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Preface 

The analysis of structural vibration is necessary in order to calculate the natural fre- 
quencies of a structure, and the response to the expected excitation. In this way it can be 
determined whether a particular structure will fulfil its intended function and, in addition, 
the results of the dynamic loadings acting on a structure can be predicted, such as the 
dynamic stresses, fatigue life and noise levels. Hence the integrity and usefulness of a 
structure can be maximized and maintained. From the analysis it can be seen which 
structural parameters most affect the dynamic response so that if an improvement or 
change in the response is required, the structure can be modified in the most economic and 
appropriate way. Very often the dynamic response can only be effectively controlled by 
changing the damping in the structure. There are many sources of damping in structures to 
consider and the ways of changing the damping using both active and passive methods 
require an understanding of their mechanism and control. For this reason a major part of 
the book is devoted to the damping of structural vibrations. 

Structural Vibration: Analysis and Damping benefits from my earlier book Structural 
Vibration Analysis: Modelling, Analysis and Damping of Vibrating Structures which was 
published in 1983 but is now out of print. This enhanced successor is far more 
comprehensive with more analytical discussion, further consideration of damping sources 
and a greater range of examples and problems. The mathematical modelling and vibration 
analysis of structures are discussed in some detail, together with the relevant theory. It also 
provides an introduction to some of the excellent advanced specialized texts that are 
available on the vibration of dynamic systems. In addition, it describes how structural 
parameters can be changed to achieve the desired dynamic performance and, most 
importantly, the mechanisms and methods for controlling structural damping. 

It is intended to give engineers, designers and students of engineering to first degree 



Preface vii 

level a thorough understanding of the principles involved in the analysis of structural 
vibration and to provide a sound theoretical basis for further study. 

There is a large number of worked examples throughout the text, to amplify and clarify 
the theoretical analyses presented, and the meaning and interpretation of the results 
obtained are fully discussed. A comprehensive range of problems has been included, 
together with many worked solutions which considerably enhance the range, scope and 
usefulness of the book. 

Chris Beards 
August 1995 
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If  a structure is built for  a man and the builder 
does not make its design and construction meet 
the requirements and it collapses in whole or in 
part, then the builder shall strengthen and 
restore the structure at his own expense. 

I f  other property is damaged or destroyed by the 
collapse then the builder shall restore that also 
at his own expense. 

I f  the collapse causes loss of  life then the 
builder shall be put to death. 

The Code of Hammurabi, c. 1750 BC 



General notation 

Cc 

Ca 

Clt 

d 

f 

f~ 
g 
h 

kT 
k* 
l 
m 

damping factor, 
dimension, 
displacement. 
circular frequency (rad/s), 
dimension. 
coefficient of viscous damping, 
velocity of propagation of stress wave. 
coefficient of critical viscous damping = 2~/(mk). 
equivalent viscous damping coefficient for dry friction damping 
= 4F, I~coX. 
equivalent viscous damping coefficient for hysteretic damping = rlkloo. 
diameter. 
frequency (Hz), 
exciting force. 
Strouhal frequency (Hz). 
acceleration constant. 
height, 
thickness. 
~/(-1). 
linear spring stiffness, 
beam shear constant. 
torsional spring stiffness. 
complex stiffness = k(1 + jr/). 
length. 
mass. 



x General notation 

q 
r 

$ 

t 
u 

x 

Y 
Z 

A 

B 

CI,2,3,4 

c~ 
D 

D 
E 
E' 
E "  

E* 
F 
F, 
F~ 
G 

I 
J 

K 

L 
M 

N 

P 
Q 
Q, 
R 
S 

generalized coordinate. 
radius. 
Laplace operator = a + jb. 
time. 
displacement. 
velocity, 
deflection. 
displacement. 
displacement. 
displacement. 
amplitude, 
constant, 
cross-sectional area. 
constant. 
constants. 
drag coefficient. 
flexural rigidity = Eh3/12(l -v2), 
hydraulic mean diameter. 
derivative w.r.t, time. 
modulus of elasticity. 
in-phase, or storage modulus. 
quadrature, or loss modulus. 
complex modulus = E' + jE". 
exciting force amplitude. 
Coulomb (dry) friction force (#N). 
transmitted force. 
centre of mass, 
modulus of rigidity. 
mass moment of inertia. 
second moment of area, 
moment of inertia. 
stiffness, 
gain factor. 
length. 
m a s s ,  

moment, 
mobility. 
applied normal force, 
gear ratio. 
force. 
factor of damping. 
generalized external force. 
radius of curvature. 
Strouhal number, 
vibration intensity. 



General notation xi 

is] 
T 

T~ 
V 

X 

x~ 
x/x~ 
Z 

O~ 

e 

/J 

v 

P 

cro 

T~ 

r 

system matrix. 
kinetic energy, 
tension, 
time constant. 
transmissibility = F-r~. 
potential energy, 
speed. 
amplitude of motion. 
column matrix. 
static deflection = F/k, where k is linear stiffness. 
dynamic magnification factor. 
impedance, 
vibration intensity. 
coefficient, 
influence coefficient, 
phase angle, 
receptance. 
coefficient, 
receptance. 
coefficient, 
receptance. 
deflection. 
short time, 
strain. 
strain amplitude. 
damping ratio = c/cc. 
loss factor = E"/E'. 
angular displacement, 
slope. 
matrix eigenvalue, 
[paof/El] '/4. 
coefficient of friction, 
mass ratio = m/M. 
viscosity, 
Poisson's ratio, 
circular exciting frequency (rad/s). 
time. 
material density. 
stress. 
stress amplitude. 
period of vibration = l/f. 
period of dry friction damped vibration. 
period of viscous damped vibration. 
phase angle, 
function of time, 
angular displacement. 



xii General notation 

Ig 
to 

a~ 
A 

phase angle. 
undamped circular frequency (rad/s). 
dry friction damped circular frequency. 
viscous damped circular frequency = tax/(1 - (2). 
logarithmic decrement = In Xt]X,,. 
natural circular frequency (rad/s). 



1 

Introduction 

A structure is a combination of parts fastened together to create a supporting framework, 
which may be part of a building, ship, machine, space vehicle, engine or Some other 
system. 

Before the Industrial Revolution started, structures usually had a very large mass 
because heavy timbers, castings and stonework were used in their fabrication; also the 
vibration excitation sources were small in magnitude so that the dynamic response of 
structures was extremely low. Furthermore, these constructional methods usually pro- 
duced a structure with very high inherent damping, which also gave a low structural 
response to dynamic excitation. Over the last 200 years, with the advent of relatively 
strong lightweight materials such as cast iron, steel and aluminium, and increased 
knowledge of the material properties and structural loading, the mass of structures built to 
fulfil a particular function has decreased. The efficiency of engines has improved and, 
with higher rotational speeds, the magnitude of the vibration exciting forces has increased. 
This process of increasing excitation with reducing structural mass and damping has 
continued at an increasing pace to the present day when few, if any, structures can be 
designed without carrying out the necessary vibration analysis, if their dynamic perform- 
ance is to be acceptable. 

The vibration that occurs in most machines, structures and dynamic systems is 
undesirable, not only because of the resulting unpleasant motions, the noise and the 
dynamic stresses which may lead to fatigue and failure of the structure or machine, but 
also because of the energy losses and the reduction in performance that accompany the 
vibrations. It is therefore essential to carry out a vibration analysis of any proposed 
structure. 

There have been very many cases of systems failing or not meeting performance targets 
because of resonance, fatigue or excessive vibration of one component or another. 
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Because of the very serious effects that unwanted vibrations can have on dynamic 
systems, it is essential that vibration analysis be carried out as an inherent part of their 
design; when necessary modifications can most easily be made to eliminate vibration or at 
least to reduce it as much as possible. 

It is usually much easier to analyse and modify a structure at the design stage than it is 
to modify a structure with undesirable vibration characteristics after it has been built. 
However, it is sometimes necessary to be able to reduce the vibration of existing structures 
brought about by inadequate initial design, by changing the function of the structure or by 
changing the environmental conditions, and therefore techniques for the analysis of 
structural vibration should be applicable to existing structures as well as to those in the 
design stage. It is the solution to vibration problems that may be different depending on 
whether or not the structure exists. 

To summarize, present-day structures often contain high-energy sources which create 
intense vibration excitation problems, and modern construction methods result in struc- 
tures with low mass and low inherent damping. Therefore careful design and analysis is 
necessary to avoid resonance or an undesirable dynamic performance. 

1.1 THE CAUSES AND EFFECTS OF STRUCTURAL VIBRATION 

There are two factors that control the amplitude and frequency of vibration in a structure: 
the excitation applied and the response of the structure to that particular excitation. 
Changing either the excitation or the dynamic characteristics of the structure will change 
the vibration stimulated. 

The excitation arises from external sources such as ground or foundation vibration, 
cross winds, waves and currents, earthquakes and sources internal to the structure such as 
moving loads and rotating or reciprocating engines and machinery. These excitation forces 
and motions can be periodic or harmonic in time, due to shock or impulse loadings, or 
even random in nature. 

The response of the structure to excitation depends upon the method of application and 
the location of the exciting force or motion, and the dynamic characteristics of the 
structure such as its natural frequencies and inherent damping level. 

In some structures, such as vibratory conveyors and compactors, vibration is en- 
couraged, but these are special cases and in most structures vibration is undesirable. This 
is because vibration creates dynamic stresses and strains which can cause fatigue and 
failure of the structure, fretting corrosion between contacting elements and noise in the 
environment; also it can impair the function and life of the structure or its components (see 
Fig. 1.1). 

1.2 THE REDUCTION OF STRUCTURAL VIBRATION 

The level of vibration in a structure can be attenuated by reducing either the excitation, or 
the response of the structure to that excitation or both (see Fig. 1.2). It is sometimes 
possible, at the design stage, to reduce the exciting force or motion by changing the 
equipment responsible, by relocating it within the structure or by isolating it from the 
structure so that the generated vibration is not transmitted to the supports. The structural 
response can be altered by changing the mass or stiffness of the structure, by moving the 
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"' ' Input . . . . . . . . . .  1 
Vibration excitation by force or motion. | 

For example from machinery, ground vibration, | 
. . . . .  wind or earthquake I . . . . . .  J 

Structure 
Dynamic transfer function is a function 

of structural parameters. 
For example mass, stiffness, material, 

damping, modulus and frequency. 
. . . . . . . . . . . .  ,u , , , , , , ,  - 

Output 
Dynamic response of structure. 

For example vibration amplitude, dynamic 
stress, fatigue, noise, and impaired function. 

Fig. 1.1. Causes and effects of structural vibration. 

source of excitation to another location, or by increasing the damping in the structure. 
Naturally, careful analysis is necessary to predict all the effects of any such changes, 
whether at the design stage or as a modification to an existing structure. 

Suppose, for example, it is required to increase the natural frequency of a simple system 
by a factor of two. It is shown in Chapter 2 that the natural frequency of a body of mass 
m supported by a spring of stiffness k is (1/2n').~(k/m)Hz, so that a doubling of this 

. . . . .  

Excitation 
�9 input 

- -  Structure 

  es'~ l 
�9 output 

j ' J _ j  Compare with 
Desired ~ desired values 

- - f Error, if any 

Reduction of structural vibration. Fig. 1.2. 
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Fig. 1.3. Effect of mass and stiffness changes on dynamic response. 

frequency can be achieved either by reducing m to �88 or by increasing k to 4k. The effect 
of these changes on the dynamic response is shown in Fig. 1.3. Whilst both changes have 
the desired effect on the natural frequency, it is clear that the dynamic responses at other 
frequencies are very different. 

The Dynamic Transfer Function (DTF) becomes very large and unwieldly for compli- 
cated structures, particularly if all damping sources and non-linearities are included. It 
may be that at some time in the future all structural vibration problems will be solved by 
a computer program that uses a comprehensive DTF (Fig. 1.4). At present, however, 
analysis techniques usually limit the scope and hence the size of the DTF in some way 
such as by considering a restricted frequency range or by neglecting damping or non- 
linearities. Structural vibration research is currently aimed at a large range of problems 
from bridge and vehicle vibration through to refined damping techniques and measure- 
ment methods. 

i ,, ~ E t t ~ ~  
Excitation Response ... . . .  'n~ I I ~176 I C~ i (DTF) ~ with desired 

_. values ..... 

Fig. 1.4. Feedback to modify structure to achieve desired levels. 

1.3 THE ANALYSIS OF STRUCTURAL VIBRATION 

It is necessary to analyse the vibration of structures in order to predict the natural 
frequencies and the response to the expected excitation. The natural frequencies of the 
structure must be found because if the structure is excited at one of these frequencies 
resonance occurs, with resulting high vibration amplitudes, dynamic stresses and noise 
levels. Accordingly resonance should be avoided and the structure designed so that it is 
not encountered during normal conditions; this often means that the structure need only be 
analysed over the expected frequency range of excitation. 
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Although it may be possible to analyse the complete structure, this often leads to a very 
complicated analysis and the production of much unwanted information. A simplified 
mathematical model of the structure is therefore usually sought that will, when analysed, 
produce the desired information as economically as possible and with acceptable 
accuracy. The derivation of a simple mathematical model to represent the dynamics of a 
real structure is not easy, if the model is to produce useful and realistic information. It is 
often desirable for the model to predict the location of nodes in the structure. These are 
points of zero vibration amplitude and are thus useful locations for the siting of 
particularly delicate equipment. Also, a particular mode of vibration cannot be excited by 
forces applied at one of its nodes. 

Vibration analysis can be carried out most conveniently by adopting the following 
three-stage approach: 

Stage I. Devise a mathematical or physical model of the structure to be analysed. 
Stage II. From the model, write the equations of motion. 
Stage III. Evaluate the structure response to a relevant specific excitation. 

These stages will now be discussed in greater detail. 

1.3.1 Stage I. The mathematical model 

Although it may be possible to analyse the complete dynamic structure being considered, 
this often leads to a very complicated analysis, and the production of much unwanted 
information. A simplified mathematical model of the structure is therefore usually sought 
that will, when analysed, produce the desired information as economically as possible and 
with acceptable accuracy. The derivation of a simple mathematical model to represent the 
dynamics of a real structure is not easy, if the model is to give useful and realistic 
information. 

All real structures possess an infinite number of degrees of freedom; that is, an infinite 
number of coordinates are necessary to specify completely the position of the structure at 
any instant of time. A structure possesses as many natural frequencies as it has degrees of  
freedom, and if excited at any of these natural frequencies a state of resonance exists, so 
that a large amplitude vibration response occurs. For each natural frequency the structure 
has a particular way of vibrating so that it has a characteristic shape, or mode of vibration, 
at each natural frequency. 

Fortunately it is not usually necessary to calculate all the natural frequencies of a 
structure; this is because many of these frequencies will not be excited and in any case 
they may give small resonance amplitudes because the damping is high for that particular 
mode of vibration. Therefore, the analytical model of a dynamic structure need have only 
a few degrees of freedom, or even only one, provided the structural parameters are chosen 
so that the correct mode of vibration is modelled. It is never easy to derive a realistic and 
useful mathematical model of a structure, because the analysis of particular modes of 
vibration is usually sought, and the determination of the relevant structural motions and 
parameters for the mathematical model needs great care. 

However, to model any real structure a number of simplifying assumptions can often be 
made. For example, a distributed mass may be considered as a lumped mass, or the effect 
of damping in the structure may be ignored, particularly if only resonance frequencies are 
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needed or the dynamic response required at frequencies well away from a resonance. A 
non-linear spring may be considered linear over a limited range of extension, or certain 
elements and forces may be ignored completely if their effect is likely to be small. 
Furthermore, the directions of motion of the mass elements are usually restrained to those 
of immediate interest to the analyst. 

Thus the model is usually a compromise between a simple representation that is easy to 
analyse but may not be very accurate, and a complicated but more realistic model which 
is difficult to analyse but gives more useful results. Some examples of models derived for 
real structures are given below, whilst further examples are given throughout the text. 

The swaying oscillation of a chimney or tower can be investigated by means of a single 
degree of freedom model. This model would consider the chimney to be a rigid body 
resting on an elastic soil. To consider bending vibration in the chimney itself would 
require a more refined model such as the four degree of freedom system shown in Fig. 1.5. 
By giving suitable values to the mass and stiffness parameters a good approximation to the 
first bending mode frequency, and the corresponding mode shape, may be obtained. Such 
a model would not be sufficiently accurate for predicting the frequencies of higher modes; 
to accomplish this a more refined model with more mass elements and therefore more 
degrees of freedom would be necessary. 

Vibrations of a machine tool can be analysed by modelling the machine structure by the 
two degree of freedom system shown in Fig. 1.6. In the simplest analysis the bed can be 
considered to be a rigid body with mass and inertia, and the headstock and tailstock are 
each modelled by lumped masses. The bed is supported by springs at each end as shown. 
Such a model would be useful for determining the lowest or fundamental natural 
frequency of vibration. A refinement to this model, which may be essential in some 
designs of machine where the bed cannot be considered rigid, is to consider the bed to be 
a flexible beam with lumped masses attached as before. 

To analyse the torsional vibration of a radio telescope when "in the vertical position a 
five degree of freedom model, as shown in Fig. 1.7, can be used. The mass and inertia of 

Fig. 1.5. Chimney vibration analysis model. 
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Fig. 1.6. Machine tool vibration analysis model. 

the various components may usually be estimated fairly accurately, but calculation of the 
stiffness parameters at the design stage may be difficult; fortunately the natural fre- 
quencies are proportional to the square root of the stiffness. If the structure, or a similar 
one, is already built, the stiffness parameters can be measured. A further simplification of 
the model would be to put the turret inertia equal to zero; so that a three degree of freedom 
model is obtained. Such a model would be easy to analyse and would predict the lowest 
natural frequency of torsional vibration with fair accuracy, provided the correct inertia and 
stiffness parameters were used. It could not be used for predicting any other modes of 
vibration because of the coarseness of the model. However, in many structures only the 
lowest natural frequency is required, since if the structure can survive this frequency it 
will be able to survive other natural frequencies too. 

None of these models include the effect of damping in the structure. Damping in most 
structures is very low so that the difference between the undamped and the damped natural 
frequencies is negligible. It is only necessary to include the effect of damping in the model 
if the response to a specific excitation is sought, particularly at frequencies in the region 
of a resonance. 

1.3.1.1 The model parameters 

Because of the approximate nature of most models, whereby small effects are neglected 
and the environment is made independent of the system motions, it is usually reasonable 
to assume constant parameters and linear relationships. This means that the coefficients in 
the equations of motion are constant and the equations themselves are linear: these are real 
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Fig. 1.7. Radio telescope vibration analysis model. 

aids to simplifying the analysis. Distributed masses can often be replaced by lumped mass 
elements to give ordinary rather than partial differential equations of motion. Usually the 
numerical value of the parameters can, substantially, be obtained directly, from the system 
being analysed. However, model system parameters are sometimes difficult to assess, and 
then an intuitive estimate is required, engineering judgement being of the essence. 

It is not easy to create a relevant mathematical model of the structure to be analysed, but 
such a model does have to be produced before Stage II of the analysis can be started. Most 
of the material in subsequent chapters is presented to make the reader competent to carry 
out the analyses described in Stages II and III. A full understanding of these methods will 
be found to be of great help in formulating the mathematical model referred to above in 
Stage I. 

1.3.2 Stage II. The equations of motion 

Several methods are available for obtaining the equations of motion from the mathe- 
matical model, the choice of method often depending upon the particular model and 
personal preference. For example, analysis of the free-body diagrams drawn for each body 
of the model usually produces the equations of motion quickly, but it can be advantageous 
in some cases to use an energy method such as the Lagrange equation. 

From the equations of motion the characteristic or frequency equation is obtained, 
yielding data on the natural frequencies, modes of vibration, general response and 
stability. 
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1.3.3 Stage III. Response to specific excitation 

Although Stage II of the analysis gives much useful information on natural frequencies, 
response and stability, it does not give the actual response of the structure to specific 
excitations. It is necessary to know the actual response in order to determine such 
quantities as dynamic stress or noise for a range of inputs, either force or motion, 
including harmonic, step and ramp. This is achieved by solving the equations of motion 
with the excitation function present. 

Remember: 

1.4 OUTLINE OF THE TEXT 

A few examples have been given above to show how real structures can be modelled, and 
the principles of their analysis. To be competent to analyse these models it is first 
necessary to study the analysis of damped and undamped, free and forced vibration of 
single degree of freedom structures such as those discussed in Chapter 2. This not only 
allows the analysis of a wide range of problems to be carried out, but is also essential 
background to the analysis of structures with more than one degree of freedom, which is 
considered in Chapter 3. Structures with distributed mass, such as beams and plates, are 
analysed in Chapter 4. 

The damping that occurs in structures and its effect on structural response is described 
in Chapter 5, together with measurement and analysis techniques for damped structures, 
and methods for increasing the damping in structures. Techniques for reducing the 
excitation of vibration are also discussed. These chapters contain a number of worked 
examples to aid the understanding of the techniques described, and to demonstrate the 
range of application of the theory. 

Methods of modelling and analysis, including computer methods of solution are 
presented without becoming embroiled in computational detail. It must be stressed that the 
principles and analysis methods of any computer program used should be thoroughly 
understood before applying it to a vibration problem. Round-off errors and other 
approximations may invalidate the results for the structure being analysed. 

Chapter 6 is devoted entirely to a comprehensive range of problems to reinforce and 
expand the scope of the analysis methods. Chapter 7 presents the worked solutions and 
answers to many of the problems contained in Chapter 6. There is also a useful 
bibliography and index. 



2 

The vibration of structures with one degree 
of freedom 

All real structures consist of an infinite number of elastically connected mass elements and 
therefore have an infinite number of degrees of freedom; hence an infinite number of 
coordinates are needed to describe their motion. This leads to elaborate equations of 
motion and lengthy analyses. However, the motion of a structure is often such that only a 
few coordinates are necessary to describe its motion. This is because the displacements of 
the other coordinates are restrained or not excited, being so small that they can be 
neglected. Now, the analysis of a structure with a few degrees of freedom is generally 
easier to carry out than the analysis of a structure with many degrees of freedom, and 
therefore only a simple mathematical model of a structure is desirable from an analysis 
viewpoint. Although the amount of information that a simple model can yield is limited, 
if it is sufficient then the simple model is adequate for the analysis. Often a compromise 
has to be reached, between a comprehensive and elaborate multi-degree of freedom model 
of a structure which is difficult and costly to analyse but yields much detailed and accurate 
information, and a simple few degrees of freedom model that is easy and cheap to analyse 
but yields less information. However, adequate information about the vibration of a 
structure can often be gained by analysing a simple model, at least in the first instance. 

The vibration of some structures can be analysed by considering them as a one degree 
or single degree of freedom system; that is, a system where only one coordinate is 
necessary to describe the motion. Other motions may occur, but they are assumed to be 
negligible compared with the coordinate considered. 

A system with one degree of freedom is the simplest case to analyse because only one 
coordinate is necessary to describe the motion of the system completely. Some real 
systems can be modelled in this way, either because the excitation of the system is such 
that the vibration can be described by one coordinate, although the system could vibrate 
in other directions if so excited, or the system really is simple as, for example, a clock 
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pendulum. It should also be noted that a one, or single degree of freedom model of a 
complicated system can often be constructed where the analysis of a particular mode of 
vibration is to be carried out. To be able to analyse one degree of freedom systems is 
therefore essential in the analysis of structural vibrations. Examples of structures and 
motions which can be analysed by a single degree of freedom model are the swaying of a 
tall rigid building resting on an elastic soil, and the transverse vibration of a bridge. Before 
considering these examples in more detail, it is necessary to review the analysis of 
vibration of single degree of freedom dynamic systems. For a more comprehensive study 
see Engineering Vibration Analysis with Application to Control Systems by C. E Beards 
(Edward Arnold, 1995). It should be noted that many of the techniques developed in single 
degree of freedom analysis are applicable to more complicated systems. 

2.1 FREE UNDAMPED VIBRATION 

2.1.1 Translation vibration 

In the system shown in Fig. 2.1 a body of mass m is free to move along a fixed horizontal 
surface. A spring of constant stiffness k which is fixed at one end is attached at the other 
end to the body. Displacing the body to the right (say) from the equilibrium position 
causes a spring force to the left (a restoring force). Upon release this force gives the body 
an acceleration to the left. When the body reaches its equilibrium position the spring force 
is zero, but the body has a velocity which carries it further to the left although it is retarded 
by the spring force which now acts to the right. When the body is arrested by the spring 
the spring force is to the right so that the body moves to the right, past its equilibrium 
position, and hence reaches its initial displaced position. In practice this position will not 
quite be reached because damping in the system will have dissipated some of the 
vibrational energy. However, if the damping is small its effect can be neglected. 

If the body is displaced a distance xo to the right and released, the free-body diagrams 
(FBDs) for a general displacement x are as shown in Fig. 2.2(a) and (b). 

The effective force is always in the direction of positive x. If the body is being retarded 
will be calculated to be negative. The mass of the body is assumed constant: this is 

usually so but not always, as, for example, in the case of a rocket burning fuel. The spring 
stiffness k is assumed constant: this is usually so within limits (see section 2.1.3). It is 
assumed that the mass of the spring is negligible compared with the mass of the body; 
cases where this is not so are considered in section 2.1.4.1. 

Fig. 2.1. Single degree of freedom model - translation vibration. 
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Fig. 2.2. (a) Applied force; (b) effective force. 
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From the free-body diagrams the equation of motion for the system is 

nff = - k x  or ~ +  (k/m)x = 0. (2.1) 

This will be recognized as the equation for simple harmonic motion. The solution is 

x = A cos tot + B sin cot, (2.2) 

where A and B are constants which can be found by considering the initial conditions, and 
to is the circular frequency of the motion. Substituting (2.2) into (2.1) we get 

- d (A cos tot + B sin tot) + (k/m) (A cos tot + B sin tot) = 0. 

Since (A cos tot + B sin tot) :I: 0 (otherwise no motion), 

to = q(k/m) rad/s, 

and 

Now 

thus 

and 

thus 

that is, 

x = A cos ~l(k/m)t + B sin ~/(k/m)t. 

x = x o a t t  = 0, 

Xo = A c o s 0  + B s i n 0 ,  and thereforexo = A ,  

= 0 a t t  = 0, 

0 = -A~l(k/m) sin 0 + B~/(k/m) cos 0, and therefore B = 0; 

x = xo cos ~l(k/m)t. (2.3) 

The system parameters control co and the type of motion but not the amplitude xo, which 
is found from the initial conditions. The mass of the body is important, but its weight is 
not, so that for a given system, to is independent of the local gravitational field. 

The frequency of vibration, f, is given by 

o _, 
f -  2;r or f = 2 n ' 1 \ m ] H Z "  (2.4) 

The motion is as shown in Fig. 2.3. 
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Fig. 2.3. Simple harmonic motion. 

The period of the oscillation, z, is the time taken for one complete cycle so that 

1 
"t - - 2a'~(m/k) seconds. (2.5) 

f 

The analysis of the vibration of a body supported to vibrate only in the vertical or y 
direction can be carried out in a similar way to that above. 

It is found that for a given system the frequency of vibration is the same whether the 
body vibrates in a horizontal or vertical direction. 

Sometimes more than one spring acts in a vibrating system. The spring, which is 
considered to be an elastic element of constant stiffness, can take many forms in practice; 
for example, it may be a wire coil, rubber block, beam or air bag. Combined spring units 
can be replaced in the analysis by a single spring of equivalent stiffness as follows. 

2.1.1.1 Spr ings  connec ted  in series 

The three-spring system of Fig. 2.4(a) can be replaced by the equivalent spring of Fig. 
2.4(b). 

Fig. 2.4. Spring systems. 

If the deflection at the free end, tS, experienced by applying the force F is to be the same 
in both cases, 

a =  F/ko= F/k, + F/k  + F/k3, 

that is, 
3 

l / k ~ -  ~l /k , .  
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In general, the reciprocal of the equivalent stiffness of springs connected in series is 
obtained by summing the reciprocal of the stiffness of each spring. 

2.1.1.2 Springs connected in parallel 

The three-spring system of Fig. 2.5(a) can be replaced by the equivalent spring of Fig. 
2.5(b). 

Fig. 2.5. Spring systems. 

Since the defection 6 must be the same in both cases, the sum of the forces exerted by 
the springs in parallel must equal the force exerted by the equivalent spring. Thus 

F = k,t~ + k28 + kat~ = k.t~, 

that is, 
3 

ke= Ek,. 
i w i  

In general, the equivalent stiffness of springs connected in parallel is obtained by 
summing the stiffness of each spring. 

2.1.2 Torsional vibration 

Fig. 2.6 shows the model used to study torsional vibration. 
A body with mass moment of inertia I about the axis of rotation is fastened to a bar of 

torsional stiffness kr If the body is rotated through an angle 0o and released, torsional 
vibration of the body results. The mass moment of inertia of the shaft about the axis of 
rotation is usually negligible compared with I. 

For a general displacement 0, the FBDs are as given in Fig. 2.7(a) and (b). Hence the 
equation of motion is 

o r  

I0 = -k+O 

This is of a similar form to equation (2.1); that is, the motion is simple harmonic with 
frequency (l/2~z) ~l(kT/l) Hz. 
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Fig. 2.6. Single degree of freedom model - torsional vibration. 

Fig. 2.7. (a) Applied torque; (b) effective torque. 

The torsional stiffness of the shaft, k~ is equal to the applied torque divided by the angle 
of twist. 
Hence 

G J  

l 
- ~ ,  for a circular section shaft, 

where G = modulus of rigidity for shaft material, 
J = second moment of area about the axis of rotation, and 
l = length of shaft. 

Hence 

r 1 
f - - ~ ( G J / l l )  Hz, 

2~r 2~" 

and 

0 = Oo cos ~(GJ[l l ) t ,  

w h e n O =  O o a n d O =  O a t t  = O. 

If the shaft does not have a constant diameter, it can be replaced analytically by an 
equivalent shaft of different length but with the same stiffness and a constant diameter. 
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For example, a circular section shaft comprising a length l~ of diameter dt and a length 
12 of diameter d~ can be replaced by a length l, of diameter d, and a length I of diameter 
d~ where, for the same stiffness, 

(GJ/l)t=,,,h ,5 ,J,=,,=,e, d~ = (G J/l),~,g,h ,,J,ame,cr d, 

that is, for the same shaft material, d24/12 = d,4/l. 
Therefore the equivalent length l~ of the shaft of constant diameter d~ is given by 

le = l, + (d,ld2)412. 

It should be noted that the analysis techniques for translational and torsional vibration 
are very similar, as are the equations of motion. 

2.1.3 Non-linear spring elements 

Any spring elements have a force--deflection relationship that is linear only over a limited 
range of deflection. Fig. 2.8 shows a typical characteristic. 

F orce Spring 
l I S  ardening 

/ 

Fig. 2.8. 

Compression 
Non-linear spring characteristic. 

The non-linearities in this characteristic may be caused by physical effects such as the 
contacting of coils in a compressed coil spring, or by excessively straining the spring 
material so that yielding occurs. In some systems the spring elements do not act at the 
same time, as shown in Fig. 2.9 (a), or the spring is designed to be non-linear as shown in 
Fig. 2.9 (b) and (c). 

Analysis of the motion of the system shown in Fig. 2.9 (a) requires analysing the 
motion until the half-clearance a is taken up, and then using the displacement and velocity 
at this point as initial conditions for the ensuing motion when the extra springs are 
operating. Similar analysis is necessary when the body leaves the influence of the extra 
springs. 
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Fig. 2.9. Non-linear spring systems. 

2.1.4 Energy methods for analysis 

For undamped free vibration the total energy in the vibrating system is constant 
throughout the cycle. Therefore the maximum potential energy Vm~ is equal to the 
maximum kinetic energy Tmax although these maxima occur at different times during the 
cycle of vibration. Furthermore, since the total energy is constant, 

T + V = constant, 

and thus 

d 
(T+ V)=O. 

dt 

Applying this method to the case, already considered, of a body of mass m fastened to 
a spring of stiffness k, when the body is displaced a distance x from its equilibrium 
position, 

i k x 2 ~  strain energy (SE) in spring = 
! 2 

kinetic energy (KE) of body = ~ m.r 

Hence 

and 

Thus 

I 2 
V = ~kx, 

! .2  
T = ~mx. 

d ! .2  - - ( ~ m x  + �89 ~) = O, 
dt 

that is 
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o r  

m ~  + k ~  = 0, 

= 0 as  quatioo, ,, 

This is a very useful method for certain types of problem in which it is difficult to apply 
Newton's laws of motion. 

Alternatively, assuming SHM, if x = xo cos cot, 

= ~kx0, the maximum SE, Vm..x , 2 

and 

the maximum KE, Tm,x = ~m(xotO): 2 

Thus, since Tm,x = Vm~, 
i 2 ! 2 2 
~kxo = ~mxoO) , 

or co = r a d / s  

Energy methods can also be used in the analysis of the vibration of continuous systems 
such as beams. It has been shown by Rayleigh that the lowest natural frequency of such 
systems can be fairly accurately found by assuming any reasonable deflection curve for 
the vibrating shape of the beam: this is necessary for the evaluation of the kinetic and 
potential energies. In this way the continuous system is modelled as a single degree of 
freedom system, because once one coordinate of beam vibration is known, the complete 
beam shape during vibration is revealed. Naturally the assumed deflection curve must be 
compatible with the end conditions of the system, and since any deviation from the true 
mode shape puts additional constraints on the system, the frequency determined by 
Rayleigh's method is never less than the exact frequency. Generally, however, the 
difference is only a few per cent. The frequency of vibration is found by considering the 
conservation of energy in the system; the natural frequency is determined by dividing the 
expression for potential energy in the system by the expression for kinetic energy. 

2.1.4.1 The vibration of systems with heavy springs 

The mass of the spring element can have a considerable effect on the frequency of 
vibration of those structures in which heavy springs are used. 

Consider the translational system shown in Fig. 2.10, where a rigid body of mass M is 
connected to a fixed frame by a spring of mass m, length l, and stiffness k. The body 
moves in the x direction only. If the dynamic deflected shape of the spring is assumed to 
be the same as the static shape, the velocity of the spring element is )~ = (y//).~, and the 
mass of the element is (mfl)dy. 

Thus 

T = ~ M.~ 2 + dy 
O 
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Fig. 2.10. Single degree of freedom system with heavy spring. 

M + ~2 
2 

and 

v=gcx  ~. 

Assuming simple harmonic motion and putting Tm,x = Vm,x gives the frequency of free 
vibration as 

k ) 
M + (m/3) Hz, 

that is, if the system is to be modelled with a massless spring, one third of the actual spring 
mass must be added to the mass of the body in the frequency calculation. 

d 
Alternatively, dt (T + V) = 0 can be used for finding the frequency of oscillation. 

2.1.4.2 Transverse vibration o f  beams 

For the beam shown in Fig. 2.11, if m is the mass unit length and y is the amplitude of the 
assumed deflection curve, then 

I I .2 12fy2 Tin.,, = ~ y , . , ,  dm = ~ dm, 

where co is the natural circular frequency of the beam. 
The strain energy of the beam is the work done on the beam which is stored as elastic 

energy. If the bending moment is M and the slope of the elastic curve is 0, 

I 
v =  dO. 
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Beam segment shown enlarged below 
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dy 

d8 

o 

Beam 

dx 
Fig. 2.11. Beam deflection. 

Usually the deflection of beams is small so that the following relationships can be 
assumed to hold- 

dy 
0 -  and RdO = dx; 

dx 

thus 

1 dO d2y 
m 

R dx dx 2" 

From beam theory, M/I = E/R, where R is the radius of curvature and E1 is the flexural 
rigidity. Thus 
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V = ~  ~ d x = ~  dx. 
R 

Since 

Tm,~ = Vm~; 

- dx 
2 

CO -~  o 

I y2 dm 

This expression gives the lowest natural frequency of transverse vibration of a beam. It 
can be seen that to analyse the transverse vibration of a particular beam by this method 
requires y to be known as a function of x. For this the static deflected shape or a part 
sinusoid can be assumed, provided the shape is compatible with the beam boundary 
conditions. 

2.1.5 The  stabi l i ty  o f  v ibrat ing  s tructures  

If a structure is to vibrate about an equilibrium position, it must be stable about that 
position; that is, if the structure is disturbed when in an equilibrium position, the elastic 
forces must be such that the structure vibrates about the equilibrium position. Thus the 
expression for to 2 must be positive if a real value of the frequency of vibration about the 
equilibrium position is to exist, and hence the potential energy of a stable structure must 
also be positive. 

The principle of minimum potential energy can be used to test the stability of structures 
that are conservative. Thus a structure will be stable at an equilibrium position if the 
potential energy of the structure is a minimum at that position. This requires that 

dV d2V 
- 0 and ~- > 0 

dq dq 

where q is an independent or generalized coordinate. Hence the necessary conditions for 
vibration to take place are found, and the position about which the vibration occurs is 
determined. 

E x a m p l e  1 

A link AB in a mechanism is a rigid bar of uniform section 0.3 m long. It has a mass of 
10 kg, and a concentrated mass of 7 kg is attached at B. The link is hinged at A and is 
supported in a horizontal position by a spring attached at the mid-point of the bar. The 
stiffness of the spring is 2 kN[m. Find the frequency of small free oscillations of the 
system. The system is as follows. 
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For rotation about A the equation of motion is 

1^0 = -ka 20 

that is, 

0 + (ka /1^)o = o. 

This is SHM with frequency 

l-~-'~(ka2]l̂ ) Hz. 
2n 

In this case 

a = 0.15 m, l = 0.3 m, k = 2000 N/m, 

and 

i 2 I^ = 7(0.3) 2 + ~x 10 (0.3) 2 = 0.93 kg m .  

Hence 

1 ~(2000(0.15)2)  = 1.1Hz. 
f = - ~  0.93 

Example 2 

A uniform cylinder of mass m is rotated through a small angle 0o from the equilibrium 
position and released. Determine the equation of motion and hence obtain the frequency 
of free vibration. The cylinder rolls without slipping. 
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If the axis of the cylinder moves a distance x and turns through an angle 0 so that 
x = r 0  

Hence 

! .2  I �9 I KE = ~mx + if02,wherel  = ~mr ~. 

3 2 "  KE = imr 0 ~. 
I ~_. SE = 2 x ~ x k[(r + a)O] 2 k(r + a)202. 

3 2 "  
Now, energy is conserved, so (~mr 02 + k(r + a)202) is constant; that is, 

d 

dt 
(~ mr2t~ + k(r + a)202) = 0 

o r  

]mr~20O + k(r + a)~200 = 0 

Thus the equation of the motion is 

k(r + a)20 
0 +  = 0 .  3 2 (i)mr 

Hence the frequency of free vibration is 

1 ~ [  4k(r + a)2] 

3mr m .  

Example 3 

A uniform wheel of radius R can roll without slipping on an inclined plane. Concentric 
with the wheel, and fixed to it, is a drum of radius r around which is wrapped one end of 
a string. The other end of the string is fastened to an anchored spring, of stiffness k, as 
shown. Both spring and string are parallel to the plane. The total mass of the wheel/drum 
assembly is m and its moment of inertia about the axis through the centre of the wheel O 
is L If the wheel is displaced a small distance from its equilibrium position and released, 
derive the equation describing the ensuing motion and hence calculate the frequency of 
the oscillations. Damping is negligible. 
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If the wheel is given an anti-clockwise rotation 0 from the equilibrium position, tile 
spring extension is (R + r) 0 so that the restoring spring force is k(R + r)O. 

The FBDs are: 

The rotation is instantaneously about the contact point A so that taking moments about 
A gives the equation of motion as 

lag =-k(R  + r)2 0. 

(The moment due to the weight cancels with the moment due to the initial spring 
tension.) 

Nowl^  = I + mR 2,so 

0+'" ( k(R + r ) 2 ) l  + mR 2 0 = 0 ,  

and the frequency of oscillation is 

2~ ! + mR 2 

An alternative method for obtaining the frequency of oscillation is to consider the 
energy in the system. 

Now 
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SE, V = �89 + r)202, 

and 
i 2 

KE, T = ~/^O , 

(weight and initial spring tension effects cancel) so 
1 2 T +  V =  ~I^0 + �89 + r)202, 

and 
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d 

dt 

I 
(T + V) = ~I^20O + �89 + r)2200 = O. 

Hence 

IAO + k(R + r)20 = O, 

which is the equation of motion. 
Or, we can put I/',,,, = T,,,x, and if 0 = 0o sin cot is assumed, 

1 .  2 , , ~ 2  �89 + r)202o = ~IACO ~o, 

so that 

where 

O )  = 

2 (co/2 at) Hz. I^ = I + mr and f = 

Example 4 

A simply supported beam of length I and mass m2 carries a body of mass m, at its mid- 
point. Find the lowest natural frequency of transverse vibration. 

x 
I1 _1  

I _ ml 

L 
I - -  liiil i i iii i i l Ill I I I  I [I 

The boundary conditions are y = 0 and d=y/dx 2 = 0 at x = 0 and x = I. These 
conditions are satisfied by assuming that the shape of the vibrating beam can be 
represented by a half sine wave. A polynomial expression can be derived for the deflected 
shape, but the sinusoid is usually easier to manipulate. 
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Y = Yo sin(~rx/l) is a convenient expression for the beam shape, which agrees with 
the boundary conditions. Now 

,=))osin(7) and dx 2d~ _ -Yo (-~)2sin(~-). 
Hence 

S; E~-~2) 2dx = S; EIy2~ (-~)" sin2(7) dx 
(/)4 

=e~Y~ ~ l 
2 '  

and 

s s (7) y2dm = y o s i n  2 m2dx + yom~ 
l 

Thus 

El(~[l) 4 1[2 

(m, + rod2) 

If m2 = 0, 

co - - 48.7 
2 13mr roll 3" 

The exact solution is 48 El/m~l 3, so the Rayleigh method solution is 1.4% high. 

Example 5 

Find the lowest natural frequency of transverse vibration of a cantilever of mass m, which 
has rigid body of mass M attached at its free end. 
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The static deflection curve is y = (yo/213)(3/x 2 - x3). Alternatively y = yo(1 - cos a: x/2/) 
could be assumed. Hence 

 is, dx : 0 ~-2~-] (61-  6x) 2 dx : --~-yo, 
o 

and 

f f' y2 dm = y 2m-~-" dx + yo 2 M 
o 1 

Thus 

f t  yo 2 m 

J o 416 l 
(3Ix 2 -  X3) 2 dx -~- yo 2 g 

{ 33} 
= y o  2 M + ~ m  . 

140 

t~ 2 = = 3 E l  

( M +  -3130m) 13 (rad/s):. 

Example 6 

Part of an industrial plant incorporates a horizontal length of uniform pipe, which is 
rigidly embedded at one end and is effectively free at the other. Considering the pipe as a 
cantilever, derive an expression for the frequency of the first mode of transverse vibration 
using Rayleigh's method. 

Calculate this frequency, given the following data for the pipe: 

Modulus of elasticity 200 GN[m 2 
Second moment of area about bending axis 0.02 m" 
Mass 6 • 10  4 kg 
Length 30 m 
Outside diameter 1 m 
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For a cantilever, assume 

y -  y~ l - c o s  21 " 

This is compatible with zero deflection and slope when x = 0, and zero shear force and 

bending moment  when x = I. Thus 

d2y n" x 
dx 2 - Yt -~- c o s ~ . 2 1  

Now 

2 /1;X 

dx = y~ cos 
o o 21 

~)4 l 

~ d x  

and ()2, I'y 2 I'~ ~ x m  
d m  = y .  - cos 

o o 21 1 
d x  

4) 
= y , m  - . 

Hence, assuming the structure to be conservative, that is, the total energy remains constant 
throughout the vibration cycle, 

2 
tO  - 

(Tr) 4 l 
e~Y'~ ~ 2 

y,m(  4) 

Thus 

15/ 

m l  3 
13.4. 

co = 3.66 rad/s and f m 
3 6 6  �9 
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In this case 

E1 200 x 109 x 0.02t 
"- IS2" 

ml 3 6 x 104 x 303 

Hence 

t o =  5.75rad/s and f = 0.92Hz. 
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Example 7 

A uniform building of height 2h and mass m has a rectangular base a x b which rests on 
an elasic soil. The stiffness of the soil, k, is expressed as the force per unit area required 
to produce unit deflection. 

Find the lowest frequency of free low-amplitude swaying oscillation of the building. 

The lowest frequency of oscillation about the axis O-O through the base of the building 
is when the oscillation occurs about the shortest side, of length a. 
Io is the mass moment of inertia of the building about axis O-O. 
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The FBDs are: 
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and the equation of motion for small 0 is given by 

1o0 = m g h O -  M, 

where M is the restoring moment from the elastic soil. 
For the soil, k = force/(area x deflection), so considering an element of the base as 

shown, the force on element = kb dx x xO, and the moment of this force about axis O-O 
= kb dx x xOx. Thus the total restoring moment M, assuming the soil acts similarly in 
tension and compression, is 

1,,,/2 
M = 2)o kbx2Odx 

(a/2) 3 ka3b 
= 2kbO - O. 

3 12 

Thus the equation of motion becomes 

Io0 + - m g h  O =  O. 
12 

Motion is therefore simple harmonic, with frequency 

= H z .  
27r~\  1o 

An alternative solution can be obtained by considering the energy in the system. In this 
case, 

I 
T =  ffo~, 

and 

t "l 2 mghO 2 
V =  ~ . 2 |  kbdx x xO x x O -  - .............. I 

~o 2 
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where the loss in potential energy of the building weight is given by mgh (1 - c o s  0 ) =  
mgh02[2, since cos 0 = 1 - 02/2 for small values of 0. Thus 

ka3b mgh )02. 
V =  

24 2 

Assuming simple harmonic motion, and putting Tm.~x = Vm.~x, gives 

2 (ka3b]12-mg h ) 
CO = 

1o 

as before. 
Note that for stable oscillation, co > 0, so that 

12 -mgh >0, 

that is, ka3b > 12mgh. 
This expression gives the minimum value of k, the soil stiffness, for stable oscillation of 

a particular building to occur. If k is less that 12 mgh/a3b the building will fall over when 
disturbed. 

