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To Karen

Los rios no llevan agua,
el sallas fuentes sec6 ...

jYo se donde hay una fuente
que no ha de secar el sol!
La fuente que no se agota
es mi propio coraz6n ...

-li: RuizAguilera (1862)
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Preface

The eighth edition is a major revision that streamlines the presentation of the text ma
terial with emphasis on the applications and computations in operations research:

• Chapter 2 is dedicated to linear programming modeling, with applications in the
areas of urban renewal, currency arbitrage, investment, production planning,
blending, scheduling, and trim loss. New end-of-section problems deal with topics
ranging from water quality management and traffic control to warfare.

• Chapter 3 presents the general LP sensitivity analysis, including dual prices and
reduced costs, in a simple and straightforward manner as a direct extension of the
simplex tableau computations.

• Chapter 4 is now dedicated to LP post-optimal analysis based on duality.
• An Excel-based combined nearest neighbor-reversal heuristic is presented for

the traveling salesperson problem.
• Markov chains treatment has been expanded into new Chapter 17.
• The totally new Chapter 24* presents 15 fully developed real-life applications.

The analysis, which often cuts across more than one OR technique (e.g., heuristics
and LP, or ILP and queuing), deals with the modeling, data collection, and com
putational aspects of solving the problem. These applications are cross-referenced
in pertinent chapters to provide an appreciation of the use of OR techniques in
practice.

• The new Appendix E* includes approximately 50 mini cases of real-life situations
categorized by chapters.

• More than 1000 end-of-section problem are included in the book.
• Each chapter starts with a study guide that facilitates the understanding of the

material and the effective use of the accompanying software.
• The integration of software in the text allows testing concepts that otherwise

could not be presented effectively:
1. Excel spreadsheet implementations are used throughout the book, includ

ing dynamic programming, traveling salesperson, inventory, AHP, Bayes'
probabilities, "electronic" statistical tables, queuing, simulation, Markov
chains, and nonlinear programming. The interactive user input in some
spreadsheets promotes a better understanding of the underlying techniques.

2. The use of Excel Solver has been expanded throughout the book, particu
larly in the areas of linear, network, integer, and nonlinear programming.

3. The powerful commercial modeling language, AMPL®, has been integrated
in the book using numerous examples ranging from linear and network to

'Contained on the CD-ROM.

xvii



xviii Preface

integer and nonlinear programming. The syntax of AMPL is given in Appendix
A and its material cross-referenced within the examples in the book.

4. TORA continue to play the key role of tutorial software.
• All computer-related material has been deliberately compartmentalized either in

separate sections or as subsection titled AMPL/Excel/Solver/TORA moment to
minimize disruptions in the main presentation in the book.

To keep the page count at a manageable level, some sections, complete chapters,
and two appendixes have been moved to the accompanying CD. The selection of the.
excised material is based on the author's judgment regarding frequency of use in intro
ductory OR classes.
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CHAPTER 1

What Is Operations Research?

Chapter Guide. The first formal activities of Operations Research (OR) were initiated
in England during World War II, when a team of British scientists set out to make sci
entifically based decisions regarding the best utilization of war materiel. After the war,
the ideas advanced in military operations were adapted to improve efficiency and pro
ductivity in the civilian sector.

This chapter will familiarize you with the basic terminology of operations re
search, including mathematical modeling, feasible solutions, optimization, and iterative
computations. You will learn that defining the problem correctly is the most important
(and most difficult) phase of practicing OR. The chapter also emphasizes that, while
mathematical modeling is a cornerstone of OR, intangible (unquantifiable) factors
(such as human behavior) must be accounted for in the final decision. As you proceed
through the book, you will be presented with a variety of applications through solved
examples and chapter problems. In particular, Chapter 24 (on the CD) is entirely de
voted to the presentation of fully developed case analyses. Chapter materials are cross
referenced with the cases to provide an appreciation of the use of OR in practice.

1.1 OPERATIONS RESEARCH MODELS

Imagine that you have a 5-week business commitment between Fayetteville (FYV)
and Denver (DEN). You fly out of Fayetteville on Mondays and return on Wednes
days. A regular round-trip ticket costs $400, but a 20% discount is granted if the dates
of the ticket span a weekend. A one-way ticket in either direction costs 75% of the reg
ular price. How should you buy the tickets for the 5-week period?

We can look at the situation as a decision-making problem whose solution re
quires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?

3. What is an appropriate objective criterion for evaluating the alternati-ves?

1



2 Chapter 1 What Is Operations Research?

Three alternatives are considered:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on Wednes
day of the same week.

2. Buy one FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN
FYV.

3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of
the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in
this alternative span at least one weekend.

The restriction on these options is that you should be able to leave FYV on Monday
and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternative is the
price of the tickets. The alternative that yields the smallest cost is the best. Specifically,
we have

Alternative 1 cost = 5 X 400 = $2000

Alternative 2 cost = .75 X 400 + 4 X (.8 X 400) + .75 X 400 = $1880

Alternative 3 cost = 5 X (.8 X 400) = $1600

Thus, you should choose alternative 3.
Though the preceding example illustrates the three main components of an OR

model-alternatives, objective criterion, and constraints-situations differ in the de
tails of how each component is developed and constructed. To illustrate this point, con
sider forming a maximum-area rectangle out of a piece of wire of length L inches. What
should be the width and height of the rectangle?

In contrast with the tickets example, the number of alternatives in the present ex
ample is not finite; namely, the width and height of the rectangle can assume an infinite
number of values. To formalize this observation, the alternatives of the problem are
identified by defining the width and height as continuous (algebraic) variables.

Let

w = width of the rectangle in inches

h = height of the rectangle in inches

Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the wire
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 2(w + h) = L
2. w ~ 0, h ;?: 0



1.1 Operations Research Models 3

The only remaining component now is the objective of the problem; namely,
maximization of the area of the rectangle. Let z be the area of the rectangle, then the
complete model becomes

Maximize z = wh

subject to

2(w + h) = L

w, h 2:: 0

The optimal solution of this model is w = h = ~, which calls for constructing a square
shape.

Based on the preceding two examples, the general OR model can be organized in
the following general format:

Maximize or minimize Objective Function

subject to

Constraints

A solution of the mode is feasible if it satisfies all the constraints. It is optimal if,
in addition to being feasible, it yields the best (maximum or minimum) value of the ob
jective function. In the tickets example, the problem presents three feasible alterna
tives, with the third alternative yielding the optimal solution. In the rectangle problem,
a feasible alternative must satisfy the condition w + h = ~ with wand h assuming
nonnegative values. This leads to an infinite number of feasible solutions and, unlike
the tickets problem, the optimum solution is determined by an appropriate mathemat
ical tool (in this case, differential calculus).

Though OR models are designed to "optimize" a specific objective criterion sub
ject to a set of constraints, the quality of the resulting solution depends on the com
pleteness of the model in representing the real system. Take, for example, the tickets
model. If one is not able to identify all the dominant alternatives for purchasing the tick
ets, then the resulting solution is optimum only relative to the choices represented in the
model. To be specific, if alternative 3 is left out of the model, then the resulting "opti
mum" solution would call for purchasing the tickets for $1880, which is a suboptimal so
lution. The conclusion is that "the" optimum solution of a model is best only for that
model. If the model happens to represent the real system reasonably well, then its solu
tion is optimum also for the real situation.

PROBLEM SET 1.1A

L In the tickets example, identify a fourth feasible alternative.

2. In the rectangle problem, identify two feasible solutions and determine which one is better.

3. Determine the optimal solution of the rectangle problem. (Hint: Use the constraint to ex
press the objective function in terms of one variable, then use differential c<iICufus.)
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4. Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to croSs to
the west side using a canoe. The canoe can hold at most two people at a time. Amy, being
the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would take 2,
5, and 10 minutes, respectively. If two people are in the canoe, the slower person dictates
the crossing time. The objective is for all four people to be on the other side of the river
in the shortest time possible.

(a) Identify at least two feasible plans for crossing the river (remember, the canoe is the
only mode of transportation and it cannot be shuttled empty).

(b) Define the criterion for evaluating the alternatives.

*(C)1 What is the smallest time for moving all four people to the other side of the river?

*5. In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw
either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can main
tain a .500 batting average, else if Jim throws a curve ball and Joe prepares for a fast ball,
his batting average is kept down to .200. On the other hand, if Joe correctly predicts a fast
ball, he gets a .300 batting average, else his batting average is only .100.

(a) Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the
familiar optimization (maximization or minimization) of a criterion.

6. During the construction of a house, six joists of 24 feet each must be trimmed to the cor
rect length of 23 feet. The operations for cutting a joist involve the following sequence:

1.~

Operation

1. Place joist on saw horses
2. Measure correct length (23 feet)
3. Mark cutting line for circular saw
4. Trim joist to correct length
5. Stack trimmed joist in a designated area

Time (seconds)

15
5
5

20
20

1.2

Three persons are involved: Two loaders must work simultaneously on operations 1,2,
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on
which untrimmed joists are placed in preparation for cutting, and each pair can hold up
to three side-by-side joists. Suggest a good schedule for trimming the six joists.

SOLVING THE OR MODEL

In OR, we do not have a single general technique to solve all mathematical models that
can arise in practice. Instead, the type and complexity of the mathematical model dic
tate the nature of the solution method. For example, in Section 1.1 the solution of the
tickets problem requires simple ranking of alternatives based on the total purchasing
price, whereas the solution of the rectangle problem utilizes differential calculus to de
termine the maximum area.

The most prominent OR technique is linear programming. It is designed for
models with linear objective and constraint functions. Other techniques include integer
programming (in which the variables assume integer values), dynamic programming

IAn asterisk (*) designates problems whose solution is provided in Appendix C.

1.4
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(in which the original model can be decomposed into more manageable subproblems),
network programming (in which the problem can be modeled as a network), and
nonlinear programming (in which functions of the model are nonlinear). These are
only a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained
in (formulalike) closed forms. Instead, they are determined by algorithms. An algo
rithm provides fixed computational rules that are applied repetitively to the problem,
with each repetition (called iteration) moving the solution closer to the optimum. Be
cause the computations associated with each iteration are typically tedious and volu
minous, it is imperative that these algorithms be executed on the computer.

Some mathematical models may be so complex that it is impossible to solve them
by any of the available optimization algorithms. In such cases, it may be necessary to
abandon the search for the optimal solution and simply seek a good solution using
heuristics or rules ofthumb.

1.3 QUEUING AND SIMULATION MODELS

Queuing and simulation deal with the study of waiting lines. They are not optimization
techniques; rather, they determine measures of performance of the waiting lines, such
as average waiting time in queue, average waiting time for service, and utilization of
service facilities.

Queuing models utilize probability and stochastic models to analyze waiting lines,
and simulation estimates the measures of performance by imitating the behavior of the
real system. In a way, simulation may be regarded as the next best thing to observing a
real system. The main difference between queuing and simulation is that queuing mod
els are purely mathematical, and hence are subject to specific assumptions that limit
their scope of application. Simulation, on the other hand, is flexible and can be used to
analyze practically any queuing situation.

The use of simulation is not without drawbacks. TIle process of developing simu
lation models is costly in both time and resources. Moreover, the execution of simula
tion models, even on the fastest computer, is usually slow.

1.4 ART OF MODELING

The illustrative models developed in Section 1.1 are true representations of real situa
tions. This is a rare occurrence in OR, as the majority of applications usually involve
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that
characterize the development of an OR model. We abstract the assumed real world.
from the real situation by concentrating on the dominant variables that control the be
havior of the real system. The model expresses in an amenable manner the mathemat
ical functions that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing
Company, where a variety of plastic containers are produced. When a production order
is issued to the production department, necessary raw materiars are acquired from the
company's stocks or purchased from outside sources. Once the production batch is
completed, the sales department takes charge of distributing the product to customers.
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Model

FIGURE 1.1

Levels of abstraction in model development

A logical question in the analysis of Tyko's situation is the determination of the
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the
level of production, including the following (partial) list categorized by departments.

1. Production Department: Production capacity expressed in terms of available ma
chine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw materials, delivery schedules from
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness
of the advertising campaign, and effect of competition.

Each of these variables affects the level of production at Tyko. Trying to establish ex
plicit functional relationships between them and the level of production is a difficult
task indeed.

A first level of abstraction requires defining the boundaries of the assumed real
world. With some reflection, we can approximate the real system by two dominant
variables:

1. Production rate.
2. Consumption rate.

Determination of the production rate involves such variables as production capacity,
quality control standards, and availability of raw materials. The consumption rate is de
termined from the variables associated with the sales department. In essence, simplifi
cation from the real world to the assumed real world is achieved by "lumping" several
real-world variables into a single assumed-real-world variable.

It is easier now to abstract a model from the assumed real world. From the pro
duction and consumption rates, measures of excess or shortage inventory can be estab
lished. The abstracted model may then be constructed to balance the conflicting costs
of excess and shortage inventory-i.e., to minimize the total cost of inventory.
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1.5 MORE THAN JUST MATHEMATICS

Because of the mathematical nature of OR models, one tends to think that an OR
study is always rooted in mathematical analysis. Though mathematical modeling is a
cornerstone of OR, simpler approaches should be explored first. In some cases, a "com
mon sense" solution may be reached through simple observations. Indeed, since the
human element invariably affects most decision problems, a study of the psychology of
people may be key to solving the problem. Three illustrations are presented here to
support this argument.

1. Responding to complaints of slow elevator service in a large office building,
the OR team initially perceived the situation as a waiting-line problem that might re
quire the use of mathematical queuing analysis or simulation. After studying the be
havior of the people voicing the complaint, the psychologist on the team suggested
installing full-length mirrors at the entrance to the elevators. Miraculously the com
plaints disappeared, as people were kept occupied watching themselves and others
while waiting for the elevator.

2. In a study of the check-in facilities at a large British airport, a United States
Canadian consulting team used queuing theory to investigate and analyze the situa
tion. Part of the solution recommended the use of well-placed signs to urge passengers
who were within 20 minutes from departure time to advance to the head of the queue
and request immediate service. The solution was not successful, because the passen
gers, being mostly British, were "conditioned to very strict queuing behavior" and
hence were reluctant to move ahead of others waiting in the queue.

3. In a steel mill, ingots were first produced from iron ore and then used in the
manufacture of steel bars and beams. The manager noticed a long delay between the
ingots production and their transfer to the next manufacturing phase (where end prod
ucts were manufactured). Ideally, to reduce the reheating cost, manufacturing should
start soon after the ingots left the furnaces. Initially the problem was perceived as a
line-balancing situation, which could be resolved either by reducing the output of in
gots or by increasing the capacity of the manufacturing process. TIle OR team used
simple charts to summarize the output of the furnaces during the three shifts of the
day. They discovered that, even though the third shift started at 11:00 PM., most of the
ingots were produced between 2:00 and 7:00 A.M. Further investigation revealed that
third-shift operators preferred to get long periods of rest at the start of the shift and
then make up for lost production during morning hours. The problem was solved by
"leveling out" the production of ingots throughout the shift.

Three conclusions can be drawn from these illustrations:

1. Before embarking on sophisticated mathematical modeling, the OR team
should explore the possibility of using "aggressive" ideas to resolve the situation. The
solution of the elevator problem by installing mirrors is rooted in human psychology
rather than in mathematical modeling. It is also simpler and less costly than any rec
ommendation a mathematical model might have produced. Perhaps this. is the reason
OR teams usually include the expertise of "outsiders" from nonmathernatical fields
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(psychology in the case of the elevator problem). This point was recognized and imple
mented by the first OR team in Britain during World War II.

2. Solutions are rooted in people and not in technology. Any solution that does
not take human behavior into account is apt to fail. Even though the mathematical so
lution of the British airport problem may have been sound, the fact that the consulting
team was not aware of the cultural differences between the United States and Britain
(Americans and Canadians tend to be less formal) resulted in an unimplementable
recommendation.

3. An OR study should never start with a bias toward using a specific mathemat
ical tool before its use can be justified. For example, because linear programming is a
successful technique, there is a tendency to use it as the tool of choice for modeling
"any" situation. Such an approach usually leads to a mathematical model that is far re
moved from the real situation. It is thus imperative that we first analyze available data,
using the simplest techniques where possible (e.g., averages, charts, and histograms),
with the objective of pinpointing the source of the problem. Once the problem is de
fined, a decision can be made regarding the most appropriate tool for the soiution.2 In
the steel mill problem, simple charting of the ingots production was all that was need
ed to clarify the situation.

1.6 PHASES OF AN OR STUDY

An OR study is rooted in teamwork, where the OR analysts and the client work side by
side. The OR analysts' expertise in modeling must be complemented by the experience
and cooperation of the client for whom the study is being carried out.

As a decision-making tool, OR is both a science and an art. It is a science by
virtue of the mathematical techniques it embodies, and it is an art because the success
of the phases leading to the solution of the mathematical model depends largely on the
creativity and experience of the operations research team. Willemain (1994) advises
that "effective [OR] practice requires more than analytical competence: It also re
quires, among other attributes, technical judgement (e.g., when and how to use a given
technique) and skills in communication and organizational survival."

It is difficult to prescribe specific courses of action (similar to those dictated by
the precise theory of mathematical models) for these intangible factors. We can, how
ever, offer general guidelines for the implementation of OR in practice.

TIle principal phases for implementing OR in practice include

1. Definition of the problem.
2. Construction of the model.

2Deciding on a specific mathematical model before justifying its use is like "putting the cart before the
horse," and it reminds me of the story of a frequent air traveler who was paranoid about the possibility of a
terrorist bomb on board the plane. He calculated the probability that such an event could occur, and though
quite small, it wasn't small enough to calm his anxieties. From then on, he always carried a bomb in his brief·
case on the plane because, according to his calculations, the probability of having two bombs aboard the
plane was practically zero!
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3. Solution of the model.
4. Validation of the model.
5. Implementation of the solution.

Phase 3, dealing with model solution, is the best defined and generally the easiest to im
plement in an OR study, because it deals mostly with precise mathematical models. Im
plementation of the remaining phases is more an art than a theory.

Problem definition involves defining the scope of the problem under investiga
tion. This function should be carried out by the entire OR team. The aim is to identify
three principal elements of the decision problem: (1) description of the decision alter
natives, (2) determination of the objective of the study, and (3) specification of the lim
itations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into
mathematical relationships. If the resulting model fits one of the standard mathe
matical models, such as linear programming, we can usually reach a solution by
using available algorithms. Alternatively, if the mathematical relationships are too
complex to allow the determination of an analytic solution, the OR team may opt to
simplify the model and use a heuristic approach, or they may consider the use of
simulation, if appropriate. In some cases, mathematical, simulation, and heuristic
models may be combined to solve the decision problem, as the case analyses in
Chapter 24 demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use of
well-defined optimization algorithms. An important aspect of the model solution phase
is sensitivity analysis. It deals with obtaining additional information about the behavior
of the optimum solution when the model undergoes some parameter changes. Sensitiv
ity analysis is particularly needed when the parameters of the model cannot be esti
mated accurately. In these cases, it is important to study the behavior of the optimum
solution in the neighborhood of the estimated parameters.

Model ,'alidity checks whether or not the proposed model does what it purports
to do-that is, does it predict adequately the behavior of the system under study? Ini
tially, the OR team should be convinced that the model's output does not include
"surprises." In other words, does the solution make sense? Are the results intuitively
acceptable? On the formal side, a common method for checking the validity of a
model is to compare its output with historical output data. The model is valid if,
under similar input conditions, it reasonably duplicates past performance. Generally,
however, there is no assurance that future performance will continue to duplicate
past behavior. Also, because the model is usually based on careful examination of
past data, the proposed comparison is usually favorable. If the proposed model rep
resents a new (nonexisting) system, no historical data would be available. In such
cases, we may use simulation as an independent tool for verifying the output of the
mathematical model.

Implementation of the solution of a validated model involves the translation of
the results into understandable operating instructions to be issued to the people who
will administer the recommended system. The burden of this task lies primarily with
the OR team.
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1.7 ABOUT THIS BOOK

Morris (1967) states that "the teaching of models is not equivalent to the teaching of
modeling." I have taken note of this important statement during the preparation of the
eighth edition, making an effort to introduce the art of modeling in OR by including
realistic models throughout the book. Because of the importance of computations in
OR, the book presents extensive tools for carrying out this task, ranging from the tuto
rial aid TORA to the commercial packages Excel, Excel Solver, and AMPL.

A first course in OR should give the student a good foundation in the mathemat
ics of OR as well as an appreciation of its potential applications. This will provide OR
users with the kind of confidence that normally would be missing if training were con
centrated only on the philosophical and artistic aspects of OR. Once the mathematical
foundation has been established, you can increase your capabilities in the artistic side
of OR modeling by studying published practical cases. To assist you in this regard,
Chapter 24 includes 15 fully developed and analyzed cases that cover most of the OR
models presented in this book. There are also some 50 cases that are based on real-life
applications in Appendix E on the CD. Additional case studies are available in journals
and publications. In particular, Interfaces (published by INFORMS) is a rich source of
diverse OR applications.
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CHAPTER 2

Modeling vvith Linear
Programming

Chapter Guide. This chapter concentrates on model formulation and computations in
linear programming (LP). It starts with the modeling and graphical solution of a two
variable problem which, though highly simplified, provides a concrete understanding
of the basic concepts of LP and lays the foundation for the development of the general
simplex algorithm in Chapter 3. To illustrate the use of LP in the real world, applica
tions are formulated and solved in the areas of urban planning, currency arbitrage, in
vestment, production planning and inventory control, gasoline blending, manpower
planning, and scheduling. On the computational side, two distinct types of software are
used in this chapter. (1) TaRA, a totally menu-driven and self-documenting tutorial
program, is designed to help you understand the basics of LP through interactive feed
back. (2) Spreadsheet-based Excel Solver and the AMPL modeling language are com
mercial packages designed for practical problems.

The material in Sections 2.1 and 2.2 is crucial for understanding later LP devel
opments in the book. You will find TaRA's interactive graphical module especially
helpful in conjunction with Section 2.2. Section 2.3 presents diverse LP applications,
each followed by targeted problems.

Section 2.4 introduces the commercial packages Excel Solver and AMPL. Models
in Section 2.3 are solved with AMPL and Solver, and all the codes are included in fold
er ch2Files. Additional Solver and AMPL models are included opportunely in the suc
ceeding chapters, and a detailed presentation of AMPL syntax is given in Appendix A.
A good way to learn AMPL and Solver is to experiment with the numerous models
presented throughout the book and to try to adapt them to the end-of-section prob
lems. The AMPL codes are cross-referenced with the material in Appendix A to facili
tate the learning process.

The TORA, Solver, and AMPL materials have been deliberately compartmental
ized either in separate sections or under the subheadings TORAlSo!verlAMPL mo
ment to minimize disruptions in the main text. Nevertheless, you are encouraged to
work end-of-section problems on the computer. The reason is that, at times, a model

11
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may look "correct" until you try to obtain a solution, and only then will you discover
that the formulation needs modifications.

TIlis chapter includes summaries of 2 real-life applications, 12 solved examples, 2
Solver models, 4 AMPL models, 94 end-of-section problems, and 4 cases. The cases are
in Appendix E on the CD. The AMPLlExcel/SolverrrORA programs are in folder
ch2Files.

Real-life Application-Frontier Airlines Purchases Fuel Economically

The fueling of an aircraft can take place at any of the stopovers along the flight route.
Fuel price varies among the stopovers, and potential savings can be realized by loading
extra fuel (called tankering) at a cheaper location for use on subsequent flight legs. The
disadvantage of tankering is the excess burn of gasoline resulting from the extra
weight. LP (and heuristics) is used to determine the optimum amount of tankering that
balances the cost of excess burn against the savings in fuel cost. The study, carried out
in 1981, resulted in net savings of about $350,000 per year. Case 1 in Chapter 24 on the
CD provides the details of the study. Interestingly, with the recent rise in the cost of
fuel, many airlines are now using LP-based tankering software to purchase fuel.

2.1 TWO-VARIABLE LP MODEL

This section deals with the graphical solution of a two-variable LP.Though two-variable
problems hardly exist in practice, the treatment provides concrete foundations for the
development of the general simplex algorithm presented in Chapter 3.

Example 2.1-1 (The Reddy Mikks Company)

Reddy Mikks produces both interior and exterior paints from two raw materials, Ml and M2.
The following table provides the basic data of the problem:

Tons of raw material per ton of

Raw material, M1
Raw material, M2

Profit per ton ($1000)

Exterior pain!

6
1

5

Interior paint

4
2

4

Maximum daily
availability (tons)

24
6

A market survey indicates that the daily demand for interior paint cannot exceed that for
exterior paint by more than 1 ton. Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior
paints that maximizes the total daily profit.

The LP model, as in any OR model, has three basic components.

1. Decision variables that we seek to determine.

2. Objective (goal) that we need to optimize (maximize or minimize).

3. Constraints that the solution must satisfy.
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The proper definition of the decision variables is an essential first step in the development of the
model. Once done, the task of constructing the objective function and the constraints becomes
more straightforward.

For the Reddy Mikks problem, we need to determine the daily amounts to be produced of
exterior and interior paints. Thus the variables of the model are defined as

Xl = Tons produced daily of exterior paint

X2 = Tons produced daily of interior paint

To construct the objective function, note that the company wants to maximize (i.e., increase
as much as possible) the total daily profit of both paints. Given that the profits per ton of exteri
or and interior paints are 5 and 4 (thousand) dollars, respectively, it follows that

Total profit from exterior paint = 5xl (thousand) dollars

Total profit from interior paint = 4X2 (thousand) dollars

Letting z represent the total daily profit (in thousands of dollars), the objective of the company
is

Maximize z = 5Xl + 4X2

Next, we construct the constraints that restrict raw material usage and product demand. The
raw material restrictions are expressed verbally as

(
Usage of a raw material) ~ (MaXimum raw material)

by both paints availability

The daily usage of raw material MI is 6 tons per ton of exterior paint and 4 tons per ton of inte
rior paint. Thus

Usage of raw material Ml by exterior paint = 6Xl tons/day

Usage of raw material Ml by interior paint = 4X2 tons/day

Hence

Usage of raw material Ml by both paints = 6Xt + 4x2 tons/day

In a similar manner,

Usage of raw material M2 by both paints = IXl + 2X2 tons/day

Because the daily availabilities of raw materials Ml and M2 are limited to 24 and 6 tons, respec
tively, the associated restrictions are given as

6Xt + 4X2 ~ 24

XI + 2X2::; 6

(Raw material MI)

(Raw material M2)

The first demand restriction stipulates that the excess of the daily production of interior
over exterior paint, X2 - Xl, should not exceed 1 ton, which translates to

(Market limit)
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The second demand restriction stipulates that the maximum daily demand of interior paint is
limited to 2 tons, which translates to

X2 ~ 2 (Demand limit)

An implicit (or "understood-to-be") restriction is that variables Xl and X2 cannot assume
negative values. The nonnegativity restrictions, Xl ;:: 0, X2 ;:: 0, account for this requirement.

The complete Reddy Mikks model is

Maximize z = 5XI + 4X2

subject to

6xI + 4x2 ~ 24

XI + 2X2 ~ 6

-Xl + X2 ~ 1

x2 ~ 2

Xl> X2 C; 0

(1)

(2)

(3)

(4)

(5)

Any values of Xl and X2 that satisfy all five constraints constitute a feasible solution. Otherwise,
the solution is infeasible. For example, the solution, Xl = 3 tons per day and X2 = I ton per day,
is feasible because it does not violate any of the constraints, including the nonnegativity restric
tions. To verify this result, substitute (Xl = 3, X2 = I) in the left-hand side of each constraint. In
constraint (1) we have 6XI + 4X2 = 6 X 3 + 4 X 1 == 22, which is less than the right-hand side
of the constraint (= 24). Constraints 2 through 5 will yield similar conclusions (verify!). On the
other hand, the solution Xl = 4 and X2 = 1 is infeasible because it does not satisfy constraint
(I)-namely, 6 X 4 + 4 X 1 = 28, which is larger than the right-hand side (= 24).

The goal of the problem is to find the best feasible solution, or the optimum, that maxi
mizes the total profit. Before we can do that, we need to know how many feasible solutions the
Reddy Mikks problem has. The answer, as we wiII see from the graphical solution in Section
2.2, is "an infinite number," which makes it impossible to solve the problem by enumeration.
Instead, we need a systematic procedure that will locate the optimum solution in a finite num
ber of steps. The graphical method in Section 2.2 and its algebraic generalization in Chapter 3
will explain how this can be accomplished.

Properties of the LP Model. In Example 2.1-1, the objective and the constraints are
all linear functions. Linearity implies that the LP must satisfy three basic properties:

1. Proportionality: This property requires the contribution of each decision
variable in both the objective function and the constraints to be directly propor
tional to the value of the variable. For example, in the Reddy Mikks model, the
quantities 5Xl and 4X2 give the profits for producing Xl and X2 tons of exterior and in
terior paint, respectively, with the unit profits per ton, 5 and 4, providing the constants
of proportionality. If, on the other hand, Reddy Mikks grants some sort of quantity dis
counts when sales exceed certain amounts, then the profit will no longer be propor
tional to the production amounts, Xl and X2, and the profit function becomes nonlinear.

2. Additivity: This property requires the total contribution of all the variables in
the objective function and in the constraints to be the direct sum of the individual
contributions of each variable. In the Reddy Mikks model, the total profit equals the

2.2
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sum of the two individual profit components. If, however, the two products compete for
market share in such a way that an increase in sales of one adversely affects the other,
then the additivity property is not satisfied and the model is no longer linear.

3. Certainty: All the objective and constraint coefficients of the LP model are de
terministic. This means that they are known constants-a rare occurrence in real life,
where data are more likely to be represented by probabilistic distributions. In essence,
LP coefficients are average-value approximations of the probabilistic distributions. If
the standard deviations of these distributions are sufficiently small, then the approxi
mation is acceptable. Large standard deviations can be accounted for directly by using
stochastic LP algorithms (Section 19.2.3) or indirectly by applying sensitivity analysis
to the optimum solution (Section 3.6).

PROBLEM SET 2.1A

1. For the Reddy Mikks model, construct each of the following constraints and express it
with a linear left-hand side and a constant right-hand side:

*(a) The daily demand for interior paint exceeds that of exterior paint by at least 1 ton.

(b) The daily usage of raw material M2 in tons is at most 6 and at least 3.

*(c) The demand for interior paint cannot be less than the demand for exterior paint.

(d) The minimum quantity that should be produced of both the interior and the exterior
paint is 3 tons.

*(e) The proportion of interior paint to the total production of both interior and exterior
paints must not exceed .5.

2. Determine the best feasible solution among the following (feasible and infeasible) solu
tions of the Reddy Mikks model:

(a) XI = 1, X2 = 4.

(b) Xl = 2, X2 = 2.

(c) XI = 3, x2 = 1.5.

(d) X I = 2, X2 = 1.

(e) XI = 2, X2 = -l.

*3. For the feasible solution XI = 2, x2 = 2 of the Reddy Mikks model, determine the un
used amounts of raw materials Ml and M2.

4. Suppose that Reddy Mikks sells its exterior paint to a single wholesaler at a quantity dis
count.1l1e profit per ton is $5000 if the contractor buys no more than 2 tons daily and $4500
otherwise. Express the objective function mathematically. Is the resulting function linear?

2.2 GRAPHICAL LP SOLUTION

The graphical procedure includes two steps:

1. Determination of the feasible solution space.
2. Determination of the optimum solution from among all the feasible points in the

solution space.

The procedure uses two examples to show how maximization and minimization
objective functions are handled.
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2.2.1 Solution of a Maximization ModeJ

Example 2.2-1

This example solves the Reddy Mikks model of Example 2.1-1.

Step 1. Determination ofthe Feasible Solution Space:
First, we account for the nonnegativity constraints Xl ~ 0 and X2 2: O. In Figure 2.1,
the horizontal axis Xl and the vertical axis X2 represent the exterior- and interior-paint
variables, respectively. Thus, the nonnegativity of the variables restricts the solution
space area to the first quadrant that lies above the xl-axis and to the right of the
x2-axis.

To account for the remaining four constraints, first replace each inequality

with an equation and then graph the resulting straight line by locating two distinct

points on it. For example, after replacing 6x[ + 4X2 :::; 24 with the straight line

6xl + 4x2 = 24, we can determine two distinct points by first setting XI = 0 to

obtain X2 = ¥ = 6 and then setting X2 = 0 to obtain XI = ~ = 4. Thus, the line

passes through the two points (0,6) and (4,0), as shown by line (1) in Figure 2.1.
Next, consider the effect of the inequality. All it does is divide the (xJ, x2)-plane

into two half-spaces, one on each side of the graphed line. Only one of these two
halves satisfies the inequality. To determine the correct side, choose (0,0) as a
reference point. If it satisfies the inequality, then the side in which it lies is the

FIGURE 2.1

Feasible space of the Reddy Mikks model

Constraints:
6

CD6xI + 4x2:$ 24

Xl + 2x2 :$ 6 @
5

CD-Xl + x2:$ 1

x2:$ 2 (1)
4

@XI 2: 0

x22: 0 ®
3

2

o
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feasible half-space, otherwise the other side is. The use of the reference point (0,0) is
illustrated with the constraint 6xI + 4xz :5 24. Because 6 x 0 + 4 x 0 = 0 is less
than 24, the half-space representing the inequality includes the origin (as shown by
the arrow in Figure 2.1).

It is convenient computationally to select (0,0) as the reference point, unless the
line happens to pass through the origin, in which case any other point can be used.
For example, if we use the reference point (6,0), the left-hand side of the first con
straint is 6 X 6 + 4 X 0 = 36, which is larger than its right-hand side (= 24), which
means that the side in which (6,0) lies is not feasible for the inequality
6Xl + 4X2 :5 24. The conclusion is consistent with the one based on the reference
point (0,0).

Application of the reference-point procedure to all the constraints of the model
produces the constraints shown in Figure 2.1 (verify!). The feasible solution space of
the problem represents the area in the first quadrant in which all the constraints are
satisfied simultaneously. In Figure 2.1, any point in or on the boundary of the area
ABCDEF is part of the feasible solution space. All points outside this area are
infeasible.

TORA Moment.

The menu-driven TORA graphical LP module should prove helpful in reinforcing
your understanding of how the LP constraints are graphed. Select

Linear Programming from the MAIN menu. After inputting the model,

select Solve => Graphical from the SOLVE/MODIFY menu. In the output

screen, you will be able to experiment interactively with graphing the constraints one

at a time, so you can see how each constraint affects the solution space.

Step 2. Determination of the Optimum Solution:
The feasible space in Figure 2.1 is delineated by the line segments joining the points
A, B, C, D, E, and F. Any point within or on the boundary of the space ABCDEFis
feasible. Because the feasible space ABCDEF consists of an infinite number of
points, we need a systematic procedure to identify the optimum solution.

The determination of the optimum solution requires identifying the direction in
which the profit function z = 5x1 + 4X2 increases (recall that we are maximizing z).
We can do so by assigning arbitrary increasing values to z. For example, using z = 10
and z = 15 would be equivalent to graphing the two lines 5Xl + 4X2 = 10 and
5xI + 4x2 = 15. Thus, the direction of increase in z is as shown Figure 2.2. The opti
mum solution occurs at C, which is the point in the solution space beyond which any
further increase will put z outside the boundaries of A BCDEF.

The values of Xl and X2 associated with the optimum point C are determined by
solving the equations associated with lines (1) and (2)-that is,

6X1 + 4X2 = 24

Xl + 2X2 = 6

The solution is Xl = 3 and x2 = 1.5 with z = 5 X 3 + 4 X 1.5 = 21. 111is calls for a
daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The associ
ated daily profit is $21,000.
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(Maximize z = 5Xl + 4x2)

3

2

1

o

,,

2',,

, Optimum: Xl = 3 tons

>l< / x2 = 1.5 tons
Z = $21,000

==4-~,:---- Xl

4 '

FIGURE 2.2

Optimum solution of the Reddy Mikks model

An important characteristic of the optimum LP solution is that it is always asso
ciated with a cornel" point of the solution space (where two lines intersect). This is
true even if the objective function happens to be parallel to a constraint. For exam
ple, if the objective function is z = 6XI + 4X2, which is parallel to constraint I, we can
always say that the optimum occurs at either corner point B or comer point C. Actu
ally any point on the line segment BC will be an alternative optimum (see also Exam
ple 3.5-2), but the important observation here is that the line segment BC is totally
defined by the corner points Band C.

TORA Moment.

You can use TORA interactively to see that the optimum is always associated with a

corner point. From the output screen, you can clickYi~~i¥A~N~l~~¥~~B~~; to
modify the objective coefficients and re-solve the problem graphically. You may use the
following objective functions to test the proposed idea:

(a) z = 5xI + X2

(b) Z = 5Xl + 4X2

(c) Z = Xl + 3x2

(d) Z = -Xl + 2X2

(e) z = - 2xl + Xl

(f) Z = -XI - X2

i
.1;.
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The observation that the LP optimum is always associated with a corner point means that
the optimum solution can be found simply by enumerating all the corner points as the following
table shows:

Corner point (Xl> X2) Z

A (0,0) 0
B (4,0) 20
C (3,1.5) 21 (OPTIMUM)
D (2,2) 18
E (1,2) 13
F (0,1) 4

As the number of constraints and variables increases, the number of corner points also in
creases, and the proposed enumeration procedure becomes less tractable computationally. Nev
ertheless, the idea shows that, from the standpoint of determining the LP optimum, the
solution space ABCDEF with its infinite number of solutions can, in fact, be replaced with a
finite number of promising solution points-namely, the corner points, A, B, C, D, E, and F. This
result is key for the development of the general algebraic algorithm, called the simplex
method, which we will study in Chapter 3.

PROBLEM SET 2.2A

1. Determine the feasible space for each of the following independent constraints, given
that Xl, X2 :::: O.

*(a) - 3XI + X2 5; 6.

(b) Xl - 2X2 :::: 5.

(c) 2Xl - 3X2 5; 12.

*(d) XI - X2 5; O.

(e) -Xl + X2 :::: O.

2. Identify the direction of increase in z in each of the following cases:

*(a) Maximize z = Xl - X2'

(b) Maximize z = - 5x I - 6X2'

(c) Maximize z = -Xl + 2X2'

*(d) Maximize z = -3XI + X2'

3. Determine the solution space and the optimum solution of the Reddy Mikks model for
each of the following independent changes:

(a) The maximum daily demand for exterior paint is at most 2.5 tons.

(b) The daily demand for interior paint is at least 2 tons.

(c) The daily demand for interior paint is exactly 1 ton higher than that for exterior
paint.

(d) The daily availability of raw material Ml is at least 24 tons.

(e) The daily availability of raw material Ml is at least 24 tons, and the daily demand for
interior paint exceeds that for exterior paint by at least 1 ton.
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4. A company that operates 10 hours a day manufactures two products on three sequential
processes. TIle following table summarizes the data of the problem:

Minutes per unit

Product

1
2

Process 1

10
5

Process 2

6
20

Process 3

8
10

Unit profit

$2
$3

Determine the optimal mix of the two products.

*5. A company produces two products, A and B. The sales volume for A is at least 80% of
the total sales of both A and B. However, the company cannot sell more than 100 units of
A per day. Both products use one raw material, of which the maximum daily availability
is 240 lb. The usage rates of the raw material are 2 lb per unit of A and 4 lb per unit of B.
TIle profit units for A and Bare $20 and $50, respectively. Determine the optimal prod
uct mix for the company.

6. Alumco manufactures aluminum sheets and aluminum bars. The maximum production
capacity is estimated at either 800 sheets or 600 bars per day. The maximum daily de
mand is 550 sheets and 580 bars. The profit per ton is $40 per sheet and $35 per bar. De
termine the optimal daily production mix.

*7. An individual wishes to invest $5000 over the next year in two types of investment: Invest
ment A yields 5% and investment B yields 8%. Market research recommends an alloca
tion of at least 25% in A and at most 50% in B. Moreover, investment in A should be at
least half the investment in B. How should the fund be allocated to the two investments?

8. The Continuing Education Division at the Ozark Community College offers a total of
30 courses each semester. The courses offered are usually of two types: practical, such
as woodworking, word processing, and car maintenance; and humanistic, such as histo
ry, music, and fine arts. To satisfy the demands of the community, at least 10 courses of
each type must be offered each semester. The division estimates that the revenues of
offering practical and humanistic courses are approximately $1500 and $1000 per
course, respectively.

(a) Devise an optimal course offering for the college.

(b) Show that the worth per additional course is $1500, which is the same as the revenue
per practical course. What does this result mean in terms of offering additional
courses?

9. ChemLabs uses raw materials I and II to produce two domestic cleaning solutions, A
and B. The daily availabilities of raw materials I and II are 150 and 145 units, respectively.
One unit of solution A consumes .5 unit of raw materiall and .6 unit of raw material II,
and one unit of solution Buses .5 unit of raw materiall and .4 unit of raw materiaill. The
profits per unit of solutions A and Bare $8 and $10, respectively. The daily demand for
solution A lies between 30 and 150 units, and that for solution B between 40 and 200
units. Find the optimal production amounts of A and B.

10. In the Ma-and-Pa grocery store, shelf space is limited and must be used effectively to in
crease profit. Two cereal items, Grano and Wheatie, compete for a total shelf space of
60 ft2. A box of Grano occupies.2 ft2 and a box ofWheatie needs .4 ft2. The maximum
daily demands of Grano and Wheatie are 200 and 120 boxes, respectively. A box of
qrano nets $1.00 in profit and a box of Wheatie $1.35. Ma-and-Pa thinks that because the
unit profit ofWheatie is 35% higher than that of Grano, Wheatie should be allocated
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35% more space than Grano, which amounts to allocating about 57% to Wheatie and
43% to Grano. What do you think?

11. Jack is an aspiring freshman at Diem University. He realizes that "all work and no play
make Jack a dull boy." As a result, Jack wants to apportion his available time of about
10 hours a day between work and play. He estimates that play is twice as much fun as
work. He also wants to study at least as much as he plays. However, Jack realizes that if
he is going to get all his homework assignments done, he cannot play more than 4
hours a day. How should Jack allocate his time to maximize his pleasure from both
work and play?

12. Wild West produces two types of cowboy hats. A type 1 hat requires twice as much labor
time as a type 2. If the all available labor time is dedicated to Type 2 alone, the company
can produce a total of 400 Type 2 hats a day. The respective market limits for the two
types are 150 and 200 hats per day. The profit is $8 per Type 1 hat and $5 per Type 2 hat.
Determine the number of hats of each type that would maximize profit.

13. Show & Sell can advertise its products on local radio and television (TV). The advertising
budget is limited to $10,000 a month. Each minute of radio advertising costs $15 and each
minute ofTY commercials $300. Show & Sell likes to advertise on radio at least twice as
much as on TV. In the meantime, it is not practical to use more than 400 minutes of radio
advertising a month. From past experience, advertising on TV is estimated to be 25 times
as effective as on radio. Determine the optimum allocation of the budget to radio and TV
advertising.

*14. Wyoming Electric Coop owns a steam-turbine power-generating plant. Because
Wyoming is rich in coal deposits, the plant generates its steam from coal. 111is, however,
may result in emission that does not meet the Environmental Protection Agency stan
dards. EPA regulations limit sulfur dioxide discharge to 2000 parts per million per ton of
coal burned and smoke discharge from the plant stacks to 20 lb per hour. The Coop re
ceives two grades of pulverized coal, C1 and C2, for use in the steam plant. The two
grades are usually mixed together before burning. For simplicity, it can be assumed that
the amount of sulfur pollutant discharged (in parts per million) is a weighted average of
the proportion of each grade used in the mixture. The following data are based on con
sumption of 1 ton per hour of each of the two coal grades.

Sulfur discharge Smoke discharge Steam generated
Coal grade in parts per million in Ib per hour in lb per hour

Cl 1800 2.1 12,000
C2 2100 .9 9,000

(a) Determine the optimal ratio for mixing the two coal grades.

(b) Determine the effect of relaxing the smoke discharge limit by 1 lb on the amount of
generated steam per hour.

15. Top Toys is planning a new radio and TV advertising campaign. A radio commercial costs
$300 and a TV ad cosls $2000. A total budget of $20,000 is allocated to the campaign.
However, to ensure that each medium will have at least one radio commercial and one
TV ad, the most that can be allocated to either medium cannot exceed 80% of the total
budget. It is estimated that the first radio commercial will reach 5000 people, with each
additional commercial reaching only 2000 new ones. For TV, the first ad will reach 4500
people and each additional ad an additional 3000. How should the budgeted amount be
allocated between radio and TV?
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16. The Burroughs Garment Company manufactures men's shirts and women's blouses for
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.
The production process includes cutting, sewing, and packaging. Burroughs employs 25
workers in the cutting department, 35 in the sewing department, and 5 in the packaging
department. The factory works one 8-hour shift, 5 days a week. The following table gives
the time requirements and profits per unit for the two garments:

Minutes per unit

Garment

Shirts
Blouses

Cutting

20
60

Sewing

70
60

Packaging

12
4

Unit profit ($)

8
12

Determine the optimal weekly production schedule for Burroughs.

17. A furniture company manufactures desks and chairs. The sawing department cuts the
lumber for both products, which is then sent to separate assembly departments. Assem
bled items are sent for finishing to the painting department. The daily capacity of the
sawing department is 200 chairs or 80 desks. TIle chair assembly department can produce
120 chairs daily and the desk assembly department 60 desks daily. TIle paint department
has a daily capacity of either 150 chairs or 110 desks. Given that the profit per chair is $50
and that of a desk is $100, determine the optimal production mix for the company.

*18. An assembly line consisting of three consecutive stations produces two radio models: HiFi
1 and HiFi-2. The following table provides the assembly times for the three workstations.

Minutes per unit

Workstation

1
2
3

HiFi-1

6
5
4

HiFi-2

4
5
6

2.
The daily maintenance for stations 1,2, and 3 consumes 10%,14%, and 12%, respective
ly, of the maximum 480 minutes available for each station each day. Determine the opti
mal product mix that will minimize the idle (or unused) times in the three workstations.

19. TORA Experiment. Enter the following LP into TORA and select the graphic solution
mode to reveal the LP graphic screen.

Minimize z = 3x I + 8Xl

subject to

XI + Xl ~ 8
2xI - 3xz s 0

Xl + 2X2 S 30
3x\ - X2 ~ 0

Xl S 10
Xz ~ 9

Xl> X2 ~ 0

Next, on a sheet of paper, graph and scale the xI- and xraxes for the problem (you may
also click Print Graph on the top of the right window to obtain a ready-to-use scaled
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sheet). Now, graph a constraint manually on the prepared sheet, then click it on the left
window of the screen to check your answer. Repeat the same for each constraint and
then terminate the procedure with a graph of the objective function. The suggested
process is designed to test and reinforce your understanding of the graphical LP solution
through immediate feedback from TORA.

20. TORA Experiment. Consider the following LP model:

Maximize z = 5xI + 4X2

subject to

6xI + 4X2 ::; 24
6x1 + 3X2 ::; 22.5

XI + X2::; 5
XI + 2X2::; 6

- XI + X2::; 1
xz::; 2

XJ, X2 ~ 0

In LP, a constraint is said to be redundant if its removal from the model leaves the feasi
ble solution space unchanged. Use the graphical facility ofTORA to identify the redun
dant constraints, then show that their removal (simply by not graphing them) does not
affect the solution space or the optimal solution.

21. TORA Experiment. In the Reddy Mikks model, use TORA to show that the removal of
the raw material constraints (constraints 1 and 2) would result in an unbounded solution
space. What can be said in this case about the optimal solution of the model?

22. TORA Experiment. In the Reddy Mikks model, suppose that the following constraint is
added to the problem.

X2 ~ 3

Use TORA to show that the resulting model has conflicting constraints that cannot be
satisfied simultaneously and hence it has no feasible solution.

2.2.2 Solution of a Minimization Model

Example 2.2-2 (Diet Problem)

Ozark Farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and
soybean meal with the following compositions:

Ib per Ib of feedstuff

Feedstuff

Corn
Soybean meal

Protein

.09

.60

Fiber

.02

.06

Cost ($/Ib)

.30

.90

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber.
Ozark Farms wishes to determine the daily minimum-cost feed mix.

Because the feed mix consists of corn and soybean meal, the decision variables of the model
are defined as

Xl = lb of corn in the daily mix

x2 = lb of soybean meal in the daily mix
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The objective function seeks to minimize the total daily cost (in dollars) of the feed mix and is
thus expressed as

Minimize z = .3xl + .9x2

The constraints of the model reflect the daily amount needed and the dietary requirements.
Because Ozark Farms needs at least 800 Ib of feed a day, the associated constraint can be ex
pressed as

XI + X2 ~ 800

As for the protein dietary requirement constraint, the amount of protein included in Xl lb of
corn and X2 lb of soybean meal is (.09Xl + .6X2) lb. This quantity should equal at least 30% of
the total feed mix (Xl + X2) lb-that is,

.09xl + .6X2 ~ .3(XI + X2)

In a similar manner, the fiber requirement of at most 5% is constructed as

.02xl + .06X2 ~ .05(xl + X2)

The constraints are simplified by moving the terms in XI and X2 to the left-hand side of each
inequality, leaving only a constant on the right-hand side. The complete model thus becomes

minimize z = .3XI + .9X2

subject to

XI + X2 ~ 800

.21xl - .30x2 ~ 0

.03x I - .Olx2 ~ 0

Figure 2.3 provides the graphical solution of the model. Unlike those of the Reddy Mikks
model (Example 2.2-1), the second and third constraints pass through the origin. To plot the
associated straight lines, we need one additional point, which can be obtained by assigning a
value to one of the variables and then solving for the other variable. For example, in the sec
ond constraint, Xl = 200 will yield .21 x 200 - .3x2 = 0, or X2 = 140. This means that the
straight line .21xl - .3x2 = 0 passes through (0,0) and (200,140). Note also that (0,0) cannot be
used as a reference point for constraints 2 and 3, because both lines pass through the origin. In
stead, any other point [e.g., (100, 0) or (0,100)] can be used for that purpose.

Solution:

Because the present model seeks the minimization of the objective function, we need to reduce
the value of z as much as possible in the direction shown in Figure 2.3. The optimum solution is the
intersection of the two lines XI + X2 = 800 and .21xl - .3X2 = 0, which yields Xl = 470.591b and
X2 = 329.41 lb. The associated minimum cost of thefeed mix is z = .3 X 470.59 + .9 x 329.42 =
$437.65 per day.

Remarks. We need to take note of the way the constraints of the problem are constructed. Be
cause the model is minimizing the total cost, one may argue that the solution will seek exactly
800 tons of feed. Indeed, this is what the optimum solution given above does. Does this mean
then that the first constraint can be deleted altogether simply by including the amount 800 tons
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--

Xl = 470.61b

X2 = 329.41b
z = $437.64

~ -'---- ~__...1..- -'- Xl

1500

Graphical solution of the diet model

in the remaining constraints? To find the answer, we state the new protein and fiber constraints
as

.09XI + .6X2 ~.3 X SOD

.02XI + .06X2 :5 .05 X SOO

or

.09Xl + .6X2 ~ 240

.02Xt + .06X2:5 40

The new formulation yields the solution XI = 0, and X2 = 400 lb (verify with TORA!), which
does not satisfy the implied requirement fOT SOO Ib of feed. This means that the constraint
XI + X2 ~ 800 must be used explicitly and that the protein and fiber constraints must remain ex
aClly as given originally.

Along the same line of reasoning, one may be tempted to replace XI + X2 ;:::: 800 with
XI + X2 = 800. In the present example, the two constraints yield the same answer. But in gen
eral this may not be the case. For example, suppose that the daily mix must include at least
500 lb of corn. In this case, the optimum solution will call for using 500 lb of corn and 350 Ib
of soybean (verify with TORA!), which is equivalent to a daily feed mix of 500 + 350 = 850 lb.
Imposing the equality constraint a priori will lead to the conclusion that the problem has no

              Downloaded by B!_@cKy
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feasible solution (verify with TORA!). On the other hand, the use of the inequality is inclusive
of the equality case, and hence its use does not prevent the model from producing exactly 800 Ib
of feed mix, should the remaining constraints allow it. TI1e conclusion is that we should not "pre
guess" the solution by imposing the additional equality restriction, and we should always use in
equalities unless the situation explicitly stipulates the use of equalities.

PROBLEM SET 2.2B

1. Identify the direction of decrease in z in each of the following cases:

*(a) Minimize z = 4xI - 2x2'

(b) Minimize z = -3xl + X2'

(c) Minimize z = -Xl - 2X2'

2. For the diet model, suppose that the daily availability of corn is limited to 450 lb. Identify
the new solution space, and determine the new optimum solution.

3. For the diet model, what type of optimum solution would the model yield if the feed mix
should not exceed 800 Ib a day? Does the solution make sense?

4. John must work at least 20 hours a week to supplement his income while attending
school. He has the opportunity to work in two retail stores. In store 1, he can work be
tween 5 and 12 hours a week, and in store 2 he is allowed between 6 and 10 hours. Both
stores pay the same hourly wage. In deciding how many hours to work in each store, John
wants to base his decision on work stress. Based on interviews with present employees,
John estimates that, on an ascending scale of 1 to 10, the stress factors are 8 and 6 at
stores 1 and 2, respectively. Because stress mounts by the hour, he assumes that the total
stress for each store at the end of the week is proportional to the number of hours he
works in the store. How many hours should 10hn work in each store?

*5. OilCo is building a refinery to produce four products: diesel, gasoline, lubricants, and jet
fuel. The minimum demand (in bblJday) for each of these products is 14,000,30,000,
10,000, and 8,000, respectively. Iran and Dubai are under contract to ship crude to OilCo.
Because of the production quotas specified by OPEC (Organization of Petroleum Ex
porting Countries) the new refinery can receive at least 40% of its crude from Iran and
the remaining amount from Dubai. OilCo predicts that the demand and crude oil quotas
will remain steady over the next ten years.

The specifications of the two crude oils lead to different product mixes: One barrel
of Iran crude yields .2 bbl of diesel, .25 bbl of gasoline,.l bbl of lubricant, and .15 bbl of
jet fuel. The corresponding yields from Dubai crude are .1, .6, .15, and .1, respectively.
Oileo needs to determine the minimum capacity of the refinery (in bbll day).

6. Day Trader wants to invest a sum of money that would generate an annual yield of at
least $10,000. Two stock groups are available: blue chips and high tech, with average an
nual yields of 10% and 25%, respectively. TIlOugh high-tech stocks provide higher yield,
they are more risky, and Trader wants to limit the amount invested in these stocks to no
more than 60% of the total investment. What is the minimum amount Trader should in
vest in each stock group to accomplish the investment goal?

*7. An industrial recycling center uses two scrap aluminum metals, A and B, to produce a
special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has
3% aluminum, 6% silicon, and 3% carbon.The costs per ton for scraps A and Bare $100
and $80, respectively. TIle specifications of the special alloy require that (1) the aluminum
content must be at least 3% and at most 6%, (2) the silicon content must lie between 3%

2.

2.
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and 5%, and (3) the carbon content must be between 3% and 7%. Determine the opti
mum mix of the scraps that should be used in producing 1000 tons of the alloy.

8. TORA Experiment. Consider the Diet Model and let the objective function be given as

Minimize z = .8x1 + .8X2

Use TORA to show that the optimum solution is associated with two distinct corner
points and that both points yield the same objective value. In this case, the problem is
said to have alternative optima. Explain the conditions leading to this situation and show
that, in effect, the problem has an infinite number of alternative optima, then provide a
formula for determining all such solutions.

2.3 SELECTED LP APPLICATIONS

This section presents realistic LP models in which the definition of the variables
and the construction of the objective function and constraints are not as straight
forward as in the case of the two-variable model. The areas covered by these appli
cations include the following:

1. Urban planning.
2. Currency arbitrage.
3. Investment.
4. Production planning and inventory control.
S. Blending and oil refining.
6. Manpower planning.

Each model is fully developed and its optimum solution is analyzed and interpreted.

2.3.1 Urban Planning 1

Urban planning deals with three general areas: (1) building new housing develop
ments, (2) upgrading inner-city deteriorating housing and recreational areas, and (3)
planning public facilities (such as schools and airports). The constraints associated with
these projects are both economic (land, construction, financing) and social (schools,
parks, income level). The objectives in urban planning vary. [n new housing develop
ments, profit is usually the motive for undertaking the project. In the remaining two
categories, the goals involve social, political, economic, and cultural considerations. In
deed, in a publicized case in 2004, the mayor of a city in Ohio wanted to condemn an
old area of the city to make way for a luxury housing development. The motive was to
increase tax collection to help alleviate budget shortages. The example presented in
this section is fashioned after the Ohio case.

IThis section is based on Laidlaw (1972).
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Example 2.3-1 (Urban Renewal Model)

The city of Erstville is faced with a severe budget shortage. Seeking a long-term solution, the city
council votes to improve the tax base by condemning an inner-city housing area and replacing it
with a modern development.

The project involves two phases: (1) demolishing substandard houses to provide land for
the new development, and (2) building the new development. The following is a summary of the
situation.

1. As many as 300 substandard houses can be demolished. Each house occupies a 25-acre
lot. The cost of demolishing a condemned house is $2000.

2. Lot sizes for new single-, double-, triple-, and quadruple-family homes (units) are .18, .28,
A, and.5 acre, respectively. Streets, open space, and utility easements account for 15% of
available acreage.

3. In the new development the triple and quadruple units account for at least 25% of the
total. Single units must be at least 20% of all units and double units at least 10%.

4. TIle tax levied per unit for single, double, triple, and quadruple units is $1,000, $1,900,
$2,700, and $3,400, respectively.

5. The construction cost per unit for single-, double-, triple-, and quadruple- family homes is
$50,000, $70,000, $130,000, and $160,000, respectively. Financing through a local bank can
amount to a maximum of $15 million.

How many units of each type should be constructed to maximize tax collection?

Mathematical Model: Besides determining the number of units to be constructed of each type
of housing, we also need to decide how many houses must be demolished to make room for the
new development. TIlus, the variables of the problem can be defined as follows:

Xl = Number of units of single-family homes

X2 = Number of units of double-family homes

X3 = Number of units of triple-family homes

X4 = Number of units of quadruple-family homes

Xs = Number of old homes to be demolished

The objective is to maximize total tax collection from all four types of homes-that is,

Maximize z = 1000xl + 1900x2 + 2700X3 + 3400X4

The first constraint of the problem deals with land availability.

(
Acreage used for. new) "$ (Net available)

home constructIOn acreage

From the data of the problem we have

Acreage needed for new homes = .18xl + .28x2 + AX3 + .5X4
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To determine the available acreage, each demolished home occupies a .25-acre lot, thus netting
.25x5 acres. Allowing for 15% open space, streets, and easements, the net acreage available is
.85(.25x5) = .2125x5' The resulting constraint is

:5 .2125x5

or

.18x1 + .28x2 + .4x3 + .5X4 - .2125x5 :5 0

The number of demolished homes cannot exceed 300, which translates to

X5 :5 300

Next we add the constraints limiting the number of units of each home type.

(Number of single units) ;::: (20% of all units)

(Number of double units) ;::: (10% of all units)

(Number of triple and quadruple units) ;::: (25% of all units)

These constraints translate mathematically to

XI ;::: .2(Xl + x2 + x3 + X4)

X2 ;::: .1(x1 + X2 + x3 + X4)

X3 + X4 ;::: .25(Xl + X2 + X3 + X4)

TIle only remaining constraint deals with keeping the demolishition/construction cost within the
allowable budget-that is,

(Construction and demolition cost) :5 (Available budget)

Expressing all the costs in thousands of dollars, we get

The complete model thus becomes

Maximize z = IOOOxl + 19OOx2 + 2700x3 + 34OOX4

subject to

.18xl + .28X2 + .4x3 + .5X4 - .2125x5 :5 0

X5 :5 300

- .8Xl + .2X2 + .2X3 + .2X4

.lx( - .9x2 + .lx3 + .lx4

.25xl + .25x2 - .75x} - .75x4

:50

:50

:50

50Xl + 70x2 + 130x3 + 160x4 + 2X5 :5 15000
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Solution:

The optimum solution (using file ampIEX2.3-1.txt or solverEx2.3-l.xls) is:

Total tax collection = z = $343,965
Number of single homes = XI = 35.83 :::" 36 units
Number of double homes = X2 = 98.53 :::" 99 units
Number of triple homes = X3 = 44.79 :::" 45 units
Number of quadruple homes = X4 ::; 0 units
Number of homes demolished = Xs = 244.49 ~ 245 units

Remarks. Linear programming does not guarantee an integer solution automatically, and this
is the reason for rounding the continuous values to the closest integer.llle rounded solution calls
for constructing 180 (= 36 + 99 + 45) units and demolishing 245 old homes, which yields
$345,600 in taxes. Keep in mind, however, that, in general, the rounded solution may not be fea
sible. In fact, the current rounded solution violates the budget constraint by $70,000 (verify!). In
terestingly, the true optimum integer solution (using the algorithms in Chapter 9) is
Xl = 36, X2 = 98, X3 = 45, X4 = 0, and Xs = 245 with z = $343,700. Carefully note that the
rounded solution yields a better objective value, which appears contradictory. The reason is that
the rounded solution calls for producing an extra double home, which is feasible only if the bud
get is increased by $70,000.

PROBLEM SET 2.3A

1. A realtor is developing a rental housing and retail area. TIle housing area consists of effi
ciency apartments, duplexes, and single-family homes. Maximum demand by potential
renters is estimated to be 500 efficiency apartments, 300 duplexes, and 250 single-family
homes, but the number of duplexes must equal at least 50% of the number of efficiency
apartments and single homes. Retail space is proportionate to the number of home units
at the rates of at least 10 ft2

, 15 ft2
, and 18 ft2 for efficiency, duplex, and single family

units, respectively. However, land availability limits retail space to no more than
10,000 ft2. The monthly rental income is estimated at $600, $750, and $1200 for efficiency-,
duplex-, and single-family units, respectively. The retail space rents for $1001ft2. Determine
the optimal retail space area and the number of family residences.

2. TIle city council of Fayetteville is in the process of approving the construction of a new
200,000-ft2 convention center. Two sites have been proposed, and both require exercising
the "eminent domain" law to acquire the property. The following table provides data
about proposed (contiguous) properties in both sites together with the acquisition cost.

Site 1 Site 2

Property Area (1000 ft2) Cost (1000 $) Area (1000 ft2) Cost (1000 $)

1 20 1,000 80 2,800
2 50 2,100 60 1,900
3 50 2,350 50 2,800
4 30 1,850 70 2,500
5 60 2,950

Partial acquisition of property is allowed. At least 75% of property 4 must be acquired
if site 1 is selected, and at least 50% of property 3 must be acquired if site 2 is selected.
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Although site 1 property is more expensive (on a per fe basis), the construction cost is
less than at site 2, because the infrastructure at site 1 is in a much better shape. COIl

struction cost is $25 million at site 1 and $27 million at site 2. Which site should be se
lected, and what properties should be acquired?

*3. A city will undertake five urban renewal housing projects over the next five years. Each
project has a different starting year and a different duration. The following table provides
the basic data of the situation:

Cost Annual income
Year 1 Year 2 Year 3 Year 4 Year 5 (million $) (million $)

Project 1 Start End 5.0 .05
Project 2 Start End 8.0 .07
Project 3 Start End 15.0 .15
Project 4 Start End 1.2 .02
Budget (million $) 3.0 6.0 7.0 7.0 7.0

Projects 1 and 4 must be finished completely within their durations. The remaining two pro
jects can be finished partially within budget limitations, if necessary. However, each project
must be at least 25% completed within its duration. At the end of each year, the completed
section of a project is immediately occupied by tenants and a proportional amount of in
come is realized. For example, if 40% of project 1 is completed in year 1 and 60% in year
3, the associated income over the five-year planning horizon is .4 X $50,000
(for year 2) + .4 X $50,000 (for year 3) + (.4 + .6) X $50,000 (for year 4) +
(.4 + .6) X $50,000 (for year 5) = (4 X .4 + 2 X .6) X $50,000. Determine the opti
mal schedule for the projects that will maximize the total income over the five-year
horizon. For simplicity, disregard the time value of money.

4. The city of Fayetteville is embarking on an urban renewal project that will include lower
and middle-income row housing, upper-income luxury apartments, and public housing.
The project also includes a public elementary school and retail facilities. The size of the
elementary school (number of classrooms) is proportional to the number of pupils, and
the retail space is proportional to the number of housing units. The following table pro
vides the pertinent data of the situation:

IV

iing

s1.

Lower Middle Upper Public
income income income housing

Minimum number of units 100 125 75 300
Maximum number of units 200 190 260 600
Lot size per unit (acre) .05 .07 .03 .025
Average number of pupils per unil 1.3 1.2 .5 1.4
Retail demand per unit (acre) .023 .034 .046 .023
Annual income per unit($) 7000 12,000 20,000 5000

School Retail
room unit

o
2S

.045 .1

.034
15,000

!red
ted.

The new school can occupy a maximum space of 2 acres at the rate of at most 25 pupils
per room. TIle operating annual cost per school room is $10,000. The project will be locat
ed on a 50-acre vacant property owned by the city. Additionally, the project can make use
of an adjacent property occupied by 200 condemned slum homes. Each condemned home
occupies .25 acre. The cost of buying and demolishing a slum unit is $7000. Open space,
streets, and parking lots consume 15% of total available land.

Develop a linear program to determine the optimum plan for the project.
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5. Realco owns 800 acres of undeveloped land on a scenic lake in the heart of the Ozark
Mountains. In the past, little or no regulation was imposed upon new developments
around the lake. The lake shores are now dotted with vacation homes, and septic tanks,
most of them improperly installed, are in extensive use. Over the years, seepage from the
septic tanks led to severe water pollution. To curb further degradation of the lake, county
officials have approved stringent ordinances applicable to all future developments: (1)
Only single-, double-, and triple-family homes can be constructed, with single-family
homes accounting for at least 50% of the total. (2) To limit the number of septic tanks,
minimum lot sizes of 2, 3, and 4 acres are required for single-, double-, and triple-family
homes, respectively. (3) Recreation areas of 1 acre each must be established at the rate of
one area per 200 families. (4) To preserve the ecology of the lake, underground water
may not be pumped out for house or garden use. The president of Realco is studying the
possibility of developing the 800-acre property. The new development will include single-,
double-, and triple-family homes. It is estimated that 15% of the acreage will be allocated
to streets and utility easements. Realco estimates the returns from the different housing
uni ts as follows:

Housing unit

Net return per unit ($)

Single

10,000

Double

12,000

Triple

15,000

The cost of connecting water service to the area is proportionate to the number of
units constructed. However, the county charges a minimum of $100,000 for the pro
ject. Additionally, the expansion of the water system beyond its present capacity is
limited to 200,000 gallons per day during peak periods. The following data summarize
the water service connection cost as well as the water consumption, assuming an aver
age size family:

Housing unit

Water service connection cost per unit ($)
Water consumption per unit (gal/day)

Single Double

1000 1200
400 600

Triple Recreation

1400 800
840 450

Develop an optimal plan for Realco.

6. Consider the Realco model of Problem 5. Suppose that an additional 100 acres of land
can be purchased for $450,000, which will increase the total acreage to 900 acres. Is this a
profitable deal for Realco?

2.3.2 Currency Arbitrage2

In today's global economy, a multinational company must deal with currencies of the
countries in which it operates. Currency arbitrage, or simultaneous purchase and sale
of currencies in different markets, offers opportunities for advantageous movement of
money from one currency to another. For example, converting £1000 to U.S. dollars in
2001 with an exchange rate of $1.60 to £1 will yield $1600. Another way of making the
conversion is to first change the British pound to Japanese yen and then convert the yen
to U.S. dollars using the 2001 exchange rates of £1 = ¥175 and $1 = ¥105. The

2This section is based on J. Kornbluth and G. Salkin (1987,'Chapter 6).

,
t
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(£1,000 x ¥175)
resulting dollar amount is ¥105 = $1,666.67. This example demonstrates

the advantage of converting the British money first to Japanese yen and then to dol
lars. This section shows how the arbitrage problem involving many currencies can be
formulated and solved as a linear program.

Example 2.3-2 (Curr~ncy Arbitrage Model)

Suppose that a company has a total of 5 million dollars that can be exchanged for euros (€),
British pounds (£), yen (¥), and Kuwaiti dinars (KD). Currency dealers set the following limits
on the amount of any single transaction: 5 million dollars, 3 million euros, 3.5 million pounds,
100 million yen, and 2.8 million KDs. The table below provides typical spot exchange rates. The
bottom diagonal rates are the reciprocal of the top diagonal rates. For example, rate(€~ $) =
lIrate( $~ €) = 1/.769 = 1.30.

$ € £ ¥ KD

$ 1 .769 .625 105 .342

€ 1 1 .813 137 .445.769

£ 1 I 1 169 .543.625 ,8JJ

¥ I I -.L 1 .0032105 137 169

KD 1 J -.L 1 1.342 .445 .543 ,0032

Is it possible to increase the dollar holdings (above the initial $5 million) by circulating cur
rencies through the currency market?

Mathematical Model: The situation starts with $5 million. This amount goes through a number of
conversions to other currencies before ultimately being reconverted to dollars. The problem thus
seeks determining the amount of each conversion that will maximize the total dollar holdings.

For the purpose of developing the model and simplifying the notation, the following nu
meric code is used to represent the currencies.

Define

Currency

Code

$

1

€

2

£

3

¥

4

KD

5

Xij = Amount in currency i converted to currency j, i and j = 1,2, ... ,5

For example, Xl2 is the dollar amount converted to euros and XSI is the KD amount converted to
dollars. We further define two additional variables representing the input and the output of the
arbitrage problem:

I = Initial dollar amount (= $5 million)

y = Final dollar holdings (to be determined from the solution)

Our goal is to determine the maximum final dollar holdings, y, subject to the currency flow re
strictions and the maximum limits allowed for the different transactions.



34 Chapter 2

FIGURE 2.4

Modeling with Linear Programming

.625x13

Definition of the input/output variable, XI}, between $ and £

We start by developing the constraints of the model. Figure 2.4 demonstrates the idea of
converting dollars to pounds. The dollar amount XI3 at originating currency 1 is converted to
.625xl3 pounds at end currency 3.At the same time, the transacted dollar amount cannot exceed
the limit set by the dealer, Xn :5 5.

To conserve the flow of money from one currency to another, each currency must satisfy the
following input-output equation:

(
Total sum available) (Total sum converted to )

of a currency (input) = other currencies (output)

1. Dollar (i = 1):

Total available dollars = Initial dollar amount +
dollar amount from other currencies

= I + (€~$) + (£---+$) + (¥---+$) + (KD---+$)

Total distributed dollars = Final dollar holdings +
dollar amount to other currencies

= y + ($---+€) + ($---+£) + ($---+¥) + ($---+KD)

= y + X12 + -'=13 + X14 + Xl5

Given I = 5, the dollar constraint thus becomes

2. Euro (i = 2):

Total available euros = ($ ---+ €) + (£ ---+ €) + (¥ ---+ €) + (KD - €)

76 1 l I
=. 9X12 + .lmX32 + 137X42 + .44S X52

Totaldistributedeuros = (€-$) + (€---+£) + (€---+¥) + (€---+KD)

= X21 + X2J + X24 + X25

Thus, the constraint is

X21 + X23 + X24 + X25 - (.769x12 + .8~3x32 + \;7 X42 + .~5xS2) = 0
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3. Pound (i = 3):

Total available pounds = ($ ---+ £) + (€ ---+ £) + (¥ ---+ £) + (KD ---+ £)

= .625x 13 + .813x23 + 1~9x43 + _5~3x53

Total distributed pounds = (£ ---+ $) + (£ ---+ €) + (£ ---+ ¥) + (£ ---+ KD)

Thus, the ,constraint is

X31 + X32 + X34 + X35 - .625x13 + .813x23 + 1~9 X43 + .5~3 X53 = 0

4. Yen (i = 4):

Total available yen = ($ ---+ ¥) + (€ ---+ ¥) + (£ ---+ ¥) + (KD ---+ ¥)

= 105xI4 + 137x24 + 169x34 + .O~32x54

Total distributed yen = (¥ - $) + (¥ - €) + (¥ ---+ £) + (¥ ---+ KD)

Thus, the constraint is

5. KD (i = 5):

Total available KDs = (KD ---+ $) + (KD ---+ €) + (KD -f) + (KD ---+ ¥)

= .342x15 + .445x25 + .543x35 + .0032x45

Total distributed KDs = ($ ---+ KD) + (€ ---+ KD) + (£ ---+ KD) + (¥ -) KD)

= X51 + X52 + X53 + X54

Thus, the constraint is

X51 + X52 + X53 + X54 - (.342x I5 + .445x25 + .543x35 + .0032x45) = 0

The only remaining constraints are the transaction limits, which are 5 million dollars, 3 mil
lion euros,3.5 million pounds, 100 million yen, and 2.8 million KDs. These can be translated as

Xlj :'S 5, j = 2,3, 4, 5

x2j :'S3,j =1,3,4,5

x3j :'S 3.5,j = 1,2,4,5

X4j :'S 100, j = 1, 2, 3, 5

X5j :'S 2.8, j = 1,2,3,4
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The complete model is now given as

Maximize z ~ y

subject to

( . 1 I)
x31 + X32 + x34 + x35 - .625x 13 + .813x23 + 169x43 + .543x53

X41 + X42 + X43 + X45 - (105xJ4 + 137x24 + 169x34 + .'~32x54)

=0

=0

Solution:

X51 + x52 + X53 + X54 - (.342xI5 + .445x25 + .543x35 + .0032x45) = 0

Xlj ::; 5,j = 2,3,4,5

X2j ::; 3, j = 1,3,4,5

X3j ::; 3.5, j = 1,2,4,5

X4j ::; 100, j = 1, 2, 3, 5

X5j ::; 2.8, j = 1,2,3,4

Xij ~ 0, for all i and j

The optimum solution (using file ampIEx2.3-2.txt or solverEx2.3-2.xls) is:

Solution

y = 5.09032

X I 2 = 1.46206
xIS = 5
X25 = 3
x31 = 3.5
X32 = 0.931495
X41 = 100
X42 = 100
X43 = 100
x53 = 2.085
XS4 = .96

Interpretation

Final holdings = $5,090,320.
Net dollar gain = $90,320, which
represents a 1.8064% rate of return

Buy $1,462,060 worth of euros
Buy $5,000,000 worth of KD
Buy €3,000,000 worth of KD
Buy £3,500,000 worth of dollars
Buy £931,495 worth of euros
Buy ¥l00,OOO,ooo worth of dollars
Buy ¥100,OOO,000 worth of euros
Buy ¥100,000,000 worth of pounds
Buy KD2,085,000 worth of pounds
Buy KD960,OOO worth of yen

2,

Remacks. At first it may appear that the solution is nonsensical because it calls for using
Xl2 + X15 = 1.46206 + 5 = 6.46206, or $6,462,060 to buy euros and KDs when the initial dollar
amount is only $5,000,000. Where do the extra dollars come from? What happens in practice is
that the given solution is submitted to the currency dealer as one order, meaning we do not wait
until we accumulate enough currency of a certain type before making a buy. In the end, the net
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result of all these transactions is a net cost of $5,000,000 to the investor. This can be seen by sum
ming up all the dollar transactions in the solution:

= 5.09032 + 1.46206 + 5 - Uis + ~~) = 5

Notice that X21, X3b X41 and XSl are in euro, pound, yen, and KD, respectively, and hence must be
converted to dollars.

PROBLEM SET 2.3B

1. Modify the arbitrage model to account for a commission that amounts to.1 % of any cur
rency buy. Assume that the commission does not affect the circulating funds and that it is
collected after the entire order is executed. How does the solution compare with that of
the original model?

*2. Suppose that the company is willing to convert the initial $5 million to any other curren
cy that will provide the highest rate of return. Modify the original model to determine
which currency is the best.

3. Suppose the initial amount I = $7 million and that the company wants to convert it opti
mally to a combination of euros, pounds, and yen. TIle final mix may not include more
than €2 million, £3 million, and ¥200 million. Modify the original model to determine the
optimal buying mix of the three currencies.

4. Suppose that the company wishes to buy $6 million. The transaction limits for different
currencies are the same as in the original problem. Devise a buying schedule for this trans
action, given that mix may not include more than €3 million, £2 million, and KD2 million.

5. Suppose that the company has $2 million, £5 million, £4 million. Devise a buy-sell order
that will improve the overall holdings converted to yen.

2.3.3 Investment

Today's investors are presented with multitudes of investment opportunities. Exam
ples of investment problems are capital budgeting for projects, bond investment strate
gy, stock portfolio selection, and establishment of bank loan policy. In many of these
situations, linear programming can be used to select the optimal mix of opportunities
that will maximize return while meeting the investment conditions set by the investor.

Example 2.3-3 (Loan Policy Model)

TIlfiftem Bank is in the process of devising a loan policy that involves a maximum of $12 million.
The following table provides the pertinent data about available types of loans.

Type of loan Interest ratc Bad-debt ratio

Personal .140 .10
Car .130 .07
Home .120 .03
Farm .125 .05
Commercial .100 .02

Bad debts are unrecoverable and produce no interest revenue.
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Competition with other financial institutions requires that the bank allocate at least 40% of
the funds to farm and commercial loans. To assist the housing industry in the region, home loans
must equal at least 50% of the personal, car, and home loans. TIle bank also has a stated policy of
not allowing the overall ratio of bad debts on all loans to exceed 4%.

Mathematical Model: TIle situation seeks to determine the amount of loan in each category,
thus leading to the following definitions of the variables:

XI = personal loans (in millions of dollars)

X2 = car loans

X3 = home loans

X4 = farm loans

Xs = commercial loans

The objective of the Thriftem Bank is to maximize its net return, the difference between interest
revenue and lost bad debts. The interest revenue is accrued only on loans in good standing. Thus,
because 10% of personal loans are lost to bad debt, the bank will receive interest on only 90% of
the loan-that is, it will receive 14% interest on .9x( of the original loan XI' The same reasoning
applies to the remaining four types of loans. Thus,

Total interest = .14(.9xd + .13(.93x2) + .12(.97x)) + .125(.95x4) + .1(.98xs)

= .126xl + .1209x2 + .1164x) + .l1875x4 + .098xs

We also have

Bad debt = .IXl + .07X2 + .03x3 + .05X4 + .02xs

The objective function is thus expressed as

Maximize z = Total interest-Bad debt

= (.126xt + .1209x2 + .1164xJ + .11875x4 + .098xs)

- (.Ixt + .07x2 + .03x) + .05X4 + .02xs)

= .026xI + .0509x2 + .0864x) + .06875x4 + .078xs

The problem has five constraints:

1. Total funds should not exceed $12 (million):

2. Farm and commercial loans equal at least 40% ofall loans:

or
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3. Home loans should equal at least 50% ofpersonal, car, and home loans:

or

4. Bad debts should not exceed 4% ofall loans:

·1x1 + .07Xl + .03X3 + .05X4 + .02xs ~ .04(x( + Xl + X3 + X4 + xs)

or

5. Nonnegalivily:

XI 2 0, Xl 2 0, X3 2 0, X4 2 0, Xs 2 0

A subtle assumption in the preceding formulation is that all loans are issued at approxi
mately the same time. 'Tllis assumption allows us 10 ignore differences in the time value of the
funds allocated to the different loans.

Solution:

The optimal solution is

z = .99648, Xl = 0, X2 = 0, X3 = 7.2, X4 = 0, Xs = 4.8

Remarks.

1. You may be wondering why we did not define the right-hand side of the second constraint
as.4 x 12 instead of .4(Xt + Xl + X3 + X4 + xs). After all, it seems logical that the bank
would want to loan out all $12 (million).The answer is that the second usage does not "rob"
the model of this possibility. If the optimum solution needs all $12 (million), the given con
straint will allow it. But there are two important reasons why you should not use .4 X 12:
(1) If other constraints in the model are such that all $12 (million) cannot be used (for ex
ample, the bank may set caps on the different loans), then the choice .4 X 12 could lead to
an infeasible or incorrect solution. (2) If you want to experiment with the effect of changing
available funds (say from $12 to $13 million) on the optimum solution, there is a real
chance that you may forget to change.4 x 12 to.4 x 13, in which case the solution you get
will not be correct. A similar reasoning applies to the left-hand side of the fourth constraint.

2. The optimal solution calls for allocating all $12 million: $7.2 million to home loans and
$4.8 million to commercial loans.The remaining categories receive none. The return on the
investment is computed as

z .99648
Rate of return = - =-- = 08034

12 12 .

This shows that the combined annual rate of return is 8.034%, which is less than the best
net interest rate (= .0864 for home loans), and one wonders why the optimum does not .
take advantage of this opportunity. The answer is that the restriction stipulating that farm
and cornmercialloans account for at least 40% of all loans (constraint 2) forces the solu
tion to allocate $4.8 million to commercial loans at the lower /let rate of .078, hence low
ering the overall interest rate to .0864 x 7.2

1
; .078 x 4.8 = .08034. In fact, if w-e'remove

constraint 2, the optimum will allocate all the funds to home loans at the higher 8.64% rate.
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PROBLEM SET 2.3C

1. Fox Enterprises is considering six projects for possible construction over the next four
years. The expected (present value) returns and cash outlays for the projects are given
below. Fox can undertake any of the projects partially or completely. A partial undertak
ing of a project will prorate both the return and cash outlays proportionately.

Cash outlay ($1000)

Project Year 1 Year 2 Year] Year 4 Return ($1000)

1 10.5 14.4 2.2 2.4 32.40
2 8.3 12.6 9.5 3.1 35.80
3 10.2 14.2 5.6 4.2 17.75
4 7.2 10.5 7.5 5.0 14.80
5 12.3 10.1 8.3 6.3 18.20
6 9.2 7.8 6.9 5.1 12.35

Available funds ($1000) 60.0 70.0 35.0 20.0

(a) Formulate the problem as a linear program, and determine the optimal project mix
that maximizes the total return. Ignore the time value of money.

(b) Suppose that if a portion of project 2 is undertaken then at least an equal portion of
project 6 must undertaken. Modify the formulation of the model and find the new
optimal solution.

(c) In the original model, suppose that any funds left at the end of a year are used in the
next year. Find the new optimal solution, and determine how much each year "bor
rows" from the preceding year. For simplicity, ignore the time value of money.

(d) Suppose in the original model that the yearly funds available for any year can be ex
ceeded, if necessary, by borrowing from other financial activities within the company.
Ignoring the time value of money, reformulate the LP model, and find the optimum
solution. Would the new solution require borrowing in any year? If so, what is the
rate of return on borrowed money?

*2. Investor Doe has $10,000 to invest in four projects. TIle following table gives the cash
flow for the four investments.

Cash flow ($1000) at the start of

Project Year 1 Year 2 Year 3 Year 4 Year 5

1 -1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 -l.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95

The information in the table can be interpreted as follows: For project 1, $1.00 invested
at the start of year 1 will yield $.50 at the start of year 2, $.30 at the start of year 3, $1.80
at the start of year 4, and $1.20 at the start of year 5. The remaining entries can be inter
preted similarly. The entry 0.00 indicates that no transaction is taking place. Doe has the
additional option of investing in a bank account that earns 6.5% annually. All funds ac
cumulated at the end of one year can be reinvested in the following year. Formulate the
problem as a linear program to determine the optimal allocation of funds to investment
opportuni ties.
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3. HiRise Construction can bid on two I-year projects. TIle following table provides the
quarterly cash flow (in milIions of dollars) for the two projects.

Cash flow (in millions of $) at

Project

I
II

111/08

-1.0
-3.0

4/1/08

-3.1
-2.5

7/1/08

-1.5
1.5

10/l/08

1.8
1.8

12/31/08

5.0
2.8

HiRise has cash funds of $1 million at the beginning of each quarter and may borrow at
most $1 million at a 10% nominal annual interest rate. Any borrowed money must be re
turned at the end of the quarter. Surplus cash can earn quarterly interest at an 8% nomi
nal annual rate. Net accumulation at the end of one quarter is invested in the next quarter.

(a) Assume that HiRise is allowed partial or full participation in the two projects. De-
termine the level of participation that will maximize the net cash accumulated on
12/31/2008.

(b) Is it possible in any quarter to borrow money and simultaneously end up with sur
plus funds? Explain.

4. In anticipation of the immense college expenses, a couple have started an annual invest
ment program on their child's eighth birthday that will last until the eighteenth birthday.
The couple estimate that they will be able to invest the following amounts at the begin
ning of each year:

Year 1

Amount ($) 2000

2 3

2000 2500

4

2500

5

3000

6 7 8 9

3500 3500 4000 4000

10

5000

To avoid unpleasant surprises, they want to invest the money safely in the following op
tions: Insured savings with 7.5% annual yield, six-year government bonds that yield 7.9%
and have a current market price equal to 98% of face value, and nine-year municipal
bonds yielding 8.5% and having a current market price of 1.02 of face value. How should
the couple invest the money?

*5. A business executive has the option to invest money in t\\'o plans: Plan A guarantees
that each dollar invested will earn $.70 a year later, and plan B guarantees that each dol
lar invested will earn $2 after 2 years. In plan A, investments can be made annually, and
in plan B, investments are allowed for periods that are multiples of two years only. How
should the executive invest $100,000 to maximize the earnings at the end of 3 years?

6. A gambler plays a game that requires dividing bet money among four choices. The game
has three outcomes. The following table gives the corresponding gain or loss per dollar
for the different options of the game.

Return per dollar deposited in choice

Outcome 1 2 3 4

1 -3 4 -7 15
2 5 -3 9 4
3 3 -9 10 -8

TIle gambler has a total of $500, which may be played only once. The exact outcome
of the game is not known a priori. Because of this uncertainty, the gambler's strategy is to
maximize the minimum return produced by the three outcomes. How should the gambler
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allocate the $500 among the four choices? (Hinl:The gambler's net return may be posi
tive, zero, or negative.)

7. (Lewis, 1996) Monthly bills in a household are received monthly (e.g., utilities and home
mortgage), quarterly (e.g., estimated tax payment), semiannually (e.g., insurance) ,or an
nually (e.g., subscription renewals and dues). The following table provides the monthly
bills for next year.

Month Jan. Feb. Mar. Apr. May Jun. luI. Aug. Sep. Oct. Nov. Dec. Total

$ 800 1200 400 700 600 900 1500 1000 900 1100 1300 1600 12000

To account for these expenses, the family sets aside $1000 per month, which is the
average of the total divided by 12 months. If the money is deposited in a regular savings
account, it can earn 4% annual interest, provided it stays in the account at least one
month. The bank also offers 3-month and 6-month certificates of deposit that can earn
5.5% and 7% annual interest, respectively. Develop a 12-month investment schedule that
will maximize the family's total return for the year. State any assumptions or require
ments needed to reach a feasible solution.

2.3.4 Production Planning and Inventory Control

There is a wealth of LP applications to production and inventory control, ranging from
simple allocation of machining capacity to meet demand to the more complex case of
using inventory to "dampen" the effect of erratic change in demand over a given plan
ning horizon and of using hiring and firing to respond to changes in workforce needs.
This section presents three examples. 'The first deals with the scheduling of products
using common production facilities to meet demand during a single period, the second
deals with the use of inventory in a multiperiod production system to fill future demand,
and the third deals with the use of a combined inventory and worker hiring/firing to
"smooth" production over a multiperiod planning horizon with fluctuating demand.

Example 2.3-4 (Single-Period Production Model)

In preparation for the winter season, a clothing company is manufacturing parka and goose
overcoats, insulated pants, and gloves. All products are manufactured in four different depart
ments: cutting, insulating, sewing, and packaging. The company has received firm orders for its
products. TIle contract stipulates a penalty for undelivered items. The following table provides
the pertinent data of the situation.

Time per units (hr)

Department Parka Goose Pants Gloves Capacity (hr)

Cutting .30 .30 .25 .15 1000
Insulating .25 .35 .30 .10 1000
Sewing .45 .50 .40 .22 1000
Packaging .15 .15 .1 .05 1000
Demand 800 750 600 500
Unit profit $30 $40 $20 $10
Unit penalty $15 $20 $10 $8

Devise an optimal production plan for the company.
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Mathematical Model: The definition of the variables is straightforward. Let

Xl = number of parka jackets

X2 = number of goose jackets

X3 = number of pairs of pants

X4 = number of pairs of gloves

The company is penalized for not meeting demand. 111is means that the objective of the problem
is to maximize the net receipts, defined as

Net receipts = Total profit - Total penalty

The total profit is readily expressed as 30xI + 40X2 + 20X3 + 10X4' The total penalty is a func
tion of the shortage quantities (= demand - units supplied of each product). These quantities
can be determined from the following demand limits:

A demand is not fulfilled if its constraint is satisfied as a strict inequality. For example, if 650
parka jackets are produced, then Xl = 650, which leads to a shortage of 800 - 650 = 150 parka
jackets. We can express the shortage of any product algebraically by defining a new nonnegative
variable-namely,

Sj = Number of shortage units of product j, j = 1,2,3,4

In this case, the demand constraints can be written as

XI + sl = 800, X2 + S2 = 750, X3 + s3 = 600, X4 + S4 = 500

Xj ;::: 0, Sj ;::: 0, j = 1,2,3,4

We can now compute the shortage penalty as 15s l + 20s2 + lOs3 + 8s4. Thus, the objective func
tion can be written as

To complete the model, the remaining constraints deal with the production capacity restric
tions; namely

.30Xl + .30X2 + .25x3 + .15x4 :5 1000 (Cutting)

.25xl + .35x2 + .30X3 + .lOx4 :5 1000 (InSUlating)

.45xl + .50x2 + AOX3 + .22x4 :5 1000 (Sewing)

.15x1 + .15x2 + .10x3 + .05X4 :5 1000 (Packaging)

The complete model thus becomes
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.30XI + .30X2 + .25x3 + .15x4 ::; 1000

.25xl + .35x2 + .30X3 + .10x4 ::; 1000

.45xl + .50x2 + .40X3 + .22x4 ::; 1000

.15xl + .15x2 + .lOx3 + .05X4 :;; 1000

Xl + SI = 800, X2 + S2 = 750, X3 + S3 = 600, X4 + S4 = 500

Xj ~ 0, 5j ~ 0, j = 1, 2, 3, 4

Solution:

The optimum solution is z = $64,625, Xl = 850, X2 = 750, X) = 387.5, X4 = 500, SI = 52 =
S4 = 0, s3 = 212.5. The solution satisfies all the demand for both types of jackets and the gloves.
A shortage of 213 (rounded up from 212.5) pairs of pants will result in a penalty cost of
213 X $10 = $2130.

Example 2.3-5 (Multiple Period Production-Inventory Model)

Acme Manufacturing Company has contracted to deliver horne windows over the next 6 months.
The demands for each month are 100,250,190,140,220, and 110 units, respectively. Production cost
per window varies from month to month depending on the cost of labor, material, and utilities.
Acme estimates the production cost per window over the next 6 months to be $50, $45, $55, $48,
$52, and $50, respectively. To take advantage of the fluctuations in manufacturing cost, Acme may
elect to produce more than is needed in a given month and hold the excess units for delivery in
later months. This, however, will incur storage costs at the rate of $8 per window per month as
sessed on end-of-month inventory. Develop a linear program to determine the optimum produc
tion schedule.

Mathematical Model: The variables of the problem include the monthly production amount
and the end-of-month inventory. For i = 1,2, ... , 6, let

Xi = Number of units produced in month i

1i = Inventory units left at the end of month i

The relationship between these variables and the monthly demand over the six-month horizon is
represented by the schematic diagram in Figure 2.5. TIle system starts empty, which means that
10 = O.

The objective function seeks to minimize the sum of the production and end-of-month in
ventory costs. Here we have,

Total production cost = 50xI + 45x2 + 55x3 + 48x4 + 52xs + 50X6

Total inventory cost = 8(11 + lz + h + 14 + 15 + I6 )

Thus the objective function is

Minimize z = 50Xl + 45x2 + 55x3 + 48x4 + 52xs + 50X6

+ 8( II + 12 + h + 14 + Is + I6 )
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FIGURE 2.5

100 250 190 140 220 110

Schematic representation of the production-inventory system

The constraints of the problem can be determined directly from the representation in
Figure 2.5. For each period we have the following balance equation:

Beginning inventory + Production amount - Ending inventory = Demand

This is translated mathematically for the individual months as

/0 + Xl - /1 = 100 (Month 1)

II + X2 - /2 = 250 (Month 2)

[2 + X3 - /3 = 190 (Month 3)

/3 + X4 - /4 = 140 (Month 4)

14 + X5 - 15 = 220 (Month 5)

15 + X6 - 16 = 110 (Month 6)

Xi, Ii 2:: 0, for all i = 1,2, ... ,6

/0 = 0

For the problem, 10 = 0 because the situation starts with no initial inventory. Also, in any optimal
solution, the ending inventory h will be zero, because it is not logical to end the horizon with
positive inventory, which can only incur additional inventory cost without serving any purpose.

The complete model is now given as

Minimize z = 50Xt + 45x2 + 55x3 + 48x4 + 52x5 + 50X6

+ 8(/1 + h + h + lx4 + /5 + /6)

subject to

XI - /1 = 100 (Month 1)

II + X2 - h = 250 (Month 2)

/2 + X3 - h = 190 (Month 3)

[3 + X4 - 14 = 140 (Month 4)

/4 + Xs - 15 = 220 (Month 5)

Is + X6 - [6 = 110 (Month 6)

Xi' Ii 2:: 0, for all i = 1, 2, ... , 6
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FIGURE 2.6
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Optimum solution of the production.inventory problem

Solution:

The optimum solution is summarized in Figure 2.6. It shows that each month's demand is satis
fied directly from the month's production, except for month 2 whose production quantity of 440
units covers the demand for both months 2 and 3. The total associated cost is z = $49,980.

Example 2.3-6 (Multiperiod Production Smoothing Model)

A company will manufacture a product for the next four months: March, April, May, and June.
The demands for each month are 520, 720, 520, and 620 units, respectively. The company has a
steady workforce of 10 employees but can meet fluctuating production needs by hiring and fir
ing temporary workers, if necessary. The extra costs of hiring and firing in any month are $200
and $400 per worker, respectively. A permanent worker can produce 12 units per month, and a
temporary worker, lacking comparable experience, only produce 10 units per month. TIle com
pany can produce more than needed in any month and carry the surplus over to a succeeding
month at a holding cost of $50 per unit per month. Develop an optimal hiring/firing policy for
the company over the four-month planning horizon.

Mathematical Model: This model is similar to that of Example 2.3-5 in the general sense that
each month has its production, demand, and ending inventory. There are two exceptions: (1) ac
counting for the permanent versus the temporary workforce, and (2) accounting for the cost of
hiring and firing in each month.

Because the permanent 10 workers cannot be fired, their impact can be accounted for by
subtracting the units they produce from the respective monthly demand. The remaining demand,
if any, is satisfied through hiring and firing of temps. From the standpoint of the model, the net
demand for each month is

Demand for March = 520 - 12 X 10 = 400 units

Demand for April = 720 - 12 X 10 = 600 units

Demand for May = 520 - 12 X 10 = 400 units

Demand for June = 620 - 12 X 10 = 500 units

For i = 1,2,3,4, the variables of the model can be defined as

Xi = Net number of temps at the start of month i after any hiring or firing

Sj = Number of temps hired or fired at the start of month i

Ii = Units of ending inventory for month i

~
L ._
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The variables Xi and Ii, by definition, must assume nonnegative values. On the other hand, the
variable 5i can be positive when new temps are hired, negative when workers are fired, and zero
if no hiring or firing occurs. As a result, the variable must be unrestricted in sign, This is the first
instance in this chapter of using an unrestricted variable. As we will see shortly, special substitu
tion is needed to allow the implementation of hiring and firing in the model.

The objective is to minimize the sum of the cost of hiring and firing plus the cost of holding
inventory from one month to the next. The treatment of the inventory cost is similar to the one
given in Example 2.3-5-namely,

Inventory holding cost = 50( II + h + [3)

(Note that /4 = 0 in the optimum solution.) The cost of hiring and firing is a bit more
involved. We know that in any optimum solution, at least 40 temps (= 4~) must be
hired at the start of March to meet the month's demand. However, rather than treating this situ
ation as a special case, we can let the optimization process take care of it automatically. Thus,
given that the costs of hiring and firing a temp are $200 and $400, respectively, we have

(C f I") (NUmber of hired temps )ost o' llnng
d f

' . = 200 at the start of
an mng

March, April, May, and June

(

Number of fired temps )
+ 400 at the start of

March, April, May, and June

To translate this equation mathematically, we will need to develop the constraints first.
The constraints of the model deal with inventory and hiring and firing. First we develop the

inventory constraints. Defining X, as the number of temps available in month i and given that the
productivity of a temp is 10 units per month, the number of units produced in the same month is
lOXi' Thus the inventory constraints are

lOx! = 400 + 11 (March)

I, + lOx2 = 600 + 12 (April)

12 + lOx3 = 400 + /3 (May)

13 + 10x4 = 500 (June)

Next, we develop the constraints dealing with hiring and firing. First, note that the temp work
force starts with XI workers at the beginning of March. At the start of April, XI will be adjusted
(up or down) by 52 to generate X2' The same idea applies to x3 and X4' These observations lead to
the following equations

XI = 5\

X2 = Xl + 52

x) = X2 + 53
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X4 = X3 + 54

51> 52, 53, 54 unrestricted in sign

The variables 51> 5z, 53, and 54 represent hiring when they are strictly positive and firing
when they are strictly negative. However, this "qualitative" information cannot be used in a
mathematical expression. Instead, we use the following substitution:

5j = Si - 5;, where 5j, 5; ~ 0

The unrestricted variable Sj is now the difference between two nonnegative variables 5j and Sf.
We can think of 5i as the number of temps hired and 5; as the number of temps fired. For ex
ample, if Sj = 5 and 5t = 0 then 5i = S - 0 = +S, which represents hiring. If 5i = 0 and
5t = 7 then Sj = 0 - 7 = -7, which represents firing. In the first case, the corresponding cost
of hiring is 2005i = 200 X S = $1000 and in the second case the corresponding cost of firing is
4005; = 400 X 7 = $2800. This idea is the basis for the development of the objective function.

First we need to address an important point: What if both 5j and 5t are positive? TIle an
swer is that this cannot happen because it implies that the solution calls for both hiring and firing
in the same month. Interestingly, the theory of linear programming (see Chapter 7) tells us that
5i and 5t can never be positive simultaneously, a result that confirms intuition.

We can now write the cost of hiring and firing as follows:

Cost of hiring = 200{51 + 52 + 5"3 + 5:1)

Cost of firing = 400(51' + 51 + 51 + 5t)

The complete model is

Minimize z = 50(11 + lz + I} + 14 ) + 200(51 + 52 + 5"3 + 5;)

+ 400(5j + 5r + 5r + S:1')

subject to

lOx 1 = 400 + 11

1, + 10xz = 600 + 12

lz + lOx3 = 400 + 13

h + lOx4 = SOO

Xl = 51 - 51'

Xz = X I + 52 - 5r

X3 = Xz + 5:; - 5j

X4 = X3 + 54 - 5t

5j, 5j, 5;,5!, 5"3, 5j, 5;, 5t ~ 0



2.3 Selected LP Applications 49

Solution:

The optimum solution is z = $19,500, Xl = 50, Xl = 50, -'3 = 45, X4 = 45, 5\ = 50, Sr = 5,
II = 100, /3 = 50. All the remaining variables are zero. TIle solution calls for hiring 50 temps in
March (51 = 50) and holding the workforce steady till May, when 5 temps are fired (5j = 5).
No further hiring or firing is recommended until the end of June, when, presumably, all temps are
terminated. This solution requires 100 units of inventory to be carried into May and 50 units to
be carried into June.

PROBLEM SET 2.30

1. Tooleo has contracted with AutoMate to supply their automotive discount stores with
wrenches and chisels. AutoMate's weekly demand consists of at least 1500 wrenches and
1200 chisels. Tooleo cannot produce all the requested units with its present one-shift ca
pacity and must use overtime and possibly subcontract with other tool shops. The result is
an increase in the production cost per unit, as shown in the following table. Market de
mand restricts the ratio of chisels to wrenches to at least 2:1.

Weekly production
Tool Production type range (units) Unit cost ($)

Wrenches Regular 0-550 2.00
Overtime 551-800 2.80
Subcontracting 801-00 3.00

Chisel Regular 0-620 2.10
Overtime 621-900 3.20
Subcontracting 901-00 4.20

(a) Formulate the problem as a linear program, and determine the optimum production
schedule for each tool.

(b) Relate the fact that the production cost function has increasing unit costs to the va
lidi ty of the modeL

2. Four products are processed sequentially on three machines. The following table gives
the pertinent data of the problem.

Manufacturing time (hr) per unit

Machine Cost per hr ($) Productl Product 2 Product 3 Product 4 Capacity (hr)

1 10 2 3 4 2 500
2 5 3 2 1 2 380
3 4 7 3 2 1 450

Unit selling
price ($) 75 70 55 45

Formulate the problem as an LP model, and find the optimum solution.
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TIle production rates in units per hour are 1.25 and 1 for products A and B, respec
tively. All demand must be met. However, demand for a later month may be filled from
the production in an earlier one. For any carryover from one month to the next, holding
costs of $.90 and $.75 per unit per month are charged for products A and B, respectively.
The unit production costs for the two products are $30 and $28 for A and B, respectively.
Determine the optimum production schedule for the two products.

*7. The manufacturing process of a product consists of two successive operations, I and II. The
following table provides the pertinent data over the months of June, July, and August:

,,. ,
,

Finished product demand (units)
Capacity of operation I (hr)
Capacity of operation II (hr)

June

500
800

1000

July

450
700
850

August

600
550
700

Producing a unit of the product takes .6 hour on operation I plus .8 hour on operation
II. Overproduction of either the semifinished product (operation I) or the finished
product (operation II) in any month is allowed for use in a later month. The corre
sponding holding costs are $.20 and $.40 per unit per month. The production cost varies
by operation and by month. For operation 1, the unit production cost is $10, $12, and
$11 for June, July, and August. For operation 2, the corresponding unit production cost
is $15, $18, and $16. Determine the optimal production schedule for the two operations
over the 3-month horizon.

8. Two products are manufactured sequentially on two machines. The time available on
each machine is 8 hours per day and may be increased by up to 4 hours of overtime, if
necessary, at an additional cost of $100 per hour. The table below gives the production
rate on the two machines as well as the price per unit of the two products. Determine the
optimum production schedule and the recommended use of overtime, if any.

Production rate (unils/hr)

Machine 1
Machine 2
Price per unit ($)

Product 1

5
8

110

Product 2

5
4

118

2.3.5 Blending and Refining

A number of LP applications deal with blending different input materials to produce
products that meet certain specifications while minimizing cost or maximizing profit.
The input materials could be ores, metal scraps, chemicals, or crude oils and the output
products could be metal ingots, paints, or gasoline of various grades. This section pre
sents a (simplified) model for oil refining. The process starts with distilling crude oil to
produce intermediate gasoline stocks and then blending these stocks to produce final
gasolines. The final products must satisfy certain quality specifications (such as octane
rating). In addition, distillation capacities and demand limits can directly affect the
level of production of the different grades of gasoline. One goal of the modeLis deter
mine the optimal mix of final products that will maximize an appropriate profit func
tion. In some cases, the goal may be to minimize a cost function.



Example 2.3-7 (Crude Oil Refining and Gasoline Blending)

Shale Oil, located on the island of Aruba, has a capacity of 1,500,000 bbl of crude oil per day. The
final products from the refinery include three types of unleaded gasoline with different octane
numbers (ON): regular with ON = 87, premium with ON = 89, and super with ON = 92. The
refining process encompasses three stages: (1) a distillation tower that produces feedstock
(ON = 82) at the rate of .2 bbl per bbl of crude oil, (2) a cracker unit that produces gasoline
stock (ON = 98) by using a portion of the feedstock produced from the distillation tower at the
rate of .5 bbl per bbl of feedstock, and (3) a blender unit that blends the gasoline stock from the
cracker unit and the feedstock from the distillation tower. The company estimates the net profit
per barrel of the three types of gasoline to be $6.70, $7.20, and $8.10, respectively. The input ca
pacity of the cracker unit is 200,000 barrels of feedstock a day. TIle demand limits for regular,
premium, and super gasoline are 50,000,30,000, and 40,000 barrels per day. Develop a model for
determining the optimum production schedule for the refinery.

")
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I
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Mathematical Model: Figure 2.7 summarizes the elements of the model. TIle variables can be
defined in terms of two input streams to the blender (feedstock and cracker gasoline) and the
three final products. Let

Xij = bbl/day of input stream i used to blend final product j, i = 1,2; j = 1,2,3

Using this definition, we have

Daily production of regular gasoline = XII + X21 bbl/day
Daily production of premium gasoline = X12 + X22 bbl/day
Daily production of super gasoline = xn + X23 bbllday

(
Daily output ) = (DailY Production) + (DailY Production)

of blender unit of regular gas of premium gas

+ (DailY Production)
of super gas

= (Xli + X21) + (X12 + X22) + (XJ3 + x23)bbl/day

1:1

Xll + X12 + XlJ --ON =82

5:1 2:1 Blender --
Crude

Distillation Cracker
x21 + xn + x23

ON =82 ON =98 ~

Feed-
stock

XII + x21, ON = 87

Xl3 + x23' ON = 92

FIGURE 2.7

Product flow in the refinery problem

i
1
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(
Daily feedstoCk)

bl d
= XIl + Xl2 + Xn bbl/day

to en er

(
Daily cracker unit)

f d bl d
= X2l + Xn + x23 bbl/day

ee to en er

(
Daily feedstoCk)

k
= 2(X21 + X22 + X23)bbl/day

to crac er

(
Daily crude oil used)

"I f" = 5(Xll + X12 + XI3) + 10(X21 + X22 + x23)bbIlday
In t le re mery

The objective of the model is to maximize the total profit resulting from the sale of all three
grades of gasoline. From the definitions given above, we get

Maximize z = 6.70(x]] + x2d + 7.20(XI2 + X22) + 8.1O(X13 + X23)

The constraints of the problem are developed as follows:

1. Daily crude oil supply does /lot exceed 1,500,000 bbl/day:

5(xl1 + XI2 + xn) + 10(X21 + X22 + X23) ::5 1,500,000

2. Cracker unit input capacity does not exceed 200,000 bbl/day:

2(X21 + X22 + X23) ::5 200,000

3. Daily demand for regular does not exceed 50,000 bbl:

Xl I + x21 ::5 50,000

4. Daily demand for premium does not exceed 30,000:

XI2 + X22 ::5 30,000

5. Daily demand for super does not exceed 40,000 bbl:

Xu + x23 ::5 40,000

6. Octane number (ON) for regular is at least 87:

TIle octane number of a gasoline product is the weighted average of the octane numbers of
the input streams used in the blending process and can be computed as

(
Average ON Of)
regular gasoline =

Feedstock ON X feedstock bbl/day + Cracker unit ON X Cracker unit bbl/day

Total bbl/day of regular gasoline

82xl1 + 98x21
=

Thus, octane number constraint for regular gasoline becomes

82xlI + 98x21---:...::...--.....::..:..;;::87
XII + X2I
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The constraint is linearized as

82xll + 98x21 2:: 87(Xll + X2l)

7. Octane number (ON) for premium is at least 89:

82x12 + 98x22_--..::.=:._--= 2:: 89
X12 + X22

which is linearized as

82xl2 + 98x22 2:: 89(xl2 + X22)

8. Octane number (ON) for super is at least 92:

82x13 + 98x23_--..::.=:._--= 2:: 92
X13 + X23

or

The complete model is thus summarized as

Maximize z = 6.70(xlI + x2d + 7.20(xl2 + X22) + 8.10(xl3 + X23)

subject to

5(xll + XI2 + X13) + 1O(X2I + X22 + X23) :5 1,500,000

2(Xll + Xl2 + Xl3) :5 200,000

Xli + X2I :5 50,000

XI2 + Xn :5 30,000

X13 + X23 :5 40,000

82xll + 98x2I 2:: 87(xu + x2d

82x12 + 98x22 2:: 89(x12 + X22)

82x13 + 98x23 2:: 92(X13 + Xl3)

The last three constraints can be simplified to produce a constant right-hand side.

Solution:

The optimum solution (using file amplEx2.3-7.txt) is z = 1,482,000, Xu = 20,625, Xli == 9375,
XI2 =' 16,875, X22 = 13,125, Xl3 = 15,000, X23 = 25,000. This translates to

Daily profit = $1,482,000

Daily amount of regular gasoline = XII + XlI = 20,625 + 9375 = 30,000 bbl/day

Daily amount of premium gasoline = Xu + xn = 16,875 + 13,125 = 30,000 bbVday

Daily amount of regular gasoline = XI3 + X23 = 15,000 + 25,000 = 40,000 bbVday

The solution shows that regular gasoline production is 20,000 bbVday short of satisfying the
maximum demand. The demand for the remaining two grades is satisfied.
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PROBLEM SET 2.3E

1. Hi-V produces three types of canned juice drinks, A, B, and C, using fresh strawberries,
grapes, and apples. TIle daily supply is limited to 200 tons of strawberries, 100 tons of
grapes, and 150 tons of apples. The cost per ton of strawberries, grapes, and apples is $200,
$100, and $90, respectively. Each ton makes 1500 Ib of strawberry juice, 1200 Ib of grape
juice, and 1000 Ib of apple juice. Drink A is a 1:1 mix of strawberry and apple juice. Drink B
is 1:1:2 mix of strawberry, grape, and apple juice. Drink C is a 2:3 mix of grape and apple
juice. All drinks are canned in 16-oz (lib) cans. The price per can is $1.15, $1.25, and $1.20
for drinks A, B, and C. Determine the optimal production mix of the three drinks.

*2. A hardware store packages handyman bags of screws, bolts, nuts, and washers. Screws come
in 100-lb boxes and cost $110 each, bolts come in 1oo-lb boxes and cost $150 each, nuts come
in 80-lb boxes and cost $70 each, and washers come in 30-lb boxes and cost $20 each. The
handyman package weighs at least lib and must include, by weight, at least 10% screws and
25% bolts, and at most 15% nuts and 10% washers. To balance the package, the number of
bolts cannot exceed the number of nuts or the number of washers. A bolt weighs 10 times as
much as a nut and 50 times as much as a washer. Determine the optimal mix of the package.

