal cross-section, as shown in Figure 16.7. 

Figure 16.7 Failure of torsion of a circular bar of ductile cast iron, showing a 
shearing failure over a normal cross-section of the bar. 

16.6 Torsion combined with thrust or tension 

When a circular shaft is subjected to longitudinal thrust, or tension, as well as twisting, the direct 
stresses due to the longitudinal load must be combined with the shearing stresses due to torsion in 
order to evaluate the principal stresses in the shaft. Suppose the shaft is axially loaded in tension 
so that there is a longitudinal direct stress (T at all points of the shaft. 

Figure 16.8 Shearing and direct stresses due to combined torsion and tension. 
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If T is the shearing stress at any point, then we are interested in the principal stresses of the 
system shown in Figure 16.8; for this system the principal stresses, from equations (5.12), have the 
values 

L Of L @ T 2  
2 2  

and the maximum shearing stress, from equation (5.14), is 

(1 6.17) 

(1 6.1 8) 

Problem 16.5 A steel shaft, 20 cm external diameter and 7.5 cm sternal, is subjected to a 
twisting moment of 30 kNm, and a thrust of 50 kN. Find the shearing stress 
due to the torque alone and the percentage increase when the thrust is taken 
into account. (RhJC) 

Solution 

For this case, we have 

rl = 0.100 m, r2 0.0375 m 

2 2  A = ~ ( r ,  - r , )  = 0.0270 m 2  

The compressive stress is 

Now 

J = 2 (r; - r;) = 0.00247 m 4  
2 

The shearing stress due to torque alone is 

The maximum shearing stress due to the combined loading is 
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1 

= L [d + 4 t ] i  = 1.53 MN/m2 ‘c, 2 

Problem 16.6 A thin steel tube of 2.5 cm diameter and 0.16 cm thickness has an axial pull of 
10 kN, and an axial torque of 23.5 Nm applied to it. Find the magnitude and 
direction of the principal stresses at any point. (Cambridge) 

Solution 

It wdl be easier, and sufficiently accurate, to neglect the variation in the shearing stress from the 
inside to the outside of the tube. Let 

T = the mean shearing stress due to torsion 

r = the mean radius = 0.0109 m 

t = thehckness = 0.016m 

then the moment of the total resistance to shear 

= 2 d ~ t  = (1.19 x 10-6)TNm 

If this is equal to 23.5 Nm, then 

T = 19.75MN/m2 

The area of the cross-section is approximately 

27trt = 0.1098 x lO-3  m2 

Hence, the tensile stress is 

o =  10 x lo3 = 91.1 m / m 2  
0.1098 x l O - 3  
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The principal stresses are 
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1 r i. f /-) = - (91.1 f 99.3) MN/mZ 
2 2 

Then 

0, = -4.1 MN/m2, (r2 = +95.2 MN/mZ 

the positive sign denoting tension. The planes across which they act make angles 8 and (8 + n/2) 
with the axis, where 

39*5 - 0.434 tm2e = -  2r - - - - 
tJ 91.1 

giving 8 = 11.75'. 

16.7 Strain energy of elastic torsion 

In Section 16.3 we found that the torque-twist relationship for a circular shaft has the form 

T = -  GJB 
L 

This shows that the angle of twist, 8, of one end relative to the other, increases linearly with T. If 
one end of the shaft is assumed to be fEed, then the work done in twisting the other end through 
an angle 8 is the area under the T-B relationship, Figure 16.9. This work is conserved in the shaft 
as strain energy, which has the value 

1 
2 

u = -Te (16.19) 

Figure 16.9 Linear torque-twist relationship and strain energy of elastic torsion. 
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On using equation (1 6.1 1) we may eliminate either 8 or T, a d  we have 

u = ( & ) T i  = (:)e2 
(16.20) 

16.8 Plastic torsion of a circular shaft 

When a circular shaft is twisted the shearing stresses are greatest in the surface of the shaft. If the 
limit of proportionality of the material in shear is at a stress T ~ ,  then this stress is first attained in 
the surface of the shaft at a torque 

T = -  Jz Y (16.21) 
a 

where J is the polar second moment of area, and a is the radius of the cross-section. 
Suppose the material has the idealised shearing stress-strain curve shown in Figure 16.10; 

behaviour is elastic up to a shearing stress T ~ ,  the shearing modulus being G. Beyond the limit of 
proportionality shearing proceeds at a constant stress T~ Thls behaviour is nearly true of mild steel 
with a well-defined yield point. 

If we are dealing with a solid circular shaft, then after the onset of plasticity in the surface fibres 
the shearing stresses vary radially in the form shown in Figure 16.1 1. The material within a radius 
b is still elastic; the material beyond a radius b is plastic and is everywhere stressed to the yield 
stress ‘sY 

Figure 16.1 0 Idealized shearing stress-strain Figure 16.11 Elastic-plastic torsion of a solid 
curve of mild steel. circular shaft. 

The torque sustained by the elastic core is 

q = - -  Ji T y  - ? b 3  T~ 
b 2 

(16.22) 
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where subscripts 1 refer to the elastic core. The torque sustained by the outer plastic zone is 

Torsion of circular shafts and thin-walled tubes 

211 2~11r*~~dT = - T~ [a’ - b’] 
3 

(16.23) 

The total torque on the shaft is 

The angle of twist of the elastic core is 

(1  6.24) 

(16.25) 

where L is the length of the shaft. We assume that the outer plastic region suffers the same angle 
of twist; this is tantamount to assuming that radii remain straight during plastic torsion of the shaft. 

Equation (1 6.25) gives 

Then the torque becomes 

At the onset of plasticity 

Then, for any other condition of torsion, 

(16.26) 

( 1  6.27) 

(16.28) 

(16.29) 

which gives 

or (:) = T (16.30) 
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and equation (1 6.27) becomes 

T = & Ty[l - f p ) 3 1  

When 0 becomes very large, T approaches the value 

(16.3 1) 
3 

(16.32) 2na 3 
T y  = T p  (say) - 

3 

which is the torque on the shaft when it is fully plastic. For smaller values of 8, we have then 

- _  T - +) (16.33) 
3 

T,  4 8  

0/0, 

Figure 16.12 Development of full plasticity in the torsion of a solid circular shaft. 

This relationship, which is plotted in Figure 16.12 for values of 8/8, up to 5, shows that the fully 
plastic torque Ty is approached rapidly after the elastic limit is exceeded. The torque T,  at the 
elastic limit is 

T, = 2 T, (16.34) 
4 

If a torsion test is carried out on a h - w a l l e d  circular tube of mean radius r and thickness t, the 
average shearing stress due to a torque Tis 

T T = -  
2nr ' t  

from equation (16.2). If 8 is the angle of twist of a length L of the tube, the shearing strain is 
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1-8 
Y = -  

L 

from equation (16.4). Thus, from a torsion test, in whch values of T and 8 are measured, the 
shearing stress T and strain y can be deduced. The resulting variation of T and y is called the 
shearing stress-strain curve of the material; the forms of these stress-strain curves are similar to 
tensile and compressive stress-strain curves, as shown in Figure 16.13. In the elastic range of a 
material 

? = C y  

where G is the shearing modulus of the material (Section 3.4). 

Figure 16.13 Forms of shearing stress-strain curves for mild steel 
and for aluminium light alloys. 

It is important to appreciate that the shearing stress-strain curve cannot be directly deduced 
from a torsion test of a solid circular bar, although the limit of proportionality can be estimated 
reasonably accurately. 

16.9 Torsion of thin tubes of noncircular cross-section 

In general the problem of the torsion of a shaft of non-circular cross-section is a complex one; in 
the particular case when the shaft is a hollow thin tube we can develop, however, a simple theory 
giving results that are sufficiently accurate for engineering purposes. 

Consider a thin-walled closed tube of uniform section throughout its length. The thickness of 
the wall at any point is t ,  Figure 16.14, although this may vary at points around the circumference 
of the tube. Suppose torques Tare applied to each end so that the tube twists about a longitudinal 
axis Cz. We assume that the torque Tis distributed over the end of the tube in the form of shearing 
stresses which are parallel to the tangent to the wall at any point, Figure 16.14, and that the ends 
of the tube are free from axial restraint. If the shearing stress at any point of the circumference is 
T, then an equal complementary shearing stress is set up along the length of the tube. Consider the 
equilibrium of the section ABCD of the wall: if the shearing stress T at any point is uniform 
throughout the wall thickness then the shearing force transmitted over the edge BC is T t  per unit 
length. 
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Figure 16.14 Torsion of a thin-walled tube of any cross-section. 

For longitudinal equilibrium of ABCD we must have that T t  on BC is equal and opposite to .rt 
on AD; but the section ABCD is an arbitrary one, and we must have that rt is constant for all parts 
of the tube. Suppose h s  constant value of .rt is 

T t  = q (16.35) 

The symbol ‘q’ is called the shear flow; it has the units of a load per unit length of the 
circumference of the tube. 

Suppose we measure a distance s round the tube from some point 0 on the circumference, 
Figure 16.14. The force acting along the tangent to an element of length 6s in the cross-section is 
rt6s. Suppose r is the length of the perpendicular from the centre of twist C onto the tangent. Then 
the moment of the force ~ t 6 s  about C is 

10-6s 

The total torque on the cross-section of the tube is therefore 

T = rtrak (16.36) Q 

Q Q  
where the integration is carried out over the whole of the circumference. But T t  is constant and 
equal to q for all values of s. Then 

T = rt rds = q rds (16.37) 

Now $ rds is twice the area, A ,  enclosed by the centre line of the wall of the tube, and so 

T = 2Aq (16.38) 

The shearing stress at any point is then 
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(16.39) 

To find the angle of twist of the tube we consider the strain energy stored in Le tube, and equate 
this to the work done by the torques T in twisting the tube. When a material is subjected to 
shearing stresses r the strain energy stored per unit volume of material is, from equation ( 3 . 9 ,  

t 
2G 
- 

where G is the shearing (or rigidity) modulus of the material. In the tube the shearing stresses are 
varying around the circumference but not along the length of the tube. Then the strain energy 
stored in a longitudinal element of length L, width 6s and thickness t is 

($) LtGs 

The total strain energy stored in the tube is therefore 

Ltcis 
= f,, (1 6.40) 

where the integration is carried out over the whole circumference of the tube. But rt is constant, 
and equal to q, and we may write 

(16.41) 

If the ends of the tube twist relative to each other by an angle 8, then the work done by the torques 
Tis 

1 
2 

w = -m 

On equating U and W, we have 

q2L cis 
e = G T J t  

But from equation (16.38) we have 

T 
4 = -  2A 

(1  6.42) 

(1  6.43) 

(1 6.44) 
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Then equation ( 16.43) may be written 

e = -  T: 1: - (16.45) 
2 A  G 

For a tube of d o r m  hckness t, 

0 = “ ( E )  (1 6.46) 
4A2G t 

where S is the total circumference of the tube. 

Equation (16.45) can be written in the form 

TL e = -  
GJ 

where 

4 A2 
ds 

J =  - 

‘r 
J is the torsion constant for the section; for circular cross-sections J is equal to the polar second 
moment of area, but this is not true in general. 

16.10 Torsion of a flat rectangular strip 

A long flat strip of rectangular cross-section has a breadth b, thickness t ,  and length L .  For uniform 
torsion about the centroid of the cross-section, the strip may be treated as a set of concentric thin 
hollow tubes, all twisted by the same amount. 

Figure 16.15 Torsion of a thin strip. 
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Consider such an elemental tube which is rectangular in shape the longer sides being a distance 

If 6Tis the torque carried by this elemental tube then the shearing stress in the longer sides of 
y from the central axis of the strip; the duchess of the tube is 6y, Figure 16.15. 

the tube is 

6T 
(16.47) T = -  

4bY SY 

where b is assumed very much greater than t. This relationship gives 

(16.48) - dT = 4byr 
4 

For the angle of twist of the elemental tube we have, from equation (1 6.46), 

2bLST 
16b ' y  'G6y 

o =  (1 6.49) 

where L is the length of the strip. This gives the fiuther relationship 

0 
(16.50) - -  dT - 8by'G- 

4 L 

On comparing equations (1 6.48) and (1 6.50), we have 

T = 2yG(;) (16.5 1) 

This shows that the shearing stress T vanes linearly throughout the thickness of the strip, having 
a maximum value in the surface of 

T , , , ~  = Gt( :) (16.52) 

An important feature is that the shearing stresses '5 act parallel to the longer side b of the strip, and 
that their directions reverse over the thickness of the strip. This approximate solution gives an 
inexact picture of the shearing stresses near the comers of the cross-section. 

Figure 16.16 Directions of shearing stresses in the torsion of a thin strip. 
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We ought to consider not rectangular elemental tubes but flat tubes with curved ends. The 

The total torque on the cross-section is 
contours of constant shearing stress are then continuous curves, Figure 16.16. 

I 

(16.53) T = k''8by2G(;)dy = 1 -bt3G- e 
3 L 

The polar second moment of area of the cross-section about its centre is 

1 
12 

J = - (bt3 + b3t )  (1 6.54) 

If b is very much greater than t, then, approximately, 

1 
12 J = - b3t (16.55) 

The geometrical constant occurring in equation (16.53) is b?/3; thus, in the torsion of a thin strip 
we cannot use the polar second moment of area for J in the relationshp 

GO 
(16.56) T -  

J L 

Instead we must use 

- - -  

1 
3 J = -bt3 (16.57) 

16.1 1 Torsion of thin-walled open sections 

We may extend the analysis of the preceding section to the uniform torsion of thin-walled open- 
sections of any cross-sectional form. 

Figure 16.17 Torsion of an angle section. 
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In the angle section of Figure 16.17, we take elemental tubes inside the two limbs of the section. 
If t, and t2 are small compared with b, and b,, the maximum shearing stresses in limbs 1 and 2 are 

T~ = Gt, (;) T~ = Gt, (;) (16.58) 

where the angle of twist per unit length, O L ,  is common to both limbs. 

The total torque is the summation of the torques carried by the two limbs, and has the value 
The greatest shearing stress occurs then in the surface of the thicker limb of the cross-section. 

T = - 1 (b1( + b2t:) G (:) 
3 

(16.59) 

In general, for a h -wa l l ed  open-section of any shape the shearing stress in the surface of a 
section of thickness t is 

T = G t ( : )  

The total torque on the section is 

T = G ( : )  x i b t 3  3 

(1 6.60) 

(16.61) 

where the summation is carried out for all limbs of the cross-section. 

Further problems (answers on page 693) 

16.7 Find the maximum shearing stress in a propeller shaft40 cm external, and 20 cm internal 
diameter, when subjected to a torque of 450 kNm. If G = 80 GN/mz, what is the angle 
of twist in a length of 20 diameters? What diameter would be required for a solid shaft 
with the same maximum stress and torque? ( W C )  

16.8 A propeller shaft, 45 m long, transmits 10 MW at 80 rev/min. The external diameter of 
the shaft is 57 cm, and the internal diameter 24 cm. Assuming that the maximum torque 
is 1.19 times the mean torque, find the maximum shearing stress produced. Find also the 
relative angular movement of the ends of the shaft when transmitting the average torque. 
TakeG = 80GN/m2. (RNC) 

16.9 A steel tube, 3 m long, 3.75 cm diameter, 0.06 cm thick, is twisted by a couple of 50 Nm. 
Find the maximum shearing stress, the maximum tensile stress, and the angle through 
which the tube twists. Take G = 80 GN/m2. (Cambridge) 
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Compare the mass of a solid shaft with that of a hollow one to transmit a given power 
at a given speed with a given maximum shearing stress, the inside diameter of the hollow 
shaft being two-thirds of the outside diameter. (Cambridge) 

A 2.5 cm circular steel shaft is provided with enlarged portions A and B. On to this 
enlarged portion a steel tube 0.125 cm thick is shrunk. While the shrinlung process is 
going on, the 2.5 cm shaft is held twisted by a couple of magnitude 50 Nm. When the 
tube is f d y  set on the shaft this twisting couple is removed. Calculate what twisting 
couple is left on the shaft, the shaft and tube being made of the same material. 
(Cam bridge) 

16.1 0 

16.1 1 

16.12 A thin tube of mean diameter 2.5 cm and thickness 0.125 cm is subjected to a pull of 7.5 
kN, and an axial twisting moment of 125 Nm. Find the magnitude and direction of the 
principal stresses. (Cambridge) 
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17.1 Introduction 

Energy methods are very useful for analysing structures, especially for those that are statically 
indeterminate. This chapter introduces the principle of virtual work and applies it to statically 
determinate and statically indeterminate frameworks. The chapter also shows how the method can 
be used for the plastic design of beams and rigid-jointed plane frames. 

The chapter then introduces strain energy and complementary strain energy, and through the 
use of worked examples, shows how these methods can be used for analysing structures. 

In Chapters 24 and 25, energy methods are used for developing the finite element method, 
which is one of the most powerful methods for analysing massive and complex structures with the 
aid of digital computers. 

17.2 Principle of virtual work 

In its simplest form the principle of virtual work is that 

For a system of forces acting on a particle, the particle is in statical equilibrium i f ;  
when it is given any virtual displacement, the net work done by the forces is zero. 

A virtual displacement is any arbitrary displacement of the particle. In the virtual displacement the 
forces are assumed to remain constant and parallel to their original lines of actions. Consider a 
particle under the action of three forces, F,, F2 and F,, Figure 17.1. 

Figure 17.1 System of forces in statical equilibrium acting on a particle. 

Imagine the particle to be given a virtual displacement of any magnitude in any direction. 
Suppose the displacements of the particle along the lines of action of the forces F , ,  F, and F,, are 
6,,  6, and 6,, respectively; these are known as corresponding displacements. Then the forces form 
a system in statical equilibrium if 
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F , 6 ,  + F,6, + F363 = 0 (17.1) 

On the basis of the principle of virtual work we can show that the resultant of the forces acting on 
a particle in statical equilibrium is zero. Suppose the forces F,,  F, and F,, acting on the particle 
of Figure 17.1, have a resultant of magnitude R in some direction; then by giving the particle a 
suitable virtual displacement, A, say, in the direction of R, the net work is 

R A  

But by the principle of virtual work the net work is zero, so that 

R A  = 0 (17.2) 

As A can be non-zero, R must be zero. Hence, by adopting the principle of virtual work as a basic 
concept, we can show that the resultant of a system of forces in statical equilibrium is zero. 

17.3 Deflections of beams 

In a pin-jointed frame subjected to loads applied to the joints only the tensile load in any member 
is constant throughout the length of that member. In the case of a beam under lateral loads the 
bending moments and shearing forces may vary from one section to another, so that the state of 
stress is not uniform along the length of the beam. In applying the principle of virtual work to 
problems of beams we must consider the loading actions on the virtual displacement of an 
elemental length of the beam. 

Figure 17.2 Deflections of a straight beam. 

Consider a straight beam AB, Figure 17.2, which is in statical equilibrium under the action of 
a system of external forces and couples. The beam is divided into a number of short lengths; the 
loading actions on a short length such as 6z consist of bending moments M and ( M  + JM), an 
external lateral load W, and lateral shearing forces at the ends of the short length. Now suppose 
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the short lengths of the beam are given small virtual displacements, 8. If the elements remain 
connected to each other, then for given values of 8 the external forces, such as W, suffer certain 
displacements, such as 6. Then the values of 8 and 6 form a compatible system of rotations and 
displacements, and the virtual work of any system of forces and couples in statical in equilibrium 
on these rotations and displacements is zero. Then 

y 6 M x 0 + y W x 6  = 0 (17.3) 

because the net work of the internal shearing forces is zero. The summation Z6M x 8 is carried out 
for all short lengths of the beam, whereas the summation 2 W x 6 is carried out for all external 
loads, including couples and force reactions at points of support. If the virtual rotations 8 are 
small, the virtual displacements 6 can be found easily. If the lengths 6z of the beam are 
infinitesimally small, 

(1 7.4) 

where the integration is carried out over the whole length L of the beam. But 

z = L  0dM = [MB - , M d B I = L  I, = o  = o  

Now 

and is the work of the end couples on their respective virtual displacements; t h ~ s  work has already 
been taken account of in the summation ZW x 6, so that equation (17.3) becomes 

(17.5) 

Now (de/dz) is the curvature of the beam when it is given the virtual rotations and displacements. 
If we put 

d e -  1 
dz R 
- - -  

where R is the radius of curvature of the beam, then 

(1 7.6) 

(17.7) 

As an example of the application of equation (17.7), consider the cantilever shown in Figure 17.3; 
having a uniform flexural stiffness EI. The cantilever carries a vertical load W at the free end; the 
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bending moment at any section due to W is Wz, so that, if the beam remains elastic, the 
corresponding curvature at any section is 

1 -  wz - - -  
R E l  

Suppose the corresponding deflection of W is 6, Figure 17.3; then the values of 1lR and 6 form a 
system of compatible curvature and displacements. 

Figure 17.3 Deflections of a cantilever with an end load. 

We derive a simple system of forces and couples in statical equilibrium by applying a unit vertical 
load at the end of the cantilever; the bending moment at any section due to this unit load is 

M = l x z  = z 

Then, from equation (17.7), 

1 x 6 = pfp)& = JoL SdZ 

Then 

WL 3 6 = -  
3EI 

Problem 17.1 A simply-supported beam, ofuniform flexural stiffness EI, carries a lateral load 
W at a distance u from the end A. Estimate the vertical deflection of W. 
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Solution 

The bending moment a distance zI from A ,  for the section AB, is 

Wbz I 

L 
- 

The curvature for AB if therefore 

Wbz 1 1 -  
Rl EIL 
- - -  

Similarly, the curvature at any section in BC is 

1 -  Waz, 

R2 EIL 
- - -  

Now consider the beam with a unit vertical load at B;  the bending moments at sections in AB and 
BC are, respectively, 

azz M2 = - bZl MI = -, 
L L 

Then, equation ( 1  7.7) gives 

6 = lo0 MI[ $) 4 + /b” 41 i ) h 2  
u Wb2 2 h W a 2  2 

Z l  4 + s, --&2 k2 
= l o  ZF 
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Therefore 

Wa ’b2  & = -  Wa2b2 (a + b) = - 
3 EIL 2 3 EIL 

Problem 17.2 A cantilever of uniform flexural stiffness EI carries a uniformly-distributed 
load of intensity w. Estimate the vertical deflection of the free end. 

Solution 

Due to the distribution load, the curvature at any section is 
2 1 wz 

R 2 E I  
- - -  - 

For a unit vertical load at the free end, the bending moment at any section is 

M = z  

Then equation (1 7.7) gives 

s = I” M(+) dz = I’ gdz 
Then 

W L  4 & = -  
8 E/ 

Problem 17.3 A semicircular thin ring has a radius r and uniform flexural stiffness EI. The 
ring carries equal and opposite loads W at the ends. Find the increase in 
distance between the loaded points. 
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Solution 

The bendmg moment at any angular position 8 is 

M = Wr sin0 

If the ring is thin, the change of curvature at any section is 

1 -  M - - -  
R EI 

Now consider the virtual work of the forces and couples on their resulting displacements; if 6 is 
the increase in distance between the loaded points 

w x 6 = j-@@==ox 4;) dr = /or $de = - W2r3  l o x  sin2ede 
EI 

Then 

6 = -  n w r 3  
2EI 

17.4 Statically indeterminate beam problems 

The principle of virtual work may also be used in solving statically indeterminate beam problems. 
Consider, for example, the beam of Figure 17.4, which is built-in at A and supported on a roller at 
B; the beam is of uniform flexural stiffness EI, and canies a uniformly distributed lateral load 

Figure 17.4 Propped cantilever under uniform lateral loading. 
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of intensity w. Suppose the statically indeterminate reaction at B is W, then the bending moment 
at any section is 

1 
2 
- wz2 - wz 

and if the beam remains elastic the resulting curvature at an any section is 

R 

The bending moment at any section due to a unit lateral load at B is 

M = z  

Then, for no deflection at B in Figure 17.4, 

Then 

Thus 

17.5 Plastic bending of mild-steel beams 

The principle of virtual work is not limited in its application to linear problems of the type 
discussed in the preceding problems. It is useful, for example, in solving problems of plastic 
bending; the uniform mild-steel beam of Figure 17.5 has a fully-plastic moment Mp. At collapse 
of the beam, plastic hmges develop at A and B.  Suppose the point B is now given a virtual 
displacement 6; if 6 is small, AB rotates through an angle @/a),  and BC through an angle [6/(L - 
a)]. The work ofthe system of forces and couples of Figure 17.5(ii) on the virtual displacements 
and rotations of Figure 17.5(iii) is zero. Then 

w6 = 26 + -1 6 
iL - a) 
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Figure 17.5 Plastic bending of a mild-steel beam. 

Then 

MJ2L - a)  

u(L - a) 
w =  

This is the value of W at plastic collapse of the beam. 

Problem 17.4 A uniform mild-steel beam has a fully-plastic moment Mp. Find the intensity 
of uniformly distributed loading at collapse of the beam. 
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Solution 

Suppose that, at plastic collapse, hinges develop at the built-in end, and at a distance a from that 
end. Then 

1 1 26 6 -wa6 + -w ( L  - a)6 = M, - + - 
2 2 [. ( L - o ) l  

Thus, 

( 2  - ;) Mp 

(;) ( 1  - ;) L 2  

- w =  

Tlus is a minimum with respect to ( d L )  when 

a =  ( 2 - 4 3  
L 

Then the relevant value of w is 

w = - ( 3 + 2 J z )  2MP 
L 2  

An alternative method of solving the above beam problem is to consider rotations of the hinges, 
as shown in the figure below 

6 = e a  = a ( L  - a )  
(17.8) 

:. a = e . a/(L - a) 
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p = a + e  = e u / ( L - u ) + ~  

= e U/(L - U )  + e (L - (L - 

= e (a + L  - u ) / ( ~  

p = e L/(L - U) 

Now work done by the hinges 

= M~ e + M p  p 

= M,, e + M ,  e L / ( L  - a )  

= M~ e ( L - U ) / ( L - U ) + M ,  e L l ( L - a )  

= Mpe (L - u + L )  I (L - U) 

Mpe ( 2 ~  - U )  (L - U) 

Work done by the load 'w' 

x L x 612 = w~ e u/2 

Equating(17.10)and(l7.11) 

M~ e ( 2 ~  - U)  (L - U) = d e  d 2  

2L (2 - u/L) Mp 

U L Z  ( 1  - u/L) 

Dividing the top and bottom by L, we get 

2 (2  - u/L) Mp 
w =  

L Z  (;) (1 - d L )  

(17.9) 

(17.10) 

(17.11) 

(1 7.12) 

which is the same result as before. 
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17.6 Plastic design of frameworks 

For this case, let us make the following definitions: 

k = load or safety factor 

Mp = 

My = 

plastic moment of resistance of the cross-section of a member of the framework 

the elastic moment of resistance of the cross-section of a member of the 
framework at first yield 

S = shape factor = MdMy 

oy = yield stress 

Problem 17.5 Obtain a suitable sectional modulus for the portal frame below, given that: 

k = 2.7 

S = 1.15 

o y =  300MPa 

Solution 

Experiments have shown4 that thls framework can fail by any of the following modes: 

(a) beam mechanism 
(b) sway mechanism 
(c) combined beam and sway mechanism. 

4Baker I F - A  Review ofRecent Investigations into the Behaviour ofSteel Frames in the Plastic Range, JICE, 31. 188. 1949, 
and Baker J F, Home M R and Heyman J - The Steel Skeleton, Cambridge University Press, 1956. 
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(a) Beam mechanism 

This mode of failure, which was dscussed in the previous section, is shown below. Applying the 
principle of virtual work to do this failure mechanism, we get work done by the plastic hinges 
when rotating = work done by the 10 kN load 

or M p 0 + 2 M p  x 2 0 + M P 0  = 10 x 20 

6Mp = 200 

MP - - 3.33 kNm 

(b) Sway mechanism 

This mode of failure is shown below. Applying the principle of virtual work to this failure 
mechanism, we get 

M, (e + e  + 0 + e )  = 5 x 30 

or 4Mp = 15 

- - 3.75 kNm MP 
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(c) Combined mechanism 

Thls mode of failure is shown below. 

From the principle of virtual work, 

Mpe + 2 ~ ,  x 2e + M,, x 2e + Mpe = IO x 2e + 5 x 3e 

or 8Mp = 35 

M p  = 4.375 kNm 

The designM, is obtained from the largest of these values, as this is the value of M p  which will just 
prevent failure. 

:. design Mp = 4.375 x 1 = 4.375 x 2.7 

design M p  = 11.81 KNm 

MP 

MY 
NOW - = S 

M ,  11.81 
(’, M ,  = - - - - - - 10.27 kNm 

S 1.15 

MY 2 = sectionalmodulus = - 
O Y  

10.27 x lo3 

300 x lo6 
- - 

z = 3 x io-’ m3 (verticals) 

Z = 6 x lo-’ m3 (horizontal beam) 
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Problem 17.6 Determine a suitable sectional modulus for the portal frame below, assuming 
that the frame has two mechanical hinges at its base, and that the following 
apply: 

h = 2.7 

S = 1.15 

Q = 300MPa 

Solution 

The beam mechanism is shown below 

For this case 

- M, e + 2 ~ ,  x 2 e  + ~ , e  - 2.5 x 4 x 2812 

or 6Mp = 10 

MP = 1.67 m m  

The sway mechanism is shown as follows, where it must be noted that the mechanical hinge does 
no work during failure. 
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For this case 

~ , ( e  + e)  = 5 x 38 

or 2Mp = 15 

Mp = 7.5 kNm 

The combined mechanism is shown below, where it can be seen that the sagging hinge on the beam 
does not necessarily occur at mid-span. 

For this case, 

2 M p P + M p ( a + e )  = 2.5 x 4 x  ( - 2;x) e+5  x 38 

= 5 ( 2  + x)e+m (17.13) 

but 
( 2 + ~ )  e = ( 2 - ~ ) a  

:. a = - (17.14) (:::)e 

p = a + 8 =  (::;)+e - 
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2 + x + 2 - x  
= ( 2-x  1 

(17.15) 

Substituting equations (1 7.14) and (1 7.15) into equation (1 7.13), we get 

2 x M p x -  +M,,(=) + M p  = 5(2 + X )  + 15 
(2 - X) 2 - x  

(2 - X) or M p  = [5(2 + X) + 151 - 
12 

= -(lo 1 + 5X + 15)(2 - X) 
12 

= -(25 1 + 5X)(2 - XI 
12 

1 -(SO - 25X + 1OX - 5X’) 
12 

1 
12 

= 

or M p  = - (50 - 15X - 5X2)  (17.16) 

For maximum 

:. - -  dMp - -15 - IOX 
dx 

(17.17) 

or X = -1.5 m 
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Substituting equation (1 7.17) into equation (17.16) 

1 
12 

Mp = - (50 + 22.5 - 11.25) 

M p  = 5.1 kNm 

Design Mp = 2.7 x 5.1 

= 13.77 kNm 

M y = - -  13'77 - 11.97 kNm 
1.15 

11.97 x lo3 
300 x lo6 

z =  

Z = 8 x lO-5 m 3  (horizontal beam) 

The method will now be applied to two-storey and two-bay frameworks. 

Problem 17.1 7 Determine a suitable sectional modulus for the two storey framework below, 
given that 

h = 3 , S = 1.16 , oY = 316 MPa 

Solution 

The possible mechanisms are as follows: 
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(d) Combined mechanisms (3 types) 
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Top beam mechanism 

Mp(0+20+0)  = 8 x 3 0  

4Mp = 24 

Mp = 6kNm 

Bottom beam mechanism 

Mp(0+20+0)  = 9 ~ 3 0  

4Mp = 27 

Mp = 6.75kNm 

Top sway mechanism 

M p ( O + O + O + O )  = 7 x 4 8  

Mp = 7kNm 

Bottom sway mechanism 

~ , ( e + e + e + e )  = 7 x 5 8  

Mp = 8.75kNm 

Top and bottom sway mechanisms 

MPx 60 = 7 ~ 9 0  

M p  = 10.5kNm 

Combined top mechanism 

~ , ( 0 + 0 + 2 0 + 2 0 + 0 + e )  = 8 ~ 3 e + 7 ~ 9 0  

8Mp = 87 

Mp = 10.88kNm 

409 
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(a, Combined bottom mechanism 

~ , ( e + e + 2 e + e + 2 e + e )  = 9 ~ 3 e + 7 ~ 9 e  

or 8Mp = 90 

M p  = 11.25kNm 

(h) Combined top and bottom mechanisms 

~ , ( e + 2 e + 2 e + 2 e + m + 2 e )  = 8 ~ 3 e + 9 ~ 3 e + 7 ~ 9 e  

or lOM, = 114 

Mp = 11.4kNm 

Design Mp = 11.4 x 3 = 34.2 kNm 
34.2 My = - = 29.48kNm 
1.1 6 
29.48 x lo3 
316 x lo6 

z =  = 9 x 1 0 - ~  m3 

Problem 17.18 Determine suitable sectional moduli for the two-bay framework below, given 
that 

A = 3 S = 1.15 oY = 316 MPa 
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Solution 

The various possible mechanisms are given below: 

,wP (e + 48 + 28) = 50 x 38 
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7Mp = 150 

Mp = 21.4kNm 

Right beam 

M~ (38 + 6e + e) = 60 x 38 

10Mp = 180 

Mp = 18kNm 

or 

MPx68 = 70x58 

6Mp = ‘350 

Mp = 58.3kNm 

Combined ( I )  

M~ (e + 4e + 20 + e + e  + e  +e) = 70 x 5e + 50 x 3e 

llMf = 500 

Mp = 45.5kNm 

(e) Combined (2) 

M~ (e + e + 2e + e + + 2e + e) 

= 7 0 ~ 5 e + 6 0 ~ 3 e  

or 14Mp = 530 

Mp = 37.86kNm 

fl Combined (3) 

M~ (e + 4e + 4e + e  + 6e + 2e +e) 

= 7 0 ~ 5 e + 5 0 ~ 3 e + 6 0 ~ 3 e  

19Mp = 680 

Mp = 35.8kNm 
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Design Mp = 58.3 x 3 = 174.9 kNm 

174.9 - 
1.15 

My = - - 152.1 kNm 

z =  15*" x lo3 = 4.8 x lO-4 m 3  (verticals) 
316 x lo6 

Z = 9.6 x lO-4 m 3  (left beam) 

Z = 1.44 lO-3 m3  (right beam) 

17.7 Complementary energy 

The principle of virtual work leads also to a concept of wider application in stress-strain analysis 
than that of strain energy; this other property of a structure is known as complementary energy. 

Consider the statically determinate pin-jointed frame shown in Figure 17.6; the frame is pinned 
to a rigid foundation at A and B, and carries external loads W, and W, at joints C and D, 
respectively. Suppose the corresponding displacements of the joints C and D are S I ,  and 6,, 
respectively; the tensile force induced in a typical member, such as BC, is P, and its resulting 
extension is e. The forces W,, W ,  P etc. are a system of forces in statical equilibrium, whereas 
the extensions, e, etc., are compatible with the displacements 6, and 6, of the joints. Thus by the 
principle of virtual work 

(17.18) w,S ,  + w,S, = C Pe 
m 

where the summation is carried out for all member of the frame. 

Fig. 17.6 Statically determinate plane frame under any system of external load. 

Now suppose the external load W, is increased in magnitude by a small amount 6 W ,  , the external 
load W, remaining unchanged; due to change in W, small changes occur in the forces in the 
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members of the frame P ,  for example, increasing to ( P  + SP). Now consider the virtual work of 
the modified system of forces on the original set of displacements and extensions; we have 

( w ~  + 6 ~ , ) 6 ,  + W,S, = C (P + 6P)e 
m 

where the summation is carried out for all members of the frame. Now suppose the external load 
W, is increased in magnitude by a small amount 6 W,, the external load W, remaining unchanged; 
due to change in W, small changes occur in the forces in the members of the frame, P,  for example, 
increasing to ( P  + SP). 

Now consider the virtual work of the modified system of forces on the original set of 
displacement and extensions; we have 

( w ~  + 6 ~ , ) 6 ,  + W,S, = C (P + 6P)e (17.19) 
m 

On subtracting equations (17.18) and (17.19), we have 

(17.20) 6 ,  x 6 ~ ,  = C e6P 
m 

The quantity eSP for a member is the shaded elemental area shown on the load-extension diagram 
of Figure 17.7, this is an element of the area C shown in Figure 17.8. 