2.2 FREE DAMPED VIBRATION 

All real structures dissipate energy when they vibrate. The energy dissipated is often very 
small, so that an undamped analysis is sometimes realistic; but when the damping is 
significant its effect must be included in the analysis, particularly when the amplitude of 
vibration is required. Energy is dissipated by frictional effects, for example that occurring 
at the connection between elements, internal friction in deformed members, and windage. 
It is often difficult to model damping exactly because many mechanisms may be operating 
in a structure. However, each type of damping can be analysed, and since in many 
dynamic systems one form of damping predominates, a reasonably accurate analysis is 
usually possible. 

The most common types of damping are viscous, dry friction and hysteretic. Hysteretic 
damping arises in structural elements due to hysteresis losses in the material. 

The type and amount of damping in a structure has a large effect on the dynamic 
response levels. 

2.2.1 Vibration with viscous damping 

Viscous damping is a common form of damping which is found in many engineering 
systems such as instruments and shock absorbers. The viscous damping force is propor- 
tional to the first power of the velocity across the damper, and it always opposes the 
motion, so that the damping force is a linear continuous function of the velocity. Because 
the analysis of viscous damping leads to the simplest mathematical treatment, analysts 
sometimes approximate more complex types of damping to the viscous type. 
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Consider the single degree of freedom model with viscous damping shown in Fig. 
2.12. 

Fig. 2.12. Single degree of freedom model with viscous damping. 

The only unfamiliar element in the system is the viscous damper with coefficient c. This 
coefficient is such that the damping force required to move the body with a velocity .t is 
c• 

For motion of the body in the direction shown, the free body diagrams are as in Fig. 
2.13(a) and (b). 

kx 

{a) Ib) 

Fig. 2.13. (a) Applied force; (b) effective force. 

rn~ 

Hence 
l r  $21 x = X,e $'' + Aze , 

where X~ and X2 are arbitrary constants found from the initial conditions. The system 
2 �9 response evidently depends upon whether c is positive or negative, and on whether c is 

greater than, equal to, or less than 4 m k .  

The equation of motion is therefore 

rn~ + c~ + kx = 0. (2.6) 

This equation of motion pertains to the whole of the cycle: the reader should verify that 
this is so. (Note: displacements to the left of the equilibrium position are negative, and 
velocities and accelerations from right to left are also negative.) 

Equation (2.6) is a second-order differential equation which can be solved by assuming 
X e  "~/. a solution of the form x = Substituting this solution into equation (2.6) gives 

(ms"  + cs  + k)Xe$'=0. 

Since X e  ~' ,: 0 (otherwise no motion), 
2 

m s  + cs  + k = O. 

If the roots of the equation are st and s2, then 

c ~](c 2 - 4 m k )  
S l , 2  = - -  . . . . . .  +-. 

2 m  2 m  
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The dynamic behaviour of the system depends upon the numerical value of the radical, 
so we define critical damping as that value of c(cc) which makes the radical zero; that 
is, 

Hence 

and 

c~ = 2~](km). 

cJ2m = ~(k/m) = ~ the undamped natural frequency, 

c, = 2~/(km)= 2mco. 

The actual damping in a system can be specified in terms of cc by introducing the 
damping ratio (. 

Thus 

and 

= c]c~, 

s,.2 = [ - ~" • 4(~'2 _ 1)]co. (2.7) 

The response evidently depends upon whether c is positive or negative, and upon whether 
~' is greater than, equal to, or less than unity. Usually c is positive, so we only need to 
consider the other possibilities. 

Case 1. ( < 1; that is, damping less than critical 

From equation (2.7) 

s,.~ = - ( c o  _.+ j 4 ( l -  (~)ca where j = 4(-  1), 

SO 

and 

x = e-~'[X,e j~' - e~,,, + X:e-J~, - e,o,] 

x = Xe -r sin (~/(1 - ~'2) tot + r 

The motion of the body is therefore an exponentially decaying harmonic oscillation with 
circular frequency co,, = co~(1 - ~2), as shown in Fig. 2.14. 

The frequency of the viscously damped oscillation co`', is given by to,, = 
co~/(1 - (2), that is, the frequency of oscillation is reduced by the damping action. 
However, in many systems this reduction is likely to be small, because very small values 
of (a re  common; for example, in most engineering structures ( i s  rarely greater than 0.02. 
Even if ~" = 0.2, co "̀ = 0.98ca This is not true in those cases where ~" is large, for example 
in motor vehicles where ( i s  typically 0.7 for new shock absorbers. 
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X ~1 Circular f requency co v = Co .~/(1 - -~2)  

% / 
. . . . . . .  . . . . . .  . . . -  - i ~ ~  - - ~  ~,,_._t, 

"~ ~ Exponential decay X e  " t ~ r  

d 

Fig. 2.14. Vibration decay of system with viscous damping, ~" < 1. 

[Ch. 2 

C a s e  2. ~' = 1; that is, critical damping 

Both values of s are -co. However, two constants are required in the solution of equation 
(2.6); thus x = (A + B t ) e  -=' may be assumed. 

Critical damping represents the limit of periodic motion; hence the displaced body is 
restored to equilibrium in the shortest possible time, and without oscillation or overshoot. 
Many devices, particularly electrical instruments, are critically damped to take advantage 
of this property. 

Case 3. ~" > 1; that is, damping greater than critical 

There are two real values of s, so x = X,e'" + X2e '~'. 
Since both values of s are negative the motion is the sum of two exponential decays, as 

shown in Fig. 2.15. 

X2 

Xl 

x Xle slt e s2t = + X  z 

t 

Fig. 2.15. Disturbance decay of system with viscous damping ~" > 1. 
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2.2.1.1 Logarithmic decrement A 

A convenient way of determining the damping in a system is to measure the rate of decay 
of oscillation. It is usually not satisfactory to measure oJv and ~o because unless ~" > 0.2, 
o~-- o~. 

The logarithmic decrement, A, is the natural logarithm of the ratio of any two 
successive amplitudes in the same direction, and so from Fig. 2.16 

XI 
A = I n - -  

Xtt 

where X, and X,, are successive amplitudes as shown. 
Since 

x = Xe -r sin (~vt + ~), 

i f  

X~ = Xe -*' ,  then X,, = Xe -~'<'+ ~'>, 

where zv is the period of the damped oscillation. 

X XI 

~ ~ gl I ~Circular frequency '~/11 - -  ~" 2)co = ~v 

- -  t 

Exponential decay Xe - l '~r  / 
/ 

Thus 

Since 

Fig. 2.16. Vibration decay. 

Xe-r TM 

A = ln xe_r o = ~'arr,, 

2~ 2~ 
~v "- "- 
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then 

A = 4 ( 1 - ( 2 )  = In . 

For small values of ((:1, 0.25), A = 2tr(. 
It should be noted that this analysis assumes that the point of maximum displacement in 

a cycle and the point where the envelope of the decay curve Xe -r touches the decay curve 
itself, are coincident. This is usually very nearly so, and the error in making this 
assumption is usually negligible, except in those cases where the damping is high. 

For low damping it is preferable to measure the amplitude of oscillations many cycles 
apart so that an easily measurable difference exists. 

In this case 

A = In = -  In - 
N x .i 

since 

XI XII 
Xll Xlll 

, etc. 

E x a m p l e  8 

Consider the transverse vibration of a bridge structure. For the fundamental frequency it 
can be considered as a single degree of freedom system. The bridge is deflected at mid- 
span (by winching the bridge down) and suddenly released. After the initial disturbance 
the vibration was found to decay exponentially from an amplitude of 10 mm to 5.8 mm in 
three cycles with a frequency of 1.62 Hz. The test was repeated with a vehicle of mass 
40 000 kg at mid-span, and the frequency of free vibration was measured to be 1.54 
Hz. 

Find the effective mass, the effective stiffness, and the damping ratio of the structure. 

Let m be the effective mass and k the effective stiffness. Then 

ft  = 1.62 = - Hz, 

and 

k ) 
Hz, 

m + 40 x 103 

if it is assumed that ( i s  small enough for fv = f.  

1.62 m + 4 0 x  103 
Thus -] m 

( L 5 4  - 
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SO 

Since 

Now 

m = 375•  103kg. 

k = (27rfl 2 )m,  
k = 38 850 ld~/m. 

x 
= 5 In = ~ In 

X.  X,~ 

= 0.182. 

where Xz, X,, and X,v are the amplitudes of the first, second and fourth cycles, respectively. 
Hence 

A = = 0.182, 
~/(1 - ~'~) 

and so ~" = 0.029. (This compares with a value of about 0.002 for cast iron material. The 
additional damping originates mainly in the joints of the structure.) This value of ~" 
confirms the assumption that f ,  = f. 

E x a m p l e  9 

A light rigid rod of length L is pinned at one end O and has a body of mass m attached at 
the other end. A spring and viscous damper connected in parallel are fastened to the rod 
at a distance a from the support. The system is set up in a horizontal plane: a plan view 
is shown. 

Assuming that the damper is adjusted to provide critical damping, obtain the motion of 
the rod as a function of time if it is rotated through a small angle 0o and then released. 
Given that 0o = 2 ~ and the undamped natural frequency of the system is 3 rad/s, calculate 
the displacement 1 s after release. 

Explain the term logarithmic decrement as applied to such a system and calculate its 
value assuming that the damping is reduced to 80% of its critical value. 
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Let the rod turn through an angle 0 from the equilibrium position. Note that the system 
oscillates in the horizontal plane so that the FBDs are" 

Taking moments about the pivot O gives 

Io0 = - c a 2 0 -  ka2 0, 

where Io = mL 2, so the equation of motion is 

mL2O + ca20 + ka20 = O. 

Now the system is adjusted for critical damping, so that ~" = 1. The solution to the 
equation of motion is therefore of the form 

0 = (A + Bt)e -~ .  

Now, 0 = 0o when t = 0, and dO/dr = 0 when t = 0. Hence 

0 o = A ,  

and 

0 = Be-~ (A + Bt ) ( - to )e  -'~, 

so that 

Hence 

B = Oota 

0 =  0o(1 + to)e - ' .  

If co=  3 r a d / s , t  = 1 s a n d 0 o  = 2*, 

0 = 2(1 + 3 ) e  "3 = 0.4*. 

The logarithmic decrement 

A =  I n ~ -  
x, 2~r~" 

x,,  - 4 ( 1  - ~ ' ~ ) '  

so that if ~" = 0.8, 

A _. 

5.027 

0.6 
- 8.38 
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2.2.2 Vibration with Coulomb (dry friction) damping 

Steady friction forces occur in many structures when relative motion takes place between 
adjacent members. These forces are independent of amplitude and frequency; they always 
oppose the motion and their magnitude may, to a first approximation, be considered 
constant. Dry friction can, of course, just be one of the damping mechanisms present; 
however, in some structures it is the main source of damping. In these cases the damping 
can be modelled as in Fig. 2.17. 

Fig. 2.17. System with Coulomb damping. 

The constant friction force F,, always opposes the motion, so that if the body is 
displaced a distance xo to the right and released from rest we have, for motion from right 
to left only, 

mY = F a - k x  

o r  

m2 + kx = F,,. (2.8) 

The solution to the complementary function is x = A sin tot + B cos tot, and the 
complete solution is 

x = A s i n t o t  + B c o s t o t  + 
k (2.9) 

where to = ~l(k/m) rad/s. 

Note. The particular integral may be found by using the D-operator. Thus equation (2.8) 
is 

( 0 2 +  ~ ) x  = FJm 

SO 

x = (1/to2)[1 + (DZ/af)]-'Fdm 
= t 1 -  (D2]to z) + ...]Fd]mO~ = Fdk. 

The initial conditions were x = Xo at t = 0, and .r = 0 at t = 0. Substitution into 
equation (2.9) gives 

F~ 
A = 0 and B = X o - - - .  

k 
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Hence 

x = o - ~  costot + k (2.10) 

At the end of the half cycle right to left, tot = tr and 

2F~ 
X(t = rr/m) -- -- Xo + ~ ,  

k 

that is, there is a reduction in amplitude of 2Fa/k per half cycle. 
From symmetry, for motion from left to right when the friction force acts in the 

opposite direction to the above, the initial displacement is (Xo- 2Fdk) and the final 
displacement is therefore (Xo - 4Fa/k), that is, the reduction in amplitude is 4Fa/k per cycle. 
This oscillation continues until the amplitude of the motion is so small that the maximum 
spring force is unable to overcome the friction force Fa. This can happen whenever the 
amplitude is <~+_(F, Jk). The manner of oscillation decay is shown in Fig. 2.18; 
the motion is sinusoidal for each half cycle, with successive half cycles centred on 
points distant + (F, Jk) and - (Fd/k) from the origin. The oscillation ceases with 
Ixl ~F, Jk. The zone x = _.+ F, Jk is called the dead zone. 

Xo- F d l k ~ - ~  Xo 

cot . . . . . .  

x 0 
, 1 m 

x Dead z o n e  

+F_,/k .~ _ 
UO - - t  

- F  d/k _ ~ - 

Fig. 2.18. Vibration decay of system with Coulomb damping. 

To determine the frequency of oscillation we rewrite the equation of motion (2.8) as 

m:e + k (x -  (FJk))= O. 

Now if x' = x - (Fa/k), .~' = $ so that m~' + kx' = 0, from which the frequency of 
oscillation is (l[2tr)4(k]m) Hz; that is, the frequency of oscillation is not affected by 
Coulomb friction. 
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Example 10 

Part of a structure can be modelled as a torsional system comprising a bar of stiffness 
10 kN m]rad and a beam of moment of inertia about the axis of rotation of 50 kg m 2. The 
bottom guide imposes a friction torque of 10 N m (see figure). 

Given that the beam is displaced through 0.05 rad from its equilibrium position and 
released, find the frequency of the oscillation, the number of cycles executed before the 
beam motion ceases, and the position of the beam when this happens. 

Now 

Hence 

= = = 14.14 rad/s. 
50 

14.14 
f - - 2.25 Hz. 

2n: 

Loss in amplitude/cycle - 
4F, 4 x  10 

n 

k 104 

= 0.004 rad. 

Number of cycles for motion to cease 

rad 
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0.05 

0.004 
- 12}. 

The beam is in the initial (equilibrium) position when motion ceases. The motion is shown 
below. 

0.05 
1 2 3 4 5 6 7 

0.046 
0.042 

I I  ~ 0.038 
I ! | ~ 0.034 
I i I '  f [  0.030 
" I t '  I I  /~ 0.026 li JA/I/  o d isp lacement  

!1 I i o.o18 (rad) /~ /~ 

8 9 10 11 12 cycles 

0.014 
0.010 

0.006 

~ ; !  L~.__m~.,_~n m i  m m i u a _ _ _ i a i i m m i l U U l l a i K D i ~ ~  
i i i  i i i i i i i i i i i i i i i i w m w i w ~  

Dead 
zone 

2.2.3 Vibration with combined viscous and Coulomb damping 

The free vibration of dynamic structures with viscous damping is characterized by an 
exponential decay of the oscillation, whereas structures with Coulomb damping possess a 
linear decay of oscillation. Many real structures have both forms of damping, so that their 
vibration decay is a combination of exponential and linear functions. 

The two damping actions are sometimes amplitude-dependent, so that initially the 
decay is exponential, say, and only towards the end of the oscillation does the Coulomb 
effect show. In the analyses of these cases the Coulomb effect can easily be separated from 
the total damping to leave the viscous damping alone. The exponential decay with viscous 
damping can be checked by plotting the amplitudes on logarithmic-linear axes when the 
decay should be seen to be linear. 

If the Coulomb and viscous effects cannot be separated in this way, a mixture of linear 
and exponential decay functions have to be found by trial and error in order to conform to 
the experimental data. 
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2.2.4 Vibration with hysteretic damping 

Experiments on the damping that occurs in solid materials and structures that have been 
subjected to cyclic stressing have shown the damping force to be independent of 
frequency. This internal, or material, damping is referred to as hysteretic damping. Since 
the viscous damping force c.~ is dependent upon the frequency of oscillation, it is not a 
suitable way of modelling the internal damping of solids and structures. The analysis of 
systems and structures with this form of damping therefore requires the damping force c~ 
to be divided by the frequency of oscillation to. Thus the equation of motion becomes 
me + (c/to)x + ~ = 0. 

However, it has been observed from experiments carried out on many materials and 
structures that under harmonic forcing the stress leads the strain by a constant angle, ct. 

Thus for an harmonic strain, e = eo sin vt, where v is the forcing frequency, the induced 
stress is ty = tro sin (vt + tx). Hence 

o" = tro cos a sin vt + tro sin a cos vt 

= ~ c o s o ~ s i n  vt + o ' o s in~s in  vt + 2 " 

The first component of stress is in phase with the strain e, whilst the second component 
is in quadrature with e and n:]2 ahead. Putting j = ~(-1), 

tr = tro cos ct sin vt + jCro sin a sin vt. 

Hence a complex modulus E* can be formulated, where 

tr ~ 
E* = - -  - cosc t  + j  s inct  

e eo e~, 

= E ' + j E " ,  

where E '  is the in-phase or storage modulus, and E" is the quadrature or loss modulus. 
The loss factor r/, which is a measure of the hysteretic damping in a structure, is equal 

to E"/E ', that is, tan a. 
It is not usually possible to separate the stiffness of a structure from its hysteretic 

damping, so that in a mathematical model these quantities have to be considered together. 
The complex stiffness k* is given by k* = k(1 + jr/), where k is the static stiffness and r/ 

is the hysteretic damping loss factor. 

2.2.5 Complex stiffness 

In most real structures it is not possible to separate the stiffness and damping effects 
because they are inherent properties which are often coupled. Realistic mathematical 
models of structures therefore require these quantities to be considered together in the 
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form of a complex stiffness. Although this is rather an awkward physical concept it is 
widely used in analysis. 

The complex stiffness k* is equal to k(1 + jr/), where k is the static stiffness, j = ~/-1 
and r/is the hysteretic damping loss factor. 

The equation of free motion for a single degree of freedom system with hysteretic 
damping is therefore mX + k*x = 0. Fig. 2.19 shows a single degree of freedom model 
with hysteretic damping of coefficient CH. 

Fig. 2.19. Single degree of freedom with hysteretic damping. 

The equation of motion is 

m:~ + ( c d oJ)~ + ~ = o. 

Now if x = Xe j'~', 

and 

Thus the equation of motion becomes 

m X +  (k + j c . ) x  = 0. 

Since 

k + jcH = k( 1 + jrl)  = k*,  

we can write 

ruff + k*x = 0, 

that is, the combined effect of the elastic and hysteretic resistance to motion can be 
represented as a complex stiffness, k*. 

A range of values of r/ for some common engineering materials is given in the 
following table. For more detailed information on material damping mechanisms and loss 
factors, see Damping of Materials and Members in Structural Mechanics by B. J. Lazan 
(Pergamon, 1968), and Chapter 5. 
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Material Loss factor 

A luminium-pure 0.00002-0.002 
Aluminium alloy-dural 0.0004--0.001 
Steel 0.001-0.008 
Lead 0.008-0.014 
Cast iron 0.003-0.03 
Manganese copper alloy 0.05-0.1 
Rubber-natural 0.1-0.3 
Rubber-hard 1.0 
Glass 0.0006-0.002 
Concrete 0.01-0.06 

2.2.6 Energy dissipated by damping 

The energy dissipated per cycle by the viscous damping force in a single degree of 
freedom vibrating system is approximately 

4 c~dx, 
o 

if x = X sin tot is assumed for the complete cycle. The energy dissipated is therefore 

I 4 cX 2o~ cos rot dt = ~:cwX 2. 
o 

The energy dissipated per cycle by Coulomb damping is 4F. X approximately. Thus an 
equivalent viscous damping coefficient for Coulomb damping c. can be deduced, where 

zrc.wX 2 = 4F. X, 

that is, 

4Fo 
C d - -  

n:toX 

The energy dissipated per cycle by a force F acting on a system with hysteretic damping 
is ~F dx, where F = k*x = k(1 + j r/)x, and x is the displacement. 

For harmonic motion x = X sin cot, 

S O  

Now 

F = kX sin tot + j r/kX sin 
= kX sin tot + rlkX cos tot. 

sin tot - therefore cos tot = 
X'  X 
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Thus 

F = kx  +_ rllol(X 2 - x2). 

This is the equation of an ellipse as shown in Fig. 2.20. The energy dissipated is given 
by the area enclosed by the ellipse. 

Force 

- x  ~ ....... / 1 

�9 V .... ~ ' ~  . . . . . . .  X 

i .  

Slope k 

i| 

Displacement 

Fig. 2.20. 

Hence 

Elliptical force--displacement relationship for a system with hysteretic damping. 

Fdx = (kx _+ r//o/(X 2 - x2))dx 
0 

= x.X2 r/k. 

An equivalent viscous damping coefficient c .  is given by 

trcnooX z = n"rlkX 2, 

that is 

ok 
C H - -  

(0 

Note also that c = c.to. 

Example 11 

A single degree of freedom system has viscous damping, with ~" = 0.02. Find the energy 
dissipated per cycle as a function of the energy in the system at the start of that cycle. Also 
find the amplitude of the 12th cycle if the amplitude of the 3rd cycle is 1.8 mm. 

~" ,~ 1, so In (X, /X2)  = 2try" = 0.126. 

Thus 
O. 1 2 6  

X,]X2 = e = 1.134. 
I 2 

Energy at start of cycle = ;.kX, (stored as strain energy in spring) 
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i 2 
Energy at end of cycle = ~kXs 

Energy dissipated during cycle 

Energy at start of cycle 

I 

= 1 - (X2/X,) 2 = 1 - 0.7773 = 0.223, 

that is, 22.3% of the initial energy is dissipated in one cycle. 
Now 

X J X 2  = 1.134, 

therefore 

XffX3 = 1.134 . . . . .  (X,,_t)[X,, = 1.134. 

X ffX,2 = (1.134)9= 3.107 

that is 

1.8 
X I 2  - -  

3.107 
- 0.579 ram. 

2.3 FORCED VIBRATION 

Many real structures are subjected to periodic excitation. This may be due to unbalanced 
rotating or reciprocating components of machinery or equipment, wind or current effects, 
or a shaking foundation. Usually very low vibration amplitudes are required over a large 
range of exciting forces and frequencies to keep dynamic stresses, noise, fatigue and other 
effects to acceptable levels. Some periodic forces are harmonic, but even if they are not, 
they can be represented as a series of harmonic functions using Fourier analysis 
techniques. Because of this the response of structures and dynamic systems subjected to 
harmonic exciting forces and motions must be studied. Non-periodic excitation such as 
shock, impulse and random, are considered later, in sections 2.3.5 to 2.3.9. 

2.3.1 Response of a viscous damped structure to a simple harmonic exciting 
force with constant amplitude 

In the system shown in Fig. 2.21, the body of mass m is connected by a spring and viscous 
damper to a fixed support, whilst a harmonic force of circular frequency v and amplitude 
F acts upon it, in the line of motion. 

Fig. 2.21. Single degree of freedom model of a forced system with viscous damping. 
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The equation of motion is 

nt~ + c~t + kx = F sin vt. (2.11) 

The solution to nff + cX + kx = 0, which has already been studied, is the 
complementary function; it represents the initial vibration which quickly dies away. The 
sustained motion is given by the particular solution. A solution x = X (sin v t -  r can be 
assumed, because this represents simple harmonic motion at the frequency of the exciting 
force with a displacement vector which lags the force vector by r that is, the motion 
occurs after the application of the force. 

Assuming x = X s in (v t -  q~), 
I 

= X v  cos ( v t -  r = X v  sin ( v t -  r + ~n:), 

and 

= - Xv 2 sin ( v t -  r = X v  2 sin ( v t -  r + n:). 

The equation of motion (2.11) thus becomes 

m X v  2 sin ( v t -  r + n:) + c X v  sin ( v t -  r + n:12) + kX sin (vt - r 

= F sin vt. 

A vector diagram of these forces can now be drawn (Fig. 2.22). 

cXv 

kX 

, ,  , _ _ ,  , , ,  

V 

Fig. 2.22. 

From the diagram, 

F z = ( k X - m X v 2 )  2 + (cXv) z, 

o r  

and 

Force vector diagram. 

X = F ] q ( ( k -  my2) 2 + (cv)2), 

tan r = c X v [ ( k X -  mXv2). 

Thus the steady-state solution to equation (2.11) is 

F 
x = 4 ( ( k -  my2) z + (cv) z) sin ( v t -  O), 

(2.12) 
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where 

(cv) $ = tan -t ~ _  
k _ m v  ~ �9 

The complete solution includes the transient motion given by the complementary 
function: 

x = Ae - ~  sin (co x/(l - (2)t + a). 

Fig. 2.23 shows the combined motion. 

J 

Transient 
motion 

Combined motion 

Steady-state 
motion 

" ' t 

Fig. 2.23. Forced vibration, combined motion. 

Equation (2.12) can be written in a more convenient form if we put 

co = rad/s and X.~- k" 

Then 

X 1 

( )212 
a n d  ~ = t a n - '  �9 1 - (v]o9)2  

' (2.13) 

X/Xs is known as the dynamic magnification factor, because Xs is the static deflection of 
the system under a steady force F, and X is the dynamic amplitude. 

By considering different values of the frequency ratio v/~ we can plot X/X~ and r as 
functions of frequency for various values of ~'. Figs 2.24 and 2.25 show the results. 

The effect of the frequency ratio on the force vector diagram is shown in Fig. 2.26. 
The importance of mechanical vibration arises mainly from the large values of X/X, 

experienced in practice when v/co has a value near unity: this means that a small harmonic 



50 The vibration of structures with one degree of freedom 
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~" increasing 

1 ~/2 2 3 4 

Fig. 2.24. Amplitude-frequency response for system of Fig. 2.21. 

, . . . , . . ,  
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Fig. 2.25. Phase-frequency response for system of Fig. 2.21. 

force can produce a large amplitude of vibration. The phenomenon known as resonance 
occurs when the forcing frequency is equal to the natural frequency, that is when v/to = 1. 
The maximum value of X/Xs actually occurs at values of v/to less than unity: the value can 
be found by differentiating equation (2.13) with respect to v/to. Hence 

(v/to),x/xs,..,x = "q(l - 2~ "~) = 1 for ~" small, 
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mX~ 2 

cXv 

la) 

rnX~ ,2 

kX 

kX 

cXv 

(b) 

rnX~ 

#~ cXv 

- - -  - - -  . . . . . . . . .  . . . . . . .  , ' . . . .  ~ :  ' ~ _ " _ . , . i  . ~ -  r . . . . . .  _ . . . . . .  ~ - - t -  

IC) I 

Fig. 2.26. Forced vibration vector diagrams: (a) v/co < 1, exciting force approximately equal to 
spring force; (b) v/to = 1, exciting force equal to damping force, and inertia force equal to spring 

force; (c) v/a} >> 1, exciting force nearly equal to inertia force. 

and 

For small values of ~, (X/X,)m,x = 1/2~" which is the value pertaining to rio) = 1; 
1/2~" is a measure of the damping in a system and is referred to as the Q factor. 

Both reciprocating and rotating unbalance in a system produce an exciting force of the 
inertia type and result in the amplitude of the exciting force being proportional to the 
square of the frequency of excitation. 

For an unbalanced body of mass mr at an effective radius r, rotating at an angular speed 
v, the exciting force is therefore m, rv ~. If this force is applied to a single degree of freedom 
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system such as that in Fig. 2.21, the component of the force in the direction of motion is 
2 �9 mrrv slnvt, and the amplitude of vibration is 

(m,/m)r(v/to) 2 
X = 4((1 - (v/to)2) 2 + (2r v/to)2)" (2.14) 

(see equation (2.13)). 

The value of v[to for maximum X found by differentiating equation (2.14) is given 
by 

(vlto)xm~, = l/~/(l - 2r 

that is, the peak of the response curve occurs when v > to. This is shown in Fig. 2.27. 
Also, 

Xmax = (mr/m)r/2~'~/(l - ~'2). 

It can be seen that away from the resonance condition (v[to = 1) the system response 
is not greatly affected by damping unless this happens to be large. Since in most 
mechanical systems the damping is small ( (  < 0.1) it is often permissible to neglect the 
damping when evaluating the frequency for maximum amplitude and also the amplitude- 
frequency response away from the resonance condition. 

L mrr 2 
increasing 

v m 

0 1 2 3 co 
Fig. 2.27. Amplitude-frequency response, with rotating unbalance excitation. 

It can be seen from Figs 2.24, 2.26 and 2.27 that the system response at low frequencies 
(.~to) is stiffness-dependent, and that in the region of resonance the response is damping- 
dependent, whereas at high frequencies (>>co) the response is governed by the system 
mass. It is most important to realize this when attempting to reduce the vibration of a 
structure. For example, the application of increased damping will have little effect if the 
excitation and response frequencies are in a region well away from resonance, such as that 
controlled by the mass of the structure. 
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2.3.2 Response of a viscous damped structure supported on a foundation 
subjected to harmonic vibration 

The system considered is shown in Fig. 2.28. The foundation is subjected to harmonic 
vibration A sin vt and it is required to determine the response, x, of the body. 

m ~  x 
. . . . .  l+ve 

k k 
c T y = A sin 

_ 

: . . . . .  - . 7 ,  

Fig. 2.28. Single degree of freedom model of a vibrated system with viscous damping. 

The equation of motion is 

,n~ = c ( p - ~ )  + k(y-x) .  (2.15) 

If the displacement of the body relative to the foundation, u, is required, we may write 
u = x - y ,  and equation (2.15) becomes 

mii  + cii + ku  = - m ~ ;  = m v z A  sin vt. 

This equation is similar to (2.11) so that the solution may be written directly as 

u = "4((1 (v[co)2)2 + (2~.v/co)2) sin vt - tan-' 2~'(v[o0) 
- ] - ( r i c o )  ~ �9 

If the absolute motion of the body is required we rewrite equation (2.15) as 

m~ + c~ + / ~  = c.~ + ky 

= c A v c o s v t  + kAs inv t  
= A~l(k 2 + (cv )  2) sin (v t  + or) 

where 

o~ = tan-' c v  
k 

Hence, from the previous result, 

A~l(k 2 + ( cv )  2) 
X = 

~l((k - mv2)  2 + (cv )  2) 
sin ( v t -  r + (x). 

The motion transmissibility is defined as the ratio of the amplitude of the absolute body 
vibration to the amplitude of the foundation vibration. Thus, 
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motion transmissibility - 
X 

A 

(v)21 , i 
2.3.2.1 Vibration isolation 

The dynamic forces produced by machinery are often very large. However, the force 
transmitted to the foundation or supporting structure can be rcduced by usi~Jg flexible 
mountings with the correct properties; alternatively a machine can be isolated from 
foundation vibration by using the correct flexible mountings. Fig. 2.29 shows a model of 
such a system. 

Fig. 2.29. Single degree of freedom system with foundation. 

The force transmitted to the foundation is the sum of the spring force and the damper 
force. Thus the transmitted force = kx + c.~ and FT, the amplitude of the transmitted force 
is given by 

F~ = ~/[(kX) ~ + (cvX)~]. 
The force transmission ratio or transmissibility, TR, is given by 

Fr X4[k 2 + (cv) 2] 
T R - 

F F 

since 
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Therefore the force and motion transmissibilities are the same. 
The effect of v[~ on TR is shown in Fig. 2.30. It can be seen that for good isolation 

v/fo>*12, hence a low value of co is required which implies a low stiffness, that is, a 
flexible mounting: this may not always be acceptable in practice where a certain minimum 
stiffness is usually necessary to satisfy operating criteria. 

6.0 
5.0 
4.0 

3.0 

2.0 

TR 1.0 

~=o 

~" increasing 

0.5 

P 
= , , . - -  

r 

0 ~ ~/2 2 
Fig. 2.30. Transmissibility-frequency ratio response. 

It is particularly important to be able to isolate vibration sources because structure- 
borne vibration can otherwise be easily transmitted to parts that radiate well, and serious 
noise problems can occur. Theoretically, low stiffness isolators are desirable to give a low 
natural frequency. However, this often results in isolators that are too soft and stability 
problems may arise. The system can be attached rigidly to a large block which effectively 
increases its mass so that stiffer isolators can be used. The centre of mass of the combined 
system is also lowered, giving improved stability. For the best response a mounting 
system may be designed with snubbers, which control the large amplitudes while 
providing little or no damping when the amplitudes are small. 

There are four types of spring material commonly used for resilient mountings and 
vibration isolation: air, metal, rubber and cork. Air springs can be used for very low- 
frequency suspensions: resonance frequencies as low as 1 Hz can be achieved whereas 
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metal springs can only be used for resonance frequencies greater than about 1.3 Hz. Metal 
springs can transmit high frequencies, however, so rubber or felt pads are often used to 
prohibit metal-to-metal contact between the spring and the structure. Different forms of 
spring element can be used such as coil, torsion, cantilever and beam. Rubber can be used 
in shear or compression but rarely in tension. It is important to determine the dynamic 
stiffness of a rubber isolator because this is generally much greater than the static stiffness. 
Also rubber possesses some inherent damping although this may be sensitive to ampli- 
tude, frequency and temperature. Natural frequencies from 5 Hz upwards can be achieved. 
Cork is one of the oldest materials used for vibration isolation. It is usually used in 
compression and natural frequencies of 25 Hz upwards are typical. 

Example 12 

A spring-mounted body moves with velocity v along an undulating surface, as shown. 
The body has a mass m and is connected to the wheel by a spring of stiffness k, and a 

viscous damper whose damping coefficient is c. The undulating surface has a wavelength 
L and an amplitude h. 

Derive an expression for the ratio of amplitudes of the absolute vertical displacement of 
the body to the surface undulations. 

. t i  l e m  - - - - - - - ,  

! 

L 
The system can be considered as 

where 

I x 

I l 
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y = h cos 

Hence 

y = h cos 

The FBDs are 

2uz  

2too 

and z = v t .  

t = h cos vt, where v - 
2rc u 

1 
I I 

k l x -  y) c l x -  ~') 

Hence the equation of motion is 

rn~ = - k ( x  - y )  - c(Yc - S'), 

o r  

Now 

m~+c~+~=c~+ /cy .  

y = h cos vt, 

s o  

m s  + cYc + k x  = ~/[k ~ + ( c v ) 2 ] h  sin (vt + r 

Hence, if x = Xo sin (vt + a) ,  then 

h~l[k 2 + (cv) 2] 

Xo = ~ / [ ( k  my2) 2 + (cv) 2] 

So, 

xo 

2] 

c) 2 } 

i , 

m x  

1 
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Example 13 

The vibration on the floor in a building is SHM at a frequency in the range 15-60 Hz. It 
is desired to install sensitive equipment in the building which must be insulated from floor 
vibration. The equipment is fastened to a small platform which is supported by three 
similar springs resting on the floor, each carrying an equal load. Only vertical motion 
occurs. The combined mass of the equipment and platform is 40 kg, and the equivalent 
viscous damping ratio of the suspension is 0.2. 

Find the maximum value for the spring stiffness, if the amplitude of transmitted 
vibration is to be less than 10% of the floor vibration over the given frequency range. 

7", = 0.1 with ~' = 0.2 is required, thus 

[1 - (_~)2] : ,  + [ 0 . 4 ( v ) ] 2  = 100[1 + (0.4-v)2], 

that is, 

(;)4 Iv) - -17.84 - - 9 9  = 0. 

Hence 

V 
-- 4.72. 

cO 

When 

Since 

v = 15 x 2~ rad/s, co = 19.97 rad/s. 

total k = 15 935 N]m, 

that is, the stiffness of each spring = 15 935/3 N/m = 5.3 kN[m. 
The amplitude of the transmitted vibration will be less than 10% at frequencies above 

15 Hz. 
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E x a m p l e  14 

A machine of mass m generates a disturbing force F sin vt; to reduce the force transmitted 
to the supporting structure, the machine is mounted on a spring of stiffness k with a 
damper in parallel. Compare the effectiveness of this isolation system for viscous and 
hysteretic damping. 

Viscous damping. From section 2.3.2.1, 2] 
T R  - -  - -  

Hysteretic damping. From section 2.2.6, 

c V  V 
Putting r/ - - 2~'--, 

k 

TR m 
F~ 

F 

4(1 + 0 =) 

+2} 
The effectiveness of these isolators can be compared using these expressions for TR. The 
results are given in the table below. 

It can be seen that the isolation effects are similar for the viscous and hysteretically 
damped isolators, except at high frequency ratios when the hysteretic damping gives much 
better attentuation of TR. At these frequencies it is better to decouple the viscous damped 
isolator by attaching small springs or rubber bushes at each end. 

Viscously damped 
isolator 

Hysteretically damped 
isolator 

Value of TR when v = 0 § 
Frequency ratio v[to for resonance 
Value of TR at resonance 

Value of TR when v[to = 42 
Frequency ratio v/to for isolation 
High frequency, v[to ~> 1, attenua- 
tion of T~ 

1 1 
1 l 

~/[1 + (2~) 21 l V(1 + 02t 

2r - 2~ r/ 

1 1 
> 42 >'42 

2~" 1 

,,/~o (v/w) ~ 

1 

1/ 
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Example 15 

A motor-generator set of mass 100 kg is installed using antivibration (AV) mountings 
which deflect 1 mm under the static weight of the set. The mountings are effectively 
undamped and from dynamic test results it is found that the static stiffness and the 
dynamic stiffness are the same. 

When running at 1480 rev]min the amplitude of vibration of the set is measured to be 
0.2 mm To reduce this vibration, it is proposed to fasten the motor generator to a concrete 
block of mass 300 kg which is then to be mounted on the same AV mounts as before. 
Calculate the new amplitude of vibration. 

For undamped mounts, 

X "- 
2 "  

k - m v  

Initially, 

X l  - -  

k -  ml  V2, 

and when on the block, 

F 
X 2  - -  _ 2~ 

k -  m 2 v  

that is, 

2 

x, k -- m 2V 
2 "  

x2 k -  m,v  

Now 

100 • 9.81 
k = = 981 x 103 N/m, 

0-3 1 

Thus 

27r • 1480 
v = = 155 rad/s, 

60 

m, = 100 kg and m2 = 400 kg. 

x, 981 x 103-  400 (155) 2 
. . . . . .  ~ . . . . . . . . . . . . . . . .  

x2 981 x 103-  100 (155) ~- 
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981 - 9600 
= = 6.07. 

981 - 2400 

Since 

0.2 
x~ = 0.2 mm, x2 - - 0.033 mm. 

6.07 

Example 16 

A machine of mass 550 kg is flexibly supported on rubber mountings which provide a 
force proportional to displacement of 210 kN/m, together with a viscous damping force. 
The machine gives an exciting force of the form Rv 2 cos vt, where R is a constant. At very 
high speeds of rotation, the measured amplitude of vibration is 0.25 mm, and the 
maximum amplitude recorded as the speed is slowly increased from zero is 2 mm. Find 
the value of R and the damping ratio. 

Now, 

= _ v ~ )  ~ ~ X Rv~/(,/(k m + c v ) .  

If v is large, 

X--->Rv2/(4(m2v*)) = Rim. 

Hence 

R = mX = (550 • 0.25)/1000 = 0.1375 kg m. 

For maximum X, dX/dv = 0, hence v 2 = 2k2](2mk- c2), and 

Xmax 
R/2m 

~'~/(1 - ~.2). 

So 

~'~/(1 - ~2) = R/(2mXm.~,,) = 0.1375/(2 • 550 x 2 x 10 -3) = 0.0625, 

that is, 

~' = 0.0625. 

2.3.3 Response of a Coulomb damped structure to a simple harmonic 
exciting force with constant amplitude 

In the system shown in Fig. 2.31 the damper relies upon dry friction. 
The equation of motion is non-linear because the constant friction force F,~ always 

opposes the motion: 

m.~ + kx + F,~ = F sin vt. 
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Fig. 2.31. Single degree of freedom model of a forced system with Coulomb damping. 

If F,, is large compared to F, discontinuous motion will occur, but in most structures Fa is 
usually small so that an approximate continuous solution is valid. The approximate 
solution is obtained by linearizing the equation of motion; this can be done by expressing 
F~ in terms of an equivalent viscous damping coefficient, c,~. From section 2.2.6, 

4F~ 
Ca ! 

nvX 

a s  

The solution to the linearized equation of motion gives the amplitude X of the motion 

X 
F 

"~[(k - mv2) 2 + (car)Z] " 

Hence 

X ._ ~/[(k- my2) :z + (4F, J ~ 2 ]  ' 

that is, 

X ~/(1 - (4F, Jn'F) 2) 

This expression is satisfactory for small damping forces, but breaks down if 4FJ~rF < 1; 
that is, Fa > (Tr/4)F. 

At resonance the amplitude is not limited by Coulomb friction. 

2.3.4 Response of a hysteretically damped structure to a simple harmonic 
exciting force with constant amplitude 

In the single degree of freedom model shown in Fig. 2.32 the damping is hysteretic. 
The equation of motion is 

m~ + k*x = F sin vt. 

Since 
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Fig. 2.32. Single degree of freedom model of a forced system with hysteretic damping. 

k* = k(1 + jr/),  

F sin vt 
X ~ . . . . . .  

( k -  mv 2) + jr/k 

and 

X 1 

x,  4([1 - (v/co)~l ~ + o~)" 

This result can also-be--obtained from the analysis of a viscous damped system by 
substituting c = rlk/v. 

It should be noted that if c = ok]v, at resonance c = rl'~(km); that is, 
o = 2~ = 1/Q. 

1 
Since Q - 

17 

if a structure is made from a concrete material for which r/ = 0.02, a Q factor of 50 may 
be expected. For a steel, with 77 = 0.005 a Q factor of 200 may be expected and for a cast 
iron with r/ = 0.01, Q = 100. In practice Q values very much lower than these occur, 
often by an order of magnitude; that is, Q factors of 10 or less are common. Most of the 
additional damping found in structures originates in the joints between the connected 
components of the structure. Joint damping is often the most significant form of damping 
in a structure and keeps the dynamic response to acceptable levels; it is fully discussed in 
Chapter 5. 

2.3.5 Response of a structure to a suddenly applied force 

Consider a single degree of freedom undamped system, such as the system shown in Fig. 
2.33, which has been subjected to a suddenly applied force, F. The equation of motion is 
m~ + kx = F. The solution to this equation comprises a complementary function 
A sin cot + B cos ~ ,  where co = ~(k/m) rad/s together with a particular solution. The 
particular solution may be found by using the D-operator. Thus the equation of motion can 
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Fig. 2.33. Single degree of freedom model with constant exciting force. 

be written 

1 +  x -  
k 

and 

x= I + C02] -k- = I---~-... k =-k-; 

that is, the complete solution to the equation of motion is 

x = A s i n t o t  + B c o s t o t  + 
F 

k 

If the initial conditions are such that x = g = 0 at t = 0, then B = - F/k and A = 0. 
Hence 

F 
x = - -  ( 1 -  cos tot). 

k 

The motion is shown in Fig. 2.34. It will be seen that the maximum dynamic 
displacement is twice the static displacement occurring under the same load. This is an 
important consideration in structures subjected to suddenly applied loads. 

If the structure possesses viscous damping of coefficient c, the solution to the equation 
of motion is x = Xe -r sin (oovt + t~) + F/k. 

x 

Fig. 2.34. Displacement-time response for the system shown in Fig. 2.33. 
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With the same initial conditions as above, 

( x = - -  1 -  sin a,~(1-~'2)t  + tan-' . 
k ~/(~ - ~~) ( 

This reduces to the undamped case if ~" = 0. The response of the damped system is shown 
in Fig. 2.35. 

X 

Fig. 2.35. Displacement--time response for a single degree of freedom system with viscous damping. 

2 . 3 . 6  S h o c k  e x c i t a t i o n  

Some structures are subjected to shock or impulse loads arising from suddenly applied, 
non-periodic, short-duration exciting forces. 

The impulsive force shown in Fig. 2.36 consists of a force of magnitude Fma,Je which 
has a time duration of e. 

Fm tlx 

I �9 

_l I . . . .  

J - l e t  

L 
11 II I | �9 

Fig. 2.36. Impulse. 

The impulse is equal to 

' " dt. 
! 

When F,,x is equal to unity, the force in the limiting case e ~ 0  is called either the unit 
impulse or the delta function, and is identified by the symbol 8 ( t -  ~j), where 

Io 8(t ~)d~ = 1. 
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Since F d t =  m dr, the impulse Fm,x acting on a body will result in a sudden change in 
its velocity without an appreciable change in its displacement. Thus the motion of a single 
degree of freedom system excited by an impulse F,,~ corresponds to free vibration with 
initial conditions x = 0 and ~ = vo = F,,,~m at t = 0. 

Once the response g(t), say, to a unit impulse excitation is known, it is possible to 
establish the equation for the response of a system to an arbitrary exciting force F(t). For 
this the arbitrary pulse is considered to comprise a series of impulses as shown in Fig. 
2.37. 

Fig. 2.37. Force-time pulse. 

If one of the impulses is examined which starts at time ~, its magnitude is F(dj)&~j, 
and its contribution to the system response at time t is found by replacing the time with the 
elapsed time ( t-  ~) as shown in Fig. 2.38. 

If the system can be assumed to be linear, the principle of superposition can be applied, 
so that 

F t  

x(t) = L FC~ )gCt- ~)d~. 
This is known as the Duhamel integral. 