3. All-Natural Coop makes three breakfast cereals, A, B, and C, from four ingredients:
rolled oats, raisins, shredded coconuts, and slivered almonds. The daily availabilities of the
ingredients are 5 tons, 2 tons, 1 ton, and 1 ton, respectively. The corresponding costs per
ton are $100, $120, $110, and $200. Cereal A is a 50:5:2 mix of oats, raisins, and almond.
Cereal B is a 60:2:3 mix of oats, coconut, and almond. Cereal C is a 60:3:4:2 mix of oats,
raisins, coconut, and almond. The cereals are produced in jumbo 5-lb sizes. All-Natural
sells A, B, and Cat $2, $2.50, and $3.00 per box, respectively. The minimum daily demand
for cereals A, B, and Cis 500,600, and 500 boxes. Determine the optimal production mix
of the cereals and the associated amounts of ingredients.

4. A refinery manufactures two grades of jet fuel, f1 and Fl, by blending four types of gaso
line, A, B, C, and D. Fuel F1 uses gasolines A, B, C, and D in the ratio 1:1:2:4, and fuel Fl
uses the ratio 2:2:1:3. The supply limits for A, B, C, and Dare 1000, 1200,900, and 1500
bbllday, respectively. The costs per bbl for gasolines A, B, C, and Dare $120, $90, $100, and
$150, respectively. Fuels F1 and Fl sell for $200 and $250 per bbi.The minimum demand
for F1 and Fl is 200 and 400 bbUday. Determine the optimal production mix for F1 and n.

5. An oil company distills two types of crude oil, A and B, to produce regular and premium
gasoline and jet fuel. There are limits on the daily availability of crude oil and the minimum
demand for the final products. If the production is not sufficient to cover demand, the short
age must be made up from outside sources at a penalty. Surplus production will not be sold
immediately and will incur storage cost. The following table provides the data of the situation:

Fraction yield per bbl

Crude Regular Premium Jet Price/bbl ($) bbl/day

Crude A .20 .1 .25 30 2500
Crude B .25 .3 .10 40 3000
Demand (bbllday) 500 700 400
Revenue ($/bbl) 50 70 120
Storage cost for surplus

production ($ibbl) 2 3 4
Penalty for unfilled

demand ($/bbl) 10 15 20

Determine the optimal product mix for the refinery.
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6. In the refinery situation of Problem 5, suppose that the distillation unit actually produces
the intermediate products naphtha and light oil. One bbl of crude A produces .35 bbl of
naphtha and .6 bbl of light oil, and one bbl of crude B produces .45 bbl of naphtha and
.5 bbl of light oil. Naphtha and light oil are blended to produce the three final gasoline
products: One bbl of regular gasoline has a blend ratio of 2:1 (naphtha to light oil), one
bbl of premium gasoline has a blend ratio of ratio of 1:1, and one bbl of jet fuel has a
blend ratio of 1:2. Determine the optimal production mix.

7. Hawaii Sugar Company produces brown sugar, processed (white) sugar, powdered sugar,
and molasses from sugar cane syrup. The company purchases 4000 tons of syrup weekly
and is contracted to deliver at least 25 tons weekly of each type of sugar. The production
process starts by manufacturing brown sugar and molasses from the syrup. A ton of syrup
produces .3 ton of brown sugar and .1 ton of molasses. White sugar is produced by pro
cessing brown sugar. It takes 1 ton of brown sugar to produce .8 ton of white sugar. Pow
dered sugar is produced from white sugar through a special grinding process that has a
95% conversion efficiency (1 ton of white sugar produces .95 ton of powdered sugar).
The profits per ton for brown sugar, white sugar, powdered sugar, and molasses are $150,
$200, $230, and $35, respectively. Formulate the problem as a linear program, and deter
mine the weekly production schedule.

8. Shale Oil refinery blends two petroleum stocks,A and B, to produce two high-octane gaso
line products, I and II. Stocks A and B are produced at the maximum rates of 450 and 700
bbUhour, respectively. The corresponding octane numbers are 98 and 89, and the vapor pres
sures are 10 and 8 Ib/in2. Gasoline I and gasoline II must have octane numbers of at least 91
and 93, respectively. The vapor pressure associated with both products should not exceed
12 Ib/in2. The profits per bbl of I and II are $7 and $10, respectively. Determine the optimum
production rate for I and II and their blend ratios from stocks A and B. (Hint: Vapor pressure,
like the octane number, is the weighted average of the vapor pressures of the blended stocks.)

9. A foundry smelts steel, aluminum, and cast iron scraps to produce two types of metal in
gots, I and II, with specific limits on the aluminum, graphite and silicon contents. Alu
minum and silicon briquettes may be used in the smelting process to meet the desired
specifications. The following tables set the specifications of the problem:

Contents (%)

Input item Aluminum Graphite Silicon Cost/ton ($) Available tons/day

Steel scrap 10 5 4 100 1000
Aluminum scrap 95 1 2 150 500
Cast iron scrap 0 15 8 75 2500
Aluminum briquette 100 0 0 900 Any amount
Silicon briquette 0 0 100 380 Any amount

2.3

Ingot I Ingot II

. Ingredient

Aluminum
Graphite
Silicon

Demand (tons/day)

Minimum

8.1%
1.5%
2.5%

130

Maximum

10.8%
3.0%
00

Minimum

6.2%
4.1%
2.8%

250

Maximum

8.9%
00

4.1%

Determine the optimal input mix the foundry should smelt.
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10. Two alloys, A and B, are made from fOUf metals, I, II, III, and IV, according to the follow
ing specifications:

Alloy

A

B

Specifications

At most 80% of I
At most 30% of II
At least 50% of IV
Between 40% and 60% of II
At least 30% of III
At most 70% of IV

Selling price ($)

200

300

The fOUf metals, in turn, are extracted from three ores according to the following data:

Constituents (%)

Maximum quantity
Ore (tons) I If 1lI IV Others Price/ton ($)

1 1000 20 ]0 30 30 10 30
2 2000 10 20 30 30 10 40
3 3000 5 5 70 20 0 50

How much of each type of alloy should be produced? (Hint: Let Xkj be tons of are i
allocated to alloy k, and define Wk as tons of alloy k produced.)

2.3.6 Manpower Planning

Fluctuations in a labor force to meet variable demand over time can be achieved
through the process of hiring and firing, as demonstrated in Example 2.3-6. There are
situations in which the effect of fluctuations in demand can be "absorbed" by adjusting
the start and end times of a work shift. For example, instead of following the tradition
al three 8-hour-shift start times at 8:00 A.M., 3:00 P.M., and 11:00 P.M., we can use over
lapping 8-hour shifts in which the start time of each is made in response to increase or
decrease in demand.

TIle idea of redefining the start of a shift to accommodate fluctuation in demand
can be extended to other operating environments as well. Example 2.3-8 deals with the
determination of the minimum number of buses needed to meet rush-hour and off
hour transportation needs.

Real-Life Application-Telephone Sales Manpower Planning at Qantas Airways

Australian airline Qantas operates its main reservation offices from 7:00 till 22:00 using
6 shifts that start at different times of the day. Qantas used linear programming (with
imbedded queuing analysis) to staff its main telephone sales reservation office effi
ciently while providing convenient service to its customers. The study, carried aut in the
late 1970s, resulted in annual savings of over 200,000 Australian dollars per year. The
study is detailed in Case 15, Chapter 24 on the CD.
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Example 2.3-8 (Bus Scheduling)

Progress City is studying the feasibility of introducing a mass-transit bus system that will allevi
ate the smog problem by reducing in-city driving. The study seeks the minimum number of buses
that can handle the transportation needs. After gathering necessary information, the city engi
neer noticed that the minimum number of buses needed fluctuated with the time of the day and
that the required number of buses could be approximated by constant values over successive 4
hour intervals. Figure 2.8 summarizes the engineer's findings. To carry out the required daily
maintenance, each bus can operate 8 successive hours a day only.

Mathematical Model: Determine the number of operating buses in each shift (variables) that
will meet the minimum demand (constraints) while minimizing the total number of buses in op
eration (objective).

You may already have noticed that the definition of the variables is ambiguous. We know
that each bus will run for 8 consecutive hours, but we do not know when a shift should start. If we
follow a normal three-shift schedule (8:01 A.M.-4:00 P.M., 4:01 p.M.-12:00 midnight, and 12:01
A.M.-8:00 A.M.) and assume that x(, X2, and X3 are the number of buses starting in the first, sec
ond, and third shifts, we can see from Figure 2.8 that Xl ~ 10, x2 ::=: 12, and X3 ::=: 8. The corre
sponding minimum number of daily buses is Xl + X2 + X3 = 10 + 12 + 8 = 30.

The given solution is acceptable only if the shifts must coincide with the norma) three-shift
schedule. It may be advantageous, however, to allow the optimization process to choose the
"best" starting time for a shift. A reasonable way to accomplish this is to allow a shift to start
every 4 hours. The bottom of Figure 2.8 illustrates this idea where overlapping 8-hour shifts
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FIGURE 2.8

Number of buses as a function of the time of the day
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may start at 12:01 A.M., 4:01 A.M., 8:01 A.M., 12:01 P.M., 4:01 P.M., and 8:01 P.M.lllUS, the vari
ables may be defined as

XI = number of buses starting at 12: 01 A.M.

X2 = number of buses starting at 4:01 A.M.

X3 = number of buses starting at 8:01 A.M.

X4 = number of buses starting at 12:01 P.M.

Xs = number of buses starting at 4:01 P.M.

X6 = number of buses starting at 8:01 P.M.

We can see from Figure 2.8 that because of the overlapping of the shifts, the number of buses for
the successive 4-hour periods is given as

Time period

12:01 A.M. - 4:00 A.M.

4:01 A.M. - 8:00 A.M.

8:01 A.M. -12:00 noon
12:01 P.M. - 4:00 P.M.

4:01 P.M. - 8:00 P.M.

8:01 A.M. -12:00 A.M.

Number of buses in operation

X\ + X6

XI + X2

X2 + X3

XJ + X4

X4 + Xs
X5 + X6

The complete model is thus written as

Minimize z = X\ + X2 + X3 + X4 + Xs + X6

subject to

X\ + X6 2:: 4 (12:01 A.M.-4:00 A.M.)

X\ + X2 2:: 8 (4:01 A.M.-8:00 A.M.)

X2 + X3 2:: 10 (8:01 A.M.-12:00 noon)

X3 + X4 2:: 7 (12:01 r.M.-4:00 P.M.)

X4 + X5 2:: 12 (4:01 p.M.-8:00 P.M.)

Xs + x6?; 4 (8:01 p.M.-12:00 P.M.)

Xj 2:: O,j = 1,2, ... ,6

Solution:

The optimal solution calls for using 26 buses to satisfy the demand with x. = 4 buses to start at
12:01 A.M., X2 = 10 at 4:01 A.M., X4 = 8 at 12:01 P.M., and Xs = 4 at 4:01 P.M.

PROBLEM SET 2.3F

*1. In the bus scheduling example suppose that buses can run either 8- or 12-hour shi-fts. If a
bus runs for 12 hours, the driver must be paid for the extra hours at 150% of the regular
hourly pay. Do you recommend the use of 12-hour shifts?
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2. A hospital employs volunteers to staff the reception desk between 8:00 A.M. and 10:00 P.M.

Each volunteer works three consecutive hours except for those starting at 8:00 P.M. who
work for two hours only. The minimum need for volunteers is approximated by a step
function over 2-hour intervals starting at 8:00 A.M. as 4, 6, 8, 6, 4, 6, 8. Because most volun
teers are retired individuals, they are willing to offer their services at any hour of the day
(8:00 A.M. to 10:00 P.M.). However, because of the large number of charities competing for
their service, the number needed must be kept as low as possible. Determine an optimal
schedule for the start time of the volunteers

3. In Problem 2, suppose that no volunteers will start at noon or 6:00 P.M. to allow for lunch
and dinner. Determine the optimal schedule.

4. In an LTL (less-than-truckload) trucking company, terminal docks include casual work
ers who are hired temporarily to account for peak loads. At the Omaha, Nebraska, dock,
the minimum demand for casual workers during the seven days of the week (starting on
Monday) is 20, 14, 10, 15, 18, 10, 12 workers. Each worker is contracted to work five con
secutive days. Determine an optimal weekly hiring practice of casual workers for the
company.

*5. On most university campuses students are contracted by academic departments to do er
rands, such as answering the phone and typing. The need for such service fluctuates dur
ing work hours (8:00 A.M. to 5:00 P.M.). In the IE department, the minimum number of
students needed is 2 between 8:00 A.M. and 10:00 A.M.,3 between 10:01 A.M. and 11:00
A.M.,4 between 11:01 A.M. and 1:00 P.M., and 3 between 1:01 P.M. and 5:00 P.M. Each stu
dent is allotted 3 consecutive hours (except for those starting at 3:01, who work for
2 hours and those who start at 4:01, who work for one hour). Because of their flexible
schedule, students can usually report to work at any hour during the work day, except
that no student wants to start working at lunch time (12:00 noon). Determine the mini
mum number of students the IE department should employ and specify the time of the
day at which they should report to work.

6. A large department store operates 7 days a week. The manager estimates that the mini
mum number of salespersons required to provide prompt service is 12 for Monday, 18 for
Tuesday, 20 for Wednesday, 28 for Thursday, 32 for Friday, and 40 for each of Saturday'
and Sunday. Each salesperson works 5 days a week, with the two consecutive off-days
staggered throughout the week. For example, if 10 salespersons start on Monday, two can
take their off-days on Tuesday and Wednesday, five on Wednesday and Thursday, and
three on Saturday and Sunday. How many salespersons should be contracted and how
should their off-days be allocated?

2.3.7 Additional Applications

The preceding sections have demonstrated the application of LP to six representative
areas. The fact is that LP enjoys diverse applications in an enormous number of areas.
The problems at the end of this section demonstrate some of these areas, ranging from
agriculture to military applications. This section also presents an interesting application
that deals with cutting standard stocks of paper rolls to sizes specified by customers.

Example 2.3-9 (Trim Loss or Stock Slitting)

The Pacific Paper Company produces paper rolls with a standard width of 20 feet each. Special
customer orders with different widths are produced by slitting the standard rolls. Typical orders
(which may vary daily) are summarized in the following table:

I,
I·

1_ ..
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Order Desired width (ft) Desired number of rolls

1
2
3

5
7
9

150
200
300

In practice, an order is filled by setting the knives to the desired widths. Usually, there are a
number of ways in which a standard roll may be slit to fill a given order. Figure 2.9 shows three
feasible knife settings for the 20-foot roll. Although there are other feasible settings, we limit the
discussion fOT the moment to settings 1,2, and 3 in Figure 2.9. We can combine the given settings
in a number of ways to fill orders for widths 5,7, and 9 feet. The following are examples of feasi
ble combinations:

1. Slit 300 (standard) rolls using setting 1 and 75 rolls using setting 2.

2. Slit 200 rolls using setting 1 and 100 rolls using setting 3.

Which combination is better? We can answer this question by considering the "waste" each
combination generates. In Figure 2.9 the shaded portion represents surplus rolls not wide
enough to fill the required orders. These surplus rolls are referred to as trim loss. We can evalu
ate the "goodness" of each combination by computing its trim loss. However, because the surplus
rolls may have different widths, we should base the evaluation on the trim loss area rather than
on the number of surplus rolls. Assuming that the standard roll is of length L feet, we can com
pute the trim-loss area as follows:

Combination 1: 300 (4 X L) + 75 (3 X L) = 1425L ff

Combination 2: 200 (4 X L) + 100 (1 X L) = 900L ft2

111ese areas account only for the shaded portions in Figure 2.9. Any surplus production of
the 5-, 7- and 9-foot rolls must be considered also in the computation of the trim-loss area. In

I" I"
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FIGURE 2.9

Trim loss (shaded) (or knife settings 1.2. and 3
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combination 1, setting 1 produces a surplus of 300 - 200 = 100 extra 7-foot rolls and setting 2
produces 75 extra 7-foot rolls. Thus the additional waste area is 175 (7 x L) = 1225L ft2. Com
bination 2 does not produce surplus rolls of the 7- and 9-foot rolls but setting 3 does produce
200 - 150 = 50 extra 5-foot rolls, with an added waste area of 50 (5 x L) = 250L ft2

• As a re
sult we have

Total trim-loss area for combination 1 = 1425L + 1225L = 2650L ft2

Total trim-loss area for combination 2 = 900L + 250L = 1150L ft2

Combination 2 is better, because it yields a smaller trim-loss area.

Mathematical Model: The problem can be summarized verbally as determining the knife-set
ting combinations (variables) that will fill the required orders (constraints) with the least trim-loss
area (objective).

The definition of the variables as given must be translated in a way that the mill operator
can use. Specifically, the variables are defined as the number ofstandard rolls to be slit according
to a given knife setting. 111is definition requires identifying all possible knife settings as summa
rized in the following table (settings 1,2, and 3 are given in Figure 2.9). You should convince
yourself that settings 4,5, and 6 are valid and that no "promising" settings have been excluded.
Remember that a promising setting cannot yield a trim-loss roll of width 5 feet or larger.

Knife setting

Required Minimum
width (ft) I 2 3 4 5 6 number of rolls

5 0 2 2 4 1 0 150
7 1 1 0 0 2 0 200
9 1 0 1 0 0 2 300

Trim loss per
foot of length 4 3 0 2

To express the model mathematically, we define the variables as

Xj = number of standard rolls to be slit according to setting j, j = 1,2, ... ,6

The constraints of the model deal directly with satisfying the demand for rolls.

Number of 5-ft rolls produced =

Number of 7-ft rolls produced = Xl + X2

~ 150

~ 200

Number of 9-ft rolls produced = Xl

To construct the objective function, we observe that the total "trim loss area is the difference
between the total area of the standard rolls used and the total area representing all the orders.
Thus

Total area of standard rolls = 20L(x) + X2 + X3 + X4 + Xs + X6)

Total area of orders = L(150 x 5 + 200 x 7 + 300 X 9) = 4850L

;
j

f
1_
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The objective function then becomes

Minimize z = 20L(XI + X2 + X3 + X4 + X5 + X6) - 4850L

Because the length L of the standard roll is a constant, the objective function equivalently
reduces to

Minimize Z = Xl + X2 + X3 + X4 + Xs + X6

The model may thus be written as

Minimize z = Xl + X2 + X3 + X4 + Xs + X6

subject to

Solution:

2X2 + 2X3 + 4X4 + Xs

Xl + X2 + 2X5

Xl + x) + 2X6

Xj;=: O,j = 1,2, ... ,6

;=: 150 (5-ft rolls)

;=: 200 (7-ft rolls)

;=: 300 (9-ft rolls)

,
{.
I

--l __

The optimum solution calls for cutting 12.5 standard rolls according to setting 4, 100 according to
setting 5, and 150 according to setting 6. TIle solution is not impIementable because X4 is nonin
teger. We can either use an integer algorithm to solve the problem (see Chapter 9) or round X4

conservatively to 13 rolls.

Remarks. TIle trim-loss model as presented here assumes that all the feasible knife settings can
be determined in advance. This task may be difficult for large problems, and viable feasible com
binations may be missed.The problem can be remedied by using an LP model with imbedded in
teger programs designed to generate promising knife settings on demand until the optimum
solution is found. This algorithm, sometimes referred to as column generation, is detailed in
Comprehensive Problem 7-3, Appendix E on the CD. The method is rooted in the use of (rea
sonably advanced) linear programming theory, and may serve to refule the argument that, in
practice, it is unnecessary to learn LP theory.

PROBLEM SET 2.3G

*1. Consider the trim-loss model of Example 2.3-9.

(a) If we slit 200 rolls using setting 1 and 100 rolls using setting 3, compute the associat
ed trim-loss area.

(b) Suppose that the only available standard roll is 15 feet wide. Generate all possible
knife settings for producing 5-, 7-, and 9-foot rolls, and compute the associated trim
loss per foot length.

(c) In the original model, if the demand for 7-foot rolls is decreased by 80, what is the
minimum number of standard 20-foot rolls that will be needed to fill the demand for
of all three types of rolls?

(d) In the original model, if the demand for 9-foot rolls is changed to 400, how many ad
ditional standard 20-foot rolls will be needed to satisfy the new demand?
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2. Shelf Space Allocation. A grocery store must decide on the shelf space to be allocated to
each of five types of breakfast cereals.lhe maximum daily demand is 100,85,140,80, and 90
boxes, respectively. The shelf space in square inches for the respective boxes is 16,24, 18,22,
and 20. The total available shelf space is 5000 in2. The profit per unit is $1.10, $1.30, $1.08,
$1.25, and $1.20, respectively. Determine the optimal space allocation for the five cereals.

3. Voting on Issues. In a particular county in the State of Arkansas, four election issues are on
the ballot: Build new highways, increase gun control, increase farm subsidies, and increase
gasoline tax. The county includes 100,000 urban voters, 250,000 suburban voters, and 50,000
rural volers, all with varying degrees of support for and opposition to election issues. For
example, rural voters are opposed to gun control and gas tax and in favor of road building
and fann subsidies. TIle county is planning a TV advertising campaign with a budget of
$100,000 at the cost of $1500 per ad. TIle following table summarizes the impact of a single
ad in terms of the number of pro and can votes as a function of the different issues:

Expected number of pro ( +) and
con ( - ) votes per ad

Issue

New highways
Gun control
Smog control
Gas tax

Urban

-30,000
+80,000
+40,000
+90,000

Suburban

+60,000
+30,000
+10,000

o

Rural

+30,000
-45,000

°-25,000

An issue will be adopted if it garners at least 51 % of the votes. Which issues will be ap
proved by voters, and how many ads should be allocated to these issues?

4. Assembly-Line Balancing. A product is assembled from three different parts. The parts
are manufactured by two departments at different production rates as given in the fol
lowing table:

Production rate (units/hr)
Capacity

Department (hr/wk) Part] Part 2 Part]

1 100 8 5 10
2 80 6 12 4

Determine the maximum number of final assembly units that can be produced weekly.
(Hint. Assembly units = min {units of part 1, units of part 2, units of part 3}.
Maximize z = min{x" X2} is equivalent to max z subject to z S Xl and z $" X2')

5. Pollution Control. Three types of coal, C1, C2, and C3, are pulverized and mixed together
to produce 50 tons per hour needed to power a plant for generating electricity. The burn
ing of coal emits sulfur oxide (in parts per million) which must meet the Environmental
Protection Agency (EPA) specifications of at most 2000 parts per million. The following
table summarizes the data of the situation:

Sulfur (parts per million)
Pulverizer capacity (tonfhr)
Cost per ton

Determine the optimal mix of the coals.

Cl

2500
30

$30

C2

1500
30

$35

C3

1600
30

$33
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*6. Traffic Light Control. (Stark and Nicholes, 1972) Automobile traffic from three high
ways, HI, H2, and H3, must stop and wait for a green light before exiting to a toll
road. TIle tolls are $3, $4, and $5 for cars exiting from HI, H2, and H3, respectively.
The flow rates from HI, H2, and H3 are 500,600, and 400 cars per hour. The traffic
light cycle may not exceed 2.2 minutes, and the green light on any highway must be at
least 25 seconds. The yellow light is on for 10 seconds. The toll gate can handle a maxi
mum of 510 cars per hour. Assuming that no cars move on yellow, determine the opti
mal green time interval for the three highways that will maximize toll gate revenue
per traffic cycle.

7. Filling a Straight Line into Empirical Data (Regression). In a lO-week typing class for be
ginners, the average speed per student (in words per minute) as a function of the number
of weeks in class is given in the following table.

Week,x
Words per minute, y

1
5

2
9

3
15

4
19

5
21

6
24

7
26

8
30

9
31

10
35

Determine the coefficients a and b in the straight-line relationship, y = ax + b, that
best fit the given data. (Hint: Minimize the sum of the absolute value of the deviations be
tween theoretical yand empirical y. Min Ixl is equivalent to min z subject to z :s x and
z ~ -x.)

8. Leveling the Terrain for a New Highway. (Stark and Nicholes, 1972) The Arkansas Highway
Department is planning a new 10-mile highway on uneven terrain as shown by the profile in
Figure 2.10.The width of the construction terrain is approximately 50 yards. To simplify the
situation, the terrain profile can be replaced by a step function as shown in the figure. Using
heavy machinery, earth removed from high terrain is hauled to fill low areas. There are also
two burrow pits, I and II, located at the ends of the lO-mile stretch from which additional
earth can be hauled, if needed. Pit I has a capacity of 20,000 cubic yards and pit II a capacity
of 15,000 cubic yards. TIle costs of removing earth from pits I and II are, respectively, $1.50
and $1.90 per cubic yard. The transportation cost per cubic yard per mile is $.15 and the cost
of using heavy machinery to load hauling trucks is $.20 per cubic yard. This means that a
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cubic yard from pit I hauled one mile will cost a total of (1.5 + .20) + 1 X .15 = $1.85 and
a cubic yard hauled one mile from a hill to a fill area will cost .20 + 1 x .15 = $.35. Devel
op a minimum cost plan for leveling the lO-mile stretch.

9. Military Planning. (Shepard and Associates, 1988) The Red Army (R) is trying to invade
the territory defended by the Blue Army (B). Blue has three defense lines and 200 regu
lar combat units and can draw also on a reserve pool of 200 units. Red plans to attack on
two fronts, north and south, and Blue has set up three east-west defense lines, I, II, and
III. The purpose of defense lines I and II is to delay the Red Army attack by at least 4
days in each line and to maximize the total duration of the battle. The advance time of
the Red Army is estimated by the following empirical formula:

. . (Blue units)Battle duratIon In days = a + b R .
ed umts

The constants a and b are a function of the defense line and the north/south front as
the following table shows:

North front
South front

I

.5
1.1

a

II

.75
1.3

III

.55
1.5

I

8.8
10.5

b

II

7.9
8.1

III

10.2
9.2

The Blue Army reserve units can be used in defense lines II and II only. The alloca
tion of units by the Red Army to the three defense lines is given in the following table.

Number of Red Army attack units

North front
South front

DefellSe Line I

30
30

Defense Line 1I

60
40

Defense Line III

20
20

How should Blue allocate its resources among the three defense lines and the
north/south fronts?

10. Water Quality Management. (Stark and Nicholes, 1972) Four cities discharge waste water
into the same stream. City 1 is upstream, followed downstream by city 2, then city 3, then
city 4. Measured alongside the stream, the cities are approximately 15 miles apart. A
measure of the amount of pollutants in waste water is the BOD (biochemical oxygen de
mand), which is the weight of oxygen required to stabilize the waste constituent in water.
A higher BOD indicates worse water quality. TIle Environmental Protection Agency
(EPA) sets a maximum allowable BOD loading, expressed in lb BOD per gallon. The re
moval of pollutants from waste water takes place in two forms: (1) natural decomposition
activity stimulated by the oxygen in the air, and (2) treatment plants at the points of dis
charge before the waste reaches the stream. The objective is to determine the most eco
nomical efficiency of each of the four plants that will reduce BOD to acceptable levels.
The maximum possible plant efficiency is 99%.

To demonstrate the computations involved in the process, consider the following de
finitions for plant 1:

QI = Stream flow (gal/hour) on the IS-mile reach 1-2 leading to city 2

PI = BOD discharge rate (in lb/hr)
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XI = efficiency of plant 1 (:::;.99)

bi = maximum allowable BOD loading in reach 1-2 (in lb BOD/gal)

To satisfy the BOD loading requirement in reach 1-2, we must have

PI(l - xd :::; b1QI

In a similar manner, the BOD loading constraint for reach 2-3 takes the form

(
BOD diSCharge) ( BOD diSCharge)

1 - Tl2. +. :::; b Q( ) rate In reach 1-2 rate In reach 2-3 2 Z

or

The coefficient Tl2 «1) represents the fraction of waste removed in reach 1-2 by decom
position. For reach 2-3, the constraint is

Determine the most economical efficiency for the four plants using the following
data (the fraction of BOD removed by decomposition is 6% for all four reaches):

Reach 1-2 Reach 2-3 Reach 2-3 Reach 3-4
(i == 1) (i == 2) (i = 3) (i = 4)

Qi (gal/hr) 215,000 220,000 200,000 210,000
Pi (Ib/hr) 500 3,000 6,000 1,000
hi (Ib BOD/gal) .00085 .0009 .0008 .0008
Treatment cost

($/Ib BOD removed) .20 .25 .15 .18

11. Loading Structure. (Stark and Nicholes, 1972) The overhead crane with two lifting yokes
in Figure 2.11 is used to transport mixed concrete to a yard for casting concrete barriers.
The concrete bucket hangs at midpoint from the yoke. The crane end rails can support a
maximum of 25 kip each and the yoke cables have a 20-kip capacity each. Determine the
maximum load capacity, WI and Wz. (Hint: At equilibrium, the sum of moments about
any point on the girder or yoke is zero.)

12. Allocation ofAircraft to Routes. Consider the problem of assigning aircraft to four routes
according to the following data:

Number of daily trips on route
Capacity Number of

Aircraft type (passengers) aircraft I 2 3 4

1 50 5 3 2 2 1
2 30 8 4 3 3 2
3 20 10 5 5 4 2

Daily number
of customers 1000 2000 900 1200
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Overhead crane with two yokes (Problem 11)
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TIle associated costs, including the penalties for losing customers because of space
unavailability, are

Operating cost ($) per trip on route

Aircraft type 1 2 3 4

1 1000 1100 1200 1500
2 800 900 1000 1000
3 600 800 800 900

Penalty ($) per
lost customer 40 50 45 70

Determine the optimum allocation of aircraft to routes and determine the associated
number of trips.

2.4 COMPUTER SOLUTION WITH SOLVER AND AMPL

In practice, where typical linear programming models may involve thousands of vari~

abies and constraints, the only feasible way to solve such models is to use the comput
er. This section presents two distinct types of popular software: Excel Solver and
AMPL. Solver is particularly appealing to spreadsheet users. AMPL is an algebraic
modeling language that, like any other programming language, requires more exper
tise. Nevertheless, AMPL, and other similar languages,3 offer great flexibility in model
ing and executing large and complex LP models. Although the presentation in this
section concentrates on LPs, both AMPL and Solver can be used with integer and non
linear programs, as will be shown later in the book.

30ther known commercial packages include AfMMS, GAMS, LINGO, MPL. OPL Studio, and Xpress-Mosel.
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2.4.1 LP Solution with Excel Solver

In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.12
shows the layout of the data for the Reddy Mikks model (file solverRM1.xls).111e top
of the figure includes four types of information: (1) input data cells (shaded areas,

A'··
1

-2 . In ut data: Cell formula Copy to

. ~ - ...._···Oo.... I-E"---x-;-e:-io-r-+--ln-t:-;-io-r-l·--TotaIS··'--'·' --Li;-iJits!-·· ~3' :~i~~~~~·?~S2?~~:P~...
:5;:; Ob'ective 5 4 21 . _.:, . ,

1----'.::6'-+::R:..=a:L:
w

=--=m::.:.:.a-=-te-ri=-a---:-I---:-1+------:6=----f--4-:-----,1--...:2~4:....-(&-<-=---i--2=-4-:------! .. --:. -.-- -----.- - - ;-- '0__ :

7' Raw material 2 1 2 6 6... ,........•.. __ 1.. '

S' Markel limit .1 1 ·1.5 1:: '; ,i--------=--+.:;==:..:.:.::,=--+--.,:----jf--------------'----t------.-- .... -... ·--·c..--- ...- .....------ :"--.•••-- .•.••• --... ,
9 Demand limit 0 1 1.5 <= 2
10 >=0 >=0

i.. .. .. ... ,~. ..
,12 x1 x2 z .

13 .·.·...·.·.·_S.o._lu.l_·io.·li ..._.. _·-·Je.-.....;;.3_....;..._1,;,,;,.:l.;..-_.,...-....;;;,2.;..1_[·----; --.--- ... i -- "","--" .._... ;-.- --.---j ----.
- :-- ,-----:._------------+.·-1---1--- .. --- _L -- .~I •• - --

11 Out Jut results:

i.. ; .....

-_._-_._-~. --_._-~-_.. -_.__ . _.:
___ •••_••• L_ ••••_..... 'M"

, I

__ 1..__ ._ ..!.,

'--'- -,. r-- - -.- ~ - -_ ,.- _H,,
---- _.. :.. _.. ; - ~

~
.. .i..._.._~. __ ..:

. I--_._- ._'-~ ..- ; -.. _.__.-.

Help ... --.--- ... u'.'

Close I. .uu' -:. ----.. '1----
..

Qplions

B,esel.t..l1

; S8S13:~CS13 >= 0
SoS6:g)~ <= sF::-6:sFS9

>5l,!bject 1lJ the Constraints:
t· .

. S~tTaraetCeJl:" [i)~~."
EQuaJT:o: "... 0J&~;(] O"'!iciO:Lalueof.:··~--J
(~I changirlg Cells: ._.....-...._-.. '-"'~""~" ...-. --_._.. .., -.. - ... _,....,#_.•••_0_. ~- ..-
~ . '. . .

1Isas13:SCS13

16
17
18.
19'
20
21
22
23
24
25 .
26
27
28

]

[~

Help[

Constraint:'

AddCancel

Cell Reference:

~
~-~
=n:~

'---------------.,;

"'---""-"'-'-'--~~>=
...-----......-"""""',-----lint I--I...----~-----..

! bJ'n ..,~/. i I ~'--'.' '-.-.-----------.. --- -------- .uoo .. !----------- __-.---.-- ."-=-'-'---__--'--.-.---r.oo--.----.-.--oo--.-. __ .. ,. .oo, 00.'..-.-...-....... .... ..

FIGURE 2.12

Defining the Reddy Mikks model with Excel Solver (file solverRMl.xls)
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B5:C9 and F6:F9), (2) cells representing the variables and the objective function we
seek to evaluate (solid rectangle cells, B13:013), (3) algebraic definitions of the objec
tive function and the left-hand side of the constraints (dashed rectangle cells, 05:09),
and (4) cells that provides explanatory names or symbols. Solver requires the first
three types only. The fourth type enhances the readability of the model and serves no
other purpose. The relative positioning of the four types of information on the spread
sheet need not follow the layout shown in Figure 2.12. For example, the cells defining
the objective function and the variables need not be contiguous, nor do they have to be
placed below the problem. What is important is that we know where they are so they
can be referenced by Solver. Nonetheless, it is a good idea to use a format similar to the
one suggested in Figure 2.12, because it makes the model more readable.

How does Solver link to the spreadsheet data? First we provide equivalent "alge
braic" definitions of the objective function and the left-hand side of the constraints
using the input data (shaded cells B5:C9 and F6:F9) and the objective function and
variables (solid rectangle cells B13:013), and then we place the resulting formulas in
the appropriate cells of the dashed rectangle D5:09. The following table shows the
original LP functions and their placement in the appropriate cells:

Objective, Z

Constraint 1
Constraint 2
Constraint 3
Constraint 4

Algebraic expression

5Xl + 4.x2

6x( + 4X2

XI + 2X2

-.xl + X2

OXI + X2

Spreadsheet formula

=BS*$B$13+C5*$C$13
=B6*$B$13+C6*$C$13
=B7*$B$13+C7*$C$13
=B8*$B$13+C8*$C$13
=B9*$B$13+C9*$C$ J3

Entered in cell

DS
D6
D7
D8
D9

Actually, you only need to enter the formula for cell 05 and then copy it into cells
D6:09. To do so correctly, the fixed references $B$13 and $C$13 representing Xl and X2

must be used. For larger linear programs, it is more efficient to enter

=SUMPROOUCf(B5:C5,$B$13:$C$13)

in cell D5 and copy it into cells D6:D9.
All the elements of the LP model are now ready to be linked with Solver. From

Excel's Tools menu, select Solver4 to open the Solver Parameters dialogue box shown
in the middle of Figure 2.12. First, you define the objective function, z, and the sense of
optimization by entering the following data:

Set Target Cell: $D$5
Equal To: 0 Max
By Changing Cells: $B$13:$C$13

This information tells Solver that the variables defined by cells $B$13 and $C$13 are
determined by maximizing the objective function in cell $D$5.

4If Solver does not appear under Tools, click Add-ins in the same menu and check Solver Add-in, then
click OK.
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TIle next step is to set up the constraints of the problems by clicking Add in the
Solver Parameters dialogue box. The Add Constraint dialogue box will be displayed
(see the bottom of Figure 2.12) to facilitate entering the elements of the constraints
(left-hand side, inequality type, and right-hand side) ass

$D$6:$D$9<=$F$6:$F$9

A convenient substitute to typing in the cell ranges is to highlight cells D6:D9 to enter
the left-hand sides and then cells F6:F9 to enter the right-hand sides. The same proce
dure can be used with Target Cell.

The only remaining constraints are the nonnegativity restrictions, which are
added to the model by clicking Add in the Add Constraint dialogue box to enter

$B$13:$C$13>=0

Another way to enter the nonnegative constraints is to click Options on the Solver Pa
rameters dialogue box to access the Solver Options dialogue box (see Figure 2.13) and
then check r;;r Assume Non-Negative. While you are in the Solver Options box, you

also need to check r;;r Assume Linear Model.
In general, the remaining default settings in Solver Options need not be changed.

However, the default precision of .000001 may be set too "high" for some problems,
and Solver may return the message "Solver could not find a feasible solution" when in
fact the problem does have a feasible solution. In such cases, the precision needs to be
adjusted to reflect less precision. If the same message persists, then the problem may be
infeasible.
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Solver options dialogue box

:n
SYou will notice that in the Add Constraint dialogue box (Figure 2.12), the middle box specifying the type of
inequalities « = and> =) has two additional options, int and bin, which stand for integer and binary and
can be used with integer programs to restrict variables 10 integer or binary values (see Chapter 9).
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For readability, you can use descriptive Excel range names instead of cell names. A
range is created by highlighting the desired cells, typing the range name in the top left
box of the sheet, and then pressing Return. Figure 2.14 (file solverRM2.xls) provides
the details with a summary of the range names used in the model. You should contrast
file solverRM2.xls with file solverRM1.xls to see how ranges are used in the formulas.

To solve the problem, click Solve on Solver Parameters (figure 2.14). A new di
alogue box, Solver Results, will then give the status of the solution. If the model setup
is correct, the optimum value of z will appear in cell D5 and the values of Xl and X2 will
go to cells B13 and C13, respectively. For convenience, we use cell Dl3 to exhibit the
optimum value of z by entering the formula =D5 in cell DB to display the entire opti
mum solution in contiguous cells.

If a problem has no feasible solution, Solver will issue the explicit message
"Solver could not find a feasible solution." If the optimal objective value is unbounded,
Solver will issue the somewhat ambiguous message "The Set Cell values do not con
verge." In either case, the message indicates that there is something wrong with the for
mulation of the model, as will be discussed in Section 3.5.

TIle Solver Results dialogue box will give you the opportunity to request further
details about the solution, including the important sensitivity analysis report. We will
discuss these additional results in Section 3.6.4.

The solution of the Reddy Mikks by Solver is straightforward. Other models may
require a "bit of ingenuity" before they can be defined in a convenient manner. A class

.. A " '·>cs·' C>·' ::;·~'D'\';~:IEJ" ',F\:IGkii:.::'·:Hi>.t~~;i~;~~~l'ij.1d

,·f. Reddv Mikks Model . ,. !
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FIGURE 2.14

Use of range names in Excel Solver (file solverRM2.xls)

2.4.
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of LP models that falls in this category deals with network optimization, as will be
demonstrated in Chapter 6.

PROBLEM SET 2.4A

1. Modify the Reddy Mikks Solver model of Figure 2.12 to account for a third type of paint
named "marine." Requirements per ton of raw materials 1 and 2 are .5 and .75 ton, re
spectively. The daily demand for the new paint lies between .5 ton and 1.5 tons. The profit
per ton is $3.5 (thousand).

2. Develop the Excel Solver model for the following problems:

(a) The diet model of Example 2.2-2.

(b) Problem 16, Set 2.2a

(c) The urban renewal model of Example 2.3-1.

*(d) The currency arbitrage model of Example 2.3-2. (Hint: You will find it convenient to
use the entire currency conversion matrix rather than the top diagonal elements
only. Of course, you generate the bottom diagonal elements by using appropriate
Excel formulas.)

(e) The multi-period production-inventory model of Example 2.3-5.

2.4.2 lP Solution with AMPl6

This section provides a brief introduction to AMPL. The material in Appendix A pro
vides detailed coverage of AMPL syntax and will be cross-referenced opportunely
with the presentation in this section as well as with other AMPL presentations
throughout the book.

Four examples are presented here: The first two deal with the basics of AMPL,
and the remaining two demonstrate more advanced usages to make a case for the ad
vantages of AMPL.

Reddy Mikks Problem-a Rudimentary Model. AMPL provides a facility for modeling
an LP in a rudimentary long-hand format. Figure 2.15 gives the self-explanatory code

var xl >=0;

var x2 >=0;

maximize z: 5*xl+4*x2;
subject to

cl: 6*xl+4*x2<=24;

c2: xl+2*x2<=6;

c3: -xl+x2<=1;

c4: x2<=2;
solve;
display z,xl,x2;

Figure 2.15

Rudimentary AMPL model for the Reddy Mikks problem
(file ampIRM1.txt)

6For convenience, the AMPL student version, provided by AMPL Optimization LLC with instructions, is on
the accompanying CD. Future updates may be downloaded from www.ampl.com. AMPL uses line com
mands and operates in a DOS (rather than Windows) environment. A recent beta version of a Windows in
terface can be found in www.OptiRisk-Syslems.com.
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for the Reddy Mikks model (file ampIRM1.txt). All reserved keywords are in bold. All
other names are user generated. The objective function and each of the constraints must
be given a distinct user-generated name followed by a colon. Each statement closes with a
semi-colon.

This rudimentary AMPL model is too specific in the sense that it requires devel
oping a new code each time the data of the problem are changed. For practical prob
lems with hundreds (even thousands) of variables and constraints, this long-hand
format is cumbersome. AMPL alleviates this difficulty by dividing the problem into
two components: (1) A general model that expresses the problem algebraically for
any desired number of variables and constraints, and (2) specific data that drive the
algebraic model. We will use the Reddy Mikks model to demonstrate the basic ideas
ofAMPL.

Reddy Mikks Problem-an Algebraic Model. Figure 2.16 lists the statements of the
model (file ampIRM2.txt). The file must be strictly text (ASCII). Comments are
preceded with # and may appear anywhere in the model. The language is case sensitive
and all its keywords (with few exceptions) must be in lower case. (Section A.2 provides
more details.)

#------------------------------------------algebraic model
param m;
param n;
param c{l. .n};
param b{1 .. m};
param a{1. .m, 1. .n};

var x{l. .n) >=0;

maximize z: surn{j in 1. .n}c[jJ*x[jJ;
subject to restr{i in 1 .. m):

sum{j in 1..n}a[i,jJ*x[jJ<=b[iJ;
#-----------------------------------------specify model data
data;
param n:=2;
param m: =4;
param c:=1 5 2 4;
param b:=1 24 2 6 3 1 4 2;
param a: 1 2.-

1 6 4
2 1 2
3 -1 1
4 0 1;

#-----------------------------------------solve the problem
solve;
display z, x;

FIGU~E 2.16

AMPL model of the Reddy Mikks problem with input data (file ampIRM2.txt)
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The algebraic model in AMPL views the general Reddy Mikks problem in the
following generic format

/I

Maximize z: L CjX j
j=l

II

subject to restri: 2:aijXj < bi, i = 1, 2, ... , m
j=l

Xj ~ 0, j = 1,2, ... , n

It assumes that the problem has n variables and m constraints. It gives the objective
function and constraint i the (arbitrary) names z and restrj. The rest of the parameters
Cj, bi> and aij are self-explanatory.

The model starts with the param statements that declare m, 11., C, b, and aij

as parameters (or constants) whose specific values are given in the input data sec-
tion of the modeL It translates Cj(j = 1,2, , n) as c {1. . n}, bi (i = 1,2, ... , m) as
b{1. .m}, and aij(i = 1,2, ... ,111.,j = 1,2, ,n) as a{1 .. m,1. .n}. Next, the vari-
ables Xj (j = 1,2, ... , n) together with the nonnegativity restriction are defined by
the var statement

var x(I. .n}>=O;

If >=0 is removed from the definition of Xj' then the variable is assumed unrestricted.The
notation in {} represents the set of subscripts over which a param or a var is defined.

After defining all the parameters and the variables, we can develop the model it
self. The objective function and constraints must each carry a distinct user-defined
name followed by a colon (:). In the Reddy Mikks model the objective is given the
name z: preceded by maximi ze, as the following AMPL statement states:

maximize z: sum(j in 1. .n}c[jJ*x(j];

1/

The statement is a direct translation of maximize z = :2>jXj (with = replaced by:).
j=l

Note the use of the brackets [] for representing the subscripts.
Constraint i is given the root name restr indexed over the set {1 .. m}:

restr(i in I..m}:sum(j in l..n}a[i,j}*x[jl<=b[i];

/1

The statement is a direct translation of ~aijXj < bi' The keywords subject to are
j=l

optional. This general model may now be used to solve any problem with any set of
input data representing any number of constraints m and any number of variables n.

The data; section allows tailoring the model to the specific Reddy Mikks prob
lem. Thus, param n: =2; and param m: =4; tell AMPL that the problem has 2 variables
and 4 constraints. Note that the compound operator : = must be used and that the
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statement must start with the keyword paramo For the single-subscripted parameter c,
each element is represented by the subscript j followed by Cj separated by a blank
space.TI1Us, the two values CI = 5 and C2 = 4 translate to

param c:= 1 5 2 4;

The data for parameter b are entered in a similar manner.
For the double-subscripted parameter a, the top line defines the sUbscript j, and

the subscript i is entered at the start of each row as

param a: 1 2 :=
1 6 4
2 1 2
3 -1 1
4 0 1;

In effect, the data aij read as a two-dimensional matrix with its rows designating i and
its columns designatingj. Note that a semicolon is needed only at the end of all aij data.

The model and its data are now ready. The command solve; invokes the solu
tion and the command display z, X; provides the solution.

To execute the model, first invoke AMPL (by clicking ampI.exe in the AMPL di
rectory). At the ampl prompt, enter the following model command, then press Return:

ampl: model AmplRM2. txt;

The output of the system will then appear on the screen as follows:

MINOS 5.5: Optimal solution found.
2 iterations, objective = 21

z = 21
x[*] :=

1 3
2 1. 5

The bottom four lines are the result of executing display z, x; .

Actually, AMPL allows separating the algebraic model and the data into two inde
pendent files. This arrangement is advisable because once the model has been developed,
only the data file needs to be changed. (See the end of Section A.2 for details.) In this
book, we elect not to separate the model and data files, mainly for reasons of compactness.

The Arbitrage Problem. The simple Reddy Mikks model introduces some of the basic
elements of AMPL. The more complex arbitrage model of Example 2.3-2 offers the
opportunity to introduce additional AMPL capabilities that include: (1) imposing
conditions on the elements of a set, (2) use of if then else to represent conditional
values, (3) use of computed parameters, and (4) use of a simple print statement to
retrieve output. These points are also discussed in more detail in Appendix A.
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maxTransaction(l .. n};

rei in 1 .. n, j

inCurrency;
outCurrency;

param
param
param n;
param
param I;

param

#initial amount I
#maximized holding y
#nbr of currencies

in 1 ..n:i<=j};#above-diagonal rates
#initial amt of inCurrency
#limit on transaction amt

var x{i in 1 .. n,j in 1 .. n}>=O;
var y>=O;

#amt of i converted to j
#max arnt of outCurrency

#$
#euro
#pound
#yen
#KD1;

KD
5:=
.342
.445
.543
.0032

yen
4

105
137

169
1

pound
3
.625
.813

1

2
.769
1

euro$
1

11
2
3

4
5

inCurrency=l;
outCurrency=l;
n:=5;

param r:

maximi ze z: y;

subject to
rl{i in 1 .. n,j in 1 .. n}:x[i,j]<=maxTransaction[i];
r2{i in 1 .. n}:(if i=inCurrency then I else 0)+

sum{k in 1 .. n}(if k<i then r[k,i] else l/r[i,k])*x[k,i]=
(if i=outCurrency then y else O)+sum{j in 1 .. n}x[i,j];

#---------------------------------------input data
data;
param
param
param
#

param 1:= 5;
param maxTransaction:=l 5 2 3 3 3.5 4 100 5 2.8;
#---------------------------------------Solution command
solve;
display z,y,x>file2.out;
print "rate of return =",trunc(100*(z-I)/I,4) ,"%">file2.out;

FIGURE 2.17

AMPL model of the Arbitrage problem (file ampIEx2.3-2.txt)

Figure 2.17 (file ampIEx2.3-2.txt) gives the AMPL code for the arbitrage prob
lem. The model is general in the sense that it can be used to maximize the final holdings
y of any currency, named outCurrency, starting with an initial amount I of another
currency, named inCurrency. Additionally, any number of currencies, n, can be in
volved in the arbitrage process.

The exchange rates are defined as

param r{i in 1. .n,j in 1. .n:i<=j];

The definition gives only the diagonal and above-diagonal elements by imposing the
condition i<=j (preceded by a colon) on the set (i in 1 .. n, j in 1 .. n). With this
definition, reciprocals are used to compute the below-diagonal rates, as will be shown
shortly.
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The variable Xij' representing the amount of currency i converted to currency j, is
defined as

var x{i in 1 .. n,j in 1 .. n»=0;

The model has two sets of constraints: The first set with the root name rl sets the
limits on the amounts of any currency conversion transaction by using the statement

r1{i in 1 .. n,j in 1 .. n}: x[i,j]<=maxTransaction[i];

The second set of constraints with the root name r2 is a translation of the restriction

(Input to currency i) = (Output from currency i)

Its statement is given as

r2{i in 1 .. n} :
(if i=inCurrency then I else 0)+
sum{k in l .. n}{if k<i then r[k,i] else l/r[i,k])*x[k,i]

=(if i=outCurrency then y else O)+surn{j in 1 .. n}x[i,j];

This type of constraints is ideal for the use of the special construct if then else to
specify conditional values. In the left-hand side of the constraint, the expression

(if i=inCurrency then 1 else 0)

says that in the constraint for the input currency (i=inCurrency) there is an external
input I, else the external input is zero. Next, the expression

sum{k in l .. n} (if k<i then r[k,i] else 1/r[i,kJ)*x[k,i]

computes the input funds from other currency converted to the input currency. If you
review Example 2.3-2 you will notice that when k<i, the conversion uses the above
diagonal elements of the exchange rate r. Otherwise, the row reciprocal is used for the
below-diagonal elements (diagonal elements are 1). This is precisely what if then

else does. (See Section A.3 for details.)
The if-expression in the right-hand side of constraint r2 can be explained in a

similar manner - namely,

(if i=outCurrency then y else 0)

says that the external output is y for outCurrency and zero for all others.
We can enhance the readability of constraints r2 by defining the following

computed parameter (see Section A.3) that defines the entire exchange rate table:

Pararn rate(k in 1 .. n,i in 1 .. n}
=(if k<i then r[k,iJ else l/r[i,k])
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In this case, constraints r2 become

r2 {i in 1 .. n} :
(if i=inCurrency then I else 0)+ sum(k in 1 .. n)rate[k,iJ*x[k,i]

=(if i=outCurrency then y else O)+sum(j in 1 .. n}x{i,j];

In the data; section, inCurrency and outCurrency each equal 1, which means
that the problem is seeking the maximum dollar output using an initial amount of $5
million. In general, inCurrency and outC\lrrency may designate any distinct curren
cies. For example, setting inCurrency equal to 2 and outCurrency equal to 4 maxi
mizes the yen output given a 5 million euros initial investment.

The unspecified entries of param r are flagged in AMPL with dots (.). These
values are then overridden either by using the reciprocal as shown in Figure 2.17 or
through the use of the computed parameter ra te as shown above. The alternative to
using dots is to unnecessarily compute and enter the below-diagonal elements as
data.

The display statement sends the output to file file2.out instead of defaulting it to
the screen. The print statement computes and truncates the rate of return and sends
the output to file file2.out. The print statement can also be formatted using printf,

just as in any higher level programming language. (See Section A.S.2 for details.)
It is important to notice that input data in AMPL need not be hard-coded in the

model, as they can be retrieved from external files, spreadsheets, and databases (see
Section A.S for details). This is crucial in the arbitrage model, where the volatile ex
change rates must often be accepted within less than 10 seconds. By allowing the
AMPL model to receive its data from a database that automatically updates the ex
change rates, the model can provide timely optimal solutions.

The Bus Scheduling Problem. The bus scheduling problem of Example 2.3-8 provides
an interesting modeling situation in AMPL. Of course, we can always use a two
subscripted parameter, similar to parameter a in the Reddy Mikks model in Section 2.4.2
(Figure 2.16), but this may be cumbersome in this case. Instead, we can take advantage of
the special structure of the constraints and use conditional expressions to represent them
implicitly.

The left-hand side of constraint 1 is Xl + X,m where In is the total number of pe
riods in a 24-hour day (= 6 in the present example). For the remaining constraints, the
left-hand side takes the form Xi-l + Xi> i = 2,3, ... , m. Using if then else (as we
did in the arbitrage problem), all In constraints can be represented compactly by one
statement as shown in Figure 2.18 (file amplEx2.3-8.txt). This representation is superi
or to defining the left-hand side of the constraints as an explicit parameter.

AMPL offers a wide range of programming capabilities. For example, the
input/output data can be secured from/sent to external files, spreadsheets, and data
bases and the model can be executed interactively for a wide variety of options that
allow testing different scenarios. The details are given in Appendix A. Also, many
AMPL models are presented throughout the book with cross references to the materi
al in Appendix A to assist you in understanding these options.
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param m;
param min_nbr_buses{l .. m};
var x_nbr_buses{l .. m} >= 0;
minimize tot_nbr_buses: sum {i in 1 .. m} x_nbr_buses[i];
subject to constr_nbr{i in 1 .. m}:

if i=l then
x_nbr_buses[iJ+x_nbr_buses[mJ

else

data;
param m::=6;
param min_nbr_buses:= 1 4 2 8 3 10 4 7 5 12 6 4;

solve;
display tot_nbr_buses, x_nbr_buses;

FIGURE 2.18

AMPL model of the bus scheduling problem of Example 2.3-8 (file ampIEx2.3-8.txt)

PROBLEM SET 2.4B

1. In the Reddy Mikks model, suppose that a third type of paint, named "marine," is pro
duced. The requirements per ton of raw materials M1 and M2 are .5 and.75 ton, respec
tively. The daily demand for the new paint lies between .5 ton and 1.5 tons and the profit
per ton is $3.5 (thousand). Modify the Excel Solver model solverRM2.xls and the AMPL
model amplRM2.txt to account for the new situation and determine the optimum solu
tion. Compare the additional effort associated with each modification.

2. Develop AMPL models for the following problems:

(a) The diet problem of Example 2.2-2 and find the optimum solution.

(b) Problem 4, Set 2.3b.

*(c) Problem 7, Set 2.3d.

(d) Problem 7, Set 2.3g.

(e) Problem 9, Set 2.3g.

*(1) Problem 10, Set 2.3g.
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CHAPTER 3

The Simplex Method
and Sensitivity Analysis

Chapter Guide. This chapter details the simplex method for solving the general LP
problem. It also explains how simplex-based sensitivity analysis is used to provide im
portant economic interpretations about the optimum solution, including the dual prices
and the reduced cost.

The simplex method computations are particularly tedious, repetitive, and, above
all, boring. As you do these computations, you should not lose track of the big picture;
namely, the simplex method attempts to move from one corner point of the solution
space to a better corner point until the optimum is found. To assist you in this regard,
TORA's interactive user-guided module (with instant feedback) allows you to decide
how the computations should proceed while relieving you of the burden of the tedious
computations. In this manner, you get to understand the concepts without being over
whelmed by the computational details. Rest assured that once you have learned how
the simplex method works (and it is important that you do understand the concepts),
computers will carry out the tedious work and you will never again need to solve an LP
manually.

Throughout my teaching experience, I have noticed that while students can easi
ly carry out the tedious simplex method computations, in the end, some cannot tell why
they are doing them or what the solution is. To assist in overcoming this potential diffi
culty, the material in the chapter stresses the interpretation of each iteration in terms of
the solution to the original problem.

When you complete the material in this chapter, you will be in a position to read
and interpret the output reports provided by commercial software. The last section de
scribes how these reports are generated in AMPL, Excel Solver, and TORA.

This chapter includes a summary of 1 real-life application, 11 solved examples,
1 AMPL model, 1 Solver model, 1 TORA model, 107 end-of-section problems, and 3
cases. The cases are in Appendix E on the CD. The AMPLlExcel/SolverITORA pro
grams are in folder ch3Files.

81



82 Chapter 3 The Simplex Method and Sensitivity Analysis

Real Life Application-Optimization of Heart Valve Production

Biological heart valves in different sizes are bioprostheses manufactured from porcine
hearts for human implantation. On the supply side, porcine hearts cannot be "pro
duced" to specific sizes. Moreover, the exact size of a manufactured valve cannot be de
termined until the biological component of pig heart has been processed. As a result,
some sizes may be overstocked and others understocked. A linear programming model
was developed to reduce overstocked sizes and increase understocked sizes. The re
sulting savings exceeded $1,476,000 in 1981, the year the study was made. The details of
this study are presented in Case 2, Chapter 24 on the CD.

3.1 LP MODEL IN EQUATION FORM

The development of the simplex method computations is facilitated by imposing two
requirements on the constraints of the problem:

1. All the constraints (with the exception of the nonnegativity of the variables) are
equations with nonnegative right-hand side.

2. All the variables are nonnegative.

These two requirements are imposed here primarily to standardize and streamline the
simplex method calculations. It is important to know that all commercial packages
(and TORA) directly accept inequality constraints, nonnegative right-hand side, and
unrestricted variables. Any necessary preconditioning of the model is done internally
in the software before the simplex method solves the problem.

3.1.1 Converting Inequalities into Equations with Nonnegative
Right-Hand Side

In (::;) constraints, the right-hand side can be thought of as representing the limit on
the availability of a resource, in which case the left-hand side would represent the
usage of this limited resource by the activities (variables) of the model. The difference
between the right-hand side and the left-hand side of the (::;) constraint thus yields the
unused or slack amount of the resource.

To convert a (<:)-inequality to an equation, a nonnegative slack variable is added
to the left-hand side of the constraint. For example, in the Reddy Mikks model (Example
2.1-1), the constraint associated with the use of raw material M1 is given as

6Xl + 4x2 <: 24

Defining Sl as the slack or unused amount of MI, the constraint can be converted to
the following equation: .

6X1 + 4X2 + Sl = 24, sl C: °
Next, a (c: )-constraint sets a lower limit on the activities of the LP model, so that

the amount by which the left-hand side exceeds the minimum limit represents a
surplus. The conversion from (~) to (:=) is achieved by subtracting a nonnegative

L
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3.1 LP Model in Equation Form 83

surplus variable from the left-hand side of the inequality. For example, in the diet
model (Example 2.2-2), the constraint representing the minimum feed requirements is

xl + x2 2: 800

Defining Sl as the surplus variable, the constraint can be converted to the following
equation

Xl + X2 - SI = 800, Sl > 0

The only remaining requirement is for the right-hand side of the resulting equa
tion to be nonnegative. The condition can always be satisfied by multiplying both sides
of the resulting equation by -1, where necessary. For example, the constraint

-Xl + X2 <: -3

is equivalent to the equation

- Xl + X2 + Sl = -3, SI 2': 0

Now, multiplying both sides by -1 will render a nonnegative right-hand side, as de
sired-thatis,

Xl - X2 - 51 = 3

PROBLEM SET 3.1A

*1. In the Reddy Mikks model (Example 2.2-1), consider the feasible solution Xl = 3 tons
and X2 = 1 ton. Determine the value of the associated slacks for raw materials M1 and
M2.

In the diet model (Example 2.2-2), determine the surplus amount of feed consisting of
500 Ib of corn and 600 lb of soybean meal.

Consider the following inequality

10XI - 3X2 2:::: -5

Show that multiplying both sides of the inequality by -1 and then converting the result
ing inequality into an equation is the same as converting it first to an equation and then
multiplying both sides by ~ l.

Two different products, PI and Pl, can be manufactured by one or both of two different
machines, M1 and M2. The unit processing time of either product on either machine is
the same. The daily capacity of machine Ml is 200 units (of either PI or n, or a mixture
of both) and the daily capacity of machine M2 is 250 units. The shop supervisor wants to
balance the production schedule of the two machines such that the total number of units
produced on one machine is within 5 units of the number produced on the other.The
profit per unit of PI is $10 and that of n is $15. Set up the problem as an LP in equation
form.

5. Show how the following objective function can be presented in equation form:

Minimize z = max{!xl - X2 + 3x31, I-Xl + 3X2 -:- X31}

(Hint: lal :5 b is equivalent to a :5 b and a ~ -b.)
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6. Show that the m equations:

n

'2.aijXj = b;, i = 1,2, ... , m
j=!

are equivalent to the following m + 1 inequalities:

II

'2.ajjXj 5 bj, i = 1,2, ... ,111
j=\

3.1.2 Dealing with Unrestricted Variables

In Example 2.3-6 we presented a multiperiod production smoothing model in which
the workforce at the start of each period is adjusted up or down depending on the de
mand for that period. Specifically, if Xi (2: 0) is the workforce size in period i, then
Xi +l (2: 0) the workforce size in period i + 1 can be expressed as

The variable Yi+l must be unrestricted in sign to allow Xi+l to increase or decrease rel
ative to Xi depending on whether workers are hired or fired, respectively.

As we will see shortly, the simplex method computations require all the variables
be nonnegative. We can always account for this requirement by using the substitution

Yi+l = Y~-1 - YI+l, where Yi+l ;;:::: 0 and Y[+1 2: 0

To show how this substitution works, suppose that in period 1 the workforce is Xl = 20
workers and that the workforce in period 2 will be increased by 5 to reach 25 workers.
In terms of the variables Y2 and yi, this will be equivalent to Y2 = 5 and YI = 0 or
Y2 = 5 - 0 = 5. Similarly, if the workforce in period 2 is reduced to 16, then we have
Y2 = 0 and YI = 4, or Y2 = 0 - 4 = -4. The substitution also allows for the possibili
ty of no change in the workforce by letting both variables assume a zero value.

You probably are wondering about the possibility that both Y2 and Y! may as
sume positive values simultaneously. Intuitively, as we explained in Example 2.3-6, this
cannot happen, because it means that we can hire and fire a worker at the same time.
This intuition is also supported by a mathematical proof that shows that, in any simplex
method solution, it is impossible that both variables will assume positive values simul
taneously.

PROBLEM SET 3.1 B

1. McBurger fast-food restaurant sells quarter-pounders and cheeseburgers. A quarter
pounder uses a quarter of a pound of meat, and a cheeseburger uses only .2 lb. The
restaurant starts the day with 200 Ib of meat but may order more at an additional cost of
25 cents per pound to cover the delivery cost. Any surplus meat at the end of the day is

-donated to charity. McBurger's profits are 20 cents for a quarter-pounder and 15 cents for
a cheeseburger. McBurger does not expect to sell more than 900 sandwiches in anyone

t
t.
1.

3.2
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day. How many of each type sandwich should McBurger plan for the day? Solve the
problem using TORA, Solver, or AMPL.

2. Two products are manufactured in a machining center. The productions times per unit of
products 1 and 2 are 10 and 12 minutes, respectively. The total regular machine time is
2500 minutes per day. In anyone day, the manufacturer can produce between 150 and
200 units of product 1, but no more than 45 units of product 2. Overtime may be used to
meet the demand at an additional cost of $.50 per minute. Assuming that the unit profits
for products 1 and 2 are $6.00 and $7.50, respectively, formulate the problem as an LP
model, then solve with TORA, Solver, or AMPL to determine the optimum production
level for each product as well as any overtime needed in the center.

*3. JoShop manufactures three products whose unit profits are $2, $5, and $3, respectively.
The company has budgeted 80 hours of labor time and 65 hours of machine time for the
production of three products. The labor requirements per unit of products 1,2, and 3 are
2, 1, and 2 hours, respectively. The corresponding machine-time requirements per unit are
1,1, and 2 hours. JoShop regards the budgeted labor and machine hours as goals that may
be exceeded, if necessary, but at the additional cost of $15 per labor hour and $10 per ma
chine hour. Formulate the problem as an Lp, and determine its optimum solution using
TORA, Solver, or AMPL.

4. In an LP in which there are several unrestricted variables, a transformation of the type
Xj = xj - xj, xj, xj ;::: 0 will double the corresponding number of nonnegative vari
ables. We can, instead, replace k unrestricted variables with exactly k + 1 nonnegative
variables by using the substitution Xj = xi - w, xi, w ;::: O. Use TORA, Solver, or AMPL
to show that the two methods produce the same solution for the following LP:

Maximize z = ~2xt + 3X2 - 2xJ

subject to

4Xt - X2 - 5xJ = 10

2Xl + 3X2 + 2X3 = 12

3.2 TRANSITION FROM GRAPHICAL TO ALGEBRAIC SOLUTION

The ideas conveyed by the graphical LP solution in Section 2.2 lay the foundation for the
development of the algebraic simplex method. Figure 3.1 draws a parallel between the
two methods. In the graphical method, the solution space is delineated by the half
spaces representing the constraints, and in the simplex method the solution space is
represented by m simultaneous linear equations and n nonnegative variables.

We can see visually why the graphical solution space has an infinite number of so
lution points, but how can we draw a similar conclusion from the algebraic representa
tion of the solution space? The answer is that in the algebraic representation the number
of equations m is always less than or equal to the number of variables n. l If m = n, and
the equations are consistent, the system has only one solution; but if m < n (which

llf the number of equations m is larger than the number of variables n, then at least m - n equations must
be redundant.
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Graphical Method Algebraic Method
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FIGURE 3.1

Transition from graphical to algebraic solution
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represents the majority of LPs), then the system of equations, again if consistent, will
yield an infinite number of solutions. To provide a simple illustration, the equation
x = 2 has m = n = 1, and the solution is obviously unique. But, the equation
x + y = 1 has m = 1 and n = 2, and it yields an infinite number of solutions (any
point on the straight line x + y = 1 is a solution).

Having shown how the LP solution space is represented algebraically, the candi
dates for the optimum (i.e., corner points) are determined from the simultaneous lin
ear equations in the following manner:

Algebraic Determination of Corner Points.

In a set of m X n equations (m < n), if we set n - m variables equal to zero and then
solve the m equations for the remaining m variables, the resulting solution, if unique,
is called a basic solution and must correspond to a (feasible or infeasible) corner point
of the solution space. This means that the maximum number of corner points is

n!en = -----
m mIen - m)!

The following example demonstrates the procedure.
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Example 3.2-1

Consider the following LP with two variables:

Maximize z = 2Xl + 3xz

subject to

2Xl + Xz $ 4

Xl + 2xz $ 5

Figure 3.2 provides the graphical solution space for the problem.
Algebraically, the solution space of the LP is represented as:

2Xt + Xz + Sl = 4

xl + 2xz + Sz = 5

The system has m = 2 equations and n = 4 variables. Thus, according to the given rule, the cor
ner points can be determined algebraically by setting n - m = 4 - 2 = 2 variables equal to

FIGURE 3.2

LP solution space of Example 3.2-1
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zero and then solving for the remaining m = 2 variables. For example, if we set Xl = 0 and
X2 = 0, the equations provide the unique (basic) solution

sl = 4, s2 = 5

This solution corresponds to point A in Figure 3.2 (convince yourself that s\ = 4 and S2 = 5 at
point A). Another point can be determined by setting s\ = 0 and S2 = 0 and then solving the two
equations

2x\ + X2 = 4

X\ + 2X2 = 5

This yields the basic solution (Xl = 1, X2 = 2), which is point C in Figure 3.2.
You probably are wondering how one can decide which n - m variables should be set

equal to zero to target a specific corner point. Without the benefit of the graphical solution
(which is available only for two or three variables), we cannot say which (n - m) zero variables
are associated with which corner point. But that does not prevent us from enumerating all the
corner points of the solution space. Simply consider all combinations in which n - m variables
are set to zero and solve the resulting equations. Once done, the optimum solution is the feasible
basic solution (corner point) that yields the best objective value.

In the present example we have C~ = 2~~! = 6 corner points. Looking at Figure 3.2, we can
immediately spot the four corner points A, B, C, and D. Where, then, are the remaining two? In
fact, points E and F also are corner points for the problem, but they are infeasible because they do
not satisfy all the constraints. These infeasible corner points are not candidates for the optimum.

To summarize the transition from the graphical to the algebraic solution, the zero n - m
variables are known as nonbasic variables. The remaining m variables are called basic variables
and their solution (obtained by solving the m equations) is referred to as basic solution. The fol
lowing table provides all the basic and nonbasic solutions of the current example.

Nonbasic (zero) Associated Objective
variables Basic variables Basic solution corner point Feasible? value,z

(XI, X2) (Sb 52) (4,5) A Yes 0

(XI> sd (XZ,5Z) (4, -3) F No
(x), 52) (X2,5d (2.5,1.5) B Yes 7.5
(X2' S\) (Xl, 52) (2,3) D Yes 4
(X2, S2) (XI> 5d (5, -6) E No
(St, 52) (Xl, Xl) (1,2) C Yes 8

(optimum)

Remarks. We can see from the computations above that as the problem size increases (that is, m
and n become large), the procedure of enumerating all the corner points involves prohibitive
computations. For example, for m = 10 and n = 20, it is necessary to solve ci8 = 184,756 sets of
10 X 10 equations, a staggering task indeed, particularly when we realize that a (10 X 20)-LP is
a small size in most real-life situations, where hundreds or even thousands of variables and con
straints are not unusual. The simplex method alleviates this computational burden dramatically
by investigating only a fraction of all possible basic feasible solutions (corner points) of the solu
tion space. In essence, the simplex method utilizes an intelligent search procedure that locates
the optimum corner point in an efficient manner.
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PROBLEM SET 3.2A

1. Consider the following LP:

Maximize z = 2xI + 3X2

subject to

Xl + 3X2 :5 6

3x[ + 2x2 :5 6

1

S

~

S

~

1

1

)

2.

s

(a) Express the problem in equation form.

(b) Determine all the basic solutions of the problem, and classify them as feasible and
infeasible.

*(c) Use direct substitution in the objective function to determine the optimum basic
feasible solution.

(d) Verify graphically that the solution obtained in (c) is the optimum LP solution
hence, conclude that the optimum solution can be determined algebraically by con
sidering the basic feasible solutions only.

*(e) Show how the infeasible basic solutions are represented on the graphical solution
space.

Determine the optimum solution for each of the following LPs by enumerating alI the
basic solutions.

(a) Maximize z = 2x[ - 4X2 + 5X3 - 6X4

subject to

Xl + 4X2 - 2X3 + 8X4 :5 2

-xI + 2X2 + 3X3 + 4X4 :5 1

(b) Minimize Z = XI + 2X2 - 3X3 - 2X4

subject to

XI + 2X2 - 3X3 + X4 = 4

XI + 2x2 + X3 + 2x4 = 4

f
s

y

s

*3. Show algebraically that all the basic solutions of the following LP are infeasible.

Maximize z = Xl + X2

subject to

XI + 2x2 :5 6

2xI + x2:5 16
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4. Consider the following LP:

Maximize z = 2xI + 3X2 + 5x3

subject to

-6xI + 7X2 - 9x3 ?:: 4

Xl + X2 + 4x3 = 10

X2 unrestricted

Conversion to the equation form involves using the substitution X2 = xi - x!- Show
that a basic solution cannot include both x2 and xi simultaneously.

5. Consider the following LP:

Maximize z = XI + 3X2

subject to

-XI + x2 s4

Xl unrestricted

X2 ?:: 0

(a) Determine all the basic feasible solutions of the problem.

(b) Use direct substitution in the objective function to determine the best basic solution.

(c) Solve the problem graphically, and verify that the solution obtained in (c) is the
optimum.

3.3 THE SIMPLEX METHOD

Rather than enumerating all the basic solutions (corner points) of the LP problem (as
we did in Section 3.2), the simplex method investigates only a "select few" of these so
lutions. Section 3.3.1 describes the iterative nature of the method, and Section 3.3.2 pro
vides the computational details of the simplex algorithm.

3.3.1 Iterative Nature of the Simplex Method

Figure 3.3 provides the solution space of the LP of Example 3.2-1. Normally, the sim
plex method starts at the origin (point A) where Xl = X2 = O. At this starting point, the
value of the objective function, z, is zero, and the logical question is whether an increase
in nonbasic Xl and/or X2 above their current zero values can improve (increase) the
value of z. We answer this question by investigating the objective function:

Maximize z = 2x1 + 3X2

The function shows that an increase in either Xl or X2 (or both) above their current
zero values will improve the value of z. The design of the simplex method calls for in
creasing one variable at a time, with the selected variable being the one with the largest
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FIGURE 3.3

Iterative process of the simplex method

rate of improvement in z. In the present example, the value of z will increase by 2 for
each unit increase in Xl and by 3 for each unit increase in X2. This means that the rate of
improvement in the value of z is 2 for Xl and 3 for X2. We thus elect to increase X2, the
variable with the largest rate of improvement. Figure 3.3 shows that the value of X2

must be increased until corner point B is reached (recall that stopping short of reach
ing corner point B is not optimal because a candidate for the optimum must be a cor
ner point). At point B, the simplex method will then increase the value of Xl to reach
the improved corner point C, which is the optimum. The path of the simplex algorithm
is thus defined as A -7 B - C. Each corner point along the path is associated with an
iteration. It is important to note that the simplex method moves alongside the edges of
the solution space, which means that the method cannot cut across the solution space,
going from A to C directly.

We need to make the transition from the graphical solution to the algebraic solu
tion by showing how the points A, B, and C are represented by their basic and nonba
sic variables. The following table summarizes these representations:

t

Corner point

A
B
C

Basic variables Nonbasic (zero) variables
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Notice the change pattern in the basic and nonbasic variables as the solution moves
along the path A ~ B ~ C. From A to B, nonbasic X2 at A becomes basic at Band
basic S2 at A becomes nonbasic at B. In the terminology of the simplex method, we say
that X2 is the entering variable (because it enters the basic solution) and S2 is the
leaving variable (because it leaves the basic solution). In a similar manner, at point B,
Xl enters (the basic solution) and Sl leaves, thus leading to point C.

PROBLEM SET 3.3A

1. In Figure 3.3, suppose that the objective function is changed to

Maximize z = 8x[ + 4X2

Identify the path of the simplex method and the basic and nonbasic variables that define
this path.

2. Consider the graphical solution of the Reddy Mikks model given in Figure 2.2. Identify
the path of the simplex method and the basic and nonbasic variables that define this path.

*3. Consider the three-dimensional LP solution space in Figure 3.4, whose feasible extreme
points are A, B, ... , and 1.

(a) Which of the following pairs of corner points cannot represent successive simplex it
erations: (A, B), (B, D), (E, H), and (A, I)? Explain the reason.

(b) Suppose that the simplex iterations start at A and that the optimum occurs at H. In
dicate whether any of the following paths are not legitimate for the simplex algo
rithm, and state the reason.

(i) A-B-G-H.

(ii) A-E-I-H.

(iii) A-C-E-B-A-D-G-H.

4. For the solution space in Figure 3.4, all the constraints are of the type :5 and all the
variables XI> X2, and X3 are nonnegative. Suppose that SJ, S2, s3, and S4 (~ 0) are the slacks
associated with constraints represented by the planes CEllF, BEIHG, DFJHG, and IIH,
respectively. Identify the basic and nonbasic variables associated with each feasible ex
treme point of the solution space.

FIGURE 3.4

Solution space of Problem 3, Set 3.2b

G
)------"

3.:

F t-----<T

E

-}---Xj

A: (0,0,0)
B: (1,0,0)
C: (0, 1,0)
D: (0,0,1)
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5. Consider the solution space in Figure 3.4, where the simplex algorithm starts at point A.
Determine the entering variable in the first iteration together with its value and the im
provement in z for each of the following objective functions:

*(a) Maximize z = XI - 2X2 + 3X3

(b) Maximize z = 5xI + 2x2 + 4X3

(c) Maximize z = -2XI + 7X2 + 2x3

(d) Maximize z = Xl + X2 + x3

3.3.2 Computational Details of the Simplex Algorithm

This section provides the computational details of a simplex iteration, including the
rules for determining the entering and leaving variables as well as for stopping the
computations when the optimum solution has been reached. The vehicle of explana
tion is a numerical example.

Example 3.3-1

We use the Reddy Mikks model (Example 2.1-1) to explain the details of the simplex method.
The problem is expressed in equation form as

subject to

= 24 (Raw material Ml)

6 (Raw material M2)

1 (Market limit)

+ S4 = 2 (Demand limit)

The variables Sb s2, s3, and S4 are the slacks associated with the respective constraints.
Next, we write the objective equation as

In this manner, the starting simplex tableau can be represented as follows:

Basic z XI X2

Z 1 -5 -4

St 0 6 4
S2 0 1 2
S3 0 -1 1
S4 0 0 1

o o o o

Solution

o

24
6
1
2

z-row

St-row
Sz-FOW

SrTOW

S4-fOW
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The design of the tableau specifies the set of basic and nonbasic variables as well as provides
the solution associated with the starting iteration. As explained in Section 3.3.1, the simplex iter
ations start at the origin (Xl> X2) = (0,0) whose associated set of nonbasic and basic variables
are defined as

Nonbasic (zero) variables: (Xl> X2)

Basic variables: (S1> S2, 53, S4)

Substituting the nonbasic variables (Xl> X2) = (0,0) and noting the special 0-1 arrangement
of the coefficients of z and the basic variables (S1> 52, 53,54) in the tableau, the following solution
is immediately available (without any calculations):

z = 0

51 = 24

52 = 6

53 = 1

54 = 2

This information is shown in the tableau by listing the basic variables in the leftmost Basic col
umn and their values in the rightmost Solution column. In effect, the tableau defines the current
corner point by specifying its basic variables and their values, as well as the corresponding value
of the objective function, z. Remember that the nonbasic variables (those not listed in the Basic
column) always equal zero.

Is the starting solution optimal? The objective function z = 5xl + 4xz shows that the solution
can be improved by increasing Xl or X2' Using the argument in Section 3.3.1, Xl with the most pos
itive coefficient is selected as the entering variable. Equivalently, because the simplex tableau ex
presses the objective function as z - 5x} - 4xz = 0, the entering variable will correspond to the
variable with the most negative coefficient in the objective equation. This rule is referred to as
the optimality condition.

The mechanics of determining the leaving variable from the simplex tableau calls for com
puting the nonnegative ratios of the right-hand side of the equations (Solution column) to the
corresponding constraint coefficients under the entering variable, Xl> as the following table
shows.

Entering
Basic Xl Solution

Ratio
(or Intercept)

Conclusion: Xl enters and 51 leaves

Sz 1

-1

o

24

6

1

2

Xl = ~ = -1 (ignore)

Xl = ~ = 00 (ignore)
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Maximize z = 5xI + 4x2
subject to:
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FIGURE 3.5

Graphical interpretation of the simplex method ralios in the Reddy Mikks model

The minimum nonnegative ratio automatically identifies the current basic variable SI as the leav
ing variable and assigns the entering variable Xl the new value of 4.

How do the computed ratios determine the leaving variable and the value of the entering
variable? Figure 3.5 shows that the computed ratios are actually the intercepts of the constraints
with the entering variable (Xl) axis. We can see that the value of Xl must be increased to 4 at cor
ner point B, which is the smallest nonnegative intercept with the xl-axis. An increase beyond B
is infeasible. At point B, the current basic variable SI associated with constraint 1 assumes a zero
value and becomes the leaving variable. The rule associated with the ratio computations is re
ferred to as the feasibility condition because it guarantees the feasibility of the new solution.

The new solution point B is determined by "swapping" the entering variable Xl and the
leaving variablesl in the simplex tableau to produce the following sets of nonbasic and basic
variables:

Nonbasic (zero) variables at B: (SI> X2)

Basic variables at B: (Xl> 52, 53, S4)

The swapping process is based on the Gauss-Jordan row operations. It identifies the entering
variable column as the pivot column and the leaving variable row as the pivot row. The intersec
tion of the pivot \:olumn and the pivot row is called the pivot element. The following tableau is a
restatement of the starting tableau with its pivot TOW and column highlighted.
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Enter
!

Basic Solution

Leave ~ \?~j~~:~i\~~:~}~;~~~}~~~~\l 6 1j~;~~~~~{~~i:i.::{~:~'{~\~:~.~·~:~;.;f~~~~t~k~i}t~;:Q_~\~l:~~~~g~~Q::t;0.~{f~~1~~~~~;~.;~/:f

:: ~il~~: ~ ~ ! ~ 1
Pivot

column

Pivot row

TIle Gauss-Jordan computations needed to produce the new basic solution include two types.

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.

b. New pivot row = Current pivot row + Pivot element

2. All other rows, including z

New Row == (Current row) - (Its pivot column coefficient) X

(New pivot row)

These computations are applied to the preceding tableau in the following manner:

1. Replace Sl in the Basic column with Xl:

New Xl-row == Current sl-row + 6

== ~(O 6 4 1 0 0 0 24)

= (0 1 ~ ~ 0 0 0 4)

2. New z-row == Current z-row - (-5) X New xl-row

== (1 -5 -4 0 0 0 0 0) - (-5) x (0 1 ~ ~ 0 0 0 4)

== (1 0 -~ ~ 0 0 0 20)

3. New srrow == Current S2-row - (1) X New xl-row

== (0 1 2 0 1 0 0 6) - (1) X (0 1 ~ k0 004)

== (0 0 j -k 1 0 0 2)

4. New srrow == Current srrow - (-1) x New Xrrow

== (0 -1 100 1 0 1) - (-1) X (0 1 ~ i 0 0 0 4)
==(OO~i0105)

5. New 54-fOW == Current 54-row - (0) x New xrrow

== (0 0 1 0 0 0 1 2) - (0)(0 1 ~ k0 0 0 4)
= (0 0 1 0 0 0 1 2)
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The new basic solution is (x" 52, 53, 54), and the new tableau becomes

Basic

z 1 o o o o

Solution

20

Observe that the new tableau has the same properties as the starting tableau. When we set
the new nonbasic variables X2 and S1 to zero, the Solution column automatically yields the new
basic solution (Xl = 4,52 = 2,53 = 5, S4 = 2). This "conditioning" of the tableau is the result
of the application of the Gauss-Jordan row operations. The corresponding new objective
value is z = 20, which is consistent with

New z = Old z + New xl-value X its objective coefficient

= 0 + 4 x 5 = 20

In the last tableau, the optimality condition shows that X2 is the entering variable. The feasi
bility condition produces the following

Thus, 52 leaves the basic solution and new value of X2 is 1.5. The corresponding increase

in z is ~ Xl = ~ X 1.5 = 1, which yields new z = 20 + 1 = 21.

Replacing 52 in the Basic column with entering X2, the following Gauss-Jordan row opera
tions are applied:

1. New pivot xz-row = Current 5z-row -0- ~

2. New z-row = Current z-row - (-~) x New xz-row

3. New Xl-row = Current XI-row - U) x New xz-row

4. New 53-row = Current STrow - (~) X New xz-row

5. New S4-row = Current S4-row - (1) X New xTrow

4 X2 = 4 -:- ~ = 6

2 ;:I;~;~:E~#;\+};~;;t~JmipXIri~fu)';;
5 X2 = 5 -:- ~ = 3

2 X2 := 2 -i- 1 = 2

Solution Ratio

2
:3
4
J
~
3

Entering
X2

Xl

~U~ii:·:::: '.

Basic
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These computations produce the following tableau:

Basic z XI X2 51 52 53 54 Solution

z 1 0 0 3 1 0 0 214" 2

XI 0 1 0 ! 1 0 0 34 -2
0 0 1 1 ~ 0 0 3

x2 -8 4 2
0 0 0 3 5 1 0 5

53 8 -4 :2

54 0 0 0 I -~ 0 1 1
8 4 2

Based on the optimality condition, none of the z-row coefficients associated with the nonbasic
variables, Sl and 52, are negative. Hence, the last tableau is optimal.

TIle optimum solution can be read from the simplex tableau in the following manner. The
optimal values of the variables in the Basic column are given in the right-hand-side Solution col
umn and can be interpreted as

Decision variable Optimum value

3
3
2

21

Recommendation

Produce 3 tons of exterior paint daily
Produce 1.5 tons of interior paint daily
Daily profit is $21,000

You can verify that the values SJ = S2 = 0, S3 = ~,54 = ~ are consistent with the given values of
Xl and X2 by substituting out the values of XI and X2 in the constraints.

The solution also gives the status of the resources. A resource is designated as scarce if the
activities (variables) of the model use the resource completely. Otherwise, the resource is
abundant. This information is secured from the optimum tableau by checking the value of the
slack variable associated with the constraint representing the resource. If the slack value is
zero, the resource is used completely and, hence, is classified as scarce. Otherwise, a positive
slack indicates that the resource is abundant. The following table classifies the constraints of
the model:

Resource Slack value Status

Raw material, Ml 51 = 0 Scarce
Raw material, M2 52 = 0 Scarce
Market limit 53 = ~ Abundant

Demand limit 5 - 1 Abundant4 - 2

Remarks. The simplex tableau offers a wealth of additional information that includes:

f
r,,
i

I
f

I

1. Sensitivity anaLysis, which deals with determining the conditions that will keep the current
solution unchanged.

2. Post-optimal analysis, which deals with finding a new optimal solution when the data of
.the model are changed. t

1
i
t

L
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Section 3.6 deals with sensitivity analysis. The more involved topic of post-optimal analysis
is covered in Chapter 4.

TORA Moment.

The Gauss-Jordan computations are tedious, voluminous, and, above aU, boring. Yet,
they are the least important, because in practice these computations are carried out by
the computer. What is important is that you understand how the simplex method
works. TORA's interactive user-guided option (with instant feedback) can be of help in
this regard because it allows you to decide the course of the computations in the sim
plex method without the burden of carrying out the Gauss-Jordan calculations. To
use TORA with the Reddy Mikks problem, enter the model and then, from the
SOLVEIMODIFY menu, select Solve~ Algebraic => Iterations~ AIl::SliiCk. (The
All-Slack selection indicates that the starting basic solution consists of slack variables
only. The remaining options will be presented in Sections 3.4,4.3, and 7.4.2.) Next, click
:~(r:r~LQ!i~P4fS.cte~il; You can generate one or aU iterations by clicking Next Iteia:tibn:
or AllIterations. If you opt to generate the iterations one at a time, you can interac
tively specify the entering and leaving variables by clicking the headings of their corre
sponding column and row. If your selections are correct, the column turns green and
the row turns red. Else, an error message will be posted.

Summary of the Simplex Method

So far we have dealt with the maximization case. In mlrnmlZation problems, the
optimality condition calls for selecting the entering variable as the nonbasic variable with
the most positive objective coefficient in the objective equation, the exact opposite rule
of the maximization case. This follows because max z is equivalent to min (-z). As for
the feasibility condition for selecting the leaving variable, the rule remains unchanged.

Optimality condition. The entering variable in a maximization (minimization)
problem is the nonbasic variable having the most negative (positive) coefficient in the
z-row. Ties are broken arbitrarily. The optimum is reached at the iteration where all the
z-row coefficients of the nonbasic variables are nonnegative (nonpositive).

Feasibility condition. For both the maximization and the minimization problems,
the leaving variable is the basic variable associated with the smallest nonnegative ratio
(with strictly positive denominator). Ties are broken arbitrarily.

Gauss-Jordan row operations.

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
nt b. New pivot row = Current pivot row -+- Pivot element

of

L

2. All other rows, including z
New row = (Current row) - (pivot column coefficient) X (New pivot row)
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The steps of the simplex method are

Step 1.
Step 2.

Step 3.
Step 4.

Determine a starting basic feasible solution.
Select an entering variable using the optimality condition. Stop if there is no
entering variable; the last solution is optimal. Else, go to step 3.
Select a leaving variabLe using the feasibility condition.
Determine the new basic solution by using the appropriate Gauss-Jordan
computations. Go to step 2.

PROBLEM SET 3.3B

1. This problem is designed to reinforce your understanding of the simplex feasibility condi
tion. In the first tableau in Example 3.3-1, we used the minimum (nonnegative) ratio test
to determine the leaving variable. Such a condition guarantees that none of the new val
ues of the basic variables will become negative (as stipulated by the definition of the LP).
To demonstrate this point, force 52, instead of 5b to leave the basic solution. Now, look at
the resulting simplex tableau, and you will note that 51 assumes a negative value (= -12),
meaning that the new solution is infeasible. This situation will never occur if we employ
the minimum-ratio feasibility condition.

2. Consider the following set of constraints:

Xl + 2X2 + 2X3 + 4X4 :5 40

2x1 - x2 + X3 + 2X4 :5 8

4x1 - 2X2 + X3 - X4:5 10

Solve the problem for each of the following objective functions.

(a) Maximize z = 2Xl + X2 - 3X3 + 5X4'

(b) Maximize z = 8Xl + 6X2 + 3X3 - 2X4'

(c) Maximize z = 3x1 - X2 + 3X3 + 4X4'

(d) Minimize z = 5xI - 4x2 + 6X3 - 8X4'

*3. Consider the following system of equations:

Xl + 2X2 - 3X3 + 5X4 + Xs =4

=8

=3

+ Xs = 0

Let xs, x6,' .. , and Xg be a given initial basic feasible solution. Suppose that Xl becomes
basic. Which of the given basic variables must become nonbasic at zero level to guarantee
that all the variables remain nonnegative, and what is the value of Xl in the new solution?
Repeat this procedure for x2, x3, and X4'



3.3 The Simplex Method 101

4. Consider the following LP:

Maximize z = Xl

subject to

=4

=8

(a) Solve the problem by inspection (do not use the Gauss-Jordan row operations), and
justify the answer in terms of the basic solutions of the simplex method.

(b) Repeat (a) assuming that the objective function calls for minimizing z = Xl.

5. Solve the following problem by inspection, and justify the method of solution in terms of
the basic solutions of the simplex method.

Maximize z = 5x] - 6X2 + 3X3 - 5X4 + 12xs

subject to

(Hint: A basic solution consists of one variable only.)

6. The following tableau represents a specific simplex iteration. All variables are nonnega
tive. The tableau is not optimal for either a maximization or a minimization problem.
ll1Us, when a nonbasic variable enters the solution it can either increase or decrease z or
leave it unchanged, depending on the parameters of the entering nonbasic variable.

Basic Xl X2 X3 X4 X5 X6 X7 Xg Solution

z 0 -5 0 4 -1 -10 0 0 620

Xa 0 3 0 -2 -3 -1 5 1 12
X3 0 1 1 3 1 0 3 0 6
XI 1 -1 0 0 6 -4 0 0 0

(a) Categorize the variables as basic and nonbasic and provide the current values of all
the variables.

*(b) Assuming that the problem is of the maximization type, identify the nonbasic vari
ables that have the potential to improve the value of z. If each such variable enters
the basic solution, determine the associated leaving variable, if any, and the associ
ated change in z. Do not use the Gauss-Jordan row operations.

(c) Repeat part (b) assuming that the problem is of the minimization type.

(d) Which nonbasic variable(s) will not cause a change in the value of Z when selected
to enter the solution?

f.
J. __
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FIGURE 3.6

Solution space for Problem 7, Set 3.3b

7. Consider the two-dimensional solution space in Figure 3.6.
(3) Suppose that the objective function is given as

Maximize z = 3XI + 6x2

If the simplex iterations start at point A, identify the path to the optimum point E.

(b) Determine the entering variable, the corresponding ratios of the feasibility condi
tion, and the change in the value of z, assuming that the starting iteration occurs at
point A and that the objective function is given as

Maximize z = 4XI + X2

(c) Repeat (b), assuming that the objective function is

Maximize z = Xl + 4X2

8. Consider the following LP:

Maximize z = 16xI + 15x2

subject to

40XI + 31x2 :5 124

-xl + X2:5 1

Xl :5 3

XI> X2 ;::: 0

(a) Solve the problem by the simplex method, where the entering variable is the nonba
sic variable with the most negative z-row coefficient.

(b) Resolve the problem by the simplex algorithm, always selecting the entering vari
able as the nonbasic variable with the least negative z-row coefficient.

(c) Compare the number of iterations in (a) and (b). Does the selection of the entering
variable as the nonbasic variable with the most negative z-row coefficient lead to a
smaller number of iterations? What conclusion can be made regarding the optimali
ty condition?

(d) Suppose that the sense of optimization is changed to minimization by multiplying z
by -1. How does this change affect the simplex iterations?

r
r

I
[

l
I·

f!
~

1.....
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*9. In Example 3.3-1, show how the second best optima) value of z can be determined from
the optimal tableau.

10. Can you extend the procedure in Problem 9 to determine the third best optimal value. of z?
1L The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction

includes leather and synthetics, leather being the scarce raw material. The production
process requires two types of skilled labor: sewing and finishing. The following table gives
the availability of the resources, their usage by the three products, and the profits per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability

Leather (ft2) 2 1 3 42 ft2
Sewing (hr) 2 1 2 40 hr
Finishing (hr) 1 .5 1 4S hr

Selling price ($) 24 22 45

(a) Formulate the problem as a linear program and find the optimum solution (using
TORA, Excel Solver, or AMPL).

(b) From the optimum solution determine the status of each resource.

12. TORA experiment. Consider the following LP:

Maximize z = XI + X2 + 3X3 + 2X4

subject to

1-

1-

l
I,

fi
f,

1.....

2Xj + 3X2 - 2x3 + 3X4 :s; 3

- XI + xJ + 2X4 :s; 0

(a) Use TORA's iterations option to determine the optimum tableau.

(b) Select any nonbasic variable to "enter" the basic solution, and click Next Iteration to
produce the associated iteration. How does the new objective value compare with
the optimum in (a)? The idea is to show that the tableau in (a) is optimum because
none of the nonbasic variables can improve the objective value.

13. TORA experiment. In Problem 12, use TORA to find the next-best optimal solution.

3.4 ARTIFICIAL STARTING SOLUTION

As demonstrated in Example 3.3-1, LPs in which all the constraints are (::5) with non
negative right-hand sides offer a convenient all-slack starting basic feasible solution.
Models involving ( =) and/or (» constraints do not.

The procedure for starting "ill-behaved" LPs with (=) and (:;:::) constraints is to
use artificial variables that play the role of slacks at the first iteration, and then dispose
of them legitimately at a later iteration. Two closely related methods are introduced
here: the M-method and the two-phase method.
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3.4.1 M-Method

The Simplex Method and Sensitivity Analysis

The M-method starts with the LP in equation form (Section 3.1). If equation i does not
have a slack (or a variable that can play the role of a slack), an artificial variable, Ri , is
added to form a starting solution similar to the convenient all-slack basic solution.
However, because the artificial variables are not part of the original LP model, they are
assigned a very high penalty in the objective function, thus forcing them (eventually) to
equal zero in the optimum solution. This will always be the case if the problem has a
feasible solution. The following rule shows how the penalty is assigned in the cases of
maximization and minimization:

Penalty Rule for Artificial Variables.

Given M, a sufficiently large positive value (mathematically, M - 00), the objec
tive coefficient of an artificial variable represents an appropriate penalty if:

. . . .. . . { - M, in maximization problems
ArtifiCial vanable objective coefficient = .. . .. I

M, 10 mlmmlzatlOn prob ems

Example 3.4-1

Minimize z = 4Xt + X2

subject to

3x\ + X2 = 3

4XI + 3x2 ;;:: 6

Xt + 2X2 :5 4

Using X3 as a surplus in the second constraint and X4 as a slack in the third constraint, the
equation form of the problem is given as

Minimize z = 4xt + X2

subject to

3x\ + X2 = 3

4Xl + 3x2 - X3 = 6

The third equation has its slack variable, X4, but the first and second equations do not. Thus,
we add the artificial variables R\ and R2 in the first two equations and penalize them in the ob
jective function with M R1 + MRz (because we are minimizing). The resulting LP is given as

Minimize z = 4xl + Xz + MR1 + MRz

~
I:
1
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~,
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subject to

=3

+ Rz = 6

=4

The associated starting basic solution is now given by (RJ, R2, X4) = (3,6,4).
From the standpoint of solving the problem on the computer, M must assume a numeric

value. Yet, in practically all textbooks, including the first seven editions of this book, M is manip
ulated algebraically in all the simplex tableaus. The result is an added, and unnecessary, layer of
difficulty which can be avoided simply by substituting an appropriate numeric value for M
(which is what we do anyway when we use the computer). In this edition, we will break away
from the long tradition of manipulating M algebraically and use a numerical substitution in
stead. The intent, of course, is to simplify the presentation without losing substance.

What value of M should we use? The answer depends on the data of the original LP. Re
call that M must be sufficiently large relative to the original objective coefficients so it will act
as a penalty that forces the artificial variables to zero level in the optimal solution. At the
same time, since computers are the main tool for solving LPs, we do not want M to be too
large (even though mathematically it should tend to infinity) because potential severe round
off error can result when very large values are manipulated with much smaller values. In the
present example, the objective coefficients of Xl and X2 are 4 and 1, respectively. It thus ap
pears reasonable to set M = 100.

Using M = 100, the starting simplex tableau is given as follows (for convenience, the z-col
umn is eliminated because it does not change in all the iterations):

Basic XI X2 X3 R[ R2 X4 Solution

z -4 -1 0 ~1m~i~Mj~H.i~W~8~:;~~j 0 0

R[ 3 1 0 fiNiH~~l;iH~t,B 0 0 3
R2 4 3 -1 0 ffi:~t:~0~~:f~ffN;'i 0 6

X4 1 2 0 0 0 1 4

Before proceeding with the simplex method computations, we need to make the z-row
consistent with the rest of the tableau. Specifically, in the tableau, Xl = X2 = X3 = 0, which
yields the starting basic solution R1 = 3, R2 = 6 and X4 = 4. This solution yields,
z = 100 X 3 + 100 X 6 = 900 (instead of 0, as the right-hand side of the z-row currently
shows). This inconsistency stems from the fact that R1 and R2 have nonzero coefficients
(-100, -100) in the z-row (compare with the all-slack starting solution in Example 3.3-1,
where the z-row coefficients of the slacks are zero).

We can eliminate this inconsistency by substituting out R1 and R2 in the z-row using the ap
propriate constraint equations. In particular, notice the highlighted elements (= 1) in the
R1-row and the Rrrow. Multiplying each of R1-row and R2-row by 100 and adding the sum to
the z-row will substitute out R1 and R2 in the objective row-that is,

New z-row = Old z-row + (100 X Rrrow + 100 X R2-row)
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The modified tableau thus becomes (verify!)

-100 o o o

Solution

900

Notice that z = 900, which is consistent now with the values of the starting basic feasible solu
tion: RI = 3, Rz = 6, and X4 = 4.

The last tableau is ready for us to apply the simplex method using the simplex optimality
and the feasibility conditions, exactly as we did in Section 3.3.2. Because we are minimizing the
objective function, the variable Xl having the most positive coefficient in the z-row (= 696) en
ters the solution. The minimum ratio of the feasibility condition specifies R 1 as the leaving vari
able (verify!).

Once the entering and the leaving variables have been determined, the new tableau can be
computed by using the familiar Gauss-Jordan operations.

Basic Xl ~it¥~t~J4w1~ X3 R1 Rz X4 Solution

z 0 ~1~~~~~,~w.~~~ -100 -232 0 0 204

The last tableau shows that Xz and Rz are the entering and leaving variables, respectively.
Continuing with the simplex computations, two more iterations are needed to reach the opti-

. - ~ - 2 -.!.z ( of . hTORAI)mum. Xl - 5' Xz - 5' Z - 5 ven y WIt ..
Note that the artificial variables R1 and Rzleave the basic solution in the first and second it

erations, a result that is consistent with the concept of penalizing them in the objective function.

Remarks. The use of the penalty M will not force an artificial variable to zero level in the final
simplex iteration if the LP does not have a feasible solution (i.e., the constraints are not
consistent). In this case, the final simplex iteration will include at least one artificial variable at a
positive level. Section 3.5.4 explains this situation.

PROBLEM SET 3.4A

1. Use hand computations to complete the simplex iteration of Example 3.4-1 and obtain
the optimum solution.

2. TORA experiment. Generate the simplex iterations of Example 3.4-1 using TORA's
.iterations => M-fuethbd module (file toraEx3.4-l.txt). Compare the effect of using
M = 1, M == 10, and M = 1000 on the solution. What conclusion can be drawn from this
experiment?

t

L
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3. In Example 3.4-1, identify the starting tableau for each of the following (independent)
cases, and develop the associated z-row after substituting out all the artificial variables:

*(a) The third constraint is Xl + 2X2 ;::: 4.

*(b) The second constraint is 4XI + 3X2 :::::: 6.

(c) The second constraint is 4XI + 3X2 = 6.

(d) The objective function is to maximize z = 4xI + x2'

4. Consider the following set of constraints:

-2XI + 3X2 = 3 (1)

4Xl + 5X2 ;::: 10 (2)

Xl + 2X2:::::: 5 (3)

6Xl+7x2~3 (4)

4XI + 8X2 ;::: 5 (5)

Xl + X2 + X3 = 4

Xl + 4x2 + X4 = 8

Solve the problem for each of the following objective functions:

(a) Maximize z = 2Xl + 3X2 - 5X3'

(b) Minimize z = 2XI + 3X2 - 5x3-

(c) Maximize z = Xl + 2X2 + X3-

(d) Minimize z = 4Xl - 8X2 + 3x3'

Consider the problem

subject to

For each of the following problems, develop the z-row after substituting out the artificial
variables:

(a) Maximize z = 5xI + 6X2 subject to (1), (3), and (4).

(b) Maximizez = 2XI - 7x2subject to (1),(2), (4), and (5).

(c) Minimize z = 3Xl + 6X2 subject to (3), (4), and (5).

(d) Minimize z = 4Xl + 6X2 subject to (1), (2), and (5).

(e) Minimize z = 3XI + 2X2 subject to (1) and (5).

Consider the following set of constraints:

Xl + X2 + x 3 = 7

2x1 - 5x2 + xJ ;::: 10

5.
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The problem shows that X3 and X4 can play the role of slacks for the two equations. They
differ from slacks in that they have nonzero coefficients in the objective function. We can
use X3 and X4 as starting variable, but, as in the case of artificial variables, they must be
substituted out in the objective function before the simplex iterations are carried out.
Solve the problem with X3 and X4 as the starting basic variables and without using any
artificial variables.
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7. Solve the following problem using X3 and X4 as starting basic feasible variables. As in
Problem 6, do not use any artificial variables.

Minimize z = 3xI + 2X2 + 3X3

subject to

XI + 4X2 + X3 ~ 7

2x1 + X2 + X4 ~ 10

Xl> x2, x3, X4 ~ 0

8. Consider the problem

Maximize z = Xl + 5X2 + 3X3

subject to

Xl + 2X2 + X3 = 3

2Xi - X2 = 4

The variable X3 plays the role of a slack. Thus, no artificial variable is needed in the first
constraint. However, in the second constraint, an artificial variable is needed. Use this
starting solution (i.e., X3 in the first constraint and R2 in the second constraint) to solve
this problem.

9. Show how the M-method will indicate that the following problem has no feasible solution.

Maximize z = 2x1 + 5X2

subject to

3XI + 2x2 ~ 6

2x1 + x2:5 2

XI> X2 ~ 0

3.4.2 Two-Phase Method

In the M-method, the use of the penalty M, which by definition must be large relative
. to the actual objective coefficients of the model, can result in roundoff error that may
impair the accuracy of the simplex calculations. The two-phase method alleviates this
difficulty by eliminating the constant M altogether. As the name suggests, the method
solves the LP in two phases: Phase I attempts to find a starting basic feasible solution,
and, if one is found, Phase II is invoked to solve the original problem.

Summary of the Two-Phase Method

Phase I. Put the problem in equation form, and add the necessary artificial vari
ables to the constraints (exactly as in the M-method) to secure a starting
basic solution. Next, find a basic solution of the resulting equations that,
regardless of whether the LP is maximization or minimization, always
minimizes the sum of the artificial variables. If the minimum value of the
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sum is positive, the LP problem has no feasible solution, which ends the
process (recall that a positive artificial variable signifies that an original
constraint is not satisfied). Otherwise, proceed to Phase II.

Phase II. Use the feasible solution from Phase I as a starting basic feasible solu
tion for the original problem.

Example 3.4-2

We use the same problem in Example 3.4-1..

Phase I

Minimize r = R, + R2

subject to

3x\ + X2 + R, = 3

4x, + 3X2 - X3 + R2 = 6

x, + 2X2 + X4 = 4

The associated tableau is given as

Basic Xl X2 Xl R l R2 X4 Solution

r 0 0 0 e;S:~,~:di::rHti~::·;;; 0 0

R1 3 1 0 :;::;:j:j1Y~(: 0 0 3
R2 4 3 - 1 0 "'T: 0 6
X4 1 2 0 0 0 1 4

As in the M-method, R( and R2 are substituted out in the r-row by using the following com
putations:

New r-row = Old r-row + (l X R,-row + 1 x RTrow)

TIle new r-row is used to solve Phase I of the problem, which yields the following optimum
tableau (verify with TORA's Iterations => Two~phase Method):

Basic XI

r 0

XI 1

X2 0

X4 0

o

o
1

o

o

Solution

o
3
:5
6
:5
1
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Because minimum r ;:;: 0, Phase I produces the basic feasible solution Xl = ~, X2 = ~,

and X4 = 1. At this point, the artificial variables have completed their mission, and we can elim
inate their columns altogether from the tableau and move on to Phase II.