Figure 17.7 Increment of Complementary Figure 17.8 Strain energy and complementary 
energy of a single member. energy of a single member. 

When a bar is extended the work done on the bar is the area below the P-e curve of Figure 17.7, 
for a conservative structural member this work is stored as strain energy, which we have already 
referred to as U. We define the area above the P-e curve of Figure 17.7 as the cornplementaiy 
energy, C, of the member; we have that 

U + C  = Pe (17.21) 
and 
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6C = e6P (17.22) 

In equation (1 7.18) we may write, therefore, 

6 ,  x SW, = 6C (17.23) 

where Cis the complementary energy of all members of the frame. If 6 W,  is infinitesimally small 

ac 
awl 

(17.24) - -  - 4 

Then the partial derivative of the complementary energy function C with respect to the external 
load W, gives the corresponding displacement 6 ,  of that load. 

17.8 Complementary energy in problems of bending 

The complementary energy method may be used to considerable advantage in the solution of 
problems of bending of straight and thin curved beams. In general we suppose that the 
moment-curvature relationshp for an element of a beam is of the form shown in Figure 17.9. The 
complementary energy of bending of an elemental length 6s due to a bending moment M is 

/OM (:) dM ., 

Figure 17.9 Complementary energy of bending of the element of a beam. 

For a linear-elastic beam of flexural stiffness El 

1 -  M - _ -  
R E l  

and so the complementary energy is 

M M  M26s Jb -ddMGs = - 
E l  2 E l  

(17.25) 
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For a length L of the beam, the complementary energy is therefore 

c = /,‘E% (17.26) 
2EI 

As in the case of pin-jointed frames, the partial derivative of C with respect to any external load 
is the corresponding displacement of that load. For statically indeterminate beams, the partial 
derivative of the complementary energy with respect to a redundant force or couple is zero. 

Problem 17.9 Estimate the vertical displacement of the free end of the uniform cantilever 
chnum 

Solution 

The complementary energy of bending is 

L W2Z2& - W2L3 - - -  L M2rL c = l b % = L  2EI 6EI 

The corresponding displacement of W is 

& , = - - -  aC - WL 3 

aw 3EI 

Problem 17.1 0 A cantilever has a uniform flexural stiffness EZ. Estimate the vertical deflection 
at the free end if the cantilever carries a uniformly distributed lateral load of 
intensity w. 

Solution 

Introduce a vertical load W at the free end; the bending moment at any section is then 

1 
2 

M = -wz2 + wz 
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The complementary energy of bending is 
2 

c = 1 [ L  (Lwz2 + wz) dz 
2EI o 2 

The corresponding displacement of W is 

1 - [ + w z 2  1 + wz zdz 6, = - ac - - 1 
aw EI o 2 

Now put W = 0; then 

6,  - 1 [ L  Lwz3& = - WL 4 

E I  o 2 8EI 

Problem 17.1 1 A cantilever of uniform flexural stiffness E I  carries a moment Mat the remote 
end. Estimate the angle of rotation at that end of the beam. 

Solution 

All sections of the beam carry the same bending moment M, so the complementary energy is 

L M2dz  - M2L “ = I o = - -  2EI 

The corresponding dsplacement of M is 

ML 
EI 

e, = - 

whch is the angle of rotation at the remote end. 
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Problem 17.12 Solve the problem discussed in Section 17.4, using complementary energy. 

Solution 

The bending moment at any section in t e r n  of w and the redundant force W is I/,& - Wz. Then 

c = IL 0 2  (LZ’ - WZ)’ & 
The property dCld W = 0 gives 

Then 

Problem 17.13 Solve Problem 17.3 using complementary energy. 

Solution 

The bending moment at any angular position 9 is 

M = Wrsin0 

Then 

x M 2  
= Io EIrd 

Thus 

= Lx Wr’sin’e - x Wr 
EI 2 El  

- -  

Problem 17.14 A thin circular ring of radius rand uniform flexural stiffness carries two radial 
loads W applied along a diameter. Estimate the maximum bending moment in 
the ring. 
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Solution 

By symmetry the loading action on a half-ring are %W and M,. The bending moment at any 
angular position 8 is 

1 
2 

M = M, - -Wrsin@ 

Then 

c = J,~(M, - T w r  sine - ' ) *  ;: 
But 

aciaM, = 0, SO that 

M,& = ?wr 1 in sine& 
!On 

Then 

M, = Wrlx  

17.9 The Raleigh-Ritz method 

This method is also known as the method of minimum potential, and in Chapters 24 and 25, it is 
used in the finite element method. 

In mathematical terms, it can be stated, as follows: 



420 Energy methods 

where 

x, = total potential = U, + WD 

U. = strainenergy 

WD = the potential of the load system 

W = load 

The method will be applied to problem 17.12 to determine an expression for 6,. 

Now 

M2 -dz = the bending strain energy of a beam 
'e = I , ,  

As 

M = Wz = bending moment at z ,  

1 u, = - (' W2Z2& 
2EI o 

or 

~ 2 1 3  u, = - 
6EI 

By inspection 

WD = potential of the load system 

= -w 6M, 
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Now, 

WI 3 - -  a5 - 0 = - -  

:. 6, = - W Z 3  as required 

hW aw 3 EI 

3 EI 

Further problems (answers on page 693) 

17.15 A thin semicircular bracket, AB,  of radius R is built-in at A ,  and has at B a rigid 
horizontal arm B C  of length R. the arm carries a vertical load W at C. Show that the 
vertical deflection at C is II WR3/2EI, where EI is the flexural rigidity of the strip, and 
determine the horizontal deflection. (Noffingham) 

17.1 6 A beam has a second moment of area of 21 over one-half of the span and I over the other 
half. Find the fured-end moments when a load of 100 kN is carried at the mid-length. 

17.1 7 A ring radius R and uniform cross-section hangs from a single support. Find the position 
and magnitude of the maximum bending moment due to its own weight. (London) 

An ‘S’ hook follows part of the outline of two equal circles of radius R that just touch. 
It embraces 5/6ths of one circle and 2/3rds of the other. If the ends are pulled apart by 
a force, P, by how much will they be moved if the hook has a constant rigidity El? 
(London) 

Using the plastic hinge theory determine a suitable sectional modulus for the rigid- 
jointed framework shown below. The following may be assumed to apply to the 
framework 

h = 4  oY = 300 MPa S = 1.15 

17.1 8 

17.19 
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17.20 A portal frame of uniform section is subjected to the loading above. Using the plastic 
hinge theory, determine a suitable section modulus for the frame, based on a load factor 
of 4, a shape factor of 1.15 and a yield stress of 275 MPa. (Portsmouth, Standard 1989) 

17.21 Using the plastic hinge theory, determine a suitable section modulus for the two bay 
rigid-jointed plane frame below. 

The following assumptions should be made:- 

load factor = 4 

shape factor = 1.15 

yieldstress = 275 MPa 
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(Portsmouth, Honours 1989) 



18 Buckling of columns and beams 

18.1 Introduction 

In all the problems treated in preceding chapters, we were concerned with the small strains and 
distortions of a stressed material. In certain types of problems, and especially those involving 
compressive stresses, we find that a structural member may develop relatively large distortions 
under certain critical loading conditions. Such structural members are said to buckle, or become 
unstable, at these critical loads. 

As an example of elastic buckling, we consider firstly the buckling of a slender column under 
an axial compressive load. 

18.2 Flexural buckling of a pin-ended strut 

A perfectly straight bar of uniform cross-section has two axes of symmetry Cx and Cy in the cross- 
section on the right of Figure 18.1. We suppose the bar to be a flat sirip of material, Cx being the 
weakest axis of the cross-section. End thrusts P are applied along the centroidai axis Cz of the bar, 
and EI its uniform flexural stiffness for bending about Cx. 

Figure 18.1 Flexural buckling of a pin-ended strut under axial thrust. 

Now Cx is the weakest axis of bending of the bar, and if bowing of the compressed bar occurs 
we should expect bending to take place in the yz-plane. Consider the possibility that at some value 
of P, the end thrust, the strut can buckle laterally in the yz-plane. There can be no lateral 
deflections at the ends of the strut; suppose v is the displacement of the centre line of the bar 
parallel to Cy at any point. There can be no forces at the hinges parallel to Cy, as these would 
imply bending moments at the ends of the bar. The only two external forces are the end thrusts P, 
which are assumed to maintain their original line of action after the onset ofbuckling. The bending 
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moment at any section of the bar is then 

M = P v  (18.1) 

which is a sagging moment in relation to the axes Cz and Cy, in the sense of Section 13.2. But the 
moment-curvature relationship for the beam at any section is 

d2v 

d Z 2  
M = -EI- 

provided the deflection v is small. Thus 

-EId2v = pv  
dZ2 

Then 

Put 

P 
EI 
- = k 2  

Then 

The general solution of this dfferential equation is 

v = A c o s k  + B s i n k  

(1 8.2) 

(1 8.3) 

(1 8.4) 

(18.5) 

where A and B are arbitrary constants. We have two boundary conditions to satisfy: at the ends z 
= Oandz = L,v  = 0. Then 

A = 0 and B s i n  kL = 0 

Now consider the implications of the equation 

B sin kL = 0 

wbch is derived from the boundary conditions. If B = 0, then both A and B are zero, and 
obviously the strut is undeflected. 
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Figure 18.2 Modes of buckling of a pin-ended strut. 

If, however, sin kL = 0, B is indeterminate, and the strut may assume the form 

v = B sin k 

This is called a buckled condition of the strut. Obviously B is indeterminate when kL, assumes the 
values, 

kL = x ,  2n, . . . etc. (18.6) 

We need not consider the solution kL = 0, which implies k = 0, because the solution of the 
differential equation is not trigonometric in form when k = 0. Instability occurs when kLx, = 2x, 
etc. 

:. P = k2EI = - x 2 E I ,  4x2 EI etc (18.7) 
L 2  L 2  

There are infinite number of values of P for instability, corresponding with various modes of 
buckling, Figure 18.2. The fundamental mode occurs at the lowest critical load 

P, = x2 E/ = Euler load for pin-ended struts (18.8) 
L’ 

This is known as the Euler formula and corresponds with buckling in a single longitudinal half- 
wave. The critical load 

(1 8.9) 
p = 2-x-  7 7 - E l  = 45r 2g 

L 2  L’ 
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corresponds with buckling in two longitudinal half-waves, and so on for hgher modes. In practice 
the critical load P, is never exceeded because high stresses develop at this load and collapse of the 
strut ensues. We are not therefore concerned with buckling loads higher than the lowest buckling 
load. For all practical purposes the buckling load of a pin-ended strut is given by equation (18.8). 

At this load a perfectly straight pin-ended strut is in a state of neutral equilibrium; the small 
deflection 

v = B sin kz 

is indeterminate, because B itself is indeterminate. Theoretically, the strut is in equilibrium at the 
load dEI/L2 for any small value of B, corresponding with a condition of neutral equilibrium; at thls 
buckling load we should expect to be able to push the strut into any sinusoidal wave of small 
amplitude. Th~s  can be verified experimentally by compressing a long slender strip of material 
which remains elastic during bending. 

At values of P less than n2EI/L2 the strut is in a condition of unstable equilibrium; any small 
lateral disturbance produces motion and finally collapse of the strut. This, however, is a 
hypothetical situation as, in practice, the load n2EI/L2 cannot be exceeded if the loads are static, and 
not applied suddenly. 

The condition of neutral equilibrium at 

P e = x -  2 EI 
L2 

is only attained for small lateral displacements of the strut. When these displacements become 
large, the moment-curvature relation 

d2v A4 = -EI- 
dz2 

is no longer valid; theoretically the problem becomes more difficult. The effect of large lateral 
displacements is to increase the flexural stiffness of the strut; in this case, provided the material 
remains elastic, end thrusts greater than n2EI/L2 are attainable. If the thrust P is plotted against the 
lateral displacement v at any section, the P - v relation for a perfectly straight strut has the form 
shown in Figure 18.3(i), when account is taken of large deflections. Lateral deflections become 
possible only when 

X ~ E I  
L2 

P 2  - 

This analysis is restricted to the hypothetical case of a perfectly straight strut. When the strut has 
small imperfections, displacements v are possible for all values of P (Figure 18.3(ii)), and the 
hypothetical condition of neutral equilibrium at 

is never attained. All materials have a limit of proportionality; when this is attained the flexural 
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stiffness of the strut usually falls off rapidly. On the P-v dagram for the strut this corresponds 
with the development of a region of unstable equihbrium. 

Figure 183 Large deflections and material breakdown of struts. 

18.3 Rankine-Gordon formula 

Predictions of buckling loads by the Euler formula is only reasonable for very long and slender 
struts that have very small geometrical imperfections. In practice, however, most struts suffer 
plastic knockdown and the experimentally obtained buckling loads are much less than the Euler 
predictions. For struts in this category, a suitable formula is the Rankine4ordon formula which 
is a semi-empirical formula, and takes into account the crushing strength of the material, its 
Young's modulus and its slenderness ratio, namely uk, where 

L = length of the stmt 

k = least radius of gyration of the strut's cross-section 

P, = a/ ( 1 8.10) 

where 
A = cross-sectional area 

a, = crushing stress 
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Then 

where 
PR = Rankine-Gordon buckling load 
P,  = Eulerbuckling load 

- -  - ‘’E’ for a pin-ended strut 
L 2  

n’EAk’ oyJ 

2 Lo oYc i n2Ek’ 

d E A k 2 0 y c  
- - 

or 

d E A k 2 0 y c  

LioYc i $Ek’ 
PR = 

L:oyc I $ E l k 2  + Ir2Ek2 I IT’ EAk’ 

oyc A P R  = 
(oyc / n2E) (Lo I k)’ + 1 

Let 

a = -  
IT2 E 
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(18.11) 

(18.12) 

(18.13) 

(18.14) 
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Then 
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(18.15) P, = “YP 
1 + a(& / K)* 

where a is the denominator constant in the Rankine-Gordon formula, which is dependent on the 
boundary conditions and material properties. 

A comparison of the Rankine-Gordon and Euler formulae, for geometrically perfect struts, is 
given in Figure 18.4. Some typical values for lla and 0, are given in Table 18.1. Where Lo is the 
effective length of the strut; see Section 18.4. 

Figure 18.4 Comparison of Euler and Rankine-Gordon formulae. 

Table 18.1 Rankine Constants 

18.4 Effects of geometrical imperfections 

For intermediate struts with geometrical imperfections, the buckling load is further decreased, as 
shown in Figure 18.5. 



Effective lengths of struts 43 1 

Figure 18.5 R a n k i n d o r d o n  loads for perfect and imperfect struts. 

18.5 Effective lengths of struts 

The theoretical buckling load for a pinned-ended strut is one-quarter of the theoretical buckline 
load of a fixed-ended strut and four times the theoretical buckling load for a strut fixed at one enc 
and free at the other end; see Sections 18.10 to 18.12. 

Table 18.2 Effective lengths of struts U,,) 

Table 18.2 gives the effective lengths of struts (L,,), which have actual lengths of L, for different 
boundary conditions, where BS449 allows for elastic relaxation at the ends of the strut. 
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18.6 Pin-ended strut with eccentric end thrusts 

In practice it is difficult, if not impossible, to apply the end thrusts along the longitudinal centroidal 
axis Cz of a strut. We consider now the effect of an eccentrically applied compressive load P on 
a uniform strut of flexural stiffness EI and length L. 

Figure 18.6 Eccentric loading of a strut. 

Suppose the end thrusts are applied at a distance e from the centroid and on the axis Cy of the 
cross-section. We assume again that the cross-section is that of a flat rectangular strip, Cx being 
the weaker axis of bending. The end thrusts P are applied to rigid arms attached to the ends of the 
strut. 

An end load P causes the straight strut to bend; suppose v is the displacement of any point on 
Cz from its original position. The bending moment at that section is 

M = P ( e + v )  

which is a sagging moment in relation to the axes Cz and Cy. If v is small we have 

d2v 

d Z 2  
M = -EI- 

Thus 

d2v 

dz 
- E I 7  = P ( ~ + v )  

Then 

d2v 
a!Z2 

E l -  + Pv = -Pe 

When e = 0, t l u s  differential equation reduces to that already derived for an axially loaded strut. 
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As before, put 

P k2 = - 
EI 

Then 

d2v - + k2v = -k2e 
G?z2 

The complete solution is 

v = A c o s k z + B s i n k z - e  

Now v = 0 at z = 0 and z = L,  so that 

A - e  = 0, and A c o s k L + B s i n M . - e  = 0 

Figure 18.7 Deflections of an eccentrically loaded strut. 

The first of these equations gives A = e, and the second gives 

e(l - cos kL) 
sin kL 

B =  

Then 

(18.16) 
e(1 - cos kL) sin kz v = e(cos kz - 1) + 

sin kL 

The displacement v at the mid-length, z = YL, is 
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2 
vo = e[( cos kL - 1) + 1 - COS kL 

sin kL 

If sin !h kL + 0, we have 

vo = e sec -kL - 1 ( i )  
When P = 0, 

( 1 8.1 7) 

( 18.1 8) 

and v, = 0. As P approaches x2EI/L', !4kL approaches xJ2, and 

1 
2 

sec -kL - m 
Thus values of v, are possible from the onset of loading; the values of v, increase non-linearly with 
increases of P. The value of P = x2 EI/L2 is not attainable as h s  would imply an infinitely large 
value of v,, and material breakdown would occur at some smaller value of P. 

It is interesting to evaluate the longitudinal stresses at the mid-length of the strut; the largest 
lateral deflection occurs at this section, and the greatest bending moment also occurs at this section, 
therefore. The bending moment is 

1 
2 

M = P(vo + e )  = Pe sec - kL (18.19) 

Suppose c is the distance from the centroidal axis Cx to the extreme fibres of the strut. Then the 
longitudinal bending stress set up by M is 

1 Pec sec - kL 

I 
Mc - 2 

G I = - -  I 

The average longitudinal compressive stress set up by P is 

(18.20) 

P 
0 2  = - 

A 
(18.21) 
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where A is the cross-sectional area of the strut. Then the maximum longitudinal compressive stress 
is 

(18.22) 
P Pec 1 
A I  2 

omax = (T2 + 0 ,  = - + - sec -kL 

Suppose I = A?, where r is the radius of gyration of the cross-section about Cx. Then 

2 

= LLl+y ec 

A r  
max 

The minimum compressive stress is 

(J min = '[ 1 - 7  sec-kL 2 ' J  ec 

A r  

The value of P giving rise to a maximum compressive stress (T is 

A 0  
ec 1 I + - sec -kL 
r 2  2 

P =  

However, 

(1 8.23) 

(1 8.24) 

(18.25) 

and is therefore a function of P, so that the above equations must be solved by trial and error. A 
good approximation is derived as follows: let VAL = 8, then for 0 < 8 < %x 

which leads to the following equation for P 

P 2  ( 1  - 0.26 :) - P be ( 1  + F) + aA] + (TAP, = 0 

If e = 0, this has the roots P = P, or aA 
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18.7 Initially curved pin-ended strut 

In practice a strut cannot be made perfectly straight, and our analysis for the flexure of a 
compressed bar would become more realistic if account could be taken of the slight deviations 
fiom straightness of the centroidal axis of a strut. 

Consider again a strut consisting of a flat strip of material. Suppose the centroidal longitudinal 
axis is initially curved, the lateral displacement at any point being v,, from the axis Oz, Figure 18.8. 
Thrusts P are now applied at the ends of the strut and at the centroids of the end cross-sections. 

Figure 18.8 Initially curved strut. 

The strut then bends further from its initial unloaded position. Suppose v is the additional lateral 
displacement at any section due to the application of P. If the ends of the strut are pinned there can 
be no lateral forces at the ends. The bending moment at any section of the strut is 

M = P(v  + Y O )  

If the strut is initially unstressed then the bending moment at any section is proportioned to the 
change of curvature at that section. Then 

d2v M = -EI- 
d Z 2  

because the change of curvature is due only to the additional displacement v of the strut and not 
the total displacement (v + vo). Then 

E I & + P ( v + v 0 )  = 0 
d Z 2  
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Put P/EZ = k2, as before. Then 

- d2v + k2v = -k2vo 
dz2  

Suppose for the sake of simplicity that v, is sinusoidal in form; take 

KZ vo = a sin - 
L 

43 7 

( 1  8.26) 

where a is a constant, and is the initial lateral hsplacement at the centre of the strut. Then 

d2v N 

d z 2  L 
- t k2v = -k2a sin - 

The general solution is 

N v = A c o s k z + B s i n k z +  k2a sin - 
IC’ k2 L - -  
L 2  

If the ends are pinned we have 

v = O  at z = O  and z = L  

Then 

A = 0 and B s i n k L  = 0 

If k is to assume any non-zero value we must have B = 0, so the relationship for v reduces to 

m sin - k 2a v =  
K 2  k2 L ( 1  8.27) - -  
L 2  

This may be written 

N a sin - 
L v =  

1 K 2  

k 2 L 2  
- -  

(1 8.28) 



43 8 

But p = P/EI, so on putting n2 EI/L2 = P,, we have 
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m a sin - 
L -  VO 

(18.29) - -  v =  
- -  - -  pe  1 pe  1 

P P 

Now P, is the buckling load for the perfectly straight strut. The relation for v,  whch is the 
additional lateral displacement of the strut, shows that the effect of the end thrust P is to increase 
v, by the factor l / [ (P,  /P)  - 11. Obviously as P approaches Pe,v tends to infinity. The additional 
displacement at the mid-length of the strut is 

a vc = - 
(18.30) - -  p e  1 

P 

This relation between P and v, has the form shown in Figure 18.9(i); v, increases rapidly as P 
approaches P,. Theoretically, the load P, can only be attained at an infinitely large deflection. In 
practice material breakdown would occur before P, could be attained, and at a finite displacement. 
We may write the relation for v, in the form 

vc = a (18.31) VC 

P 
Pe - - 

ms gives a linear relation between (v, / P )  and v,, Figure 18.9. The negative intercept on the axis 
of vc is equal to ( -u) .  If values of (v,/P) and v, are plotted in a strut test, it will be found that as the 
critical condition is approached these variables are related by a straight-line equation of the type 
discussed above. The slope of this straight line defines P,, the buckling load for a perfectly-straight 
strut. 

Figure 18.9 Deflections of an initially curved strut. 
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The P-v, curve is asymptotic to the line P = Pe if the materia1 remains elastic. It is of considerable 
interest to evaluate the maximum longitudinal compressive stress in the strut. The maximum 
bending moment occurs at the mid-length, and has the value 

The maximum compressive stress occurs in an extreme fibre, and has the value 

(1 8.32) 

(18.33) 

where A is the area of the cross-section, c is the distance from the centroidal axis to the extreme 
fibres, and r is the relevant radius of gyration of the cross-section. Now PIA is the average stress 
on the strut; if h s  is equal to o, then 

a [ oe-a(:)] 
om, = a I+' 

where 

ac 
r 2  

Suppose - = q. Then 

[ ..""] omax = o 1 + -  

Then 

omax = (ae - a) = a [(I + q) oe - o] 

(18.34) 

(18.35) 

(18.36) 

Thus, 

d - cs [.ma + (1  + q)ae] + om, ae = 0 
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Then 
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(3 = -cr,,t 2 ’[ ( l + q  ) (3, I-/- (18.37) 

We need not consider the positive square root, since we are only interested in the smaller of the two 
roots of the equation. This relation gives the value of average stress, 0, at which a maximum 
compressive stress om would be attained for any value of 11. If we are interested in the value of 
0 at which yield stress oy of a mild-steel strut is attained, we have 

(3 = ‘[(3y 2 i- (it q ) 4 -  /= (1 8.38) 

18.8 Design of pin-ended struts 

A commonly used structural material is mild steel. It has been found from tests on rmld-steel pin- 
ended struts that failure of an initially-curved member takes place when the yield stress is first 
attained in one of the extreme fibres. From a wide range of tests Robertson concluded that the 
failing loads of mild-steel struts could be estimated i fq  is taken to be proportional to (Ur) the 
slenderness ratio of the strut; Robertson suggests that 

v = O.W3(;) (18.39) 

This value of 11 gives 

(3 = - 2 ’[ u Y +  ( 1t0.003- :) (3, 1 - 1 1  (18.40) 

This represents a transition curve between yielding of the material for low Slenderness ratios, 
Figure 18.10, and buckling at high slenderness ratios. 

Figure 18.10 Effect of material breakdown 
on the buckling of a strut. 

Figure 18.1 1 ‘Interaction’ curves for 
practical struts. 
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In the case of mild-steel struts under true axial loading buckling occurs at (T, the elastic buckling 
load or at ( T ~  the yield stress. If true axial loading could be achieved in practice, all struts would 
fail at stresses that could be represented either by c/oy = 1, or (T/(T~ = 1. In a series of strut tests 
it is found that the test results are usually defined by a curve on the (T/ (T~ - o/a, diagram, Figure 
18.11, and not by the two straight lines d o y  = 1 and doe = 1. if the experimental technique is 
improved to give better axial-loading conditions the curve approaches these two straight lines. Any 
convenient transition curve on this diagram may be taken as a design curve for practical conditions 
of axial loading. 

18.9 Strut with uniformly distributed lateral loading 

In the preceding sections we considered the effects of end eccentricities and initial curvatures on 
the lateral bending of compressed struts; these produce lateral bending of the strut from the onset 
of compression. 

A similar problem arises when a compressed strut carries a lateral load. Consider a pin-ended 
strut length L and d o r m  flexural stiffness EI, Figure 18.12. Suppose the axial thrust on the strut 
is P, and that there is a lateral load of uniform intensity w per unit length. At the ends of the strut 
there are lateral shearing forces %wL. 

Figure 18.12 Laterally loaded struts. 

If v is the lateral deflection at any point of the centroidal axis, then the bending moment at any 
section is 

1 1 M = - E I -  d2v = pv 4. -wLz - -WZZ 
dz2 2 2 
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Then 
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W 
- - (Lz - z2) d2v Pv - 

( i z 2  E l  2EI 
- + -  - 

If P/EI = k’, then 

wk2 d2v 
(iz2 2P 

+ k2v = -- (Lz - z’) - 

The complete solution of h s  equation is 

v = A ~ ~ ~ k z + B s i n k z - -  (Lz - z 2  + ;) 
2P 

in which A and B are arbitrary constants. Now, at z = 0 and z = L we have v = 0, so 

W A - -  = o  
Pk2 

and 

A COS kL + B sin kL - w = 0 
Pk 

Then 

A = -  W B = X [  1 - COS kL ] 
Pk2 ’ pk2 sin kL 

Thus 

I-COSkL 
v = z [ c o s k + (  Pk sin kL 2 

The maximum value of v occurs at the mid-length, z = %L, and is given by 

(18.41) 

(18.42) 
8 

1 - COS kL 1 - Vmax - z [ c o s f k L + (  Pk 
sinkL )sinTkL- 
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This may be written 

W 1 1 
P k  2 8 v,, = - [sec -kL - 1 - -k2L2  

443 

(1 8.43) 

The maximum bending moment also occurs at the mid-length, and has the value 

(18.44) 
1 
8 

M,, = PV, ,  + -wL' 

On substituting for v-, we have 

2]  [ ] (18.45) M,, = W[spC-kL-l--k L + - W L  = -  sec-kL-1 
1 

k 2  2 8 k 2  

When P is small, k is also small, and 

1 

sec -kL 1 = 
1 1 & . [ 1 - L 2 ( 2  I k L  )2+a(+)4/ 

COS -kL 2 
2 

Thus, approximately, 

1 

2 [i 384 
sec-kL 6 1 +  -(kL) - l ( k L )  

= 1 + 1 - (kL)2+- (kL)4  5 
8 3 84 

Then 

5 w L 4  
384 E l  'rn, 

(1 8.46) 

(18.47) 

This agrees with the value of the central deflection of a laterally loaded beam without end thrust. 
Similarly, when k is small, 

W L  M,, = - 
8 k 2  L 2  

(18.48) 

the term in square brackets is the factor by which the bending moment due to w alone must be 
multiplied to give the correct bending moment. 
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18.10 Buckling of a strut with built-in ends 

In the elastic buckling of struts, we have assumed so far that the ends of the strut are always hinged 
to some foundation. When the ends are supported so that no rotations can occur, Figure 18.13, 
then the relevant mode of instability for the lowest critical load involves points of contra flexure 
at the quarter points. The buckling load is therefore the same as that of a pin-ended strut of half 
thelength. Then 

a2 EI Pcr = - = 4a2 E,  where Lo = 0.5L 
L 2  (1 8.49) ( +)2  

Figure 18.13 Buckling of a strut with built-in ends. 

When the ends of the strut are built-in, no restraining moments are induced at the ends until the 
strut develops a buckled form. 

18.11 Buckling of a strut with one end fixed and the other end free 

When a vertical load P is applied to the free end of a vertical cantilever, AB, at the lowest critical 
load the laterally deflected form of the strut is a sinusoidal wave of length 2L. If we consider the 
reflection of the buckled strut about A,  Figure 18.14, then the strut of length 2L behaves as a pin- 
ended strut. The buckling load is 

(18.50) pcr = - K2Er - - - r r2EI ,  where L, = 2~ 
(2L)* 4 L 2  

An important assumption in the preceding analysis is that the load at the free end of the cantilever 
is maintained in a vertical direction. If the load is always directed at A, that is its line of action is 
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BA, Figure 18.15 in the buckled fonn, then there is no restraining moment at A,  and the cantilever 
behaves as a pin-ended strut. The buckling load is 

(18.51) P ,  = x 2 g  

LZ 

Figure 18.14 Buckling of a strut with one Figure 18.15 Thrust inclined to its original 
end free and the other built in. direction. 

18.12 Buckling of a strut with one end pinned and the 
other end fixed 

For other combinations of end conditions we are usually led to more involved calculations. A strut 
is pinned at its upper end and built-in to a rigid foundation at the lower end, Figure 18.16. In the 
buckled form of the strut a lateral shearing force F is induced at the upper end. 

Figure 18.16 Strut with one end pinned and the other end fixed. 
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If v is the deflection of the central axis of the strut parallel to they-axis, the bending moment at any 
section is 

M = PV - FZ 

But 

d2v 
dz2 

M = -El  - 

Thus 

d2v 
d Z 2  

-EI - = PV - FZ 

Putk' = P/EI. Then 

d2v Fk 'z - + k 2 v  = - 
d Z 2  P 

The general solution is 
F 
P 

v = Acoskz+Bsinkz+ - Z  

where A and B are arbitrary constants; the value of F is also unknown as yet, so there are three 
unknown constants in this equation. The boundary conditions are 

v = O ,  at z = O  

dv 

dz 
and v = 0 a n d -  = 0, at z = L 

These give 

A = O  

B sin kL + - = 0 FL 
P 

F 
P 

Bk COS kL + - = 0 

The last two of these equations give 

B - -  L - 1 - -  - 

F P sin kL Pk  cos kL 



Buckling of a strut with one end pinned and the other end fixed 447 

Thus 

kL cos kL = sin kL (18.52) 

This equation gives the values of kL at which B and Fare indeterminate, that is, at a condition of 
neutral equilibrium. The equation may be written 

kl, = tan kL (18.53) 

The smallest non-zero value of kL satisfying this equation is approximately equal to 4.49 (see 
Figure 18.17). Thls gives 

EI P,, = k 2 E I  = 4.492 E = 20.2 - 
L 2  L 2  

We may derive an approximate value of kL in the following way: suppose kL is less than 3d2  by 
a small amount E, then 

kL = - -  37c E I 
I 

Figure 18.17 Graphical determination of buckling load. 

Then we are interested in the roots of the equation 

- -  37c E = 
t a n ( $ - & )  

_ -  37c E = c o t &  = +fa') 

2 

If E is small, then 

2 E 
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Approximately 

Then 

and 

(18.54) 

where 

Lo = d G  = 0.7 

18.13 Flexural buckling of struts with other cross-sectional forms 

In Section 18.2 we considered the strut to be in the form of a flat rectangular strip. We considered 
buckling to involve bendmg about the major axis Cx only, Figure 18.18. In the case of a flat 
rectangular strip the axis Cx is clearly the weaker axis of bending. In practice, structural sections 
rarely have this simple cross-sectional form, but fiequently have I-sections, or angle sections, or 
circular sections. 

In general, if the cross-sectional form of a strut has two axes of symmetry, we can consider 
flexural instability about these two axes independently. If an I-section has two axes of symmetry 
in the cross-section, Figure 18.19, flexural instability occurs usually about the axis of smaller 
stiffness, usually Cx. In a rectangular strut, Figure 18.19, the weaker bending axis is parallel to the 
longer sides. Circular cross-sectional forms have the property that any two mutually pexpendicular 
diameters are principal centroidal axes; for these sections flexural instability is equally likely about 
any principal centroidal axis, Figure 18.19; when buckling occurs it is usually restricted to one 
plane. In malung these statement we assume the ends of the strut are hinged about both axes Cy 
and Cz; this can be achieved in practice by loading through ball-ends. When the ends are not 
supported in the same way about Cy and Cx, then torsional effects may become important in the 
buckling behaviour. 
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Figure 18.18 Narrow strip cross-section. Figure 18.19 Cross-section with two axes of 
symmetry. 

Figure 18.20 Cross-sections with only one Figure 18.21 Unequal angle strut. 
axis of symmetry. 

In the case of cross-sectional forms with only one axis of symmetry, Cy, say (Figure 18.20), 
torsional effects become important if the shear centre is not coincident with the centroid. This is 
true of channel sections, T-sections, and equal angle sections. Although for certain struts flexural 
instability occurs about the weaker principal axis Cz, in general twisting also occurs. 

In the case of cross-sectional forms with no axes of symmetry, Figure 18.2 1, the buckled form 
always involves torsion, and the flexural buckling load has little meaning. This is true of unequal 
angle struts. 

Problem 18.1 What thrust will a round steel rod take without buckling if it is 1.25 cm 
diameter, 2 m long, perfectly straight, and pin-jointed at the ends, the load 
being applied exactly along the axis of the rod? 

Solution 

We have 

I =  ~(0 .0125)~  
= 1-20 x 10-9 m4, L = 2 m 

64 
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Taking E = 200GN/m2, wehave 
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p e = - -  ''E' - 591 N 
L 2  

18.14 Torsional buckling of a cruciform strut 

We mentioned above that some struts are prone to torsional buckling effects. A cross-sectional 
form in which torsional instability occurs independently of any other form of buckling is a 
symmetrical cruciform section. 

Figure 18.22 Cross-section of a cruciform strut. 

The cruciform has four equally spaced limbs each of breadth b and uniform thickness t, Figure 
18.22. Consider the section under a uniform compressive stress 0, Figure 18.23(i). We consider 
the possibility that the section may become unstable by twisting about the longitudinal axis Cz, 
Figure 18.23(ii); the stresses (3 over the ends remain parallel to Cz during buckling. 

Over any cross-section of the cruciform the stress is 0, acting parallel to Cz. Consider an 
elemental area 6A of one limb at a distance x from the axis Cz, Figure 18.23(iii). If the relative 
twist between two cross-sections a distance Sz apart is SO, then the force 

06A 

on the elemental area is statically equivalent to a force oSA acting along the twisted form of the 
strut and a small force 

de OGAX - 
a5 

acting in the plane of the cross-section. The inclined forces o6A on the two cross-sections are in 
equilibrium with each other, but the two forces oSAx (deldz) give rise to a resultant torque at any 
cross-section. This torque is 

ox2 E dA = 40 q h x 2 d A  4 1 b h  dx a 5 0  

since there are four limbs. 
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Figure 18.23 Torsional buckling of a cruciform column. 

The geometrical quantity 

4 s , h  x 2 d A  

is the polar second moment of area of the cross-section about Cz. The resultant torque at any cross- 
section is then 

de 
CJ - Jo 

dz 

where 

Jo = 4 Lh x 2  dA = 4t J O h x 2  dz = -b3t 4 
3 

Now, we found in Chapter 16 that the torque-twist relation for a cruciform section is 

Torque = G J  - de = -Gbt 4 3 %  

dz 3 dz 

In the case of the compressed cruciform, the twisted form can be maintained if 

de de o - J 0  = G J -  
dz dz 
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Then 

4 
(z = G[$) = G[*] -bt = G ( i ) 2  

-b 3t 
3 

(18.55) 

18.15 Modes of buckling of a cruciform strut 

With a knowledge of the torsional and flexural buckling loads of a cruciform strut, we can estimate 
the range of struts, we can estimate the range of struts for which buckling is likely in the two 
modes. 