2.3.7 Wind- or current-excited oscillation 

A structure exposed to a fluid stream is subjected to a harmonically varying force in a 
direction perpendicular to the stream. This is because of eddy, or vortex, shedding on 
alternate sides of the structure on the leeward side. Tall structures such as masts, bridges 
and chimneys are susceptible to excitation from steady winds blowing across them. 
Consider a circular cylinder of diameter D exposed to a fluid which flows past the cylinder 
with a velocity o. When o is large enough, vortices are formed in the wake which are shed 
in a regular pattern over a wide range of Reynolds' numbers. 

Reynolds number - 
vDp 

la 
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Fig. 2.38. Displacement-time response to impulse. 

where p and/1 are the mass density and viscosity of the fluid, respectively. 
The vortices are shed from opposite sides of the cylinder with a frequency fs. The 

Strouhal number relates the excitation frequency, f,, to the velocity of fluid flow, u (m/s), 
and the hydraulic mean diameter, D(m), of the structure as follows: 

Strouhal number - 
f~D 

11 

This vortex shedding causes an alternating pressure on each side of the cylinder, which 
acts as a harmonically varying force which is perpendicular to the direction of the 
undisturbed flow of magnitude 

I 2 
~Ct,pu A 

where CD is the drag coefficient and A is the projected area of the cylinder perpendicular 
to the direction of flow. If the frequency f~ is close to the natural frequency of the structure, 
resonance may occur. 

For a structure, 

4 x area of cross-section 
D . ~  

circumference 

so that for a chimney of circular cross-section and diameter d, 

4(x/4) d 2 
D =  = d ,  

;car 

and for a building of rectangular cross-section a x b, 
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4ab 2ab 
O = = 

2(a + b) (a + b) 

Experimental evidence suggests a value of 0.2-0.24 for the Strouhal number for most 
flow rates and wind speeds encountered. This value is valid for Reynolds numbers in the 
range 3 x 103-  3.5 x 106. 

For a comprehensive discussion of this form of excitation see Flow Induced Vibration 
by R. D. Blevins (Van Nostrand, 1977). 

Example 17 

For constructing a tanker terminal in a river estuary a number of cylindrical concrete piles 
were sunk into the river bed and left free-standing. Each pile was 1 m in diameter and 
protruded 20 m out of the river bed. The density of the concrete was 2400 kg/m ~ and the 
modulus of elasticity 14 x 10 '~ kN/m 2. Estimate the velocity of the water flowing past a 
pile which will cause it to vibrate transversely to the direction of the current, assuming a 
pile to be a cantilever and taking a value for the Strouhal number 

fsD 
- 0.22, 

1) 

where f~ is the frequency of flexural vibrations of a pile, D is the diameter and o is the 
velocity of the current. 

Consider the pile to be a cantilever of mass m, diameter D and length l; then the 
deflection y at a distance x from the root can be taken to be y = yt(1 - cos ~c[21), where 
yt is the deflection at the free end. 

Thus 
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d2y ~r nrx 
dx 2 - y~ cos 

l~o E ~ ~ 2 ) 2  dx = Ell~oy2 (_~/)4 cos2(_~)dx  

= Elyt2 1 

2m/3 4)1 
= Y ' - 1 ~ 2 -  

Hence 

.0  ~___ 

(~) 4 l 
Elyl2 --2-i 2 

2m ( 3 41i" 
Y' --i- \ 2  - --~] 

Substituting numerical values gives to = 5.53 rad/s, that is, f = 0.88 Hz. When 
fs = 0.88 Hz resonance occurs; that is, when 

fsD 0.88 
o - - - 4 m/s. 

0.22 0.22 

2.3.8 Harmonic analysis 

A function that is periodic but not harmonic can be represented by the sum of a number 
of terms, each term representing some multiple of the fundamental frequency. In a linear 
system each of these harmonic terms acts as if it alone were exciting the system, and the 
system response is the sum of the excitation of all the harmonics. 

For example, if the periodic forcing function of a single degree of freedom undamped 
system is 

F, sin (vt + a,) + F2 sin (2vt + oh) + F3 sin (3vt + tx3) 
+ ... + F, sin (nvt + an), 

the steady-state response to F, sin (vt + r is 
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El 
sin (vt + a , ) ,  

and the response to/72 sin (2vt + ~ )  is 

F 
sin(2vt + ~ ) ,  

and so on, so that 

F. 

x k( sin (nvt + a.).  

Clearly that harmonic that is closest to the system natural frequency will most influence 
the response. 

A periodic function can be written as the sum of a number of harmonic terms by writing 
a Fourier series for the function. A Fourier series can be written 

F(t) = 

o o  

ao 
+ (a~ cos n vt + b ,  sin n vt), 

n"-I 

where 

ao = F(t)dt ,  
o 

a,  = F(t)  cos vtdt ,  

and 

b, = F(t) sin vtdt .  

For example, consider the first four terms of the Fourier series representation of the square 
wave shown in Fig. 2.39 to be required; 1: = 2n: so v = 1 rad/s. 

ao 
F(t) = 

2 
+ a~ cos vt  + a2 COS 2Vt + ... 

+ b~ sin vt + b2 sin 2vt + .... 
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Fit) [ 

- 1  

..... ]4~t -Sn t 

Fig. 2.39. Square wave. 

21 , ao = - -  F ( t ) d t  = 
"r o 

l d t  + 
2~  ,~ 

- l d t = 0 ,  

ai = F ( t )  cos vtdt 

2fv 
21r o 

cos wdt  + 212~ - c o s  vtdt = 0. 
2ff 

Similarly 

a 2 = a 3  = . . .  = 0 .  

2 S" bt  = - -  F ( t )  s i n  v t d t  
"t" o 

2~ 
sin vtdt + 

27r 
212" 

2/r ,, 
- sin vtdt 

/iv 

x [ - cos Vt]o + [cos vt]~," 
4 

Since v = 1 rad/s, 

4 
b l  - ' ~ "  

/17 

It is found that b2 = 0, b3 = 4/3Jz and so on. Thus  

4[ , , , ] 
F(t)  = - -  s i n t  + - - s i n 3 t  + - - s i n 5 t  + - - s i n 7 t  + ... 

7t 3 5 7 
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is the series representation of the square wave shown. 
If this stimulus is applied to a simple undamped system with to = 4 rad/s, say, the 

steady-state response is given by 

4 4 4 4 
sin t sin 3t sin 5t sin 7t 

7r 37r 57r 7n~ 
X =  + + + 

1 - ( ' ) ~  ] - (~)~ 1 - (~)~ 1 - (11 ~ . . . .  

that is, x = 1.36 sin t + 0.97 sin 3t - 0.45 sin 5t - 0.09 sin 7t - . . .  
Usually three or four terms of the series dominate the predicted response. 
It is worth sketching the components of F(t) above to show that they produce a 

reasonable square wave, whereas the components of x do not. This is an important 
result. 

2.3.9 Random vibration 

If the vibration response parameters of a dynamic system are accurately known as 
functions of time, the vibration is said to be deterministic. However, in many systems and 
processes responses cannot be accurately predicted; these are called random processes. 
Examples of a random process are turbulence, fatigue', the meshing of imperfect gears, 
surface irregularities, the motion of a car running along a rough road and building 
vibration excited by an earthquake. Fig. 2.40 shows a random process. 

Variable (t) 

/1 

v 

Fig. 2.40. Example random process variable as a function of t. 

A collection of sample functions x,(t), x2(t), x3(t) ..... x,(t) which make up the random 
process x(t) is called an ensemble, as shown in Fig. 2.41. These functions may comprise, 
for example, records of noise, pressure fluctuations or vibration levels, taken under the 
same conditions but at different times. 

Any quantity that cannot be precisely predicted is non-deterministic and is known as a 
random variable or a probabilistic quantity; that is, if a series of tests is conducted to find 
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the value of a particular parameter x and that value is found to vary in an unpredictable 
way that is not a function of any other parameter, then x is a random variable. 

x .  (r) 

x 1 (r) 

x3(r) 

x2(t) 

Fig. 2.41. Ensemble of a random process. 

2.3.9.1 Probability distribution 

If n experimental values of a variable x are x,, x2, x3 ..... x,,, the probability that the value 
of x will be less than x' is n'/n, where n' is the number of x values that are less than or equal 
to x'; that is, 

Prob (x <~ x') = n']n. 

When n approaches oo this expression is the probability distribution function of x, denoted 
by P(x), so that 

P(x) = Lt (n'/n) 

The typical variation of P(x) with x is shown in Fig. 2.42. Since x(t) denotes a physical 
quantity, 

Prob (x < - , ~ )  = 0, and Prob (x < + ,,~) = 1. 
The probability density function is the derivative of P(x) with respect to x and this is 
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P(x) 

[Ch. 2 

P(x + ~ )  

P(x) 

. . . . . . . . . . . . . .  

0 x x + ~u~' x 

Fig. 2.42. Probability distribution function as a function of x. 

denoted by p(x); that is, 

p(x )  - 
dP(x) 

d(x) 

P(x + Ax) - P(x) ] 
= Lt 

~ 1 - - - ~  

w h e r e  P(x  + ~oc) - P(x)  is the probability that the value of x(t) will lie b e t w e e n  x and 
x + Ax (Fig. 2.42). Now, 

p(x)  - 
dP(x) 

d(x) 

so that 

Hence 

I 
. I f  

P(x) = p(x)dx. 

p(oo) = j__ p ( x ) d x  = l,  

so that the area under the probability density function curve is unity. 
A random process is stationary if the joint probability density 

p ( x ( t , ) ,  x(t~), x(t~) . . . .  ) 
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depends only upon the time differences t2 -  t~, t3 - t2 and so on, and not on the actual time 
instants; that is, the ensemble will look just the same if the time origin is changed. A 
random process is ergodic if every sample function is typical of the entire group. 

The expected value off(x), which is written 

E ~ x ) ]  or fix), 

is 
r.. 

eIl~x)] = j~X) = j__ ~x)p(x~dx, 

so that the expected value of a stationary random process x(t) is 

E[x(t~)] = E[x(t, + t)] 

for any value of t. 
Iff(x) = x, the expected value or mean value of x, 

E[x] or 2, is 

E[x] = ~ = J~ xp(x)dx. 
A 

In addition, if f (x) = x z, the mean square value ~ 2 of x is 

Etx~] = ~ ~ = I ~  x~pfx)dx" 

The variance of x, o'2, is the mean square value of x about the mean, that is, 

o ~ = E[ (x -  y)~] = I__" ( x -  Y)~p(x)dx = ( y ' ) -  (Y)~. 

tr is the standard deviation of x, hence 

variance = (standard deviation) ~ = {mean squa re -  (mean) z} 

If two (or more) random variables x, and x2, represent a random process at two different 
instants of time, then 

E ~ x , , x 2 ) ] = ~ I ~ f ( x , , x 2 ) p ( x , , x 2 ) d x , d x 2 ,  

and if t~ and tz are the two instants of time, 

E[x(t,),x(t2)] = R(t,,t2), 

which is the auto-correlation function for the random process (Fig. 2.43). 
For random processes that are stationary, 

E[x(t,), x(t2)] = R(t~, t2) = R ( t 2 -  t,) = R(r), 

say, since the average depends only upon time differences. If the process is also 
ergodic, 
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then 

R('r) = Lt 
T ~  ltrl- r x(t)x(t + z)dt. 

7" 

It is worth noting that 

R(O) = E[x(t) 2] = Lt x2(t)dt, 
T - - * ~  T 

which is the average power in a sample function. 

~n(t) 

[Ch. 2 

xl(t) 

x2(r) 

x3(t) 

Fig. 2.43. Random processes. 

2.3.9.2 Random processes 

The most important random process is the Gaussian, or normal random process. This is 
because a wide range of physically observed random waveforms can be represented as 
Gaussian processes, and the process has mathematical features which make analysis 
relatively straightforward. 

The probability density function of a Gaussian process x(t) is 
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! 
exo - , p(x) = ~/(2~)G - tr 

where tr is the standard deviation of x, and .~ is the mean value of x. 
The values of G and ~ may vary with time for a non-stationary process but are 

independent of time if the process is stationary. 
One of the most important features of the Gaussian process is that the response of a 

linear system to this form of excitation is usually another, but still Gaussian, random 
process. The only changes are that the magnitude and standard deviation of the response 
may differ from those of the excitation. 

A Gaussian probability density function is shown in Fig. 2.44. It can be seen to be 
symmetric about the mean value ~, and the standard deviation o" controls the spread. 

p(x) 

/ \ \ I ncreasing a 

0 x x 

Fig. 2.44. Gaussian probability density function. 

The probability that x(t) lies between - AG and + 3,G, where ~ is a positive number, can 
be found since, if.~ = 0, 

I § 1 ( 1 x2 ) 
Prob { -A,a<~x(t)<~ + A6} = -a,, ~/(2~)a exp - 2 0  ~ dx. 
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Fig. 2.45 shows the Gaussian probability density function with zero mean. 

p(x) 

< x(r) <~ +Xa} 

_ I//'////Z,,'///;,'A 
' ~  X 

-Xa 0 +Xb 
Fig. 2.45. Gaussian probability density function with zero mean. 

This integral has been calculated for a range of values of Z; the results are given in the 
table opposite. The probability that x(t) lies outside the range - Act to + Zty is 1 minus the 
value of the above integral; this probability is also given. 

2.3.9.3 Spectral density 

The spectral density S(to) of a stationary random process is the Fourier transform of the 
autocorrelation function R(z). It is given by 

S(to) = R(7)e-J~d'r. 

The inverse, which also holds true, is 

R('r) = I ~  S(to)e-J~"dto" 

If z = 0  

R(0) = ~ S(to)dto = E[x2], 

that is, the mean square value of a stationary random process x is the area under the S(to) 
against frequency curve. A typical spectral density function is shown in Fig. 2.46. 



Value of Z Prob 
[- ,~o ~x( t) ~ ~,o] 

Prob 
[Ix(t)l > 2o'] 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

0 
0.1585 
0.3108 
0.4515 
0.5763 
0.6827 
0.7699 
0.8586 
0.89~ 
0.9281 
0.9545 
0.9722 
0.9835 
0.9907 
0.9949 
0.9973 
0.9986 
O.9993 
0.9997 
0.9998 
0.9999 

, , ~ ~ 

-Xo  0 +Xo x 

1.0000 
0.8415 
0.6892 
0.5485 
0.4237 
0.3173 
0.2301 
0.1414 
0.1096 
0.0719 
0.0455 
0.0278 
0.0164 
0.0093 
0.0051 
0.0027 
0.00137 
0.00067 
0.00032 
0.00014 
0.00OO6 

$(o) 

Fig. 2.46. 

o 

Typical spectral density function. 



80 The vibration of structures with one degree of freedom [Ch. 2 

A random process whose spectral density is constant over a very wide frequency range 
is called white noise. If the spectral density of a process has a significant value over a 
narrower range of frequencies, but one that is nevertheless still wide compared with the 
centre frequency of the band, it is termed a wide-band process (Fig. 2.47). If the frequency 
range is narrow compared with the centre frequency it is termed a narrow-band process 
(Fig. 2.48). Narrow-band processes frequently occur in engineering practice because real 
systems often respond strongly to specific exciting frequencies and thereby effectively act 
as a filter. 

x(t) 

vV vVv 

i _ |11 , , , ,  

" ' v 

0 aJ 

Fig. 2.47. Wide-band process. 

2.3.10 The measurement  of vibration 

The most commonly used device for vibration measurement is the piezoelectric 
accelerometer, which gives an electric signal proportional to the vibration acceleration. 
This signal can readily be amplified, analysed, displayed, recorded, and so on. The 
principles of this device can be studied by referring to Fig. 2.49 which shows a body of 
mass m supported by an elastic system of stiffness k and effective viscous damping of 
coefficient c. 

This dynamic system is usually enclosed in a case which is fastened to the surface 
whose vibration is to be measured. The body has a pointer fixed to it, which moves over 
a scale fastened to the case, that is, it measures u, the motion of the suspended body 
relative to that of the vibrating surface so that u = x -  y. 
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Approx 
2 n l ~  o 

AA...oA A A A.^.oA ~_..^ A 

"r 

Fig. 2.48. 

S~ to) 

0 +to o 

Narrow-band process. 

Now from section 2.3.2, the amplitude of u is 

+ } 

so that if to is low and v >>co, 

Fig. 2.49. Vibration measuring device. 
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A(v/co) 
U - - - ~  = A, 

(v/co) 2 

that is, the device measures the input vibration amplitude; when operating in this mode it 
is called a vibrometer, and if to is high so that to -> v, then 

A(v/to) 2 1 
= iAv 2, 

1 to 

that is, the device measures the input vibration acceleration amplitude; when operating in 
this mode it is called an accelerometer. 

By adjusting the system parameters correctly it is possible to make 

have a value close to unity for exciting frequencies v up to about 0.3ca Commercial 
accelerometers usually have piezoelectric elements instead of a spring and damper, so that 
the electric signal produced is proportional to the relative motion, u, above. 

Piezoelectric accelerometers are widely used for measuring the vibration of structures. 
The output of these accelerometers is governed by their sensitivity; in general the larger 
and therefore the heavier the accelerometer, the greater its sensitivity and the greater the 
output for a given excitation g-level. However, accelerometers have to be attached to the 
structure and large accelerometers may affect the response of the structure due to their 
added mass and they may also have a limited frequency range. Smaller accelerometers 
have stiffer piezoelectric elements which are less sensitive but can operate at higher 
frequencies. The output of piezoelectric accelerometers is easily amplified, analysed and 
recorded. 

Strain gauges are also often used to measure the dynamic response of a structure. These 
rely on the change in resistance of a wire caused by a change in its length. Dynamic 
measurements require using an a.c. bridge circuit, the carrier frequency used determining 
the range of frequency measurements possible. These gauges are cheap and easy to apply 
to a structure, and the bridge output is easily recorded and analysed. 

Non-contacting capacitance and impedance transducers are also sometimes used. 



3 
The vibration of structures with more than 
one degree of freedom 

Many real structures can be represented by a single degree of freedom model. However, 
inost actual structures have several bodies and several restraints and therefore several 
degrees of freedom. The number of degrees of freedom that a structure possesses is equal 
to the number of independent coordinates necessary to describe the motion of the system. 
Since no body is completely rigid, and no spring is without mass, every real structure has 
more than one degree of freedom, and sometimes it is not sufficiently realistic to 
approximate a structure by a single degree of freedom model. Thus, it is necessary to 
study the vibration of structures with more than one degree of freedom. 

Each flexibly connected body in a multi-degree of freedom structure can move 
independently of the other bodies, and only under certain conditions will all bodies 
undergo a harmonic motion at the same frequency. Since all bodies move with the same 
frequency, they all attain their amplitudes at the same time even if they do not all move in 
the same direction. When such motion occurs the frequency is called a natural frequency 
of the structure and the motion is a principal mode of vibration: the number of natural 
frequencies and principal modes that a structure possesses is equal to the number of 
degrees of freedom of that structure. The deployment of the structure at its lowest or first 
natural frequency is called its first mode, at the next highest or second natural frequency 
it is called the second mode, and so on. 

A two degree of freedom structure will be considered initially. This is because the 
addition of more degrees of freedom increases the labour of the solution procedure but 
does not introduce any new analytical principles. 

Initially, we will obtain the equations of motion for a two degree of freedom model, and 
from these find the natural frequencies and corresponding mode shapes. 

Some examples of two degree of freedom models of vibrating structures are shown in 
Figs 3.1 (a)-(e). 
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3.1 THE VIBRATION OF S T R U C T U R E S W I T H  TWO DEGREES OF 
F R E E D O M  

3.1.1 Free vibration of an undamped structure 

Of the examples of two degree of freedom models shown in Fig. 3.1(a)-(e), consider 
the system shown in Fig. 3.1(a). If xR > x2 the FBDs are as shown in Fig. 3.2. 

Fig. 3.1(a). Linear undamped system, horizontal motion. Coordinates x, and xz. 

Fig. 3. l(b). System with combined translation and rotation. Coordinates x and O. 

Fig. 3.1(c). Shear frame. Coordinates x~ and x2. 

Fig. 3.1 (d). Two degree of freedom model, rotation plus translation. Coordinates y and 0. 
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Fig. 3.1(e). Two degree of freedom model, translation vibration. Coordinates x, and x2. 

Fig. 3.2. (a) Applied forces, (b) effective forces. 

The equations of motion are therefore, 

m~.~l  = - k ~ x ,  - k ( x ,  - x2) for body 1, (3.1) 

and 

m ~ ' 2  = k ( x ,  - x2) - k~2 for body 2. (3.2) 

The same equations are obtained if x~ < x2 is assumed because the direction of the central 

spring force is then reversed. 
Equations (3.1) and (3.2) can be solved for the natural frequencies and corresponding 

mode shapes by assuming a solution of the form 

x, = A~sin(tot + gt)and x2 = A2sin(tot + gt). 

This assumes that xt and X 2 oscillate with the same frequency to and are either in phase or 
~r out of phase. This is a sufficient condition to make to a natural frequency. 
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Substituting these solutions into the equations of motion gives 

-m~A~to2sin(t0t + gr = -  k~A~sin(tot + gr k ( A , -  A2)sin(tot + gt) 

and 

-m2A2~sin(cot + ~r) = k(A,-A2)sin(cot + ~ ) -  k2A2sin(cot + gt). 

Since these solutions are true for all values of t, 

A,(k + k , -  m,a~) + A2(-k) = 0 (3.3) 

and 

A,(-k) + A2(k2 + k -  m2co 2) = 0. (3.4) 

A~ and A2 can be eliminated by writing 

I k + k l -  m,co 2 -k  

-k k + k 2 -  m2co 2 
= 0  

(3.5) 

This is the characteristic or frequency equation. Alternatively, we may write 

A,]A2 = k[(k + k , -  m , ~ )  from (3.3) 

and (3.6) 

A,]A2 = (k2 + k -  m2o~)]k from (3.4) 

Thus 

k](k + k , -  m,a~) = (k2 + k -  m2t.~)/k 

and 

(k + k , -  m,a~)(k2 + k -  m2o.~)- k2= O. (3.7) 

This result is the frequency equation and could also be obtained by multiplying out the 
above determinant (equation (3.5)). 

The solutions to equation (3.7) give the natural frequencies of free vibration for the 
system in Fig. 3.1(a). The corresponding mode shapes are found by substituting these 
frequencies, in turn, into either of equations (3.6). 

Consider the case when k, = k2 = k, and ml = m2 = m. The frequency equation is 
( 2 k -  m ~ )  2 - k 2 --- 0; that is, 

m 4mka~ + 3k 2 O, or ( m a ~ -  k)(mto 2 3k) = 0. 

Therefore, either mto 2 - k = 0 or m ~ -  3k = 0. 
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Thus 

If 

and if 

to, = ~/(k{m) rad/s and tth = ~(3k/m)rad/s. 

to = "4(k/m) rad/s, (A,/A2)~,. vtk/,,,, = + 1, 

to = ~J(3k[m) rad/s, (A,]A2)~,_ ,~,3,/,,,, = -1. (from 3.6) 

This gives the mode shapes corresponding to the frequencies to, and o~. Thus, the first 
mode of free vibration occurs at a frequency (1/2x)~/(k/m) Hz and (A,]A2) ~ = 1, that is, the 
bodies move in phase with each other and with the same amplitude as if connected by a 
rigid link (Fig. 3.3). The second mode of free vibration occurs at a frequency 
( l ]2~) '4(3k /m)  Hz and (A, /A2)" = -1, that is, the bodies move exactly out of phase with 
each other, but with the same amplitude (see Fig. 3.3). 

Fig. 3.3. Natural frequencies and mode shapes for two degree of freedom translation vibration 
system. Bodies of equal mass and springs of equal stiffness. 

3.1.1.1 Free motion 

The two modes of vibration can be written 

{ }. { }. X_L A~ 
= -7-  sin(co, t + ~ )  



88 The vibration of structures with more than one degree of freedom [Oh. 3 

and 

{/ { / x__2_t A~ 

X2 "- - ~ 2  
sin(rod + ~2), 

where the ratio AJA2 is specified for each mode. 
Since each solution satisfies the equation of motion, the general solution is 

{ / { / x_2_~ A~ 

X2 = 

{ }" Al 
sin(rOd + ~ )  + --7- sin(%t + ~2), 

where A,, A2, ~',, ~2 are found from the initial conditions. 
For example, for the system considered above, if one body is displaced a distance X and 

released, 

x,(O) = X and x2(0) = .~,(0) = Jr2(0) = 0, 

where x,(0) means the value of xt when t = 0, and similarly for x2(0), ~t(0) and ,t2(0). 
Remembering that in this system co, = ~l(k]m), r~ = ~](3k]m), and 

- + ,  and , 

we can write 

x~ = sin(~l(k/m)t + Igt) + sin(~l(3k/m)t + ~r2), 

and 

x2 = sin(~/(k/m)t + ~ 6 ) -  sin(~l(3k/m)t + ~r2). 

Substituting the initial conditions x~(0) = X and x2(0) = 0 gives 

X = sin ~q + sin IF2 

and 

0 = sin ~ q -  sin ~2, 

that is, 

sin ~ = sin ~2 = X[2. 

The remaining conditions give cos ~ = cos ~5 = 0. 
Hence 

x, = (X/2) cos ~l(k/m)t + (X/2)cos~/(3k/m)t, 
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and 

x2 = (X/2)cos~](k/m)t-  (X/2)cos~/(3k/m)t. 

That is, both natural frequencies are excited and the motion of each body has two 
harmonic components. 

3.1.2 Coordinate coupling 

In some structures the motion is such that the coordinates are coupled in the equations of 
motion. Consider the system shown in Fig. 3.1 (b); only motion in the plane of the figure 
is considered, horizontal motion being neglected because the lateral stiffness of the 
springs is assumed to be negligible. The coordinates of rotation, 0, and translation, x, are 
coupled as shown in Fig. 3.4. G is the centre of mass of the rigid beam of mass m and 
moment of inertia I about G. 

Fig. 3.4. Two degree of freedom model, rotation plus translation. 

The FBDs are shown in Fig. 3.5; since the weight of the beam is supported by the 
springs, both the initial spring forces and the beam weight may be omitted. 

Fig. 3.5. (a) Applied forces, (b) effective force and moment. 

For small amplitudes of oscillation (so that sin 0 = 0) the equations of motion are 

m~ = - k , ( x -  L,8)  - k2(x + L2O) 
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and 

tO = k,(x- L~O)Lt - kz(x + laO)la, 

that is, 

mX + (k, + k 2 ) x -  ( k , L , -  k2Ia)O = 0 

and 

I O -  (k ,L,  - k2L2)x + (k ,L,  2 + k2L22)O = O. 

It will be noticed that these equations can be uncoupled by making k,Lt  = k2L2, if this 
is arranged, translation (x motion) and rotation (0 motion) can take place independently. 
Otherwise translation and rotation occur simultaneously. 

Assuming x = At s in(~ + ~) and 0 = A2 sin(mot + ~), substituting into the equations 
of motion gives 

-mto2A,  + (kt + k 2 ) A , -  ( k t L , -  k2I.a)A2 = 0 

and 

- IrmA2 - (k,Lt  - k2L2)At + (k tL 12 + k2Ia2)A2 = O, 

that is, 

A~(k, + k2 - m t ~ )  + A2( - (k tL ,  - k2L2)) = 0 

and 

A , ( - ( k t L ,  - k2L2)) + A2(k,L,  2 + k2L2 2 - I t S )  = O. 

Hence the frequency equation is 

k, + k2 - mto 2 

-(k,L, - k~L~) 

- ( k , L t  - k2L2) 

kiLl  2 + k2L2 2 -  16.0 2 
= 0 .  

For each natural frequency, there is a corresponding mode shape, given by AJA2.  

Example 18 

When transported, a space vehicle is supported in a horizontal position by two springs, as 
shown. The vehicle can be considered to be a rigid body of mass m and radius of gyration 
h about an axis normal to the plane of the figure through the mass centre G. The rear 
support has a stiffness kt and is at a distance a from G while the front support has a 
stiffness k2 and is at a distance b from G. The only motions possible for the vehicle are 
vertical translation and rotation in the vertical plane. 



Sec. 3.1 ] The vibration of structures with two degrees of freedom 91 

Write the equations of small amplitude motion of the vehicle and obtain the frequency 
equation in terms of the given parameters. 

Given that k,a = k2b, determine the natural frequencies of the free vibrations of the 
vehicle and sketch the corresponding modes of vibration. Also state or sketch the modes 
of vibration if k,a ~ k2b. 

The FBDs are as below: 

The equations of motion are 

k,(y + aO) + k2(y- bO) = - m y  

and 

k,(y + aO)a- k2(y-  bO)b =-mh20. 

Assuming 

y = Ysinvt  and 0 =  Osinvt ,  

these give 

Y(k, + k2 -  m v 2) + O(k ,a -  k2b) = O, 

and 
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Y ( k t a -  k2b) + O(k~a 2 + k2b 2 -  mh2v  2) = O. 

The frequency equation is, therefore, 

(k, + k2 - mv2)(k,a 2 + k2b 2 - mh2v 2) - (k ,a - k2b) 2 = O. 

If kta = k2b, motion is uncoupled so 

k, + k2 rad/s and v2 rad/s; 
m mh 2 

v~ is the frequency of a bouncing or translation mode (no rotation): 

. . . . . . .  

v~ is the frequency of a rotation mode (no bounce): 

[Ch. 3 

I I . . . . .  

If k,a ~ k2b, the modes are coupled: 

Example 19 

In a study of earthquakes, a building is idealized as a rigid body of mass M supported on 
two springs, one giving translational stiffness k and the other rotational stiffness kr as 
shown. 

Given that Ic is the mass moment of inertia of the building about its mass centre G, 
write down the equations of motion using coordinates x for the translation from the 
equilibrium position, and 0 for the rotation of the building. 

Hence determine the frequency equation of the motion. 
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The FBDs are as follows. 

Assume small 0 (earthquakes), hence 

m(.~ + hO) = -kx, 

and 

IGO + m(Si + hO)h = -krO + mghO. 

The equations of motion are therefore 

mhO + mJi + kx = O, 

and 

m/f f  + (mh 2 + lc~)O- (mgh - k-r)O = O. 

I f 0 = A ~ s i n c o t  and x =A2sin to t ,  
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and 

- m h  o~A , - m oflA 2 + k.A 2 = 0 

+mho~A2 + (mh 2 + Io)o~A, + ( m g h -  k-r)A, = O. 

The frequency equation is 

- m h o ~  

(mh2+ lo)o~ + ( m g h -  k-r) 

that is, 

o r  

k - mto 2] 

mh(.o2 [ = 0 ,  

(mht02) 2 + ( k -  mto2)[(mh 2 + lo)(_o 2 + ( m g h -  k-r)] = 0 

m l o o . ~ -  o~[mkh 2 + I c k -  m2gh + mk . r ] -  mghk  + kkr = O. 

[Ch. 3 

3 .1 .3  F o r c e d  v i b r a t i o n  

Harmonic excitation of vibration in a structure may be generated in a number of ways, for 
example by unbalanced rotating or reciprocating machinery, or it may arise from periodic 
excitation containing a troublesome harmonic component. 

A two degree of freedom model of a structure excited by a harmonic force F sin vt is 
shown in Fig. 3.6. Damping is assumed to be negligible. The force has a constant 
amplitude F and a frequency v]2~ Hz. 

Fig. 3.6. Two degree of freedom model with forced excitation. 

The equations of motion are 

re,X, = - k,x,  - k(x, - x2) + F sin vt, 

and 

m~X~ = k(x, - x~) - k~x~. 

Since there is zero damping, the motions are either in phase or 7r out of phase with the 
driving force, so that the following solutions may be assumed: 

x, = A, sin vt and x2 = A2 sin yr. 

Substituting these solutions into the equations of motion gives 

a , ( k ,  + k - m , v  2) + a2 ( - k )  = F 
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and 

Thus 

and 

where 
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A , ( - k )  + A2(k2 + k -  m2v 2) = 0. 

A I  = 
F(k2 + k - m 2 v  2) 

Fk 
A2  -- 

A 

A -~ (k  2 -t- k---  m2v2)(k, + k -  m, v 2) - k 2 

and A = 0 is the frequency equation. 
Hence the response of the system to the exciting force is determined. 

Example 20 

A two-wheel trailer is drawn over an undulating surface in such a way that the vertical 
motion of the tyre may be regarded as sinusoidal, the pitch of the undulations being 5 m. The 
combined stiffness of the tyres is 170 kN/m and that of the main springs is 60 kN/m; the axle 
and attached parts have a mass of 400 kg, and the mass of the body is 500 kg. Find (a) the 
critical speeds of the trailer in km/h and (b) the amplitude of the trailer body vibration if the 
trailer is drawn at 50 km/h and the amplitude of the undulations is 0.1 m. 

-,I 500 kg 

k 1 ~ "  60 kN/m 

400 kg 

k2 170 kNIm 

x 3 

The equations of motion are 

mls = - k l ( x i  -- X2), 

5 m  
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and 

m ~ ' ~  = k , ( z ,  - z ~ )  - k2(x~ - x~) .  

Assuming x, = A, sin ~ ,  x2 = A2 sin v~, and x3 = A3 sin vt, 

A,(k,  - m , v  2) + A2(- k,) = 0 

and 

A , ( - k , )  + A2(k, + k 2 - m 2 v  2) = kaA3. 

The frequency equation is 

(k, + k 2 -  m2v2)(k, - m, v 2) - k 2 = 0. 

The critical speeds are those which correspond to the natural frequencies and hence excite 
resonances. The frequency equation simplifies to 

mlm2 V4 - ( m , k ,  + mlk2 + m2k,)v 2 + k,k2 = O. 

Hence substituting the given data, 

500 x 400 x r - (500 x 60 + 500 x 170 + 400 x 60) 103V 2 + 60 • 170 X 106 = 0, 

that is 0 . 2 r  139v 2 + 1O 200 = 0, which can be solved by the formula. Thus v = 16.3 rad]s 
or 20.78 rad/s, and f = 2.59 Hz or 3.3 Hz. 

Now if the trailer is drawn at v kin/h, or v]3.6 m/s, the frequency is v/(3.6 x 5) Hz. 
Therefore the critical speeds are 

v, = 18 x 2.59 = 46.6 krn/h, 

and 

v2 = 18 x 3.3 = 59.4 km/h. 

Towing the trailer at either of these speeds will excite a resonance in the system. From the 
equations of motion, 

-- A3 
A, (k, + k2 - m2v2)(k, - m, v 2) - k, 2 ' 

I0 200 } 
- -  A 3 "  

0 . 2 r  - 139r  + 10 200 

At 50 km/h, v = 17.49 rad/s. 

Thus A, = -0.749A3. Since A3 = O.1 m, the amplitude of the trailer vibration is 
0.075 m. This motion is 7r out of phase with the road undulations. 

3.1.4 Structure with viscous damping 

If a structure possesses damping of a viscous nature, the damping can be modelled 
similarly to that in the system shown in Fig. 3.7. 
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Fig. 3.7. Two degree of freedom viscous damped model with forced excitation. 

For this system the equations of motion are 

m~.~ + k~x~ + k 2 ( x t -  xz) + ct.~t + c2(Yq- Yc2) = f~ 

and 

rn,5(2 + k2 (x2 -  x ,)  + k3x2 + c2(~2-  .~,) + c3.ic2 = f2. 

Solutions of the form xt = A~e ~' and x2 = A2e" can be assumed, where the Laplace 
operator is equal to a + jb, j = 4(-1), and a and b are real ~ that is, each solution 
contains a harmonic component of frequency b, and a vibration decay component of 
damping factor a. By substituting these solutions into the equations of motion a frequency 
equation of the form 

4 Gg$3 
s + + 3 s ~ + y s + 8 = 0  

can be deduced, where o~, /~, y and b are real coefficients. From this equation four 
roots and thus four values of s can be obtained. In general the roots form two complex 
conjugate pairs such as at -+ jb,, and a2 -- jb2. These represent solutions of the form 
x = Re(Xe". e j~'') = Xe"'cos bt; that is the motion of the bodies is harmonic, and decays 
exponentially with time. The parameters of the system determine the magnitude of the 
frequency and the decay rate. 

It is often convenient to plot these roots on a complex plane as shown in Fig. 3.8. This 
is known as the s-plane. 

For light damping the damped frequency for each mode is approximately equal to the 
undamped frequency, that is, bt = tot and b2 = to2. 

The right-hand side of the s-plane (Re(s) + ve) represents a root with a positive 
exponent, that is, a term that grows with time, so unstable motion may exist. The left-hand 
side contains roots with a negative exponent so stable motion exists. 

All passive systems have negative real parts and are therefore stable but some systems 
such as rolling wheels and rockets can become unstable, and thus it is important that the 
stability of a system is considered. This can be conveniently done by plotting the roots of 
the frequency equation on the s-plane. 

3.1.5 Structures with other forms of damping 

For most structures the level of damping is such that the damped natural frequencies are 
very nearly equal to the undamped natural frequencies. Thus, if only the natural 
frequencies of the structure are required, damping can usually be neglected in the analysis. 
This is a significant simplification. Also, if the response of a structure at a frequency well 
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L H S  has --ve exponent so osc i l l a t i on  
decay. Stable motion 

FIHS has +ve exponent so osc i l l a t i on  
growth. Unstable motion 

- v V ~  

Fig. 3.8. s-plane. 

away from a resonance is required, a similar simplification may be made in the 
analysis. 

However, if the response of a structure at a frequency in the region of a resonance is 
required, which would be the case if the amplitude or dynamic stress levels at a resonance 
were required for example, damping effects must be included in the analysis. 

Coulomb and hysteretic damping can be difficult to analyse exactly, particularly in 
multi-degree of freedom systems, but approximations can be made to linearize the 
equations of motion. For example, an equivalent viscous damping coefficient for equal 
energy dissipation may be assumed as shown in section 2.2.6, or alternatively the non- 
linear damping force may be replaced by an equivalent harmonic force or series of forces, 
as discussed in section 2.3.8. 

3.2 THE VIBRATION OF STRUCTURES WITH MORE THAN TWO 
DEGREES OF FREEDOM 

The vibration analysis of a structure with three or more degrees of freedom can be carried 
out in the same way as the analysis given above for two degrees of freedom. However, the 
method becomes tedious for many degrees of freedom, and numerical methods may have 
to be used to solve the frequency equation. A computer can, of course, be used to solve the 
frequency equation and determine the corresponding mode shapes. Although computa- 
tional and computer techniques are extensively used in the analysis of multi-degree of 
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freedom structures, it is essential for the analytical and numerical bases of any program 
used to be understood, to ensure its relevance to the problem considered, and that the 
program does not introduce unacceptable approximations and calculation errors. For this 
reason it is necessary to derive the basic theory and equations for multi-degree of freedom 
structures. Computational techniques are essential, and widely used, for the analysis of the 
sophisticated structural models often devised and considered necessary, and computer 
packages are available for routine analyses. However, considerable economies in writing 
the analysis and performing the computations can be achieved, by adopting a matrix 
method for the analysis. Alternatively an energy solution can be obtained by using the 
Lagrange equation, or some simplification in the analysis achieved by using the re- 
ceptance technique. The matrix method will be considered first. 

3.2.1 The matrix method 

The matrix method for analysis is a convenient way of handling several equations of 
motion. Furthermore, specific information about a structure such as its lowest natural 
frequency, can be obtained without carrying out a complete and detailed analysis. The 
matrix method of analysis is particularly important because it forms the basis of many 
computer solutions to vibration problems. The method can best be demonstrated by means 
of an example. For a full description of the matrix method see Mechanical Vibrations: 
Introduction to Matrix Methods by J. M. Prentis & E A. Leckie (Longmans, 1963). 

Example 21 

A structure is modelled by the three degree of freedom system shown. Determine the 
highest natural frequency of free vibration and the associated mode shape. 

The equations of motion are 

2m~, + 2kx, + k ( x t -  x2) = 0, 

2aft2 + k (x2-  x,) + k(x2-  x3) = 0 

and 

art'3 + k (x3-  x2) = O. 

If x,, x2 and x3 take the form X sin tot and A = mw2[k, these equations can be written 

-~X~ = ZX,, 
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and 

that is,  

o r  

-9c ,  + x~ - gc~= zx~ 

- x ~  + x~ = ax,,  

1,5 ~ ~ I Ix l 0.5 1 -0 .5  X, =;t. X, 
0 - l 1 X ,  i X ,  

[ s ]{x}  = z { x }  

where [S] is the system matrix, {X} is a column matrix, and the factor ~ is a scalar 
quantity. 

This matrix equation can be solved by an iteration procedure. This procedure is started 
by assuming a set of deflections for the column matrix {X} and multiplying by [S]; this 
results in a new Column matrix. This matrix is normalized by making one of the 
amplitudes unity and dividing each term in the column by the particular amplitude which 
was put equal to unity. The procedure is repeated until the amplitudes stabilize to a 
definite pattern. Convergence is always to the highest value of A, and its associated column 
matrix. Since A, = mv~/k, this means that the highest natural frequency is found. Thus to 
start the iteration a reasonable assumed mode would be 

Now 

Ix/ l1 / X~ = -1 . 

x~ 2 

1.5 - 0.5 0 

- 0 .5  1 - 0 .5  

0 - 1  1 

]/ ' / /2/  /~ / 
-1 = -2.5 = 3 -0.83 

2 3 1.00 

Using this new column matrix gives ,5o5 01/067//14,5 / /077/ 
-0 .5  1 -0 .5  -0 .83  = -1.665 =d./83 -0.91 

0 1 1 1.00 1.83 1.00 

and eventually, by repeating the process the following is obtained: 

I'5 ~ ~ l1 / - 0 . 5  1 - 0 . 5  - 1  = 2 - 1  

0 - 1  1 1 1 

Hence ~, = 2 and to 2 = 2k]m. ~, is an eigenvalue of [S], and the associated value of IX } 
is the corresponding eigenvector of [S]. The eigenvector gives the mode shape. 
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Thus the highest natural frequency is 1/2tr ~l(2k/m) Hz, and the associated mode shape 
is l : - l : l .  Thus i fX,  = 1, X2 = - 1  andX3 = 1. 

If the lowest natural frequency is required, it can be found from the lowest eigenvalue. 
This can be obtained directly by inverting [S] and premultiplying [S]{X} = A{X} by 
z-'IS]-'. 

Thus [S] -~ {X} = ~-' {X }. Iteration of this equation yields the largest value of A-' and 
hence the lowest natural frequency. A reasonable assumed mode for the first iteration 
would be 

1 

Alternatively, the lowest eigenvalue can be found from the flexibility matrix. The 
flexibility matrix is written in terms of the influence coefficients. The influence coefficient 
apq of a system is the deflection (or rotation) at the point p due to a unit force (or moment) 
applied at a point q. Thus, since the force each body applies is the product of its mass and 
acceleration: 

X,  = or,, 2 m X ~ w  2 + oq2 2mX2co 2 + oq3mX3co 2, 

X2 = o~.2, 2 m X ,  co 2 + ot22 2mX2co 2 + ot23mS3co 2, 

and 

X3 = or3, 2reX, co z + 0~32 2mXzco 2 + ot33mX3co z, 

or 

[ 2a,, 2Oq2 at3 

20f2t 2~2 a23 

2a3j 2~2 ~3 

]Ix/, Ix/ X2 me02 X2 �9 

X3 X~ 

The influence coefficients are calculated by applying a unit force or moment to each 
body in turn. Since the same unit force acts between the support and its point of 
application, the displacement of the point of application of the force is the sum of the 
extensions of the springs extended. The displacements of all points beyond the point of 
application of the force are the same. 

Thus 

oql = al2 = ai3 = r = cx3t - 
1 

2k 

1 l 3 
+ 

~ 2  = c~3 = ~ 2  - 2k  k 2k 
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and 

1 1 1 5 + - -  + 
~ 3 -  2k k k 2k 

Iteration causes the eigenvalue k/ma~ to converge to its highest value, and hence the 
lowest natural frequency is found. The other natural frequencies of the system can be 
found by applying the orthogonality relation between the principal modes of vibration. 

3.2.1.10rthogonality of the principal modes of vibration 

Consider a linear elastic system that has n degrees of freedom, n natural frequencies and 
n principal modes. 

The orthogonality relation between the principal modes of vibration for an n degree of 
freedom system is 

n 

miA,(r)A,(s) = O, 
i - - - I  

where A,(r) are the amplitudes corresponding to the rth mode, and Ai(s) are the amplitudes 
corresponding to the sth mode. 

This relationship is used to sweep unwanted modes from the system matrix, as 
illustrated in the following example. 

Example 22 

Consider the three degree of freedorri model of a structure shown. 

The equations of motion in terms of the influence coefficients are 

X~ = 40tt,mX, a~ + 20~2mX2to 2 + o~,3mX3(.o 2, 

X2 = 4oh,mX, a~ + 2~2mX2to 2 + o~3mX3a~ 

and 

that is, 

X3 = 4~,mXta~ + 20~2mX2c02 + ot33mX3~, 

Ix/ r4~ 2~ ~ / 
X3 L4~, 20~2 t~3 X3 
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Now, 

1 

4 
t~22  ~--" 1~3 2 ---- 0~23 - -  

3k 

and 

7 
o ~ 3 -  3k" 

Hence, ix/  mI4: ll/X / 
- 8 4  X2 . X2 3k 

x~ 8 7  x, 

To start the iteration a reasonable estimate for the first mode is 

l 
1 

2 ; 

4 

this is inversely proportional to the mass ratio of the bodies. 
Eventually iteration for the first mode gives /,o/ / / 

14.4 into 2 1.0 
3.2 = 3.18 . 

3k 
4.0 4.0 

or tot = 0.46~(k[m) rad/s. 
To obtain the second principal mode, use the orthogonality relation to remove the first 

mode from the system matrix: 

m~A~A2 + m2B~B2 + m3C~C2 = O. 

Thus 

4m(1.0)A2 + 2m(3.18)B2 + m(4.0)C2 =0, 

or A2 = -1 .59B2-  C2, since the first mode is 

1.0 / 

3.18 . 