Phase II

After deleting the artificial columns, we write the original problem as

Minimize z = 4Xl + X2

subject to
1+ SX3

3
X2 - "5 X3

3
"5
6= 5

Essentially, Phase I is a procedure that transforms the original constraint equations in a manner
that provides a starting basic feasible solution for the problem, if one exists. The tableau associ
ated with Phase II problem is thus given as

Basic ~i;~il~~tlfki X3 X4 Solution

z ~~~{{~~\tl~§ 0 0 0

~~~{i~~!
I 0 3

Xl 5 5
3 0 6

X2 -s S
X4 0 0 1 1 1

Again, because the basic variables Xl and Xz have nonzero coefficients in the z-row, they
must be substituted out, using the following computations.

New z-row = Old z-row + (4 X xrrow + 1 X xz-row)

The initial tableau of Phase II is thus given as

Basic Xl X2 X3 X4 Solution

0 0 1 0 18
Z 5 5

1 0 1 0 3
XI 5 5

0 1 3 0 6
X2 -5 S
X4 0 0 1 1 1

Because we are minimizing, x3 must enter the solution. Application of the simplex method
will produce the optimum in one iteration (verify with TORA).

Remarks. Practically all commercial packages use the two-phase method to solve LP. The M
method with its potential adverse roundoff error is probably never used in practice. Its inclusion in
this text is purely for historical reasons, because its development predates the development of the
two-phase method.
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The removal of the artificial variables and their columns at the end of Phase I can take place
only when they are all nonbasic (as Example 3.4-2 illustrates). If one or more artificial variables
are basic (at zero level) at the end of Phase I, then the following additional steps must be under
taken to remove them prior to the start of Phase II.

Step 1. Select a zero artificial variable to leave the basic solution and designate its row as the
pivot row. The entering variable can be any nonbasic (nonartificiaI) variable with a
nonzero (positive or negative) coefficient in the pivot row. Perform the associated sim
plex iteration.

Step 2. Remove the column of the (just-leaving) artificial variable from the tableau. If all the
zero artificial variables have been removed, go to Phase II. Otherwise, go back to Step 1.

The logic behind Step 1 is that the feasibility of the remaining basic variables will not be af
fected when a zero artificial variable is made nonbasic regardless of whether the pivot element
is positive or negative. Problems 5 and 6, Set 3Ab illustrate this situation. Problem 7 provides
an additional detail about Phase I calculations.

PROBLEM SET 3.4B

*1. In Phase I, if the LP is of the maximization type, explain why we do not maximize the
sum of the artificial variables in Phase I.

2. For each case in Problem 4, Set 3.4a, write the corresponding Phase I objective function.

3. Solve Problem 5, Set 3.4a, by the two-phase method.

4. Write Phase I for the following problem, and then solve (with TORA for convenience)
to show that the problem has no feasible solution.

Maximize z = 2Xl + 5X2

subject to

5. Consider the following problem:

Maximize z = 2xl + 2x2 + 4x3

subject to

2Xl + X2 + X3:5 2

3xl + 4X2 + 2x3 ~ 8

(a) Show that Phase I will terminate with an artificial basic variable at zero level (you
may use TORA for convenience).

(b) Remove the zero artificial variable prior to the start of Phase II, then carry out
Phase II iterations.
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6. Consider the following problem:

Maximize z = 3Xl + 2X2 + 3X3

subject to

2Xl + X2 + X3 = 2

Xl + 3X2 + X3 = 6

3Xl + 4X2 + 2x3 = 8

Xl> X2, X3 2: 0

(a) Show that Phase I terminates with two zero artificial variables in the basic solution
(useTORA for convenience).

(b) Show that when the procedure of Problem 5(b) is applied at the end of Phase I, only
one of the two zero artificial variables can be made nonbasic.

(c) Show that the original constraint associated with the zero artificial variable that can
not be made nonbasic in (b) must be redundant-hence, its row and its column can
be dropped altogether at the start of Phase II.

*7. Consider the following LP:

Maximize z = 3x\ + 2x2 + 3X3

subject to

2x\ + X2 + x3:5 2

3x] + 4X2 + 2X3 2: 8

The optimal simplex tableau at the end of Phase I is given as

Basic Xl X2 X3 X4 Xs R Solution

Z -5 0 -2 -1 -4 0 0

X 2 2 1 1 0 1 0 2
R -5 0 -2 -1 -4 1 0

Explain why the nonbasic variables Xl> X3, X4, and Xs can never assume positive val
ues at the end of Phase II. Hence, conclude that their columns can dropped before we
start Phase II. In essence, the removal of these variables reduces the constraint equations
of the problem to X2 = 2. This means that it will not be necessary to carry out Phase II at
all, because the solution space is reduced to one point only.

8. Consider the LP model

Minimize z = 2Xl - 4X2 + 3x3

subject to

5x\ - 6X2 + 2X3 2: 5

- Xl + 3X2 + 5x3 2: 8

2Xl + 5X2 - 4x3 :5 4

Show how the inequalities can be modified to a set of equations that requires the use of a
single artificial variable only (instead of two).

3

3
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3.5 SPECIAL CASES IN THE SIMPLEX METHOD

This section considers four special cases that arise in the use of the simplex method.

1. Degeneracy
2. Alternative optima
3. Unbounded solutions
4. Nonexisting (or infeasible) solutions

Our interest in studying these special cases is twofold: (1) to present a theoretical
explanation of these situations and (2) to provide a practical interpretation of what
these special results could mean in a real-life problem.

3.5.1 Degeneracy

In the application of the feasibility condition of the simplex method, a tie for the mini
mum ratio may occur and can be broken arbitrarily. When this happens, at least one basic
variable will be zero in the next iteration and the new solution is said to be degenerate.

There is nothing alarming about a degenerate solution, with the exception of a
small theoretical inconvenience, called cycling or circling, which we shall discuss short
ly. From the practical standpoint, the condition reveals that the model has at least one
redundant constraint. To provide more insight into the practical and theoretical im
pacts of degeneracy, a numeric example is used.

Example 3.5-1 (Degenerate Optimal Solution)

Maximize z = 3Xl + 9X2

subject to

Xl + 4X2 5 8

Xl + 2X2 :5 4

xl> X2 ~ 0

Given the slack variables X3 and X4, the following tableaus provide the simplex iterations of
the problem:

Iteration Basic XI X2 X3 X4 Solution

0 z -3 -9 0 0 0

X2 enters X3 1 4 1 0 8

XJ leaves X4 1 2 0 1 4

1 z 3 0 9 0 18-4 4

XI enters x 2
I 1 I 0 24 4

x4leaves I 0 I 1 ~~~~~~~l~~~rnX4 2 -2

2 0 0 3 3 18z 2 :2

(optimum) 0 1 1 1 2x2 :1 -2

XI 1 0 -1 2 ;Wf~~{l~u~~
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fiGURE 3.7

LP degeneracy in Example 3.5-1

In iteration 0, X3 and X4 tie for the leaving variable, leading to degeneracy in iteration 1
because the basic variable X4 assumes a zero value. The optimum is reached in one additional
iteration.

What is the practical implication of degeneracy? Look at the graphical solution in Figure 3.7.
Three lines pass through the optimum point (Xl = 0, X2 = 2). Because this is a two-dimensional
problem, the point is overdetermined and one of the constraints is redundant? In practice, the
mere knowledge that some resources are superfluous can be valuable during the implementa
tion of the solution. The information may also lead to discovering irregularities in the construc
tion of the model. Unfortunately, there are no efficient computational techniques for identifying
the redundant constraints directly from the tableau.

From the theoretical standpoint, degeneracy has two implications. The first is the phe
nomenon of cycling or circling. Looking at simplex iterations 1 and 2, you will notice that the
objective value does not improve (z = 18). It is thus possible for the simplex method to enter
a repetitive sequence of iterations, never improving the objective value and never satisfying
the optimality condition (see Problem 4, Set 3.5a). Although there are methods for eliminat
ing cycling, these methods lead to drastic slowdown in computations. For this reason, most LP
codes do not include provisions for cycling, relying on the fact that it is a rare occurrence in
practice.

The second theoretical point arises in the examination of iterations 1 and 2. Both iterations,
though differing in the basic-nonbasic categorization of the variables, yield identical values for
all the variables and objective value-namely,

Is it possible then to stop the computations at iteration 1 (when degeneracy first appears),
even though it is not optimum? The answer is no, because the solution may be temporarily de
generate as Problem 2, Set 3.5a demonstrates.

2Redundancy generally implies that constraints can be removed without affecting the feasible solution space.
A sometimes quoted counterexample is x + y s 1, x ;:: 1, Y ;:: O. Here, the removal of anyone constraint
will change the feasible space from a single point to a region. Suffice it to say, however, that this condition is
true only if the solution space consists of a single feasible point, a highly unlikely occurrence in real-life LPs.
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PROBLEM SET 3.5A

*1. Consider the graphical solution space in Figure 3.8. Suppose that the simplex iterations
start at A and that the optimum solution occurs at D. Further, assume that the objective
function is defined such that at A, XI enters the solution first.

(a) Identify (on the graph) the corner points that define the simplex method path to the
optimum point.

(b) Determine the maximum possible number of simplex iterations needed to reach the
optimum solution, assuming no cycling.

2. Consider the following LP:

Maximize z = 3Xl + 2X2

subject to

1
II

4xI - X2 ::; 8

4xI + 3X2 ::; 12

4xl + X2 ::; 8

"--------------- Xl

X2

(a) Show that the associated simplex iterations are temporarily degenerate (you may
use TORA for convenience).

(b) Verify the result by solving the problem graphically (TORA's Graphic module can
be used here).

3. TORA experiment. Consider the LP in Problem 2.

(a) Use TORA to generate the simplex iterations. How many iterations are needed to
reach the optimum?

(b) Interchange constraints (1) and (3) and re-solve the problem with TORA. How
many iterations are needed to solve the problem?

(c) Explain why the numbers of iterations in (a) and (b) are different.

FIGURE 3.8

Solution space of Problem 1, Set 3.SalS,
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4. TORA Experiment Consider the following LP (authored by E.M. Beale to demonstrate
cycling):

subject to

!x\ - 12x2 - !X3 + 3X4 :s; 0

X3 :s; 1

From TORA's SOLVEIMODIFY menu, select SolVe => Alge.l?,riiic. => Iterations =>
All~slack. Next, "thumb" through the successive simplex iterations using the command
Next:ite'r-ati6h (do not use AltIterations, because the simplex method will then cycle in
definitely). You will notice that the starting all-slack basic feasible solution at iteration 0
will reappear identically in iteration 6. This example illustrates the occurrence of cycling
in the simplex iterations and the possibility that the algorithm may never converge to the
optimum solution.

It is interesting that cycling will not occur in this example if all the coefficients in this
LP are converted to integer values by using proper multiples (try it!).

3.5.2 Alternative Optima

When the objective function is parallel to a nonredundant binding constraint (i.e., a
constraint that is satisfied as an equation at the optimal solution), the objective
function can assume the same optimal value at more than one solution point, thus
giving rise to alternative optima. The next example shows that there is an infinite
number of such solutions. It also demonstrates the practical significance of encoun
tering such solutions.

Example 3.5-2 (Infinite Number of Solutions)

Maximize z = 2Xl + 4X2

subject to

Xl + 2X2 :s; 5

Xl + X2:S; 4

Figure 3.9 demonstrates how alternative optima can arise in the LP model when the objec
tive function is parallel to a binding constraint. Any point on the line segment Be represents an
alternative optimum with the same objective value z == 10.

The iterations of the model are given by the following tableaus.
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Optimal basic solutions

FIGURE 3.9

LP alternative optima in Example 3.5-2

Iteration Basic XI Xz X3 X4 Solution

0 Z -2 -4 0 0 0

Xz enters X3 1 2 1 0 5

x31eaves X4 1 ) 0 1 4

1 (optimum) Z ~i.~:{tgi~!i? 0 2 0 10

XI enters I 1 I 0 5
Xz 2 2 2

x41eaves I 0 I 1 3
X4 2 -2 2

2 z 0 0 2 ~f~)r~9:j~~~ 10

(alterna tive optimum) Xz 0 1 1 -1 1

XI 1 0 -) 2 3

Iteration 1 gives the optimum solution Xl = 0, x2 = t and z = 10, which coincides with
point B in Figure 3.9. How do we know from this tableau that alternative optima exist? Look at
the z-equation coefficients of the nonbasic variables in iteration 1. The coefficient of nonbasic Xl

is zero, indicating that Xl can enter the basic solution without changing the value of z, but caus
ing a change in the values of the variables. Iteration 2 does just that-letting Xl enter the basic
solution and forcing X4 to leave. The new solution point occurs at C(XI = 3, X2 = 1, z = 10).
(TORA's Iteratioris option allows determining one alternative optimum at a time.)

The simplex method determines only the two corner points Band C. Mathematically, we
can determine all the points (Xl> X2) on the line segment Be as a nonnegative. weighted average
of points Band C. TIlUS, given
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then all the points on the line segment BC are given by

Xl = 0'(0) + (1 - a)(3) = 3 - 3a} °
A (5) 3 , :5 a :5 1
x2 = a 2 + (1 - a)(l) = 1 + 2a

When a = 0, (x), X2) = (3,1), which is point C. When a = 1, (Xl> X2) = (0, n, which is
point B. For values of a between °and 1, (xt> ot-2) lies between Band C.

Remarks. In practice, alternative optima are useful because we can choose from many solu
tions without experiencing deterioration in the objective value. For instance, in the present ex
ample, the solution at B shows that activity 2 only is at a positive level, whereas at C both
activities are positive. If the example represents a product-mix situation, there may be advan
tages in producing two products rather than one to meet market competition. In this ease, the so
lution at C may be more appealing.

PROBLEM SeT 3.5B

*1. For the following LP, identify three alternative optimal basic solutions, and then write a
general expression for all the nonbasic alternative optima comprising these three basic
solutions.

Maximize z =: Xl + 2X2 + 3X3

subject to

Xl + 2x2 + 3X3 :%: 10

XI + x2 :%: 5

Xl :%: 1

Note: Although the problem has more than three alternative basic solution optima,
you are only required to identify three of them. You may use TORA for
convenience.

2. Solve the following LP:

Maximize z = 2Xl - X2 + 3X3

subject to

Xl - X2 + 5X3 :%: 10

2Xl - X2 + 3x3 :%: 40

From the optimal tableau, show that all the alternative optima are not corner points
(i.e., nonbasic). Give a two-dimensional graphical demonstration of the type of solu
tion space and objective function that will produce this result. (You may use TORA
for convenience.)

f
{,
f

f
[:
I
r
I
!

3



3.5 . Special Cases in the Simplex Method 119

3. For the following LP, show that the optimal solution is degenerate and that none of the
alternative solutions are corner points (you may use TORA for convenience).

Maximize z = 3XI + Xl

subject to

Xl + 2X2 :5 5

Xl + X2 - x3 :5 2

7XI + 3X2 - 5X3 :5 20

3.5.3 Unbounded Solution

In some LP models, the values of the variables may be increased indefinitely without
violating any of the constraints-meaning that the solution space is unbounded in at
least one variable. As a result, the objective value may increase (maximization case) or
decrease (minimization case) indefinitely. In this case, both the solution space and the
optimum objective value are unbounded.

Unboundedness points to the possibility that the model is poorly constructed.
The most likely irregularity in such models is that one or more nonredundant con
straints have not been accounted for, and the parameters (constants) of some con
straints may not have been estimated correctly.

The following examples show how unboundedness, in both the solution space
and the objective value, can be recognized in the simplex tableau.

Example 3.5-3 (Unbounded Objective Value)

Maximize z = 2xl + X2

subject to

Starting Iteration

Basic Xl n;~~:~:r X3 X4 Solution

z -2 !f.if;~r{ml~~ 0 0 0

X3 1 iJ~;:~~if.r~ 1 0 10
X4 2 0 1 40



120 Chapter 3 The Simplex Method and Sensitivity Analysis

In the starting tableau, both Xl and X2 have negative z-equation coefficients. Hence either
one can improve the solution. Because Xl has the most negative coefficient, it is normally select
ed as the entering variable. However, all the constraint coefficients under X2 (Le., the denomina
tors of the ratios of the feasibility condition) are negative or zero. This means that there is no
leaving variable and that X2 can be increased indefinitely without violating any of the constraints
(compare with the graphical interpretation of the minimum ratio in Figure 3.5). Because each
unit increase in Xl will increase z by 1, an infinite increase in X2 leads to an infinite increase in z.
Thus, the problem has no bounded solution. This result can be seen in Figure 3.10. The solution
space is unbounded in the direction of X2, and the value of z can be increased indefinitely.

Remarks. What would have happened if we had applied the strict optimality condition that
calls for Xl to enter the solution? The answer is that a succeeding tableau would eventually have
led to an entering variable with the same characteristics as X2' See Problem 1, Set3.5c.

PROBLEM SET 3.Se

1. TORA Experiment. Solve Example 3.5-3 using TORA's Iterations option and show that
even though the solution starts with Xl as the entering variable (per the optimality condi
tion), the simplex algorithm will point eventually to an unbounded solution.

*2. Consider the LP:

Maximize z = 20XI + lOx2 + X3

subject to

3Xl - 3X2 + 5X3 :$; 50

Xl + x3::; 10

Xl - X2 + 4x3 ::; 20

3.5

Unbounded
objective
~ value

\T\
\~
\"

\ >r
,~

,">

~--f------- Xl
FIGURE 3.10

LP unbounded solution in Example 3.5-3
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(a) By inspecting the constraints, determine the direction (XI. X2, or X3) in which the so
lution space is unbounded.

(b) Without further computations, what can you conclude regarding the optimum objec
tive value?

3. In some ill-constructed LP models, the solution space may be unbounded even though
the problem may have a bounded objective value. Such an occurrence can point only to
irregularities in the construction of the model. In large problems, it may be difficult to de
tect unboundedness by inspection. Devise a procedure for determining whether or not a
solution space is unbounded.

3.5.4 Infeasible Solution

LP models with inconsistent constraints have no feasible solution. This situation can
never occur if all the constraints are of the type <: with nonnegative right-hand sides
because the slacks provide a feasible solution. For other types of constraints, we use ar
tificial variables. Although the artificial variables are penalized in the objective func
tion to force them to zero at the optimum, this can occur only if the model has a
feasible space. Otherwise, at least one artificial variable will be positive in the optimum
iteration. From the practical standpoint, an infeasible space points to the possibility
that the model is not formulated correctly.

Example 3.5-4 (Infeasible Solution Space)

Consider the following LP:

Maximize z = 3x) + 2X2

subject to

Using the penalty M = 100 for the artificial variable R, the following tableaux provide the
simplex iterations of the model.

Iteration Basic Xl X2 X4 X3 R Solution

0 z -303 -402 100 0 0 -1200
Xz enters X3 2 1 0 1 0 2
x3leaves R 3 4 -1 0 1 12

1 z 501 0 100 402 0 -396
(pseudo-optimum) X2 2 1 0 1 0 2

: R" -5 0 -1 -4 1 ~~~~l{~~~fI;~

Optimum iteration 1 shows that the artificial variable R is positive (= 4), which indicates
that the problem is infeasible. Figure 3.11 demonstrates the infeasible solution space. By allowing
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Psuedo-optimal
solution

oL.....:...----'r-'\-.......--.......---"'~--- ;1:1

FIGURE 3.11

Infeasible solution of Example 3.5-4

the artificial variable to be positive, the simplex method, in essence, has reversed the direction of
the inequality from 3X1 + 4X2 ;;;0: 12 to 3Xl + 4X2 ~ 12 (can you explain how?). The result is
what we may call a pseudo-optimal solution.

PROBLEM SET 3.50

*1. Tooleo produces three types of tools, 71, n, and 13. The tools use two raw materials, M1
and M2, according to the data in the following table:

Number of units of raw materials per tool

Maximize z = 3XI + 2Xl + 3X3

subject to

6
4

T3

5
3

72

3
5

Tl

2Xl + X2 + X3 ~ 2

3xI + 4x2 + 2X3 ;;;0: 8

Ml
M2

Raw material

The available daily quantities of raw materials M1 and M2 are 1000 units and 1200 units,
respectively. The marketing department informed the production manager that according
to their research, the daily demand for all three tools must be at least 500 units. Will the
manufacturing department be able to satisfy the demand? If not, what is the most Toolco
can provide of the three tools?

TORA Experiment. Consider the LP model2.
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Use TORA's Iterations => M~Meth6d to show that the optimal solution includes an arti
ficial basic variable, but at zero level. Does the problem have a feasible optimal solution?

3.6 SENSITIVITY ANALYSIS

of
IS

In LP, the parameters (input data) of the model can change within certain limits with
out causing the optimum solution to change. This is referred to as sensitivity analysis,
and will be the subject matter of this section. Later, in Chapter 4, we will study post
optimal analysis which deals with determining the new optimum solution resulting
from making targeted changes in the input data.

In LP models, the parameters are usually not exact. With sensitivity analysis, we
can ascertain the impact of this uncertainty on the quality of the optimum solution. For
example, for an estimated unit profit of a product, if sensitivity analysis reveals that the
optimum remains the same for a ±1O% change in the unit profit, we can conclude that
the solution is more robust than in the case where the indifference range is only ±1 %.

We will start with the more concrete graphical solution to explain the basics of
sensitivity analysis. These basics will then be extended to the general LP problem using
the simplex tableau results.

3.6.1 Graphical Sensitivity Analysis

This section demonstrates the general idea of sensitivity analysis. Two cases will be con
sidered:

'1 1. Sensitivity of the optimum solution to changes in the availability of the resources
(right-hand side of the constraints).

2. Sensitivity of the optimum solution to changes in unit profit or unit cost (coeffi
cients of the objective function).

Example 3.6-1 (Changes in the Right-Hand Side)

Maximize z = 30Xl + 20X2

(Machine 1)

(Machine 2)

2Xl + X2 s; 8

Xl + 3X2 :5 8

We will consider the two cases separately, using examples of two-variable graph
ical LPs.

subject to

JOBCO produces two products on two machines. A unit of product 1 requires 2 hours on machine
1 and 1 hour on machine 2. For product 2, a unit requires 1 hour on machine 1 and 3 hours on ma
chine 2. The revenues per unit of products 1 and 2 are $30 and $20, respectively. The total daily
processing time available for each machine is 8 hours.

Letting Xl and X2 represent the daily number of units of products 1 and 2, respectively, the
LP model is given as

ng

co

:s,
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Figure 3.12 illustrates the change in the optimum solution when changes are made in the capaci
ty of machine 1. If the daily capacity is increased from 8 hours to 9 hours, the new optimum will
occur at point G. The rate of change in optimum z resulting from changing machine 1 capacity
from 8 hours to 9 hours can be computed as follows:

(

Rate of revenue change )
resulting from increasing Ze - Zc

machine 1 capacity by 1 hr - (Capacity change)
(point C to point G)

142 - 128 = $14.00/hr
9 - 8

The computed rate provides a direct link between the model input (resources) and its output
(total revenue) that represents the unit worth of a resource (in $/hr)-that is, the change in the
optimal objective value per unit change in the availability of the resource (machine capacity).
This means that a unit increase (decrease) in machine 1 capacity will increase (decrease) rev
enue by $14.00. Although unit worth of a resource is an apt description of the rate of change of
the objective function, the technical name dual or shadow price is now standard in the LP litera
ture and all software packages and, hence, will be used throughout the book.

FIGURE 3.12

Graphical sensitivity of optimal solurion to changes in the availability of resources (right-hand side of the
constraints)
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Looking at Figure 3.12, we can see that the dual price of $14.00/hr remains valid for changes
(increases or decreases) in machine 1 capacity that move its constraint parallel to itself to any
point on the line segment BF. This means that the range of applicability of the given dual price
can be computed as follows:

Minimum machine 1 capacity [at B = (0,2.67)] = 2 x 0 + 1 x 2.67 = 2.67 hr

Maximum machine 1 capacity [at F '"' (8,0)] = 2 x 8 + 1 x 0 = 16 hr

We can thus conclude that the dual price of $14.00/hr will remain valid for the range

2.67 hrs :5 Machine 1 capacity :5 16 hrs

Changes outside this range will produce a different dual price (worth per unit).
Using similar computations, you can verify that the dual price for machine 2 capacity is

$2.00/hr and it remains valid for changes (increases or decreases) that move its constraint paral
lel to itself to any point on the line segment DE, which yields the following limits:

Minimum machine 2 capacity [at D = (4,0)] = 1 x 4 + 3 X a = 4 hr

Maximum machine 2 capacity [at E = (8, 0)] = 1 x a + 3 x 8 = 24 hr

The conclusion is that the dual price of $2.00/hr for machine 2 will remain applicable for the range

4 hr :5 Machine 2 capacity :5 24 hr

The computed limits for machine 1 and 2 are referred to as the feasibility ranges. All software
packages provide information about the dual prices and their feasibility ranges. Section 3.6.4
shows how AMPL, Solver, and TORA generate this information.

The dual prices allow making economic decisions about the LP problem, as the following
questions demonstrate:

Question 1. If JOBCO can increase the capacity of both machines, which machine should re
ceive higher priority?

The dual prices for machines 1 and 2 are $14.00/hr and $2.00/hr. TIlis means that each addi
tional hour of machine 1 will increase revenue by $14.00, as opposed to only $2.00 for machine 2.
Thus, priority should be given to machine 1.

Question 2. A suggestion is made to increase the capacities of machines 1 and 2 at the addi
tional cost of $10/hr. Is this advisable?

For machine 1, the additional net revenue per hour is 14.00 - 10.00 = $4.00 and for ma
chine 2, the net is $2.00 - $10.00 = -$8.00. Hence, only the capacity of machine 1 should be
increased.

Question 3. If the capacity of machine 1 is increased from the present 8 hours to 13 hours, how
will this increase impact the optimum revenue?

The dual price for machine 1 is $14.00 and is applicable in the range (2.67,16) hr. TIle pro
posed increase to 13 hours falls within the feasibility range. Hence, the increase in revenue is
$14.00(13 - 8) = $70.00, which means that the total revenue will be increased to
(current revenue + change in revenue) = 128 + 70 = $198.00.

Question 4. Suppose that the capacity of machine 1 is increased to 20 hours, how will this in
crease impact the optimum revenue?
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The proposed change is outside the range (2.67, 16) hr for which the dual price of $14.00 re
mains applicable. Thus, we can only make an immediate conclusion regarding an increase up to
16 hours. Beyond that, further calculations are needed to find the answer (see Chapter 4). Re
member that falling outside the feasibility range does not mean that the problem has no solution.
It only means that we do not have sufficient information to make an immediate decision.

Question 5. We know that the change in the optimum objective value equals (dual
price X change in resource) so long as the change in the resource is within the feasibility range.
What about the associated optimum values of the variables?

The optimum values of the variables will definitely change. However, the level of informa
tion we have from the graphical solution is not sufficient to determine the new values. Section
3.6.2, which treats the sensitivity problem algebraically, provides this detail.

PROBLEM SET 3.6A

1. A company produces two products, A and B. The unit revenues are $2 and $3, respective
ly. Two raw materials, M1 and M2, used in the manufacture of the two products have re
spective daily availabilities of 8 and 18 units. One unit of A uses 2 units of Ml and 2 units
of M2, and 1 unit of Buses 3 units of Ml and 6 units of M2.

(a) Determine the dual prices of Ml and M2 and their feasibility ranges.

(b) Suppose that 4 additional units of Ml can be acquired at the cost of 30 cents per
unit. Would you recommend the additional purchase?

(c) What is the most the company should pay per unit of M2?

(d) If M2 availability is increased by 5 units, determine the associated optimum revenue.

*2. Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor
time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company
can produce a total of 400 Type 2 hats a day. The respective market limits for the two types
are 150 and 200 hats per day. The revenue is $8 per Type 1 hat and $5 per Type 2 hat.

(a) Use the graphical solution to determine the number of hats of each type that maxi
mizes revenue.

(b) Determine the dual price of the production capacity (in terms of the Type 2 hat) and
the range for which it is applicable.

(c) If the daily demand limit on the Type 1 hat is decreased to 120, use the dual price to
determine the corresponding effect on the optimal revenue.

(d) What is the dual price of the market share of the Type 2 hat? By how much can the
market share be increased while yielding the computed worth per unit?

Example 3.6-2 (Changes in the Objective Coefficients)

Figure 3.13 shows the graphical solution space of the lOBeO problem presented in Example
3.6-1. The optimum occurs at point C (Xl == 3.2, Xl = 1.6, Z == 128). Changes in revenue units
(i.e., objective-function coefficients) will change the slope of z. However, as can be seen from the
figure, the optimum solution will remain at point C so long as the objective function lies between
lines BF and DE, the two constraints that define the optimum point. This means that there is a
range for the coefficients of the objective function that will keep the optimum solution un
changed at C.
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FIGURE 3.13

Graphical sensitivity of optimal solution to changes in the revenue units (coefficients of the objective function)

We can write the objective function in the general format

Maximize z = C\Xl + c2x2

Imagine now that the line z is pivoted at C and that it can rotate clockwise and counterclockwise.
The optimum solution will remain at point C so long as Z = C\X\ + c2x2lies between the two lines
Xl + 3X2 = 8 and 2Xl + X2 = 8. This means that the ratio ~ can vary between ~ and t, which
yields the following condition:

1 CI 2
-<-<-
3 - C2 - 1

or .333:$ Cl :$ 2
C2

This information can provide immediate answers regarding the optimum solution as the follow
ing questions demonstrate:

Question 1. Suppose that the unit revenues for products 1 and 2 are changed to $35 and $25, re
spectively. Will the current optimum remain the same?
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The new objective function is

Maximize z = 35xI + 25x2

The solution at C will remain optimal because ~ == ~ = 1.4 remains within the optimality range
(.333,2). When the ratio falls outside this range, additional calculations are needed to find the new
optimum (see Chapter 4). Notice that although the values of the variables at the optimum point C
remain unchanged, the optimum value of z changes to 35 X (3.2) + 25 X (1.6) == $152.00.

Question 2. Suppose that the unit revenue of product 2 is fixed at its current value of
c2 = $20.00. What is the associated range for Cj, the unit revenue for product 1 that will keep the
optimum unchanged?

Substituting C2 = 20 in the condition ~ ~ ~ ~ 2, we get

! X 20 ::; Cl ~ 2 x 20

Or

6.67 ~ Cl ~ 40

This range is referred to as the optimality range for Cb and it implicitly assumes that C2 is fixed at
$20.00.

We can similarly determine the optimality range for C2 by fixing the value of Ct at $30.00. Thus,

Or

As in the case of the right-hand side, all software packages provide the optimality ranges.
Section 3.6.4 shows how AMPL, Solver, and TORA generate these results.

Remark. Although the material in this section has dealt only with two variables, the results
lay the foundation for the development of sensitivity analysis for the general LP problem in
Sections 3.6.2 and 3.6.3.

PROBLEM SET 3.6B

1. Consider Problem 1, Set 3.6a.

(a) Determine the optimality condition for ~ that will keep the optimum unchanged.

(b) Determine the optimality ranges for CA and C8, assuming that the other coefficient is
kept constant at its present value.

(c) If the unit revenues CA and CB are changed simultaneously to $5 and $4, respectively,
determine the new optimum solution.

(d) If the changes in (c) are made one at a time, what can be said about the optimum
solution?

2. In the Reddy Mikks model of Example 2.2-1;

(a) Determine the range for the ratio of the unit revenue of exterior paint to the unit
revenue of interior paint.

t
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(b) If the revenue per ton of exterior paint remains constant at $5000 per ton, determine
the maximum unit revenue of interior paint that will keep the present optimum solu
tion unchanged.

(c) If for marketing reasons the unit revenue of interior paint must be reduced to $3000,
will the current optimum production mix change?

*3. In Problem 2, Set 3.6a:

(a) Determine the optimality range for the unit revenue ratio of the two types of hats
that will keep the current optimum unchanged.

(b) Using the information in (b), will the optimal solution change if the revenue per unit
is the same for both types?

3.6.2 Algebraic Sensitivity Analysis-Changes in the Right-Hand Side

In Section 3.6.1, we used the graphical solution to determine the dual prices (the unit
worths of resources) and their feasibility ranges. This section extends the analysis to the
general LP model. A numeric example (the TOYCO model) will be used to facilitate
the presentation.

Example 3.6-2 (TOYCO Model)

TOYCO assembles three types of toys-trains, trucks, and cars-using three operations. The
daily limits on the available times for the three operations are 430,460, and 420 minutes, respec
tively, and the revenues per unit of toy train, truck, and car are $3, $2, and $5, respectively. The as
sembly times per train at the three operations are 1, 3, and 1 minutes, respectively. The
corresponding times per train and per car are (2,0,4) and (1,2,0) minutes (a zero time indicates
that the operation is not used).

Letting Xl> X2, and X3 represent the daily number of units assembled of trains, trucks, and
cars, respectively, the associated LP model is given as:

Maximize z = 3x, + 2X2 + 5X3

subject to

:s 430 (Operation] )

:s 460 (Operation 2)

:s 420 (Operation 3)

- '-~
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The solution recommends manufacturing 100 trucks and 230 cars but no trains. The associ
ated revenue is $1350.

Determination of Dual Prices. The constraints of the model after adding the slack
variables X4, Xs, and x6 can be written as follows:

Xl + 2X2 + X3 + X4 = 430 (Operation 1)

.3XI + 2X3 + Xs = 460 (Operation 2)

xl + 4X2 + X6 = 420 (Operation 3)

or

Xl + 2X2 + X3 = 430 - X4

3XI + 2X3 = 460 - Xs

Xl + 4X2 = 420 - x6

(Operation 1)

(Operation 2)

(Operation 3)

With this representation, the slack variables have the same units (minutes) as the oper
ation times. Thus, we can say that a one-minute decrease in the slack variable is equiva
lent to a one-minute increase in the operation time.

We can use the information above to determine the dual prices from the z-equa
tion in the optimal tableau:

z + 4XI + X4 + 2xs + OX6 = 1350

This equation can be written as

z = 1350 - 4XI - X4 - 2xs - OX6

= 1350 - 4Xl + 1(-x4) + 2(-xs) + 0(-X6)

Given that a decrease in the value of a slack variable is equivalent to an increase in its
operation time, we get

z = 1350 - 4XI + 1 X (increase in operation 1 time)

+ 2 X (increase in operation 2 time)

+ 0 x (increase in operation 3 time)

This equation reveals that (1) a one-minute increase in operation 1 time increases z by
$1, (2) a one-minute increase in operation 2 time increases z by $2, and (3) a one
minute increase in operation 3 time does not change z.

To summarize, the z-row in the optimal tableau:

Basic

4

X2 ..X3 X4 -Xs X6

0 0 1 2 0

Solution

1350
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yields directly the dual prices, as the following table shows:

Optimal z-equation coefficient

ck Resource Slack variable of slack variable Dual price

Operation 1 X4 1 $lImin
Operation 2 Xs 2 $2/min
Operation 3 X6 0 SO/min

~r-

.a-

its

The zero dual price for operation 3 means that there is no economic advantage in
allocating more production time to this operation. The result makes sense because the
resource is already abundant, as is evident by the fact that the slack variable associated
with Operation 3 is positive (= 20) in the optimum solution. As for each of Operations
1 and 2, a one minute increase will improve revenue by $1 and $2, respectively. The
dual prices also indicate that, when allocating additional resources, Operation 2 may be
given higher priority because its dual price is twice as much as that of Operation 1.

The computations above show how the dual prices are determined from the opti
mal tableau for ~ constraints. For > constraints, the same idea remains applicable
except that the dual price will assume the opposite sign of that associated with the :5

constraint. As for the case where the constraint is an equation, the determination of the
dual price from the optimal simplex tableau requires somewhat "involved" calcula
tions as will be shown in Chapter 4.

Determination of the Feasibility Ranges. Having determined the dual prices, we show
next how the feasibility ranges in which they remain valid are determined. Let D I , Dz,
and D3 be the changes (positive or negative) in the daily manufacturing time allocated
to operations 1,2, and 3, respectively. The model can be written as follows:

Maximize z = 3Xl + 2x2 + 5X3

subject to

X I + 2xz + x3:5 430 + DI (Operation 1)

3xi + 2X3 :::; 460 + Dz (Operation 2)

Xl + 4X2 :5 420 + D3 (Operation 3)

We will consider the general case of making the changes simultaneously. The special
cases of making change one at a time are derived from these results.

The procedure is based on recomputing the optimum simplex tableau with the
modified right-hand side and then deriving the conditions that will keep the solution
feasible-that is, the right-hand side of the optimum tableau remains nonnegative. To
show how the right-hand side is recomputed, we start by modifying the Solution col
umn of the starting tableau using the new right-hand sides: 430 + Db 460 + Dz, and
420 + D3. The starting tableau will thus appear as
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Solution

Basic Xl' X2 X3

Z -3 -2 -5

X4 1 2 1
Xs 3 0 2
X6 1 4 0

The columns under Db Dz, and D3 are identical to those under the starting basic
columns X4, xs, and X6' This means that when we carry out the same simplex iterations
as in the original model, the columns in the two groups must come out identical as well.
Effectively, the new optimal tableau will become

Solution

Basic Xl X2

Z 4 0

I 1X2 -4
3 0X3 2

X6 2 0

o

o
1

o

The new optimum tableau provides the following optimal solution:

z = 1350 + D1 + 2Dz
1 1

Xz = 100 + '2 D} - 4 Dz

x3 = 230 + ~D2

x6 = 20 - 2D1 + Dz + D3

Interestingly, as shown earlier, the new z-value confirms that the dual prices for opera
tions 1,2, and 3 are 1,2, and 0, respectively.

The current solution remains feasible so long as all the variables are nonnegative,
which leads to the following feasibility conditions:

Xz = 100 + !D1 - ~ Dz ~ 0

x3 = 230 + ~ Dz ~ 0

X6 = 20 - 2D} + Dz + D3 ~ 0

Any simultaneous changes Db Dz, and DJ that satisfy these inequalities will keep the
solution feasible. If all the conditions are satisfied, then the new optimum solution can
be found through direct substitution of Db ~, and D3 in the equations given above.
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To illustrate the use of these conditions, suppose that the manufacturing time
available for operations 1,2, and 3 are 480,440, and 410 minutes respectively. Then, Dl =

480 - 430 = 50, ~ = 440 - 460 = -20, and D] = 410 - 420 = -10. Substituting
in the feasibility conditions, we get

X2 = 100 + ~(50) - ~(-20) = 130 > 0

x3 = 230 + ~(-20) = 220 > 0

X6 = 20 - 2(50) + (-20) + (-10) = -110 < 0

(feasible)

(feasible)

(infeasible)

c
s

TIle calculations show that x6 < 0, hence the current solution does not remain feasible.
Additional calculations will be needed to find the new solution. These calculations are
discussed in Chapter 4 as part of the post-optimal analysis.

Alternatively, if the changes in the resources are such that D1 = -30, Dz = -12,
and D3 = 10, then

X2 = 100 + ~(-30) - h-12) = 88 > 0

X3 = 230 + ~(-12) = 224 > 0

x6 = 20 - 2(-30) + (-12) + (10) = 78 > 0

(feasible)

(feasible)

(feasible)
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The new feasible solution is Xl = 88, X3 = 224, and X6 = 68 with z = 3(0) + 2(88) +
5(224) = $1296. Notice that the optimum objective value can also be computed as
z = 1350 + 1( -30) + 2( -12) = $1296.

The given conditions can be specialized to produce the individual feasibility ranges
that result from changing the resources one at a time (as defined in Section 3.6.1).

Case 1. Change in operation 1 time from 460 to 460 + D} minutes. This change is equiv
alent to setting Dz = D3 = 0 in the simultaneous conditions, which yields

Xz = 100 + ~ D l ~ 0~ D[ ~ -200}
X3 = 230 > 0 ~ -200 <: D1 :5 10
x6 = 20 - 2D[ ~ 0 =} Dr :5 10

Case 2. Change in operation 2 time from 430 to 430 + Dzminutes. This change is equiv
alent to setting D1 = D3 = 0 in the simultaneous conditions, which yields

Case 3. Change in operation 3 time from 420 to 420 + D] minutes. This change is equiv
alent to setting D1 = Dz = 0 in the simultaneous conditions, which yields

X2 = 100> 0 }
x3 = 230 > 0 ~ -20 :5 D3 < 00

X6 = 20 + D3 ~ 0
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(feasible)

(feasible)

(feasible)

We can now summarize the dual prices and their feasibility ranges for the
TOYCO model as follows:3

Resource amount (minutes)

Resource Dual price Feasibility range Minimum Current Maximum

Operation 1 1 -200::=;; D1 ::=;; 10 230 430 440
Operation 2 2 -20 ::=;;D2 :$400 440 440 860
Operation 3 0 -20 :$ D3 < 00 400 420 00

It is important to notice that the dual prices will remain applicable for any
simultaneous changes that keep the solution feasible, even if the changes violate the indi
vidual ranges. For example, the changes D1 = 30, Dz = -12, and D3 = 100, will keep the
solution feasible even though D] = 30 violates the feasibility range -200 ::s D l ::s 10, as
the following computations show:

Xz = 100 + ~(30) - ~(-12) = 118> 0

X3 = 230 + ~(-12) = 224 > 0

X6 = 20 - 2(30) + (-12) + (100) = 48 > 0

This means that the dual prices will remain applicable, and we can compute the new
optimum objective value from the dual prices as z = 1350 + 1(30) + 2( -12) +
0(100) = $1356

The results above can be summarized as follows:

1. The dual prices remain valid so long as the changes Di , i = 1,2, ... , m, in the
right-hand sides of the constraints satisfy all the feasibility conditions when the
changes are simultaneous or fall within the feasibility ranges when the changes
are made individually.

2. For other situations where the dual prices are not valid because the simultaneous
feasibility conditions are not satisfied or because the individual feasibility ranges
are violated, the recourse is to either re-solve the problem with the new values of
Di or apply the post-optimal analysis presented in Chapter 4.

PROBLEM SET 3.6et

1. In the TOYCO model, suppose that the changes DI , Dz, and D3 are made simultaneously
in the three operations.
(a) If the availabilities of operations 1,2, and 3 are changed to 438,500, and 410 minutes,

respectively, use the simultaneous conditions to show that the current basic solution

3Available LP packages usually present this information as standard output. Practically none provide the
case of simultaneous conditions, presumably because its display is cumbersome, particularly for large LPs.

41n this problem set, you may find it convenient to generate the optimal simplex tableau with TORA.
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remains feasible, and determine the change in the optimal revenue by using the opti
mal dual prices.

(b) If the availabilities of the three operations are changed to 460,440, and 380 minutes,
respectively, use the simultaneous conditions to show that the current basic solution
becomes infeasible.

*2. Consider the TOYCO model.

(a) Suppose that any additional time for operation 1 beyond its current capacity of 430
minutes per day must be done on an overtime basis at $50 an hour. The hourly cost
includes both labor and the operation of the machine. Is it economically advanta
geous to use overtime with operation I?

(b) Suppose that the operator of operation 2 has agreed to work 2 hours of overtime
daily at $45 an hour. Additionally, the cost of the operation itself is $10 an hour.
What is the net effect of this activity on the daily revenue?

(c) Is overtime needed for operation 3?

(d) Suppose that the daily availability of operation 1 is increased to 440 minutes. Any
overtime used beyond the current maximum capacity will cost $40 an hour. Deter
mine the new optimum solution, including the associated net revenue.

(e) Suppose that the availability of operation 2 is decreased by 15 minutes a day and
that the hourly cost of the operation during regular time is $30. Is it advantageous to
decrease the availability of operation 2?

3. A company produces three products, A, B, and C. The sales volume for A is at least
50% of the total sales of all three products. However, the company cannot sell more
than 75 units of A per day. The three products use one raw material, of which the maxi
mum daily availability is 240 lb. The usage rates of the raw material are 2 lb per unit of
A,4 lb per unit of B, and 3lb per unit of C. The unit prices for A, B, and Care $20, $50,
and $35, respectively.

(a) Determine the optimal product mix for the company.

(b) Determine the dual price of the raw material resource and its allowable range. If
available raw material is increased by 120 lb, determine the optimal solution and the
change in total revenue using the dual price.

(c) Use the dual price to determine the effect of changing the maximum demand for
product A by ±10 units.

4. A company that operates 10 hours a day manufactures three products on three sequen
tial processes. The following table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit price

1 10 6 8 $4.50
2 5 8 10 $5.00
3 6 9 12 $4.00

(a) Determine the optimal product mix.

(b) Use the dual prices to prioritize the three processes for possible expansion.

(c) If additional production hours can be allocated, what would be a fair cost per addi
tional hour for each process?
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s.

*6.

7.

The Continuing Education Division at the Ozark Community College offers a total of 30
courses each semester.The courses offered are usually of two types: practical, such as wood
working, word processing, and car maintenance; and humanistic, such as history, music, and
fine arts. To satisfy the demands of the community, at least 10 courses of each type must be
offered each semester. The division estimates that the revenues of offering practical and hu
manistic courses are approximately $1500 and $1000 per course, respectively.

(a) Devise an optimal course offering for the college.

(b) Show that the dual price of an additional course is $1500, which is the same as the
revenue per practical course. What does this result mean in temlS of offering addi
tional courses?

(c) How many more courses can be offered while guaranteeing that each will contribute
$1500 to the total revenue?

(d) Determine the change in revenue resulting from increasing the minimum require-
ment of humanistics by one course.

Show & Sell can advertise its products on local radio and television (TV), or in newspa
pers. The advertising budget is limited to $10,000 a month. Each minute of advertising on
radio costs $15 and each minute on TV costs $300. A newspaper ad costs $50. Show &
Sell likes to advertise on radio at least twice as much as on TV. In the meantime, the use
of at least 5 newspaper ads and no more than 400 minutes of radio advertising a month is
recommended. Past experience shows that advertising on TV is 50 times more effective
than on radio and 10 times more effective than in newspapers.

(a) Determine the optimum allocation of the budget to the three media.

(b) Are the limits set on radio and newspaper advertising justifiable economically?

(c) If the monthly budget is increased by 50%, would this result in a proportionate in-
crease in the overall effectiveness of advertising?

The Burroughs Garment Company manufactures men's shirts and women's blouses for
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.
The production process includes cutting, sewing, and packaging. Burroughs employs 25
workers in the cutting department, 35 in the sewing department, and 5 in the packaging
department. The factory works one 8-hour shift, 5 days a week. The following table gives
the time requirements and prices per unit for the two garments:

Minutes per unit

Garment

Shirts
Blouses

Cutting

20
60

Sewing

70
60

Packaging

12
4

Unit price ($)

8.00
12.00

8.

(a) Determine the optimal weekly production schedule for Burroughs.

(b) Determine the worth of one hour of cutting, sewing, and packaging in terms of the
total revenue.

(c) If overtime can be used in cutting and sewing, what is the maximum hourly rate Bur-
roughs should pay for overtime?

ChemLabs uses raw materials I and II to produce two domestic cleaning solutions, A and
B. The daily availabilities of raw materials I and II are 150 and 145 units, respectively.
One unit of solution A consumes .5 unit of raw materiall and .6 unit of raw materialll,
and one unit of solution Buses .5 unit of raw materiall and .4 unit of raw materialll. The
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prices per unit of solutions A and Bare $8 and $10, respectively. The daily demand for so
lution A lies between 30 and 150 units, and that for solution B between 40 and 200 units.
(a) Find the optimal amounts of A and B that ChemLab should produce.

(b) Use the dual prices to determine which demand limits on products A and B should
be relaxed to improve profitability.

(c) If additional units of raw material can be acquired at $20 per unit, is this advisable?
Explain.

(d) A suggestion is made to increase raw material II by 25% to remove a bottleneck in
production. Is this advisable? Explain.

9. An assembly line consisting of three consecutive workstations produces two radio mod
els: DiGi-l and DiGi-2. The following table provides the assembly times for the three
workstations.

Minutes per unit

Workstation

1
2
3

DiGi-l

6
5
4

DiGi-2

4
4
6

The daily maintenance for workstations 1,2, and 3 consumes 10%,14%, and 12%, re
spectively, of the maximum 480 minutes available for each workstation each day.

(a) The company wishes to determine the optimal product mix that will minimize the
idle (or unused) times in the three workstations. Determine the optimum utilization
of the workstations. [Hint; Express the sum of the idle times (slacks) for the three
operations in terms of the original variables.]

(b) Determine the worth of decreasing the daily maintenance time for each workstation
by 1 percentage point.

(c) It is proposed that the operation time for all three workstations be increased to 600
minutes per day at the additional cost of $1.50 per minute. Can this proposal be im
proved?

10. The Gutchi Company manufactures purses, shaving bags, and backpacks. The construc
tion of the three products requires leather and synthetics, with leather being the limiting
raw material. The production process uses two types of skilled labor: sewing and finish
ing. The following table gives the availability of the resources, their usage by the three
products, and the prices per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability

Leather (ftZ
) 2 1 3 42

Sewing (hr) 2 1 2 40
Finishing (hr) 1 .5 1 45
Price ($) 24 22 45

Formulate the problem as a linear program and find the optimum solution. Next, indicate
whether the following changes in the resources will keep the current solution feasible.
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For the cases where feasibility is maintained, determine the new optimum solution
(values of the variables and the objective function).

(a) Available leather is increased to 45 ft2•

(b) Available leather is decreased by 1 ft2
•

(c) Available sewing hours are changed to 38 hours.

(d) Available sewing hours are changed to 46 hours.

(e) Available finishing hours are decreased to 15 hours.

(f) Available finishing hours are increased to 50 hours.

(g) Would you recommend hiring an additional sewing worker at $15 an hour?

11. HiDec produces two models of electronic gadgets that use resistors, capacitors, and chips.
The following table summarizes the data of the situation:

Unit resource requirements

Resource

Resistor
Capacitor
Chips
Unit price ($)

Modell (units)

2
2
o
3

Model 2 (units)

3
1
4

4

Maximum availability (units)

1200
1000
800

Let Xt and X2 be the amounts produced of Models 1 and 2, respectively. Following are the
LP model and its associated optimal simplex tableau.

Maximize z = 3X1 + 4X2

subject to

2xl + 3X2 :5 1200 (Resistors)

2x) + X2 :5 1000 (Capacitors)

4x2:::;; 800 (Chips)

Xl> X2 ;::: 0

Basic XI X2 Sl S2 S3 Solution

0 0 ~ I 0 1750z 4 4

x, 1 0 _1 ;! 0 4504 4

s3 0 0 -2 2 1 400
0 1

, I 0 100X2 2 -2

*(a) Determine the status of each resource.

*(b) In terms of the optimal revenue, determine the dual prices for the resistors, capaci
tors, and chips.

(c) Determine the feasibility ranges for the dual prices obtained in (b).

(d) If the available number of resistors is increased to 1300 units, find the new optimum
solution.
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*(e) If the available number of chips is reduced to 350 units, will you be able to deter
mine the new optimum solution directly from the given information? Explain.

(f) If the availability of capacitors is limited by the feasibility range computed in (c),
determine the corresponding range of the optimal revenue and the corresponding
ranges for the numbers of units to be produced of Models 1 and 2.

(g) A new contractor is offering to sell HiDec additional resistors at 40 cents each, but
only if HiDec would purchase at least 500 units. Should HiDec accept the offer?

U. The 100% feasibility rule. A simplified rule based on the individual changes Db ~, ... ,
and Dm in the right-hand side of the constraints can be used to test whether or not
simultaneous changes will maintain the feasibility of the current solution. Assume that the
right-hand side bj of constraint i is changed to bi + D; one at a time, and that P; :::;; D; :::;; qj
is the corresponding feasibility range obtained by using the procedure in Section 3.6.2.
By definition, we have PI :::;; 0 (qj ~ 0) because it represents the maximum allowable
decrease (increase) in b;. Next, define'j to equal ~ if Dj is negative and!Jf if Dj is positive.
By definition, we have 0 :::;; I"j :$ 1. The 100% rule thus says that, given the changes
Db ~, ... , and Dm , then a sufficient (but not necessary) condition for the current solution
to remain feasible is that 1"1 + '2 + ... + rill :::;; 1. If the condition is not satisfied, then the
current solution mayor may not remain feasible. The rule is not applicable if Dj falls out
side the range (Pj, q;).

In reality, the 100% rule is too weak to be consistently useful. Even in the cases where
feasibility can be confirmed, we still need to obtain the new solution using the regular
simplex feasibility conditions. Besides, the direct calculations associated with simultane
ous changes given in Section 3.6.2 are straightforward and manageable.

To demonstrate the weakness of the rule, apply it to parts (a) and (b) of Problem 1 in
this set. The rule fails to confirm the feasibility of the solution in (a) and does not apply
in (b) because the changes in Dj arc outside the admissible ranges. Problem 13 further
demonstrates this point.

13. Consider the problem

Maximize z "" XI + X2

subject to

2Xl + X2 :$ 6

XI + 2X2 :::;; 6

Xl + X2 ~ 0

(a) Show that the optimal basic solution includes both Xl and X2 and that the feasibility
ranges for the two constraints, considered one at a time, are - 3 ~ DI :OS 6 and
-3 :::;; D2 :::;; 6.

*(b) Suppose that the two resources are increased simultaneously by 6. > 0 each. First,
show that the basic solution remains feasible for all 6. > O. Next, show that the
100% rule will confirm feasibility only if the increase is in the range 0 < A :$ 3
units. Otherwise, the rule fails for 3 < Ii ~ 6 and does not apply for 6. > 6.

3.6.3 Algebraic Sensitivity Analysis-objective Function

In Section 3.6.1, we used graphical sensitivity analysis to determine the conditions that
will maintain the optimality of a two-variable LP solution. In this section, we extend
these ideas to the general LP problem.
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Definition of Reduced Cost. To facilitate the explanation of the objective function
sensitivity analysis, first we need to define reduced costs. In the TOYCO model
(Example 3.6-2), the objective z-equation in the optimal tableau is

z + 4XI + X4 + 2x5 = 1350

or

z = 1350 - 4X1 - X4 - 2X5

The optimal solution does not recommend the production of toy trains (Xl = 0).
This recommendation is confirmed by the informatIon in the z-equation because each
unit increase in Xl above its current zero level will decrease the value of z by $4 
namely, z = 1350 - 4 X (1) - 1 x (0) - 2 X (0) = $1346.

We can think of the coefficient of xl in the z-equation (= 4) as a unit cost be
cause it causes a reduction in the revenue z. But where does this "cost" come from? We
know that xl has a unit revenue of $3 in the original model. We also know that each toy
train consumes resources (operations time), which in turn incur cost. Thus, the "attrac
tiveness" of Xl from the standpoint of optimization depends on the relative values of
the revenue per unit and the cost of the resources consumed by one unit. This relation
ship is formalized in the LP literature by defining the reduced cost as

(
Reduced cost) (cost of consumed) (R . )= . - evenue per umt

per unit resources per umt

To appreciate the significance of this definition, in the original TOYCO model
the revenue per unit for toy trucks (= $2) is less than that for toy trains (= $3). Yet the
optimal solution elects to manufacture toy trucks (X2 = 100 units) and no toy trains
(XI = 0). The reason for this (seemingly nonintuitive) result is that the unit cost of the
resources used by toy trucks (i.e., operations time) is smaller than its unit price. The op
posite applies in the case of toy trains.

With the given definition of reduced cost we can now see that an unprofitable
variable (such as Xl) can be made profitable in two ways:

1. By increasing the unit revenue.

2. By decreasing the unit cost of consumed resources.

In most real-life situations, the price per unit may not be a viable option because its
value is dictated by market conditions. The real option then is to reduce the consump
tion of resources, perhaps by making the production process more efficient, as will be
shown in Chapter 4.

Determination of the Optimality Ranges. We now turn our attention to determining
the conditions that will keep an optimal solution unchanged. The presentation is based
on the definition of reduced cost.

In the TOYCO model, let db d2, and d3 represent the change in unit revenues for
toy trucks, trains, and cars, respectively. The objective function then becomes
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As we did for the right-hand side sensitivity analysis in Section 3.6.2, we will first
deal with the general situation in which all the coefficients of the objective function are
changed simultaneously and then specialize the results to the one-at-a-time case.

With the simultaneous changes, the z-row in the starting tableau appears as:

Basic

o o o

Solution

o

j

r

When we generate the simplex tableaus using the same sequence of entering and
leaving variables in the original model (before the changes d j are introduced), the op
timal iteration will appear as follows (convince yourself that this is indeed the case by
carrying out the simplex row operations):

Basic Xl X2 X3 X4 Xs X6 Solution

1 3 0 0 1 2 - 1d + 1d3 0 1350 + 100dl + 230d3Z 4 - 4dZ + "2d3 - d l 1 + "2dz 4 Z 1

1 1 0 I _1 0 100Xl -4 "2 4
3 0 1 0 I 0 230X3 "2 "2

X6
_1 0 0 -2 1 204

The new optimal tableau is exactly the same as in the original optimal tableau except
that the reduced costs (z-equation coefficients) have changed. This means that changes
in the objective-function coefficients can affect the optimality of the problem only.

You really do not need to carry out the row operation to compute the new re
duced costs. An examination of the new z-row shows that the coefficients of dj are
taken directly from the constraint coefficients of the optimum tableau. A convenient
way for computing the new reduced cost is to add a new top row and a new leftmost
column to the optimum tableau, as shown by the shaded areas below. The entries in the
top row are the change d j associated with each variable. For the leftmost column, the
entries are 1 in the z-row and the associated dj in the row of each basic variable. Keep
in mind that d j = 0 for the slack variables.

Basic Xl X2 X3 X4 X5 X6 Solution

:;;.'1[:) z 4 0 0 1 2 0 1350
: ;.<;.:: ~ .•

_1 1 1

:i:~!~~
X2 4 1 0 "2 -4 0 100

xJ
2- 0 1 0 1 0 230z 2

),~:9;r x6 2 0 0 ~2 1 1 20

Now, to compute the new reduced cost for any variable (or the value of z),
multiply the elements of its column by the corresponding elements in the leftmost
column, add them up, and subtract the top-row element from the sum. For example,
for Xl, we have
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Left column

;~~;~1Y:~:~;
XI

4
_1

4
3
2
2

(xl-column X left·column)

4 X 1
_ld

4 2

~d3
2xQ

Reduced cost for XI = 4 - ~d2 + ~d3 - d l

Note that the application of these computations to the basic variables will always pro
duce a zero reduced cost, a proven theoretical result. Also, applying the same rule to
the Solution column produces z = 1350 + 100d2 + 230d3.

Because we are dealing with a maximization problem, the current solution re
mains optimal so long as the new reduced costs (z-equation coefficients) remain non
negative for all the nonbasic variables. We thus have the following optimality conditions
corresponding to nonbasic Xb X4, and Xs:

4 - ~d2 + ~d3 - d1 ~ 0

1 + ~d2 ~ 0
1 1 02 - 4d2 + 2d3 ~

These conditions must be satisfied simultaneously to maintain the optimality of the
current optimum.

To illustrate the use of these conditions, suppose that the objective function of
TOYCO is changed from

Maximize z = 3Xl + 2X2 + 5X3

to

Maximize z = 2Xl + X2 + 6X3

Then, d} = 2 - 3 = -$1, d2 = 1 - 2 = -$1, and d3 = 6 - 5 = $1. Substitution in
the given conditions yields

4 - ~d2 + ~d3 - d 1 = 4 - ~(-1) + ~(1) - (-1) = 6.75 > 0 (satisfied)

1 + ~d2 = 1 + ~(-1) = .5 > 0 (satisfied) ~

2 - ~d2 + ~d3 = 2 - ~(-1) + !(1) = 2.75 > 0 (satisfied) f

The results show that the proposed changes will keep the current solution (Xl = 0, I·.:

X2 = 100, X3 = 230) optimal. Hence no further calculations are needed, except that
the objective value will change to z = 1350 + 100d2 + 230d3 = 1350 + 100 X -1 +
230 X 1 = $1480. If any of the conditions is not satisfied, a new solution must be de
termined (see Chapter 4).

_,:,"'~"".
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The discussion so far has dealt with the maximization case. The only difference in
the minimization case is that the reduced costs (z-equations coefficients) must be ::;0
to maintain optimality.

The general optimality conditions can be used to determine the special case
where the changes dj occur one at a time instead of simultaneously. This analysis is
equivalent to considering the following three cases:

1. Maximize z = (3 + dl)XI + 2xz + 5X3

2. Maximize z = 3Xl + (2 + dz)xz + 5x3

3. Maximize z = 3xI + 2xz + (5 + d3 )X3

The individual conditions can be accounted for as special cases of the simultane
ous case.s

Case 1. Set dz = d3 = 0 in the simultaneous conditions, which gives

4 - dj ~ O:==}-oo < d l ::; 4

Case 2. Set dl = d3 = ain the simultaneous conditions, which gives

4 - ~dz ~ a=> dz <: 16 }
1 + !dz ~ 0 => dz ~ -2 => - 2 ::; dz <: 8

2 - ~ dz ~ a=> dz -< 8

Case 3. Set d l = dz = 0 in the simultaneous conditions, which gives

The given individual conditions can be translated in terms of the total unit rev
enue. For example, for toy trucks (variable xz), the total unit revenue is 2 + dz and the
associated condition -2 ::; dz <: 8 translates to

2 + (-2) ::; 2 + dz :=:; 2 + 8

or

$0 ::; (Unit revenue of toy truck) ::; $10

This condition assumes that the unit revenues for toy trains and toy cars remain fixed
at $3 and $5, respectively.

The allowable range ($0, $10) indicates that the unit revenue of toy trucks (vari
able xz) can be as low as $0 or as high as $10 without changing the current optimum,
Xl = 0, X2 = 100, X3 = 230. The total revenue will change to 1350 + 100dz, however.

5nJe individual ranges are standard outputs in all LP software. Simultaneous conditions usually are not part
of the output, presumably because they are cumbersome for large problems.
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It is important to notice that the changes db dz, and d3 may be within their allow
able individual ranges without satisfying the simultaneous conditions, and vice versa.
For example, consider

Maximize z = 6x} + 8xz + 3X3

Here d1 = 6 - 3 = $3, dz = 8 - 2 = $6, and d3 = 3 - 5 = -$2, which are all
within the permissible individual ranges (- 00 < d 1 $ 4, -2 $ d2 <: 8, and
-~ $ d3 < (0). However, the corresponding simultaneous conditions yield

4 - ~d2 + ~d3 - d1 = 4 - i(6) + ~(-2) - 3 = -3.5 < 0 (not satisfied)

1 + ~d2 = 1 + ~(6) = 4 > 0 (satisfied)

2 - id2 + ~d3 = 2 - ~(6) + ~(-2) = -.5 < 0 (not satisfied)

The results above can be summarized as follows:

1. The optimal values of the variables remain unchanged so long as the changes
d j , j = 1, 2, ... , n, in the objective function coefficients satisfy all the optimality
conditions when the changes are simultaneous or fall within the optimality
ranges when a change is made individually_

2. For other situations where the simultaneous optimality conditions are not satis
fied or the individual feasibility ranges are violated, the recourse is to either re
solve the problem with the new values of dj or apply the post-optimal analysis
presented in Chapter 4.

PROBLEM SET 3.606

1. In the TOYCO model, determine if the current solution will change in each of the follow
ing cases:

(i) Z = 2Xl + X2 + 4X3

(ii) Z = 3xl + 6X2 + X3

(iii) z = 8Xl + 3X2 + 9x)

*2. B&K grocery store sells three types of soft drinks: the brand names Al Cola and A2 Cola
and the cheaper store brand BK Cola. The price per can for Al, A2, and BK are 80, 70,
and 60 cents, respectively. On the average, the store sells no more than 500 cans of all
colas a day. Although Al is a recognized brand name, customers tend to buy more A2
and BK because they are cheaper. It is estimated that at least 100 cans of Al are sold
daily and that A2 and BK combined outsell Al by a margin of at least 4:2.

(a) Show that the optimum solution does not call for selling the A3 brand.

(b) By how much should the price per can of A3 be increased to be sold by B&K?

(c) To be competitive with other stores, B&K decided to lower the price on all three
types of cola by 5 cents per can. Recompute the reduced costs to determine if this
promotion will change the current optimum solution.

61n this problem set, you may find it convenient to generate the optimal simplex tableau with TORA.
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3. Baba Furniture Company employs four carpenters for 10 days to assemble tables and
chairs. It takes 2 person-hours to assemble a table and .5 person-hour to assemble a chair.
Customers usually buy one table and four to six chairs. The prices are $135 per table and
$50 per chair. The company operates one 8-hour shift a day.

(a) Determine the 10-day optimal production mix.
(b) If the present unit prices per table and chair are each reduced by 10%, use sensitivi

ty analysis to determine if the optimum solution obtained in (a) will change.

(c) If the present unit prices per table and chair are changed to $120 and $,25, will the
solution in (a) change?

4. The Bank of Elkins is allocating a maximum of $200,000 for personal and car loans dur
ing the next month. The bank charges 14% for personal loans and 12% for car loans.
Both types of loans are repaid at the end of a I-year period. Experience shows that about
3% of personal loans and 2% of car loans are not repaid. The bank usually allocates at
least twice as much to car loans as to personal loans.

(a) Determine the optimal allocation of funds between the two loans and the net rate of
return on all the loans.

(b) If the percentages of personal and car loans are changed to 4% and 3%, respectively,
use sensitivity analysis to determine jf the optimum solution in (a) will change.

*5. Electra produces four types of electric motors, each on a separate assembly line. The re
spective capacities of the lines are 500, 500, 800, and 750 motors per day. Type 1 motor
uses 8 units of a certain electronic component, type 2 motor uses 5 units, type 3 motor
uses 4 units, and type 4 motor uses 6 units. The supplier of the component can provide
8000 pieces a day. The prices per motor for the respective types are $60, $40, $25, $30.

(a) Determine the optimum daily production mix.

(b) The present production schedule meets Electra's needs. However, because of com
petition, Electra may need to lower the price of type 2 motor. What is the most re
duction that can be effected without changing the present production schedule?

(c) Electra has decided to slash the price of all motor types by 25%. Use sensitivity
analysis to determine if the optimum solution remains unchanged.

(d) Currently, type 4 motor is not produced. By how much should its price be increased
to be induded in the production schedule?

6. Popeye Canning is contracted to receive daily 60,000 lb of ripe tomatoes at 7 cents per
pound from which it produces canned tomato juice, tomato sauce, and tomato paste. The
canned products are packaged in 24-can cases. A can of juice uses lib of fresh tomatoes,
a can of sauce uses ~ lb, and a can of paste uses ~ lb. TIle company's daily share of the
market is limited to 2000 cases of juice, 5000 cases of sauce, and 6000 cases of paste. The
wholesale prices per case of juice, sauce, and paste are $21, $9, and $12, respectively.

(a) Develop an optimum daily production program for Popeye.

(b) If the price per case for juice and paste remains fixed as given in the problem, use
sensitivity analysis to determine the unit price range Popeye should charge for a case
of sauce to keep the optimum product mix unchanged.

7. Dean's Furniture Company assembles regular and deluxe kitchen cabinets from precut
lumber. The regular cabinets are painted white, and the deluxe are varnished. Both paint
ing and varnishing are carried out in one department. TIle daily capacity of the assembly
department is 200 regular cabinets and 150 deluxe. Varnishing a deluxe unit takes twice
as much time as painting a regular one. If the painting/varnishing department is dedicat
ed to the deluxe units only, it can complete 180 units daily. The company estimates that
the revenues per unit for the regular and deluxe cabinets are $100 and $140, respectively.
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(a) Formulate the problem as a linear program and find the optimal production sched
ule per day.

(b) Suppose that competition dictates that the price per unit of each of regular and
deluxe cabinets be reduced to $80. Use sensitivity analysis to determine whether or
not the optimum solution in (a) remains unchanged.

8. The 100% Optimality Rule. A rule similar to the 100% feasibility rule outlined in Problem
12, Set 3.6c, can also be developed for testing the effect of simultaneously changing all Cj

to Cj + dj , j := 1,2, ... , n, on the optimality of the current solution. Suppose that
Uj :s d j :s Vj is the optimality range obtained as a result of changing each Cj to Cj + d j

one at a time, using the procedure in Section 3.6.3. In this case, Uj 5 0 (Vj ~ 0), because
it represents the maximum allowable decrease (increase) in Cj that will keep the current

solution optimal. For the cases where Uj :s dj ::5 Vj. define Tj equal to ~ if dj is positive

and ~ if dj is negative. By definition, 0 ::5 rj ::5 1. The 100% rule says that a sufficient (but
not necessary) condition for the current solution to remain optimal is that
T\ + 1"2 + ... + Til ::5 1. If the condition is not satisfied, the current solution mayor may
not remain optimal.111e rule does not apply if dj falls outside the specified ranges.

Demonstrate that the 100% optimality rule is too weak to be consistently reliable as a
decision-making tool by applying it to the following cases:

(a) Parts (ii) and (iii) of Problem 1.

(b) Part (b) of Problem 7.

3.6.4 Sensitivity Analysis with TORA, Solver, and AMPL

We now have all the tools needed to decipher the output provided by LP software, par
ticularly with regard to sensitivity analysis. We will use the TOYCO example to demon
strate the TORA, Solver, and AMPL output.

TORA's LP output report provides the sensitivity analysis data automatically as
shown in Figure 3.14 (file toraTOYCO.txt). The output includes the reduced costs and
the dual prices as well as their allowable optimality and feasibility ranges.

FIGURE 3.14

TORA sensitivity analysis for the TOYCO model

***Sensitivity Analysis***

Variable CurrObjCoeff MinObjCoeff MaxObjCoeff

xl: 3.00 -infinity 7.00

x2: 2.00 0.00 10.00

x3: 5.00 2.33 infinity

constraint Curr RHS Min RHS Max RHS

1 «): 430.00 230.00 440.00

2 «) : 460.00 440.00 860.00

3 «) : 420.00 400.00 infinity

Reduced Cost

4.00

0.00

0.00

Dual Price

1. 00

2.00

0.00
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FIGURE 3.15

Excel Solver sensitivity analysis report for the TOYCO model

Figure 3.15 provides the Solver TOYCO model (file solverTOYCo.xls) and its
sensitivity analysis report. After you click Solve in the Solvcr Parameters dialogue box,
the new dialogue box Solver Rcsults will give you the opportunity to request further
details about the solution, including the important sensitivity analysis report. The re
port will be stored in a separate Excel sheet, as shown by the choices on the bottom of
the screen. You can then click Sensitivity Report 1 to view the results. The report is sim
ilar to TORA's with three exceptions: (1) The reduced cost carries an opposite sign. (2)
The name shadow price replaces the name du.al price. (3) The optimality ranges are for the
changes dj and D j rather than for the total objective coefficients and constraints on the



right-hand side. The differences are minor and the interpretation of the results remains
the same.

In AMPL, the sensitivity analysis report is readily available. File amplTOYCo.txt
provides the code necessary to determine the sensitivity analysis output. It requires the
following additional statements:

1
1

~

1
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option solver cplex;
option cplex_options 'sensitivity';
solve;
#------------------------------sensitivity analysis
display oper.down,oper.current,oper.up,oper.dual>a.out;
display x.down,x.current,x.up,x.rc>a.out;

repeat while b[ll<=500
{

solve;
display z, X;
let b[l] :=b[l]+l;
} ;

The CPLEX option statements are needed to be able to obtain the standard sen
sitivity analysis report. In the TOYCO model, the indexed variables and constraints use
the root names x and oper, respectively. Using these names, the suggestive suffixes
. down, . current, and. up in the display statements automatically generate the for
matted sensitivity analysis report in Figure 3.16. The suffixes .dual and. rc provide
the dual price and the reduced cost.

An alternative to AMPL's standard sensitivity analysis report is to actually solve
the LP model for a range of values for the objective coefficients and the right-hand
side of the constraints. AMPL automates this process through the use of commands (see
Section A.7). Suppose in the TOYCO model, file amplTOYCo.txt, that we want to in
vestigate the effect of making changes in b [1] , the total available time for operation l.
We can do so by moving solve and display from amplTOYCO.txt to a new file, which
we arbitrarily name analysis. txt:

Next, enter the following lines at the ampl prompt:
ampl: model amplTOYCO. txt;

ampl: commands analysis. txt;

AMPL sensitivity analysis report
for the TOyeD model

FIGURE 3.16oper.dual
1
2
o

oper.up
440
860

le+20

oper.current
430
460
420

oper.down
230
440
400

1
2
3

x.down x.current X.up x.rc :=

1 -le+20 3 7 -4
2 0 2 10 0
3 2.33333 5 le+20 0
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The first line will provide the model and its data and the second line will provide the
optimum solutions starting with b [II at 430 (the initial value given in amplTOYCO.txt)
and continuing in increments of 1 until b [1] reaches 500. An examination of the out
put will then allow us to study the sensitivity of the optimum solution to changes in
b [1 J•Similar procedures can be followed with other coefficients including the case of
making simultaneous changes.

PROBLEM SET 3.6eJ

1. Consider Problem 1, Set 2.3c (Chapter 2). Use the dual price to decide if it is worthwhile
to increase the funding for year 4.

2. Consider Problem 2, Set 2.3c (Chapter 2).

(a) Use the dual prices to determine the overall return on investment.

(b) If you wish to spend $1000 on pleasure at the end of year 1, how would this affect
the accumulated amount at the start of year 5?

3. Consider Problem 3, Set 2.3c (Chapter 2).

(a) Give an economic interpretation of the dual prices of the model.

(b) Show how the dual price associated with the upper bound on borrowed money at
the beginning of the third quarter can be derived from the dual prices associated
with the balance equations representing the in-out cash flow at the five designated
dates of the year.

4. Consider Problem 4, Set 2.3c (Chapter 2). Use the dual prices to determine the rate of re
turn associated with each year.

*5. Consider Problem 5, Set 2.3c (Chapter 2). Use the dual price to determine if it is worth
while for the executive to invest more money in the plans.

6. Consider Problem 6, Set 2.3c (Chapter 2). Use the dual price to decide if it is advisable
for the gambler to bet additional money.

7. Consider Problem 1, Set 2.3d (Chapter 2). Relate the dual prices to the unit production
costs of the model.

8. Consider Problem 2, Set 2.3d (Chapter 2). Suppose that any additional capacity of ma
chines 1 and 2 can be acquired only by using overtime. What is the maximum cost per
hour the company should be willing to incur for either machine?

*9. Consider Problem 3, Set 2.3d (Chapter 2).

(a) Suppose that the manufacturer can purchase additional units of raw material A at
$12 per unit. Would it be advisable to do so?

(b) Would you recommend that the manufacturer purchase additional units of raw ma
terial B at $5 per unit?

10. Consider Problem 10, Set 2.3e (Chapter 2).

(a) Which of the specification constraints impacts the optimum solution adversely?

(b) What is the most the company should pay per ton of each ore?

7Before answering the problems in this set, you are expected to generate the sensitivity analysis report using
AMPL, Solver, orTORA.
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CHAPTER 4

Duality and Post-Optimal
Analysis

Chapter Guide. Chapter 3 dealt with the sensitivity of the optimal solution by deter
mining the ranges for the model parameters that will keep the optimum basic solution
unchanged. A natural sequel to sensitivity analysis is post-optimal analysis, where the
goal is to determine the new optimum that results from making targeted changes in the
model parameters. Although post-optimal analysis can be carried out using the simplex
tableau computations in Section 3.6, this chapter is based entirely on the dual problem.

At a minimum, you will need to study the dual problem and its economic inter
pretation (Sections 4.1,4.2, and 4.3). The mathematical definition of the dual problem in
Section 4.1 is purely abstract. Yet, when you study Section 4.3, you will see that the dual
problem leads to intriguing economic interpretations of the LP model, including dual
prices and reduced costs. It also provides the foundation for the development of the new
dual simplex algorithm, a prerequisite for post-optimal analysis. The dual simplex algo
rithm is also needed for integer programming in Chapter 9.

The generalized simplex algorithm in Section 4.4.2 is intended to show that the
simplex method is not rigid, in the sense that you can modify the rules to handle prob
lems that start both infeasible and nonoptimal. However, this material may be skipped
without loss of continuity.

You may use TORA's interactive mode to reinforce your understanding of the
computational details of the dual simplex method.

This chapter includes 14 solved examples, 56 end-of-section problems, and 2
cases. The cases are in Appendix E on the CD.

4.1 DEFINITION OF THE DUAL PROBLEM

The dual problem is an LP defined directly and systematically from the primal (or orig
inal) LP model. The two problems are so closely related that the optimal solution of
one problem automatically provides the optimal solution to the other.

In most LP treatments, the dual is defined for various forms of the primal depend
ing on the sense of optimization (maximization or minimization), types of constraints

151



152 Chapter 4 Duality and Post-Optimal Analysis

(:5, ~, or =), and orientation of the variables (nonnegative or unrestricted). This type
of treatment is somewhat confusing, and for this reason we offer a single definition that
automatically subsumes all forms of the primal.

Our definition of the dual problem requires expressing the primal problem in
the equation form presented in Section 3.1 (all the constraints are equations with
nonnegative right-hand side and all the variables are nonnegative). This require
ment is consistent with the format of the simplex starting tableau. Hence, any results
obtained from the primal optimal solution will apply directly to the associated dual
problem.

To show how the dual problem is constructed, define the primal in equation form
as follows:

n

Maximize or minimize z = 2>jXj
j=l

subject to

tI

Lajjxj = bi , i = 1,2, ...., m
j=l

Xj ;:::: 0, j = 1, 2, ... , n

The variables Xj' j = 1,2, ... , n, include the surplus, slack, and artificial variables, if any.
Table 4.1 shows how the dual problem is constructed from the primal. Effectively,

we have

1. A dual variable is defined for each primal (constraint) equation.
2. A dual constraint is defined for each primal variable.
3. The constraint (column) coefficients of a primal variable define the left-hand

side coefficients of the dual constraint and its objective coefficient define the
right-hand side.

4. The objective coefficients of the dual equal the right-hand side of the primal con
straint equations.

TABLE 4.1 Construction of the Dual from the Primal

Primal variables

Xl x2

Dual variables CI C2

Yl all GI2

Y2 a21 an

Ym aml Qm2

t
jth dual

constraint

Right-hand side

t
Dual objective

coefficients
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TABLE 4.2 Rules for Constructing the Dual Problem

Primal problem
objective"

Maximization
Minimization

Objective

Minimization
Maximization

Dual problem

Constraints type Variables sign

Unrestricted
Unrestricted

a All primal constraints are equations with nonnegative right-hand side and all the variables are nonnegative.

The rules for determining the sense of optimization (maximization or minimization),
the type of the constraint (:s;, 2::, or =), and the sign of the dual variables are summarized
in Table 4.2. Note that the sense of optimization in the dual is always opposite to that of the
primal. An easy way to remember the constraint type in the dual (i.e., :s or 2:: ) is that if
the dual objective is minimization (i.e., pointing down), then the constraints are all of the
type 2:: (i.e., pointing up). The opposite is true when the dual objective is maximization.

The following examples demonstrate the use of the rules in Table 4.2 and also
show that our definition incorporates all forms of the primal automatically.

Example 4.1-1

Primal

Maximize z = 5xI + 12x2 + 4X3

subject to
Xt + 2X2 + x3:5 10

2x, - X2 + 3X3 = 8
XI> X2, X3 2 0

Dual Problem

subject to

Primal in equation form

Maximize z = 5XI + 12x2 + 4xJ + OX4
subject to

Xl + 2X2 + X3 + X4 = 10
2xI - X2 + 3X3 + OX4 = 8

XI> X2. X3, X4 2 0

Minimize w = lOYl + 8Y2

Dual variables

Y.
}'z

y, + 2yz ~ 5

2Yl - .Y2 ~ 12

Yt + 3yz ~ 4

Yl + Oyz ~ O} .
. d => (Yt ;::: 0, Yz unrestricted)

Yt, Yz unrestncte

Example 4.1-2

Primal

Minimize z = 15x\ + 12x2
subject to

XI + 2x2 23
2x1 - 4X2 :5 5

XI> X2 2 0

Primal in equation form

Minimize z = 15xl + 12x2 + OX3 + OX4

subject to
Xl + 2x2 - x) + OX4 = 3

2x1 - 4X2 + Ox) + X4 = 5
Xl> X2, X3. X4 2 0

Dual variables

YI
)'2
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Dual Problem

Maximize w = 3 Y1 + 5)1

subject to

YI + 2)1 :5 15

2YI - 4)1 :5 12

-YI :5 O}
Y2:5 0 ~ (Yl ~ 0, )1 :5 0)

Yl, Y2 unrestricted

Example 4.1-3

Primal

Maximize z = 5x[ + 6X2
subject to

XJ + 2X2 = 5
-XI + 5X2 ~ 3
4Xl + 7X2 =:; 8

xI unrestricted, x2 2: 0

Dual Problem

subject to

Primal in equation form

Substitute XI = xi - XI
Maximize z = 5xi - 5xI + 6X2
subject to
Xl - xi + 2X2 = 5

-Xl + xi + 5X2 - X3 = 3
4xI - 4xi + 7X2 + X4 = 8

XI, xl. X2, X3, X4 ~ 0

Minimize z = 5Yl + 3)1 + 8Y3

Dual variables

YI
>'2
Y3

-)1 ~ O}
)'3 ~ 0 ~ (Yl unrestricted, Yz :5 0')'3 ~ 0)

Yl, )1, )'3 unrestricted

The first and second constraints are replaced by an equation. The general rule in this case is
that an unrestricted primal variable always corresponds to an equality dual constraint. Con
versely, a primal equation produces an unrestricted dual variable, as the first primal constraint
demonstrates.

Summary of the Rules for Constructing the Dual. The general conclusion from the
preceding examples is that the variables and constraints in the primal and dual
problems are defined by the rules in Table 4.3. It is a good exercise to verify that these
explicit rules are subsumed by the general rules in Table 4.2.

"'~~..j"--'"
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TABLE 4.3 Rules for Constructing the Dual Problem

Maximization problem

Constraints

Variables
~O

.sa
Unrestricted

Minimization problem

VarUlbles
.sO
~O

Unrestricted
COllStraints

f

I
f•t
~
I'

t
~

"'::"'-~"--'"

Note that the table does not use the designation primal and dual. What matters
here is the sense of optimization. If the primal is maximization, then the dual is mini
mization, and vice versa.

PROBLEM SET 4.1A

1. In Example 4.1-1, derive the associated dual problem if the sense of optimization in the
primal problem is changed to minimization.

*2. In Example 4.1-2, derive the associated dual problem given that the primal problem is
augmented with a third constraint, 3Xl + X2 = 4.

3. In Example 4.1-3, show that even if the sense of optimization in the primal is changed to
minimization, an unrestricted primal variable always corresponds to an equality dual
constraint.

4. Write the dual for each of the following primal problems:

(a) Maximize z = -5x[ + 2x2

subject to

-XI + x2:5-2

2Xl + 3X2:5 5

(b) Minimize z = 6x} + 3X2

subject to

6Xl - 3X2 + X3 ;;:: 2

3x[ + 4X2 + X3 2: 5

*(c) Maximize z == Xl + X2

subject to

2x[ + X2 = 5

3Xl - X2 = 6

Xl> X2 unrestricted
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*5. Consider Example 4.1-1. The application of the simplex method to the primal requires
the use of an artificial variable in the second constraint of the standard primal to secure a
starting basic solution. Show that the presence of an artificial primal in equation form
variable does not affect the definition of the dual because it leads to a redundant dual
constraint.

6. True or False?

(a) The dual of the dual problem yields the original primal.

(b) If the primal constraint is originally in equation form, the corresponding dual vari
able is necessarily unrestricted.

(c) If the primal constraint is of the type :5, the corresponding dual variable will be non
negative (nonpositive) if the primal objective is maximization (minimization).

(d) If the primal constraint is of the type ;:::, the corresponding dual variable will be non
negative (nonpositive) if the primal objective is minimization (maximization).

(e) An unrestricted primal variable will result in an equality dual constraint.

4.2 PRIMAL-DUAL RELATIONSHIPS

Changes made in the original LP model will change the elements of the current opti
mal tableau, which in turn may affect the optimality and/or the feasibility of the cur
rent solution.This section introduces a number of primal-dual relationships that can be
used to recompute the elements of the optimal simplex tableau. These relationships
will form the basis for the economic interpretation of the LP model as well as for post
optimality analysis.

This section starts with a brief review of matrices, a convenient tool for carrying
out the simplex tableau computations.

4.2.1 Review of Simple Matrix Operations

The simplex tableau computations use only three elementary matrix operations:
(row vector) X (matrix), (matrix) x (column vector), and (scalar) X (matrix).These
operations are summarized here for convenience. First, we introduce some matrix
definitions:1

1. A matrix, A, of size (m X n) is a rectangular array of elements with m rows and
n columns.

2. A row vector, V, of size m is a (1 X m) matrix.
3. A column vector, P, of size n is an (n xl) matrix.

These definitions can be represented mathematically as

au a12 aln PI

V = (VI> V2, .. ·, v m), A = aZI a22 a2n p= pz
,

amI a m2 a mn Pn

1Appendix 0 on the CO provides a more complete review of matrices.

'-;'.:''l'".• ::..:,.;.. __
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1. (Row vector X matrix, VA). The operation is defined only if the size of the
row vector V equals the number of rows of A. In this case,

For example,

(11,22,33)0 ~) = (1 x 11 + 3 X 22 + 5 X 33,2 X 11 + 4 x 22 + 6 X 33)
6 .

= (242,308)

2. (Matrix X column vector, AP). The operation is defined only if the number
of columns of A equals the size of column vector P. In this case,

n

'LaljPj
j=l

II

L a 2jPj
AP = j=l

n

Lamjpj
j=l

As an illustration, we have

(~
3
4

5)(~~) = (1 X 11 + 3 X 22 + 5X 33) = (242)
6 2 X 11 + 4 X 22 + 6 X 33 308

33

3. (Scalar X matrix, aA). Given the scalar (or constant) quantity a, the multi
plication operation aA will result in a matrix of the same size as A whose (i, j)th ele
ment equals aaij- For example, given a = 10,

2

5
3) = (10
6 40

20

50
30)
60

In general, aA = Aa. The same operation is extended equally to the multiplication of
vectors by scalars. For example, aV = Va and aP = Po'.

PROBLEM SET 4.2A

1. Consider the following matrices:

A ~ G~} P, ~ G)' P, ~m
VI = (11,22), V2 = (-1, -2, -3)
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In each of the following cases, indicate whether the given matrix operation is legitimate,
and, if so, calcula te the resul t.

*(a) AVt

(b) API

(c) APz
(d) VIA

*(e) V2A

(f) PlPZ

(g) VIPl

4.2.2 Simplex Tableau Layout

In Chapter 3, we followed a specific format for setting up the simplex tableau. This for
mat is the basis for the development in this chapter.

Figure 4.1 gives a schematic representation of the starting and general simplex
tableaus. In the starting tableau, the constraint coefficients under the starting variables
form an identity matrix (all main-diagonal elements equal 1 and all off-diagonal ele
ments equal zero). With this arrangement, subsequent iterations of the simplex tableau
generated by the Gauss-Jordan row operations (see Chapter 3) will modify the ele
ments of the identity matrix to produce what is known as the inverse matrix. As we will
see in the remainder of this chapter, the inverse matrix is key to computing all the ele
ments of the associated simplex tableau.

FIGURE 4.1

Schematic representation of the starting and general simplex tableaus

Starting variables

Objective z-row { I I
'--.------------ D

Constraint
columns

Identity matrix

(Starting tableau)

Starting variables

Objective z-row {IL I 0

Constraint
columns

(General iteration)

.~'":.••~-'<..- .•.
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PROBLEM SET 4.2B

1. Consider the optimal tableau of Example 3.3-1.
*(a) Identify the optimal inverse matrix.
(b) Show that the right-hand side equals the inverse multiplied by the original right

hand side vector of the original constraints.
2. Repeat Problem 1 for the last tableau of Example 3.4-1.

4.2.3 Optimal Dual Solution

TIle primal and dual solutions are so closely related that the optimal solution of either
problem directly yields (with little additional computation) the optimal solution to the
other. Thus, in an LP model in which the number of variables is considerably smaller
than the number of constraints, computational savings may be realized by solving the
dual, from which the primal solution is determined automatically. This result follows
because the amount of simplex computation depends largely (though not totally) on
the number of constraints (see Problem 2, Set 4.2c).

This section provides two methods for determining the dual values. Note that the
dual of the dual is itself the primal, which means that the dual solution can also be used
to yield the optimal primal solution automatically.

Method 1.

(0
' I f) (Optimal primal z-coefficient of starting variable Xi)phmal va ue 0 = +

dual variable Yi
Original objective coefficient of Xi

Method 2.

. (ROW vector of )° timal values . . " .
( f d

p . bl ) = ongmal obJectlve coefficIents
o ual vana es . .

of optimal primal baSIC variables

x (Opti.mal primal)
Inverse

The elements of the row vector must appear in the same order in which the basic vari
ables are listed in the Basic column of the simplex tableau.

Example 4.2-1

Consider the following LP:

Maximize z = 5Xl + 12x2 + 4x)

subject to

Xl + 2X2 + x3 :s 10

2Xl - X2 + 3X3 = 8
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To prepare the problem for solution by the simplex method, we add a slack X4 in the first
constraint and an artificial R in the second. The resulting primal and the associated dual prob
lems are thus defined as follows:

Primal

Maximize z = 5x, + 12x2 + 4x] - MR
subject to

XI + 2x2 + X3 + X4 = 10
2x1 - x2 + ~xJ + R = 8

Xl> X2. X], X4, R :;::: 0

Dual

Minimize w = lOy! + 8Y2
subject to

YI + 2Y2 :;::: 5
2YI - Y2 ~ 12

YI + 3>'2 :;::: 4
YI :;::: 0

Y2 :;::: - M ( =Y2 unrestricted)

Table 4.4 provides the optimal primal tableau.
We now show how the optimal dual values are determined using the two methods described

at the start of this section.

Method 1. In Table 4.4. the starting primal variables X4 and R uniquely correspond to the dual
variables Yl and Yz, respectively. Thus, we determine the optimum dual solution as follows:

Starting primal basic variables

z-equation coefficients
Original objective coefficient
Dual variables
Optimal dual values

29
"5
o
Y,

~+o-~5 ~ 5

R

-~ + M
5
-M

Y2
-~ + M + (-M) = -~

Method 2. The optimal inverse matrix, highlighted under the starting variables X4 and R, is
given in Table 4.4 as

Optimal inve~ =(l -I)
First, we note that the optimal primal variables are listed in the tableau in row order as X2 and
then XI' This means that the elements of the original objective coefficients for the two variables
must appear in the same order-namely,

(Original objective coefficients) = (Coefficient of X2, coefficient of XI)

= (12,5)

TABLE 4.4 Optimal Tableau of the Primal of Example 4.2-1

Basic

z

X2

x,

o

o
1

o

1

o

3
5"

~ -~ + M
5 5

Solution

12
"5
26
"5
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st
)-

Thus, the optimal dual values are computed as

(
Original objective ) ..

(y\, Y2) = ff· . f X (Optimal mverse)
coe lClents 0 X2, Xl

:d

Primal-dual objective values. Having shown how the optimal dual values are
determined, next we present the relationship between the primal and dual objective
values. For any pair ofjeasibLe primal and dual solutions,

3.1 (
Objective value in the) ( Objective value in the)
maximization problem ::s minimization problem

At the optimum, the relationship holds as a strict equation. The relationship does not
specify which problem is primal and which is dual. Only the sense of optimization
(maximization or minimization) is important in this case.

The optimum cannot occur with z strictly less than w (i.e., z < w) because, no
matter how close z and ware, there is always room for improvement, which contradicts
optimality as Figure 4.2 demonstrates.

is
Example 4.2-2

In Example 4.2-1, (Xl = 0, X2 = 0, X3 = ~) and (Yl = 6, Y2 = 0) are feasible primal and dual so
lutions.TIle associated values of the objective functions are

z = 5Xl + 12x2 + 4X3 = 5(0) + 12(0) + 4(~) = lO~

w = lOYI + 81'2 = 10(6) + 8(0) = 60

Thus, z (= 10~) for the maximization problem (primal) is less than w (= 60) for the minimization

problem (dual). The optimum value of z (= 54~) falls within the range (10~, 60).

FIGURE 4.2

Relationship between maximum z and minimum w

MinimizewMaximizez
L~:tUn[:~J

----------l.~} ;..of4t-----------
I ', I, ,
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PROBLEM SET 4.2C

1. Find the optimal value of the objective function for the following problem by inspecting
only its dual. (Do not solve the dual by the simplex method.)

Minimize z = lOx) + 4X2 + 5X3

subject to

2. Solve the dual of the following problem, then find its optimal solution from the solution
of the dual. Does the solution of the dual offer computational advantages over solving
the primal directly?

Minimize z = 5Xl + 6X2 + 3X3

subject to

5Xl + 5X2 + 3X3;Z: 50

Xl + X2 - x3;Z: 20

7Xl + 6x2 - 9X3 2: 30

5x) + 5X2 + 5X3;Z: 35

2Xl + 4X2 - 15x3 ;z: 10

12xl + 10x2 ~ 90

x2 - 10x3 ;;:: 20

*3. Consider the following LP:

Maximize z = 5Xl + 2X2 + 3X3

subject to

Xl + 5X2 + 2X3 = 30

Xl - 5X2 - 6X3 S; 40

Given that the artificial variable X4 and the slack variable X5 form the starting basic variables
and that M was set equal to 100 when solving the problem, the optimal tableau is given as

Basic

z o

1
o

Xz

23

5
-10

7

2
-8

105

1
-1

o
o
1

Solution

150

30
10

I

Write the associated dual problem and determine its optimal solution in two ways.

.. ,j i.~·.·.. ·.. .' :_...



4.2 Primal-Dual Relationships 163

4. Consider the following LP:

Minimize z = 4x, + X2

subject to

3Xl + X2 = 3

4X1 + 3X2 ;::: 6

XI + 2X2 :0:; 4

The starting solution consists of artificial X4 and Xs for the first and second constraints
and slack X6 for the third constraint. Using M = 100 for the artificial variables, the opti
mal tableau is given as

Basic XI X2 X3 X4 Xs x6 Solution

z 0 0 0 -98.6 -100 -.2 3.4

XI 1 0 0 .4 0 -.2 .4
Xl 0 1 0 .2 0 .6 1.8

x3 0 0 1 1 -1 1 1.0

Write the associated dual problem and determine its optimal solution in two ways.
5. Consider the following LP:

Maximize z = 2xI + 4X2 + 4x) - 3X4

subject to

Using X) and X4 as starting variables, the optimal tableau is given as

Basic Xl

Z 2

XJ .75
X2 .25

o

o
1

o

1
o

3

-.25
.25

Solution

16

2
2

.es

I
t

.j tL.··.·: .' ~_...

Write the associated dual problem and determine its optimal solution in two ways.

*6. Consider the following LP:

Maximize z = XI + 5X2 + 3X3

subject to

XI + 2X2 + X3 = 3

2xI - X2 = 4

Xl, X2, X3 ;::: 0
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The starting solution consists of x) in the first constraint and an artificial X4 in the second
constraint with M = 100. The optimal tableau is given as

Basic Xl X2 X3 X4 Solution

z 0 2 0 99 5

.1:3 1 2.5 1 -.5 1
4.2x, 0 -.5 0 .5 2

Write the associated dual problem and determine its optimal solution in two ways.

7. Consider the following set of inequalities:

2xI + 3X2:::; 12
-3Xl + 2x2 :::; -4

3Xl - 5x2:::; 2

Xl unrestricted

X2 ~ 0

A feasible solution can be found by augmenting the trivial objective function Maximize
Z = XI + X2 and then solving the problem. Another way is to solve the dual; from which
a solution for the set of inequalities can be found. Apply the two methods.

8. Estimate a range for the optimal objective value for the following LPs:

*(a) Minimize z = 5XI + 2X2

subject to

Xl - X2 ~ 3

2x} + 3X2 ~ 5

(b) Maximize z = Xl + 5X2 + 3x)

subject to
Xl + 2X2 + x3 = 3

2xI - X2 = 4

(c) Maximize z = 2xI + X2

subject to
XI - X2 :$ 10

2Xl :$ 40

(d) Maximize z = 3xj + 2X2

subject to
2xI + X2:::; 3

3x} + 4x2 :::; 12
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9. In Problem 7(a}, let Yl and Y2 be the dual variables. Determine whether the following
pairs of primal-dual solutions are optimal:

*(a) (Xl = 3,X2 = l;Yl = 4'Y2 = 1)

(b) (XI = 4, x2 = 1; YI = 1, Y2 = 0)
(c) (XI = 3, X2 = 0; YI = 5, Y:z = 0)

4.2.4 Simplex Tableau Computations

This section shows how any iteration of the entire simplex tableau can be generated
from the original data of the problem, the inverse associated with the iteration, and the
dual problem. Using the layout of the simplex tableau in Figure 4.1, we can divide the
computations into two types:

1. Constraint columns (Ieft- and right-hand sides).

2. Objective z-row.

Formula 1: Constraint Column Computations. In any simplex iteration, a left-hand or
a right-hand side column is computed as follows:

(co~st:aint ~ol~mn) = (~nver~e i~) X ( Original )
III IteratiOn l IteratiOn 1 constraint column

Formula 2: Objective z-row Computations. In any simplex iteration, the objective
equation coefficient (reduced cost) of xi is computed as follows:

(
Primal z-equation ) ( Left-hand side of ) (Right-hand side Of)

coefficient of variable xi = jth dual constraint - jth dual constraint

Example 4.2-3

We use the LP in Example 4.2-1 to illustrate the application of Formulas 1 and 2. From the opti
mal tableau in Table 4.4, we have

(2 -5521)Optimal inverse = :

The use of Formula 1 is illustrated by computing all the left- and right-hand side columns of
the optimal tableau:

(
x]-column in) ( Inverse in ) (original)

optimal iteration = optimal iteration X XI-column
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In a similar manner, we compute the remaining constraint columns; namely,

(
! . ) (ZXTCO umn In 5

optimal iteration := ~

(
I . ) (2X3-CO umn 10 5

optimal iteration - !

( . ) (2x4-co!umn 10 :5
optimal iteratio~ := ~

(
R-column in ) (~

optimal iteration := ~

-I) X CD ~ G)

-I) X G) ~ (-:)

-I) X G) ~m
-D X (~) ~ ( -I)

(
Right-hand. Side) = (xz) = (~ -~) (10) = (¥)

column In Xl! ~ x 8 ~
optimal iteration 5 5 5

Next, we demonstrate how the objective row computations are carried out using Formula 2.

TIle optimal values of the dual variables, (Yr. Yz) = (¥-, -~), were computed in Example 4.2-1

using two different methods. These values are used in Formula 2 to determine the associated z
coefficients; namely,

z-cofficient of Xl = Yl + 2yz - 5 = ¥- + 2 x -~ - 5 = 0

z-cofficient of X2 = 2Yl - yz - 12 := 2 x¥-- (-n - 12 = 0

z-cofficientofx3 = Yl + 3yz - 4 = ¥+ 3 x -~ - 4 ~

z-cofficient of X4 = Yl - 0 = ¥- 0 = ¥-
z-cofficient of R = Y2 - (-M) = -~ - (-M) = -~ + M

Notice that Formula 1 and Formula 2 calculations can be applied at any iteration of either
the primal or the dual problems. All we need is the inverse associated with the (primal or dual)
iteration and the original LP data.

PROBLEM SET 4.20

1. Generate the first simplex iteration of Example 4.2-1 (you may use TORA's Iterations
=> M-method for convenience), then use Formulas 1 and 2 to verify all the elements of
the resulting tableau.

2. Consider the following LP model:

Maximize z = 4x) + 14x2

subject to
2x] + txz + X3 = 21

7x) + 2X2 + X4 = 21

xl> x2, x3' X4 ~ 0
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Check the optimality and feasibility of each of the following basic solutions.

*(a) Basic variables = (X2, X4), Inverse = (_~ ~)
7

(b) Basic variables = (X2' X3), Inverse = (~ j)
2

7 2
(c) Basic variables = (X2, xd, Inverse = (_~ -~)

45 45
)

~)(d) Basic variables = (x), X4), Inverse = (_~
2

3. Consider the following LP model:

Maximize z = 3x) + 2X2 + 5x3

subject to

2.

·1

= 30

+ X5 = 60

+ x6 = 20

c;-

Check the optimality and feasibility of the following basic solutions:

Basic variables ~ (x" XJ, x,), Inverse ~ G 1

D
-2

(a) 1
2

0

1 1

-~)Basic v"iables ~ (X2, XJ, x,), Invme ~ ( i -8
(b) _!

4

~r -1 1
2 2

I)

Basic variables ~ (X2, x" x,), Inverse ~ ( ~
_1

D
4

(c) )

2
-2 1

*4. Consider the following LP model:

Minimize z = 2x) + X2

subject to

=3

=6

+ Xs = 3
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Compute the entire simplex tableau associated with the following basic solution and
check it for optimality and feasibility.

(
3 _-15351 O~)Basic variables ~ (XI> X" x,), Inverse ~ -!

5. Consider the following LP model:

Maximize z = 5XI + 12x2 + 4x~

subject to
Xl + 2X2 + X3 + X4 == 10

2XI - X2 + 3X3 == 2

(a) Identify the best solution from among the following basic feasible solutions:

(
1 --3il)(i) Basic variables = (X4. X3), Inverse = 0

(~ ---~~)(ii) Basic variables = (X2, Xl)' Inverse = i

(
;! -77-21_)(iii) Basic variables = (X2, X3), Inverse = ~

(b) Is the solution obtained in (a) optimum for the LP model?

6. Consider the following LP model:

Maximize z = 5XI + 2X2 + 3X3

subject to

Xl + 5x2 + 2x3 :s bi

Xl - 5X2 - 6X3 :s b2

Xl> X2, X3 ~ 0

The following optimal tableau corresponds to specific values of b} and ~:

Basic Xl X2 X3 X4 Xs Solution

z 0 a 7 d e 150

Xl 1 b 2 1 0 30
Xs 0 c -8 -1 1 10

Determine the following:
(a) The right-hand-side values, bi and &2'

(b) The optimal dual solution,
(c) The elements a, b, C, d, e.

. 1:..:=-::.......:... _...

4.;
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*7. TIle following is the optimal tableau for a maximization LP model with three (:s;) con
straints and all nonnegative variables. The variables X3, X4, and Xs are the slacks associat
ed with the three constraints. Determine the associated optimal objective value in two
different ways by using the primal and dual objective functions.

Basic XI X2 X3 X4 X, Solution

Z 0 0 0 3 2 ?

X3 0 0 1 1 -1 2
X2 0 1 0 1 0 6
XI 1 0 0 -1 1 2

8. Consider the following LP:

Maximize z = 2x] + 4x2 + 4xJ - 3X4

subject to

Xl + X2 + XJ = 4

x I + 4X2 + X4 = 8

Use the dual problem to show that the basic solution (Xl, X2) is not optimal.

9. Show that Method 1 in Section 4.2.3 for determining the optimal dual values is actually
based on the Formula 2 in Section 4.2.4.

4.3 ECONOMIC INTERPRETATION OF DUALITY

The linear programming problem can be viewed as a resource allocation model in
which the objective is to maximize revenue subject to the availability of limited re
sources. Looking at the problem from this standpoint, the associated dual problem of
fers interesting economic interpretations of the LP resource allocation model.

To formalize the discussion, we consider the following representation of the gen
eral primal and dual problems:

Primal

"
Maximize z == Lqj

j~1

subject to
"2. Qih :=:; bi , i '" 1, 2, ... , m

j=1

Xi 2: 0, j=l, 2, ... , n

Dual

111

Minimize w == LbiYi
;=1

subject to
m

2:aijYi 2= Cj' j == 1, 2, ... , n
i=l

Yi 2: 0, i == 1, 2, ... , m

Viewed as a resource allocation model, the primal problem has n economic activities
and m resources. The coefficient Cj in the primal represents the revenue per unit ofac
tivity j. Resource i, whose maximum availability is bi , is consumed at the rate aij units
per unit of activity j.
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4.3.1 Economic Interpretation of Dual Variables

Section 4.2.3 states that for any two primal and dual feasible solutions, the values of the
objective functions, when finite, must satisfy the following inequality:

n m

Z = 2:CjXj s; 2:biYi = W
j==l i==l

The strict equality, z = w, holds when both the primal and dual solutions are optimal.
Let us consider the optimal condition z = 'W first. Given that the primal problem

represents a resource allocation model, we can think of z as representing revenue dol
lars. Because bi represents the number of units available of resource i, the equation
z = w can be expressed dimensionally as

$ = 2: (units of resource i) X ($ per unit of resource i)
i

This means that the dual variable, Yi> represents the worth per unit of resource i. As
stated in Section 3.6, the standard name dual (or shadow) price of resource i replaces
the name worth per unit in all LP literature and software packages.

Using the same logic, the inequality z < w associated with any two feasible pri
mal and dual solutions is interpreted as

(Revenue) < (Worth of resources)

This relationship says that so long as the total revenue from all the activities is less than
the worth of the resources, the corresponding primal and dual solutions are not opti
mal. Optimality (maximum revenue) is reached only when the resources have been ex
ploited completely, which can happen only when the input (worth of the resources)
equals the output (revenue dollars). In economic terms, the system is said to be
unstable (nonoptimal) when the input (worth of the resources) exceeds the output
(revenue). Stability occurs only when the two quantities are equal.

Example 4.3-1

The Reddy Mikks model (Example 2.1-1) and its dual are given as:

Reddy Mikks primal

Maximize z = 5xI + 4X2

subject to
6x1 + 4X2 :S 24 (resource 1, Ml)

XI + 2x2 :S 6 (resource 2, M2)
- X I + x2 :S 1 (resource 3, market)

X2 :S 2 (resource 4, demand)
x"x22:0

Optimal solution:
XI = 3, X2 = 1.5, z = 21

Reddy Mikks dual

Minimize IV = 24YI + 6yz + Y3 + 2Y4
subject to

6Yl + Y2 - Y3 2: 5
4YI + 2Y2 + Y3 + Y4 2: 4

Yh Y2, Y3. Y4 2: 0

Optimal solution:
YI = .75, Y2 = 0.5, Y3 = Y4 = 0, w = 21

Briefly, the Reddy Mikks model deals with the production of two types of paint (interior
and exterior) using two raw materials Ml and M2 (resources 1 and 2) and subject to market and
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demand limits represented by the third and fourth constraints. The model determines the
amounts (in tons/day) of interior and exterior paints that maximize the daily revenue (expressed
in thousands of dollars).

The optimal dual solution shows that the dual price (worth per unit) of raw material Ml (re
source 1) is Yl = .75 (or $750 per ton), and that of raw material M2 (resource 2) is Y2 = .5 (or
$500 per ton). These results hold true for specific feasibility ranges as we showed in Section 3.6.
For resources 3 and 4, representing the market and demand limits, the dual prices are both zero,
which indicates that their associated resources are abundant. Hence, their worth per unit is zero.

PROBLEM SET 4.3A

1. In Example 4.3-1, compute the change in the optimal revenue in each of the following
cases (use TORA output to obtain the feasibility ranges):

(a) The constraint for raw material M1 (resource 1) is 6Xl + 4X2 $ 22.

(b) The constraint for raw material M2 (resource 2) is Xl + 2X2 $ 4.5.

(c) The market condition represented by resource 4 is X2 $ 10.

*2. NWAC Electronics manufactures four types of simple cables for a defense contractor.
Each cable must go through four sequential operations: splicing, soldering, sleeving, and
inspection. The following table gives the pertinent data of the situation.

Minutes per unit

Cable Splicing Soldering Sleeving IllSpeclion Unit revenue ($)
n
i- SC320 10.5 2004 3.2 5.0 9.40

(- SC325 9.3 24.6 2.5 5.0 10.80

;) SC340 11.6 17.7 3.6 5.0 8.75
S070 8.2 26.5 5.5 5.0 7.80

Ie
It Daily capacity (minutes) 4800.0 9600.0 4700.0 4500.0

.or
nd

-< - :~~,~",. ~

The contractor guarantees a minimum production level of 100 units for each of the four
cables.

(a) Formulate the problem as a linear programming model, and determine the optimum
production schedule.

(b) Based on the dual prices, do you recommend making increases in the daily capacities
of any of the four operations? Explain.

(c) Does the minimum production requirements for the four cables represent an advan
tage or a disadvantage for NWAC Electronics? Provide an explanation based on the
dual prices.

(d) Can the present unit contribution to revenue as specified by the dual price be guar
anteed if we increase the capacity of soldering by 1O%?

3. BagCo produces leather jackets and handbags. A jacket requires 8 m2 of leather, and a
handbag only 2 m2• The labor requirements for the two products are 12 and 5 hours, re
spectively. The current weekly supplies of leather and labor are limited to 1200 m2 and
1850 hours. The company sells the jackets and handbags at $350 and $120, respectively.
The objective is to determine the production schedule that maximizes the net revenue.
BagCo is considering an expansion of production. What is the maximum purchase price
tile company should pay for additional leather? For additional labor?
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4.3.2 Economic Interpretation of Dual Constraints

The dual constraints can be interpreted by using Formula 2 in Section 4.2.4, which
states that at any primal iteration,

Ob" ff' . f (Left-hand side Of) (Right-hand side Of)
~ectlve coe IClent 0 x· == -

J dual constraint j dual constraint j
m

= L aijYi - Cj
;=1

We use dimensional analysis once again to interpret this equation. The revenue per
unit, Cj, of activity j is in dollars per unit. Hence, for consistency, the quantity L:1aijYi
must also be in dollars per unit. Next, because Cj represents revenue, the quantity
2:;~laijYi' which appears in the equation with an opposite sign, must represent cost.
Thus we have

m 111 (usage of resource i ) (cost per unit)
$ cost = LaijYi = 2: X

i=l i=1 per unit of activity j of resource i

The conclusion here is that the dual variable Yi represents the imputed cost per unit of
resource i, and we can think of the quantity L;~1aijYi as the imputed cost of all the re
sources needed to produce one unit of activity j.

In Section 3.6, we referred to the quantity CL;:1aijYi - Cj) as the reduced cost
of activity j. The maximization optimality condition of the simplex method says that
an increase in the level of an unused (nonbasic) activity j can improve revenue only if
its reduced cost is negative. In terms of the preceding interpretation, this condition
states that

(

Imputed cost Of) R .evenue er umt
resources used by < ( f .~ . )

. '" 0 activIty]
one umt of actIvIty]

The maximization optimality condition thus says that it is economically advanta
geous to increase an activity to a positive level if its unit revenue exceeds its unit im
puted cost.

We will use the TOYCO model of Section 3.6 to demonstrate the computation.
The details of the model are restated here for convenience.

Example 4.3-2

TOYCO assembles three types of toys: trains, trucks, and cars using three operations. Available
assembly times for the three operations are 430,460, and 420 minutes per day, respectively, and
the revenues per toy train, truck, and car are $3, $2, and $5, respectively. The assembly times per
train for the three operations are 1,3, and 1 minutes, respectively. The corresponding times per
truck and per car are (2,0,4) and (1,2,0) minutes (a zero time indicates that the operation is
not used).

.,' -:
.~ .....':.;:..:...-'~.. .
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Letting Xl> X2, and X3 represent the daily number of units assembled of trains, trucks and
cars, the associated LP model and its dual are given as:

TOYCO primal

Maximize z == 3Xl + 2X2 + 5X3
subject to

Xl + 2X2 + x3::; 430 (Operation 1)
3xI + 2X3 ::; 460 (Operation 2)

Xl + 4X2 ::; 420 (Operation 3)
xI> x2, x3 ~ °

Optimal solution:
XI = 0, X2 = 100, x3 = 230, z = $1350

TOYCO dual

Minimize w == 430Yl + 460Yl + 420Y3
subject to

Yl + 3Y2 + Y3 ~ 3
2Yl + 4Y3 '2: 2

YI + 2Yl ~ 5
Y" }2, Y3 ~ 0

Optimal solution:
Yl == 1, Y2 == 2, .Y3 == 0, W = $1350

1.
e
d
:r *2.
:r
is

.,~ -,;,."
.......~:.:.:.-- .....

The optimal primal solution calls for producing no toy trains, 100 toy trucks, and 230 toy
cars. Suppose that TOYCO is interested in producing toy trains as well. How can this be
achieved? Looking at the problem from the standpoint of the interpretation of the reduced cost
for xl> toy trains will become attractive economically only if the imputed cost of the resources
used to produce one toy train is strictly less than its unit revenue. TOYCO thus can either in
crease the unit revenue per unit by raising the unit price, or it can decrease the imputed cost of
the used resources (= YI + 3Y2 + Y3). An increase in unit price may not be possible because of
market competition. A decrease in the unit imputed cost is more plausible because it entails
making improvements in the assembly operations. Letting rl: r2, and r3 represent the propor
tions by which the unit times of the three operations are reduced, the problem requires deter
mining rl> '2, and r3 such that the new imputed cost per per toy train is less than its unit
revenue-that is,

For the given optimal values of Yl = 1, Y2 = 2, and Y3 = 0, this inequality reduces to (verify!)

r. + 6"2 > 4

Thus, any values of 'I and 1"2 between 0 and 1 that satisfy 1"1 + 6r2 > 4 should make toy trains
profitable. However, this goal may not be achievable because it requires practically impossible
reductions in the times of operations 1 and 2. For example, even reductions as high as 50% in
these times (that is, rl = r2 = .5) fail to satisfy the given condition. Thus, TOYCO should not
produce toy trains unless an increase in its unit price is possible.

PROBLEM SET 4.3B

In Example 4.3-2, suppose that for toy trains the per-unit time of operation 2 can be re
duced from 3 minutes to at most 1.25 minutes. By how much must the per-unit time of
operation 1 be reduced to make toy trains just profitable?

In Example 4.3-2, suppose that TOYCO is studying the possibility of introducing a fourth
toy: fire trucks. The assembly does not make use of operation 1. Its unit assembly times
on operations 2 and 3 are 1 and 3 minutes, respectively. The revenue per unit is $4. Would
you advise TOYCO to introduce the new product?
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*3. JoShop uses lathes and drill presses to produce four types of machine parts, PPl, PPl,
PP3, and PP4. The table below summarizes the pertinent data.

Machining time in minutes per unit of

Machine PPI PP2 PP3 PP4 Capacity (minutes)

Lathes 2 5 3 4 5300
Drill presses 3 4 6 4 5300

Unit revenue ($) 3 6 5 4

For the parts that are not produced by the present optimum solution, determine the rate
of deterioration in the optimum revenue per unit increase of each of these products.

4. Consider the optimal solution of JoShop in Problem 3. The company estimates that for
each part that is not produced (per the optimum solution), an across-the-board 20% re

. duction in machining time can be realized through process improvements. Would these
improvements make these parts profitable? If not, what is the minimum percentage re
duction needed to realize revenueability?

4.4 ADDITIONAL SIMPLEX ALGORITHMS

In the simplex algorithm presented in Chapter 3 the problem starts at a (basic) feasible
solution. Successive iterations continue to be feasible until the optimal is reached at
the last iteration. The algorithm is sometimes referred to as the primal simplex method.

This section presents two additional algorithms: The dual simplex and the
generalized simplex. In the dual simplex, the LP starts at a better than optimal infeasible
(basic) solution. Successive iterations remain infeasible and (better than) optimal until
feasibility is restored at the last iteration. The generalized simplex combines both the
primal and dual simplex methods in one algorithm. It deals with problems that start
both nonoptimal and infeasible. In this algorithm, successive iterations are associated
with basic feasible or infeasible (basic) solutions. At the final iteration, the solution be
comes optimal and feasible (assuming that one exists).

All three algorithms, the primal, the dual, and the generalized, are used in the
course of post-optimal analysis calculations, as will be shown in Section 4.5.

4.4.1 Dual Simplex Algorithm

The crux of the dual simplex method is to start with a better than optimal and infeasible
basic solution. The optimality and feasibility conditions are designed to preserve the op
timality of the basic solutions while moving the solution iterations toward feasibility.

Dual feasibility condition. The leaving variable, X n is the basic variable having the
most negative value (ties are broken arbitrarily). If all the basic variables are
nonnegative, the algorithm ends.

Dual optimality condition. Given that X r is the leaving variable, let c; be the reduced
cost of nonbasic variable x; and Urj the constraint coefficient in the xr-row and xrcolumn
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of the tableau. The entering variable is the nonbasic variable with a'i < 0 that corre
sponds to

(Ties are broken arbitrarily.) If a.,j ::> 0 for all nonbasic Xj, the problem has no fea
sible solution.

To start the LP optimal and infeasible, two requirements must be met:

1. The objective function must satisfy the optimality condition of the regular
simplex method (Chapter 3).

2. All the constraints must be of the type (:::;).

The second condition requires converting any (~) to (:::::;) simply by multiplying
both sides of the inequality (~) by -1. If the LP includes (=) constraints, the equation
can be replaced by two inequalities. For example,

Xl + X2 = 1

is equivalent to

or

After converting all the constraints to (:::::;), the starting solution is infeasible if at least
one of the right-hand sides of the inequalities is strictly negative.

Example 4.4-1

Minimize z = 3x} + 2X2 + X3

subject to

Xl + X2 + X3 S 3

xl. X2, X3 2 0

In the present example, the first two inequalities are multiplied by -1 to convert them to
( :5) constraints. The starting tableau is thus given as:

Basic XI X2 x3 X4 Xs X6 Solution

z -3 -2 -1 0 0 0 0

X4 -3 -1 -1 1 0 0 -'-3

Xs 3 -3 -1 0 1 0 -6
X6 1 1 1 0 0 1 3
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The tableau is optimal because all the reduced costs in the z-row are s °
(Cl = -3, (;2 = -2, C3= -1, C4 = 0, (;5 = 0, C6 = 0). It is also infeasible because at least one of
the basic variables is negative (X4 = -3, X5 = -6, X6 = 3).

According to the dual feasibility condition, Xs (= -6) is the leaving variable. The next table
shows how the dual optimality condition is used to determine the entering variable.

Nonbasic variable
z-row (Cj)
X5-row, fX4j

Ratio, I~I, CiSj < 0

j = 1

Xl

-3
3

j=2

XJ

-1
-1

1

The ratios show that Xl is the entering variable. Notice that a nonbasic variable Xj is a candidate
for entering the basic solution only if its Clrj is strictly negative. This is the reason Xl is excluded in
the table above.

The next tableau is obtained by using the familiar row operations, which give

Basic Xl X2 X3 X4 Xs X6 Solution

-5 0 I 0 2 0 4z -3 -3

-4 0 2 1 _1 0 -1X4 -3 3

-1 1 I 0 1 0 2X2 3 -3
2 0 2 0 1 1 1X6 3 3

Ratio 2 ~~~~~ 24

The preceding tableau shows that X4 leaves and X3 enters, thus yielding the following
tableau, which is both optimal and feasible:

Basic Xl X2 ):3 X4 X5 X6 Solution

-3 0 0 I 1 0 9z -2 -2 2

6 0 1 3 1 0 3
xJ -2 2" 2"

-3 1 0 1 1 0 3
X2 2" -2 2"
X6 -2 0 0 1 0 1 0

Notice how the dual simplex works. In all the iterations, optimality is maintained (all re
duced costs are ~o).At the same time, each new iteration moves the solution toward feasibility.
At iteration 3, feasibility is restored for the first time and the process ends with the optimal fea-
'bl I" 0 3 3 d 9Sl e so utron gIVen as Xl = , Xl = 2' X2 = 2' an z = 2'

TORA Moment.

TQRA provides a tutorial module for the dual simplex method. From the
SOLVEIMOD1F¥ menu select SblVe ~ A:~g~Jit~~ ~ IteratiOiiS ~ ;Qg~t§@.Rli#.?'·

Remember that you need to convert (=) constraints to inequalities. You do not need

" ; ":'to ~".;.
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to convert (2:) constraints because TORA will do the conversion internally. If the LP
does not satisfy the initial requirements of the dual simplex, a message will appear on
the screen.

As in the regular simplex method, the tutorial module allows you to select the en
tering and the leaving variables beforehand. An appropriate feedback then tells you if
your selection is correct.

PROBLEM SET 4.4A2

1. Consider the solution space in Figure 4.3, where it is desired to find the optimum extreme
point that uses the dual simplex method to minimize z = 2xt + X2' TIle optimal solution
occurs at point F = (0.5,1.5) on the graph.

(a) Can the dual simplex start at point A?

*(b) If the starting basic (infeasible but better than optimum) solution is given by point
G, would it be possible for the iterations of the dual simplex method to follow the
path G~ E~ F? Explain.

(c) If the starting basic (infeasible) solution starts at point L, identify a possible path of
the dual simplex method that leads to the optimum feasible point at point F.

2. Generate the dual simplex iterations for the following problems (usingTORA for conve
nience), and trace the path of the algorithm on the graphical solution space.

(a) Minimize z = 2xt + 3X2

FIGURE 4.3

Solution space for Problem 1, Set 4.4a

4

2you are encouraged to use TORA's tutorial mode where possible to avoid the tedious task of carrying out
the Gauss-Jordan row operations. In this manner, you can concentrate on understanding the main ideas of
the method.
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subject to
2Xl + 2X2 :$ 30

Xl + 2X2 =::: 10

x" X2 =::: 0

(b) Minimize z == 5Xl + 6X2

subject to

Xl + X2 2: 2

4xl + X2 2: 4

Xl, X2 2: 0

(c) Minimize z == 4Xl + 2X2

subject to

Xl + X2 == 1

3Xl - X2 =::: 2

Xl> X2 =::: 0

(d) Minimize z == 2XI + 3X2

subject to

3. Dual Simplex with Artificial Constraints. Consider the following problem:

Maximize z = 2XI - X2 + X3

subject to

2XI + 3X2 - 5x3 =::: 4

- Xl + 9X2 - x3 =::: 3

4XI + 6X2 + 3X3 :$ 8

The starting basic solution consisting of surplus variables X4 and Xs and slack variable X6

is infeasible because X4 == -4 and Xs = -3. However, the dual simplex is not applicable
directly, because Xl and x3 do not satisfy the maximization optimality condition. Show
that by adding the artificial constraint Xl + X3 :$ M (where M is sufficiently large not to
eliminate any feasible points in the original solution space), and then using the new con
straint as a pivot row, the selection of Xl as the entering variable (because it has the most
negative objective coefficient) will render an all-optimal objective row. Next, carry out
the regular dual simplex method on the modified problem.

'';':;:'.~-'-
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4. Using the artificial constraint procedure introduced in Problem 3, solve the following
problems by the dual simplex method. In each case, indicate whether the resulting solu
tion is feasible, infeasible, or unbounded.

(a) Maximize z = 2X3

subject to

(b) Maximize z := Xl - 3x2

subject to

*(c) Minimize z = -xl + X2

subject to

Xl - 4X2 ;::: 5

Xl - 3X2 :5 1

2xI - 5X2 ;::: 1

(d) Maximize z = 2X3

subject to

5. Solve the following LP in three different ways (useTORA for convenience). Which
method appears to be the most efficient computationally?

subject to

5XI + 6X2 - 3X3 + 4X4 ;::: 12

X2 - 5X3 - 6X4 ;::: 10

2XI + 5X2 + x3 + x4;::: 8
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4.4.2 Generalized Simplex Algorithm

The (primal) simplex algorithm in Chapter 3 starts feasible but nonoptimal. The dual
simplex in Section 4.4.1 starts (better than) optimal but infeasible. What if an LP model
starts both nonoptimal and infeasible? We have seen that the primal simplex accounts
for the infeasibility of the starting solution by using artificial variables. Similarly, the
dual simplex accounts for the nonoptimality by using an artificial constraint (see Prob
lem 3, Set 4.4a).Although these procedures are designed to enhance automatic compu
tations, such details may cause one to lose sight of what the simplex algorithm truly
entails-namely, the optimum solution of an LP is associated with a comer point (or
basic) solution. Based on this observation, you should be able to "tailor" your own sim
plex algorithm for LP models that start both nonoptimal and infeasible. The following
example illustrates what we call the generalized simplex algorithm.

Example 4.4-2

Consider the LP model of Problem 4(a), Set 4.4a. The model can be put in the following
tableau form in which the starting basic solution (X3, X4, xs) is both nonoptimal (because X3

has a negative reduced cost) and infeasible (because X4 = -8). (The first equation has been
multiplied by -1 to reveal the infeasibility directly in the Solution column.)

Basic Xl X2 X3 X4 Xs X6 Solution

z 0 0 -2 0 0 0 0

X4 1 -2 2 1 0 0 -8
Xs -1 1 1 0 1 0 4

X6 2 -1 4 0 0 1 10

We can solve the problem without the use of any artificial variables or artificial constraints
as follows: Remove infeasibility first by applying a version of the dual simplex feasibility condi
tion that selects X4 as the leaving variable. To determine the entering variable, all we need is a
nonbasic variable whose constraint coefficient in the X4-row is strictly negative. The selection can
be done without regard to optimality, because it is nonexistent at this point anyway (compare
with the dual optimality condition). In the present example, X2 has a negative coefficient in the
x4-rowand is selected as the entering variable. The result is the following tableau:

Basic Xl X2 x) X4 Xs x6 Solution

z 0 0 -2 0 0 0 0

1 1 -1 1 0 0 4X2 -2 -2
I 0 2 I 1 0 0Xs -2 2

x6
3 0 3 I 0 1 142 -2

f
TIle solution in the preceding tableau is now feasible but nonoptimal, and we can use the

primal simplex to determine the optimal solution. In general, had we not restored feasibility in
the preceding tableau, we would repeat the procedure as necessary until feasibility is satisfied or
there is evidence that the problem has no feasible solution (which happens if a basic variable is

4.5
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negative and all its constraint coefficients are nonnegative). Once feasibility is established, the
next step is to pay attention to optimality by applying the proper optimality condition of the pri
mal simplex method.

Remarks. The essence of Example 4.4-2 is that the simplex method is not rigid. The literature
abounds with variations of the simplex method (e.g., the primal-dual method, the symmetrical
method, the criss-cross method, and the multiplex method) that give the impression that each
procedure is different, when, in effect, they all seek a corner point solution, with a slant toward
automated computations and, perhaps, computational efficiency.

PROBLEM SET 4.4B

1. The LP model of Problem 4(c), Set 4.4a, has no feasible solution. Show how this condi
tion is detected by the generalized simplex procedure.

2. TIle LP model of Problem 4(d), Set 4.4a, has no bounded solution. Show how this condi
tion is detected by the generalized sirnplex procedure.

4.5 POST-OPTIMAL ANALYSIS

In Section 3.6, we dealt with the sensitivity of the optimum solution by determining the
ranges for the different parameters that would keep the optimum basic solution un
changed. In this section, we deal with making changes in the parameters of the model
and finding the new optimum solution. Take, for example, a case in the poultry industry
where an LP model is commonly used to determine the optimal feed mix per broiler
(see Example 2.2-2). The weekly consumption per broiler varies from .26 lb (120
grams) for a one-week-old bird to 2.11b (950 grams) for an eight-week-old bird. Addi
tionally, the cost of the ingredients in the mix may change periodically. These changes
require periodic recalculation of the optimum solution. Post-optimal analysis deter
mines the new solution in an efficient way. The new computations are rooted in the use
duality and the primal-dual relationships given in Section 4.2.

The following table lists the cases that can arise in post-optimal analysis and the
actions needed to obtain the new solution (assuming one exists):

Condition after parameters change

Current solution remains optimal and feasible.
Current solution becomes infeasible.
Current solution becomes nonoptimal.
Current solution becomes both nonoptimal
and infeasible.

Recommended action

No further action is necessary.
Use dual simplex to recover feasibility.
Use primal simplex to recover optimality.
Use the generalized simplex method to obtain new
solution.

The first three cases are investigated in this section. The fourth case, being a combina
tion of cases 2 and 3, is treated in Problem 6, Set 4.5a.

The TOyeO model of Example 4.3-2 will be used to explain the different proce
dures. Recall that the TOyeD model deals with the assembly of three types of. toys:
trains, trucks, and cars. Three operations are involved in the assembly. We wish to
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determine the number of units of each toy that will maximize revenue. The model and
its dual are repeated here for convenience.

TOYCO primal TOYCOdual

Maximize z == 3xI + 2X2 + 5X3
subject to

Xl + 2X2 + x3 :S 430 (Operation 1)
3Xl + 2X3 :S 460 (Operation 2)

Xl + 4X2 :S 420 (Operation 3)
Xh X2, X3 2: 0

Optimal solution:
XI == 0, X2 == 100, X3 = 230, Z = $1350

Minimize z == 430YI + 460Y2 + 420Y3
subject to

Yt + 3Y2 + Y3;::: 3
2YI + 4Y3 ;::: 2

YI + 2Y2 2: 5
Yh Y2, Y3 2: 0

Optimal solution:
Yl "" 1, Y2 = 2, Y3 == 0, W == $1350

The associated optimum tableau for the primal is given as

Basic Xl X2 X3 Solution

z 4 0 0 1350

X2
_! 1 0 1004

X3 ~ 0 1 2302

x6 2 0 0 20

4.5.1 Changes Affecting Feasibility

The feasibility of the current optimum solution may be affected only if (1) the right
hand side of the constraints is changed, or (2) a new constraint is added to the model.
In both cases, infeasibility occurs when at least one element of the right-hand side of
the optimal tableau becomes negative-that is, one or more of the current basic vari
ables become negative.

Changes in the right-hand side. This change requires recomputing the right-hand side
of the tableau using Formula 1 in Section 4.2.4:

(
New right-hand side Of) (Inverse in) (New right-hand )
tableau in iteration i = iteration i X side of constraints

Recall that the right-hand side of the tableau gives the values of the basic variables.

Example 4.5-1

Situation 1. Suppose that TOYCO wants to expand its assembly lines by increasing the daily
capacity of operations 1,2, and 3 by 40% to 602, 644, and 588 minutes, respectively. How would
this change affect the total revenue?
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With these increases, the only change that will take place in the optimum tableau is the
right-hand side of the constraints (and the optimum objective value). Thus, the new basic solu
tion is computed as follows:

-! ~)(~~) = (~~~)
1 1 588 28

Thus, the current basic variables, x2, x3, and x6, remain feasible at the new values 140,322,
and 28, respectively. The associated optimum revenue is $1890, which is $540 more than the cur
rent revenue of $1350.

Situation 2. Although the new solution is appealing from the standpoint of increased revenue,
TOYCO recognizes that its implementation may take time. Another proposal was thus made to
shift the slack capacity of operation 3 (X6 = 20 minutes) to the capacity of operation 1. How
would this change impact the optimum solution?

The capacity mix of the three operations changes to 450,460, and 400 minutes, respectively.
The resulting solution is

The resulting solution is infeasible because X6 = -40, which requires applying the dual
simplex method to recover feasibility. First, we modify the right-hand side of the tableau as
shown by the shaded column. Notice that the associated value of z = 3 X 0 + 2 X 110 + 5 X

230 = $1370.

Basic

z 4 o

1

o
o

o

o
1
o

1

1
7:
o

-2

2 o

o
o
1

Solution

~~~..~.i,~.'.!..
!~,.~~~;. .. J.