If b is very much greater than t ,  and if all the limbs are similar in form, flexural buckling of a 
pin-ended strut is possible about any axis through the junction of the limbs, since the flexural 
stiffness is the same for all axes. For flexural instability the critical stress is 

EI 
Of = It2 - 

AL 

Now I = 1/12 t(2b)3 = %b3t and A = 4bt, and SO 

n2 Eb2 
Of = 7 7  

(18.56) 

(1 8.57) 

Now, as we have seen, the torsional buckling stress is independent of L, and has the value 
2 

0, = G ( i )  

Then or > (z, when 

-- IC’ Eb2 > G (t)2 
6 L 2  

i.e. when 

b4 6G - 6 3 - > -  - - - 
L 2 t Z  n2E 2d (1 + v) n2 (1 + v) 

I fv  = 0.3, then 

b 4  3 
L 2 t 2  1.37~’ 
- > - = 0.234 

(18.58) 

(18.59) 

(18.60) 
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Thus torsional buckling takes place when 

E > 4- = 0.484 
Lt 

i.e. when 

Lt - < 2.07 
b 2  

This condition may be written 

($) < 2.07 (!) (18.61) 

We can show the domains of flexural and torsional instability by plotting (Wb) against (b/t), Figure 
18.24. For a practical material, yielding or material breakdown occurs when L/b and b/t approach 
zero; the lower left-hand comer is therefore the yielding domain. Above the straight line 

[ $) = 2.07 [ !) 

buckling is by flexure, whereas below thls line buckling is by torsion. 

Figure 18.24 Modes of buckling of a cruciform strut. 
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18.16 Lateral buckling of a narrow beam 

We have seen that the axial compression of a slender strut can lead to a condition of neutral 
equilibrium, in which at a certain compressive load a flexural form of deformation becomes 
possible. In the case of a cruciform strut we have shown that a form of neutral equilibrium 
involving torsion is possible under certain conditions. 

Problems of structural instability are not restricted entirely to compression members, although 
there are many problems of this type. In the case of deep beams, for example, lateral buckling may 
occur, involving torsion and bending perpendicular to the plane of the depth of the beam. In 
general this problem is a complex one; however, we can determine some of the factors involved 
by studying the relatively simple case of the bending of a narrow deep beam. 

Figure 18.25 Lateral buckling of a narrow strip in pure bending. 

A long rectangular strip has a depth h and thickness t ,  which is small compared with h, Figure 
18.25. The principal centroidal axes are Cx, Cy and Cz. At the ends of the beam are vertical rollers 
which prevent twisting of the beam about a longitudinal axis. The distance between the end 
supports is L. 

The beam is loaded with moments M applied at each end about axes parallel to Cx. Consider 
the possibility that the beam may become laterally unstable at some critical value of M. If h >> 
t then bending displacements in the yz plane may be neglected. Suppose in the buckled form the 
principal centroidal axes at any cross-section are Cx', Cy' and Cz'. The lateral displacements 
parallel to Cx is u, and 8 is the angle of twist about Cz at any cross-section. The moments Mare 
assumed to be maintained along their original lines of action; the only other forces which may be 
induced at the ends are equal and opposite longitudinal torques T. The bending moment about the 
axis Cy' is then 
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and as this gives rise to the curvature of the beam in the xz plane we have 

Where EIy is the bending stiffness of the beam about Cy. Again, for twisting about Cz' 

du T + M -  
dz 

dB GJ - 
dz 

where G J  is the torsional stiffness about Cx. Differentiation of the second equations gives 

d2U d20 M -  = G J -  
d Z 2  dz2  

Thus, on eliminating u, 

Then 

Put 

Then 

d20 M 2  - + - e  = 0 
& 2  GJEI, 

M 2  
GJEI, 

k 2  = - (18.62) 

The general solution is 

0 = A cos kz + B sin kz 
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where A and B are arbitrary constants. If 8 = 0 at z = 0, then A = 0. Further if 8 = 0 at z =L, 

B s i n k L  = 0 

If B = 0, then both A and B are zero, and no buckling occurs; but B can be non-zero if 

sin kL = 0 

We can disregard the root kL = 0, since the general solution is only valid if k is non-zero. The 
relevant roots are 

kL = 7 c ,  2 x ,  37c. . , (1 8.63) 

The smallest value of critical moment is 

Now, for a beam of rectangular cross-section, 

1 1 
3 12 

GJ = - Ght3 ,  EI,, = - Eht3 

Then 

- -m x ht3 
MCr = 2 L 4- = L 6  

If G = ER(l+v)then 

& E = / - =  E 

m 

The maximum bending stress at the bending moment M,, is 

(18.64) 

(18.65) 

(1 8.66) 

(18.67) 

For a strip of given depth h and thickness t, the buckling stress oC, is proportional to the inverse of 
(Lh), which is sometimes referred to as the slenderness ratio of the beam. 
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Further problems (answers on page 694) 

18.2 Calculate the buckling load of a pin-joined strut made of round steel rod 2 cm diameter 
and 4 m long. 

Find the thickness of a round steel tubular strut 3.75 cm external diameter, 2 m long, pin- 
joined at the end, to withstand an axial load of 10 kN. 

Calculate the buckling load of a strut built-in at both ends, the cross-section being a 
square 1 cm by 1 cm, and the length 2 m. Take E = 200 GN/m*. 

A steel scaffolding pole acts as a strut, but the load is applied eccentrically at 7.5 cm 
distance from the centre line with leverages in the same duection at top and bottom. The 
pole is tubular, 5 cm external diameter and 0.6 cm thick, 3 m in length between its ends 
which are not fured in direction. If the steel has a yield stress of 300 MN/m2 and E = 
200 GN/mz, estimate approximately the load required to buckle the strut. (WEC)  

Two similar members of the same dimensions are connected together at their ends by 
two equal rigid links, the llnks being pin-jointed to the members. At the middle the 
members are rigidly connected by a distance piece. Equal couples are applied to the 
links, the axes of the couples being parallel to the pins of the joints. Show that buckling 
will occur in the top member if the couples M exceed a value given by the root of the 
equation 

18.3 

18.4 

18.5 

18.6 

1 1 
2 2 

tan -kL = tanh -kL 

where kz = M/EId. (Cambridge) 
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19.1 Introduction 

In this chapter, consideration will be made of three classes of plate problem, namely 

(i) small deflections ofplates, where the maximum deflection does not exceed half the plate 
thickness, and the deflections are mainly due to the effects of flexure; 

(ii) large deflections of plates, where the maximum deflection exceeds half the plate 
thickness, and membrane effects become significant; and 

(iii) very thick plates, where shear deflections are significant, 

Plates take many and various forms from circular plates to rectangular ones, and from plates on 
ships' decks to ones of arbitrary shape with cut-outs etc; however, in this chapter, considerations 
will be made mostly of the small deflections of circular plates. 

19.2 Plate differential equation, based on small deflection 
elastic theory 

Let, w be the out-of-plane deflection at any radius r, so that, 

and 

d2w - de - - -  
dr ' dr 

Also let 

R, = tangential or circumferential radius of curvature at r = AC (see Figure 19.1). 

R, = radial or meridional radius of curvature at r = BC. 
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Figure 19.1 Deflected form of a circular plate. 

From standard small deflection theory of beams (see Chapter 13) it is evident that 

= 1 i ” -  = l /  de dr (19.1) 
dr2 

Rr 

or 

& 
Rr dr (19.2) - - -  1 -  

From Figure 19.1 it can be seen that 

R, = AC = rl8 (19.3) 

or 

8 
R, rdr r (19.4) 
1 -  l h  - - - - - -  

Let z = the distance of any fibre on the plate from its neutral axis, so that 

1 
(19.5) 

= -  
E~ = radial strain = - - E (or - YO,) 

Rr 
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and 

E, = circumferential strain = - z 1  = - (ai - vor) 

R, E 

From equations (19.1) to (19.6) it can be shown that 

where, 

a, = radial stress due to bending 

a, = circumferential stress due to bending 

The tangential of circumferential bending moment per unit radial length is 

de z3 +‘I* E 
= - (1 - v’) (: + 7) [TI-,,’ 

- Et3 - 
12(1 - v’) 

therefore 

MI = D ( : + v $ )  = . I - - + . - )  1 dw d’w 
r dr dr’ 

(19.6) 

( 1  9.7) 

(19.8) 

(1  9.9) 

where, 

t = plate hckness 
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and 

= flexural rigidity Et 3 D =  
12(1 - Y’) 

S d a r l y ,  the radial bending moment per unit circumferential length, 

Mr = D($+:) = D[&+&) dr’ rdr 
(19.10) 

Substituting equation (19.9) and (19.10) into equations (19.7) and (19.8), the bending stresses 
could be put in the following form: 

(s, = 12 M ,  x z I t’ 
and 

(J = 1 2 ~ ,  x z i t 3  (19.1 1) 

and the maximum stresses 6, and 6, will occur at the outer surfaces of the plate (ie, @z = *IC). 
Therefore 

(19.12) 2 e t  = 6Mt  I t  

br = 6Mr I t’ 
and 

(19.13) 
The plate differential equation can now be obtained by considering the equilibrium of the plate 
element of Figure 19.2. 

Figure 19.2 Element of a circular plate. 

Takmg moments about the outer circumference of the element, 

(Mr + 6M,) (r + 6r) 69 - M, r6q - 2M, 6r sin - 6q  - F r 6q6r = 0 
2 
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In the limit, this becomes 

Lateral deflections of circular plates 

dMr M , + r . - - M , - F r  = 0 
dr 

Substituting equation (19.9) and (19.10) into equation (19.14), 

or 

which can be re-written in the form 

(19.14) 

(19.15) 

where F is the shearing force / unit circumferential length. 
Equation (19.15) is known as the plate differential equation for circular plates. 
For a horizontal plate subjected to a lateral pressure p per unit area and a concentrated load W 

at the centre, F can be obtained from equilibrium considerations. Resolving ‘vertically’, 

2nrF = nr’ p + W 

therefore 

W 
2 2nr 

F = + - (except at r = 0) 

Substituting equation (19.16) into equation (19.15), 

(19.16) 

therefore 
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since, 

- -  & - e  
dr 

w = /e dr + C, 

hence, 

4 wr c 1 r 2  w=- pr +-(~n r - 1 ) + - + c 2  In r + C 3  
640 8xD 4 

Note that 

2 

2 

7 r -  2 r 
= -1n r - - + a constant 

2 4 

(19.17) 

(19.18) 

(19.19) 

Problem 19.1 Determine the maximum deflection and stress in a circular plate, clamped 
around its circumference, when it is subjected to a centrally placed 
concentrated load W. 
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Solution 

Putting p = 0 into equation (1 9.18), 

Wr Clr2 
w = - ( h r - l ) + -  + C 2  I n r + C 3  

8x0 4 

asdw/drcamotequal-at r = 0, C, = 0 

- w = o  a t r =  R ,  - - my 
dr 

therefore 

and 

WR WR WR C,R 
4nD 4nD 8nD 2 

0 = - I n R - - + - + -  

Hence, 

W 
4nD 

Cl  = -(1 - 2  In R) 

WR - WR2 WR2 WR2 In = h R + - - - + -  WR 
8nD 8nD 16nD 8nD 1 6nD 

c3 = -- 

WR h R + -  w = -  WR I n r - - + - - -  Wr2 Wr2 Wr2 
8nD 8nD 16110 8x0  16nD 

or 

w = - 1  WR 1 - - r 2  + - 2R2 .(;)I 
16x0 R 2  R 2  

The maximum deflection (6) occurs at r = 0 
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WR ’ * = -  
16x0 

Substituting the derivatives of w into equations (19.9) and (19.10), 

M, = [I + In (;) (1 + 41 
4n 

MI M, = - v + ( l  + v )  In 
4x w [  

Problem 19.2 Determine the maximum deflection and stress that occur when a circular plate 
clamped around its external circumference is subjected to a uniform lateral 
pressure p .  

Solution 

From equation (19.18), 

4 C , r 2  
w = E+- + C, In r + C, 

640 4 

dw 3 C,r C, - = E + - + -  
dr 1 6 0  2 r 

and 

d2w - 3pr2 CI c 2  - -  - + - - -  
dr ’ 160 2 r 2  

at r = 0, - + - therefore C, = 0 
& 

a t r  = R, w = - & - o  - 
dr 

therefore 
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therefore 

-pR2 c, = - 
8 0  

PR c, = - 
640  

therefore 
2 

640 

Substituting the appropriate derivatives of w into equations (1 9.9) and (1 9. IO), 

M, = - pR2 1 - ( I  + v) + (3 + v) - 
16 

-(1 + v) + (1 + 3v) - 
16 R 2  r 2  1 

Maximum deflection (6) occurs at r = 0 

G = -  PR 
640 

(19.20) 

(19.21) 

(19.22) 

(19.23) 

By inspection it can be seen that the maximum bending moment is obtained from (19.21), when 
r = R, i.e. 

hr = pR’I8 

and = 6 k ,  I t 2  

= 0.75pR2 I t 2  
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Determine the expression for M, and M, in an annular disc, simply-supported 
around its outer circumference, when it is subjected to a concentrated load W, 
distributed around its inner circumference, as shown in Figure 19.3. 

Problem 19.3 

Figure 19.3 Annular disc. 

W = total load around the inner Circumference. 

Solution 

From equation (19.18), 

Wr 2 

8KD 4 

C , r 2  
+ C, In r + C ,  w = - ( I n r - l ) + -  

at r = R,, w = 0 

or 

(19.24) WR; c 7  
0 = -(In R2-1)+- - ! -R;+C2  In R2+C3 

8xD 4 

Now, 

(19.25) Wr Wr C,r  C,  
dr 4nD 8 x 0  2 r 
- -  d w -  -(In r - 1) + - + - + - 

and, 
2 

d w  W w W C C ,  
(19.26) -- - -(ln r - l ) + - + - + L - -  

dr2 4 x D  4xD 8xD 2 r2  

A suitable boundary condition is that 
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M, = 0 at r = R ,  and at r = R, 

but 

therefore 

W 3 w  c, c, - (In R l - l )  + -+- - - 
4nD 8nD 2 R: 

R ,  4xD 

and 

Solving equations (19.27) and (19.28) for C, and i2, 

and 

C, is not required to determine expressions for M, and M,. Hence, 

M, = D(W/8nD) {(l + v)2 In r + (1 - v)} 

( 1  9.27) 

(19.28) 

(19.29) 

(19.30) 

(19.31) 
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and 

M, = D(WI8nD) ((1 + v)2 In r - (1  - v)} 

+ ( ~ , / 2 )  (1 + v) + (c2/r2) ( 1  - v) 
(19.32) 

Problem 19.4 A flat circular plate of radius R, is simply-supported concentrically by a tube 
of radius R , ,  as shown in Figure 19.4. If the 'internal' portion of the plate is 
subjected to a uniform pressurep, show that the central deflection 6 of the plate 
is given by 

6 = "{3+2[?)2(L2)]  6 4 0  

Figure 19.4 Circular plate with a partial pressure load. 

Solution 

Now the shearing force per unit length F for r > R,  is zero, and for r < R,,  

F = prl2 

so that the plate differential equation becomes 

r > R, ---- c _ _ _ _ _ _ _ _ _  r < R, _ _ _ _ _ _ _ _  ~ - _ _ _  

= o  - d { l d ( r : ) } = g  -- 
dr r dr 

~ " ( r : )  = E + A  = B  (19.33) 
r dr 

For continuity at r = R , ,  the two expressions on the right of equation (19.33) must be equal, i.e. 
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or 

or 

or 

+ A  = B PR: - 
40 

g = -  
40 

+ ( r z )  = 40 

which on integrating becomes, 

dw - p r 4  Ar2 + 

dr 160 2 
r -  - - + -  

my 
dr 

at r = 0, - + m therefore C 

- pRjr  
+ Ar - -  

40 

8 0  2 

= o  

(19.34) 

(1 9.35) 

For continuity at r = R , ,  the value of the slope must be the same from both expressions on the 
right of equation (19.35), i.e. 

therefore 
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F = -pR: l ( 1 6 D )  (19.36) 

therefore 

A r  _ - -  dw - pr +- 
dr 160 2 

whch on integrating becomes 

pr4 A r 2  
6 4 0  4 

w = - + - + G  

(19.37) 

(19.38) - pR:r2 Ar2 Rf r + H  - -  +--- 
160 4 160 

Now, there are three unknowns in equation (19.38), namely A, G and H, and therefore, three 
simultaneous equations are required to determine these unknowns. One equation can be obtained 
by considering the continuity of w at r = R ,  in equation (19.38), and the other two equations can 
be obtained by considering boundary conditions. 

One suitable boundary condition is that at r = R,, M, = 0, which can be obtained by 
considering that portion of the plate where R, > r > R, ,  as follows: 

dw - PR:r A r  PRP 
dr 8 0  2 16Dr 
- -  - + + - - -  

Now 

A 
2 

(1  + v) + - (1  + v)+ 

Now, at r = R,, M, = 0;  therefore 

(19.39)  

(1  - 4 - ( 1  + v) = -- (1 + v) - - A PR: PRP 

2 8D 16DRi 
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or 
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(19.40) 

Another suitable boundary condition is that 

at r = R , ,  w = 0 

In this case, it will be necessary to consider only that portion of the plate where r c R , ,  as follows: 

p r 4  A r 2  + 

6 4 0  4 
w = - + -  

at r = R , ,  w = 0 

Therefore 

P R , ~  AR: 
0 = - + -  + G  

640 4 

or 

= -+[!$+L&(fi)}$ -PR,4 640 

or 

G = L [ 3 + 2 [ 2 ) 2 ( e ) }  P R 4  
640 

(19.41) 

The central deflection 6 occurs at r = 0; hence, from (19.41), 
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6 = G  

6 = "6+2(2]2(J2)} (19.42) 

640  

0.1 15 WR2/(ET3); - w [ 0.621 In (f) -0.436 + 0.0224 (!).I} [ t 2  

Problem 19.5 A flat circular plate of outer radius R, is clamped firmly around its outer 
circumference. If a load Wis applied concentrically to the plate, through a tube 
of radius R, ,  as shown in Figure 19.5, show that the central deflection 6 is 

6 = L ( . i h ( ! L ] * + l ? : - R / j J  16x0 

Figure 19.5 Plate under an annular load. 

Solution 

When r < R, ,  F = 0, and when R, > r > R,, F = W/(Zm), so that the plate differential 
equation becomes 

+ - - - - - _ - , . < R ,  _ _ _ _ _ _ _ _  + - _ _ -  r > R,  ----- 

- w  i { L d ( r $ ) }  = 0 - -  
dr r 2nD 
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or 
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i d ( , $ )  r = A 

or d(r:) = Ar 

- -  - ~ n r + ~  
2nD 

Wr In r 

2xD 
- + Br - -  (19.43) 

From continuity considerations at r =R,, the two expressions on the right of equation (1 9.43) must 
be equal, i.e. 

W 
2nD 

A = -hR, + B 

On integrating equation (1 9.43), 

mV - Ar2 
dr 2 2 

r - - - + C  

or 
dw Ar C 

dr 2 r 
+ -  - - -  - 

at r = 0 ,  - + m therefore C = 0 
dr 

From continuity considerations for dw/dr, at r = R,, 

(19.44) 

(19.45) 

(19.46) 

On integrating equation (1 9.46) 

or 

w = -  + G  
2 

Wr' Br 
-(In r - l ) + - + F  In r + H  
8x D 4 

(19.47) 
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From continuity considerations for w, at r = R , ,  

Arf 
2 

+ G  - BR: + F In R, + H (19.48) WR; 
8nD 4 

-- - (In R , - I ) + -  

In order to obtain the necessary number of simultaneous equations to determine the arbitrary 
constants, it will be necessary to consider boundary considerations. 

at r = R,, - h = o  
dr 

therefore 

Also, at r = R,, w = 0; therefore 

WR; B R , ~  
0 = - (h R,- 1) + - + F In (R2) + H 

8nD 4 

Solving equations (19.46), (19.48), (19.49) and (19.50), 

(19.49) 

(19.50) 

(19.5 1) 

W 
8nD 

H = -- {-R,2/2 - R:/2 + R : h  (R?)) 

and 
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WR: WR: 
8aD 8nD In (4) + H G = - - + -  

+ R: ln (41 = -WR: + WR: ’.(R*) w (3 - g 
8nD 8aD 2 2 

W 
16aD 

= - ( -2R:  + 2Rf In (R,) + R i  + R: - 2R: In &)} 

G = z h f l n [ : )  2 + ( $ - . : I  
6 = G = z [ : In [ : )  2 + ( R ; - R : i  

16nD 

6 occurs at r = 0, i.e. 

16nD 

19.3 Large deflections of plates 

If the maximum deflection of a plate exceeds half the plate thickness, the plate changes to a 
shallow shell, and withstands much of the lateral load as a membrane, rather than as a flexural 
structure. 

For example, consider the membrane shown in Figure 19.6, which is subjected to uniform 
lateral pressure p. 

Figure 19.6 Portion of circular membrane. 

Let 
w = out-of-plane deflection at any radius r 

u = membrane tension at a radius r 

t = thickness of membrane 
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Resolving vertically, 

or 

P' 
dr 2ot 
- -  - 

or 

at r = R, w = 0; therefore 

i.e. 
6 = maximum deflection of membrane 

G = -pRZ/(4ot) 

The change of meridional (or radial) length is given by 

where s is any length along the meridian 

Using Pythagoras' theorem, 

61 = / (my' + dr2)" - j d r  

(1 9.52) 

Expanding binomially and neglecting hgher order terms, 
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61 = [[l + ‘ (7?1dr  2 dr 
- [dr  

(19.53) 
2 

= if($) 2 dr 

Substituting the derivative of w, namely equation (19.52) into equation (19.53), 
2 

6 1 =  I f R ( E )  2 0  dr 

= p ’ R 3/(24$t ’) 

but 

or 

i.e. 

but 

0 = p R ’ J ( 4 ~ )  

From equations (19.55) and (19.56), 

P =  3(1 - V) 

According to small deflection theory of plates (19.23) 

P = -(x) 6 4 0  G 
R 3  

(19.54) 

(19.55) 

(19.56) 

(19.57) 

(19.58) 
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Thus, for the large deflections of clamped circular plates under lateral pressure, equations (19.57) 
and (19.58) should be added together, as follows: 

3 

(19.59) 640  GJ 8 
p = F ( x )  + 3(1 - v ) ( i )  (:) 

If v = 0.3, then (19.59) becomes 

& = (!) f + 0.65 (!)} (19.60) 
64Dt 

where the second term in (19.60) represents the membrane effect, and the first term represents the 
flexural effect. 

When GJ/t = 0.5, the membrane effect is about 16.3% of the bending effect, but when GJ/t = 1, 
the membrane effect becomes about 65% of the bending effect. The bending and membrane 
effects are about the same when GJ/t = 1.24. A plot of the variation of GJ due to bending and due 
to the combined effects of bending plus membrane stresses, is shown in Figure 19.7. 

Figure 19.7 Small and large deflection theory. 

19.3.1 Power series solution 

This method of solution, which involves the use of data sheets, is based on a power series solution 
of the fundamental equations governing the large deflection theory of circular plates. 
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For a circular plate under a uniform lateral pressure p ,  the large deflection equations are given by 
(19.61) to (19.63). 

d ; tur) - a* = 0 

(19.61) 

(19.62) 

(19.63) 

Way' has shown that to assist in the solution of equations (19.61) to (19.63), by the power series 
method, it will be convenient to introduce the dimensionless ratio 6, where 

6 = r/R 

r =1;R 
or 

R = outer radius of disc 

r = any value of radius between 0 and R 

Substituting for r int (19.61): 

or 

Inspecting (19.64), it can be seen that the LHS is dependent only on the slope 0. 

Now 

(19.64) 

5Way, S. ,  Bending of circular plates with large deflections, A.S.M.E.. APM-56-12, 56,1934. 
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whch, on substituting into (19.64), gives: 

but 

are all dunensionless, and h s  feature will be used later on in the present chapter. 
Substituting r, in terms of 1; into equation (19.62), equation (19.66) is obtained: 

Similarly, substituting r in terms of 6 equation (19.63), equation (19.67) is obtained: 

(19.66) 

(19.67) 

Equation (19.67) can be seen to be dependent ocly on the deflected form of the plate. 

dimensionless form by introducing the following dimensionless variables: 
The fundamental equations, which now appear as equations (1 9.65) to (1 9.67), can be put into 

X = r/t = CWt 

W = w/r 

u = u/t 

S, = a,/E 

S, = C J ~  /E 

S, = p/E (19.68) 
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or 

w = J e d x  

Now from standard circular plate theory, 

I 

and 

Hence, 

1 
sri = 2(1 - v ' )  (% + :) 

and 

s, I = ' ("2) 
2(1 - v ' )  x 

Now from elementary two-dimensional stress theory, 

- -  uE - o[ - vo, 
r 

or 

u = X(S, - VSr)  

(19.69) 

(19.70) 

(19.71) 

(19.72) 

(19.73) 

where u is the in-plane radial deflection at r. 

equations take the form of equations (19.74) to (19.76): 
Substituting equations (19.68) to (19.73) into equations (19.65) to (19.67), the fundamental 
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d e2 
dx 2 

x- (S, + S,) + - = 0 

483 

(19.74) 

(19.75) 

(19.76) 

Solution of equations (19.74) to (19.76) can be achieved through a power series solution. 

even series powers of X. 

power of X. Let 

Now S, is a symmetrical h c t i o n ,  i.e. S,(X) = S,(-X), so that it can be approximated in an 

Furthermore, as 8 is antisymmetrical, i.e. e(X) = -e(*, it can be expanded in an odd series 

S, = B,  + B F ’  + B3X4 + . . . 

and 

e = c,x + c2x3 + c3x5 + . 

or 
- 

S,  = B,X” - 2  
r = l  

and 
= 

e = crxZf - 
1 . 1  

Now from equation (19.75) 

(19.77) 

(19.78) 

(19.79) 
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Pressure rat0 g(q)' 

Figure 19.8 Central deflection versus pressure for a simply-supported plate. 

w = /e& = C - [ ;) C J * '  (19.80) 
r = l  

Hence 

C1X2' - 2 (19.81) 
2 (2i + v - I )  s,' = 

I = I 2(1 - v') 

CIX*' - * (19.82) 
s,' = 2 (1 + v(2i - 1)) 

I = 1 2(1 - v2) 
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Now 

u = x(s, - vs,) 
- (19.83) 

= c (2i - 1 - V)BrX2' - ' 
r = l  

fori = 1,2,3,4 - a. 

Pressure ratio - PE (*7 - r 

Figure 19.9 Central deflection versus pressure for an encastre plate. 
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From equations (19.77) to (19.83), it can be seen that if B ,  and C, are known all quantities of 

Way has shown that 
interest can readily be determined. 

k - I  

m = l  Bk = 
8k(k - 1) 

fork = 2,3 ,4  etc. and 

3(1 - v’) ‘ - I  

k(k - 1) In = I 
Ck = 1 Bmck - in 

fork = 3,4,  5 etc. and 

Once B ,  and C, are known, the other constants can be found. In fact, using this approach, Hewitt 
and Tannent6 have produced a set of curves which under uniform lateral pressure, as shown in 
Figures 19.8 to 19.12. Hewitt and Tannent have also compared experiment and small deflection 
theory with these curves. 

19.4 Shear deflections of very thick plates 

If a plate is very thick, so that membrane effects are insignificant, then it is possible that shear 
deflections can become important. 

For such cases, the bending effects and shear effects must be added together, as shown by 
equation (19.84), which is rather similar to the method used for beams in Chapter 13, 

which for a plate under uniform pressure p is 

6 = pR 1, ( :)3 + k, ( i)’] (19.84) 

where k, and k, are constants. 
From equations (19.84), it can be seen that becomes important for large values of (t/R). 

6Hewin D A. Tannent J 0, Luge deflections ofcircularphes, Portsmouth Polytechnic Report M195, 1973-74 
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Pressure ratio - - : (*7 r 

Figure 19.10 Central stress versus pressure for an encastre plate. 
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Pressure ratio - - : (2; 1 
Figure 19.11 Radial stresses near edge versus pressure for an encastrk plate. 
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Figure 19.12 Circumferential stresses versus pressure near edge for an encastre plate. 
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Further problems (answers on page 694) 

19.6 

Lateral deflections of circular plates 

Determine an expression for the deflection of a circular plate of radius R, simply- 
supported around its edges, and subjected to a centrally placed concentrated load W. 

19.7 Determine expressions for the deflection and circumferential bending moments for a 
circular plate of radius R, simply-supported around its edges and subjected to a uniform 
pressure p .  

19.8 Determine an expression for the maximum deflection of a simply-supported circular 
plate, subjected to the loading shown in Figure 19.13. 

Figure 19.13 Simply-supported plate. 

19.9 Determine expressions for the maximum deflection and bending moments for the 
concentrically loaded circular plates of Figure 19.14(a) and (b). 

(a) Simply supported. (b) Clamped. 

Figure 19.14 Problem 19.9 
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19.1 0 A flat circular plate of radius R is firmly clamped around its boundary. The plate has 
stepped variation in its thickness, where the hckness inside a radius of (R/5) is so large 
that its flexural stiffness may be considered to approach infinity. When the plate is 
subjected to a pressure p over its entire surface, determine the maximum central 
deflection and the maximum surface stress at any radius r. v = 0.3. 

19.1 1 If the loading of Example 19.9 were replaced by a centrally applied concentrated load 
W, determine expressions for the central deflection and the maximum surface stress at 
any radlus r. 



20 Torsion of non-circular sections 

20.1 Introduction 

The torsional theory of circular sections (Chapter 16) cannot be applied to the torsion of non- 
circular sections, as the shear stresses for non-circular sections are no longer circumferential. 
Furthermore, plane cross-sections do not remain plane andundistorted on the application of torque, 
and in fact, warping of the cross-section takes place. 

As a result of h s  behaviour, the polar second moment of area of the section is no longer 
applicable for static stress analysis, and it has to be replaced by a torsional constant, whose 
magnitude is very often a small fraction of the magnitude of the polar second moment of area. 

20.2 To determine the torsional equation 

Consider a prismatic bar of uniform non-circular section, subjected to twisting action, as shown 
in Figure 20.1. 

Figure 20.1 Non-circular section under twist. 

Let, 
T = torque 

u = displacement in the x direction 

v = displacement in they direction 

w = displacement in the z direction 

= the warping function 

8 = rotation I unit length 

x, y, z = Cartesian co-ordinates 
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Figure 20.2 Displacement of P. 

Consider any point P in the section, which, owing to the application of T, will rotate and warp, 
as shown in Figure 20.2: 

u = -yze 

v = xze 
(20.1) 

due to rotation, and 

w = 8 x ~ ( x ,  y)) 

= e x w  
(20.2) 

due to warping. The theory assumes that, 

E, = EY = EZ = Y, = 0 (20.3) 

and therefore the only shearing strains that exist are yn and y,, which are defined as follows: 

y,, = shear strain in the x-z plane 

(20.4) ( 2  - y )  
aw au  - 

ax az 
= - + -  - 
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y, = shear strain in the y-z plane 

(20.5) 
= - + a ~  aw = e(?+,) 

ay az 

The equations of equilibrium of an infinitesimal element of dimensions dx x dy x dz can be 
obtained with the aid of Figure 20.3, where, 

Txr = Ta 

and 

Tyz = Tzy 

Resolving in the z-direction 

- x  h, & x h x & + - n h x & x &  h X Z  = 0 
s i?X 

or 

- + -  h X ?  h y z  = 0 (20.6) 
ax s 

Figure 20.3 Shearing stresses acting on an element. 
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However, from equations (20.4) and (20.5): 

and 

Let, 

-- = 2.. 
ax ay 

495 

(20.7) 

(20.8) 

(20.9) 

(20.10) 

where x is a shear stress function. 

following is obtained: 
By differentiating equations (20.9) and (20.10) with respect to y and x,  respectively, the 

a2Y 1 - - -  a:x a:x a2y 
ax* ay* a x .  ay ax . ay 
- + -  = - -  

Equation (20.1 1) can be described as the torsion equation for non-circular sections. 
From equations (20.7) and (20.8): 

rxz = G9- ax 
ay 

(20.1 1) 

(20.12) 

and 

rF = -G9- ?Y 
ax (20.13) 
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Equation (20.1 l), which is known as Poisson's equation, can be put into the alternative form of 
equation (20.14), which is known as Laplace's equation. 

a2y a2y - + -  = 0 
ax2 ay2  (20.14) 

20.3 To determine expressions for the shear stress t and 
the torque T 

Consider the non-circular cross-section of Figure 20.4. 

Figure 20.4 Shearing stresses acting on an element. 

From Pythagoras' theorem 

t = shearing stress at any point (x, y )  on the cross-section 

= 4- (20.15) 

From Figure 20.4, the torque is 

T = 11 (txz x Y - Tyz x x ) d r . d y  (20.16) 

To determine the bounduly value for x,  consider an element on the boundary of the section, as 
shown in Figure 20.5, where the shear stress acts tangentially. Now, as the shear stress 
perpendicular to the boundary is zero, 

ty sincp + txz coscp = 0 
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Figure 20.5 Shearing stresses on boundary. 

or 

-.ex&(-$) +Cox..(..) = 0 
ax a y h  

or 

GO* = 0 
h 

where s is any distance along the boundary, i.e. x is a constant along the boundary. 

Problem 20.1 Determine the shear stress function x for an elliptical section, and hence, or 
otherwise, determine expressions for the torque T, the warping function wand the 
torsional constant J. 

Figure 20.6 Elliptical section. 
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Solution 

The equation for the ellipse of Figure 20.6 is given by 

and this equation can be used for determining the shear stress function x as follows: 

2 2 

x = c ( + ; + y )  a -  

(20.17) 

(20.18) 

where C is a constant, to be determined. 

be determined by substituting equation (20.18) into (20.1 l),  i.e. 
Equation (20.18) ensures that xis constant along the boundary, as required. The constant C can 

c(; + $) = -2 

therefore 

- a 2 b 2  
a 2  + b 2  

c =  

and 

a 2 b z  
(a’ + b Z )  

x =  

where x is the required stress function for the elliptical section. 
Now, 

(20.19) 

& - GO 2xb2 
ax a’ + b 2  

Tvz = -GO- - 
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and 

= -G8[[ 2x’b’ + 2y’a’ 
a’ i b’ a’ + b’ 

a’b’ 
a’ + b’ 

= -2G8 

but 

- second moment of area about x-x nab 
4 

[y’dA = Ixx = - - 

and, 

- second moment of area about y-y nu 3b 
4 

p2dA = Iw = - - 

therefore 

T = -2G0 a’b’ (7 + 7) 
a’ + 6’ 

-GBna 3b 
a’ + b’ 

T =  

therefore 

-2a’y -(a2 + b2)T 
Txz = 

(a’ + b’) lra3b3 

- 2TY 
Txz - - 

nab 

-2Tx 
T Y *  = - 

nu 3b 
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(20.20) 

(20.21) 

(20.22) 
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By inspection, it can be seen that 5 is obtained by substituting y = b into (20.2 l), provided a > b. 

Q = maximum shear stress 

- 2T 
nab ’ - -  

and occurs at the extremities of the minor axis. 
The warping function can be obtained from equation (20.2). Now, 

2YU2b2 - - -  dyr - y  
(a2 + b2)b2 ax 

i.e. 

@ = ( - 2 ~ ’  + a’ + b’) 
ax (u’ + b’) 

Y - 

therefore 

Similarly, from the expression 

the same equation for W, namely equation (20.24), can be obtained. Now, 

(20.23) 

(20.24) 

w = warpingfunction 
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therefore 

oxy (20.25) 
(b’ - a’) 
(a2 + b’) 

w =  

From simple torsion theory, 

(20.26) 
T - = GO 
J 

or 

T = G8J (20.27) 

Equating (20.20) and (20.27), and ignoring the negative sign in (20.20), 

G h a  ’b 3 

(a’ + b’) 
GBJ = 

therefore 

J = torsional constant for an elliptical section 

J =  (20.28) 
na3b3 

(a’ + b2)  

Problem 20.2 Determine the shear stress function x and the value of the maximum shear 
stress f for the equilateral triangle of Figure 20.7. 