4.0 
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Hence, rounding 1.59 up to 1.6, 

Its/ I~ 'l/a  / B2 = 1 0 B2 �9 

c~ o 1 c~ 

When this sweeping matrix is combined with the original matrix equation, iteration makes 
convergence to the second mode take place because the first mode is swept out. Thus, 

/xl/ 
x~ - 

x~ 

2 I4 2 l l I 0 - 1 . 6 - l  I / X ,  / tom 
- ~ 8 4 1 X2 

3k 
8 7  0 X3 

tom 
= ~  1.6 0 X2 . 

31: 
1.6 3 X3 

Now estimate the second mode as / l 
0 

-1 

and iterate: //' o,m ':]/1 / /'/ 
0 - 1.6 0 - 0 . 

3k k 
-1 1.6 --1 -1 

Hence to2 = "4(k/m) rad/s, and the second mode was evidently estimated correctly as 
1 : 0 :  - 1. 

To obtain the third mode, write the orthogonality relation as 

m,A2A3 + m2B2B3 + m3C2C3 =0 

and 

m~AtA3 + m2BtB3 + m3CiC 3 = O. 

Substitute 

and 

A I = 1.0, B, = 3.18, Ct = 4.0 

A2 = 1.0, B2 = O, C2 = - 1 . 0 ,  

as found above. Hence 
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It'/ I~ ~ / B3 = 0 -0.78 B3 �9 

c~ o i 

When this sweeping matrix is combined with the equation for the second mode the 
second mode is removed, so that it yields the third mode on iteration: 

IX'Ix2 - r176 I0:-4.41.6 -3~1[0~ 00 -0.780"251 IX' IX2 

x~ 1.6 o i s~ 

m2mI00000.43 
= ~ 0 -1.25 

3k 
0 1 . 7 5  

x~ . 

x~ 

o r  

ix/ om21~176 0.25] 
X2 = 1.75 0 -0 .72  

3k 
)(3 0 1  

x / 
X2 �9 

x~ 

An estimate for the third mode shape now has to be made and the iteration procedure 
carried out once more. In this way the third mode eigenvector is found to be 

0.25 / 
-0.72 , 

1.0 

and a~ = 1.32~(k/m) rad/s. 
The convergence for higher modes becomes more critical if impurities and rounding-off 

errors are introduced by using the sweeping matrices. One does well to check the highest 
mode by the inversion of the original matrix equation, which should be equal to the 
equation formulated in terms of the stiffness influence coefficients. 

3.2.1.2 Dunkerley's method 

In those cases where it is required to find the lowest, or fundamental natural frequency of 
free vibration of a multi-degree of freedom system, Dunkerley's method can be used. This 
is an approximate method which enables a wide range of vibration problems to be solved 
by using a hand calculator. The method can be understood by considering a two degree of 
freedom system. 

The equations of motion for a two degree of freedom system written in terms of the 
influence coefficients are 
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2 2 
y, = o~,, m, coy, + o~,2 m2 O) Y2 

and 

Y2 = 0.2, m, r 2 y, + ~r m2 r 2 Y2 

so that the frequency equation is given by 

2 0c,, m, C0 - 1 c~,2 m2 CO 2 

2 
Of'21 /rll CO 0f'22 m2 0) 2 - 1 

= 0 .  

By expanding this determinant, and solving the resulting quadratic equation, it is found 
that: 

2 
COl.2 = 

(a,,m, + o,22m2) -+ ~/[(o~,,m, + o~22m2) 2 -  4(a,,0~.,- ~x2,c~,,)] 
2(o~,,o~2- o~,a,2) 

Hence, 

1 1 
+ ~ = 2 ( 0 e , , 0 ~ 2 2 - - 0 ~ 2 , a , 2 )  

co, ~ o~  

I 
x (a,,m, + ~2m2) + q[(o~,,m, + ~2m:) 2 -  4(a,,0~2- o~,a,2)] 

, ] 
(o~,,m, + 06.2m2) - #[(a,,m, + 0.22m2) 2 -  4(a,,~x22- 0.2,a,2)] 

= 2(0~,,0f22- 0~2,a,2) 

[ 2(~,,m, + 0~2m2) ] 
x (a,,m, + 0~2m2) 2 -  (a,,m, + a22m2) 2 + 4(c~,,0.22- c~,a,2) ' 

that is, 

1 1 
2 + ~ -  Ofllml + Of 22m2. 

60, 602 

Similarly for an n degree of freedom system, 

1 1 1 
2 + - - T + - - T  + ' ' "  + 

1 
) 2 - -  Ofllml + Of'22m2 + of,33m3 .4- ... 4- O~nm n. 

Returning to the analysis for the two degree of freedom system, if P, is the natural 
frequency of body 1 acting alone, then 
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p,~_ kl 1 

m~ at ,m, 

Similarly 

P~- 
o~2m2 

Thus 

1 1 1 1 
2 "~" 2 -- p 2  + P 2  2 �9 

Similarly for an n degree of freedom system, 

1 1 1 1 1 1 1 1 
. :  _ p :  

~,o p , + ~ + p ;  + ' " +  �9 

Usually co, -> ... (.o, >> a)2 >> to,, so that the LHS of the equation is approximately 
1 

=- 2-; hence 
tO I 

1 1 1 

~-e~ + p~ + " "  

and 

1 
= 2  -" O~llml 4" o ~ 2 m  2 -I- " ' "  . 

tot 

This is referred to as Dunkerley's method for finding the lowest natural frequency of 
a multi-degree of freedom dynamic system or structure. 

E x a m p l e  23  

A three-floor building is modelled by the shear frame shown. Find the frequency of the 
fundamental mode of free vibration in the plane of the figure if the foundation is capable 
of translation; mo is the effective mass of the foundation, ko the transverse stiffness; m,, m2 
and m3 are the masses of each floor together with an allowance for the mass of the walls, 
so that the masses of the walls themselves can be assumed to be zero. The height of each 
floor is h,, h2 and h3,  and the second moment of area of each wall is I , , /2  and/3; the 

modulus is E. 
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For one wall subjected to a lateral force F at y = h as shown, 

d3x 
E/ - - F  ~3 

Now when y = 0 and h, x = 0 and 

conditions gives 

dx 

Fh 3 
~ 

12 EI 

Hence the influence coefficients are 

1 
O~oo - -  

ko 

CI~! 1 - - "  

1 
+ 

ko 

h? 
24 Ell 

0 ~ 2 2  - - -  

1 

ko 
+ 

24 Eli 
+ 

24 E/~ 

and 

{ ~ ' 3 3  - - "  
+ + 

ko 24 E/I 24 El2 

= 0, so integrating and applying these boundary 

F xn 

El 

24 EI3 

Applying Dunkerley's method, 
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1 
2 = Ctoomo + attm~ + 0122m2 + Of,33m3. 

co, 

If it is a s sumed thatht  = h2 = h3 = h, It = /2 = / 3  = l a n d m t  = m2 = m3 = m, 

.-- + m  + + m  + + m  + 
co~ ko ko 24 E1 ko 24 E1 /Co 24 E1 

mo + 3m mh 3 

ko 4EI 

In a particular case, mo = 2 x 106 kg, m = 200 x 103 kg, h = 4 m, E = 200 x 109 N/m 2, 
I =  2 5 x 1 0  "~m 4andko = 107N/m. 

Thus 

1 ( 2 x  106 ) + ( 3 x 2 0 0 x  103 ) 2 0 0 x  103x43 
- -  + 

~ l0 T 4 x 2 0 0 x  1 0 9 x 2 5 x  10 -~ 

= 0.26 + 0.64, 

so that cot = 1.05 rad/s, ft = 0.168 Hz and the period of the oscillation is 5.96 s. 

3 .2 .2  T h e  L a g r a n g e  e q u a t i o n  

Consideration of the energy in a dynamic system together with the use of the Lagrange 
equation is a very powerful method of analysis for certain physically complex systems. 
This is an energy method that allows the equations of motion to be written in terms of any 
set of generalized coordinates. Generalized coordinates are a set of independent para- 
meters that completely specify the system location and that are independent of any 
constraints. The fundamental form of Lagrange's equation can be written in terms of the 
generalized coordinates q, as follows: 

d/~9(T)~ ~9(T) 0(V) O(DE) 
- -  + - -  Q i ,  

dt Oq, ~gq, + 0q, 0q, 

where T is the total kinetic energy of the system, V is the total potential energy of the 
system, DE is the energy dissipation function when the damping is linear (it is half the 

I . 2  
rate at which energy is dissipated so that for viscous damping DE = rcx ), Q~ is a 
generalized external force (or non-linear damping force) acting on the system, and q, is a 

generalized coordinate that describes the position of the system. 
The subscript i denotes n equations for an n degree of freedom system, so that the 

Lagrange equation yields as many equations of motion as there are degrees of freedom. 
For a free conservative system Q, and DE are both zero, so that 

dt \---~-~]- t)q, + t)q, 
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The full derivation of the Lagrange equation can be found in Vibration Theory  and  
Appl ica t ions  by W. T. Thomson (Allen & Unwin, 1989). 

Example 24 

A solid cylinder has a mass M and radius R. Pinned to the axis of the cylinder is an arm 
of length I which carries a bob of mass m. Obtain the natural frequency of free vibration 
of the bob. The cylinder is free to roll on the fixed horizontal surface shown. 

The generalized coordinates are xl and x2. They completely specify the position of the 
system and are independent of any constraints. 

! .2 I .2 
T = ~/.~, + �89 + ~mx2 

I .2 I / I  �9 i .2,. I .2 
= ~t/I.~, + ~(~a/lX,) + ~mx2. 

V = mgl ( l  - cos ~) = (mgl]2)tp 2 = (mg/21)(x2 - x , )  2, 

for small values of ~. Apply the Lagrange equation with q, = x," 

(d/dt)(~gT/i).~,) = Ms + ~1/1~, 

aVlax, = (mgl21)(-2x~ + 2x,). 
.'t , ,  

Hence ~4'~, + (mg/l)(x,  - x2) = 0 is an equation of motion. 
Apply the Lagrange equation with qi = x2: 

(d /d t ) (aT/O~)  = m:r'~ 

OV/Ox2 = (mg/21)(2x2- 2.x,). 

Hence m~2 + (mg/l)(x2 - x , )  = 0 is an equation of motion. 
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These equations of motion can be solved by assuming that x~ = X~ sinax and 
x2 = X2sincor Then 

X, ( (mg/ l ) -  (3M/2)to 2) + X2(-mg/l)  = 0 

and 

X~(-mg/l) + X2((mgfl)-  mo~) = O. 

The frequency equation is therefore 

(3M/2)co a -(g/l)o~(m + (3M/2)) = 0. 

Thus either to = 0, or co = q((l + 2m]3M)g/l) rad/s, and XJX2 = -2m]3M. 

Example 25 

To isolate a structure from :he v!bration generated by a machine, the machine is mounted 
on a large block. The block is supported on springs as shown. Find the equations that 
describe the motion of the block in the plane of the figure. 

The coordinates used to describe the motion are q~, q2 and q3. These are generalized 
coordinates because they completely specify the position of the system and are independ- 
ent of any constraints. If the mass of the block and machine is M, and the total mass 
moment of inertia about G is IG, then 

I .2 I .2 I .2 
T = ~14il~ + ~/1i12 + ffoq3, 

and 

V = strain energy stored in the springs 
i I 2 ! = ~k,(q, + bq3) 2 + ~k,(q~- dq3) 2 + [k2(q2 + aq3) + ~k2(q2- aq3) 2. 
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Now apply the Lagrange equation with q~ = q~. 

~gT 
- -  0 .  

Oq, 

and 

3T d ~T 
- g q , ,  so ~ .  - g / / , ,  

/)0, dt t~, 

~gV 
- k,(q, + bq3) + k , ( q , -  dq3). 

Oq~ 

Thus the first equation of motion is 

M#, + 2k~q, + k , ( b - d ) q 3  = O. 

Similarly by putting qi = q2 and qi = q3, the other equations of motion are obtained as 

Mii2 + 2k lq2-  2ak2q3 = 0 

and 

IG#3 + k l ( b -  d ) q , -  2ak2q2 + (b 2 + d2)kl + 2a2k2q3 = O. 

The system therefore has three coordinate-coupled equations of motion. The natural 
frequencies can be found by substituting qe = A~ sin tot, and solving the resulting 
frequency equation. It is usually desirable to have all natural frequencies low so that the 
transmissibility is small throughout the range of frequencies excited. 

E x a m p l e  2 6  

A two-storey building which has its foundation subjected to translation and rotation is 
modelled by the system shown. Write down expressions for T and V, and indicate how the 
natural frequencies of free vibration may be found using the Lagrange equation. 
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For small-amplitude vibration, 
I . 2 I T =  ~moXo + �89 2 + ~m, (xo + hO +.~,)2 + �89 

I 
+ ~m2(.~o + 2hO + .~2) 2 + �89 

and 
I 2 1 2 1 

e = ~k-rxo + �89 + 2(~k,x, + ~k2 (x2-  x,) 2) 

where, Xo, O, x~ and x2 are the generalized coordinates. Substituting in the Lagrange 
equation with each coordinate gives four equations of motion to be solved for the 
frequency equation and hence the natural frequencies of free vibration and their associated 
mode shapes. 

3.2.3 Receptance analysis 

Some simplification in the analysis of multi-degree of freedom undamped dynamic 
systems can often be gained by using receptances, particularly if only the natural 
frequencies are required. If a harmonic force F sin vt acts at some point in a system so that 
the system responds at frequency v, and the point of application of the force has a 
displacement x = X sin vt, then if the equations of motion are linear, x = aF sin vt, where 
ct, which is a function of the system parameters and v, but not a function of F, is known 
as the direct receptance at x. If the displacement is determined at some point other than 
that at which the force is applied, ct is known as the transfer or cross receptance. 

The analogy with influence coefficients (section 3.2.1) is obvious. 
It can be seen that the frequency at which a receptance becomes infinite is a natural 

frequency of the system. Receptances can be written for rotational and translational 
coordinates in a system, that is, the slope and deflection at a point. 

Thus, if a body of mass m is subjected to a force F sin vt and the response of the body 
i sx  = X s i n v t ,  

F sin vt = m~ = m ( - X v  z sin vt) = -mv2x.  

Thus 

x = - F sin vt 
m y  ~ 

and 

2 "  
mv 

This is the direct receptance of a rigid body. 
For a spring, ct = l[k. This is the direct receptance of a spring. 
In an undamped single degree of freedom model of a system, the equation of motion 

is 

m~ + kx = F s i n v t .  

If x = X sin vt, ct = l [ ( k -  my2). This is the direct receptance of a single degree of 

freedom system. 
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Fig. 3.9. Two degree of freedom system with forced excitation. 

In more complicated systems, it is necessary to be able to distinguish between direct 
and cross receptances and to specify the points at which the receptances are calculated. 
This is done by using subscripts. The first subscript indicates the coordinate at which the 
response is measured, and the second indicates that at which the force is applied. Thus apq, 
which is a cross receptance, is the response at p divided by the harmonic force applied at 
q, and ~p and aqq are direct receptances at p and q respectively. 

Consider the two degree of freedom system shown in Fig. 3.9. The equations of motion 
a r e  

and 

m,2, + (k, + k 2 ) x , -  k2x2 = f ,  

m2~2 + (k2 + k3)x2-  k2x, = O. 

Letfj = F, sin vt, and assume that x, = X, sin vt and x2 = X2 sin vt. Substituting into 
the equations of motion gives 

(k, + k 2 -  m, v2)X, + (-k2)X2 = F, 

and 

(-k2)X, + (k2 + k 3 -  m2v2)X2 = O. 

Thus 

2 
X, k2 + k 3 - m 2 v  

F, 

where 

A = (k, + k 2 -  m, v2)(k2 + k 3 -  m2v 2) - k 2  2, 

o~,, is a direct receptance, and A = 0 is the frequency equation. 
Also the cross receptance 

0~21 - -  

X2 k2 

F, A 

This system has two more receptances, the responses due to f2 applied to the second 
body. Thus a,2 and ~2  may be found. It is a fundamental property that ~,2 = o~, 
(principle of reciprocity) so that symmetrical matrices result. 
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and 

that is, 

A general statement of the system response is 

Xl =o~tIF, + ar,2F2 

X2 = o~,Fi + ~2F2, 

{x} [o o2]{  } 
Some simplification in the analysis of complex systems can be achieved by considering 

the complex system to be a number of simple systems (whose receptances are known) 
linked together by using conditions of compatibility and equilibrium. The method is to 
break the complex system down into subsystems and analyse each subsystem separately. 
Each subsystem receptance is found at the point where it is connected to the adjacent 
subsystem, and all subsystems are 'joined' together, using the conditions of compatibility 
and equilibrium. 

For example, to find the direct receptance 7~, of a dynamic system C at a single 
coordinate x, the system is considered as two subsystems A and B, as shown in Fig. 
3.10. 

l -1 
' F~ sin ut I . . . . . . .  

"}xi s~n~t / 
 ovt I s i 
IXa sinvt Xbsin vt [,_ 

System C Subsystem A Subsystem B 
Receptance y Receptance c~ Receptance/~ 

Fig. 3.10. Dynamic systems. 

By definition, 

X, X~ 
Yll -- , 0~,, - and fl,, - 

F, F~ 

x~ 

F~ 

Because the systems are connected, 

X, = Xb = Xt, (compatibility) 

and 

Hence 

F, = F. + Fb, (equilibrium). 

1 1 1 
._ + 

7,, cz,, /3,, 
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that is, the system receptance Y can be found from the receptances of the subsystems. 
In a simple spring - body system, subsystems A and B are the spring and body, 

respectively. Hence at, = l / k , /3 , ,  = - 1 / m v  2 and 1/7,, = k -  mv 2, as above. 
The frequency equation is o~t, + j~lt  --" 0 ,  because this condition makes y~ = oo. 

E x a m p l e  27  

A motor with a flywheel is shown. The motor is to drive a fan of inertia I through a shaft 
of torsional stiffness k as indicated. The device is required for the ventilation system in a 
building, and it is necessary to know the fundamental frequency of torsional oscillation so 
that no unforeseen noise problems will occur. Means for changing this frequency may be 
sought if it is considered that there may be noise problems. The receptance for torsional 
oscillation of the motor-flywheel system has been measured at a point P over a limited 
frequency range which does not include any internal resonances of the system. The figure 
shows the receptance at P as a function of (frequency) 2. 

Calculate the lowest non-zero natural frequency for the motor, flywheel and fan system 
if I = 0.9 kg m 2 and k = 300 kN m/rad. 

Motor Flywheel Fan 

' ' '  t I I I .p 

I I !  
k,. j  

E 
z 

m L_ 

I 
0 

X 
ft .  

m 

u 
c 
m 

u 

0.1 
0 

_2[ / 
- 3  - / 

_41 / 
i I 

(Frequency) 2 X 10 6 (rad/s) 2 

0.2 0.3 

/ 
J 

/ 

0.4 0.5 0.6 
, , 

I/ 
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The motor-fan system can be considered to be two subsystems, A and B" 

The frequency equation is ct,~ + fl,, = O, where tx,, is given in graphical form and fl, t is 
found as follows. For the fan system, 

Now 

SO 

and 

tB -- k ( O B -  r -" lr -" -- [{ I)Br sin vt, 

k(OB - C B )  "- --l(1)B r 

eB = @. - k@.V2  = @ B ~ ~  �9 

Thus 

~11 -" 
OB 
T~ --- - - ( I ) B t - - - ~ - -  J ~ B ~ r  



118 The vibration of structures with more than one degree of freedom [Ch. 3 

: 
k/v' " 

If at~ and - fl,~ are plotted as functions of (frequency) 2, the intersection gives the value 
of the frequency that is a solution of ct~, + fl~ = 0, that is, the natural frequency of free 
vibration is found. The table below can be calculated for -fl~ because k = 300 x 103 N m/rad, 

2 
and I = 0.9 kg m .  

2 v t r  k - / r  t,/v" -~,, 

0.3 x 10 ~ 0.27 x 10 n 0.03 x 10 n 0.081 X 1012 --0.37 x 10 -~ 
0.4 x lO 6 0.36 x 106 0.06 x 10 ~ 0.108 x 10 ~2 - 0.55 x lO ~ 
0.5 x lO 6 0.45 x lO 6 0.15 x lO s 0.135 x 1022 - 1.11 x lO -~ 

The receptance fit, can now be plotted against (frequency) 2 as below: 

l el z o , ,, ~ , . . . _  

ID 

x I / s  
'~ 4 1 1  �9 --2 e l l  

~ I ! _ 
r. 
m 

~ / 

i 

- 4  

- 5  

(Frequency) 2 X 10 6 (rad/s) 2 

0.1 0.2 0.3 0.4 0.5 0.6 

The intersection occurs at (frequency) 2 = 0.377 x 10 ~ (rad/s) 2, that is, a frequency of 614 
rad/s or 97.7 Hz. This is the natural frequency of the combined motor-fan system. It can 
be seen that the effect of using different fans with different k and I values is easily found, 
without having to re-analyse the whole motor-fan system. 

Some subsystems, such as those shown in Fig. 3.11, are linked by two coordinates, for 
example deflection and slope at the common point. 

Now in this case, 

Xal  = O~llFal  -~- ~12Fa2 ,  
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l -  I .... ~ . I  .... , x, ! ii 1 : ,  
Fs~ sin vt Fbl sin vt I 

! F,2 sin vt Fb2 sin vt B 
Xa2 sin vt Xb2 sin v t 

System C Subsystem A Subsystem B 
Receptance y Receptance a Reeeptanee/J 

Fig. 3.11. Applied forces and system responses. 

X,~ = ~ , F , ,  + ~ F , , ,  

and 

The applied forces or moments are F, sin vt and/72 sin vt where 

F, = F,, + F~, 

and 

F~= F.~ + F~. 

Since the subsystems are linked, 

X, = X,,  = X~, 

and 

X~ = X.~ = X ~ .  

Hence if excitation is applied at x, only, F2 = 0 and 

Xl 

F, 

where 

and 

x~ 

F, A 

If 

El ~'~ 0~ 
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X2 
3'22- 

F2 

Since A = 0 is the frequency equation, the natural frequencies of the system C are given 
by 

0. I 

This is an extremely useful method for finding the frequency equation of a system 
because only the receptances of the subsystems are required. The receptances of many 
dynamic systems have been published in The M e c h a n i c s  o f  Vibrat ion by R. E. D. Bishop 
and D. C. Johnson (CUP, 196011979). By repeated application of this method, a system 
can be considered to consist of any number of subsystems. This technique is, therefore, 
ideally suited to a computer solution. 

It should be appreciated that although the receptance technique is useful for writing the 
frequency equation, it does not simplify the solution of this equation. 

3.2.4 Impedance and mobility analysis 

Impedance and mobility analysis techniques are frequently applied to systems and 
structures with many degrees of freedom. However, the method is best introduced by 
considering simple systems initially. 

The impedance of a body is the ratio of the amplitude of the h a r m o n i c  exciting force 
applied, to the amplitude of the resulting velocity. The mobility is the reciprocal of the 
impedance. It will be appreciated, therefore, that impedance and mobility analysis 
techniques are similar to those used in the receptance analysis of dynamic systems. 

For a body of mass m subjected to a harmonic exciting force represented by Fe j'' the 
resulting motion is x = Xe jr'. Thus 

Fe jr' = mJi = - mv2 Xe  j~, 

and the receptance of the body, 

X 1 

F my 2" 

Now 

Fe j'' = _my 2 Xe j~ 
= mjv( jvXe  j -)  = mjvo ,  

where o is the velocity of the body, and v = Ve Jr'. 
Thus the impedance of a body of mass m is Z,,,, where 

F 
Z,, - - j m v ,  

V 
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and the mobility of a body of mass m is Mm, where 

M m  m 
V 1 

F jmv 

X~$! Putting s = jv  so that x = gives 

Z,n -- m s ,  

1 
Mm - 

ms 

and 

V--  sS. 

For a spring of stiffness k, Fe j~' = kXe j'' and thus Zk = F/V = k/s and Mk = s/k, 
whereas for a viscous damper of coefficient c, Zc = c and Mc = 1]c. 

If these elements of a dynamic system are combined so that the velocity is common to 
all elements, then the impedances may be added to give the system impedance, whereas if 
the force is common to all elements the mobilities may be added. This is demonstrated 
below by considering a spring-mass single degree of freedom system with viscous 
damping, as shown in Fig. 3.12. 

Fig. 3.12. Single degree of freedom system with elements connected in parallel. 

The velocity of the body is common to all elements, so that the force applied is the sum 
of the forces required for each element. The system impedance, 

F F , , + F , + F ~  
Z ..- 

V V 

- Z~ + Z~ + Z~. 
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Hence 

k 
Z = m s  + - -  + c, 

$ 

that is, 

F = ( m s  2 + cs  + k ) X  

o r  

F = ( k -  m y  2 + j c v ) X .  

Hence 

X 
F 

~[(k - my2) 2 + (cv)2] " 

Thus when system elements are connected in parallel their impedances are added to give 
the system impedance. 

Fig. 3.13. Single degree of freedom system with elements connected in series. 

In the system shown in Fig. 3.13, however, the force is common to all elements. In this 
case the force on the body is common to all elements so that the velocity at the driving 
point is the sum of the individual velocities. The system mobility, 

v v,~+v~+v~ 

F F 

= M ~ + M k + M ~  

1 s 1 
- -  + ~ + ~  

ms  k c 

Thus when system elements are connected in series their mobilities are added to give the 
system mobility. 
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In the system shown in Fig. 3.14, the system comprises a spring and damper connected 
in series with a body connected in parallel. 

Fig. 3.14. Single degree of freedom system and impedance analysis model. 

Thus the spring and damper mobilities can be added or the reciprocal of their 
impedances can be added. Hence the system driving point impedance Z is given by 

[ ] 1 1 
Z = Z , , , +  ' + 

Z, Z~ 

1] 
= m s +  + 

2 
mcs + inks + kc 

c s + k  

Consider the system shown in Fig. 3.15. The spring k~ and the body m, are connected in 
parallel with each other and are connected in series with the damper c~. 

Thus the driving point impedance Z is 

z = z . , + z ,  + z ~ + z ,  
where 

1 
Z l  m 

Mi 

Mt =M~, +Me, 

1 
/t4'2- , 

z~ 
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Fig. 3.15. Dynamic system. 

and 

Thus 

Hence 

z = Z~, + Z,~ + Zc~ + 
1 1 

+ 

Zc, Z. + z.~, 

Z .. .  

4 
mim2s  + (mlc2 + m2cl + m,c t ) s  3 

+ (mtk,  + m2k2 + c,c2)s 2 +(ctk2 + c2kt + ctk~)s + ktk2 

s (m,s  2 + cts + kt) 

The frequency equation is given when the impedance is made equal to zero or when the 
mobility is infinite. Thus the natural frequencies of the system can be found by putting 
s = jco in the numerator above and setting it equal to zero. 

To summarize, the mobility and impedance of individual elements in a dynamic system 
are calculated on the basis that the velocity is the relative velocity of the two ends of a 
spring or a damper, rather than the absolute velocity of the body. Individual impedances 
are added for elements or subsystems connected in parallel, and individual mobilities are 
added for elements or subsystems connected in series. 

Example 28 

Find the driving point impedance of the system shown in Fig. 3.6, and hence obtain the 
frequency equation. 
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The system of Fig. 3.6 can be redrawn as shown. 

Modal analysis techniques 125 

The driving point impedance is therefore 

Z = Z,., + Z,, + 
1 I 

+ 

Z~ Zm. + Z~ 

- r i l l s  + 
ki 

+ 
$ 1 1 

+ 
k/s m2s + k2/s 

( m , s  2 + k~)(m2s 2 + k + k2) + (m2s 2 + k2)k 
- - -  ~ 

s (m2s  2 + k + k2) 

The frequency equation is obtained by putting Z = 0 and s = jog, thus: 

(k,  - m , c t ~ ) ( k  + k 2 - -  m2co 2) + k(k2 - m2co 2) = 0. 

3.3 MODAL ANALYSIS TECHNIQUES 

It is shown in section 3.1.2 that in a dynamic system with coupled coordinates of motion 
it is possible, under certain conditions, to uncouple the modes of vibration. If this is 
arranged, the motions expressed by each coordinate can take place independently. These 
coordinates are then referred to as principal coordinates. This is the basis of the modal 
analysis technique; that is, independent equations of motion are obtained for each mode of 
the dynamic response of a multi-degree of freedom system, by uncoupling the differential 
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equations of motion. For each mode of vibration, therefore, there is one independent 
equation of motion which can be solved as if it were the equation of motion of a single 
degree of freedom system. The dynamic response of the whole structure or system is then 
obtained by superposition of the responses of the individual modes. This is usually simpler 
than simultaneously solving coupled differential equations of motion. 

It is often difficult to determine the damping coefficients in the coupled equations of 
motion analysis, but with the modal analysis method the effect of damping on the system 
response can be determined by using typical modal damping factors obtained from 
experiment or previous work. Analytical techniques for predicting structural vibration 
have become increasingly sophisticated, but the prediction of damping remains difficult. 
Accordingly very many practical problems related to the vibration of real structures are 
solved using experimentally based analytical methods. 

The availability of powerful mini-computers and Fast Fourier Transform (FFF) analysers 
have made the acquisition and analysis of experimental data fast, economic and reliable, so 
that measured data for mass, stiffness and damping properties of each mode of vibration of a 
structure are readily obtained. To do this, the frequency response function of a structure is 
usually obtained experimentally by exciting the structure at some point with a measured input 
force, and measuring the response of the structure at another point. The response is usually 
measured by an accelerometer (see section 2.3.10). The excitation is often provided by an 
electromagnetic shaker or by impact, and measured directly with a piezoelectric force gauge. 
The damping associated with each mode can be found from the FFF analyser data by 
frequency bandwidth measurement, Nyquist diagrams or curve fit algorithms which estimate 
modal mass, stiffness and damping from the response curves. 

The technique for obtaining modal data from experiment is called modal testing. Some 
measurement errors can be eliminated to make the data consistent, but a disadvantage of the 
technique is that modal data is often incomplete and may not be able to represent actual 
damping accurately. Figure 3.16 shows typical response plots for a structure. Three distinct 
resonances and modes are evident. The data from these three modes is shown in Fig. 3.17 in 
terms of modulus and phase of the response over a relevant frequency range. 

(D 
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30.00 500.00 
Frequency (Hz) 

Fig. 3.16. Typical phase and amplitude versus frequency plots for a structure. 
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( ~  Real (+ve) ---~ 

Fig. 3.17. Modulus and phase plots from data of Fig. 3.16 for three modes of vibration. Frequency 
range 60-320 Hz. 

Modes 1, 2 and 3 are considered in greater detail in Figs 3.18, 3.19 and 3.20, 
respectively. Analysing the data from mode 1 using a circle fit gives a resonance frequency 
of 80.1 Hz and adamping loss factor of 0.2. For mode 2, the figures are 200 Hz and 0.05, 
and for mode 3, 300 Hz and 0.01. These results should be compared with the data shown 
in Fig. 3.16. 

Real (+ve) 
. . . . . . .  

.~_ 

i 
Fig. 3.18. First mode analysis; f, = 80.1 Hz, r/l = 0.20. 

.L 

r 

_E 

Real (+ve)--.-~ 

Fig. 3.19. Second mode analysis; f2 = 200 Hz, 02 = 0.05. 
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> + 

.c_. 

E 

[ Real (+ve)---~ 

Fig. 3.20. Third mode analysis; f3 = 300 Hz, 03 = 0.01. 

Modal analysis is discussed in some detail in Modal Analysis: Theory and Practice by 
D. J. Ewins (Research Studies Press, 1985), and in the Proceedings of the International 
Modal Analysis Conferences (IMAC) held annually in the USA. 



4 

The vibration of continuous structures 

Continuous structures such as beams, rods, cables and plates can be modelled by discrete 
mass and stiffness parameters and analysed as multi-degree of freedom systems, but Such 
a model is not sufficiently accurate for most purposes. Furthermore, mass and elasticity 
cannot always be separated in models of real systems. Thus mass and elasticity have to be 
considered as distributed or continuous parameters. 

For the analysis of structures with distributed mass and elasticity it is necessary to 
assume a homogeneous, isotropic material that follows Hooke's law. 

Generally, free vibration is the sum of the principal modes. However, in the unlikely 
event of the elastic curve of the body in which motion is excited coinciding exactly with 
one of the principal modes, only that mode will be excited. In most continuous structures 
the rapid damping out of high-frequency modes often leads to the fundamental mode 
predominating. 

4.1 LONGITUDINAL VIBRATION OF A THIN UNIFORM BEAM 

Consider the longitudinal vibration of a thin uniform beam of cross-sectional area S, 
material density p, and modulus E under an axial force P, as shown in Fig. 4.1. 

The net force acting on the element is P + OP~x.  d x -  P, and this is equal to the 
product of the mass of the element and its acceleration. 

From Fig. 4.1, 

~)P ~92u 
dx = p S dx 

~x 3t ~ 

Now strain 3u/3x = P/SE, so 
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aP P P+-~x dx 

u v I 

dx + au dx 
i)x 

I 

. _ ' 

Fig. 4.1. Longitudinal beam vibration. 

Thus 

or 

 Ptgx = SE(iCu/igx=). 

a ,,lat== 

i32ufi)xZ=(1/cz)(~)2ufi)t2), w h e r e c = 4 ( E / p ) .  

This is the wave equation. The velocity of propagation of the displacement or stress wave 
in the bar is c. 

The wave equation 

ax" \ / \ a? / 

can be solved by the method of separation of variables and assuming a solution of the 
form 

u(x, t) = F(x)G(t).  

Substituting this solution into the wave equation gives 

~2F(x) 1 ~)2G(t) 
i9x2 G(t) - c2 ~9t2 r(x) ,  

that is 

1 ~92F(x) 1 1 /)ZG(t) 
m 

F(x) t)x 2 c 2 G(t) t)t = 

The LHS is a function of x only, and the RHS is a function of t only, so partial derivatives 
are no longer required. Each side must be a constant, - (to]c) 2 say. (This quantity is chosen 
for convenience of solution.) Then 

dx ~ + F(x) = 0 
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and 

d2G(t) 

d? 
+ ~G(t)  = O. 

Hence 

and 

G(t) = C sin cot + D cos rot. 

The constants A and B depend upon the boundary conditions, and C and D upon the initial 
conditions. The complete solution to the wave equation is therefore 

u =  (A sin ( - ~ ) x  + B cos ( -~ )x ) (C  sin mt + D cos rot). 

E x a m p l e  2 9  

Find the natural frequencies and mode shapes of longitudinal vibrations for a free-free 
beam with initial displacement zero. 

Since the beam has free ends, Ou]Ox = 0 at x = 0 and x = I. Now 

( / ( / / (  ) - ,4 cos x - B  --~ sin --~ x Csincot  + Dcosco t  . 
~x ~ c l  \ c /  / \  

Hence 

= A (C sin cot + D cos ~r = 0, 
. x m O  

so that A = 0 

and 

__ , i n  s i ~  + o -- o. 

Thus sin{m//c) = 0, since B ~ 0, and therefore 

co/ 
- = 71, 2zr, .... nzr, .... 

c q{elp) 
that  is,  

~" = T r.{l/~, 



132 The vibration of continuous structures [Ch. 4 

where co = c/wavelength. These are the natural frequencies. 
If the initial displacement is zero, D = 0 and 

x . s i n \ - - ~ / 1 - ~ ]  t. 

where B' = B x C. Hence the mode shape is determined. 

Example 30 

A uniform vertical rod of length l and cross-section S is fixed at the upper end and is 
loaded with a body of mass M on the other. Show that the natural frequencies of 
longitudinal vibration are determined by 

col~[(p/E) tan ~ l ( p / E )  = SpI[M. 

A t x  = 0, u = 0, a n d a t x  = l , F =  SE(Ou/Ox). 

Also 

F = SE (Ou[Ox) = -M(O2u/Ot2). 

The general solution is 

u = (A s in(~c)x  + B cos (~c)x ) (C  sin cot + D cos cot). 

Now, U~_o = 0, so B = 0, 

thus 

u = (A sin(co]c)x)(C sin cot + D cos cot), 
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and 

SO 

(Ou[~gx)~., = (A(m/c) cos(r~]c))(C sin rot + D cos rot) 

(~)2uDt2)~., = (-Ato 2 sin(~/c))(C sin tot + D cos a,'t), 

F = SEA (m/c) cos(r~/c)(C sin rot + D cos rot) 

= MA r~ sin(col[c)(C sin rot + D cos ox). 

Hence (~l /c)  tan(r_ol]c) = SIE/Mc ~, and 

mil l (p iE) tan (ol~/(p/E) = Spl/M, 2 

since c = E/p. 

4.2 TRANSVERSE VIBRATION OF A THIN UNIFORM BEAM 

The transverse or lateral vibration of a thin uniform beam is another vibration problem in 
which both elasticity and mass are distributed. Consider the moments and forces acting on 
the element of the beam shown in Fig. 4.2. The beam has a cross-sectional area A, flexural 
rigidity El, material of density p and Q is the shear force. 

l_ 
. . . . . . .  i t- 

Element 
, , 

I , ' 

_1 
--1 

. . . . .  ~ , , , ,  

~ s  pA per unit length 

For element Q 

-( . 0  I 1 .M M+~ x dx 

aO O+~x dx 

Applied forces 
Fig. 4.2. Transverse beam vibration. 

[ r 1 
pAdx z:y 

~t 2 
Effective force 

Then for the element, neglecting rotary inertia and shear of the element, taking 
moments about O gives 

dx dx /)Q dx ~)M 
+ dx = M +  ~ d x ,  

M +  Q 2 +  2 ~)x 2 ~x 
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that is, 

a = ~)M]Ox. 

Summing forces in the y direction gives 

tgQ /)2y 
d x = p A d x  

Ox ~t 2 

Hence 

a5 
a x  ~ - p A  a t  ~ . 

Now E1 is a constant for a prismatical beam, so 

M = - E l  ax--- T and ax 2 - - E l  - - ~ .  

Thus 

~9x4 + --~- ~ = 0 . ~ g t z  

This is the general equation for the transverse vibration of a uniform beam. 
When a beam performs a normal mode of vibration the deflection at any point of the 

beam varies harmonically with time, and can be written 

y = X (B, sin tot + B2 cos (z,'t), 

where X is a function of x which defines the beam shape of the normal mode of vibration. 
Hence 

where 

3, 4 = pAa~[El. This is the beam equation. 

The general solution to the beam equation is 

X = C, cos Ax + 6"2 sin 3x + ~ cosh Ax + C4 sinh Ax, 

where the constants C,.2.3.4 are determined from the boundary conditions. 
For example, consider the transverse vibration of a thin prismatical beam of length l, simply 

supported at each end. The deflection and bending moment are therefore zero at each end, so 
that the boundary conditions are X = 0 and d2X[dx 2 = 0 at x = 0 and x = I. 

Substituting these boundary conditions into the general solution above gives 

a t x  = O , X =  O; thusO = C, + C3, 
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and 

d~X 
a t x  = 0, dx 2 - 0; t h u s 0  = C t - C 3 ;  

that is, 

C~ = C3 = 0 and X = C 2 s i n ~  + C4sinhXx.  

Now 

a t x  = I ,X = 0 so that 0 = C 2 s i n 2 /  + C 4 s i n h 2 / ,  

and 

at x = l, - 0, so that 
dx ~ 

0 = 6'2 sin 2 / -  C4 sinh M; 

that is, 

C2 sin 2/ = C, sinh 2/ = 0. 

Since 2/ ~ 0, s i n h 2 /  ~ 0 and therefore C4 = 0. 

Also C2 sin 2/ = 0. Since C2 ~ 0 otherwise X = 0 for all x, then sin M = 0. Hence 
X = (72 sin 2x and the solutions to sin 2/ = 0 give the natural frequencies. These are 

nr 27r 3nr 
;t = 0, ~ ,  , ~  

l l l 

so that 

t O =  0, ~, -~p / ~ l ] 1~, a p 1' ~ - l  l 1~, -~p l .... rad/s; 

= 0, co = 0 is a trivial solution because the beam is at rest, so the lowest or first 
natural frequency is co, = (~]I)2"4(EI[Ap) rad/s, and the corresponding mode shape is 

X = C2 sin n:t/l; this is the first mode; ~ = (2~r/I)2"4(EI/Ap) rad/s is the second natural 

frequency, and the second mode is X = C2 sin 2n:x[l, and so on. The mode shapes are 

drawn in Fig. 4.3. 
These sinusoidal vibrations can be superimposed so that any initial conditions can be 

represented. Other end conditions give frequency equations with the solution where the 

values of ct are given in Table 4.1. 

co = rad/s, 
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1st mode shape, one half-wave: 

y = C2 sin tr (B, sin to, t + B2 cos to, t); (0, = - 7  rad/s. 

2nd mode shape, two half-waves" 

y = C2 sin 21r (B, sin to2t + B2 cos a~t); (02 = - 7 -  rad/s. 

/ 

3rd mode shape, three half-waves: 

y = C2 sin 3~ (B, sin to3t + B2 cos trot); a~ = \ - - ~ - / l \ ~ p / r a d / s .  

Fig. 4.3. Transverse beam vibration mode shapes and frequencies. 
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Table 4.1 

End conditions Frequency equation 1st 2nd 3rd 4th 5th 
mode mode mode mode mode 

Clamped-free cos M cosh M = -1 
Pinned-pinned sin M = 0 
Clamped-pinned tan M = tanh 2/ 
Clamped- 
clamped or cos M cosh M = 1 
Free-free 

3.52 22.4 61.7 21.0 199.9 
9.87 39.5 88.9 157.9 246.8 

15.4 50.0 104.0 178.3 272.0 

22.4 61.7 121.0 199.9 298.6 

The natural frequencies and mode shapes of a wide range of beams and structures are 
given in Formulas for Natural Frequency and Mode Shape by R. D. Blevins (Van 
Nostrand, 1979). 

4.2.1 The whirling of shafts 

An important application of the theory for transverse beam vibration is to the whirling of 
shafts. If the speed of rotation of a shaft is increased, certain speeds will be reached at 
which violent instability occurs. These are the critical speeds of whirling. Since the 
loading on the shaft is due to centrifugal effects the equation of motion is exactly the same 
as for transverse beam vibration. The centrifugal effects occur because it is impossible to 
make the centre of mass of any section coincide exactly with the axis of rotation, because 
of a lack of homogeneity in the material and other practical difficulties. 

Example 31 

A uniform steel shaft which is carried in long bearings at each end has an effective 
unsupported length of 3 m. Calculate the first two whirling speeds. 

Take I/A = 0.1 x 10 -3 m 2, E = 200 GN/m 2, and p = 8000 kg/m 3. 
Since the shaft is supported in long bearings, it can be considered to be 'built in' at each 

end so that, from Table 4.1, 

to = rad/s, 

where ct, = 22.4 and th = 61.7. For the shaft, 

x x o 1 x lO 
= = 50 m [s, 

8000 

so that the first two whirling speeds are: 

22.4 
to, - 50 = 124.4 rad/s, 

9 

SO 
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tO, 124.4 

f ' -  2 n : -  2nr 
- 19.8 cycle/s and N, = 1188 rev/min 

and 

61.7 
N~-  

22.4 
1188 = 3272 rev/min. 

Rotating this shaft at speeds at or near to the above will excite severe resonance 
vibration. 

4.2.2 Rotary inertia and shear effects 

When a beam is subjected to lateral vibration so that the depth of the beam is a significant 
proportion of the distance between two adjacent nodes, rotary inertia of beam elements 
and transverse shear deformation arising from the severe contortions of the beam during 
vibration make significant contributions to the lateral deflection. Therefore rotary inertia 
and shear effects must be taken into account in the analysis of high-frequency vibration of 
all beams, and in all analyses of deep beams. 

The moment equation can be modified to take into account rotary inertia by a term 
pl  t)3y/(t)X t)t2), SO that the beam equation becomes 

a3, a'y = o. El  - pla- t  + pA ot 

Shear deformation effects can be included by adding a term 

kg Ox2 ~)t 2' 

where k is a constant whose value depends upon the cross section of the beam. Generally, 
k is about 0.85. The beam equation then becomes 

- ~  etp 0. 
Ox 4 - kg t)X2~t 2 + pA ~)t-- T = 

Solutions to these equations are available, which generally lead to a frequency a few 
percent more accurate than the solution to the simple beam equation. However, in most 
cases the modelling errors exceed this. In general, the correction due to shear is larger than 
the correction due to rotary inertia. 

4.2.3 The effect of axial loading 

Beams are often subjected to an axial load, and this can have a significant effect on the 
lateral vibration of the beam. If an axial tension T exists, which is assumed to be constant 
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for small-amplitude beam vibrations, the moment equation can be modified by including 
a term TO2y/ax 2, so that the beam equation becomes 

- + = 0 .  
dt 

Tension in a beam will increase its stiffness and therefore increase its natural frequencies; 
compression will reduce these quantities. 

Example 32 

Find the first three natural frequencies of a steel bar 3 cm in diameter, which is simply 
supported at each end, and has a length of 1.5 m. Take p = 7780 kg]m 3 and E = 208 
GN/m 2. 

For the bar, 

~ ( ~ )  = ~ ( 2 0 8  x 109 x n(0"03)4/64)m/s2 = 38. 8 m/s 2. 

n: (0.03/2) 2 7780 

Thus 

2 /17 
tO, -- 1.52 38.8 = 170.2rad/s and ft = 27.1Hz. 

Hence 

f2 = 27.1 x 4  = 108.4Hz 

and 

f3 = 27.1 x 9 = 243.8 Hz. 

If the beam is subjected to an axial tension T, the modified equation of motion leads to 
the following expression for the natural frequencies: 

, 

ca, Ap Ap 

For the case when T = 1000 N the correction to a~ is a~, where 

2 1000 
= = 795 (rad]s) 2. 