From the dual simplex, X6 leaves and X4 enters, which yields the following optimal feasible
tableau (in general, the dual simplex may take more than one iteration to recover feasibility).

Basic Xl Xz X3 X4 Xs X6 Solution

Z 5 0 0 0 5 1 13507: 7:
1 1 0 0 0 ! 100Xl 4" 4
3 0 1 0 I 0 230x3 7: 2

X4 -1 0 0 1 _! _1 20 .
I 2

The optimum solution (in terms of xl> x2, and x3) remains the same as in the original
model. This means that the proposed shift in capacity allocation is not advantageous }Pr this-
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f

case because all it does is shift the surplus capacity in operation 3 to a surplus capacity in op
eration 1. TIle conclusion is that operation 2 is the bottleneck and it may be advantageous to
shift the surplus to operation 2 instead (see Problem 1, Set 4.5a). The selection of operation 2
over operation 1 is also reinforced by the fact that the dual price for operation 2 ($2/mi11) is
higher than that for operation 2 (= $l/min).

PROBLEM SET 4.5A

1. In the TOYCO model listed at the start of Section 4.5, would it be more advantageous to
assign the 20-minute excess capacity of operation 3 to operation 2 instead of operation I?

2. Suppose that TOYCO wants to change the capacities of the three operations according to
the following cases:

(

460)
(a) 500

400
(

500)
(b) 400

600
(c) (~~)

200
(

450)
(d) 700

350

Use post-optimal analysis to determine the optimum solution in each case.

3. Consider the Reddy Mikks model of Example 2.1-1. Its optimal tableau is given in Exam
ple 3.3-1. If the daily availabilities of raw materials Ml and M2 are increased to 28 and 8
tons, respectively, use post-optimal analysis to determine the new optimal solution.

*4. The Ozark Farm has 20,000 broilers that are fed for 8 weeks before being marketed. The
weekly feed per broiler varies according to the following schedule:

Week

Iblbroiler

1

.26

2

.48

3

.75

4

1.00

5

1.30

6

1.60

7

1.90

8

2.10

For the broiler to reach a desired weight gain in 8 weeks, the feedstuffs must satisfy spe
cific nutritional needs. Although a typical list of feedstuffs is large, for simplicity we will
limit the model to three items only: limestone, corn, and soybean meaL The nutritional
needs will also be limited to three types: calcium, protein, and fiber. The following table
summarizes the nutritive content of the selected ingredients together with the cost data.

Content (Ib) per Ib of

Ingredient Calcium Protein Fiber $ per lb

Limestone .380 .00 .00 .12
Corn .001 .09 .02 .45
Soybean meal .002 .50 .08 1.60

The feed mix must contain

(a) At least .8% but not more than 1.2% calcium

(b) At least 22% protein

(c) At most 5% crude fiber
Solve the LP for week 1 and then use post-optimal analysis to develop an optimal

. schedule for the remaining 7 weeks.
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5. Show that the 100% feasibility rule in Problem 12, Set 3.6c (Chapter 3) is based on the
condition

(?Ptimum)(Origi~alright-hand) ;=: 0
mverse side vector

6. Post-optimal Analysis for Cases Affecting Both Optimality and Feasibility. Suppose
that you are given the following simultaneous changes in the Reddy Mikks model:
The revenue per ton of exterior and interior paints are $1000 and $4000, respectively,
and the maximum daily availabilities of raw materials, M1 and M2, are 28 and 8 lons,
respectively.

(a) Show that the proposed changes will render the current optimal solution both
nonoptimal and infeasible.

(b) Use the generalized simplex algorithm (Section 4.4.2) to determine the new optimal
feasible solution.

Addition of New Constraints. The addition of a new constraint to an existing model
can lead to one of two cases.

1. The new constraint is redundant, meaning that it is satisfied by the current opti
mum solution, and hence can be dropped from the model altogether.

2. The current solution violates the new constraint, in which case the dual simplex
method is used to restore feasibility.

Notice that the addition of a new constraint can never improve the current opti
mum objective value.

Example 4.5-3

Situation 1. Suppose that TOYCO is changing the design of its toys, and that the change will re
quire the addition of a fourth operation in the assembly lines. The daily capacity of the new op
eration is 500 minutes and the times per unit for the three products on this operation are 3, 1, and
1 minutes, respectively. Study the effect of the new operation on the optimum solution.

The constraint for operation 4 is

3Xl + X2 + X3 5 500

This constraint is redundant because it is satisfied by the current optimum solution Xl ::;: 0,
X2 ::;: 100, and X3 = 230. Hence, the current optimum solution remains unchanged.

Situation 2. Suppose, instead, that TOYCO unit times on the fourth operation are changed to
3, 3, and 1 minutes, respectively. All the remaining data of the model remain the same. Will the
optimum solution change?

The constraint for operation 4 is
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This constraint is not satisfied by the current optimum solution.Thus, the new constraint must be
added to the current optimum tableau as follows (X7 is a slack):

Basic Xl X2 X3 X4 X5 X6

Z 4 0 0 1 2 0

X2
I 1 0 1 1 0-4 '2 -4
3 0 1 0 1 0X3 2 2

X6 2 0 0 -2 1 1

Solution

1350

The tableau shows that X7 = 500, which is not consistent with the values of Xz and x3 in the
rest of the tableau. The reason is that the basic variables X2 and x3 have not been substituted out
in the new constraint. TIlis substitution is achieved by performing the following operation:

New X7-fOW = Old X7-row - {3 X (xTrow) + 1 X (X3-roW)}

This operation is exactly the same as substituting

Xz = 100- (1 1 1)-4X1 + 2" X4 - 4XS

X3 = 230 - (~Xl+!X5)

in the new constraint. The new tableau is thus given as

Basic Xl X2 X3 X4 X5 X6 .'(7 Solution

z 4 0 0 1 2 0 0 1350

_1 1 0 .1 1 a 0 100x2 4 2 -4
3 0 1 0 1 0 0 230X3 2 2

X6 2 0 0 -2 1 1 0 20
9 0 0 3 1 0 1 -30X7 :1 -2 4

Application of the dual simplex method will produce the new optimum solution Xl = 0,
Xz = 90, X3 == 230, and z = $1330 (verify!). The solution shows that the addition of opera
tion 4 will worsen the revenues from $1350 to $1330.

PROBLEM SET 4.58

1. In the TOYCO model, suppose the fourth operation has the following specifications: The
maximum production rate.based on 480 minutes a day is either 120 units of product 1,
480 units of product 2, or 240 units of product 3. Determine the optimal solution, assum
ing that the daily capacity is limited to

*(a) 570 minutes.

(b) 548 minutes.
2. Secondary Constraints. Instead of solving a problem using all of its constraints, we can

start by identifying the so-called secondary constraints. These are the constraints that we

4.~
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suspect are least restrictive in terms of the optimum solution. The model is solved using
the remaining (primary) constraints. We may then add the secondary constraints one at a
time. A secondary constraint is discarded if it satisfies the available optimum. The process
is repeated until all the secondary constraints are accounted for.

Apply the proposed procedure to the following LP:

Maximize z = 5Xl + 6X2 + 3X2

subject to

7Xl + 6X2 - 9X3 :$ 30

5Xl + 5X2 + 5X3 :$ 35

12xl + 6X2 :$ 90

X2 - 9X3 :$ 20

4.5.2 Changes Affecting Optimality

This section considers two particular situations that could affect the optimality of the
current solution:

1. Changes in the original objective coefficients.
2. Addition of a new economic activity (variable) to the model.

Changes in the Objective Function Coefficients. These changes affect only the optimality
of the solution. Such changes thus require recomputing the z-row coefficients (reduced
costs) according to the following procedure:

1. Compute the dual values using Method 2 in Section 4.2.3.
2. Use the new dual values in Formula 2, Section 4.2.4, to determine the new re

duced costs (z-row coefficients).

Two cases will result:

1. New z-row satisfies the optimality condition. The solution remains unchanged
(the optimum objective value may change, however).

2. The optimality condition is not satisfied. Apply the (primal) simplex method to
recover optimality.

Example 4.5-4

Situation 1. In the TOYCO model, suppose that the company has a new pricing policy to meet
the competition. The unit revenues under the new policy are $2, $3, and $4 for train, truck, and
car toys, respectively. How is the optimal solution affected?
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The new objective function is

Maximize z = 2XI + 3X2 + 4X3

Thus,

(New objective coefficients of basic X2, X3, and X6) = (3,4,0)

Using Method 2, Section 4.2.3, the dual variables are computed as

The z-row coefficients are determined as the difference between the left- and right-hand
sides of the dual constraints (Fonnula 2, Section 4.2.4). It is not necessary to recompute the ob
jective-row coefficients of the basic variables X2, x3, and x6 because they always equal zero re
gardless of any changes made in the objective coefficients (verify!).

Reduced cost of Xl = YI + 3Y2 + Y3 - 2 = ~ + 3(~) + 0- 2 = ~

Reduced cost of X4 = Yl - 0 = ~

Reduced cost of Xs = Y2 - 0 = ~

Note that the right-hand side of the first dual constraint is 2, the new coefficient in the modified
objective function.

The computations show that the current solution, Xl == 0 train, X2 = 100 trucks, and
x3 = 230 cars, remains optimal. The corresponding new revenue is computed as 2 x 0 + 3 x
100 + 4 x 230 = $1220. The new pricing policy is not advantageous because it leads to lower
revenue.

Situation 2. Suppose now that the TOYCO objective function is changed to

Maximize z = 6XI + 3X2 + 4x)

Will the optimum solution change?

We have

(Yh)/2, Y3) = (3, 4, 0)( ~ -1 ~) = (~,~, 0)
-2 1 1

Reduced cost of Xl = Yl + 3Y2 + Y3 - 6 = ~ + 3(~) + 0 - 6 = -~

Reduced cost of X4 = Yl - 0 = ~

Reduced cost of Xs = Y2 - 0 = ~

The new reduced cost of xl shows that the current solution is not optimum.
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To determine the new solution, the z-row is changed as highlighted in the follow
ing tableau:

Basic Xl X2 X3 x'4 Xs X6 Solution

z 0 0 ~~i~~~~~~g~~¥¥~ 0 ~0~~~~~
}

1 0 I 1 0 100X2 -4 2 -4
3 0 1 0 ! 0 230X3 2 2

X6 2 0 0 -2 1 1 20

The elements shown in the shaded cells are the new reduced cost for the nonbasic
variables Xl> X4, and Xs. All the remaining elements are the same as in the original op
timal tableau. The new optimum solution is then determined by letting Xl enter and X6

leave, which yields Xl = 10, X2 = 102.5, X3 = 215, and z = $1227.50 (verify!). Al
though the new solution recommends the production of all three toys, the optimum
revenue is less than when two toys only are manufactured.

PROBLEM SET 4.5C

L Investigate the optimality of the TOYCO solution for each of the following objective
functions. If the solution changes, use post-optimal analysis to determine the new opti
mum. (The optimum tableau of TOYCO is given at the start of Section 4.5.)

(a) Z = 2x} + X2 + 4X3

(b) Z = 3x} + 6X2 + x3

(c) Z = 8x} + 3X2 + 9X3

2. Investigate the optimality of the Reddy Mikks solution (Example 4.3-1) for each of the
following objective functions. If the solution changes, use post-optimal analysis to deter
mine the new optimum. (The optimal tableau of the model is given in Example 3.3-1.)

*(a) z = 3x} + 2X2

(b) z = 8x} + 10x2
*(c) Z = 2xI + 5X2

3. Show that the 100% optimality rule (Problem 8, Set 3.6d, Chapter 3) is derived from
(reduced costs) ~ 0 for maximization problems and (reduced costs) :::; 0 for minimiza
tion problems.

Addition ofa New Activity. The addition of a new activity in an LP model is equivalent
to adding a new variable. Intuitively, the addition of a new activity is desirable only if it
is profitable-that is, if it improves the optimal value of the objective function. This
condition can be checked by computing the reduced cost of the new variable using
Formula 2, Section 4.2.4. If the new activity satisfies the optimality condition, then the
activity is not profitable. Else, it is advantageous to undertake the new activity.

Example 4.5-5

TOYCO recognizes that toy trains are not currently in production because they are not prefitabre.
The company wants to replace toy trains with a new product, a toy fire engine, to be assembled on
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the existing facilities. TOYCO estimates the revenue per toy fire engine to be $4 and the assembly
times per unit to be 1 minute on each of operations 1 and 2, and 2 minutes on operation 3. How
would this change impact the solution?

Let x7 represent the new fire engine product. Given that (Yl> Y2, Y3) = (1,2,0) are the
optimal dual values, we get

Reduced cost of X7 = lYl + lY2 + 2Y3 - 4 = 1 X 1 + 1 X 2 + 2 X 0 - 4 = -1

The result shows that it is profitable to include X7 in the optimal basic solution. To obtain the
new optimum, we first compute its column constraint using Formula 1, Section 4.2.4, as

(

1 1
7: -4

xrconstraint colum = 0 !
-2 1

Thus, the current simplex tableau must be modified as follows

Basic Xl X2 X3 X4 Xs X6 Solution

z 4 0 0 1 2 0 1350

I 1 0 1 1 0 100X2 -4 2 -4
3 0 1 0 ! 0 230X3 2 2

-'=6 2 0 0 -2 1 1 20

The new optimum is determined by letting X7 enter the basic solution, in which case x6 must
leave. The new solution is Xl = 0, x2 = 0, x3 = 125, X7 = 210, and z = $1465 (verify!),
which improves the revenues by $115.

PROBLEM SET 4.50

*1. In the original TOYCO model, toy trains are not part of the optimal product mix. The
company recognizes that market competition will not allow raising the unit price of the
toy. Instead, the company wants to concentrate on improving the assembly operation it
self. This entails reducing the assembly time per unit in each of the three operations by a
specified percentage, p%. Determine the value of p that will make toy trains just prof
itable. (The optimum tableau of the TOYCO model is given at the start of Section 4.5.)

2. In the TOYCO model, suppose that the company can reduce the unit times on operations
1,2, and 3 for toy trains from the current levels of 1,3, and 1 minutes to .5,1, and .5 min
utes, respectively. The revenue per unit remains unchanged at $3. Determine the new op
timum solution.

3. In the TOYCO model, suppose that a new toy (fire engine) requires 3, 2, 4 minutes, re
spectively, on operations 1,2, and 3. Determine the optimal solution when the revenue
per unit is given by

*(a) $5.

(b) $10.

_,f ;.~~-.:...• _.
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4. In the Reddy Mikks model, the company is considering the production of a cheaper
brand of exterior paint whose input requirements per ton include .75 ton of each of raw
materials Ml and M2. Market conditions still dictate that the excess of interior paint over
the production of both types of exterior paint be limited to 1 ton daily. The revenue per
ton of the new exterior paint is $3500. Determine the new optimal solution. (The model is
explained in Example 4.5-1, and its optimum tableau is given in Example 3.3-1.)
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CHAPTER 5

Transportation Model
and Its Variants

Chapter Guide. The transportation model is a special class of linear programs that
deals with shipping a commodity from sources (e.g., factories) to destinations (e.g.,
warehouses). The objective is to determine the shipping schedule that minimizes the
total shipping cost while satisfying supply and demand limits. The application of the
transportation model can be extended to other areas of operation, including inventory
control, employment scheduling, and personnel assignment.

As you study the material in this chapter, keep in mind that the steps of the trans
portation algorithm are precisely those of the simplex method. Another point is that
the transportation algorithm was developed in the early days of OR to enhance hand
computations. Now, with the tremendous power of the computer, such shortcuts may
not be warranted and, indeed, are never used in commercial codes in the strict manner
presented in this chapter. Nevertheless, the presentation shows that the special trans
portation tableau is useful in modeling a class of problems in a concise manner (as op
posed to the familiar LP model with explicit objective function and constraints). In
particular, the transportation tableau format simplifies the solution of the problem by
Excel Solver. The representation also provides interesting ideas about how the basic
theory of linear programming is exploited to produce shortcuts in computations.

You will find TORA's tutorial module helpful in understanding the details of the
transportation algorithm. The module allows you to make the decisions regarding the
logic of the computations with immediate feedback.

This chapter includes a summary of 1 real-life application, 12 solved examples, 1
Solver model, 4 AMPL models, 46 end-of-section problems, and 5 cases. The cases are in
Appendix E on the CD.The AMPLlExcei/SolverrrORA programs are in folder chSFiles.

Real-life Application-Scheduling Appointments at Australian Trade Events

The Australian Tourist Commission (ATC) organizes trade events around the world to
provide a forum for Australian sellers to meet international buyers of tourism prod
ucts, including accommodation, tours, and transport. During these events, sellers are

193
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FIGURE 5.1

Transportation Model and Its Variants
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Representation of the transportation model with nodes and arcs

stationed in booths and are visited by buyers according to scheduled appointments. Be
cause of the limited number of time slots available in each event and the fact that the
number of buyers and sellers can be quite large (one such event held in Melbourne in
1997 attracted 620 sellers and 700 buyers), ATC attempts to schedule the seller-buyer
appointments in advance of the event in a manner that maximizes preferences. The
model has resulted in greater satisfaction for both the buyers and sellers. Case 3 in
Chapter 24 on the CD provides the details of the study.

5.1 DEFINITION OF THE TRANSPORTATION MODEL

The general problem is represented by the network in Figure 5.1. There are m
sources and n destinations, each represented by a node. The arcs represent the
routes linking the sources and the destinations. Arc (i, j) joining source i to destina
tion j carries two pieces of information: the transportation cost per unit, Cij, and the
amount shipped, Xij' The amount of supply at source i is ai and the amount of de
mand at destinationj is bj • The objective ofthe model is to determine the unknowns
Xij that will minimize the total transportation cost while satisfying all the supply and
demand restrictions.

Example 5.1-1

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table 5.l.

The trucking company in charge of transporting the cars charges 8 cents per mile per car.
The transportation costs per car on the different routes, rounded to the closest dollar, are given f

. in Table 5.2.
The LP model of the problem is given as

Minimize z = 80xu + 215x12 + lOOX21 + l08x22 + l02x31 + 68x32
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TABLE 5.1 Mileage Chart

Los Angeles
Detroit
New Orleans

Denver

1000
1250
1275

Miami

2690
1350
850

TABLE 5.2 Transportation Cost per Car

subject to

Los Angeles (1)
Detroit (2)
New Orleans (3)

Denver (1)

$80
$100
$102

Miami (2)

$215
$108

$68

= 1000 (Los Angeles)

= 1500 (Detroit)

+ x31 + X32 = 1200 (New Oreleans)

+ x21 + = 2300 (Denver)

+ x32 = 1400 (Miami)

Xij ;;:;: 0, i = 1, 2, 3, j = 1, 2

These constraints are all equations because the total supply from the three sources (= 1000 +
1500 + 1200 = 3700 cars) equals the total demand at the two destinations (= 2300 + 1400 =
3700 cars).

The LP model can be solved by the simplex method. However, with the special structure of
the constraints we can solve the problem more conveniently using the transportation tableau
shown in Table 5.3.

TABLE 5.3 MG Transportation Model

Denver Miami Supply

Los Angeles

Detroit

New Orleans

80 215
Xu X12

100 108
X21 X22

102 68
X31 X32

1000

1500

uoo
Demand 2300 1400
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FIGURE 5.2

Optimal solution of MG Auto model
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The optimal solution in Figure 5.2 (obtained by TORA1
) calls for shipping 1000 cars from

Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from
New Orleans to Miami. The associated minimum transportation cost is computed as 1000 x $80 +
1300 x $100 + 200 x $108 + 1200 x $68 = $313,200.

Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy
destination to restore balance.

Example 5.1-2

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500).The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the de
mand at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dummy source (plant) with a capacity of 200 cars
(= 3700 - 3500) is added to balance the transportation model. The unit transportation costs
from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 gives the balanced model together with its optimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of
satisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shortage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot
use this "trick" with all the destinations, because shortage must occur somewhere in the system.

TIle case where the supply exceeds the demand can be demonstrated by assuming that the
demand at Denver is 1900 cars only. In this case, we need to add a dummy distribution center to
"receive" the surplus supply. Again, the unit transportation costs to the dummy distribution cen
ter are zero, unless we require a factory to "ship out" completely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

ITo use TORA, from ;Main Menu. select ·TranspOrtationMod'el. From theS~OLVE/rv10DIFYmenu, select

'Soive: ~'Fin~rSdlii'tiqi{ to obtain a su~mary '~i the ~pti~~~solution. A detailed description of the itera

tive solution of the transportation model is given in Section 5.3.3.
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TABLE 5.4 MG Model with Dummy Plant

Denver Miami Supply

80 215
Los Angeles

1000 1000
100 108

Detroit
1300 1300

102 68
New Orleans

1200 1200

Demand 2300 1400
200

TABLE 5.5 MG Model with Dummy Destination

PROBLEM SET 5.1A2

1500

1200

1000

Dummy

400

Denver Miami

80 215
Los Angeles

1000
100 108

Detroit
900 200

102 68
New Orleans

1200
Demand 1900 1400

1. True or False?
(a) To balance a transportation model, it may be necessary to add both a dummy source

and a dummy destination.

(b) The amounts shipped to a dummy destination represent surplus at the shipping
source.

(c) The amounts shipped from a dummy source represent shortages at the receiving
destinations.

2In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta
tion problem will be introduced at the end of Section 5.3.2.

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution
shows that the Detroit plant will have a surplus of 400 cars.
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2. In each of the following cases, determine whether a dummy source or a dummy destina
tion must be added to balance the model.

(a) Supply: al = 10, a2 = 5, a3 = 4, a4 = 6
Demand: bi = 10, b2 = 5, b3 = 7, b4 = 9

(b) Supply: aJ = 30, Q2 = 44
Demand: bJ = 25, bi = 30, b3 = 10

3. In Table 5.4 of Example 5.1-2, where a dummy plant is added, what does the solution
mean when the dummy plant "ships" 150 cars to Denver and 50 cars to Miami?

*4. In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the De
troit plant must ship out all its production. How can this restriction be implemented in
the model?

5. In Example 5.1-2, suppose that for the case where the demand exceeds the supply
(Table 5.4), a penalty is levied at the rate of $200 and $300 for each undelivered car at
Denver and Miami, respectively. Additionally, no deliveries are made from the Los
Angeles plant to the Miami distribution center. Set up the model, and determine the
optimal shipping schedule for the problem.

*6. Three electric power plants with capacities of 25, 40, and 30 million kWh supply electrici
ty to three cities. The maximum demands at the three cities are estimated at 30, 35, and 25
million kWh. The price per million kWh at the three cities is given in Table 5.6.

During the month of August, there is a 20% increase in demand at each of the three
cities, which can be met by purchasing electricity from another network at a premium
rate of $1000 per million kWh. The network is not linked to city 3, however. The utility
company wishes to determine the most economical plan for the distribution and pur
chase of additional energy.

(a) Formulate the problem as a transportation model.
(b) Determine an optimal distribution plan for the utility company.
(c) Determine the cost of the additional power purchased by each of the three cities.

7. Solve Problem 6, assuming that there is a 10% power transmission loss through the net
work.

8. Three refineries with daily capacities of 6, 5, and 8 million gallons, respectively, supply
three distribution areas with daily demands of 4, 8, and 7 million gallons, respectively.
Gasoline is transported to the three distribution areas through a network of pipelines.
The transportation cost is 10 cents per 1000 gallons per pipeline mile. Table 5.7 gives the
mileage between the refineries and the distribution areas. Refinery 1 is not connected to
distribution area 3.

(a) Construct the associated transportation model.

(b) Determine the optimum shipping schedule in the network.



5.1 Definition of the Transportation Model 199

TABLE 5.7 Mileage Chart for Problem 8

Distribution area
1 2 3

1
Refinery 2

3

120
300
200

180
100
250

80
120

*9. In Problem 8, suppose that the capacity of refinery 3 is 6 million gallons only and that
distribution area 1 must receive all its demand. Additionally, any shortages at areas 2 and
3 will incur a penalty of 5 cents per gallon.

(a) Formula,te the problem as a transportation model.

(b) Determine the optimum shipping schedule.

10. In Problem 8, suppose that the daily demand at area 3 drops to 4 million gallons. Surplus
production at refineries 1 and 2 is diverted to other distribution areas by truck. The trans
portation cost per 100 gallons is $1.50 from refinery 1 and $2.20 from refinery 2. Refinery
3 can divert its surplus production to other chemical processes within the plant.

(a) Formulate the problem as a transportation model.

(b) Determine the optimum shipping schedule.

11. Three orchards supply crates of oranges to four retailers. The daily demand amounts at
the four retailers are 150,150,400, and 100 crates, respectively. Supplies at the three or
chards are dictated by available regular labor and are estimated at 150,200, and 250
crates daily. However, both orchards 1 and 2 have indicated that they could supply more
crates, if necessary, by using overtime labor. Orchard 3 does not offer this option. The
transportation costs per crate from the orchards to the retailers are given in Table 5.8.

(a) Formulate the problem as a transportation model.

(b) Solve the problem.

(c) How many crates should orchards 1 and 2 supply using overtime labor?

12. Cars are shipped from three distribution centers to five dealers. The shipping cost is
based on the mileage between the sources and the destinations, and is independent of
whether the truck makes the trip with partial or full loads. Table 5.9 summarizes the
mileage between the distribution centers and the dealers together with the monthly sup
ply and demand figures given in number of cars. A full truckload includes 18 cars. The
transportation cost per truck mile is $25.

(a) Fonnulate the associated transportation model.

(b) Determine the optimal shipping schedule.

TABLE 5.8 Transportation Cost/Crate for Problem 11

I
I 1

Retailer
2 3 4

1
Orchard 2

3

$1
$2
$1

$2
$4
$3

$3
$1
$5

$2
$2
$3
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TABLE 5.9 Mileage Chart and Supply and Demand for Problem 12 5.2

Dealer
1 2 3 4 5 Supply

1 100 150 200 140 35 400
Center 2 50 70 60 65 80 200

3 40 90 100 150 130 150

Demand 100 200 150 160 140

13. MG Auto, of Example 5.1-1, produces four car models: MI, M2, M3, and M4. The Detroit.
plant produces models Ml, M2, and M4. Models MI and M2 are also produced in New
Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the
various plants and the demands at the distribution centers are given in Table 5.10.

The mileage chart is the same as given in Example 5.1-1, and the transportation rate
remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a per
centage of the demand for some models from the supply of others according to the speci
fications in Table 5.11.
(a) Formulate the corresponding transportation model.
(b) Determine the optimum shipping schedule.

(Hint: Add four new destinations corresponding to the new combinations [MI, M2], [M3,
M4], [Ml, M2], and [M2, M4]. The demands at the new destinations are determined from
the given percentages.)

TABLE 5.10 Capacities and Demands for Problem 13

Model

M1 M2 M3 M4 Totals

Plant
Los Angeles 700 300 1000
Detroit 500 600 400 1500
New Orleans 800 400 1200

Distribution center
Denver 700 500 500 600 2300
Miami 600 500 200 100 1400

TABLE 5.11 Interchangeable Models in Problem 13

Distribution center

Denver

Miami

Percentage of demand

10
20
10
5

Interchangeable models

M1,M2
M3,M4
M1,M2
M2,M4

", '-.:'..
. ;....:~..;~~..:...
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5.2 NONTRADITIONAL TRANSPORTATION MODELS

The application of the transportation model is not limited to transporting commodities
between geographical sources and destinations. This section presents two applications
in the areas of production-inventory control and tool sharpening service.

Example 5.2-1 (Production-Inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each year. Boralis estimates the demand for the four months to be 100, 200,
180, and 300 units, respectively. The company uses part-time labor to manufacture the backpacks
and, accordingly, its production capacity varies monthly. It is estimated that Boralis can produce
50, 180,280, and 270 units in March through June. Because the production capacity and demand
for the different months do not match, a current month's demand may be satisfied in one of
three ways.

1. Current month's production.

2. Surplus production in an earlier month.

3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an addi
tional holding cost of $.50 per backpack per month. In the third case, an additional penalty cost
of $2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimal
production schedule for the four months.

The situation can be modeled as a transportation model by recognizing the following paral
lels between the elements of the production-inventory problem and the transportation model:

Transportation

1. Source i
2. Destination j
3. Supply amount at source i
4. Demand at destination j
5. Unit transportation cost from source i

to destination j

Production-inventory

1. Production period i
2. Demand period j
3. Production capacity of period i
4. Demand for period j
5. Unit cost (production + inventory + penalty) in period i

for periodj

The resulting transportation model is given in Table 5.12.

TABLE 5.12 Transportation Model for Example 5.2-1

1 2 3 4 Capacity

1 $40.00 $40.50 $41.00 $41.50 50
2 $42.00 $40.00 $40.50 $41.00 180
3 $44.00 $42.00 $40.00 $40.50 280
4 $46.00 $44.00 $42.00 $40.00 270

Demand 100 200 180 300
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Supply 50 180 280 270

Supply period ....
" .

30···•..
".

Demand period

Demand 100 200 180 300

FIGURE 5.3

Optimal solution of the production-inventory model

The unit "transportation" cost from period i to period j is computed as

{

Production cost in i, i = j

eij = Production cost in i + holding cost from i to j, i < j
Production cost in i + penaty cost from i to j, i > j

1

For example,

Cll = $40.00

C24 = $40.00 + ($.50 + $.50) = $41.00

C41 == $40.00 + ($2.00 + $2.00 + $2.00) = $46.00

2

The optimal solution is summarized in Figure 5.3. The dashed lines indicate back-ordering,
the dotted lines indicate production for a future period, and the solid lines show production in a
period for itself. The total cost is $31,455. 4

Example 5.2-2 (Tool Sharpening)

Arkansas Pacific operates a medium-sized saw mill. The mill prepares different types of wood
that range from soft pine to hard oak according to a weekly schedule. Depending on the type of
wood being milled, the demand for sharp blades varies from day to day according to the follow
ing I-week (7-day) data:

7

Day Mon. The. Wed. 11m. Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22
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The mill can satisfy the daily demand in the following manner:

1. Buy new blades at the cost of $12 a blade.

2. Use an overnight sharpening service at the cost of $6 a blade.

3. Use a slow 2-day sharpening service at the cost of $3 a blade.

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (= 24 + 12 + 14 + 20 + 18 +
14 + 22 = 124). Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for
each of these sources equals the number of used blades at the end of the associated day. For ex
ample, source 2 (i.e., Monday) will have a supply of used blades equal to the demand for Mon
day. The unit "transportation cost" for the model is $12, $6, or $3, depending on whether the blade
is supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day i will be available for use at the start of day
i + 1 or day i + 2, because the slow 2-day service will not be available until the start of day
i + 3. The "disposal" column is a dummy destination needed to balance the model. TIle com
plete model and its solution are given in Table 5.13.

TABLE 5.13 Tool Sharpening Problem Expressed as a Transportation Model

5-Thu.

Jd 6·Fri.

of
w- 7-Sat.

8-Sun.

$12

8
Disposal

$0

98 124
$0

24
$0

12
$0

14
$0

20
$0

22

14

18
$0

$0

4

22

$3

$3

$12

$3

7
Sun.

22

$3

$12

$3

$3

6
Sat.

14

$6

$3

$3

6

5
Fri.

18

$12

6
$6

$3

$6

4
Thu.

14

$6

$12

$6

6

8

3
Wed.

14

$12

2

2
Tue.

12

1
Mon.

24

$12

24

2-Mon.

4-Wed.

3-Tue.

1-New

g,
a
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The problem has alternative optima at a cost of $840 (file toraExS.2-2.txt).The following table
summarizes one such solution.

Number of sharp blades (Target day)

peri1 New Overnight 2-day Disposal

Mon. 24 (Mon.) lO(Tue.) + 8{Wed.) 6 (Thu.) 0
Tues. 2 (Tue.) 6 (Wed.) 6 (Fri.) 0
Wed. 0 14 (11lU.) 0 0
11lU. 0 12 (Fri.) 8 (Sun.) 0
Fri. 0 14 (Sat.) 0 4
Sat. 0 14 (Sun.) 0 0
Sun. 0 0 0 22

Remarks. The model in Table 5.13 is suitable only for the first week of operation because it
does not take into account the rotational nature of the days of the week, in the sense that this
week's days can act as sources for next week's demand. One way to handle this situation is to as
sume that the very first week of operation starts with all new blades for each day. From then on,
we use a model consisting of exactly 7 sources and 7 destinations corresponding to the days of
the week. The new model will be similar to Table 5.13 less source "New" and destination "Dis
posal." Also, only diagonal cells will be blocked (unit cost = M). The remaining cells will have a
unit cost of either $3.00 or $6.00. For example, the unit cost for cell (Sat., Mon.) is $6.00 and that
for cells (Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) is $3.00. The table below gives the
solution costing $372. As expected, the optimum solution will always use the 2-day service only.
TIle problem has alternative optima (see file toraEx5.2-2a.txt).

Weeki

Mon.
Tue.
Wed.
TIm.
Fri.
Sat.
Sun.
Total

Mon.

12
8
4

24

Tue.

12

12

Week i + 1

Wed. Thu. Fri. Sal. Sun. Total

6 18 24
8 4 12

2 14
20

14 18
14 14

10 12 22
14 20 18 14 22

PROBLEM SET S.2A3

1. In Example 5.2-1, suppose that the holding cost per unit is period-dependent and is given
by 40, 30, and 70 cents for periods 1,2, and 3, respectively. The penalty and production
costs I'emain as given in the example. Determine the optimum solution and interpret
the results.

3In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta
tion problem will be introduced at the end of Section 5.3.2.
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*2. In Example 5.2-2, suppose that the sharpening service offers 3-day service for $1 a blade
on Monday and Tuesday (days 1 and 2). Reformulate the problem, and interpret the opti
mum solution.

3. In Example 5.2-2, if a blade is not used the day it is sharpened, a holding cost of 50 cents
per blade per day is incurred. Reformulate the model, and interpret the optimum solution.

4. JoShop wants to assign four different categories of machines to five types of tasks. The
numbers of machines available in the four categories are 25, 30,20, and 30. The numbers
of jobs in the five tasks are 20, 20, 30,10, and 25. Machine category 4 cannot be assigned
to task type 4. Table 5.14 provides the unit cost (in dollars) of assigning a machine cate
gory to a task type. The objective of the problem is to determine the optimum number of
machines in each category to be assigned to each task type. Solve the problem and inter
pret the solution.

*5. The demand for a perishable item over the next four months is 400,300,420, and 380
tons, respectively. The supply capacities for the same months are 500, 600, 200, and 300
tons. The purchase price per ton varies from month to month and is estimated at $100,
$140, $120, and $150, respectively. Because the item is perishable, a current month's sup
ply must be consumed within 3 months (starting with current month). The storage cost
per ton per month is $3. The nature of the item does not allow back-ordering, Solve the
problem as a transportation model and determine the optimum delivery schedule for the
item over the next 4 months.

6. The demand for a special small engine over the next five quarters is 200, 150, 300,250,
and 400 units. The manufacturer supplying the engine has different production capacities
estimated at 180,230,430,300, and 300 for the five quarters. Back-ordering is not al
lowed, but the manufacturer may use overtime to fill the immediate demand, if necessary.
The overtime capacity for each period is half the regular capacity. The production costs
per unit for the five periods are $100, $96, $116, $102, and $106, respectively. TIle over
time production cost per engine is 50% higher than the regular production cost. If an en
gine is produced now for use in later periods, an additional storage cost of $4 per engine
per period is incurred. Formulate the problem as a transportation model. Determine the
optimum number of engines to be produced during regular time and overtime of each
period.

7. Periodic preventive maintenance is carried out on aircraft engines, where an important
component must be replaced. The numbers of aircraft scheduled for such maintenance
over the next six months are estimated at 200, 180,300,198,230, and 290, respectively. All
maintenance work is done during the first day of the month, where a used component
may be replaced with a new or an overhauled component. The overhauling of used com
ponents may be done in a local repair facility, where they will be ready for use at the be
ginning of next month, or they may be sent to a central repair shop, where a delay of

TABLE 5.14 Unit Costs for Problem 4

Task type
1 2 3 4 5

1 10 2 3 15 9

Machine category
2 5 10 15 2 4
3 15 5 14 7 15
4 20 15 13 8
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TABLE 5.15 Bids per Acre for Problem 8

Location
1 2 3

1 $520 $210 $570
. d 2 $510 $495

Bid er 3 $650 $240
4 $180 $430 $710

3 months (including the month in which maintenance occurs) is expected. The repair cost
in the local shop is $120 per component. At the central facility, the cost is only $35 per
component. An overhauled component used in a later month will incur an additional
storage cost of $1.50 per unit per month. New components may be purchased at $200
each in month 1, with a 5% price increase every 2 months. Formulate the problem as a
transportation model, and determine the optimal schedule for satisfying the demand for
the component over the next six months.

8. The National Parks Service is receiving four bids for logging at three pine forests in
Arkansas. The three locations include 10,000,20,000, and 30,000 acres. A single bidder
can bid for at most 50% of the total acreage available. The bids per acre at the three loca
tions are given in Table 5.15. Bidder 2 does not wish to bid on location I, and bidder 3
cannot bid on location 2.

(a) In the present situation, we need to maximize the total bidding revenue for the
Parks Service. Show how the problem can be formulated as a transportation model.

(b) Determine the acreage that should be assigned to each of the four bidders.

5.3 THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe
cial structure of the transportation model to organize the computations in a more con
venient form.

The special transportation algorithm was developed early on when hand compu
tations were the norm and the shortcuts were warranted. Today, we have powerful
computer codes that can solve a transportation model of any size as a regular Lp'4 Nev
ertheless, the transportation algorithm, aside from its historical significance, does pro
vide insight into the use of the theoretical primal-dual relationships (introduced in
Section 4.2) to achieve a practical end result, that of improving hand computations. TIle
exercise is theoretically intriguing.

The details of the algorithm are explained using the following numeric example.

4In fact, TORA handles all necessary computations in the background using the regular simplex method and
uses the transportation model format only as a screen "veneer."

5.
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TABLE 5.16 SunRay Transportation Model

Mill
1 2 3 4 Supply

1

Silo2.

3

10 2 20 11

Xli Xl2 XI3 X\4

12 7 9 20

X2l X22 X23 X24

4 14 16 18

X31 X32 X33 X 34

15

25

10

Demand 5 15 15 15

I.
:-

l-

l

Il
{

)

In
le

.e.

nd

. _.., ':.iI:'..:.;,,~._.

Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transportation costs
per truckload on the different routes are summarized in the transportation model in Table 5.16.
The unit transportation costs, eij, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule Xij between silo i and mill j
(i = 1,2,3;j = 1,2,3,4).

Summary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.
Step 2. Use the optimality condition of the simplex method to determine the

entering variable from among all the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving
variable from among all the current basic variables, and find the new basic so
lution. Return to step 2.

5.3.1 Determination of the Starting Solution

A general transportation model with m sources and n destinations has m + n constraint
equations, one for each source and each destination. However, because the transporta
tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n - 1 independent constraint equa
tions, which means that the starting basic solution consists of m + n - 1 basic variables.
Thus, in Example 5.3-1, the starting solution has 3 + 4 - 1 = 6 basic variables.
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The special structure of the transportation problem allows securing a nonartifi
ciaI starting basic solution using one of three methods:5

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

. The three methods differ in the "quality" of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwest-corner
method involves the least amount of computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of
the tableau (variable xu).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or column. If both a row and a
column net to zero simultaneously, cross out one only, and leave a zero sup
ply (demand) in the uncrossed-out TOW (column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution
in Table 5.17. The arrows show the order in which the allocated amounts are generated.

The starting basic solution is

Xu = 5, X12 = 10

X22 = 5, X23 = 15, X24 = 5

XJ4 = 10

The associated cost of the schedule is

z = 5 X 10 + 10 X 2 + 5 X 7 + 15 X 9 + 5 X 20 + 10 X 18 = $520

Least-Cost Method. The least-cost method finds a better starting solution by
concentrating on the cheapest routes. The method assigns as much as possible to the
cell with the smallest unit cost (ties are broken arbitrarily). Next, the satisfied row or
column is crossed out and the amounts of supply and demand are adjusted accordingly.

5All three methods are featured in TORA's tutorial module. See the end of Section 5.3.3.
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TABLE 5.17 Northwest-Corner Starting Solution

1 2 3 4 Supply

1

2

3

10 2 20 11

;;i~,~-----"~5~~)1 15

25

10

Demand 5 15 15 15

)

s

n

Jy
le
or
ly.

If both a row and a column are satisfied simultaneously, only one is crossed out, the
same as in the northwest-corner method. Next, look for the uncrossed-out cell with
the smallest unit cost and repeat the process until exactly one row or column is left
uncrossed out.

Example 5.3-3

The least-cost method is applied to Example 5.3-1 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
through (1,2) is X12 = 15 truckloads, which happens to satisfy both row 1 and column 2 si·
multaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to O.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign X31 = 5, and cross out
column 1 because it is satisfied, and adjust the demand of row 3 to 10 - 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3),
o truckloads to cell (1,4), 5 truckloads to cell (3, 4), and 10 truckloads to cell (2,4)
(verify!).

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made. The starting solution (consisting of 6 basic variables) is
x12 = 15, X14 = 0, X23 = 15, X24 = 10, X31 = 5, X34 = 5. The associated objective value is

z = 15 X 2 + 0 x 11 + 15 x 9 + 10 x 20 + 5 x 4 + 5 x 18 = $475

The quality of the least-cost starting solution is better than that of the northwest
corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus $520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally, but not always, produces better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the
smallest unit cost element in the row (column) from the next smallest unit
cost element in the same row (column).
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TABLE 5.18 Least-Cost Starting Solution

1 2 3 4 Supply

10 (start) 2 20 11

1 ~Em 15

2 25

18

3 10

Demand 5 15 15 15

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se
lected row or column. Adjust the supply and demand, and cross out the satis
fied row or column. If a row and a column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (column) is assigned
zero supply (demand).

Step 3. (a) If exactly one row or column with zero supply or demand remains un
crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed
out, determine the basic variables in the row (column) by the least-cost
method. Stop.

(c) If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19 computes the first set of penalties.
Because row 3 has the largest penalty (= 10) and cell (3, 1) has the smallest unit cost in that

row, the amount 5 is assigned to x31' Column 1 is now satisfied and must be crossed out. Next,
new penalties are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty (= 9). Hence, we assign the maximum
amount possible to cell (1,2), which yields Xt2 = 15 and simultaneously satisfies both row 1 and
column 2. We arbitrarily cross out column 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty (= 11), and we as
sign X23 = 15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and
it has a positive supply of 15 units. Applying the least-cost method to that column, we successively
assign X14 = 0, X34 = 5, and X24 = 10 (verify!). The associated objective value for this solution is

z = 15 x 2 + 0 x 11 + 15 x 9 + 10 x 20 + 5 x 4 + 5 x 18 = $475

This solution happens to have the same objective value as in the least-cost method.

._.::.~_._-

5.
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TABLE 5.19 Rowand Column Penalties in YAM

1

10 2 20 11

12 7 9 20

4 14 16 18
5

1

2

3

5
Column penalty 10 - 4

= 6

2

15
7-2

=5

3

15
16 - 9

=7

4

15
18 - 11

=7

15

25

10

Row penalty

10-2=8

9-7=2·

14 - 4 =&im

TABLE 5.20 First Assignment in VAM (X31 ;; 5)

1 2

5 15
Column penalty

3 4 Row penalty

2 20 11 i9.';
15

7 9 20 2
2S

14 16 18 2
10

15 15
5 7 7

PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-comer, least-cost, and Vogel
methods for each of the following models:

*(a) (b) (c)

0 2 1 6 1 2 6 7 5 1 8 12
2 1 5 7 0 4 2 12 2 4 0 14

t 2 4 3 7 3 1 5 11 3 6 7 4

5 S 10 10 10 10 9 10 11

(1

d 5.3.2

j-

d
y
is

Iterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods in Section 5.3.1),
we use the following algorithm to determ~ne the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as the
current nonbasic variable that can improve the solution. If the optimality con
dition is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition. Change
the basis, and return to step 1.
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The optimality and feasibility conditions do not involve the familiar row opera
tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations.

Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.
Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex

ample 5.3-2.
The determination of the entering variable from among the current nonbasic variables

(those that are not part of the starting basic solution) is done by computing the nonbasic coeffi
cients in the z-row, using the method of multipliers (which, as we show in Section 5.3.4, is rooted
in LP duality theory).

In the method of multipliers, we associate the multipliers Ui and v; with row i and column j
of the transportation tableau. For each current basic variable Xi;, these multipliers are shown in
Section 5.3.4 to satisfy the following equations:

Ui + v; = Cij, for each basic Xij

As Table 5.21 shows, the starting solution has 6 basic variables, which leads to 6 equations in 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily setting any
Ui = 0, and then solving for the remaining variables as shown below.

Basic variable

To summarize, we have

(u, v) Equation

Ul + VI = 10
UI + Vz = 2
Uz + Vz = 7
U2 + v3 = 9
til + V4 = 20
U3 + V4 = 18

Solution

Set Ul = 0~ VI = 10
UI = 0~V2 = 2
Vl = 2~ul = 5
Uz = 5~ V3 = 4
U2 = 54> V4 = 15
V4 = 15~ U3 = 3

Ul = 0, u2 = 5, U3 = 3

VI = 10, V2 = 2, V3 = 4, V4 = 15

Next, we use Ui and Vj to evaluate the nonbasic variables by computing

Ui + Vj - Cij, for each nonbasic Xi;

TABLE 5.21 Starting Iteration

1 2 3 4 Supply

1

2

3

10 2 20 11

5 10
12 7 9 20

5 15 5
4 14 16 18

10

15

25

10
Demand 5 15 15 15
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The results of these evaluations are shown in the following table:

Nonbasic variable

Ul + VJ - Cn = 0 + 4 - 20 = -16
UI + V4 - Cl4 = 0 + 15 - 11 = 4
Uz + VI - CZl = 5 + 10 - 12 = 3
UJ + VJ - C31 = 3 + 10 - 4 = 9
U3 + Vz - C3Z = 3 + 2 - 14 = -9
UJ + V3 - CJ3 = 3 + 4 - 16 = -9

The preceding information, together with the fact that Ui + vi - eli = 0 for each basic xii' is
actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

~
Basic Xli X12 XIJ X14 X21 X22 XZ3 XZ4 :~~t~t~:r::~j X32 X33 X34

Z 0 0 -16 4 3 0 0 0 f,t.1.F&2~Y~ -9 -9 0

Because the transportation model seeks to minimize cost, the entering variable is the one hav
ing the most positive coefficient in the z-row. Thus, x31 is the entering variable.

The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meaning that it is not necessary really to write the (u, v)-equations explicitly.
Instead, we start by setting Ul = 0.6 Then we can compute the v-values of all the columns that
have basic variables in row I-namely, VI and V2' Next, we compute U2 based on the (u, v)-equation
of basic Xzz. Now, given Uz, we can compute VJ and V4' Finally, we determine U3 using the basic
equation of X33. Once all the u's and v's have been determined, we can evaluate the nonbasic
variables by computing Ui + Vi ~ cii for each nonbasic Xii" These evaluations are shown in
Table 5.22 in the boxed southeast corner of each cell.

Having identified X31 as the entering variable, we need to detennine the leaving variable.
Remember that if X31 enters the solution to become basic, one of the current basic variables must
leave as nonbasic (at zero level).

TABLE 5.22 Iteration 1 Calculations

V2 = 2 Supply

Uz = 5

10 2 20 11
5 10

r=M ~
12 7 9 20

r-;- 5 15 5

4 14 16 18

~, H r=9
10

15

25

10

Demand 5 15 15 15

6The tutorial module ofTORA is designed to demonstrate that assigning a zero initial value to any a or V

does not affect the optimization results. See TORA Moment on page 216.
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The selection of X31 as the entering variable means that we want to ship through this route
because it reduces the total shipping cost. What is the most that we can ship through the new
route? Observe in Table 5.22 that if route (3, 1) ships () units (i.e., X31 = e), then the maximum
value of () is determined based on two conditions.

1. Supply limits and demand requirements remain satisfied.

2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of () and the leaving variable in the fol
lowing manner. First, construct a closed loop that starts and ends at the entering variable cell, (3,
1). The loop consists of connected horizontal and vertical segments only (no diagonals are al
lowed).7 Except for the entering variable cell, each corner of the closed loop must coincide with
a basic variable. Table 5.23 shows the loop for X31' Exactly one loop exists for a given entering
variable.

Next, we assign the amount e to the entering variable cell (3, 1). For the supply and demand
limits to remain satisfied, we must alternate between subtracting and adding the amount eat the
successive corners of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise or counterclockwise direction). For e ~ 0, the new values of the variables then re
main nonnegative if

XIl::= 5 - e ~ 0

Xn = 5 - (} 2: 0

X34 = 10 - e ~ 0

The corresponding maximum value of () is 5, which occurs when both Xu and X22 reach zero level.
Because only one current basic variable must leave the basic solution, we can choose either Xu

or X22 as the leaving variable. We arbitrarily choose Xu to leave the solution.
The selection of X31 (:= 5) as the entering variable and Xu as the leaving variable requires

adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unit shipped through route (3, 1) reduces the shipping cost by
$9 (= U3 + VI - C31)' the total cost associated with the new schedule is $9 X 5 := $45 less
than in the previous schedule. Thus, the new cost is $520 - $45 = $475.

TABLE 5.23 Determination of Closed Loop for x31

Supply

-16 4

10 2
5 - e---E.-- .-.. 10 + e

~t#~~~ :¥~~ 1

20 11
15

25

10

9 20
-..--. --"-- 5 + e

~~~~~ 1
16 18

..---.---...-...---. ~ 10 - e
-9 *~~

14

12 7
5 - e ~.- -..-.- 15

~~:l~f.~fl~\i .--.~-- .- -._- _~~.

Demand 5 15 15 15

7TORA's tutorial module allows you to determine the cells of the closed loop interactively with immediate
feedback regarding the validity of your selections. See TORA Moment on page 216.
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TABLE 5.24 Iteration 2 Calculations

Supply

25

10
18

5

15

16

15

14

15

4

10 2 20 11

r=; ~:;;pn 15 ~ e ------ -------·-·-·~;~~~tli::~;;T__4 15

12 7 9, 20

o + e ....-- 15 -..---- ------ 10 - e
r=6':%~i

5

5Demand

>1
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he
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TABLE 5-25 Iteration 3 Calculations (Optimal)

Vz = 2 Supply

10 2 20 11

r=-;
5

~
10

12 7 9 20

~
10 15

~
4 14 16 18

5

~ ~
5

u, == 0

Uz = 5
leI.
Xu

U3 = 7
res
;.24
by Demand

less

5 15 15 15

15

25

10

Given the new basic solution, we repeat the computation of the multipliers u and v, as Table 5.24
shows. The entering variable is X14. The closed loop shows that X14 = 10 and that the leaving
variable is XZ4'

The new solution, shown in Table 5.25, costs $4 X 10 = $40 less than the preceding one,
thus yielding the new cost $475 - $40 = $435. The new Ui + Vj - Cij are now negative for all
nonbasic Xij' Thus, the solution in Table 5.25 is optimal.

The following table summarizes the optimum solution.

From silo To mill Number of truckloads

1 2 5
1 4 10
2 2 10
2 3 15
3 1 5
3 4 5

:diate
Optimal cost = $435
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TORA Moment.

From~b!Y~/Mo~i.fY:M~iiti!,select :$()lV#: => :~i~i.~!!Qg~:j, and choose one of the three
methods (~o~-th~e;£corner,least-cost, or Vogel) to start the transportation model iter
ations. The iterations module offers two useful interactive features:

1. You can set any U or v to zero before generating Iteration 2 (the default is Ul = 0).
Observe then that although the values of Ui and Vj change, the evaluation of the
nonbasic cells (= Uj + Vj - Cij) remains the same.This means that, initially, any U or
v can be set to zero (in fact, any value) without affecting the optimality calculations.

2. You can test your understanding of the selection of the closed loop by clicking (in
any order) the corner cells that comprise the path. If your selection is correct, the
cell will change color (green for entering variable, red for leaving variable, and
gray otherwise).

Solver Moment.

Entering the transportation model into Excel spreadsheet is straightforward. Figure 5.4
provides the Excel Solver template for Example 5.3-1 (file solverEx5.3-l.xls), together
with all the formulas and the definition of range names.

In the input section, data include unit cost matrix (cells B4:E6), source names
(cells A4:A6), destination names (cells B3:E3), supply (cells F4:F6), and demand (cells
B7:E7). In the output section, cells Bll:E13 provide the optimal solution in matrix
form. The total cost formula is given in target cell AIO.

AMPl Moment.

Figure 5.5 provides the AMPL model for the transportation model of Example 5.3-1
(file amplEx5.3-1a.txt). The names used in the model are self-explanatory. Both the
constraints and the objective function follow the format of the LP model presented in
Example 5.1-I.

The model uses the sets sNodes and dNodes to conveniently allow the use of the
alphanumeric set members {51, 52, 53} and {Dl, D2, D3, D4} which are entered
in the data section. All the input data are then entered in terms of these set members as
shown in Figure 5.5.

Although the alphanumeric code for set members is more readable, generating
them for large problems may not be convenient. File ampIExS.3-1b shows how the
same sets can be defined as {1 .. m) and {1 .. n}, where m and n represent the number
of sources and the number of destinations. By simply assigning numeric values for In

and n, the sets are automatically defined for any size model.
The data of the transportation model can be retrieved from a spreadsheet (file

TM.x1s) using the AMPL table statement. File amplEx3S1c.txt provides the details.
To study this model, you will need to review the material in Section A.5.S.
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FIGURE 5.4

Excel Solver solution of the transportation model of Example 5.3-1 (File solverEx5.3-1.xls)

PROBLEM SET 5.3B

1. Consider the transportation models in Table 5.26.

(a) Use the northwest-corner method to find the starting solution.

(b) Develop the iterations that lead to the optimum solution.

(c) TORA Experiment. Use TORA's Iterations module to compare the effect of using
the northwest-corner rule, least-cost method, and Vogel method on the number of
iterations leading to the optimum solution.

(d) Solver Experiment. Solve the problem by modifying file solverEx5.3-l.xls.

(e) AMPL Experiment. Solve the problem by modifying file ampIEx5.3-lb.txt.

2. In the transportation problem in Table 5.27, the total demand exceeds the total supply.
Suppose that the penalty costs per unit of unsatisfied demand are $5, $3, and $2 for
destinations 1,2, and 3, respectively. Use the least-cost starting solution and compute
the iterations leading to the optimum solution.
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#----- Transporation model (Example 5.3-1)----
set sNodes;
set dNodes;
param c{sNodes,dNodes);
param supply{sNodes};
param demand{dNodes};
var x{sNodes,dNodes}>~O;

minimize z:sum {i in sNodes,j in dNodes}c[i,j]*x[i,j];
subject to
source {i in sNodes}:sum{j in dNodes}x[i,jj=supply[i];
dest {j in dNodes}:sum{i in sNodes}x[i,j]=demand[j];
data;
set sNodes:=Sl S2 S3;
set dNodes:=D1 D2 D3 D4;
param c:

Dl D2 D3 D4 .
SIlO 2 20 11
S2 12 7 9 20
S3 4 14 16 18;
param supply:= SI 15 S2 25 S3 10;
param demand:=Dl 5 D2 15 D3 15 D4 15;
solve;display z, x;

FIGURE 5.5

AMPL model of the transportation model of Example 5.3-1 (File ampIEx5.3-1a.txt)

TABLE 5.26 Transportation Models for Problem 1

(i) (ii) (iii)

$0 $2 $1 6 $10 $4 $2 8 $3 $5 4
$2 $1 $5 9 $2 $3 $4 5 $7 $4 $9 7
$2 $4 $3 5 $1 $2 $0 6 $1 $8 $6 19

5 5 10 7 6 6 5 6 19

TABLE 5.27 Data for Problem 2

$5 $1 $7 10
$6 $4 $6 80
$3 $2 $5 15

75 20 50

3. In Problem 2, suppose that there are no penalty costs, but that the demand at destination
3 must be satisfied completely.

(a) Find the optimal solution.

(b) Solver Experiment. Solve the problem by modifying file solverExS.3-l.xls.
(c) AMPL Experiment. Solve the problem by modifying file ampIEx5.3b-l.txt.
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TABLE 5.28 Data for Problem 4

$1 $2 $1 20
$3 $4 $5 40
$2 $3 $3 30

30 20 20

TABLE 5.29 Data for Problem 6

~:
10 20 20

4. In the unbalanced transportation problem in Table 5.28, if a unit from a source is not
shipped out (to any of the destinations), a storage cost is incurred at the rate of $5, $4,
and $3 per unit for sources 1,2, and 3, respectively. Additionally, all the supply at
source 2 must be shipped out completely to make room for a new product. Use
Vogel's starting solution and determine all the iterations leading to the optimum ship
ping schedule.

*5. In a 3 X 3 transportation problem, let Xij be the amount shipped from source i to desti
nation j and let Cij be the corresponding transportation cost per unit. The amounts of sup
ply at sources 1,2, and 3 are 15,30, and 85 units, respectively, and the demands at
destinations 1,2, and 3 are 20,30, and 80 units, respectively. Assume that the starting
northwest-corner solution is optimal and that the associated values of the multipliers are
given as UI = -2, U2 = 3, U3 = 5, VI = 2, Vz = 5, and V3 = 10.
(a) Find the associated optimal cost.

(b) Determine the smallest value of Gij for each nonbasic variable that will maintain the
optimality of the northwest-corner solution.

6. The transportation problem in Table 5.29 gives the indicated degenerate basic solution
(i.e., at least one of the basic variables is zero). Suppose that the multipliers associated
with this solution are UI = 1, Uz = -1, VI = 2, V2 = 2, and V3 = 5 and that the unit cost
for all (basic and nonbasic) zero Xij variables is given by

Cij = i + j(), - 00 < 8 < 00

(a) If the given solution is optimal, determine the associated optimal value of the objec
tive function.

(b) Determine the value of () that will guarantee the optimality of the given solution.
(Hint: Locate the zero basic variable.)

7. Consider the problem

m /I

Minimize z = 2: 2:CijXij
i=1 j=1
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TABLE 5.30 Data for Problem 7

$1
$6

2

$1
$5

7

$2 5
$1 6

1

"
.'..
.i
:1
"

1
,1
,I

:I
;'1

:~
!

-1
I

subject to

n

2: Xij 2: ai, i = 1, 2, "', m
j=1

m

2:x,j ;;::: bj , j = 1,2, ... , n
i=1

Xij 2: O,all i and j

It may appear logical to assume that the optimum solution will require the first (second)
set of inequalities to be replaced with equations if Lai 2: Lbj (Lai :::;; Lbj ). The coun
terexample in Table 5.30 shows that this assumption is not correct.

Show that the application of the suggested procedure yields the solution Xu = 2,
x12 = 3, X22 = 4, and X23 = 2, with z = $27, which is worse than the feasible solution
Xll = 2, Xu = 7, and X23 = 6, with z = $15.

5.3.3 Simplex Method Explanation of the Method of Multipliers

The relationship between the method of multipliers and the simplex method can be ex
plained based on the primal-dual relationships (Section 4.2). From the special structure
of the LP representing the transportation model (see Example 5.1-1 for an illustra
tion), the associated dual problem can be written as

m II

Maximize z = 2:ajUj + 2:bjVj
i=1 j=1

subject to

Ui + Vj S Cij, all i andj

Uj and Vj unrestricted

where

ai == Supply amount at source i

bj = Demand amount at destination j

Gij = Unit transportation cost from source ito destinationj

Ui = Dual variable of the constraint associated with source i

Vj = Dual variable of the constraint associated with destination j

5.4
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From Formula 2, Section 4.2.4, the objective-function coefficients (reduced
costs) of the variable Xij equal the difference between the left- and right-hand sides
of the corresponding dual constraint-that is, Ui + Vj - Cij' However, we know that
this quantity must equal zero for each basic variable, which then produces the fol
lowing result:

Ui + Vj = Cij, for each basic variable Xij'

There are In + n - 1 such equations whose solution (after assuming an arbitq.ry
value Ul = 0) yields the multipliers Ui and Vj' Once these multipliers are computed, the
entering variable is determined from all the nonbasic variables as the one having the
largest positive Ui + Vj - Cij'

The assignment of an arbitrary value to one of the dual variables (i.e., Ul = 0)
may appear inconsistent with the way the dual variables are computed using Method 2
in Section 4.2.3. Namely, for a given basic solution (and, hence, inverse), the dual values
must be unique. Problem 2, Set 5.3c, addresses this point.

PROBLEM SET 5.3C

1. Write the dual problem for the LP of the transportation problem in Example 5.3-5
(Table 5.21). Compute the associated optimum dual objective value using the optimal
dual values given in Table 5.25, and show that it equals the optimal cost given in the
example.

2. In the transportation model, one of the dual variables assumes an arbitrary value. This
means that for the same basic solution, the values of the associated dual variables are not
unique. The result appears to contradict the theory of linear programming, where the
dual values are determined as the product of the vector of the objective coefficients for
the basic variables and the associated inverse basic matrix (see Method 2, Section 4.2.3).
Show that for the transportation model, although the inverse basis is unique, the vector
of basic objective coefficients need not be so. Specifically, show that if Cij is changed to
cij + k for all i and j, where k is a constant, then the optimal values of Xij will remain the
same. Hence, the use of an arbitrary value for a dual variable is implicitly equivalent to
assuming that a specific constant k is added to all Cij"

5.4 THE ASSIGNMENT MODEL

"The best person for the job" is an apt description of the assignment model. The situa
tion can be illustrated by the assignment of workers with varying degrees of skill to
jobs. A job that happens to match a worker's skill costs less than one in which the op
erator is not as skillful. The objective of the model is to determine the minimum-cost
assignment of workers to jobs. .

The general assignment model with n workers and n jobs is represented in
Table 5.3L

The element Cij represents the cost of assigning worker i to job j (i, j =
1, 2, ... , n). There is no loss of generality in assuming that the number of workers always
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TABLE 5.31 Assignment Model

Jobs
2 n

1 Cll Cl2 Cln 1
2 C21 C22 cu, 1

Worker

n Cnl '112 Cnn 1

1 1 1

equals the number of jobs, because we can always add fictitious workers or fictitious
jobs to satisfy this assumption.

The assignment model is actually a special case of the transportation model in
which the workers represent the sources, and the jobs represent the destinations. The
supply (demand) amount at each source (destination) exactly equals 1. The cost of
"transporting" worker i to job j is Cij' In effect, the assignment model can be solved di
rectly as a regular transportation modeL Nevertheless, the fact that all the supply and
demand amounts equal 1 has led to the development of a simple solution algorithm
called the Hungarian method. Although the new solution method appears totally un
related to the transportation model, the algorithm is actually rooted in the simplex
method,just as the transportation model is.

5.4.1 The Hungarian MethodS

We will use two examples to present the mechanics of the new algorithm. The next sec
tion provides a simplex-based explanation of the procedure.

Example 5.4-1

Joe Klyne's three children, John, Karen, and Terri, want to earn some money to take care of per
sonal expenses during a school trip to the local zoo. Mr. Klyne has chosen three chores for his
children: mowing the lawn, painting the garage door, and washing the family cars. To avoid antic
ipated sibling competition, he asks them to submit (secret) bids for what they feel is fair pay for
each of the three chores. The understanding is that aU three children will abide by their father's
decision as to who gets which chore. Table 5.32 summarizes the bids received. Based on this in
formation, how should Mr. Klyne assign the chores?

The assignment problem will be solved by the Hungarian method.

Step 1. For the original cost matrix, identify each row's minimum, and subtract it from all the
entries of the row. .

8As with the transportation model, the classical Hungarian method, designed primarily for hand computa
tions, is something of the past and is presented here purely for historical reasons. Today, the need for such
computational shortcuts is not warranted as the problem can be solved as a regular LP using highly efficient
computer codes.
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TABLE 5.32 Klyne's Assignment Problem

John
Karen

Terri

Mow

$15
$9

$10

Paint

$10
$15
$12

Wash

$9
$10

$8

Step 2. For the matrix resulting from step 1, identify each column's minimum, and subtract it
from all the entries of the column.

Step 3. Identify the optimal solution as the feasible assignment associated with the zero ele
ments of the matrix obtained in step 2.

Let Pi and qj be the minimum costs associated with row i and column j as defined in steps 1
and 2, respectively. The row minimums of step 1 are computed from the original cost matrix as
shown in Table 5.33.

Next, subtract the row minimum from each respective row to obtain the reduced matrix in
Table 5.34.

The application of step 2 yields the column minimums in Table 5.34. Subtracting these val
ues from the respective columns, we get the reduced matrix in Table 5.35.

TABLE 5.33 Step 1 of the Hungarian Method

John
Karen

Terri

Mow

15
9

10

Paint

10
15
12

Wash

9
10
8

Row minimum

PI = 9
P2 == 9
P3 = 8

TABLE 5.34 Step 2 of the Hungarian Method

Mow Paint Wash

John

I

6 1 0

I
Karen 0 6 1

Terri 2 4 0

Column minimum ql = 0 q2 = 1 q3 = 0

TABLE 5.35 Step 3 of the Hungarian Method

Mow Paint Wash

John

I ~
D

!I
Karen 5

Terri 3



The cells with underscored zero entries provide the optimum solution. This means that John
gets to paint the garage door, Karen gets to mow the lawn, and Terri gets to wash the family
cars. The total cost to Mr. Klyne is 9 + 10 + 8 = $27. This amount also will always equal
(PI + P2 + P3) + (ql + q2 + q3) = (9 + 9 + 8)+(0 + 1 + 0) = $27. (A justification of this
result is given in the next section.)
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TIle given steps of the Hungarian method work well in the preceding example be
cause the zero entries in the final matrix happen to produce a feasible assignment (in the
sense that each child is assigned a distinct chore). In some cases, the zeros created bysteps 1
and 2 may not yield a feasible solution directly, and further steps are needed to find the
optimal (feasible) assignment. The following example demonstrates this situation.

Example 5.4-2

Suppose that the situation discussed in Example 5.4-1 is extended to four children and four
chores. Table 5.36 summarizes the cost elements of the problem.

The application of steps 1 and 2 to the matrix in Table 5.36 (using Pl = 1, P2 = 7,
P3 = 4, P4 = 5, ql = 0, q2 = 0, q3 = 3, and q4 = 0) yields the reduced matrix in Table 5.37
(verify!).

The locations of the zero entries do not allow assigning unique chores to all the children.
For example, if we assign child 1 to chore 1, then column 1 will be eliminated, and child 3 will
not have a zero entry in the remaining three columns. This obstacle can be accounted for by
adding the following step to the procedure outlined in Example 5.4-1:

Step 2a. If no feasible assignment (with all zero entries) can be secured from steps 1 and 2,

(i) Draw the minimum number of horizontal and vertical lines in the last reduced
matrix that will cover all the zero entries.

TABLE 5.36 Assignment Model

Chore
2 3 4

1 $1 $4 $6 $3

Child ~
$9 $7 $10 $9
$4 $5 $11 $7

4 $8 $7 $8 $5

TABLE 5.37 Reduced Assignment Matrix

Chore
1 2 3 4

1 0 3 2 2

Child;
2 0 0 2
0 1 4 3

4 3 2 0 0

f .
...~-.:.... ..•



5.4 The Assignment Model 225

TABLE 5.38 Application of Step 2a

1
Chore

2 3 4

1

Child ~
4

322
{J:J)~/i~i;:'~Q';;;{:;::i:';;)

143
... .'t. :!~~1~~:1f8t~~hf;ii:;Q~uj

1
Y

TABLE 5.39 Optimal Assignment

Chore
1 2 3 4

1 !! 2 1 1

Child ~ 3 0 !! 2
0 !! 3 2

4 4 2 0 !!

(ii) Select the smallest uncovered entry, subtract it from every uncovered entry,
then add it to every entry at the intersection of two lines.

(iii) If no feasible assignment can be found among the resulting zero entries, repeat
step 2a. Otherwise, go to step 3 to determine the optimal assignment.

The application of step 2a to the last matrix produces the shaded cells in Table 5.38. The smallest
unshaded entry (shown in italics) equals 1. 111is entry is added to the bold intersection cells and
subtracted from the remaining shaded cells to produce the matrix in Table 5.39.

The optimum solution (shown by the underscored zeros) calls for assigning child 1 to chore
1, child 2 to chore 3, child 3 to chore 2, and child 4 to chore 4. The associated optimal cost is
1 + 10 + 5 + 5 = $21. The same cost is also determined by summing the p/s, the q/s, and the
entry that was subtracted after the shaded cells were determined-that is, (1 + 7 + 4 + 5) +
(0 + 0 + 3 + 0) + (1) = $21.

AMPL Moment.

File amplEx5.4-2.txt provides the AMPL model for the assignment model. The model
is very similar to that of the transportation model.

PROBLEM SET 5.4A

L Solve the assignment models in Table 5.40.

(a) Solve by the Hungarian method.

(b) TORA Experiment. Express the problem as an LP and solve it with TORA.

(c) TORA Experiment. Use TORA to solve the problem as a transportation model.
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TABLE 5.40 Data for Problem 1

(0 (ii)

$3 $8 $2 $10 $3 $3 $9 $2 $3 $7
$8 $7 $2 $9 . $7 $6 $1 $5 $6 $6
$6 $4 $2 $7 $5 $9 $4 $7 $10 $3
$8 $4 $2 $3 $5 $2 $5 $4 $2 $1
$9 $10 $6 $9 $10 $9 $6 $2 $4 $5

(d) Solver Experiment. Modify Excel file solverEx5.3-l.xls to solve the problem.
(e) AMPL Experiment. Modify ampIEx5.3-1b.txt to solve the problem.

2. JoShop needs to assign 4 jobs to 4 workers. The cost of performing a job is a function of
the skills of the workers. Table 5.41 summarizes the cost of the assignments. Worker 1
cannot do job 3 and worker 3 cannot do job 4. Determine the optimal assignment using
the Hungarian method.

3. In the JoShop model of Problem 2, suppose that an additional (fifth) worker becomes
available for performing the four jobs at the respective costs of $60, $45, $30, and $80. Is
it economical to replace one of the current four workers with the new one?

4. In the model of Problem 2, suppose that JoShop has just received a fifth job and that the
respective costs of performing it by the four current workers are $20, $10, $20, and $80.
Should the new job take priority over any of the four jobs JoShop already has?

*5. A business executive must make the four round trips listed in Table 5.42 between the
head office in Dallas and a branch office in Atlanta.

The price of a round-trip ticket from Dallas is $400. A discount of 25% is granted if
the dates of arrival and departure of a ticket span a weekend (Saturday and Sunday). If
the stay in Atlanta lasts more than 21 days, the discount is increased to 30%. A one-way

TABLE 5.41 Data for Problem 2

Job
2 3 4

1 $50 $50 $20
2 $70 $40 $20 $30

Worker 3 $90 $30 $50
4 $70 $20 $60 $70

TABLE 5.42 Data for Problem 5

Departure date from Dallas

Monday, June 3
Monday, June 10
Monday, June 17
Tuesday, June 25

Return date to Dallas

Friday, June 7
Wednesday, June 12
Friday, June 21
Friday, June 28
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ticket between Dallas and Atlanta (either direction) costs $250. How should the execu
tive purchase the tickets?

*6. Figure 5.6 gives a schematic layout of a machine shop with its existing work centers des
ignated by squares 1,2,3, and 4. Four new work centers, I, II, III, and IV, are to be added
to the shop at the locations designated by circles a, b, c, and d. The objective is to assign
the new centers to the proposed locations to minimize the total materials handling traf
fic between the existing centers and the proposed ones. Table 5.43 summarizes the
frequency of trips between the new centers and the old ones. Materials handling equip
ment travels along the rectangular aisles intersecting at the locations of the centers.
For example, the one-way travel distance (in meters) between center 1 and location b
is 30 + 20 "" 50 m.
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FIGURE 5.6

Machine shop layout for Problem 6, Set 5.4a

TABLE 5.43 Data for Problem 6

New center
I II III IV

1 10 2 4 3
Existing 2 7 1 9 5
center 3 0 8 6 2

4 11 4 0 7
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7. In the Industrial Engineering Department at the University of Arkansas, INEG 4904 is a
capstone design course intended to allow teams of students to apply the knowledge and
skills learned .in the undergraduate curriculum to a practical problem. The members of
each team select a project manager, identify an appropriate scope for their project, write
and present a proposal, perform necessary tasks for meeting the project objectives, and
write and present a final report. The course instructor identifies potential projects and
provides appropriate information sheets for each, including contact at the sponsoring or
ganization, project summary, and potential skills needed to complete the project. Each
design team is required to submit a report justifying the selection of team members and
the team manager. The report also provides a ranking for each project in order of prefer
ence, including justification regarding proper matching of the team's skills with the pro
ject objectives. In a specific semester, the following projects were identified: Boeing F-lS,
Boeing F-18, Boeing Simulation, Cargil, Cobb-Vantress, ConAgra, Cooper, DaySpring
(layout), DaySpring (material handling), IB. Hunt, Raytheon, Tyson South, Tyson East,
Wal-Mart, and Yellow Transportation. The projects for Boeing and Raytheon require U.S.
citizenship of all team members. Of the eleven design teams available for this semester,
four do not meet this requirement.

Devise a procedure for assigning projects to teams and justify the arguments you use
to reach a decision.

5.4.2 Simplex Explanation of the Hungarian Method

The assignment problem in which n workers are assigned to n jobs can be represented
as an LP model in the following manner: Let eij be the cost of assigning worker i to job
j, and define

if worker i is assigned to job j

otherwise

Then the LP model is given as

n n

Minimize z = L LCijXij
i=lj=l

subject to
n

2:Xij = l,l = 1,2, ... ,n
j=l

n

LXij = 1, j = 1,2, ... , n
i=1

x·· = 0 or 1IJ

The optimal solution of the preceding LP model remains unchanged if a constant
is added to or subtracted from any row or column of the cost matrix (cij)' To prove this
point, let Pi and qj be constants subtracted from row i and columnj. Thus, the cost ele
ment cij is changed to

5.5
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Now

= L LCijXij - constant
i j

Because the new objective function differs from the original one by a constant, the op
timum values of Xij must be the same in both cases. The development thus shows that
steps 1 and 2 of the Hungarian method, which call for subtracting Pi from row i and
then subtracting qj from columnj, produce an equivalent assignment model. In this re
gard, if a feasible solution can be found among the zero entries of the cost matrix cre
ated by steps 1 and 2, then it must be optimum because the cost in the modified matrix
cannot be less than zero.

If the created zero entries cannot yield a feasible solution (as Example 5.4-2
demonstrates), then step 2a (dealing with the covering of the zero entries) must be ap
plied. The validity of this procedure is again rooted in the simplex method of linear
programming and can be explained by duality theory (Chapter 4) and the complemen
tary slackness theorem (Chapter 7). We will not present the details of the proof here
because they are somewhat involved.

The reason (PI + P2 + ... + Pn) + (qI + q2 + ... + qn) gives the optimal
objective value is that it represents the dual objective function of the assignment
model. This result can be seen through comparison with the dual objective function of
the transportation model given in Section 5.3.4. [See Bazaraa and Associates (1990, pp.
499-508) for the details.]

5.5 THE TRANSSHIPMENT MODEL

The transshipment model recognizes that it may be cheaper to ship through intermedi
ate or transient nodes before reaching the final destination. This concept is more gen
eral than that of the regular transportation model, where direct shipments only are
allowed between a source and a destination.

This section shows how a transshipment model can be converted to (and solved
as) a regular transportation model using the idea of a buffer.

Example 5.5-1

Two automobile plants, PI and P2, are linked to three dealers, DI, D2, and D3, by way of two
transit centers, T1 and 12, according to the network shown in Figure 5.7. The supply amounts at
plants PI and P2 are 1000 and 1200 cars, and the demand amounts at dealers Dl, D2, and D3,
are 800, 900, and 500 cars. TIle shipping costs per car (in hundreds of dollars) between pairs of
nodes are shown on the connecting links (or arcs) of the network.

Transshipment occurs in the network in Figure 5.7 because the entire supply amount of
2200 (= 1000 + 1200) cars at nodes PI and P2 could conceivably pass through any node of the
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1000

1200
FIGURE 5.7

Transshipment network between plants
and dealers

800

900

500

network before ultimately reaching their destinations at nodes D1, D2, and D3. In this regard,
each node of the network with both input and output arcs (11., n, DI, and D2) acts as both a
source and a destination and is referred to as a transshipment node. The remaining nodes are ei
ther pure supply nodes (PI and Pl) or pure demand nodes (D3).

The transshipment model can be converted into a regular transportation model with six
sources (PI, Pl, 11., n,Dl, and D2) and five destinations (71, n,Dl, D2, and D3).1l1e amounts
of supply and demand at the different nodes are computed as

Supply at a pure supply node = Original supply

Demand at a pure demand node = Original demand

Supply at a transshipment node = Original supply + Buffer amount

Demand at a transshipment node = Original demand + Buffer amount

The buffer amount should be sufficiently large to allow all of the original supply (or demand)
units to pass through any of the transshipment nodes. Let B be the desired buffer amount; then

B = Total supply (or demand)

= 1000 + 1200 (or 800 + 900 + 500)

= 2200 cars

Using the buffer B and the unit shipping costs given in the network; we construct the equivalent
regular transportation model as in Table 5.44.

The solution of the resulting transportation model (determined by TORA) is shown in
Figure 5.8. Note the effect of transshipment: Dealer D2 receives 1400 cars, keeps 900 cars to sat
isfy its demand, and sends the remaining 500 cars to dealer D3.

PROBLEM SET 5.5A9

1. The network in Figure 5.9 gives the shipping routes from nodes 1 and 2 to nodes 5 and 6
by way of nodes 3 and 4. The unit shipping costs are shown on the respective arcs.

(a) Develop the corresponding transshipment model.

(b) Solve the problem, and show how the shipments are routed from the sources to the
destinations.

9you are encouraged to use TORA, Excel Solver, or AMPL to solve the problems in this set.
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TABLE 5.44 Transshipment Model

Tl 12 Dl D2 D3

1.,

I{

s

PI

n

n

n

DI

D2
o 3

1000

1200

B

B

B

B
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2. In Problem 1, suppose that source node 1 can be linked to source node 2 with a unit ship
ping cost of $1. The unit shipping cost from node 1 to node 3 is increased to $5. Formulate
the problem as a transshipment model, and find the optimum shipping schedule.

3. The network in Figure 5.10 shows the routes for shipping cars from three plants (nodes 1,
2, and 3) to three dealers (nodes 6 to 8) by way of two distribution centers (nodes 4 and
5). The shipping costs per car (in $100) are shown on the arcs.

(a) Solve the problem as a transshipment model.

(b) Find the new optimum solution assuming that distribution center 4 can sell 240 cars
directly to customers.

*4. Consider the transportation problem in which two factories supply three stores with a
commodity. The numbers of supply units available at sources 1 and 2 are 200 and 300;
those demanded at stores 1,2, and 3 are 100,200, and 50, respectively. Units may be trans
shipped among the factories and the stores before reaching their final destination. Find
the optimal shipping schedule based on the unit costs in Table 5.45.

S. Consider the oil pipeline network shown in Figure 5.11. The different nodes represent
pumping and receiving stations. Distances in miles between the stations are shown on the
network. The transportation cost per gallon between two nodes is directly proportional to
the length of the pipeline. Develop the associated transshipment model, and find the op
timum solution.

6. Shortest-Route Problem. Find the shortest route between nodes 1 and 7 of the network in
Figure 5.12 by formulating the problem as a transshipment model. The distances between
the different nodes are shown on the network. (Hint: Assume that node 1 has a net sup
ply of 1 unit, and node 7 has a net demand also of 1 unit.)

FIGURE 5.10

Network for Problem 3, Set 5.5a
900

1400

1000

1100

1000

1200

TABLE 5.45 Data for Problem 4

Factory
1 2 1

Store
2 3

$6 $0] $5 $4 $3
-·-S;7-------$2--~··-$-O·------$5-----··$T··

$1 $5 $1 $0 $4
$8 $9 $7 $6 $0

1
Factory 2

1
Store 2

3

$0 $6 $7 $8 $9
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FIGURE 5.11

Network for Problem 5, Set 5.5a

III
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FIGURE 5.12

Network for Problem 6, Set 5.5a

7. In the transshipment model of Example 5.5-1, define Xij as the amount shipped from
node i to node j. The problem can be formulated as a linear program in which each
node produces a constraint equation. Develop the linear program, and show that the
resulting formulation has the characteristic that the constraint coefficients, aij, of the
variable Xij are

{

I, in constraint i

aij = -1, in constraint j

0, otherwise

8. An employment agency must provide the following laborers over the next 5 months:

Month

No. of laborers

1

100

2

120

3

80

4

170

5

50
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Because the cost of labor depends on the length of employment, it may be more eco
nomical to keep more laborers than needed during some months of the 5-month plan
ning horizon. The following table estimates the labor cost as a function of the length of
employment:

Months of employment

Cost per laborer ($)

1

100

2

130

3

180

4

220

5

250

Formulate the problem as a linear program. Then, using proper algebraic manipula
tions of the constraint equations, show that the model can be converted to a transship
ment model, and find the optimum solution. (Hint: Use the transshipment characteristic
in Problem 7 to convert the constraints of the scheduling problem into those of the trans
shipment model.)
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CHAPTER 6

Netvvork Models

Chapter Guide. The network models in this chapter include the traditional applications
of finding the most efficient way to link a number of locations directly or indirectly, find
ing the shortest route between two cities, determining the maximum flow in a pipeline
network, determining the minimum-cost flow in a network that satisfies supply and de
mand requirements at different locations, and scheduling the activities of a project.

The minimum-cost capacitated algorithm is a generalized network that subsumes
the shortest-route and the maximal-flow models presented in this chapter. Its details
can be found in Section 20.1 on the CD.

As you study the material in this chapter, you should pay special attention to the
nontraditional applications of these models. For example, the shortest-route model can
be used to determine the optimal equipment replacement policy and the maximum
flow model can be used to determine the optimum number of ships that meet a specif
ic shipping schedule. These situations are included in the chapter as solved examples,
problems, or cases.

Throughout the chapter, the formulation and solution of a network model as a
linear program is emphasized. It is recommended that you study these relationships,
because most commercial codes solve network problems as mere linear programs. Ad
ditionally, some formulations require imposing side constraints, which can be imple
mented only if the problem is solved as an LP.

To understand the computational details, you are encouraged to use TORA's in
teractive modules that create the steps of the solution in the exact manner presented in
the book. For large-scale problems, the chapter offers both Excel Solver and AMPL
models for the different algorithms.

This chapter includes a summary of 1 real-life application, 17 solved examples, 2
Solver models, 3 AMPL models, 69 end-of-section problems, and 5 cases. The cases are in
Appendix E on the CD.The AMPLlExcel/SolverrrORA programs are in folder ch6Files.

Real-Life Application-Saving Federal Travel Dollars

U.S. Federal Government employees are required to attend development conferences
and training courses in different locations around the country. Because the federal

235
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employees are located in offices scattered around the United States, the selection of
the host city impacts travel cost. Currently, the selection of the city hosting confer
ences /training events is done without consideration of incurred travel cost. The prob
lem seeks the determination of the optimal location of the host city. For Fiscal Year
1997, the developed model was estimated to save at least $400,000. Case 4 in Chapter
24 on the CD provides the details of the study.

6.1 SCOPE AND DEFINITION OF NETWORK MODELS

A multitude of operations research situations can be modeled and solved as networks
(nodes connected by branches):

1. Design of an offshore natural-gas pipeline network connecting well heads in
the Gulf of Mexico to an inshore delivery point. The objective of the model is to mini
mize the cost of constructing the pipeline.

2. Determination of the shortest route between two cities in an existing network
of roads.

3. Determination of the maximum capacity (in tons per year) of a coal slurry
pipeline network joining coal mines in Wyoming with power plants in Houston. (Slurry
pipelines transport coal by pumping water through specially designed pipes.)

4. Determination of the time schedule (start and completion dates) for the activ
ities of a construction project.

S. Determination of the minimum-cost flow schedule from oil fields to refineries
through a pipeline network.

The solution of these situations, and others like it, is accomplished through a
variety of network optimization algorithms. This chapter presents four of these
algorithms.

1. Minimal spanning tree (situation 1)
2. Shortest-route algorithm (situation 2)
3. Maximal-flow algorithm (situation 3)
4. Critical path (CPM) algorithm (situation 4)

For the fifth situation, the minimum-cost capacitated network algorithm is presented
in Section 20.1 on the CD.

Network Definitions. A network consists of a set of nodes linked by arcs (or branches).
The notation for describing a network is (N, A), where N is the set of nodes and A is the
set of arcs. As an illustration, the network in Figure 6.1 is described as

N = {1,2,3,4,5}

A = {(1,2), (1,3), (2,3), (2,5), (3,4), (3,5), (4,2), (4,5)}

Associated with each network is a flow (e.g., oil products flow in a pipeline and
automobile traffic flows in highways). In general, the flow in a network is limited by
the capacity of its arcs, which may be finite or infinite.

.'
.,:i- .~ ~~'''.~~: ...''
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An arc is said to be directed or oriented if it allows positive flow in one direction
and zero flow in the opposite direction. A directed network has all directed arcs.

A path is a sequence of distinct arcs that join two nodes through other nodes
regardless of the direction of flow in each arc. A path forms a cycle or a loop if it con
nects a node to itself through other nodes. For example, in Figure 6.1, the arcs (2,3), (3, 4),
and (4,2) form a cycle.

A connected network is such that every two distinct nodes are linked by at least
one path. The network in Figure 6.1 demonstrates this type of network. A tree is a
cycle-free connected network comprised of a subset of all the nodes, and a spanning
tree is a tree that links all the nodes of the network. Figure 6.2 provides examples of a
tree and a spanning tree from the network in Figure 6.1.

Example 6.1-1 (Bridges of Konigsberg)

The Prussian city of Konigsberg (now Kalingrad in Russia) was founded in 1254 on the banks of
river Pergel with seven bridges connecting its four sections (labeled A, B, C, and D) as shown in
Figure 6.3. A problem circulating among the inhabitants of the city was to find out if a round trip

FIGURE 6.3

Bridges of Konigsberg

B
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FIGURE 6.4

Network Models

Network representation of Konigsberg problem

of the four sections could be made with each bridge being crossed exactly once. No limits were
set on the number of times any of the four sections could be visited.

In the mid-eighteenth century, the famed mathematician Leonhard Euler developed a spe
cial "path construction" argument to prove that it was impossible to make such a trip. Later, in
the early nineteenth century the same problem was solved by representing the situation as a net
work in which each of the four sections (A, B, C, and D) is a node and each bridge is an arc join
ing applicable nodes, as shown in Figure 6.4.

The network-based solution is that the desired round trip (starting and ending in one sec
tion of the city) is impossible, because there are four nodes and each is associated with an odd
number of arcs, which does not allow distinct entrance and exit (and hence distinct use of the
bridges) to each section of the city.1The example demonstrates how the solution of the problem
is facilitated by using network representation.

PROBLEM SET 6.1A

*1. For each network in Figure 6.5 determine (a) a path, (b) a cycle, (c) a tree, and (d) a span
ning tree.

2. Determine the sets N and A for the networks in Figure 6.5.
3. Draw the network defined by

N = {1,2,3,4,5,6}
A = {{1,2),(1,5), (2,3), (2,4),(3,4), (3,5), (4,3),(4,6), (5,2),(5,6)}

*4. Consider eight equal squares arranged in three rows, with two squares in the first row, fOUT in
the second, and two in the third. The squares of each row are arranged symmetrically about
the vertical axis. It is desired to fill the squares with distinct numbers in the range 1 through 8

IGeneral solution: A tour exists if all nodes have an even number of branches or if exactly two nodes have an
odd number of branches. Else no tour exists. See B. Hopkins and R. Wilson, "The Truth about Konigsberg,"
College Math Journal, Vol. 35, No.3, pp.198-207, 2004.
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so that no two adjacent vertical, horizontal, or diagonal squares hold consecutive numbers.
Use some form of a network representation to find the solution in a systematic way.

5. Three inmates escorted by 3 guards must be transported by boat from the mainland to a
penitentiary island to serve their sentences. The boat cannot transfer more than two per
sons in either direction. The inmates are certain to overpower the guards if they outnum
ber them at any time. Develop a network model that designs the boat trips in a manner
that ensures a smooth transfer of the inmates.

MINIMAL SPANNING TREE ALGORITHM

The minimal spanning tree algorithm deals with linking the nodes of a network, directly
or indirectly, using the shortest total length of connecting branches. A typical applica
tion occurs in the construction of paved roads that link several rural towns. The road
between two towns may pass through one or more other towns. The most economical
design of the road system calls for minimizing the total miles of paved roads, a result
that is achieved by implementing the minimal spanning tree algorithm.

The steps of the procedure are given as follows. Let N = {I, 2, .. " n} be the set
of nodes of the network and define

Ck = Set of nodes that have been permanently connected at iteration k

Ck = Set of nodes as yet to be connected permanently after iteration k

Step O. Set Co = 0 and Co = N.
Step 1. Start with any node i in the unconnected set Co and set C1 = {i}, which ren

ders C1 = N - {i}. Set k = 2.

General step k. Select a node,t, in the unconnected set Ck - 1 that yields the shortest
arc to a node in the connected set Ck - 1. Link j* permanently to Ck - l and
remove it from Ck - 1; that is,
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FIGURE 6.6

Cable connections for Midwest TV Company

3 (miles)

If the set of unconnected nodes, Cb is empty, stop. Otherwise, set k = k + 1
and repeat the step.

Example 6.2-1

Midwest TV Cable Company is in the process of providing cable service to five new housing
development areas. Figure 6.6 depicts possible TV linkages among the five areas. The cable miles
are shown on each arc. Determine the most economical cable network.

The algorithm starts at node 1 (any other node will do as well), which gives

C j = {I}, C\ = {2, 3, 4, 5, 6}

The iterations of the algorithm are summarized in Figure 6.7. The thin arcs provide all the candi
date links between C and C. The thick branches represent the permanent links between the
nodes of the connected set c: and the dashed branch represents the new (permanent) link added
at each iteration. For example, in iteration 1, branch (1,2) is the shortest link (= 1 mile) among
aU the candidate branches from node 1 to nodes 2,3,4,5, and 6 of the unconnected set C\.
Hence, link (1,2) is made permanent and t = 2, which yields

C2 = {1,2},C2 = {3,4,5,6}

The solution is given by the minimal spanning tree shown in iteration 6 of Figure 6.7. The
resulting minimum cable miles needed to provide the desired cable service are 1 + 3 +
4 + 3 + 5 = 16 miles.

TORA Moment

You can use TaRA to generate the iterations of the minimal spanning tree. From
Mainmeriu, select NetWork models ~ Miriimalspaii.ning.tree. Next, from SOLVEI
MODIFY menu, select Solve problem ~ G9 tooutptitscreen. In the output screen,
select a Staftirigp.bd~ then use Next' iteration or Alliterations to generate the succes
sive iterations. You can restart the iterations by selecting a new Starting-Node. File
toniEx6.2-1.txt gives TORA's data for Example 6.2-1.
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PROBLEM SET 6.2A

1.

n
~I 2.
1,
;-

.e

Solve Example 6.2-1 starting at node 5 (instead of node 1), and show that the algorithm
produces the same solution.

Determine the minimal spanning tree of the network of Example 6.2-1 under each of the
following separate conditions:

*(a) Nodes 5 and 6 are linked by a 2-mile cable.
(b) Nodes 2 and 5 cannot be linked.

(c) Nodes 2 and 6 are linked by a 4-mile cable.
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FIGURE 6.8

Network Models

Network for Problem 3, Set 6.2a

(d) The cable between nodes 1 and 2 is 8 miles long.

(e) Nodes 3 and 5 are linked by a 2-mile cable.

(f) Node 2 cannot be linked directly to nodes 3 and 5.

3. In intermodal transportation, loaded truck trailers are Shipped between railroad terminals
on special flatbed carts. Figure 6.8 shows the location of the main railroad terminals in the
United States and the existing railroad tracks. The objective is to decide which tracks
should be "revitalized" to handle the intermodal traffic. In particular, the Los Angeles
(LA) terminal must be linked directly to Chicago (CH) to accommodate expected heavy
traffic. Other than that, all the remaining terminals can be linked, directly or indirectly,
such that the total length (in miles) of the selected tracks is minimized. Determine the seg
ments of the railroad tracks that must be included in the revitalization program.

4. Figure 6.9 gives the mileage of the feasible links connecting nine offshore natural gas
wellheads with an inshore delivery point. Because wellhead 1 is the closest to shore, it is
equipped with sufficient pumping and storage capacity to pump the output of the remain
ing eight wells to the delivery point. Determine the minimum pipeline network that links
the wellheads to the delivery point.

*5. In Figure 6.9 of Problem 4, suppose that the wellheads can be divided into two groups
depending on gas pressure: a high-pressure group that includes wells 2,3,4, and 6, and a
low-pressure group that includes wells 5, 7, 8, and 9. Because of pressure difference, it is
not possible to link the wellheads from the two groups. At the same time, both groups
must be connected to the delivery point through wellhead 1. Determine the minimum
pipeline network for this situation.

6. Electro produces 15 electronic parts on 10 machines.The company wants to group the
machines into cells designed to minimize the "dissimilarities" among the parts processed
in each cell. A measure of "dissimilarity," dij , among the parts processed on machines i
and j can be expressed as

where nij is the number of parts shared between machines i and j, and mij is the number
of parts that are used by either machine i or machine j only.

6.

6,
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FIGURE 6.9

Network for Problem 4, Set 6.2a

The following table assigns the parts to machines:

Machine

1
2
3
4
5
6
7
8
9

10

Assigned parts

1,6
2,3,7,8,9,12,13,15
3,5,10,14
2,7,8,11,12,13
3,5,10,11,14
1,4,5,9,10
2,5,7,8,9,10
3,4,15
4,10
3,8,10,14,15

1-

:l

6.3

6.3.1

(a) Express the problem as a network model.
(b) Show that the determination of the cells can be based on the minimal spanning tree

solution.
(c) For the data given in the preceding table, construct the two- and three-cell solutions.

SHORTEST-ROUTE PROBLEM

The shortest-route problem determines the shortest route between a source and desti
nation in a transportation network. Other situations can be represented by the same
model, as illustrated by the following examples.

Examples of the Shortest-Route Applications

Example 6.3-1 (Equipment Replacement)

RentCar is developing a replacement policy for its car fleet for a 4-year planning horizon. At the
start of each year, a decision is made as to whether a car should be kept in operation or replaced.
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A car must be in service a minimum of 1 year and a maximum of 3 years. TIle following table
provides the replacement cost as a function of the year a car is acquired and the number of years
in operation.

Replacement cost ($) for given years in operation
Equipment

acquired at start of year 1 2 3

1 4000 5400 9800
2 4300 6200 8700
3 4800 7100
4 4900

TIle problem can be formulated as a network in which nodes 1 to 5 represent the start of
years 1 to 5. Arcs from nodel (year 1) can reach only nodes 2,3, and 4 because a car must be in
operation between 1 and 3 years. The arcs from the other nodes can be interpreted similarly. The
length of each arc equals the replacement cost. The solution of the problem is equivalent to find
ing the shortest route between nodes 1 and 5.

Figure 6.10 shows the resulting network. Using TORA,2 the shortest route (shown by the thick
path) is 1-3 - 5. The solution means that a car acquired at the start of year 1 (node 1) must be
replaced after 2 years at the start of year 3 (node 3). The replacement car will then be kept in service
until the end of year 4. The total cost of this replacement policy is $12,500 (= $5400 + $7100).

Example 6.3-2 (Most Reliable Route)

1. Q. Smart drives daily to work. Having just completed a course in network analysis, Smart is
able to determine the shortest route to work. Unfortunately, the selected route is heavily
patrolled by police, and with all the fines paid for speeding, the shortest route may not be the
best choice. Smart has thus decided to choose a route that maximizes the probability of not being
stopped by police.

The network in Figure 6.11 shows the possible routes between home and work, and the
associated probabilities of not being stopped on each segment. The probability of not being

2From Mai'n menu, select Network models => Shortestrotlte. From SOLVEIMODIFY menu, select
Si:>lve, problem ==> Shortest routes.
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FIGURE 6.11

Most-reliable-route network model

stopped on a route is the product of the probabilities associated with its segments. For example,
the probability of not receiving a fine on the route 1~ 3~ 5 ---+ 7 is .9 X .3 X .25 = .0675.
Smart's objective is to select the route that maximizes the probability of not being fined.

The problem can be formulated as a shortest-route model by using a logarithmic transfor
mation that converts the product probability into the sum of the logarithms of probabilities
that is, if Plk = PI X PZ X ... X Pk is the probability of not being stopped, then log Plk =
log PI + log pz + ... + log Pk·

Mathematically, the maximization of log Plk is equivalent to the maximization of log Plk.

Because log Plk $; 0, the maximization of log Plk is equivalent to the minimization of -log Plk.

Using this transformation, the individual probabilities Pj in Figure 6.11 are replaced with -log Pi
for all j in the network, thus yielding the shortest-route network in Figure 6.12.

Using TORA, the shortest route in Figure 6.12 is defined by the nodes 1,3,5, and 7 with a
corresponding "length" of 1.1707 (= -log PI7). Thus, the maximum probability of not being
stopped is P17 = .0675 only, not very encouraging news for Smart!

Example 6.3-3 (Three-Jug Puzzle)

An 8-gallon jug is filled with fluid. Given two empty 5- and 3-gallon jugs, we want to divide the 8
gallons of fluid into two equal parts using the three jugs. No other measuring devices are
allowed. What is the smallest number of transfers (decantations) needed to achieve this result?

You probably can guess the solution to this puzzle. Nevertheless, the solution process can be
systematized by representing the problem as a shortest-route problem.

A node is defined to represent the amount of fluid in the 8-,5-, and 3-gallon jugs, respec
tively. This means that the network starts with node (8, 0, 0) and terminates with the desired

FIGURE 6.12

Most-reliable-route representation as a shortest-route model
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FIGURE 6.13

Three-jug puzzle representation as a shortest-route model

solution node (4,4,0). A new node is generated from the current node by decanting fluid from
one jug into another.

Figure 6.13 shows different routes that lead from the start node (8,0,0) to the end node (4,
4, 0). The arc between two successive nodes represents a single transfer, and hence can be
assumed to have a length of 1 unit. The problem thus reduces to determining the shortest route
between node (8,0,0) and node (4,4,0).

The optimal solution, given by the bottom path in Figure 6.13, requires 7 transfers.

PROBLEM SET 6.3A

*1. Reconstruct the equipment replacement model of Example 6.3-1, assuming that a car
must be kept in service at least 2 years, with a maximum service life of 4 years. The plan
ning horizon is from the start of year 1 to the end of year 5. The following table provides
the necessary data.

Replacement cost ($) for given years in operation

Year acquired

1
2
3
4
5

2

3800
4000
4200
4800
5300

3

4100
4800
5300
5700

4

6800
7000
7200

2. Figure 6.14 provides the communication network between two stations, 1 and 7. The
probability that a link in the network will operate without failure is shown on each arc.
Messages are sent from station 1 to station 7, and the objective is to determine the route

. that will maximize the probability of a successful transmission. Formulate the situation as
a shortest-route model and determine the optimum solution.
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FIGURE 6.14

Network for Problem 2, Set 6.3a

3. Production Planning. Directeo sells an item whose demands over the next 4 months are
100,140,210, and 180 units, respectively. The company can stock just enough supply to
meet each month's demand, or it can overstock to meet the demand for two or more suc
cessive and consecutive months. In the latter case, a holding cost of $1.20 is charged per
overstocked unit per month. Directeo estimates the unit purchase prices for the next 4
months to be $15, $12, $10, and $14, respectively. A selup cost of $200 is incurred each
time a purchase order is placed. The company wants to develop a purchasing plan that
will minimize the total costs of ordering, purchasing, and holding the item in stock.
Formulate the problem as a shortest-route model, and use TORA to find the optimum
solution.

*4. Knapsack Problem. A hiker has a 5-ft3 backpack and needs to decide on the most valu
able items to take on the hiking trip. There are three items from which to choose. Their
volumes are 2, 3, and 4 ft3, and the hiker estimates their associated values on a scale from
oto 100 as 30,50, and 70, respectively. Express the problem as longest-route network, and
find the optimal solution. (Hint: A node in the network may be defined as [i, v], where i is
the item number considered for packing, and v is the volume remaining immediately
before a decision is made on i.)

5. An old-fashioned electric toaster has two spring-loaded base-hinged doors. The two doors
open outward in opposite directions away from the heating element. A slice of bread is
toasted one side at a time by pushing open one of the doors with one hand and placing
the slice with the other hand. After one side is toasted, the slice is turned over to get the
other side toasted. The goal is to determine the sequence of operations (placing, toasting,
turning, and removing) needed to toast three slices of bread in the shortest possible time.
Formulate the problem as a shortest-route model, using the following elemental times for
the different operations:

Operation

Place one slice in either side
Toast one side
Turn slice already in toaster
Remove slice from either side

Time (seconds)

3
30

1
3
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6.3.2 Shortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and
acyclic networks:

1. Dijkstra's algorithm
2. Floyd's algorithm

Dijkstra's algorithm is designed to determine the shortest routes between the
source node and every other node in the network. Floyd's algorithm is more general
because it allows the determination of the shortest route between any two nodes in the
network.

Dijkstra's Algorithm. Let Ui be the shortest distance from source node 1 to node i,
and define dij (~O) as the length of arc (i, j). Then the algorithm defines the label for an
immediately succeeding node j as

[Uj, i] = [Ui + dij, i], d ij ~ 0

The label for the starting node is (0, -], indicating that the node has no predecessor.
Node labels in Dijkstra's algorithm are of two types: temporary and permanent. A

temporary label is modified if a shorter route to a node can be found. Ifno better route
can be found, the status of the temporary label is changed to permanent.

Step o.
Step i.

Label the source node (node 1) with the permanent label [0, -]. Set i = l.

(a) Compute the temporary labels CUi + dij , i] for each node j that can be
reached from node i, provided j is not permanentLy labeLed. If node j is
already labeled with [Uj' k] through another node k and if Ui + dij < Uj,

replace [Uj, k] with [Ui + dij , i].
(b) If aLL the nodes have permanent labels, stop. Otherwise, select the label
fUr> s] having the shortest distance (= ur ) among all the temporary labels
(break ties arbitrarily). Set i = r and repeat step i.

Example 6.3-4

The network in Figure 6.15 gives the permissible routes and their lengths in miles between city 1
(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between city 1 and
each of the remaining four cities.

Iteration O.

Iteration 1.
Assign the permanent label [0, -] to node 1.

Nodes 2 and 3 can be reached from (the last permanently labeled) node 1. Thus,
the list of labeled nodes (temporary and permanent) becomes

Node Label Status

1 [0,-]

2 [0 + 100,1] = [100,1]

~~:~~~iV;~~:~;fqt.[t~~~~tl~J!~l'

Permanent

Temporary

,;fi~~~
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FIGURE 6.15

Network example for Dijkstra's shortest-route algorithm

For the two temporary labels [100, 1] and [30, 1], node 3 yields the smaller distance
(1£3 = 30). Thus, the status of node 3 is changed to permanent.

Iteration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes becomes

Node Label Status

1 [0, -] Permanent

2 {lOO, 1] Temporary

3 [30,1) Permanent

:i;~~m~¥r~~t:~rJ~2:~'f~Y,9.~~~t~~TI}H~k~1~[t~!.~l~~:t~~p.iR?Xx
5 [30 + 60,3J = [90,3] Temporary

The status of the temporary label [40,3] at node 4 is changed to permanent
(U4 = 40).

Iteration 3. Nodes 2 and 5 can be reached from node 4. llms, the list of labeled nodes is
updated as

L
i Node Label Status

1 rO, -] Permanent

f:(~:::~~~j\,\i\MIj}F,XXJ.t#1:·lf¥ij[~?::~m;~~i%~t:~'i:~:;:;: ~;~i:i~ffip.2.~~:
3 (30, 1] Permanent

4 [40,3J Permanent

5 [90,3] or [40 + 50,4J = [90,4] Temporary

Node 2's temporary label [100, 1] obtained in iteration 1 is changed to [55,4) in
iteration 3 to indicate that a shorter route has been found through node 4. Also,
in iteration 3, node 5 has two alternative labels with the same distance Us = 90.
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(90,3)(2)
[90,4](3)

6030

-flOO;tf(i)
[55,41(3)

2

f----------l~3)_--------;~

(30,11(1)

[0, - ](1) 1

( ) = iteration

FIGURE 6.16

Dijkstra's labeling procedure

Iteration 4.
The list for iteration 3 shows that the label for node 2 is now permanent.

Only node 3 can be reached from node 2. However, node 3 has a permanent label
and cannot be relabeled. The new list of labels remains the same as in iteration 3
except that the label at node 2 is now permanent. This leaves node 5 as the only
temporary labeL Because node 5 does not lead to other nodes, its status is convert
ed to permanent, and the process ends.

The computations of the algorithm can be carried out more easily on the network, as Figure
6.16 demonstrates.

The shortest route between nodes 1 and any other node in the network is determined by
starting at the desired destination node and backtracking through the nodes using the informa
tion given by the permanent labels. For example, the following sequence determines the shortest
route from node 1 to node 2:

(2) ~ [55, 4] ~ (4)~ [40, 3] ~ (3) ~ [30,1] .... (1)

Thus, the desired route is 1~ 3~ 4~ 2 with a total length of 55 miles.

TORA Moment

TORA can be used to generate Dijkstra's iterations. From SOLVEJMODIFY menu,
select Sol"¢j)fQbl~m =:;0 Iterations => Dijkstra'salgdrithm. File toraEx6.3-4.txt provides
TORA's data for Example 6.3-4.

PROBLEM SET6.3B

1. The network in Figure 6.17 gives the distances in miles between pairs of cities 1,2, ., . ,
and 8. Use Dijkstra's algorithm to find the shortest route between the following cities:
(a) Cities 1 and 8

(b) Cities 1 and 6

.....
,-',..:~....-~-,;~,_.-
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FIGURE 6.17

Network for Problem 1, Set 6.3b

6

FIGURE 6.18

Network for Problem 2, Set 6.3b

*(c) Cities 4 and 8

(d) Cities 2 and 6

2. Use Dijkstra's algorithm to find the shortest route between node 1 and every other node
in the network of Figure 6.18.

3. Use Dijkstr'a algorithm to determine the optimal solution of each of the following problems:

(a) Problem 1, Set 6.3a.

(b) Problem 2, Set 6.3a.

(c) Problem 4, Set 6.3a.

Floyd's Algorithm. Floyd's algorithm is more general than Dijkstra's because it
determines the shortest route between any two nodes in the network. The algorithm
represents an n-node network as a square matrix with n rows and n columns. Entry (~j)

of the matrix gives the distance dij from node i to node j, which is finite if i is linked
directly to j, and infinite otherwise.

The idea of Floyd's algorithm is straightforward. Given three nodes ~ j, and k in
Figure 6.19 with the connecting distances shown on the three arcs, it is shorter to reach
j from i passing through k if
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FIGURE 6.19

Floyd's triple operation

In this case, it is optimal to replace the direct route from i ~ j with the indirect route
i ~ k ~ j. This triple operation exchange is applied systematically to the network
using the following steps:

Define the starting distance matrix Do and node sequence matrix So as given
below. The diagonal elements are marked with (-) to indicate that they are
blocked. Set k = 1.

t,
;,
;,
;

i
J
i,
:'
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i
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General step k. Define row k and column k as pivot row and pivot column. Apply the
triple operation to each element djj in Dk - l , for all i and j. If the condition

d ik + dkj < d ij , (i ::j:. k, j ::j:. k, and i ::j:. j)

is satisfied, make the following changes:
(a) Create Dk by replacing dij in Dk - 1 with d jk + dkj

(b) Create Sk by replacing Sij in Sk-l with k. Set k = k + 1. If k = n + 1,
stop; else repeat step k.

Step k of the algorithm can be explained by representing Dk - 1 as shown in
Figure 6.20. Here, row k and column k define the current pivot row and column. Row i



Column
j

Rowi
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FIGURE 6.20

Implementation of triple operation in matrix form

represents any of the rows 1, 2, ... , and k - 1, and row p represents any of the rows
k + 1, k + 2, ... , and n. Similarly, column j represents any of the columns 1,2, ... , and
k - 1, and column q represents any of the columns k + 1, k + 2, ... , and n. The triple
operation can be applied as follows. If the sum of the elements on the pivot row and the
pivot column (shown by squares) is smaller than the associated intersection element
(shown by a circle), then it is optimal to replace the intersection distance by the sum of
the pivot distances.

After n steps, we can determine the shortest route between nodes i and j from the
matrices Dn and Sn using the following rules:

1. From Dm dij gives the shortest distance between nodes i and j.

2. From Sm determine the intermediate node k = Sij that yields the route i ~ k ~ j.
If sik = k and Skj = j, stop; all the intermediate nodes of the route have been
found. Otherwise, repeat the procedure between nodes i and k, and between
nodes k and j.

Example 6.3-5

For the network in Figure 6.21, find the shortest routes between every two nodes. TIle distances
(in miles) are given on the arcs. Arc (3,5) is directional, so that no traffic is allowed from node 5
to node 3. All the other arcs allow two-way traffic.

3

5
2 )--------,--{ 4

4

FIGURE 6.21

NetlVork for Example 6.3·5

n

~"; ...•. -
.. ;;'Y :~~'\2..~"_"'"

1
10
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Iteration O.

Network Models

The matrices Do and So give the initial representation of the network. Do is sym
metrical, except that dS3 = 00 because no traffic is allowed from node 5 to
node 3.

- 2 3 4 5
1 - r.t~~~ 4 5
1 '~~ - 4 5
1 2 3 - 5
1 2 3 4 -

Do
1 2 3 4 5

1 3 10 00.' '00 1
2 3 ~~~~~ 5 00 2
3 10 }r~~~ 6 15 3
4 00 5 6 4 4
5 00 00 00 4 5

1 2
So
3 4 5

Iteration 1.

Iteration 2.

Iteration 3.

Set k = 1. The pivot row and column are shown by the lightly shaded first row
and first column in the Do-matrix. The darker cells, d13 and d32, are the only ones
that can be improved by the tripLe operation. Thus, D1 and SI are obtained from
Do and So in the following manner:

1. Replace d13 with d21 + dB = 3 + 10 = 13 and set 513 = 1.
2. Replace d32 with d31 + d 12 = 10 + 3 = 13 and set 532 = 1.

D 1 5\
1 2 3 4 5 1 2 3 4 5

1 3 10 ~~l£~~ 00 1 2 3 I~~ 5
2 3 13 5 00 2 1 1 4 5
3 10 13 6 15 3 1 1 4 5
4 ~~i~:~~Vt 5 6 4 4 t~t~1: 2 3 5
5 00 00 00 4 5 1 2 3 4

Set k = 2, as shown by the lightly shaded row and column in D1• The tripLe oper
ation is applied to the darker cells in D1 and SI' The resulting changes are shown
in bold in D2 and 52'

D2 S2
1 2 3 4 5 1 2 3 4 5

1 3 10 8 ~~~~ 1 2 3 2 ~~~{-
2 3 13 5 ~~~~~-~ 2 1 1 4 ~{);:;t~~

3 10 13 6 15 3 1 1 4 5
4 8 5 6 4 4 2, 2 3 5
5 00 00 00 4 5 1 2 3 4

Set k = 3, as shown by the shaded row and column in Dz. The new matrices are
given by D] and 53'
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Set k = 4, as shown by the shaded row and column in D3• The new matrices are
given by D4 and 54.

53
1 2 3 4 5

':.-.

2 3 2 /{=3:'::
1 ':iMY:\ 4 :~il~'i

1 ~:~/l';hj - 4 1,;'5':'\
2 2 3 5

1
2
3
4

5 !:~H~J;~! ~l.~li~f :~~~·~~5~; 4

54

8 ~1M$~~:
5' iE:~~;;

6 ~iitli.~~,
4

21

1 3 10
2 3 ~~~i

3 10 i1V$'?i
4 ,·8

5 ~~11f.:~·

Iteration 4.

u
to

5
5
5
5

- 3 10 8 12
3 - 11 5 ,9

10 11 - 6 10
8 5 6 - 4'

'12 9 10 4 -
'"

- 2 3 2 4
1 - 4 4 4
1 4 - 4 4
2 2 3 - 5
4 4 4 4 -

'Ow

nes
om 1

2
3
4
5

1 2 4 5

1
2
3
4
5

1 2
5~

3 4 5

The final matrices D4 and 54 contain all the information needed to determine the shortest
route between any two nodes in the network. For example, from D4, the shortest distance from
node 1 to node 5 is d l5 = 12 miles. To determine the associated route, recall that a segment (i, j)
represents a direct link only if Sij = j. Otherwise, i and j are linked through at least one other in
termediate node. Because s15 = 4 '* 5, the route is initially given as 1~ 4~ 5. Now, because
514 = 2 '* 4, the segment'(I,4) is not a direct link, and 1-4 is replaced with 1 -+ 2 -+ 4, and the
route 1 -+ 4 -+ 5 now becomes 1-2 -+ 4 -+ 5. Next, because 512 = 2, 524 = 4, and 545 = 5, no
further "dissecting" is needed, and 1~ 2~ 4 -+ 5 defines the shortest route.

5

5
5
5
5

Iper
Lown

Iteration 5. Set k = 5, as shown by the shaded row and column in D4• No further improve
ments are possible in this iteration.

5

~3f#l~'
~~}~{~:~.:

TORA Moment

As in Dijkstra's algorithm, TORA can be used to generate Floyd's iterations. From
SQLVEIMODIFY menu, select Solveptobleni ==> Iterations =:::;. Floyd~s algorithm. File
toraEx6.3-5.txt provides TORA's data for Example 6.3-5.

5
5

PROBLEM SET 6.3C

es are

1. In Example 6.3-5, use Floyd's algorithm to determine the shortest routes between each of
the following pairs of nodes:

*(a) From node 5 to node 1.

(b) From node 3 to node 5.

. ':, :

':"';':~
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FIGURE 6.22

Network for Problem 2, Set 6.3c

1

5

3

6.3,

(c) From node 5 to node 3.

(d) From node 5 to node 2.

2. Apply Floyd's algorithm to the network in Figure 6.22. Arcs (7,6) and (6,4) are unidirec
tional, and all the distances are in miles. Determine the shortest route between the fol
lowing pairs of nodes:

(a) From node 1 to node 7.

(b) From node 7 to node 1.

(c) From node 6 to node 7.

3. TIle Tell-All mobile-phone company services six geographical areas. The satellite dis
tances (in miles) among the six areas are given in Figure 6.23. Tell-All needs to determine
the most efficient message routes that should be established between each two areas in
the network.

*4. Six kids, Joe, Kay, Jim, Bob, Rae, and Kim, playa variation of hide and seek. The hiding
place of a child is known only to a select few of the other children. A child is then paired
with another with the objective of finding the partner's hiding place. This may be
achieved through a chain of other kids who eventually will lead to discovering where the
designated child is hiding. For example, suppose that Joe needs to find Kim and that Joe
knows where Jim is hiding, who in turn knows where Kim is. Thus, Joe can find Kim by
first finding Jim, who in turn will lead Joe to Kim. The following list provides the where
abouts of the children:

Joe knows the hiding places of Bob and Kim.

Kay knows the hiding places of Bob, Jim, and Rae.

Jim and Bob each know the hiding place of Kay only.

Rae knows where Kim is hiding.

Kim knows where Joe and Bob are hiding.

FIGURE 6.23

Network for Problem 3, Set 6.3c
700

1

200
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Devise a plan for each child to find every other child through the smallest number of con
tacts. What is the largest number of contacts?

6.3.3 Linear Programming Formulation of the Shortest-Route Problem

This section provides an LP model for the shortest-route problem. The model is gen
eral in the sense that it can be used to find the shortest route between any two nodes in
the network. In this regard, it is equivalent to Floyd's algorithm.

Suppose that the shortest-route network includes n nodes and that we desire to
determine the shortest route between any two nodes sand t in the network. The LP
assumes that one unit of flow enters the network at node s and leaves at node t.

Define

Xij = amount of flow in arc (i, j)

= {I, if arc (i, j) is on the shortest route
0, otherwise

Cij = length of arc (i, j)

Thus, the objective function of the linear program becomes

Minimize z = 2: CijXij
all defined
arcs (i. j)

The constraints represent the conservation-oj-flow equation at each node:

Total input flow = Total output flow

Mathematically, this translates for node j to

(E~ternal inp.ut) + 2:. Xij = (External output) + 2: Xjk

mto node J I from node j k
all defined all defined
arcs (i, n arcs (j, k)

Example "6.3-6

Consider the shortest-route network of Example 6.3-4. Suppose that we want to determine the
shortest route from node 1 to node 2-that is, s = 1 and t = 2. Figure 6.24 shows how the unit
of flow enters at node 1 and leaves at node 2.

We can see from the network that the flow-conservation equation yields

Node 1: 1 = x12 + XlJ

Node 2: Xl2 + X42 = X23 + 1
Node 3: x13 + X23 = X34 + X35

Node 4: x34 = X42 + X45

Node 5: X35 + X45 = 0
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FIGURE 6.24

Network Models

Insertion of unit flow to determine shortest route between node s = 1 and node t = 2

The complete LP can be expressed as

X12 XI3 Xn X34 X35 X42 X4S

Minimizez = 100 30 20 10 60 15 50

Node 1 1 1 = 1
Node 2 -1 1 -1 = -1
Node 3 -1 -1 1 1 0
Node 4 -1 1 1 0
Node 5 -1 -1 0

Notice that column Xij has exactly one "1" entry in row i and one "-I" entry in row j, a typical
property of a network LP.

The optimal solution (obtained by TORA, file toraEx6.3-6.txt) is

z == 55, X13 = 1, X34 == 1, X42 = 1

This solution gives the shortest route from node 1 to node 2 as 1~ 3~ 4~ 2, and the associated
distance is z = 55 (miles).

PROBLEM 6.30

1. In Example 6.3-6, use LP to determine the shortest routes between the following pairs of
nodes:

*(a) Node 1 to node 5.

(b) Node 2 to node 5.

Solver Moment

Figure 6.25 provides the Excel Solver spreadsheet for finding the shortest route
between start node Nl and end node N2 of Example 6.3-6 (file solverEx6.3-6.xls). The
input data of the model is the distance matrix in cells B3:E6. Node Nl has no column
because it has no incoming arcs, and node N5 has no row because it has no outgoing
arcs. A blank entry means that the corresponding arc does not exist. Nodes Nl and N2
are designated as the start and end nodes by entering 1 in F3 and B7, respectively. These
designations can be changed simply by moving the entry 1 to new cells. For example, to
fmd the shortest route from node N2 to node N4, we enter 1 in each of F4 and D7.
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FIGURE 6.25

Excel Solver solution of the shortest route between nodes 1 and 2 in Example 6.3-6 (file solverEx6.3-6.xls)

TIle solution of the model is given cells B9:E12. A cell defines a leg connecting its des
ignated nodes. For example, cell ClO defines the leg (N2, N3), and its associated variable is
X23' A cell variable Xij = 1 if its leg (Ni, Nj) is on the route. Otherwise, its value is zero.

With the distance matrix given by the range B3:E6 (named distance) and the solution
matrix given by the range B9:E12 (named solution), the objective function is computed in
cell G14 as =SUMPRODUCT(B3: E6,B9: E12) or, equivalently, =SUMPRODUcr
(distance,solution). You may wonder about the significance of the blank entries (which
default to zero by Excel) in the distance matrix and their impact on the definition of
the objective function. This point will be addressed shortly, after we have shown how
the corresponding variables are totally excluded from the constraints of the problem.

As explained in the LP of Example 6.3-6, the constraints of the problem are of the
general form:

(Output flow) - (Input flow) = 0

This definition is adapted to the spreadsheet layout by incorporating the external unit
flow, if any, directly in either Output flow or Input flow of the equation. For example, in
Example 6.3-6, an external flow unit enters at Nl and leaves at N2. Thus, the associated
constraints are given as

(Output flow at Nt) = Xl2 + xl3 - I}
~X + x - 1= 0

(Input flow at Nl) = 0 12 - 13

(Output flow at N2) = X23 } _ 1 - 0
~ X23 - Xl2 - X42 - -

(Input flow at N2) = X12 + X42 - 1
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Looking at the spreadsheet in Figure 6.25, the two constraints are expressed in terms
of the cells as

(Output flow at Nl)=B9+C9-F3

(Input flow at Nl) =0

(Output flow at N2)=CIO

(Input flow at N2) =89+812-B7

To identify the solution cells in the range B9:E12 that apply to each constraint, we note
that a solution cell forms part of a constraint only if it has a positive entry in the dis
tance matrix.3 Thus, we use the following formulas to identify the output and input
flows for each node:

1. Output flow: Enter=SUMIF (83; E3) ">0" I B9: E9) -F3 in cell F9 and copy it in cells
F10:F12.

2. Input Flow: Enter=sUMIF (B3 ;B6 I ">0" I 89 : 812) -87 in cell B14 and copy it in
cells CI4:EI4.

3. Enter =OFFSET (A$14, 0 I ROW (AI) ) in cell GI0 and copy it in cells Gl1:G13 to
transpose the input flow to column G.

4. Enter 0 in each of G9 and F13 to indicate that Nl has no input flow and N5 has
no output flow (per spreadsheet definitions).

5. Enter =F9-G9 in cell H9 and copy it in cells HIO:H13 to compute the net flow.

The spreadsheet is now ready for the application of Solver as shown in Figure 6.25.
There is one curious occurrence though: When you define the constraints within the
Solver Parameters dialogue box as outFlow = inFlow, Solver does not locate a feasi
ble solution, even after making adjustments in precision in the Solver Option box. (To
reproduce this experience, solution cells B9:E12 must be reset to zero or blank.) More
curious yet, if the constraints are replaced with inFlow = outFlow, the optimum solu
tion is found. In file solverEx6.3-6.xls, we use the nefFlow range in cells H9:Hl2 and
express the constraint as netFlow = 0 with no problem. It is not clear why this pecu
liarity occurs, but the problem could be related to roundoff error.

The output in Figure 6.25 yields the solution (NI-N3 = 1, N3-N4 = 1, N4-N2 = 1)
with a total distance of 55 miles. This means that the optimal route is 1 -7 3 -7 4 -7 2.

Remarks. In most textbooks, the network is defined by its explicit arcs (node i, node
j, distance ), a lengthy and inconvenient process that may not be practical when the
number of arcs is large. Our model is driven primarily by the compact distance matrix,
which is all we need to develop the flow constraints. It may be argued that our model
deals with (n - 1 X n - 1)xij-variables, which could be much larger than the number of
variables associated with the arcs of the model (for instance, Example 6.3-6 has 7 arcs

3If a problem happens to have a zero distance between two nodes, the zero distance can be replaced with a
very small positive value.



6.3 Shortest-Route Problem. 261

1S and hence 7 xirvariables, as opposed to 4 X 4 = 16 in our formulation). Keep in mind
that these additional variables appear only in the objective function and with zero co
efficients (blank entries) and that the flow constraints are exactly the same as in other
presentations (per the SUMIF function). As a result,pre-solvers in commercial software
will spot this "oddity" and automatically exclude the additional variables prior to ap
plying the simplex method, with no appreciable computational overhead.

te
s
It

Is

AMPLMoment

Figure 6.26 provides the AMPL model for solving Example 6.3-6 (file ampIEx6.3
6a.txt). The variable x [i, j] assumes the value 1 if arc [i, j] is on the shortest route
and 0 otherwise. The model is general in the sense that it can be used to find the short
est route between any two nodes in a problem of any size.

As explained in Example 6.3-6, AMPL treats the problem as a network in which
an external flow unit enters and exits at specified start and end nodes.The main input
data of the model is an n X n matrix representing the distance d {i, j] of the arc join
ing nodes i and j. Per AMPL syntax, a dot entry in d (i , j] is a placeholder that signifies

FIGURE 6.26

AMPL shortest route model (file ampIEx6.3·6a.txt)

S.
le
;1-

:0
:e
l
Id
1-

#----- shortest route model (Example 6.3-6}---
param n;
param start;
param end;
param M=999999; #infinity
param d{i in 1 .. n, j in 1 .. n} default M;
param rhs{i in 1 .. n}=if i=start then 1

else (if i=end then -1 else OJ;

var xii in 1 .. n,j in 1 .. n»=0;
var outFlow(i in 1 .. n)=sum(j in 1 .. n}x[i,j];
var inFlow{j in 1 .. n)=sum{i in 1 .. n}x[i,j);

minimize z: sum(i in 1 .. n, j in 1 .. n)d[i,j)*x[i,j);
subject to limit(i in 1 .. n}:outFlow[i)-inF1ow[i)=rhs[i];

solve;
print UShortest length from",start,"to",end,"=",z;
printf -Associated route: %2i",start;
for {i in 1 .. n-l} for {j in 2 .. n}

{if x[i,j)=1 then printf" - %2i",j;} print;

5:=

10 60
5015

1

2
3

4
5

data;
param n:=5;
param start::1;
param end:=2;
param d:

1 2 3 4
100 30

20
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that no distance is specified for the corresponding arc. In the model, the dot entry is
overridden by the infinite distance M(= 999999) in param d {i in 1 ... n, j in 1 ... n}
defaul t Mi which will convert it into an infinite-distance route. The same result could
be achieved by replacing the dot entry (.) with 999999 in the data section, which, in
addition to "cluttering" the data, is inconvenient.

The constraints represent flow conservation through each node:

(Input flow) - (Output flow) = (External flow)

From x [i, j], we can define the input and output flow for node i using the statements

var inFlow{j in 1 .. n}=sum{i in 1 .. n}x[i,j];
var outFlow{i in 1 .. n}=sum{j in 1 .. n}x[i,j];

The left-hand side of the constraint i is thus given as outFlow [i) -inFlow [i).
The right-hand side of constraint i (external flow at node i) is defined as

param rhs{i in l .. n}=if i=start then 1 else(if i=end then -1 else 0);

(See Section A.3 for details of if then else.) With this statement, specifying start
and end nodes automatically assigns 1, -1, or 0 to rhs, the right-hand side of the
constraints.

The objective function seeks the minimization of the sum of d [i, j ] *x [i, j ] over
all i and j.

In the present example, start=1 and end=2, meaning that we want to determine
the shortest route from node 1 to node 2. The associated output is

Shortest length from 1 to 2 = 55
Associated route: 1 - 3 - 4 - 2

Remarks. The AMPL model as given in Figure 6.26 has one flaw: The number of
active variables Xij is n2

, which could be significantly much larger than the actual num
ber of (positive-distance) arcs in the network, thus resulting in a much larger problem.
The reason is that the model accounts for the nonexisting arcs by assigning them an in
finite distance M (= 999999) to guarantee that they will be zero in the optimum solu
tion. This situation can be remedied by using a subset of {i in 1 .. n, j in 1 .. n} that
excludes nonexisiting arcs, as the following statement shows:

var x{i in l .. n,j in 1 .. n:d[i,j]<M»=O;

(See Section AA for the use of conditions to define subsets.) TIle same logic must be
applied to the constraints as well by using the following statements:

var inFlow{j in 1 .. n}=sum{i in 1 .. n:d{i,j]<M}x[i,j];
var outFlow(i in l .. n}=sum{j in 1 .. n:d[i,j]<M}x[i,j];

File amplEx6.36b.txt gives the complete model.

PROBLEM 6.3E

1. Modify solverEx6.3-6.xls to find the shortest route between the following pairs of nodes:

(a) Node 1 to node 5.
(b) Node 4 to node 3.

2. Adapt amplEx6.3-6b.txt for Problem 2, Set 6.3a, to find the shortest route between node
1 and node 7. The input data must be the raw probabilities. Use AMPL programming
facilities to print/display the optimum transmission route and its success probability.
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MAXIMAL FLOW MODEL

Consider a network of pipelines that transports crude oil from oil wells to refineries.
Intermediate booster and pumping stations are installed at appropriate design distances
to move the crude in the network. Each pipe segment has a finite maximum discharge
rate of crude flow (or capacity). A pipe segment may be uni- or bidirectional, depending
on its design. Figure 6.27 demonstrates a typical pipeline network. How can we deter
mine the maximum capacity of the network between the wells and the refineries?

The solution of the proposed problem requires equipping the network with a sin
gle source and a single sink by using unidirectional infinite capacity arcs as shown by
dashed arcs in Figure 6.27.

Given arc (i, j) with i < j, we use the notation (Cjj , Cjj ) to represent the flow
capacities in the two directions i ----+ j and j ----+ i, respectively. To eliminate ambiguity, we
place Cjj on the arc next to node i with Cjj placed next to node j, as shown in Figure 6.28.

Enumeration of Cuts

A cut defines a set of arcs which when deleted from the network will cause a total dis
ruption of flow between the source and sink nodes. TIle cut capacity equals the sum of
the capacities of its arcs. Among all possible cuts in the network, the cut with the
smallest capacity gives the maximum flow in the network.

Example 6.4-1

Consider the network in Figure 6.29. The bidirectional capacities are shown on the respective
arcs using the convention in Figure 6.28. For example, for arc (3,4), the flow limit is 10 units from
3 to 4 and 5 units from 4 to 3.

Figure 6.29 illustrates three cuts whose capacities are computed in the following table.
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Cut

1
2
3

Associated arcs

(1,2), (1, 3), (1,4)
(1,3),(1,4),(2,3),(2,5)
(2,5),(3,5),(4,5)

Capacity

20 + 30 + 10 ~ 60
30 + 10 + 40 + 30 = 110
30 + 20 + 20 = 70

FIGURE 6.27

Capacitated network connecting wells and refineries through booster stations
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FIGURE 6.28

Arc flows Cij from i --+ j and Cji from j --+ i

Cut2

FIGURE 6.29

Examples of cuts in flow networks

The only information we can glean from the three cuts is that the maximum flow in the net
work cannot exceed 60 units. To determine the maximum flow, it is necessary to enumerate all
the cuts, a difficult task for the general network. Thus, the need for an efficient algorithm is
imperative.

PROBLEM SET 6.4A

*1. For the network in Figure 6.29, determine two additional cuts, and find their capacities.

6.4.2 Maximal Flow Algorithm

The maximal flow algorithm is based on finding breakthrough paths with net positive
flow between the source and sink nodes. Each path commits part or all of the capaci
ties of its arcs to the total flow in the network.

Consider arc (i, j) with (initial) capacities (Cij , Cji ). As portions of these capaci
ties are committed to the flow in the are, the residuals (or remaining capacities) of the
arc are updated. We use the notation (Cij, cji) to represent these residuals.

For a node j that receives flow from node i, we attach a label raj, i], where aj is the
flow from node i to node j. The steps of the algorithm are thus summarized as follows.

Step 1~ For all arcs 0, j), set the residual capacity equal to the initial capacity- that is
(Cij, Cji) = (Cjj , CjJ. Let al :=: 00 and label source node 1 with [00, -]. Set
i :=: 1, and go to step 2.

Step 2. Determine Si, the set of unlabeled nodes j that can be reached directly from
node i by arcs with positive residuals (that is, Cij > 0 for all j E SJ If Si ::j:. 0,
go to step 3. Otherwise, go to step 4.
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Step 3. Determine k E Si such that

Cik = max{cij}
JSS;

Set ak = Cik and label node k with [ab i]. If k = n, the sink node has been
labeled, and a breakthrough path. is found, go to step 5. Otherwise, set i = k,
and go to step 2.

Step 4. (Backtracking). If i = 1, no breakthrough is possible; go to step 6.
Otherwise, let r be the node that has been labeled immediately before cur
rent node i and remove i from the set of nodes adjacent to r. Set i = r, and
go to step 2.

Step 5. (Determination ofresiduals). Let Np = (1, k b kz, .. . , n) define the nodes of
the pth breakthrough path from source node 1 to sink node n. Then the max
imum flow along the path is computed as

The residual capacity of each arc along the breakthrough path is decreased
by f p in the direction of the flow and increased by f p in the reverse direction
that is, for nodes i and j on the path, the residual flow is changed from the
current (Cij, ci;) to
(a) (cii - fp, cii + fp) if the flow is from i to j

(b) (cii + fp, cji - fp) if the flow is from j to i

Reinstate any nodes that were removed in step 4. Set i = 1, and return to
step 2 to attempt a new breakthrough path.

Step 6. (Solution).
(a) Given that rn breakthrough paths have been determined, the maximal

flow in the network is

F = It + fz + ... + fm

(b) Using the initial and final residuals of arc (i, j), (Cii , Cji ) and (cii' Cji) ,
respectively, the optimal flow in arc (i, j) is computed as follows: Let
(a,{3) = (Cij - Cij,Cji - cji).lfa > 0, the optimal flow fromi tojisa.
Otherwise, if {3 > 0, the optimal flow from j to i is {3. (It is impossible to
have both a and (3 positive.)

The backtracking process of step 4 is invoked when the algorithm becomes "dead
ended" at an intermediate node. The flow adjustment in step 5 can be explained via the
simple flow network in Figure 6.30. Network (a) gives the first breakthrough path
N l = {I, 2, 3, 4} with its maximum flow It = 5. Thus, the residuals of each of arcs (1,
2), (2,3), and (3,4) are changed from (5,0) to (0,5), per step 5. Network (b) now gives
the second breakthrough path N2 = {I, 3, 2, 4} with f2 = 5. After making the neces
sary flow adjustments, we get network (c), where no further breakthroughs are possible.
What happened in the transition from (b) to (c) is nothing but a cancellation of a previ
ously committed flow in the direction 2~ 3. The algorithm is able to "remember" that
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[00, -]

Path: 1--72--73--74, II = 5

(a)

FIGURE 6.30

Use of residuals to calculate maximum flow

Path: 1--73 --7 2--7 4, h = 5

(b)

No breakthrough

(c)

a flow from 2 to 3 has been committed previously only because we have increased the
capacity in the reverse direction from 0 to 5 (per step 5).

Example 6.4-2

Determine the maximal flow in the network of Example 6.4-1 (Figure 6.29). Figure 6.31 provides
a graphical summary of the iterations of the algorithm. You will find it helpful to compare the
description of the iterations with the graphical summary.

Iteration 1. Set the initial residuals (Cij, Cji) equal to the initial capacities (Cij, Cji)'

Step 1.

Step 2.

Step 3.

Step 2.

Step 3.

Step 5.

Set a, = 00 and label node 1 with [00, -]. Set i = 1.

Sl = {2,3,4} (*0).
k = 3, because Cl3 = max{el2, Cl3, C14} = max{20, 30, 1O} =: 30. Set a3 = Cn = 30,
and label node 3 with [30,1J. Set i = 3, and repeat step 2.

S3 = (4,5).

k = 5 and as = C35 = max{1O,20} = 20. Label node 5 with [20, 3J. Breakthrough is
achieved. Go to step 5.

The breakthrough path is determined from the labels starting at node 5 and moving
backward to node I-that is, (5) -- [20, 3] -- (3) -- [30,1] -- (1). Thus, N1 =: {1, 3, 5}
and 11 = min{aj,a3,as} = {(X), 30, 20} =: 20. The residual capacities along path N1

are

(CI3, C31) = (30 - 20,0 + 20) =: (10,20)

(C3S, CS3) = (20 - 20,°+ 20) =: (0,20)

Iteration 2

Step 1.

Step 2.

Step 3.

Set al =: 00, and label node 1 with [00, -J. Set i = 1.

Sl = {2,3,4}.

k = 2 and 02 = CI2 = max{20, lO,lO} = 20. Set i "" 2, and repeat step 2.

.) ...

.>... i:-':~:....::.::::. __
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[00, -] {20,3] [co, -1 [20,4]

(a) 11 =20 (b)h=lO

[GO, -1 [30,21 [00, -] {20,21

[co, -]

(c)!J = 10

(e)fs = 10

[10,4]

(d)f4 = 10

(f) No breakthrough

FIGURE 6.31

Iterations of the maximum flow algorithm of Example 6.4-2

.) ...