Figure 20.7 Equilateral hiangle. 
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Solution 

The equations of the three straight lines representing the boundary can be used for determining x, 
as it is necessary for x to be a constant along the boundary. 

Side BC 
This side can be represented by the expression 

(20.29) 

Side AC 
This side can be represented by the expression 

x - f i y - -  2a = 0 
3 

Side AB 
This side can be represented by the expression 

x + f i y  - 

(20.30) 

(20.3 1) 

The stress function x can be obtained by multiplying together equations (20.29) to (20.31): 

x = C(x+a/3)  x ( x - f i y - 2 d 3 )  x L + f i y - 2 ~ / 3 )  

= C { ~ 3 - 3 ~ Y ) - a ~ 2 + ~ 2 ) + 4 a ’ / 2 7 }  
(20.32) 

From equation (20.32), it can be seen that x = 0 (i.e. constant) along the external boundary, so that 
the boundary condition is satisfied. 

Substituting x into equation (20.1 I), 

C(6x - 2 ~ )  + C ( - ~ X  - 2 ~ )  = -2 

- 4aC = -2 

c = l / (2a) 

therefore 

2a 
2a 2 27 
1 1 x - k’ - 3 3 3 4  - - (Y’ + y2) + - (20.3 3 )  
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Now 

1 
2 

(-6x37) - - x 2y} 

Along 

y = 0, r, = 0. 

Now 

therefore 

(20.34) 

(20.35) 

As the triangle is equilateral, the maximum shear stress i can be obtained by considering the 
variation of ‘ I~  along any edge. Consider the edge BC (i.e. x = -a /3) :  

T,,, (edge BC) = -- 

(20.36) 

where it can be seen from (20.36) that .i. occurs at y = 0. Therefore 

.i. = -G8af2 (20.37) 
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20.4 Numerical solution of the torsional equation 

Equation (20.1 1) lends itself to satisfactory solution by either the finite element method or the 
finite difference method and Figure 20.8 shows the variation of x for a rectangular section, as 
obtained by the computer program LAPLACE. (The solution was carried out on an Apple II + 
microcomputer, and the screen was then photographed.) As the rectangular section had two axes 
of symmetry, it was only necessary to consider the top right-hand quadrant of the rectangle. 

Figure 20.8 Shear stress contours. 

20.5 Prandtl's membrane analogy 

Prandtl noticed that the equations describing the deformation of a thm weightless membrane were 
similar to the torsion equation. Furthermore, he realised that as the behaviour of a thin weightless 
membrane under lateral pressure was more readily understood than that of the torsion of a non- 
circular section, the application of a membrane analogy to the torsion of non-circular sections 
considerably simplified the stress analysis of the latter. 

Prior to using the membrane analogy, it will be necessary to develop the differential equation 
of a thm weightless membrane under lateral pressure. This can be done by considering the 
equilibrium of the element AA ' BB 'in Figure 20.9. 



Prandtl’s membrane analogy 505 

Figure 20.9 Membrane deformation. 

Let, 

F = membrane tension per unit length (N/m) 

Z = deflection of membrane (m) 

P = pressure (N/m2) 

I 
az 

( ax ax 

Component of force on AA ’ in the z-direction is F x - x dy 
ax 

T 1 az a2z 
Component of force on BB ’in the z-direction is F - + 7 x dx dy 
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az 
aY 

Component of force on AB in the z-direction is F x - x dx 

az a2z 
Component of force on A ' B 'in the z-direction is F x 

Resolving vertically 

therefore 

a2z a2z - P 

ax2 ay2 F 
- + -  - -- (20.38) 

If 2 = x in equation (20.38), and the pressure is so adjusted that P/F = 2, then it can be seen that 
equation (20.38) can be used as an analogy to equation (20.11). 

From equations (20.12) and (20.13), it can be seen that 

T, = G 8 x slope of the membrane in the y direction 

T~ = G 8 x slope of the membrane in the x direction 

Now, the torque is 

(20.39) 

(20.40) 

Consider the integral 

Now y and dx are as shown in Figure 20.10, where it can be seen that y x dx is the area of Is 
section. Therefore the 

115 x y x dx x dy = volume under membrane (20.41) 
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Figure 20.10 

Similarly, it can be shown that the volume under membrane is 

[[g x x x d r  x dy (20.42) 

Substituting equations (20.41) and (20.42) into equation (20.40): 

T = 2G8 x volume under membrane (20.43) 

Now 

- -  T - GO 
J 

which, on comparison with equation (20.43), gives 

J = torsional constant 

= 2 x volume under membrane (20.44) 

20.6 Varying circular cross-section 

Consider the varying circular section shaft of Figure 20.1 1, and assume that, 

u = w = o  

where, 

u = radial deflection 
v = circumferential deflection 
w = axial deflection 



508 Torsion of non-circular sections 

Figure 20.1 1 Varying section shaft. 

As the section is circular, it is convenient to use polar co-ordinates. Let, 

E, = radial strain = 0 

E, = hoopstrain = 0 

E, = axialstrain = 0 

y, 

r = any radius on the cross-section 

= shear strain in a longitudinal radial plane = 0 

Thus, there are only two shear strains, yle and y&, which are defined as follows: 

av  v 

av  
aZ 

yle = shearstrainintheraplane = - - - 
ar r 

ye= = shear strain in the 8-z plane = - 

But 

T, = Gy, = .(E-:) (20.45) 

and 
av 
aZ 

TO= = C;r Or = G- (20.46) 



Varying circular cross-section 509 

From equilibrium considerations, 

whch, when rearranged, becomes 

Let K be the shear stress function 

where 

and 

which satisfies equation (20.47). 
From compatibility considerations 

or 

From equation (20.49) 

From equation (20.48) 

(20.47) 

(20.48) 

(20.49) 

(20.50) 

(20.5 1) 

(20.52) 
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Substituting equations (20.59) and (20.52) into equation (20.50) gives 

or 

From considerations of equilibrium on the boundary, 

T~ cosa - T,sina = 0 

where 

(20.53) 

(20.54) 

dz cosa = - 
ds 

(20.55) 
dr sina = - 
ds 

Substituting equations (20.48), (20.49) and (20.55) into equation (20.54), 

or 
2 d K  
r 2  d 
--= 0 

i.e. K is a constant on the boundary, as required. 

to equation (20.11). 
Equation (20.53) is the torsion equation for a tapered circular section, which is of similar form 
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20.7 Plastic torsion 

The assumption made in this section is that the material is ideally elastic-plastic, as described in 
Chapter 15, so that the shear stress is everywhere equal to T,,~, the yield shear stress. As the shear 
stress is constant, the slope of the membrane must be constant, and for this reason, the membrane 
analogy is now referred to as a sand-hill analogy. 

Consider a circular section, where the sand-hill is shown in Figure 20.12. 

Figure 20.12 Sand-hill for a circular section. 

From Figure 20.12, it can be seen that the volume (Vol) of the sand-hill is 

1 
3 

Vol = --srR2h 

but 

T~~ = G0 x slope of the sand-hill 

where 

0 = twist/unit length - m 

G = modulus of rigidity - 0 

h 
:. T~,, = G0 - 

R 

or 

h = R.ryplGO 

and 

x R3r yp 

3G0 
Vol = 
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Now 

J = 2 x Vol = ~ R R ~ T , , / ( ~ C ~ )  

and 

Tp = GBJ = GO x 2lrR3rYp/(3G8) 

therefore 

Tp = 2rcR3~,,J3 

where T, is the fully plastic torsional moment of resistance of the section, which agrees with the 
value obtained in Chapter 4. 

Consider a rectangular section, where the sand-hill is shown in Figure 20.13. 

Figure 20.13 Sand-hill for rectangular section. 

The volume under sand-hill is 

V o l = - o b h - - ( - o x ~ ) x h x 2  1 1 1  
2 3 2  

1 a2h 
2 6 

ah 
6 

= -abh - - 

= -(36-a) 
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and 

or 

T~ = GO x slope of sand-hill = G8 x 2h/u 

h = -  =YP 

2G0 

therefore 

u (3b - “)ayp 

12G8 
Vol = 

Now 

J = 2 % V O ~  = a2(3b  - U ) T , , J ( ~ G ~ )  

and 

Tp = G8J 

therefore 

Tp = u2(3b - u)TY,,/6 

where Tp is the fully plastic moment of resistance of the rectangular section. 
Consider an equilateral triangular section, where the sand-hill is shown in Figure 20.14. 

(a) Plan 

(b) SeCtlon through A - A  

Figure 20.14 Sand-hill for triangular section. 
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Now 

T~~ = G6 x slope of sand-hill 

or 

and 

therefore, the volume of the sand-hill is 

9fiG8 

and 

a 3Tvp T,, = 2G8 x - 
90G8 

*a 3T.v,, q, = - 
9 0  

where T, is the fully plastic torsional resistance of the triangular section. 



21 Thick circular cylinders, discs 
and spheres 

21 .I Introduction 

Thin shell theory is satisfactory when the thickness of the shell divided by its radius is less than 
1/30. When the thickness: radius ratio of the shell is greater than this, errors start to occur and 
thick shell theory should be used. Thick shells appear in the form of gun barrels, nuclear reactor 
pressure vessels, and deep diving submersibles. 

21.2 Derivation of the hoop and radial stress equations for a thick- 
walled circular cylinder 

The following convention will be used, where all the stresses and strains are assumed to be tensile 
and positive. At any radius, r 

(T, = hoop stress 

or = radial stress 

o, = longitudinal stress 

E~ = hoopstrain 

E, = radial strain 

Figure 21.1 Thick cylinder. 
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E,  = longitudinzl strain (assumed to be constant) 

w = radial deflection 

From Figure 21.2, it can be seen that at any radius r, 

2n(r + w) - 2xr 
2xr 

Eo = 

or 

% = wfr (21.1) 

Similarly, 

(2 1.2) 
6w - dw 

“ . = 6 r - -  dr 

\ 

w- w 3;;y 1 w+dw 

Figure 21.2. Deformation at any radius r. 

From the standard stress-strain relationshps, 

EE, = 0, - v o e  - v u r  = aconstant 

E&, = - Ew - - o e -  VU,- W, (2 1.3) r 

(21.4) dw 
dr 

EE, = E- = o r -  Y U ~ -  VCJ= 



Derivation of the hoop and radial stress equations 

Multiplying equation (2 1.3) by r, 

Ew = o, x r - voz x r - vo, x r 

and differentiating equation (2 1.5) with respect to r, we get 

dw 
dr 

E- = og-voz-vo,+r 

Subtracting equation (2 1.4) from equation (2 1.6), 

do, do, dor 
dr dr dr 

(o,-o,)(l +v)+r--vr --vr - = o 

As E, is constant 

0, - vo, - vor = constant 

Differentiating equation (21.8)with respect to r, 

do, do, dor 
- - v - - v -  = o  
dr dr dr 

or 

- do, - - v[-&+--) do, do, 

dr 

Substituting equation (2 1.9) into equation (2 1.7), 

doe 'or (o,-or)(l +v)+r( l  - $)--vr(l +v)- = o 
d r  dr 

and dlviding equation (2 1.10) by (1 + v), we get 

o , - o r + r ( l  + v ) - - v r -  doe 'or = 0 
dr dr 
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(21.5) 

(21.6) 

(2 1.7) 

(21.8) 

(2 1.9) 

(21.10) 

(21.11) 

Considering now the radial equilibrium of the shell element, shown in Figure 2 1.3, 



518 Thick circular cylinders, discs and spheres 

Figure 21.3 Shell element. 

2 0 ,  6, sin - to, r 6, - (a ,+ sa,)(r t 6r)aO = o (2 1.12) (;I 
Neglecting higher order terms in the above, we get 

(2 1.13) ‘or 0 6 - o r - r -  = 0 
dr 

Subtracting equation (2 1.1 1) from equation (2 1.12) 

do, do, 
- + -  = 0 (21.14) 
dr dr 

:. o, + or = constant = 2A (2 1.15) 

Subtracting equation (2 1.13) from equation (2 1.1 S), 

‘or 20, + r- = 2A 
dr 

or 

I d(orr’) - 2A -- - 
r dr 

= 2Ar d(cr r ’1 
dr 
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Integrating the above, 

( T ~  r 2  = Ar2  - B 

(2 1.16) B or = A - -  
r 2  

From equation (2 1.15), 

B 
(2 1.17) (TB = A + -  

r 2  

21.3 Lame line 

If equations (21.16) and (21.17) are plotted with respect to a horizontal axis, where 1/? is the 
horizontal axis, the two equations appear as a single straight line, where (T, lies to the left and (T, 

to the right, as shown by Figure 2 1.4. For the case shown in Figure 2 1.4, (I, is compressive and (T, 

tensile, where 

(T,, = internal hoop stress, which can be seen to be the maximum stress 

oBZ = external hoop stress 

+ vp ctress 

Figure 21.4 Lame line for the case of internal pressure. 
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To calculate oel and oe2, equate similar triangles in Figure 2 1.4, 

% I  - P - 

or 

Similarly, from Figure 2 1.4 

(2 1.1 8) 

(2 1.1 9) 

Problem 21.1 A thick-walled circular cylinder of internal dameter 0.2 m is subjected to an 
internal pressure of 100 MPa. If the maximum permissible stress in the 
cylinder is limited to 150 MPa, determine the maximum possible external 
diameter d,. 
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Solution 

100 - 150 - 
1 [z- i)  [&+4 

Figure 21.5 Lame line for thick cylinder. 

or 

[: + $) x [ 0.22 d;]  = 1.5 
0.22 d i  [..-$) 

[ s I :::;I = 1.5 

d,2+022 = 15 d2  0 2  
or ( 2 -  2 ,  

or 022(1+1.5) = di(1.5-1) 
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2 2 d2 = 0.2m 

d, = 0.447m 

Problem 21.2 If the cylinder in the previous problem were subjected to an external pressure 
of 100 MPa and an internal pressure of zero, what would be the maximum 
magnitude of stress. 

Solution 

1 NOW - 1 - - 25 and 7 = 5, 
d: 4 

hence the Lame line would take the form of Figure 2 1.6. 

t v e  stress 

t v e  stress 

Figure 21.6 Lame line for external pressure case. 

By equating similar triangles, 

-100 - ‘%I - 

(25 - 5 )  25 + 25 

where oBr is the internal stress which has the maximum magnitude 
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:. Oe, = -50 x loo = -250 MPa 
20 

Problem 21.3 A steel disc of external diameter 0.2 m and internal diameter 0.1 m is shrunk 
onto a solid steel shaft of external diameter 0.1 m, where all the dimensions are 
nominal. If the interference fit, based on diameters, between the shaft and the 
disc at the common surface is 0.2 mm, determine the maximum stress. 

For steel, E = 2 x 10” N/m2,v = 0.3 

Solution 

Consider the steel disc. In this case the radial stress on the internal surfaces is the unknown P,. 
Hence, the Lam6 line will take the form shown in Figure 2 1.7. 

Figure 21.7 Lame line for steel ring. 
Let, 

q,,,, = hoop stress (maximum stress) on the internal surface of the disc 

o,ld = radial stress on the internal surface of the disc 

Equating similar triangles, in Figure 2 1.7 

p c  - - Oald 

(100 - 2 5 )  100 + 25 

125 Pc 

75 
:_ OBld = - - - 1.667 Pc 
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Consider now the solid shaft. In this case, the internal diameter of the shaft is zero and as 1/02 - 
m, the Lam6 line must be horizontal or the shaft's hoop stress will be infinity, which is impossible; 
see Figure 21.8. 

-m-- 

Figure 21.8 Lam6 line for a solid shaft. 

Let 
P, = external pressure on the shaft 

:. 0, = a, = -P, (everywhere) (2 1.20) 

Let, 
wd = increase in the radius of the d m  at its inner surface 

w, = increase in the radius of the shaft at its outer surface 

Now, applying the expression 

W Eee = - - - ae - va, - vox 
r 

to the inner surface of the disc 

EWli - 
- %Id - varld 

5 x 10-2 

but, 

arld = -'c 

therefore 
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2 x 10" x Wd 
= 1.667 P, +0.3 P, 

5 x 

wd = 4.918 x P, 

Similarly, for the shaft 

2 x lo1' ws 
= -P, (1 - v) 

5 x 

W ,  = -1.75 x 1 0 - l ~  P, 

525 

(21.21) 

(21.22) 

but w, - w, = 2 x 10.~12 

(4.918 x io-" + 1.75 x 10-l~)  P, = 1 x 10 .~  

:. P, = 150 MPa 

Maximum stress is 

oBld = 1.667 P, = 250 MPa 

21.4 Compound tubes 

A compound tube is usually made from two cylinders of different materials where one is shrunk 
onto the other. 

Problem 21.4 A circular steel cylinder of external diameter 0.2 m and internal diameter 0.1 
m is shrunk onto a circular aluminium alloy cylinder of external diameter 0.1 
m and internal diameter 0.05 m, where the dimensions are nominal. 

Determine the radial pressure at the common surface due to shrinkage alone, 
so that when there is an internal pressure of 300 MPa, the maximum hoop 
stress in the inner cylinders is 150 Mpa. Sketch the hoop stress distributions. 
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For steel, E, = 2 x 10" N/mz, v, = 0.3 

For aluminium alloy, E, = 6.7 x 10" N/m2, v, = 0.32 

Solution 

0: = the hoop stress due to pressure alone 

0: = the hoop stress due to shnnkage alone 

cre,2s = hoop stress in the steel on the 0.2 m diameter 

(T~ ,~ ,  
= hoop stress in the steel on the 0.1 m diameter 

or.2, - - radial stress in the steel on the 0.2 m diameter 

or,ls = radial stress in the steel on the 0.1 m diameter 

(T~,~,  = hoop stress in the aluminium on the 0.1 m diameter 

or,l, = radial stress in the aluminium on the 0.1 m diameter 

oo,5a = hoop stress in the aluminum on the 0.05 m diameter 

or.S, = radial stress in the aluminium on the 0.05 m diameter 

Consider first the stress due to shnnkage alone, as shown in Figures 2 1.9 and 2 1.10. 

Figure 21.9 Lame line for aluminium alloy tube. 
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Figure 21.10 Lame line for steel tube, due to shrinkage with respect to e. 

Equating similar triangles in Figure 2 1.9. 

1 
% , 5 a  - - PCS 

- 

(2 1.23) 400 + 400 400 - IO0 

1 
%,sa  - - -2.667 Pcs 

Similarly, from figure 2 1.9, 

4, la - PcA - - 

(2 1.24) 400 + 100 400 - 100 

S 
% i a  - - -1.667 Pcl 

Equating similar triangles in Figure 2 1.10. 

s 

Oe, is - - P C 1  

(2 1.25) 100 + 25 100 - 25 

1 
% , I &  - - 1.667 Pcs 

Consider the stresses due to pressure alone 

P, = internal pressure 

P,' = pressure at the common surface due to pressure alone 

The  la^ lines will be as shown in Figures 2 1 . 1  1 and 2 1.12. 
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Figure 21.11 Lame line in aluminium alloy, due to pressure alone. 

Figure 21.12 Lame line for steel, due to pressure alone. 

Equating similar triangles in Figure 2 1.1 1. 

P - p P  - 0,qlU+ P 
- 

400- 100 400+ 100 

300- ep o,&,+ 300 or - - (2 1.26) 
300 500 

or o8ql0 = 200- 1.667ep 

Similarly, from Figure 2 1.1 1, 

P - p P  oBq5u+ P - -  - 
300 800 
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300- p p  - ~ 8 q ~ ~ +  300 
300 800 

- 

8 
3 

01 08qk = -(300- e')- 300 

(T,&~ = 500 - 2.6674' 

Similarly , from Figure 2 1.12, 

ep P 
de,is - - 

100+ 25 100- 25 

(T:,~, = 1.6674' 

Owing to pressure alone, there is no interferencefit, so that 

P w,p = w, 

Now 

wsp = (1.667 Pp + 0.3 PPI 
2 x loll 

or wS = 4 . 9 1 7 ~ 1 0 - l ~  Pp 

Similarly 

or 
0.05 ( ( T & ~  + 0.32e') 

w,p = 
6.7 x 10" 

529 

(2 1.27) 

(2 1.28) 

(2 1.29) 
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- - 0'05 (200- 1.667pp+ 0.32Pp) 
6.7 x 10'' 

w,P = 1.493 x lo-'' - 1.0 x 1 0-I2 Pp 

Equating (21.29) and (21.30) 

4 . 9 1 7 ~  e' = 1.493~ lo-''- 1 .0~  

(2 1.30) 

(2 1.3 1) 

:. 4' = I O O M P ~  

Substituting equation (21.3 1) into equations (2 1.26) and (2 1.27) 

cre,5a = 500 - 2.667 x 100 = 233.3 MPa (2 1.32) 

= 200 - 1.667 x 100 = 33.3 MPa (21.33) F 
%,la 

Now the maximum hoop stress in the inner tube lies either on its internal surface or its external 
surface, so that either 

(21.34) r 
0 e . i a  + 4 , i a  = 150 

or 
F 

( I ~ , ~ ~  + = 150 

Substituting equations (2 1.32) and (2 1.24) into equation (2 1.34), we get 

33.3 - 1.667 P,' = 150 

or P i  = -70 MPa 

Substituting equations (21.33) and (21.23) into equation (21.39, we get 

233.3 - 2.667 P: = 150 

(21.35) 

:. Pc' = 31.2 MPa 
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i.e. P,’ = 3 1.2 MPa, as P,’ cannot be negative! 

P, = P,’ + P,  = 31.2 + 100 = 131.2 MPa (21.36) F 

%,Lv - P,‘ + PCt’ - 
25 + 25 100 - 25 

oa ,. = 87.5 MPa 

oe,,> = 1.667 [P: + PcF) = 218.7 MPa 

( T ~ , , ~  = 200 - 1.667 (P: + PcF) = -18.7 MPa 

oe,50 = 500 - 2.667 (P: + P,‘) = 150 MPa 

Figure 21.13 Hoop stress distribution. 

21.5 Plastic deformation of thick tubes 

The following assumptions will be made in this theory: 

1. 
2. 
3. 

Yielding will take place according to the maximum shear stress theory, (Tresca). 
The material of construction will behave in an ideally elastic-plastic manner. 
The longitudinal stress will be the ‘minimax’ stress in the three-dimensional system of 
stress. 
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For this case, the equilibrium considerations of equation (2 1.13) apply, so that 

Thick circular cylinders, discs and spheres 

'or o o - o r - r -  = 0 
dr 

Now, according to the maximum shear stress criterion of yield, 

oe - or = Gyp 

OB = oyp + 0, 

Substituting equation (21.38) into equation (21.37), 

'or o y p + o r - o r - r -  = 0 
dr 

dr 
= 7 

or = oyp In r + C 

For the case of the partially plastic cylinder shown in Figure 2 1.14, 

at r = R,, or = -Pz 

Substituting this boundary condition into equation (2 1.39), we get 

-P, = oYp In R, + C 

therefore 

Similarly, from equation (2 1.38), 

(21.37) 

(21.38) 

(21.39) 

(21.40) 

(21.41) 
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where, 

R, = internalradius 

R, = outer radius of plastic section of cyhder  

R, = external radius 

P, = internal pressure 

P, = external pressure 

Figure 21.14 Partially plastic cylinder. 

The vessel can be assumed to behave as a compound cylinder, with the internal portion 
behaving plastically, and the external portion elastically. The Lami line for the elastic portion of 
the cylinder is shown in Figure 2 1.15. 

Figure 21.15 Lam6 line for elastic zone. 



534 Thick circular cylinders, discs and spheres 

In Figure 21.15, 

6, = elastic hoop stress at r = R ,  

so that according to the maximum shear stress criterion of yield on this radius, 

0.vp = 68, + p2 

From Figure 2 1.1 5 

therefore 

[Rf - R;) 

(2 1.42) 

(2 1.43) 

Substituting equation (21.43) into equation (21.42), 

P ,  = O.~,,(R; - R;) / (2Ri) (2 1.44) 

Consider now the portion of the cylinder that is plastic. Substituting equation (2 1.44) into equation 
(2 1.4 l), the stress distributions in the plastic zone are given by: 

To find the pressure to just cause yield, put 

(2 1.45) 

(2 1.46) 

or = -P, when r = R ,  

where P, is the internal pressure that causes the onset of yield. Therefore, 
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(21.47) p 1  = GY+[$) + [ R3 ;R; - R2 ,)] 

but, if yield is only on the inside surface, 

R ,  = R, 

in (21.61), so that, 

p ,  = Gyp (K - R:) 1 (zR3’)) (21.48) 

To determine the plastic collapse pressure P,, put R, = R, in equation ( 2  1.47), to give 

PP = =yr ln [ :) (2 1.49) 

To determine the hoop stress dlstribution in the plastic zone, oeP, it must be remembered that 

Gyp = Ge - G, 

therefore 

Gep = oyp {I + In (R3 / Ri)} (21.50) 

Plots of the stress distributions in a partially plastic cylinder, under internal pressure, are shown 
in Figure 21.16. 

Figure 21.16 Stress distribution plots. 
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Problem 21.5 

Thick circular cylinders, discs and spheres 

A circular cylinder of 0.2 m external diameter and of 0.1 m internal diameter 
is shrunk onto another circular cylinder of external diameter 0.1 m and of bore 
0.05 m, where the dimensions are nominal. If the interference fit is such that 
when an internal pressure of 10 MPa is applied to the inner face of the inner 
cylinder, the inner face of the inner cylinder is on the point of yielding. What 
internal pressure will cause plastic penetration through half the thickness of the 
inner cylinder. It may be assumed that the Young's modulus and Poisson's ratio 
for both cylinders is the same, but that the outer cylinder is made of a higher 
grade steel which will not yield under these conditions. The yield stress of the 
inner cylinder may be assumed to be 160 MPa. 

Solution 

The Lam6 line for the compound cylinder at the onset of yield is shown in Figure 2 1.17. 

Figure 21.17 Lami line for compound cylinder. 

InFigure 21.17, 

oI = hoop stress on inner surface of inner cylinder. 

0, = hoop stress on outer surface of inner cylinder. 

0, = hoop stress on inner surface of outer cylinder. 

As yield occurs on the inner surface of the inner surface when an internal pressure of 50 MPa is 
applied, 

0, - (-100) = 160 

:. al = 60 MPa 

Equating similar triangles in Figure 2 1.17, we get 
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0, + 100 100 - P, - - -  
400 + 400 400 - 100 

160 x 300 = 100 - p, 

(21.5 1) 800 

:. P, = 40 MPa 

Similarly from Figure 2 1.17 

0* + 100 100 - P, 
- - 

(2 1.52) 400 + 100 400 - 100 

(T2 = 0 

Also from Figure 2 1.17, 

0 3  - - pc 
100 + 25 100 - 25 

(21.53) 
:. o3 = 400 x 125 = 66.7 MPa 

75 

Consider, now, plastic penetration of the inner cylinder to a diameter 0.075. The Lam6 line in the 
elastic zones will be as shown in Figure 2 1.17. From Figure 2 1.18, 

ob + P, = 160 

Figure 21.18 Lame line in elastic zones. 
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therefore 

:. o6 = 160 - P ,  

Similarly 

160 
400 - 100 400 + 400 800 

- - -  p3 - p2 - ‘6 ’ ‘ 3  - 

:. P3 

Also from Figure 2 1. 

‘4 

100 + 25 

= 60 + P2 

8 

- - p2 
100 - 25 

or 0, = 1.667 Pz 

Substituting equation (21.56) into equation (21.58), we get 

o4 = 1.667 (P ,  - 60) 

or o4 = 1.667 P3 -100 

Also from equation (2 1.55) 

p3 - p ,  - 160 
100 + 400 400 - 100 800 

- -  ‘5 + p3 - 

:. = 100 - P ,  

Now, 

r w = E (Ge - VOJ 

which will be the same for both cylinders at the common surface, i.e., 

(2 1.54) 

(2 1.55) 

(2 1.56) 

(21.57) 

(2 1.58) 

(21.59) 

11- - {(os - .*) - .(P2 - pc)} = - (04 - 03) - v(P2 - P c i  
1 
E 
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Substituting equations (21.52), (21.53), (21.58) and (21.59) into the above, we get 

or 

100 - P, - 0 = 1.667 P, - 100 - 66.7 

2.667 P, = 100 + 100 + 66.7 

P, = 100 

Consider now the yielded portion 

or = oY,, In r + c 

o.,,, = 160 

at r = 0.0375 m, 

or = -P, = -100 

or -100 = 160 In (0.0375) + C 

C = -100 + 525.3 

:. C = 425.3 

Now, at r = 0.025m, 

-P = 160 In (0.025) + 425.3 

= -590.2 + 425.3 

P = 164.9 MPa 

which is the pressure to cause plastic penetration. 

Problem 21.6 Determine the internal pressure that will cause complete plastic collapse of the 
compound cylinder given that the yield stress for the material of the outer 
cylinder is 700 m a .  
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Solution 

Now, 

Thick circular cylinders, discs and spheres 

pP = OYP In [ :) (21.60) 

= Oyp. In [ 2) + Oypl In [ ;) 
= 700 In (g) + 160 In (x) 

0.05 0.0375 

= 485 + 46 

P, = 531 MPa 

which is the plastic collapse pressure of the compound cylinder. 

21.6 Thick spherical shells 

Consider a thick hemispherical shell element of radius r, under a compressive radial stress P, as 
shown inFigure 21.19. 

Figure 21.19 Thick hemispherical shell element. 
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Let w be the radial deflection at any radius r, 

so that 

hoopstrain = w/r 

and 
mu 

rahalstrain = - 
dr 

From three-dimensional stress-strain relationshps, 

W E -  = O - V O + V P  
r 

and 

= -P - 2 v o  

Now 

Ew = o r - v o  r + v P  r 

which, on differentiating with respect to r, gives 

dw do do dP E- = o + r - - y o - v r - + v P + v r -  
dr dr dr dr 

= ( 1 - v )  o - r -  + v  P + r -  ( 3 ( 3 
Equating (2 1.62) and ( 2  1.63), 

-P  - 2vo = (1 - v)  ( o - r - ;) + v ( P + r $ )  

or 

d o  dP 
dr dr 

(1  + v ) ( o + P ) + r ( I  - v ) - + v r - = O  

(21.61) 

(2 1.62) 

(21.63) 

( 2  1.64) 
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Considering now the equilibrium of the hemispherical shell element, 

0 x 2xr x dr = P x x r 2  - ( P + d P )  x x x ( r + d r ) 2  

Neglecting higher order terms, equation 21.65 becomes 

dP 
(Z + P = ( - r  12) - 

dr 

Substituting equation (2 1.66) into equation (2 1 .a), 

-(r/2) (dP/dr) (1 + v) + r (1 - v) (doldr) + vr (dPldr) = 0 

or 

= o  do 1 dP 
dr 2 dr 
- -  - -  

which on integrating becomes, 

(Z - PI2 = A 

Substituting equation (2 1.68) into equation (2 1.66) 

3PJ2 + A = (-rJ2) (dP/dr) 

or 

or 

which on integrating becomes, 

P x r 3  = -2Ar3/3  + B 

or 
P = -2AJ3 + BJ? 

(2 1.65) 

(2 1.66) 

(2 1.67) 

(21.68) 

(2 1.69) 
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and o = 2A13 f B1(2?) 
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(21.70) 

21.7 Rotating discs 

These are of much importance in engineering components that rotate at high speeds. If the speed 
is high enough, such components can shatter when the centrifugal stresses become too large. The 
theory for thick circular cylinders can be extended to deal with problems in this category. 

Consider a uniform thickness disc, of density p, rotating at a constant angular velocity w. 

From 

and, 

W E - = 0, - VG, 
r 

or, 

Ew = o, x r - vo, x r 

Differentiating equation (2 1.73) with respect to r, 

dw doe ‘or E - =  G, + r- - vo, - vr- 
dr dr dr 

Equating (21.71) and (21.74), 

Considering radial equilibrium of an element of the disc, as shown in Figure 2 1.20, 

20, x dr x sin [ $) + or x r x dB 

(2 1.71) 

(21.72) 

(2 1.73) 

(2 1.74) 

(21.75) 

- (or + do,) (r + dr)d6 = p x w2 x r 2  x dr x d e  
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Figure 21.20 Element of disc. 

In the limit, t h s  reduces to 

(2 1.76) ‘ o r  oe - a, - r - = p o v  
dr 

Substituting equation (2 1.76) into equation (2 1.75), 

[ r 2 + po2r2) (1  + v) + r - doe - vr - ‘or = 0 
dr dr 

or, 

do, do, 

d r d r  
- + -  - - -po2r2 (1 + v) 

which on integrating becomes, 

0, + 0, = -(po2r2/2) (1 + v) + 2A (2 1.77) 

Subtracting equation (21.76) from equation (21.77), 

‘ o r  2or + r - = -(po2r2/2) (3 + v) + 2A 
dr  

or, 

- 1 ‘ (or  x r 2 )  - - P o 2  r2 (3 + v) + 2A 
r d r  2 
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which on integrating becomes, 

or  r2 = - ( p o 2 r 4 / 8 ) ( 3 + v ) + A r 2  - B (21.78) 

or 

or  = A -  ~ / r ~ -  (3++o2r2 /8 )  

and, 
oe = A +  B / r 2 -  (1+3v)(po2r2 /8)  (21.79) 

Problem 21.7 Obtain an expression for the variation in the thickness of a disc, in its radial 
direction, so that it will be of constant strength when it is rotated at an angular 
velocity w. 

Solution 

Let, 
to = thickness at centre 

t = thickness at a radius r 

t + dt = thickness at a radius r + dr 

(5 = stress = constant (everywhere) 

Consider the radial equilibrium of an element of this disc at any radius r as shown in Figure 2 1.2 1. 

Figure 21.21 Element of constant strength disc. 
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Resolving forces radially 

Thick circular cylinders, discs and spheres 

20 x t x dr sin [ $) + otr d e  = o(r + dr) ( t  + dt) d e  + po’r’t d e  dr 

Neglecting hgher order terms, this equation becomes 

otdt = ordt + otdr + pw’rtdr 

or 

which on integrating becomes, 

In t = -po2r2t/(20) + In c 

Now, at r = 0, t = to :. C = to 

Hence, 

= t o e ( - p ~ 2 r 2 / ~ ~ )  

21.7.1 Plastic collapse of rotating discs 

Assume that o, > on and that plastic collapse occurs when 

where o yp is the yield stress. 

Let R be the external radius of the disc. Then, 

from equilibrium considerations, 

dor  o.~,, - or - r - = pwZr2 
dr 

(21.80) 
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or, 

PdG, = [ (G,~,, - ar - pw2r2} dr 

Integrating the left-hand side of the above equation by parts, 

r or - [ G, d r  = G,,, r - or dr po'r3/3 + A 

therefore 

G, = G-",, - p o 2 r 2 / 3  + A h  (21.81) 

For a solid disc, at r = 0, or f 00, or the disc will collapse at small values of w. Therefore 

A = O  

and 

or = G - p o 2 r 2 / 3  
.VP 

at r = R,  err = 0;  therefore 

0 = G,,,, - pw2R2/3  

(21.82) 

where, w is the angular velocity of the disc, which causes plastic collapse of the disc. 

for equation (21.81) are: 

at r = R,, 0, = 0; therefore 

For an annular disc, of internal radius R ,  and external radius R,, suitable boundary conditions 

A = (po2R:/3 - cy,#, 
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:. O, = D YP - po2r2/3 + (po2R:/3 - crYA (RJr) (21.83) 

at r = R,, or = 0; therefore 

0 = cy,, - pw2R,2/3 + (po2R:/3 - n) (R,/R2) 

Hence, w = jm (21.84) 

21.8 Collapse of rotating rings 

Consider the radial equilibrium of the thm semicircular ring element shown in Figure 2 1.2 1 .  

Figure 21.21 Ring e!ement. 