7r (0.0312) 2 7780 

That is, f~ = 4.5 Hz. Hence f, = ~/(4.52 + 27.12) = 27.5 Hz. 

4.2.4 Transverse vibration of a beam with discrete bodies 

In those cases where it is required to find the lowest frequency of transverse vibration of 
a beam that carries discrete bodies, Dunkerley's method may be used. This is a simple 
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analytical technique which enables a wide range of vibration problems to be solved using 
a hand calculator. Dunkerley's method uses the following equation: 

1 1 1 1 1 

where tot is the lowest natural frequency of a system and P,, P2, Ps .... are the frequencies 
of each body acting alone (see section 3.2.1.2). 

Example 33 

A steel shaft (p = 8000 kg/m 3, E = 210 GN]m 2) 0.055 m diameter, running in self- 
aligning bearings 1.25 m apart, carries a rotor of mass 70 kg, 0.4 m from one bearing. 
Estimate the lowest critical speed. 

For the shaft alone 

= = 70.45 m]s 2. 
n: (0.055/2) 2 8000 

Thus P, = 1.25 70.45 - 445 rad/s = 4249 rev/min. 

This is the lowest critical speed for the shaft without the rotor. For the rotor alone, 
neglecting the mass of the shaft, 

P2 = ~/(k/m) rad/s 

and 

= 3Ell[(xZ(l-  k X) 2), 

where x = 0.4 m and l = 1.25 m. 
Thus 

k = 3.06 MN/m 

and 

Pz = ~/((3.06 • 106)/70) 

= 209.1 rad/s = 1996 rev/min. 
Now using Dunkerley's method, 

l /N, 2 = 1/42492 + 1/19962, hence Nt = 1807 rev/min. 

4.2.5 Receptance analysis 

Many structures can be considered to consist of a number of beams fastened together. 
Thus if the receptances of each beam are known, the frequency equation of the structure 
can easily be found by carrying out a subsystem analysis (section 3.2.3). The required 
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receptances can be found by inserting the appropriate boundary conditions in the general 
solution to the beam equation. 

It will be appreciated that this method of analysis is ideal for computer solutions 
because of its repetitive nature. 

For example, consider a beam that is pinned at one end (x = O) and free at the other end 
(x = /). This type of beam is not commonly used in practice, but it is useful for analysis 
purposes. With a harmonic moment of amplitude M applied to the pinned end, 

at x = O, X = 0 (zero deflection)and 

d2X M 
- (bending moment M), 

dx 2 E1 

and at x = l, 

d2X 
d x  ~ 

- 0 (zero bending moment) 

and 

d~X 
dx 3 

- 0 (zero shear force). 

Now, in general, 

X = C, cos ~ + C2 sin A.x + C3 cosh Zx + C, sinh ;Ix. 

Thus applying these boundary conditions, 

M 
0 = C, + (73 and - - C , X  2 + C3A, 2. 

E1 

Also 

and 

0 = -C,~, 2 cos 2 1 -  C2~, 2 sin 2/ + C3A, 2 cosh ;tl + C4~ 2 sinh 2/. 

0 = C~23 sin 2 / -  C2~, 3 cos 2/ + C3A, 3 sinh A/ + C,A 3 cosh M. 

By solving these four equations C~.2.3., can be found and substituted into the general 
solution. It is found that the receptance moment/slope at the pinned end is 

(1 + cos 2 /cosh  A/) 

EIA (cos A/sinh 2 / -  sin M cosh 2/) 

and at the free end is 

2 cos 2 /cosh  

El3, (cos 31 sinh M -  sin M cosh M) 
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The frequency equation is given by 

cos 2/sinh 2 / -  sin 2/cosh 2/ = 0, 

that is, tan A/ = tanh 2/. 
Moment/deflection receptances can also be found. 
By inserting the appropriate boundary conditions into the general solution, the re- 

ceptance due to a harmonic moment applied at the free end, and harmonic forces applied 
to either end, can be deduced. Receptances for beams with all end conditions are tabulated 
in The Mechanics of Vibration by R. E. D. Bishop & D. C. Johnson (CUP, 1960179), 
thereby greatly increasing the ease of applying this technique. 

Example 34 

A hinged beam structure is modelled by the array shown below: 

The hinges are pivots with torsional stiffness kr and their mass is negligible. All hinges 
and beams are the same. 

It is required to find the natural frequencies of free vibration of the array, so that the 
excitation of these frequencies, and therefore resonance, can be avoided. 

Since all the beams are identical, the receptance technique is relevant for finding the 
frequency equation. This is because the receptances of each subsystem are the same, 
which leads to some simplification in the analysis. 

There are two approaches: 

(i) 
(ii) 

to split the array into subsystems comprising torsional springs and beams, 
to split the array into subsystems comprising spring-beam assemblies. 

This approach results in a smaller number of subsystems. 
Considering the first approach, and only the first element of the array, the subsystems 

could be either 

o r  
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For (a) the frequency equation is ct~, +/3,, = 0, whereas for (b) the frequency equation 

= 0 ,  

where tz,, is the moment]slope receptance for A, fl~ is the moment]slope receptance for B, 
fl,2 is the moment]deflection receptance for B, fl22 is the force]deflection receptance for B, 
and so on. 

For (a), either calculating the beam receptances as above, or obtaining them from tables, 
the frequency equation is 

1 
~ +  

cos 2/cosh M + 1 

EIA(cos M sinh M -  sin M cosh M) 
= 0 ,  

where 

~(Apa~ I ,~= 
I \  EI I" 

For (b), the frequency equation is 

1 cos M sinh M + sin M cosh 2/ 
+ 

k,r EIA(cos M cosh M -  1) 

-sin M sinh M 

E122(cos M cosh M -  1) 

-sin M sinh M 

EHl,2(cos M cosh M -  1) 

--(cos M sinh M -  sin M cosh M) 

E123(cos M cosh M -  1) 

= 0 ,  

which reduces to the equation given by method (a). 
The frequency equation has to be solved after inserting the structural parameters, to 

yield the natural frequencies of the structure. 
For the whole array it is preferable to use approach (ii), because this results in a smaller 

number of subsystems than (i), with a consequent simplification of the frequency 
equation. However, it will be necessary to calculate the receptances of the spring pinned- 
free beam if approach (ii) is adopted. 

The analysis of structures such as frameworks can also be accomplished by the 
receptance technique, by dividing the framework to be analysed into beam substructures. 
For example, if the in-plane natural frequencies of a portal frame are required, it can be 
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Fig. 4.4. Portal frame substructure analysis. 

divided into three substructures coupled by the conditions of compatibility and equili- 
brium, as shown in Fig. 4.4. 

Substructures A and C are cantilever beams undergoing transverse vibration, whereas B 
is a free-free beam undergoing transverse vibration. Beam B is assumed rigid in the 
horizontal direction, and the longitudinal deflection of beams A and C is assumed to be 
negligible. 

Because the horizontal member B has no coupling between its horizontal and flexural 
motion fl,2 = fl,4 = fl23 = fl~4 = O, so that the frequency equation becomes 

a,, + fl~, a,~ fl~ 0 
~'21 ~22 "~ ~22 0 ~24 

= 0 .  

4.3 THE ANALYSIS OF CONTINUOUS STRUCTURES BY RAYLEIGH'S 
ENERGY METHOD 

Rayleigh's method, as described in section 2.1.4, gives the lowest natural frequency of 
transverse beam vibration as 

2 CO = 

dx 

o 

I y2 dm 
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A function of x representing y can be determined from the static deflected shape of the 
beam, or a suitable part sinusoid can be assumed, as shown in the following examples. 

Example 35 
A simply supported beam of length I and mass m2 carries a body of mass m, at its mid- 
point. Find the lowest natural frequency of transverse vibration. 

X 

i "  _ =' ~ '  ,, 

L, 
I - "  

ml 

[ i 
"' ' ' . . . . . . . . .  ~ ' "  '= '  ' ~ "' , " "  i l  

J I/O t I 
~ I ~  

, ,, / " . . . .  ~ !  

This example has been fully discussed above (Example 4, p. 25). However, the 
Dunkerley method can also be used. Here 

4 8 E I  EI ~ 
P~ - and P :  - 

mll 3 m213 �9 

Thus 

1 3  1 mt m213 
- -  + 

tO 2 4 8 E I  ~ EI" 

Hence 

2 
tO = 

~)4 l 
E l l 2  

( 1.015m, + 

which is very close to the value determined by the Rayleigh method. 

Example 36 

A pin-ended strut of length I has a vertical axial load P applied. Determine the frequency 
of free transverse vibration of the strut, and the maximum value of P for stability. The strut 
has a mass m and a second moment of area I, and is made from material with modulus of 
elasticity E. 
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~ P 

z 

s 

The deflected shape can be expressed by 

x 
Y = Yo sin t r - - ,  

I 

since this function satisfies the boundary conditions of  zero deflection and bending 
moment  at x = 0 and x = I. 

N o w ,  

where 

/~yl 2 S,o (/)  ~ l f 1 x 

J E1 dx = E1 yo 2 - -  sin" n ' - -  dx 
2 

2 ~dx 2 ] 2 l 

e / ~  2 
4 13 Yo, 

and 

Z = 1 + ,) dx 
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_0 2 cos 7r - -  dx 
l 

2 2 
Yo nr 

4 l 

Thus 

El ~ P ~)  
Vmax = 13 - Yo. 

4 4 l 

Now, 

T ~ a l  m 

1 S 'l m y2 dm y2 
~--" ~ ~ d X  

2 2 l 

l i e ,  2 . 2  x m 
2 Jo Yo sm n r - - - -  

l l 
d X  ~ 

m 

4 

2 

YO �9 

Thus 

2 
tO = 

4 / 3 4 l 

m 

4 

and 

f = 2 ml Hz. 

From section 2.1.4, for stability 

dV d2V 
- 0 and 

dyo @0 2 
> O, 

that is, 
2 

/17 
Yo = 0 and E I - ~  > P; 
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Yo = 0 is the equilibrium position about which vibration occurs, and P < E1 ~/ l  2 is the 
necessary condition for stability. E1 ~]l 2 is known as the Euler buckling load. 

4.4 TRANSVERSE VIBRATION OF THIN UNIFORM PLATES 

Plates are frequently used as structural elements so that it is sometimes necessary to 
analyse plate vibration. The analysis considered will be restricted to the vibration of thin 
uniform flat plates. Non-uniform plates that occur in structures, for example, those which 
are fibbed or bent, may best be analysed by the finite element technique, although exact 
theory does exist for certain curved plates and shells. 

The analysis of plate vibration represents a distinct increase in the complexity of 
vibration analysis, because it is necessary to consider vibration in two dimensions instead 
of the single-dimension analysis carried out hitherto. It is essentially therefore, an 
introduction to the analysis of the vibration of multi-dimensional structures. 

Consider a thin uniform plate of an elastic, homogeneous isotropic material of thickness 
h, as shown in Fig. 4.5. 

Fig. 4.5. Thin uniform plate. 

If o is the deflection of the plate at a point (x, y), then it is shown in Vibration Problems 
in Engineering by S. Timoshenko (Van Nostrand, 1974), that the potential energy of 
bending of the plate is 

2  ax2! + + 2v ax" ay + 2(1-v) a .ay d dy 

where the flexural rigidity, 
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D _., 
Eh 3 

12(1 - v 2) 

and v is Poisson's Ratio. 
The kinetic energy of the vibrating plate is 

  dxdy, 
2 

where ph is the mass per unit area of the plate. 
In the case of a rectangular plate with sides of length a and b, and with simply 

supported edges, at a natural frequency ~ v can be represented by 

x y 
V = r sin m~- -a  sin n~" b '  

where r is a function of time. 

Thus 

V 
~ab (m 2 n2/2 

_ D 0  2 + 
8 --~ b21 

and 

r _  ph ab ~2. 
2 4 

Since d(T + V)]dt = 0 in a conservative structure, 

ph ab .. ~ab m 
2 4 2~0 + ~D2~P8 + b21 = 0; 

that is, the equation of motion is 

(2a_ n2/2b2/ 4 m 
+ x D  - r  + ~ = 0 .  

Thus r represents simple harmonic motion and 

r = A sin ~o,..t + B cos o),..t, 

where 

2 D m 2 n ~ ] 
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N o w ,  

x y 
v = r sin m / r -  sin nn" ~ ,  

a 

thus v = 0 when sin mn:x/a = 0 or sin nny/b = 0, and hence the plate has nodal lines 
when vibrating in its normal modes. 

Typical nodal lines of the first six modes of vibration of a rectangular plate, simply 
supported on all edges, are shown in Fig. 4.6. 

v ~  

1st m o d e  

m = l  

a 

n = l  

x 
' 1 

I 
I 
I 
| 

2nd m o d e  

m = 2  n = l  
3 r d  mode 
m = l  n = 2  

I | . . . .  

I 
I I 
I I 
I I 
I I 

I 

I 
I . . . . .  | . . . . . .  

I 

- -  = I 
I I 

i j 
I , I  

4th mode 5th mode 6th mode 
m = 3  n = l  m = 2  n - 2  m - 3  n = 2  

Fig. 4.6. Transverse plate vibration mode shapes. 

An exact solution is only possible using this method if two opposite edges of the plate 
are simply supported: the other two edges can be free, hinged or clamped. If this is not the 
case, for example if the plate has all edges clamped, a series solution for o has to be 
adopted. 

For a simply supported square plate of side a (=  b), the frequency of free vibration 
becomes 

f =  /r-- S- Hz, 
a 

whereas for a square plate simply supported along two opposite edges and free on the 
others, 

Hz, 
f -  2~a ~ 

where cz = 9.63 in the first mode (1, 1), a = 16.1 in the second mode (1, 2), and a = 36.7 
in the third mode (1, 3). 
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Thus the lowest, or fundamental, natural frequency of a simply supported/free square 
plate of side I and thickness d is 

96 ;( ) 1009;c    z 
2trl 2 1 2 ( 1 - v  2) pal - 2trl 2 ~ 1 2 p ]  ' 

if v - 0.3. 

The theory for beam vibration gives the fundamental natural frequency of a beam 
simply supported at each end as 

1 E/  

2-;; Hz. 

If the beam has a rectangular section b x d, I - 

Thus 

Hz, 

b,f 
12 

and A = bd. 

that is, 

f -  2~1 ---~ l ~ p  Hz. 

This is very close (within about 2%) to the frequency predicted by the plate theory, 
although of course beam theory cannot be used to predict all the higher modes of plate 
vibration, because it assumes that the beam cross section is not distorted. Beam theory 
becomes more accurate as the aspect ratio of the beam, or plate, increases. 

For a circular plate of radius a, clamped at its boundary, it has been shown that the 
natural frequencies of free vibration are given by 

f -  2/ra 2 Hz, 

where t~ is as given in Table 4.2. 
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Table 4.2 

[Ch. 4 

Number of nodal diameters 
Number of 0 1 2 
nodal circles 

0 10.21 21.26 34.88 
1 39.77 60.82 84.58 
2 89.1 120.08 153.81 
3 158.18 199.06 242.71 

The vibration of a wide range of plate shapes with various types of support is fully 
discussed in NASA publication SP-160 Vibration of Plates by A. W. Leissa. 

4.5 THE FINITE ELEMENT METHOD 

Many structures, such as a ship hull or engine crankcase, are too complicated to be 
analysed by classical techniques, so that an approximate method has to be used. It can be 
seen from the receptance analysis of complicated structures that breaking a dynamic 
structure down into a large number of substructures is a useful analytical technique, 
provided that sufficient computational facilities are available to solve the resulting 
equations. The finite element method of analysis extends this method to the consideration 
of continuous structures as a number of elements, connected to each other by conditions 
of compatibility and equilibrium. Complicated structures can thus be modelled as the 
aggregate of simpler structures. 

The principal advantage of the finite element method is its generality; it can be used to 
calculate the natural frequencies and mode shapes of any linear elastic system. However, 
it is a numerical technique that requires a fairly large computer, and care has to be taken 
over the sensitivity of the computer output to small changes in input. 

For beam type systems the finite element method is similar to the lumped mass method, 
because the system is considered to be a number of rigid mass elements of finite size 
connected by massless springs. The infinite number of degrees of freedom associated with 
a continuous system can thereby be reduced to a finite number of degrees of freedom, 
which canbe examined individually. 

The finite element method therefore consists of dividing the dynamic system into a 
series of elements by imaginary lines, and connecting the elements only at the inter- 
sections of these lines. These intersections are called nodes. It is unfortunate that the word 
node has been widely accepted for these intersections; this meaning should not be 
confused with the zero vibration regions referred to in vibration analysis. The stresses and 
strains in each element are then defined in terms of the displacements and forces at the 
nodes, and the mass of the elements is lumped at the nodes. A series of equations is thus 
produced for the displacement of the nodes and hence the system. By solving these 
equations the stresses, strains, natural frequencies and mode shapes of the system can be 
determined. The accuracy of the finite element method is greatest in the lower modes, and 
increases as the number of elements in the model increases. The finite element method of 
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analysis is considered in The Finite Element Method by O. C. Zienkiewicz (McGraw Hill, 
1977) and A First Course in Finite Element Analysis by Y. C. Pao (Allyn and Bacon, 
1986). 

4.6 THE VIBRATION OF BEAMS FABRICATED FROM MORE THAN ONE 
MATERIAL 

Engineering structures are sometimes fabricated using composite materials. These appli- 
cations are usually where high strength and low weight are required as, for example, in 
aircraft, space vehicles and racing cars. Composite materials are produced by embedding 
high-strength fibres in the form of filaments or yarn in a plastic, metal or ceramic matrix. 
They are more expensive than conventional materials but their application or manufactur- 
ing methods often justify their use. 

The most common plastic materials used are polyester and epoxy resin, reinforced with 
glass. The glass may take the form of strands, fibres or woven fabrics. The desirable 
quality of glass fibres is their high tensile strength. Naturally the orientation and alignment 
or otherwise of the fibres can greatly affect the properties of the composite. Glass 
reinforced plastic (GRP) is used in such structures as boats, footbridges and car bodies. 
Boron fibres are more expensive than glass but because they are six times stiffer they are 
sometimes used in critical applications. 

Carbon fibres are expensive, but they combine increased stiffness with a very high 
tensile strength, so that composites of carbon fibre and resin can have the same tensile 
strength as steel but weigh only a quarter as much. Because of this carbon fibre 
composites now compete directly with aluminium in many aircraft structural applications. 
Cost precludes its large-scale use, but in the case of the A320 Airbus, for example, over 
850 kg of total weight is saved by using composite materials for control surfaces such as 
flaps, rudder, fin and elevators in addition to some fairings and structural parts. 

Analysis of the vibration of such structural components can be conveniently carried out 
by the finite element method (section 4.5), or more usefully by the modal analysis method 
(section 3.3). However, composite materials are usually anisotropic so the analysis can be 
difficult. Inherent damping is often high however, even though it may be hard to predict 
due to variations in such factors as manufacturing techniques and fibre]matrix wetting. 

Concrete is usually reinforced by steel rods, bars or mesh to contribute tensile strength. 
In reinforced concrete, the tensile strength of the steel supplements the compressive 
strength of the concrete to provide a structural member capable of withstanding high 
stresses of all kinds over large spans. It is a fairly cheap material and is widely used in the 
construction of bridges, buildings, boats, structural frameworks and roads. 

It is sometimes appropriate, therefore, to fabricate structural components such as 
beams, plates and shells from more than one material, either in whole or in part, to take 
advantage of the different and supplementary properties of the two materials. Composites 
are also sometimes incorporated into highly stressed parts of a structure by applying 
patches of a composite to critical areas. 

The vibration analysis of composite structures can be lengthy and difficult, but the 
fundamental frequency of vibration of a beam made from two materials can be determined 
using the energy principle, as follows. 
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Fig. 4.7 shows a cross section through a beam made from two materials 1 and 2 bonded 
at a common interface. Provided the bond is sufficiently good to prevent relative slip, a 
plane section before bending remains plane after bending so that the strain distribution is 
linear across the section, although the normal stress will change at the interface because of 
the difference in the elastic moduli of the two materials Et and E2. 

Fig. 4.7. Composite beam cross section. 

Now, from section 2.1.4.2 and Fig. 2.11, the strain e at a distance r from the neutral axis 
of a beam in bending is 

(R + r ) d O - R d O  r 

RdO R 

Hence the strain at a distance r~ from the neutral axis is 

e~ = r~ dx2, 

and similarly 

e 2 = r 2  
dx 2" 

Hence, the corresponding stresses are 

trl = Etel  = Eirl  
dx  ~ 

and 

tr~ = E~e~ = E~r~ 
dx 2" 

The strain energy stored in the two materials per unit volume is dV~ + dV2 

where 



Sec. 4.6] The vibration of beams fabricated from more than one material 155 

dV~ - 
o',~ E, 

2 2 

and 

dye-  
2 2 ~ \ ~ / "  

Integrating over the volume of a beam of length I gives 

Vmax El flol (d2y/2 E2 fO I (d2y/2 
- 2 r~kdx2 / dA, dx + 2 gkdx2  ] dA2dx. 

Now 

SO I I 1, = r~dA, and12 = r2 dA2, 

2 o dx2] dx" 

I, and I2 can only be calculated when the location of the neutral axis of the composite 
cross section is known. This can be found using an equivalent cross section for one 
material. 

The mass per unit length of the composite is p,A, + p2A2, so that 

= (ya~) ~ d x .  
2 o 

A shape function has therefore to be assumed before T== can be calculated. 
Putting Tm,x = Vm,x gives the natural frequency co. 

E x a m p l e  3 7  

A simply supported beam of length I is fabricated from two materials M1 and M2. Find 
the fundamental natural frequency of the beam using Rayleigh's method and the shape 
function 

y =  P sin ( - ~ ) .  

: , .  + 

2 kdx2 ] dx 

= 2 213 
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2 (.y co) 2 dx 

=( pro, Am, + p m  Am2 / P21 
co 

2 ] 2 

Putting T=.~ = Vmx gives 

r = (EM, IM, + E m l m )  ~ 

PMI AMt + Pm AM2 

So that 

p~, A~, + p ~  lm 

IM, and lm can be calculated once the position of the neutral axis has been found. 
This method of analysis can obviously be extended to beams fabricated from more than 

two materials. 



5 
Damping in structures 

5.1 SOURCES OF VIBRATION EXCITATION AND ISOLATION 

Before attempting to reduce the vibration levels in a machine or structure by increasing its 
damping, every effort should be made to reduce the vibration excitation at its source. It 
has to be accepted that many machines and processes generate a disturbing force of one 
sort or another, but the frequency of the disturbing force should not be at, or near, a natural 
frequency of the structure otherwise resonance will occur, with the resulting high 
amplitudes of vibration and dynamic stresses, and noise and fatigue problems. Resonance 
may also prevent the structure fulfilling the desired function. 

Some reduction in excitation can often be achieved by changing the machinery 
generating the vibration, but this can usually only be done at the design stage. Re-siting 
equipment may also effect some improvement. However, structural vibration caused by 
external excitation sources such as ground vibration, cross winds or turbulence from 
adjacent buildings can only be controlled by damping. 

In some machines vibrations are deliberately excited as part of the process, for example, 
in vibratory conveyors and compactors, and in ultrasonic welding. Naturally, nearby 
machines have to be protected from these vibrations. 

Rotating machinery such as fans, turbines, motors and propellers can generate disturb- 
ing forces at several different frequencies such as the rotating speed and blade passing 
frequency. Reciprocating machinery such as compressors and engines can rarely be 
perfectly balanced, and an exciting force is produced at the rotating speed and at 
harmonics. Strong vibration excitation in structures can also be caused by pressure 
fluctuation in gases and liquids flowing in pipes, as well as intermittent loads Such as those 
imposed by lifts in buildings. 

There are two basic types of structural vibration: steady-state vibration caused by 
continually running machines such as engines, air-conditioning plants and generators 
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either within the structure or situated in a neighbouring structure, and transient vibration 
caused by a short-duration disturbance such as a lorry or train passing over an expansion 
joint in a road or over a bridge. 

Some relief from steady-state vibration excitation can often be gained by moving the 
source of the excitation, since the mass of the vibration generator has some effect on the 
natural frequencies of the supporting structure. For example, in a building it may be an 
advantage to move mechanical equipment to a lower floor, and in a ship re-siting 
propulsion or service machinery may prove effective. The effect of local stiffening of the 
structure may prove to be disappointing, however, because by increasing the stiffness the 
mass is also increased, so that the change in the "4(k[m) may prove to be very small. 

Occasionally a change in the vibration generating equipment can reduce vibration 
levels. For example a change in gear ratios in a mechanical drive system, or a change from 
a four-bladed to a three-bladed propeller in a ship propulsion system will alter the 
excitation frequency provided the speed of rotation is not changed. However, in many 
cases the running speeds of motors and engines are closely controlled as in electric 
generator sets, so there is no opportunity for changing the excitation frequency. 

If vibration excitation cannot be reduced to acceptable levels, so that the system 
response is still too large, some measure of vibration isolation may be necessary (see 
section 2.3.2.1). 

5.2 VIBRATION ISOLATION 

It is shown in section 2.3.2.1 that good vibration isolation, that is, low force and motion 
transmissibility, can be achieved by supporting the vibration generator on a flexible low- 
frequency mounting. Thus although disturbing forces are generated, only a small propor- 
tion of them are transmitted to the supporting structure. However, this theory assumes that 
a mode of vibration is excited by a harmonic force passing through the centre of mass of 
the installation; although this is often a reasonable approximation it rarely actually occurs 
in practice because, due to a lack of symmetry of the supported machine, several different 
mountings may be needed to achieve a level installation, and the mass centre is seldom in 
the same plane as the tops of the mountings. 

Thus the mounting which provides good isolation against a vertical exciting force may 
allow excessive horizontal motion, because of a frequency component close to the natural 
frequency of the horizontal mode of vibration. Also a secondary exciting force acting 
eccentrically from the centre of mass can excite large rotation amplitudes when the 
frequency is near to that of a rocking mode of an installation. 

To limit the motion of a machine installation that generates harmonic forces and 
moments, the mass and inertia of the installation supported by the mountings may have to 
be increased; that is, an inertia block may have to be added to the installation. If non- 
metallic mountings are used the dynamic stiffness at the frequencies of interest will have 
to be found, probably by carrying out further dynamic tests in which the mounting is 
correctly loaded; they may also possess curious damping characteristics which may be 
included in the analysis by using the concept of complex stiffness, as discussed in section 
2.2.5. 



Sec. 5.31 Structural vibration limits 159 

Air bags or bellows are sometimes used for very low-frequency mountings where some 
swaying of the supported system is acceptable. This is an important consideration because 
if the motion of the inertia block and the machinery is large, pipework and other services 
may be overstressed, which can lead to fatigue failure of these components. Approximate 
analysis shows that the natural frequency of a body supported on bellows filled with air 
under pressure is inversely proportional to the square root of the volume of the bellows, so 
that a change in natural frequency can be effected simply by a change in bellows volume. 
This can easily be achieved by opening or closing valves connecting the bellows to 
additional receivers, or by adding a liquid to the bellows. Natural frequencies of 0.5 Hz, 
or even less, are obtainable. An additional advantage of air suspension is that the system 
can be made self-levelling, when fitted with suitable valves and an air supply. Air 
pressures of about 5-10 times atmospheric pressure are usual. 

Greater attenuation of the exciting force at high frequencies can be achieved by using a 
two-stage mounting. In this arrangement the machine is set on flexible mountings on an inertia 
block, which is itself supported by flexible mountings. This may not be too expensive to 
install since in many cases an existing subframe or structure can be used as the inertia block. 
If a floating floor in a building is used as the inertia block, some allowance must be made for 
the additional stiffness arising from the air space below it. This can be found by measuring the 
dynamic stiffness of the floor by means of resonance tests. 

Naturally, techniques used for isolating structures from exciting forces arising in 
machinery and plant can also be used for isolating delicate equipment from vibrations in 
the structure. For example, sensitive electrical equipment in ships can be isolated from 
hull vibration, and operating tables and metrology equipment can be isolated from 
building vibration. 

The above isolation systems are all passive; an active isolation system is one in which 
the exciting force or moment is applied by an externally powered force or couple. The 
opposing force or moment can be produced by means such as hydraulic rams, out-of- 
balance rotating bodies or electromagnetism. Naturally it is essential to have accurate 
phase and amplitude control, to ensure that the opposing force is always equal, and 
opposite, to the exciting force. Although active isolation systems can be expensive to 
install, excellent results are obtainable so that the supporting structure is kept almost 
completely still. However it must be noted that force actuators such as hydraulic rams 
must react on another part of the system. 

If, after careful selection and design of machinery and equipment, careful installation 
and commissioning and carrying out isolation as necessary, the vibration levels in the 
system are still too large, then some increase in the damping is necessary. This is also the 
case when excitation occurs from sources beyond the designer's control such as cross 
winds, earthquakes and currents. 

5.3 STRUCTURAL VIBRATION LIMITS 

The vibration to which a structure may be subjected is usually considered with respect to 
its effect on the structure itself, and not on its occupants, equipment or machinery. Modem 
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structures are less massive and have lower damping than hitherto, and because of the 
sophisticated design and analysis techniques now used they generally have less re- 
dundancy. The consideration of vibration limits is therefore becoming increasingly 
important for the maintenance of structural integrity and fitness for purpose. It is 
important to appreciate that even when the level of structural vibration is considered 
intolerable by the occupants, the risk of structural damage from sustained vibration is 
usually very small. In some cases vibration limits may have to be set in accordance with 
operator or occupant criteria which will be well below those which would cause structural 
damage, as discussed later. 

Structural vibration limits for particular damage risks can be classified according to the 
level of vibration intensity, or by consideration of the largest of the rms or peak velocities 
measured in one of three orthogonal directions. 

5.3.1 Vibration intensity 

Fig. 5.1 shows limit lines in terms of vibration amplitude and frequency for various levels 
of damage. These lines correspond to constant values of X~f 3 where X is the amplitude of 
harmonic vibration and f is the frequency. For harmonic motion ~" = Xf2(2n:) 2 so that the 
vibration intensity Z is 

z -  - ]6=" x 7  
f 

If the reference value for Z, 7-,o is taken to be 10 mm2]s 3 the dimensionless vibration 
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2000 mmZ/s3; S = 72.5 vibrar. 

100(] ~ ~  6.4 mm2/s3; S= 17.5 vibrar. 
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10 1 10 100 

Frequency (Hz) 
Region 

I - No damage 
1I - Possible plaster cracks 
II] - Probable damage to load-bearing structural parts 
IV - Damage to load-bearing parts 

IV+ - Destruction 

Fig. 5.1. Structural damage limits. 
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intensity S is given by 

Z 
S = 10 log = 22 log (X=f 3) vibrar. 

Zo 

There seems to be little risk of structural damage for values of X~f 3 below 50 mm2/s 3 
(S = 37.4 vibrar). 

The allowable limit for building vibrations is usually taken to lie in the range 30--40 
vibrar which corresponds to an rms velocity of about 5 mm/s at frequencies between 5 and 
50 Hz. It has been found that rms velocity is probably a more realistic criterion for damage 
to present day structures than vibration intensity. 

5.3.2 Vibration velocity 
Fig. 5.2, which expresses harmonic vibration amplitude as a function of frequency shows 
that lines for constant velocity have smaller slopes than lines for constant vibration 
intensity. Therefore standards based on constant velocity give increased weight to lower- 
frequency vibrations which are more likely to induce structural resonance and damage 
than frequencies above 50 Hz. An rms based quantity provides a reliable criterion for 
damage evaluation since it is related to vibrational energy levels. 

Conventional types of structure do not usually experience any damage from steady- 
state vibration with a peak velocity (Vp) less than 10 mm/s, (V~, = 7 mm/s). However, 
vibration limits can be expressed in terms of vibration severity measured as the largest 
orthogonal component of vibration determined in the structure, as shown below. 

. .  

V,..,, Effect 

up to 5 mm]s 
5-10 mm/s 
over 10 mm/s 

Damage most unlikely 
Damage unlikely 
Damage possible-  check dynamic stress 

1000 I~%% ~, \ ~'~50~60 = S vibrar. 

' \ \ v, - IO mmls 

10 "V,--2mm/s ~ \  " \ \  \ \  " \  
1 10 100 

Frequency (Hz) 

Fig. 5.2. Velocity and intensity comparison. 
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S = 40 vibrar. 

100t 
Intolerable 

E 

a~ 100 

E 
10 

Perception 
threshold 

1 10 100 

t V.,,s = 10 mm/s 

\~'\\\ 
Annoying or 
disturbing 

Frequency (Hz) 

Fig. 5.3. Human response to vibration. 

Although it is essential for the dynamic stresses and strains in a structure to be withstood by 
the components of the structure, and that failure due to fatigue or malfunctioning must not 
occur, in many structures such as vehicles and buildings the response of people to the expected 
vibration must be considered. Human perception of vibration is very good, so that it is often 
a real challenge in structural design to ensure that the perception threshold level is not 
exceeded. An indication of the likely human response to vertical vibration is shown in Fig. 5.3 
together with the lines for 1I,,, = 10 mm]s and S = 40 vibrar. The threshold for sensing 
harmonic vibration, both when standing and lying down, can be predicted fairly accurately by 
using the Diekmann criteria K values as in the table opposite. 

The approximate threshold of human vibration perception corresponds quite closely to 
the Diekmann criteria for K = 1. It can be seen, therefore, that K = 0.1 is a very 
conservative and safe value for predicting the perception threshold, which is the vibration 
level that should not be exceeded in buildings from a human tolerance viewpoint, these 
levels being well within the dynamic capabilities of a structure; that is, only in those 
structures which do not have human operators or occupants may vibration levels be such 
that structural damage may occur. Naturally this excludes special cases such as earthquake 
excitation. 
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The Diekmann K values 

Vertical vibration: 
below 5 Hz K -~ A f  2 

between 5 Hz and 40 Hz K = Af 
above 40 Hz K = 200A 

Horizontal vibration: 
below 2 Hz K = 2Af 2 
between 2 Hz and 25 Hz K = 4Af 
above 25 Hz K = 100A 

where A = amplitude of vibration in mm, and f = frequency in Hz. 

The regions for vibration sensitivity are as follows: 
K = 0.1, lower limit of perception. 
K = 1, allowable in industry for any period of time. 
K = 10, allowable for short duration only. 
K = 100, upper limit of strain for the average man. 

5.4 STRUCTURAL DAMAGE 

Structures such as offices, factories, bridges, ships and high-rise buildings are subjected to 
vibrations generated by a number of sources including machinery, vehicles, trains, aircraft 
and cross winds. A clear distinction must be made between high-intensity short-duration 
vibration induced by earthquakes and blasting, and the long-duration usually lower- 
intensity vibrations such as those induced by traffic and machinery. In particular, buildings 
are more likely to be damaged by strong dynamic loads such as those generated by 
earthquakes. Subsequent vibration from other sources can then cause existing cracks to 
develop and the structural stiffness to vary and eventually a resonance may occur. This 
condition can cause the vibration to increase beyond structurally safe limits. However, the 
resistance to fatigue of steel and reinforced concrete structures is such that damage is 
unlikely to occur if the level of vibration can be tolerated by its occupants. 

It is often difficult to establish with certainty the cause of damaging vibrations. For 
example, cracks in buildings may be due to the vibration from underground trains or 
aircraft, or merely be building settlement following changes in moisture content of the 
building fabric or foundations. 

For industrial buildings and structures damage may be interpreted as a decrease in 
either their safety state, their load carrying capacity or their ability to fulfil the desired 
function. For public buildings and homes damage also refers to the initiation of plaster 
cracks or the development of existing cracks; this damage is usually superficial and can be 
easily remedied. Nuclear power, gas and chemical plants are particularly vulnerable to 
structural damage, however, where no possibility of failure or reduction in structural 
integrity can be allowed because any leakage may be disastrous. 

It should be noted that in all cases of long-duration vibration, damage does not refer to 
building collapse or complete failure. The limit values of allowable vibration provide 
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quite a large safety margin against yielding or failure in a structural or material sense. 
Maximum allowable steady-state vibration levels are lower than those for shock-induced 
short-duration vibrations such as those caused by blasting and earthquakes. 

5.5 EFFECTS OF DAMPING ON VIBRATION RESPONSE OF STRUCTURES 

it is desirable for all structures to possess sufficient damping so that their response to the 
expected excitation is acceptable. Increasing the damping in a structure will reduce its 
response to a given excitation. Thus if the damping in a structure is increased there will be 
a reduction in vibration and noise, and the dynamic stresses in the structure will be 
reduced with a resulting benefit to the fatigue life. Naturally the converse is also true. 

However it should be noted that increasing the damping in a structure is not always 
easy, it can be expensive and it may be wasteful of energy during normal operating 
conditions. 

Some structures need to possess sufficient damping so that their response to internally 
generated excitation is controlled: for example, a crane structure has to have a heavily 
damped response to sudden loads, and machine tools must have adequate damping so that 
a heavily damped response to internal excitation occurs, so that the cutting tool produces 
a good and accurate surface finish with a high cutting speed. Other structures such as 
chimneys and bridges must possess sufficient damping so that their response to external 
excitation such as cross winds does not produce dynamic stresses likely to cause failure 
through fatigue. In motor vehicles, buildings and ships, noise and vibration transmission 
through an inadequately damped structure may be a major consideration. 

Before considering methods for increasing the damping in a structure, it is necessary to 
be able to measure structural damping accurately. 

5.6 THE MEASUREMENT OF STRUCTURAL DAMPING 

It must be appreciated that in any structure a number of mechanisms contribute to the total 
damping. Different mechanisms may be significant at different stress levels, temperatures 
or frequencies. Thus damping is both frequency and mode dependent, both as to its 
mechanism and its magnitude. In discussing the effect of various variables on the total 
damping in a structure it is essential therefore to define all the operating conditions. 

Sometimes it is not possible to measure the damping occurring in a structure on its own. 
For example ships have to be tested in water, which significantly effects the total damping. 
However, since the ship always operates in water, this total damping is relevant; what is 
not clear is how changes in the structure will affect the total in-water damping; cargos may 
also have some effect. On the other hand, a structure such as a machine tool can be tested 
free of liquids and workpiece; indeed the damping of each structural component can be 
measured in an attempt to find the most significant source of damping, and hence the most 
efficient way of increasing the total damping in the structure. 

In all cases when damping measurements are being carried out a clear idea of exactly 
what is being measured is essential. It must be noted that in some tests carried out the 
damping within the test system itself has, unfortunately, been the major contributor to the 
total damping. 
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It has been seen in chapter 2 that the free-decay method is a convenient way for 
assessing the damping in a structure. The structure is set into free vibration by a shock 
load such as a small explosive; the fundamental mode dominates the response since all the 
higher modes are damped out quite quickly. It is not usually possible to excite any mode 
other than the fundamental using this method. By measuring and recording the decay in 
the oscillation the logarithmic decrement A is found, where 

A = l n (  

\ 
amplitude of motion | .  

/ amplitude of motion one cycle later 

If the damping is viscous, or acts in an equivalent viscous manner A will be a constant 
irrespective of the amplitude. To check this, the natural logarithm of the amplitudes can be 
plotted against cycles of motion; viscous damping gives a straight line, as shown in Fig. 
5.4. 

T "~ ~ Exponential 

ime 

Fig. 5.4. Vibration decay for viscous damped system. 

For viscous damping, 

A = In = In - In = ... = I n  

Thus 

x, x~ x~ x._~ x._, 
nA = In . . . . .  ~ .  ~ ,  

x~ x~ x, x~_, x~ 

that is, 

1 
A = - - l n / ~ | ,  

n \ X . /  

which is a useful expression to use if A is small. Note that A = 27r~/~/(1 - ~.2), 
and for low damping A -- 27r~'. 
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There are several ways of expressing the damping in a structure; one of the most 
common is by the Q factor. 

When a structure is forced into resonance by a harmonic exciting force, the ratio of the 
maximum dynamic displacement at steady-state conditions to the static displacement 
under a similar force is called the Q factor, that is, 

Xmax.dyn. 1 
Q = - (section 2.3.1). 

Since a structure can be excited into resonance at any of its modes, a Q factor can be 
determined for each mode. 

Example 38 

A single degree of freedom vibrational system of very small viscous damping (~" < 0.1) 
is excited, by a harmonic force of frequency v and amplitude F. Show that the Q factor of 
the system is equal to the reciprocal of twice the damping ratio (. The Q factor is equal to 
( x / x , ) , , . .  

It is sometimes difficult to measure ~" in this way because the static deflection X, of the 
body under a force F is very small. Another way is to obtain the two frequencies p~ and 
P2 (one either side of the resonance frequency to) at the half-power points. 

Show that Q = 1/2~" = r p , ) =  to/Ate 
(The half-power points are those points on the response curve with an amplitude 1/~/2 

times the amplitude at resonance.) 

From equation (2.12) above 

X 

If v = 0, X, = F/k, and at resonance v = to, so 

Xm. = ( 1k)12r = xj2r 

that is, 

Q = (X/X,,..~),.~ = I/2~'. 

If X, cannot be determined, the Q factor can be found by using the half-power point 
method. This method requires very accurate measurement of the vibration amplitude for 
excitation frequencies in the region of resonance. Once Xm,x and to have been located, the 
so-called half-power points are found when the amplitude is Xp = X,,,,J~/2 and the 
corresponding frequencies either side of to, p, and P2 determined. Since the energy 
dissipated per cycle is proportional to X 2, the energy dissipated is reduced by 50% when 
the amplitude is reduced by a factor of 1/~/2. 
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Now 

Thus 

and 

Hence 

gmax 

Xp = Xmax/~2 

Pt co Pz 

Frequency 

X _. 

Amplitude-frequency response 

m (~)212 + [2~]2} 

X ~ t  ( ) v 
~-~ ~" small, so Xm.x occurs at--=~o 1 

X p  ~" 
X~,x F/k 

42 - 42.2~" ( )212 
2 

= 8 ~  -= 
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and 

that is, 

2 2 

P2 - Pl 
= 4~/(1 _ ~2)= 4(, if ~" is small. 

Now 

)(p ) P2 - P ~  P2 ~ P2 + P~ 2 - P ~  
= - = 2 , 

to2 to to 

because (p~ + p2)/to = 2; that is, a symmetrical response curve is assumed for small (. 
Thus 

p 2 - p ,  = 2 ~ ' -  Ato 1 
m 

co co 12 

where Ato is the frequency bandwidth at the half-power points. 
Thus, for light damping, the damping ratio ~" and hence the Q factor associated with any 

mode of structural vibration can be found from the amplitude-frequency measurements at 
resonance and the half-power points. Care is needed to ensure that the exciting device 
does not load the structure and alter the frequency response and the damping, and also that 
the neighbouring modes do not affect the purity of the mode whose resonance response is 
being measured. 

Some difficulty is often encountered in measuring Xma,, accurately. Fig. 5.5 shows a 
response in which mode 1 is difficult to measure accurately because of the low damping, 
that is, the high Q factor. It is difficult to assess the peak amplitude and hence there may 
be significant errors in the half-power points' location, and a large percentage error in Ato 
because it is so small. Measurements for mode 2 would probably give an acceptable value 
for the Q factor for this mode, but modes 3 and 4 are so close together that they interfere 
with each other, and the half-power points cannot be accurately found from this data. 

In real systems and structures, a very high Q at a low frequency, or a very low Q at a 
high frequency, seldom occur, but it can be appreciated from the above that very real 
measuring difficulties can be encountered when trying to measure bandwidths of only a 
few Hz accurately, even if the amplitude of vibration can be determined. The following 
table shows the relationship between Q and Af for different values of frequency. 
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Fig. 5.5. Amplitude-frequency response, multi-resonance. 
Frequency 

Resonance frequency (Hz) Frequency bandwidth (Hz) for Q factor 

500 50 5 

10 0.02 0.2 2 
I00 0.2 2 20 

1000 2 20 200 

An improvement in accuracy in determining Q can often be obtained by measuring both 
amplitude and phase of the response for a range of exciting frequencies. Consider a single 
degree of freedom system under forced excitation Fe jr'. The equation of motion is 

m ~ + c , t + k x =  Fe j''. 

A solution x = Xe J~' can be assumed, so that 

- m v 2 X  + jcvX + kX = F. 

Hence 

X 1 

F ( k - m y  2) + jcv 
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k - mv  2 cv  

= v2)2 - J  _ v2) 2 ( k - m  + (cv) 2 (k m + (cv) 2' 

that is, X/F consists of two vectors, Re(X/F) in phase with the force, and Ira(X/F) in 
quadrature with the force. The locus of the end point of vector X/F as v varies is shown in 
Fig. 5.6 for a given value of c. This is obtained by calculating real and imaginary 
components of X/F for a range of frequencies. 

V_. . /  i::le IXI Re(-~} 
( 0 -  

/ 
1 3,5 ~ tt ' lv, , | . . . . . . .  

450 X ; = 0 

v= P2 . . . .  v= v' 
/ 

= P1 / v  increasing 

1 . . . .  -~~. 

V 
- = 1  
0} 

Fig. 5.6. Receptance vector locus for system with viscous damping. 

Experimentally this curve can be obtained by plotting the measured amplitude and 
phase of (X/F) for each exciting frequency. 

Since 

tan r = 
k _ m v  2 

CV 

when ~ = 45* and 135", 

2 2 
k -  mp~ k -  rap2 

1 = and - 1  = 
Cps Cp2 

Hence 
2 2 

mp~ + c p , - k  = 0andmp2  - c p 2 - k  = O. 

Subtracting one equation from the other gives p 2 -  p, = c]m, or 
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P2 - Pt Aco 1 
- - 2 r  = ~ ;  

co co Q 

that is, X/F at resonance lies along the imaginary axis, and the half-power points occur 
when ~ = 45* and 135". If experimental results are plotted on these axes a smooth curve 
can be drawn through them so that the half-power points can be accurately located. 