~~~... ';-'~;"~:':::'.-

Step 2.

Step 3.
Step 2.

Step 3.

Step 2.

S2 = {3,5}.
k = 3 and a3 = cn = 40. Label node 3 with [40,2). Set i .= 3, and repeat step 2.
53 = {4} (note that C35 = a-hence, node 5 cannot be included in 53)'

k = 4 and a4 = C34 = 10. Label node 4 with [10,3]. Set i = 4, and repeat step 2.

S4 = {5} (note that nodes 1 and 3 are already labeled-hence, they cannot be
included in S4) .
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:1

1 Step 3. k = 5 and as ~ c., ~ 20. Label node 5 wjth [20, 4J. Breakthmogh has been achieved.
~ Go to step 5.,
~; Step 5. Nz = {l, 2, 3, 4, 5} and 1z = min{ 00,20,40,10, 20} = 10. The residuals along the
j path of N2 are

(C12' czd = (20 - 10,0+ 10) = (1O, 10)

(CZ3' C3Z) = (40 - 10,0 + 10) = {30,10}

{C34, C43} = (10 - 10, 5 + 10) = (0, 15)

(C4S, CS4) = (20 - 10,0+ 10) = (10,10)

Iteration 3

Step 1.

Step 2.
Step 3.

Step 2.

Step 3.

Step 2.
.; Step 3.

•j

Step 2."

.',
Step 3.

Step 5.

1
J,.
i
"

;.,

Set a1 = 00 and label node 1 with [00, -]. Set i == 1.

51 = {2, 3, 4}.

k = 2 and a2 = C12 = max{lO, 10, lO} = 10. (Though ties are broken arbitrarily,
TORA always selects the tied node with the smallest index. We will use this conven
tion throughout the example.) Label node 2 with [10,1]. Set i = 2, and repeat step 2.

5z = {3,5}.
k = 3 and a3 = C23 = 30. Label node 3 with [30, 2J. Set i = 3, and repeat step 2.

53 = (2) (because C34 = C35 = 0). Go to step 4 to backtrack.

Backtracking. The label [30,2J at node 3 gives the immediately preceding node r = 2.
Remove node 3 from further consideration in this iteration by crossing it out. Set
i = r = 2, and repeat step 2.

52 = {5} (note that node 3 has been removed in the backtracking step).

k = 5 and as = Czs = 30. Label node 5 with [30,2]. Breakthrough has been achieved;
go to step 5.

N3 = {I, 2, 5} and Cs = min {(X), 10, 30} = 10. The residuals along the path of N3 are

(C12,CZl) = (10 - 10,10 + 10) = (0,20)

(czs, CSZ) = (30 - 10,0+ 10) = (20,10)

"

','
".-l

:~
:~

';

Iteration 4. This iteration yields N4 = {l, 3, 2, 5} with 14 = 10 (verify!).

Iteration 5. This iteration yields Ns = {I, 4, 5} with Is = 10 (verify!).

Iteration 6. All the arcs out of node I have zero residuals. Hence, no further breakthroughs are
possible. We turn to step 6 to determine the solution.

Step 6. Maximal flow in the network is F = 11 + Jz + ... + Is = 20 + 10 + 10 +
10 + 10 = 60 units. The flow in the different arcs is computed by subtracting the last
residuals (Cij' Cji) in iterations 6 from the initial capacities (Cij, Cji), as the following
table shows.
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Arc

(1,2)
(1,3)
(1,4)
(2,3)
(2,5)
(3,4)
(3,5)
(4,5)

TORA Moment

(20, 0) - (0, 20) = (20, -20) 20
(30, 0) - (0, 30) = (30, -30) 30
(10,0) - (0,10) = (10, -10) 10
(40,0) - (40,0) = (0,0) 0
(30, 0) - (10, 20) = (20, -20) 20
(10,5) - (0, 15) = (10, -10) 10
(20, 0) - (0, 20) = (20, -20) 20
(20, 0) - (0, 20) = (20, -20) 20

Direction

.,

e

You can use TORA to solve the maximal flow model in an automated mode or to produce the it
erations outlined above. From the SOLVEIMODIFY menu, select S61V1H>-tbblern. After
specifying the output format, go to the output screen and select either Majdiriurii:Fi6"is or
IteratiOlls. File toraEx6.4-2.txt provides TORA's data for Example 6.4-2.

PROBLEM SET 6.4B

*1. In Example 6.4-2,

(a) Determine the surplus capacities for all the arcs.

(b) Determine the amount of flow through nodes 2,3, and 4.

(c) Can the network flow be increased by increasing the capacities in the directions
3-5 and4-5?

2. Determine the maximal flow and the optimum flow in each arc for the network in
Figure 6.32.

:e
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4

1}--------+---~------;

8

o

FIGURE 6.32

Network for Problem 2, Set 6.4b
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Refineries Pumping stations
" t .: I

Terminals .:

FIGURE 6.33

Network for Problem 3, Set 6.4b

3. ll1fee refineries send a gasoline product to two distribution terminals through a pipeline
network. Any demand that cannot be satisfied through the network is acquired from
other sources. TIle pipeline network is served by three pumping stations, as shown in
Figure 6.33. The product flows in the network in the direction shown by the arrows. The
capacity of each pipe segment (shown directly on the arcs) is in million bbl per day.
Determine the following:

(a) The daily production at each refinery that matches the maximum capacity of the net
work.

(b) The daily demand at each terminal that matches the maximum capacity of the net
work.

(c) The daily capacity of each pump that matches the maximum capacity of the network.

4. Suppose that the maximum daily capacity of pump 6 in the network of Figure 6.33 is lim
ited to 50 million bbl per day. Remodel the network to include this restriction. Then
determine the maximum capacity of the network.

5. Chicken feed is transported by trucks from three silos to four farms. Some of the silos can
not ship directly to some of the farms. The capacities of the other routes are limited by the
number of trucks available and the number of trips made daily. The following table shows
the daily amounts of supply at the silos and demand at the farms (in thousands of pounds).
The cell entries of the table specify the daily capacities of the associated routes.

Farm
2 3 4

1
Silo 2

3

30 5 0 40
0 0 5 90

100 40 30 40

20
20

200

200 10 60 20

(a) Determine the schedule that satisfies the most demand.

(b) Will the proposed schedule satisfy all the demand at the farms?
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6. In Problem 5, suppose that transshipping is allowed between silos 1 and 2 and silos 2 and
3. Suppose also that transshipping is allowed between farms 1 and 2,2 and 3, and 3 and 4.
The maximum two-way daily capacity on the proposed transshipping routes is 50 (thou
sand) lb. What is the effect of transshipping on the unsatisfied demands at the farms?

*7. A parent has five (teenage) children and five household chores to assign to them. Past
experience has shown that forcing chores on a child is counterproductive. With this in
mind, the children are asked to list their preferences among the five chores, as the follow
ing table shows:

Child Preferred chore

Rif 3,4,or 5
Mai 1
Ben 10r2
Kim 1,2,or5
Ken 2

The parent's modest goal now is to finish as many chores as possible while abiding by
the children's preferences. Determine the maximum number of chores that can be com
pleted and the assignment of chores to children.

8. Four factories are engaged in the production of four types of toys. The following table
lists the toys that can be produced by each factory.

Factory

1
2
3
4

Toy productions mix

1,2,3
2,3
1,4
3,4

All toys require approximately the same per-unit labor and material. The daily capaci
ties of the four factories are 250,180,300, and 100 toys, respectively. The daily demands
for the four toys are 200, 150, 350, and 100 units, respectively. Determine the factories'
production schedules that will most satisfy the demands for the four toys.

9. TIle academic council at the U of A is seeking representation from among six students
who are affiliated with four honor societies. The academic council representation includes
three areas: mathematics, art, and engineering. At most two students in each area can be
on the council. The following table shows the membership of the six students in the four
honor societies:

Society

1

2
3
4

Affiliated students

1,2,3
1,3,5
3,4,5
1,2,4,6

The students who are skilled in the areas of mathematics, art, and engineering are
shown in the following table:
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Area Skilled students

Mathematics 1, 2, 4
Art 3,4
Engineering 4,5,6

A student who is skilled in more than one area must be assigned exclusively to one
area only. Can all four honor societies be represented on the council?

10. Maximal/minimal flow in networks with lower bounds. The maximal flow algorithm given
in this section assumes that all the arcs have zero lower bounds. In some models, the
lower bounds may be strictly positive, and we may be interested in finding the maximal or
minimal flow in the network (see case 6-3 in Appendix E). The presence of the lower
bound poses difficulty because the network may not have a feasible flow at all. The objec
tive of this exercise is to show that any maximal and minimal flow model with positive
lower bounds can be solved using two steps.

Step 1. Find an initial feasible solution for the network with positive lower bounds.

Step 2. Using the feasible solution in step 1, find the maximal or minimal flow in the
original network.

(a) Show that an arc (i, j) with flow limited by iij ::5 Xi; ::5 Ui; can be represented equiva
lently by a sink with demand ii; at node i and a source with supply li; at node j with
flow limited by 0 ::5 Xi; ::5 lli; - li;'

(b) Show lhat finding a feasible solution for the original network is equivalent to finding
the maximal flow xi; in the network after (1) modifying the bounds on Xi; to
o ::5 xi; ::5 Ui; - ii;, (2) "lumping" all the resulting sources into one supersource with
outgoing arc capacities li;' (3) "lumping" all the resulting sinks into one supersink
with incoming arc capacities li;' and (4) connecting the terminal node t to the source
node s in the original network by a return infinite-capacity arc. A feasible solution
exists if the maximal flow in the new network equals the sum of the lower bounds in
the original network. Apply the procedure to the following network and find a feasi
ble flow solution:

Arc 0, j) (lij' Uij)

(1,2) (5,20)
(1,3) (0,15)
(2,3) (4,10)
(2,4) (3,15)
(3,4) (0,20)

(c) Use the feasible solution for the network in (b) together with the maximal flow algo
rithm to determine the minimal flow in the original network. (Hint: First compute the
residue network given the initial feasible solution. Next, determine the maximum flow
from the end node to the start node. This is equivalent to finding the maximum flow
that should be canceled from the start node to the end node. Now, combining the fea
sible and maximal flow solutions yields the minimal flow in the original network.)

(d) Use the feasible solution for the network in (b) together with the maximal flow
model to determine the maximal flow in the original network. (Him: As in part (c),
start with the residue network. Next apply the breakthrough algorithm to the result
ing residue network exactly as in the regular maximal flow model.)
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6.4.3 linear Programming Formulation of Maximal Flow Mode

Define Xij as the amount of flow in arc (i,j) with capacity Cij . The objective is to deter
mine Xij for all i and j that will maximize the flow between start node s and terminal
node t subject to flow restrictions (input flow = output flow) at all but nodes sand t.

Example 6.4-3

In the maximal flow model of Figure 6.29 (Example 6.4-2), s = 1 and t = 5_ The following table
summarizes the associated LP with two different, but equivalent, objective functions depending
on whether we maximize the output from start node 1 (= z.) or the input to terminal node
5(=Z2)'

Xu XIJ X14

Maximize Zl = 1 1 1
Maximize Z2 =

e Node 2 1
Node 3 1
Node 4 1

Capacity 20 30 10

-1
1

40

X2j X34 X35 X43 X45

1 1 1

-1 =0
-1 -1 1 =0

1 -1 -1 ,,;0

30 10 20 5 20

g

1

[-

)

~e

ow
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The optimal solution using either objective function is

Xu = 20, xn = 30, XI4 = 10, X2S = 20, x34 = 10, X35 = 20, X45 = 20

TIle associated maximum flow is Z1 = Z2 = 60.

Solver Moment

Figure 6.34 gives the Excel Solver model for the maximum flow model of Example 6.4-2
(file solverEx6.4-2.xls). The general idea of the model is similar to that used with the
shortest-route model, which was detailed following Example 6.3-6.The main differences
are: (1) there are no flow equations for the start node 1 and end node 5, and (2) the ob
jective is to maximize the total outflow at start node 1 (F9) or, equivalently, the total in
flow at terminal node 5 (G13). File solverEx6.4-2.xls uses G13 as the target cell. You are
encouraged to execute the model with F9 as the target cell.

AMPLMoment

Figure 6.35 provides the AMPL model for the maximal flow problem. The data applies
to Example 6.4-2 (file ampIEx6.4-2.txt). The overall idea of determining the input and
output flows at a node is similar to the one detailed following Example 6.3-6 of the
shortest-route model (you will find it helpful to review files amplEx6.3-6a.txt and
ampIEx6.3-6b.txt first). However, because the model is designed to find the maximum
flow between any two nodes, start and end, two additional constraints are needed to
ensure that no flow enters start and no flow Leaves end. Constraints inStart and
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FIGURE 6.34

Excel Solver solution of the maximal flow model of 6.4-2 (file solverEx6.4-2.xls)

QutEnd in the model ensure this result. These two constraints are not needed when
start=l and end=5 because the nature of the data guarantees the desired result.
However, for start=3, node 3 allows both input and output flow (arcs 4-3 and 3-4) and,
hence, constraint inS tart is needed (try the model without inStart!).

The objective function maximizes the sum of the output flow at node start.
Equivalently, we can choose to maximize the sum of the input flow at node end. The
model can find the maximum flow between any two designated start and end nodes
in the network.

PROBLEM SET 6.4C

1. Model each of the following problems as a linear program, then solve using Solver and
AMPL.

(a) Problem 2, Set 6.4b.

(b) Problem 5,Set 6.4b

(c) Problem 9, Set 6.4b.

2. Jim lives in Denver, Colorado, and likes to spend his annual vacation in Yellowstone
National Park in Wyoming. Being a nature lover, Jim tries to drive a different scenic route
each year. After consulting the appropriate maps, Jim has represented his preferred
routes between Denver (D) and Yellowstone (Y) by the network in Figure 6.36. Nodes 1
through 14 represent intermediate cities. Although driving distance is not an issue,Jim's
stipulation is that selected routes between D and Y do not include any common cities.
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#-------- Maximal Flow model (Example 6.4-2}--------
param n:
param start;
param end;
param c{i in 1 .. n, j in 1 .. n) default 0;

var x{i in l .. n,j in 1 .. n:c[i,j»O}>=O,<=c[i,j]:
var outFlow{i in 1 .. n}=sum{j in 1 .. n:c[i,jl>O}x(i,j];
var inFlow{i in 1 .. n}=sum{j in 1 .. n:c(j,ij>O}x[j,i]:

maximize z: sum {j in 1 ..n:c(start,j]>O}x(start,j]:
subject to
limit{i in 1. .n:

i<>start and i<>end}:outFlow[i]-inFlow[i]=O;
inStart:sum{i in 1 .. n:c(i,start]>0}x[i,start]=0:
outEnd:sum{j in 1 .. n:c[end,j]>0}x{end,j]=0;

data:
param n:=5;
param start:=l;
param end: =5;
param c:

1 2 3 4 5 :=

20 30 10 0
40 0 30
o 10 20
5 20

solve;
print "MaxFlow between nodes",start,"and",end, "=",z:
printf· "Associated flows: \n";
for {i in 1 .. n-1} for {j in 2 .. n:c[i,j]>O}

{if x[i,j»O then
printf" (%2i-%2i)= %S.2f\n",i,j,x[i,j];} print;

FIGURE 6.35

AMPL model of the maximal flow problem of Example 6.4-2 (file ampIEx6.4-2.txt)

Determine (using AMPL and Solver) all the distinct routes available to Jim. (Hint:
Modify the maximal flow LP model to determine the maximum number of unique paths
between D and Y.)

3. (Gueret and Associates, 2002, Section 12.1) A military telecommunication system con
necting 9 sites is given in Figure 6.37. Sites 4 and 7 must continue to communicate even if
as many as three other sites are destroyed by enemy actions. Does the present communi
cation network meet this requirement? Use AMPL and Solver to work out the problem.

(PM AND PERT

CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique)
are network-based methods designed to assist in the planning, scheduling, and comrol
of projects. A project is defined as a collection of interrelated activities with each activity
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FIGURE 6.36

Network for Problem 2, Set 6.4c

FIGURE 6.37

Network for Problem 3, Set 6.4c

consuming time and resources. The objective of CPM and PERT is to provide analytic
means for scheduling the activities. Figure 6.38 summarizes the steps of the techniques.
First, we define the activities of the project, their precedence relationships, and their
time requirements. Next, the precedence relationships among the activities are repre
sented by a network. TIle third step involves specific computations to develop the time
schedule for the project. During the actual execution of the project things may not pro
ceed as planned, as some of the activities may be expedited or delayed. When this hap
pens, the schedule must be revised to reflect the realities on the ground. This is the
reason for including a feedback loop between the time schedule phase and the net
work phase, as shown in Figure 6.38.

~t '
..'~ '.;.;..:.~~~:.;,

6.5.1
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FIGURE 6.38

Phases for project planning with CPM-PERT

The two techniques, CPM and PERT, which were developed independently, dif
fer in that CPM assumes deterministic activity durations and PERT assumes proba
bilistic durations. This presentation will start with CPM and then proceed with the
details of PERT.

6.5.1 Network Representation

Each activity of the project is represented by an arc pointing in the direction of
progress in the project. The nodes of the network establish the precedence relation
ships among the different activities.

Three rules are available for constructing the network.

Rule 1. Each activity is represented by one, and only one, arc.
Rule 2. Each activity must be identified by two distinct end nodes.

Figure 6.39 shows how a dummy activity can be used to represent two concurrent
activities, A and B. By definition, a dummy activity, which normally is depicted by a

FIGURE 6.39

Use of dummy activity to produce unique representation of concurrent activities
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FIGURE 6.40

Network Models

~
~

Use of dummy activity to ensure correct precedence relationship (a) (b)

dashed are, consumes no time or resources. Inserting a dummy activity in one of the
four ways shown in Figure 6.39, we maintain the concurrence of A and B, and provide
unique end nodes for the two activities (to satisfy rule 2).

Rule 3. To maintain the correct precedence relationships, the following questions must
be answered as each activity is added to the network:

(a) What activities must immediately precede the current activity?

(b) What activities must follow the current activity?

(c) What activities must occur concurrently with the current activity?

The answers to these questions may require the use of dummy activities to
ensure correct precedences among the activities. For example, consider the following
segment of a project:

1. Activity C starts immediately after A and B have been completed.
2. Activity E starts only after B has been completed.

Part (a) of Figure 6.40 shows the incorrect representation of the precedence relation
ship because it requires both A and B to be completed before E can start. In part (b),
the use of a dummy activity rectifies the situation.

Example 6.5-1

A publisher has a contract with an author to publish a textbook. The (simplified) activities asso
ciated with the production of the textbook are given below. The author is required to submit to
the publisher a hard copy and a computer file of the manuscript. Develop the associated net
work for the project.

Activity

A: Manuscript proofreading by editor
B: Sample pages preparation
C: Book cover design
D: Artwork preparation
E: Author's approval of edited

manuscript and sample pages
F: Book formatting
G: Author's review of formatted pages
H: Author's review of artwork
I: Production of printing plates
J: Book production and binding

Predecessor(s)

A,B
E
F
D

G,H
C,I

Duration (weeks)

3
2
4
3

2
4
2
1
2
4

.""

,;.0. ';:?~;~.s-~ ..
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FIGURE 6.41

Project network for Example 6.5-1

Figure 6.41 provides the network describing the precedence relationships among the differ
ent activities. Dummy activity (2,3) produces unique end nodes for concurrent activities A and
B. It is convenient to number the nodes in ascending order in the direction of progress in the
project.

PROBLEM SET 6.5A

1. Construct the project network comprised of activities A to L with the following prece
dence relationships:

(a) A, B, and C, the first activities of the project, can be executed concurrently.

(b) A and B precede D.

(c) B precedes E, F, and H.
(d) F and C precede G.

(e) E and H precede I and J.

(I) C, D, F, and J precede K.

(g) K precedes L.
(h) I, G, and L are the terminal activities of the project.

2. Construct the project network comprised of activities A to P that satisfies the following
precedence relationships:

(a) A, B, and C, the first activities of the project, can be executed concurrently.

(b) D, E, and F follow A.

(c) I and G follow both Band D.

(d) H follows both C and G.

(e) K and L follow 1.

(f) J succeeds both E and H.

(g) M and N succeed F, but cannot start until both E and H are completed.

(h) 0 succeeds M and I.

(i) P succeeds 1, L, and o.
(j) K, N, and P are the terminal activities of the project.

*3. The footings of a building can be completed in four consecutive sections. The activities for
each section include (1) digging, (2) placing steel, and (3) pouring cqncrete. The digging of
one section cannot start until that of the preceding section has been completed. The same
restriction applies to pouring concrete. Develop the project network.

4. In Problem 3, suppose that 10% of the plumbing work can be started simultaneously with
the digging of the first section but before any concrete is poured. After each section of the
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footings is completed, an additional 5% of the plumbing can be started provided that the
preceding 5% portion is complete. The remaining plumbing can be completed at the end
of the project. Construct the project network.

5. An opinion survey involves designing and printing questionnaires, hiring and training
personnel, selecting participants, mailing questionnaires, and analyzing the data.
Construct the project network, stating all assumptions.

6. The activities in the following table describe the construction of a new house. Construct
the associated project network.

A:
B:
C:
D:
£:
F:
G:
H:
l:
J:
K:
L:
M:
N:
0:
P:
Q:
R:
s:
T:

Activity

Clear site
Bring utilities to site
Excavate
Pour foundation
Outside plumbing
Frame house
Do electric wiring
Lay floor
Lay roof
Inside plumbing
Shingling
Outside sheathing insulation
Install windows and outside doors
Do brick work
Insulate walls and ceiling
Cover walls and ceiling
Insulate roof
Finish interior
Finish exterior
Landscape

Predecessor(s)

A
C

B,C
D
F
G
F

E,H
I

F,J
F

L,M
G,J
o

I, P
P

I, N
S

Duration (days)

1
2
1
2
6
10
3
1
1
5
2
1
2
4
2
2
1
7
7
3

7. A company is in the process of preparing a budget for launching a new product. The fol
lowing table provides the associated activities and their durations. Construct the project
network.

A:
B:
c:
D:
E:
F:
G:

Activity

Forecast sales volume
Study competitive market
Design item and facilities
Prepare production schedule
Estimate cost of production
Set sales price
Prepare budget

Predecessor(s)

A
C
D

B,E
E,F

Duration (days)

10
7
5
3
2
1
14

8. The activities involved in a candlelight choir service are listed in the following table.
Construct the project network.

A:
B:

Activity

Select music
Learn music

Predecessor(s)

A

Duration (days)

2
14



C:
D:
E:
F:
G:
H:
I:
J:
K:
L:
M:
N:
0:

Make copies and buy books
Tryouts
Rehearsals
Rent candelabra
Decorate candelabra
Set up decorations
Order choir robe stoles
Check out public address system
Select music tracks
Set up public address system
Final rehearsal
Choir party
Final program

A
B,C

D
D
F
D
D
D
]

K
E,G,L
H,L,M

I, N
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14
3

70
14

1
1
7
7

14
1
1
1
1

9. The widening of a road section requires relocating ("reconductoring") 1700 feet of 13.8-kV
overhead primary line. The following table summarizes the activities of the project.
Construct the associated project network.

Activity Predecessor(s) Duration (days)

A: Job review 1
B: Advise customers of temporary outage A !

2
C: Requisition stores A 1
D: Scout job A 1

2:
E: Secure poles and material C,D 3
F: Distribute poles E 3!

2

G: Pole location coordination D 1
2:

If: Re-stake G I
2:

I: Dig holes H 3
J: Frame and set poles F,l 4
K: Cover old conductors F,l 1
L: Pull new conductors J,K 2
M: Install remaining material L 2
N: Sag conductor L 2
0: Trim trees D 2

1
P: De-energize and switch lines B,M,N,O 10
Q: Energize and switch new line P 1

2:
R: Clean up Q 1
s: Remove old conductor Q 1
T: Remove old poles S 2
U: Return material to stores R,T 2

!O. The following table gives the activities for buying a new car. Construct the project network.

" .

.-~ ,

A:
B:
C:
D:
E:
F:
G:
H:

Activity

Conduct feasibility study
Find potential buyer for present car
List possible models
Research all possible models
Conduct interview with mechanic
Collect dealer propaganda
Compile pertinent data
Choose top three models

Predecessor(s)

A
A
C
C
C

D,E,F
G

Duration (days)

3
14

1
3
1
2
1
1
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I:
J:
K:
L:
M:
N:
0:

Test-drive all three choices
Gather warranty and financing data
Choose one car
Choose dealer
Search for desired color and options
Test-drive chosen model once again
Purchase new car

H
H
l,J
K
L
L

B,M,N

3
2
2
2
4
1
3

6.5.2 Critical Path (CPM) Computations

The end result in CPM is the construction of the time schedule for the project (see
Figure 6.38). To achieve this objective conveniently, we carry out special computations
that produce the following information:

1. Total duration needed to complete the project.
2. Classification of the activities of the project as critical and noncritical.

An activity is said to be critical if there is no "leeway" in determining its start and
finish times. A noncritical activity allows some scheduling slack, so that the start time
of the activity can be advanced or delayed within limits without affecting the comple
tion date of the entire project.

To carry out the necessary computations, we define an event as a point in time at
which activities are terminated and others are started. In tenns of the network, an
event corresponds to a node. Define

q = Earliest occurrence time of event j

!:J.. j = Latest occurrence time of event j

Dij = Duration of activity (i, j)

The definitions of the earliest and latest occurrences of event j are specified relative to
the start and completion dates of the entire project.

The critical path calculations involve two passes: The forward pass detennines
the earliest occurrence times of the events, and the backward pass calculates their latest
occurrence times.

Forward Pass (Earliest Occurrence limes, 0). The computations start at node 1 and
advance recursively to end node n.

Initial Step. Set 0 1 = 0 to indicate that the project starts at time O.
General Stepj. Given that nodes p, q, , and v are linked directly to node j by

incoming activities (p, n, (q, j), , and (v, j) and that the earliest occur-
rence times of events (nodes) p, q, ... , and v have already been computed,
then the earliest occurrence time of event j is computed as
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The forward pass is complete when On at node n has been computed. By def
inition q represents the longest path (duration) to node j.

Backward Pass (Latest Occurrence TImes, a). Following the completion of theforward
pass, the backward pass computations start at node n and end at node 1.

Initial Step. Set an = On to indicate that the earliest and latest occurrences of the
last node of the project are the same.

General Stepj. Given that nodes p, q, , and v are linked directly to node j by
outgoing activities (j, p), (j, q), , and (j, v) and that the latest occurrence
times of nodes p, q, ... , and v have already been computed, the latest occur
rence time of node j is computed as

The backward pass is complete when ~1 at node 1 is computed. At this point,
~1 = 0 1 (= 0).

Based on the preceding calculations, an activity 0, j) will be critical if it satisfies
three conditions.

1. ~j = OJ

2. li j = q
3. ~j - ~j = q - q = Djj

The three conditions state that the earliest and latest occurrence times of end nodes i
and j are equal and the duration Dij fits "tightly" in the specified time span. An activity
that does not satisfy all three conditions is thus noncritical.

By definition, the critical activities of a network must constitute an uninterrupted
path that spans the entire network from start to finish.

Example 6.5-2

Determine the critical path for the project network in Figure 6.42 .All the durations are in days.

Forward Pass

Node 1. Set 0 1 == 0
Node 2. Q = 0 1 + D12 = 0 + 5 = 5
Node3. ~ = max{O} + D13,Q + ~3} = max{O + 6,5 + 3} = 8
Node 4. 0 4 = Q + D24 = 5 + 8 = 13
Node S. Os = max{~ + D35,04 + D4S } = max{8 + 2,13 + O} = 13
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FIGURE 6.42

Forward and backward pass calculations for the project of Example 6.5-2

Node 6. ~ = max{~ + D36, 0 4 + D46, Os + DS6 }

= max{8 + 11,13 + 1,13 + 12} = 25

The computations show that the project can be completed in 25 days.

Backward Pass

Node 6. Set A6 = ~ = 25
Node 5. As = A6 - DS6 = 25 - 12 = 13
Node 4. A4 = min{ A6 - D46, As - D4S } = min{25 - 1,13 - O} = 13
Node 3. A3 = min{A6 - D36, As - D3S } = min{25 - 11,13 - 2} = 11
Node 2. A2 = min{A4 - ~4, A) - ~)} = min{13 - 8,11 - 3} = 5
Node 1. Al = min{A) - D13, A2 - ~} = min{ll - 6,5 - 5} = 0

Correct computations will always end with Al = O.
The forward and backward pass computations can be made directly on the network as

shown in Figure 6.42. Applying the rules for determining the critical activities, the critical path is
1~ 2~ 4~ 5~ 6, which, as should be expected, spans the network from start (node 1) to
finish (node 6). The sum of the durations of the critical activities [(1,2), (2, 4), (4, 5), and (5, 6)J
equals the duration of the project (= 25 days). Observe that activity (4,6) satisfies the first two
conditions for a critical activity (A4 = 0 4 = 13 and As = Os = 25) but not the third
(4 - 0 4 =t= D46 ). Hence, the activity is noncritical.

PROBLEM SET 6.5B

*1. Determine the critical path for the project network in Figure 6.43.

2. Determine the critical path for the project networks in Figure 6.44.
.':
'.I'

,,{/:'i~~4~::...."
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FIGURE 6.43

Project networks for Problem 1, Set 6.5b

Project (a)

FIGURE 6.44

Project network for Problem 2, Set 6.5b

Project (b)

3. Determine the critical path for the project in Problem 6, Set6.5a.

4. Determine the critical path for the project in Problem 8, Set 6.5a.

5. Determine the critical path for the project in Problem 9, Set 6.5a.

6. Determine the critical path for the project in Problem 10, Set 6.5a.

6.5.3 Construction of the Time Schedule
IS
lS This section shows how the information obtained from the calculations in Section 6.5.2
o can be used to develop the time schedule. We recognize that for an activity Ci, j), q rep-
)] resents the earliest start time, and I1 j represents the latest completion (fine. TIlis means
'0 that the interval (O;,l1 j ) delineates the (maximum) span during which activity (i, j)
·d may be scheduled without delaying the entire project.

Construction of Preliminary Schedule. The method for constructing a preliminary
schedule is illustrated by an example.

Example 6.5-3

Determine the time schedule for the project of Example 6.5-2 (Figure 6.42).
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FIGURE 6.45

Preliminary schedule for the project of Example 6.5-2

We can get a preliminary time schedule for the different activities of the project by delineat
ing their respective time spans as shown in Figure 6.45. Two observations are in order.

1. The critical activities (shown by solid lines) must be stacked one right after the other to
ensure that the project is completed within its specified 25-day duration.

2. The noncritical activities (shown by dashed lines) have time spans that are larger than
their respective durations, thus allowing slack (or "leeway") in scheduling them within their
allotted time intervals.

How should we schedule the noncritical activities within their respective spans? Normally, it
is preferable to start each noncritical activity as early as possible. In this manner, slack periods
will remain opportunely available at the end of the allotted span where they can be used to
absorb unexpected delays in the execution of the activity. It may be necessary, however, to delay
the start of a noncritical activity past its earliest start time. For example, in Figure 6.45, suppose
that each of the noncritical activities E and F requires the use of a bulldozer, and that only one is
available. Scheduling both E and F as early as possible requires two bulldozers between times 8
and 10. We can remove the overlap by starting E at time 8 and pushing the start time of F to
somewhere between times 10 and 14.

If all the noncritical activities can be scheduled as early as possible, the resulting schedule
automatically is feasible. Otherwise, some precedence relationships may be violated if noncriti
cal activities are delayed past their earliest time. Take for example activities C and E in Figure
6.45. In the project network (Figure 6.42 ), though C must be completed before E, the spans of C
and E in Figure 6.45 allow us to schedule C between times 6 and 9, and E between times 8 and
10, which violates the requirement that C precede E. The need for a "red flag" that automatical
ly reveals schedule conflict is thus evident. Such information is provided by computing the floats
for the noncritical activities.
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Determination of the Floats. Floats are the slack times available within the allotted
span of the noncritical activity. The most common are the total float and the free float.

Figure 6.46 gives a convenient summary for computing the total float (Tfij) and
the free float (FFij) for an activity (i, j). The total float is the excess of the time span
defmed from the earliest occurrence of event i to the latest occurrence of event j over
the duration of (i, j)-that is,

The free float is the excess of the time span defined from the earliest occurrence of
event i to the earliest occurrence of event j over the duration of (i, j)-that is,

By definition, F Fij :-:::; T Fij.

Red~F1agging Rule. For a noncritical activity (i, j)

(a) IfFFij = T Fij, then the activity can be scheduled anywhere within its (OJ, Aj ) span
without causing schedule conflict.

(b) If FFij < T Fij' then the start of the activity can be delayed by at most FFij relative
to its earliest start time (OJ without causing schedule conflict. Any delay larger
than FFij (but not more than T Fij) must be coupled with an equal delay relative to
OJ in the start time ofall the activities leaving node j.

The implication of the rule is that a noncritical activity (i, j) will be red-flagged if
its FFij < TF';j. This red flag is important only if we decide to delay the start of the
activity past its earliest start time, q, in which case we must pay attention to the start
times of the activities leaving node j to avoid schedule conflicts.

FIGURE 6.46

Computation of total and free floats

n D;J" n
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Example 6.5-4

Compute the floats for the noncritical activities of the network in Example 6.5-2, and discuss
their use in finalizing a schedule for the project.

The following table summarizes the computations of the total and free floats. It is more con
venient to do the calculations directly on the network using the procedure in Figure 6.42.

Noncritical activity Duration Total float (TF) Free float (FF)

ft~f~i~~~;
6 11 - 0 - 6 = 5 8 - 0 - 6 = 2
3 11 - 5 - 3 = 3 8 - 5 - 3 == 0

£(3,5) 2 13 - 8 - 2 = 3 13 - 8 - 2 = 3
F(3,6) 11 25 - 8 - 11 = 6 25 - 8 - 11 = 6
G(4,6) 1 25 - 13 - 1 = 11 25 - 13 - 1 = 11

TIle computations red-flag activities Band C because their F F < T F. The remaining activ
ities (E, F, and G) have F F = T F, and hence may be scheduled anywhere between their earliest
start and latest completion times.

To investigate the significance of the red-flagged activities, consider activity B. Because its
T F = 5 days, this activity can start as early as time 0 or as late as time 5 (see Figure 6.45).
However, because its F F = 2 days, starting B anywhere between time 0 and time 2 will have no
effect on the succeeding activities E and F. If, however, activity B must start at time 2 + d ($5),
then the start times of the immediately succeeding activities E and F must be pushed forward
past their earliest start time (= 8) by at least d. In this manner, the precedence relationship
between B and its successors E and F is preserved.

Turning to red-flagged activity C, we note that its FF = O. This means that any delay in
starting C past its earliest start time (= 5) must be coupled with at least an equal delay in the
start of its successor activities E and F.

lORA Moment

TORA provides useful tutorial tools for CPM calculations and for constructing the time
schedule. To use these tools, select Proje~tPla@~ri.g ===? CPM~CrititalPath:Method

from Main Menu. In the output screen, you have the option to select CPM' Calculations
to produce step-by-step computations of the forward pass, backward pass, and the
floats or CPMBai Chart to construct and experiment with the time schedule.

File toraEx6.5-2.txt provides TORA's data Example 6.5-2. If you elect to generate
the output using the NextSiep option,TORA will guide you through the details of the
forward and backward pass calculations.

Figure 6.47 provides the TORA schedule produced by CPM'BarChart option for
the project of Example 6.5-2. The default bar chart automatically schedules all noncrit
ical activities as early as possible. You can study the impact of delaying the start time of
a noncritical activity by using the self-explanatory drop-down lists inside the bottom
left frame of the screen. The impact of a delay of a noncritical activity will be shown
directly on the bar chart together with an explanation. For example, if you delay the
start of activity B by more than 2 time units, the succeeding activities E and F will be

;,.
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FIGURE 6.47

TORA bar chart output for Example 6.5-2 (file toraEx6.5-2.txt)

delayed by an amount equal to the difference between the delay over the free float of
activity B. Specifically, given that the free float for B is 2 time units, if B is delayed by 3
time units, then E and F must be delayed by at least 3 - 2 = 1 time unit. This situation
is demonstrated in Figure 6.47.

AMPLMoment

Figure 6.48 provides the AMPL model for the CPM (file amplEx6.52.txt). The model is
driven by the data of Example 6.5-2. This AMPL model is a unique application because
it uses indexed sets (see Section A.4) and requires no optimization. In essence, no
solve command is needed, and AMPL is implemented as a pure programming lan
guage similar to Basic or C.

The nature of the computations in CPM requires representing the network by
associating two indexed sets with each node: into and from. For node i, the set into [i]

defines all the nodes that feed into node i, and the set from [i] defines all the nodes
that are reached from node i. For example, in Example 6.5-2, from[l] = {2, 3} and
into [1] is empty.

The determination of subsets from and into is achieved in the model as follows:
Because D [ i , j 1 can be zero when a CPM network uses dummy activities, the default
value for D [ i , j] is -1 for all nonexisting arcs. Thus, the set from [ i] represents all the
nodes j in the set {1 .. n} that can be reached from node i, which can happen only if
D[i, j] >=0. This says that from[i] is defined by the subset {j in 1. .n:D[i, j] > =O} .
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#----- CPM (Example 6.5-2)-----

param n;
param D{l .. n,l .. n} default -1;

set into{l. .n};

set from{1. .n};

var xli in 1. .n, j in from[i]}>=O;

var ET{i in 1. .n};

var LT{i in 1. .n};

var TF{i in 1 .. n, j in from[i]};

var FF{i in 1 .. n, j in from[i] };

data;
param n:=6;
param D: 1 2 3 4 5 6:=

1 5 6
2 3 8

3 2 11

4 0 1

5 12

6 . ,

for {i in 1..n} {let from[i]:={j in 1..n:D[i,j]>=O));
for (j in 1..n) {let into(j]:={i in 1..n:O[i,j]>=0}};

#------nodes earliest and latest times and floats

let ET[l] :=0; #earliest node time
for (i in 2 .. n}let ET[i]:=max(j in into[i)] (ET[j]+D[j,i]);

let LT[n} :=ET[n] ; #latest node time
for{i in n-l .. l by -l}let LT[iJ :=min{j in from[i]) (LT[jj-D[i,j]);

printf "%ls-%15 %55 %55 %5s %5s %5s %55 %5s \n\n",
~i"l"j",nDn,"Esn,"Ecn,uLsnJ"LCH,nTF","FFU>Ex6.6-2out.txti

for {i in 1 .. n, j in from[i]}
{

let TF[ i. j] : =LT[j] -ET[ij -D(i, j] ;

let FF[i,j) :=ET[j]-ET[i)-D[i,j];
printf "%li-%li %5i %5i %5i %5i %5i %5i %5i %3s\n",

i, j ,D [i, j ] , ET [i] , ET (i J+D [i, j] , LT [j] -0 [i, j] ,LT [j] ,TF [i, j] , FF [i, j ] ,

if TP[i,j]=O then "e" else "" >Ex6.6-2out.txt;

FIGURE 6.48

AMPL model for Example 6.5-2 (file ampIEx6.S-2.txt)

Similar reasoning applies to the determination of subsets into [i l. The following
AMPL statements automate the determination of these sets and must follow the
D [i, j] data, as shown in Figure 6.48:

for {i in 1. .n} (let from[i] :={j in 1. .n:D[Lj]>=O}};
for {j in 1. .n} [let into[j] :={i in 1 .. n:D[i,j]>=0)};
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Once the sets from and into have been determined, the model goes through the
forward pass to compute the earliest time, ET [ i) . With the completion of this pass, we
can initiate the backward pass by using

let LT{n]:=ET[n];

The rest of the model is needed to obtain the output shown in Figure 6.49. This output
determines all the data needed to construct the CPM chart The logic of this segment is
based on the computations given in Examples 6.5-2 and 6.5-4.

PROBLEM SET 6.5C

1. Given an activity (i, j) with duration Dij and its earliest start time q and its latest comple
tion time t:i. j , determine the earliest completion and the latest start times of (i,j).

2. What are the total and free floats of a critical activity? Explain.

*3. For each of the following activities, determine the maximum delay in the starting time rel
ative to its earliest start time that will allow all the immediately succeeding activities to be
scheduled anywhere between their earliest and latest completion times.

(a) TF = 10, FF = 10, D = 4

(b) TF = 10,FF = S,D = 4

(c) TF = 1O,FF = O,D = 4

4. In Example 6.5-4, use the floats to answer the following:

(a) If activity B is started at time 1, and activity C is started at time 5, determine the ear
liest start times for E and F.

(b) If activity B is started at time 3, and activity C is started at time 7, determine the ear
liest start times for E and F.

(c) How is the scheduling of other activities impacted if activity B starts at time 6?

*5. In the project of Example 6.5-2 (Figure 6.42), assume that the durations of activities B
and F are changed from 6 and 11 days to 20 and 25 days, respectively.

(a) Determine the critical path.

(b) Determine the total and free floats for the network, and identify the red-flagged
activities.

FIGURE 6.49

Output of AMPL model for Example 6.5-2 (file amplEx6.5-2.txt)

i-j D ES EC LS LC TF FF

1-2 5 0 5 0 5 0 0 c
1-3 6 0 6 5 11 5 2
2-3 3 5 8 8 11 3 0

ng 2-4 8 5 13 5 13 0 0 c
he 3-5 2 8 10 11 13 3 3

3-6 11 8 19 14 25 6 6
4-5 0 13 13 13 13 0 0 c
4-6 1 13 14 24 25 11 11
5-6 12 13 25 13 25 0 0 c
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(c) If activity A is started at time 5, determine the earliest possible start times for activi
ties C, D, E,and G.

(d) If activities F, G, and H require the same equipment, determine the minimum num
ber of units needed of this equipment.

6. Compute the floats and identify the red-flagged activities for the projects (a) and (b) in
Figure 6.44, then develop the time schedules under the following conditions:

Project (a)

(i) Activity (1,5) cannot start any earlier than time 14.

(ii) Activities (5,6) and (5,7) use the same equipment, of which only one unit is
available.

(iii) All other activities start as early as possible.

Project (b)

(i) Activity (1,3) must be scheduled at its earliest start time while accounting for the
requirement that (1,2), (1, 3), and (1,6) use a special piece of equipment, of which 1
unit only is available.

(ii) All other activities start as early as possible.

6.5.4 linear Programming Formulation of (PM

A CPM problem can thought of as the opposite of the shortest-route problem (Section
6.3), in the sense that we are interested in finding the Longest route of a unit flow enter
ing at the start node and terminating at the finish node. We can thus apply the shortest
route LP formulation in Section 6.3.3 to CPM in the following manner. Define

Xij = Amount of flow in activity (i, j), for all defined i and j
Dij = Duration of activity (i, j), for all defined i and j

l1ms, the objective function of the linear program becomes

Maximize z = 2: DijXij
all defined

activities (i, j)

(Compare with the shortest route LP formulation in Section 6.3.3 where the objective
function is minimized.) For each node, there is one constraint that represents the con
servation of flow:

Total input flow = Total output flow

All the variables, Xij, are nonnegative.

Example 6.5-5

The· LP formulation of the project of Example 6.5-2 (Figure 6.42 ) is given below. Note that
nodes 1 and 6 are the start and finish nodes, respectively.

,
}

'::"1 '
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A B C D E F Dummy G H

XlZ XI3 X23 X24 X35 X36 X45 -1:46 X56

Maximize z = 6 6 3 8 2 11 0 1 12

Node 1 -1 -1 =-1
Node 2 1 -1 -1 0
Node 3 1 1 -1 -1 0
Node 4 1 -1 -1 0
Node 5 1 1 -1 0
Node 6 1 1 1 1

The optimum solution is

z = 25, x12(A) = 1, X24(D) = 1, x4s(Dummy) = 1, xS6(H) = 1, all others = 0

The solution defines the critical path as A ---7 D ---7 Dummy ---7 fl, and the duration of the project
is 25 days. The LP solution is not complete, because it determines the critical path, but does not
provide the data needed to construct the CPM chart. We have seen in Figure 6.48, however, that
AMPL can be used to provide all the needed information without the LP optimization.

PROBLEM SET 6.50

t 1. Use LP to determine the critical path for the project network in Figure 6.43.

2. Use LP to determine the critical path for the project networks in Figure 6.44.

6.5.5 PERT Networks

PERT differs from CPM in that it bases the duration of an activity on three estimates:

1. Optimistic time, a, which occurs when execution goes extremely welL
2. Most likely time, In, which occurs when execution is done under nonnal conditions.
3. Pessimistic time, b, which occurs when execution goes extremely poorly.

'e
1-

lat

The range (a, b) encloses all possible estimates of the duration of an activity. The esti
mate m lies somewhere in the range (a, b). Based on the estimates, the average dura
tion time, D, and variance, v, are approximated as:

- a + 4m + b
D=-----

6

CPM calculations given in Sections 6.5.2 and 6.5.3 may be applied directly, with D
replacing the single estimate D.
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It is possible now to estimate the probability that a node j in the network will
occur by a prespecified scheduled time, Sj' Let ej be the earliest occurrence time of
node j. Because the durations of the activities leading from the start node to node j are
random variables, ej also must be a random variable. Assuming that all the activities in
the network are statistically independent, we can determine the mean, E{ej}, and vari
ance, var{ej}, in the following manner. If there is only one path from the start node to
node j, then the mean is the sum of expected durations, D, for all the activities along
this path and the variance is the sum of the variances, v, of the same activities. On the
other hand, if more than one path leads to node j, then it is necessary first to determine
the statistical distribution of the duration of the longest path. This problem is rather
difficult because it is equivalent to determining the distribution of the maximum of
two or more random variables. A simplifying assumption thus calls for computing the
mean and variance, E{ej} and var{eil, as those of the path to node j that has the
largest sum of expected activity durations. If two or more paths have the same mean,
the one with the largest variance is selected because it reflects the most uncertainty
and, hence, leads to a more conservative estimate of probabilities.

Once the mean and variance of the path to node j, E{ej} and var{ej}, have been
computed, the probability that node j will be realized by a preset time Sj is calculated
using the following formula:

where

z = Standard normal random variable

S· - E{eJ
K. = J J

} Vvar{ej}

The standard normal variable z has mean 0 and standard deviation 1 (see Section 12.4.4).
Justification for the use of the normal distribution is that ej is the sum of independent
random variables. According to the central limit theorem (see Section 12.4.4), ej is
approximately normally distributed.

Example 6.5-6

Consider the project of Example 6.5-2. To avoid repeating critical path calculations, the values of
a, m, and b in the table below are selected such that Dij = Dij for all i and j in Example 6.5-2.

Activity i-j (a,m,b) Activity i-j (a, m, b)

A 1-2 (3,5,7) E 3-5 (1,2,3)
B 1-3 (4,6,8) F 3-6 (9,11,13)
C 2-3 (1,3,5) G 4-6 (1,1,1)
D 2-4 (5,8,11) H 5-6 (10,12,14)
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The mean Dij and variance Vij for the different activities are given in the following table. Note
that for a dummy activity (a, m, b) = (0,0,0), hence its mean and variance also equal zero.

Activity i-j Dij Vij Activity i-j Dij Vij

A 1-2 5 .444 E 3-5 2 .111
B 1-3 6 .444 F 3-6 11 .444
C 2-3 3 .444 G 4---6 1 .000
D 2-4 8 1.000 H 5-6 12 .444

The next table gives the longest path from node 1 to the different nodes, together with their
associated mean and standard deviation.

Node Longest path based on mean durations Path mean Path standard deviation

2 1-2 5.00 0.67
3 1-2-3 8.00 0.94
4 1-2-4 13.00 1.20
5 1-2-4-5 13.00 1.20
6 1-2--4-5-6 25.00 1.37

Finally, the following table computes the probability that each node is realized by time Sj
specified by the analyst.

TORA provides a module for carrying out PERT calculations. To use this module,
select Rt9Jf:-9firl:~rirlin.J~ ==> 'p,~RT~Prggtai'ri:Evaluatibri arid RevieW:T~c!ifu.qjj.~ from
MairiMeriu. In the output screen, you have the option to select ActivitY'M¢.ao)Var to
compute the mean and variance for each activity or PERT CalCulations to compute
the mean and variance of the longest path to each node in the network. File toraEx6.5
6.txt provides TORA's data for Example 6.5-6.

PROBLEM SET 6.5E

1. Consider Problem 2, Set 6.Sb. The estimates (a, m, b) are listed below. Determine the
probabilities that the different nodes of the project will be realized without delay.
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Project (a) Project (b)

Activity (a, m, b) Activity (a, m, b) Activity (a,m, b) Activity (a, m, b)

1-2 (5,6,8) 3-6 (3,4,5) 1-2 (1,3,4) 3-7 (12,13,14)
1-4 (1,3,4) 4-6 (4,8,10) 1-3 (5,7,8) 4-5 (10,12,15)
1-5 (2,4,5) 4-7 (5,6,8) 1-4 (6,7,9) 4-7 (8,10,12)
2-3 (4,5,6) 5-6 (9,10,15) 1-6 (1,2,3) 5-6 (7,8,11)
2-5 (7,8,10) 5-7 (4,6,8) 2-3 (3,4,5) 5-7 (2,4,8)
2-6 (8,9,13) 6-7 (3,4,5) 2-5 (7,8,9) 6-7 (5,6,7)
3-4 (5,9,19) 3-4 (10,15,20)
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Advanced Linear
Programming

Chapter Guide. TIlis chapter presents the mathematical foundation of linear program
ming and duality theory. The presentation allows the development of a number of com
putationally efficient algorithms, including the revised simplex method, bounded
variables, and parametric programming. Chapter 20 on the CD presents two additional
algorithms that deal with large-scale LPs: decomposition and the Karmarkar interior
point algorithm.

The material in this chapter relies heavily on the use of matrix algebra. Appendix D
on the CD provides a review of matrices.

The three topics that should receive special attention in this chapter are the re
vised simplex method, the bounded-variables algorithm, and parametric programming.
The use of matrix manipulations in the revised simplex method allows a better control
over machine roundoff error, an ever-present problem in the row operations method of
Chapter 3. The bounded variables algorithm is used prominently with the integer pro
gramming branch-and-bound algorithm (Chapter 9). Parametric programming adds a
dynamic dimension to the LP model that allows the determination of the changes in
the optimum solution resulting from making continuous changes in the parameters of
the model.

The task of understanding the details of the revised simplex method, bounded
variables, decomposition, and parametric programming is improved by summarizing
the results of matrix manipulations in the easy-to-read simplex tableau format of
Chapter 3. Although matrix manipulations make the algorithms appear different, the
theory is exactly the same as in Chapter 3.

This chapter includes 1 real-life application, 8 solved examples, 58 end-of-section
problems, and 4 end-ot-chapter comprehensive problems", The comprehensive prob
lems are in Appendix E on the CD. The AMPLlExcel/SolverrrORA programs are in
folder ch7Files.

297



298 Chapter 7 Advanced Linear Programming

Real-Life Application-Qptimal Ship Routing and Personnel Assignment
for Naval Recruitment in Thailand

Thailand Navy recruits are drafted four times a year. A draftee reports to one of 34
local centers and is then transported by bus to one of four navy branch bases. From
there, recruits are transported to the main naval base by ship. The docking facilities at
the branch bases may restrict the type of ship that can visit each base. Branch bases
have limited capacities but, as a whole, the four bases have sufficient capacity to ac
commodate all the draftees. During the summer of 1983, a total of 2929 draftees were
transported from the drafting centers to the four branch bases and eventually to the
main base. The problem deals with determining the optimal schedule for transporting
the draftees, first from the drafting centers to the branch bases and then from the
branch bases to the main base. The study uses a combination of linear and integer pro
gramming. The details are given in Case 5, Chapter 24 on the CD.

7.1 SIMPLEX METHOD FUNDAMENTALS

In linear programming, the feasible solution space is said to form a convex set if the
line segment joining any two distinct feasible points also falls in the set. An extreme
point of the convex set is a feasible point that cannot lie on a line segment joining any
two distinct feasible points in the set. Actually, extreme points are the same as corner
point, the more apt name used in Chapters 2, 3, and 4.

figure 7.1 illustrates two sets. Set (a), which is typical of the solution space of a
linear program, is convex (with six extreme points), whereas set (b) is nonconvex.

In the graphical LP solution given in Section 2.3, we demonstrated that the opti
mum solution can always be associated with a feasible extreme (corner) point of the
solution space. This result makes sense intuitively, because in the LP solution space
every feasible point can be determined as a function of its feasible extreme points. For
example, in convex set (a) of Figure 7.1, a feasible point X can be expressed as a convex
combination of its extreme points Xl> X2, X3, X 4, Xs, and X6 using

where

ai ~ 0, i = 1, 2, ... , 6

This observation shows that extreme points provide all that is needed to define the so
lution space completely.

FIGURE 7.1

Examples of a convex and a nonconvex set

(a) (b)
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7.1 Simplex Method Fundamentals 299

Example 7.1-1

Show that the following set is convex:

Let XI "" {xl. xU and X 2 = {xl', xi} be any two distinct points in C. If C is convex, then
X = (x}, X2) = alXI + a2X2, al + a2 = 1, al> a2 ::::: 0, must also be in C. To show that this is
true, we need to show that all the constraints of C are satisfied by the line segment X; that is,

Xl = alxl + a2xl' :S al(2) + a2(2) = 2

X2 "" alx2 + aZx2 :S al(3) + a2(3) = 3

Thus, Xl :S 2 and X2 :S 3. Additionally, the nonnegativity conditions are satisfied because a1 and az

are nonnegative.

PROBLEM SET 7.1 A

1. Show that the set Q = {Xl> x21xj + X2 :S 1, Xl ::::: 0, X2 ;::: O} is convex. Is the nonnegativ
ity condition essential for the proof?

*2. Show that the set Q = {Xl> x21xl ;::: lor Xz ::::: 2} is not convex.

3. Determine graphically the extreme points of the following convex set:

Q = {Xl> x2 1xl + X2 :s; 2, Xl ::::: 0, X2 ::::: O}

Show that the entire feasible solution space can be determined as a convex combination
of its extreme points. Hence conclude that any convex (bounded) solution space is totally
defined once its extreme points are known.

4. In the solution space in Figure 7.2 (drawn to scale), express the interior point (3, 1) as a
convex combination of the extreme points A, B, C, and D with each extreme point carry
ing a strictly positive weight.
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Solution space for Problem 4, Set 7.1a



subject to

Maximize or minimize z = ex

AX= b

X?: 0

7.1.1 From Extreme Points to Basic Solutions

It is convenient to express the general LP problem in equation form (see Section 3.1)
using matrix notation. Define X as an n-vector representing the variables, A as an
(m X n)-matrix representing the constraint coefficients, b as a column vector repre
senting the right-hand side, and e as an n-vector representing the objective-function
coefficients. The LP is then written as

Advanced Linear Programming

Using the format of Chapter 3 (see also Figure 4.1), the rightmost m columns of A
always can be made to represent the identity matrix I through proper arrangements of
the slack/artificial variables associated with the starting basic solution.

A basic solution of AX = b is determined by setting n - m variables equal to
zero, and then solving the resulting m equations in the remaining m unknowns,provided
that the resulting solution is unique. Given this definition, the theory of linear program
ming establishes the following result between the geometric definition of extreme
points and the algebraic definition of basic solutions:

Extreme points of {XIAX = b} <=} Basic solutions of AX = b

The relationship means that the extreme points of the LP solution space are totally
defined by the basic solutions of the system AX = b, and vice versa. Thus, we conclude
that the basic solutions of AX = b contain all the information we need to determine
the optimum solution of the LP problem. Furthermore, if we impose the nonnegativity
restriction, X ?: 0, the search for the optimum solution is confined to the feasible basic
solutions only.

To formalize the definition of a basic solution, the system AX = b can be expressed
in vector form as follows:
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2:PjXj = b
j=1

The vector Pj is the jth column of A. A subset of m vectors is said to form a basis, B, if,
and only if, the selected m vectors are linearly independent. In this case, the matrix B is
nonsingular. If X B is the set of m variables associated with the vectors of nonsingular
B, then X s must be a basic solution. In this case, we have

BXB = b

Given the inverse B-1 of B, we then get the corresponding basic solution as

If B-1b ?: 0, then X B is feasible. The definition assumes that the remaining n - m vari
ables are nonbasic at zero level.
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The previous result shows that in a system of m equations and n unknowns, the
maximum number of (feasible and infeasible) basic solutions is given by

(n) n!
m - m!(n - m)!

3
-2(~

Example 7.1-2

Determine and classify (as feasible and infeasible) all the basic solutions of the following system
of equations.

The following table summarizes the results. TIle inverse of B is determined by using one of
the methods in Section D.2.7 on the CD.

B BXB = b Solution

(PI,P2) G-;)(;:) = G) (;~) = G-DG) = (D
(P1,P3) (Not a basis) -

(-; =D(~~) = G) () (I I ( (3)X2 _ ~ -ii 4 4"
(P2,P3)

X3 - -* -~) 2) = -~

Status

Feasible

Infeasible

We can also investigate the problem by expressing it in vector form as follows:

Each of Ph P2, P3, and b is a two-dimensional vector, which can be represented generically as
(at. a2l. Figure 7.3 graphs these vectors on the (aj, a2)-plane. For example,for b = (4, 2)T, al = 4
and a2 = 2.

FIGURE 7.3

Vector representation of LP solulion space

3

r
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Because we are dealing with two equations (m :=: 2), a basis must include exactly two vec
tors, selected from among Ph P2, and P3• From Figure 7.3, the matrices (Ph P2) and (P2, P3) form
bases because their associated vectors are independent. In the matrix (PI, P3) the two vectors are
dependent, and hence do not constitute a basis.

Algebraically, a (square) matrix forms a basis if its determinant is not zero (see Section
D.2.5). The following computations show that the combinations (Pt , P2) and (P2, P3) are bases,
and the combination (PI> P3) is not.

det(Pb P2) == det(~

det(P2, P3) == det(_~

det(P!> P3) == det(~

3) == (1 X -2) - (2 x 3) = -8 =I: 0
-2

-1) == (3 x -2) - (-2 x -1) == -8 =I: 0
-2

-1) == (1 x -2) - (2 x -1) == 0
-2

We can take advantage of the vector representation of the problem to discuss how the starting
solution of the simplex method is determined. From the vector representation in Figure 7.3, the
basis B = (Pi> P2) can be used to start the simplex iterations, because it produces the basic feasi
ble solution X B == {XI' X2)T. However, in the absence of the vector representation, the only
available course of action is to try all possible bases (3 in this example, as shown above). The dif
ficulty with using trial and error is that it is not suitable for automatic computations. In a typical
LP with thousands of variables and constraints where the use of the computer is a must, trial and
error is not a practical option because of its tremendous computational overhead. To alleviate
this problem, the simplex method always uses an identity matrix, B == I, to start the iterations.
Why does a starting B == I offer an advantage? The answer is that it will always provide a
feasible starting basic solution (provided that the right-hand side vector of the equations is non
negative). You can see this result in Figure 7.3 by graphing the vectors ofB == I and noting that
they coincide with the horizontal and vertical axes, thus always guaranteeing a starting basic fea
sible solution.

The basis B == I automatically forms part of the LP equations if all the original constraints
are $. In other cases, we simply add the unit vectors where needed. This is what the artificial
variables accomplish (Section 3.4). We then penalize these variables in the objective function to
force them to zero level in the final solution.

7.1

PROBLEM SET 7.1B

2Xl + 3X2 = 1

2xl - x2 == 2

2Xl - 4X2 == 2
-XI + 2X2 == 1

(b)

(d)

1. In the following sets of equations, (a) and (b) have unique (basic) solutions, (c) has an
infinity of solutions, and (d) has no solution. Show how these results can be verified
using graphical vector representation. From this exercise, state the general conditions
for vector dependence-independence that lead to unique solution, infinity of solutions,
and no solution.

(a) Xl + 3X2 == 2

3xl + x2 = 3
(c) 2xl + 6X2 = 4

XI + 3X2 == 2

j
:;: '"

:{!~f:-.~.
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2. Use vectors to determine graphically the type of solution for each of the sets of equations
below: unique solution, an infinity of solutions, or no solution. For the cases of unique so
lutions, indicate from the vector representation (and without solving the equations alge
braically) whether the values of the Xl and X2 are positive, zero, or negative.

(a) (~ -;)(:J = G)
(c) (~ ;)(::) = (=~)

(e) (-~ _~)(::) = (~)

*(b) (~ -~)(~J = G)
*(d) (~ ~)(::) = (~)

*(f) (~ -~)(:J = G)

t

s
11
o

"

?::: '..
,:' t!~t=- .•.

7.1.2

3. Consider the following system of equations:

Determine if any of the following combinations forms a basis.

*(a) (Ph P2, P3)

(b) (Ph P2, P4)

(c) (P2, P3, P4)

*(d) (PI' P2, P3, P4)

4. True or False?

(a) The system BX = b has a unique solution if B is nonsingular.

(b) The system BX = b has no solution if B is singular and b is independent of B.

(c) The system BX = b has an infinity of solutions if B is singular and b is dependent.

Generalized Simplex Tableau in Matrix Form

In this section, we use matrices to develop the general simplex tableau. This represen
tation will be the basis for subsequent developments in the chapter.

Consider the LP in equation form:

Maximize z = ex, subject to AX = b, X > 0

The problem can be written equivalently as

Suppose that B is a feasible basis of the system AX = b, X :2: 0, and let X be the
corresponding vector of basic variables with eB as its associated objective vector. The
corresponding solution may then be computed as follows (the method for inverting
partitioned matrices is given in Section 0.2.7):
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The general simplex tableau in matrix form can be derived from the original stan
dard equations as follows:

(~
Matrix manipulations yield the following equations:

(~
Given Ij is the jth vector of A, the simplex tableau column associated with variable Xj

can be represented as:

Basic Xj Solution

Z c/Jn-1pj - Cj cBn-lb

X B B-lp n-1b
J

In fact, the tableau above is the same as the one we presented in Chapter 3 (see Prob
lem 5 of Set 7.1c) and that of the primal-dual computations in Section 4.2.4. An impor
tant property of this table is that the inverse, B-1, is the only element that changes
from one tableau to the next, and that the entire tableau can be generated once B-1 is
known. This point is important, because the computational roundoff error in any
tableau can controlled by controlling the accuracy of B-1. This result is the basis for the
development of the revised simplex method in Section 7.2.

Example 7.1-3

Consider the following LP:

Maximize z = XI + 4xz + 7X3 + 5X4

subject to

2x[ + Xz + 2X3 + 4X4 = 10

3x, - Xz - 2X3 + 6X4 == 5

Generate the simplex tableau associated with the basis B ==(Pb Pz).
Given B == (Ph Pz), then XB = (Xl> xZ)T and CB == (1.4). Thus,

We then get

..
..~- '}~·~':;<ii.=l.'''._
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To compute the constraint columns in the body of the tableau, we have

1

-1
2

-2
o 0

1 2 ~)
Next, we compute the objective row as follows:

o
1

o
2

~) - (1,4,7,5) = (0,0,1, -3)

Finally, we compute the value of the objective function as follows:

Thus, the entire tableau can be summarized as shown below.

1-

"-

s
s

Basic

z o

1
o

o

o
1

1

o
2

-3

2
o

Solution

19

3
4

y
e TIle main conclusion from this example is that once the inverse, 8-1, is known, the entire

simplex tableau can be generated from 8-1 and the original data of the problem.

PROBLEM SET 7.1C

*1. In Example 7.1-3, consider B = (P3, P4). Show that the corresponding basic solution is
feasible, then generate the corresponding simplex tableau.

2. Consider the following LP:

Maximize z = 5XI + 12xz + 4X3

subject to

Xl + 2X2 + x3 + X4 = 10

. 2XI - 2X2 - x3 = 2

Check if each of the following matrices forms a (feasible or infeasible) basis: (PI> Pz),
(Pz, P3), (P3, P4)·

3. In the following Lp, compute the entire simplex tableau associated with
X B = (Xl> X2, xs)T.

Minimize z = 2xI + Xz
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subject to 7
=3

=6

+ Xs = 3

*4. The following is an optimal LP tableau:

Basic Xl X2 X3 X4 Xs

Z 0 0 0 3 2

X3 0 0 1 1 -1
X2 0 1 0 1 0
Xl 1 0 0 -1 1

Solution

?

2
6
2

The variables X3, X4, and Xs are slacks in the original problem. Use matrix manipulations
to reconstruct the original LP, and then compute the optimum value.

5. In the generalized simplex tableau, suppose that the X = (XI, xnf. where Xu corre
sponds to a typical starting basic solution (consisting of slack and/or artificial variables)
with B :::: I, and let C = (C), Cn) and A = (D, I) be the corresponding partitions of C
and A, respectively. Show that the matrix form of the simplex tableau reduces to the fol
lowing form, which is exactly the form used in Chapter 3.

Basic Xl

7.2 REVISED SIMPLEX METHOD

Solution

Section 7.1.1 shows that the optimum solution of a linear program is always associated
with a basic (feasible) solution. The simplex method search for the optimum starts by
selecting a feasible basis, B, and then moving to another basis, Bnext, that yields a better
(or, at least, no worse) value of the objective function. Continuing in this manner, the
optimum basis is eventually reached.

The iterative steps of the revised simplex method are exactly the same as in the
tableau simplex method presented in Chapter 3. The main difference is that the com
putations in the revised method are based on matrix manipulations rather than on row
operations. The use of matrix algebra reduces the adverse effect of machine roundoff
error by controlling the accuracy of computing B-1. This result follows because, as
Section 7.1.2 shows, the entire simplex tableau can be computed from the original data
and the current 8 -1. In the tableau simplex method of Chapter 3, each tableau is gen
erated from the immediately preceding one, which tends to worsen the problem of
rounoff error.

;,~
s ';...

.l* ::;:i~;\"·.;.
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7.2.1 Development of the Optimality and Feasibility Conditions

The general LP problem can be written as follows:

n n

Maximize or minimize Z = LCjXj subject to LPjXj = b, Xj ~ 0, j = 1,2, ... , n
j=l j=l

For a given basic vector X B and its corresponding basis B and objective vector CB, the
general simplex tableau developed in Section 7.1.2 shows that any simplex iteration
can be represented by the following equations:

n

Z + L (Zj - Cj)Xj = CBB-1b
j=l

n

(XB)i + L (B-1pj)i Xj = (B-1b)i
j=l

Zj - Cj, the reduced cost of Xj (see Section 4.3.2), is defined as

z· - c· = CBS-1p. - c-
J J J J

The notation (V); is used to represent the ith element of the vector V.

Optimality Condition. From the z-equation given above, an increase in nonbasic Xj

above its current zero value will improve the value of Z relative to its current value
(= CBB-1b) only if its Zj - Cj is strictly negative in the case of maximization and
strictly positive in the case of minimization. Otherwise, Xj cannot improve the solution
and must remain nonbasic at zero level. Though any nonbasic variable satisfying the
given condition can be chosen to improve the solution, the simplex method uses a rule
of thumb that calls for selecting the entering variable as the one with the most negative
(most positive) Zj - Cj in case of maximization (minimization).

Feasibility Condition. The determination of the leaving vector is based on examining
the constraint equation associated with the ith basic variable. Specifically, we have

n

(XB)i + 2: (B-1pj)i Xi = (B-1b)i
j=l

When the vector Pj is selected by the optimality condition to enter the basis, its
associated variable Xj will increase above zero level. At the same time, all the remain
ing nonbasic variables remain at zero level. Thus, the ith constraint equation reduces to

The equation shows that if (B-1pJi > 0, an increase in Xj can cause (X B ); to
become negative, which violates the nonnegativity condition, (XB)i ;:::-: 0 for all i. Thus,
we have
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This condition yields the maximum value of the entering variable Xj as

{
(B-lb). j }x. = min I (B-1p.). > 0

J i (B-1pj)i J I

The basic variable responsible for producing the minimum ratio leaves the basic solu
tion to become nonbasic at zero level.

PROBLEM SeT 7.2A

*1. Consider the following LP:

subject to

TIle vectors Ph Pz, P3, and P4 are shown in Figure 7.4. Assume that the basis B of the cur
rent iteration is comprised of PI and Pz.
(a) If the vector P3 enters the basis, which of the current two basic vectors must leave in

order for the resulting basic solution to be feasible?

(b) Can the vector P4 be part of a feasible basis?

*2. Prove that, in any simplex iteration, Zj - Cj = 0 for all the associated basic variables.

3. Prove that if Zj - Cj > 0 « 0) for all the nonbasic variables Xj of a maximization (mini
mization) LP problem, then the optimum is unique. Else, if Zj - Cj equals zero for a non
basic Xj, then the problem has an alternative optimum solution.

4. In an all-slack starting basic solution, show using the matrix form of the tableau that the
mechanical procedure used in Section 3.3 in which the objective equation is set as

n

Z - :2>jXj = 0
j=l

automatically computes the proper Zj - Cj for all the variables in the starting tableau.