Let, 

a = cross-sectional area of ring 

R = mean radius of ring 
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Resolving forces vertically 

ci0 x a x 2 = *PO’ R’ a de sin8 Io 
= pa’ R 2  a [-cos81 

= 2p02 R’ a 

:. ci8 = pa’ R’ 

at collapse, 

549 

(21.85) 

where o is the angular velocity required to fracture the ring. 
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[B1 = 

22.1 Introduction 

2 - 1  0 

3 4 -2  

-3 5 6 

-4 -5  7 

Since the advent of the digital computer with its own memory, the importance of matrix algebra 
has continued to grow along with the developments in computers. This is partly because matrices 
allow themselves to be readily manipulated through skilful computer programming, and partly 
because many physical laws lend themselves to be readily represented by matrices. 

The present chapter will describe the laws of matrix algebra by a methodological approach, 
rather than by rigorous mathematical theories. This is believed to be the most suitable approach 
for engineers, who will use matrix algebra as a tool. 

22.2 Definitions 

A rectangular matrix can be described as a table or array of quantities, where the quantities usually 
take the form of numbers, as shown be equations (22.1) and (22.2): 

[AI = (22.1) 

(22.2) 
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m = numberofrows 

n = numberofcolumns 

A row can be described as a horizontal line of quantities, and a column can be described as a 
vertical line of quantities, so that the matrix [B] of equation (22.2) is of order 4 x 3.  

The quantities contained in the third row of [B] are -3 ,  5 and 6 ,  and the quantities contained 
in the second column of [B] are - 1 ,4 ,5  and - 5. 

A square matrix ha5 the same number of rows as columns, as shown by equation (22.3), which 
is said to be of order n: 

[AI 

'13 

'23 

a 3 3  

an3 

. . . a,,, 

. . . a2,, 

. . . a3n 

. . . a,,,, 

(22.3) 

A column matrix contains a single column of quantities, as shown by equation (22.4), where it can 
be seen that the matix is represented by braces: 

(22.4) 

A row matrix contains a single row of quantities, as shown by equation (22.5), where it can be seen 
that the matrix is represented by the special brackets: 

(22.5) 

The transpose of a matrix is obtained by exchanging its columns with its rows, as shown by 
equation (22.6): 
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(22.6) 

1 4 -5 
- - 

0 -3 6 

In equation (22.6), the first row of [A], when transposed, becomes the first column of [B]; the 
second row of [A] becomes the second column of [B] and the third row of [A] becomes the third 
column of [B], respectively. 

22.3 Matrix addition and subtraction 

Matrices can be added together in the manner shown below. If 

[AI = 

and 

PI = 

1 0  

4 -3 

-5  6 

2 9  

-7 8 

- 1  -2 

[AI+[Bl = 

(1 t 2) ( o t  9) 

(4- 7) (-3 t 8) 

( -5-  1) ( 6 -  2) 

3 9  

-6 4 

(22.7) 
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Similarly, matrices can be subtracted in the manner shown below: 

[A] - [B] = 

- ( l  - 2) (0 - 9) - 

(4 + 7) ( -3  - 8) 

* ( - 5  + 1 )  (6 + 2)-  

= 

Thus, in general, for two m x n matrices: 

- 1  -9 

1 1  - 1 1  

-4 8 

(all + 4 & 2  + 4 2 )  . . .(ah -t 4") 
( a 2 1  + 4 & 2 2  -t 4 2 )  * .  +2. + 4.) 

- 

[AI + PI = I 
and 
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(22.8) 

(22.9) 

(22.10) 
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[A] = 

22.4 Matrix multiplication 

1 0  

4 -3 

-5 6 

Matrices can be multiplied together, by multiplying the rows of the premultiplier into the columns 
of the postmultiplier, as shown by equations (22.1 1) and (22.12). 

[C] = 

If 

r 7  2 - 2  

31 -1 4 

-41 8 -14 

and 

7 2 -2 

-1  3 -4 
PI = [ ] 

(1 x 7 + Ox (- 1)) (1 x 2 + Ox 3)( 1 x (-2)t Ox (-4)) 

= (4 x 7 + (-3)x (- 1))( 4 x 2 + (-3) x 3)(4 x (-2) t (-3)x (-4)) I ( - 5  x 7 t 6 x  (- 1))(-5 x 2 t 6 x  3)(-5x (-2)+ 6 x (-4)) 

(7+0) (2+0) (-2+0) I (-35-6) (-10+18) (10-24) 

= (28+3) (8-9) (-8+12) 

(22.1 1) 

(22.12) 

i.e. to obtain an element of the matrix [C], namely CV, the zth row of the premultiplier [A] must 
be premultiplied into thejth column of the postmultiplier [B] to give 

I' 
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where 

P = the number of columns of the premultiplier and also, the number of rows of the 
postmultiplier. 

NB The premultiplying matrix [A] must have the same number of columns as the rows in the 
postmultiplying matrix [B]. 

In other words, if [A] is of order (m x P) and [B] is of order (P x n), then the product [C] is of 
order (m x n). 

22.5 Some special types of square matrix 

A diagonal matrix is a square matrix which contains all its non-zero elements in a diagonal from 
the top left comer of the matrix to its bottom right comer, as shown by equation (22.13). This 
diagonal is usually called the main or leading diagonal. 

[AI = 

21 1 0 

O a22 

0 0  

0 

0 0  

0 0 

0 

a33 O 

0 

0 a n  

(22.13) 

A special case of diagonal matrix is where all the non-zero elements are equal to unity, as shown 
by equation (22.14). This matrix is called a unit matrix, as it is the matrix equivalent of unity. 

[I1 = 

1 0 0  0 

0 1 0  0 

0 0  1 

0 

0 0  0 1  

(22.14) 

A symmetrical matrix is shown in equation (22.15), where it can be seen that the matrix is 
symmetrical about its leading diagonal: 
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7 

8 2 - 3  1 

2 5 0 6  

-3 0 9 -7 

1 6 - 7  4 

Introduction to matrix algebra 

det w = 

[AI = 

‘11 ‘12 a13 

‘21 a22 ‘23 

‘31 ‘32 a33 

i.e. for a symmetrical matrix, all 

a, = a,, 

22.6 Determinants 

The determinant of the 2x2 matrix of equation (22.16) can be evaluated, as follows: 

(22.15) 

(22.16) 

Detenninantof[A] = 4 x 6 - 2 ~ ( - 1 )  = 2 4 + 2  = 26 

so that, in general, the determinant of a 2 x 2 matrix, namely det[A], is given by: 

det [A] = a l l  x aZz - a12 x azl (22.17) 

where 

= 1::: :::I (22.18) 

Similarly, the determinant of the 3x3 matrix of equation (22.19) can be evaluated, as shown by 
equation (22.20): 

(22.19) 
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(22.20) 

21  a22 

31 ' 3 2  

+ '13 

For example, the determinant of equation (22.21) can be evaluated, as follows: 

det = 

8 2 -3 

2 5 0  

-3 0 9 (22.21) 

= 8 (45 - 0) -2(18 - 0) -3 (0 + 15) 

or 

det IAl = 279 

For a determinant of large order, this method of evaluation is unsatisfactory, and readers are 
advised to consult Ross, C T F, Advanced Applied Finite Element Methocis (Horwood 1998), or 
Collar, A R, and Simpson, A, Matrices and Engineering Dynamics (Ellis Horwood, 1987) which 
give more suitable methods for expanding larger order determinants. 

22.7 Cofactor and adjoint matrices 

The cofactor of a d u d  order matrix is obtained by removing the appropriate columns and rows of 
the cofactor, and evaluating the resulting determinants, as shown below. 
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If 

[A] = 

Introduction to matrix algebra 

‘11 ‘I2 ‘13 

‘21 ‘22 ‘23 

-‘31 ‘32 ‘33- 

= 

c c c  
‘11 ‘12 ‘I3 

C C C  

‘21 ‘22 ‘23 

c c c  
‘31 ‘32 ‘33 

and the cofactors are evaluated, as follows: 

(22.22) 
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The adjoint or adjugate matrix, [A]” is obtained by transposing the cofactor matrix, as follows: 

ie [A]’ = [A ‘IT (22.23) 

22.8 Inverse of a matrix [A]-’ 

The inverse or reciprocal matrix is required in matrix algebra, as it is the matrix equivalent of a 
scalar reciprocal, and it is used for division. 

The inverse of the matrix [A] is given by equation (22.24): 

For the 2 x 2 matrix of equation (22.25), 

the cofactors are given by 

al: = a22 

c 
a12 = -a21 

a i  = -a,2 

a22 = all 
c 

(22.24) 

(22.25) 
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and the determinant is given by: 

det = al l  x az2 - x a2, 

so that 

(22.26) 

In general, inverting large matrices through the use of equation (22.24) is unsatisfactory, and for 
large matrices, the reader is advised to refer to Ross, C T F, Advanced Applied Finite Element 
Methods (Horwood 1998), where a computer program is presented for solving nth order matrices 
on a microcomputer. 

The inverse of a unit matrix is another unit matrix of the same order, and the inverse of a 
diagonal matrix is obtained by finding the reciprocals of its leading diagonal. 

The inverse of an orthogonal matrix is equal to its transpose. A typical orthogonal matrix is 
shown in equation (22.27): 

r 1 

[AI = I -s "1 c 

where 

c =  COS^ 

s = sina 

The cofactors of [A] are: 
c a,, = c 

c a,, = s 

a; = -s 

a; = c 

(22.27) 

and 

det = c z  + s2  = 1 
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so that 

i.e. for an orthogonal matrix 

[A]-' = [AIT (22.28) 

22.9 Solution of simultaneous equations 

The inverse of a matrix can be used for solving the set of linear simultaneous equations shown in 
equation (22.29). If, 

[AI (.I = {4 (22.29) 

where [A] and {c} are known and { x }  is a vector of unknowns, then { x }  can be obtained from 
equation (22.30), where [A]-' has been pre-multiplied on both sides of this equation: 

Another method of solving simultaneous equations, whch is usually superior to inverting the 
matrix, is by triangulation. For this case, the elements of the matrix below the leading diagonal 
are eliminated, so that the last unknown can readily be determined, and the remaining unknowns 
obtained by back-substitution. 

Further problems (answers on page 695) 

If 

-1 0 

2 -4 
[AI = ;] and PI = [ 

Determine: 

22.1 [A]+[B] 

22.2 [A] - [B] 
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22.3 [AIT 

[c] = 

Introduction to matrix algebra 

1 -2 0 

-2 1 -2 

0 -2 1 

22.4 

22.5 

22.6 

22.7 

22.8 

22.9 

22.10 

If 

[D] = 

9 1 -2 

- I  8 3 

-4 0 6 

and 

determine: 

22.11 [C] + [D] 

22.12 [C] - [D] 



Further problems 

[E] = 

563 

r 2  4 

-3 1 

5 6  

22.13 [C]' 

22.14 [D]' 

22.15 [C] x [D] 

22.16 [D] x [C] 

22.17 det [C] 

22.18 det [D] 

22.19 [CI-' 

22.20 [D].' 

If 

and 

0 7 -1 

8 -4 -5  
PI = [ ] 

determine: 

22.21 [E]' 

22.22 [FIT 

22.23 [E] x [F] 
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22.24 [F]' x [E]' 

22.25 If 

x ,  - 2x, + 0 = -2 

-x* + x2 - 2x3 = 1 

O - 2 x , + x 3  = 3 



23 Matrix methods of structural analvsis 

23.1 Introduction 

This chapter describes and applies the matrix displacement method to various problems in 
structural analysis. The matrix displacement method first appeared in the aircraft industry in the 
1940s7, where it was used to improve the strength-to-weight ratio of aircraft structures. 

In today's terms, the structures that were analysed then were relatively simple, but despite this, 
teams of operators of mechanical, and later electromechanical, calculators were required to 
implement it. Even in the 1950s, the inversion of a matrix of modest size, often took a few weeks 
to determine. Nevertheless, engineers realised the importance of the method, and it led to the 
invention of the finite element method in 1956', whlch is based on the matrix displacement 
method. Today, of course, with the progress made in digital computers, the matrix displacement 
method, together with the finite element method, is one of the most important forms of analysis 
in engineering science. 

The method is based on the elastic theory, where it can be assumed that most structures behave 
like complex elastic springs, the load-displacement relationship of which is linear. Obviously, the 
analysis of such complex springs is extremely difficult, but if the complex spring is subdivided into 
a number of simpler springs, whch can readily be analysed, then by considering equilibrium and 
compatibility at the boundaries, or nodes, of these simpler elastic springs, the entire structure can 
be represented by a large number of simultaneous equations. Solution of the simultaneous 
equations results in the displacements at these nodes, whence the stresses in each individual spring 
element can be determined through Hookean elasticity. 

In this chapter, the method will first be applied to pin-jointed trusses, and then to continuous 
beams and rigid-jointed plane frames. 

23.2 Elemental stiffness matrix for a rod 

A pin-jointed truss can be assumed to be a structure composed of line elements, called rods, which 
possess only axial stiffness. The joints connecting the rods together are assumed to be in the form 
of smooth, fnctionless hinges. Thus these rod elements in fact behave llke simple elastic springs, 
as described in Chapter 1. 

Consider now the rod element of Figure 23.1, which is described by two nodes at its ends, 
namely, node 1 and node 2. 

'Levy, S., Computation of Influence Coefficients for Aircraft Structures with Discontinuities and Sweepback, 
J. Aero. Sei., 14,547-560, October 1947. 

'Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., Stiffness and Deflection Analysis of Complex Structures, 
J. Aero. Sei., 23,805-823, 1956. 
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Figure 23.1 Simple rod element. 

Let 
X, = axial force at node 1 

X2 = axial force at node 2 

u, = axial deflection at node 1 

u2 = axial deflection at node 2 

A = cross-sectional area of the rod element 

1 = elemental length 

E = Young's modulus of elasticity 

Applying Hooke's law to node 1 ,  

(I - = E  
& 

but 

(I = X,IA 

and 

E = (uI - u*y1 

so that 

X, = AE (u, - l d z y l  (23.1) 

From equilibrium considerations 

X, = -XI = AE (., - 1 4 1 y /  (23.2) 
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Rewriting equations (23.1) and (23.2), into matrix form, the following relationship is obtained: 

{;} = 5E[ -1  1 - 1 ] { 5 ]  1 u* 
(23.3) 

or in short form, equation (23.3) can be written 

( P I }  = lkl { U I }  (23.4) 

where, 

( P I }  = 6) = a vector of loads 

(uI}  = [ ::} = a vector of nodal displacements 

Now, as Force = stiffhess x displacement 

1 -1 

[k] = g [ 
(23.5) I 

-1 1 

= the stifmess matrix for a rod element 

23.3 System stiffness matrix [K] 

A structure such as pin-jointed truss consists of several rod elements; so to demonstrate how to 
form the system or structural stiffness matrix, consider the structure of Figure 23.2, which is 
composed of two in-line rod elements. 

Figure 23.2 Two-element structure. 
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Consider element 1-2. Then from equation (23.5), the stiffness matrix for the rod element 1-2 is 

(23.6) 

The element is described as 1-2, which means it points from node 1 to node 2, so that its start node 
is 1 and its finish node is 2. The displacements u,  and u2 are not part of the stiffness matrix, but 
are used to describe the coefficients of stiffness that correspond to those displacements. 

Consider element 2-3. Substituting the values A,, E2 and I, into equation (23.5), the elemental 
stiffness matrix for element 2-3 is given by 

u2 u3 

1 -1 

-1 1 
(23.7) 

Here again, the displacements u2 and u, are not part of the stiffness matrix, but are used to describe 
the components of stiffness corresponding to these displacements. 

The system stiffness matrix [K] is obtained by superimposing the coefficients of stiffness of 
the elemental stiffness matrices of equations (23.6) and (23.7), into a system stiffness matrix of 
pigeon holes, as shown by equation (23.8): 

[KI = -A,El Il l  AIEl I l l+ -  A2E2 112 - A2E2 112 
(23.8) 

It can be seen from equation (23.8), that the components of stiffness are added together with 
reference to the displacements u,, u2 and uj. This process, effectively mathematically joins together 
the two springs at their common node, namely node 2. 
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Let 

(23.9) 

= a vector of known externally applied loads at the nodes, 1,2 and 3, respectively 

(23.10) 

= a vector of unknown nodal displacements, due to { q } ,  at nodes 1, 2 and 3 
respectively 

Now for the entire structure, 

force = stiffness x displacement, or 

where [K] is the system or structural stiffness matrix. 
Solution of equation (23.11) cannot be carried out, as [K] is singular, i.e. the structure is 

floating in space and has not been constrained. To constrain the structure of Figure 23.2, let us 
assume that it is firmly fKed at (say) node 3, so that u3 = 0. 

Equation (23.1 1) can now be partitioned with respect to the free displacements, namely u,  and 
u2, and the constrained displacement, namely u3, as shown by equation (23.12): 

k} = 

where 

(4.) = 

(23.12) 

(23.13) 

a vector of known nodal forces, corresponding to the free displacements, 
namely u,  and u2 
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= a vector of free displacements, which have to be determined 

(23.14) 

(23.15) 

= that part of the system stiffness matrix that corresponds to the free 
displacements, which in this case is u,  and u2 

{ R }  = a vector of reactions corresponding to the constrained displacements, which in 
this case is u3 

[K,J = [o - 4 E2 1 I , ]  
in this case 

WI21 = [ - i 2  E2 1 / 2 1  

Expanding the top part of equation (23.12): 

(23.1 6) 

Once {uF}  is determined, the initial stresses can be determined through Hookean elasticity. 

equation (23.12) becomes 
For some cases u3 may not be zero but may have a known value, say u,. For these cases, 

(23.17) 

(23.18) 
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and 
{ R }  = [K21]{.F)+[KZZ]{%} (23.19) 

23.4 Relationship between local and global co-ordinates 

The rod element of Figure 23.1 is not very useful element because it lies horizontally, when in fact 
a typical rod element may lie at some angle to the horizontal, as shown in Figures 23.3 and 23.4, 
where the x-yo axes are the global axes and the x-y axes are the local axes. 

Figure 23.3 Plane pin-jointed truss. 

Figure 23.4 Rod element, shown in local and global systems. 

From Figure 23.4, it can be seen that the relationships between the local displacements u and 
v, and the global displacements uo and vo, are given by equation (23.20): 
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u = uocosa + v"sina 

v = -uosina + vOcosa 

whch, when written in matrix form, becomes: 

cosa sina {j = [-sku c o s j  

For node 1, 

where, 

c = cosa 

s = sina 

S d a r l y ,  for node 2 

Or, for both nodes, 

(23.20) 

(23.2 1) 

(23.22) 

(23.23) 

where, 
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[%I = 

c s  

[(I = 

-s c 

0 0  

-0 0 

Equation (23.23) can be written in the form: 

where, 

[Dc] = ['"I 
0, 6 

= a matrix of directional cosines 

From equation (23.25), it can be seen that [DC] is orthogonal, i.e. 

[DC].' = [DCIT 

:. {ui " }  = [DCIT {u,} 

573 

(23.24) 

(23.25) 

(23.26) 
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Similarly, it can be shown that 

Matrix methods of structural analysis 

{P,} = [DCI {P lO}  

and {P, " }  = [DCIT (P,} 

where 

(23.27) 

and 

23.5 Plane rod element in global co-ordinates 

For this case, there are four degrees of freedom per element, namely u I  O ,  v ,  O ,  u20 and v20. Thus, 
the elemental stiffness matrix for a rod in local co-ordinates must be written as a 4 x 4 matrix, as 
shown by equation (23.28): 

AE 
[kl = I- 

UI VI u2 v2 

1 0 - I  0 
0 0  0 0  

- 1 0  1 0  

0 0 0 0  

(23.28) 

The reason why the coefficients of the stiffness matrix under vI and v2 are zero, is that the rod only 
possesses axial stiffness in the local x-direction, as shown in Figure 23.1. 
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For the inclined rod of Figure 23.4, although the rod only possesses stiffness in the x-direction, 

The elemental stiffness matrix for a rod in global co-ordinates is obtained, as follows. From 
it has components of stiffness in the global x o -  and yo-directions. 

equation (23.4): 

( P I }  = [kl (u,} 

but 
, 

( P I }  = [DCI { P I " }  

(23.29) 

(23.30) 

and 

(u,} = P-1 {%"} (23.31) 

Substituting equations (23.30) and (23.3 1) into equation (23.29), the following is obtained: 

[DCI { P I 0 }  = [kl [DCI { u l " }  (23.32) 

Premultiplying both sides by [DC].', 

{PI"}  = Pc1-l [kl [DCI { U l O }  

but from equation (22.28), 

[DC]-' = [DCIT 

.. {PIo} = [DCIT [k] [DC] {u,"} 

Now, 

force = stiffness x deflection 

:. {P , " }  = [k"] { u t o }  

(23.33) 

(23.34) 



c2  cs -c2  - C S U I O  

[ko] = E CS S 2  -CS - S 2  

I 
- C 2  -cs c2  cs 

-cs - s2  cs s 2  

Solution 

This truss has two free degrees of freedom, namely, the unknown displacements u,  O and v, O .  

Element 1-2 

This element points from 1 to 2, so that its start node is 1 and its end node is 2, as shown: 

V I o  (23.3 6) 

u20 

V 2 O  
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a = 135" :. c = -0.707, s = 0.707, 1 = 1.414 m 

Substituting the above information into equation (23.36), and removing the rows and columns 
corresponding to the zero displacements, namely uzo and vzo, the elemental stiffness matrix for 
element 1-2 is given by 

0 0 0 0  

u1 V I  u2 v2 

0.5 -0.5 u1 O 

V1 O 

u2 o 

' V Z O  

- -0.5 0.5 
(23.37) 

AE [k1-201 = 1.414 

Element 1-3 

This member points from 1 to 3, so that its start node is 1 and its end node is 3, as shown below. 



A E  
[kl-30] = -i- 

a = 210" 

or a = -150" 

c = -0.866 

s = -0.5 

I =  2 

Substituting the above information into equation (23.36), and removing the rows and columns 
corresponding to the zero displacements, which in this case are u40 and v,", the elemental stiffness 
matrix is given by 

0 0  u1 O 

VI o 

143 O 

(23.38) 
0 1 
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(23.39) 

The system stiffness matrix corresponding to the free displacements, namely uI O and v ,  O ,  is given 
by adding together the appropriate coefficients of equations (23.37) to (23.39), as shown by 
equation (23.40): 

[KIII = AE 

or 

UI O 

0.354 + 0 

+0.375 

-0.354 + 0 

+0.2 17 

VI O 

-0.354 + 0 
UI O 

+0.2 17 

0.354 + 1 
V I  O 

+0.125 

UI O VI O 

0.729 -0.137 

-0.137 1.479 

(23.40) 

(23.41) 

NB [K, is of order two, as it corresponds to the two free displacements u I o  and vI O ,  which 
are unknown. 

The vector of external loads { q F } ,  corresponds to the two free displacements I(, O and v ,  O ,  and can 
readily be shown to be given by equation (23.42), ie 

(23.42) 

where the load value 2 is in the u,  direction, and the load value - 3 is in the v ,  O direction. 
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Substituting equations (23.41) and (23.42) into equation (23.16) 

1 [ 1.479 0.1371 {-;} 
- AE 0.137 0.729 - 

(0.729 x 1.479 - 0.137 x 0.137) 

- - 1 [ 1.396 0.1291 { 2} 

A E  0.129 0.688 -3 

i.e. 

Thes displacements are in global ~ _ha te s ,  

(23.43) 

3 it will be necessary to resolve these 
displacements along the length of each rod element, to discover how much each rod extends or 
contacts along its length, and then through the use of Hookean elasticity to obtain the internal 
forces in each element. 

Element I -  2 

Now, 
c = -0.707, s = 0.707 and 1 = 1.414m 

Hence, from equation (23.23), 

= [-0.707 0.7071 - 

U ,  = -2.977lAE 



Plane rod element in global csordinates 

From Hmke's law, 

F , ,  = force in element 1-2 

AE 
I 

= - (u* - ul) 

- 2.977 - -  
1.414 

F,-.2 = 2.106 MN (tension) 

Element 1-3 

c = O ,  s = l  and I = l m  

From equation (23.23), 

= [o 11 & [ 2.405] 

- 1.806 

U ,  = -1 .806/AE 

From Hooke's law, 

F,-3 = force in element 1-3 

AE 
I = - (u3 - u1) 

F,-3 = 1.806 MN (tension) 

581 

Element 4-1 

c = -0.866, s = 0.5 and 1 = 2 m  

From equation (23.23), 
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9 = [c SI 13 
= [-0.866 0.51 - 

A E  1 r - 2.4051 1.806 
U, = -1.1797 1 A E  

From Hooke's law, 

F4-, = force in element 1 4  

A E  
I = - (111 - u4) 

- A E  (-1.1797 - 0) 
2 A E  

F4-I = -0.59 MN (compression) 

- -  

Problem 23.2 Using the matrix displacement method, determine the forces in the members 
of the plane pin-jointed truss below, which is free to move horizontally at node 
3 ,  but not vertically. It may also be assumed that the truss is f m l y  pinned at 
node 1, and that the material and geometrical properties of its members are 
given in the table below. 
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0.25 0.433 - 0.25 

0.433 0.75 - 0.437 

-0.25 - 0.433 d.25 

- 

583 

u2 

v2 

u3 

v3 

Solution 

Element 1-2 

a = O ,  c = 1 ,  s = O  and 1 = 2 m  

2.6 4.5 -2 .6 

Substituting the above values into equation (23.36), 

v20 

2AE 
[kl-2"] = 2 

Element 2-3 

a =  

r 

to" ,  c = -O.-., s = -0.866 and I = 1 m 

3 A x  2 E  
Lk,-,"] = 

= A E  

-1 .5  -2.6 1.5 

(23.44) 

(23.45) 
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-1.5 

-2.6 

1-1.5 -2.6 2.8 

Element 3-1 

CL = 150°, c = -0.866, s = 0.5 

u2' 

v20 

-u30 

A x 3E 
[k3-101 = 1.732 

u 3 O  

= [MI u3" 

0 0 0 0  

u3 v3 Ul  Vl 

0.75 

and1 = 1.732m 

(23.46) 

The system stiffness matrix [K,,] is obtained by adding together the appropriate components of 
stiffness, from the elemental stiffness matrices of equations (23.44) to (23.46), with reference to 
the free degrees of freedom, namely, u20, vzo and u30, as shown by equation (23.47): 