The method is also effective when the damping is hysteretic, because in this case 

X 1 

F ( k -  mv 2) + jr/k 

so that 

Re = ( k - m y  2)2 + (r/k)2 and Im = ( k - m y 2 ) 2  + (rlk) 2" 

Thus 

[ (;)]2 , 
Im = ( k -  my2) 2 + (r/k) 2 

o r  

Re + Im - = ; 

that is, the locus of (X/F) as v increases from zero is part of a circle, centre (0, - 1/20k) and 
radius 1]2rlk, as shown in Fig. 5.7. 

In this case, therefore, it is particularly easy to draw an accurate locus from a few 
experimental results, and p, and p2 are located on the horizontal diameter of the circle. 

This technique is known variously as a frequency locus plot, Kennedy-Pancu diagram 
or Nyquist diagram. 

It must be realized that the assessment of damping can only be approximate. It is 
difficult to obtain accurate, reliable, experimental data, particularly in the region of 
resonance; the analysis will depend upon whether viscous or hysteretic damping is 
assumed, and some non-linearity may occur in a real system. These effects may cause the 
frequency-locus plot to rotate and translate in the Re(X/F), Im(X/F) plane. In these cases 
the resonance frequency can be found from that part of the plot where the greatest rate of 
change of phase with frequency occurs (Figs 2.24 and 2.25). 

5.7 SOURCES OF DAMPING 

The damping which occurs in structures can be considered to be either inherent damping, 
that is, damping which occurs naturally within the structure or its environment, or added 
damping which is that resulting from specially constructed dampers added to the 
structure. 
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Fig. 5.7. Receptance vector locus for system with hysteretic damping. 

[Ch. 5 

5.7.1 Inherent damping 

5.7.1.1 Hysteretic or material damping 

All materials dissipate some energy during cyclic deformation. The amount may be very 
small, however, and is linked to mechanisms associated with internal reconstruction such 
as molecular dislocations and stress changes at grain boundaries. Such damping effects are 
non-linear and variable within a material so that the analysis of such damping mechanisms 
is difficult. However, experimental measurements of the behaviour of samples of specific 
materials can be made to determine the energy dissipated for various strain levels. 

For most conventional structural materials the energy dissipated is very small. Because 
of this the actual damping mechanisms within a given material are usually of limited 
interest, particularly in view of the uncertainty of describing the actual mechanisms and 
the difficulty with carrying out a reasonable theoretical analysis. However, some particular 
materials, which are known as high damping alloys, have been developed which have had 
a certain damping mechanism enhanced (see section 5.7.2.1 below). 

In order to determine the energy dissipated within a material, hysteresis load extension 
loops are usually plotted. The load extension hysteresis loops for linear materials and 
structures are elliptical under sinusoidal loading, and increase in area according to the 
square of the extension. Although the loss factor r/ of a material depends upon its 
composition, temperature, stress and the type of loading mechanism used, an approximate 
value for 77 can be obtained. It should be noted that the deviation of these loops from a 
single line is usually very small so that damping arising from the constituent material of 
a structure is usually very small also and may be insignificant compared with the other 
damping mechanisms in a structure. 
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A range of values of 77 for some common engineering materials is given in the table. 
For more detailed information on material damping mechanisms and loss factors, see 
Damping of Materials and Members in Structural Mechanisms by B. J. Lazan (Perga- 
mon). 

Material Loss factor 

Aluminium- pure 0.00002-0.002 
Aluminium alloy - dural 0.0004-0.001 
Steel 0.001--0.008 
Lead 0.008-0.014 
Cast iron 0.003-0.03 
Manganese copper alloy 0.05-0.1 
Rubber - natural 0.1-0.3 
Rubber -  hard 1.0 
Glass 0.0006--0.002 
Concrete 0.01-0.06 

The high damping metals and alloys referred to above are often unsuitable for engineering 
structures because of their low strength, ductility and hardness, and their high cost. 
Manganese copper is an exception in that it has high ultimate tensile strength, hardness 
and ductility. However, these special alloys are difficult to produce, and their damping is 
only large at high strains which means that structures have to endure high vibration levels 
which may lead to other problems such as fatigue or excessive noise. It will be realized 
that a steel or aluminium structure with material damping alone for which 77 = 0.001, will 
have a Q factor of the order of 1000. This would be unacceptable in practice and 
fortunately rarely arises because of the significant additional damping that occurs in the 
structural joints. 

5. 7.1.2 Damping in structural joints 

The Q factor of a bolted steel structure is usually between 20 and 60, and for a welded 
steel structure a Q factor between 30 and 100 is common. Reinforced concrete can have 
Q factors in the range of 15 to 25. Since the damping in the structural material is very 
small, most of the damping which occurs in real structures arises in the structural joints. 
However, even though over 90% of the inherent damping in most structures arises in the 
structural joints, little effort is made to optimize or even control this source of damping. 
This is because the energy dissipation mechanism in a joint is a complex process which is 
largely influenced by the interface pressure. At low joint clamping pressures sliding on a 
macro scale takes place and Coulomb's Law of Friction is assumed to hold. If the joint 
clamping pressure increases, mutual embedding of the surfaces starts to occur. Sliding on 
a macro-scale is reduced and micro-slip is initiated which involves very small displace- 
ments of an asperity relative to its opposite surface. A further increase in the joint 
clamping pressure will cause greater penetration of the asperities. The pressure on the 
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contact areas will be the yield pressure of the softer material. Relative motion causes 
further plastic deformation of the asperities. 

In most joints all three mechanisms operate, their relative significance depending upon 
the joint conditions. In joints with high normal interface pressures and relatively rough 
surfaces, the plastic deformation is significant. Many joints have to carry pressures of this 
magnitude to satisfy criteria such as high static stiffness. A low normal interface pressure 
would tend to increase the significance of the slip mechanisms, as would an improvement 
in the quality of the surfaces in contact. With the macro-slip mechanism, the energy 
dissipation is proportional to the product of the interface shear force and the relative 
tangential motion. Under high pressure, the slip is small, and under low pressure the shear 
force is small: between these two extremes, the product becomes a maximum. 

However, when two surfaces nominally at rest with respect to each other are subjected 
to slight vibrational slip, fretting corrosion can be instigated. This is a particularly serious 
form of wear inseparable from energy dissipation by interfacial slip, and hence frictional 
damping. 

The fear of fretting corrosion occurring in a structural joint is one of the main reasons 
why joints are tightly fastened. However, joint surface preparations such as cyanide 
hardening and electro-discharge machining are available which reduce fretting corrosion 
from frictional damping in joints considerably, whilst allowing high joint damping. Plastic 
layers and greases have been used to separate the interfaces in joints and prevent fretting, 
but they have been squeezed out and have not been durable. Careful joint design and 
location is necessary if joint damping is to be increased in a structure without fretting 
corrosion becoming a problem; full details Of fretting are given in Fretting Fatigue by 
R. B. Waterhouse (Applied Science Publishers, 1974). 

The theoretical assessment of the damping that may occur in joints is difficult to make 
because of the variations in/u that occur in practice. However, it is generally accepted that 
the friction force generated between the joint interfaces is usually: 

(i) dependent on the materials in contact and their surface preparation; 
(ii) proportional to the normal force across the interface; 
(iii) substantially independent of the sliding speed and apparent area of contact; 
(iv) greater just prior to the occurrence of relative motion than during uniform relative 

motion. 

The equations of motion of a structure with friction damping are thus non-linear: most 
attempts at analysis linearize the equations in some way. A very useful method is to 
calculate an equivalent viscous damping coefficient such that the energy dissipated by the 
friction and viscous dampers is the same. This has been shown to give an acceptable 
qualitative analysis for macro-slip. Some improvement on this method can be obtained by 
replacing/~ by a term that allows for changes in the coefficient with slip amplitude. Some 
success has also been obtained by simply replacing the friction force with an equivalent 
harmonic force which is, essentially, the first term of the Fourier series representing the 
periodic friction force. 

Some effects of controlling the joint clamping forces in a structure can be seen by 
considering an elastically supported beam fitted with friction joints at each end, as shown 
in Fig. 5.8. 
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Fig. 5.8. Elastically supported beam with Coulomb damping. 

The beam is excited by the harmonic force F sin vt applied at mid-span. When the 
friction joints are very slack, N = 0 and the beam responds as an elastic beam on spring 
supports. When the joints are ,rer) tight, N = oo and the beam responds to excitation as if 
built-in at each end. For oo > N > 0, a damped response occurs such as that shown in Fig. 
5.9. 

Fig. 5.9. Amplitude-frequency response for the beam shown in Fig. 5.8. 

If N is increased from zero to N~, a damped elastic response is achieved; significant 
damping occurs only when the beam vibration is sufficient to cause relative slip in the 
joints. As N approaches N2, the beam responds as if built-in, until a vibration amplitude is 
reached when the joints slip, and the response is the same as that for the damped-elastic 
beam. When N increases to N3, the built-in beam response is maintained until a higher 
amplitude is reached before slip takes place. The minimum response is achieved when 
N = N2. This is obviously a powerful technique for controlling the dynamic response of 
structures, since both the maximum response, and the frequency at which this occurs, can 
be optimized. Friction damping can also be applied to joints that slip in rotation as well as, 

or instead of, translation. 
The damping in plate type structures and elements can be increased by fabricating the 

plate out of several laminates bolted or riveted together, so that as the plate vibrates 
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interracial slip occurs between the laminates thus giving rise to frictional damping. A Q 
factor as low as 20 has been obtained for a freely supported laminated circular plate, 
produced by clamping two identical plates together to form a plate subjected to interfacial 
friction forces. For a solid plate, in which only material damping occurred, the Q factor 
was 1300. Theoretically a laminated plate can be modelled by a single plate subjected to 
in-plane shear forces. When tightly fastened along two edges a Q factor of 345 was 
obtained for a square steel plate; adjusting the edge clamping to the optimum allowed the 
Q factor to fall to 15, for the first mode of vibration. Replacing the plate by two similar 
plates, each half the thickness of the original enabled a Q factor of 75 to be achieved, even 
when the edges were tightly clamped. This improved to a Q of 25 when optimum edge 
clamping was applied. However, some loss in stiffness must be expected, leading to a 
reduction in the resonance frequencies. 

This technique has been applied with some success to plate type structural elements 
such as engine oil sumps, for reducing the noise and vibration generated. 

It is often unnecessary to add a special damping device to a structure to increase the 
frictional damping, optimization of an existing joint or joints being all that is required. 
Thus it can be cheap and easy to increase the inherent damping in a structure by 
optimizing the damping in joints, although careful design is sometimes necessary to 
ensure that adequate stiffness is maintained. It must be recognized that for joint damping 
to be large, slip must occur, and that fretting corrosion and joint damping are inseparable. 
Furthermore, some of the stiffness of a tightly clamped structure must be sacrificed if this 
source of damping is to be increased, although this loss in stiffness need not be large if the 
joints are carefully selected. This damping mechanism is most effective at low frequencies 
and the first few modes of vibration, since only under these conditions are the vibration 
amplitudes generally large enough to allow significant slip, and therefore damping, from 
this mechanism. 

Notwithstanding the difficulties of analysis and the application of the damping in 
structural joints, some form of this damping occurs in all structures. It is rarely used 
efficiently, optimized or even controlled however, but it does have useful advantages so 
that it deserves wider application. There is a wide range of dynamic systems and structures 
that would benefit from increased joint damping such as beam systems, frameworks, gas 
turbines and aerospace structures. 

5.7.1.3 Acoustic radiation damping 

The vibrational motions of a structure will always couple with the surrounding fluid 
medium, such as air or water, so that its response is affected. Generally this effect is very 
small so that this source of damping is not usually large enough to be useful. There are 
exceptions, however, such as aircraft panels constructed from thin lightweight stiffened 
structures, but for heavy machines and structures air is much too thin to exert any 
significant pressure on the vibrating surfaces so that the damping from this source is 
negligible. It should be appreciated that acoustic damping cannot occur in spacecraft or 
other structures in a similar environment. 

The damping effect of the surrounding fluid medium depends upon a number of 
parameters such as the medium density and the mass and stiffness of the structure. 
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Accordingly, acoustic radiation damping is much higher in water or in oil than it is in air 
and this type of damping is far more effective for high frequencies than low. It should be 
noted that acoustic pressures from some parts of a vibrating structure may cancel out those 
from other parts, for example when modes of vibration are in antiphase, so that acoustic 
damping can be disappointingly very small. 

The analysis of acoustic damping often leads to very complicated formulae which are 
difficult to evaluate except in specific cases. However, some theoretical estimate can 
usually be made if it is considered that this form of damping, that is the radiation of 
vibrational energy in the form of sound waves within the surrounding medium, could be 
significant within a given application. 

5.7.1.4 Air pumping 

Consider a part of a fabricated structure, such as a panel which is vibrating. If a cover or 
adjacent member of different relative stiffness and vibration characteristics is attached, as 
shown in Fig. 5.10, then during vibration the volume of the enclosed space changes. If 
some sort of opening is provided, either by chance or by design, air will be pumped 
through the leakage holes. The air flow may be laminar or turbulent depending upon the 
amplitude of vibration, the enclosed volume, the size of the leakage hole, mode of 
vibration and so on. For some panel modes of vibration, this flow may be very small; this 
is particularly true for high-frequency modes with nodal lines within the cavity so that 
some parts of the panel surface motion are out of phase with others. If the flow is small, 
it follows that the damping will be small. Damping from air pumping at high frequencies 
tends to be very low, therefore, and in addition it is found to be inversely proportional to 
the frequency squared. It should also be noted that the flow paths are difficult to determine 
so that the damping that occurs from air pumping is correspondingly difficult to evaluate. 

_ ~"--'~''" ' . . . . .  " " " " ~ " , - . ,  . .  Vibrating panel 

' ~ ~ - - " ~ _ - - - ~ _ - ; . . . - ~ - - ' . . . - ' 1 ~  " " . . . ~  Le a kp roo f join t 

/ /  ,. '  ..,covor 
~ ' p u m p i n g  th rough holes 

Vibrating panel 
/ 

Air pumping along jo int  

Rigid support 

Fig. 5.10. Air pumping mechanisms. 
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However, it is necessary to be aware of its existence and significance. In a particular 
structure this form of damping can be evaluated by testing in air and also in a vacuum 
when the pumping action effects will be zero. 

5.7.1.5 Aerodynamic damping 

Energy can be dissipated by the air in which a structure vibrates. This can be important for 
low-density structures with large motions. Most damping forces are of a retarding nature 
which act against the motion occurring, but situations can arise when the motion itself 
generates a force that encourages motion. When this happens in a structure due to relative 
motion of the wind, negative aerodynamic damping or aerodynamic instability occurs. Of 
course aerodynamic damping can be positive but motion instability is often associated 
with aerodynamic effects. 

There are several methods of aerodynamic excitation, which may be considered to be 
negative damping, which induce structural vibration, such as buffeting by wind eddies or 
wake turbulence from an upstream body. For many structures there is insufficient wind 
energy to excite significant vibration but in steady cross winds vortex generation can 
cause galloping, aeolian vibration and flutter. Galloping is the large-amplitude low- 
frequency oscillation of long cylindrical structures exposed to a transverse wind; it is 
frequently observed on overhead power lines. Aeolian vibration, which also occurs on 
overhead power lines, is a higher-frequency oscillation which arises from vortex shedding 
in steady cross winds. Flutter is a motion that relies on the aerodynamic and inertial 
coupling between two modes of vibration. Structures commonly affected are suspension 
bridges and tall non-circular towers and stacks where substantial bending and torsion 
occur. Aerodynamic excitation by vortex shedding is probably the most common of all 
wind-induced vibrations as discussed in section 2.3.7. 

Wind forces on buildings and structures are always unsteady and may be due to 
variations in the wind gusts, vortex shedding or the interaction between the inertial, elastic 
and aerodynamic forces. The most dangerous unsteady forces are those that are cyclic 
since the frequency of the fluctuating part may coincide with a natural frequency. 

In the design of tall slender structures such as chimneys, stacks and towers, it is 
essential that the natural frequencies of the bending and torsion modes are well separated 
from the vortex shedding frequencies. This often means modifying the structure to alter 
the vortex shedding; this is usually done by adding helical strakes to the top quarter of the 
structure. The damping of a steel stack can also be increased by applying coatings or 
additional dampers. Tall chimneys with several flues can be perforated to relieve pressure 
differentials. Aeolian vibration of overhead powerlines is usually controlled by fitting a 
damped vibration absorber (section 5.7.2.5); failure to damp these vibrations adequately 
leads to fatigue failure. 

5. 7.1.6 Other damping sources 

In general the major sources of damping in a structure are within the joints and the 
structural material. Occasionally, however, structures are required to work in environ- 
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ments that contribute significantly to the total damping. For example, ship hulls benefit 
from the considerable hydrodynamic damping of the water: this is true for all water- 
immersed structures; and aerodynamic damping, though itself small, may be important in 
lightly damped structures. 

5.7.2 Added damping 

When the inherent damping in a structure is insufficient, it can be increased either by 
adding vibration dampers to the structure or by manufacturing the structure, or a part of it, 
out of a layered material with very high damping properties. 

5.7.2.1. High damping alloys 

From the discussion in section 5.7.1.1. on material damping it can be deduced that unless 
the effect of the damping mechanisms within a given material can be deliberately 
increased, the material damping effects on the response of a structure or dynamic system 
will be very small indeed. To this end, particular alloy materials have been developed 
which are such that their structure allows increased damping within the material. 
Unfortunately this gain in damping is often at the expense of other desirable material 
properties such as stiffness, strength, machinability and cost, so that these materials 
themselves are not usually suitable for structural purposes. Sometimes, however, situa- 
tions arise when the use of such materials can be beneficial, as in aerospace structures. 
Because of the highly non-linear behaviour of these materials their damping is best 
evaluated experimentally in terms of modal damping and natural frequencies. 

5. 7.2.2. Composite materials 

A composite material is usually considered to be one which is a combination of two or 
more constituent materials on a macroscopically homogeneous level. Examples of such 
composites are an aluminium matrix embedded with boron fibres and an epoxy matrix 
embedded with carbon fibres. The fibres may be long or short, directionally aligned or 
randomly orientated, or some sort of mixture, depending on the intended use of the 
material. Unconventional manufacturing and construction techniques are usually neces- 
sary. 

The objective is to increase the stiffness and at the same time reduce the weight of a 
structure. This naturally has some effect on the dynamic properties both as regards natural 
frequencies and damping. Composite materials are usually expensive so their application 
is often linked to critical areas of a structure such as parts of an aircraft fuselage or wing, 
space vehicles and racing car shells. There are disadvantages, however, such as their low 
resistance to erosion, high cost and repair difficulties. 

Although not developed for their damping properties, composite materials can possess 
high damping. This occurs when stiff fibres are embedded in a highly damped matrix 
material. The fibres give the necessary strength and stiffness properties and the matrix 
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provides the damping. Particular care should be taken when testing these materials to 
distinguish between the effects of damping and non-linearities (section 5.9). 

5.7.2.3. Viscoelastic materials 

Viscoelastic damping occurs in many polymers and this internal damping mechanism is 
widely used in structures and machines for controlling vibration (Fig. 5.11). The damping 
arises from the polymer network after it has been deformed. Both frequency and 
temperature effects have a large bearing on the molecular motion and hence on the 
damping characteristics. 

Fig. 5.11. Examples of the use of viscoelastic material to reduce machine and 
structure vibration. 
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With careful control, polymer materials can be manufactured with a wide range of 
properties such as high damping, strength and good creep resistance over a useful range of 
temperatures and frequencies. They often feature in antivibration mountings and as the 
constrained layer material in highly damped composite beams and plates. 

In addition it should be noted that a common method of applying damping to a plate- 
type structural element or panel vibrating in a bending mode is to spray the surface with 
a layer of viscoelastic material possessing high internal losses. The most well-known 
materials that are specially made for this purpose are the mastic deadeners made using an 
asphalt base. The ratio of the thickness of the damping layer to the thickness of the 
structure is very important and is usually between one and three. One thick single-sided 
layer of material is more effective than two thin double-sided ones. 

When designing systems using viscoelastic damping materials it must be appreciated 
that the static stiffness is usually much less than the dynamic stiffness. The experimental 
determination of the stiffness and damping properties must take this into account, together 
with any static preload. 

5.7.2.4 Constrained layer damping 

The polymer materials that exist with very high damping properties lack sufficient rigidity 
and creep resistance to enable a structure to be fabricated from them, so that if advantage 
is to be taken of their high damping a composite construction of a rigid material, such as 
a metal, with damping layers bonded to it has to be used, usually as a beam or plate. High 
damping material can be applied to a structure by fabricating it, at least in part, from 
elements in which layers of high damping viscoelastic material are bonded between layers 
of metal. When the composite material vibrates the constrained damping layers are 
subjected to shear effects, which cause vibrational energy to be converted into heat and 
hence dissipated. Other applications of high damping polymers are to edge damping, 
where the polymer forms the connection between a panel or beam and its support, and 
unconstrained layers, where the damping material is simply bonded to the surface of the 
structural element. Whilst these applications do increase the total damping, they are not as 
effective as using constrained layers. 

Before considering the damping effects that can be achieved by the constrained layer 
technique, it must be emphasized that the properties of viscoelastic materials are both 
temperature- and frequency-sensitive. Fig. 5.12 shows how shear modulus and loss factor 
can vary. 

Another disadvantage with composite materials is that they are difficult to bend or form 
without reducing their damping capabilities, because of the distortion that occurs in the 
damping layer. 

Two, three, four and five or more layers of viscoelastic material and metal can be used 
in a composite; each layer can have particular properties, thickness and location relative to 
the neutral axis so that the composite as a whole has the most desirable structural and 
dynamic performance. Because of this wide variation in composite material geometry, 
only a three-layer symmetrical construction will be considered, other geometries being an 
extension of the three-layer composite. 
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Consider the composite beam of length l shown in Fig. 5.13. A dimensionless shear 
parameter can be defined, equal to 

212G 

hlh2E 

h! 

Fig. 5.13. Composite beam. 

Elastic constraining 
layers, modulus E 

Viscoelastic layer, 
shear modulus G 

It is assumed that the elastic constraining layers have a zero loss factor, and that the 
viscoelastic damping layer has zero stiffness. The beam loss factor for a cantilever 
vibrating in its first mode is shown as a function of the shear parameter in Fig. 5.14, for 
various values of the loss factor r/for the viscoelastic material. 

It can be seen from Fig. 5.14 that a high beam loss factor is only obtainable at a 
particular value of the shear parameter, and that as the loss factor of the viscoelastic layer 
increases the curves become sharper. The dependence of the beam loss factor on the shear 
parameter is consequently of great practical significance. However, very high beam loss 
factors can be obtained resulting in a Q value of two or even less. 
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Fig. 5.14. Effect of layer loss factor on beam loss factor as a function of the shear parameter. 

The difference between the optimum loss factors for the first three modes of a cantilever 
has been shown to be less than 10%. Most viscoelastic materials have a shear modulus 
which increases with frequency, so that the damping can be kept near to the optimum over 
a large frequency range. It must be emphasized that it is not possible to secure high 
structural damping and high stiffness by this method of damping. 

Damping in structures, and constrained layer damping in particular, has been discussed in 
Structural Damping by J E Ruzicka (Pergamon Press, 1962), and in Damping Applications for 
l~bration Control edited by P J Torvik (ASME Publication AMD, vol. 38, 1974). 

More recently, the damping that can be achieved in structures has been comprehensively 
studied and researched, particularly with regard to industrial, military and aerospace applica- 
tions, and improving analytical techniques. The results of some of this work have been 
published in conference proceedings and relevant learned journals such as The Journal of 
Sound and l~bration, The Proceedings of the ASME and The Shock and Vibration Digest. 

5.7.2.5 Vibration dampers and absorbers 

A wide range of damping devices is commercially available; these may rely on viscous, 
dry friction or hysteretic effects. In most cases some degree of adjustment is provided, 
although the effect of the damper can usually be fairly well predicted by using the above 
theory. The viscous type damper is usually a cylinder with a closely fitting piston and 
filled with a fluid. Suitable valves and porting give the required resistance to motion of the 
piston in the cylinder. Dry friction dampers rely on the friction force generated between 
two or more surfaces pressed together under a controlled force. Hysteretic type dampers 
are usually made from an elastic material with high internal damping, such as natural 
rubber. Occasionally dampers relying on other effects such as eddy currents are used. 
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However, these added dampers only act to reduce the vibration of a structure. If a 
particularly troublesome resonance exists it may be preferable to add a vibration absorber. 
This is simply a spring-body system which is added to the structure; the parameters of the 
absorber are chosen so that the amplitude of the vibration of the structure is greatly 
reduced, or even eliminated, at a frequency that is usually chosen to be at the original 
troublesome resonance. 

The undamped dynamic vibration absorber 

If a single degree of freedom system or mode of a multi-degree of freedom system is 
excited into resonance, large amplitudes of vibration result with accompanying high 
dynamic Stresses and noise and fatigue problems. In most mechanical systems this is not 
acceptable. 

If neither the excitation frequency nor the natural frequency can conveniently be 
altered, this resonance condition can often be successfully controlled by adding a further 
single degree of freedom system. Consider the model of the system shown in Fig. 5.15 
where K and M are the effective stiffness and mass of the primary system when vibrating 
in the troublesome mode. 

+ve 

X = Xo sin vt 

l +ve 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : i : : - : ! . i : : . i : i . : .  : :  .~ : 
================================================================ :::: . : ._.,  ~ 

K 

~ F sin vt 

k 

Primary system 
representing structure 

Vibration absorber 

x =Xo sinvt 
Fig. 5.15. System with undamped vibration absorber. 

The absorber is represented by the system with parameters k and m. From section 3.1.3 
it can be seen that the equations of motion are 

M,~ = - K X -  k ( X -  x) + F sin vt for the primary system 

and 

m~ = k ( X -  x) for the vibration absorber. 

Substituting 

X = Xo sin vt and x = xo sin vt 

gives 
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and 

Thus 

Xo(K + k -  M y  2) + xo(-k) = F 

Xo(-k) + x o ( k -  m v 2) = O. 

XO ~ 
F(k - m v  2) 

A 

and 

Fk 
X O - -  

A 

where A = ( k -  mv2)(K + k -  M y  2) - k 2, and A = 0 is the frequency equation. 
It can be seen that not only does the system now possess two natural frequencies, D, 

and s instead of one, but by arranging for k -  m v 2 = 0, Xo can be made zero. 
Thus if d(k/m) = ~(K/M), the response of the primary system at its original resonance 

frequency can be made zero. This is the usual tuning arrangement for an undamped 
absorber because the resonance problem in the primary system is only severe when 
v = ~I(K/M) rad/s. This is shown in Fig. 5.16. 

When Xo = 0, xo = - F/k, so that the force in the absorber spring, kxo is -F;  thus the 
absorber applies a force to the primary system which is equal and opposite to the exciting 
force. Hence the body in the primary system has a net zero exciting force acting on it and 
therefore zero vibration amplitude. 

If an absorber is correctly tuned, r 2 = K/M = k/m, and if the mass ratio/1 = m/M, the 
frequency equation A = 0 is 

- ( 2  + p )  + 1 = 0. 

This is a quadratic equation in (rico) 2. Hence 

= 1 + +_ /.t +--~-  , 

and the natural frequencies D, and D2 are found to be 

o 
- 1 +  +_ g +  . 

For a small p, D, and D2 are very close to each other, and near to co; increasing g gives 
better separation between ~ ,  and D2 as shown in Fig. 5.17. 

This effect is of great importance in those systems where the excitation frequency may 
vary; if p is small, resonances at Dt or s may be excited. It should be noted that since 
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and 

~ + 4 ' then multiplication gives 

to4 = 1 + - / z +  = 1, 

that is, 

Also 

f~ , . f~  = d .  

+ = 2 + /a. 

These relationships are very useful when designing absorbers. If the proximity of D, and 
D2 to to is likely to be a hazard, damping can be added in parallel with the absorber spring, 
to limit the response at these frequencies. Unfortunately, if damping is added, the response 
at frequency to will no longer be zero. A design criterion that has to be carefully 
considered is the possible fatigue and failure of the absorber spring: this could have severe 
consequences. In view of this, some damped absorbed systems dispense with the absorber 
spring and sacrifice some of the absorber effectiveness. This is particularly important in 
torsional systems, where the device is known as a Lanchester damper. 

Example 39 

The figure represents a pump of mass m, which rests on springs of stiffness k,, so that only 
vertical motion can occur. Given that the damping is negligible and the mass m2 is 
ignored, derive an expression for the frequency of the harmonic disturbing force at which 
the pump will execute vertical oscillations of very large " theoretically i n f i n i t e -  
amplitude. 

Given that an undamped dynamic absorber of mass m2 is then connected to the pump by 
a spring of stiffness k2, as shown, prove that the amplitude of the oscillations of the pump 
is reduced to zero when 

k2 2 
-- V~ 

m 2  

where v is the natural frequency of the free vibrations of the pump in the absence of the 
dynamic vibration absorber. 
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The pump has a mass of 130 kg and rotates at a constant speed of 2400 rev/min but due 
to a rotating unbalance very large amplitudes of pump vibration on the spring supports 
result. An undamped vibration absorber is to be fitted so that the nearest natural frequency 
of the system is at least 20% removed from the running speed of 2400 rev/min. Find the 
smallest absorber mass necessary and the corresponding spring stiffness. 

The pump can be modelled as below: 

The equation of motion is 

m;~ + k,x~ = F sin vt, 

so that if 

x, = X, sin vt, X i  -" 
k, - m,v 2" 
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' ~ rhe  n 

x m ,  I 

that is, resonance occurs when v = 09 = ~ ( k , / m t ) .  With a vibration absorber added, the 

system is 

The FBDs are therefore, if x2 > xt is assumed, 

The equations of motion are thus 

m2.~2 = - k:,(x:, - x , )  

or  

m2.~2 + k 2 x 2 -  k2x~ = O, 
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and 

o r  

m,di, = k2(x2 - x,) - k,x, + F sin vt 

m,.f, + (k, + k2 ) x t -  k2x2 = F sin vt. 

Assuming x, = X, sin vt and x2 = X2 sin vt, these equations give 

X~[k~ + k 2 - m t v  2] + X2[-k2] = F 

and 

that is 

Thus 

X , [ -  k2] + X2[k2-  m2v 2] = O; 

Xi = 
F(k~ - m~v ~) 

[(k, + k2) - m, v2][k2 - m2v 2] - k22" 

k2 
if V 2 - , X, = O. 

m2 

Now the frequency equation is 

[(k, + k2) - m, v2][k2- m2 v21 - k22 = O. 

If  we put 

m '  an O 
m~ kl 

this becomes 

v " -  v ~ ( ~  ~ + 2fY) + f~" = o 

o r  

( 2 + p ) +  1 = 0 ,  

so that 

- -+ 4 

The limiting condition for the smallest absorber mass is ( v J ~ )  = 0.8 because then 
(v2]~) = 1.25, which is acceptable. Thus 

0.64 - /~ 2 + 2 )  2 = /2  + 4 4/1 
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and 

Hence 

and 

# = 0 . 2 .  

m2 = 0.2 x 130 = 26 kg, 

kz = (80"x)2m2 = 1642 kN]m. 
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Example 40 

A system has a violent resonance at 79 Hz. As a trial remedy a vibration absorber is 
attached which results in a resonance frequency of 65 Hz. How many such absorbers are 
required if no resonance is to occur between 60 and 120 Hz? 

Since 

= 2 + / a  

and 

in the case of one absorber, with to = 79 Hz and D~ = 65 Hz, 

792 
D2 - - 96 Hz. 

65 

Also 

6 5 )  ( 9 6 )  2 

- ~ 1  + \ 7 9 1  
= 2 + / / ,  

so/~ = 0.154. 
In the case of n absorbers, if 

792 
D, = 60 Hz, Dz - - 104 Hz (too low). 

60 

So require D2 = 120 Hz and then D, = (792[120) = 52 Hz. Hence 

52t c, 0t  
7 9 /  + \ - ~  - 2 +  
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Thus 

/ a ' =  0.74 = np and n -  

Thus five absorbers are required. 

0.74 

0.154 
- 4.82. 

[Ch. 5 

Example 41 

A machine tool of mass 3000 kg has a large resonance vibration in the vertical direction 
at 120 Hz. To control this resonance, an undamped vibration absorber of mass 600 kg is 
fitted tuned to 120 Hz. Find the frequency range in which the amplitude of the machine 
vibration is less with the absorber fitted than without. 

If (Xo) with absorber = (Xo) without absorber, 

F ( k  - m y  2) F 

( K  + k - M v 2 ) ( k -  m v  2) - k 2 K _ M v  2 
(phase requires-ve sign) 

Multiplying out and putting g = m / M  gives 

2 - ( 4  + /a) + 2 =0.  

Since 

600 
,u - - 0.2, 

3000 

_ N(.tt 2 + 8~) = 1.05 _ 0.32. 

Thus 

to 
- 1.17 or 0.855, and 

f = 102 Hz or 140 Hz, where v = 2nf. 

Thus the required frequency range is 102-140 Hz. 

A convenient analysis of a system with a vibration absorber can be carded out by using 
the receptance technique. 

Consider the undamped dynamic vibration absorber shown in Fig. 5.18. The system is 
split into subsystems A and B, where B represents the absorber. 
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Fig. 5.18. 

For subsystem A (the structure), 

Subsystem analysis. 

and 

fA  = MgA + KXA 

Ot = 

K _ M v  2" 

For subsystem B (the absorber), 

and 

~ X B 

fB-----~ ~ ~ ~ ~ V - -  
k 

fB = k(xB - Ya) = m$;B = - m  v 2 YB 

Thus the frequency equation a + fl = 0 gives 

I 
I = YB 
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Mmv 4 - ( m K  + Mk + mk)v 2 + Kk = O, 

as before. 
It is often convenient to solve the frequency equation a + fl = 0 or a = -fl by a 

graphical method. In the case of the absorber, both a and -/3 can be plotted as a function 
of v, and the intersections give the natural frequencies s and D~ as shown in 
Fig. 5.19. 

I 1 
a = K - ' M y  2 

I K k 
Receptance ~ M) ~1 )~ l  I - -  = ---- Frequencvv 

I21 

1 
k 

I / k-my, 

i/' 
Fig. 5.19. Subsystem receptance-frequency responses. 

This technique is particularly useful when it is required to investigate the effect of 
several different absorbers, since once the receptance of the primary system is known, it 
is only necessary to analyse each absorber and not the complete system in each case. 
Furthermore, sometimes the receptances of structures are measured and are only available 
in graphical form. 

If the proximity of fl~ and s to co is likely to be a hazard, damping can be added in 
parallel with the absorber spring, to limit the response at these frequencies. Unfortunately, 
if damping is added, the response at the frequency co will no longer be zero. 

The damped dynamic vibration absorber 

Fig. 5.20 shows the primary system with a viscous damped absorber added. The equations 
of motion are 
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Fig. 5.20. System with damped vibration absorber. 

M ~  = F sin v t -  K X -  k ( X -  x )  - c ( X -  yc) 

and 

me = k ( X -  x) + c ( ~ -  ~). 

Substituting X = Xo sin vt and x = xo sin (vt - ~) gives, after some manipulation, 

Fa/[(k - m y 2 )  2 + (cv) 2] 

Xo = 4{ [ (k -  m v 2 ) ( K  + k - M v  2) - k2] 2 + [ ( K -  M v  2 - m v 2 ) c v ]  2} 

It can be seen that when c = 0 this expression reduces to that given above for the 
undamped vibration absorber. Also when c is very large 

Xo --'- 
K - ( M  + m ) v  2 

For intermediate values of c the primary system response has damped resonance peaks, 
although the amplitude of vibration does not fall to zero at the original resonance 
frequency. This is shown in Fig. 5.21. 

The response of the primary system can be minimized over a wide range of exciting 
frequencies by carefully choosing the value of c, and also arranging the system parameters 
so that the points P, and P2 are at about the same amplitude. However, one of the main 
advantages of the undamped absorber, that of reducing the vibration amplitude of the 
primary system to zero at the troublesome resonance, is lost. 

A design criterion that has to be carefully considered is the possible fatigue and failure 
of the absorber spring: this could have severe consequences. In view of this, some damped 
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Fig. 5.21. Effect of absorber damping on system response. 

absorber systems dispense with the absorber spring and sacrifice some of the absorber 
effectiveness. This has particularly wide application in torsional systems, where the device 
is known as a L a n c h e s t e r  Damper .  

It can be seen that if k = 0, 

X O  "~ 

F~/(}n  ~ v ~ + c ~ v ~) 

~/{[(K- Mv2)mv2] ~ + [ ( K -  M y  2 - mv2)cv]  2 } 

When c = 0, 

F 
Xo = K -  My 2 (no absorber) 

and when c is very large, 

X o  ~ 

F 

K - ( M  + m)v 2" 

These responses are shown in Fig. 5.22 together with that for the optimum value of c. 
The springless vibration absorber is much less effective than the sprung absorber, but 

has to be used when spring failure is likely, or would prove disastrous. 
Vibration absorbers are widely used to control structural resonances. Applications 

include" 
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/ c-0 

Fig. 5.22. Effect of Lanchester damper on system response. 

1. Machine tools, where large absorber bodies can be attached to the headstock or frame 
for control of a troublesome resonance. 

2. Overhead power transmission lines, where vibration absorbers known as Stockbridge 
dampers are used for controlling line resonance excited by cross winds. 

3. Engine crankshaft torsional vibration, where Lanchester dampers can be attached to the 
pulley for the control of engine harmonics. 

4. Footbridge structures, where pedestrian-excited vibration has been reduced by an order 
of magnitude by fitting vibration absorbers. 

5. Engines, pumps and diesel generator sets where vibration absorbers are fitted so that 
the vibration transmitted to the supporting structure is reduced or eliminated. 

Not all damped absorbers rely on viscous damping; dry friction damping is often used, 
and the replacement of the spring and damper elements by a single rubber block 
possessing both properties is fairly common. 

A structure or mechanism that has loosely fitting parts is often found to rattle when 
vibration takes place. Rattling consists of a succession of impacts, these dissipate 
vibrational energy and therefore rattling increases the structural damping. It is not 
desirable to have loosely fitting parts in a structure, but an impact damper can be fitted. 

An impact damper is a hollow container with a loosely fitting body or slug; vibration 
causes the slug to impact on the container ends, thereby dissipating vibrational energy. 
The principle of the impact damper is that when two bodies collide some of their energy 
is converted into heat and sound so that the vibrational energy is reduced. Sometimes the 
slug is supported by a spring so that advantage can be taken of resonance effects. Careful 
tuning is required, particularly with regard to slug mass, material and clearance, if the 
optimum effect is to be achieved. Although cheap and easy to manufacture and install, 
impact dampers have often been neglected because they are difficult to analyse and 
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design, and their performance can be unpredictable. They are also rather noisy in 
operation, although the use of PVC impact surfaces can go some way towards reducing 
this. Some success has been achieved by fitting vibration absorbers with impact dampers. 
The significant advantage of the impact vibration absorber over the conventional dynamic 
absorber is the reduction in the amplitude of the primary system both at resonance and at 
higher frequencies. 

5.8 ACTIVE DAMPING SYSTEMS 

The damping that occurs in most dynamic systems and structures is passive; that is, once 
the system has been designed and manufactured the damping element does not change 
except possibly by ageing. The damping is designed to control the expected excitation and 
vibration experienced and to keep the dynamic motions and stresses to acceptable levels. 
However, the damping does not respond to the stimulus in the sense that it adjusts 
automatically to the required level, so it is considered to be passive. In active damping 
systems a measure of feedback is provided so that the level of damping is continually 
adjusted to provide the optimum control of vibration and desired motion levels. This is 
shown in block diagram form in Fig. 5.23. 

Input and output 
compared and any 

error fed 
Input + ' ' D~ ~ Amplifier ' i 

,i, level of T Excitation (wind, 
machinery, ground vibration | Damping i / motion etc.) 

i System 1 f 

Dynamic system [ Output 
or ~ �9 

structure _ 1 Actual 
' level of 

vibration 
Feedback loop 

_. .d , ,  

Fig. 5.23. Block diagram of active damping control system. 

The input and output levels of a dynamic quantity such as the motion or vibration are 
usually measured using a transducer which provides an electrical signal of these respon- 
ses. The output, that is, the actual vibration level is fed back for comparison with the input 
and the difference, if any, generates an error signal which is fed to a power amplifier. This 
amplifier acts on the damping device usually by hydraulic or electrical'means to adjust the 
damping, which acts on the dynamic system or structure. Essentially the control system is 
an error-actuated power amplifier or servo mechanism which continually adjusts the level 
of damping so that the structure achieves the desired vibration, motion or stress levels, 
regardless of the input excitation. 

This type of system has been used successfully in active vehicle ride control systems 
wherein active control is achieved by adjusting the shock absorber or damper settings. In 
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early systems the driver acted as the error detector and feedback device, and moved a knob or 
lever to adjust the vehicle shock absorbers to give the required damping level according to the 
desired ride characteristics. These settings were often termed 'sports' and 'normal', 'town' and 
'country', 'hard' and 'soft' or simply 'one' and 'two'. Later, microprocessor control was 
introduced to make the system fully automatic and provide continuous active ride control with 
optimum damper settings under all conditions. Naturally the active system is more complicat- 
ed to provide and maintain than a passive system. 

Hydraulic shock absorbers or dampers can be adjusted by altering the size of an orifice that 
the fluid must flow through. This can be done by having a series of holes with a spool valve 
to divert the flow through one or more of them. The spool in the valve can be moved either 
hydraulically or by an electrical solenoid device responding to the error-sensing system. 

In fabricated structures, joint damping is particularly easy to adapt to active control. In 
this case the joint clamping force is continually adjusted by hydraulic or electrical means. 
In this way some of the disadvantages of joint damping such as variations in the 
coefficient of friction, fretting and partial seizure can be overcome, and the response of a 
structure optimized whether it be for maximum joint energy dissipation, natural frequency 
control, level of structural vibration, dynamic stiffness control or noise levels. There is of 
course some added cost and complexity with active damping systems compared to passive 
systems. However, there are applications where active damping may be justified. It should 
also be noted that active damping may be applied to just one or two joints in a structure, 
or it may be an added damping element acting to reinforce the passive damping which is 
always present to some extent. 

5.9 ENERGY DISSIPATION IN NON-LINEAR STRUCTURES 

Although linear analyses explain much of the observed behaviour of vibrating structures, 
real structures always possess some degree of non-linearity. 

A structure is said to be non-linear if the relationship between the excitation and 
response are not directly proportional. The mass and inertia of a real structure is almost 
always linear, but both stiffness and damping are always non-linear to some extent 
although the non-linear effects can be small, particularly in the case of the stiffness. In 
many cases, non-linearity is localized so that only parts of a structure are non-linear; 
examples of non-linear structural parts are joints, locally flexible plates, composite 
materials and buckling struts. 

The effects of non-linear springs on the vibration of a structure have already been 
discussed in section 2.1.3. Analysis techniques may linearize the behaviour over a 
restricted range, and in practice a hardening spring can lead to instabilities because as a 
resonance is approached and the amplitude of vibration builds up, the spring stiffness 
increases, which in turn raises the natural frequency. Further increases in the exciting 
frequency eventually lead to a resonance jump and the structure settles to a vibration of 
reduced amplitude and frequency commensurate with the stiffness. A similar instability is 
experienced when the excitation frequency is decreased through a resonance. 

Non-linear damping has been discussed in sections 2.2.2., 2.3.3. and 3.1.5. Analysis 
techniques often seek to linearize either the damping action or the equations of motion. 
For example, to linearize the behaviour of a non-linear friction joint, the frequency 
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response function at frequencies close to a resonance of a structure can be found and the 
parameters linearized over short frequency intervals. This often leads to difficulties when 
assessing the energy dissipation in non-linear structures. 

Because non-linear spring and damping effects are often inseparable, it is generally 
helpful to consider the energy dissipation in non-linear structures rather than the damping 
alone. This avoids confusion with the interpretation of the cause of the non-linearities in 
question, which may be coupled in the non-linear component. 

One of the most common sources of non-linearity in structures originates in the joints. 
Relative interfacial motion may occur on a micro- or macro-slip scale depending upon 
clamping forces and surface conditions, which results in significant energy dissipation. In 
addition the clamping force controls the joint stiffness. 

Consider the energy that can be dissipated by a simple oscillating joint with metal to 
metal sliding contact as shown in Fig. 5.24. An exciting force F sin vt is applied to the 
joint member of mass m supported by a spring of stiffness k. The other joint member is 
rigidly fixed. A constant force N is applied normal to the joint interface, where the 
coefficient of friction is ~. 

Fig. 5.24. Metal to metal sliding contact joint. 

There is no movement until F sin vt > /IN, and then 

Fs in  v t - , u N - k y  = my. 

Since the exciting force is sinusoidal, it is reasonable to assume 

y = Ysin ( v t -  #). 

Hence 

where 

that is, 

Fs in  v t - ~  = k y -  mv2y 

co  = 
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and 

y 
F sin vt-/z/V 

F -  gN 
Y -  

The energy dissipated per cycle, E, is 4YIzN, so that 

= 4~v "k( 

For maximum E, dE/d(~/) = 0, and hence it is found that for Era,x, 

F 
(#N)~m'x - 2 '  

Emag "-" 

F 2 

(:)t 
and 

~-e/2 - = 'r~ 
g E m a x  " -  2 = o ,  

(-:t / 
that is, the value of ~ for maximum energy dissipation is that value of/IN which reduces 
the damped amplitude to one half of the undamped amplitude. 

The ratio ~N:F is important, and by calculating E for various values of/z~/F the curve 
shown in Fig. 5.25 is obtained. An optimum value of ~N[F is seen to exist when E - Era,x; 
it can also be seen that E ___ 0.5 Em~ if r is maintained between 0.15 and 0.85, and 
E >_ 0.75 Era,, if ~ / F  is between 0.25 and 0.75. 