5. Using the matrix form of the simplex tableau, show that in an all-artificial starting
basic solution, the procedure employed in Section 3.4.1 that calls for substituting out

FIGURE 7.4

Vector representation of Problem 1, Set 7.2a

b

7.2.:
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the artificial variables in the objective function (using the constraint equations) actu
ally computes the proper Zj - ci for all the variables in the starting tableau.

6. Consider an LP in which the variable Xk is unrestricted in sign. Prove that by substituting
xk = x; - xt, where x; and xt are nonnegative, it is impossible that the two variables
will replace one another in an alternative optimum solution.

*7. Given the general LP in equation form with m equations and n unknowns, determine the
maximum number of adjacent extreme points that can be reached from a nondegenerate
extreme point (all basic variable are >0) of the solution space.

8. In applying the feasibility condition of the simplex method, suppose that X r = 0 is a basic
variable and that Xj is the entering variable with (B-1pj)r -:P O. Prove that the resulting
basic solution remains feasible even if (B-1pj)r is negative.

9. In the implementation of the feasibility condition of the simplex method, what are the
conditions for encountering a degenerate solution (at least one basic variable = 0) for
the first time? For continuing to obtain a degenerate solution in the next iteration? For
removing degeneracy in the next iteration? Explain the answers mathematically.

*10. What are the relationships between extreme points and basic solutions under degeneracy
and nondegeneracy? What is the maximum number of iterations that can be performed
at a given extreme point assuming no cycling?

*11. Consider the Lp, maximize z = ex subject to AX $ b, X ~ 0, where b ~ O. Suppose
that the entering vector Pj is such that at least one element of B-1Pj is positive.

(a) If Pi is replaced with aPi' where a is a positive scalar, and provided Xi remains the
entering variable, find the relationship between the values of Xi corresponding to Pj

and aPj .

(b) Answer Part (a) i~ additionally, b is replaced with ,Bb, where ,B is a positive scalar.

12. Consider the LP

Maximize z = ex subject to AX $ b, X ;;:::: 0, where b ;;:::: 0

After obtaining the optimum solution, it is suggested that a nonbasic variable Xi can be
made basic (profitable) by reducing the (resource) requirements per unit of Xi for the
different resources to ~ of their original values, a > 1. Since the requirements per unit
are reduced, it is expected that the profit per unit of Xj will also be reduced to ±of its
original value. Will these changes make Xj a profitable variable? Explain mathematically.

13. Consider the LP

Maximize z = ex subject to (A, I)X = b, X ;;:::: 0

Define Xn as the current basic vector with B as its associated basis and e B as its vector of
objective coefficients. Show that if eB is replaced with the new coefficients DB, the values
of Zj - Cj for the basic vector XB will remain equal to zero. What is the significance of
this result?

7.2.2 Revised Simplex Algorithm

Having developed the optimality and feasibility conditions in Section 7.2.1, we now
present the computational steps of the revised simplex method.

Step O. Construct a starting basic feasible solution and let Band CB be its associated
basis and objective coefficients vector, respectively.
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Step 1.

Step 2.

Advanced Linear Programming

Compute the inverse B-1 by using an appropriate inversion method. l

For each nonbasic variable Xj, compute

z- - c· = CBB-lp. - c·
J J I I

If Zj - Cj ~ 0 in maximization ($0 in minimization) for all nonbasic Xj, stop;
the optimal solution is given by

X B = B-1b, z = CBX B

Else, apply the optimality condition and determine the entering variable Xj as
the nonbasic variable with the most negative (positive) Zj - Cj in case of maz
imization (minimization).

Step 3. Compute B-1Pj . If all the elements of B-11j are negative or zero, stop; the
problem has no bounded solution. Else, compute B-1b. Then for all the strictly
positive elements of B-Lpj , detemline the ratios defined by the feasibility condi
tion. The basic variable Xi associated with the smallest ratio is the leaving variable.

Step 4. From the current basis B, form a new basis by replacing the leaving vector Pi
with the entering vector Pj' Go to step 1 to start a new iteration.

Example 7.2-1

The Reddy Mikks model (Section 2.1) is solved by the revised simplex algorithm. The same
model was solved by the tableau method in Section 3.3.2. A comparison between the two meth
ods will show that they are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

maximize z = (5,4,0,0,0, O)(Xh X2, X3, X4, xs, X6)T

subject to

Xl

(-I
4 1 ° °

~)
X2

~n)2 0 1 0 X3

1 0 0 1 X4

1 0 0 0 Xs

x6

Xl>x2"",x6;:: 0

We use the notation C = (cr, cz, ... , C6) to represent the objective-function coefficients and
(Pr, P2,· .. , P6) to represent the columns vectors of the constraint equations. TIle right-hand side
of the constraints gives the vector b.

1In most LP presentations, including the first six editions of this book, the product form method for inverting
a basis (see Section 0.2.7) is integrated into the revised simplex algorithm because the product form lends it
self readily to the revised simplex computations, where successive bases differ in exactly one column. This
detail is removed from this presentation because it makes the algorithm appear more complex than it really
is. Moreover, the product form is rarely used in the development of LP codes because it is not designed for
automatic computations, where machine round-off error can be a serious issue. Normally, some advanced nu
meric analysis method, such as the LV decomposition method, is used to obtain the inverse. (Incidentally,
TORA matrix inversion is based on LV decomposition.)



p;

3.5

z-

le
ly
li
e.

Pi

Ie
11-

ng
it
lis
lly
or
u
Iy,

:.' .

~=., :.: .
-~.- .'?~"~;i-~:" .,-_

7.2 Revised Simplex Method 311

In the computations below, we will give the algebraic formula for each step and its final nu
meric answer without detailing the arithmetic operations. You will find it instructive to fill in the
gaps in each step.

Iteration 0

X Bo = (X3' X4' xs, X6), CBo = (0,0,0,0)

Bo = (P3, P4, Ps, P6) = I, Bo
1 = I

Thus,

Optimality computations:

CBoBa! = (0,0,0,0)

{Zj - CjL=1,2 = CBoBo1(PJ, P2) - (Cb C2) = (-5, -4)

Thus, PI is the entering vector.

Feasibility computations:

XBo = (X3' X4, xs, x6l = (24,6,1, 2l

Halp, = (6,1, -1, O)T
Hence,

Xl = min{2
6
4, I' -, -}= min{4, 6, -, -} = 4

and P3 becomes the leaving vector.
The results above can be summarized in the familiar simplex tableau format. The presenta

tion should help convince you that the two methods are essentially the same. You will find it in
structive to develop similar tableaus in the succeeding iterations.

Basic Xl X2 X3 X4 Xs X6 Solution

z -5 -4 0 0 0 0 0

X3 6 24
X4 1 6
Xs -1 1
x6 0 2

Iteration 1

XB1 = (Xl, X4' XS, X6), CHI = (5,0,0,0)

B1 = (P" P4, Ps, P6)

~ (-I ~ ~ ~)
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By using an appropriate inversion method (see Section D.2.?, in particular the product form

. method), the inverse is given as

Thus,

o
1

o
o

o
o
1

o ~)

Optimality computations:

CBIBil = (~, 0, 0, 0)
{Zj - Cj}t=2,3 = CB,Bi1(P2, P3) - (C2, C3) = (-~,~)

Thus, P2 is the entering vector.

Feasibility oomputations:

XBI = (Xt, X4, XS, X6)T = (4,2,5, 2)T

.B-1p (2 45 l)T
1 2 = 3' 3' 3'

Hence,

. {4 252} .{3 } 3
X2 = mm I'1"'I'"1 = mm 6, 2' 3, 2 = 2:

3 3 3

and P
4

becomes the leaving vector. (You will find it helpful to summarize the results above in the
simplex tableau format as we did in iteration 0.)

Iteration 2

X Bz = (x" X2, xs, x6f, C Bz = (5,4,0,0)

B 2 = (PI> P2, Ps, P6)

~ (-1 ~ !~)
',- -

~.::.

:f~~ :'.;.

" . ·~~~%~~.tl'':.''_.'
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Hence,

Thus,

B-1 
2 -

1 _1 0 0
4 2

_! ;! 0 0
8 4
3 _1 1 08 4

1 _d 0 1
8 4

Optimality computations:

C B2Bz1 = (~,!,O,O)

{Zj - CjL=3,4 = CB2Bi} (P3, P4 ) - (C3, C4) = (~,~)

Thus, X B2 is optimal and the computations end.

Summary ofoptimal solution:

Xl = 3, X2 = 1.5, z = 21

PROBLEM SET 7.2B

L In Example 7.2-1, summarize the data of iteration 1 in the tableau format of Section 3.3.

2. Solve the following LPs by the revised simplex method:

(a) Maximize z = 6Xl - 2x2 + 3X3

subject to

2XI - X2 + 2X3 ::;; 2

Xl + 4X3 ::;; 4

*(b) Maximize z = 2xI + X2 + 2x3

subject to

4Xl + 3X2 + 8X3:5 12

4Xl + X2 + 12 X3 :5 8

4Xl - X2 + 3 X3 :5 8

(c) Minimize z = 2XI + X2

subject to

3xI + X2 = 3

4x} + 3X2 ;::: 6

XI + 2X2 :5 3
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(d) Minimize z = 5Xl - 4X2 + 6X3 + 8X4

subject to
Xl + 7X2 + 3X3 + 7X4 ~ 46

3Xl - X2 + X3 + 2X4 ~ 20

2Xl + 3X2 - X3 + X4 ~ 18

3. Solve the following LP by the revised simplex method given the starting basic feasible
vector X Oo = (X2, X4, xsl.

Minimize z = 7x2 + llx3 - lOx4 + 26x6

subject to
X2 - X3 + Xs + X6 = 6

X2 - X3 + X4 + 3X6 = 8

Xl + X2 - 3X3 + X4 + Xs = 12

4. Solve the following using the two-phase revised simplex method:

(a) Problem 2-c.

(b) Problem 2-d.

(c) Problem 3 (ignore the given starting X Oo)'

5. Revised Dual Simplex Method. The steps of the revised dual simplex method (using ma
trix manipulations) can be summarized as follows:

Step O. Let Bo = I be the starting basis for which at least one of the elements of X Bo is
negative (infeasible).

Step 1. Compute X n = B-1b, the current values of the basic variables. Select the leav
ing variable x, as the one having the most negative value. If all the elements of
X B are nonnegative, stop; the current solution is feasible (and optimal).

Step 2. (a) Compute Zj - Cj = CBB-Ipj - Cj for all the nonbasic variables Xj'

(b) For all the nonbasic variables Xj, compute the constraint coefficients
(B-lpj ), associated with the row of the leaving variable x,.

(c) The entering variable is associated with

8= m}n{ I(~~P;;J (B-1pj ), < 0}

If all (B-1pj ), ~ 0, no feasible solution exists.

Step 3. Obtain the new basis by interchanging the entering and leaving vectors (Pj and
P,). Compute the new inverse and go to step 1.

Apply the method to the following problem:

Minimize z = 3Xl + 2X2

subject to

3Xl + X2 ~ 3

4Xl + 3X2 ~ 6

Xl + 2X2 S 3

XI> X2 ~ 0
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7.3 BOUNDED-VARIABLES ALGORITHM

In LP models, variables may have explicit positive upper and lower bounds. For exam
ple, in production facilities, lower and upper bounds can represent the minimum and
maximum demands for certain products. Bounded variables also arise prominently in
the course of solving integer programming problems by the branch-and-bound algo
rithm (see Section 9.3.1).

The bounded algorithm is efficient computationally because it accounts for the
bounds implicitly. We consider the lower bounds first because it is simpler. Given X :> L,
we can use the substitution

X = L + X', X';::: 0

f

ld

throughout and solve the problem in terms of X' (whose lower bound now equals
zero). The original X is determined by back-substitution, which is legitimate because it
guarantees that X = X' + L will remain nonnegative for all X' ;::: O.

Next, consider the upper bounding constraints, X ~ U. The idea of direct substitu
tion (i.e., X = V - X", X" ;::: 0) is not correct because back-substitution, X = V - X",
does not ensure that X will remain nonnegative. A different procedure is thus needed.

Define the upper bounded LP model as

Maximize z = {CXI(A,I)X = h, 0 ~ X ~ U}

The bounded algorithm uses only the constraints (A, I)X = b, X ~ 0, while account
ing for X ~ U implicitly by modifying the simplex feasibility condition.

Let XB = B-1b be a current basic feasible solution of (A, I)X = h, X ;::: 0, and
suppose that, according to the (regular) optimality condition, Pj is the entering vector.
Then, given that all the nonbasic variables are zero, the constraint equation of the ith
basic variable can be written as

When the entering variable Xj increases above zero level, (XB ); will increase or decrease
depending on whether (B-1Pj ); is negative or positive, respectively. Thus, in determin
ing the value of the entering variable Xj, three conditions must be satisfied.

1. The basic variable (X B ); remains nonnegative-that is, (XB)i :> O.
2. The basic variable (XB)j does not exceed its upper bound-that is, (X B ); <: (VB);,

where UB comprises the ordered elements of U corresponding to X B.

3. The entering variable Xj cannot assume a value larger than its upper bound-that
is, Xj ~ Uj, where Uj is the jth element of U.

TIle first condition (XB ); ;::: 0 requires that

It is satisfied if
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l1lis condition is the same as the feasibility condition of the regular simplex method.
Next, the condition (XB)i :5 (UB)i specifies that

It is satisfied if

X.:5 8
2

= min{(B-1b)i - (UB )i/(B-1P.). < o}
J i (B-1pj)i J t

Combining the three restrictions, Xj enters the solution at the level that satisfies
all three conditions-that is,

Xj = min{8J, 82, Uj}

TIle change of basis for the next iteration depends on whether Xj enters the solu
tion at level 8], (h, or Uj' Assuming that (XB)r is the leaving variable, then we have the
following rules:

1. Xj = (h: (XB)r leaves the basic solution (becomes nonbasic) at level zero. The
new iteration is generated using the normal simplex method with Xj and (XB)r as
the entering and the leaving variables, respectively.

2. Xj = fh; (XB)r becomes nonbasic at its upper bound. The new iteration is gener
ated as in the case of Xj = 01> with one modification that accounts for the fact
that (XB)r will be nonbasic at upper bound. Because the values of 81 and 82 re
quire all nonbasic variables to be at zero level (convince yourself that this is the
case!), we must convert the new nonbasic (XB)r at upper bound to a nonbasic
variable at zero level. This is achieved by using the substitution (XB)r=
(UB)r - (XB)p where (XB)r > O. It is immaterial whether the substitution is
made before or after the new basis is computed.

3. Xj = Uj: The basic vector X B remains unchanged because Xj = Uj stops short of
forcing any of the current basic variables to reach its lower (= 0) or upper bound.
This means that Xj will remain nonbasic but at upper bound Following the argument
just presented, the new iteration is generated by using the substitution Xj = Uj - xj.

A tie among 8], fh and Uj may be broken arbitrarily. However, it is preferable,
where possible, to implement the rule for Xj = Uj because it entails less computation.

The substitution Xj = Uj - xj will change the original Cj, Pj' and b to ej = -ci'
P j = - Pi' and b to b I = b - UjPj. This means that if the revised simplex method is used,
all the computations (e.g., B-1, X B, and Zj - Cj), should be based on the updated values
of C,A, and b at each iteration (see Problem 5, Set 7.3a, for further details).

Example 7.3-1

Solve the following LP model by the upper-bounding algorithm.2

Maximize z = 3xI + 5y + 2X3

2you can use TORA's Liri~a(rrogramriiing ~s.oive problem ~Algebi:aic =>ltera"iions ~

·.Boii#£Iedsimplex to produce the associated simplex iterations (file toraEx7.3-l.txt).
.,
.~

.; .-. .,
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7.3 Bounded-Variables Algorithm 317

subject to

Xl + Y + 2X3 :5 14

2xl + 4y + 3X3 :s 43

The lower bound on y is accounted for using the substitution y := Xz + 7, where
o :5 Xz :5 10 - 7 = 3.

To avoid being "sidetracked" by the computational details, we will not use the revised sim
plex method to carry out the computations. 'Instead, we will use the compact tableau form. Prob
lems 5,6, and 7, Set 7.3a address the revised version of the algorithm.

Iteration 0

Basic XI X2 XJ X4 X5 Solution

z -3 -5 -2 0 0 35

X4 1 1 2 1 0 7
X5 2 4 3 0 1 15

We have B = B-1 = I and X B = (X4, xs)T = B-1b = (7, 15)T. Given that X2 is the entering
variable (zz - C2 = -5), we get

which yields

01 = min{T' ~} = 3.75, corresponding to Xs

(}2 = 00 (because all the elements of B-1P2 > 0)

Next, given the upper bound on the entering variable, X2 :5 3, it follows that

X2 = min{3.75, 00, 3}

= 3 (= U2)

Because X2 enters at its upper bound (= U2 = 3), X B remains unchanged, and X2 becomes non
basic at its upper bound. We use the substitution X2 = 3 - X2 to obtain the new tableau as

Basic Xl Xl XJ

l. .,---3 5 -2

X 4 1 -1 2
X5 2 -4 3

o

1
o

o

o
1

Solution

50

4
3

The substitution in effect changes the original right-hand side vector from b = (7,15)T to
b' = (4,3f. This change should be considered in future computations.
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= 1.5, corresponding to basic Xs

Iteration 1. The entering variable is XI' The basic vector X B and B-1 (== I) are the same as in it
eration O. Next,

. {4 3}
81 = mm 1'2

ez = oo(because B-1PI > 0)

Thus,

Xl == min{1.5, 00, 4}

== 1.5 (== el)

Thus, the entering variable Xl becomes basic, and the leaving variable Xs becomes nonbasic at
zero level, which yields

Basic Xl xi X3 X4 Xs Solution

z 0 -1 5 0 3 109
2 2 2""

X4 0 1 1 1 1 S
2 -2 2

1 -2 3 0 1 3
XI 2 2 2

Iteration 2 The new inverse is

Now

x == (x x)T == B-Ib' = (~ ~)TB 4, I Z' Z

where b' == (4, 3l as computed at the end of iteration O. We select Xl as the entering variable,
and, noting that Pz== -Pz, we get

Thus,

s

lh == min{ f, -} == 2.5, corresponding to basic X4

{ ~ -4}
()z == min -, 2 -2 == 1.25, corresponding to basic Xl

We then have

Xl == min{2.5, 1.25, 3}

== 1.25 (== ()2)
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Because Xl becomes nonbasic at its upper bound, we apply the substitution Xl = 4 - Xl to
obtain

Basic XI X2 X3 X4 Xs Solution

z 0 -1 5 0 !. 109
2: 2 ""2

X4 0 1 I 1 1 5
2 -2 2

XI -1 -2 3 0 1 :s
2 2 -2

Next, the entering variable X2 becomes basic and the leaving variable xl becomes nonbasic
at upper bound, which yields

Basic x{ X2 X3 X4 Xs Solution

1 0 7 0 5 223
Z 2: 4" 4" ""4

at 1 0 5 1 1 ~X4 -2 4 -4 4

X2
1 1 3 0 1 S
2 -4 -4 4"

The last tableau is feasible and optimal. Note that the last two steps could have been reversed
meaning that we could first make X2 basic and then apply the substitution Xl = 4 - XI (try it!).
The sequence presented here involves less computation, however.

The optimal values of Xl> x2, and X3 are obtained by back-substitution as Xl = UI - x{ =
4 - 0 = 4, X2 = U2 - xi = 3 - ~ = ~, and x3 = O. Finally, we get y = 12 + x2 = 7 + ~ = ¥.
The associated optimal value of the objective function z is 2~.

PROBLEM SET 7.3A

1. Consider the following linear program:

Maximize z = 2XI + X2

subject to

ble, Xl + X2 :5 3

o :5 Xl :5 2, 0 :5 X2 :5 2

(a) Solve the problem graphically, and trace the sequence of extreme points leading to
the optimal solution. (You may use TORA.)

(b) Solve the problem by the upper-bounding algorithm and show that the method pro
duces the same sequence of extreme points as in the graphical optimal solution (you
may use TORA to generate the iterations).

(c) How does the upper-bounding algorithm recognize the extreme points?
*2. Solve the following problem by the bounded algorithm:

subject to

8Xl + x2 + 8X3 + 2X4 + 2xs + 4X6 :5 13

o :5 Xj :5 1, j = 1,2, ... , 6
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3. Solve the following problems by the bounded algorithm:

(a) Minimize z = 6Xl - 2X2 - 3X3

subject to

2Xl + 4X2 + 2X3 :5 8

Xl - 2X2 + 3X3 ~ 7

o :5 Xl :5 2,0 :5 X2 :5 2,0 :5 X3 :::;; 1

(b) Maximize z = 3Xl + 5x2 +. 2X3

subject to
Xl + 2X2 + 2x3 :5 10

2Xl + 4X2 + 3X3 =5 15

4. In the following problems, some of the variables have positive lower bounds. Use the
bounded algorithm to solve these problems.

(a) Maximize z = 3Xl + 2X2 - 2X3

subject to

2Xl + X2 + X3 =5 8

Xl + 2X2 - X3 2: 3

(b) Maximize z = Xl + 2X2

subject to

-Xl + 2X2 2: 0

3Xl + 2X2 =5 10

(c) Maximize z = 4Xl + 2X2 + 6X3

subject to
4Xl - X2 =5 9

-Xl + X2 + 2x3 =5 8

5. Consider the matrix definition of the bounded-variables problem. Suppose that the vec
tor X is partitioned into (Xz' Xu), where X'I represents the basic and nonbasic variables
that will be substituted at upper bound during the course of the algorithm. The problem

may thus be written as

(~
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Using Xu = U" - X~ where Uuis a subset of U representing the upper bounds for Xu,
let B (and X B) be the basis of the current simplex iteration after Xu has been substituted
out. Show that the associated general simplex tableau is given as

Basic Solution

~c-

les
~m

.:~; :,-

7.4

where b' = b - DuUu.
6. In Example 7.3-1, do the following:

(a) In Iteration 1, verify that X B = (X4' xil = U,~)T by using matrix manipulation.
(b) In Iteration 2, show how B-1 can be computed from the original data of the problem.

Then verify the given values of basic X4 and X2 using matrix manipulation.

7. Solve part (a) of Problem 3 using the revised simplex (matrix) version for upper-bounded
variables.

8. Bounded Dual Simplex Algorithm. The dual simplex algorithm (Section 4.4.1) can be
modified to accommodate the bounded variables as follows. Given the upper bound con
straint Xj :5 Uj for allj (if Uj is infinite, replace it with a sufficiently large upper bound M),
the LP problem is converted to a dual feasible (Le., primal optimal) fonn by using the
substitution Xj = ui - xi. where necessary.

Step 1. If any of the current basic variables (XB)i exceeds its upper bound, use the
substitution (XB)i = (UB); - (XB)i. Go to step 2.

Step 2. If all the basic variables are feasible, stop. Otherwise, select the leaving variable
X r as the basic variable having the most negative value. Go to step 3.

Step 3. Select the entering variable using the optimality condition of the regular dual
simplex method (Section 4.4.1). Go to step 4.

Step 4. Perform a change of basis. Go to step l.

Apply the given algorithm to the following problems:

(a) Minimize z = - 3x} - 2x2 + 2x3

subject to

o :5 Xl :5 2,0 :5 x2 :5 3, 0 :5 X3 :5 1

(b) Maximize z = Xl + 5x2 - 2X3

subject to

DUALITY

We have dealt with the dual problem in Chapter 4. This section presents a more rigor
ous treatment of duality and allows us to verify the primal-dual relationships that
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formed the basis for post-optimal analysis in Chapter 4. The presentation also lays the
foundation for the development of parametric programming.

7.4.1 Matrix Definition of the Dual Problem

Suppose that the primal problem in equation form with m constraints and n variables
is defined as

Maximize z = ex
subject to

AX= b

X>O

Letting the vector Y = (YI' Yz,"" Ym) represent the dual variables, the rules in
Table 4.2 produce the following dual problem:

Minimize w = Vb

subject to

YA 2: C
Y unrestricted

Some of the constraints YA :> C may override unrestricted Y.

PROBLEM SET 7.4A

1. Prove that the dual of the dual is the primal.

*2. If the primal is given as min z = {CXIAX ~ b, X ;::= O}, define the corresponding dual
problem.

7.4.2 Optimal Dual Solution

This section establishes relationships between the primal and dual problems and shows
how the optimal dual solution can be determined from the optimal primal solution. Let
B be the current optimal primal basis, and define eB as the objective-function coeffi
cients associated with the optimal vector X B.

Theorem 7.4-1. (Weak Duality Theory). FOT any pair of feasible primal and dual
solutions (X, V), the value of the objective function in the minimization problem sets an
upper bound on the value ofthe objective function in the maximization problem. For the
optimal pair (X*, Y*), the values of the objective functions are equal.

Proof. The feasible pair (X, Y) satisfies all the restrictions of the. two problems.
Premultiplying both sides of the constraints of the maximization problem with
(unrestricted) Y, we get

YAX=YB=w (1)
' ..
)~ -',:..

.:~ ~~~~J:~~..:.-_
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Also, for the minimization problem, postmultiplying both sides of each of the first two
sets of constraints by X(~ 0), we get

VAX ~ CX

s or

VAX ~ CX = z (2)

,n

1

IWS

Let
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(The nonnegativity of the vector X is essential for preserving the direction of the in
equality.) Combining (1) and (2), we get z :::=; w for any feasible pair (X, V).

Note that the theorem does not depend on labeling the problems as primal or
dual. What is important is the sense of optimization in each problem. Specifically, for
any pair of feasible solutions, the objective value in the maximization problem does not
exceed the objective value in the minimization problem.

The implication of the theorem is that, given z :::=; w for any feasible solutions, the
maximum of z and the minimum of ware achieved when the two objective values are
equal. A consequence of this result is that the "goodness" of any feasible primal and
dual solutions relative to the optimum may be checked by comparing the difference
(w - z) to z ~ w. The smaller the ratio 2~\-wz), the closer the two solutions are to
being optimal. The suggested rule of thumb does not imply that the optimal objective

I . Z + wva uels-2 -.

What happens if one of the two problems has an unbounded objective value? The
answer is that the other problem must be infeasible. For if it is not, then both problems
have feasible solutions, and the relationship z :::=; w must hold-an impossible result,
because either z = +00 or w = - 00 by assumption.

The next question is: If one problem is infeasible, is the other problem unbound
ed? Not necessarily. The following counterexample shows that both the primal and the
dual can be infeasible (verify graphically!):

Primal. Maximize z = {Xl + x21xI - X2 :::=; -1, -Xl + x2 <: -1, xl> X2 ~ O}

DuaL Minimize w = {-YI - Y2IYl - Y2 ~ 1, -YI + Y2 ~ 1, Yl> Y2 ~ O}

Theorem 7.4-2. Given the optimal primal basis B and its associated objective coefficient
vector CB, the optimal solution ofthe dual problem is

Proof. The proof rests on verifying two points: Y = C BB-l is a feasible dual solution
and z = w, per Theorem 7A-I.

The feasibility of Y = CBB- l is guaranteed by the optimality of the primal,
Zj - Cj ~ 0 for all j-that is,

CBB-1A - C > 0

(See Section 7.2.1.) Thus, YA - C ~ 0or YA > C, which shows that Y = CBB-1 is a
feasible dual solution.

Next, we show that the associated w = z by noting that

(1) (1)
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Similarly, given the primal solution X B = B-1b, we get

Z = CBX B = CBB-1b (2)

From relations (1) and (2), we conclude that z = w.
The dual variables Y = CBB-1 are sometimes referred to as the dual or

shadow prices, names that evolved from the economic interpretation of the dual
variables in Section 4.3.1.

Given that Pj is the jth column of A, we note from Theorem 7.4-2 that

z· - Co = CBB-1p. - c· = yp. - c-
J J J J J J

represents the difference between the left- and right-hand sides of the dual constraints.
The maximization primal starts with Zj - Cj < 0 for at least one j, which means that
the corresponding dual constraint, YPj :;::: Cj, is not satisfied. When the primal optimal is
reached we get Zj - Cj :;::: 0, for all j, which means that the corresponding dual solution
Y = CBB-1 becomes feasible. Thus, while the primal is seeking optimality, the dual is
automatically seeking feasibility. This point is the basis for the development of the dual
simplex method (Section 4.4.1) in which the iterations start better than optimal and in
feasible and remain so until feasibility is acquired at the last iteration. This is in con
trast with the (primal) simplex method (Chapter 3), which remains worse than optimal
but feasible until the optimal iteration is reached.

Example 7.4-1

The optimal basis for the following LP is B = (Ph P4)' Write the dual and find its optimum solu
tion using the optimal primal basis.

Maximize z = 3Xl + 5X2

subject to

The dual problem is

Minimize w = 5)'1 + 2)'2

subject to

)'1 - }2 ~ 3

2Yl + 3Y2 :> 5

)'b Y2 ~ 0

We have XB = (Xl> x4l and CB = (3,0). The optimal basis and its inverse are

B=(_~ ~}B-l=G ~)

•. j):.....

~=~.:s""'<.~.:~. _
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The associated primal and dual values are

(Xl> x4l = B-1b = (S,7)T

(YI>)/2) = CBB-1 = (3,0)

Both solutions are feasible and z = w = 15 (verify!). Thus, the two solutions are optimaL

PROBLEM SET 7.4B

1. Verify that the dual problem of the numeric example given at the end of Theorem 7.4-1 is
correct. Then verify graphically that both the primal and dual problems have no feasible
solution.

2. Consider the following LP:

Maximize z = SOXl + 30X2 + lOx3

subject to

1

= -5

(a) Write the dual.

(b) Show by inspection that the primal is infeasible.

(c) Show that the dual in (a) is unbounded.

(d) From Problems 1 and 2, develop a general conclusion regarding the relationship be
tween infeasibility and unboundedness in the primal and dual problems.

3. Consider the following LP:

Maximize z = 5Xl + 12x2 + 4X3

subject to

2x, - X2 + 3x) = 2

x, + 2X2 + X3 + X4 = 5

(a) Write the dual.

(b) In each of the following cases, first verify that the given basis B is feasible for the pri
mal. Next, using Y = CBB- I , compute the associated dual values and verify whether
or not the primal solution is optimal. .

(i) B = (P4' P3) (iii) B = (PI> P2)

(ii) B = (P2, p)) (iv) B = (PI> P4 )

4. Consider the following LP:



326 Chapter 7 Advanced Linear Programming

subject to

Xl + X2 + X3 = 4

Xl + 4X2 + + X4 = 8

(a) Write the dual problem.

(b) Verify that B = (P2, P3) is optimal by computing Zj - Cj for all nonbasic Pi'

(c) Find the associated optimal dual solution.

*5. An LP model includes two variables Xl and X2 and three constraints of the type :5. The
associated slacks are X3, X4, and xs' Suppose that the optimal basis is B = (PI> P2, P3),

and its inverse is

-1

1

1

The optimal primal and dual solutions are

X B = (Xl> X2, X3)T = (2,6, 2)T

Y = (Yh Y2, YJ) = (0,3,2)

Determine the optimal value of the objective function in two ways using the primal and
dual problems.

6. Prove the following relationship for the optimal primal and dual solutions:

whereCB = (Cl,C2,""Cm ) andPk = (alk> a2k,""amdT
, for k = 1,2, ... ,n,and

(B-lPk)i is the ith element of B-lPk .

*7. Write the dual of

Maximize z = {CXIAX = b, X unrestricted}

8. Show that the dual of

Maximize z = {CXIAX :5 b, 0 < L :5 X :5 U}

always possesses a feasible solution.

7.5 PARAMETRIC LINEAR PROGRAMMING

Parametric linear programming is an extension of the post-optimal analysis presented
in Section 4.5. It investigates the effect of predetermined continuous variations in the
objective function coefficients and the right-hand side of the constraints on the optimum
solution.

Let X = (Xl> x2,"" x n ) and define the LP as

Maximize z = {eXI ±PjXj = b, X;:=: o}
J=l

" " .

. ~. ~~~~~...~_._.
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In parametric analysis, the objective function and right-hand side vectors, C and b, are
replaced with the parameterized functions C(t) and bet), where t is the parameter of
variation. Mathematically, t can assume any positive or negative value. In practice,
however, t usually represents time, and hence it is nonnegative. In this presentation we
will assume t :> O.

The general idea of parametric analysis is to start with the optimal solution at
t = O. Then, using the optimality and feasibility conditions of the simplex method, we
determine the range 0 ~ t < tl for which the solution at t = 0 remains optimal and
feasible. In this case, tl is referred to as a critical value. The process continues by de
termining successive critical values and their corresponding optimal feasible solu
tions, and will terminate at t = t, when there is indication that either the last solution
remains unchanged for t > tr or that no feasible solution exists beyond that critical
value.

7.5.1 Parametric Changes in C

Let X B;, Bi , CBi(t) be the elements that define the optimal solution associated with
critical tj (the computations start at to = 0 with 8 0 as its optimal basis). Next, the criti
cal value ti+I and its optimal basis, if one exists, is determined. Because changes in C
can affect only the optimality of the problem, the current solution X Bi = Bi1b will re
main optimal for some t 2': ti so long as the reduced cost, Zj(t) - Cj(t), satisfies the fol
lowing optimality condition:

Zj(t) - Cj(t) = CB;(t)Bjlpj - Cj(t) 2': 0, for allj

The value of ti+! equals the largest t > t j that satisfies all the optimality conditions.
Note that nothing in the inequalities requires C(l) to be linear in t. Any function

C(t), linear or nonlinear, is acceptable. However, with nonlinearity the numerical ma
nipulation of the resulting inequalities may be cumbersome. (See Problem 5, Set 7.5a
for an illustration of the nonlinear case.)

Example 7.5-1

Maximize z = (3 - 6t)Xt + (2 - 2t)X2 + (5 + 5t)X3
subject to

Xl + 2X2 + x3::5 40

3xl + 2X3 ::5 60

::5 30

We have

e(t) = (3 - 6t,2 - 2t,5 + 5t), t ~ 0

. The variables X4, Xs, and X6 will be used as the slack variables associated with the three
constraints.

~~ .

.:..;.... ::..' -~~{;~:.: ...~_ ...
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Optimal Solution at t = to = 0

.Basic Xl X2 X3 X4 Xs X6 Solution

z 4 0 0 1 2 0 160

I 1 0 1 1 0 5X2 -4 2 -4

X3
3 0 1 0 1 0 302 2

x6 2 0 0 -2 1 1 10

X Bo = (X2' x3, x6l = (5,30, 10l

CBo(t) = (2 - 2t,5 + 5t,0)

I
4

I
:2
1

The optimality conditions for the current nonbasic vectors, Ph P4' and Ps, are

Thus, X Bo remains optimal so long as the following conditions are satisfied:

4 + 14t ~ 0

1 - t ~ 0

2 + 3t ~ 0

Because t ~ 0, the second inequality gives t ::; 1 and the remaining two inequalities are satisfied
for all t ~ O. We thus have t l = 1, which means that X Bo remains optimal (and feasible) for
O::;t:51.

The reduced cost Z4(t) - C4(t) = 1 - t equals zero at t = 1 and becomes negative for
t > 1. Thus, 1'4 must enter the basis for t > 1. In this case, Pz must leave the basis (see the opti
mal tableau at t = 0). The new basic solution X B\ is the alternative solution obtained at t = 1 by

Alternative Optimal Basis at t = tl = 1

1

2
o

Thus,

X Bj = (X4' X3, X6)T = B11b = (10.30, 30)T

CB,(t) = (0,5 + 5t,0)

....
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The associated nonbasic vectors are Pb P2, and Ps, and we have

{C ( )B-lp - ()} - (9 + 271 -2 2 5 + 51) >- 0B1 t 1 j Cj t j=1,2,5 - 2' + t, 2 -

According to these conditions, the basic solution X B, remains optimal for all t 2:: 1. Observe
that the optimality condition, -2 + 2t 2:: 0, automatically "remembers" that X B, is optimal for a
range of t that starts from the last critical value t 1 = 1. This will always be the case in parametric
programming computations.

The optimal solution for the entire range of t is summarized below. The value of z is com
puted by direct substitution.

z

PROBLEM SET 7.SA

OStsl
t ~ 1

o
o

5
o

30
30

160 + HOt
150 + IS0t

*1. In example 7.5-1, suppose that t is unrestricted in sign. Determine the range of t for which
X Bo remains optimal.

2. Solve Example 7.5-1, assuming that the objective function is given as

*(a) Maximize z = (3 + 3t)Xl + 2X2 + (5 - 6t)X3

(b) Maximize z = (3 - 2t)Xl + (2 + t)X2 + (5 + 2t)X3

(c) Maximize z = (3 + t)Xl + (2 + 2t)X2 + (5 - t)X3

3. Study the variation in the optimal solution of the following parameterized LP given t 2:: o.

Minimize z = (4 - t)Xl + (1 - 3t)X2 + (2 - 2t)X3

subject to

3Xl + Xl + 2x3 = 3

4Xl + 3X2 + 2X3 2:: 6

Xl + 2X2 + 5X3 S 4

4. The analysis in this section assumes that the optimal solution of the LP at t = 0 is ob
tained by the (primal) simplex method. In some problems, it may be more convenient to
obtain the optimal solution by the dual simplex method (Section 4.4.1). Show how the
parametric analysis can be carried out in this case, then analyze the LP of Example 4.4-1,
assuming that the objective function is given as

Minimize z = (3 + t)Xl + (2 + 4t)X2 + X3, t 2:: 0

*5. In Example 7.5-1, suppose that the objective function is nonlinear in t(t :2:: 0) and is de
fined as

Determine the first critical value t1.
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7.5.2 Parametric Changes in b

The parameterized right-hand side b(t) can affect only the feasibility of the problem.
The critical values of t are thus determined from the following condition:

Example 7.5-2

Maximize z = 3X1 + 2X2 + 5X3

subject to

Xl + 2X2 + X3 S 40 - t

3x1 + 2x3 S 60 + 2t

Xl + 4X2 S 30 - 7t

Assume that t :::: 0.
At t = to = 0, the problem is identical to that of Example 7.5-1. We thus have

To determine the first critical value tl> we apply the feasibility conditions XBo{t) =
BOlb{t) :::: 0, which yields

These inequalities are satisfied for t s ~, meaning that t1 == .!f and that the basis Bo remains

feasible for the range 0 s t s ~. However, the values of the basic variables X2' X3, and X6 will

change with t as given above.

The value of the basic variable X6 (= 10 - 3t) will equal zero at t = t1 = ~, and will be

come negative for t > .!f. Thus, at t = ~, we can determine the alternative basis B1 by applying

the revised dual simplex method (see Problem 5, Set 7.2b, for details). The leaving variable is X6.

Alternative Basis at t = t1 = ~

Given that X6 is the leaving variable, we determine the entering variable as follows:

X Bo = (X2' X3, x6f, CBo = (2,5,0)

Thus,

"
.~- .
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Next, for nonbasic Xj, j = 1,4,5, we compute

(Row of B01 associated with X6)(Ph P4, Ps) = (Third row of B(1)(Ph P4, Ps)

= (-2, 1, 1)(PJ, P4, Ps)

= (2, -2, 1)

The entering variable is thus associated with

e = min{ -, I!21, -} = ~

Thus, P4 is the entering vector. The alternative basic solution and its B1 and B11 are

K BI = (X2, X3, x4f

B, ~ (P" P" p.) ~ G1

D-Bl
1 ~ G

0

-~)2 !
2

0 _1.
2

The next critical value t2 is determined from the feasibility conditions, X B1 (t)= B11b(t) ;:;: 0,
which yields

(:~) = (~~ ~7: )(~)
-10 + 31 0

X4 2

These conditions show that B1 remains feasible for ~ ::5 t ::5 ~.

At t = t2 = ~, an alternative basis can be obtained by the revised dual simplex method. The
leaving variable is X2, because it corresponds to the condition yielding the critical value (2-

Alternative Basis at t = t2 = ~

Given that X2 is the leaving variable, we determine the entering variable as follows:

Thus,

Next, for nonbasic Xj, j = 1,5, 6, we compute

(Row of B11 associated with X2)(P(, Ps, P6) = (First row of B11)(P(, Ps, P6)

= (0,O,~)(P1,P5,P6)

= (*,O,~)

Because all the denominator elements, G, 0, n, are ;;::0, the problem has no feasible solution for

t > ~ and the parametric analysis ends at t = t2 = ~- I

/



332 Chapter 7 Advanced UnearProgramming

The optimal solution is summarized as

z

o 5 - t 30 + t 160 + 3t
o 30 ; 7r 30 + t 165 + ~t

(No feasible solution exists)

PROBLEM SET 7.5B

*1. In Example 7.5-2, find the first critical value, t l , and define the vectors of B1 in each of
the following cases:

*(a) bet) = (40 + 2t, 60 - 3t,30 + 6t)T

(b) bet) = (40 - t,60 + 2t,30 - 5t)T

*2. Study the variation in the optimal solution of the following parameterized Lp, given
t ~ O.

Minimize z = 4XI + X2 + 2x3

subject to

3XI + X2 + 2x3 = 3 + 3t

4Xl + 3X2 + 2X3 ~ 6 + 2t

Xl + 2X2 + 5X3 :5 4 - t

3. The analysis in this section assumes that the optimal LP solution at t = 0 is obtained by
the (primal) simplex method. In some problems, it may be more convenient to obtain the
optimal solution by the dual simplex method (Section 4.4.1). Show how the parametric
analysis can be carried out in this case, and then analyze the LP of Example 4.4-1, assum
ing that t ~ 0 and the right-hand side vector is

bet) = (3 + 2t,6 - t,3 - 4t)T

4. Solve Problem 2 assuming that the right-hand side is changed to

bet) "" (3 + 3t2, 6 + 2t2,4 - Pl
Further assume that t can be positive, zero, or negative.
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CHAPTER 8

Goal Programming

Chapter Guide. The LP models presented in the preceding chapters are based on the
optimization of a single objective function. There are situations where multiple (con
flicting) objectives may be more appropriate. For example, politicians promise to re
duce the national debt and, simultaneously, offer income tax relief. In such situations, it
is impossible to find a single solution that optimizes these two conflicting goals. What
goal programming does is seek a compromise solution based on the relative impor
tance of each objective.

The main prerequisite for this chapter is a basic understanding of the simplex
method. There are two methods for solving goal programs: The weights method forms a
single objective function consisting of the weighted sum of the goals and the
preemptive method optimizes the goals one at a time starting with the highest-priority
goal and terminating with the lowest, never degrading the quality of a higher-priority
goal. The solution using the weights method is just like any ordinary linear program.
The preemptive method entails "additional" algorithmic considerations that are very
much within the realm of the simplex method of Chapter 3. The chapter includes an
AMPL model that applies the preemptive method interactively to any goal program,
simply by changing the input data. You are encouraged to study this model because it
will assist you in understanding the details of the preemptive method.

This chapter includes a summary of 1 real-life application, 4 solved examples, 1
AMPL model, 25 end-of-section problems, and 2 cases. The cases are in Appendix E on
the CD. The AMPLlExcel/SolverrrORA programs are in folder ch8Files.

Real-Life Application-Allocation of Operating Room Time
in Mount Sinai Hospital.

The situation takes place in Canada where health care insurance is mandatory and uni
versal. Funding, which is based on a combination of premiums and taxes, is controlled
by the individual provinces. Under this system, hospitals are advanced a fIxed annual
budget and each province pays physicians retrospectively using a fee-for-service fund
ing mechanism. This funding arrangement limits the availability of hospital facilities
(e.g., operating rooms), which in turn would curb physicians' tendency to boost personal

333



334 Chapter 8 Goal Programming

gain through overservice to patients. The objective of the study is to determine an eq
uitable daily schedule for the use of available operating rooms. The problem is mod
eled using a combination of goal and integer programming. Case 6 in Chapter 24 on
the CD provides the details of the study.

8.1 A GOAL PROGRAMMING FORMULATION

The idea of goal programming is illustrated by an example.

Example 8.1-1 (Tax Planning)1

Fairville is a small city with a population of about 20,000 residents. The city council is in the
process of developing an equitable city tax rate table. The annual taxation base for real estate
property is $550 million. The annual taxation bases for food and drugs and for general sales are
$35 million and $55 million, respectively. Annual local gasoline consumption is estimated at 7.5
million gallons. The city council wants to develop the tax rates based on four main goals.

L Tax revenues must be at least $16 million to meet the city's financial commitments.

2. Food and drug taxes cannot exceed 10% of all taxes collected.

3. General sales taxes cannot exceed 20% of all taxes collected.

4. Gasoline tax cannot exceed 2 cents per gallon.

Let the variables xp , xf' and X s represent the tax rates (expressed as proportions of taxation
bases) for property, food and drug, and general sales, and define the variable xg as the gasoline tax
in cents per gallon. The goals of the city council are then expressed as

550xp + 35xf + 55xs + .075xg 2: 16

35xf :5 .1(550xp + 35xf + 55x3 + .075xg )

55xs :5 .2(550xp + 35xf + 55xs + .075xg )

These constraints are then simplified as

(Tax revenue)

(Food/drug tax)

(General tax)

(Gasoline tax)

550xp + 35xf + 55xs + .075xg 2: 16

55xp - 31.5xf + 5.5xs + .0075xg 2: 0

1l0xp + txf - 44xs + .015xg 2: 0

X g :5 2

IThis example is based on Cbissman and Associates, 1989.
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Each of the inequalities of the model represents a goal that the city council aspires to satis
fy. Most likely, however, the best that can be done is a compromise solution among these con
flicting goals.

The manner in which goal programming finds a compromise solution is to convert each in
equality into a flexible goal in which the corresponding constraint may be violated, if necessary.
In terms of the Fairville model, the flexible goals are expressed as follows:

550xp + 35xf + 55xs + .075xg + $1 - sf = 16

55xp - 31.5xf + 5.5xs + .0075xg + S2 - si = 0

1l0xp + txf - 44xs + .015xg + s3 - s! = 0

+ - + 2xg S4 - S4 =

si,sf ~ O,i = 1,2,3,4

The nonnegative variables si and Sf, i = 1,2,3,4, are called deviational variables because they
represent the deviations below and above the right-hand side of constraint i.

The deviational variables si and Sf are by definition dependent, and hence cannot be
basic variables simultaneously. This means that in any simplex iteration, at most one of the
two deviational variables can assume a positive value. If the original ith inequality is of the
type s; and its si > 0, then the ith goal is satisfied; otherwise, if Sf > 0, goal i is not satisfied.
In essence, the definition of si and sf allows meeting or violating the ith goal at will. This is
the type of flexibility that characterizes goal programming when it seeks a compromise solu
tion. Naturally, a good compromise solution aims at minimizing, as much as possible, the
amount by which each goal is violated.

In the FairviUe model, given that the first three constraints are of the type ~ and the fourth
constraint is of the type :5., the deviational variables S1, S2, S3 and S4 (shown in the model in
bold) represent the amounts by which the respective goals are violated. Thus, the compromise
solution tries to satisfy the following four objectives as much as possible:

Minimize G1 = sl

Minimize G2 = S2

Minimize G3 = $3

Minimize G4 = S4

These functions are minimized subject to the constraint equations of the model.

How can we optimize a multiobjective model with possibly conflicting goals? Two
methods have been developed for this purpose: (1) the weights method and (2) the pre
emptive method. Both methods, which are based on converting the multiple objectives
into a single function, are detailed in Section 8.2.
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PROBLEM SET 8.1A

*1. Formulate the Fairville tax problem, assuming that the town council is specifying an addi
tional goal, Gs, that requires gasoline tax to equal at least 10% of the total tax bill.

2. The NW Shopping Mall conducts special events to attract potential patrons. Among the
events that seem to aUract teenagers, the young/middle-aged group, and senior citizens,
the two most popular are band concerts and art shows. Their costs per presentation are
$1500 and $3000, respectively. The total (strict) annual budget allocated to the two events
is $15,000. The mall manager estimates the attendance as follows:

Number attending per presentation

Event

Band concert
Art show

Teenagers

200
o

Young/middle age

100
400

Seniors

o
250

The manager has set minimum goals of 1000, 1200, and 800 for the attendance of
teenagers, the young/middle-aged group, and seniors, respectively. Formulate the problem
as a goal programming model.

*3. Ozark University admission office is processing freshman applications for the upcoming
academic year. The applications fall into three categories: in-state, out-ai-state, and inter
national. The male-female ratios for in-state and out-of-state applicants are 1:1 and 3:2,
respectively. For international students, the corresponding ratio is 8:1. The American Col
lege Test (ACT) score is an important factor in accepting new students. The statistics
gathered by the university indicate that the average ACT scores for in-state, out-of-state,
and international students are 27,26, and 23, respectively. The committee on admissions
has established the following desirable goals for the new freshman class:

(a) The incoming class is at least 1200 freshmen.

(b) The average ACT score for all incoming students is at least 25.

(c) International students constitute at least 10% of the incoming class.

(d) The female-male ratio is at least 3:4.

(e) Out-of-state students constitute at least 20% of the incoming class.

Formulate the problem as a goal programming model.

4. Circle K farms consumes 3 tons of special feed daily. The feed-a mixture of limestone,
corn, and soybean meal-must satisfy the following nutritional requirements:

Calcium. At least 0.8% but not more than 1.2%.

Protein. At least 22%.

Fiber. At most 5%.

The following table gives the nutritional content of the feed ingredients.

lb per Ib of ingredient

Ingredient

Limestone
Corn
Soybean meal

Calcium

.380

.001

.002

Protein

.00

.09

.50

Fiber

.00

.02

.08

,2:' '";'
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Formulate the problem as a goal programming model, and state your opinion regarding
the applicability of goal programming to this situation.

*5. Mantel produces a toy carriage, whose final assembly must include four wheels and two
seats. The factory producing the parts operates three shifts a day. The following table pro
vides the amounts produced of each part in the three shifts.

Units produced per run

Shift Wheels Seats

1 500 300
2 600 280
3 640 360

Ideally, the number of wheels produced is exactly twice that of the number of seats. How
ever, because production rates vary from shift to shift, exact balance in production may
not be possible. Mantel is interested in determining the number of production runs in
each shift that minimizes the imbalance in the production of the parts. The capacity limi
tations restrict the number of runs to between 4 and 5 for shift 1, 10 and 20 for shift 2,
and 3 and 5 for shift 3. Formulate the problem as a goal programming model.

6. Camyo Manufacturing produces four parts that require the use of a lathe and a drill
press. The two machines operate 10 hours a day. The following table provides the time in
minutes required by each part:

Production time in min

Part Lathe DrWpress

1 5 3
2 6 2
3 4 6
4 7 4

It is desired to balance the two machines by limiting the difference between their total
operation times to at most 30 minutes. The market demand for each part is at least
10 units. Additionally, the number of units of part 1 may not exceed that of part 2. Formu
late the problem as a goal programming model.

7. Two products are manufactured on two sequential machines. The following table gives
the machining times in minutes per unit for the two products.

Machining time in min

Machine

1
2

Product 1

5
6

Product 2

3
2

·.;'
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The daily production quotas for the two products are 80 and 60 units, respectively. Each
machine runs 8 hours a day. Overtime, though not desirable, may be used if necessary to
meet the production quota. Formulate the problem as a goal programming model.
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8. Vista City hospital plans the short-stay assignment of surplus beds (those that are not al
ready occupied) 4 days in advance. During the 4-day planning period about 30,25, and 20
patients will require 1-,2-, or 3-day stays, respectively. Surplus beds during the same peri
od are estimated at 20,30,30, and 30. Use goal programming to resolve the problem of
overadmission and underadmission in the hospital.

9. The Von Trapp family is in the process of moving to a new city where both parents have
accepted new jobs. In trying to find an ideal location for their new home, the Von Trapps
list the following goals:
(a) It should be as close as possible to Mrs. Von Trapp's place of work (within ~ mile).
(b) It should be as far as possible from the noise of the airport (at least 10 miles).

(c) It should be reasonably close to a shopping mall (within 1 mile).

Mr. and Mrs. Von Trapp use a landmark in the city as a reference point and locate
the (x,y)-coordinates of work, airport, and shopping mall at (1,1), (20, 15), and (4,7), re
spectively (all distances are in miles). Formulate the problem as a goal programming
model. [Note: The resulting constraints are not linear.}

10. Regression analysis. In a laboratory experiment, suppose that Yi is the ith observed (inde
pendent) yield associated with the dependent observational measurements
Xii' i = 1,2, ... , m; j = 1,2, ... , n. It is desired to detennine a linear regression fit into
these data points. Let hi' j = 0,1, ... , n, be the regression coefficients. It is desired to de
termine all hi such that the sum of the absolute deviations between the observed and the
estimated yields is minimized. Formulate the problem as a goal programming modeL

11. Chebyshev Problem. An alternative goal for the regression model in Problem 10 is to
minimize over hi the maximum of the absolute deviations. Formulate the problem as a
goal programming model.

8.2 GOAL PROGRAMMING ALGORITHMS

This section presents two algorithms for solving goal programming. Both methods are
based on representing the multiple goals by a single objective function. In the weights
method, a single objective function is fonned as the weighted sum of the functions repre
senting the goals of the problem. The preemptive method starts by prioritizing the goals in
order of importance. The model is then optimized, using one goal at a time such that the
optimum value of a higher-priority goal is never degraded by a lower-priority goal.

The proposed two methods are different because they do not generally produce
the same solution. Neither method, however, is superior to the other, because each
technique is designed to satisfy certain decision-making preferences.

8.2.1 The Weights Method

Suppose that the goal programming model has n goals and that the ith goal is given as

Minimize Gi , i = 1,2, ... , n

The combined objective function used in the weights method is then defined as

Minimize Z = WIGI + 'W7.G2 + ... + wnGn

The parameters Wj, i = 1, 2, ... ,n, are positive weights that reflect the decision
maker's preferences regarding the relative importance of each goal. For example,
Wj = 1, for all i, signifies that all goals carry equal weights. The determination of the
specific values of these weights is subjective. Indeed, the apparently sophisticated analytic ..
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procedures developed in the literature (see, e.g., Cohon, 1978) are still rooted in sub
jective assessments.

Example 8.2-1

TopAd, a new advertising agency with 10 employees, has received a contract to promote a new
product. The agency can advertise by radio and television. The following table gives the number
of people reached by each type of advertisement and the cost and labor requirements.

Data/min advertisement

Exposure (in millions of persons)
Cost (in thousands of dollars)
Assigned employees

Radio

4
8
1

Television

8
24

2

e
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The contract prohibits TopAd from using more than 6 minutes of radio advertisement. Addi
tionally, radio and television advertisements need to reach at least 45 million people. TopAd has
a budget goal of $100,000 for the project. How many minutes of radio and television advertise
ment should TopAd use?

Let Xl and X2 be the minutes allocated to radio and television advertisements. The goal pro
gramming formulation for the problem is given as

Minimize G 1 = s1" (Satisfy exposure goal)

Minimize G2 = s! (Satisfy budget goal)

subject to

4Xl + 8X2 + s1" - st = 45 (Exposure goal)

8Xl + 24x2 + s"2 - si = 100 (Budget goal)

:5 10 (Personnel limit)

:5 6 (Radio limit)

- + - + 0xb x 2,sl,sl,s2,s2 ;;::;

TopAd's management assumes that the exposure goal is twice as important as the budget
goal. The combined objective function thus becomes

Minimize z = 2GI + G2 = 2s, + s!

The optimum solution is z = 10, XI = 5 minutes, X2 = 2.5 minutes, sl = 5 million persons. All
the remaining variables are zero.

The fact that the optimum value of z is not zero indicates that at least one of the goals is not
met. Specifically, sl = 5 means that the exposure goal (of at least 45 million persons) is missed
by 5 million individuals. Conversely, the budget goal (of not exceeding $100,000) is not violated,
because s! = 0.
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Goal programming yields only an efficient, rather than optimum, solution to the problem.
For example, the solution Xl = 6 and X2 = 2 yields the same exposure (4 X 6 + 8 X 2 = 40 mil
lion persons), but costs less (8 X 6 + 24 X 2 = $96,000). In essence, what goal programming
does is to find a solution that simply satisfies the goals of the model with no regard to optimiza
tion. Such "deficiency" in finding an optimum solution may raise doubts about the viability of
goal programming as an optimizing technique (see Example 8.2-3 for further discussion).

PROBLEM SET S.2A

*1. Consider Problem 1, Set 8.1a dealing with the Fairville tax situation. Solve the problem,
assuming that aU five goals have the same weight. Does the solution satisfy all the goals?

2. In Problem 2, Set 8.1a, suppose that the goal of attracting young/middle-aged people is
twice as important as for either of the other two categories (teens and seniors). Find the
associated solution, and check if all the goals have been met.

3. In the Ozark University admission situation described in Problem 3, Set 8.1a, suppose
that the limit on the size of the incoming freshmen class must be met, but the remaining
requirements can be treated as flexible goals. Further, assume that the ACT score goal is
twice as important as any of the remaining goals.

(a) Solve the problem, and specify whether or not all the goals are satisfied.

(b) If, in addition, the size of the incoming class can be treated as a flexible goal that is
twice as important as the ACT goal, how would this change affect the solution?

*4. In the Circle K model of Problem 4, Set 8.1a, is it possible to satisfy all the nutritional
requirements?

5. In Problem 5, Set 8.1a, determine the solution, and specify whether or not the daily pro
duction of wheels and seats can be balanced.

6. In Problem 6, Set 8.1a, suppose that the market demand goal is twice as important as that
of balancing the two machines, and that no overtime is allowed. Solve the problem, and
determine if the goals are met.

*7. In Problem 7, Set 8.1a, suppose that production strives to meet the quota for the two
products, using overtime if necessary. Find a solution to the problem, and specify the
amount of overtime, if any, needed to meet the production quota.

8. In the Vista City Hospital of Problem 8, Set 8.1a, suppose that only the bed limits repre
sent flexible goals and that all the goals have equal weights. Can all the goals be met?

9. The Maleo Company has compiled the following table from the files of five of its em
ployees to study the impact on income of three factors: age, education (expressed in
number of college years completed), and experience (expressed in number of years in
the business).

Age (yr) Education (yr) Experience (yr) Annual income ($)

30 4 5 40,000
39 5 10 48,000
44 2 14 38,000
48 a 18 36,000
37 3 9 41,000
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Use the goal programming formulation in Problem 10, Set 8.la, to fit the data into
the linear equation y = b o + b1Xl + b2X2 + b3X3'

10. Solve Problem 9 using the Chebyshev method proposed in Problem11, Set 8.la.

8.2.2 The Preemptive Method

In the preemptive method, the decision maker must rank the goals of the problem in
order of importance. Given an n-goal situation, the objectives of the problem are
written as

Minimize G1 = PI (Highest priority)

Minimize Gn = Pn (Lowest priority)

The variable Pi is the component of the deviational variables, sj or st, that represents
goal i. For example, in the TopAd model (Example 8.2-1), PI = sl and pz = sr.

The solution procedure considers one goal at a time, starting with the highest pri
ority, G1, and tenninating with the lowest, Gn- The process is carried out such that the so
lution obtained from a lower-priority goal never degrades any higher-priority solutions.

The literature on goal programming presents a "special" simplex method that
guarantees the nondegradation of higher-priority solutions. The method uses the
column-dropping rule that calls for eliminating a nonbasic variable Xj with nonzero re
duced cost (Zj - Cj ::j:. 0) from the optimal tableau of goal Gk before solving the prob
lem of goal Gk + l . The rule recognizes that such nonbasic variables, if elevated above
zero level in the optimization of succeeding goals, can degrade (but never improve) the
quality of a higher-priority goal. The procedure requires modifying the simplex tableau
to include the objective functions of all the goals of the model.

The proposed column-dropping modification needlessly complicates goal pro
gramming. In this presentation, we show that the same results can be achieved in a
more straightforward manner using the following steps:

Step O. Identify the goals of the model and rank them in order of priority:

G1 = PI > G2 = pz > '" > Gn = Pn

Set i = l.

Step 1. Solve LPi that minimizes Gi , and let Pi = p7 define the corresponding opti
mum value of the deviational variable Pi' If i = n, stop; LPn solves the n-goal
program. Otherwise, add the constraint Pi = p7 to the constraints of the
Grproblem to ensure that the value of Pi will not be degraded in future prob
lems. Set i = i + 1, and repeat step i.

The successive addition of the special constraints Pi = p7 may not be as "elegant"
theoretically as the column-dropping rule. Nevertheless, it achieves the exact same re
sult. More important, it is easier to understand.

Some may argue that the column-dropping rule offers computational advantages.
Essentially, the rule makes the problem smaller successively by removing variables,
whereas our procedure makes the problem larger by adding new constraints. However,
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considering the nature of the additional constraints (Pi = p;), we should be able to
modify the simplex algorithm to implement the additional constraint implicitly
through direct substitution of the variable Pi' This substitution affects only the con
straint in which Pi appears and, in effect, reduces the number of variables as we move
from one goal to the next. Alternatively, we can use the bounded simplex method of
Section 7.4.2 by replacing Pi = p7 with Pi :;:; p;, in which case the additional constraints
are accounted for implicitly. In this regard, the column~droppingrule, theoretical ap
peal aside, does not appear to offer a particular computational advantage. For the sake
of completeness, however, we will demonstrate in Example 8.2-3 how the column
dropping rule works.

Example 8.2-2

The problem of Example 8.2-1 is solved by the preemptive method. Assume that the exposure
goal has a higher priority.

GI : Minimize s1" (Satisfy exposure goal)
G2: Minimize si (Satisfy budget goal)

Step 1. Solve LPj .

Minimize G1 = 81
subject to

4XI + 8X2 + s1" - sf = 45 (Exposure goal)

8Xl + 24x2 + S2 - si = 100 (Budget goal)

xl + 2X2 :S 10 (Personnel limit)

:S 6 (Radio limit)

The optimum solution (determined by TORA) is Xl = 5 minutes, X2 = 2.5 minutes,
sl = 5 million people, with the remaining variables equal to zero. The solution shows
that the exposure goal, Gl> is violated by 5 million persons..

In LPI> we have PI = sl' Thus, the additional constraint we use with the GT

problem is sl = 5 (or, equivalently, sl :S 5).

Step 2. We need to solve LP2, whose objective function is

Minimize G2 = si
subject to the same set of constraint as in step 1 plus the additional constraint $1 = 5.
(We can replace the new constraint conveniently in TORA's ~Ql?re¥:~option by as
signing 5 to the lower and upper bounds of sl'.)

The optimization of LP2 is not necessary, because the optimum solution to problem
GI already yields si :::: O. Hence, the solution of LP1 is automatically optimum for LP2 as
well.The solution si = 0 shows that G2 is satisfied.

.;:..
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The additional constraint s1" = 5 can also be accounted for by substituting out sl
in the first constraint. The result is that the right-hand side of the exposure goal con
straint will be changed from 45 to 40, thus reducing LP2 to

Minimize G2 = s!
subject to

4XI + 8X2 - st = 40 (Exposure goal)

8XI + 24x2 + s2" - st = 100 (Budget goal)

Xl + 2X2 ::5 10 (Personnel limit)

Xl ::5 6 (Radio limit)

The new formulation is one variable less than the one in LP1, which is the general idea
advanced by the column-dropping rule.

Example 8.2-3 (Column-Dropping Rule)

In this example, we show that a better solution for the problem of Examples 8.2-1 and 8.2-2 can
be obtained if the preemptive method is used to optimize objectives rather than to satisfy goals.
The example also serves to demonstrate the column-dropping rule for solving goal programs.

The goals of Example 8.2-1 can be restated as

Priority 1: Maximize exposure (PI)

Priority 2: Minimize cost (P2 )

Mathematically, the two objectives are given as

The specific goal limits for exposure and cost (=45 and 100) in Examples 8.2-1 and 8.2-2 are
removed, because we will allow the simplex method to determine these limits optimally.

The new problem can thus be stated as

tes,
)WS

Maximize PI = 4Xl + 8x2

Minimize P2 = 8xI + 24x2

(Exposure)

(Cost)

= 5.
, as-

?
".. ~.... ::~~~1;<.,:

Maximize PI = 4xl + 8X2

Minimize P2 = 8xI + 24x2

subject to



Step 1. Solve LP1.

We first solve the problem using the procedure introduced in Example 8.2-2.

Maximize PI = 4XI + 8xz

!
~
~
I
1
J,
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subject to

The optimum solution (obtained by TORA) is Xl = 0, Xz = 5 with PI = 40, which
shows that the most exposure we can get is 40 million persons.

Step 2. Add the constraint 4xI + 8xz 2': 40 to ensure that goal GI is not degraded. Thus, we
solve LPzas

Minimize Pz = 8xI + 24xz
subject to

Xl + 2xz :::;; 10

Xl .$ 6

4Xl + 8xz 2': 40 (additional constraint)

The optimum solution of LPz is Pz = $96,000, Xl = 6 minutes, and Xz = 2 minutes. It yields
the same exposure (PI = 40 million people) but at a smaller cost than the one in Example 8.2-2,
where the main objective is to satisfy rather than optimize the goals.

The same problem is solved now by using the column-dropping rule. The rule calls for carry
ing the objective rows associated with all the goals in the simplex tableau, as we will show below.

LP1 (Exposure Maximization): The LPI simplex tableau carries both objective rows, PI and Pz.
The optimality condition applies to the PI-objective row only. The Pz-row plays a passive role in
LP., but must be updated with the rest of the simplex tableau in preparation for the optimization
of LPz.

LP1 is solved in two iterations as follows:

Iteration

1

2

Basic

P2 -8 -24
SI 1 2
S2 1 0
PI 0 0
P2 4 0

X2
1 12

52 1 0

Solution

o
10
6

40
120

5
6

The last tableau yields the optimal solution XI = 0, Xz = 5, and PI = 40.

.~ .
~~ \:..~
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The column-dropping rule calls for eliminating any nonbasic variable Xj with Zj - Cj :f. °
from the optimum tableau of LP1 before LPz is optimized. The reason for doing so is that these
variables, if left unchecked, could become positive in lower-priority optimization problems,
which would degrade the quality of bigher-priority solutions.

LPz (Cost Minimization): The column-dropping rule eliminates Sl (with Zj - Cj = 4). We can see
from the Prrow that if Sl is not eliminated, it will be the entering variable at the start of the
Pz-iterations and will yield the optimum solution Xl :::: X2 = 0, which will degrade the optimum ob
jective value of the PI-problem from PI = 40 to PI :::: O. (Try it!)

The Pz-problem is of the minimization type. Fo1l9wing the elimination of s1> the variable Xl

with Zj - Cj :::: 4 (> 0) can improve the value of Pz.The following table shows the LPz iterations.
The PI-row has been deleted because it no longer serves a purpose in the optimization of LPz.

Iteration Basic Xl X2 $1 Sz Solution

PI 40
Pz 4 0 0 120

1 1 0 5Xz 2
Sz 1 0 1 6

2 PI 40
Pz 0 0 -4 96

Xz 0 1 I 2-2
XI 1 0 1 6

TIle optimum solution (Xl = 6, Xz = 2) with a total exposure of PI = 40 and a total cost of
Pz = 96 is the same as obtained earlier.

AMPl Moment

AMPL lends itself readily to applying the idea presented in Example 8.2-2, where sim
ple constraints are added to ensure that higher-priority solutions are not degraded.
Figure 8.1 provides a generic AMPL code that allows the application of the preemptive
method interactively (file amplEx8.1-1.txt).

The design of the model is standard except for the provisions that allow applying
the preemptive method interactively. Specifically, the model assumes that the first r
constraints are goal constraints and the remaining m - r - 1 are strict constraints. The
model has r distinct goal objective functions, which can be included in the same model
by using the following indexed AMPL statement (only an indexed name is allowed for
multiple objective functions):

minimize z{i in 1 .. r):p*sminus[i]+Q*splus[il;

The given definition of the objective function accounts for minimizing Zj = si and
Zj = Sf by setting (p = 1, q = 0) and (p = 0, q = 1), respectively.

Instead of adding a new constraint each time we move from one priority level to the
next, we use a programming trick that allows modifying the upper bounds on the devia
tional variables. The parameters urn [ i] and up [ i] represent the upper bounds on
srninus [i] (si) and splus [i] (st), respectively. These parameters are modified to im
pose implicit constraints of the type srninus[i]<::=urn[iJ and splus[i]<::=up[iJ, re
spectively. The values of urn and up in priority goal i are determined from the solutions
of the problems of priority goals 1,2, and i - 1. The initial (default) value for urn and up
is infinity.
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param n;
param m;
param r;
param p;
param q;
param a{l .. m, 1 .. n};
param b{l. .m};
param um(l .. m} default 100000;
param up{l .. m} default 100000;
var x(l .. n} >=0;
var sminus{i in 1 .. r}>=0,<=um[i];
var splus{i in 1 .. r}>=O,<=up[i];

3

55
5.5
-44
o

3 0 4 2;

4:=
.075
.0075
.015
1;

2
35

-31. 5
7

o
o

minimize z{i in 1 .. r}: p*sminus[i)+q*splus[i);
subject to
c1(i in 1 .. r}:sum(j in 1 .. n}a[i,jJ*x[j]+sminus[i)-splus[i]=b[i];
c2{i in r+l..m}: sum{j in 1 .. n} a[i,j]*x{j]<=b{i];
data;
param m:=4;
param n:=4;
param r:=4;
param a: 1

1 550
2 55
3 110
4 0

param b:=l 16 2

FIGURE 8.1

AMPL model for interactive application of the preemptive method (file ampIEx8.1-1.txt)

We will show shortly how AMPL activates any of the r objective functions, speci
fies the values of p and q, and sets the upper limits on si and st, all interactively, which
makes AMPL ideal for carrying out goal programming computations.

Using the data of Example 8.1-1, the goals of the model are

Minimize G1 = s}

Minimize G2 = S2
Minimize G3 = S3

Minimize G4 = st
Suppose that the goals are prioritized as

Gz > G1 > G3 > G4

The implementation of AMPL model thus p~oceeds in the following manner: For G2,

set p = 1 and q = 0 because we are minimizing z [2] =sminus [2] . The following com
mands are used to carry out the calculations:

ampl: model amplEx8.1-1.txt;
ampl: let p:=l;let q:=O;
ampl: objective z(2];
ampl: solve; display z[2], x, sminus, spIus;

:~ .
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These commands produce the following results:

z [2] = 0
x sminus splus :=

1 2.62361e-28 16 0
2 0 0 0

3 8.2564e-28 0 0
4 0 2 0

The solution (Xl = 0, X2 = 0, X3 = 0, and X4 = 0) shows that goal G2 is satisfied
because z [2] =:: 0 (that is, s2" = 0). However, the next-priority goal, Gh is not satisfied
because sl = 16. Hence, we need to optimize goal Gl without degrading the solution
of G2. This requires changing the upper bounds on s2" to the value specified by the so
lution of G2-namely, zero. For goal Gb current p = 1 and q = 0 from G2 remain un
changed because we are minimizing St. The following interactive AMPL commands
achieve this result:

ampl: let um[2]:=O;
ampl: objective z[l]; solve; display z[l],x, sminus, splus;

The ouput is

z [1 J = 0

x sminus splus .-
1 0.0203636 0 0
2 0.0457143 0 0
3 0.0581818 0 0
4 0 2 0

The solution shows that all the remaining goals are satisfied. Hence, no further opti
mization is needed. The goal programming solution is X p = .0203636, Xf = .0457143,
X s = .0581818, and xg = O.

Remarks.

1. We can replace let um(2] :=0; with either fix sminus [2] :=::0; or let smi

nus [2] : ::: 0; with equal end result.
2. The interactive session can be totally automated using a commands file that auto

matically selects the current goal to be optimized and imposes the proper restric
tions before solving the next priority goal. The use of this file (which we name
ampICmds.txt) requires making some modifications in the original model as
shown in file ampIEx8.1-1A.txt. To be completely versatile, the data of the model
are stored in a separate file named ampIData.txt. In this case, the execution of the
model requires issuing three command lines:

ampl: model amplEx8.1-1A.txt;
ampl: data amplData.txt;
ampl: commands amplCmds.txt;

See Section A.7 for more information about the use of commands.
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PROBLEM SET 8.282

1. In Example 8.2-2, suppose that the budget goal is increased to $110,000. The exposure
goal remains unchanged at 45 million persons. Show how the preemptive method will
reach a solution.

2. Solve Problem 1, Set 8.la, using the following priority ordering for the goals:

3. Consider Problem 2, Set 8.la, which deals with the presentation of band concerts and art
shows at the NW Mall. Suppose that the goals set for teens, the young/middle-aged
group, and seniors are referred to as GI , Gz, and G3, respectively. Solve the problem for
each of the following priority orders:

(a) G1 > Gz > G3

(b) G3 > Gz > GI

Show that the satisfaction of the goals (or lack of it) can be a function of the priority
order.

4. Solve the Ozark University model (Problem 3, Set 8.la) using the preemptive method,
assuming that the goals are prioritized in the same order given in the problem.

REFERENCES
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Cohon, T. L., Multiobjective Programming and Plo.nning, Academic Press, New York, 1978.

Ignizio,1. P., and T. M. Cavalier, Linear Programming, Prentice Hall, Upper Saddle River, NJ
1994.

Steuer, R. E., Multiple Criteria Optimization: Theory, Computations, and Application, Wiley, New
York, 1986.

2you may find it computationally convenient to use interactive AMPL to solve the problems of this set.
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Integer Linear Programming

Chapter Guide. Integer linear programs (ILPs) are linear programs with some or all the
variables restricted to integer (or discrete) values. When you study ILp, you need to con
centrate on three areas: application, theory, and computation. The chapter starts with a
number of applications that demonstrate the rich use of ILP in practice.Then it presents
the two prominent algorithms of ILP: branch and bound (B&B) and cutting plane. Of
the two algorithms, B&B is decidedly more efficient computationally. Indeed, practical
ly all commercial codes are rooted in B&B.The chapter closes with a presentation of the
traveling salesperson problem (TIP), a problem that has important practical applications.

A drawback of ILP algorithms is their lack of consistency in solving integer prob
lems. Although these algorithms are proven theoretically to converge in a finite num
ber of iterations, their implementation on the computer (with its inherent machine
roundoff error) is a different experience. You should keep this point in mind as you
study the ILP algorithms.

The chapter shows how AMPL and Solver are used with ILP You will find
TORA's user-guided option useful in detailing the B&B computations.

This chapter includes a summary of 1 real-life application, 12 solved examples,
5 AMPL models, 1 Excel spreadsheet, 65 end-ot-section problems, and 10 cases. The
cases are in Appendix E on the CD. The AMPL/Excel/SolverITORA programs are in
folder ch9Files.

Real-Life Application-optimizing Trailer Payloads at PFG Building Glass

PFG uses specially equipped (fifth-wheel) trailers to deliver packs of sheets of flat
glass to customers. The packs vary in both size and weight, and a single trailer load may
include different packs, depending on received orders. Government regulations set
maximum limits on axle weights, and the actual positioning of the packs on the trailer
is crucial in determining these weights. The problem deals with determining the opti
mal loading of the packs on the trailer bed to satisfy axle-weight limits. The problem is
solved as an integer program. Case 7 in Chapter 24 on the CD provides the details of
the study.

349
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9.1 ILLUSTRATIVE APPLICATIONS

This section presents a number of ILP applications. The applications generally fall into
two categories: direct and transformed. In the direct category, the variables are natural
ly integer and may assume binary (0 or 1) or general discrete values. For example, the
problem may involve determining whether or not a project is selected for execution
(binary) or finding the optimal number of machines needed to perform a task (general
discrete value). In the transfonned category, the original problem, which may not in
volve any integer variables, is analytically intractable. Auxiliary integer variables (usu
ally binary) are used to make it tractable. For example, in sequencing two jobs, A and
B, on a single machine,job A may precede job B or job B may precede job A. The "or"
nature of the constraints is what makes the problem analytically intractable, because
all mathematical programming algorithms deal with "and" constraints only. The situa
tion is remedied by using auxiliary binary variables to transform the "or" constraints
into equivalent "and" constraints.

For convenience, a pure integer problem is defined to have all integer variables.
Otherwise, a problem is a mixed integer program if it deals with both continuous and
integer variables.

9.1.1 Capital Budgeting

This section deals with decisions regarding whether or not investments should be made
in individual projects. The decision is made under limited-budget considerations as
well as priorities in the execution of the projects.

Example 9.1-1 (Project Selection)

Five projects are being evaluated over a 3-year planning horizon. The following table gives the
expected returns for each project and the associated yearly expenditures.

Expenditures (million $)/yr

Project 1 2 3 Returns (million $)

1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Available funds (million $) 25 25 25

Which projects should be selected over the 3-year horizon?
The problem reduces to a "yes-no" decision for each project. Define the binary variable Xj as

{
I, if project j is selected

Xj = 0, if project j is not selected

The ILP model is

Maximize z = 20Xl + 4OX2 + 20X3 + 15x4 + 30xs
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subject to

5Xl + 4X2 + 3X3 + 7x4 + 8xs s 25

Xl + 7X2 + 9X3 + 4X4 + 6xs s 25

8xt + 10x2 + 2X3 + X4 + lOxs s 25

The optimum integer solution (obtained by AMPL, Solver, or TORA)! is Xl =X2 =

X3 = X4 = 1, Xs = 0, with z = 95 (million $). The solution shows that all but project 5 must be
selected.

Remarks. It is interesting to compare the continuous LP solution with the ILP solution. The
LP optimum, obtained by replacing Xj = (0,1) with 0 S Xj ::::; 1 for all j, yields Xl = .5789,
X2 = X3 = X4 = 1, Xs = .7368, and z = 108.68 (million $). The solution is meaningless because
two of the variables assume fractional values. We may round the solution to the closest integer
values, which yields Xl = Xs = 1. However, the resulting solution is infeasible because the con
straints are violated. More important, the concept of rounding is meaningless here because xi rep
resents a "yes-no" decision.

PROBLEM SET 9.1A2

1. Modify and solve the capital budgeting model of Example 9.1-1 to account for the fol
lowing additional restrictions:

(a) Project 5 must be selected if either project 1 or project 3 is selected.

(b) Projects 2 and 3 are mutually exclusive.

2. Five items are to be loaded in a vessel. TIle weight Wi, volume Vi, and value I"i for item i
are tabulated below.

Item i Unit weight, Wi (tons) Unit volume, Vi (yd3) Unit worth, ri (100 $)

1 5 1 4
2 8 8 7
3 3 6 6
4 2 5 5
5 7 4 4

ITo use TORA, select :,~,~t~g~r,?~ogfaii1ini~g from Main Menu;. After entering the problem data, go to output

screen and select :A,iiJ6.til3.tea.B.&):t, to obtain the optimum solution. Solver use is the same as in LP except
that the targeted variables must be declared integer. The integer option (in! or bin) is available in the Solver
Parame.ers dialogue box when you add a new constraint AMPL implementation for integer programming is
the same as in linear programming, except that some or all the variables are declared integer by adding the
key word integer (or binary) in the definition statement of the targeted variables. For example, the state
ment var x{J) >'=O,i~teger; declares Xj as nonnegative integer for all j E 1. If Xj is binary, the statement is
changed to var x{J} binary;. For execution, the statement option solver cplex; must precede solve;.
2Problems 3 to 6 are adapted from Malba Tahan, EI Hombre que Calculaba, Editorial Limusa, Mexico City,
pp. 39-182,1994.
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The maximum allowable cargo weight and volume are 112 tons and 109 ydJ , respec
tively. Formulate the ILP model, and find the most valuable cargo.

*3. Suppose that you have 7 full wine bottles, 7 half-full, and 7 empty. You would like to di
vide the 21 bottles among three individuals so that each will receive exactly 7. Addition
ally, each individual must receive the same quantity of wine. Express the problem as ILP
constraints, and find a solution. (Hint: Use a dummy objective function in which all the
objective coefficients are zeros.)

4. An eccentric sheikh left a will to distribute a herd of camels among his three children:
Tarek receives at least one-half of the herd, Sharif gets at least one third, and Maisa gets
at least one-ninth. The remainder goes to charity. The will does not specify the size of the
herd except to say that it is an odd number of camels and that the named charity receives
exactly one camel. Use ILP to determine how many camels the sheikh left in the estate
and how many each child got.

5. A farm couple are sending their three children to the market to sell 90 apples with the
objective of educating them about money and numbers. Karen, the oldest, carries 50 ap
ples; Bill, the middle one, carries 30; and John, the youngest, carries only 10. The parents
have stipulated five rules: (a) The selling price is either $1 for 7 apples or $3 for 1 apple,
or a combination of the two prices. (b) Each child may exercise one or both options of
the selling price. (c) Each of the three children must return with exactly the same amount
of money. (d) Each child's income must be in whole dollars (no cents allowed). (e) The
amount received by each child must be the largest possible under the stipulated condi
tions. Given that the three kids are able to sell all they have, use ILP to show how they
can satisfy the parents' conditions.

*6. Once upon a time, there was a captain of a merchant ship who wanted to reward three
crew members for their valiant effort in saving the ship's cargo during an unexpected
storm in the high seas. The captain put aside a certain sum of money in the purser's office
and instructed the first officer to distribute it equally among the three mariners after the
ship had reached shore. One night, one of the sailors, unbeknown to the others, went to
the purser's office and decided to claim (an equitable) one-third of the money in ad
vance. After he had divided the money into three equal shares, an extra coin remained,
which the mariner decided to keep (in addition to one-third of the money). The next
night, the second mariner got the same idea and, repeating the same three-way division
with what was left, ended up keeping an extra coin as well. The third night, the third
mariner also took a third of what was left, plus an extra coin that could not be divided.
When the ship reached shore, the first officer divided what was left of the money equally
among the three mariners, again to be left with an extra coin. To simplify things, the first
officer put the extra coin aside and gave the three mariners their allotted equal shares.
How much money was in the safe to start with? Formulate the problem as an ILP, and
find the solution. (Hint: The problem has a countably infinite number of integer solutions.
For convenience, assume that we are interested in determining the smallest sum of
money that satisfies the problem conditions. Then, boosting the resulting sum by 1, add it
as a lower bound and obtain the next smallest sum. Continuing in this manner, a general
solution pattern will evolve.)

7. (Weber, 1990) You have the following three-letter words: AFr, FAR,TVA, ADV, JOE,
FIN, OSF, and KEN. Suppose that we assign numeric values to the alphabet starting with
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A = 1 and ending with Z :; 26. Each word is scored by adding numeric codes of its three
letters. For example, AFT has a score of 1 + 6 + 20 = 27. You are to select five of the
given eight words that yield the maximum total score. Simultaneously, the selected five
words must satisfy the following conditions:

(
sum of letter 1) < (sum of letter 2) < (sum of letter 3)

scores scores scores

Formulate the problem as an ILp, and find the optimum solution.

8. Solve Problem 7 given that, in addition to the total sum being the largest, the sum of col
umn 1 and the sum of column 2 will be the largest as well. Find the optimum solution.

9. (Weber, 1990) Consider the following two groups of words:

Group 1 Group 2

AREA ERST
FORT FOOT
HOPE HEAT
SPAR PAST
THAT PROF
TREE STOP

All the words in groups 1 and 2 can be formed from the nine letters A, E, F, H, 0, P, R, S,
and T. Develop a model to assign a unique numeric value from 1 through 9 to these let
ters such that the difference between the total scores of the two groups will be as small as
possible. [Note: The score for a word is the sum of the numeric values assigned to its indi
vidual letters.]

*10. The Record-a-Song Company has contracted with a rising star to record eight songs. The
durations of the different songs are 8,3,5,5,9,6,7, and 12 minutes, respectively. Record
a-Song uses a two-sided cassette tape for the recording. Each side has a capacity of 30
minutes. The company would like to distribute the songs between the two sides such that
the length of the songs on each side is about the same. Formulate the problem as an ILP,
and find the optimum solution.

11. In Problem 10, suppose that the nature of the melodies dictates that songs 3 and 4 cannot
be recorded on the same side. Formulate the problem as an ILP. Would it be possible to
use a 25-minute tape (each side) to record the eight songs? If not, use ILP to determine
the minimum tape capacity needed to make the recording.

*12. (Graves and Associates, 1993) Ulem University uses a mathematical model that opti
mizes student preferences taking into account the limitation of classroom and faculty re
sources. To demonstrate the application of the model, consider the simplified case of 10
students who are required to select two courses out of six offered electives. The table
below gives scores that represent each student's preference for individual courses, with a
score of 100 being the highest. For simplicity, it is assumed that the preference score for a
two-course selection is the sum of the individual score. Course capacity is the maximum
number of students allowed to take the class.
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Preference score for course

Student 1 2 3 4 5 6

1 20 40 50 30 90 100
2 90 100 80 70 10 40
3 25 40 30 80 95 90
4 80 50 60 80 30 40
5 75 60 90 100 50 40
6 60 40 90 10 80 80
7 45 40 70 60 55 60
8 30 100 40 70 90 55
9 80 60 100 70 65 80

10 40 60 80 100 90 10

Course capacity 6 8 5 5 6 5

Formulate the problem as an ILP and find the optimum solution.

9.1.2 Set-Covering Problem

In this class of problems, overlapping services are offered by a number of installations
to a number of facilities. The objective is to determine the minimum number of instal
lations that will cover (i.e., satisfy the service needs) of each facility. For example, water
treatment plants can be constructed at various locations, with each plant serving differ
ent sets of cities. The overlapping arises when a given city can receive service from more
than one plant.

Example 9.1-2 (Installing Security Telephones)

To promote on-campus safety, the U of A Security Department is in the process of installing emer
gency telephones at selected locations. The department wants to install the minimum number of
telephones, provided that each of the campus main streets is served by at least one telephone.
Figure 9.1 maps the principal streets (A to K) on campus.

It is logical to place the telephones at street intersections so that each telephone will serve
at least two streets. Figure 9.1 shows that the layout of the streets requires a maximum of eight
telephone locations.

Define

x. = {1, a telephone is installed in location j
} 0, otherwise

The constraints of the problem require installing at least one telephone on each of the 11 streets
(A to K). Thus, the model becomes

subject to

~ 1

~1

~1

(Street A)

(Street B)

(Street C)
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FIGURE 9.1

Street Map of the U of A Campus

X7 + Xg ~ 1 (Street D)

X6 + X7 ~1 (Street E)

X2 + X6 ~1 (Street F)

Xl + X6 ~l (Street G)

X4 + X7 ~1 (Street H)

X2 + X4 ~ 1 (Street 1)

Xs + Xs ~ 1 (Street J)

X3 + Xs ~ 1 (Street K)

Xj = (0, l),j = 1,2, ... ,8

The optimum solution of the problem requires installing four telephones at intersections 1,2,5,
and 7.

Remarks. In the strict sense, set-covering problems are characterized by (1) the variables
Xj, j = 1,2, ... , n, are binary, (2) the left-hand-side coefficients of the constraints are 0 or 1, (3) the
right-hand side of each constraint is of the form (~ 1), and (4) the objective function minimizes
CIXl + C2X2 + ... + CnXm where Cj > 0 for all j = 1,2, ... , n. In the present example, Cj = 1 for
all j. IfCj represents the installation cost in location j, then these coefficients may assume values other
than 1. Variations of the set-covering problem include additional side conditions, as some of the situ
ations in Problem Set 9.lb show.

AMPlMoment

Figure 9.2 presents a general AMPL model for any set-covering problem (file am
pIEx9.1-2.txt). The formulation is straightforward, once the use of indexed set is under
stood (see Section AA). The model defines street as a (regular) set whose elements
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#--------------Example 9.1-2--------------------
param n; #maximum number of corners
set street;
'set corner{street};
var x{l .. n}binary;
minimize z: sum {j in l .. n} x[j];
subject to limit {i in street}:

sum (j in corner[i]} x[j]~=1;

data;
param n:=8;
set street:=A BCD E F G H I J K;
set corner[A] :=1 2;
set corner[B] :=2 3;
set corner[C] :=4 5;
set corner[D] :=7 8;
set corner[E] :=6 7;
set corner[F] :=2 6;
set corner[G] :=1 6;
set corner[H] :=4 7;
set corner [I] :=2 4;
set corner[J] :=5 8;
set corner[K] :=3 5;

option solver cplex;
solve;
display z,x;

FIGURE 9.2

General AMPL model for the set-covering problem (file ampl Ex 9.1-2.txt)

are A through K. Next, the indexed set corner{street} defines the corners as a func
tion of street. With these two sets, the constraints of the model can be formulated di
rectly. The data of the model give the elements of the indexed sets that are specific to
the situation in Example 9.1-2. Any other situation is handled by changing the data of
the model.

PROBLEM SET 9.1 B

*1. ABC is an LTL (less-than-truckload) trucking company that delivers loads on a daily basis
to five customers. The following list provides the customers associated with each route:

Route

1
2
3
4
5
6

Customers served on the route

1,2,3,4
4,3,5
1,2,5
2,3,5
1,4,2
1,3,5

The segments of each route are dictated by the capacity of the truck delivering the
loads. For example, on route 1, the capacity of the truck is sufficient to deliver the loads

;:i~
,- .
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to customers 1,2,3, and 4 only. The following table lists distances (in miles) among the
truck terminal (ABC) and the customers.

Miles from i to j

S ABC 1 2 3 4 5

ABC 0 10 12 16 9 8
1 10 0 32 8 17 10
2 12 32 0 14 21 20
3 16 8 14 0 15 18
4 9 17 21 15 0 11
5 8 10 20 18 11 0

The objective is to determine the least distance needed to make the daily deliveries
to all five customers. Though the solution may result in a customer being served by more
than one route, the implementation phase will use only one such route. Formulate the
problem as an ILP and find the optimum solution.

*2. The U of A is in the process of forming a committee to handle students' grievances. The
administration wants the committee to include at least one female, one male, one student,
one administrator, and one faculty member. Ten individuals (identified, for simplicity, by
the letters a to j) have been nominated. The mix of these individuals in the different cate
gories is given as follows:

Category

Females
Males
Students
Administrators
Faculty

Individuals

Q, b, c, d, e

f, g, h, ~ j
a, b, e,j
e,f
d, g, h, j

The U of A wants to form the smallest committee with representation from each of
the five categories. Formulate the problem as an ILP and find the optimum solution.

3. Washington County includes six towns that need emergency ambulance service. Because
of the proximity of some of the towns, a single station may serve more than one commu
nity. The stipulation is that the station must be within 15 minutes of driving time from the
towns it serves. The table below gives the driving times in minutes among the six towns.

Time in minutes from i to j

:s2 I 2 3 4 5 6

1 0 23 14 18 10 32
2 23 0 24 13 22 11
3 14 24 0 60 19 20
4 18 13 60 0 55 17
5 10 22 19 55 0 12
6 32 11 20 17 12 0

,j
; •.1".:1;
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FIGURE 9.3

Museum Layout for Problem 4, Set 9.1c

Formulate an ILP whose solution will produce the smallest number of stations and
their locations. Find the optimum solution.

4. The treasures of King Tut are on display in a museum in New Orleans. The layout of the
museum is shown in Figure 9.3, with the different rooms joined by open doors. A guard
standing at a door can watch two adjoining rooms. The museum wants to ensure guard
presence in every room, using the minimum number possible. Formulate the problem as
an ILP and find the optimum solution.

S. Bill has just completed his exams for the academic year and wants to celebrate by seeing
every movie showing in theaters in his town and in six other neighboring cities. If he trav
els to another town, he will stay there until he has seen all the movies he wants. The fol
lowing table provides the information about the movie offerings and the round-trip
distance to the neighboring town.

Theater location Movie offerings Round-trip miles Cost per show ($)

In-town 1,3 0 7.95
City A 1,6,8 25 5.50
CityB 2,5,7 30 5.00
CityC 1,8,9 28 7.00
CityD 2,4,7 40 4.95
CityE 1,3,5,10 35 5.25
City F 4,5,6,9 32 6.75

The cost of driving is 75 cents per mile. Bill wishes to determine the towns he needs to
visit to see all the movies while minimizing his total cost.

6. Walmark Stores is in the process of expansion in the western United States. During the
next year, Walmark is planning to construct new stores that will serve 10 geographically
dispersed communities. Past experience indicates that a community must be within 25
miles of a store to attract customers. In addition, the population of a community plays an
important role in where a store is located, in the sense that bigger communities generate
more participating customers. The following tables provide the populations as well as the
distances (in miles) between the communities:
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The idea is to construct the least number of stores, taking into account the distance
restriction and the concentration of populations.

Specify the communities where the stores should be located.

*7. (Gueret and Associates, 2002, Section 12.6) MobileCo is budgeting 15 million dollars to
construct as many as 7 transmitters to cover as much population as possible in 15 con
tiguous geographical communities. The communities covered by each transmitter and the
budgeted construction costs are given below.

Transmitter

1
2
3
4
5
6
7

Covered communities

1,2
2,3,5
1,7,9,10
4,6,8,9
6,7,9,11
5,7,10,12,14
12,13,14,15

Cost (million $)

3.60
2.30
4.10
3.15
2.80
2.65
3.10

The following table provides the populations of the different communities:

Community 1

Population (in WOOS) 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 10 14 6 7 9 10 13 11 6 12 7 5 16

y

an
Ite

the

Which of the proposed transmitters should be constructed?

8. (Gavernini and Associates, 2004) In modern electric networks, automated electric utility
meter reading replaces the costly labor-intensive system of manual meter reading. In the
automated system, meters from several customers are linked wirelessly to a single receiv
er. The meter sends montWy signals to a designated receiver to report the customer's
consumption of electricity. The receiver then sends the data to a central computer to gen
erate the electricity bills. The problem reduces to determining the least number of re
ceivers needed to serve a number of customers. In real life, the problem encompasses
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thousands of meters and receivers. However, for the purpose of this problem, consider
the case of 10 meters and 8 receivers, using the following configurations:

Receiver

Meters

1

1,2,3

2

2,3,9

3

5,6,7

4

7,9,10

5

3.6,8

6

1,4,7,9

7

4,5,9

8

1,4,8

..~ ... -';"-

Determine the minimum number of receivers.

9. Solve Problem 8 if, additionally, each receiver can handle at most 3 meters.

9.1.3 Fixed-Charge Problem

The fixed-charge problem deals with situations in which the economic activity incurs
two types of costs: an initial "flat" fee that must be incurred to start the activity and a
variable cost that is directly proportional to the level of the activity. For example, the ini
tial tooling of a machine prior to starting production incurs a fixed setup cost regardless
of how many units are manufactured. Once the setup is done, the cost of labor and ma
terial is proportional to the amount produced. Given that F is the fixed charge, e is the
variable unit cost, and x is the level of production, the cost function is expressed as

C(x) = {F + ex, if x > 0
0, otherwise

The function C(x) is intractable analytically because it involves a discontinu
ity at x = O. The next example shows how binary variables are used to remove this
intractability.

Example 9.1-3 (Choosing a Telephone Company)

I have been approached by three telephone companies to subscribe to their long distance service
in the United States. MaBell will charge a flat $16 per month plus $.25 a minute. PaBell will
charge $25 a month but will reduce the per-minute cost to $.21. As for BabyBell, the flat month
ly charge is $18, and the cost per minute is $.22. I usually make an average of 200 minutes of
long-distance calls a month. Assuming that I do not pay the flat monthly fee unless I make calls
and that I can apportion my calls among all three companies as I please, how should I use the
three companies to minimize my monthly telephone bill?

This problem can be solved readily without ILP. Nevertheless, it is instructive to formulate it
as an integer program.

Define

Xl = MaBelllong-distance minutes per month

x2 = PaBelllong-distance minutes per month

X3 = BabyBelllong-distance minutes per month

Yl = 1 if Xl > 0 and 0 if Xl = 0

Y2 = 1 if X2 > 0 and 0 if X2 = 0

Y3 = 1 if X3 > 0 and 0 if X3 = 0

..:~ ~Lr:
;"~?:£::;..::,:.~- •.



s
a

s
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We can ensure that Yj will equal! if Xj is positive by using the constraint

Xj:5 MYj.j = 1.2,3

The value of M should be selected sufficiently large so as not restrict to the variable Xj artificial
ly. Because I make about 200 minutes of calls a month, then Xj S 200 for all j. and it is safe to
select M = 200.

The complete model is

Minimize z = .25XI + .21x2 + .22x3 + 16YI + 25Y1 + 18Y3

subject to

Xl + X2 + X3 = 200

xl :5 200YI

X2 :5 200Y1

X3 5; 200Y3

XI. X2, X3 2:: 0

Yb Yz. Y3 = (0.1)

s

e
II
.-
of

s
e

.t

The formulation shows that the jth monthly flat fee will be part of the objective function z only
if Yj = 1, which can happen only if Xj > 0 (per the last three constraints of the model). If Xj = 0
at the optimum, then the minimization of z, together with the fact that the objective coefficient of
Yj is strictly positive. will force Yj to equal zero, as desired.

The optimum solution yields X3 = 200, Y3 ::;; 1. and all the remaining variables equal to zero,
which shows that BabyBell should be selected as my long-distance carrier. Remember that the in
formation conveyed by Y3 = 1 is redundant because the same result is implied by X3 > a(= 200).
Actually. the main reason for using Yl. Y1, and Y3 is to account for the monthly fiat fee. In effect, the
three binary variables convert an ill-behaved (nonlinear) model into an analytically tractable for
mulation.This conversion has resulted in introducing the integer (binary) variables in an otherwise
continuous problem.

PROBLEM SET 9.1C

1. Leatherco is contracted to manufacture batches of pants, vests. and jackets. Each product
requires a special setup of the machines needed in the manufacturing processes. The fol
lowing table provides the pertinent data regarding the use of raw material (leather) and
labor time together with cost and revenue estimates. Current supply of leather is estimat
ed at 3000 ft2 and available labor time is limited to 2500 hours.

Pants Vests Jackets

Leather material per unit (ft2) 5 3 8
Labor time per unit (hrs) 4 3 5
Production cost per unit ($) 30 20 80
Equipment setup cost per batch ($) 100 80 150
Price per unit ($) 60 40 120
Minimum number of units needed 100 150 200

Determine the optimum number of units that Leatherco must manufacture of each
product.
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*2. lobco is planning to produce at least 2000 widgets on three machines. The minimum lot
size on any machine is 500 widgets. The following table gives the pertinent data of the
situation.

Machine

1
2
3

Cost

300
100
200

Production cosUunit

2
10
5

Capacity (units)

600
800

1200

Formulate the problem as an ILp, and find the optimum solution.

*3. OiIco is considering two potential drilling sites for reaching four targets (possible oil
wells). The following table provides the preparation costs at each of the two sites and the
cost of drilling from site i to target j (i = 1,2; j = 1,2,3,4).

Drilling cost (million $) to target

Site

1
2

1

2
4

2

1
6

3

8
3

4

5
1

Preparation cost (million $)

5
6

Fonnulate the problem as an ILP, and find the optimum solution.

4. Three industrial sites are considered for locating manufacturing plants. The plants send
their supplies to three customers. The supply at the plants, the demand at the customers,
and the unit transportation cost from the plants to the customers are given in the follow
ing table.

Unit transportations cost ($)

~
1 2 3 Supply

Plant

1 10 15 12 1800
2 17 14 20 1400
3 15 10 11 1300

Demand 1200 1700 1600

In addition to the transportation costs, fixed costs are incurred at the rate of $12,000,
$11,000, and $12,000 for plants 1,2, and 3, respectively. Formulate the problem as an ILP
and find the optimum solution.

5. Repeat Problem 4 assuming that the demands at each of customers 2 and 3 are changed
to 800.

6. (Liberatore and Miller, 1985) A manufacturing facility uses two production lines to
produce three products over the next 6 months. Backlogged demand is not allowed.
However, a product may be overstocked to meet demand in later months. The follow
ing table provides the data associated with the demand, production, and storage of the
three products.

-:7 '..
::;,~. :,_: .
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Demand in period

Unit holding Initial
Product 1 2 ] 4 5 6 cost ($)/month inventory

1 50 30 40 60 20 45 .50 55
2 40 60 50 30 30 55 .35 75
3 30 40 20 70 40 30 .45 60

There is a fixed cost for switching a line from one product to another. The following tables
give the switching cost, the production rates, and the unit production cost for each line:

Line switching cost ($)

Line 1
Line 2

Product 1

200
250

Product 2

180
200

Product]

300
174

Production rate (units/month) Unit production cost ($)

Product 1 Product 2 Product] Product 1 Product 2 Product]

Line 1
Line 2

40
90

60
70

80
60

10
12

8
6

15
10

Develop a model for detennining the optimal production schedule.

7. (Jarvis and Associates, 1978) Seven cities are being considered as potential locations for
the construction of at most four wastewater treatment plants. The table below provides
the data for the situation. Missing links indicate that a pipeline cannot be constructed.

Cost ($) of pipeline construction between cities per 1000 gal/hr capacity

~
1 2 ] 4 5 6 7

1 100 200 50
2 120 150
3 400 120 90
4 120 120
5 200 100 200

),
6 110 180 70
7 200 150

Cost ($million) of
plant construction 1.00 1.20 2.00 1.60 1.80 .90 1.40

Population (1000s) 50 100 45 90 75 60 30

TIle capacity of a pipeline (in gallons per hour) is a direct function of the amount of waste
water generated, which is a function of the populations. Approximately 500 gallons per 1000
residents are discharged in the sewer system per hour. The maximum plant capacity is
100,000 gallhr. Determine the optimal location and capacity of the plants.

-.:'7 '.
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8. (Brown and Associates, 1987) A company uses four special tank trucks to deliver four dif
ferent gasoline products to customers. Each tank has five compartments with different ca
pacities: 500,750,1200,1500, and 1750 gallons. The daily demands for the four products are
estimated at 10,15,12, and 8 thousand gallons. Any quantities that cannot be delivered by
the company's four trucks must be subcontracted at the additional costs of 5,12,8, and 10
cents per gallon for products 1,2,3, and 4, respectively. Develop the optimal daily loading
schedule for the four trucks that will minimize the additional cost of subcontracting.

9. A household uses at least 3000 minutes of long-distance telephone calls monthly and can
choose to use the services of any of three companies: A, B, and C. Company A charges a
fiXed monthly fee of $10 and 5 cents per minute for the first 1000 minutes and 4 cents per
minute for all additional minutes. Company B's monthly fee is $20 with a flat 4 cents per
minute. Company C's monthly charge is $25 with 5 cents per minute for the first 1000
minutes and 3.5 cents per minute beyond that limit. Which company should be selected
to minimize the total monthly charge?

*10. (Barnett, 1987) Professor Yataha needs to schedule six round-trips between Boston and
Washington, D.C.The route is served by three airlines: Eastern, US Air, and Continental
and there is no penalty for the purchase of one-way tickets. Each airline offers bonus miles
for frequent fliers. Eastern gives 1000 miles per (one-way) ticket plus 5000 extra miles if the
number of tickets in a month reaches 2 and another 5000 miles if the number exceeds 5. US
Air gives 1500 miles per trip plus 10,000 extra for each 6 tickets. Continental gives 1800 miles
plus 7000 extra for each 5 tickets. Professor Yataha wishes to allocate the 12 one-way tickets
among the three airlines to maximize the total number of bonus miles earned.
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9.1.4 Either-Or and If-Then Constraints

In the fIxed-charge problem (Section 9.1.3), we used binary variables to handle the dis
continuity in the objective cost function. In this section, we deal with models in which
constraints are not satisfied simultaneously (either-or) or are dependent (if-then),
again using binary variables. The transformation does not change the "or" or "depen
dence" nature of the constraints. It simply uses a mathematical trick to present them in
the desired format of "and" constraints.

Example 9.1-4 (Job-Sequencing Model)

Jobco uses a single machine to process three jobs. Both the processing time and the due date (in
days) for each job are given in the following table. The due dates are measured from zero, the as
sumed start time of the first job.

Processing Due date Late penalty
Job time (days) (days) $/day

1 5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the minimum late-penalty sequence for processing
the three jobs.

Define

Xj = Start date in days for job j (measured from zero)

The problem has two types of constraints: the noninterference constraints (guaranteeing that no
two jobs are processed concurrently) and the due-da te constraints. Consider the noninterference
constraints first.
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Two jobs i and j with processing time Pi and Pj will not be processedcoDCurrently if either
Xi ~ Xj + Pj or Xj ~ Xi + Pi, depending on whether job j precedes job i, or vice versa. Because all
mathematical programs deal with simultaneous constraints only, we transfono the either-or con
straints by introducing the following auxiliary binary variable:

.. = {1, if i precedes j
YIJ 0, if j precedes i

For M sufficiently large, the either-or constraint is converted to the following two simultaneous
constraints

The conversion guarantees that only one of the two constraints can be active at anyone
time. If Yij = 0, the first constraint is active, and the second is redundant (because its left-hand
side will include M, which is much larger than Pi)' If Yij = 1, the first constraint is redundant, and
the second is active.

Next, the due-date constraint is considered. Given that dj is the due date for job j, let Sj be
an unrestricted variable. Then, the associated constraint is

Xj + Pj + Sj = d j

If Sj ~ 0, the due date is met, and if Sj < 0, a late penalty applies. Using the substitution

the constraint becomes

- + dXj + Sj - Sj = j - Pj

The late-penalty cost is proportional to sj.
The model for the given problem is

Minimize z = 19st + 12si + 34sj

subject to

J,

Xl - X2 + MYIZ

-Xl + Xz - MY12

Xl - X3 + MY13

-Xl + X3 - MY13

X2

~ 20

~5- M

~ 15

~ 5 - M

~ 15

~20- M

+~-~ =~-5

+ s"2 - si = 22 - 20

+ s) - sr = 35 - 15
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#continuous
#0-1
# s=sMinus-sPlus

The integer variables, Y12, Y13, and Y23, are introduced to convert the either-or constraints
into simultaneous constraints. The resulting model is a mixed ILP.

To solve the model, we choose M = 100, a value that is larger than the sum of the process
ing times for aU three activities.

TIle optimal solution is Xl = 20, X2, =0, and X3 = 25, This means that job 2 starts at time 0,
job 1 starts at time 20, and job 3 starts at time 25, thus yielding the optimal processing sequence
2~ 1~ 3. The solution calls for completing job 2 at time 0 + 20 = 20, job 1 at
time = 20 + 5 = 25, and job 3 at 25 + 15 = 40 days. Job 3 is delayed by 40 - 35 = 5 days past
its due date at a cost of 5 X $34 = $170.

AMPl Moment

File ampIEx9.1-4.txt provides the AMPL model for the problem of Example 9.1-4. The
model is self-explanatory because it is a direct translation of the general mathematical
model given above. It can handle any number of jobs by changing the input data. Note
that the model is a direct function of the raw data: processing time p, due date d, and
delay penalty perDayPenal ty.

FIGURE 9.4

AMPL model of the job sequencing problem (file ampIEx9.1-4.txt)

#------------------Example 9.1-4-------------------
param n;
set I={l.. n};
set J={l .. n}; #1 is the same as J
param p {I};

paramd{1};
param perDayPenalty{I};
param M=1000;
var x{J}>=O;
var y{1,J} binary;
var sMinus(J}>=O;
var sPlus(J}>=O;
minimize penalty: sum {j in J}

perDayPenalty[j]*splus[j];
subject to
eitherOr1{i in 1,j in J:i<>j}:

M*y[i,j]+x[i]-x{j]>=p[j];
eitherOr2{i in I,j in J:i<>j}:

M*(l-y[i,j])+x[j]-x(iJ>=p[iJ;
dueDate{j in J}:x[j]+sMinus(j]-sPlus[j]=d[j]-p(j];
data;
param n:=3;
param p:= 1 5 2 20 3 15;
param d:= 1 25 2 22 3 35;
param perDayPenalty := 1 19 2 12 3 34;
option solver cplex; solve;
display penalty,x;
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Example 9.1-5 (Job Sequencing Model Revisited)

In Example 9.1-4, suppose that we have the following additional condition: If job i precedes job
j then job k must precede job m. Mathematically, this if-then condition is translated as

Given e > 0 and infinitesimally small and M sufficiently large, this condition is equivalent to the
following two simultaneous constraints:

Xj - (Xi + Pi) ~ M(l - w) - e

w = (0,1)

If Xi + Pi ~ Xj, then Xj - (Xi + Pi) ~ 0, which requires w = 0, and the second constraint be
comes Xk + Pk :5 Xm , as desired. Else, 'W may assume the value 0 or 1, in which case the second
constraint mayor may not be satisfied, depending on other conditions in the modeL

PROBLEM SET 9.10

*1. A game board consists of nine equal squares. You are required to fill each square with a
number between 1 and 9 such that the sum of the numbers in each row, each column, and
each diagonal equals 15. Additionally, the numbers in all the squares must be distinct.
Use ILP to determine the assignment of numbers to squares.

2. A machine is used to produce two interchangeable products. The daily capacity of the
machine can produce at most 20 units of product 1 and 10 units of product 2. Alterna
tively, the machine can be adjusted to produce at most 12 units of product 1 and 25
units of product 2 daily. Market analysis shows that the maximum daily demand for the
two products combined is 35 units. Given that the unit profits for the two respective
products are $10 and $12, which of the two machine settings should be selected? For
mulate the problem as an ILP and find the optimum. [Note: This two-dimensional prob
lem can be solved by inspecting the graphical solution space. This is not the case for the
n-dimensional problem.]

*3. Gapco manufactures three products, whose daily labor and raw material requirements
are given in the following table.

Product

1

2
3

Required daily labor
(hr/unit)

3
4
5

Required daily raw material
(lb/unit)

4
3
6
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The profits per unit of the three products are $25, $30, and $22, respectively. Gapco has
two options for locating its plant. The two locations differ primarily in the availability of
labor and raw material, as shown in the following table:

Location

1
2

Available daily labor (hr)

100
90

Available daily raw material (lb)

100
120

Formulate the problem as an ILp, and determine the optimum location of the plant.

4. lobco Shop has 10 outstanding jobs to be processed on a single machine. The following
table provides processing times and due dates. All times are in days and due time is mea
sured from time 0:

Job Processing time Due time

1 10 20
2 3 98
3 13 100
4 15 34
5 9 50
6 22 44
7 17 32
8 30 60
9 12 80

10 16 150

The profits per unit for the three products are $25, $30, and $45, respectively. If product 3
is to be manufactured at all, then its production level must be at least 5 units daily. For
mulate the problem as a mixed ILP, and find the optimal mix.

If job 4 precedes job 3, then job 9 must precede job 7. The objective is to process a1l1O
jobs in the shortest possible time. Formulate the model as an ILP and determine the opti
mum solution by modifying AMPL file ampIEx9.1-4.txt.

5. In Problem 4, suppose that job 4 cannot be processed until job 3 has been completed.
Also, machine settings for jobs 7 and 8 necessitate processing them one right after the
other (Le., job 7 immediately succeeds or immediately precedes 8). lobco's objective is to
process all ten jobs with the smal1est sum of due-time violations. Formulate the model
mathematically and determine the optimum solution.