u* O 

1 + 1.5 

0 + 2.6 
~~~ 

- 1.5 

0 0  

u2 VI 

2.5 2.6 

2.6 4.5 

v2 O 

0 + 2.6 

0 + 4.5 

- 2.6 

u3 

- - *  . I . .. . ^  

u3 O 

- 1.5 

- 2.6 

1.5 + 1.3 

^ ^  

(23.47) 

(23.48) 

. -  I he vector of loads {qF} ,  correspondmg to the free degrees of freedom, namely, u2", v2" and uj" 
is given by: 
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( S F }  = 1;) 0 (23.49) 

Substituting equations (23.48) and (23.49) into equation (23.16) and solving, the vector of free 
displacements { uF} is given by fl) = & (0.1251 -2.27 

- 1.332 

(23.50) 

The member forces will be obtained by resolving these displacements along the length of each rod 
element, and then by finding the amount that each rod extends or contracts, to determine the force 
in each member through Hookean elasticity. 

Element 1-2 

c = 1 ,  s = O  and 1 = 2 m  

From equation (23.23), 

-2.27 

u2 = -2.27fAE 

From Hooke's law, 

FI-2 = force in element 1-2 

= - ( - = - o )  2AE 2.27 
2 

F,-2 = -2.27 MN (compression) 
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Element 2-3 

c = -0.5, s = -0.866 and I 1 m 

From equation (23.23), 

u2 = 

= [-0.5 -0.8661 - 

u, = 1.243fAE 

Similarly, from equation (23.23), 

uj  = 

= [-0.5 -0.8661 

u3 = 0.666fAE 

From Hooke's law, 

F2-, = force in element 2-3 

(-0.577) 
= 6AE x - 

AE 

F2-3 = -3.46 MN (compression) 
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Element 3-1 

587 

c = -0.866, s = 0.5 and I = 1.732 m 

= [-0.866 0.51 - 
AE 

u3 = 1.154/AE 

From Hooke's law, 

F,-l = force in element 1-3 

A x 3E 1.154 
1.732 

F3-I = -2 MN (compression) 

23.6 Pin-jointed space trusses 

In three dimensions, the relationships between forces and displacements for the rod element of 
Figure 23.5 are given by equation (23.51): 

(23.51) 

where, 
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XI = load in the x direction at node 1 

= AE(u1 -uJA 

Y, = load in they duection at node 1 

= o  
= load in the z direction at node 1 

= o  
= load in the x direction at node 2 

2, 

X,  

= A E ( ~ ,  - U j n  

Y, = load in they direction at node 2 

= o  
= load in the z dlrection at node 2 

= o  
2, 

Figure 23.5 Threedimensional rod in local co-ordinates. 

Figure 23.6 Rod in three dimensions. 
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For the case of the three dimensional rod in the global co-ordinate system of Figure 23.6, it can be 
shown through resolution that the relationship between local loads and global loads is given by: 

where 

(23.52) 

(23.53) 

x, y, z = localaxes 

x o ,  yo ,  zo = global axes 

C,,, Cr,, C,,? etc = the directional cosines of x with x o ,  x with yo ,  x with zo, 
respectively, etc. 

O = force in x o  direction at node 1 

y, O = force in y o  direction at node 1 

z, O 
= force inz" direction at node 1 

x2 O 
= force in x o  direction at node 2 

y2 O = force in yo  direction at node 2 

2 2  O 
= force in zo direction at node 2 
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Now from equation (23.35) the elemental stiffness matix for a rod in global co-ordinates is given 
by: 

[k"] = [DCIT [k] [DC] 

a -a 

[k"] = 

-a a 

where 

By Pythagoras' theorem in three dimensions: 

I 

1 = [k2"- XJ2 + cy2"-  y,")2 + (z2"- z,")z]T 

The dnectional cosines' can readily be shown to be given by equation (23.57): 

Cx,"= (xzo - x , " ) / l  

cxso= cy2" - Y , " ) / l  

(23.54) 

(23.55) 

(23.56) 

(23.5 7) 

Cx,"= (zz" - z , " ) / l  

Problem 23.3 A tripod, with pinned joints, is constructed from three uniform section 
members, made from the same material. If the tipod is f d y  secured to the 
ground at nodes 1 to 3, and loaded at node 4, as shown below, determine the 
forces in the members of the tripod, using the matrix displacement method. 

'Ross, C T F, Advnnced Applied Element Methods, Horwood, 1998. 
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Solution 

Element 1-4 

The element points from 1 to 4, so that the start node is 1 and the finish node is 4. From the figure 
below it can readily be seen that: 

XI0 = 0, y , O  = 0. Z , O  = 0, 

z," = 5 m, y," = 5 m, zg0 = 7.07 m 

(b) Front view of tripod. 
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Substituting the above into equation (23.56), 

Matrix methods of structural analysis 

1 

1 = [(5 - 0)' + (5 - 0)' + (7.07 - 0)'p 

AE 
[kl-do] = - 

10 

I = 1 0 m  

- 

u10 
v10 

4 
0.25 0.25 v4" 

WI 

0.25 

- 0.354 0.354 0.5 W4" 

Substituting the above into equation (23.57), 

- - -  - 5 - 0  - 0.5 
X4O - X10 

CXJO = 
1 10 

- - -  - - 0.5 Y4O - YI0 - CXYD = 
I 10 

Substituting the above values into equation (23.54), and removing the coefficients of the stiffness 
matrix corresponding to the zero displacements, which in h s  case are uIo, vIo and wl0, the 
stiffness matrix for element 1 4  is given by equation 23.58): 

(23.58) 

Element 2-4 

The member points from 2 to 4, so that the start node is 2 and the finish node is 4. From the above 
figure, 

X2O = 10, Y 2 O  = 0, Z 2 O  = 0 
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Substituting the above and x,", y4" and zq0 into equation (23.56), 

I = 15 - lo)* + (5 - 0)2 + (7.07 - 0),12 
I - 

I = 10m 

From equation (23.57), 

Substituting the above values into equation (23.54), and removing the rows and columns 
corresponding to the zero displacements, whch in th~s case are u,", v," and w,", the stiffness 
matrix for element 2 4  is given by equation (23.59): 

AE [ k , 4  = 10 

Element 4-3 

yo V 2 O  w," u4" v," W4O 

0.25 
- 0.25 0.25 
- 0.354 0.354 O.? 

(23.59) 

The member points from 4 to 3, so that the start node is 4 and the finish node is 3. From the figure 
at the start of h s  problem, 

X , O  = 5 y," = 12.07 z30 = 0 
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Substituting the above and x4", y4" and z," into equation (23.56), 

Matrix methods of structural analysis 

1 - 
I = 15 - 5)2 + (12.07 - 5)' + (0 - 7.07)2]2 

I = 1 0 m  

From equation (23.57), 

Substituting the above into equation (23.54), and removing the rows and columns corresponding 
to the zero displacements, which in this case are ujo, v 3 "  and w3", the stiffness matrix for element 
4-3 is given by equation (23.60): 

0 0  

u 4  v 4  W4O 

0 
0 0.5 
0 - 0.5 0.5 

AE 
[IC,-,'] = - 10 

(23.60) 

To obtain [K, ,I, the system stiffness matrix corresponding to the free displacements, namely u,", 
v," and w,", the appropriate coefficients of the elemental stiffness matrices of equations (23.58) 
to (23.60) are added together, with reference to these free displacements, as shown by equation 
(23.6 1): 
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[ K I I O I  = AE 
10 

AE 
10 
- - - 

u40 

0.25 
+ 0.25 
+ O  

0.25 
- 0.25 
+ O  

0.354 
- 0.354 
+ O  

0.25 
+ 0.25 
+ 0.5 

0 0 

u4 v4 

0.5 0 

0 

0 0.208 

0.354 
+ 0.354 
- 0.5 

0 

w4 

w40 

0.5 
+ 0.5 
+ 0.5 

u40 

w40 
(23.61) 

(23.62) 

The vector of loads is obtained by considering the loads in the directions of the free displacements, 
namely u40, v40 and w,", as shown by equation (23.63): 

2 

b l  = 

u4 O 

t V40 

w4 O 

(23.63) 

Substituting equations (23.62) and (23.63) into (23.16), the following three simultaneous equations 
are obtained: 

2 = ($) x 0.5 u40 (2 3.64a) 

0 = (z) ( Y 4 O  + 0.208 w4") 

- 3  = ($) (0.208 v40 + 1.5 w40) 

(23.64b) 

(23.64~) 
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From (23.64a) 

u40 = 40lAE 

Hence, from (20.64b) and (23.64~)~ 

v4' = 4.284lAE 

w," = -20.594lAE 

so that, 

(23.65) 

To determine the forces in the members, the displacements of equation (23.65) must be resolved 
along the length of each rod, so that the amount the rod contracts or extends can be determined. 
Then through the use of Hookean elasticity, the internal forces in each member can be obtained. 

Element 1-4 

C,," = 0.5, C,," = 0.5, C,,' = 0.707, I = 10 m 

From equation (23.52): 

= [OS 0.5 0.7071 - 1 44:8 1 
AE 

-20.59 

u4 = 7.568lAE 
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From Hooke's law, 

F,, = force in member 1-4 

AE 7568 
u4-u1  =-x- 

AE 

=--( 10 10 AE 

F,,  = 0.757 MN (tension) 

Element 2-4 

C,,' = -0.5, Cxyo = 0.5, C,,' = 0.707, 1 = lorn 

From equation ( 2 3 . 2 ) :  

= [-0.5 0.5 0.7071 - 
-20.59 

u4 = -32.417lAE 

From Hooke's law, 

F,, = force in member 2-4 

AE AE 
10 

= (u4 - u2) = - x ( -32.417/AE) 

597 

F,, = 3.242 MN (tension) 
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Element 4-3 

C,,' = 0, Cx,yo = 0.707, C,,' = -0.707, I = 1 0 m  

u4 = [CXJ0 Cxy' cxzo] E:) 
u4 = [0 0.707 -0.7071 - 1 { ,"p, 1 

AE 
-20.59 

u4 = 17.58fAE 

From Hooke's law, 

F,, = force in member 4-3 

AE 
I 

AE 
10 

(u3 - u4) - -  

= - (0 - 17.58/AE) 

F,, = - 1.758 MN (compression) 

23.7 Beam element 

The stiffness matrix for a beam element can be obtained by considering the beam element of Figurf 
23.7. 

Figure 23.7 Beam element. 



Beam element 

From equation ( 13.4), 

E l  - d2v = M = Y,X + M ,  
dx2 

Y,x 
E l -  c f v -  - - + M , x  + A 

dx 2 

Y,x3 M,x2 
EIv = - + - + A x + B  

6 2 
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(23.66) 

(23.67) 

(23.68) 

where 

Y,  = vertical reaction at node 1 

Y, = vertical reaction at node 2 

MI = clockwise couple at node 1 

M, = clockwise couple at node 2 

v ,  = vertical deflection at node 1 

v, = vertical deflection at node 2 

9, = rotational displacement (clockwise) at node 1 

8, = rotational displacement (clockwise) at node 2 

There are four unknowns in equation (23.68), namely Y, ,  M,, A and B ;  therefore, four boundary 
values will have to be substituted into equations (23.67) and (23.68) to determine these four 
unknowns, through the solution of four linear simultaneous equations. 

These four boundary values are as follows: 

Substituting these four boundary conditions into equations (23.67) and (23.68), the following are 
obtained: 
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6EI 12EI 
Y ,  = -- (ei + e2) + - (v, - v2) 

I 2  1 3  

6EI EI 
M, = - (v2 - v,) + - (4e1 + 28,) 

I 2  I 

6EI 12EI 
Y, = - (e, + e2) - - (vi - v2) 

I 2  i3 

2EI 4EI 6EI 
M, = - e, + - e, - - (vi - v2) 

I I I 2  

Equations (23.69) to (23.72) can be put in the form: 

( P I }  = [kl + I }  

where, 

= the elemental stiffness matrix for a beam 

[ 4 )  = f 1 = a vector of generalised loads 

M2 

[ u t )  = 1; 1 = a vector of generalised displacements 

e* 

(23.69) 

(23.70) 

(23.71) 

(23.72) 

(23.73) 

(23.74) 

(23.75) 
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Determine the nodal displacements and bending moments for the uniform 
section beam below, which can be assumed to be fully fixed at its ends. 

Problem 23.4 

[k,-2] = E l  

-VI 

8, (23.76) 
0.444 0.667 v2 

0.667 1.333 
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- 
1.5 -1.5 

-1.5 1.5 
I. 

I -  

Matrix methods of structural analysis 

v2 

02 

v3 

[k2-3] = El  

The system stiffness me 

0.444 0.667 
+ 1.5 - 1.5 

0.667 1.332 
[K,,1 = E/ 

- 1.5 + 2.0 

v,o 

e , O  

(23.77) 

ix, whch corresponds to the free displacements v, anc , is obtained by 
adding together the appropriate components of the elemental stiffness matrices of equations (23.76) 
and (23.77), as shown by equation (23.78): 

e 2  

(23.78) 

(23.79) 

The vector of generalised loads is obtained by considering the loads in the directions of the fiee 
displacements v, and e,, as follows: 

From equation (23. I l), 

1.944 -0.833 

-0.833 3.333 
{:} = E [ [  

~~ 1 [ 3.333 0.8331 { -4} 

- - EI 0.833 1.944 0 

(1.944 x 3.333 - 0.8332) 
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- - 1 [ 0.576 0.1441 { - 4 }  

El 0.144 0.336 0 

603 

(23.80) 

(23.81) 

NB VI = e, = v, = e2 = o 

To obtain the nodal bending moments, these values of displacement must be substituted into the 
slope-deflection equations (23.70) and (23.72), as follows. 

Element 1-2 

Substituting v,, e,, v, and 8, into equations (23.70) and (23.72): 

M, = ~ ( T - O ) + ~ ( 4 x O -  -2.304 2 x 0.576 
9 EI 

= -1.536 - 0.384 

M, = -1.92 kNm 

and, 

2EI 4EI -0.576 2.304 M2 = - x o + - x  - 
3 3 I E/ ) -Y(O+?) 

= -0.768 - 1.536 

M, = -2.304 kNm 

Element 2-3 

Substituting v,, e,, v, ando, into equations (23.70) and (23.72), and remembering that the first node 
is node 2 and the second node is node 3, the following is obtained for M, and M,: 

2 4 

= -1.152 + 3.456 

M, = 2.304 kNm 
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and, 

Matrix methods of structural analysis 

M = 2EZ -0.576 
2 

- ( - - ) + O - - & - O )  6EZ -2.304 
3 

= -0.576 + 3.456 

M3 = 2.88 kNm 

Problem 23.5 Determine the nodal displacements and bending moments for the encastrk 
beam: 

Solution 

Now the matrix displacement method is based on applying the loads at the nodes, but for the above 
beam, the loading on each element is between the nodes. It will therefore be necessary to adopt 
the following process, which is based on the principle of superposition: 

1. Fix the beam at its nodes and determine the end furing forces, as shown in the following 
figure at (a) and (b) and as calculated below. 

The beam in condition (1) is not in equilibrium at node 2, hence, it will be necessary to 
subject the beam to the negative resultants of the end fixing forces at node 2 to achieve 
equilibrium, as shown in the figure at (c). It should be noted that, as the beam is firmly 
fured at nodes 1 and 3, any load or couple applied to these ends will in fact be absorbed 
by these walls. 

Using the matrix displacement method, determine the nodal displacements due to the 
loads of the figure at (c) and, hence, the resulting bending moments. 

To obtain the final values of nodal bending moments, the bending moments of condhon 
(1) must be superimposed with those of condition (3). 

2. 

3. 

4, 
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End-fixing forces 

Element 1-2 

' x 32 - -0.75 kNm W l 2  - M [ 2  = - - - - - -  
12 12 

M;l = - w12 - - 0.75 kNm 

Yl -2  = Y2- ,  = - l X 3  

12 

- - 1 .5kN 
2 

Element 2-3 

- -  2 x 22 - -0.667 kNm ML3 = -- = - W l  2 

12 12 

ML2 = - w12 - - 0.667 kNm 
12 

Y2-3 = Y3-2 = - wl - - - 2 x 2  = 2 k N  
2 2 
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From the figure above, at (c), the vector of generalised loads is obtained by considering the free 
degrees of freedom, which in this case, are v, and 8,. 

From equation (23.80), 

0.576 0.144 

[K1lrl = [0.144 0.336l 

and from equation (23.16), 

0.576 0.1441 [ -3.5 ] 
0.144 0.336 -0.0833 

(23.82) 

(23.83) 

To determine the nodal bending moments, the nodal bending moments obtained fromthe equations 
(23.70) and (20.72) must be superimposed with the end-fixing bending moment of the figure 
above, as follows. 

Element 1-2 

Substituting equation (23.83) into equation (23.70) and adding the end-fixing bending moment 
from the figure above (b), 

-2.028 
9 E1 

= -1.352 - 0.355 - 0.75 

M ,  = -2.457 kNm 
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[k] = EI 

Similarly, substituting equation (23.83) into equation (23.72) and adding the end-fixing bending 
moment of the above figure at (b), 

- 
- ( A l l I )  0 0 (74111)  0 0 

0 1 2 1 1 ~  - 6 1 1 ~  o - 1 2 1 1 ~  - 6 1 1 ~  

0 -611’ 411 0 6112 211 
(23.84) 

( -AI lZ )  0 0 ( A I Z I )  0 0 

0 - 1 2 / 1 3  611’ 0 1 2 1 1 ~  611‘ 

- 0 -6112 211 0 611’ 411 - 

= -1.352 - 0.709 + 0.75 

M, = 1.311 kNlm 

Element 2-3 

Substituting equation (23.83) into equations (23.70) and (23.72) and remembering that.node 2 is 
the first node and node 3 is the second node, and adding the end fixing moments from the above 
figure at (b), 

M 2 = 6EI (El 2.028 + 0) + 5 ( - 4  xi:32) - 0.667 

= 3.042 - 1.064 - 0.667 

M2 = 1.311 kNm 

M 3 = 6EI [y 2.028 + 0) + [ - 2  xi;532) + 0.667 

= 3.042 - 0.532 + 0.667 

M3 = 3.177 kNm 

23.8 Rigid-jointed plane frames 

The elemental stiffness matrix for a rigid-jointed plane frame element in local co-ordinates, can 
be obtained by superimposing the elemental stiffness matrix for the rod element of equation 
(23.28) with that of the beam element of equation (23.73), as shown by equation (23.84): 
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Now the stiffness matrix of equation (23.84) is of little use in that form, as most elements for a 
rigid-jointed plane f i m e  will be inclined at some angle to the horizontal, as shown by Figure 23.8. 

I c s o  
- k0' 

-s c 0 03 y,  O 

0 0 1  4 O 

c s 0 X2" 

y2 O 

03 -s c 0 F b = #  0 0 1 M2" 0 

(23.85) 



[rl = 

Rigid-jointed plane frames 

c s o  

-s c 0 

0 0 1  

Now, fiom equation (23.35): 

[k"] = [DCIT [k] [DC] 

= pro] + [bo] 

where, 

AE [k,"] = - 
I 

M I 0  V I 0  e, u2" v20 e, 
c 2  cs 0 - c 2  -cs 0 

cs s 2  0 -cs -s2  0 

0 0 0 0  0 0 

-c2 -cs 0 c 2  cs 0 

-cs - s 2  0 cs s 2  0 

0 0 0 0  0 0 

609 

(23.86) 

(23.87) 
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c = cosa 

s = s i n a  

A = cross-sectional area 

I = second moment of area of the element's cross-section 

I = elemental length 

E = Young's modulus of elasticity 

Problem 23.6 Using the matrix displacement method, determine the nodal bendmg moments 
for the rigid-jointed plane frame shown in the figure below. It may be assumed 
that the axial stiffness of each element is very large compared to the flexural 
stiffness,sothatv," = v," = 0, andu," = u,'. 

Solution 

As the axial stiffness of the elements are large compared with their flexural stiffness, the effects 
of [Is"] can be ignored. 

Element 1-2 

a = 90" c = o  s = l  I = 3 m  

Substituting the above into equation (23.88), and removing the rows and columns corresponding 
to the zero displacements, which in this case are u,  O ,  v ,  ", 8, and vzo,  the elemental stiffness matrix 
for member 1-2 becomes 



[ kI-,'] = EI 

Rigid-jointed plane frames 

u , o  V I "  e, u20 v20 e, 

- 

- 

61 1 

(23.89) 

Element 2-3 

a = 0, c = 1, s = 0, I = 4 m  

Substituting the above into equation (23.88), and removing the columns and rows correspondmg 
to zero Isplacements, whch in thls case are v," and v, O ,  the elemental stiffness matrix for member 
2-3 is given by 

[kz-3'] = EI 

U,O V,O e, u30 v30 e, 

%?O 

1 
0 

0.5 0 

Element 3-4 

a = -90", c = 0, s = -1 , l  = 3 m  

(23.90) 

Substituting the above into equation (23.88), and removing the columns and rows corresponding 
to zero displacements, namely v,", u,", v," and e,, the elemental stiffness matrix for member 3 4  
is given by 
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0.444 -0.667 0 0 

-0.667 2.333 0 0.5 

0 0 0.444 -0.667 

0 0.5 -0.667 2.333 

Matrix methods of structural analysis 

-uz0 

u30 

9, 

u30 v30 9, U4O V 4 O  e4 
0.444 

-0.667 1.333 

- 

(23.91) 

Superimposing the stiffness influence coefficients, corresponding to the free displacements, u20, 
e,, u30 and e,, the system stiffness matrix [K,,] is obtained, as shown by equation (23.92): 

[K,,"] = EI 

[K1,"]= EI 

UZ0 

0.444 

+ O  

- 0.667 

+ O  

U3O 

1.333 

+ I  

0.5 

0.444 

- 0.667 1+1.333 

u20 

0 2  

u30 

0 3  
(23.92) 

(23.93) 
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The vector of loads corresponding to these free displacements is given by 

(23.94) 

Rewriting equations (23.93) and (23.94) in the form of four linear simultaneous equations, and 
noting that the 5 kN load is shared between members 1-2 and 3-4, the following is obtained: 

2.5 = E I ( O . W ~ , O  -0.6678,) 

0 = EI(-0.667u2" +2.3338, +0.58,) 

2.5 = E I ( O . W ~ , ~  -0.6678,) 

0 = EI(O.58, - 0 . 6 6 7 ~ ~ "  +2.3338,) 

Now for this case 

8, = 8, 

and 

U2O = U 3 O  

Hence, equation (23.95) can be reduced to the form shown in equation (23.97): 

2.5 = 0.444 EIuZo - 0.667 EI8, 

0 = -0.667 EIu2' + 2.833 EI8, 

(23.95) 

(23.96) 

(23.97) 

Solving the above 

u20 = u,O = 8.707/EI 

and 

0, = 0, = 2.049lEI (23.98) 

To determine the nodal bending moments, the displacements in the local v and 0 directions will 
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have to be calculated, prior to using equations (23.70) and (23.72). 

Element 1-2 

c = o ,  s = 1 ,  I = 3 m  

From equation (23.23): 

v* = [-s 4 F} 
V? 

v2 = -8.7071El 

By inspection, 

v, = 8, = 0 and 8, = 2.049lEI 

Substituting the above values into the slope-deflection equations (23.70) and (23.72) 

2EI 2.049 6El ( + 8.707 ) 
= 0 + - x - 

3 El 9 

= 1.366 - 5.805 

MI.? = -4.43 kNm 

4El 2.049 E ( + 8.707 El ) M I - ,  = 0 + - x - - 
3 E l  9 

= 2.732 - 5.805 

M2- l  = -3.07 kNm 

Element 2-3 

1 = 4 m  

By inspection, 

v2 = v, = 0 
and 
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0, = 0, = 2.049lEI 

615 

Substituting the above values into the slope-deflection equations (23.70) an (23.72): 

4EI 2.049 2EI 2.049 
4 EI 4 EI 

M2-3 = - X - + - X -  

M2-3 = 3.07 kNm 

Element 3-4 

c = 0, s = -1, 

From equation (23.23): 

I = 3 m  

8.707 

= [ I  01;[ o }  

v3 = 8.707lEI 

By inspection, 

v, = e, = o and 0, = 2.049lEI 

Substituting the above values into equations (23.70) and (23.72), 

4EI 2.049 6EI 8.707 M3-4 = - x - + o - -  - 
3 EI 9 ( EI - O) 

= 2.732 - 5.805 

M3-4 = -3.07 kNm 

2 EI 6EI 8.707 M4-3 = - x 2.049 + 0 - - - 
3 9 ( El  - O) 

= 1.366 - 5.805 

M4.3 = -4.44 kNm 
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Problem 23.7 

Matrix methods of structural analysis 

Using the matrix displacement method, determine the nodal bending moments 
for the rigid-jointed plane frame shown below. 

Solution 

As this frame has distributed loading between some of the nodes, it will be necessary to treat the 
problem in a manner similar to that described in the solution of Problem 23.5. 

There are four degrees of freedom for this structure, namely, u2", e,, ujo and e,, hence {qF} will 
be of order 4 x 1. 

To determine {qF},  it will be necessary to fur the structure at its nodes, and calculate the end 
furing forces, as shown and calculated below. 
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Endf i ing  forces 

617 

32 - -1.5 kNm W l  
12 12 

M:, = -- = -- - 

ML, = - w12 - - 1.5 kNm 
12 

wl 2 x 3  
2 2 

Horizontalreactionatnode 1 = - - - - - - 3kN 

wl 2 x 3  
Horizontalreactionatnode2 = - = - 

2 2 

= 3m 

M:2 = -ML3 = 4 kNm 

wl 3 x 4  

2 2 
Verticalreactionatnode2 = - - - - - - 6kN 

wl 3 x 4  Verticalreactionatnode3 = - - - - 
2 2 

= 6kN 

Now, for this problem, as 

u , o  = = = v 2 0  = v30 = u40 = v40 = 0, = 0 

the only components of the end-fixing forces required for calculating {qF} are shown below: 
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3 ' % 

0.444 -0.667 0 0 

[ K , , ]  = E[ -0.667 2.333 0 0.5 

0 0 0.444 -0.667 

0 0.5 -0.667 2.333 

-UZO 

0, (23.100) 

u,O 

- 3  0 
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Now, as the 2.5 IcN load is shared between elements 1-2 and 3 4 ,  equation (23.101a) must be 
added to equation (23.101c), as shown by equation (23.102): 

3 = 0 . 8 8 8 ~ ~ "  I EI - 0.6678, I EI - 0.6678, I EI (23.102) 

Putting u2" = ujo, the simultaneous equations (23.101) now become: 

3 = 0 . 8 8 8 ~ ~ "  lEI  - 0.6670,JEI - 0.6670,JEI 

2.5 = -0.667~~"JEI i2.333 0,lEI +0.50,lEI 

-4 = -0.667~,"/EI+0.58,/EI+2.3330,/EI 

(23.103) 

Solving the above, 

u2" = u3" = 4.61lEI 

0, = 2.593lEI 

0, = -0.953lEI 

To determine the nodal bending moments, the end fixing moments will have to be added to the 
moments obtained from the slope-deflection equations. 

Element 1-2 

c = o  s = l  1 = 3 m  

From equation (23.23) 

v2 = -4.61lEI 

By inspection, 

v, = 0 ,  = 0 and 0, = -0.953EI 
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Substituting the above into the slope-deflection equations (23.70) and (23.72), and adding the end 
futing moments, 

= 0 + x (2.593lEl) - (0 + 4.611EI) - 1.5 
3 9 

= 1.729 - 3.07 - 1.5 

MI-* = -2.84 kNm 

and 

M2-, = - 4Ez x - 2.593 - 3.07 + 1.5 
3 EI 

M2-l = 1.89 kNm 

Element 2-3 

By inspection, 

v, = v, = 0 

and 

e, = 2.5931~1,  e, = - 0 . 9 5 3 ~ 1  

Substituting the above into equations (23.70) and (23.72), adding the end-futing moments for this 
element, and remembering that node 2 is the first node and node 3 the second node, 

M2-, = - x - + - x  4EI 2.593 2EI ( - - 0 z 3 )  - 
4 EI 4 

M2-3 = -1.88 kNm 

2EI 2.593 4EI ( - y 1 5 3 )  + M3-2 = - x - + - x  - 
4 El 4 

M3-2 = 4.34 kNm 



Element 3-4 

c = 0, 

Further problems 

s = 1, 1 = 3 m  

62 1 

From equation (23.23), 

4.61 /EI 

= [1 01[ } 
V,  = 4.61lEI 

By inspection, 

11, = u4 = v, = e, = o 

and 

8, = -0.953lEI 

M3-4 = - 4EI x [ 7) -0.953 + 0 - (4.61/EZ) 
3 

M3-4 = -4.34 kNm 

M4-, = - 2EI x (7) -0.953 + 0 - E (4.61/EI) 
3 9 

M4-3 = -3.71 kNm 

Further problems (answers on page 697) 

23.8 Determine the forces in the members of the framework of the figure below, under the 
following conditions: 

(a) all joints are pinned; 
(b) all joints are rigid (i.e. welded). 
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The following may be assumed: 

A E  = 100 EI 
A = cross-sectional area 
I = second moment of area 
E = Young's modulus 
[k]" = the elemental stiffness matrix 

= [kbO1 + [k,"I 

(Portsmouth, 1987, Standard level) 

Determine the displacements at node 5 for the framework shown below under the 
following conditions: 

(a) all joints are pinned; 
(b) 

It may be assumed, for all members of the framework, 

23.9 

all joints are rigid (i.e. welded). 

A = 1OOEI 

where 

A = cross-sectional area 
I = second moment of area 
E = Young's modulus 
[k]" = the stiffness matiix 

= kO1 + kO1 

(Portsmouth. 1987, Honours level) 
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Determine the nodal displacements and moments for the beams shown below, using the 
matrix displacement method. 

23.1 0 

23.1 1 Determine the nodal bending moments in the continuous beam below, using the matrix 
displacement method. 

23.12 A ship's bulkhead stiffener is subjected to the hydrostatic loadmg shown below. If the 
stiffener is f d y  supported at nodes 2 and 3, and fmed at nodes 1 and 4, determine the 
nodal displacements and moments. 

23.13 Using the matrix displacement method, determine the forces in the pin-jointed space 
trusses shown in the following figures. It may be assumed that AE = a constant. 
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(Portsmouth, 1989) 

(Portsmouth, I983) 
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(a) Plan (b) Front elevation 

(Portsmouth, 1989) 

23.14 Determine the nodal displacements and moments for the uniform section rigid-jointed 
plane frames shown in the two figures below. 

It may be assumed that the axial stiffness of each member is large compared with its 
flexural sti&ess, so that, 

v," = V 3 O  = 0 

and 

U 2 O  = U 3 O  
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24 The finite element method 

24.1 Introduction 

In this chapter the finite element method proper" will be described with the aid of worked 
examples. 

The finite element method is based on the matrix displacement method described in Chapter 
23, but its description is separated from that chapter because it can be used for analysing much 
more complex structures, such as those varying from the legs of an integrated circuit to the legs 
of an offshore drilling rig, or from a gravity dam to a doubly curved shell roof. Additionally, the 
method can be used for problems in structural dynamics, fluid flow, heat transfer, acoustics, 
magnetostatics, electrostatics, medicine, weather forecasting, etc. 

The method is based on representing a complex shape by a series of simpler shapes, as shown 
in Figure 24.1, where the simpler shapes are called finite elements. 

Figure 24.1 Complex shape, represented by finite elements. 

Using the energy methods described in Chapter 17, the stiffness and other properties of the 
finite element can be obtained, and then by considering equilibrium and compatibility along the 
inter-element boundaries, the stiffness and other properties of the entire domain can be obtained. 

Turner M J, Clough R W, Martin H C and Topp L J, Stiffness and Deflection Analysis of Complex Structures, 
JAero. Sci, 23,805-23, 1956. 

10 
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This process leads to a large number of simultaneous equations, whch can readily be solved 
on a high-speed digital computer. It must be emphasised, however, that the finite element method 
is virtually useless without the aid of a computer, and this is the reason why the finite element 
method has been developed alongside the advances made with digital computers. Today, it is 
possible to solve massive problems on most computers, including microcomputers, laptop and 
notepad computers; and in the near future,it will be possible to use the finite element method with 
the aid of hand-held computers. 

Finite elements appear in many forms, from triangles and quadrilaterals for two-dimensional 
domains to tetrahedrons and bricks for three-dimensional domains, where, in general, the finite 
element is used as a ‘space’ filler. 

Each finite element is described by nodes, and the nodes are also used to describe the domain, 
as shown in Figure 24.1, where comer nodes have been used. 

If, however, mid-side nodes are used in addition to comer nodes, it is possible to develop 
curved finite elements, as shown in Figure 24.2, where it is also shown how ring nodes can be used 
for axisymmetric structures, such as conical shells. 

Figure 24.2 Some typical finite elements. 
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The finite element was invented in 1956 by Turner et al. where the important three node in- 

The derivation of the stiffness matrix for this element will now be described. 
plane triangular finite element was first presented. 

24.2 Stiffness matrices for some  typical finite elements 

The in-plane triangular element of Turner et al. is shown in Figure 24.3. From this figure, it can 
be seen that the element has six degrees of freedom, namely, ut O ,  uzo, u30r v l0 ,  vzo and v30, and 
because of thq the assumptions for the displacement polynomial distributions uo and v" will 
involve six arbitrary constants. It is evident that with six degrees of freedom, a total of six 
simultaneous equations will be obtained for the element, so that expressions for the six arbitrary 
constants can be defined in terms of the nodal displacements, or boundary values. 

Figure 24.3 In-plane triangular element. 

Convenient displacement equations are 

u" = a, +vo +ago  (24.1) 

and 

Y O  = a, +ago  +ago (24.2) 

where a, to a, are the six arbitrary constants, and uo and v o  are the displacement equations. 
Suitable boundary conditions, or boundary values, at node 1 are: 

atx" = x,"  and y o  = y,", uo = u I o  and v o  = v I 0  

Substituting these boundary values into equations (24.1) and (24.2), 
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ulo = a, + c q , "  + agl"  

and v I 0  = a,+a+," + a a l o  

Similarly, at node 2, 

atx' = xzo and yo  = yzo, uo = u2" and v o  = v20 

When substituted into equations (24.1) and (24.2), these give 

uZo = a, +as2" +ag20 

and vzo = a, +agZo +aa2" 

(24.3) 

(24.4) 

(24.5) 

(24.6) 

Llkewise, at node 3, 

atx" = xj0 and yo = y,", uo = u30 and v o  = v," 

which, when substituted into equation (24.1) and (24.2), yield 

uj0 = a, + as3" + ag,' (24.7) 

and v," = a4 + a+," + aa,O (24.8) 

Rewriting equations (24.3) to (24.8) in matrix form, the following equation is obtained: 

or 

( U l O }  = 

and 

(24.9) 

(24.10) 
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[A]-' = b, b, b3 I CI c2 c3- 

where 

/ det(A1 

a,  = x2"y3" - ' 3  OY2 

a2 = x3"y," - x , o y 3 0  

a, = x l o y 2 0  - x z 0 y l o  

b, = Y," - Y3O 

b, = Y3" - Y , "  

b, = Y," - Y2O 

c, = x3" - x2 " 

c2 = X I 0  - X 3 O  

c3 = X 2 O  - x , "  

det IAl = x2"y3" -y2"x3" - x , "  (y3' -y20)  +y,' (x30 - x 2 " )  = 2A 

A = area oftriangle 

63 1 

(24.1 1) 

(24.12) 

(24.13) 

Substituting equations (24.13) and (24.12) into equations (24.1) and (24.2) 
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N, N3 0 0 0 

0 0 0 N ,  N, N3 

where [N] = a matrix of shape functions: 

1 
2A 

N ,  = - (a, + b,x" + cly") 

1 
2A 

N, = -(a, + b;s" + cty") 

1 
2A 

N3 = - (a3 + b;s" + c g " )  

For a two-dimensional system of strain, the expressions for strain" are given by 

e, = straininthex" direction = duo/&" 

E,, = straininthey" direction = dv0/40 

y, = shear strain in the xo-yo plane 

= auo/+o + a o / x  

which when applied to equation (24.14) becomes 

(24.14) 

(24.15) 

(24.1 6) 

(24.1 7) 

I '  Fenner R T, Engineering Elasticity, Ellis Horwood, 1986. 
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- 
b, b, b, 0 0 0 

0 0 0 c1 c, c3 4 

c1 c2 c3 b ,  b2 b3- 

63 3 

UI 

U 2 c  

VI a 

y3 O 

U 3  

v2 

Rewriting equation (24.18) in matrix form, the following is obtained: 

b,  b, b3 0 0 0 

0 0 0 c1 c, c3 

c2 c3 bl b2 b3- c1 

where [B] is a matrix relating strains and nodal displacements 

1 PI = 

(24.18) 

(24.19) 

(24.20) 

(24.21) 

Now, from Chapter 5 ,  the relationship between stress and strain for plane stress is given by 

E 
( E x  + VEL) ox = - 

(I - 2) 

(24.22) 

5 y  = 
E 

2(1 + v) rxy 
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0 0 (1 - v)/2 

where 
o, = direct stress in the xo-direction 

1 v  0 

ID] = - E V I  0 
(I - v') 

0 0 ( I  - 4 2 -  

oy = direct stress in the yo-direction 

T~ = shear stress in the xo-yo plane 

E = Young's modulus of elasticity 

v = Poisson's ratio 

E, = direct strain in the xo-direction 

= direct strain in theyo-direction 

= shear strain in the xo-yo plane y, 

E G = shear modulus = 
2(1 + v) 

Rewriting equation (24.22) in matrix form, 

or 

where, for plane stress, 

(24.23) 

(24.24) 

(24.25) 

= a matrix of material constants 
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and for plane strain,I2 

(1-v) v 0 

v (1-v) 0 

0 0 (1-2v)/2 

or, in general, 

where, for plane stress, 

E' = E/(1 - V2)  

p = v  

y = (1 - v)/2 

and for plane strain, 