Since the amplitude of slip under maximum energy dissipation conditions is one half of 
the amplitude for zero clamping force, this provides a simple practical method for 
adjusting such a joint to provide maximum energy dissipation. However, the resulting 
contact pressures are usually too low to be found in structurally necessary joints so that a 
special type of joint may be required such as that shown in Fig. 5.26. This joint has good 
load-bearing properties combined with high energy dissipation from both the rubber 
material and the joint contact mechanism. 
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Fig. 5.25. Effect of ,uN/F on energy dissipated per cycle. 

Fig. 5.26. Joint designed to carry structural load and dissipate vibrational energy by material 
damping in rubber blocks and controlled relative slip at joint interface. Normal joint clamping force 

adjusted with bolt and spring washer arrangement. 

The effect of adding a friction joint to a beam type structure can be analysed by 
considering the cantilever shown in Fig. 5.27. An exciting force F sin vt is applied a 
distance a from the root. 

Fig. 5.27. Cantilever beam with friction joint. 

If the joint frictional force Fd can be represented by a series of linear periodic functions 
then 

y,, = o~o~ Fs in  vt + cz,.bFo. 

Yb = ab,, Fs in  vt + O~bbFo 
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and 

yc = aca F sin vt + a~t,F~, 

where a,,,, ... are receptances in series form. If it is assumed that F,~ is always out of phase 
with F and that it contains a dominant harmonic component at frequency v, then 

Yb = (otb,,F- ~bt, F~) sin vt. 

The energy dissipated per �88 cycle is 
"C 2~ 

F~ sin vt.  Pb dt 

which is also equal to/~N Yb. 
Carrying out the integration and substituting 

Yt, = ab,, F -  Orl, l, F,, 

gives 

Fa = 2pN; 

that is, this technique for linearization of the damping replaces the actual frictional force 
during slipping,/zN, by a sinusoidaily varying force of amplitude 2/zN directly out of 
phase with the excitation. 

The effect of changes in the joint clamping force N on the energy dissipation 
capabilities of the joint are readily found. 

Many structures rely on the ability of the joints to transmit translational forces through 
shear in the bolts to achieve their static stiffness. Bolts are normally tightened as much as 
possible to maximize the bending moments which can be transmitted through a joint and 
thereby increase the static stiffness. This type of joint can give good frictional energy 
dissipation with translational slip if the translational forces are transmitted only by friction 
throughout the joint, but in many structures such as frameworks, this form of slip is not 
practicable. However, it is possible for bolt tightening to be controlled to allow joints to 
slip in rotation and provide significant energy dissipation. 

Consider the general structural joint shown in Fig. 5.28. Excitation is provided by the 
harmonic force F sin vt, and the friction torque by Td which acts on a representative joint. 

Fig. 5.28. 

Fs in  vt 
/ 

r -  . . . . . . . . . . . . .  -Li"n . . . . . . . .  | 
I I r -  . . . . . . . . . . . . . . . . . .  - ~  I 
I I I I 
I I I I 

I I I 
I t I I 

" l I 
L ......... I I " 

! I 
T. T. I I 

ii, i| i ,  m l l ,  u ~ u m  J I 

Structural joint with friction torque Tj. 

I L m w m  

I .  
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If To is assumed to be harmonic and to lag the relative slip velocity by 180* if slipping 
occurs, the displacement response at a general coordinate i is 

Xa = ~ .  F sin vt + (o e a,-  a , )  Td sin vt, 
and the relative rotation across the joint is 

= X , -  Xs = ( o ~ -  ~ . ) F  sin vt + ( ~  + ~ , -  or o~,)To sin vt. 

The value of the limiting friction at the joint interfaces, the applied forces and the 
frequency dictate whether slipping occurs, which gives three distinct response regimes for 

(i) To effectively zero (free joint). 

(X,)rd. o = a,. F sin vt. 

(ii) T~ = TL, the torque required to lock the joint and prohibit slip. 

(X;)r,. rL = (X,)r~ = o + (o~,r- Ot,~)TL 

(iii) Slip response. T, > T, > 0 

(X~)r. = (X~)r.. o + -TL- (X~)r. = r~-  (X,)r. .  o cos 0 sin vt 

cos vt 

where cos 0 = T~[Tt.. 
These expressions enable the energy dissipation by relative rotational slip in a joint to be 
evaluated for any clamping torque. 

The effect of friction damping on the vibration of plates can be considered by 
investigating laminated plates clamped together to generate interfacial in-plane friction 
forces. When the plate vibrates the laminates experience slight relative interfacial slip. 
High energy dissipation can be achieved but there is an associated loss in static stiffness 
compared with a solid plate, which may be important in some applications; that is, such a 
plate possesses both non-linear stiffness and damping effects which are inseparable. 
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Problems 

6.1 THE VIBRATION OF STRUCTURES WITH ONE DEGREE OF 
FREEDOM 

1. A structure is modelled by a rigid horizontal member of mass 3000 kg, supported at 
each end by a light elastic vertical member of flexural stiffness 2 MN/m. 

Find the frequency of small-amplitude horizontal vibrations of the rigid member. 
2. Part of a structure is modelled by a thin rigid rod of mass m pivoted at the lower end, 

and held in the vertical position by two springs, each of stiffness k, as shown. 
Find the frequency of small-amplitude oscillation of the rod about the pivot. 

. A uniform beam of length 8 m, simply supported at the ends, carries a uniformly 
distributed mass of 300 kg/m and three bodies, one of mass 1000 kg at mid-span and 
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two of mass 1500 kg each, at 2 m from each end. The second moment of area of the 
beam is 10-4 m 4 and the modulus of elasticity of the material is 200 GN/m 2. 

Estimate the lowest natural frequency of flexural vibration of the beam assuming 
that the deflection Yx at a distance x from one end is given by: 

yx = yc sin n(x/l), 

where yc is the deflection at mid-span and I is the length of the beam. 
A section of steel pipe in a distillation plant is 80 mm in diameter, 5 mm thick and 
4 m long. The pipe may be assumed to be built-in at each end, so that the deflection 
y, at a distance x from one end of a pipe of length I is 

mg x 2 ( l -  x) 2, 
Y -  2 4 E I  

m being the mass per unit length. 
Calculate the lowest natural frequency of transverse vibration of the pipe when full 

of water. Take Ps,~, = 7750 kg/m 3, pw,,~ = 930 kg/m 3 and Es,~ = 200 GN/m 2. 
5. A uniform horizontal steel beam is built in to a rigid structure at one end and pinned 

at the other end; the pinned end cannot move vertically but is otherwise uncon- 
strained. The beam is 8 m long, the relevant flexural second moment of area of the 

4 
cross section is 4.3 • 106 m m ,  and the beam's own mass together with the mass 
attached to the beam is equivalent to a uniformly distributed mass of 600 kg/m. 

Using a combination of sinusoidal functions for the deflected shape of the beam, 
estimate the lowest natural frequency of flexural vibrations in the vertical plane. 

6. Estimate the lowest frequency of natural transverse vibration of a chimney 100 m 
high, which can be represented by a series of lumped masses M at distances y from its 
base as follows: 

y (m) 20 40 60 80 100 
M (103 kg) 700 540 400 280 180 

With the chimney considered as a cantilever on its side the static deflection in 
bending, x along the chimney is calculated to be 

x = X 1 - c o s T r  , 

where l = 100 m, and X = 0.2 m. 

How would you expect the actual frequency to compare with the frequency that 
you have calculated? 
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0 Estimate the lowest natural frequency of a light beam 7 m long carrying six 
concentrated masses equally spaced along its length. The measured static deflections 
under each mass are: 

Mass (kg) 1070 970 370 370 670 670 
Deflection (mm) 2.5 2.8 5.5 5.0 2.5 1.0 

An elastic part of a structure has a dynamic force-deflection loop at a frequency of 
10 rad/s as shown below. 

i2kN . . ~ ~ . /  
Enclosed area -4.5 Nml ~ J , . / J  

, 

/ . l r  i - 2  kN 

Find 
(a) the stiffness k, 
(b) assuming viscous damping find c and ~, and 
(c) assuming hysteretic damping find I/. 

9. A solid steel shaft, 25 mm in diameter and 0.45 m long, is mounted in long bearings 
in a rigid frame at one end and has at its other end, which is unsupported, a steel 
flywheel. The flywheel can be treated as a rim 0.6 m in outer diameter and 20 mm 
square cross section, with rigid spokes of negligible mass lying in the mid-plane of 
the rim. 

Find the frequency of free flexural vibrations. 
10. A uniform rigid building, height 30 m and cross section 10 m x 10 m, rests on an 

elastic soil of stiffness 0.6 x 106 N/m 3. (Stiffness is defined as the force per unit area 
to produce unit deflection.) 

If the mass of the building is 2 x 106 kg and its inertia about its axis of rocking at 
the base is 500 x l0 s kg m 2, calculate the period of the rocking motion (small 

amplitudes). 
What wind speed would excite this motion if the Strouhal number is 0.22? 

Calculate also the maximum height the building could be before becoming 

unstable. 
11. A single degree of freedom system with a body of mass 10 kg, a spring of stiffness 

1 kN/m and negligible damping is subjected to an input force F which varies with 
time as shown overleaf. 
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F 

200 N 

100N-  

I I  ,, 

0.05 s 

i ,  

0.1s  

Determine the amplitude of free vibration of the body after the force is removed. 
12. A uniform rigid tower of height 30 m and cross section 3 m x 3 m, is symmetrically 

mounted on a rigid foundation of depth 2 m and section 5 m x 5 m. The mass of the 
tower is calculated to be 1.5 x 105 kg, and of the foundation, 103 kg. The foundation 
rests on an elastic soil which has a uniform stiffness of 2 • 10 ~ N/m 3. (Stiffness is 
defined as the force per unit area to produce unit deflection.) 

If the mass moment of inertia of the tower and foundation about its axis of rocking 
at the base of the foundation is 6 x 107 kg m 2, find the period of small-amplitude 
rocking motion. The axis of rocking is parallel to a side of the foundation. 

What is the greatest height the tower could have and still be stable on this 
foundation? 

13. The foundation of a rigid tower is a circular concrete block of diameter D, set into an 
elastic soil. The effective stiffness of the soil, k, is defined as the force per unit area 
to produce a unit displacement and is constant for small deflections. The tower is 
uniform with a total mass M. The centre of mass is situated on the centre line at a 
height h above the base. The moment of inertia of the tower about an axis of rocking 
at the base is I. 

Show that the natural frequency of rocking is given by: 

2n I 

14. A body supported by an elastic structure performs a damped oscillation of period 1 s, 
in a medium whose resistance is proportional to the velocity. At a given instant the 
amplitude was observed to be 100 mm, and in 10 s this had reduced to 1 mm. 

What would be the period of the free vibration if the resistance of the medium were 
negligible? 
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15. To determine the amount of damping in a bridge it was set into vibration in the 
fundamental mode by dropping a weight on it at centre span. The observed frequency 
was 1.5 Hz, and the amplitude was found to have decreased to 0.9 of the initial 
maximum after 2 s. The equivalent mass of the bridge (estimated by the Rayleigh 
Energy method) was 105 kg. 

Assuming viscous damping and simple harmonic motion, calculate the damping 
coefficient, the logarithmic decrement and the damping ratio, 

16. A new concert hall is to be protected from the ground vibrations from an adjacent 
highway by mounting the hall on rubber blocks. The predominant frequency of the 
sinusoidal ground vibrations is 40 Hz, and a motion transmissibility of 0.1 is to be 
attained at that frequency. 

Calculate the static deflection required in the rubber blocks, assuming that these act 
as linear, undamped springs. 

17. When considering the vibrations of a structure, what is meant by the Q factor? Derive 
a simple relationship between the Q factor and the damping ratio for a single degree 
of freedom system with light viscous damping. 

Measurements of the vibration of a bridge section resulting from impact tests show 
that the period of each cycle is 0.6 s, and that the amplitude of the third cycle is twice 
the amplitude of the ninth cycle. Assuming the damping to be viscous estimate the Q 
factor of the section. 

When a vehicle of mass 4000 kg is positioned at the centre of the section the period 
of each cycle increases to 0.62 s; no change is recorded in the rate of decay of the 
vibration. What is the effective mass of the section? 

18. The vibration on the floor of a laboratory is found to be simple harmonic motion at a 
frequency in the range 15-60 Hz, (depending on the speed of some nearby reciprocat- 
ing plant). It is desired to install in the laboratory a sensitive instrument which 
requires insulating from the floor vibration. The instrument is to be mounted on a 
small platform which is supported by three similar springs resting on the floor, 
arranged to carry equal loads; the motion is restrained to occur in a vertical direction 
only. The combined mass of the instrument and the platform is 40 kg: the mass of the 
springs can be neglected and the equivalent viscous damping ratio of the suspension 
is 0.2. 

Calculate the maximum value for the spring stiffness, if the amplitude of the 
transmitted vibration is to be less than 10% of that of the floor vibration over the 
given frequency range. 

19. A machine of mass 520 kg produces a vertical disturbing force which oscillates 
sinusoidally at a frequency of 25 Hz. The force transmitted to the floor is to have an 
amplitude, at this frequency, not more than 0.4 times that of the disturbing force in the 
machine, and the static deflection of the machine on its mountings is to be as small as 
possible consistent with this. 

For this purpose, robber mountings are to be used, which are available as units, 
each of which has a stiffness of 359 kN]m and a damping coefficient of 2410 N s/m. 
How many of these units are needed? 
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20. The basic element of many vibration-measuring devices is the seismic unit, which 
consists of a mass m supported from a frame by a spring of stiffness k in parallel with 
a damper of viscous damping coefficient c. The frame of the unit is attached to the 
structure whose vibration is to be determined, the quantity measured being z, the 
relative motion between the seismic mass and the frame. The motion of both the 
structure and the seismic mass is translation in the vertical direction only. 

Derive the equation of motion of the seismic mass, assuming that the structure has 
simple harmonic motion of circular frequency v, and deduce the steady state 
amplitude of z. 

Given that the undamped natural circular frequency co of the unit is much greater 
than v, show why the unit may be used to measure the acceleration of the 
structure. 

Explain why in practice some damping is desirable. 
If the sensitivity of the unit (that is, the amplitude of z as a multiple of the 

amplitude of the acceleration of the frame) is to have the same value when v = 0.2 co 
as when v ,~ ca find the necessary value of the damping ratio. 

21. A two-wheeled trailer of sprung mass 700 kg is towed at 60 km/h, along an 
undulating straight road whose surface may be considered sinusoidal. The distance 
from peak to peak of the road surface is 30 m, and the height from hollow to crest is 
0.1 m. The effective stiffness of the trailer suspension is 60 kN/m, and the shock 
absorbers, which provide linear viscous damping, are set to give a damping ratio of 
0.67. 

Assuming that only vertical motion of the trailer is excited, find the absolute 
amplitude of this motion and its phase angle relative to the undulations. 

22. Find the Fourier series representation of the following triangular wave. 

+1 

--1 

- I ! ~ t 

23. A wooden floor, 6 m by 3 m, is simply supported along the two shorter edges. The 
mass is 300 kg and the static deflection at the centre under the self-weight is 7 mm. 
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It is proposed to determine the dynamic properties of the floor by dropping a sand bag 
of 50 kg mass on it at the centre, and to measure the response at that position with an 
accelerometer and a recorder. 

In order to select the instruments required, estimate: 
(i) the frequency of the fundamental mode of vibration that would be recorded, 

(ii) the number of oscillations at the fundamental frequency for the signal amplitude 
on the recorder to be reduced to half, assuming a loss factor of 0.05, and 

(iii) the height of drop of the sand bag so that the dynamic deflection shall not exceed 
10 mm, and the corresponding maximum acceleration. 

24. The figure shows a diagrammatic end view of one half of a swing-axle suspension of 
a motor vehicle which consists of a horizontal half-axle OA pivoted to the chassis at 
O, a wheel rotating about the centre line of the axle and a spring of stiffness k and a 
viscous damper with a damping coefficient c both located vertically between the axle 
and the chassis. The mass of the half-axle is m, and its radius of gyration about O is 
h. The mass of the wheel is m2 and it may be regarded as a thin uniform disc having 
an external radius r and located at a horizontal distance s from the pivot O. The spring 
and damper are located at horizontal distances q and p from the pivot O, as shown. 

Derive the equation for angular displacement of the axle-wheel assembly about the 
pivot O, and obtain from it an expression for the frequency of damped free 
oscillations of the assembly. Express this frequency in terms of the given parameters 
and the undamped natural frequency of the assembly. 

25. The T-shaped body shown overleaf pivots about a point O on a horizontal ground surface 
and is held uptight, so that its mass centre G is a distance h vertically above O, by two 
springs pinned to it and to the ground. Each spring has a stiffness k and its vertical 
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centre line is at a distance c from the pivot O. The T-shaped body has a mass m and 
a radius of gyration r about its mass centre. 

The body is acted on by a force F whose line of action is horizontal and at a height 
d above the ground, where d > h. Derive an expression for the rotation of the body 
if the force rises suddenly from zero to F, assuming that the angular displacement of 
the body is small. 

If the suddenly applied force F drops equally suddenly to zero after a time to from 
its original application, derive the equation of the rotational motion of the body for 
times greater than to. 

26. The figure shows a vibration exciter which consists of two contra-rotating wheels, 
each carrying an eccentric body of mass 0. ! kg at an effective radius of 10 mm from 
its axis of rotation. The vertical positions of the eccentric bodies occur at the same 
instant. The total mass of the exciter is 2 kg and damping is negligible. 

Find a value for the stiffness of the spring mounting so that a force of amplitude 
100 N, due to rotor unbalance, is transmitted to the fixed support when the wheels 
rotate at 150 rad/s. 
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6.2 THE VIBRATION OF STRUCTURES WITH MORE THAN ONE DEGREE 
OF FREEDOM 

27. A two-storey building is represented by the two degree of freedom lumped mass 
system shown below. 

~ ' ~ ~ ~ !  Mass m 

Shear stiffness k 

Mass rn 

. . . . . . .  

Shear stiffness k 

" X 

Obtain the frequency equation for swaying motion in the X - Y  plane; hence 
calculate the natural frequencies and sketch the corresponding mode shapes. 

28. A vehicle has a mass of 2000 kg and a 3 m wheelbase. The mass moment of inertia 
about the centre of mass is 500 kg m 2, and the centre of mass is located 1 m from the 
front axle. Considering the vehicle as a two degree of freedom system, find the natural 
frequencies and the corresponding modes of vibration, if the front and rear springs 
have stiffnesses of 50 kN/m and 80 kN/m, respectively. 

The expansion joints of a concrete road are 5 m apart. These joints cause a series 
of impulses at equal intervals to vehicles travelling at a constant speed. Determine the 
speeds at which pitching motion and up and down motion are most likely to arise for 
the above vehicle. 

29. To analyse the vibrations of a two-storey building it is represented by the lumped 
I ! mass system shown overleaf, where m~ = ~m2, and k, = ~ k2 (k, and k2 represent the 

shear stiffnesses of the parts of the building shown). 
Calculatethe natural frequencies of free vibrations, and sketch the corresponding 

mode shapes of the building, showing the amplitude ratios. 
If a horizontal harmonic force F, sin vt is applied to the top floor, determine 

expressions for the amplitudes of the steady state vibration of each floor. 
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30. The rigid beam, shown in its position of static equilibrium in the figure, has a mass m 
and a mass moment of inertia 2 m a  2 about an axis perpendicular to the plane of the 
diagram, and through its centre of mass G. 

Assuming no horizontal motion of G, find the frequencies of small oscillations in 
the plane of the diagram, and the corresponding positions of the nodes. 

31. A small electronic package is supported by springs as shown opposite. The mass of the 
package is m, each spring has a constant axial stiffness k, and damping is negligible. 
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Considering motion in the plane of the figure only, and assuming that the amplitude 
of vibration of the package is small enough for the lateral spring forces to be 
negligible, write down the equations of motion and hence obtain the frequencies of 
free vibration of the package. 

Explain how the vibration mode shapes can be found. 

32. Explain, in one sentence each, what is meant by a natural frequency and mode shape 
of a dynamic system. 

33. Part of a machine can be modelled by the system shown. Two uniform discs A and B, 
which are free to rotate about fixed parallel axes through their centres, are coupled by 
a spring. Similar springs connect the discs to the fixed frame as shown in the figure. 
Each of the springs has a stiffness of 2.5 kN/m which is the same in tension or 
compression. Disc A has a mass moment of inertia about its axis of rotation of 
0.05 kg m 2, and a radius of 0.1 m, whilst for the disc B the corresponding figures are 
0.3 kg m 2 and 0.2 m. Damping is negligible. 

Determine the natural frequencies of small amplitude oscillation of the system and 
the corresponding mode shapes. 

34. Part of a building structure is modelled by the triple pendulum shown overleaf. 
Obtain the equations of motion of small-amplitude oscillation in the plane of the 
figure by using the Lagrange equation. 

Hence determine the natural frequencies of the structure and the corresponding 
mode shapes. 
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35. A simplified model for studying the dynamics of a motor vehicle is shown. The body 
has a mass M, and a moment of inertia about an axis through its mass centre of IG. It 
is considered to be free to move in two directions- vertical translation and rotation in 
the vertical plane. Each of the unsprung wheel masses, m, are free to move in vertical 
translation only. Damping effects are ignored. 

(i) Derive equations of motion for this system. Define carefully the coordinates 
used. 

(ii) Is it possible to determine the natural frequency of a 'wheel hop' mode without 
solving all the equations of motion? If not, suggest an approximation that might 
be made, in order to obtain an estimate of the wheel hop frequency, and calculate 
such an estimate given the following data: 

k = 20 kN/m; K = 70 kN/m; m = 22.5 kg. 
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36. If the building in problem 27 were enlarged by adding a further floor of mass m and 
shear stiffness k on top of the existing building, obtain the frequency equation for the 
three degree of freedom system formed. Given m and k contemplate how this 
equation may be solved. What if the building were 20 storeys high? 

37. To analyse the vibration of a two-coach rail unit, it is modelled as the system shown. 
Each coach is represented by a rigid uniform beam of length l and mass m; the 
coupling is a simple ball-joint. The suspension is considered to be three similar 
springs, each of stiffness k, positioned as shown. Damping can be neglected. 

Considering motion in the plane of the figure only, obtain the equations of motion 
for small-amplitude free vibrations, and hence obtain the natural frequencies of the 
system. 

Explain how the mode shapes may be found. 

38. A bridge structure is modelled by a simply supported beam of length l, with three 
equal bodies each of mass m attached to it at equal distances as shown. Show that the 
influence coefficients are (where A = 131256 El): 

o~11 = 3A, ~Xl2 = 3.67A, O:13 = 2.33A, 
O~l = 3.67A, 0~2 = 5.33A, 0~3 = 3.67A, 
~ l  = 2.33A, o~2 = 3.67A, O~3 = 3A. 

Proceed to find the flexibility matrix and, by iteration, deduce the lowest natural 
frequency and associated mode shape. 

39. A solid cylinder, has a mass M and radius R. Pinned to the axis of the cylinder is an 
arm of length I which carries a bob of mass m as shown overleaf. Obtain the natural 
frequency of free vibration of the bob. 
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40. An aeroplane has a fuselage mass of 4000 kg. Each wing has an engine of mass 
500 kg, and a fuel tank of mass 200 kg at its tip, as shown. Neglecting the mass of 
each wing, calculate the frequencies of flexural vibrations in a vertical plane. Take the 
stiffness of the wing sections to be 3k and k as shown, where k - 100 kN/m. 

41. A marine propulsion installation is shown in the figure opposite. For the analysis of 
torsional vibration, the installation can be modelled as the system shown, where the 
mass moments of inertia for the engine, gearbox and propeller taken about the axis of 
rotation are IE, Ic and Ip respectively, and the stiffnesses of the gearbox and propeller 
shafts are kc and kp respectively. The numerical values are 
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IE = 0.8 kg m 2, 
lo = 0.3 kg m 2, 
Ip = 2.0 kg m 2, 
/co = 400 kNm/rad, 
kp = 120 kNm/rad, 

and damping can be neglected. 
Calculate the natural frequencies of free torsional vibration and give the positions 

of the node for each frequency. 

42. A machine is modelled by the system shown. The masses of the main elements are m~ 
and m2, find the spring stiffnesses are as shown. Each roller has a mass m, diameter d, 
and mass moment of inertia J about its axis, and rolls without slipping. 

Considering motion in the longitudinal direction only, use Lagrange's equation to 
obtain the equations of motion for small free oscillations of the system. If m~ = 4 m, 
m2 = 2 m and J = nuf/8, deduce the natural frequencies of the system and the 
corresponding mode shapes. 

43. Vibrations of a particular structure can be analysed by considering the equivalent 
system shown overleaf. 
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The bodies are mounted on small frictionless rollers whose mass is negligible, and 
motion occurs in a horizontal direction only. 

Write down the equations of motion of the system and determine the frequency 
equation in determinant form. Indicate how you would 

(i) solve the frequency equation, and 
(ii) determine the mode shapes associated with each natural frequency. 

Briefly describe how the Lagrange equation could be used to obtain the natural 
frequencies of free vibration of the given system. 

44. A simply supported beam of negligible mass and length l, has three bodies each of 
mass m attached as shown. The influence coefficients are, using standard notation, 

ct,~ = 3/3/256 El, tx3~ = 2.33/3/256 El, 
~ ,  = 3.67/31256 El, ~2 = 5.33/3/256 et. 

Write down the flexibility matrix, and determine by iteration the frequency of the 
first mode of vibration, correct to 2 significant figures, if E1 = 10 Nm 2, m = 2 kg and 
l = l m .  

Comment on the physical meaning of the eigenvector you have obtained, and use 
the orthogonality principle to obtain the frequencies of the higher modes. 

45. A structure is modelled by three identical long beams and rigid bodies, connected by 
two springs as shown opposite. The rigid bodies are each of mass M and the mass of 
the beams is negligible. Each beam has a transverse stiffness K at its unsupported end; 
and the springs have stiffnesses k and 2k as shown. 

Determine the frequencies and corresponding mode shapes of small-amplitude 
oscillation of the bodies in the plane of the figure. Damping can be neglected. 
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46. Find the dynamic matrix of the system shown. 
If k = 20 kN/m and m = 5 kg, find the lowest natural frequency of the system and 

the associated mode shape. 

47. A structure is modelled by the three degree of freedom system shown overleaf. Only 
translational motion in a vertical direction can occur. 
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Show that the influence coefficients are 

o~ = o~ = ~ = 'k 

and 

o~, = o~, = o ~  = ~k, 

and proceed to find the flexibility matrix. Hence obtain the lowest natural frequency 
of the system and the corresponding mode shape. 

48. A delicate instrument is to be mounted on an antivibration installation so as to 
minimize the risk of interference caused by groundborne vibration. An elevation of 
the installation is shown opposite, and the point A indicates the location of the most 
sensitive part of the instrument. The installation is free to move in the vertical plane, 
but horizontal translation is not to be considered. 
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It is decided to use as a design criterion the transmissibility TAB, being the 
sinusoidal vibration amplitude at A for a unit amplitude of vibration on the ground at 
B. One of the major sources of groundborne vibration is a nearby workshop where 
there are several machines which run at 3000 rev/min. Accordingly, it is proposed that 
the installation should have a transmissibility ITABI of 1% at 50 Hz. 

Given the following data: 

M = 3175 kg; l = 0.75 m; R = 0.43 m (where Io = MR2); 

determine the maximum value of stiffness K that the mounts may possess in order to 

meet the requirement, and find the two natural frequencies of the installation. 
Repeat the analysis using a simpler model of the system having just one degree of 

freedom - vertical translation of the whole installation - and establish whether this 
simpler approach provides an acceptable means of designing such a vibration 
isolation system. 

For the purpose of these basic isolation design calculations, damping may be 
ignored. 

49. In a vibration isolation system, a group of machines are firmly mounted together onto 
a rigid concrete raft which is then isolated from the foundation by four antivibration 
pads. For the purposes of analysis, the system may be modelled as a symmetrical 
body of mass 1150 kg and moments of inertia about rolling and pitching axes through 
the mass centre of 175 kgm 2 and 250 kgm 2, respectively, supported at each comer by 
a spring of stiffness 7.5 x l0 s N]m. 

The model is shown overleaf. 
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The major disturbing force is generated by a machine at one corner of the raft and 
may be represented by a harmonically varying vertical force with a frequency of 
50 Hz, acting directly through the axis of one of the mounts. 

(i) Considering vertical vibration only, show that the force transmitted to the 
foundation by each mount will be different, and calculate the magnitude of the 
largest, expressed as a percentage of the excitation force. 

(ii) Identify the mode of vibration that is responsible for the largest component of 
this transmitted force and suggest ways of improving the isolation performance 
using the same mounts but without modifying the raft. 

(iii) Show that a considerable improvement in isolation would be obtained by moving 
the disturbing machine to the centre of the raft, and calculate the transmitted 
force for this case, again expressed as a percentage of the exciting force. 

50. Find the driving point impedance of the system shown. The bodies move on 
frictionless rollers in a horizontal direction only. 

Hence show that the amplitude of vibration of body 1 is 

~[(72 000 + 2620v 2 + 0.2r  2 + (20v3)2]F. 

v 2 (0.04v 4 + 1224v 2 + 32 400) 
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51. Find the driving point mobility of the system shown; only motion in the vertical 
direction occurs and damping is negligible. 

Sec. 6.31 

k I = 10 6 N / m ~ _ _ ~  

k2=4• ~ 

l Ill 'i'"l'l',il 
k 3 = 5 x 10 6 N /m 

m 4 =  l k g  

k4 = 2 x 10 6 N/m 

0.25e i loo0rN 

Hence obtain the frequency equation; check your result by using a different method 
of analysis. 

6.3 THE VIBRATION OF CONTINUOUS STRUCTURES 

52. A uniform beam of length I is built-in at one end, and rests on a spring of stiffness k 
at the other, as shown. 
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Determine the frequency equation for small-amplitude transverse vibration, and 
show how the first natural frequency changes as k increases from zero at the free end, 
to infinity, at the simply supported end. 

Comment on the effect of the value of k on the frequency of the 10th mode. 
53. A structure is modelled as a uniform beam of length l, hinged at one end, and resting 

on a spring of stiffness k at the other, as shown. 
Determine the first three natural frequencies of the beam, and sketch the corre- 

sponding mode shapes. 

54. Part of a structure is modelled as a uniform cross-section beam having a pinned 
attachment at one end and a sliding constraint at the other (where it is free to translate, 
but not to rotate) as shown. 

(i) Derive the frequency equation for this beam and find expressions for the nth 
natural frequency and the corresponding mode shape. Sketch the shapes of the 
first three modes. 

(ii) The beam is to be stiffened by adding a spring of stiffness k to the sliding end. 
Derive the frequency equation for this case and use the result to deduce the 
frequency equation for a pinned clamped beam. 

(iii) Estimate how much the fundamental frequency of the original beam is raised by 
adding a very stiff spring to its sliding end. 
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55. A portal frame consists of three uniform beams, each of length l, mass m, and flexural 
rigidity El, attached as shown. There is no relative rotation between beams at their 
joints. 

Show that the fundamental frequency of free vibration, in the plane of the frame is 
0.5~J(el/ml 3) Hz. 

56. A uniform cantilever of length I and flexural rigidity El, is subjected to a transverse 
harmonic exciting force F sin vt at the free end. Show that the displacement at the free 
end is 

sin M .  cosh A / -  cos M.  sinh 2 / ]  
E-]-~ (1 + cos M~ cosh ~-) F sin vt, 

where ~, = (pAv2/E1) '/4. 
57. A thin rectangular plate has its long sides simply supported, and both its short sides 

unsupported. Find the first three natural frequencies of flexural vibration, and sketch 
the corresponding mode shapes. 

58. Derive the frequency equation for flexural vibration of a uniform beam that is pinned 
at one end and free at the other. 

Show that the fundamental mode of vibration has a natural frequency of zero, and 
explain the physical significance of this mode. 

Obtain an approximate value for the natural frequency of the first bending mode of 
vibration, and compare this with the corresponding value for a beam that is rigidly 
clamped at one end and free at the other. 

6.4 DAMPING IN STRUCTURES 

59. The 'half-power' method of determining the damping in a particular mode of 
vibration from a receptance plot can be extended to a more general form in which the 
two points used - one below resonance and one above - need not be at an amplitude 
exactly 0.707 times the peak value. 
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(i) A typical Nyquist plot of the receptance for a single degree of freedom system 
with structural damping is shown, with two points corresponding to frequencies 
vt and v2. The natural frequency, ca, is also indicated. Prove that the damping loss 
factor, 17, is given exactly by: 

77 [(v2 2 v,2)/co 2] [(tan' ~ -~ = - ~ ,  + tan ~ ) ]  , 

where Ot and ~2 are the angles subtended by points 1 and 2 with the resonance 
point and the centre of the circle. Show how this expression relates to the half- 
power points formula. 

//2 

lm(~) 

r 

Re(a;) 
, ~ _ ,  

v increasing 

(ii) Some receptance data from measurements on a practical structure are listed in the 
table opposite. By application of the formula above to the data given, obtain a 
best estimate for the damping of the mode under investigation. 
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Frequency Receptance 
(Hz) 

Modulus Phase 
(x 10 -7 m]N) (degrees) 

5.86 12.3 24 
5.87 12.6 29 
5.88 12.5 36.5 
5.89 12.0 41 
5.90 11.3 57 
5.91 10.1 66 
5.92 8.8 74 
5.93 7.0 78 
5.94 5.6 78 

60. A large symmetric machine tool structure is supported by four suspension units, one 
at each corner, intended to provide isolation against vibration. Each unit consists of a 
primary spring (which can be considered massless and undamped) of stiffness 
250 kN/m, in parallel with a viscous dashpot of rate 20 kN s/m. The 'bouncing' 
natural frequency of the installation is 2.8 Hz while the two rocking modes are 1.9 Hz 
and 2.2 Hz. 

It is found that excessive high-frequency vibration forces are transmitted from the 
machine to the floor, particularly above 20 Hz. Some modifications are required to 
improve the isolation performance, but a constraint is imposed by the pipes and other 
service connections to the machine which cannot withstand significantly larger 
displacements than are currently encountered. 

It is suggested that a rubber bush be inserted e i ther  at one end of the dashpot (for 
example, between the dashpot and the machine structure), or  between the entire 
suspension unit and the machine. The same bush would be used in either configura- 
tion and it may be modelled as an undamped spring with a stiffness of 700 kN/m. 

Show analytically which of the two proposed modifications provides the greatest 
improvement in high-frequency isolation, and calculate the increased attenuation (in 
dB) for both cases at 25 Hz and at 50 Hz. Consider motion in the vertical direction 
only. 

Comment on the suitability of the two proposed modifications, and indicate what 
additional calculations should be made to define completely the dynamic behaviour of 
the modified installation. 

61. A machine having a mass of 1250 kg is isolated from floor vibration by a resilient 
mount whose stiffness is 0.2 x 10 ~ N/m, and which has negligible damping. The 
machine generates a strong excitation which can be considered as an externally 
applied harmonic force at its running speed of 480 revolutions per minute, and the 
vibration isolation required is specified as a force transmissibility o f -35  dB at this 
frequency. 



230 Problems [Ch. 6 

(i) Show that the single-stage system described above will not provide the necessary 
attenuation. 

It is decided to improve the effectiveness of the installation by introducing a 
second mass-spring stage between the resilient mount and the floor. The 
maximum deadweight that can be supported by the floor is 2500 kg, and so the 
second-stage mass is taken as 1250 kg. 

(ii) Calculate the stiffness of the second-stage spring in order to attain the required 
force transmissibility. 

(iii) Determine the frequency at which this two-stage system has the same transmissi- 
bility as the simpler single-stage one, and sketch the transmissibility curve for 
each case, indicating the frequency above which the isolation system gives a 
definite attenuation. 

62. (a) The traditional 'half-power points' formula for estimating damping, that is, loss 
factor = Af/fo (where Afis the frequency bandwidth at the half-power points and 
fo is the frequency of maximum response), is an approximation that becomes 
unreliable when applied to modes with relatively high damping. 

Sketch a graph indicating the error incurred in using this formula instead of the 
exact one, as a function of damping loss factor in the range 0.1 to 1.0. 

(b) The measured receptance data given in the table were taken in the frequency 
region near a mode of vibration of interest on a scale model of a chemical 
reactor. 

Frequency . . . .  Recepiance 
(Hz) 

Modulus Phase 
(x 10 -~ re[N) (degrees) 

380.0 41.6 31 
390.0 49.9 25 
400.0 66.5 25 
410.0 86.1 41 
420.0 70.7 67 
430.0 64.0 65 
440.0 67.0 60 

Obtain estimates for the damping in this mode of vibration, using (a) a modulus- 
frequency plot and (b) a polar (or Nyquist) plot of the receptance data. Present your 
answers in terms of Q factors. State which of the two estimates obtained you consider 
to be the more reliable, and justify your choice. 

63. The results given opposite are of an incomplete resonance test on a structure. The 
response at different frequencies was measured at the point of application of a 
sinusoidal driving force and is given as the receptance, being the ratio of the 
amplitude of vibration to the maximum value of the force. The phase angle between 
the amplitude and force was also measured. 
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Estimate the effective mass, dynamic stiffness and loss factor, assuming material 
type damping. 

Frequency Receptance Phase angle 
(Hz) (x 10 -~ m/N) (degrees) 

55 5 0 
70 10 3 
82 18 24 
88 25 40 
94 30 55 
00 32 85 
09 10 135 
15 9 180 
30 7 180 

64. A test is conducted in order to measure the dynamic properties of an antivibration 
mount. A mass of 900 kg is supported on the mount to form a single degree of 
freedom system, and measurements are made of the receptance of this system in the 
region of its major resonance. 

In addition to the hysteretic damping provided by the mount (which is to be 
measured), some additional damping is introduced by friction in the apparatus, and so 
tests are made at two different amplitudes of vibration (Xo) in order to determine the 
magnitude of each of the two sources of damping. 

It may be assumed that the loss factor of the mount is a constant, valid for all 
vibration amplitudes, but the dynamic stiffness is not a constant and so the two tests 
have slightly different natural frequencies. 

Details of some receptance measurements are given overleaf. Assuming that the 
additional damping has the characteristic of Coulomb friction damping, estimate the 
hysteretic damping loss factor of the mount. 
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Receptance measurements 
Frequency Test (a) Test (b) 

(Hz) Xo = 0.1 mm Xo = 0.02 mm 

Re(a) Im(a) Re(c0 Im(a) 
(x I 0-' m/N) (x 10 -7 m/N) 

13.25 7.6 -6.9 5.1 --4.9 
13.50 7.6 -8.6 5.3 -5.6 
13.75 6.6 -10.7 5.3 -6.4 
14.00 4.4 -12.4 5.2 -7.4 
14.25 1.6 -12.8 4.6 -8.5 
14.50 -1.0 -11.9 3.7 -9.6 
14.75 -2.5 -10.1 2.2 -10.3 
15.00 -3.1 -8.4 0.58 -10.2 
15.25 -3.2 -7.0 -0.96 -9.6 
15.50 -3.0 --6.0 -1.9 -8.5 

65. A resonance test on a flexible structure at a constant energy level has revealed a 
prominent mode at 120 Hz with a half-power frequency bandwidth of 4.8 Hz and a 
peak acceleration of 480 m]s 2. The effective mass of the structure for this mode has 
been estimated at 20 kg. 

It is proposed to introduce Coulomb type friction at the point of measurement of 
the response so as to reduce the motion by 1/5 for the same energy input as before. 
Estimate the friction force required, assuming this to be independent of amplitude and 
frequency of vibration. 

66. (i) Derive a relationship between the logarithmic decrement of a system with 
velocity type damping performing free vibrations, and the loss factor for 
structural damping. Define clearly any assumptions made. 

(ii) A concrete floor slab is to be supported on four columns, spaced in a square grid 
of sides 7 m. The detail of one column is shown opposite. The slab is to be 
isolated from vibrations being transmitted up the column by rubber pads, 
installed as shown. The slab thickness is 150 mm and the density of concrete is 
2250 kg/m 3. The first resonance frequency of the slab is estimated to be 20 Hz 
and the logarithmic decrement for concrete is about 0.2. Measurements of the 
vibration in a column have shown a strong peak at 20 Hz. The rubber pads have 
a loss factor of 0.1. 
(a) Estimate the resonance frequency the pad system should have to provide a 

reduction of 4/5 in the vibration being transmitted at 20 Hz to the centre of 
the floor slab. Comment upon the result. 

(b) Estimate the additional attenuation in dB the isolation will provide at a 
frequency of 160 Hz. 

Some of the information given may be superfluous. 
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67. (i) Often it is required to introduce into a structure some additional form of damping 
in order to keep resonance vibrations down to an acceptable level. One method is 
to use a damped dynamic absorber where a (relatively) small mass is suspended 
from the primary mass (of the vibrating structure) by a spring and 3_ dashpot. If 
the absorber spring-mass system is tuned to the natural frequency of the effective 
mass-spring model of the structure, then the absorber dashpot may introduce 
some damping to the structural resonance. 

Without performing analysis, but using physical reasoning only, sketch a 
family of curves for the point receptance on the primary mass for a range of 
different magnitudes for the absorber dashpot between 0 and ~, and hence show 
that there will be an optimum value for that dashpot rate. 

(ii) In one application of this type of damper-absorber, it is required to increase the 
damping in a new suspension bridge. 

In moderate to high winds the airflow over the bridge generates an effectively 
steady-state excitation force at the bridge's fundamental natural frequency. The 
airflow also provides some damping. The amplitude of steady vibration under 
this excitation is found to be 20 mm and this is twice the maximum amplitude 
considered to be 'safe'. Accordingly, it is proposed to introduce extra damping to 
reduce the resonance amplitude to 10 mm. 

Tests on the bridge show that it possesses some structural damping and this is 
estimated from measurement of free decay curves. The amplitude of vibration is 
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found to halve after 40 cycles. A more significant source of damping is the 
airflow over the bridge and this is most readily described in terms of energy 
dissipation, which is estimated to be flx~ N m per cycle where fl = 2.5 x 107 N/m 2 
and Xo = vibration amplitude. The effective mass and stiffness of the bridge (for 
its fundamental mode) are 500 000 kg and 5 x l0 s N/m, respectively. Determine 
the equivalent viscous dashpot rate which must be added in order to reduce the 
resonance vibration amplitude to 10 mm. Assume the excitation force remains 
the same. 

(iii) If, due to miscalculation, the actual dashpot used has a rate of only 70% of that 
specified, what then will be the vibration amplitude? 

68. A partition is made from several layers of metal and a plastic material. Experiments 
with the metal layers alone have shown that the energy dissipated per cycle of 
vibration at the lowest natural frequency is 3 x 10"x~ joule/cycle, where Xo is the 
amplitude in metres at the centre of the partition. The stiffness of the plastic layers 
themselves when measured at the centre is 4 x 105 N/m with a loss factor of 0.3. The 
acoustic energy loss from one face alone of the partition when vibrating at the lowest 
natural frequency of 70 Hz is 1.5~ 2 joules/cycle, where .r is the maximum velocity in 
m/s at the centre. 

Calculate the amplitude of vibration at the centre of the partition when one face 
receives an acoustic energy input of 50 watts at 70 Hz. Explain carefully any 
assumptions that have to be made. 

69. A sketch is given below of the essential parts of the front suspension of a motor car, 
showing the unsprung mass consisting of the tyre, the wheel, and the stub axle, 
connected at point A by a rubber bush to a hydraulic shock absorber and the main coil 
spring. The other end of the shock absorber is connected at point B by another rubber 
bush to a subframe of the car body. A set of wishbone link arms with rubber bushes 
at each end serve to stabilize the unit. 
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(a) Devise a representative model for this suspension system comprising lumped 
masses, springs and dampers. Indicate how the equations of motion can be 
obtained, but do n o t  solve these. Define the symbols introduced carefully. 

(b) A massless model of the main spring, the shock absorber and the bushes at points 
A and B is shown, assuming that the car body represents an infinite impedance. 
The rubber bushes A and B are identical and have a complex stiffness 

k* = k(1 + jr/), 

where the elastic stiffness k = 600 kN[m and the loss factor 7/ = 0.25. 
The main spring stiffness K = 25 kN/m, and the shock absorber behaves as a 

viscous damper with a coefficient c = 3 kN s/m. 
Estimate the percentage contribution by the two bushes to the total energy 

being dissipated per cycle, for an input motion y = yo sin vt with yo = 25 mm 
and v = 30 rad/s, assuming that the maximum possible displacement of 5 mm 
across each bush is being taken up. 

70. A machine produces a vertical harmonic force and is to be isolated from the 
foundations by a suspension system consisting of metal springs in series with blocks 
of a viscoelastic material. 
(i) Show analytically whether it will be better to place the blocks of viscoelastic 

material above or below the springs from the point of view of: 
(a) the force transmitted to the foundation, 
(b) damping out high-frequency resonances in the metal spring for the type of 

installation where the attachment points to the machine are slender metal 
brackets. 

(ii) Compare the system described above with one in which the blocks of viscoelastic 
material are placed in parallel with the springs. 

Define carefully all symbols introduced. 
71. Consider the simple joint shown, in which metal to metal contact occurs. 
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A harmonic exciting force F sin vt is applied to one joint member which has a mass 
m, and is supported by an element of stiffness k. The other member is rigidly fixed, 
so that it is infinitely stiff in the direction of this exciting force. A constant force N is 
applied normal to the joint interfaces by a clamping arrangement not shown. It is to 
be assumed that the coefficient of friction /a existing at the joint interfaces is 
constant. 