6. laco owns a plant in which three products are manufactured. The labor and raw material
requirements for the three products are given in the following table.,

i,
,I
-I

1
I

I
j
1,
;
~,,
I

I.,,

Product

1
2
3

Daily availability

Required daily labor
(hr/unit)

3
4
5

100

Required daily raw material
(lb/unit)

4
3
6

100

';.:

:~ .
'':;

!/.. ~~i~.<·-~·",.
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FIGURE 9.5

Solution spaces for Problem 9, Set 9.1d

3

1 2
(b)

1 2
(c)

7. UPak is a subsidiary of an LTL (Iess-than-truck-load) transportation company. Cus
tomers bring their shipments to the UPak terminal to be loaded on the trailer and can
rent space up to 36 ft. The customer pays for the exact linear space (in foot increments)
the shipment occupies. No partial shipment is allowed, in the sense that the entire ship
ment per customer must be on the same trailer. A movable barrier, called bulkhead, is in
stalled to separate different shipments. The per-foot fee UPak collects depends on the
destination of the shipment: The longer the trip, the higher the fee. The following table
provides the outstanding orders UPak needs to process.

Order 1

Size (it) 5
Rate ($) 120

2 3

11 22
93 70

4 5 6

15 7 9
85 125 104

7 8

18 14
98 130

9 10

10 12
140 65

The terminal currently has two trailers ready to be loaded. Detennine the priority orders that
will maximize the total income from the two trailers. (Hint A formulation using binary xij to
represent load i on trailer j is straightforward. However, you are challenged to define Xij as
feet assigned to load i in trailer j. The use if-then constraint to prevent partial load shipping.)

8. Show how the nonconvex shaded solution spaces in Figure 9.5 can be represented by a
set of simultaneous constraints. Find the optimum solution that maximizes z = 2x\ + 3X2

subject to the solution space given in (a).

9. Suppose that it is required that any k out of the following m constraints must be active:

Show how this condition may be represented.

10. In the following constraint, the right-hand side may assume one of values, hI> b2, ..• , and bm'

Show how this condition is represented.

9.2 INTEGER PROGRAMMING ALGORITHMS

The ILP algorithms are based on exploiting the tremendous computational success of
LP. The strategy of these algorithms involves three steps.
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Step 1.

Step 2.

Step 3.

Integer Linear Programming

Relax the solution space of the ILP by deleting the integer restriction on aU
integer variables and replacing any binary variable y with the continuous
range 0 $ Y $ 1. The result of the relaxation is a regular LP

Solve the LP, and identify its continuous optimum.

Starting from the continuous optimum point, add special constraints that iter
atively modify the LP solution space in a manner that will eventually render
an optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints
in step 3.

1. Branch-and-bound (B&B) method

2. Cutting-plane method

Although neither method is consistently effective computationally, experience
shows that the B&B method is far more successful than the cutting-plane method. This
point is discussed further in this chapter.

9.2.1 Branch-and-Bound (B&B) Algorithm3

The first B&B algorithm was developed in 1960 by A. Land and G. Doig for the gener
al mixed and pure ILP problem. Later, in 1965, E. Balas developed the additive algo
rithm for solving ILP problems with pure binary (zero or one) variables4

. The additive
algorithm's computations were so simple (mainly addition and subtraction) that it was
hailed as a possible breakthrough in the solution of general ILP. Unfortunately, it failed
to produce the desired computational advantages. Moreover, the algorithm, which ini
tially appeared unrelated to the B&B technique, was shown to be but a special case of
the general Land and Doig algorithm.

This section will present the general Land-Doig B&B algorithm only. A numeric
example is used to explain the details.

Example 9.2-1

Maxmize z = 5x\ + 4X2

subject to

XI + X2 s; 5

lOx] + 6X2 s; 45

XI> x2 nonnegative integer

3TORA integer programming module is equipped with a facility for generating the B&B tree interactively.
To use this facility, select .User-g·ulded B&B.. in the output screen of the integer programming module. The
resulting screen provides all the information needed to create the B&B tree.
4A general ILP can be expressed in terms of binary (Q-.-l) variables as follows. Given an integer variable x
with a finite upper bound u (i.e., 0 ~ x ~ u), then

x = 20yo + 2'YI + 22.>'2 + --- + 2kYk

The variables }'o, Yl> ...• and Yk are binary and the index k is the smallest integer satisfying Zk+1 - 1 ~ u.
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Optimum(continuous):
xl = 3.75, x2 = 1.25
z = 23.75

FIGURE 9.6

....=-~-'-'-"~=-'=<~c.=~~.....>i.._--l__ xl Solution spaces for ILP (lattice points) and LP1
(shaded area) of Example 9.2-1
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The lattice points (dots) in Figure 9.6 define the ILP solution space. The associated contin
uous LPI problem at node 1 (shaded area) is defined from rLP by removing the integer restric
tions. The optimum solution of LPI is Xl = 3.75, X2 = 1.25, and z = 23.75.

Because the optimum LPI solution does not satisfy the integer requirements, the B&B al
gorithm modifies the solution space in a manner that eventually identifies the ILP optimum.
First, we select one of the integer variables whose optimum value at LPI is not integer. Selecting
Xl (= 3.75) arbitrarily, the region 3 < Xl < 4 of the LPI solution space contains no integer val
ues of XI> and thus can be eliminated as nonpromising. This is equivalent to replacing the original
LPI with two new LPs:

LP2 space = LPI space + (Xl ::; 3)

LP3 space = LPI space + (Xl 2: 4)

:ly.
he

Figure 9.7 depicts the LP2 and LP3 spaces. The two spaces combined contain the same feasi
ble integer points as the original ILp, which means that, from the standpoint of the integer solu
tion, dealing with LP2 and LP3 is the same as dealing with the original LPl; no information is lost.

If we intelligently continue to remove the regions that do not include integer solutions (e.g.,
3 < Xl < 4 at LPl) by imposing the appropriate constraints, we will eventually produce LPs
whose optimum extreme points satisfy the integer restrictions. In effect, we will be solving the
ILP by dealing with a sequence of (continuous) LPs.

The new restrictions, Xl ::;; 3 and XI ~ 4, are mutually exclusive, so that LP2 and LP3 at
nodes 2 and 3 must be dealt with as separate LPs, as Figure 9.8 shows. This dichotomization gives
rise to the concept of branching in the B&B algorithm. In this case, Xl is called the branching
variable.

The optimum ILP lies in either LP2 or LP3. Hence, both subproblems must be examined.
We arbitrarily examine LP2 (associated with Xl ::; 3) first:

u. Maxmize z = 5XI + 4X2
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LP2

6

5

4

LP3

FIGURE 9.7

Solution Spaces of LP2 and LP3 for Example 9.2-1

LPI
XI = 3.75, x2 = 1.25, z = 23.75

LP2
XI=3,X2=2,z=23

Lower bound (optimum)

LP3
xI = 4, x2 = .83, z = 23.33

FIGURE 9.8

Using branching variable Xl to create LP2 and LP3 for Example 9.2-1

subject to

XI + x2::=;; 5

lOXl + 6x2 :5 45

The solution of LP2 (which can be solved efficiently by the upper-bounded algorithm of

Section 7.3) yields the solution

Xl = 3, X2 = 2, and z = 23
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The LP2 solution satisfies the integer requirements for Xl and X2' Hence, LP2 is said to be
fathomed, meaning that it need not be investigated any further because it cannot yield any beller
ILP solution.

We cannot at this point say that the integer solution obtained from LP2 is optimum for the
original problem, because LP3 may yield a better integer solution with a higher value of z. All we
can say is that z = 23 is a lower bound on the optimum (maximum) objective value of the origi
nal ILP. This means that any unexamined subproblem that cannot yield a better objective value
than the lower bound must be discarded as nonpromising. If an unexamined subproblem pro
duces a better integer solution, then the lower bound must be updated accordingly.

Given the lower bound z = 23, we examine LP3 (the only remaining unexamined subprob
lem at this point). Because optimum z = 23.75 at LPI and all the coefficients of the objective
function happen to be integers, it is impossible that LP3 (which is more restrictive than LPl) will
produce a better integer solution with z > 23. As a result, we discard LP3 and conclude that it
has been fathomed.

TIle B&B algorithm is now complete because both LP2 and LP3 have been examined and
fathomed (the first for producing an integer solution and the second for failing to produce a
better integer solution). We thus conclude that the optimum ILP solution is the one associated
with the lower bound-namely, Xl = 3, x2, and z = 23.

Two questions remain unanswered regarding the procedure.

1. At LPl, could we have selected x2 as the branching variable in place of Xl?

2. When selecting the next subproblem to be examined, could we have solved LP3 first in
stead of LP2?

The answer to both questions is "yes," but ensuing computations could differ dramatically.
Figure 9.9 demonstrates this point. Suppose that we examine LP3 first (instead of LP2 as we did in
Figure 9.8). The solution is XI = 4, Xz = .83, and z = 23.33 (verify!). Because x2 (= .83) is nonin
teger, LP3 is examined further by creating subproblems LP4 and LPS using the branches X2 :5 0
and Xz ~ 1, respectively. This means that

LP4 space = LP3 space + (X2 :5 0)

= LPI space + (x] ~ 4) + (X2 :5 0)

LP5 space = LP3 space + (xz ~ 1)

= LPI space + (x] ~ 4) + (xz ~ 1)

We now have three "dangling" subproblems to be examined: LP2, LP4, and LP5. Suppose
that we arbitrarily examine LP5 first. LP5 has no solution, and hence it is fathomed. Next, let us
examine LP4.11le optimum solution is Xl = 4.5, Xz = 0, and z = 22.5. The noninteger value of
x] leads to the two branches Xl :5 4 and Xl ~ 5, and the creation of subproblems LP6 and LP7
from LP4.

LP6 space = LP1 space + (x] ~ 4).+ (X2 :5 0) + (XI :5 4)

LP7 space = LPI space + (XI ~ 4) + (X2 :5 0) + (Xl ~ 5)

Now, subproblems LP2, LP6, and LP7 remain unexamined. Selecting LP7 for examination,
the problem has no feasible solution, and thus is fathomed. Next, we select LP6. The problem
yields the firsl integer solution (Xl = 4, X2 = 0, Z = 20), and thus provides the first lower bound
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LPI
XI = 3.75, x2 = 1.25, z = 23.75

LP2
xl = 3, x2 = 2, Z = 23

Lower bound (optimum)

LP3
Xl = 4, x2 = 0.83, z = 23.33

LP4
xI = 4.5,x2 = 0, Z = 22.5

LPS
No feasible solution

LP6
xl = 4, x2 = 0, Z = 20

Lower bound

LP7
No feasible solution

FIGURE 9.9

Alternative B&B tree for Example 9.2-1

(= 20) on the optimum [LP objective value. We are now left with subproblem LPl, which yields a
better integer solution (x] = 3, X2 = 2, z = 23). Thus, the lower bound is updated from z = 20 to
z = 23. At this point, all the subproblems have been fathomed (examined) and the optimum so
lution is the one associated with the most up-to-date lower bound-namely, Xl = 3, X2 = 2, and
z = 23.

The solution sequence in Figure 9.9 (LPl---+ LP3 ---+ LP5 ---+ LP4 ---+ LP7 ---+ LP6 ---+ LP2) is a
worst-case scenario that, nevertheless, may well occur in practice. In Figure 9.8, we were lucky to
"stumble" upon a good lower bound at the very first subproblem we examined (LPl), thus allowing
us to fathom LP3 without investigating it. [n essence, we compieted the procedure by solving a total
of two LPs. In Figure 9.9, the story is different: We needed to solve seven LPs before the B&B algo
rithm could be terminated.

Remarks. The example points to a principal weakness in the B&B algorithm: Given multiple
choices, how do we select the next subproblem and its branching variable? Although there are
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heuristics for enhancing the ability of B&B to "foresee" which branch can lead to an improved
ILP solution (see Taha, 1975, pp. 154-171), solid theory with consistent results does not exist, and
herein lies the difficulty that plagues computations in ILP. Indeed, Problem 7, Set 9.2a, demon
strates the bizarre behavior of the B&B algorithm in investigating over 25,000 LPs before opti
mality is verified, even though the problem is quite small (16 binary variables and 1 constraint).
Unfortunately, to date, and after more than four decades of research coupled with tremendous
advances in computing power, available ILP codes (commercial and academic alike) are not to
tally reliable, in the sense that they may not find the optimum ILP solution regardless of how
long they execute on the computer. What is even more frustrating is that this behavior can apply
just the same to some relatively small problems.

AMPL Moment

AMPL can be used interactively to generate the B&B search tree. The following table
shows the sequence of commands needed to generate the tree of Example 9.2-1
(Figure 9.9) starting with the continuous LPO. AMPL model (file ampIEx9.2-1.txt) has
two variables xl and x2 and two constraints cO and cl. You will find it helpful to syn
chronize the AMPL commands with the branches in Figure 9.9.

AMPL command

ampl:model arnplEx9.2-l.txt;solve;display xl,x2;
ampl:c2:xl>=4;solve;display xl,x2;
ampl: c3 :x2>=1; solve;display xl, x2;
ampl:drop c3;c4:x2<=O;solve;display xl,x2;
ampl: c5 :xl>=5; solve;display xl, x2;
ampl: drop cS; c6: xl<=4; solve; display xl, x2;
ampl: drop c2; drop c4; drop c6; c7 : xl<=3;

solve;display xl,x2;

Result

LPI (XI = 3.75, Xz := 1.25)
LP3 (Xl = 4, Xz = .83)
LP5 (no solution)
LP4 (Xl = 4.5, Xz := 0)
LP7 (no solution)
LP6 (Xl = 4, Xz := 0)

LP2 (Xl = 3,X2:= 2)
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Solver Moment

Solver can be used to obtain the solution of the different subproblems by using the
add/change/delete options in the Solver Parameters dialogue box.

Summary of the B&B Algorithm. We now summarize the B&B algorithm. Assuming
a maximization problem, set an initial lower bound z = -00 on the optimum objective
value of ILP. Set i = O.

Step 1. (Fathoming/bounding). Select LPi, the next subproblem to be examined.
Solve LPi, and attempt to fathom it using one of three conditions:
(a) The optimal z-value of LPi cannot yield a better objective value than

the current lower bound.
(b) LPi yields a better feasible integer solution than the current lower bound.
(c) LPi has no feasible solution.
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Two cases will arise.
(a) If LPi is fathomed and a better solution is found, update the lower

bound. If all subproblems have been fathomed, stop; the optimum ILP
is associated with the current finite lower bound. If no finite lower
bound exists, the problem has no feasible solution. Else, set i = i + 1,
and repeat step 1.

(b) If LPi is not fathomed, go to step 2 for branching.
Step 2. (Branching). Select one of the integer variables Xj, whose optimum value xj

in the LPi solution is not integer. Eliminate the region

[xj] < Xj < [xj] + 1

(where [v] defines the largest integer :5v) by creating two LP subproblems
that correspond to

Set i = i + 1, and go to step 1.

The given steps apply to maximization problems. For minimization, we replace
the lower bound with an upper bound (whose initial value is z = +(0).

The B&B algorithm can be extended directly to mixed problems (in which only
some of the variables are integer). If a variable is continuous, we simply never select it
as a branching variable. A feasible subproblem provides a new bound on the objective
value if the values of the discrete variables are integer and the objective value is im
proved relative to the current bound.

PROBLEM SeT 9.2A5

1. Solve the ILP of Example 9.2-1 by the B&B algorithm starting with X2 as the branching
variable. Start the procedure by solving the subproblem associated with X2 :s [x;].

2. Develop the B&B tree for each of the following problems. For convenience, always select
Xl as the branching variable at node O.

*(a) Maximize z = 3Xl + 2X2

subject to

2x( + 5X2 :5 9

4xl + 2X2 S 9

Xl, X; <:=: 0 and integer

SIn this set, you may solve the subproblems interactively with AMPL or Solver or using TORA's MODIFY
option for the upper and lower bounds.

..::.
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(b) Maximize z = 2xI + 3X2

subject to

5XI + 7x2 ::5 35

4Xl + 9Xl ::5 36

Xl> X2 ~ 0 and integer

(c) Maximize z = Xl + Xl

subject to

2XI + 5X2 ::5 16

6Xl + 5X2 ::5 27

Xl> Xl ~ 0 and integer

*(d) Minimize z = 5x 1 + 4Xl

subject to

3Xl + 2Xl ~ 5

2x( + 3X2 ~ 7

xl> X2 2:: 0 and integer

(e) Maximize z = 5xI + 7X2

subject to

2Xl + X2 ::5 13

5XI + 9X2 ::5 41

xl> X2 ~ 0 and integer

*3. Repeat Problem 2, assuming that Xl is continuous.

4. Show graphically that the following ILP has no feasible solution, and then verify the re
sult using B&B.

Maximize z = 2Xl + Xl

subject to

lOXI + lOx2 ::5 9

lOx! + 5Xl ~ 1

Xl, X2 ~ 0 and integer

5. Solve the following problems by B&B.

Maximize z = 18xl + 14xl + 8x3 + 4X4

subject to

15Xj + 12xl + 7X3 + 4X4 + Xs ::5 37

Xt> Xl,X3,X4,XS = (0,1)
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6. Convert the following problem into a mixed ILP and find the optimum solution.

Maximize z = Xl + 2X2 + 5x)

subject to

7. TORA/Solver /AMPL Experiment. The following problem is designed to demonstrate the
bizarre behavior of the B&B algorithm even for small problems. In particular, note how
many subproblems are examined before the optimum is found and how many are needed
to verify optimality.

Minimize y

subject to

2(Xl + x2 + ... + XIS) + Y = 15
All variables are (0, 1)

(a) Use TORA's automated option to show that although the optimum is found after only
9 subproblems, over 25,000 subproblems are examined before optimality is confirmed.

(b) Show that Solver exhibits an experience similar to TORA's. [Note: In Solver, you can
watch the change in the number of generated branches (subproblems) at the bottom
of the spreadsheet.]

(c) Solve the problem with AMPL and show that the solution is obtained instantly with
oMIP simplex iterations and 0 B&B nodes. The reason for this superior perfor
mance can only be attributed to preparatory steps performed by AMPL and/or the
CPLEX solver prior to solving the problem.

8. TORA Experiment. Consider the following ILP:

Maximize z = 18xI + 14x2 + 8x3

subject to

Xl, X2, X3 nonnegative integers

Use TORA's B&B user-guided option to generate the search tree with and without acti
vating the objective-value bound. What is the impact of activating the objective-value
bound on the number of generated subproblems? For consistency, always select the
branching variable as the one with the lowest index and investigate all the subproblems
in a current row from left to right before moving to the next row.

*9. TORA Experiment. Reconsider Problem 8 above. Convert the problem into an equiva
lent 0-1 ILP, then solve it with TORA's automated option. Compare the size of the search
trees in the two problems.

10. AMPL Experiment. In the following 0-1 ILP use interactive AMPL to generate the asso
ciated search tree. In each case, show how the z-bound is used to fathom subproblems.

Maximize z = 3Xl + 2X2 - 5x3 - 2X4 + 3xs
.,
~~
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subject to

Xl + Xl + X3 + 2X4 + X5 5 4

7xI + 3X3 - 4X4 + 3X5 5 8

11Xl - 6X2 + 3X4 - 3X5 ~ 3

9.2.2 Cutting-Plane Algorithm

e As in the B&B algorithm, the cutting-plane algorithm also starts at the continuous op
timum LP solution. Special constraints (called cuts) are added to the solution space in

d a manner that renders an integer optimum extreme point. In Example 9.2-2, we first
demonstrate graphically how cuts are used to produce an integer solution and then im
plement the idea algebraically.

Example 9.2-2

Consider the following ILl'.

Maximize z = 7Xl + lOx2

subject to

1

1
-Xl + 3X2 5 6

7Xl + X2 5 35

Xl> Xl ~ 0 and integer

The cutting-plane algorithm modifies the solution space by adding cuts that produce an op
timum integer extreme point. Figure 9.10 gives an example of two such cuts.

Initially, we start with the continuous LP optimum z = 66~, XI = 4~, X2 = 3~. Next, we

add cut I, which produces the (continuous) LP optimum solution z = 62, Xl = 4~, X2 = 3. Then,
we add cut II, which, together with cut I and the original constraints, produces the LP optimum
z = 58, Xl = 4, X2 = 3. The last solution is all integer, as desired.

The added cuts do not eliminate any of the original feasible integer points, but must pass
through at least one feasible or infeasible integer point. These are basic requirements of any cut.

FIGURE 9.10

Illustration of the use of cuts in ILP

X2 Optimum: (4i ' 3t) x2 Optimum: (4~, 3)

4 4 4

3 3 3

2 2 2
~ -.-

1 1

......-...------- Xl02345



It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the optimum in
teger solution. In general, the number of cuts, though finite, is independent of the size of the
problem, in the sense that a problem with a small number of variables and constraints may re
quire more cuts than a larger problem.

Next, we use the same example to show how the cuts are constructed and implemented
algebraically.

Given the slacks X3 and X4 for constraints 1 and 2, the optimum LP tableau is given as

.j

!

I
I
I
I
i

I
!
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Basic Xl X2 X3 X4 Solution

0 0 63 31 66!Z 22 22 2

0 1 7 1 31
x2 n n 2

1 0 1 J 4Xl -22 22 2

The optimum continuous solution is z = 66~, Xl = 4i, X2 = 3~, X3 = 0, X4 = O. The cut is
developed under the assumption that all the variables (including the slacks X3 and X4) are integer.
Note also that because all the original objective coefficients are integer in this example, the value
of z is integer as well.

The information in the optimum tableau can be written explicitly as

(z-equation)

(xI-equation)

A constraint equation can be used as a source row for generating a cut, provided its right
hand side is fractional. We also note that the z-equation can be used as a source row because z
happens to be integer in this example. We will demonstrate how a cut is generated from each of
these source rows, starting with the z-equation.

First, we factor out all the noninteger coefficients of the equation into an integer value and
a fractional component, provided that the resulting fractional component is strictly positive. For
example,

~:o:(2+D

-~ = (-3 +~)

TIle factoring of the z-equation yields

z + (2 + *)X3 + (1 + ?2)X4 = (66 + D
Moving all the integer components to the left-hand side and all the fractional components to the
right-hand side, we get

(1)

,".;.-

<~~,..~", ,",

.~. ;-,~!,
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Because XJ and X4 are nonnegative and all fractions are originally strictly positive, the right-hand
side must satisfy the following inequality:

m
the
re-

ted
19 9 + 1 < 1

- 22 X3 - 22 X4 2 - 2 (2)
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Next, because the left-hand side in Equation (1), z + 2x3 + IX4 - 66, is an integer value by con-
. h' h h d'd 19 19 1 lb' IstructlOn, t e ng t- an Sl e, -22 x3 - 22 X4 + 2' must a so e mteger. t

then follows that (2) can be replaced with the inequality:

This result is justified because an integer value $~ must necessarily be $0.

The last inequality is the desired cut and it represents a necessary (but not sufficient) condi
tion for obtaining an integer solution. It is also referred to as the fractional cut because all its co
efficients are fractions.

Because X3 = X4 = 0 in the optimum continuous LP tableau given above, the current continu
ous solution violates the cut (because it yields ~ $ 0). Thus, if we add this cut to the optimum
tableau, the resulting optimum extreme point moves the solution toward satisfying the integer
requirements.

Before showing how a cut is implemented in the optimal tableau, we will demonstrate how
cuts can also be constructed from the constraint equations. Consider the Xl-row:

XI-1... x +1. x =41
22 3 22 4 2

Factoring the equation yields

XI + (-1 + H)X3 + (0 + ?2)X4 = (4 + D
The associated cut is

Similarly, the xz-equation

is factored as

X2 + (0 + {z)xJ + (0 + 2\:)X4 = 3+ ~

Hence, the associated cut is given as

Anyone of three cuts given above can be used in the first iteration of the cutting-plane a1
gorithm. It is not necessary to generate aU three cuts before selecting one.

Arbitrarily selecting the cut generated from the xz-row, we can write it in equation form as

(1) (Cut I)
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This constraint is added to the LP optimum tableau as follows:

Basic

zOO ~ ~ :l}:;:~:t-~l~ 66~

i\i);;:Ji~}:~1\\;~i:~~\~~:j~~t;{~i\\\1\;:~~L~&J;!~
The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4.1) to

recover feasibility, which yields

Basic XI X2 X3 X 4 Sl Solution

z 0 0 0 1 9 62

X2 0 1 0 0 1 3
1 0 0 I 1 4ix\ =; -=; 7

0 0 1 1 22 1~X3 '; -7 1

The last solution is still noninteger in xl and X3- Let us arbitrarily select Xl as the next source
row-that is,

The associated cut is

(Cut II)

Basic XI Xl .1:3 .1:4 Sl '·S;·~~E·~ Solution

z 0 0 0 1 9 ~,W~~§,,~:~, 62

The dual simplex method yields the following tableau:

Basic XI X2 X3 .\"4 SI S2 Solution

z 0 0 0 0 3 7 58

X2 0 1 0 0 1 0 3
XI 1 0 0 0 -1 1 4
x3 0 0 1 0 -4 1 1
X4 0 0 0 1 6 -7 4
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The optimum solution (Xl = 4, X2 = 3, z = 58) is all integer. It is not accidental that all the
coefficients of the last tableau are integers, a property of the implementation of the fractional cut.

Remarks. It is important to point out that the fractional cut assumes that all the
variables, including slack and surplus, are integer. This means that the cut deals with pure
integer problems only. The importance of this assumption is illustrated by an example.

Consider the constraint

+ 1 <: 13
Xl 3X2 -"2

Xl> X2 ~ 0 and integer

From the standpoint of solving the associated ILP, the constraint is treated as an
equation by using the nonnegative slack sl-that is,

The application of the fractional cut assumes that the constraint has a feasible inte
ger solution in all Xl> X2, and Sl' However, the equation above will have a feasible integer
solution in Xl and X2 only if Sl is noninteger. This means that the cutting-plane algo
rithm will show that the problem has no feasible integer solution, even though the vari
ables of concern, Xl and X2, can assume feasible integer values.

There are two ways to remedy this situation.

1. Multiply the entire constraint by a proper constant to remove all the fractions.
For example, multiplying the constraint above by 6, we get

Any integer solution of Xl and X2 automatically yields integer slack. However, this type
of conversion is appropriate for only simple constraints, because the magnitudes of the
integer coefficients may become excessively large in some cases.

2. Use a special cut, called the mixed cut, which allows only a subset of variables
to assume integer values, with all the other variables (including slack and surplus) re
maining continuous. The details of this cut will not be presented in this chapter (see
Taha, 1975, pp. 198-202).

PROBLEM SET 9.2B

1. In Example 9.2-2, show graphically whether or not each of the foHowing constraints can
form a legitimate cut:

*(a) Xl + 2xz :5 10

(b) 2xl + X2 :5 10

(c) 3X2:5 10

(d) 3xl + X2 :5 15
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2. In Example 9.2-2, show graphically how the following two (legitimate) cuts can lead to
the optimum integer solution:

XI + 2X2 ~ 10

3Xl + x2 ::S 15

(cut I)

(cut II)

3. Express cuts I and II of Example 9.2-2 in terms of Xl and X2 and show that they are the
same ones used graphically in Figure 9.10.

4. In Example 9.2-2, derive cut II from the x3-row. Use the new cut to complete the solution
of the example.

5. Show that, even though the following problem has a feasible integer solution in Xl and
X2, the fractional cut would not yield a feasible solution unless all the fractions in the con
straint were eliminated.

Maximize z = Xl + 2X2

subject to

Xl + ~X2 ::s ¥
X[,X2 ~ 0 and integer

6. Solve the following problems by the fractional cut, and compare the true optimum inte
ger solution with the solution obtained by rounding the continuous optimum.

*(a) Maximize z = 4XI + 6X2 + 2X3

subject to

4xI - 4X2 s: 5

-Xl + 6X2 ::s 5

- Xl + X2 + X3 ::s 5

Xl> X2, X3 ~ 0 and integer

(b) Maximize z = 3Xl + X2 + 3X3

subject to

- Xl + 2X2 + X3 ::s 4

4X2 - 3X3 ::s 2

Xl - 3X2 + 2x3 s: 3

Xl, X2, X3 ~ 0 and integer

9.2.3 Computational Considerations in ILP

To date, and despite over 40 years of research, there does not exist a computer code
that can solve ILP consistently. Nevertheless, of the two solution algorithms presente~

in this chapter,B&B is more reliable. Indeed, practically aU commercial ILP codes are
B&B based. Cutting-plane methods are generally difficult and uncertain, and the
roundoff error presents a serious problem. This is true because the "accuracy" of the
cut depends on the accuracy of a true representation of its fractions on the computer.
For instance, in Example 9.2-2, the fraction ~ cannot be represented exactly as a floating

9.3
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point regardless of the level of precision that may be used. Though attempts have been
made to improve the cutting-plane computational efficacy, the end results are not en
couraging. In most cases, the cutting-plane method is used in a secondary capacity to
improve B&B performance at each subproblem by eliminating a portion of the solu
tion space associated with a subproblem.

The most important factor affecting computations in integer programming is the
number of integer variables and the feasible range in which they apply. Because avail
able algorithms are not consistent in producing a numeric ILP solution, it may be ad
vantageous computationally to reduce the number of integer variables in the ILP
model as much as possible. The following suggestions may prove helpful:

1. Approximate integer variables by continuous ones wherever possible.
2. For the integer variables, restrict their feasible ranges as much as possible.

3. Avoid the use of nonlinearity in the model.

The importance of the integer problem in practice is not yet matched by the de
velopment of reliable solution algorithms. The nature of discrete mathematics and the
fact that the integer solution space is a nonconvex set make it unlikely that new theo
retical breakthroughs will be achieved in the area of integer programming. Instead,
new technological advances in computers (software and hardware) remain the best
hope for improving the efficiency of ILP codes.

9.3 TRAVELING SALESPERSON (TSP) PROBLEM

Historically, the TSP problem deals with finding the shortest (closed) tour in an n-city
situation where each city is visited exactly once. The problem, in essence, is an assign
ment model that excludes subtours. Specifically, in an n-city situation, define

x .. = {I, if city j is reached from city i
IJ 0, otherwise

Given that dij is the distance from city i to city j, the TSP model is given as

n n

Minimize z = ""d·x· d· = 00 for all i = J'L.J L.J IJ IJ' IJ
i=1 j=l

subject to

n

~Xij = 1, i = 1,2, ... , n
j=1

II

~Xij = 1, j = 1,2, ... , n
i=l

Xij = (0,1)

Solution forms an n-city tour

(1)

(2)

(3)

(4)
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5-city problem Tour solution Subtour solution
(xl2 = x25 = xS4 = x43 = x31 = 1) (X23 = x32 = xIS = xS4 = x41 = 1)

FIGURE 9.11

A 5-city TSP example with a tour and subtour solutions of the associated assignment model

Constraints (1), (2), and (3) define a regular assignment model (Section 5.4). Figure 9.11
demonstrates a 5-city problem. The arcs represent two-way routes. The figure also il
lustrates a tour and a subtour solution of the associated assignment model. If the opti
mum solution of the assignment model (i.e., excluding constraint 4) happens to
produce a tour, then it is also optimum for the TSP. Otherwise, restriction (4) must be
accounted for to ensure a tour solution.

Exact solutions of the TSP problem include branch-and-bound and cutting-plane
algorithms. Both are rooted in the ideas of the general B&B and cutting plane algo
rithms presented in Section 9.2. Nevertheless, the problem is typically difficult compu
tationally, in the sense that either the size or the computational time needed to obtain
a solution may become inordinately large. For this reason, heuristics are sometimes
used to provide a "good" solution for the problem.

Before presenting the heuristic and exact solution algorithms, we present an ex
ample that demonstrates the versatility of the TSP model in representing other practi
cal situations (see also Problem Set 9.3a).

Example 9.3-1

The daily production schedule at the Rainbow Company includes batches of white (W), yellow
(Y), red (R), and black (B) paints. Because Rainbow uses the same facilities for all four types of
paint, proper cleaning between batches is necessary. The table below summarizes the clean-up
time in minutes. Because each color is produced in a single batch, diagonal entries in the table
are assigned infinite setup time. The objective is to determine the optimal sequencing for the
daily production of the four colors that will minimize the associated total clean-up time.

Cleanup min given next paint is

Current paint White Yellow Black Red

White 00 10 17 15
Yellow 20 00 19 18
Black 50 44 00 25
Red 45 40 20 00
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Each paint is thought of as a "city" and the "distances" are represented by the clean-up time
needed to switch from one paint batch to the next. The situation reduces to determining the shortest
loop that starts with one pain~batch and passes through each of the remaining three paint batches
exactly once before returning back to the starting paint.

We can solve this problem by exhaustively enumerating the six [(4 - 1)1 = 31 = 6] possi
ble loops of the network. The following table shows that W --)0 Y --)0 R --)0 B --)0 W is the opti
mum loop.

Production loop

W-4Y~B-4R~W

W~Y-4R~B~W

W---+B-4Y-4R-4W
W~B-4R---+Y~W

W---+R---+B---+Y~W

W~R~Y---+B~W

Total clean-up time

10 + 19 + 25 + 45 = 99
10 + 18 + 20 + 50 = 98
17 + 44 + 18 + 45 = 124
17 + 25 + 40 + 20 = 102
15 + 20 + 44 + 20 = 99
15 + 40 + 19 + 50 = 124
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Exhaustive enumeration of the loops is not practical in general. Even a modest size ll-city
problem will require enumerating 1O! = 3,628,800 tours, a daunting task indeed. For this reason,
the problem must be formulated and solved in a different manner, as we will show later in this
section.

To develop the assignment-based formulation for the paint problem, define

Xij = 1 if paint j follows paint i and zero otherwise

Letting M be a sufficiently large positive value, we can formulate the Rainbow problem as

Minimize z = Mxww + 10xwy + 17xwB + 15xwR + 20xyw + Mxyy + 19xYB + 18xYR

+ 50xB", + 44xBY + MX8B + 25xBR + 45xmv + 40XRY + 20XRn + MXRR

subject to

xww + XWY + XWB + XWR = 1

xYW + xYY + XYB + xYR = 1

XBW + XBY + XBn + XBR = 1

XRW + XRY + XRB + XRR = 1

XW\\! + XYW + Xmv + XRW = 1

XWY + XYY + XRY + XRY = 1

xWB + xYB + xBn + XRB = 1

XWR + XYR + XnR + XRR = 1

x·· = (0 1) for all i and jIJ '

Solution is a tour (loop)

The use of M in the objective function guarantees that a paint job ca~not follow itself. The
same result can be realized by deleting Xww, XYY, XEB, and XRR from the entire model.
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PROBLEM SET 9.3A

*1. A manager has a total of 10 employees working on six projects.1l1ere are overlaps
among the assignments as the following table shows:

Project
1 2 3 4 5 6

1 x x x

2 x x x

3 x x x x

4 x x x
9.

Employee 5 x x x

6 x x x x x

7 x x x x

8 x x x

9 x x

10 x x x x x

The manager meets with each employee individually once a week for a progress re
port. Each meeting lasts about 20 minutes for a total of 3 hours and 20 minutes for all 10
employees. To reduce the total time, the manager wants to hold group meetings depend
ing on shared projects. The objective is to schedule the meetings in a way that will reduce
the traffic (number of employees) in and out of the meeting foam. Formulate the prob
lem as a mathematical model.

2. A book salesperson who lives in Basin must call once a month on four customers located
in Wald, Bon, Mena, and Kiln. The following table gives the distances in miles among the
different cities.

Miles between cities

Basin Wald Bon Mena Kiln

Basin 0 120 220 150 210
Wald 120 0 80 no 130
Bon 220 80 0 160 185
Mena 150 110 160 0 190
Kiln 210 130 185 190 0

The objective is to minimize the total distance traveled by the salesperson. Formu
late the problem as an assignment-based ILP.
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3. Circuit boards (such as those used with PCS) are fitted with holes for mounting different
electronic components. The holes are drilled with a movable drill. The following table pro
vides the distances (in centimeters) between pairs of 6 holes of a specific circuit board.

1.2 .5 2.6 4.1 3.2
1.2 3.4 4.6 2.9 5.2

Ild;jll =
.5 3.4 3.5 4.6 6.2

2.6 4.6 3.5 3.8 .9
4.1 2.9 4.6 3.8 1.9
3.2 5.2 6.2 .9 1.9

Formulate the assignment portion of an ILP representing this problem.

9.3.1 Heuristic Algorithms

This section presents two heuristics: the nearest-neighbor and the subtour-reversal al
gorithms. The first is easy to implement and the second requires more computations.
The tradeoff is that the second algorithm generally yields better results. Ultimately, the
two heuristics are combined into one heuristic, in which the output of the nearest
neighbor algorithm is used as input to the reversal algorithm.

The Nearest-Neighbor Heuristic. As the name of the heuristic suggests, a "good"
solution of the TSP problem can be found by starting with any city (node) and then
connecting it with the closest one. The just-added city is then linked to its nearest
unlinked city (with ties broken arbitrarily). The process continues until a tour is formed.

Example 9.3-2
The matrix below summarizes the distances in miles in as-city TSP problem.

00 120 220 150 210
120 00 100 110 130

Ild;jll = 220 80 00 160 185
150 00 160 00 190
210 130 185 00 00

The heuristic can start from any of the five cities. Each starting city may lead to a different
tour. TIle following table provides the steps of the heuristic starting at city 3.

Step Action

1 Start with city 3
2 Link to city 2 because it is closest to city 3 (d32 = min {220, 80, 00, 160, 185} )
3 Link to node 4 because it is closest to node 2 (d24 = min {120, 00, -, 110, 130} )
4 Link to node 1 because it is closest to node 4 (d41 = min {ISO, 00, -, -,190})
5 Link to node 5 by default and connect back to node 3 to complete the tour

(Partial) tour

3
3-2
3-2-4
3-2-4-1
3-2-4-1-5-3

Notice the progression of the steps: Comparisons exclude distances to nodes that are part
of a constructed partial tour. These are indicated by (-) in the Action column of the table.
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The resulting tour 3-2-4-1-5-3 has a total length of 80 + 110 + 150 + 210 + 185 = 735
miles. Observe that the quality of the heuristic solution is starting-node dependent. For exam
ple, starting from node 1, the constructed tour is 1-2-3-4-5-1 with a total length of 780 miles
(try it!).

Subtour Reversal Heuristic. In an n-city situation, the subtour reversal heuristic
starts with a feasible tour and then tries to improve on it by reversing 2-city subtours,
followed by 3-city subtours, and continuing until reaching subtours of size n - 1.

Example 9.3-3

Consider the problem of Example 9.3-2. The reversal steps are carried out in the following table
using the feasible tour 1-4-3-5-2-1 of length 745 miles:

Type Reversal Tour Length

Start (1-4-3-5-2-1) 745

Two-at-a-time reversal 4-3 1-3-4-5-2-1 820
3-5 (1-4-5-3-2-1) 725
5-2 1-4-3-2-5-1 730

Three-at-a-time reversal 4-5-3 1-3-5-4-2-1 00

5-3-2 1-4-2-3-5-1 00

Four-at-a-time reversal 4-5-3-2 1-2-3-5-4-1 00

The two-at-a-time reversals of the initial tour 1-4-3-5-2-1 are 4-3, 3-5, and 5-2, which leads
to the given tours with their associated lengths of 820, 725, and 730. Since 1-4-5-3-2-1 yields a
smaller length (= 725), it is used as the starting tour for making the three-at-a-time reversals.
As shown in the table, these reversals produce no better results. The same result applies to the
four-at-a-time reversal. Thus, 1-4-5-3-2-1 (with length 725 miles) provides the best solution of
heuristic.

Notice that the three-at-a-time reversals did not produce a better tour, and, for this rea
son, we continued to use the best two-at-a-time tour with the four-at-a-time reversal. Notice
also that the reversals do not include the starting city of the tour (= 1 in this example) because
the process does not yield a tour. For example, the reversal 1-4 leads to 4-1-3-5-2-1, which is
not a tour.

The solution determined by the reversal heuristic is a function of the initial feasible tour
used to start the algorithm. For example, if we start with 2-3-4-1-5-2 with length 750 miles, the
heuristic produces the tour 2-1-4-3-5-2 with length 745 miles (verify!), which is inferior to the
solution we have in the table above. For this reason, it may be advantageous to first utilize the
nearest-neighbor heuristic to determine all the tours that result from using each city as a
starting node and then select the best as the starting tour for the reversal heuristic. This com
bined heuristic should, in general, lead to superior solutions than if either heuristic is applied
separately. The following table shows the application of the composite heuristic to the pre
sent example.
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~5 Heuristic Starting city Tour Length
(1-

~s 1 1-2-3-4--5-1 780
2 2-3.-4-1-5-2 750

- Nearest neighbor 3 (3-2-4-1-5-3) 735
4 4-1-2-3-5-4 00

ic 5 5-2-3.-4-1-5 750

'5, 2.-4 3-4-2-1-5-3 00

4-1 (3-2-1-4-5-3) 725
1-5 3-2-4-5-1-3 810

Reversals 2-1.-4 3.-4-1-2-5-3 745
1.-4-5 3-2-5.-4-1-3 00

2-1-4-5 3-5-4-1-2-3 00

Ie

Excel Moment.

Figure 9.12 provides a general Excel template (file exceITSP.xls) for the heuristics. It
uses three execution options depending on the entry in cell H3:

1. If you enter a city number, the nearest-neighbor heuristic is used to find a tour
starting with the designated city_

2. If you enter the word "tour" (without the quotes), you must simultaneously pro
vide an initial feasible tour in the designated space. In this case, only the reversal
heuristic is applied to the tour you provided.

3. If you enter the word "aU," the nearest-neighbor heuristic is used first, and its
best tour is then used to execute the reversal heuristic.

File exceITSP.v2.xls automates the operations of Step 3.
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FIGURE 9.12

Execution of the TSP heuristic using Excel spreadsheet (file exceITSP.xls)
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PROBLEM SET 9.3B

1. Apply the heuristic to the following problems:

(a) The paint sequencing problem of Example 9.3-1.

(b) Problem 1 of Set 9.3a.

(c) Problem 2 of Set 9.3a.

(d) Problem 3 of Set 9.3a.

9.3.2 B&B Solution Algorithm

The idea of the B&B algorithm is to start with the optimum solution of the associated
assignment problem. If the solution is a tour, the process ends. Otherwise, restrictions
are imposed to remove the subtours. This can be achieved by creating as many branch
es as the number of xirvariables associated with one of the subtours. Each branch will
correspond to setting one of the variables of the subtour equal to zero (recall that all
the variables associated with a subtour equal 1). The solution of the resulting assign
ment problem mayor may not produce a tour. If it does, we use its objective value as
an upper bound on the true minimum tour length. If it does not, further branching is
necessary, again creating as many branches as the number of variables in one of the
subtours. The process continues until all unexplored subproblems have been fathomed,
either by producing a better (smaller) upper bound or because there is evidence that
the subproblem cannot produce a better solution. The optimum tour is the one associ
ated with the best upper bound.

The following example provides the details of the TSP B&B algorithm.

Example 9.3-4

Consider the following 5-city TSP problem:

00 10 3 6 9
5 00 5 4 2

IldiJiI = 4 9 00 7 8

7 1 3 00 4

3 2 6 5 00

We start by solving the associated assignment, which yields the following solution:

z = 15, (X13 = X31 = 1), (X25 = X54 = X42 = 1), all others = 0

This solution yields two subtours: (1-3-1) and (2-5-4-2), as shown at node 1 in Figure 9.13.
The associated total distance is z = 15, which provides a lower bound on the optimal length of
the 5-city tour.

A straightforward way to determine an upper bound is to select any tour and use its length as
an upper bound estimate. For example, the tour 1-2-3-4-5-1 (selected totally arbitrarily) has a total
length of 10 + 5 + 7 + 4 + 3 = 29. Alternatively, a better upper bound can be found by applying
the heuristic of Section 9.3.1. For the moment, we will use the upper bound of length 29 to apply the
B&B algorithm. Later, we use the "improved" upper bound obtained by the heuristic to demon
strate its impact on the search tree.

,'.
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FIGURE 9.13

B&B solution of the TSP problem of Example 9.3-4

The computed lower and upper bounds indicate that the optimum tour length lies in range (15,
29). A solution that yields a tour length larger than (or equal to) 29 is discarded as nonpromising.

To eliminate the subtours at node 1, we need to "disrupt" its loop by forcing its member
variables, Xij' to be zero. Subtour 1-3-1 is disrupted if we impose the restriction Xl3 = 0 or
X31 = 0 (i.e., one at a time) on the assignment problem at node 1. Similarly, subtour 2-5-4-2 is
eliminated by imposing one of the restrictions X25 = 0, X54 = 0, or X42 :=: O. In terms of the B&B
tree, each of these restrictions gives rise to a branch and hence a new subproblem. It is important
to notice that branching both subtours at node 1 is not necessary. Instead, only one subtour needs
to be disrupted at anyone node. The idea is that a breakup of one subtour automatically alters
the member variables of the other subtour and hence produces conditions that are favorable to
creating a tour. Under this argument, it is more efficient to select the subtour with the smallest
number of cities because it creates the smallest number of branches.

Targeting subtour (1-3-1), two branches Xt3 = 0 and X31 = 0 are created at node 1. The as
sociated assignment problems are constructed by removing the row and column associated with
the zero variable, which makes the assignment problem smaller. Another way to achieve the
same result is to leave the size of the assignment problem unchanged and simply assign an infi
nite distance to the branching variable. For example, the assignment problem associated with
Xl3 = 0 requires substituting dn = 00 in the assignment model at node 1. Similarly, for X31 = 0,
we substitute d3~ = 00.

In Figure 9.13, we arbitrarily start by solving the subproblem associated with X13 = 0 by setting
d l3 = 00, Node 2 gives the solution z = 17 but continues to produce the subtours (2-5-2) and (1-4
3-1). Repeating the procedure we applied at node 1 gives rise to two branches: X25 = 0 and XS2 = O.

We now have three unexplored subproblems, one from node 1 and two from node 2, and we
are free to investigate any of them at this point. Arbitrarily exploring the subproblem associated
with X25 = 0 from node 2, we set d t3 = 00 and d25 = 00 in the original assignment problem, which
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yields the solution z = 21 and the tour solution 1-4-5-2-3-1 at node 3. The tour solution at node 3
lowers the upper bound from z == 29 to z == 21. This means that any unexplored subproblem that
can be shown to yield a tour length larger than 21 is discarded as nonpromising.

We now have two unexplored subproblems. Selecting the subproblem 4 for exploration, we
set d l3 == 00 and d52 == 00 in the original assignment, which yields the tour solution 1-4-2-5-3-1
with z == 19. The new solution provides a better tour than the one associated with the current
upper bound of 21. Thus, the new upper bound is updated to z = 19 and its associated tour, 1-4
2-5-3-1, is the best available so far.

Only subproblem 5 remains unexplored. Substituting d31 == 00 in the original assignment
problem at node 1, we get the tour solution 1-3-4-2-5-1 with z = 16, at node 5. Once again, this is
a better solution than the one associated with node 4 and thus requires updating the upper
bound to z == 16.

There are no remaining unfathomed nodes, which completes the search tree. The optimal
tour is the one associated with the current upper bound: 1-3-4-2-5-1 with length 16 miles.

Remarks. The solution of the example reveals two points:

1. Although the search sequence 1 - 2 - 3 - 4 - 5 was selected deliberately to
demonstrate the mechanics of the B&B algorithm and the updating of its upper bound, we
generally have no way of predicting which sequence should be adopted to improve the effi
ciency of the search. Some rules of thumb can be of help. For example, at a given node we
can start with the branch associated with the largest d ij among all the created branches. By can
celing the tour leg with the largest dij, the hope is that a "good" tour with a smaller total length
will be found. In the present example, this rule calls for exploring branch X31 == 0 to node 5 be
fore branch x13 to node 2 because (d31 == 4) > (dB == 3), and this would have produced the
upper bound z == 16, which automatically fathoms node 2 and, hence, eliminates the need to cre
ate nodes 3 and 4. Another rule calls for sequencing the exploration of the nodes in a horizontal
tier (rather than vertically). The idea is that nodes closer to the starting node are more likely to
produce a tighter upper bound because the number of additional constraints (of the type Xi; = 0)
is smaller. This rule would have also discovered the solution at node 5 sooner.

2. The B&B should be applied in conjunction with the heuristic in Section 9.3.1. The
heuristic provides a "good" upper bound which can be used to fathom nodes in the search tree.
In the present example, the heuristic yields the tour 1-3-4-2-5-1 with a length of 16 distance units.

9.

AMPl Moment

Interactive AMPL commands are ideal for the implementation of the TSP B&B algo
rithm using the general assignment model (file ampIAssignment.txt). The following
table summarizes the AMPL commands needed to create the B&B tree in Figure 9.13
(Example 9.3-4):

AMPL command

ampl: model amplAss ignment . txt; display x;
ampl:fix x[1,3}:~O;solve;displayx;
amp~fix x[2,5} :=O;solve;display x;
ampl:unfix x[2, 5] ; fix x(5,2] :=O;solve;display X;

ampl:unfix x[5,2j;unfix x[1,3];fix x[3,1]:=O;
solve;display x;

Result

Node 1 solution
Node 2 solution
Node 3 solution
Node 4 solution

Node 5 solution

1

2

3

4

5
6
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PROBLEM SET 9.3C

1. Solve Example 9.3-3 using subtour 2-5-4-2 to start the branching process at node 1, using
the following sequences for exploring the nodes.

(a) Explore all the subproblems horizontally from left to right in each tier.before pre
ceeding to the next tier.

(b) Follow each path vertically from node 1 until it ends with a fathomed node.

*2. Solve Problem 1, Set 9.3a using B&B.

3. Solve Problem 2, Set 9.3a using B&B.

4. Solve Problem 3, Set 9.3a using B&B.

9.3.3 Cutting-Plane Algorithm

The idea of the cutting plane algorithm is to add a set of constraints to the assignment
problem that prevent the formation of a subtour. The additional constraints are defined
as follows. In an n-city situation, associate a continuous variable Uj (;:::: 0) with cities
2, 3, ... , and n. Next, define the required set of additional constraints as

Uj - Uj + nXjj :s;; n - 1, i = 2,3, ... , n; j = 2,3, ... , n; i i= j

These constraints, when added to the assignment model, will automatically remove all
subtour solutions.

Example 9.3-5

Consider the following distance matrix of a 4-city TSP problem.

e

,.

13 21

29
20
30 7

26)20
5

g
3

...
.:::;' .

3:: ~~{:~':

The associated LP consists of the assignment model constraints plus the additional constraints in
the table below. All Xjj = (0, 1) and all Uj ~ O.

No. XII XI2 Xl3 X14 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X43 X44 U2 U3 U4

1 4 1 -1 ~3

2 4 1 -1 ~3

3 4 -1 1 ~3

4 4 1 -1 ~3

5 4 -1 1 ~3

6 4 -1 1 ~3

The optimum solution is

U2 = 0, UJ = 2, U4 = 3, X12 = X23 = X34 = X41 = 1, tour length = 59.
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This corresponds to the tour solution 1-2-3-4-1. The solution satisfies all the additional con
straints in Uj (verify!).

To demonstrate that subtour solutions do not satisfy the additional constraints, consider
(1-2-1,3-4-3), which corresponds to X12 = X21 = 1, X34 = X43 = 1. Now, consider constraint 6 in
the tableau above:

Substituting X43 ;: 1, U3 = 2, U4 = 3 yields 5 ~ 3, which is impossible, thus disallowing X43 = 1
and subtour 3-4-3.

The disadvantage of the cutting-plane model is that the number of variables grows expo-
nentially with the number of cities, making it difficult to obtain a numeric solution for practical
situations. For this reason, the B&B algorithm (coupled with the heuristic) may be a more feasi
ble alternative for solving the problem.

AMPL Moment

Figure 9.14 provides the AMPL model of the cutting-plane algorithm (file amplEx9.3
5.txt).The data of the 4-cityTSP of Example 9.3-5 are used to drive the model. The for
mulation is straightforward: The fIrst two sets of constraints define the assignment
model associated with the problem, and the third set represents the cuts needed to re
move subtour solutions. Notice that the assignment-model variables must be binary
and that option solver cplex; must precede solve; to ensure that the obtained so
lution is integer.

The for and if - then statements at the bottom of the model are used to present the out
put in the following readable·format:

Optimal tour length = 59.00
Optimal tour: 1- 2- 3- 4- 1

PROBLEM SET 9.30

1. An automatic guided vehicle (AGV) is used to deliver mail to 5 departments located on
a factory floor. The trip starts at the mail sorting room and makes the delivery round to
the different departments before returning to themailroom.Using the mailroom as the
origin (0,0), the (x, y) locations of the delivery spots are (10,30), (10, 50), (30, 10), (40,40),
and (50,60) for departments 1 through 5, respectively. All distances are in meters. The
AGV can move along horizontal and vertical aisles only. The objective is to minimize the
length of the round trip.

Formulate the problem as a TSP, including the cuts.

2. Write down the cuts associated with the following TSP:

00

12

Ild;j!1 = 20
14
44

43 21
00 9
10 00

30 42
7 9

20 10
22 30
5 13

00 20
10 00

.-~

-;.1:. .

.,,,/:: ~'ii:~~;~.::

REFI
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param k;
param n;

param c(l .. n,l .. n} default 10000;
var xli in 1 .. n,j in l .. n} binary;
var uri in 1 .. n:i>l}>=O;

minimize tourLength:sum{i in 1 .. n,j in 1 .. n}c[i,j)*x[i,j);
subject to

fromCity {i in 1 .. n}:sum {j in 1 .. n} x[i,j] = 1;
toCity {j in 1 .. n}:sum (i in 1 .. n) x[i,j] = 1;
cut{i in 1 .. n,j in 1 .. n:i>l and j>l and i<>j}:

u[ij-u(jj+n*x[i,j) <= n-1;
data;
pararn n:=4;
param c:

1 2 3 4:=
1 13 21 26
2 10 29 20
3 30 20 5
4 12 30 7 . ,

option solver cplex; solve;
display u;

#---------------------------------print formatted output
printf "\n\nOptirnal tour length = %7.2f\n",tourLength;
printf "Optimal tour:";

let k:=l; #tour starts at city k=l
for (i in 1. .n)

{

printf "%3i", k;

for {j in 1 .. n} #search for next city following k
{

if x[k,j}=1 then
{

let k:=j; #next city found, set k=j
break;
}

)

printf " ";
}

printf" l\n\n";

#insert last hyphen

FIGURE 9.14

AMPL cutting·plane model of the TSP problem (file ampIEx9.3-5.txt)

3. AMPL experiment. Use AMPL to solve the following TSP problem by the cutting plane
algorithm.

(a) Problem 2, Set 9.3a.

(b) Problem 3, Set 9.3a.
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Deterministic Dynamic
Programming

Chapter Guide. Dynamic programming (DP) determines the optimum solution of a
multivariable problem by decomposing it into stages, each stage comprising a single
variable subproblem. The advantage of the decomposition is that the optimization
process at each stage involves one variable only, a simpler task computationally than
dealing with all the variables simultaneously. A DP model is basically a recursive equa
tion linking the different stages of the problem in a manner that guarantees that each
stage's optimal feasible solution is also optimal and feasible for the entire problem. The
notation and the conceptual framework of the recursive equation are unlike any you
have studied so far. Experience has shown that the structure of the recursive equation
may not appear "logical" to a beginner. Should you have a similar experience, the best
course of action is to try to implement what may appear logical to you, and then carry
out the computations accordingly. You will soon discover that the definitions in the
book are the correct ones and, in the process, will learn how DP works. We have also in
cluded two partially automated Excel spreadsheets for some of the examples in which
the user must provide key information to drive the DP computations. The exercise
should help you understand some of the subtleties of DP.

Although the recursive equation is a common framework for formulating DP
models, the solution details differ. Only through exposure to different formulations
will you be able to gain experience in DP modeling and DP solution. A number of
deterministic DP applications are given in this chapter. Chapter 22 on the CD presents
probabilistic DP applications. Other applications in the important area of inventory
modeling are presented in Chapters 11 and 14.

This chapter includes a summary of 1 real-life application, 7 solved examples,
2 Excel spreadsheet models, 32 end-of-section problems, and 1 ca·se. The case is in Ap
pendix E on the CD. The AMPL/Excel/Solver/TORA programs are in folder chlOFiles.

399



400 Chapter 10 Deterministic Dynamic Programming

Real-Life Application-Optimization of Crosscutting
and Log Allocation at Weyerhaeuser.

Mature trees are harvested and crosscut into logs to manufacture different end prod
ucts (such as construction lumber, plywood, wafer boards, or paper). Log specifications
(e.g., length and end diameters) differ depending on the mill where the logs are used.
With harvested trees measuring up to 100 feet in length, the number of crosscut combi
nations meeting mill requirements can be large, and the manner in which a tree is dis
assembled into logs can affect revenues. The objective is to determine the crosscut
combinations that maximize the total revenue. The study uses dynamic programming
to optimize the process. The proposed system was first implemented in 1978 with an
annual increase in profit of at least $7 million. Case 8 in Chapter 24 on the CD pro
vides the details of the study.

10.1 RECURSIVE NATURE OF COMPUTATIONS IN DP

Computations in DP are done recursively, so that the optimum solution of one subprob
lem is used as an input to the next subproblem. By the time the last subproblem is
solved, the optimum solution for the entire problem is at hand. The manner in which the
recursive computations are carried out depends on how we decompose the original
problem. In particular, the subproblems are normally linked by common constraints. As
we move from one subproblem to the next, the feasibility of these common constraints
must be maintained.

Example 10.1-1 (Shortest-Route Problem)

Suppose that you want to select the shortest highway route between two cities. The network in
Figure 10.1 provides the possible routes between the starting city at node 1 and the destination
city at node 7. The routes pass through intermediate cities designated by nodes 2 to 6.

We can solve this problem by exhaustively enumerating all the routes between nodes 1 and
7 (there are five such routes). However, in a large network, exhaustive enumeration may be
intractable computationally. '

To solve the problem by DP, we first decompose it into stages as delineated by the vertical
dashed lines in Figure 10.2. Next, we carry out the computations for each stage separately.

FIGURE 10.1

Route network for Example 10.1-1
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FIGURE 10.2

Decomposition of the shortest-route problem into stages

The general idea for determining the shortest route is to compute the shortest (cumulative)
distances to all the terminal nodes of a stage and then use these distances as input data to the
immediately succeeding stage. Starting from node 1, stage 1 includes three end nodes (2,3, and
4) and its computations are simple.

Stage 1 Summary.

Shortest distance from node 1 to node 2 = 7 miles (from node 1)

Shortest distance from node 1 to node 3 = 8 miles (from node 1)

Shortest distance from node 1 to node 4 = 5 miles (from node 1)

Next, stage 2 has two end nodes, 5 and 6. Considering node 5 first, we see from Figure 10.2
that node 5 can be reached from three nodes, 2,3, and 4, by three different routes: (2,5), (3,5),
and (4, 5). This information, together with the shortest distances to nodes 2, 3, and 4, determines
the shortest (cumulative) distance to node 5 as

(
Shortest distance) = min {(Shortest dist~nce) + ( Dist~nce from )}

to node 5 i=2,3,4 to node l node l to node 5

{

7 + 12 = 19}
= min 8 + 8 = 16 = 12 (from node 4)

5 + 7 = 12

Node 6 can be reached from nodes 3 and 4 only. Thus

(
Shortest distance) = min{ (Shortest dist~nce) + ( Dist~nce from )}

to node 6 i=3,4 to node l node l to node 6

{
8 + 9 = 17 }= min 5 + 13 = 18 = 17 (from node 3)
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Stage 2 Summary.

Shortest distance from node 1 to node 5 = 12 miles (from node 4)

Shortest distance from node 1 to node 6 = 17 miles (from node 3)

The last step is to consider stage 3. The destination node 7 can be reached from either nodes 5
or 6. Using the summary results from stage 2 and the distances from nodes 5 and 6 to node 7, we get

(
Shortest distance) = min{ (Shortest dist~nce) + ( Dist~nce from )}

to node 7 i=5.6 to node l node l to node 7

{
12 + 9 = 21}

= min 17 + 6 = 23 = 21 (from node 5)

Stage 3 Summary.

Shortest distance from node 1 to node 7 = 21 miles (from node 5)

Stage 3 summary shows that the shortest distance between nodes 1 and 7 is 21 miles. To deter
mine the optimal route, stage 3 summary links node 7 to node 5, stage 2 summary links node 4 to
node 5, and stage 1 summary links node 4 to node 1.Thus, the shortest route is 1~ 4~ 5 - 7.

The example reveals the basic properties of computations in DP:

1. The computations at each stage are a function of the feasible routes of that stage, and that
stage alone.

2. A current stage is linked to the immediately preceding stage only without regard to earlier
stages.The linkage is in the form of the shortest-distance summary that represents the out
put of the immediately preceding stage.

Recursive Equation. We now show how the recursive computations in Example 10.1-1
can be expressed mathematically. Let li(Xi) be the shortest distance to node Xi at stage
4 and define d(Xi-l> xJ as the distance from node Xi-l to node Xi; then Ii is computed
from h-l using the following recursive equation:

li(Xi) = min {d(Xi-bXj) + li-I(Xj-d},i = 1,2,3
all rc."ble

(Xi_t.X,.) route~

Starting at i = 1, the recursion sets fo(xo) = O. The equation shows that the
shortest distances /;(Xj) at stage i must be expressed in terms of the next node, Xi' In
the DP terminology, Xi is referred to as the state of the system at stage i. In effect, the
state of the system at stage i is the information that links the stages together, so that
optimal decisions for the remaining stages can be made without reexamining how the
decisions for the previous stages are reached. The proper definition of the state allows
us to consider each stage separately and guarantee that the solution is feasible for all
the stages.

The definition of the state leads to the following unifying framework for DP.

. .. .: ....

10
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Principle of Optimality

Future decisions for the remaining stages will constitute an optimal policy regardless
of the policy adopted in previous stages.

The implementation of the principle is evident in the computations in Example
10.1-1. For example, in stage 3, we only use the shortest distances to nodes 5 and 6, and
do not concern ourselves with how these nodes are reached from node 1. Although the
principle of optimality is "vague" about the details of how each stage is optimized, its
application greatly facilitates the solution of many complex problems.

PROBLEM SET 10.lA

*1. Solve Example 10.1-1, assuming the following routes are used:

d(1,2) = 5,d(1,3) = 9,d(I,4) = 8

d(2,S) = 10,d(2,6) = 17

d(3,5) = 4, d(3, 6) = 10

d(4,5) = 9,d(4,6) = 9

d(5,7) = 8

d(6,7) = 9

2. I am an avid hiker. Last summer, I went with my friend G. Don on a 5-day hike-and-camp
trip in the beautiful White Mountains in New Hampshire. We decided to limit our hiking
to an area comprising three well-known peaks: Mounts Washington, Jefferson, and Adams.
Mount Washington has a 6-mile base-to-peak trail. The corresponding base-ta-peak trails
for Mounts Jefferson and Adams are 4 and 5 miles, respectively. The trails joining the bases
of the three mountains are 3 miles between Mounts Washington and Jefferson, 2 miles
between Mounts Jefferson and Adams, and 5 miles between Mounts Adams and
Washington. We started on the first day at the base of Mount Washington and returned to
the same spot at the end of 5 days. Our goal was to hike as many miles as we could. We
also decided to climb exactly one mountain each day and to camp at the base of the moun
tain we would be climbing the next day. Additionally, we decided that the same mountain
could not be visited in any two consecutive days. How did we schedule our hike?

FORWARD AND BACKWARD RECURSION

Example 10.1-1 uses forward recursion in which the computations proceed from stage
1 to stage 3.The same example can be solved by backward recursion, starting at stage 3
and ending at stage l.

Both the forward and backward recursions yield the same solution. Although the
forward procedure appears more logical, DP literature invariably uses backward
recursion. The reason for this preference is that, in general, backward recursion may be
more efficient computationally. We will demonstrate the use of backward recursion by
applying it to Example 10.1-1. The demonstration will also provide the opportunity to
present the DP computations in a compact tabular form.
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Example 10.2-1

The backward recursive equation for Example 10.2-1 is

f,{Xj) = min {d(xj.xj+l) + ft+l(Xi+l)}. i = 1,2,3
...11 fl:Ol'lhlc

rOllles (."t'_'C:'l I)

where f4(X4) = 0 for X4 = 7. The associated order of computations is h ~ h ~ II-

Stage 3. Because node 7 (X4 = 7) is connected to nodes 5 and 6 (X3 = 5 and 6) with exactly
one route each, there are no alternatives to choose from, and stage 3 results can be summa
rized as

d(X3' X4)

X3 X4 = 7

5 9
6 6

Optimum solution

9 7
6 7

Stage 2. Route (2, 6) is blocked because it does not exist. Given h(x3) from stage 3, we can
compare the feasible alternatives as shown in the following tableau:

d(X2' X3) + !J(X3) Optimum solution

X3 = 5 x3 = 6 h(x2)
~

X2 x3

2 12 + 9 = 21 21 5
3 8+9=17 9 + 6 = 15 15 6
4 7 + 9 = 16 13 + 6 = 19 16 5

The optimum solution of stage 2 reads as follows: If you are in cities 2 or 4, the shortest
route passes through city 5, and if you are in city 3, the shortest route passes through city 6.

Stage 1. From node 1, we have three alternative routes: (1,2), (1, 3), and (1,4). Using h(X2)
from stage 2. we can compute the following tableau.

X2 = 2

Optimum solution.
X2

7 + 21 = 28 8 + 15 = 23 5 + 16 = 21 21 4

The optimum solution at stage 1 shows that city 1 is linked to city 4. Next, the optimum solu
tion at stage 2 links city 4 to city 5. Finally. the optimum solution at stage 3 connects city 5 to city
7. Thus, the complete route is given as 1~ 4~ 5~ 7. ~nd the associated distance is 21 miles.

PROBLEM SET 10.2A

1. For Problem 1, Set 1O.1a, develop the backward recursive equation, and use it to fmd the
optimum solution.

1
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2. For Problem 2, Set lO.la, develop the backward recursive equation, and use it to find the
optimum solution.

*3. For the network in Figure 10.3, it is desired to determine the shortest route between cities 1
to 7. Define the stages and the states using backward recursion, and then solve the problem.

SELEaED DP APPLICATIONS

This section presents four applications, each with a new idea in the implementation of
dynamic programming. As you study each application, pay special attention to the three
basic elements of the DP model:

1. Definition of the stages

2. Definition of the alternatives at each stage
3. Definition of the states for each stage

Of the three elements, the definition of the state is usually the most subtle. The applica
tions presented here show that the definition of the state varies depending on the situ
ation being modeled. Nevertheless, as you investigate each application, you will find it
helpful to consider the following questions:

1. What relationships bind the stages together?
2. What information is needed to make feasible decisions at the current stage with

out reexamining the decisions made at previous stages?

My teaching experience indicates that understanding the concept of the state can
be enhanced by questioning the validity of the way it is defined in the book. Try a dif
ferent definition that may appear "more logical" to you, and use it in the recursive
computations. You will eventually discover that the definitions presented here provide
the correct way for solving the problem. Meanwhile, the proposed mental process
should enhance your understanding of the concept of the state.

he

10.3.1 Knapsack/Fly-Away/Cargo-Loading Model

The knapsack model classically deals with the situation in which a soldier (or a hiker)
must decide on the most valuable items to carry in a backpack. The problem paraphrases

~.;::- ."
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a general resource allocation model in which a single limited resource is assigned to a
number of alternatives (e.g., limited funds assigned to projects) with the objective of max
imizing the total return.

Before presenting the DP model, we remark that the knapsack problem is also
known in the literature as the fly-away kit problem, in which a jet pilot must determine
the most valuable (emergency) items to take aboard a jet; and the cargo-loading prob
lem, in which a vessel with limited volume or weight capacity is loaded with the most
valuable cargo items. It appears that the three names were coined to ensure equal rep
resentation of three branches of the armed forces: Air Force, Army, and Navy!

The (backward) recursive equation is developed for the general problem of an
n-item W-Ib knapsack. Let mi be the number of units of item i in the knapsack and
define 'i and Wi as the revenue and weight per unit of item i. The general problem is
represented by the following ILP:

subject to

wlml + wzmz + ... + wnmn :5 W

mJ, mz, ... , m n 2: °and integer

The three elements of the model are

1. Stage i is represented by item i, i = 1,2, ... , n.
2. The alternatives at stage i are represented by mi, the number of units of item i

included in the knapsack. The associated return is rimi' Defining [~] as the largest inte-
W [W] ~ger less than or equal to ;;, it follows that mi = 0, 1, ... , Wj •

3. The state at stage i is represented by Xi, the total weight assigned to stages
(items) i, i + 1, ... , and n. This definition reflects the fact that the weight constraint is
the only restriction that links all n stages together.

Define

fi(Xi) = maximum return for stages i, i + 1, and n, given state Xi

The simplest way to determine a recursive equation is a two-step procedure:

Step 1. Express fi(x;) as a function of f/Xi+d as follows:

fi(Xi) = min {rimi + h+l(Xi+l)}, i = 1,2, ... , n
m;=O.l, ...• [~J

X;:5W

fn+I(Xn+l) =0

Step 2. Express Xi+! as a function of Xi to ensure that the left-hand side, hex;), is a
function of X; only. By definition, Xi - Xi+l = Wimi represents the weight
used at stage i. Thus, Xi+) = Xi - 'Wimj, and the proper recursive equation is
given as
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Example 10.3-'

A 4-ton vessel can be loaded with one or more of three items. The following table gives the unit
weight, Wi> in tons and the unit revenue in thousands of dollars, 'i, for item i. How should the ves
sel be loaded to maximize the total return?

Hem i

1
2
3

Wi

2
3
1

Tj

31
47
14

Because the unit weights Wi and the maximum weight Ware integer, the state Xi assumes
integer values only.

Stage 3. The exact weight to be allocated to stage 3 (item 3) is not known in advance, but can
assume one of the values 0,1, ... , and 4 (because W = 4 tons). The states X3 = °and X3 = 4, re
spectively, represent the extreme cases of not shipping item 3 at all and of allocating the entire
vessel to it. The remaining values of X3 (= 1,2, and 3) imply a partial allocation of the vessel ca
pacity to item 3. In effect, the given range of values for X3 covers all possible allocations of the
vessel capacity to item 3.

Given W3 = 1 ton per unit, the maximum number of units of item 3 that can be loaded is
I = 4, which means that the possible values of m3 are 0, 1,2,3, and 4. An alternative m3 is feasi

ble only if WJm3 $ X3. Thus, all the infeasible alternatives (those for which W3m3 > X3) are
excluded. The following equation is the basis for comparing the alternatives of stage 3.

The following tableau compares the feasible alternatives for each value of X3-

Optimum solutionS

X3 m3 = 0 m3 = 1

0 0
1 0 14
2 0 14
3 0 14
4 0 14

28
28
28

42
42 56

o
14
28
42
56

o
1
2
3
4

Stage 2. max{m2} = [~] = 1, or m3 = 0,1

f2(X2) = max {47m2 + h(X2 - 3m2)}
m2=O,1

Optimum solution

a
:1t
is

i
. ,.;~' .'i.'\i~:''',:.~_ '...

X2 m2 = 0

0 0+ 0=0
1 0+ 14 = 14
2 0+28=28
3 0+42 = 42
4 0+ 56 = 56

47 + 0 "" 47
47 + 14 = 61

o
14
28
47
61

o
o
o
1
1
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Stage 1. max{md = m= 2 or ml = 0,1,2

fl(xd = max {31m) + h(xI - 2m))}, max{md = m= 2
nJi"'O,I,2

Optimum solution

I

!,
I
:,,
;,
··;,
•"

Xl ml = 0

0 0+ 0= 0
1 0+ 14 = 14
2 0+28=28
3 o + 47 = 47

31 + 0 = 31
31 + 14:; 45

o
14
31
47

m~

o
o
1
o

The optimum solution is determined in the following manner: Given W = 4 tons, from
stage 1, xl = 4 gives the optimum alternative mi = 2, which means that 2 units of item 1 will be
loaded on the vessel. This allocation leaves X2 = XI - 2m; = 4 - 2 X 2 = O. From stage
2, X2 = 0 yields m; = 0, which, in turn, gives X3 = X2 - 3m2 = 0 - 3 X 0 = O. Next, from stage
3, X3 = 0 gives m; = O. Thus, the complete optimal solution is mi = 2, m; = 0, and m; = O. The
associated return is II(4) = $62,000.

In the table for stage 1, we actually need to obtain the optimum for Xl = 4 only because this
is the last stage to be considered. However, the computations for XI = 0, 1, 2, and 3 are induded
to allow carrying out sensitivity analysis. For example, what happens if the vessel capacity is 3
tons in place of 4 tons? The new optimum solution can be determined as

(XI = 3)-,;(m7 = O)~(X2 = 3)~(m; = 1)~(X3 = O)~(m; = 0)

Thus the optimum is (mi, m;, m;) = (0,1,0) and the optimum revenue is ft(3) = $47,000.

Remarks. The cargo-loading example represents a typical resource allocation model in which a
limited resource is apportioned among a finite number of (economic) activities. The objective
maximizes an associated return function. In such models, the definition of the state at each stage
will be similar to the definition given for the cargo-loading model. Namely, the state at stage i is
the total resource amount allocated to stages i, i + 1, ... , and n.

Excel moment

The nature of dynamic programming computations makes it impossible to develop a
general computer code that can handle all DP problems. Perhaps this explains the per
sistent absence of commercial DP software.

In this section, we present a Excel-based algorithm for handling a subclass of
DP problems: the single-constraint knapsack problem (file Knapsack.xls). The algo
rithm is not data specific and can handle problems in this category with 10 alterna
tives or less.

Figure 10.4 shows the starting screen of the knapsack (backward) DP model. The
screen is divided into two sections:The right section (columns Q:V) is used to summarize

...~.? ,'... .~ -..
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FIGURE 10.4

Excel starting screen of the general DP knapsack model (file exceiKnapsack.xls)

the output solution. In the left section (columns A:P), rows 3,4, and 6 provide the input
data for the current stage, and rows 7 and down are reserved for stage computations.
The input data symbols correspond to the mathematical notation in the DP model, and
are self-explanatory. To fit the spreadsheet conveniently on one screen, the maximum
feasible value for alternative mi at stage i is 10 (cells D6:N6).

Figure 10.5 shows the stage computations generated by the algorithm for
Example 10.3-1. The computations are carried out one stage at a time, and the user
provides the basic data that drive each stage. Engaging you in this manner will enhance
your understanding of the computational details in DP

Starting with stage 3, and using the notation and data in Example 10.3-1, the
input cells are updated as the following list shows:

Cell(s) Entry

a
e
e
s

D3
03
C4
E4
G4
D6:H6

Number of stages, N = 3
Resource limit, W = 4
Current stage = 3
WJ = 1
r3 = 14
n73 = (0,1,2,3,4)

'-

f

,..~.t ..• ..;.....

Note that the feasible values of m3 are 0, 1, ... , and [::J = [iJ = 4, as in Example 10.3-1.
The spreadsheet automatically tells you how many mTvalues are needed and checks the
validity of the values you enter by issuing self-explanatory messages in row 5: "yes," "no,"
and "delete." .. ,

As stage 3 data are entered and verified, the spreadsheet will "come alive" and
will generate all the necessary computations of the stage (columns B through P) auto
matically. The value -1111111 is used to indicate that the corresponding entry is not
feasible. The optimum solution (/3, m3) for the stage is given in columns 0 and P
Column A provides the values of 14- Because the computations start at stage 3,14 = 0
for all values of X3' You can leave A9:A13 blank or enter all zero values.
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FIGURE 10,5

Excel DP model for the knapsack problem of Example 10.3-1 (file exceIKnapsack.xls)

Now that stage 3 calculations are at hand, take the following steps to create a
permanent record of the optimal solution of the current stage and to prepare the spread
sheet for next stage calculations:

Step 1. Copy the x3-values, C9:C13, and paste them in Q5:Q9 in the optimum solu
tion summary section. Next, copy the (/3, m3)-values, 09:P13, and paste them
in R5:S9. Remember that you need to paste values only, which requires se
lecting Paste Special from Edit menu and Values from the dialogue box.

Step 2. Copy the h-values in R5:R9 and paste them in A9:A13 (you do not need
Paste Special in this step).

Step 3_ Change cell C4 to 2 and enter the new values of Wz, 'z, and mz to record the
data of stage 2. .

Step 2 places fi+1(Xi - Wimi) in column A in preparation for calculating fi(XJ
at stage i (see the recursive formula for the knapsack problem in Example 10.3-1).
This explains the reason for entering zero values, representing f4, in column A of
stage 3 tableau,

'.,
. -.~:
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Once stage 2 computations are available, you can prepare the screen for stage 1 in
a similar manner. When stage 1 is complete, the optimum solution summary can be used
to read the solution, as was explained in Example 10.3-1. Note that the organization of
the output solution summary area (right section of the screen, columns Q:V) is free
formatted and you can organize its contents in any convenient manner you desire.

PROBLEM SET 10.3A1

1. In Example 10.3-1, determine the optimum solution, assuming that the maximum weight
capacity of the vessel is 2 tons then 5 tons.

2. Solve the cargo-loading problem of Example 10.3-1 for each of the following sets of data:

*(a) Wt = 4, rl = 70,~ = 1, rz = 20, w3 = 2, r3 = 40, W = 6

(b) WI = 1, rl = 30, Wz = 2, rz = 60, W3 = 3, r3 = 80, W = 4

3. In the cargo-loading model of Example 10.3-1, suppose that the revenue per item includes
a constant amount that is realized only if the item is chosen, as the following table shows:

Item Revenue

1 {-5 + 31mj, ifml > 0
0, otherwise

2 {-15 + 47m2. if m2 > 0
0, otherwise

3
{ -4 + 141113, if 1n3 > 0

0, otherwise

Find the optimal solution using DP. (Hint: You can use the Excel file excelSetupKnapsack.xls
to check your calculations.)

4. A wilderness hiker must pack three items: food, first-aid kits, and clothes. The backpack
has a capacity of 3 ft3. Each unit of food takes 1 ft3. A first-aid kit occupies V4 ft3 and each
piece of cloth takes about 1/2fe. The hiker assigns the priority weights 3,4, and 5 to food,
first aid, and clothes, which means that clothes are the most valuable of the three items.
From experience, the hiker must take at least one unit of each item and no more than two
first-aid kits. How many of each item should the hiker take?

A student must select 10 electives from four different departments, with at least one
course from each department. The 10 courses are allocated to the four departments in a
manner that maximizes "knowledge."The student measures knowledge on a lOO-point
scale and comes up with the following chart:

No. of courses

Department 1 2 3 4 5 6 ?;7

I 25 50 60 80 100 100 100
II 20 70 90 100 100 100 100
III 40 60 80 100 100 100 100
IV 10 20 30 40 50 60 70

How should the student select the courses?
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6. I have a small backyard garden that measures 10 X 20 feet. This spring I plan to plant
three types of vegetables: tomatoes, green beans, and corn. The garden is organized in
10-foot ro\ys. The corn and tomatoes rows are 2 feet wide, and the beans rows are 3 feet
wide. I like tomatoes the most and beans the least, and on a scale of 1 to 10, I would
assign 10 to tomatoes, 7 to corn, and 3 to beans. Regardless of my preferences, my wife
insists that I plant at least one row of green beans and no more than two rows of toma
toes. How many rows of each vegetable should I plant?

*7. Habitat for Humanity is a wonderful charity organization that builds homes for needy fami
lies using volunteer labor. An eligible family can chose from three home sizes: 1000, 1100,
and 1200 ftz. Each size house requires a certain number of labor volunteers. The
Fayetteville chapter has received five applications for the upcoming 6 months. The commit
tee in charge assigns a score to each application based on several factors. A higher score sig
nifies more need. For the next 6 months, the Fayetteville chapter can count on a maximum
of 23 volunteers. The following data summarize the scores for the applications and the
required number of volunteers. Which applications should the committee approve?

House size Required
Application (ft2

) Score no. of volunteers

1 1200 78 7
2 1000 64 4
3 1100 68 6
4 1000 62 5
5 1200 85 8

8. Sheriff Bassam is up for reelection in Washington county. The funds available for the
campaign are about $10,000. Although the reelection committee would like to launch the
campaign in all five precincts of the county, limited funds dictate otherwise. The following
table lists the voting population and the amount of funds needed to launch an effective
campaign in each precinct. The choice for each precinct is to receive either all allotted
funds or none. How should the funds be allocated?

Precinct Population Required funds ($)

1 3100 3500
2 2600 2500
3 3500 4000
4 2800 3000
5 2400 2000

9. An electronic device consists of three components. The three components are in series
so that the failure of one component causes the failure of the device. The reliability
(probability of no failure) of the device can be improved by installing one or two
standby units in each component. The following table charts the reliability, r, and the
cost, c. The total capital available for the construction of the device is $10,000. How
should the device be constructed? (Hint: The objective is to maximize the reliability,
r\rZr3, of the device. This means that the decomposition of the objective function is multi
plicative rather than additive.)

10.3
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Component 1 Component 2
No. of parallel

units r\ c\($) rz C2($)

1 .6 1000 .7 3000
2 .8 2000 .8 5000
3 .9 3000 .9 6000

Component 3

.5 2000

.7 4000

.9 5000
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10. Solve the following model by DP:

n

Maximize z = IT)'i
i=1

subject to

)'1 + Y2 + ... + )'n = C

Yj ;:::: 0, j = 1, 2, ... , n

(Hint: This problem is similar to Problem 9, except that the variables, Yj, are continuous.)

11. Solve the following problem by DP:

Minimize Z = YI + y~ + .. , + Y~

subject to

n

ITYi = C
i=1

Yi > 0, i = 1, 2, ... , n

12. Solve the following problem by DP:

Maximize z = (YI + 2)2 + Y2Y3 + (Y4 - 5)2

subject to

YI + Y2 + )'3 + Y4 :s; 5

)'i ;:::: °and integer, i = 1,2,3,4

13. Solve the following problem by DP:

Minimize z = max{f(yd,f(}2),· .. ,f(YII)}

subject to

Yl + }2 + ... + Yn = c

Yi 2 0, i = 1,2, ... , n

Provide the solution for the special case of n = 3, c = 10, and f(yd = )'1 + 5,
!(}2) = 5)'2 + 3, and f(.Y3) = Y.3 - 2.

10.3.2 Work-Force Size Model

In some construction projects, hiring and firing are exercised to maintain a labor force
that meets the needs of the project. Given that the activities of hiring and firing both
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incur additional costs, how should the labor force be maintained throughout the life of
the project?

Let us assume that the project will be executed over the span of n weeks and that
the minimum labor force required in week i is bi laborers. Theoretically, we can use hir
ing and firing to keep the work~forcein week i exactly equal to hi- Alternatively, it may
be more economical to maintain a labor force larger than the minimum requirements
through new hiring. This is the case we will consider here.

Given that Xi is the actual number of laborers employed in week i, two costs can
be incurred in week i: CI(Xi - bi)' the cost of maintaining an excess labor force Xi - bi,
and C2(Xi - xi-d, the cost of hiring additional laborers, Xi - Xi-I- It is assumed that
no additional cost is incurred when employment is discontinued.

The elements of the DP model are defined as follows:

1. Stage i is represented by week i, i = 1, 2, . _. , n.

2. The alternatives at stage i are Xi, the number of laborers in week i.

3. The slate at stage i is represented by the number of laborers available at stage
(week) i - 1, Xi-I'

The DP recursive equation is given as

fi(Xi-d = min{CI(xi - bi) + C2(Xi - Xi-I) + fi+l(XJ}, i = 1,2, ... , n
Xj2:.b;

fll+l(XI/) == 0

The computations start at stage n with X n = bn and terminate at stage 1.

Example 10.3-2

A construction contractor estimates that the size of the work force needed over the next 5 weeks
to be 5, 7, 8.4, and 6 workers, respectively. Excess labor kept on the force will cost $300 per
worker per week, and new hiring in any week will incur a fixed cost of $400 plus $200 per worker
per week.

The data of the problem are summarized as

b l = 5, bz = 7, b3 = 8, b4 = 4. bs = 6

C1(Xj - bJ = 3(Xi - bi)' Xi > bi, i = 1,2, ... ,5

Cz(Xj - xi-d = 4 + 2(Xi - Xi-l), Xi > Xi-J, i = 1,2..... 5

Cost functions C1 and Cz are in hundreds of dollars.

Stage 5 (bs = 6)

IS = 6

Optimum solution

.
Xs

4
5
6

3(0) + 4 + 2(2) = 8
3{O) + 4 + 2(1) = 6
3(0) + 0 = 0

8
6
o

6
6
6
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Stage 4 (b4 = 4)

Optimum solutionat
lr
ay
lts 8 3(0) + 0 + 8 = 8 3(1) + 0 + 6 = 9 3(2) + 0 + 0 = 6 6 6

Stage 3 (b3 = 8)

X3 = 8

Optimum solution

~ge

7
8

Stage 2 (b2 = 7)

3(0) + 4 + 2(1) + 6 = 12
3(0) + 0 + 6 = 6

12
6

8
8

Optimum solution

X2 = 7 X2 = 8 h(XI)
.

Xl X2

5 3(0) + 4 + 2(2) + 12 = 20 3(1) + 4 + 2(3) + 6 = 19 19 8
6 3(0) + 4 + 2(1) + 12 = 18 3(1) + 4 + 2(2) +6 = 17 17 8
7 3(0) + 0 + 12 = 12 3(1) + 4 + 2(1) + 6 = 15 12 7
8 3(0) + 0 + 12 = 12 3(1) + 0 + 6 = 9 9 8

Stage 1 (bt = 5)

Xl = 6

Optimum solution~eks

per
rker

o 3(0) + 4 + 2(5)
+ 19 = 33

3(1) + 4 + 2(6)
+ 17 = 36

3(2) + 4 + 2(7)
+ 12 "" 36

Xl = 8

3(2) + 4 + 2(8)
+ 9 = 35 33 5

The optimum solution is determined as

The solution can be translated to the following plan:

Minimum labor force Aetuallabor force

Weeki (bi ) (x;) Decision

1 5 5 Hire 5 workers
2 7 8 Hire 3 workers
3 8 8 No change
4 4 6 Fire 2 workers
5 6 6 No change

Cost

4 + 2 x 5 = 14
4+2X3+1X3=13
o
3X2=6
o

The total cost is h(O) = $3300.
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if KEEP
if REPLACE

PROBLEM SET 10.3B

1. Solve Example 10.3.2 for each of the following minimum labor requirements:

*(a) b I = 6, bz = 5, b3 = 3, b4 = 6, bs = 8

(b) b l = 8, b2 = 4, b3 = 7, b4 = 8, bs = 2

2. In Example 10.3-2, if a severance pay of $100 is incurred for each fired worker, determine
the optimum solution.

*3. Luxor Travel arranges I-week tours to southern Egypt. The agency is contracted to pro
vide tourist groups with 7,4,7, and 8 rental cars over the next 4 weeks, respectively. Luxor
Travel subcontracts with a local car dealer to supply rental needs. The dealer charges a
rental fee of $220 per car per week, plus a flat fee of $500 for any rental transaction.
Luxor, however, may elect not to return the rental cars at the end of the week, in which
case the agency will be responsible only for the weekly rental ($220). What is the best way
for Luxor Travel to handle the rental situation?

4. GECO is contracted for the next 4 years to supply aircraft engines at the rate of four engines
a year. Available production capacity and production costs vary from year to year. GECO
can produce five engines in year 1, six in year 2, three in year 3, and five in year 4. The corre
sponding production costs per engine over the next 4 years are $300,000, $330,000, $350,000,
and $420,000, respectively. GECO can elect to produce more than it needs in a certain year,
in which case the engines must be properly stored until shipment date. The storage cost per
engine also varies from year to year, and is estimated to be $20,000 for year 1, $30,000 for
year 2, $40,000 for year 3, and $50,000 for year 4. Currently, at the start of year 1, GECO has
one engine ready for shipping. Develop an optimal production plan for GECo.

10.3.3 Equipment Replacement Model

The longer a machine stays in service, the higher is its maintenance cost, and the lower its
productivity. When a machine reaches a certain age, it may be more economical to replace
it. The problem thus reduces to determining the most economical age of a machine.

Suppose that we are studying the machine replacement problem over a span of n
years. At the start of each year, we decide whether to keep the machine in service an
extra year or to replace it with a new one. Let ret), e(t), and set) represent the yearly
revenue, operating cost, and salvage value of a t-year-old machine. The cost of acquir
ing a new machine in any year is 1.

The elements of the DP model are

1. Stage i is represented by year i, i = 1,2, ... , n.

2. The alternatives at stage (year) i call for either keeping or replacing the machine
at the start of year i.

3. The state at stage i is the age of the machine at the start of year i.

Given that the machine is t years old at the start of year i, define

fi(t) = maximum net income for years i, i + 1, ... , and n

The recursive equation is derived as

{
ret) - e(t) + fHI(t + 1),

fi(t) = max reO) + set) - I - c(O) + fi+I(1),

fll+1(') == 0
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Example 10.3-3

A company needs to determine the optimal replacement policy for a current 3-year-old machine
over the next 4 years (n = 4). The company requires that a 6-year-old machine be replaced. The
cost of a new machine is $100,000. The following table gives the data of the problem.

Age,t (yr) Revenue, ret) ($) Operating cost, e(t) ($) Salvage value, set) ($)

0 20,000 200
1 19,000 600 80,000
2 18,500 1200 60,000
3 17,200 1500 50,000
4 15,500 1700 30,000
5 14,000 1800 10,000
6 12,200 2200 5000

The determination of the feasible values for the age of the machine at each stage is some
what tricky. Figure 10.6 summarizes the network representing the problem. At the start of year 1,
we have a 3-year-old machine. We can either replace it (R) or keep it (K) for another year. At the
start of year 2, if replacement occurs, the new machine will be 1 year old; otherwise, the old
machine will be 4 years old. The same logic applies at the start of years 2 to 4. If a l-year-old
machine is replaced at the start of year 2,3, or 4, its replacement will be 1 year old at the start of
the following year. Also, at the start of year 4, a 6-year-old machine must be replaced, and at the
end of year 4 (end of the planning horizon), we salvage (5) the machines.

FIGURE 10.6

Representation of machine age as a function of decision year in Example 10.3-3

6 K= Keep
R = Replace
S = Salvage

5

ClJ 4Oll

'"Q)
I::::a
0i Start

2

1

1 2 3
Decision year

4 5
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The network shows that at the start of year 2, the possible ages of the machine are 1 and 4
years. For the start of year 3, the possible ages are 1,2, and 5 years, and for the start of year 4, the
possible ages are 1,2,3, and 6 years. .

The solution of the network in Figure 10.6 is equivalent to finding the longest route (i.e.,
maximum revenue) from the start of year 1 to the end of year 4. We will use the tabular form to
solve the problem. All values are in thousands of dollars. Note that if a machine is replaced in
year 4 (i.e., end of the planning horizon), its revenue will include the salvage value, set), of the
replaced machine and the salvage value, s(1), of the replacement machine.

Stage 4

K R Optimum solution

ret) + set + 1) - c(t) reO) + set) + s( 1) - c(O) - I f4(t) Decision

1 19.0 + 60 - .6 = 78.4 20 + 80 + 80 - .2 - 100 = 79.8 79.8 R
2 18.5 + 50 - 1.2 = 67.3 20 + 60 + 80 - .2 - 100 = 59.8 67.3 K
3 17.2 + 30 - 1.5 = 45.7 20 + 50 + 80 - .2 - 100 = 49.8 49.8 R
6 (Must replace) 20 + 5 + 80 - .2 - 100 = 4.8 4.8 R

Stage 3

K R Optimum solution

ret) - c(t) + 14(t + 1) reO) + set) - c(O) - I + 14(1) f3(t) Decision

1 19.0 - .6 + 67.3 = 85.7 20 + 80 - .2 - 100 + 79.8 = 79.6 85.7 K
2 18.5 - 1.2 + 49.8 = 67.1 20 + 60 - .2 - 100 + 79.8 = 59.6 67.1 K
5 14.0 - 1.8 + 4.8 = 17.0 20 + 10 - .2 - 100 + 79.8 = 19.6 19.6 R

Stage 2

K R Optimum solution

ret) - c(t) + h(t + 1) reO) + set) - c(O) - I + h(l) h(t) Decision

1 19.0 - .6 + 67.1 = 85.5 20 + 80 - .2 - 100 + 85.7 = 85.5 85.5 KorR
4 15.5 - 1.7 + 19.6 = 33.4 20 + 30 - .2 - 100 + 85.7 = 35.5 35.5 R

Stage 1

K R Optimum solution

ret) - c(t) + h(t + 1) reO) + set) - c(O) - I + J2(1) ft(t) Decision

3 17.2 - 1.5 + 35.5 = 51.2 20 + 50 - .2 - 100 + 85.5 = 55.3 55.3 R
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FIGURE 10.7

Solution of Example 10.3-3

Figure 10.7 summarizes the optimal solution. At the start of year 1, given t = 3, the optimal
decision is to replace the machine. Thus, the new machine will be 1 year old at the start of year 2,
and l = 1 at the start of year 2 calls for either keeping or replacing the machine. If it is replaced,
the new machine will be 1 year old at the start of year 3; otherwise, the kept machine will be 2
years old. The process is continued in this manner until year 4 is reached.

The alternative optimal policies starting in year 1 are (R, K, K, R) and (R, R, K, K). The total
cost is $55,300.

PROBLEM SET 10.3C

L In each of the following cases, develop the network, and find the optimal solution for the
model in Example 10.3-3:

(a) The machine is 2 years old at the start of year l.

(b) The machine is 1 year old at the start of year l.

(c) The machine is bought new at the start of year l.

*2. My son, age 13, has a lawn-mowing business with 10 customers. For each customer, he cuts
the grass 3 times a year, which earns him $50 for each mowing. He has just paid $200 for a
new mower. The maintenance and operating cost of the mower is $120 for the first year in
service, and increases by 20% a year thereafter. A l-year-old mower has a resale value of
$150, which decreases by 10% a year thereafter. My son, who plans to keep his business
until he is 16, thinks that it is more economical to buy a new mower every 2 years. He bases
his decision on the fact that the price of a new mower will increase only by 10% a year. Is
his decision justified?

3. Circle Farms wants to develop a replacement policy for its 2-year-old tractor over the
next 5 years. A tractor must be kept in service for at least 3 years, but must be disposed of
after 5 years. The current purchase price of a tractor is $40,000 and increases by 10% a
year. The salvage value of a l-year-old tractor is $30,000 and decreases by 10% a year.
The current annual operating cost of the tractor is $1300 but is expected to increase by
10% a year.

(a) Formulate the problem as a shortest-route problem.

(b) Develop the associated recursive equation.

(c) Detennine the optimal replacement policy of the tractor over the next 5 years.

4. Consider the equipment replacement problem over a period of it years. A new piece of
equipment costs c dollars, and its resale value after t years in operation is s(t) = n - t
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for n > l and zero otherwise. The annual revenue is a function of the age t and is given bv
ret) = n2 - (2 for n > l and zero otherwise. .

(a) Formulate the problem as a DP model.

(b) Find the optimal replacement policy given that c = $10,000, n = 5, and the equip
ment is 2 years old.

5. Solve Problem 4, assuming that the equipment is 1 year old and that n = 4, c = $6000,
ret) = 1 : t"

10.3.4 Investment Model

Suppose that you want to invest the amounts Pi> P2, .•. , P'I at the start of each of the
next n years. You have two investment opportunities in two banks: First Bank pays an
interest rate rl and Second Bank pays r2, both compounded annually. To encourage
deposits, both banks pay bonuses on new investments in the form of a percentage of
the amount invested. The respective bonus percentages for First Bank and Second
Bank are qa and qi2 for year i. Bonuses are paid at the end of the year in which the
investment is made and may be reinvested in either bank in the immediately succeed
ing year. This means that only bonuses and fresh new money may be invested in either
bank. However, once an investment is deposited, it must remain in the bank until the
end of the n-year horizon. Devise the investment schedule over the next n years.

The elements of the DP model are

1. Stage i is represented by year i, i = 1, 2, ... , n.

2. The alternatives at stage i are Ii and ~, the amounts invested in First Bank and
Second Bank, respectively.

3. The state, Xi, at stage i is the amount of capital available for investment at the
start of year i.

We note that ~ = Xi - Ii by definition. Thus

Xl = PI

Xi = Pi + Qi-l,lIi - 1 + qi-l,2(Xi-l - Ii-I)

= P; + (qi-l,l - qi-l,2)/i- l + Qi-l,2X i-1> i = 2,3, ... , n

The reinvestment amount Xi includes only new money plus any bonus from investments
made in year i - l.

Define
ji(X;) = optimal value of the investments for years i, i + 1, ... , and n, given Xi

Next, define Si as the accumulated sum at the end of year n, given that Ii and (Xi - Ii)
are the investments made in year i in First Bank and Second Bank, respectively.
Letting O'.k = (1 + rk), k = 1,2, the problem can be stated as

Maximize z = Sl + S2 + ... + Sn

where

Si = l iO'.,/+I-i + (Xi - 1,.)0'.2+1- i

= (0'.1+1- i - 0'.2+1-i)Ii + 0'.2+1-iXi,i = 1,2, ... ,n - 1

Sn = (0'.1 + quI - 0'.2 - qn2)In + (0'.2 + q,I2)Xn
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The terms qnl and qn2 in Sn are added because the bonuses for year n are part of the
final accumulated sum of money from the investment.

The backward DP recursive equation is thus given as

h(Xi) = max {Si + h+l(Xi+l)}, i = 1,2, ... , n - 1
O:s;,li:Sxi

fn+1(Xn+l) == 0

As given previously, Xi+l is defined in terms of Xi'

Example 10.3-4

Suppose that you want to invest $4000 now and $2000 at the start of years 2 to 4. The interest
rate offered by First Bank is 8% compounded annually, and the bonuses over the next 4 years
are 1.8%,1.7%,2.1%, and 2.5%, respectively. The annual interest rate offered by Second Bank is
.2% lower than that of First Bank, but its bonus is .5% higher. The objective is to maximize the
accumulated capital at the end of 4 years.

Using the notation introduced previously, we have

PI = $4,000, Pz = P3 = P4 = $2000

UI = (1 + .08) = 1.08

a2 = (1 + .078) = 1.078

qll = .018, qZI = .017, q31 = .021, q41 = .025

q12 = .023, q22 = .022, q32 = .026, q42 = .030

Stage 4

where

TIle function S4 is linear in /4 in the range 0 :::; /4 :::; X4 and its maximum occurs at 14 = 0 because of
the negative coefficient of h Thus, the optimum solution for stage 5 can be summarized as

Optimum solution

State

o

Stage 3

where

$3 = (1.082
- 1.0782)13 + 1.0782x3 = .0043213 + 1.1621x3

X4 = 2000 - .00513 + .026x3
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Thus,

Stage 2

where

Thus,

Deterministic Dynamic Programming

!3(X3) = max {.00432h + 1.1621x3 + 1.108(2000 - .005h + O.026x3}
OSI):Sx)

= max {2216 - .00122/3 + 1.1909x3}
O:s/):sx)

Optimum solution

X3 2216' + 1.1909x3 0

52 = (1.083
- 1.0783)12 + 1.0783x2 = .006985h + 1.25273x2

X3 = 2000 - .00512 + .022x2

. h(X2) = max {.006985h + 1.25273x2 + 2216 + 1.1909(2000 - .005h + .022x2)}
OS[2:Sx2

= max {4597.8 + .00l0305h + 1.27893x2}
OS[2SX2

Optimum solution

State

X2 4597.8 + 1.27996x2 X2

Stage 1

where

Sl = (1.084
- 1.0784)11 + 1.0784x1 = .0100512 + 1.3504x1

x2 = 2000 - .OO5h + .023x1

Thus,

!l(X1) = max {.01005ll + 1.3504x1 + 4597.8 + 1.27996(2000 - .00511 + .023xd}
Osll'sx,

= max {7157.7 + .0036511 + 1.37984x1}
OS[ISXI .

Optimum solution

State fi(Xl) Ii

Xl = $4000 7157.7 + l.38349xl $4000

.{ .

'),'. ,.".'
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Working backward and noting that I~ = 4000, I; = X2, Ii = I: = 0, we get

Xl = 4000

X2 = 2000 - .005 X 4000 + .023 X 4000 = $2072

X3 = 2000 - .005 X 2072 + .022 X 2072 = $2035.22

X4 = 2000 - .005 X 0 + .026 X $2035.22 = $2052.92

The optimum solution is thus summarized as

Optimum
Year solution Decision Accumulation

1 r; = Xl Invest Xl = $4000 in First Bank Sl = $5441.80

2 I; = X2 Invest X2 = $2072 in First Bank S2 = $2610.13

3 Ii = 0 Invest X3 = $2035.22 in Second Bank s3 = $2365.13

4 I: = 0 Invest X4 = $2052.92 in Second Bank S4 = $2274.64

Total accumulation = fJ(xl) = 7157.7 + 1.38349(4000) = $12,691.66 (= St + S2 + S3 + S4)

PROBLEM SET 10.30

1. Solve Example 10.3-4, assuming that 71 = .085 and 72 = .08. Additionally, assume that
PI = $5000, Pz = $4000, P3 =: $3000, and P4 = $2000.

2. An investor with an initial capital of $10,000 must decide at the end of each year how
much to spend and how much to invest in a savings account. Each dollar invested returns
ex = $1.09 at the end of the year. The satisfaction derived from spending $y in anyone
year is quantified by the equivalence of owning $vY. Solve the problem by DP for a span
of5 years.

3. A farmer owns k sheep. At the end of each year, a decision is made as to how many to
sell or keep. The profit from selling a sheep in year i is p;. The sheep kept in year i will
double in number in year i + 1. The farmer plans to sell out completely at the end of
n years.

*(a) Derive the general recursive equation for the problem.

(b) Solve the problem for n = 3 years, k = 2 sheep, PI = $100, P2 = $130. and
P3 = $120.

10.3.5 Inventory Models

DP has important applications in the area of inventory control. Chapters 11 and 14
present some of these applications. The models in Chapter 11 are deterministic, and
those in Chapter 14 are probabilistic.
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10.4 PROBLEM OF DIMENSIONALITY

In all the DP models we presented, the state at any stage is represented by a single ele
ment. For example, in the knapsack model (Section 10.3.1), the only restriction is the
weight of the item. More realistically, the volume of the knapsack may also be another
viable restriction. In such a case, the state at any stage is said to be two-dimensional
because it consists of two elements: weight and volume.

The increase in the number of state variables increases the computations at
each stage. This is particularly clear in DP tabular computations because the number
of rows in each tableau corresponds to all possible combinations of state variables.
This computational difficulty is sometimes referred to in the literature as the curse of
dimensionality.

The following example is chosen to demonstrate the problem of dimensionality.
It also serves to show the relationship between linear and dynamic programming.

Example 10.4-1

Acme Manufacturing produces two products. The daily capacity of the manufacturing process is
430 minutes. Product 1 requires 2 minutes per unit, and product 2 requires 1 minute per unit.
There is no limit on the amount produced of product 1, but the maximum daily demand for
product 2 is 230 units. The unit profit of product 1 is $2 and that of product 2 is $5. Find the opti
mal solution by DP.

The problem is represented by the following linear program:

Maximize zx = 2x} + 5x2

subject to

2Xl + X2 ::; 430

X2 ::; 230

xl> x2 ~ 0

The elements of the DP model are

1. Stage i corresponds to product i, i = 1, 2.

2. Alternative Xi is the amount of product i, i = 1,2.
3. State (V2, 'U!2) represents the amounts of resources 1 and 2 (production time and demand

limits) used in stage 2.

4. State (Vb WI) represents the amounts of resources 1 and 2 (production time and demand
limits) used in stages 1 and 2.

Stage 2. Define !2(vz,~) as the maximum profit for stage 2 (product 2), given the state
(Vz, ~). Then .

Thus, max{5x2} occurs at X2 = min{ Vz, ~}, and the solution for stage 2 is
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Optimum solution

Stage 1

II(Vh WI) = max {2Xl + h(vi - 2xJ, WI)}
OS2x1:sv\

= max {2xI + 5 min(vi - 2XI, WI)}
Os2x,Svl

The optimization of stage 1 requires the solution of a (generally difficult) minimax problem.
For the present problem, we set VI = 430 and WI = 230, which gives 0 s; 2xI ::5 430. Because
mine430 - 2Xh 230) is the lower envelope of two intersecting lines (verify!), it follows that

and

. ( ) {230,mm 430 - 2xI. 230 = 2
430 - Xl>

o S; Xl S; 100

100 ::5 Xl S; 215

a ::5 Xl S; 100

100 ::5 Xl S; 215

ft(430,230) = max {2XI + 5min(430 - 2xJ,230)}
OsxI s 215

{
2X1 + 1150,= max

Xl -8XI + 2150,

You can verify graphically that the optimum value of II (430,230) occurs at Xl = 100. Thus, we
get

Optimum solution

State

(430,230) 1350 100

·~ .

To determine the optimum value of X2, we note that

Vz = VI - 2Xl = 430 - 200 = 230

Wz = WI - 0 = 230

Consequently,

Xl = mineVz, Wz) = 230

The complete optimum solution is thus summarized as

Xl = 100 units, X2 = 230 units, z = $1350
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PROBLEM SET 10.4A

1. Solve the following problems by DP.

(a) Maximize z = 4x} + 14x2

subject to

2Xl + 7X2 === 21

?xl + 2X2 === 21

(b) Maximize z = 8XI + 7X2

subject to

2x} + X2 S 8

5xl + 2X2 === 15

Xl> X2 ~ 0 and integer

(c) Maximize z = 7xI + 6x} + 5x~

subject to
Xl + 2x2 === 10

Xl - 3X2 === 9

Xl> X2 ~ 0

2. In the n-item knapsack problem of Example 10.3-1, suppose that the weight and volume
limitations are Wand V, respectively. Given that Wi, Vj, and rj are the weight, value, and
revenue per unit of item i, write the DP backward recursive equation for the problem.
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CHAPTER 11

Deterministic Inventory
Models

Chapter Guide. Inventory modeling deals with detennining the level of a commodity
that a business must maintain to ensure smooth operation. The basis for the decision is
a model that balances the cost of capital resulting from holding too much inventory
against the penalty cost resulting from inventory shortage. The principal factor affect
ing the solution is the nature of the demand: deterministic or probabilistic. In real life,
demand is usually probabilistic, but in some cases the simpler deterministic approxi
mation may be acceptable. 111is chapter deals with deterministic models. Probabilistic
models are covered in Chapter 14.

The complexity of the inventory problem does not allow the development of a
general model that covers all possible situations. This chapter includes representative
models of different situations. When you study the different models, you will notice
that the solution uses different algorithms, including calculus, linear, nonlinear, and
dynamic programming. Regardless of the tool used to solve the model, you should al
ways keep in mind that any inventory model seeks two basic results: how much and
when to order.

The computations associated with some of the models may be tedious. To allevi
ate this difficulty, a number of Excel spreadsheets, Solver, and AMPL models are in
cluded in the chapter. They can be used either for experimentation (e.g., carrying out
sensitivity analysis by making changes in the model parameters) or to check your cal
culations when you work problems.

This chapter includes 8 solved examples, 1 Solver model, 1 AMPL model, 4 Excel
spreadsheets, 33 end-of-section problems, and 3 cases. The cases are in Appendix E on
the CD. The AMPLlExcellSolverrrORA programs are in folder chllFile$.

GENERAL INVENTORY MODEL

The inventory problem involves placing and receiving orders of given sizes periodically.
From this standpoint, an inventory policy answers two questions:

427
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1. How much to order?
2. When to order?

The basis for answering these questions is the minimization of the following in
ventory cost function:

(
. Total) (purChaSing) (setup) (HOlding) (Shortage)Inventory = + + +

cost cost cost cost
cost

1. Purchasing cost is the price per unit of an inventory item. At times the item is of
fered at a discount if the order size exceeds a certain amount, which is a factor in
deciding how much to order.

2. Setup cost represents the fixed charge incurred when an order is placed regard
less of its size. Increasing the order quantity reduces the setup cost associated
with a given demand, but will increase the average inventory level and hence the
cost of tied capital. On the other hand, reducing the order size increases the fre
quency of ordering and the associated setup cost. An inventory cost model bal
ances the two costs.

3. Holding cost represents the cost of maintaining inventory in stock. It includes the
interest on capital and the cost of storage, maintenance, and handling.

4. Shortage cost is the penalty incurred when we run out of stock. It includes poten
tialloss of income and the more subjective cost of loss in customer's goodwill.

An inventory system may be based on periodic review (e.g., ordering every week
or every month), in which new orders are placed at the start of each period. Alterna
tively, the system may be based on continuous review, where a new order is placed
when the inventory level drops to a certain level, called the reorder point. An example
of periodic review can occur in a gas station where new deliveries arrive at the start of
each week. Continuous review occurs in retail stores where items (such as cosmetics)
are replenished only when their level on the shelf drops to a certain level.

11.2 ROLE OF DEMAND IN THE DEVELOPMENT
OF INVENTORY MODELS

In general, the analytic complexity of inventory models depends on whether the de
mand for an item is deterministic or probabilistic. Within either category, the demand
mayor may not vary with time. For example, the consumption of natural gas used in
heating homes is a function of the time of the year, reaching its maximum in midwinter
and tapering off during spring and summer months. Though this seasonal pattern re
peats itself annually, the same-month consumption may vary from year to year, de
pending, for example, on the severity of weather.

In practical situations the demand pattern in an inventory model may assume
one of four types:

:-.r '~~:,.,~.:.
---
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11.2 Role of Demand in the Development of Inventory Models 429

1. Deterministic and constant (static) with time.
2. Deterministic and variable (dynamic) with time.
3. Probabilistic and stationary over time.
4. Probabilistic and nonstationary over time.

This categorization assumes the availability of data that are representative of fu
ture demand.

In terms of the development of inventory models, the first category is the sim
plest analytically and the fourth is the most complex. On the other hand, th'e first cate
gory is the least likely to occur in practice and the fourth is the most prevalent. In
practice, we seek a balance between model simplicity and model accuracy, in the sense
that we do not want to use a simplified model that does not reflect reality, or a complex
that it is analytically intractable.