E' = E(l - ~)/[(1 + v)(l - 2 ~ ) ]  

p = v/(l - v) 

y = ( 1  - 2v)/[2(1 - v)] 

(24.26) 

(24.27) 

Now from Section 1.13, it can be seen that the general expression for the strain energy of an elastic 
system, U,, is given by 

2 E  
but 

ts = EE 

1 
2 

.: U, = - JEc2  d(vo1) 

12 ROSS, C T F, Mechunics ofSolids, Prentice Hall, 1996. 
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which, in matrix form, becomes 

1 
2 

Ue = - [ { E } ~  [D] { ~ } d  (vol) 

where, 

{E) = a vector of strains, which for this problem is 

(24.28) 

(24.29) 

[D] = a matrix of material constants 

It must be remembered that U, is a scalar and, for this reason, the vector and matrix multiplication 
of equation (24.28) must be carried out in the manner shown. 

Now, the work done by the nodal forces is 

WD = -{ ui 9T {Pi 9 

where {Pi 

and the total potential is 

is a vector of nodal forces 

xp  = ue + WD 

1 
2 

= - [ { E } ~  [D] {E} d(v01) 

(24.30) 

kl0} {PI"}  
(24.3 1) 

It must be remembered that WD is a scalar and, for this reason, the premultiplying vector must be 
a row vector, and the postmultiplying vector must be a column vector. 

Substituting equation (24.20) into (24.31): 

but according to the method of minimum potential (see Chapter 17), 

(24.32) 
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or 

i.e. 

Substituting equations (24.21) and (24.27) into equation (24.34): 

P, = 0.25 E' (bibi f YC,C)IA 

Qii = 0.25 E' (pb,ci f ycibl)lA 

Qji = 0.25 E' (pbJci f ycJbJIA 

R, = 0.25 E' (c,ci f yb,bJlA 

where i andj  vary from 1 to 3 and t is the plate thickness 

637 

(24.33) 

(24.34) 

(24.35) 

(24.3 6) 

Problem 24.1 Worlung from first principles, determine the elemental stiffness matrix for a 
rod element, whose cross-sectional area varies linearly with length. The 
element is described by three nodes, one at each end and one at mid-length, as 
shown below. The cross-sectional area at node 1 is A and the cross-sectional 
area at node 3 is 2A. 
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Solution 

As there are three degrees of freedom, namely ul ,  u2 and uj, it will be convenient to assume a 
polynomial involving three arbitrary constants, as shown by equation (24.37): 

u = al+qrr+CL;s2 (24.3 7) 

To obtain the three simultaneous equations, it will be necessary to assume the following three 
boundary conditions or boundary values: 

Atx = 0, u = uI 

At x =N2, u = u2 

Atx = I ,u  = u, 

(24.38) 

Substituting equations (24.38) into equation (24.37), the following three simultaneous equations 
will be obtained: 

uI = a1 (24.39a) 

u2 = a1 + aJI2 + a.J214 (24.39b) 

u3 = aI + %I + % I 2  (24.39~) 

From (24.39a) 

a1 = uI (24.40) 

Dividing (24.39~) by 2 gives 

4 2  = U l I 2  + a412 + u p 1 2  (24.41) 
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Taking (24.41) from (24.39b), 

u2 - u3/2 = U ,  - ~ , / 2  - %12/4 

or 

= u,/2 - u2 + u,/2 l 2  
%4 

1 % = - (224, - 4u2 + 224,) 
l 2  

Substituting equations (24.40) and (24.42) into equation (24.39c), 

%1 = u3 - u ,  - 224, + 4u2 - 224, 

or 

1 
1 

% = - (-3u, + 424, - u3) 

Substituting equations (24.40), (24.42) and (24.43) into equation (24.37), 

where 

5 = X I 1  

639 

(24’.42) 

(24.43) 

(24.44) 
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Now, 

Now, for a rod, 

- E  0 

E 
- -  

or 

a = EE 

:.[Dl = E 

Now. 

where 

Q = area at 6 = A( 1 + 6)  

-3 + 45 

-1 + 45 
:. [k] = I{[ 4 - 

(24.45) 

x E[(-3 + 45) (4 - 85) (-1 + 4<)] A(1+ 5) 1 4  
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= 

64 1 

kl l  k12 k13 

41 4 2  43 

where, 
1 

A E  
1 

k, ,  = - [ ( - 3  + 4512 ( 1  + 5) d5 
0 

= 2.8333 AEJI 

1 

b2 = (4 - 85)2 ( 1  + 5)d5 
0 

1 

= 8 AEII 

1 
A E  

k33 = r [ ( - I  + 4g2 ( 1  + 5) d5 
0 

= 4.167 AEII 

A E  
k12 = 41 = ( - 3  +45) (4-85) ( 1  +{)4 

0 

= -3.33AEJ1 

I 

+ 45) ( 1  + 5)4 A E  k13 = k1 = - [ ( - 3  + 45) ( - 1  
I 

0 

= AEJ21 

1 

k, 3 = 2 = - (4 - 85) ( - 1  + 45) ( 1  + 5) 4 AE s 
0 

I 

= -4.667 AEII 
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In this chapter, it has only been possible to introduce the finite element method, and for more 
advanced work on this topic, the reader is referred to Ross, C T F, Advanced Applied Finite 
Element Methods, Ellis Honvord; Zienkiewicz, 0 C, and Taylor, R L. The Finite Element Method, 
McGraw-Hill, Vol 1, 1989, Vol2, 1991. 

Further problems (answers on page 698) 

24.2 Using equation (24.34), determine the stiffness matrix for a uniform section rod element, 
with two degrees of freedom. 

24.3 A rod element has a cross-sectional area which varies linearly from A, at node 1 to A ,  
at node 2, where the nodes are at the ends of the rod. If the rod element has two degrees 
of freedom, determine its elemental stiffness matrix using equation (24.34). 

24.4 Using equation (24.34), determine the stiffness matrix for a uniform section torque bar 
which has two degrees of freedom. 

24.5 Using equation (24.34), determine the stiffness matrix for a two node uniform section 
beam, which has four degrees of freedom; two rotational and two translational. 



25 Structural vibrations 

25.1 Introduction 

In this chapter, we will commence with discussing the free vibrations of a beam, which will be 
analysed by traditional methods. This fundamental approach will then be extended to forced 
vibrations and to damped oscillations, all on beams and by traditional methods. 

The main snag with using traditional methods for vibration analysis, however, is that it is 
extremely difficult to analyse complex structures by this approach. For this reason, the finite 
element method discussed in the previous chapters will be extended to free vibration analysis, and 
applications will then be made to a number of simple structures. 

Vibrations of structures usually occur due to pulsating or oscillating forces, such as those due 
to gusts of wind or from the motion of machinery, vehcles etc. If the pulsating load is oscillating 
at the same natural frequency of the structure, the structure can vibrate dangerously (i.e. resonate). 
If these vibrations continue for any length of time, the structure can suffer permanent damage. 

25.2 Free vibrations of a mass on a beam 

We can simplify the treatment of the free vibrations of a beam by considering its mass to be 
concentrated at the mid-length. Consider, for example, a uniform simply-supported beam of length 
L and flexural stiffness EZ, Figure 25.1. 

Figure 25.1 Vibrations of a concentrated mass on a beam. 

Suppose the beam itself is mass-less, and that a concentrated mass M is held at the mid-span. If 
we ignore for the moment the effect of the gravitational field, the beam is undeflected when the 
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mass is at rest. Now consider the motion of the mass when the beam is deflected laterally to some 
position and then released. Suppose, v, is the lateral deflection of the beam at the mid-span at a 
time t; as the beam is mass-less the force P on the beam at the mid-span is 

48 Elv, p =  - 
L 3  

If k = 48 EI/L’, then 

P = kv, 

The mass-less beam behaves then as a simple elastic spring c.f stiffness k. In the deflected position 
there is an equal and opposite reaction P on the mass. The equation of vertical motion of the mass 
is 

Thus 

The general solution of this differential equation is 

v, = Acos Et + Bsin E t 
where A and B are arbitrary constants; this may also be written in the form 

where C and E are also arbitrary constants. Obviously C is the amplitude of a simple-harmonic 
motion of the beam (Figure 25.2); v, first assumes its peak value when 
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Figure 25.2 Variations of displacement of beam with time. 

and again attains h s  value when 

@ + .  = - 5x  

K 

2 

Thls period T of one complete oscillation is then 

T = t l - t z  = 2 ~  - (25.1) 

The number of complete oscillations occurring in unit time is the frequency of vibrations; this is 
denoted by n, and is given by 

n = - = -  - (25.2) 
T 1 2n T M 

The behaviour of the system is therefore directly analogous to that of a simple mass-spring system. 
On substituting for the value of k we have 

(25.3) n = - = -  - 
T 1 2n lc ML 

Problem 25.1 A steel I-beam, simply supported at each end of a span of 10 m, has a second 
moment of area of l O - 4  m4. It carries a concentrated mass of 500 kg at the mid- 
span. Estimate the natural frequency of lateral vibrations. 



646 Structural vibrations 

Solution 

In this case 

EI = (200 x 109)(10-4) = 20 x lo6 Nm2 

Then 

k = - -  48E' - 48(20 x lo6) = 960 x 103 N/m 
L 3  ( 1 o ) ~  

The natural frequency is 

n = -  ' F = 1 4- = 6.97 cyclestsec = 6.97 Hz 
2x M 2x 500 

25.3 Free vibrations of a beam with distributed mass 

Consider a uniform beam of length L, flexural stiffness EI, and mass m per unit length (Figure 
25.3); suppose the beam is simply-supported at each end, and is vibrating freely in the yz-plane, 
the displacement at any point parallel to the y-axis being v. We assume first that the beam vibrates 
in a sinusoidal form 

N 
v = a sin - sin2xnt (25.4) 

L 

where a is the lateral displacement, or amplitude, at the mid-length, and n is the frequency of 
oscillation. The kinetic energy of an elemental length 6z of the beam is 

P i m 6 z  2 (2) 2 l I  L 

2 
XZ 

= - m  6z 2xna sin- cos2xnt 

Figure 25.3 Vibrations of a beam having an intrinsic mass. 
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The bending strain energy in an elemental length is 

sin - sin2nnt 6z 1 2 

- 1 E I [ s )  ijz = - 1 EI 1- an2 w 
2 2 L 2  L 

The total kinetic energy at any time t is then 

cos2 2nnt I' sin2 .E 
2 L 

The total strain energy at time t is 

sin22nnt kL sin2 E d~ 1 a 2 d  -EI - 
2 L4 L 
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(25.5) 

(25.6) 

For the free vibrations we must have the total energy, i.e. the s u m  of the kinetic and strain energies, 
is constant and independent of time. This is true if 

-m 1 (4n2n2a2) cos2 2nnt + -EI 1 [ - n:2] sin2 2nnt = constant 
2 2 

For h s  condtion we must have 

--m 1 (47r2n2a2) = T E I [  1 ,-) n4a2 
2 

This gives 

Now mL = M, say is the total mass of the beam, so that 

= n\lK 2 ML3 

(25.7) 

(25.8) 

This is the frequency of oscillation of a simply-supported beam in a single sinusoidal half-wave. 
If we consider the possibility of oscillations in the form 

2 w  . v = a s i n -  SUI 2nn2t 
L 
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then proceeding by the same analysis we find that 

n, = 4n, = 21c JZ (25.9) 

" h s  is the frequency of oscillations of two sinusoidal half-waves along the length of the beam, 
Figure 25.4, and corresponds to the second mode of vibration. Other higher modes are found 
similarly. 

Figure 25.4 Modes of vibration of a simply-supported beam. 

As in the case of the beam with a concentrated mass at the mid-length, we have ignored 
gravitation effects; when the weight of the beam causes initial deflections of the beam, oscillations 
take place about this deflected condition; otherwise the effects of gravity may be ignored. 

The effect of distributing the mass uniformly along a beam, compared with the whole mass 
being concentrated at the mid-length, is to increase the frequency of oscillations from 

q-GE to ; j -E  ML 3 

n, = Liz, 2n and n2 = 24% 2 

2X ML3 

If 

then 
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(25.10) 

Problem 25.2 If the steel beam of the Problem 25.1 has a mass of 15 kg per metre run, 
estimate the lowest natural frequency of vibrations of the beam itself. 

Solution 

The lowest natural frequency of vibrations is 

Now 

EI = 20 x lo6 Nm2 

and 
ML3 = (15) (10) = 150 x lo3 kg.m3 

Then 

= 133 s- ’  
EI - 20 x lo6 

ML3 150 x lo3 
- -  

Thus 

n1 = 5 = 18.1 cycles per sec = 18.1 Hz 
2 

25.4 Forced vibrations of a beam carrying a single mass 

Consider a light beam, simply-supported at each end and carrying a mass M at mid-span, Figure 
25.5. Suppose the mass is acted upon by an alternating lateral force 

P sin 2lcNt (25.1 1) 

which is applied with a frequency N. If v, is the central deflection of the beam, then the equation 
of motion of the mass is 
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d2vc 

dt 2 
M- + kv, = P sin 2nNt 

where k = 48 EI/L'. Then 

P vC = - sin 2nNt d2Vc k - + -  
dt2 M M 

Figure 25.5 Alternating force applied to a beam. 

The general solution is 

P -sin2nNt 

(25.12) 
VC = R c o s E t + B s i n E t +  1 k -4n2N2- M 

k 

in which A and B are arbitrary constants. Suppose initially, i.e. at time t = 0, both v, and dvydt 
are zero. Then A = 0 and 

P 2nN.- 
k 1 B = -  

1 - 4n'N' f E 
Then 
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v, = 
M 1 - 4n2N2- 
k 

Now, the natural frequency of free vibrations of the system is 

n = LE 
2n 

Then 

FM = 2nn 

and 

n 
v, = 

1 - N21n2 

Now, the maximum value that the term 

n 

may assume is 

and occurs when sin 2nNt = -sin 2nnt = 1 .  Then 

- Plk - -  
Plk ( I  + !) 

1 - -  
N 1 - -  N 2  

vcmax = 

n 2  n 

65 1 

(25.13) 

(25.14) 

(25.15) 

Thus, if N < n, v,,, is positive and in phase with the alternating load P sin 2nNt. As N approaches 
n, the values of v,,, become very large. When N > n, v,,, is negative and out of phase with P 
sin 27tNt. When N = n, the beam is in a condition of resonance. 
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25.5 Damped free oscillations of a beam 

The free oscillations of practical systems are idnbited by damping forces. One of the commonest 
forms of damping is known as velocity, or viscous, damping; the damping force on a particle or 
mass is proportional to its velocity. 

Figure 25.6 Effect of damping on free vibrations. 

Suppose in the beam problem discussed in Section 25.2 we have as the damping force p(dv/dr). 
Then the equation of motion of the mass is 

M -  d *vC = - h c - p -  *C 
dt dt 

Thus 

d 'v, *C M- + p- + h, = 0 
dt 2 dt 

Hence 

d2Vc p *, k 
dt2 M dt M 

- + - -  + - v c  = 0 

The general solution of this equation is 

V ,  = Ae { - f l m i w } t  +Be { k d m - m f  (25.16) 
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Now (k/M) is usually very much greater than (p/2M)’, and so we may write 

= Ae(-@U + &% + Be (-Idm - lm I 
vc 

-fJdm) f b E l m  / + Be -lm I ]  

(25.17) = e  

= e - w m )  [c cos h t + $1 
Thus, when damping is present, the free vibrations given by 

ccos[& + e) 

are damped out exponentially, Figure 25.7. The peak values on the curve of vc correspond to 
points of zero velocity. 

Figure 25.7 Form of damped oscillation of a beam. 

These are given by 

* c  - 0 _ . -  

dt 

or 
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Obviously the higher peak values are separated in time by an amount 

T = 2 x E  

We note that successive peak values are in the ratio 

"CI - "cz 

Then 

Now 

Thus 

- P log, - - - 
vc2 2Mn 

Hence 

v c  I p = 2Mn log, - 
Vcr 

(25.18) 

(25.19) 

(25.20) 

(25.21) 
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25.6 Damped forced oscillations of a beam 

We imagine that the mass on the beam discussed in Section 25.5 is excited by an alternating force 
P sin 2nNt. The equation of motion becomes 

d2vc h C  M -  + p - + kv, = P sin 2ldvt 
dt dt 

The complementary function is the damped free oscillation; as this decreases rapidly in amplitude 
we may assume it to be negligible after a very long period. Then the particular integral is 

P sin 2nNt 
MDz + DD + k 

vc = 

This gives 

P [ ( k -  4x2N2M)sin2nNt-2xNp cos2nNtl 

If we write 

then 

vc = P 
1 k( 1-5) sin2nNt-2xNp cos2xNt 

The amplitude of this forced oscillation is 

P 
vmax = r 

(25.22) 

(25.23) 

(25.24) 
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25.7 Vibrations of a beam with end thrust 

In general, when a beam carries end thrust the period of free undamped vibrations is greater than 
when the beam carries no end thrust. Consider the uniform beam shown in Figure 25.8; suppose 
the beam is vibrating in the fundamental mode so that the lateral displacement at any section is 
given by 

5cZ 
v = a sin - sin 2mt (25.25) 

L 

Figure 25.8 Vibrations of a beam carrying a constant end thrust. 

If these displacements are small, the shortening of the beam from the straight configuration is 
approximately 

sin2 2nnt (25.26) JoL $(Le)’& = - a 2 ~ 2  

4L 

If rn is the mass per unit length of the beam, the total kinetic energy at any instant is 

(25.27) 2 2 2  

]I 
[ ~ ( 2 n n s i n T c o s 2 ~ n f  X Z  dz = mn a n L cos2 2xnt 

The total potential energy of the system is the strain energy stored in the strut together with the 
potential energy of the external loads; the total potential energy is then 

[f ElL [$I2 - 2 (?I] sin2 2xnt (25.28) 

If the total energy of the system is the same at all instants 
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This gives 

where 

d E I  
L 2  

Pe = - 

and is the Euler load of the column. If we write 

then 

(25.29) 

(25.30) 

n = n,  1 - -  d :e 

Clearly, as P approaches P,, the natural frequency of the column diminishes and approaches zero. 

25.8 Derivation of expression for the mass matrix 

Consider an mfiitesimally small element of volume d(vo1) and density p, oscillating at a certain 
time t, with a velocity u. 

The kmetic energy 01 this element (KE) is given by: 

1 
2 

KE = -p x d(v0l) x 2j2 

and for the whole body, 

K E z  - /p u 2  d(v0l) 
2 

(25.31) 
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or in matrix form: 

(25.32) 

NB The premultiplier of equation (25.32) must be a row and the postmultiplier of this 
equation must be a column, because KE is a scalar. 

Assuming that the structure oscillates with simple harmonic motion, as described in Section 25.2, 

{u} = {c}ejw' 

where 

{ C} = 

61 = resonant frequency 

j = J i  

a vector of amplitudes 

Differentiating { u }  with respect to t, 

{u} = jo {C} elw' 

= jo  {u} 

Substituting equation (25.35) into equation (25.32): 

1 { 4 ' P { 4  4vol) 
= - - - 2  1 

vol 
2 

but, 

(4 = [NI (u,} 

1 
2 

:. KE = -- o2 (u,}' [ [NIT p [N] d(v01) (u,} 
vol 

(25.33) 

(25.34) 

(25.35) 

(25.36) 
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but, 

659 

or in matrix form: 

but, 

(I',} = io (11,) 

... KE = --a2 1 (11,}7 [m] (11,) 
2 

Comparing equation (25.37) with equation (25.36): 

[ml = 1 [NIT P [NI 4vol) 
vol 

(25.37) 

(25.38) 

= elemental mass matrix 

25.9 Mass matrix for a rod element 

The one-dimensional rod element, which has two degree of freedom, is shown in Figure 23.1. As 
the rod element has two degrees of freedom, it will be convenient to assume a polynomial with two 
arbitrary constants, as shown in equation (25.39): 

u = a, + ap 

The boundary conditions or boundary values are: 

at x = 0, u = u,  

and 

at x = I ,  u = u2 

Substituting equations (25.40) into equation (25.39), 

al = u ,  

(25.39) 

(25.40) 

(25.41) 
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and 

u2 = u1 + %I 

or 

= (u2 - u1Yl 

Substituting equations (25.41) and (25.42) into equation (25.39), 

u = u,  + (u2 - u l p l  

where, 

5 = XI1  

Rewriting equation (25.43) in matrix form, 

Substituting equation (25.44) into equation (24.38), 

5 1  
1 - 2 5 + 5 * )  5 - 5 :  

5 - 5’ 5’ 
4 

(25.42) 

(25.43) 

(25.44) 
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[rl = 

u1 u2 

:c -s  c 

In two dimensions, it can readily be shown that the elemental mass matrix for a rod is 

u1 VI u 2  v 2  

2 0 1 0  

0 2 0 1  

1 0 2 0  

0 1 0 2  

66 1 

(25.45) 

(25.46) 

The expression for the elemental mass matrix in global co-ordinates is given by an expression 
similar to that of equation (25.35), as shown by equation (25.47): 

[mol = [DCIT [m] [DC] (25.47) 

where, 

c = cosa 

(25.48) 

s = sina 

a is defined in Figure 23.4. 
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Substituting equations (23.25) and (25.46) into equation (25.47): 

(25.49) 

= the elemental mass matrix for a rod in two dimensions, in global co- 
ordinates. 

Similarly, in three dimensions, the elemental mass matrix for a rod in global co-ordinates, is 
given by: 

[mol = 

2 

0 

(25.50) 

Equations (25.49) and (25.50) show the mass matrix for the self-mass of the structure, but if the 
effects of an additional concentrated mass are to be included at a particular node, this concentrated 
mass must be added to the mass matrix at the appropriate node, as follows: 

U,O V,O 

ML? [ y ]  (in two dimensions) (25.51) 



Ma 

Element 1-3 

Q = 60°, c = 0.5, s = 0.866 

l , .3 = - ’ m - - 1.155 m = length of element 1-3 
sin 60 

-1 0 0 Y o  

0 1 0 VI0 

0 0 1- W,O 

(in three dimensions) (25.52) 
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0.433 x lo7 0.75 x lo7 

0.75 x 107 1.3 x 1 0 ' ~  

Substituting the above values into equations (23.36) and (25.49), and removing the rows and 
columns corresponding to the zero displacements, namely u," and v , O ,  the stiffness and mass 
matrices for element 1-3 are given by: 

U 3 O  

v 3 ~  

1.1 55 0.433 0.75 

7860 x 1 x x 1.155 
[m,-3O] = 6 

(25.53) 

0 2  "1 
(25.54) 

Element 2-3 

u = 150", c = -0.866, s = 0.5 

l m  
sin 30 

12-3 = - - - 2 m = length of element 2-3 

Substituting the above values into equations (23.36) and (25.49), and removing the rows and 
columns corresponding to the zero displacements, namely u," and v,", the stiffness and mass 
matrices for element 2-3 are given by: 
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= 

665 

0.75 x lo7 -0.433 x 10' 

-0.433 x lo7 0.25 x lo7 

-0.433 0.25 
1 x 10-4 x 2 1011 

2 [ k 2 - 3 O ]  = 

(25.55) 

(25.56) 

The system stiffness matrix corresponding to the free displacements u3" and v j0  is obtained by 
adding together equations (25.53) and (25.55), as shown by equation (25.57): 

K 1 1  = 

v3 

1.183 x lo7 0.317 x lo7 u j o  

0.317 x lo7 1.55 x I O 7  V 3 0  1 
(25.57) 

(25.5 8) 
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The system mass matrix corresponding to the free displacements u, O and vlo is obtained by adding 
together equations (25.54) and (25.56), as shown by equation (25.59): 

[M,,1 = 

llI0 

0.303 

+OS24 

0 

v3" 

0 

0.303 

+OS24 

Now, from Section 25.2, 

If simple harmonic motion takes place, so that 

vc = CeJ"" 

then, 

Substituting equation (25.62) into equation (25.61), 

kvc 0 2 - 0 v  + -  = 
' M  

(25.59) 

(25.60) 

(25.61) 

In matrix form, equation (25.63) becomes 

(25.62) 

(25.63) 

(25.64) 

or, for a constrained structure, 
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( F l ]  - a2 [MlJ (u,} = 0 (25.65) 

Now, in equation (25.65), the condition {u,} = (0) is not of practical interest, therefore the 
solution of equation (25.65) becomes equivalent to expanding the determinant of equation (25.66): 

I [ 4 1 ]  -a2 ["ll] I = 0 (2 5.66) 

Substituting equations (25.58) and (25.60) into equation (25.66), the following is obtained: 

1.183 x lo7 0.317 x lo7 0.827 0 
0.317 x lo7 1.55 x lo7 I-.'[ 0 0.8271 

(25.67) 

Expanding equation (25.67), results in the quadratic equation (25.68): 

(1.183 x 107-0.827~2)(1.55 x 107-0.827~2)-(0.317 x 107)2 = 0 

or 

1.834 x 1014 - 2.26 x lo7 o2 + 0.684 o4 - 1 x loi3 = 0 

or 

O.684o4-2.26x 10702+ 1 . 7 3 4 ~ 1 0 ' ~  = 0 (25.68) 

Solving the quadratic equation (25.68), the following are obtained for the roots w,' and 0'': 

2 2.26 x lo7 - 6.028 x lo6 = 1.211 107 
0' = 

1.368 

or 

o1 = 3480; n, = 533.9 HZ 

o* = 
2 2.26 x lo7 + 6.028 x lo6 = 2.093 107 

1.368 

or 

o2 = 4575; n, = 728 Hz 
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To determine the eigenmodes, substitute q2 into the first row of equation (25.67) and substitute 
w: into the second row of equation (25.67), as follows: 

(1.183 x lo7 - 34802 x 0.827)~; t 0.317 x lo' v i  = 0 (25.69) 

1.815 x lo6 u< -t 3.17 x lo6 v ~ O  = 0 

Let, 

U 3 O  = 1 

:. v30 = -0.47 

so that the first eigenmode is: 

[u30 v3"] = [l  - 0.471 see the figure below at (a). 

Similarly, to determine the second eigenmode, substitute 022 into the second row of equation 
(25.67), as follows: 

0.317 x lo7 u30 + (1.55 x lo7 - 0.827 x 4575*) v30 = 0 

or 

0.317 x lo7 u30 - 1.81 x lo6 v30 = 0 

Let, 

v30 = 1 

:. u3 = 0.57 

so that the second eigenmode is given by 

[uJ0 vJo] = [0.57 11 see below at(b). 

(a) First eigenmode. 
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(b) Second eigenmode. 

Problem 25.4 If the pin-jointed truss of Problem 25.3 had an additional mass of 0.75 kg 
attached to node 3, what would be the values of the resulting resonant 
frequencies? 

Solution 

From equation (25.58): 

U 3 O  v3" 

l 0.317 x io7 155 x io7 1 v," 1.183 x lo7 0.317 x lo7 u: (25.70) [K11] = 

From equation (25.60) 

0.827 0.75 0 

[M111 = [ 0 O.:27l + [ 0 0.711 

u30 v30 

(25.71) 
= [ ''Y7 ,R,] r:' 

Substituting equations (25.70) and (25.71) into equations (25.65), the following is obtained: 

1.183 x lo7 0 . 3 1 7 ~  lo7 1.577 0 ]- a2[ 0 1.57711 = O 0.317 x lo7 1.55 x lo7 
(25.72) ll 
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Expanding the determinant of equation (25.72), results in the quadratic equation (25.73): 

(1.183 x lo7 - 1.5770’) (1.55 x lo7 - 1.5770’) - (0.317 x 107)2 = 0 

or 

1.834 x l O I 4  - 4.31 x lo7 a2 + 2.487 o4 - 1 x I O i 3  = 0 

or 

2 .4870~  - 4.31 x lo7 o2 + 1.734 x I O i 4  = 0 (25.73) 

The quadratic equation (25.73) has two roots, namely q2 and 022, which are obtained as follows: 

2 4.31 io7 - 1.178 io7 = 6.297x ],,6 
Ol  = 

4.974 

mi = 2509; n, = 399.3 Hz 

and 

2 4.31 x IO7  + 1.178 x IO’ = 1.103 107 w2 = 

w2 = 3322; n2 = 528.6 Hz 

4.974 

Problem 25.5 Determine the resonant frequencies and eigenmodes for the pin-jointed space 
truss of Problem 23.3, given that, 

A = 2 x 1 0 . ~ ~ ~  
E = 2 x 10” Nlm2 
p = 7860kgJm’ 

Solution 

Element 1 4  

From Problem 25.3, 

I = 10m 
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7860 x 2 x x 10 
[m,-4O] = 6 

Substituting this and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u1 O ,  vI O and w1 O ,  the mass matrix for element 1-4 
is given by 

2 0 0  

.o 0 2 

5.24 0 0 

0 5.24 0 

0 0 5.24 

Element 2-4 

'4' 

V 4 O  

w40 

From Problem 25.3, 

I = lOm 

(25.74) 

(25.75) 

Substituting this and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u20, vzo and wzo, the mass matrix for element 
2-4 is given by 

15.24 0 0 

U 4 O  V 4 O  W4O 

u4 O 

v4 O 

w4 O 
1 0 0 5.24 

(25.76) 

Element 4-3 

From Problem 25.3, 

I = 10m 
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Substituting the above and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u3 O ,  v3 O and wj O ,  the mass matrix for element 4-3 
is given by 

[m4-3°] = 

u40 V 4 O  W4O 

5.24 0 
0 5.24 0 

(25.77) 

To obtain [M, ,I, the system mass matrix corresponding to the free displacements uq0, v,," and w,", 
the elemental mass matrices of equations (25.75) to (25.77), are added together, as shown by 
equation (25.78): 

15.72 0 

[M1lo] = 1 0 15.72 

l o  0 15.721 w40 

From equation (23.62), 
0 0  

u4 v4 W4O 

(25.78) 

(25.79) 

10 0.832 6 1 w40 

Substituting equations (25.78) and (25.79) into equation (25.65), the following determinant is 
obtained: i2 0 0 ] !'p2 0 0 ] 

I x  lo6 0 4 0.832 -02 0 15.72 0 
0 0.832 6 0 15.72 

(25.80) 

From the top line of equation (25.80): 

2 x IO6 - 15.72 0' = 0 



Mass matrix for a rod element 

or 
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lo6 - 1.272 x lo5 " 1 = - -  
2 

15.72 

o1 = 356.7, n = 56.76 Hz 

As the first line of equation (25.80) is uncoupled, this equation can be reduced to the 2 x 2 
determinant of equation (25.81): 

0.832 15.72 1 '  lo6[0.;32 6 0 1:7d I = 

Expanding equation (25.81), the quadratic equation (25.82) is obtained: 

or 

2.4 x 1013 - 1.572 x 10'0~ + 247.120~ - 6.922 x 10" = 0 

or 

247.120~ - 1.572 x 10'0~ +2.33 x l O I 3  = 0 

Solving equation (25.82), the roots w: and are obtained, as follows: 

= 2.361 x IO5 2 1.572 x 10' - 0.41 x lo8 
O2 = 

492.24 

o2 = 485.9; n2 = 77.32 Hz 

2 1.572 x lo8 + 0.41 x lo8 = 4.026 105 
O3 = 

492.24 

(25.81) 

(25.82) 

o3 = 634.5; n3 = 100.98 Hz 
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To determine the eigenmodes 

By inspection of the first line of equation (25.80), 

u4" = 1 ,  v," = 0 and w," = 0 

Therefore, the first eigenmode is 

[u4 " v," w4"] = [l  0 01 

To obtain the second eigenmode, substitute 0.122 into the second line of equation (25.80) to give 

0 x u4" + [4 x IO6 - (485.92 x 15.72)]v4" + 0.832 x 106w," = 0 

or 

Let, 

0 . 2 8 9 ~ ~ "  + 0 . 8 3 2 ~ ~ "  = 0 (25.83) 

v," = 1 

:. w,"= - 0.347 

Therefore, the second eigenmode is 

[u," v," w,"] = [0 1 - 0.3471 

To obtain the third eigenmode, substitute a: into the third line of equation (25.80) to give 

0 x u," + 0.832 x lo6 v," + (6 x lo6 - 634.S2 x 15.72) w," = 0 

or 

0.832 v," - 0.329 w4' = 0 

Let, 

w4 " = 1  

:. v," = 0.395 

Therefore, the third eigenmode is 

[u," v4' w,'] = [0 0.395 11 

(25.84) 
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Determine the resonant frequencies for the tripod ofProblem25.5, if this tripod 
has a mass of 10 kg added to node 4. 

Problem 25.6 

2 0  0 - 
[K,,] = I x106 

0 4 0.832 

0 0.832 6 - 

Solution - 

U 4 O  

V4O 

wq0 

From equation (25.79), 

Uq0 vqa W4O 

15.72 0 0 

[MI,] = 0 15.72 0 + 

0 0 15.72 

10 0 0 

0 10 0 

0 0 10 

25.72 0 0 ., 

0 25.72 0 

0 0 25.72 
v4' 

w40 

(25.85) 

[2 0 0 1 *I2172 0 0 1 
0 0.832 6 0 25.72 

1 x lo6 0 4 0.832 -0 0 25.72 0 

(2 5.86) 

= 0 

Substituting equations (25.85) and (25.86) into equation (25.65), the following determinant is 
obtained: 

From the first line of equation (25.65): 

- 7.776 x io4 +-- 2 x IO6  
25.72 

(25.87) 

W, = 2789; n, = 44.1 HZ 
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As first line is uncoupled, the determinant of equation (25.87) can be reduced to the 2 x 2 
determinant of equation (25.88): 

4 0.832 25.72 0 
I l x  106[ 0.832 6 1-4 0. 25.72 ] i = o  (25.8 8) 

Expanding the determinant of equation (25.88), the following quadratic is obtained: 

(4 x lo6 - 25.72 a') (6 x lo6 - 25.72 w') - (0.832 x 106)2 = 0 
or 

2.4 x lOI3  - 2.572 x 10' w2 + 661.5 w4 - 6.92 x 10" = 0 
or 

661.5 w4 - 2.572 x 10' w2 + 2.33 x l O I 3  = 0 (25.89) 

Solving equation (25.89), 

2 2.572 x lo8 - 0.671 x IO8 - 1.437 x 105 
W2 = - 

o2 = 379.1; n2 = 60.3 Hz 

1323 

= 2.451 x lo5 2 2.572 x 10' + 0.671 x lo8 w3 = 

wg = 495.1; n3 = 78.8 Hz 

1323 

25.10 Mass matrix for a beam element 

The beam element, which has four degrees of freedom, is shown in Figure 25.9. 

Figure 25.9 Beam element. 
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A convenient polynomial with which to describe the lateral deflection v is 

and 

677 

(25.90) 

(25.91) 

In equation (25.90), it can be seen that the polynomial has four arbitrary constants, and this 
corresponds to the four degrees of freedom, namely, vI, e,, v2 and e,, i.e. 

Atx = 0, v = V I  and 8, = -(dv/dx), 

Atx = 1, v = v, and 8, = -(dv/dx),, 

Substituting the first two boundary conditions into equations (25.90) and (25.91): 

a, = v, 

and 

= - e ,  

Substituting the remaining two boundary conditions into equations (25.90) and (25.91), the 
following two simultaneous equations are obtained: 

V, = v, - e,i + a,/, + 4 3  (25.92) 

and. 

e, = 8, - 2u,l- 3aJ2 (25.93) 

Multiplying equation (25.92) by 211, we get: 

2 7 (y2 - v,) = -28, + 2 a - ~  + 2a412 (25.94) 

Adding equation (25.93) to equation (25.94): 

2 - (v2 - v,) + 8, I 
= 8,-28, - 3aJ2 + 2aJ2 

or 
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2 
I 

-a4/’ = - (v2 - v,) + e, + e, 

a4 = -- (v2 - v,) - 2 (02 + 0,) 
l 3  l 2  

Substituting equation (25.95) into equation (25.92): 

v2 - v1 + e,/ = q2 - 2h2 - - (e2 + e,) z 

Substituting the above values of a, to a4 into equation (25.90) 

x3 
- 2t2(v2  -v , )+7&2 + 0,) 

or 

v = ~ , ( 1 - 3 { ~ + 2 ( ~ ) + 8 , 1 (  - 5 + 2 t 2  - t3) 

+ v 2 ( 3 t 2 - 2 t 3 ) + e 2 z ( ~ 2  - t3 )  

where, 
< = x / l  

i.e. 

v =  1 (1 -3 t2+2t3 )  1 ( - 5 + 2 c 2  - 5)) 

(25.95) 

(2 5.96) 

(25.97) 

(25.98) 
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where [N] is a matrix of shape functions for a beam element: 

[N] = [(1-3t2 +2 t3 ) I ( - j  + 2 t 2 -  t3)(3t2-2t3)1(t2 - t')] (25.99) 

From equation (25.38): 

[ml = l o '  [NIT P[NI AI d 5 (25.1 00) 

Substituting equation (25.99) into equation (25.100), and integrating, the mass matrix for a beam 
element is given by 

VI 8, v2 8, 

156 

-221 412 

54 -131 156 

131 -312 221 41 

(25.101) 

Equation (25.101) is the mass matrix of a beam element due to the self-mass of the structure, but 
if an additional concentrated mass is added to node i, the following additional components of mass 
must be added to equation (25.102) at the appropriate node. 

Added mass matrix at node i 

(25.102) 

where MMI is the mass moment of inertia and M, is the mass. 

Problem 25.7 Determine the resonant frequencies for the beam of the figure in Problem 23.4, 
assuming that the 4 kN load is not present, and that 

E = 2 x 10"N/m2, p = 7860 kg/m3 

A = 1 x m2, I = 1 x 1 0 . ' ~ ~  
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Solution 

Element 1-2 

I = 3 m  

Substituting the above value of 1 into equation (25.101), together with the other properties of this 
element, and removing the columns and rows corresponding to the zero displacements v, and e,, 
the elemental mass matrix is given by 

7860 1 3 156 66 V2 

420 [ 66 361 0, 
[ml-z] = 

Element 2-3 

I = 2 m  

v2 02 
0.876 0.371 v2 

0.371 0.202 1 0, 
(25.103) 

Substituting the above value of I into equation (25.101), together with the other properties of this 
element, and removing the columns and rows corresponding to the zero displacements vj and e,, 
the elemental mass matrix is given by: 

(25.104) 

The system mass matrix [M,,] is obtained by adding together the elemental mass matrices of 
equations (25.103) and (25.104): 

v2 0, 
[Mll] = [ 1.46 0.2061 v2 