Assuming the motion y to be sinusoidal, show that 

F sin v t - / a N  
y ~ 

and hence obtain an expression for the energy dissipated per cycle by slipping. Show 
that the maximum energy is dissipated when gN/F = 0.5, and that y then has an 
amplitude 50% of the amplitude when N = 0. Furthermore, by drawing force-slip 
hysteresis loops and plotting energy dissipation as a function of InV/F, show that at 
least 50% of the maximum energy dissipation can be achieved by maintaining gN/F 
between 0.15 and 0.85. 

Comment on the practical significance of this. 
72. A beam on elastic supports with dry friction damped joints is modelled by the system 

shown. 

By considering equivalent viscous damping for the friction damper, show that 

i/~12 = },2 _(4F~]n~k)2, 

where t$ = y - y,, Y is the amplitude of the body motion and F,, is the tangential 
friction force in the damper. Hence deduce that 
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y 

(~)2 + (4nF k)2 {[i_(_~)212_ [I + n-(~)212} 

[,- 
i/2 

Consider the response when F~ = 0 and F~ = oo, and show that the amplitude of 
the body for all values of F~ is 2F/nK when v[co = ~/(1 + (n/2)), and assess the 
significance of this. 
Hint: Write equations of motion for a system with equivalent viscous damping 
c = 4F~/~:v, and put y~ = Y~e J~', etc. From the equations of motion, 

!/2 
F 1 + (cv/nk) 2 

Y- 22 2 22 " 

Substituting for c and I~1 gives the required expression for E Note that as F,--~, 
I~1 ~ 0 .  

73. Part of a structure is modelled by a cantilever with a friction joint at the free end, as 
shown. The cantilever has a harmonic exciting force F sin vt applied at a distance a 
from the root. The tangential friction force generated in the joint by the clamping 
force N can be represented by a series of linear periodic functions, F.(t). 

Show that y~(t) = a~oF sin vt + O:cbFo(t), where c is an arbitrary position along the 
cantilever and ct is a receptance. 

By assuming that the friction force is harmonic and always opposes the exciting 
force, find the energy dissipated per cycle, and hence show that F~ = 2/aN. Is this 
assumption reasonable for all modes of vibration? 

Thus, this linearization of the damping replaces the actual friction force during 
slipping, lzN, by a sinusoidally varying force of amplitude 2gN. Compare this 
representation with a Fourier series for the friction damping force. 

74. A fabricated steel mast is observed to oscillate violently under certain wind condit- 
ions. In order to increase the damping some relative motion is to be allowed in a 
number of the bolted joints by inserting spring washers under the nuts and by opening 
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the holes to give a definite clearance. Rubber blocks are to be provided to keep the 
joint central. 

In 15 joints metal to metal sliding friction is to be introduced with a coefficient of 
friction of 0.2 for a clamping force of 2 x 104 N. The clearance in each bolt hole is 
2.5 mm on diameter. To keep the joint nominally at its central position two rubber blocks 
are fitted as shown below. The blocks are pressed in position to provide a centring force 
in excess of the static friction force. Each block is square in cross section, 60 mm by 
60 ram, and nominally 18 mm thick. The rubber has a loss factor of 0.12. 

The maximum energy input per cycle of oscillation of the mast by the wind is 
estimated as 1500 joules. 
(i) Calculate the modulus of elasticity for the rubber material so that the full 

clearance in the bolt holes of all the joints is just taken up during an oscillation 
under the maximum wind excitation, neglecting any structural damping in the 
mast itself. 

(ii) Estimate the Q factor for the mast with the damping in the joints, given that the 
stored energy in the structure is 2500 joules for a deflection which takes up the 
total clearance in each joint. 
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75. The receptance at a point in a structure is measured over a frequency range, and it is 
found that a resonance occurs in the excitation range. It is therefore decided to add an 
undamped vibration absorber to the structure. 

Sketch a typical receptance-frequency plot for the structure, and by adding the 
receptance plot of an undamped vibration absorber, predict the new natural fre- 
quencies. Show the effect of changes in the absorber mass and stiffness on the natural 
frequencies, by drawing new receptance-frequency curves for the absorber. 

76. Briefly derive the equations that describe the operation of an undamped dynamic 
vibration absorber. 

A milling machine of mass 2700 kg demonstrates a large resonant vibration in the 
vertical direction at a cutter speed of 300 rev]min when fitted with a cutter having 20 
teeth. To overcome this effect it is proposed to add an undamped vibration ab- 
sorber. 

Calculate the minimum absorber mass and the relevant spring stiffness required if 
the resonance frequency is to lie outside the range corresponding to a cutter speed of 
250 to 350 rev[min. 

77. In a pumping station, a section of pipe resonated at a pump speed of 120 rev]min. To 
eliminate this vibration, it was proposed to clamp a spring-mass system to the pipe to 
act as an absorber. In the first test, an absorber mass of 2 kg tuned to 120 cycle/min 
resulted in the system having a natural frequency of 96 eycle]min. 

If the absorber system is to be designed so that the natural frequencies lie outside 
the range 85-160 cycle]min, what are the limiting values of the absorber mass and 
spring stiffness? 

78. A certain machine of mass 300 kg produces a harmonic disturbing force F cos 1St. 
Because the frequency of this force coincides with the natural frequency of the 
machine on its spring mounting an undamped vibration absorber is to be fitted. 

If no resonance is to be within 10% of the exciting frequency, find the minimum 
mass and corresponding stiffness of a suitable absorber. Derive your analysis from the 
equations of motion, treating the problem as one-dimensional. 

79. A machine tool of mass 3000 kg has a large resonance vibration in the vertical 
direction at 120 Hz. To control this resonance, an undamped vibration absorber of 
mass 600 kg is fitted, tuned to 120 Hz. 

Find the frequency range in which the amplitude of the machine vibration is less 
with the absorber fitted than without. 

80. The figure overleaf shows a body of mass m~ which is supported by a spring of 
stiffness k, and which is excited by a harmonic force P sin vt. An undamped dynamic 
vibration absorber consisting of a mass m2 and a spring of stiffness k2 is attached to 
the body as shown. 
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Derive an expression for the amplitude of the vibrations of the body. 
The body shows a violent resonance at 152 Hz. As a trial remedy a vibration 

absorber is attached which results in a resonance frequency at 140 Hz. How many 
such absorbers are required if no resonance is to occur between 120 and 180 Hz? 

81. (i) Show that the frequency at which an undamped vibration absorber is most 
effective (to,) is given by the expression 

ka 
t o , -  

ma 

(where m, and k, are the mass and stiffness of the added absorber system) and is 
therefore independent of the properties of the system to which the absorber has 
been added. Also, derive an expression for the steady-state amplitude of the 
absorber mass when the system is being driven at its natural frequency to,. 

(ii) In order to suppress vibration, a vibration absorber system is to be attached to a 
machine tool which operates over a range of speeds. The design of the absorber 
is chosen to be a light beam, which is rigidly fixed at one end to the machine tool, 
and a mass, which may be clamped at various positions along the length of the 
beam so as to tune the absorber to a required frequency. 

Given that the beam is made of aluminium which has a Young's Modulus of 
70 GN/m 2 and is of square section, 60 mm x 60 mm, and the absorber mass is 
25 kg, calculate the minimum length of the beam required for the absorber to 
function over the frequency range 40-50 Hz. Ignore the mass of the beam 
itself. 

Also, calculate how far from the fixed end of the beam the mass would have to 
be clamped in order to tune the absorber to the maximum frequency of its range 
of operation. 
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", . . . . .  f i  m = 3000 k g 

-- ~ = 2 MNIm 

, , 

:= ~ = ~ 3000 
= 5.8 Hz. 

2. F B D s  a r e  

k l e  - . i ~ - - k 1 9  ! i / , ,  ~ 
g"t 

mg 

/? 

1 
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Moments about pivot gives 

l 
~m120 = m g  2 0 - 2k?O, 

[Oh. 7 

SO 

and 

3. 3.6 Hz. 

2kr  - mgl]2 ] 
O +  0 , ~ = 0  

~ml 

4. 1 =  

,  (12k/3m ) 
f = ~ 2ml Hz. 

64 
(80' - 70") = 832 x 103 mm',  

and 

Now 

R" R' 
mass/length = 4 (0"082-0"072) 7750 + - -  (0.07) 2 930 

4 

= 12.71 kg/m. 

I i  x2(L - x) 2 dx 

(mg/24El) x4(L - x) 4 dx 
o 

24EI L5/30 24EI 21 
M L91630 m /,4' 

2 4 x 2 0 0 x  1 0 9 x 8 3 2 x 1 0 3 x 2 1  

12.71 x 10 '2 x 4" 

Hence to = 161 rad/s and f = 25.6 Hz. 

-2 $ 
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, 
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Assume 

2L 
for 0 < x, < --~--, 

and 

Y = - z -  1 - c o s ~ x ,  
2L 

Now 

L 
forO < x~ < 3 , 

3~t 
Y -- yoCOS ~ X 2 .  

2L 

where 

2 ~--- 

f El (d2y/dx2) 2 dx 

f y2 dm 

~d~/ 
cur 

and 

(1" 3re 2[f2z'/3 1 3 ~  COS2 
- Y~ 4 ~ 2L / 2L 

= yo \ 2 L ]  

x~ dx~ + COS 

y2 dm = my2o 4 1 - 2 c o s  

fo 3 3~t ] 2 

COS x2 dx2 
2L 

3~ 2 3~ 
X! + COS 

2/., 2L 
I X l  

2 3tt 

2L 

dx, 

x2 dx2] 
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Q 

0 

. 

5mL 
- -  yo. 

12 

Substituting numerical quantities givesf = 1.65 Hz. 

1.45 Hz. 

8.5 Hz. 

Assume 

then 

Now 

where 

L 

__ ~ 1  .~........-, ...... 

I ~" m2,12 

y_ .os(  

2 = 

IEI (d~/~:~) ~ 

,2 d m  

Io ~ ~-j/ 
2L 

= Ell  yL ~-  
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and 

m 
y2 dm = - ~  dx + m2yL + 12 

-- ~ '  Y[I: [1 - -2  COS( -~~) - I -COS2(2L)1  dx + m ~  [ 

L y t  L -  + . I t  

Substi tuting numerical  values gives 

E = 207 x 109 N /m 2, 

L = 0.45 m, 

~t 0 -  8 0 -  8 , I, = ~ x 2.5" x 1 = 1.916 x 1 m ,  
64 

/17 
m~ = 7850 x 

4 
• (0.025) 2 • 0.45 = 1.732 kg, 

and 

m2 -- 7850 x tr x 0.58(0.02) 2 = 5.71 kg 

(0.58)2 
/2 = ~ x 5.71 x = 0.24 kg m 2 

2 

so  that 

~0 2 
1.325 x 103 

9.026 

and to = 121 rad/s, so tha t . f  = 19.3 Hz.  

10. 9.8 Hz.  

12. 5.:5 S; 65 m. 

1 100  
14. A = In = 0.46 

10 1 

= 2 ~ ,  so ( =  0.0732. 

COv = an/(1 - ~2), so fv = f~/ ( l  - ~.2), 
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and 

= 1 ~ ( 1 - 0 . 0 7 3 2 2 )  
= 0.997 s. 

15. In 2 s execute 3 cycles, so 

1 I 
A = ~ In = 0.035. 

0.9 

For small A, A = 2n:(, hence ( = 0.00557. 

Also for small (, co = ~ 

SO 

cc = 2~/(km) = 2 m ~  = 2 x 105 x 3n: = 1885 x 103 N m s]rad; 

c = (Cc = 0 . 0 0 5 5 7 x  1 8 8 5 x  103 = 1 0 5 0 0 N m s / r a d .  

Xr 1 
16. ( =  0 so - = 0.1. 

Xo ] - ( v la ,Y  

Hence 

It 
- - =  3.32. 
tO 

Since 

807r 
v = 807r rad/s, to - 

3 .32 

so that 

17. 

3 .32)2 
8 =  k8Olr x 9 . 8 1  = 1 . 7 m m .  

f~ (l[27r)~(k/m) 
f ,_ ( l / 2 ~)'4 ( k/( m + M )  ) " 

[Ch. 7 

Thus 

f~ m z, 

SO 



Sec. 7.1 ] 

and 

18. 

0.62 

0.6 m 
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m = 59 000  kg. 

X. ,/[l + (2(vflo) 2] 
Xo - ~1{[1 - (v/co)2] 2 + [2~" v/col 2} 

1 

10 

Subst i tut ing ~" = 0.2 gives (_:.)2 
- -17 .84  - -99  = 0, 

so that 

Limit  at 15 Hz, so v = 30rr rad/s and 

c o -  - 19.95 = . 
4.72 

Hence  

and 

kT = 15.92 kN/m 

k.  
k - - 5.3 kN[m. 

3 

19. If  n units are required,  then 

k = 359 x 103n N/m,  

c = 2410n N s/m 

co2 = 359 x 103n/520 = 690.4 n s -2 

cc = 2~/(km), 

SO 

2 
cc = 4 x 359 x 520  x 103n = 747 x 10an. 

v =  2 5 x 2 / r r a d / s ,  so v 2 = 2 . 4 6 x  104/s 2. 
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20. 

Hence 

2 
V 

FT _ 0.4, and - 35.6/n. 
r o  co ~ 

Substitute values in 

( (/~ 1,~-co 

Co CO 

to give 
2 

n + 6 . 4 2 n - 1 1 4 . 6  = 0, 

SO 

n = + 8 o r - 1 4 . 5  

Thus 8 units in paralle! will give specified attenuation; more units would give less 
static deflection but more transmitted force. 

- YO sin vt 

Equation of  motion is rng = k(y - x) + c(~ - ~r If 

z = y - x ,  ~ = ) - ) t ,  and Z = y - $ ,  

then 

m~." + c~. + kz = my = -mV2yo sin yr. 

Assume 

z = Zo sin(vt + ~), 

then 

If 

2 

- m y  zo sin(vt + r + CZoV eos(vt + r + kzo sin (vt + ~) 

= -mV2yo sin yr. 

o  ( )and c c o  m 
u 

Cc 2k 
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then 

(v/o,)~ yo 

Now if co >> v, (qro) 2 .~ 1 and 

Zo = Yo, 

that is, the acceleration v2yo is measured. 
As (v[~) increases, [1 - (viol)2] 2 decreases, but the damping term in the denomin- 

ator increases to compensate. If v]r = 0.2 and no error is required, 

so that 

V 
= 1, when - -  = 0.2, 

CO 

[1 + 

[ 1 -  0.04] 2 + 4(2[0.04] = 1, 

and hence ~r = 0.7. 

21. 

22. 

24. 

x = 0.056. m; r = 3.7 ~ 

+ [  , , 
fit) = - - - q -  c o s t  + - - c o s 3 t  + 

9 25 
cos 5t + ...]. 

2 

h 2  m 2 r  2 
!o  --  m l + + m 2 s  . 

4 

Equation of motion is 

I00 + cp2 0 + kq2 0 = O. 

When c = 0, 

rad/s. O) 
+~ t o  / 

With damping coy = ar~/(1 - (2), where 

c 
2 

cp 

cc 2"4(kq2/o)" 
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Thus 
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~ [ 1 -  (~k~~2~~)] rad/s. 

25. FBDs are 

o o  

0 

m9 

Equation of motion is Fd + mghO- 2kc20 = Io~, or 

.. ( 2kc 2 - mgh ) Fd 
O+ O -  

to Io 

C.E + P.I. give solution as 

0 = A s i n c o t  + Bcoscot + 
Fd 

where 

r = ~/[(2kc'- mgh)]lo]. 

Substitute initial conditions for 

Fd 
e - r ~ (1 - c o s  cot). 

26. Equation of motion is 

rr~ + kx = mrr~  sin vt, 
so the amplitude of the motion is mrrv2](k- my2). Thus 

mrrV 
k = transmitted force. 

k - m y  ~ 
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Substituting values gives 

0.2 x 0.01 • 1502 
k } = 100. 

k -  (2 x 1502) 

27. 

Hencek =81.8kl~/m... ~j(mk_) ~(3 ::L: ~/5 )�9 
m 2 a ;  3 m k t o  2 + k 2 = O; , 2 " 

28. System is 

where 

FBDs" 

m = 2 0 0 0 k g ; 1  = 3 m ; a  = 1 m ; b  = 2 m ; I o  = 5 0 0 k g m  2" 9 

k2 = 50 x 103 N/m; k~ = 80 x 103 N]m. 

b G a 

I 
k l l v ,  - bO) l 

| 

k 2 (V' + aO) 

Equations o f  motion are 

my = - k , ( y -  bO) - k~(y + aO), 

and 

IGO = k~(y - bO)b  - k2(y  + aO)a.  

Substitute 

y = Ys in to t  and 0 =  O s i n t o t  

, G ,, ) . . . .  

and rearrange: 
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(kt + k 2 -  mt t~)Y  + ( k 2 a -  k , b ) O  = O, 

and 

( k 2 a -  k tb )Y  + (k ,b 2 + kza 2 -  Ioofi)O = O. 

Hence the frequency equation is 

(k~ + k2 - m t ~ ) ( k , b  2 + k2a 2 - IGtt~) -- (k2a - k ,b)  2 = O. 

Substituting numerical values and dividing by 10 3 gives 

(130 - 2to2)(370 - 0.5to 2) - (-110) 2 = 0, 

o r  

Hence 

4 
to - 8 0 5 ~  + 36000  = 0. 

805 +_ 710 
to2 = = 758 or 47.5, 

2 

so that 

f2 = 4.38 Hz and f, = 1.10 Hz. 

The mode shape is obtained from 

Y ktb  - k2a 

0 - k, + k 2 - m o ~ '  

so that at f,, ~ = 47.5 and 

Y 160 x 103-  50 x 103 

O - 1 3 0 x  1 0 3 - 2 x  103x47 .5  
= 3.  l___54, 

and at f2, ~ = 758 and 

Y 

O 

110 

1386 
- --0.079. 

Speeds are Vt. = 7 8  km/h and Vv = 19.8 km[h, 

29. Equations of motion are, for free vibration, 

(k, - m,to 2) X, + (-kt) X2 = 0, 

and 

(-k,) X, + (k, + k2 -m2 to  2) X2 = 0. 

Hence frequency equation is 

(k, - m , ~ ) ( k ,  + k 2 -  m2to 2) - (-k,) 2 = 0, 
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o r  

N o w  

Thus  

o r  

that is, 

to 4 (m~m2)-  to 2 (m~k~ + m,k2 + m2k~) + k,k2 = O. 

I ! 
m, = im2 and k~ = ~k2, 

2 4 
2m, ( .o -  5m,kta~ + 2k2t = 0, 

(2m,(o 2 - kt)(m,(~o 2 - 2k~) = 0; 

2 kl 2kl 
co - or 

2mr m, 

so that 

Hz 
f ' -  2~ 

N o w  

1 2 k ,  t Hz. 

X, k, 

X~ k, - m , d '  

that is, at f requency f~, 

X l  

x~ 
- + 0 . 5  

and at f requency f2, 

X i  

x~ 
- - 1 . 0 .  

With harmonic  force F~sin vt applied, 

(k, - m,co 2) X, + (-k~) X2 = F, ,  

and 

( -k , )  X, + (k, + k2 - m2(.o 2) X2 = 0. 

Hence  

(k, + /,:2- m2r 2) 
X~ = Fi 

A 
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and 

where 

30. FBD: 

kl X2 = -~ F, 

A = m , m 2 o ~ -  o~(m,k ,  + m,k2 + m2k,) + k,k2. 

- +~8 
- O 

k ( z -  3a8) G 

2k(z  - aO) 

k(z + aO) 

Equations of motion are 

- k ( z  - 3aO) - 2k(z - aO) - k(z + aO) = m~., 

and 

k ( z -  3aO)3a + 2 k ( z -  a O ) a -  k(z + aO)a = IoO. 

Substitute 

I =  2ma 2, z = A sin cot, and 0 =  Bsinrot,  

to give 

(moo 2 - 4k)A + 4kaB = O, 

and 

4kaA + ( 2 m a 2 o ~ -  12ka2)B = O, 

so that the frequency equation is 

( m o . ~ -  4k)(2ma2o~ 2 - 12ka 2) - 16k2a 2 = O. 

Multiply out and factorize to give 

f ~ -  2z Hz and f 2 -  2z  Hz. 

[Ch. 7 
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31. FBDs are as below: 

that is, 

. .  _ y cos 45 - x sin 45) 

k (x cos.30 + y sin 30) [ e l 

1 
ky  

k x~/3 k y k y k x 
" "  " i "  " - "  

4 4 2 2 

[ 1 
kx3 ky~f3 ky kx 

" - - "  " 1 "  " - -  

4 4 2 2 
_ 

f 
ky  m v  

Equations of motion are 

ky kx 3 ~/3 
(EFx) r n ~ -  - ~ - k x - - - k y  ~ 

2 2 4 4 

and 

ky kx ~/3 ky 
+ ~ - k x ~ - ~  (~'.F,.) m~ ~ = - k y -  2 2 4 4 

Assuming a solution of the form x = X sin cot, y = Y sin cot, these are 

- m a r X  + 
5k ( 32) 

~ X +  k Y = 0 ,  
4 4 

and 

( ~/3 - 2 )  7 
�9 k X - m ~ 2 Y  + - - k Y  = O. 

4 4 

Hence 
2 

- - -  - 4 = 0  



and 

Hence 

k 2 

m2r .~-  3mkto 2 + (28 + 443) = 0. 
16 

where 

4 2 
(0 O) 
f l , -  3-~-~- + 2.183 = 0, 

and 
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2 
tO 

~2 

33. FBDs are 

- 1.326 or 1.114. 

Thus frequencies of  vibration are 

- - -  Hz and nz .  
27r 

kaOA ~ 

[Ch. 7 

o + aOA) 

The equations of motion are 

- ka  20A -- kabOB - ka 20A = I^0^  

and 

- k a b O ^ -  kb20a - kb20B = leO.. 

kbOe 

k(bOe + 

Substitute 0^ = A sin tot and 0. = B sin tot to give 

( - I ^ ~  + 2ka2)A + kab B = O, 

and 

kab A + (-/,,to 2 + 2kb2)B = O. 
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34. 

So the frequency equation is 

l ^ IBd-2k( IBa2+ l^b2)a~ + 3k2a2b2 = 0. 

Substitute numerical values to give 

co = 19.9rad/s  or 35.7rad/s .  

At 19.9 rad/s, A/B = -1 .65 
and at 35.7 rad/s A/B = + 3.68. 

i 2 "  I 2 ! 2 "  
T = ~m,L ~ + ~m2L ~ + ~m3L ~, 

V = m~gL(l-  cos 0~) + mzgL(1- cos 02) + m3gL(l-  cos 03) 
i I 

+ ~kt(a sin 0 2 -  a sin 0~) 2 + ~k2(a sin 0 3 -  a sin 02) 2. 

For small oscillations, 

# 
1 - cos 0 = - -  

2 
and s i n 0 = 0 .  

Apply Lagrange equation with q, = 0~, 02, 03 in turn to obtain the equations of  
motion. 

35. FBDs: 

y-a~ { 
Y + a4~ 

I �9 

k ( I t -  a4, - x~) 

t 
Kx  1 

Equations of motion are: 

t 
k (y  + a(/) - x2) 

t 
Kx 2 

my = -k(y - a ~ -  x,) - k(y + a O - x2), 
, o  

loO = k(y - a r  x,)a - k(y + a r  x2)a, 

me,  = k(y  - a r  x , )  - Kx ,  

rnJc" 1 m~2 
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and 
mx" 2 = k(y 4. a r  x 2 ) -  g x  2. 

Assume for wheel hop that body does not move; then 

m 
y= 0 = 0  and f =- : - -  

37. f ~ -  
21r 

' V( 90x 103) 
- = 1 0 . 1  Hz. 

2~t 22.5 

~/3km ) Hz; 

[Ch. 7 

A -  + 
m 

40. Consider half of aircraft: 
2000 [ ~_ ?k 

1 
z 

1 

~/3km ) Hz. 

500 
/ - - - \  

1 
z 2 

Equations of motion are 

3k(z2- z,) = 2000 L 
3k(z~- z2) + k(z3- z2) = 500 ~'2, 

200 

0 
1 
z 3 

and 

k(z2- z3) = 200 ~'3. 
Substitute 

z~ =A~sintot, z2 =A2sintot and z3 =A3sintot, 
and eliminate A~, A2, A3 to give frequency equation as 

2 x 1 0 4 ~ - 2 9 0 ~ k  + 0.81k 2 = 0. 
Hence 
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and 

2 
CO = 379 or 1074, 
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f t  = 3 . 1 0 H z  and f2 = 5 . 2 2 H z .  

41. Model  system as follows: 

2000 500 

1 1 
z 

1 

Equations of  motion are 

t,O, = - k , ( O ,  - o~), 

&02 = k,(o, - o ~ ) -  k~(o~- o3) 

.~ 
&o3 = k~(o~-  o3). 

200 

,~Q 

that is, 

The frequency equation is therefore 

(k, - t , ~ ) [ ( k ,  + k~ - & ~ ) ( k2  - & ~ ) -  k~] + k,[(k~ - & ~ ) ( - k , )  = 0 ;  

so that 

that is, 

g [ l l / 2 ~ g -  d (k l /2 /3  + k I l l ~  + k211l 3 + k211/2) 
+ k l k2 ( I I  + 12 + /3)] = O, 

so that either CO = 0 (rigid body rotation) or [...] = O. 
Substituting numerical  values gives 

0.48 co4_ l lO0 x lO 3 co2 + 149 x lO 9 = O, 

COl = 380 r a d / s  and oh = 1460 rad/s; 

f i  = 60.5 Hz 

At ft  = 60.5 Hz, 

and ~ = 232 Hz. 

Substituting O~ = O, sin cot gives 

o,[k,  - I ~ ]  + o d - k , ]  = o, 
o , [ - k , ]  + o~[k, + k~ -  & ~ ]  + o~[-k~] = 0 

and 

o~[-k~] + 03[k~ - & ~ ]  = O. 

and 

Z 2 Z 3 
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42. 

01 kl 
= +  1.4 

and 

03 k2 
= - 0.697. 

01 = 1.40 2 

Node 

�9 ~ , . , , . , . . ~  03 = --0.6970 2 
-'----d 

and at f2 = 232 Hz, 

01  

o2 
- - 0.304 

and 

03 
- - 0.028. 

01 --0.3040 2 / 
Node 

0 2 
~ ~ ~ ~ ~ ~ .  03 = -0 .0280 2 

.... 

Node 

T =  ~m~xt + ~m~2 + ~m 2 + ~m 11 x, 2 + � 8 9  

and 

I 2 1 i V =  ~kx~ + ~ . 4 k  + ~ k ( x ~ - x 2 )  2. 

Apply the Lagrange equation. 
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+ 

dt ~x, 
= 0 ,  

m 
d t  = m,$, + - ~ . f ,  + - ~ . t ' , ,  

and 

G3V 

~x, 
- kx, + kx~ + �89 x2) = 3 k x , -  kx~. 

Hence equation of motion is 

~ m~ + - -  + + 3kx~--kx2 = 0. 
2 

Similarly, other equation of motion is 

.f2 ms + ~ + + k ( x 2 - x , )  = O. 
4 

If m~ = 4m, ms = 2m and J = md2/8, equations become 

( " 4) .t'~ 4m + ~ + + 3kx~-kx2 = 0 
2 

and 

( m 
22 2m + ~ + + kx2-kx~ = 0. 

4 

Assume x~ = Xi sin cot, so that 

[ 19 ] 
X~ 3 k -  m ~  2 + X2[-k] = 0 

4 

and 

[ 1 9 ]  
X,[ -k]  + X2 k - - : ~  moo 2 = O. 

8 

The frequency equation is therefore 
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( ,9 )(19 ) 
3 k - ~ m a ~  2 k -  mr z - ( - k )  2 = O, 

4 8 

which is 

361 - 380 + 6 4 = 0 ,  

where 

o :  

Hence 

380 _+ ~/(3802- 4 x 361 x 64) 

361 x 2  

and 

o :  o9,8 o r  rad/s. 

For the mode shape, 

X! 
g~ 19 2 

3k - moo 

When 

o 0459r x 
x~ 

3 k -  
19 

4 
• 0.21k 

= + 0 . 5 ,  

and when 

t o =  0 . 9 1 8 ~ ( k )  tad/s, X, 
x~ 

3 k -  
19 

4 
• 0.843k 

= - 1 . 0 .  

43. Assume x~ > x2 > x3 > x4. FBDs are then as follows: 
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~ k 3 (x 1 -- x 3 } 
k lX l  k 2(x 1 -- x2) 

k2(x 1 - x 2) - ' ~ ~  k4(x 2 - x 3) " ~  m2x'2 

k 3 t x ,  - 

k4lx 2 - x 31 k5lx 3 - x 41 ~ _ ~  m3x3 

X s ( X 3 - - x 4 )  " '~  i] m4~4 

The equations of  motion are therefore 

klxl + k2(xl- X2) + k3(xl- x3) ~ --ml.~l, 

- k ~ ( x , -  x~) + k , ( x ; -  z~) = - m ~ ,  

-k~ (z ,  - x3) - k,(x~ - x3) + k,(x~ - x , )  = - m ~ 3 ,  

and 

-ks(x3 - x4) = -m~4.  

Substitute x~ = Xa sin cot: 

k,X, + k 2 ( X , -  )(2) + k 3 ( X , -  X3) = m,r.o2X,, 

- k ~ ( x ,  - x~)  + k , ( x ;  - x~)  = m~X~, 
2 

--k3(X~ - X3) - k4(X2 - X3) + k,(X3 - )(4) = m3coX3, 

and 

Thus 

and 

- k , ( x ,  - x , )  = m,r~x,. 

Xl[/! "~" k 2 ~" k 3 - - m , c o  2] + X2[-k2] + X3[-k3] + )(4[0] = O, 

Xl[-k2] "~" X2[k  2 "~" k 4 - - m 2 ( o  2] + X3[-k4] + X4[O] = O. 

X,[-k3] + X2[-k4] + X3[k3 + k4 + k s -  m3 m2] + X4[-ks] = O, 

x , [o ]  + x~[o] + X~[-k,] + X , , [ k , -  m,,to ~] = O. 

Frequency equation is, therefore: 
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k, + k2 + k 3 -  re,O) 2 -k2 -k3 
-k2 k2 + k , -  m2to 2 -k,  
-k,  -k ,  k3 + /<:4 + k 5 -  m3to 2 
0 0 -ks 

45. Assume x, > x2 > X3. FBDs are then as follows. 

Kx 1 

t_ 
l- 

! 
klx 1 - x2l 

LCJ 
M;/1 

0 
0 

-ks 
k, - m , ~  

[Ch. 7 

= 0  

Kx2~.~k(Xl -- x 2) 

t 
2k (x 2 - x 3) 

U 
~ 2  

1_1 
M.~ 3 

The equations of motion are therefore 

- K x t  - k (x t  - x2) = MS1, 

k (x ,  - x2) - Kx2 - 2k(x2 - x3) = M$2, 

and 

2k(x2- x3) -  Kx3 = Mx3. 

Substituting x~ = X~ sin tot and rearranging gives" 

X,[K + k -  M ~ ]  + X~[-~] + X3[O] = O, 

X , [ - k ]  + x 2 [ r  + 3 k - M o o  2] + X3[-2k] = 0 

and 
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X,[0] + X2[-2kl + X3[K + 2 k -  Mto 21 = 0. 

The frequency equation is therefore 

K +  k -  Mc~ -k  
-k  K + 3 k -  Ma~ 
0 -2k 

0 

-2k  
K + 2 k - M a ~  

= 0; 

that is, 

(K + k -  Mw2)[(K + 3 k -  Mr~)(K + 2 k -  Mw 2) -4k 2] 
+ k[--k(K + 2 k - M w  2) = 0 

or 

M3to " -to- '(3M "-K + 6M 2k) + w2(3M/~ + 12MKk + 6Mk") 
- ( K  3 + 6/~k + 6Kk 2) = 0. 

The solutions to this equation give the natural frequencies. 

46. Assume x, > x2 > x3. FBDs are 

k ( x  1 - x 3} 

~(x+ - x 2 } - - ~ U  I " ---~ mx 2 

Equations of motion are therefore 

-2k(x, - x2) - k(x, - x3) = 3mY,, 

2 k ( x , -  x2) = ntt'2 

and 

k ( x ,  - x~)  - kx3 = m ~ ;  

Putting xi = X, sin tot and rearranging gives 

-3kX, + 2kX2 + k X  3 = -3marX, ,  

2kX!-  3kX2 = -m(,02X2, 
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and 

k X l  - 2 k X 3  = - m o ~ 2 X 3 ,  

that is 

r k 2k k 

m 3m 3m 

2k 2k 

m m 

k 2k 

- m m - 

r X, 

x~ 

x~ 

47. 

I 
t3Cl~ 0[R2 0[13 

{]{21 {]{22 0[23 

O{31 0{32 0[33 

Xl 
x~ 

Xl 

m~ x~ 

=~  

Xl 

x~ 

x~ 

[ch. 7 

Hence 

'0.5 0.25 0.25 

0.25 0.5 0.25 

0.25 0.25 0.5 

X! 

x~ _ 

x~ m~ 

g l  

x~ 

x~ 

o r  

2 1 1 Xl 

1 2 I x ,  
1 2 X3 

Xl 

4k X2 m 
mr~ X3 

For lowest natural frequency assume mode shape 1, 1, 1" 

2 1 1 

1 2 

1 4 

1 = 4 

1 4 
= 4  

Hence correct assumption and 
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k 
- -  1 ,  

m~ 

SO 

y =  Hz. 

48. 775 kN/m; 3.52 Hz, 6.13 Hz. Unacceptable, k = 1570 kN]m. 

49. 5.5%; 0.68%. 

60. At one end, 10 dB and 16 dB; between 13 dB and 19 dB. 

62. Q = 14, 19. 

63. 77 = 0.12. 

and f2,f~2 = ~ .  
If f2, = 250, f22 = 3002]250 = 360, and if f22 = 350, f~, = 3002]350 = 257. 

Therefore require f2~ = 250 and f22 = 360 to satisfy the frequency range criterion. 
(fl,  and f22 are rev/min). Hence 

( 25o/, (36012 
300 1 + ~,3-~-/ = 2 + /~ 

and g = 0.134. 
Hence 

and 

absorber mass = 3_62 kg. 

stiffness = 142.9 x l0 s N/m. 

77. Substitute numerical values into frequency equation to give m = 9.8 kg. 
If f~  = 85, ~ = 0.5 so absorber mass = 4.9 kg, and k = 773 N/m. 

78. = 2 +- 4 " 

If ~ ,  = 0.9 co, this gives/1 = 0.0446, and if D~ = 1.1 ca # = 0.0365. 
Limit therefore/u = 0.0446 and absorber mass is 134 kg with stiffness 

30.1 kNlm. 
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79. 

Response 

/ 
/ 

/ 

^ 

I! 
II 

/ \ 
\ 
\ 

A 
W ilhout absorber 

I\ 
I \  
I \ 

/ \ 
/ 

/ 
/ 

/ 

<__ 
/ 

~ . . . . . . .  

I i vl w 1 v2 

Required 
frequenc~ range 

\ 
\ With absorber 
\ 

\ 
X 

,, --'- F requency 

Require 

F ( K -  m v  2) 

[(K + k) - M v 2 ] [ k -  m v  ~] - k 2 

F 
K -  M y  2 (phase r e q u i r e s - v e  sign). 

Mul t ip ly ing  out and putt ing 

tn 
ju - - 0.2 

M 

gives 

2 - (4 + iu) + 2 = 0, 

SO 

(~), : 4+.4 ! 2 
_ ~ ( / a  + 81u) = 1.05 _ 0.32. 

Thus  

(:) : , , ,  or 0.855, 

SO 
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= 102Hz  and f2 = 140Hz.  
Frequency range is therefore 102-140 Hz. 

80. + = 2 + /u ,  

2 
and ~,f~2 = to, 

Now ro = 152 Hz, f~, = 140 Hz so f~2 = 1522/140 = 165 Hz; hence 

and 

14o I. I. 
I - ~ I  + ~ I - ~ I  = 2 + u, 

g = 0.0266. 

Require co = 152 Hz, ~ ,  = 120 Hz 
range criterion). Hence 

l-i~-I + ~, I-~--/ = 2 + 

so f ~  = 192 Hz (which meets frequency 

so 

/.t I = 0.219. 

Therefore require 0.219/0.0266 = 8.2, that is, 9 absorbers. 

81. Cantilever absorber: 

Beam stiffness at free end - 
3E/ 

- k .  

Thus 

k _ .  

3 x 70 x 10 9 X (0.06)" 

L 3 X  12 

Design based on 40 Hz frequency so 
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Hence 

k = (2~r x 40) 2 x 25. 

L = 0.524 m. 

When f = 50 Hz, calculation gives L = 0.452 m. 
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Index 

absorber, dynamic vibration, 183, 233 
accelerometer, 82 
acoustic radiation damping, 176 
aeolian vibration, 178 
aerodynamic damping, 178 
air pumping, 177 
amplitude frequency response, 50 
autocorrelation function, 75 
axial loading, 138 

beam equation, 134 
beam vibration, 

composite, 153 
hinged structure, 142, 217 
longitudinal, 129 
rotary inertia effect, 138 
shear effect, 138 
transverse, 19, 133, 175, 206 
with axial load, 138 
with discrete bodies, 25, 139, 145, 206, 217 

bridge vibration, 39, 209 
building vibration, 29, 207 

cantilever, 26, 27, 85 
characteristic equation, 86 
chimney vibration, 6, 178, 206 
column matrix, 100 
complex modulus, 43 
complex roots, 97 
complex stiffness, 43 

composite materials, 179 
conservative system, 109 
constrained layer damping, 181 
continuous structures, 129 
coordinate coupling, 89 
coordinate (generalized), 2 l, 109 
Coulomb damping, 39, 98 

combined with viscous, 42 
equivalent viscous, 45 
forced, 61 

coupled motion, 89 
critical speed, 137 
critical viscous damping, 33 
cross receptance, 113 
current excited oscillations, 66, 157 

damping, 157 
acoustic radiation, 176 
active, 198 
aerodynamic, 178 
air pumping, 177 
coefficient, 32 
combined viscous and Coulomb, 42 
constrained layer, 181 
Coulomb (dry friction), 39 
critical viscous, 33 
dry friction, 39 
energy dissipated, 45 
equivalent viscous, 

coulomb, 45 
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damping cont.  

hysteretic, 46 
factor, 97 
free vibration, 31 
hysteretic, 43, 46, 62, 172 
inherent, 1, 171 
joints, 63, 173, 200, 235 
ratio, 33 
root locus study of, 97 
viscous, 33, 42 

dead zone, 40 
decay, 34 
degrees of freedom, 10, 83 
delta function, 65 
Diekmann K values, 163 
direct receptance, I 13 
D-operator, 39, 63 
drag coefficient, 67 
dry friction damping, 39 
Duhamel integral, 66 
Dunkerley's method, 105 
dynamic, 

magnification factor, 49 
response, 4 
transfer function, 4 
vibration absorber, 183, 233, 239 

earthquake model, 92, 112, 163 
Eigenvalue, 100 
Eigenvector, 100 
energy dissipated by damping, 45, 99 
energy dissipation function, 109 
energy methods, 17 
ensemble, 72 
equations of motion, 12 
ergodic process, 75 
Euler buckling load, 148 
excitation, 

periodic, 237 
shock, 65 
vibration, 2, 237 

feedback, 3, 4 
finite element analysis, 152 
flexibility matrix, 101 
force, 

suddenly applied, 63 
transmissibility, 53, 229 
transmitted, 53, 229 

forced vibration, 47, 94 
foundation vibration, 53 
Fourier series, 70 
frame vibration, 143, 227 
free motion, 87 

free vibration, 
damped, 31 

with viscous damping, 31 
undamped, 11 

frequency, 
bandwidth, 166, 228, 230 
equation, 8, 86, 120 
natural, 12 
ratio, 49 
response, 

amplitude, 50 
phase, 50 
transmissibility, 55 

fretting corrosion, 2, 174 

Gaussian, 
probability density function, 77 
process, 76 

generalized coordinate, 21,109 

half power points, 166, 228, 230 
harmonic analysis, 69 
high damping alloys, 179 
human vibration tolerance, 162 
hydraulic mean diameter, 67 
hysteretic damping, 43, 98, 172 

equivalent viscous, 46 
forced, 62 
loss factor, 43 

impact damper, 197 
impedance, 120 
impulse, 65 
inertia, rotary in beam vibration, 138 
influence coefficient, 101,222 
isolation, 54, 111, 158, 180, 209, 222, 229, 

234 
active, 159 
comparison, 

hysteretic, 59 
viscous, 59 

passive, 159 
iteration, 103 

joint damping, 63, 173, 200, 235 

Kennedy-Pancu diagram, 171 

Lagrange equation, 109 
Lanchester damper, 187, 196 
logarithmic decrement, 35, 165 
longitudinal vibration, 129 



lOSS, 
factor, 43 
modulus, 43 

machine tool vibration, 6 
magnification factor, 49 
materials, 179 
mathematical model, 5 
matrix, 

column, 100 
flexibility, 101 
method for analysis, 99 
sweeping, 100 
system, 100 

mobility, 120 
modal analysis, 127 
mode of vibration, 5, 83, 150 
mode shape, 86, 132, 136 
model parameter, 7 
modelling, 5 
modulus, 

complex, 43 
loss, 43 
storage, 43 

motion, 
coupled, 89 
transient, 49 
transmissibility, 53 

multi degree of freedom system, 83 

narrow-band process, 80 
natural frequency, 83 
node, 137, 260 
noise, 1, 116, 157, 234 
non-linear structures, 

energy dissipation, 199 
source, 200 

notation, ix 
Nyquist, 171 

diagram, 171,230 

orthogonality of principal modes, 102 

perception threshold, 162 
periodic excitation, 237 
phase frequency response, 50 
plate vibration, 148, 176, 227 
portal frame analysis, 143, 227 
primary system, 184 
principal modes, 83, 129 
probabilistic quantity, 72 
probability, 

density function, 73 
distribution, 73 

Q-factor, 63, 166, 209 

Index 275 

radio telescope vibration, 8 
random, 72 

variable, 72 
vibration, 72 

Rayleigh's method, 144 
receptance, 

beam vibration, 140 
cross, 113 
direct, 113 
vector locus, 170 

reciprocating unbalance, 51 
reciprocity principle, 114 
resonance, 4, 50, 157 
Reynold's number, 66 
root locus, 97 
rotary inertia and shear, 138 
rotating unbalance, 51 

s-plane, 97 
shaft, stepped, 16 
shear, 

frame, 84, 107, 213 
in beam vibration, 138 

shock excitation, 65 
simple harmonic motion, 12 
single degree of freedom system, 10 
soil stiffness, 30 
spectral density, 78 
springs, 

elastic soil, 30 
heavy, 18 
in parallel, 14 
in series, 13 
non-linear, 16 

square wave, 70 
~stability, 

of vibrating systems, 21 
standard deviation, 75 
stationary process, 74 
stiffness, 

complex, 43 
equivalent torsional, 16 
soil, 30 
torsional, 15 

storage modulus, 43 
strain gauge, 82 
Strouhai number, 67 
structural damping measurement, 164 
structure, 1 

conservative, 109 
definition, 1 

strut vibration, 145 
subsystem analysis, 117, 143, 192 
sweeping matrix, 104 
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system, 
matriX, 1 O0 

torsional vibration, 14 
trailer motion, 56, 95, 210 
transfer function, 

dynamic, 4 
transient motion, 49, 158 
translation vibration, 11 

with rotation, 84 
transmissibility, 53, 229 

force, 54 
frequency response, 55 

transverse beam vibration, 19, 133 
axial load, 138 
cantilever vibration, 26, 27 
with discrete bodies, 25, 139, 145, 206, 217 

two degree of freedom system, 83 
dynamic absorber, 184, 239 
forced, 94 
free undamped, 84 
viscous damped, 96 

unit impulse, 66 

variance, 75 
vibration, 

absorber, 183, 233 
aeolian, 178 
beam, 138, 145, 153, 175, 206 

hinged, 142, 217 
bridge, 36, 209 
buildings, 29, 207 
causes, 2 
chimney, 6, 178, 206 
combined viscous and Coulomb damping, 

42 
continuous structure, 129 

with distributed mass, 225 
Coulomb (dry friction) damping, 39 
damage, 160 
decay, 34, 40 
distributed mass systems, 129 
dynamic absorber 

damped, 194, 233 
undamped, 184, 239 

effects, 2 
excitation, 2 
floor, 53 
foundation, 53 

forced, 47, 94 
forced, damped, 97 
frame, 143 
free damped, 31 
free, undamped, torsional, 14 
free, undamped, translation, 11, 84 
human response, 162 
hysteretic damping, 43 
intensity, 160 
isolation, 54, 111,158, 180, 209, 222, 229, 

234 
longitudinal beam, 129 
machine tool, 6 
measurement, 80, 210 
mode of, 5 
multi-degree of freedom system, 83 
plate, 148, 176, 227 
principal mode, 5, 83, 129 
radio telescope, 8 
random, 72 
reduction, 157 
rotation with translation, 84 
single degree of freedom, 10 
strut, 145 
systems stability, 21 
systems with heavy springs, 18 
torsional vibration of shaft, 14 
transverse beam, 19, 133, 138, 175 

cantilever, 26, 27 
with discrete bodies, 139, 217 

two degrees of freedom systems, 83, 84, 94, 
96 

viscous damping, 31, 97 
vibrometer, 82 
viscoelastic materials, 180 
viscous damped structure with vibrating 

foundation, 53 
viscous damping, 33, 42 

combined with Coulomb, 42 
critical, 33 
equivalent coefficient, 45 
ratio, 33 

vortex shedding, 67 
wave, 

equation, 130 
whirling of shafts, 137 
white noise, 80 
wide band process, 80 
wind excited oscillation, 66, 157, 178, 237 