0.206 0.262 0, 
(25.105) 

From equation (25.84), 
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38 880 -16 660 v2 

-16 660 66 660 1 8, [Kll] = [ (25.106) 

Substituting equations (25.105) and (25.106) into equation (25.65), the following determinant is 
obtained: 

38 880 -16 6601 [ 1.46 0.2061 1 
-16 660 66 660 0.206 0.262 

-w2 = o  (25.107) 

Expanding the determinant of equation (25.107), the following quadratic equation is obtained: 

(38 880 - 1.460~) (66 660 - 0.2620~) - (- 16 660 - 0.2060~)~ = 0 

or, 

2592 x lo6 - 0.107 X lo6 w2 + 0.383 w4 

278 x lo6 - 6864 w2 - 0.042 w4 - = 0 

0.341 w4 - 0.1 139 x lo6 w2 + 2.314 x lo9 = 0 (25.108) 

The roots of equation (25.108), namely, wI2  and 022, can really be shown to be: 

2 0.1139 x lo6 - 99 080 = 2.173 104 w, = 
0.682 

or 

w1 = 147.4; nI = 23.45 Hz 

2 0.1139 x lo6 + 99 080 = 3.123 105 w2 = 
0.682 

and, 

w2 = 558.8; n2 = 88.93 Hz 

To obtain the first eigenmode, substitute wI2 into the first line of equation (25.107), to give 
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(38 880 - 1.46 x 147.4,) v, + (- 16 660 + 0.206 x 147.4,) 8, = 0 

or 
7 m V ,  - 21 m e ,  = o (25.109) 

i.e. 
[v, e,] = [ 1 0.3391 - see the figure below at (a). 

To obtain the second eigenmode, substitute 022 into the second line of equation (25.107) to give: 

(- 16 660 - 0.206 x 558.8,) v2 + (66 660 - 0.262 x 558.8’) 8, = 0 

or, 
- 80 985 v, - 15 150 e, = o (25.1 10) 

i.e. 
[v2 e,] = [- 0.187 13 -see the figure below at (b). 

(b) Second eigenmode 

Problem 25.8 If the beam of Problem 25.7 has a mass of 1 kg, with a mass moment of inertia 
of 0.1 kg m2 added to node 2, determine the resonant frequencies of the beam. 

Solution 

From equation (25.105) 

[Mil] = [ 1.46 0.2061 + [ 1 O ]  
0.206 0.262 0 0.1 
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v2 

= [ 2.46 0.2::] V2 

0.206 0.362 e, 

From equation (25.101), 

38880 -16660 

[K1ll = [ -16660 666601 

Substituting equations (25.1 11) and (25.1 12) into equation (25.65), 

38 880 -16 6601 [ 2.46 0.2061 I = o  
-16 660 66 660 0.206 0.362 

-0, 
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(25.1 11) 

(25.1 12) 

(25.1 13) 

(38 880 - 2.46 a2) (66 660 - 0.362 0’) - (16 660 + 0.206 0’)’ = 0 

or 
0.259 X 10” - 0.178 X lo6 6.1’ + 0.891 0.1~ - 2.776 x lo* - 6864 0’ - 0.042 m4 = 0 

or 
0.849 a4 - 0.1849 x lo6 m2 + 0.231 x 10’’ = 0 (25.1 14) 

Solution of the quadratic equation (25.1 14) results in the roots and 022, as follows: 

2 0.1849 x lo6 - 0.162 x lo6 = 1.394 104 
0, = 

1.698 

or 

0, = 116.1; n1 = 18.48 Hz 

and, 

2 0.1849 x lo6 + 0.162 x IO6 = 2.043 105 
0, = 

1.698 

or 

o2 = 452; n, = 71.93 Hz 
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25.1 1 Mass matrix for a rigid-jointed plane frame element 

Prior to obtaining the mass matrix for an element of a rigid-jointed plane m e ,  it will be necessary 
to obtain the mass matrix for the inclined beam of Figure 25.10. 

The mass matrix for an inclined beam element in global co-ordinates is 

[mbO1 = W I T  [ml [DCI (25.115) 

where, 

[DC] is given equation (25.85) and [m] is given by equation (25.101). 

Figure 25.10 Inclined beam element. 
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For the element of a rigid-jointed plane frame, the elemental mass matrix in global co-ordinates 
is given by 

where [qo] is the axial part of the mass matrix of a rod element: 

I 2 0 0  1 0 0 1  

(25.118) 

0 0 0 0 0 0  

l o  0 0 0 0 4 
where, in equation (25.118), the components of mass in the v displacement direction have been 
removed, because they have already been included in [mho]. 

Substituting [DC] ffom equation (25.85) into equation (25.11 8): 

!C 

!cs 2s2 

0 0 0  

c2 cs 0 2c2 

cs s 2  0 2cs 2s2 

0 0 0 0  0 0  

(25.1 19) 

From equations (25.1 16) and (25.1 18), it can be seen that application of these elemental mass 
matrices, together withthe elemental stiffness matrix of equation (25.85), to a realistic rigid-jointed 
plane frame will be extremely difficult without the aid of a computer. 

Equation (25.1 17) shows the mass matrix for the self-mass of an element of a rigid-jointed 
plane frame, but if the effects of an additional concentrated mass are to be included at a particular 
node, the concentrated mass must be added to the appropriate node, as follows: 
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U,o v,o e, 
Ma 0 0 

0 Ma 0 

0 0 MMI 

Structural vibrations 

(25.1 20) 

where 

Ma = thevalueofthemss 

MMI = the mass moment of inertia of this mass 

25.12 Units in structural dynamics 

Considerable care should be taken in choosing suitable units in structural dynamics. 
Recommended units are as follows: 

(1) Imperial 

Mass (lbf s2/in); density (lbf s2/in4); E (lbf/in2); time(s); length (in); Force(1bf); second moment 
of area (in4); cross-sectional area (in'). 

(ii) SI 

Mass (kg); density (kdm3); E (N/m'); time (s); length (m); Force(N); second moment of area 
(m4); cross-sectional area (m2). 

(iii) Derived SI 

Mass (kg); density (kglmm3); E (d /mm2) ;  time (s); length (mm); force(mN); second moment 
of area (Ilun"); cross-sectional area (mm'). 

Further problems (answers on page 698) 

25.9 A doubly symmetrical beam consists of a hollow rectangular steel section, having the 
cross-section shown, and of length 10 m. It is simply-supported in bending about both 
axes Cx, Cy at the ends. Estimate the lowest few natural frequencies of lateral vibrations 
of the beam about the axes Cx and Cy. Take E = 200 GN/m'. 
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25.10 If the beam of Problem 25.7 cames an axial thrust of lo3 kN, what is the lowest natural 
frequency of the beam? 

25.1 1 A light, uniform cantilever, of length L and uniform flexural stiffness EI, cames a mass 
M at the free end. Estimate the natural frequency of vibrations. 

25.12 Determine the resonant frequencies for the plane pin-jointed truss shown below, 
assuming that the truss is loaded with a mass of 1 kg at node 4, and that the following 
apply: 

A = 1 x 10-4m2 

E = 2 x 10" N/m2 

p = 7860kg/m3 

(Portsmouth 1989) 

Determine the resonant frequencies for the pin-jointed tripod, below, given that the 
following apply: 

Element A (m2) E(N/m2) p(kn/m3) 

1-4 1 x 10.~  2 x 10" 7860 
2-4 2 x 10 .~  2 x 10" 7860 
3 4  1 x io-3 2 x 10" 7860 

25.13 
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(Portsmouth 1983) 

25.14 A continuous beam is fixed at the nodes 1 and 4, and simply-supported at the nodes 2 
and 3, as shown in the figure below. 

Determine the two lowest resonant frequencies of vibration, given the following: 

E = 2 x 10"N/m2 

p = 7860kg/m3 

Element A (m2) I(m4', 

1-2 1 x io-4 1 x io-7 
2-3 2 x io-4 2 x io-7 
3-4 1 x 1 0 - ~  2 x 10 .~  
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(Portsmouth 1987) 

25.1 5 A continuous beam is fured at the nodes 1 and 5, and simply-supported at the nodes 2, 
3 and 4, as shown below. 

Determine the two lowest resonant frequencies of vibration given the following: 

E = 2 x 10”N/m2 

p = 7860kg/m3 

Element A (m2) T(m4) 

1-2 1 x io-4 1 x 10.’ 
2-3 2 x 1 0 - ~  2 x io-7 
3 4  2 x 1 0 - ~  2 x io-7 
4-5 1 x 10.~ 1 x 10.~ 

(Portsmouth 1987. Honours) 

25.16 Calculate the three lowest natural frequencies of vibration for the continuous beam 
below, where 

A = 0.001 m2 

I = 1 x 1 0 - ~ m ~  

E = 2 x 10” N/m2 

p = 7860 kg/m3 
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Answers to further problems 

1.4 

1.5 

1.17 
1.18 
1.19 
1.21 
1.22 

2.2 

2.3 

2.4 

2.5 

3.4 
3.5 
3.6 
3.7 
3.8 

3.9 
3.10 

(a) R, = 3.333 kN R, =6.667kN 
(b) R, = 9.6kN R, = 6.4 kN 
(c) R, =4.625 kN R, =3.375kN 

(a) Fab = 5 k N  Fa, = -8.66 kN 
(b) Fob = - 5 k N  Fa, = -8.66 kN 
(c) Fab =4.17kN FaC = -3 kN 
(d) Fob = -4.71 kN Fa, = -7.454 kN Fk = 3.333 kN 
(e) Fob = -4.71 kN Fa, = 3.727 kN Fk = 3.333 kN 

3 1 .O MN/mZ (compressive); 0.098 cm. 
0.902 cm. 
0.865 cm. 
51.0 kN. 
65.5 MN/m2 tensile in steel; 4 1 .O MN/m2 compressive in copper; increase of length 0.6 1 1 
cm; force to prevent expansion 135.5 kN. 

Fob = -0.46 W 
Fcd = 0.46 W 
Fa, = 4 kN 

Fa, = 7.8 kN 
Fcd = 1 kN 
F@ = 1 kN 
Fgk = 0.5 kN 

RA = 1.333 kN 

Fdf = -2kN 

<., =4.5 kN 

Fa, = -1.54 kN 
Fcf = -0.38 kN 
Fdg = 1.92 kN 

480 MN/m2. 
521 kW. 
295 d s 2 .  
188.5 Nm. 

Fad = 0.763 W 

Fad = 2.829 kN 
F,, = 5.66 kN 

Fde = -0.008 W 

Fk = -1.45 kN 
Fed = -1.45 kN 
FJg = -1.45 kN 
Fgh = -3.9 kN 
Fu = - 4 k N  
R, = 1.667 kN 
Fa, = 0.77 kN 
Fcd = 1.732 kN 
Fdb = 0.96 kN 

Fbr = -0.651 W 
FM = -0.54 W 
FM = -1OkN Fcd = -4kN 
Fed = -8 kN 
FM = -8.8 kN 
Fq = -7.8 kN 
Fp = -6.8 kN 

Fg = 5.66kN 
F,, = 6.8 kN 
F, = 5.8 kN 
F, = 6.35 kN 

FhL = -7.9 kN q.k = -4.5 kN 

F,, = 1.54 kN 
FJd = 0.38 kN 
Fgb = - 1.92 kN 

Fg = -1.54 kN 
FJg = - 1.92 kN 

d = 6.29 cm; cotter thickness 1.57 cm; mean width of cotter 7.98 cm; distance of cotter 
hole from end of left-hand rod 2.97 cm; diameter of right-hand rod through cotter pin 
8.28 cm; maximum diameter of right-hand rod 12.58 cm; distance of end of right-hand 
rod from cotter hole 2.97 cm. 
8.93 cycles/sec. 
0.6 MN/m2. 
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4.7 

Answers to further problems 

376 kN/m. 

5.7 
5.8 

5.9 
5.10 
5.1 1 
5.12 

6.8 
6.9 
6.10 

6.1 1 

6.12 
6.13 

7.10 
7.13 

8.5 

8.6 

8.7 

9.12 
9.13 
9.14 
9.15 
9.16 

10.4 
10.5 

10.6 

10.7 
10.8 

50.0 MNIm’ tensile; 28.9 MN/m’ shearing. 
greatest tensile stress 86.6 MNIm’; on plane at 34’ 44’ to cross-section; greatest shearing 
stress 64.0 MN/m2, on planes at 10‘ 16’ and 79’ 44‘ to cross-section. 
30 MN/m2 tensile; 120 MN/m2 compressive. 
8 1 .O MN/m2, inclined at 23‘ 27’ to horizontal. 
90 MN/m2 tensile; 60 MN/m2 compressive; 5.40 x 10‘‘ tensile; 4.35 x 

7.5 MN/m2 normal; 5 1.9 MN/m2, shearing. 
compressive. 

1 1 .O MN/m2 
1.03 kg/m. 
0.1 14 per cent. 

(a) copper: 38.2 MN/m2; wire: 83.9 MNIm’; 
(b) copper: 28.6 m / m 2  (compressive); wire: 230 MN/mz. 

1.19 MNIm’. 
171 MN/m2. 

489 khW. 
238 kNm; 0.75 m from A. 

(a) 2.779 x lo-’ m4. 
(b) 10.83 x m‘. 

(a) 1.419 x 10-’m4. 
(b) 3.942 x lO-’m‘. 

W3 BH3/36 

(c) 5.334 x 

40.6 kN.m. 
69.9 MN/m2. 
15.9 MN/m2. 
86.0 MNIm’. 
6.17 cm. 

1 cm thickness; 5 cm spacing of rivets, assuming one rivet at any cross-section. 
maximum tensile stress of 124 MNIm’ is greater than the allowable stress; maximum 
shearing stress of 18 MN/m2 is less than the allowable stress. 
96 per cent of shearing force carried by web; 88 per cent of bending moment carried by 
flanges. 
web thickness 0.67 cm; weld throats 0.33 cm. 
T = 2450 ( U t )  sin 0, where 0 is the angular position of any section from the vertical line 
through the centre of the tube. 
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10.9 

10.10 

11.8 
11.9 
11.10 

11.11 

12.3 

12.4 
12.6 
12.7 
12.8 

13.2 
13.3 

14.2 
14.3 

15.2 
15.3 
15.4 
15.5 
15.6 
15.7 

16.7 
16.8 
16.9 
16.10 
16.11 
16.12 

17.15 
17.16 
17.17 
17.18 
17.19 

bending is limiting, and gives an allowable superimposed load of 45 kN/m; required 
welds 0.26 cm throat thickness. 
(a) 1.273 R. 
(b) 1.72 R. 

0.378 x m2; 13.02 kN/m. 
114 kN. 
wood 4.56 MN/m2; steel 52.9 MN/m2; glue 0.21 MN/m2. 

(i) 120 MN/m2. 
(ii) 1 .OO MN/m2. 
(iii) 100 kN/m. 
(iv) 0.75 cm. 

tensile 155 MN/m2, compressive 147 MN/m2; neutral axis 0.365 m from outside ofbox- 
section. 
17.68 kN; 11.8 MN/m2 compressive. 
maximum tensile 38.0 MN/m2; maximum compressive 46.0 MNIm2. 
161 kN. 
13.8 MN/m2; 5.94 cm from tip of T. 

1.80 cm and 2.48 cm. 
3.06 cm. 

maximum bending moment 105 kNm; points of inflexion at 1.75 m from each end. 
169.7 kNm at left-hand end; 150.0 kNm at right-hand end; 1.52 m from left-hand end; 
1.69 m from right-hand end. 

217 kN. 
62.4 kN/m. 
required elastic section modulus 791 cm3. 
required elastic section modulus 2030 cm3. 
84.2 k N / q  with collapse in the end spans. 
3.26 cm. 

38.1 MN/m2; 1.09' ; 39.2 cm. 
40.3 MN/m2; 3.83'. 
Shearing stress 37.7 MN/m2; maximum tensile stress 37.7 MN/m2 ; angle oftwist 4.3 1'. 
0.644: 1. 
38.7 Nm. 
147 MN/m2 (tensile) at 34.8' to axis, 70.5 MN/m2 (compressive) at 57.2* to axis. 

No horizontal deflection. 
609 kNm and 423 kNm. 
3 WW4q at the support, where W is the weight of the ring. 
12.45 PR 3/EI. 
2.89 x 10-4m3. 
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17.20 1.288 x l O - 3  m3. 
17.21 

18.2 970N. 
18.3 0.10cm. 
18.4 1.65kN. 
18.5 24.5 kN. 

6.324 x lO-4  m3 (verticals); 9.486 x lO-4  m 3 (top left); 1.997 x lO-3  m 3 (top right). 

19.6 [ w = -[ w .-(R2-r2)+ (3+v) 
r2 In( i)]] 

19.7 [ w=----- * [ 

pR2 16 [ (;I2]} 

8xD 2(l+v) 

( ; )2+ (:)4; 
pR4 (5 tv )  ( 6 + 2 ~ )  

6 4 0  (1+v) (1+v) 

M, = - k d p R 2 [  16 I-( :)2]; 

M, = - - ( 3 + ~ ) + ( 1 + 3 ~ )  - 

(:)]I 19.8 [ i;l = w [ O ( R ;  - R,2)+ 2R,2 In 
16nD (1+v) 

19.9 (a)[ 6 = p [- (3+v) R2 2 -- (7+3v) R: + R: In (+)I ; 
16xD (1+v) 4(l+v) 

M=-l---  * P [ (y)( ;)2-( l+v)  h(+)]; 
4n 

R: - 0.75R: + Rf In - ; 
16nD ' [  [::I] (b) G = - 



Answers to further problems 695 

G =  L[I-o~($)~] 4R f o r ~ , / ~ , > 0 5 7  

and M * P  = - ( l t v ) [ 0 2 i ( ~ ) 2 -  In(:)] for Rl R2<057; 
4n 

where P = p*nR:} 

2 2 

19.10 [ 0.126pR4 / ( E t 3 ) ; p ( A )  t [-1.238(;) t0507t0.0105(~)2]} 

0.1 15WR2 / ( E t 3 ) ;  2 W [ 0.621 In (!) - 0.436t 0.0224( f )2 ] ]  1 t 
19.11 

22.1 [: -:] 
22.2 [: :I 
22.3 [: :I 
22.4 [-: -:] 
22.5 [-: --I;] 

22.6 [-: :!lo] 

22.7 10. 
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22.8 4. 

22.9 
0.3 -0.1 [ - 0.2 0.41 

22.10 [ ::.5 - o a ]  

10 - 1  - 2  
22.11 I;’, -; ;I 
22.12 [-; I; :;I -8 - 3  2 

- 2  
22.13 [-a -: -:I 

9 - 1  - 4  

22.14 I-: ,” :I 
22.15 [: -P, -:I 11 -15 - 8  

7 - 1 3  - 4  

22.16 [2 -; -4  
22.17 -7. 
22.18 362. 

I 0.429 - 0.286 - 0.571 
-0.268 - 0.143 - 0.286 I -0.571 - 0.286 0.429 

22.19 



22.20 

- - 
0.1 33 - 1.66 x lod2 - 5.25 x 1O-2 

- 1.66 x 1O-2 0.1 27 - 6.91 x lov2 

-8.84 x 1O-2 - 1.10 x lo-* 0.202 - - 
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24.2 

24.3 

24.4 

24.5 

25.7 
25.8 
25.9 
25.10 
25.11 
25.12 
25.13 
25.14 

Answers to further problems 

(b) u20 = 12.134lEI 0, =3.777/EI 
8, = 1.132lEI 
M, =-9.32kNm M2 = M.7 kNm 
M3 =*6.58kNm M4 = -7.33 kNm 

E[-: 1 -:I 

c[ 
1 - 1  

112113 - 61i2 -- 12;13 - 6ii2 

-6 I l2 411 6112 211 
EI 

-1211~ 6ii2 1 2 1 1 ~  6112 

1-6 1 l2 211 6112 411 

7.00 Hz, 28Hz, etc., 11.85 Hz, 47.4 Hz etc. 
4.73 Hz. 
(3EIIML3)"/2n. 
404.1 Hz, 598.5 Hz. 
294.8 Hz, 361.6 Hz, 485.4 Hz. 
53.1 Hz, 164.1 Hz. 
40.56 Hz. 
191.8 Hz, 354.3 Hz, 907.8 Hz. 



Index 

Added mass, 662,679,685 
Analysis of strain, 94, 109 
Analysis of stress, 94,98 
Anti-clastic curvature, 24 1 
Annular disc, 547 

Barrel-like failure in mild steel, 23 
Beam, cross-section 

one axis of symmetry, 248 
two axes of symmetry, 2 18 

Beam mechanism, 401 
Beam one axis of symmetry, 220 
Beams, built in, 339, 341 343 

composite, 266 
compound, 266 
continuous, 346 
curved, 189 
deflections, 295, 307,333 
disadvantages, 345 
end couples and distributed load, 320 
fixed end moments, 342 
lateral buckling, 454 
longitudinal bending stresses, 2 12 
non-uniformly distributed load, 322 
plane curved, 189 
plastic bending, 397 
principal stresses, 256 
rectangular cross-section, 35 1 
shearing stresses, 245,259 
slope deflection equations, 347,349 
superimposed, 258 
two materials, 266 
transformed section, 267 
varying section, 325 
vibrations, 643 

combined with direct stresses, 283 
elastic, 239,295,353 
mono-symmetric beams, 220 
plasticity in mild-steel beams, 352 
rectangular beam, 2 12,352 
strain energy, 239 

Bending moment, 169 
diagrams, 173, 175, 179 

Bending, bi-symmetric beams, 21 8 

sign conventions, 172 
Bending moments 

fixed end, 342 
Table, 336 

Bending of a beam about a principal axis, 2 I6 
Bending of a curved bar, 192 
Bending stiffness, 2 15 
Bending stress in cylinders, 164 
Bolted connections, 76 
Boundary considerations, 475 
Breakdown of brittle materials, 149 
Breaking point, 13 
Brittle materials, 13, 19, 149 

breakdown, 149 
stress-strain curves, 18 

Buckling of beams, 424 
Buckling of struts, 424 

built-in ends, 444 
cruciform, 450 
Euler load, 429 
narrow beam, 454 
pinned ends, 445 
torsional, 450 

cruciform, 452 
pin-ended, 424 
torsional, 452 

Built-in beams, 339 
Butt weld, 86 

Buckling of struts, modes, 426 

Cantilevers, 169, 173, 304 
concentrated load, 301 
irregular loading, 324 
non-uniformly distributed load, 177 
uniformly distributed load, 303 

Cast-iron, failure in compression, 23 
Centroid, 200 
Centroidal axes, 20 I 
Change of cross-section in pure bending, 241 
Channel-section beam, 259 
Circle of second moments of area, 237 
Circle of strain, 1 1 1 
Circle of stress, 103 
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Circular ring rotating, 49 
Circular ring under radial pressure, 48 
Circumferential joint efficiency, 16 1 
Circumferential stress, 153 
Cofactor and adjoint matrices, 557 
Cold-driven rivets, 80 
Collapse of rotating rings, 548 
Combined bending and direct stresses, 283 

core of a section, 287 
Combined bending and thrust 

of a stocky strut, 283 
Combined mechanism, 40 1 
Combined torsion and direct stresses, 375 
Comparison of elastic and plastic 

section module, 359 
Table, 360 

Compatibility of strain, 64 
Compatible system, 392 
Complementary energy, 41 3 

Complementary shearing stress, 7 1 
Composite bars, 42,45 

bending problems, 4 15 

temperature stresses, 45 
tension and compression, 42 

Composite beams transformed section, 266 
Composites, failure of, 149 
Compound beams, 266 
Compound tubes, 525 
Compression, 5, 12 

composite bars, 42 
Compressive strain, 17 
Compressive stress, 14 
Concentrated loads 

Concrete beams 
traversing a beam, 170, 194 

ordinary reinforced, 272 
pre-compressed eccentrically, 29 1 
pre-stressed, 289 

Concrete, stress-strain curves, 20 
Connections, 8 1 

bolted, 76, 83 
efficiency, 81 
groupriveted, 82 
welded, 86 

slope-deflection equations, 347 
Continuous beams, 339,346 

Contraflexure, points of, 186 
Co-ordinates, 571 
Core of a section, 286,287 
Couple applied to a beam, 3 16 
Couples, 6 
Creepunder sustained stress, 52 
Criterion of yielding, 147,532 
Cupand cone failure in mild-steel, 23 

Cuplike failure in light-alloy , 23 
Curvature, anti-clastic, 241 
Curved beams, 189 

plane, 189 
Cylindrical shell, 152, 155 

hemispherical ends, 163 

Damped vibrations of beams, 652 
Deflections of beams, 295,391 

cantilever, 301, 393 
cantilever with irregular loading, 324 
complementary energy, 4 13 
curved beams, 189 
due to couples, 3 16 
due to shear, 333 
moment-area analysis, 327 
propped cantilever, 396 
pure bending, 298 
shear effects, 333 
simply-supported beams, 300, 307 
Table, 336,349 
varying-section beams, 324 
virtual work analysis, 396 

Derivation of expression for mass matrix, 657 
Derivation of hoop and radial stress equations 

Design of pin-ended struts, 440 
Determinants, 556 
Direct stress, 12,33, 95 

combined with bending stresses, 283 
lateral strains, 33 

thick-walled circular cylinder, 5 15 

Disadvantages of built-in beams, 344 
Displacements of pin-jointed frames, 580 
Distortion strain energy, 130 
Distributed loads traversing a beam, 170 
Ductile materials, 20, 144 
Ductility measurement, 3 1 

high ductility, 32 
low ductility, 32 
Table, 32 

Eccentric loading of bolted and 
riveted connections, 83 

Eccentric thrust, 285 
Eccentrically-loaded riveted joints, 83 
Eccentrically-loaded strut, 432 
Eccentrically pre-compressed 

concrete beam, 29 1 
Economy of materials, 36 
Effect of geometrical imperfections, 430 
Effect of sinking supports, 345 
Effective lengths of struts, 43 1 
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Table, 43 1 
Efficiency of connections, 8 1 
Eigenmode, 670,674,682 
Elastic and plastic moduli, 359 
Elastic bending, 295 

section modulus, 228,359 
strain energy, 239 

Elastic breakdown and failure 
of brittle material, 149 

Elastic constants for problems, 142 
Elastic hoop stress, 534 
Elastic limit, 13 
Elastic moment of resistance, 228 
Elastic-plastic bending, 352, 353 
Elastic stress-strain relations, 11 1 
Elasticity, 13 
Element of disc, 544 

Elements, 
constant strength, 545 

brick, 628 
conical, 628 
curved, 628 
finite, 627 
tetrahedron, 628 
three node rod, 638 
triangular, 629 

Elongation at fracture, 20 
End fixing moment and 

maximum deflections 
Table, 349 

Endurance limit, 53 
Endurance-stress curves, 53 
Endurance under repeated stresses, 53 
Energy, complementary, 4 13,414 

strain, 390,414 
problems of bending, 4 15 

Energy methods, 390 
Equilibrium, 8 
Equilibrium considerations, 546 
Equilibrium, neutral, 427 

stable, 427 
unstable, 427 

Euler formula, 426 

Failure, compressed timber, 97 

Failure of composites, 150 
Failure of materials in compression, 96 
Fatigue, endurance limit, 53 

repeated stresses, 53 
Fibre composites, 132 
Fillet weld, 87 
Finite element method, 627 

riveted joints, 76 

Fixed-end moments, 339,342 
Flexural buckling of a pin-ended strut, 424 

with other cross-sectional forms, 448 
Flexural shearing stresses in an I-beam, 25 1 
Flexural stiffness, 2 15 
Forced vibrations of beams, 649 
Fracture, elongation, 20 
Frames, pin-jointed, 55 

redundant, 56 
simply-stiff, 56 
single member, 4 14 
statically-determinate pin-jointed, 56 

Free body diagram, 57,62 
Free vibrations of beams, 649 
Frequencies 

natural, 649 
resonant, 663 

I-section, 355 
Fully-plastic moment, 355 

Geometrical imperfections, 430 
Geometrical properties of cross-sections, 200 

Global and local co-ordinate, 574 
Group-bolted joints, 82 
Group-riveted joints, 82 

Table, 209 

Hooke’s law, 13 
Hoop stress in cylinders, 153, 16 1 
Hot driven rivets, 80 
Hydrostatic pressure, 128, 145 
Hydrostatic tensile pressure, 130 
Hydrostatic tensile stress, 13 1 

I-beam, shearing stresses, 250 
Importance of connections, 76 
Inelastic extensions, 13 
Inflection, points of, 185 
Influence lines, bending moment 

and shearing force, 194, 196 
Initial curvature in struts, 436 
Initial stresses, 4 1 
Initially curved pin-ended strut, 436 
In-plane equations, 139 
In-plane stresses and strains 

Instability, 426 
Intensity of loading of a beam, 170 
Interaction curves for struts, 438,439 
Introduction to matrix algebra, 550 
Isotropic, orthotropic and anisotropic, 132 

in a laminate, 139 
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Joints, 76 
bolted, 76 
efficiency, 8 1 
group-bolted, 82 
group-riveted, 82 
method of joints, 57 
riveted, 76 
single-riveted lap, 76 
tapered cover plates, 83 
under eccentric loads, 83 

Kinetic energy, 657,658 

Lami line. 5 19 
aluminium alloy, 526, 528 
elastic zone, 533,537 
external pressure case, 522 
solid shaft, 524 
steel, pressure, 528 
steel ring, 523 
steel tube, shrinkage, 527 
thick cylinder, 521 

Lap joint, single-riveted, 76 
Large deflections of plates, 476 

power series solution, 479 
Lateral buckling of beams, 454 
Lateral deflection of circular plates, 458 
Lateral strains, 33 
Lines of principal stress, 256 
Limit of endurance, 53 
Limit of proportionality , 13,3 I 
Load factors, 33,401 
Local and global co-ordinates, 57 1 
Longitudinal joint efficiency, 16 1 
Longitudinal stresses in beams, 21 2 
Longitudinal stress in cylinders, 154, 161 
Longitudinal stresses while 

Lower yield point, 21 
Luder’s lines, 96 

shearing forces are present, 229 

Mass matrix 
beam, 676 
frame, 684 
rod, 659 

Material properties, 13 1 
Matrix 

addition, 552 
adjoint, 557 

cofactor, 557 
column, 551 
definition, 550 
determinants, 556 
diagonal, 555 
inverse, 559 
multiplication, 554 
orthogonal, 560,561 
rectangular, 550 
rigid-jointed plane frames, 607 
row, 551 
square, 555 
subtraction, 553 
symmetrical, 555,556 
unit, 555, 560,686 

Matrix algebra, 550 
Matrix displacement method, 623 
Matrix methods of structural analysis, 565 
Matrix of shape functions, 632 
Maximum shearing stress, 101 
Measurement of shearing stress, 68 
Mechanisms 

beam, 40 I 
combined, 40 1 
sway, 401 

Method of joints, 57 
Method of minimum, potential, 4 19 
Method of ‘moment-areas’, 327 
Method of sections, 62 
Mild-steel, barrel-like failure, 23 

cup-and-cone failure, 23 
plastic bending, 397 
strain figures, 96 
stress-strain curves, 2 I 
yielding, 21 

Minimum potential, 637 
Mises yield criterion, 148 
Modes of buckling, 426 

cruciform strut, 452 
pin-ended, 424 
torsional, 452 

Modes of vibration of a beam, 648, 682 
Modulus, bulk, 129 

elastic section, 228 
shearing, 73 
Young’s, 18, 19 

Mohr’s circle of strain, 1 1 I 
Mohr’s circle of stress, 103, 104 

Moments-areas, 327 
More general case of plastic bending, 357 
More general case of pure bending, 222 

three dimensional system, 126 



Index 703 

Natural frequency of a mass on a beam, 643 
Necking, 2 1,23 
Neutral axis, 284 
Neutral equilibrium, 427 
Neutral surface, 2 13 
Newton’s laws, 2 
No interference fit, 529 
Non-linear members in kames, 4 15 
Non-uniformly distributed load and 

Normal stress, 15 
Numerical integration of the moment 

Table, 333 
Numerical solution of torsional equation, 504 

terminal couples, 327 

Open-sections, torsion, 387 
Ordinary reinforced concrete, 272 

Parallel axes theorem, 202,203 
Partially plastic cylinder, 533 
Perpendicular axes theorem, 200,201 
Pin-ended strut with eccentric end thrusts, 432 
Pin-jointed frames, 55 
Pin-jointed space trusses, 587 
Plane curved beams, 189 
Plane, pin-jointed truss, 571, 576 
Plane, rod element, 574 
Plane strain, 124,635 
Plane stress, 124,635 
Planes, principal stress, 100, I O  1 
Plastic bending, mild-steel beams 350,397 

fully-plastic moment, 352,355,398 
plastic section modulus, 359 
shape factor, 357,360 
strain-hardening, 350 
virtual-work solution, 397 
Table, 360 

Plastic collapse of built-in beams, 364 
Plastic collapse of rotating discs, 546 
Plastic deformation of thick tubes, 53 1 
Plastic design of frameworks, 401 

beam mechanism, 401,402,404 
combined beam and sway 

mechanism, 401,403,405 
sway mechanism, 40 1,402 
two-storey, 407 
two-way, 407 

Plastic-elastic bending, 352 
Plastic extensions, 13 
Plastic hinges, 402 

Plastic regions in beams, 361 
Plastic section modulus, 359 
Plastic straining, work done in, 40 
Plastic torsion, 5 1 1 
Plate differential equation, 458 
Points of contraflexure, 186 
Points of inflection, 185 
Poisson’s ratio, 33,34 

Prandtl’s membrane analogy, 504 
Pressure, cause yield, 534 

Pre-stressed concrete beams, 289 
Principal axis of bending, 21 6 
Principal planes, 100, I O  1 
Principal second moments of area, 230 
Principal strains, 1 12 
Principal stresses, 100, 10 1 

relation between E, G and v, I 15 

plastic collapse, 535 

beams, 256 
lines of, 256 
twisted shafts, 374 

Principle of super position, 176 
Principle of virtual work, 365,391,403,413 
Proof stresses, 30,3 1 
Properties of materials, 37 
Proportionality limit, 13,3 1 
Propped cantilever, 304 
Pure bending, 2 12 

rectangular beam, 2 13 
shear, 1 I5 

Rankine constants 
Table, 430 

Rankine-Gordon formula, 428,430 
Rayleigh-Ritz method, 4 19 

minimum potential 419 
Redundant frames, 56 
Regions of plasticity, 36 1 
Reinforced concrete beams, 272 
Relationship between bending moment and 

shearing force E, G and v, 1 15 
Relationship between intensity of 

loading shearing force and 
bending moment, 170 

Removal of stresses, I9 
Repeated stresses, 58 
Rigidity modulus, 73 
Rigid-jointed frame, 607 
Ring element, 548 
Riveted joints, 76 

Rivets 
modes of failure, 76 
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colddriven, 80 
hotdriven, 80 

Rod element, 57 1 
Rolling load, 194 
Rosettes, strain, 1 18 
Rotating circular ring, 
Rotating discs, 543 

plastic collapse, 546 

Scalars, 2 
Second moments of area, 20 1,2 1 5,230 

Section modulus, elastic, 228,359 

Shafts, 

circle, 237 

plastic, 356,359 

torsion of hollow, 370 
torsion of solid, 368 

Shape factor, 357,401 
Shape functions, 632 
Shear centre, 259,26 1 
Shear deflections of beams, 333 
Shear deflections of very thick plates, 486 
Shear flow, 383 
Shearing force, 67, 169 

diagrams, 173, 175, 179 
influence lines, 194, 196 
sign conventions, 172 
sagging and bending moments, 172 

Shearing modulus, 382 
Shearing strain, 73, 114 

energy, 73 
Shearing stress, 67,95 

complementary, 7 1 
maximum, 101 
tensile specimen, 94 

channel-section, 259 
I-beam, 250 
narrow rectangular 

Shearing stresses in beams, 245 

cross-section, 245 
Shearing stress-strain curve, 382 
Shells, cylindrical, 152, 155, 163 

spherical, 162,540 
thick spherical, 540 

and shearing forces, 172 
Sign conventions for bending moments 

Simply-stiff frames, 56 
Simply-supported beams, 178, 183 
Simp1 y-supported beams carrying 

concentrated lateral load, 300 
distributed load over a span, 3 13 
uniformly distributed load, 187,300 

non-uniformly distributed load, 188 
with a couple applied at 

Simultaneous equations, 561 
Single-riveted lap joint, 76 
Sinking of beam supports, 345 
Slopedeflection equations, 347 
Solution of simultaneous equations, 56 1 
Spherical shells, 162 
Stable equilibrium, 427 
Statically-determinate frames, 56,4 13 
Statically-determinate problems, 55 
Statically-indeterminate beams, 396 
Statically-indeterminate frames, 55 
Statically-indeterminate problems, 55,63 
Statics, 3 
Stiffness, economy of materials, 36 
Stiffness matrix, 565 

beam, 598 
elemental, 565 
frame, 607 
rod, 565,574,580,659 
structural, 567 
system, 567 

inclined direction, 109 
inclined plane, 109 

compatibility, 64 
compressive, 17 

Strain energy, 13,39, 73,414 
bending, 239 
distortional, 130, 13 1 
elastic extensions, 39 
elastic torsion, 378 
shearing actions, 73 
tensile test, 39 
three dimensional systems, 126 
two-dimensional stresses, 1 12, 126 
volume intensity, 40 

intermediate point, 3 16 

Strain 

Strain analysis, 94 

Strain figures in mild-steel, 96 
Strain-hardening , 2  1,350 

plastic bending, 350 
Strain, Mohr’s circle, 11 1 

principal, 1 I2 
rate, 22 
rosettes, 1 1 8, 12 1 
shearing, 73, 114 
tensile, 17 
volumetric, 34, 128, 155 

Table, 37 

complementary shearing, 71 

Strength properties, 36 

Stress, analysis, 94 
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compressive, 15 
creep due to, 52 
direct, 15,33,95 
effect of removal, 19 
endurance curves, 53 
factor, 32,33 

general two-dimensional, 97 
initial, 4 1 
longitudinal in beams, 2 12 
maximum shearing, 10 1 
Mohr’s circle, 103, 127 
principal, 100, 10 1,256 
proof, 30,3 1 
shearing, 68,95,245 
temperature effects, 45 
tensile, 14 
three-dimensional systems, 127 
two-dimensional system, 126 
ultimate, 21 
working, 32 
yield, 22 

Stress, fatigue due to repeated, 53 

Stress, inclined plane, 98,99 
Stress-strain curves, brittle materials, 18 

concrete, 20 
ductile materials, 20 
high tensile steel, 18 
mild steel, 21 

Stress-strain relations, elastic, 1 12 
Stretching of a steel wire, 12 
Strip, torsion of, 385 
Structural vibrations, 643 
Struts, buckling of pin-ended, 424 

built-in, 444 
design of pin-ended, 440 
eccentrically-loaded, 432 
effective lengths, 43 I 
geometrical imperfections, 430 
initially-curved, 436 
interaction curves, 438,439 
laterally-loaded, 44 1 
modes of buckling of a cruciform, 452 
one end fixed, other end free, 444 
one end pinned, other end fixed, 445 
other cross-sectional forms, 448 
torsional buckling, 450,452 
various end conditions, 444,445 
various types of 

cross-section, 448,450 
Superimposed beams, 25 8 
Sway mechanism, 401 

Tapered cover plates for riveted joints, 83 
Temperature stresses, 45 

Tensile strain, 17,2 1 
Tensile stress, 14,2 1 
Tensile test, strain energy, work done, 39 
Tension, 4, 12 

composite bars, 42 
Thick circular cylinders, discs and spheres, 5 I5 
Thick spherical shells, 540 

hemispherical, 540 
Thin shells, 152, 162 
Three-dimensional stress systems 
Throat of weld, 87 
Timber beam with reinforcing steel 

Torsion of 

composite bars, 45 

flange plates, 270 

circular shafts, 307 
constant, 385 
non-circular sections, 492 
plastic, 5 1 1 
Prandtl’s membrane analogy, 504 
shear stress 5 and Torque T 
thin-walled tubes, 367 
varying circular cross-section, 507 

Torsion, combined with direct stresses, 375 
constant, 385 
flat rectangular strip, 385 
hollow circular shaft, 370 
plastic, 379 
principal stresses, 374 
solid circular shaft, 368 
strain energy, 378 
thin circular tube, 367 
thin non-circular tube, 382 
thin rectangular strip, 385 
thin-walled open sections, 387 

Torsion combined with thrust 
or tension, 375 

Torsional buckling of struts, 452 
Torsional equation, 492 

non-circular sections, 495 
numerical solution of, 504 

Transformed sections, 266,267 
Tresca yield criterion, 148, 53 1 
Triangular element, 629 
Trigonometrical definitions, 1 
Truss 

plane, 576, 663 
space, 587,670 

compound, 525 
torsion of non-circular, 382 
torsion of thin circular, 367 

Tubes 
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Twisted shaft, principle stresses, 374 
Two bay framework, 407 
Two-dimensional shearing strain, 1 14 
Two-dimensional stress system, 97 
Two storey framework, 407 

Ultimate stress, 2 1 
Unstable equilibrium, 427 
Upper yield point, 2 1 

Values of principal stresses, 100 
Varying circular cross-section, 
Vectors, 2 
Vibrations of beams, 643 

damped, 652 
damped forced oscillations, 655 
free, 643, 646 
forced, 649 
natural frequency, 643 
with distributed mass, 646 
with end thrust, 656 

Vibration modes, 648 
Virtual work principle, 365,391,396. 397 
Volumetric strain, 34, 128, 155 

Weight economy of materials, 36 
Weld, butt, 86 

fillet, 87 
throat, 87 

Welded connections, 86, 89 
Work done in plastic straining, 40 
Work done in tensile test, 39 
Working stresses, 32 

Yield, combined stresses, 144 
criterion, 147 
envelope, 147 
locus, 147 
mild steel, 21 

Yield point, lower, 21 
upper, 21 

Yield stress, 22 
effect of strain rate, 22,401,546 

Yielding of ductile materials 
under combined stresses, 144 

Young’s modulus, 18, 19 
of elasticity, 566 
relationship with E, G and v,  1 15 