How can we determine if a certain approximation of demand is acceptable? We
can start by computing the mean and standard deviation of consumption for a specific
period, say monthly. The coefficient of variation V = S(anda;;e~~viation X 100 can then be
used to determine the nature of demand using the following general guideline:1

1. If the average monthly demand is "approximately" constant for all months and V
is reasonably small «20%), then the demand may be considered deterministic
and constant, with its value equal to the average of all monthly demands.

2. If the average monthly demand varies appreciably among the different months
but V remains reasonably small, then the demand is considered deterministic but
variable.

3. If, in Case 1, V is high (>20%) but approximately constant, then the demand is
probabilistic and stationary.

4. The only remaining case is the probabilistic nonstationary demand which occurs
when the means and coefficients of variation vary appreciably over time.

In cases 3 and 4 additional data usually are needed to determine the associated
probability distributions.

Example 11.2-1

The data in Table 11.1 provide the monthly (January through December) consumption of natur
al gas in a rural residential home over a span of 10 years (1990-1999). Whenever requested by a
home owner, the natural-gas supplier sends a truck to the site to fill a tank. The owner of the
home decides the time and size of a delivery.

From the standpoint of inventory modeling, it is reasonable to assume that each month rep
resents a decision period in which the owner places an order. Our mairi concern here, however,
is to analyze the nature of the demand.

IThe coefficient of variation, V, measures the relative variation or spread of the data around the mean. In
general, higher values of V indicate higher uncertainty in the use of the mean as an approximation of the
monthly consumption. For detemlinistic demand, V = 0, because the associated standard deviation is zero.
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TABLE 11.1

Natural-Gas consumption in cubic feet

Year Jan Feb Mar Apr May Jun Jut Aug Sep Oct Nov Dec

1990 100 110 90 70 65 50 40 42 56 68 88 95
1991 110 125 98 80 60 53 44 45 63 77 92 99
1992 90 100 88 79 56 57 38 39 60 70 82 90
1993 121 130 95 90 70 58 41 44 70 80 95 100
1994 109 119 99 75 68 55 43 41 65 79 88 94.
1995 130 122 100 85 73 58 42 43 64 75 80 101
1996 115 100 103 90 76 55 45 40 67 78 98 97
1997 130 115 100 95 80 60 49 48 64 85 96 105
1998 125 100 94 86 79 59 46 39 69 90 100 110
1999 87 80 78 75 69 48 39 41 50 70 88 93
Mean 111.7 110 95 82.5 69.6 55.3 42.7 42.2 62.8 77.2 90.7 98
Std Dev 15.54 15.2 7.5 7.99 7.82 3.95 3.4 2.86 6.09 6.91 6.67 6
V(%) 13.91 13.8 7.9 9.68 11.24 7.13 7.96 6.78 9.69 8.95 7.35 6.1

An examination of the mean and the coefficient of variation, V, in Table 11.1 reveals two
results:

1. Average consumption is dynamic (not constant) because it shows high average consump
tion during winter months relative to summer months.

2. The coefficient of variation, V, is reasonably small «15%) so that the monthly demand
can be considered approximately deterministic.

These two results thus lead to the development of an inventory model in which the monthly
demand is (approximately) deterministic but variable.

11.3 STATIC ECONOMIC-ORDER-QUANTITY (EOQ) MODELS

This section presents three variations of the economic-order-quantity model with
static (constant) demand. These models are characteristically simple from the analyt
ic standpoint.

11.3.1 Classic EOQ Model

The simplest of the inventory models involves constant-rate demand with instanta
neous order replenishment and no shortage. Define

y = Order quantity (number of units)

D = Demand rate (units per unit time)

to = Ordering cycle length (time units)

The inventory level follows the pattern depicted in Figure l1.l.An order of size y units
is placed and received instantaneously when the inventory reaches zero level. The
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Points in time at which orders are received

----- ---,---.-
Average

inventory = ~

TIme

FIGURE 11.1

Inventory pattern in the classic EOQ model

stock is then depleted uniformly at the constant demand rate D. The ordering cycle for
this pattern is

y . .
to = D tIme umts

The cost model requires two cost parameters.

K = Setup cost associated with the placement of an order (dollars per order)

h = Holding cost (dollars per inventory unit per unit time)

Given that the average inventory level is f, the total cost per unit time (TCU) is
thus computed as

TCU(y) = Setup cost per unit time + Holding cost per unit time

Setup cost + Holding cost per cycle to

to

=
to

~ (~) + h(~)

The optimum value of the order quantity y is determined by minimizing TCU(y)
with respect to y. Assuming y is continuous, a necessary condition for finding the opti
mal value of y is

_d_T_C_U--,--(Y--,--) = __K_D + !: = 0
dy i 2

The condition is also sufficient because TCU(y) is convex.
The solution of the equation yields the EOQ y* as

y* = )2~D
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y* -------

FIGURE 11.2

Reorder point in the classic EOQ model

Reorder points

~
lime

Thus, the optimum inventory policy for the proposed model is

Order y* = V2~D units every to* = ~ time units

Actually, a new order need not be received at the instant it is ordered. Instead, a
positive lead time, L, may occur between the placement and the receipt of an order as
Figure 11.2, demonstrates. In this case, the reorder point occurs when the inventory
level drops to LD units.

Figure 11.2 assumes that the lead time L is less than the cycle length tti ,which
may not be the case in general. To account for this situation, we define the effective
lead time as

Le = L - nt6

where n is the largest integer not exceeding (~ .This result is justified because after n cy-
o

des of ld' each, the inventory situation acts as if the interval between placing an order
and receiving another is Le. Thus, the reorder point occurs at LeD units, and the inven
tory policy can be restated as

Order the quantity y* whenever the inventory level drops to LeD units

Example 11.3-1

Neon lights on the U ofA campus are replaced at the rate of 100 units per day. The physical plant
orders the neon lights periodically. It costs $100 to initiate a purchase order. A neon light kept in
storage is estimated to cost about $.02 per day. The lead time between placing and receiving an
order is 12 days. Determine the optimal inventory policy for ordering the neon lights.

From the data of the problem, we have

D = 100 units per day

K = $100 per order

.'~.~
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h = $.02 per unit per day

L = 12 days

Thus,

)2KD )2 X $100 X 100 .y* = -- = = 1000 neon lights
h .02

The associated cycle length is

to* = ~ = 1000 = 10 days
D 100

Because the lead time L = 12 days exceeds the cycle length t~ (= 10 days), we must com
pute Le. The number of integer cycles included in L is

n = (Largest integer :5 ft)
= (Largest integer :5 ¥o)
= 1

Thus,

Le = L - nt~ = 12 - 1 X 10 = 2 days

The reorder point thus occurs when the inventory level drops to

LeD = 2 X 100 = 200 neon lights

The inventory policy for ordering the neon lights is

Order 1000 units whenever the inventory level drops to 200 units.

The daily inventory cost associated with the proposed inventory policy is

K
TCU(y) = - + h(.l::)

(~) 2

$100 (1000)
= (11:) + $.02 2 = $20 per day

Excel Moment

Template exelEGO.x1s is designed to carry out the EGO computations. The model
solves the general EGO described in Problem 10, Set l1.3a, with shortage and simulta
neous production-consumption operation, of which the present model is a special case.
It also solves the price-breaks situation presented in Section 11.3.2.To use the template
with Example 11.3-1, enter -1 in cells C3:C5, CB, and ClO to indicate that the corre
sponding data are not applicable, as shown in Figure 11.3.
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:;~r, General Economic Order Quantity (EOQ) !
:'2. Input data: Enter -1 in column C if data element does not applv
:,3, Item cost, c1 = -1
~A·':' Qty discount limit, q"" .1 -----
':5· Item cost, c2 "" .1
ai': Setup cost, K = 10a
~!;1:: Demand rate, D .. 100

---------------l
~'£V Production rate, a = -1
;,~r~· Unit holding cost, h = 0.02
.itO~Unit penalty cost, P "" -1 !
~t1" lead time, L = 12 ···--·---·-----··----------1

.',12', Model output results:
2:!1_0rdeE,5!.Yo..Y* = __ 11000:00 .. !
.. ',4: S I a .4;.__~~~g.e ~.~.:..:=_.---l.!.O--.---,----.---------..J
3.1%.. R~.~£~~~ _p..llin!,B._::._.. --- 1~Q_Qc_q9. --------.- _ ---~...---- -------J
"16 TCU(v') = 120.00 !~ .. _ ..__. .J.._ _ __ .•.__.. _.. _'" __ __ ._.__ _ _.__" __..~ _.._ .. _.. ,

~~urch_~~~le£c:lc!._~~~.!_=- ..!!Q..QQ.._.-.---. i
J!' §~t~~~!ltlunittim~ ;: .10.00. -..i
i!!..t!otding__co~1!!JJJlUi~!~l!9~9..9 .____ . . !
~~h~~C1g~.~.~s!llJ~~~-t.i!:!~e...:=lQ"Q9..---- --- ....--o-.--.--------.----.---..--~-!
;'~J. Ol)tlmaJ ((ivan/orr pol,CV: Order 1000.00 units when level droos to 200_00 Units(

:.'.22: Model intermediate calculations:

FIGURE 11.3

Excel solution of Example 11.3-1 (file exceIEOQ.xls)

PROBLEM SET 11.3A

1. In each of the following cases, no shortage is allowed, and the lead time between placing
and receiving an order is 30 days. Determine the optimal inventory policy and the associ
ated cost per day.

(a) K == $100, h = $.05, D = 30 units per day

(b) K == $50, h = $.05, D :: 30 units per day

(c) K == $100, h = $.01, D = 40 units per day

(d) K = $100, h = $.04, D = 20 units per day

*2. McBurger orders ground meat at the start of each week to cover the week's demand of
300 lb. The fixed cost per order is $20. It costs about $.03 per lb per day to refrigerate and
store the meat.

(a) Determine the inventory cost per week of the present ordering policy.

(b) Determine the optimal inventory policy that McBurger should use, assuming zero
lead time between the placement and receipt of an order.

3. A company stocks an item that is consumed at the rate of 50 units per day. It costs the compa
ny $20 each time an order is placed. An inventory unit held in stock for a week will cost $.35.

(a) Determine the optimum inventory policy, assuming a lead time of 1 week.

(b) Determine the optimum number of orders per year (based on 365 days per year).
'..
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*4. Two inventory policies have been suggested by the purchasing department of a company:

Policy 1. Order 150 units. The reorder point is 50 units and the time between placing
and receiving an order is 10 days.

Policy 2. Order 200 units. The reorder point is 75 units and the time between placing
and receiving an order is 15 days.

The setup cost per order is $20, and the holding cost per unit inventory per day is $.02.

(a) Which of the two policies should the company adopt?

(b) If you were in charge of devising an inventory policy for the company, what would
you recommend assuming that the supplier requires a lead time of 22 days?

5. Walmark Store compresses and palletizes empty merchandise cartons for recycling. The
store generates five pallets a day. The cost of storing a pallet in the store's back lot is $.10
per day. The company that moves the pallets to the recycling center charges a flat fee of
$100 for the rental of its loading equipment plus a variable transportation cost of $3 per
pallet. Graph the change in number of pallets with time, and devise an optimal policy for
hauling the pallets to the recycling center.

6. A hotel uses an external laundry service to provide clean towels. The hotel generates 600
soiled towels a day. The laundry service picks up the soiled towels and replaces them with
clean ones at regular intervals. There is a fixed charge of $81 per pickup and delivery ser
vice, in addition to the variable cost of $.60 per towel. It costs the hotel $.02 a day to store a
soiled towel and $.01 per day to store a clean one. How often should the hotel use the pick
up and delivery service? (Hint: There are two types of inventory items in this situation. As
the level of the soiled towels increases, that of clean towels decreases at an equal rate.)

7. (Lewis, 1996) An employee of a multinational company is on loan from the United States
to the company's subsidiary in Europe. During that year, the employee's financial obliga
tions in the United States (e.g., mortgage and insurance premium payments) amounl to
$12,000, distributed evenly over the months of the year. The employee can meet these
obligations by depositing the entire sum in a U.S. bank prior to departure for Europe.
However, at present the interest rate in the United States is quite low (about 1.5% per
year) in comparison with the interest rate in Europe (6.5% per year). The cost of sending
funds from overseas is $50 per transaction. Determine an optimal policy for transferring
funds from Europe to the United States and discuss the practical implementation of the
solution. State all the assumptions.

8. Consider the inventory situation in which the stock is replenished uniformly (rather than
instantaneously) at the rate a. Consumption occurs at the constant rate D. Because con
sumption also occurs during the replenishment period, it is necessary that a > D. The
setup cost is K per order, and the holding cost is h per unit per unit time. If y is the order
size and no shortage is allowed, show that

(a) The maximum inventory level is y(1 - ~).

(b) TIle total cost per unit time given y is

rCU(y) = KyO + ~(l - ~)y

(c) The economic order quantity is

~
. 2KD

y* = ( D)' D < a
hl--;;

(d) Show that the EOQ under instantaneous replenishment can be derived from the for
mula in (c).
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9. A company can produce an item or buy it from a contractor. If it is produced, it will cost
$20 each time the machines are set up. The production rate is 100 units per day. If it is
bought from a contractor, it will cost $15 each time an order is placed. The cost of main
taining the item in stock, whether bought or produced, is $.02 per unit per day. The com
pany's usage of the item is estimated at 26,000 units annually. Assuming that no shortage
is allowed, should the company buy or produce?

10. In Problem 8, suppose that shortage is allowed at a penalty cost of p per unit per unit
time.

(a) If w is the maximum shortage during the inventory cycle, show that

KD h{Y(1 -~) - wF + pw2

TCU(y,w) = - + (D)
Y 21-;y

y* = /2KD(p + h)

Y ph(l - ~)

2KDh(1 -~)
w* =

pep + h)

(b) Show that the EOQ results in Section 11.3.1 can be derived from the general formu
las in (a).

11.3.2 EOQ with Price Breaks

This model is the same as in Section 11.3.1, except that the inventory item may be pur
chased at a discount if the size of the order, y, exceeds a given limit, q. Mathematically,
the unit purchasing price, C, is given as

Hence,

Purchasing cost per unit time =

Using the notation in Section 11.3.1, the total cost per unit time is

TCU(y) =

KD h
TCU1(y) = DCI + Y + iY'y $ q

KD h
TCU2(y) = DC2 + Y + iY'y > q

·;t .;;'.
..~: {~~:J"..
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FIGURE 11.4

Inventory cost function with price breaks
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The functions TeU l and TCUzare graphed in Figure 11.4. Because the two func
tions differ only by a constant amount, their minima must coincide at

Ym = )2~D

The cost function TCU(y) starts on the left with TCU1(y) and drops to TCU2(y)
at the price breakpoint q. The determination of the optimum order quantity y* depends
on where the price breakpoint, q, lies with respect to zones I, II, and III delineated in
Figure 11.4 by (0, Ym), (Ym' Q), and (Q, 00), respectively. The value of Q (> Ym) is de
tennined from the equation

or

which simplifies to

2 (2(CzD - TCU1(Ym))) 2KD
Q + h Q + -h- = 0

Figure 11.5 shows that the desired optimum quantity y* is

* _ {Ym, if q is in zones I or III
Y - q, if q is in zone II

TIle steps for determining y* are

)2KD .
Step 1. Determine Ym = -h-' Ifq is in zone I, then y* = Ym' Otherwise, go to step 2.

Step 2. Determine Q (> Ym) from the Q-equation

z (2(C2D - TCU1(Ym))) 2KD
Q + h Q + -h- = 0

Define zones II and III. If q is in zone II, y* = q. Otherwise, q is in zone III,
and y* = Ym'
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FIGURE 11.5

Optimum solution for inventory problems with price breaks

Example 11.3-2

LubeCar specializes in fast automobile oil change. The garage buys car oil in bulk at $3 per gal
lon. A discount price of $2.50 per gallon is available if LubeCar purchases more than 1000 gal
lons. The garage services approximately 150 cars per day, and each oil change takes 1.25
gallons. LubeCar stores bulk oil at the cost of $.02 per gallon per day. Also, the cost of placing
an order for bulk oil is $20. There is a 2-day lead time for delivery. Determine the optimal in
ventory policy.

The consumption of oil per day is

D = 150 cars per day X 1.25 gallons per car = 187.5 gallons per day

We also have

h = $.02 per gallon per day

K = $20 per order

L = 2 days

Cl = $3 per gallon

C2 = $2.50 per gallon

q = 1000 gallons
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Step 1. Compute

)2KD ~2 X 20 X 187.5
YIIl = -h- = .02 = 612.37 gallons

Because q = 1000 is larger than YIIl = 612.37, we move to step 2.
Step 2. Determine Q.

KD hYm
TCU1(Ym) = clD + - +-2

Ym

3 87 5
20 X 187.5 .02 X 612.37

=X1.+ +-----
612.37 2

= 574.75

Hence, the Q-equation is calculated as

2 + (2 X (2.5 X 187.5 - 574.75») + 2 X 20 X 187.5 =
Q .02 Q .02 0

or
Q2 - 10,599.74Q + 375,000 = 0

This yields Q = 10,564.25 (> Ym)' Thus,

Zone II = (612.37,10,564.25)

Zone III = (10,564.25,00)

Because q (= 1000) falls in zone II, the optimal order quantity is y* = q = 1000
gallons.

Given a 2-day lead time, the reorder point is 2D = 2 X 187.5 = 375 gallons. Thus, the opti
mal inventory policy is

Order 1000 gallons when the inventory level drops to 375 gallons.

Excel Moment

Excel template excelEOQ.xls solves the discount price situation given above. The use
of the model is straightforward. Enter the data of the model in the input data section of
the spreadsheet (C3:Cll). Appropriate error messages will be displayed to resolve
input data conflicts. The output of the model gives the optimal inventory policy as well
as all the intermediate calculations of the problem.

PROBLEM SET 11.38

1. Consider the hotel laundry service situation in Problem 6, Set 11.3a. The normal charge for
washing a soiled towel is $.60, but the laundry service will charge only $.50 if the hotel sup
plies them in lots of at least 2500 towels. Should the hotel take advantage of the discount?

*2. An item is consumed at the rate of 30 items per day. The holding cost per unit per day
is $.05, and the setup cost is $100. Suppose that no shortage is allowed and that the
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purchasing cost per unit is $10 for any quantity not exceeding 500 units and $8 otherwise.
The lead time is 21 days. Determine the optimal inventory policy.

3. An item sells for $25 a unit, but a 10% discount is offered for lots of 150 units or more. A
company uses this item at the rate of 20 units per day. The setup cost for ordering a lot is
$50, and the holding cost per unit per day is $.30. The lead time is 12 days. Should the
company take advantage of the discount?

*4. In Problem 3, determine the range on the price discount percentage that, when offered for
lots of size 150 units or more, will not result in any financial advantage to the company.

5. In the inventory model discussed in this section, suppose that the holding cost per unit
per unit time is hI for quantities below q and h2 otherwise, h) > hz. Show how the eco
nomic lot size is determined.

11.3.3 Multi-Item EOQ with Storage Limitation

This model deals with n (> 1) items, whose individual inventory fluctuations follow
the same pattern as in Figure 11.1 (no shortage allowed). The difference is that the
items are competing for a limited storage space.

Define (or item i, i = 1,2, ... , n,

Di = Demand rate

Ki = Setup cost

hi = Unit holding cost per unit time

Yi = Order quantity

ai = Storage area requirement per inventory unit

A = Maximum available storage area for all n items

Under the assumption of no shortage, the mathematical model representing the inven
tory situation is given as

"(KD. h.Y.)
Minimize TCU(Yl> Y2>" . , y,,) = ~ _I_I + -2

1
I

i=1 Yi

subject to

11

~aiYi:5 A
i=l

Yi > 0, i = 1, 2, ... , n

To solve the problem, we try the unconstrained solution first:

* - )2KiDi . - 1 2Yi - --,l - , , ... ,n
hi

If this solution satisfies the constraint, then we are done. Otherwise, the constraint must
be activated.

In previous editions of this book, we used the (rather involved) Lagrangian algo
rithm and trial-and-error calculations to find the constrained optimum solution. With the



v

1-

11.3 Static Economic-Order-Quantity (EOQ) Models 441

availability of powerful packages (such as AMPL and Solver), the problem can be solved
directly as a nonlinear program, as will be demonstrated in the following example.

Example 11.3-3

The following data describe three inventory items.

Item i K; ($) D; (units per day) hi ($) Qj (ft2
)

1 10 2 .30 1
2 5 4 .10 1
3 15 4 .20 1

Total available storage area = 25 ft2

The unconstrained optimum values, y7 = )2~iDi, i = 1,2,3, are 11.55,20.00, and

24.49 units, respectively. 111ese values violate the storage constraint

Yl + Y2 + Y3 :5 25

Thus, the problem is solved as a nonlinear program using Solver or AMPL, as explained below.
The Solver model must be adjusted to fit the size of the problem. The AMPL model can be ap
plied to any number of items simply by changing the input data.

The optimum solution is yI == 6.34 units, Y2 = 7.09 units, Y; = 11.57 units, cost =

$13.62/day.

Solver Moment

Figure 11.6 shows how Solver can be used to solve Example 11.3-3 as a nonlinear pro
gram (file solverConstrEOQ.xls). Details of the formulas used in the template and of
the Solver parameters are shown in the figure. As with most nonlinear programs, initial
solution values must be given (in this template, Y1 = Y2 = Y3 = 1 in row 9). A nonzero
initial value is mandatory because the objective function includes division by Yi' In
deed, it may be a good idea to replace KiD;!y; with KjD;I(y; + !::J.), where !::J. > 0 and is
very small to suppress division by zero during the iterations. In general, different initial
values may be needed before a (local optimum) solution is found. The optimum solu
tion at the bottom of the figure is global because the objective function and the con
straints are well behaved (convex objective function and convex solution space).

AMPl Moment

The AMPL nonlinear model for the general multi-item EOQ with storage limi tation is
given in Figure 11.7 (file ampIConstrEOQ.txt). The model follows the same rules used
in solving linear programs. However, as with Solver, AMPL nonlinear models exhibit
peculiarities that may impede reaching a solution. In particular, "judicious" initial val
ues must be specified for the variables. In Figure 11.7, the definition statement

1St var y{l .. n}>=O, :=10; #initial trial value = 10;

~o

he
·~.f ..; ,

.~~

. ·t~5:~::;. ..

includes the code: =10 that assigns the initial value 10 to all the variables. If you use an
initial value of 1 in the present example, division by zero will result during the iterations.
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6.3375

FIGURE 11.6

Solver template for Example 11.3-3 (file solverConstrEOQ.xls)

Thus, as in Solver, you may need to replace KjD/yj with KjD/(Yj + !1), where !1 > 0
and is very small to prevent division by zero during the iterative process. Indeed, Prob
lems 1 and 4, Set 11.3c, could not be solved with AMPL without invoking this trick.

PROBLEM SET 11.3(2

*1. The following data describe five inventory items.

Item i K;($) D j (units per day)

1 20 22
2 25 34
3 30 14
4 28 21
5 35 26

hi ($) a; (ft2)

0.35 1.0
0.15 0.8
0.28 1.1
0.30 0.5
0.42 1.2

Total available storage area ;= 25 ft2

Determine the optimal order quantities.

2you will find files solverConstrEOQ.xls and amplConstrEOQ.txt useful in solving the problems of this set.

1
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param n;
param K{ 1. . n};
param D(l .. n};
param b{l. .n};
param a{l .. n};
param A;

var y{l .. n}>=O, :=10; ~initial trial value = 10

3 .2;

3 15;2 5
2 4 3 4;

2 .1
2 1 3 1;

minimize z: sum{j in 1..n}(K[jJ*D[jJ/y[jJ+b[jJ*y[jJ/2);
subject to storage:sum{j in 1 .. n}a(jJ*y[jJ<=A;
data;
param n:=3;
param K:= 1 10
param D:=l 2
param b:=1 .3
param a:=1 1
param A:=25;

solve;display z,y;

printfnSOLUTION:\n">a.out;
printER Total cost = %4.2E\n",z>a.out;
for {i in 1 .. n}

printf n y%li = %4.2f\n",i,y[iJ>a.out;

FIGURE 11.7

AMPL model for Example 11.3-3 (file amplConstrEOQ.txt)

>0
rob-

2. Solve the model of Example 11.3-3, assuming that we require the sum of the average in
ventories for all the items to be less than 25 units.

3. In Problem 2, assume that the only restriction is a limit of $1000 on the amount of capital
that can be invested in inventory. The purchase costs per unit of items 1,2, and 3 are $100,
$55, and $100, respectively. Determine the optimum solution.

*4. The following data describe four inventory items.

Item i K i ($) Dj (units per day) hi ($)

1 100 10 .1
2 50 20 .2
3 90 5 .2
4 20 10 .1

The company wishes to determine the economic order quantity for each of the four items
such that the total number of orders per 365-day year is at most 150. Formulate the prob
lem as a nonlinear program and find the optimum solution.

s set. ,.
•:J

../4-
i~'l ."-

.:; :r:~~;~,":

11.4 DYNAMIC EOQ MODELS

The models presented here differ from those in Section 11.3 in two respects: (1) the in
ventory level is reviewed periodically over a finite number of equal periods; and (2) the
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demand per period, though deterministic, is dynamic, in the sense that it varies from
one period to the next.

A situation in which dynamic deterministic demand occurs is materials require
ment planning (MRP). The idea of MRP is described by an example. Suppose that the
quarterly demands over the next year for two final models, Ml and M2, of a given
product are 100 and 150 units, respectively. Deliveries of the quarterly lots are made at
the end of each quarter. The production lead time is 2 months for Ml and 1 month for
M2. Each unit of Ml and M2 uses 2 units of a subassembly S. The lead time for the pro
duction of S is 1 month.

Figure 11.8 depicts the production schedules for Ml and M2. The schedules start
with the quarterly demand for the two models (shown by solid arrows) occurring at the
end of months 3, 6,9, and 12. Given the lead times of 2 and 1 months for Ml and M2,
the dashed arrows then show the planned starts of each production lot.

To start the production of the two models on time, the delivery of subassembly S
must coincide with the occurrence of the dashed Ml and M2 arrows. This information
is shown by the solid arrows in the S-chart, where the resulting S-demand is 2 units per
unit of Ml or M2. Using a lead time of 1 month, the dashed arrows on the S-chart give
the production schedules for S. From these two schedules, the combined demand for S
corresponding to Ml and M2 can then be determined as shown at the bottom of
Figure 11.8.The resulting variable (but known) demand for S is typical of the situation
where dynamic EOQ occurs. In essence, given the indicated variable demand for S,
how much should be produced at the start of each month to reduce the total production
inventory cost?

FIGURE 11.8

Example of dynamic demand generated by MRP

Modell Model 2
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12
I I I I I I I I I I I I I I I I I I I I I I I I I I

100 100 100 100 150 150 150 150
I I I I I I 1 I

1 , I I

Ml M2

100 100 100 100 150 150 150 150

200 200 200 200 300 300 300 300
t I I , I I I I

I I

S S

200 200 200 200 300 300 300 300

200300 200300 200300 200300
I I I I I I 1 I

Combined requirements
I

of S for models 1 and 2 0 1 2 3 4 5 6 7 8 9 1011 12

11
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n Two models are presented in this section.The first model does not assume a setup
(ordering) cost, and the second one does. This seemingly "small" detail makes a differ
ence in the complexity of the model.
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PROBLEM SET 11.4A

1. In Figure 11.8 determine the combined requirements for subassembly S in each of the
following cases:

*(a) Lead time for Ml is only one period.

(b) Lead time for Ml is three periods.

11.4.1 No-Setup Model

This model involves a planning horizon with n equal periods. Each period has a limited
production capacity that can include several production levels (e.g., regular time and
overtime represent two production levels). A current period may produce more than
its immediate demand to satisfy demand for later periods, in which case an inventory
holding cost must be charged.

The general assumptions of the model are

1. No setup cost is incurred in any period.
2. No shortage is allowed.
3. The unit production cost function in any period either is constant or has increas

ing (convex) marginal costs.
4. The unit holding cost in any period is constant.

2

The absence of shortage signifies that production in future periods cannot fill the
demand in a current period. This assumption requires the cumulative production ca
pacity for periods 1,2, ... , and i to equal at least the cumulative demand for the same
inclusive periods.

Figure 11.9 illustrates the unit production cost function with increasing margins.
For example, regular time and overtime production correspond to two levels in which
unit production cost during overtime is higher than during regular time.

FIGURE 11.9

Convex unit production cost function

Quantity producedo

Cost I-+------<~_,___-_+_of----,--+-I+_-____J

Level Level Level
I II III
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The n-period problem can be formulated as a transportation model (see
Chapter 5) with kn sources and n destinations, where k is the number of production
levels per period (e.g., if each period uses regular time and overtime, then k = 2).
The production capacity of each of the kn production-level sources provides the
supply amounts. The demand amounts are specified by each period's demand. The
unit "transportation" cost from a source to a destination is the sum of the applicable
production and holding costs per unit. The solution of the problem as a transporta
tion model determines the minimum-cost production amounts in each production
level.

The resulting transportation model can be solved without using the familiar trans
portation technique presented in Chapter 5. The validity of the new solution algorithm
rests on the special assumptions of no shortage and a convex production-cost function.

Example 11.4-1

Metaleo produces draft deflectors for use in home fireplaces during the months of December to
Marcil. The demand starts slow, peaks in the middle of the season, and tapers off toward the
end. Because of the popularity of the product, Metalco may use overtime to satisfy the demand.
The following table provides the production capacities and the demands for the four winter
months.

Capacity

Month

1
2
3
4

Regular (units)

90
100
120
110

Overtime (lmits)

50
60
80
70

Demand (units)

100
190
210
160

Unit production cost in any period is $6 during regular time and $9 during overtime. Holding
cost per unit per month is $.10.

To ensure that the model has a feasible solution when no shortage is allowed, the cumula
tive supply (production capacity) up to any month must equal at least the associated cumulative
demand, as the following table shows.

Month

1
2
3
4

Cumulative supply

90 + 50 = 140
140 + 100 + 60 = 300
300 + 120 + 80 = 500
500 + 110 + 70 == 680

Cumulative demand

100
100 + 190 = 290
290 + 210 == 500
500 + 160 = 660

Table 11.2 summarizes the model and its solution. The symbols Ri and Oi represent regular
and overtime production levels in period i, i = 1,2,3,4. Because cumulative supply at period 4
exceeds cumulative demand, a dummy surplus destination is added to balance the model as
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TABLE 11.2

2

90

10

100 190
! !
10 90

!
30

3

210
!
90
!
10

4

160
!
50

Surplus

90

SO~40-410

100

60
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110
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shown in Table 11.1. All the "transportation" routes from a previous to a current period are
blocked because no shortage is allowed.

The unit "transportation" costs are the sum of applicable production and holding costs. For
example, unit cost from R1 to period 1 equals unit production cost only (= $6) Unit cost from 0,
to period 4 equals unit production cost plus unit holding cost from periods 1 to 4----that is,
$9 + ($.1 + $.1 + $.1) = $9.30. Finally, unit costs to surplus destination are zero.

The optimal solution is obtained in one pass by starting from column 1 and moving, one col
umn at a time, toward the surplus column. For each column, the demand is satisfied using the
cheapest routes in that column.3

Starting with column 1, route (R b 1) has the cheapest unit cost, and we assign the most we
can to it-namely, min{90, 100} = 90 units, which leaves 10 unsatisfied units in column 1. The
next-cheapest route in column 1 is (OJ, 1), to which we assign min{50, lO} = 10. The demand
for period 1 is now satisfied.

Next, we move to column 2. The assignments in this column occur in the following order:
100 units to (R2, 2), 60 units to (02,2), and 30 units to (0),2). The respective unit "transporta
tion" costs of these assignments are $6, $9, and $9.10. We did not use the route (R" 2), whose
unit cost is $6.10, because all the supply of R1 has been assigned to period 1.

Continuing in the same manner, we satisfy the demands of column 3 and then column 4. The
optimum solution, shown in boldface in Table 11.1; is summarized as follows:

3For a proof of the optimality of this procedure, see S.M. Johnson, "Sequential Production Planning over
TIme at Minimum Cost," Management Science, Vol. 3, pp. 435-437, 1957.
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Period

Regular 1
Overtime 1
Regular 2
Overtime 2
Regular 3
Overtime 3
Regular 4
Overtime 4

Production Schedule

Produce 90 units for period 1.
Produce 50 units: 10 units for period 1,30 for 2, and 10 for 3.
Produce 100 units for period 2.
Produce 60 units for period 2.
Produce 120 units for period 3.
Produce 80 units for period 3.
Produce 110 units for period 4.
Produce 50 units for period 4, with 20 units idle capacity.

The associated total cost is 90 X $6 + 10 x $9 + 30 x $9.10 + 100 x $6 + 60 X $9 +
10 X $9.20 + 120 x $6 + 80 x $9 + 110 x $6 + 50 x $9 = $4685.

PROBLEM SET 11.4B

1. Solve Example 11.4-1, assuming that the unit production and holding costs are as given in
the following table.

Regular time Overtime unit Unit holding cost ($)
Period i unit cost ($) cost ($) to period i + 1

1 5.00 7.50 .10
2 3.00 4.50 .15
3 4.00 6.00 .12
4 1.00 1.50 .20

2. An item is manufactured to meet known demand for four periods according to the fol
lowing data:

Unit production cost ($) for period

Production range (units) 1 2 3 4

1-3 1 2 2 3
4-11 1 4 5 4

12-15 2 4 7 5
16-25 5 6 10 7

Unit holding cost to next period ($) .30 .35 .20 .25
Total demand (units) 11 4 17 29

(a) Find the optimal solution, indicating the number of units to be produced in each
period.

(b) Suppose that 10 additional units are needed in period 4. Where should they be
produced? .

*3. The demand for a product over the next five periods may be filled from regular produc
tion, overtime production, or subcontracting. Subcontracting may be used only if the

1
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overtime capacity has been used. The following table gives the supply, demand, and cost
data of the situation.

Zj = Amount ordered

Di = Demand for period i

Xi = Inventory at the start of period i

The cost elements of the situation are defined as

The unit production costs for the three levels in each period are $4, $6, and $7, re
spectively. The unit holding cost per period is $.50. Determine the optimal solution.
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FIGURE 11.10

Elements of the dynamic inventory model with selup cost

In this situation, no shortage is allowed and a setup cost is incurred each time a new
production lot is started. Two solution methods will be presented: an exact dynamic
programming algorithm and a heuristic.

Figure 11.10 summarizes the inventory situation schematically. The symbols shown
in the figure are defined for period i, i = 1, 2, ... , n, as

K = Setup cost in period i

hi = Unit inventory holding cost from period i to i + 1

The associated production cost function for period i is

The function Cj(Zj) is the marginal production cost function, given Zi

11.4.2 Setup Model

110

Production capacity (units)

Period Regular time Overtime Subcontracting Demand

1 100 50 30 153
2 40 60 80 200
3 90 80 70 150
4 60 50 20 200
5 70 50 100 203

'+
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General Dynamic Programming Algorithm. In the absence of shortage, the inventory
model is based on minimizing the sum of production and holding costs for all n periods.
For simplicity, we will assume that the holding cost for period i is based on end-of
period inventory, defined as

For the forward recursive equation, the state at stage (period) i is defined as Xi+ h

the end-of-period inventory level, where, as Figure 11.10 shows,

TI1is inequality recognizes that, in the extreme case, the remaining inventory, Xi+b can
satisfy the demand for all the remaining periods.

Let t(xi+d be the minimum inventory cost for periods 1,2, ... , and i given the
end-of-period inventory xi+l' TIle forward recursive equation is thus given as

Note that for period 1, ZI must exactly equal D1 + X2 - Xl' For i > 1, Zi can be as low
as zero because D i can be satisfied from the production in preceding periods, 1,2, ... ,
and i- 1.

Example 11.4-2

The following table provides the data for a 3-period inventory situation.

Demand Setup cost Holding cost
Period i V; (units) K;($) h;($)

1 3 3 1
2 2 7 3
3 4 6 2

The demand occurs in discrete units, and the starting inventory is Xl = 1 unit. TIle unit produc
tion cost is $10 for the first 3 units and $20 for each additional unit, which is translated mathe
matically as

{
lOZj,

Cj(z;) == 30 + 20(z; - 3),

Determine the optimal inventory policy.

o :5 Ij :5 3

Zi :=:: 4
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Period 1: D1 = 3,0 :::; X2 :::; 2 + 4 = 6, Z, = Xl + D, - Xl = X2 + 2

Ct(Z.) + hlxz

ZI = 2 3 4 5 6 7 8 Optimal solution

hlxz C1(ZI) = 23 33 53 73 93 113 133 11 (X2)
.

X2 Zl

0 0 23 23 2
1 1 34 34 3
2 2 5S 55 4
3 3 76 76 5
4 4 97 97 6
5 5 118 118 7
6 6 139 ·139 8

Note that because Xl = 1, the smallest value of Z, is D] - Xl = 3 - 1 = 2.

Period 2: Dz = 2,0 :::; X3 :::; 4,0 :::; Zl so; Dz + X3 = X3 + 2

C2(zz) + hzx) + II (x] + Dz - zz)
Optimal

'z = 0 1 2 3 4 5 6 solution

h2X3 C2(zz) = 0 17 27 37 57 77 97 fz(x3)
.

Xl Z2

0 0 0+55 17 + 34 27 + 23 50 2
= 55 = 51 '" 50

1 3 3 + 76 20 + 55 30 + 34 40 + 23 63 3
== 79 = 75 = 64 = 63

2 6 6 + 97 23 + 76 33 + 55 43 + 34 63 + 23 77 3
= 103 = 99 = 88 =77 == 86

3 9 9 + 118 26 + 97 36 + 76 46 + 55 66 + 34 86 + 23 100 4
= 127 = 123 = 112 = 101 =100 == 109

4 12 12 + 139 29 + 118 39 + 97 49 + 76 69 + 5S 89 + 34 109 + 23 123 5
== 151 == 147 = 136 == 125 == 124 = 123 == 132

Period 3: DJ = 4, X4 = 0,0 :::; Z3 :::; D3 + X4 = 4

Clz3) + h3x4 + h(X4 + D) - z)
Optimal

Z3 == 0 1 2 3 4 solution

h3x4 C3(Z3) = 0 16 26 36 56 h(X4)
.

X4 Z3

0 0 0+123 16 + 100 26 + 77 36 + 63 56 + 50 99 3
== 123 = 116 = 103 == 99 = 106

The optimum solution is read in the following manner:

(X4 = 0) -I Z3 = 31- (X3 = 0 + 4 - 3 = 1) -I Zl = 31
- (Xl = 1 + 2 - 3 = 0) -I Zl = 21·

Thus, the solution is summarized as zj = 2, zi = 3, and Z3 = 3, with a total cost of $99.
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Excel Moment

Template excelDPlnv.xls is designed to solve the general DP inventory problem with
up to 10 periods. The design of the spreadsheet is similar to that of excelKanpsack.xls
given in Section 10.3.1, where the model carries out the computations one stage a time
and user input is needed to link successive stages.

Figure 11.11 shows the application of excelDPlnv.xls to Example 11.4-2. The input
data are entered for each stage. The computations start with period 1. Note how the
cost function Ci( Zi) is entered in row 3: (G3 = 10, H3 = 20, 13 = 3) means that the
unit cost is $10 for the first three items and $20 for additional items. Note also that the

FIG URE 11.11

Excel DP solution of Example 11.4-2 (file exceIDPlnv.xls)
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amount entered for D1 must be the net after the initial inventory has been written off
(= 3 - Xl = 3 - 1 = 2). Additionally, you need to create the feasible values of the
variable Zl' The spreadsheet automatically checks if the values you enter are correct,
and issues self-explanatory messages in row 6: yes, no, or delete.

Once all input data have been entered, optimum values of Ii and Zi for the stage
are given in column Sand T. Next, a permanent record for period 1 solution, (Xl, fl' Zl),
is created in the optimum solution summary section of the spreadsheet, as Figure 11.11
shows. This requires copying D9:D15 and S9:T15 and then pasting them using
paste spedal + values (you may need to review the proper procedure for creating the
permanent record given in conjunction with excelKnapsack.xls in Section 10.3.1).

Next, to prepare for stage 2, copy 11 from the permanent record and paste it in col
umn B as shown in Figure 11.11. All that is needed now is to update the input data for
period 2. The process is repeated for period 3.

PROBLEM SET 11.4C

*1. Consider Example 11.4-2.

(a) Does it make sense to have X4 > O?

(b) For each of the following two cases, determine the feasible ranges for ZJ, Z2, Z3, Xl> X2,

and X3' (You will find it helpful ,to represent each situation as in Figure 11.10.)

(i) Xl = 4 and all the remaining data are the same.

(ii) XI = 0, D} = 5, D2 = 3, and D3 = 4.

2. *(a) Find the optimal solution for the following four-period inventory model.

Demand Setup cost Holding cost
Period i D i (units) Ki ($) h i ($)

1 5 5 1
2 2 7 1
3 3 9 1
4 3 7 1

The unit production cost is $1 each for the first 6 units and $2 each for additional units.

(b) Verify the computations using exceIDPlnv.xls.

3. Suppose that the inventory-holding cost is based on the average inventory during the pe
riod. Develop the corresponding forward recursive equation.

4. Develop the backward recursive equation for the model, and then use it to solve
Example 11.4-2.

S. Develop the backward recursive equation for the model, assuming that the inventory
holding cost is based on the average inventory in the period.

Dynamic Programming Algorithm with Constant or Decreasing Marginal Costs. The
general DP given above can be used with any cost function. However, the nature of the
algorithm dictates that the state Xi and the alternatives Zi at stage i assume values in
increments of 1. This means that for large demand amounts, the tableau at each stage
could be extremely large, and hence computationally unwieldy.

A special case of the general DP model holds promise in reducing the volume of
computations. In this special situation, both the unit production and unit holding costs
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are nonincreasing (concave) functions of the production quantity and the inventory
level, respectively. This situation typically occurs when the unit cost function is constant
or when quantity discount is allowed.

Under the given conditions, it can be proved that4

1. Given zero initial inventory (Xl = 0), it is optimal to satisfy the demand in any
period i either from new production or from entering inventory, but never from both
that is, ZiXj = 0. (For the case with positive initial inventory, Xl > 0, the amount can be
written off from the demands of the successive periods until it is exhausted.)

2. The optimal production quantity, Zj, for period i must either be zero or satisfy
the exact demand for one or more contiguous succeeding periods.

Example 11.4-3

A four-period inventory model operates with the following data:

Period i Demand D j (units) Setup cost Kj ($)

1 76 98
2 26 114
3 90 185
4 67 70

The initial inventory XI = 15 units. The unit production cost is $2, and the unit holding cost per
period is $1 for all the periods. (For simplicity, the unit production and holding costs are assumed
unchanged for all the periods.)

The solution is determined by the forward algorithm given previously, except that the values
of Xi+1 and Zi assume "lump" sums rather than increments of 1. Because Xl = 15, the demand for
the first period is adjusted to 76 - 15 = 61 units.

Period 1: Dl = 61

C1(ZI) + hjXl
Optimal

Zt = 61 87 177 244 solution

h1Xl C1(zd = 220 272 452 586 ft(X2)
.

Xl Z,

0 0 220 220 61
26 26 298 298 87

116 116 568 568 177
183 183 769 769 244

Order in 1 for 1 1,2 1,2,3 1,2,3,4

~eeH. Wagner and T. Whitin, "Dynamic Version of the Economic Lot Size Model," Management Science, Vol. 5,
pp. 89-96,1958. The optimality proof imposes the restrictive assumption of constant and identical cost functions
for all the periods. The assumption was later relaxed by A. Veinott Jr. to include distinct concave cost functions.

.;~ .
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ory Period 2: D2 =: 26

ant

C2(Z2) + h];X] + fl(X3 + D2 - z2)
Optimal

Z2 =; 0 26 116 183 solution
any

C2(Z2) "" 0 166 346 480 fz(X3) •
h- X3 h];X~ Z2

l be 0 0 0+298 166 + 220 298 0
= 298 = 386

isfy 90 90 90 + 568 436 + 220 656 116
= 658 ;; 656

157 157 157 + 769 637 + 220 857 183
;; 926 ;; 857

Order in 2 for 2 2,3 2,3,4

Period 3: D3 = 90

t per
tmed

dues
d for

61
87

177
244

Vol. 5,
lctions
lctions.

'" ".:•.!.::.

C3(Z3) + h3X4 + f2(X4 + D3 - Z3)
Optimal

'3 = 0 90 157 solution

h]X4 C3(Z3) = 0 365 499 h(X4)
.

X4 Z3

0 0 o + 656 ;; 656 365 + 298 = 663 656 0
67 67 67 + 857 "" 924 566 + 298 = 864 864 157

Order in 3 for 3 3,4

Period 4: D4 = 67

C4(Z4) + h4X5 + h(X5 + D4 - Z4)
Optimal

Z4 ;; 0 67 solution

h4X5 C4(Z4) = 0 204 h(X5)
.

Xs Z4

0 0 0+ 864 = 864 204 + 656 = 860 860 67

Order in 4 for 4

The optimal policy is determined from the tableaus as follows:

(X5 == 0) ~ IZ4 = 67 1- (X4 = 0)~ IZ3 = 0 I
~ (X3 "" 90) -I Z2 == 116 I~ (X2 = 0) ~ IZI = 61 I

This gives zi = 61, z; = 116, z; = 0, and z: = 67, at a total cost of $860.
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FIGURE 11.12

Wagner-Whitin Excel DP model applied to Period 1 of Example 11.4-3 (file exceIWagnerWhitin.xls)

Excel Moment

Template excelWagnerWhitin.xls is similar to that of the general model exceIDPlnv.xls.
The only difference is that lump sums for the state x and alternative z are used. Also,
for simplicity, the new spreadsheet does not allow for quantity discount. Figure 11.12
produces period 1 calculations for Example 11.4-3.The template is limited to a maximum
of 10 periods. Remember to use paste special + values when creating the output solu
tion summary (columns Q:V).

PROBLEM SET 11.40

*1. Solve Example 11.4-3, assuming that the initial inventory is 80 units. You may use
excelWagnerWhitin.xls to check your calculations.

2. Solve the following IO-period deterministic inventory model. Assume an initial inventory
of 50 units.

Demand Unit production Unit holding Setup cost
Period i D j (units) cost ($) cost ($) ($)

1 150 6 1 100
2 100 6 1 100
3 20 4 2 100
4 40 4 1 200
5 70 6 2 200
6 90 8 3 200
7 130 4 1 300
8 180 4 4 300
9 140 2 2 300

10 50 6 1 300
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3. Find the optimal inventory policy for the following five-period model. The unit produc
tion cost is $10 for all periods. The unit holding cost is $1 per period.

Period i Demand D;(units) Setup cost K; ($)

1 50 80
2 70 70
3 100 60
4 30 80
5 60 60

4. Find the optimal inventory policy for the following six-period inventory situation: The
unit production cost is $2 for all the periods.

Period I D; (units) K; ($) h; ($)

1 10 20 1
2 15 17 1
3 7 10 1
4 20 18 3
5 13 5 1
6 25 50 1

Silver-Meal Heuristic. This heuristic is valid only for the inventory situations in which
the unit production cost is constant and identical for all the periods. For this reason, it
balances only the setup and holding costs.

The heuristic identifies the successive future periods whose demand can be filled
from the demand of current period. The objective is to minimize the associated setup
and holding costs per period.

Suppose that we produce in period i for periods i, i + 1, ... , and t, i :;; t, and de
fine TC(i, t) as the associated setup and holding costs for the same periods. Mathemat
ically, using the same notation of the DP models, we have

y
K;,

TC(i, t) =

Next, define TCU(i, t) as the associated cost per period-that is,

t = i

TCei t)
TCU(i t) = ', t-i+1

Thus, given a current period i, the heuristic determines t* that minimizes TCU(i, t).
The function TC(i, t) can be computed recursively as follows:

TC(i, i) = K;

(

1-1 )
TC(i,t) = TC(i,t - 1) + "L.'lk De,t = i + 1,i + 2, ....,n

k=l
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Step O. Set i = 1.

Step 1. Determine the local minimum t* that satisfies the following two conditions:

TCU(i, t* - 1) ~ TCU(i, t*)

TCU(i, t* + 1) ~ TCU(i, t*)

If the conditions are satisfied, then the heuristic calls for ordering the
amount (Di + Di +1 + ... + Dco) in period i for periods i, i + 1, ... , and t*.

Step 3. Set i = t* + 1. If i > n, stop; the entire planning horizon has been covered.
Otherwise, go to step 1.

Example 11.4-4

Find the optimal inventory policy for the following six-period inventory situation:

Period i

1
2
3
4
5
6

D j (units) K j ($)

10 20
15 17
7 10

20 18
13 5
25 50

11;($)

1
1
1
3
1
1

TIle unit production cost is $2 for all the periods.

Iteration 1 (; = 1, K1 = $20). The function TC(I, t) is computed recursively in t. For example,
given TC(l, 1) = $20, TC(l, 2) = TC(l, 1) + hjDz = 20 + 1 X 15 = $35.

Period I Dj TC(l, t) TeU(I,t)

1 10 $20 ~ = $20.00

2 15 20 + 1 X 15 = $35 ¥ = $17.50

3 7 35 + (1 + 1) x 7 = 94 ~ =1$16.331

4 20 49 + (1 + 1 + 1) x 20 = $109 I~ = $27.25

The local minimum occurs at t* = 3, which calls for ordering 10 + 15 + 7 = 32 units in pe
riod 1 for periods 1 to 3. Seti = t* + 1 = 3 + 1 = 4.

Iteration 2 (i = 4, K4 = $18).

Period I

4

5

Di

20

13

TC(4,t)

$18

18 + 3 X 13 ~ $57

TCU(4,1)

¥=1$18.001

¥ == $28.50
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The calculations show that t* = 4, which calls for ordering 20 units in period 4 for period 4.
Set i = 4 + 1 = 5.

Iteration 3 (i = 5, K s = $5).

Period t Dj TC(5,t) TCU(5,t)

t*.
5 13 $5 t =~

red. 6 25 5 + 1 x 25 = $30 ~ = $15

The minimum occurs at t* = 5, which requires ordering 13 units in period 5 for period 5.
Next, we set i = 5 + 1 = 6. However, because i = 6 is the last period of the planning horizon,
we must order 25 units in period 6 for period 6.

Remarks. The following table compares the heuristic and the exact DP solution. We have
deleted the unit production cost in the dynamic programming model because it is not included in
the heuristic computations.

Heuristic Dynamic programming

Period Units produced Cost ($) Units produced Cost ($)

1 32 49 10 20
2 0 0 22 24
3 0 0 0 0
4 20 18 20 18
5 13 5 38 30
6 25 50 0 0

nple, Total 90 122 90 92

The production schedule given by the heuristic costs about 32% more than that of the DP
solution ($122 versus $92). The "inadequate" performance of the heuristic may be the result of
the data used in the problem. Specifically, the problem may lie in the extreme variations in the
setup costs for periods 5 and 6. Nevertheless, the example shows that the heuristic does not have
the capability to "look ahead" for better scheduling opportunities. For example, ordering in peri
od 5 for periods 5 and 6 (instead of ordering for each period separately) can save $25, which will
bring the total heuristic cost down to $97.

n pe- Excel Moment

Excel template excelSilverMeal.xls is designed to carry out all the iterative computa
tions as well as provide the final solution. The procedure starts with entering the data
needed to drive the calculations, including N, K, h, and D for all the periods (these en
tries are highlighted in turquoise in the spreadsheet). Then, the user must initiate the
start of each iteration manually until all the periods have been covered.

Figure 11.13 shows the application of the Excel heuristic to Example 11.4-4. The
first iteration is initiated by entering the value 1 in cell 111, signaling that iteration 1
starts at period 1. The spreadsheet will then generate as many rows as the number of
periods, N (= 6 in this example). The period number will be listed in ascending order in
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.y:. Demand, Dt = 10 15 7 20 13 25

FIGURE 11.13

Excel solution of Example 11.4-4 using Silver-Meal heuristic (file ExcelSilverMeal.xls)

cells Kll:K16. Now, examine TCU in column P (highlighted in turquoise) and locate
the period that corresponds to the local minimum at t = 3 with TCU = $16.33. This
means that the next iteration will start at period 4. Now, skip a blank row and enter the
value 4 in 118.This action will produce the calculations for iteration 2, will show that its
local minimum will be at period 4 (TeU = $18.00), and will signal the start of itera
tion 3 at period 5. Again, entering 5 in 122, the local minimum for iteration 3 will occur
at node 5. Next, entering the value 6 in J25 will produce the terminating iteration of the
problem. As you go through each iteration, the spreadsheet will automatically display
the associated optimal policy and its total cost, as shown in Figure 11.13.

PROBLEM SET 11.4E

*1. The demand for fishing poles is at its minimum during the month of December and reach
es its maximum during the month of April. Fishing Hole, Inc., estimates the December de
mand at 50 poles. It increases by 10 poles a month until it reaches 90 in April. Thereafter,
the demand decreases by 5 poles a month. The setup cost for a production lot is $250, ex
cept during the peak demand months of February to April, where it increases to $300. The
production cost per pole is approximately constant at $15 throughout the year, and the
holding cost per pole per month is $1. Fishing Hole is developing next year's (January
through December) production plan. How should it schedule its production facilities?

2. A small publisher reprints a novel to satisfy the demand over the next 12 months. The de
mand estimates for the successive months are 100,120,50,70,90, 105,115,95,80,85,100,
and 110. The setup cost for reprinting the book is $200.00 and the holding cost per book
per month is $1.20. Determine the optimal reprint schedule.

RE
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CHAPTER 12

Revievv of Basic Probability

Chapter Guide. This chapter provides a review of probability laws, random variables,
and probability distributions. If you already have had a course in basic probability and
statistics, you may skip this chapter. Nevertheless, the chapter provides a useful sum
mary of five common distributions that are used frequently in the book: binomial, Pois
son, uniform, exponential, and normal. We have also developed a spreadsheet-based
statistical table (file StatTables.xls) that automates the computations of the mean, stan
dard deviation, probabilities, and percentiles of 16 different distributions. Another
spreadsheet is provided for histogramming empirical data (file excelMeanVar.xls).

This chapter includes 12 solved examples, 2 spreadsheets, and 44 end-of-section
problems. The AMPLlExcei/SolverfTORA programs are in folder ch12Files.

12.1 LAWS OF PROBABILITY

Probability deals with random outcomes of an experiment. The conjunction of all the
outcomes is referred to as the sample space, and a subset of the sample space is known
as an event. As an illustration, the outcomes of rolling a (six-faced) die are 1,2,3,4,5,
and 6. The set {I, 2, 3,4,5, 6} defines the associated sample space. An example of an
event is that a roll turns up an even value (2,4, or 6).

An experiment may deal with a continuous sample space as well. For example, the
time between failures of an electronic component may assume any nonnegative value.

If an event E occurs m times in an n-trial experiment, then the probability, P{E}.
of realizing the event E is defined as

. m
P{E} = hm-

n--->OO n

The definition implies that if the experiment is repeated indefinitely (n ~ (0), then the
desired probability is represented by~. You can verify this definition by flipping a coin
and observing its outcome: head (H) or tail (n. The longer you repeat the experiment,
the closer will be the estimate of P{H} (or P{T}) to the theoretical value of 0.5.

463



464 Chapter 12 Review of Basic Probability

By definition,

o :::; P{E} :::; 1

An event E is impossible if P{ E} = 0, and certain if P{ E} = 1. For example, in a six
faced die experiment, rolling a 7 is impossible, whereas rolling an integer value from 1
to 6, inclusive, is certain.

PROBLEM SET 12.1A

*1. In a survey conducted in the State of Arkansas high schools to study the correlation be
tween senior year scores in mathematics and enrollment in engineering colleges, 400 out
of 1000 surveyed seniors have studied mathematics. Engineering enrollment shows that,
of the 1000 seniors, 150 students have studied mathematics and 29 have not. Determine
the probabilities of the following events:

(a) A student who studied mathematics is enrolled in engineering. Is not enrolled in
engineering.

(b) A student neither studied mathematics nor enrolled in engineering.

(c) A student is not studying engineering.

*2. Consider a random gathering of n persons. Determine the smallest n such that it is more
likely than not that two persons or more have the same birthday. (Hint: Assume no leap
years and that all days of the year are equally likely to be a person's birthday.)

*3. Answer Problem 2 assuming that two or more persons share your birthday.

12.1.1 Addition law of Probability

For two events, E and F, E + F (or E U F) represents the union of E and F, and EF
(or E n F) represents their intersection. The events E and F are mutually exclusive. if
they do not intersect-that is, if the occurrence of one event precludes the occurrence
of the other. Based on these definitions, the addition law of probability can be stated as

P{E + F} = {P{E} + P{F},
P{E} + P{F}

E and F mutually exclusive
P{EF}, otherwise

P{EF} is the probability that events E and F occur simultaneously.

Example 12.1-1

Consider the experiment of rolling a die. The sample space of the experiment is {l, 2,3 , 4,5, 6}.
For a fair die, we have

P{l} = P{2} = P{3} = P{4} = P{5} = P{6} = ~

Define

E = {l, 2, 3, or4}

F = P, 4, or 5}

12,
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The outcomes 3 and 4 are common between E and F-hence, EF == {3 or 4}. Thus,

P{E} == P{l} + P{2} + P{3} + P{4} = ~ + ~ + ~ + ~ = ~

P{F} = P{3} + P{4} + P{5} = !
P{EF} = P{3} + P{4} = ~

It then follows that

P{E + F} = P{E} + P{F} - P{EF} = ~ + ~ -} = ~

Intuitively, the result makes sense because (E + F) = {I, 2, 3, 4, 5}, whose probability of oc
. 5

currence IS 6'

PROBLEM SET 12.18

1. A fair 6-faced die is tossed twice. Letting E and F represent the outcomes of the two toss
es, compute the following probabilities:

(a) The sum of E and F is 11.

(b) The sum of E and F is even.

(c) The sum of E and F is odd and greater than 3.

(d) E is even less than 6 and Fis odd greater than 1.

(e) E is greater than 2 and F is less than 4.

(I) E is 4 and the sum of E and F is odd.

Suppose that you roll two dice independently and record the number that turns up for
each die. Determine the following:

(a) The probability that both numbers are even.

(b) The probability that the sum of the two numbers is 10.

(c) TIle probability that the two numbers differ by at least 3.

You can toss a fair coin up to 7 times. You will win $100 if three tails appear before a
head is encountered. What are your chances of winning?

Ann, Jim, John, and Liz are scheduled to compete in a racquetball tournament. Ann is
twice as likely to beat Jim, and Jim is at the same level as John. Liz's past winning record
against John is one out of three. Determine the following:

(a) The probability that Jim will win the tournament.

(b) The probability that a woman will win the tournament.

(c) The probability that no woman will win.

12.1.2 Conditional Law of Probability

Given the two events E and Fwith P{F} > 0, the conditional probability of E given F,
p{EIF}, is defined as

P{EF}
p{EIF} = P{F}' P{F} > 0

If E is a subset of (i.e., contained in) F, then P{EF} = P{E}.
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The two events, E and F, are independent if, and only if,

p{EIF} = P{E}

In this case, the conditional probability law reduces to

P{EF} = P{E}P{F}

Example 12.1-2

You are playing a game in which another person is rolling a die. You cannot see the die, but you
are given information about the outcomes. Your job is to predict the outcome of each roll. De
termine the probability that the outcome is a 6, given that you are told that the roll has turned up
an even number.

Let E = {6}, and define F = {2, 4, or 6}. Thus,

P{EF} prE} (1/6) 1
p{EIF} = P{F} = P{F} = 1/2 = 3

Note that P{EF} = P{E} because E is a subset of F.

PROBLEM SET 12.1C

1. In Example 12.1-2, suppose that you are told that the outcome is less than 6.

(a) Determine the probability of getting an even number.

(b) Determine the probability of getting an odd number larger than one.

2. The stock of WalMark Stores, Inc., trades on the New York Stock Exchange under the
symbol WMS. Historically, the price ofWMS goes up with the increase in the Dow aver
age 60% of the time and goes down with the Dow 25% of the time. There is also a 5%
chance that WMS will go up when the Dow goes down and 10% that it will go down
when the Dow goes up.

(a) Determine the probability that WMS will go up regardless of the Dow.

(b) Find the probability that WMS goes up given that the Dow is up.

(c) What is the probability WMS goes down given that Dow is down?

*3. Graduating high school seniors with an ACf score of at least 26 can apply to two univer
sities, A and B, for admission. The probability of being accepted in A is .4 and in B .25.
The chance of being accepted in both universities is only 15%.

(a) Determine the probability that the student is accepted· in B given that A has granted
admission as well.

(b) What is the probability that admission will be granted in A given that the student
was accepted in B?

4. Prove that if the probability p{A1B} = P{A}, then A and B must be independent.
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5. Bayes' theorem. 1 Given the two events A and B, show that

P{AIB} = p{BIA}P{A} P{B} > 0
P{B} ,

6. A retailer receives 75% of its batteries from Factory A and 25% from Factory B. The per
centages of defectives produced by A and B are known to be 1% and 2%, respectively. A
customer has just bought a battery randomly from the retailer.

(a) What is the probability that the battery is defective?

(b) If the battery you bought is defective, what is the probability that it came from Fac
tory A? (Hint: Use Bayes' theorem in Problem 5.)

*7. Statistics show that 70% of all men have some form of prostate cancer. The PSA test will
show positive 90% of the time for afflicted men and 10% of the time for healthy men.
What is the probability that a man who tested positive does have prostate cancer?

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The outcomes of an experiment either are naturally numeric or can be coded numeri
cally. For example, the outcomes of rolling a die are naturally numeric-namely, 1, 2, 3,
4,5, or 6. Conversely, the testing of an item produces two outcomes: bad and good. In
such a case, we can use the numeric code (0, 1) to represent (bad, good). The numeric
representation of the outcomes produces what is known as a random variable.

A random variable, x, may be discrete or continuous. For example, the random
variable associated with the die-rolling experiment is discrete with x = 1,2,3,4,5, or 6,
whereas the interarrival time at a service facility is continuous with x > O.

Each continuous or discrete random variable x is quantified by a probability den
sity function (pdf),f(x) or p(x). These functions must satisfy the conditions in the fol
lowing table:

Random variable, x

er-
,
o

Characteristic

Applicability range

Conditions for the pdf

Discrete

x = a, a + 1, ... , b
b

p(x) 2: 0, 2>(x) = 1
..[=0

Continuous

f(x) 2: 0, If(x)dx = 1
a

A pdf,p(x) or f(x) , must be nonnegative (otherwise, the probability of some event
may be negative!). Also, the probability of the entire sample space must equall.

An important probability measure is the cumulative distribution function (CDF),
defined asver

I.

nted

It

P{X:5 X} =

x
P(X) = LP(x), x discrete

x=a

F(X) = IXf(x) dx, x continuuous

. ,~ '·'i-..:.:.-.:·

lSection 13.2.2 provides a more detailed presentation of Bayes' theorem.
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Example 12.2-1

Consider the case of rolling a fair die. The random variable x = {1, 2, 3, 4, 5, 6} represents the
face of the die that turns up. The associated pdf and COF are

p(x) = i,x = 1,2, ,6

P(X) = t,x = 1,2, ,6

Figure 12.1 graphs the two functions. The pdf p(x) is a uniform discrete fuoction because all the
values of the random variables occur with equal probabilities.

The continuous counterpart of uniform p(x) is illustrated by the following experiment A
needle of length I is pivoted in the center of a circle whose diameter also equals l. After marking
an arbitrary reference point on the circumference, we spin the needle clockwise and measure the
circumference distance x from where the pointer stops to the marked point. Thus, the random
variable x is continuous in the range 0 .:5 X .:5 7TI. There is no reason to believe that the needle
will tend to stop more often in a specific region of the circumference. Hence, all the values of x in
the specified range are equally likely to occur, and the distribution of x must be uniform.

The pdf ofx,f(x), is defined as

1
f(x) = -,0 .:5 X .:5 7TI

7Ti

The associated COF, F(X), is computed as

l
x lX 1 XF(X) = P{x .:5 X} = f(x) dx = -dx = -,0.:5 X .:5 7TI

o 0 TTI 7Ti

Figure 12.2 graphs the two functions.

PROBLEM SET 12.2A

1. The number of units, x, needed of an item is discrete from 1 to 5. The probability, p(x), is
directly proportional to the number of units needed. The constant of proportionality is K.

(a) Oetermine the pdf and COF of x, and graph the resulting functions.

(b) Find the probability that x is an even value.

pd~p(x)

CDF, P(x)1

5
6"
4
6"
3
6"
2
6"
1
6"
o<-------'-_--'-- -'-------''------L _

FIGURE 12.1

CDF and pdf for rolling a fair die

123456 x
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k
f(x) = 2,10 :s x :s 20

x

*(a) Find the value of the constant k that will make f(x) a pdf.

(b) Determine the COp, and find the probability that x is (i) larger than 12, and (ii) be
tween 13 and 15.

*3. The daily demand for unleaded gasoline is uniformly distributed between 750 and 1250
gallons. The gasoline tank, with a capacity of 1100 gallons, is refilled daily at midnight.
What is the probability that the tank will be empty just before a refill?

2. Consider the following function:

CDF and pdf for spinning a needle

FIGURE 12.2

CDF, F(x)

pdf,f(x)1
11'[1-----,.'----------,
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12.3 EXPECTATION OF A RANDOM VARIABLE

Given that h(x) is a real function of a random variable x, we define the expected "alue
of hex), E{h(x)}, as the (long-run) weighted average with respect to the pdf of x.
Mathematically, given that p(x) and f(x) are, respectively, the discrete and continuous
pdfs of x, E{h(x)} is computed as

, is
sK.

E{h(x)} =

b

2:h(x)p(x), x discrete
x=a

l\(X)!(X) dx, x continuous

P(x) Example 12.3-1

During the first week of each month, I (like many people) pay all my bills and answer a few let
ters. I usually buy 20 first-class mail stamps each month for this purpose.The number of stamps I
will be using varies randomly between 10 and 24, with equal probabilities. What is the average
number of stamps left?

The pdf of the number of stamps used is

p(x) = is, x = 10,11, ... ,24.

The number of stamps left is given as

h(x) = {20 - X,X = 1?,1l, ... ,19
0, otherWIse

••• /" ~.~;""··::::••L •
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Thus,

Review of Basic Probability

E{h(x)} = f5[(20 - 10) + (20 - 11) + (20 - 12) + ... + (20 - 19)] + fs(O)

= 3~
J

The product fs(O) is needed to complete the expected value of h(x). Specifically, the proba
bility of being left with zero extra stamps equals the probability of needing 20 stamps or more
that is,

P{x ~ 20} = p(20) + p(21) + p(22) + p(23) + p(24) = 5(ls) = fs

PROBLEM SET 12.3A

1. In Example 12.3-1, compute the average number of extra stamps needed to meet your
maximum possible demand.

2. The results of Example 12.3-1 and of Problem 1 show positive averages for both the sur
plus and shortage of stamps. Are these results inconsistent? Explain.

*3. The owner of a newspaper stand receives 50 copies of Ai Ahram newspaper every morn
ing.ll1e number of copies sold daily, X, varies randomly according to the following proba
bility distribution:

{
-ls, x = 35, 36, , 49

p(x) = f'x: 50,51, ,59
33'X - 60,61, ,70

(a) Determine the probability that the owner will sell out completely.

(b) Determine the expected number of unsold copies per day.

(c) If the owner pays 50 cents a copy and sells it for $1.00. Determine the owner's ex
pected net income per day.

12.3.1 Mean and Variance (Standard Deviation) of a Random Variable

The mean of x, E{x }, is a numeric measure of the central tendency (or weighted sum)
of the random variable. The variance, var{x}, is a measure of the dispersion or devia
tion of x around the mean E {x}. Its square root is known as the standard deviation of
x, stdDev {x}. A larger standard deviation means a higher degree of uncertainty re
garding the random variable. Specifically, when the value of a variable is known with
certainty, its standard deviation is zero.

The formulas for the mean and variance can be derived from the general defini
tion of E{h(x)} as follows: For E{x}, use h(x) = x, and for var{x} use h(x) =

(x - E{x} f llms,

E{x} =

b

LXP(x), x discrete
x=a

ibX!(x) dx, x continuous

_ .l.?;;.,;.;....:..
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b

~(x - E{x})2p (x), x discrete
var{x} = X;Qb1(x - E{x} ff(x) dx, x continuous

stdDev{x} = Vvar{x}

We can see the basis for the development of the formulas more readily by exam
ining the discrete case. Here, E {x} is the weighted sum of the discrete values of x. Also,
var{ x} is the weighted sum of the square of the deviation around E{x}. The continu
ous case can be interpreted similarly, with integration replacing summation.

Example 12.3-2

We compute the mean and variance for each of the two experiments in Example 12.2-1.

Case 1 (Die Rolling). The pdf is p(x) = ~,x = 1,2, ... ,6. Thus,

E{x} = l(i) + 2(i) + 3U) + 4(~) + 5(i) + 6(n = 3.5

var{x} = U){(1 - 3.5)2 + (2 - 3.5)2 + (3 - 3.5f + (4 - 3.5?

+ (5 - 3.5? + (6 - 3.5)2} = 2.917

stdDev(x) = V2.917 = 1.708

Case 2 (Needle Spinning). Suppose that the length of the needle is 1 inch. Then,

{- 1
f(x) = 3.14'

The mean and variance are computed as

Os x s 3.14

ium)
~Vla

mof
y re
with

:fini-
) =

r3
.
14

E(x) = io X(3.~4) dx = 1.57 inch

r3
.
14

var(x) = in (x - 1.57)2(3.;4) dx = .822 inch2

stdDev(x) = Y:822 = .906 inch

Excel Moment

Template exelStatTables.xls is designed to compute the mean, standard deviation, prob
abilities, and percentiles for 16 common pdfs, including the discrete and continuous uni
form distributions of Example 12.3-2. The use of the template is self-explanatory.
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PROBLEM SET 12.3B

*1. Compute the mean and variance of the random variable defined in Problem 1, Set 12.2a.

2. Compute the mean and variance of the random variable in Problem 2, Set 12.2a.

3. Show that the mean and variance of a uniform random variable x, a ~ x ~ h, are

E{x} = b + a
2

(b - a)2
var{x} = 12

4. Given the pdf f(x), a ~ x s b, prove that

var{x} = E{x2
} - (E{X})2

5. Given the pdf f(x), a s x s b, and y = ex + d, where c and d are constants. Prove that

E{y} = eE{x} + d

var{y} = e2 var{x}

12.3.2 Mean and Variance of Joint Random Variables

Consider the two continuous random variables Xl, al ::::: Xl ::::: bI> and X2, a2 ::::: X2 ::::: b2·
Define f(xl> X2) as the joint pdf of Xl and X2 and fl(XI) and !2(Xl) as the marginal pdfs
of Xl and X2, respectively. Then

f(XI, X2) ~ 0, at <: Xl ::::: bi> a2 ::::: X2 ::::: b2

Ib'dxllbzdXl!(XI> X2) = 1
0\ Oz

fl(XI) = 1bZf
(X], X2) dX2

°2

h(X2) = lb1j
(XI, Xl) dXI

°1

j(Xb Xl) = fl(xdh(X2), if Xl and x2 are independent

The same formulas apply to discrete pdfs, replacing integration with summation.
For the special case y = CjX\ + C1X2, where the random variables Xl and X2 are

jointly distributed according to the pdf f(x}, Xl), we can prove that

E{CIXI + C2X2} = c1E{xtl + C2E {X2}

var{clxl + C2X2} = dvar{xl} + c~var{x2} + 2CIC2COV{XbXl}

where

cov{X}, X2} = E{(XI - E{xd )(X2 - E{X2})

= E(XIX2 - x IE{X2} - X2E{xd + E{xdE{X2})

= E{XIX2} - E{XI}E{X2}

'J •.....
. ~...:~._--
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If Xl and Xz are independent, then E{XIXZ} = E{xdE{xz} and cov{Xb Xz} = o.
The converse is not true, in the sense that two dependent variables may have zero
covariance.

Example 12.3-3

A lot includes four defective (D) items and six good (G) ones. You select one item randomly and
test it. Then, without replacement, you test a second item. Let the random variables Xl and X2
represent the outcomes for the first and second items, respectively.

a. Determine the joint and marginal pdfs of Xl and Xl'
b. Suppose that you get $5 for each good item you select but must pay $6 if it is defective.

Determine the mean and variance of your revenue after two items have been selected.

Let P(XI, X2) be the joint pdf of XI and X2, and define PI(Xt) and P2(Xl) as the respective
marginal pdfs. First, we determine PI (XI) as

PI(G) = ~ = .6, PI(D) = 10 = .4

Next, we know that X2, the second outcome, depends on XI' Hence, to determine Pl(Xl), we
first determine the joint pdf P(Xh Xl)' from which we can determine the marginal distribution

Pl(Xl)'

P{Xl = GIXI = G} = ~

P{Xl = GIXI = B} = ~

P{Xl = BlxI = G} = ~

P{Xl = BlxI = B} = ~

To determine p(xt> Xl), we use the formula P{AB} = p{AIB}P{B} (see Section 12.1.2).

{ }
5 6 5

P Xl = G, Xl = G = 9 X 10 = 15

{ }
6 4 4

P Xl = G, Xl = B = 9 X 10 = 15

{ }
4 6 4

P Xl = B, Xl = G = () x 10 = 15

{ }
3 4 2

P X2 = B, Xl = B = 9 X 10 = 15

The marginal distributions, Pl(Xt) and Pl(Xl), can be determined by fiTst summarizing the
joint distribution, P(XI, Xl)' in a table format and then adding the respective rows and columns,
as the following table shows.

Xz = G x2 = B PI(Xl)

XI = G 5 4 15 =.6is is

XI = B 4 2 6
is is 15=.4

P2(Xz) n- = .6 !5 = .4
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It is interesting that, contrary to intuition, Pl(xd = Pl(Xl)'
The expected revenue can be determined from the joint distribution by recognizing that G

produces $5 and B yields -$6.lllUS,

Expected revenue = (5 + 5)fs + (5 - 6)15 + (-6 + 5)15 + (-6 - 6)f5 = $1.20

The same result can be determined by recognizing that the expected revenue for both se
lections equals the sum of the expected revenue for each individual selection (even though the
two variables are not independent). This means that

Expected revenue = Selection 1 expected revenue + Selection 2 expected revenue

= (5 X .6 - 6 X .4) + (5 X .6 - 6 X .4) = $1.20

To compute the variance of the total revenue, we note that

var{revenue} = var{revenue I} + var{revenue 2} + 2 cov{revenue 1, revenue 2}

Because Pl(xd = P2(X2), then var{revenue I} = var{revenue2}. To compute the vari
ance, we use the formula

var{x} = E{xl
} - (E{x} f

(See Problem 4, Set 12.3b.) Thus,

var{ revenue I} = [52 X .6 + (-6)2 X .4] - .62 = 29.04

Next, to compute the covariance, we use the formula

The term E{XIX2} can be computed from the joint pdf of xl and X2' Thus, we have

Convariance = [(5 X 5)(fs) + (5 X -6)(15) + (-6 X 5)(~)

+ (-6 X -6)(f5)] - .6 X .6 = -3.23

lllUS,

Variance = 29.04 + 29.04 + 2( -3.23) = 51.62

PROBLEM SET 12.3C

1. The joint pdf of Xl and X2, p(xr. Xl)' is

12

12
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o
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.2
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*(a) Find the marginal pdfs Pl(Xl) and pz(xz).
*(b) Are Xl and Xz independent?

(c) Compute E{XI + xd.
(d) Compute cov{Xl' xz}.
(e) Compute var{5xl - 6xz}.

12.4 FOUR COMMON PROBABILITY DISTRIBUTIONS

In Sections 12.2 and 12.3 we discussed the (discrete and continuous) uniform distribu
tion. This section presents four additional pdfs that are encountered often in operations
research studies: the discrete binomial and Poisson, and the continuous exponential
and normaL

12.4.1 Binomial Distribution

Suppose that a manufacturer produces a certain product in lots of n items each. The
fraction of defective items in each lot,p, is estimated from historical data. We are inter
ested in determining the pdf of the number of defectives in a lot.

There are C~ = x!(n n~ x)! distinct combinations of x defectives in a lot of n items,

and the probability of getting each combination is pX(1 - Pt-x
• It follows (from the

addition law of probability) that the probability of k defectives in a lot of n items is

P{x = k} = CZpk(l - pt-k,k = 0, 1,2, ... ,n

This is the binomial distribution with parameters nand p. Its mean and variance are
given by

E{x} = np

var{x} = np(l - p)

Example 12.4-1

John Doe's daily chores require making 10 round trips by car between two towns. Once through
with all 10 trips, Mr. Doe can take the rest of the day off, a good enough motivation to drive
above the speed limit. Experience shows that there is a 40% chance of getting a speeding ticket
on any round trip.

3. What is the probability that the day will end without a speeding ticket?
b. If each speeding ticket costs $80, what is the average daily fine?

The probability of getting a ticket on anyone trip is P = .4. Thus, the probability of not get
ting a ticket in anyone day is

This means that there is less than 1% chance of finishing the day without a fine. In fact, the aver
age fine per day can be computed as

Average fine = $80E{x} = $80(np) = 80 X 10 X .4 = $320

Remark. P{x = O} can be computed using excelStatTables.xls. Enter 10 in F7,.4 in G7, and 0
in 17. The answer, P{x = O} = .006047, is given in M7.
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PROBLEM SET 12.4A

*1. A fair die is rolled 10 times. What is the probability that the rolled die will not show an
even number?

2. Suppose that five fair coins are tossed independently. What is the probability that exactly
one of the coins will be different from the remaining four?

*3. A fortune teller claims to predict whether or not people will amass financial wealth in
their lifetime by examining their handwriting. To verify this claim, 10 millionaires and 10
university professors were asked to provide samples of their handwriting.The samples
are then paired, one millionaire and one professor, and presented to the fortune teller.
We say that the claim is true if the fortune teller makes at least eight correct predictions.
What is the probability that the claim is proved true by a "fluke"?

4. In a gambling casino game you are required to select a number from 1 to 6 before the op
erator rolls three fair dice simultaneously. The casino pays you as many dollars as the
number of dice that match your selection. If there is no match, you pay the casino only
$1. What is your long-run expected payoff from this game?

S. Suppose that you play the following game: You throw 2 fair dice. If there is no match, you
pay 10 cents. If there is a match, you get 50 cents. What is the expected payoff for the game?

6. Prove the formulas for the mean and variance of the binomial distribution.

12.4.2 Poisson Distribution

Customers arrive at a bank or a grocery store in a "totally random" fashion, meaning
that we cannot predict when someone will arrive. The pdf describing the number of
such arrivals during a specified period is the Poisson distribution.

Let x be the number of events (e.g., arrivals) that take place during a specified
time unit (e.g., a minute or an hour). Given that Ais a known constant, the Poisson pdf
is defined as

Ake-A
P{x = k} = -,-,k = 0,1,2, ...

k.

The mean and variance of the Poisson are

E{x} = A

var{x} = A

The formula for the mean reveals that Amust represent the rate at which events occur.
The Poisson distribution figures prominently in the study of queues (see

Chapter 15).

Example 12.4-2

Repair jobs arrive at a small-engine repair shop in a totally random fashion at the rate of 10 per
day.

a. What is the average number of jobs that are received daily at the shop?
b. What is the probability that no jobs will arrive during any 1 hour, assuming that the

shop is open 8 hours a day?
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TIle average number of jobs received per day equals A = 10 jobs per day. To compute the
probability of no arrivals per hour, we need to compute the arrival rate per hour-namely,
Ahour = ~ = 1.25 jobs per hour. Thus

O!
1.250e-1.25

O! = .2865

Remark. The probability above can be computed with exceIStatTables.xls. Enter 1.25 in F16
and 0 in 116. The answer, .286505, appears in M16.

PROBLEM SET 12.4B

*1. Customers arrive at a service facility according to a Poisson distribution at the rate of
four per minute. What is the probability that at least one customer will arrive in any given
30-second interval?

2. The Poisson distribution with parameter A approximates the binomial distribution with
parameters (n, p) when n~ 00, p ~ 0, and np~ A. Demonstrate this result for the situ
ation where a manufactured lot is known to contain 1% defective items. If a sample of 10
items is taken from the lot, compute the probability of at most one defective item in a
sample, first by using the (exact) binomial distribution and then by using the (approxi-
mate) Poisson distribution. Show that the approximation will not be acceptable if the
value of p is increased to, say, 0.5.

Customers arrive randomly at a checkout counter at the average rate of 20 per hour.

(a) Determine the probability that the counter is idle.

(b) What is the probability that at least two people are in line awaiting service?

Prove the formulas for the mean and variance of the Poisson distribution.

12.4.3 Negative Exponential Distribution

If the nwnber of arrivals at a service facility during a specified period follows the Pois
son distribution (Section 12.4.2), then, automatically, the distribution of the time
interval between successive arrivals must follow the negative exponential (or, simply,
the exponential) distribution. Specifically, if A is the rate at which Poisson events occur,
then the distribution of time between successive arrivals, x, is

f(x) = Ae-AX, x > 0

Figure 12.3 graphs f(x).
The mean and variance of the exponential distribution are

var{x} =
10 per

E{x}
1

= -
A
1

A

lat the The mean E {x} is consistent with the definition of A. If Ais the rate at which events
occur, then ±is the average time interval between successive events.
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FIGURE 12.3

Probability density function of the exponential
distribution

Example 12.4-3

f(x)

A

x

Cars arrive at a gas station randomly every 2 minutes, on the average. Determine the probability
that the interarrival time of cars does not exceed 1 minute.

The desired probability is of the form P{x ~ A}, where A = 1 minute in the present ex
ample. The determination of this probability is the same as computing the CDF of x-namely,

P{x :s: A} = l A

Ae-Ax dx

= -e-Axl:
= 1 - e-AA

The arrival rate for the example is computed as

1 . I .A = 2 arnva per mmute

Thus,

P{x :s: l} = 1 - e-{U(l) = .3934

Remark. You can use excelStatTables.xls to compute the probability above. Enter .5 in F9, 1 in
J9. The answer, .393468, appears in 09.

PROBLEM SET 12.4C

:~1. Walmark Store gets its customers from within town and the surrounding rural areas.
Town customers arrive at the rate of 5 per minute, and rural customers arrive at the rate
of 7 per minute. Arrivals are totally random. Determine the probability that the interar
rival time for all customers is less than 5 seconds.

2. Prove the formulas for the mean and variance of the exponential distribution.

12.4.4 Normal Distribution

The normal distribution describes many random phenomena that occur in everyday
life, including test scores, weights, heights, and many others. The pdf of the normal dis
tribution is defined as

f(x) = -_1-e-!(7f -00 < x < 00

V2'Tru2 '

I

. :,: .......:;.-;..:,--
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f(x)

- x

1 _!(X-IJ.)2
f(x) =~e 2 u

,j27T(J' 2

x

The mean and variance are

FIGURE 12.4

Probability density function of the normal random
variable
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E{x} = J-L
var{x} = (T2

The notation N (J-L, (T) is usually used to represent a normal dis tribution with mean J-L
and standard deviation (T.

Figure 12.4 graphs the normal pdf, f(x). The function is always symmetrical
around the mean J-L.

An important property of the normal random variable is that it approximates the
distribution of the average of a sample taken from any distribution. This remarkable
result is based on the following theorem:

Central Limit Theorem. Let Xl> X2,"" and X n be independent and identically
distributed random variables, each with mean J-L and standard deviation (T, and define

As n becomes large (n~ 00), the distribution of S/1 becomes asymptotically normal with
mean nJ-L and variance n(T2, regardless of the original distribution of Xl> X2," ., and Xll'

The central limit theorem particularly tells us that the distribution of the average
of a sample of si~e n drawn from any distribution is asymptotically normal with mean
J-L and variance ~l-' This result has important applications in statistical quality control.

The CDP of the normal random variable cannot be determined in a closed form.
As a result, normal tables (Table 1 in Appendix B or exceIStatTables.xls) have been
prepared for this purpose. These tables apply to the standard normal with mean zero
and standard deviation I-that is, N(O, 1). Any normal random variable, x (with mean
J-L and standard deviation (T), can be converted to a standard normal, Z, by using the
transformation

X-J-L
z =

Over 99% of the area under any normal distribution IS enclosed In the range
J-L - 3(T < X :s; J-L + 3(T, known as the 6-sigma limits.
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Example 12.4-4

The inside diameter of a cylinder has the specifications 1 ± .03 in. The machining process output
follows a normal distribution with mean 1 cm and standard deviation .1 em. Determine the per
centage of production that will meet the specifications.

Let x represent the output of the process. The probability that a cylinder will meet specifica
tions is

P{1 - .03 :£ x :::;; 1 + .03} = P{.97 :£ x :£ 1.03}

Given I-L = 1 and u = .1, the equivalent standard normal probability statement is

P{.97 :::;; x :::;; 1.03} = p{-9:~1 :£ z :£ l.O~-l}

= P{-.3 :::;; z :::;; .3}

= P{z :£ .3} - P{z :£ -.3}

= P{z 5 .3} - P{z 2 .3}

= P{z :£ .3} - [1 - P{z 5.3}]

= 2P {z :£ .3} - 1

= 2 x .6179 - 1

= .2358

The given probability statements can be justified by picturing the shaded area in Figure
12.5. Notice that P{z 5 -.3} = 1 - P{z :£ .3} because of the symmetry of the pdf. The value
.6179 (= P{z 5 .3} is obtained from the standard nonnal table (Table 1 in Appendix B).

Remark. P{a 5 x :£ b} can be computed directly from exceIStatTables.xls. Enter 1 in F15,.1
in GIS, .97 in 115, and 1.03 in K15. The answer, .235823, appears in Q15.

PROBLEM SET 12.4D

1. The college of engineering at U of A requires a minimum ACf score of 26. The test score
among high school seniors in a given school district is normally distributed with mean 22
and standard deviation 2.

(a) Determine the percentage of high school seniors who are potential en!9.neering recruits.

(b) If U of A does not accept any student with an ACf score less than 17, determine the
percentage of students that will not be eligible for admission at U of A.

FIGURE 12.5

Calculation of P{ -.3 ::; z ::; .3} in a standard normal
distribution

f(z)

-.3 0 .3 z
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The weights of individuals who seek a helicopter ride in an amusement park have a mean
of 180 lb and a standard deviation of 15 lb. The helicopter can carry five persons but has a
maximum weight capacity of 1000 lb. What is the probability that the helicopter will not
take off with five persons aboard? (Hint: Apply the central limit theorem.)

TIle inside diameter of a cylinder is normally distributed with a mean of 1 cm and a stan
dard deviation of .01 em. A solid rod is assembled inside eaeh cylinder. The diameter of
the rod is also normally distributed with a mean of .99 cm and a standard deviation of
.01 cm. Determine the percentage of rod-cylinder pairs that will not fit in an assembly.
(Hint: The difference between two normal random variables is also normal.)

EMPIRICAL DISTRIBUTIONS

In the preceding sections, we presented the properties of the pdfs and CDFs of random
variables and gave examples of five common distributions (uniform, binomial, Poisson,
exponential, and normal). How do we determine such distributions in practice?

The determination, actually estimation, of any pdf is rooted in the raw data we
collect about the situation under study. For example, to estimate the pdf of the inter
arrival time of customers at a grocery store, we first record the clock time of arriving
customers. The desired interarrival data are the differences between successive arrival
times.

This section shows how sampled data can be converted into a pdf:

Step 1. Summarize the raw data in the form of an appropriate frequency histogram,
and determine the associated empirical pdf.

Step 2. Use the goodness-oj-fit test to test if the resulting empirical pdf is sampled
from a known theoretical pdf.

Frequency Histogram. A frequency histogram is constructed from raw data by dividing
the range of the data (minimum value to maximum value) into nonoverlapping bins.
Given the boundaries (Ii-I> IJ for bin i, the corresponding frequency is determined as
the count (or tally) of all the raw data, x, that satisfy Ij - 1 < x <: Ii.

Example 12.5-1

The data in the following table represent the service time (in minutes) in a service facility for a
sample of 60 customers.

.7 .4 3.4 4.8 2.0 1.0 5.5 6.2 1.2 4.4
1.5 2.4 3.4 6.4 3.7 4.8 2.5 5.5 .3 8.7
2.7 .4 2.2 2.4 .5 1.7 9.3 8.0 4.7 5.9

.7 1.6 5.2 .6 .9 3.9 3.3 .2 .2 4.9
9.6 1.9 9.1 1.3 10.6 3.0 .3 2.9 2.9 4.8
8.7 2.4 7.2 1.5 7.9 11.7 6.3 3.8 6.9 5.3

The minimum and maximum values of the data are .2 and 11.7, respectively. This means that
all data can be covered by the range (0, 12). We arbitrarily divide the range (0, 12) into 12 bins,
each of width 1 minute. The proper selection of the bin width is crucial in capturing the shape of the
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empirical distribution. Although there are no hard rules for determining the optimal bin width, a
general rule of thumb is to use from 10 to 20 bins. In practice, it may be necessary to try different
bin widths before encountering an acceptable histogram.

The following table summarizes the histogram information for the given raw data. The
relative-frequency column, Ii, is computed by dividing the entries of the observed-frequency
column, OJ, into the total number of observations (n = 60). For example,fl = M= .1833. The
cumulative-frequency column, F;, is generated by summing the values of Ii recursively. Thus,
FI = II = .1833 and F2 = FI + h = .1833 + .1333 = .3166.

Observations Observed Relative Cumulative relative
Bin interval tally frequency, OJ frequency, Ii frequency, F;

1 (0,1) ++tt ++tt I 11 .1833 .1833
2 (1,2) ++tt I[I 8 .1333 .3166
3 (2,3) ++tt 1111 9 .1500 .4666
4 (3,4) ++tt II 7 .1167 .5833
5 (4,5) 001 6 .1000 .6833
6 (5,6) wt 5 .0833 .7666
7 (6,7) !III 4 .0667 .8333
8 (7,8) II 2 .0333 .8666
9 (8,9) III 3 .0500 .9166

10 (9,10) III 3 .0500 .9666
11 (10,11) I 1 .0167 .9833
12 (11,12) I 1 .0167 1.0000

Totals 60 1.0000

The values of Ii and F; provide the equivalences of the pdf and the COF for the service time,
t. Because the frequency histogram provides a "discretized" version of the continuous service
time, we can convert the resulting COF into a piecewise-continuous function by joining the
resulting points with linear segments. Figure 12.6 provides the empirical pdf and COF for the
example. The COF, as given by the histogram, is defined at midpoints of the bins.

1.0

0.8

0.6

0.4

0.2

1 2 3 4 5 6 7 8 9 10 11 12
l (minutes)

CDF FIGURE 12.6

Piecewise-linear CDF of an empirical
distribution
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We can now estimate the mean, t, and variance, st. of the empirical distribution as follows.
Let N be the number of bins in the histogram, and define ti as the midpoint of bin i, then

N

t = ~fJi
i=1

N

s~ = ~flii ~ t)2
i=1

Applying these formulas to the present example, we get

t = .1833 X .5 + .133 X 1.5 + ... + 11.5 X .0167 = 3.934 minutes

s~ = .1883 x (.5 - 3.934)2 + .1333 X (1.5 - 3.934f +
+ .0167 x (11.5 - 3.934)2 = 8.646 minutes2

Excel Moment

Histograms can be constructed conveniently using Excel spreadsheet. From the menu bar,
select Tools =;> p~t~AnalY,$i~ =>ff~stbgtam,then enter the pertinent data in the dia
logue box. However, the Histogram tool in Excel does not produce the mean and stan
dard deviation of the frequency histogram directly as part of the output.2 For this reason,
Excel template excelMeanVar.xls is designed to calculate the sample mean, variance,
maximum, and minimum, as well as allow the use of Excel Histogram tool.

Figure 12.7 stores the input data for Example 12.5-1 in cells A8:E19. The tem
plate automatically updates the sample statistics (mean, standard deviation, minimum,
and maximum) as the data are entered into the spreadsheet.

To construct the histogram, first create the upper bin limits and enter them in col
umn F starting at row 8. In the present example, cells F8:F19 are used to specify bin
limits. The location of the sample data and bin limits must then be entered in the His
togram dialogue box (as shown in the bottom section of Figure 12.7):

Input Range: A8:E19
Bin Range: F8:F19
Output Options: Check Cumulative Percentage and Chart Output.

Now, click OK. The output is as shown in Figure 12.8.

Goodness-of-tit Test. The goodness-of-fit test evaluates whether the sample used in
determining the empirical distribution is drawn from a specific theoretical distribution.
An initial evaluation of the data can be made by comparing the empirical CDF with
the CDF of the assumed theoretical distribution. If the two CDFs do not deviate
excessively, then it is likely that the sample is drawn from the proposed theoretical
distribution. This initial "hunch" can be supported further by applying the goodness-of
fit test. The following example provides the details of the proposed procedure.

2Data Analysis in Excel does provide the separate tool, Descriptive Statistics, which can be used to compute
the mean and variance (as well as volumes of other statistics which you may never use!).
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ABC 0 E
1 Sample Mean and Variance +Histogram
2 Out ut:
3 Sam Ie size 60 Mean 39367
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FIGURE 12.7

Excel histogram input data and dialogue box for Example 12.5-1

Example 12.5-2

Test the data in Example 12.5-1 for a hypothesized exponential distribution.

Our first task is to specify the function that defines the theoretical distribution. From Ex

ample 12.5-1, t = 3.934 minutes. Hence, A = 3.;34 = .2542 service per minute for the hypothe

sized exponential distribution (see Section 12.4.3), and the associated pdf and CDP are given as

f(t) = .2542e-·2542J
, t > 0

F(T) = [Tf(t)dt = 1 - e-·2542T, T > 0
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Histogram
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FIGURE 12.8

Excel histogram output of Example 12.5-1

We can use the COF, F(T), to compute the theoretical COF for T = .5, 1.5, ... , and 11.5,
and then compare them graphically with empirical value F;, i = 1,2, ... , 12, as computed in Ex
ample 12.5-1. For example,

F(.5) = 1 - e-(·2542X.5) ~ .12

Figure 12.9 provides the resulting comparison. A cursory examination of the two graphs
suggests that the exponential distribution may indeed provide a reasonable fit for the observed
data.

The next step is to implement a goodness-of-fit test. Two such tests exist: (1) the Kolmogrov
Smirnov test, and (2) the chi-square test. We will limit our presentation to the chi-square test.

The chi-square test is based on a measurement of the deviation between the empirical
and theoretical frequencies corresponding to the different bins of the developed histogram.

FIGURE 12.9

Comparison of the empirical CDF and theoretical exponential CDF
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Specifically, the theoretical frequency, ni, corresponding to the observed frequency, 0;, of bin i, is
computed as

ni = n j~/(t) dt

= n(F(l;) - F(li-d)

= 60(e-·'2542/ i-, _ e-·254'2/i )

Given 0i and ni for bin i of the histogram, a measure of the deviation between the empirical
and observed frequencies is computed as

2 ~ (Oi - n;)2
X=L..J

i=l nj

As N ~ 00, X2 is asymptotically a chi-square pdf with N - k - 1 degrees of freedom,
where k is the number of parameters estimated from the raw (or histogrammed) data and used
for defining the theoretical distribution.

The null hypothesis stating that the observed sample is drawn from the theoretical distribu
tion I( t) is accepted if

'2 '2
X < XN-k-l.l-a

where X~-k-1.1-a is the chi-square value for N - k - 1 degrees of freedom and a significance
level.

TIle computations of the test are shown in the following table:

Observed Theoretical (Oi-nY
Bin frequency,oi frequency, ni IIi

1 (0,1) 11 13.448 .453

2 (1,2) 8 10.435 .570

3 (2,3) 9 8.095 .100

4 (3,4) 7 6.281 .083

5 (4,5) 6 }11 4.873 }8.654 .636
6 (5,6) 5 3.781

7 (6,7) 4

}9
2~3 }

8 (7,8) 2 2.276 6.975 .588

9 (8,9) 3 1.766

10 (9,10) 3

}s 1370 }
11 (10,11) 1 1.063 6.111 .202

12 (10,00) 1 3.678

Totals n = 60 n = 60 x2-value = 2.623

As a rule of thumb, the expected theoretical frequency count in any bin must be at least 5.
This requirement is usually resolved by combining successive bins until the rule is satisfied, as
shown in the table. The resulting number of bins becomes N = 7. Because we are estimating
one parameter from the observed data (namely, A), the degrees of freedom for the chi-square
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must equal 7 - 1 - 1 = 5. If we assume a significance level a = .05, we get the critical value
xl-os = 11.07 (use Table 3 in Appendix B or, in exceIStatTables.xls, enter 5 in F8 and .05 in L8
and receive the answer in R8). Because the x2-value (= 2.623) is less than the critical value, we
accept the hypothesis that the sample is drawn from the hypothesized exponential pdf.

PROBLEM SET 12.5A

1. The following data represent the interarrival time (in minutes) at a service facility:

4.3 3.4 .9 .7 5.8 3.4 2.7 7.8
4.4 .8 4.4 1.9 3.4 3.1 5.1 1.4

.1 4.1 4.9 4.8 15.9 6.7 2.1 2.3
2.5 3.3 3.8 6.1 2.8 5.9 2.1 2.8

:10m, 3.4 3.1 .4 2.7 .9 2.9 4.5 3.8

used 6.1 3.4 1.1 4.2 2.9 4.6 7.2 5.1
2.6 .9 4.9 2.4 4.1 5.1 11.5 2.6

ribu- .1 10.3 4.3 5.1 4.3 1.1 4.1 6.7
2.2 2.9 5.2 8.2 1.1 3.3 2.1 7.3
3.5 3.1 7.9 .9 5.1 6.2 5.8 1.4

.5 4.5 6.4 1.2 2.1 10.7 3.2 2.3
3.3 3.3 7.1 6.9 3.1 1.6 2.1 1.9

ance

(a) Use Excel to develop three histograms for the data based on bin widths of .5, 1, and
1.5 minutes, respectively.

(b) Compare graphically the cumulative distribution of the empirical CDF and that of a
corresponding exponential distribution.

(c) Test the hypothesis that the given sample is drawn from an exponential distribution.
Use a 95% confidence level.

(d) Which of the three histograms is "best" for the purpose of testing the null hypothesis?

2. The following data represent the period (in seconds) needed to transmit a message.

25.8 67.3 35.2 36.4 58.7
47.9 94.8 61.3 59.3 93.4
17.8 34.7 56.4 22.1 48.1
48.2 35.8 65.3 30.1 72.5
5.8 70.9 88.9 76.4 17.3

77.4 66.1 23.9 23.8 36.8
5.6 36.4 93.5 36.4 76.7

89.3 39.2 78.7 51.9 63.6
89.5 58.6 12.8 28.6 82.7
38.7 71.3 21.1 35.9 29.2

iSt 5.
d, as
iting
uare

Use Excel to construct a suitable histogram. Test the hypothesis that these data are
drawn from a uniform distribution at a 95% confidence level, given the following addi
tional information about the theoretical uniform distribution:

(a) The range of the distribution is between 0 and 100.

(b) The range of the distribution is estimated from the sample (lata.

(c) The maximum limit on the range of the distribution is 100, but the minimum limit
must be estimated from the sample data.
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3. An automatic device is used to count the volume of traffic at a busy intersection. The de
vice records. the time a car arrives at the intersection on a continuous time scale, starting
from zero. The following table provides the (cumulative) arrival time (in minutes) for the
first 60 cars. Use Excel to construct a suitable histogram, then test the hypothesis that the
interarrival time is drawn from an exponential distribution. Use a 95% confidence level.

Arrival time Arrival time Arrival time Arrival time
Arrival (min) Arrival (min) Arrival (min) Arrival (min)

1 5.2 16 67.6 31 132.7 46 227.8
2 6.7 17 69.3 32 142.3 47 233.5
3 9.1 18 78.6 33 145.2 48 239.8
4 12.5 19 86.6 34 154.3 49 243.6
5 18.9 20 91.3 35 155.6 50 250.5
6 22.6 21 97.2 36 166.2 51 255.8
7 27.4 22 97.9 37 169.2 52 256.5
8 29.9 23 111.5 38 169.5 53 256.9
9 35.4 24 116.7 39 172.4 54 270.3

10 35.7 25 117.3 40 175.3 55 275.1
11 44.4 26 118.2 41 180.1 56 277.1
12 47.1 27 124.1 42 188.8 57 278.1
13 47.5 28 1127.4 43 201.2 58 283.6
14 49.7 29 127.6 44 218.4 59 299.8
15 67.1 30 127.8 45 219.9 60 300.0
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Decision Analysis and Games

Chapter Guide. Decision problems involving a finite number of alternatives arise fre
quently in practice. The tools used to solve these problems depend largely on the type
of data available (deterministic, probabilistic, or uncertain). The analytic hierarchy
process (AHP) is a prominent tool for dealing with decisions under certainty, where
subjective judgment is quantified in a logical manner and then used as a basis for
reaching a decision. For probabilistic data, decision trees comparing the expected cost
(or profit) for the different alternatives are the basis for reaching a decision. Decisions
under uncertainty use criteria reflecting the decision maker's attitude toward risk,
ranging from optimism to pessimism. Another tool of decision under uncertainty is
game theory, where two opponents with conflicting goals aim to achieve the best out of
the worst conditions available to each.To demonstrate the importance of these tools in
practice, four case analyses in Chapter 24 on the CD deal with using AHP to determine
the layout of a CIM laboratory, using decision-tree analysis to determine booking lim
its in hotel reservations, applying Bayes probabilities to evaluate the results of a med
ical test, and using game theory to rank golfers in Ryder Cup matches. To assist you in
understanding the details of the different tools, the chapter provides 4 spreadsheets.
You will also find TORA useful in carrying out the graphical and algebraic solution of
games. A basic knowledge of probability and statistics is needed for this chapter.

This chapter includes summaries of 4 real-life applications, 10 solved examples, 4
spreadsheets,63 end-of-section problems, and 5 cases. The cases are in Appendix E on
the CD. The AMPLlExcel/SolverrrORA programs are in folder ch13Files.

Real-life Application-Layout Planning of a Computer Integrated
Manufacturing (CIM) Facility

The engineering college in an academic institution wants to establish a elM laborato
ry in a vacated building. The new lab will serve as a teaching and research facility and a
center of technical excellence for industry. Recommendations are solicited from the
faculty regarding a layout plan for the new laboratory, from which the ideal and ab
solute minimum square footage for each unit are compiled. The study uses both AHP

489



490 Chapter 13 Decision Analysis and Games

(analytic hierarchy process) and goal programming to reach a satisfactory compromise
solution that meets the needs for teaching, research, and service to industry. The details
of the study are given in Case 9, Chapter 24 on the CD.

13.1 DECISION MAKING UNDER CERTAINTY-ANALYTIC HIERARCHY
PROCESS (AHP)

The LP models presented in Chapters 2 through 9 are examples of decision making
under certainty in which all the functions are well defined. AHP is designed for situa
tions in which ideas, feelings, and emotions affecting the decision process are quanti
fied to provide a numeric scale for prioritizing the alternatives.

Example 13.1-1 (Overall Idea of AHP)

Martin Hans, a bright high school senior, has received full academic scholarships from three in
stitutions: U of A, U of B, and U of C. To select a university, Martin specifies two main criteria: lo
cation and academic reputation. Being the excellent student he is, he judges academic reputation
to be five times as important as location, giving a weight of approximately 17% to location and
83% to reputation. He then uses a systematic analysis (which will be detailed later) to rank the
three universities from the standpoint of location and reputation. The following table ranks the
two criteria for the three universities:

Percent weight estimates for

Criterion

Location
Reputation

VolA

12.9
54.5

VofB

27.7
27.3

Vole

59.4
18.2

The structure of the decision problem is summarized in Figure 13.1. The problem involves a
single hierarchy (level) with two criteria (location and reputation) and three decision alterna
tives (U of A, U of B, and U of C).

The ranking of each university is based on computing the following composite weights:

U of A = .17 X .129 + .83 X .545 = .4743

U of B = .17 X .277 + .83 X .273 = .2737

U of C = .17 X .594 + .83 X .182 = .2520

Based on these calculations, U of A has the highest composite weight, and hence represents
the best choice for Martin.

Remarks. The general structure of AHP may include several hierarchies of criteria.
Suppose in Example 13.1-1 that Martin's twin sister, Jane, was also accepted with full
scholarship to the three universities. Their parents stipulate that they both must attend
the same university so they can share one car. Figure 13.2 summarizes the decision
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Summary of AHP calculations for Example 13.1-1
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problem, which now involves two hierarchies. The values p and q (presumably equal)
at the first hierarchy represent the relative weights given to Martin's and Jane's opinions
about the selection process. The second hierarchy uses the weights (Pb pz) and (qt, q2)
to reflect Martin's and Jane's preferences regarding location and reputation of each
university. The remainder of the decision-making chart can be interpreted similarly. Note I
that p + q = 1, PI + P2 = 1, ql + qz = 1, Pll + PIZ + P13 = 1, P21 + P22 + P23 = 1,
qll + q12 + q13 = 1, q21 + q22 + qZ3 = 1. The determination of the U of A composite
weight, shown in Figure 13.2, demonstrates the manner in which the computations are
carried out.

PROBLEM SET 13.1A

*1. Suppose that the following weights are specified for the situation of Martin and Jane:

P = .5, q = .5

PI = .17, P2 = .83

PI1 = .129, PI2 = .277, Pn = .594

P21 = .545, Pn = .273, P23 = .182

ql = .3, q2 = .7

qll = .2, ql2 = .3, ql3 = .5

q21 = .5, q22 = .2, q23 = .3

Based on this information, rank the three universities.

Determination of the Weights. The crux of AHP is the determination of the relative
weights (such as those used in Example 13.1-1) to rank the decision alternatives.
Assuming that we are dealing with n criteria at a given hierarchy, the procedure
establishes an n X n pairwise comparison matrix, A, that quantifies the decision maker's
judgment regarding the relative importance of the different criteria. The pairwise
comparison is made such that the criterion in row i (i = 1, 2, ... , n) is ranked relative
to every other criterion. Letting aij define the element (i, j) of A, AHP uses a discrete
scale from 1 to 9 in which aij = 1 signifies that i and j are of equal importance, aij = 5
indicates that i is strongly more important than j, and aij = 9 indicates that i is
extremely more important than j. Other intermediate values between 1 and 9 are inter
preted correspondingly. Consistency in judgement requires that aij = k automatically

implies that aji = i. Also, all the diagonal elements ail of A must equal!, because they
rank a criterion against itself.

Example 13.1-2

To show how the comparison matrix A is determined for Martin's decision problem of Example
13.1-1, we start with the main hierarchy dealing with the criteria of reputation and location of a
university. In Martin's judgment, the reputation is strongly more important than the location, and
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hence al2 = 5. This assignment automatically implies that Q21 = ~. Using the symbols Rand L to
represent reputation and location, the associated comparison matrix is given as

L R

A=~G D
The relative weights of Rand L can be determined from A by normalizing it into a new ma

trix N. The process requires dividing the elements of each column by the sum of the elements of
the same column. Thus, to compute N, we divide the elements of columns 1 by (S + 1 = 6) and

those of column 2 by (1 + ~ = 1.2). The desired relative weights, WR and WL, are then computed
as the row average:

N=

L

L(.17
R .83

R

.17)

.83

Row average
WL = .17 ; .17 = .17

- .83 + .83 - 83
WR - 2 - •

The computations yield wL = .17 and WR = .83, the weight used in Figure 13.1.The columns
of N are identical, a characteristic that occurs only when the decision maker exhibits perfect
consistency in specifying the entries of the comparison matrix A. This point is discussed further
later in this section.

The relative weights of the alternatives U of A, U of B, and U of C are determined within
each of the Land R criteria using the following two comparison matrices, whose elements are
based on Martin's judgment regarding the relative importance of the three universities.

The following normalized matrices are determined by dividing all the entries by the respective
column-sums:

AL-column sum = (8,3.5, 1.7)

Awcolumn sum = (1.83,3.67,5.5)

ative
tives.
~dure

.ker's
rWlse

ative
crete

i = 5
~ i is

Summing the columns, we get

A

A(1
B 2
C 5

B
1
2

1

2

C

I).

A

A(1B !
2

C !
3

B
2

1

C

nter
lcally

they

Imple
n of a

:J.,and

.~. ~'. :;Jj;:.,;.,__

A

A (0125
N L = B .250

C .625

A

A(.S45
Nn = B .273

C .182

B
0143

.286

.571

B
.545

.273

.182

C

.118)

.294

.588

C

,545)
.273

.182

Row averages
_ .125 + .143 + .118 - 129

WLA - 3 - .

_ .250 + .286 + .294 - 277
WLB - 3 - •

WLC = .625 + .5;1 + ,588 = .594

Row averages
_ 545 + .545 + .545 - 545

WRA - 3 - .
_ .273 + .273 + .273 - 273

WRB - 3 - •
_ .182 + .182 + .182 - 182

WRC - 3 - •
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The values (WLA' WLB, wLd = (.129, .277, .594) provide the respective location weights for
U of A, U of B, and U of C. Similarly, (WRA' WRB, WRC) = (.545, .273, .182) give the relative
weights regarding academic reputation.

Consistency of the Comparison Matrix. In Example 13.1-2, all the columns of the .,
normalized matrices Nand NR are identical, and those of NL are not. As such, the
original comparison matrices A and A R are said to be consistent, whereas A L is not.

Consistency implies coherent judgment on the part of the decision maker regard
ing the pairwise comparisons. Mathematically, we say that a comparison matrix A is
consistent if .

For example, in matrix A R of Example 13.1-2, al3 = 3 and aI2a23 = 2 x ~ = 3. TIlis
property requires all the columns (and rows) of A to be linearly dependent. In particu
lar, the columns of any 2 x 2 comparison matrix are by definition dependent, and
hence a 2 X 2 matrix is always consistent.

It is unusual for all comparison matrices to be consistent. Indeed, given that
human judgment is the basis for the construction of these matrices, some "reasonable"
degree of inconsistency is expected and tolerated.

To determine whether or not a level of consistency is "reasonable," we need to
develop a quantifiable measure for the comparison matrix A. We have seen in
Example 13.1-2 that a perfectly consistent A produces a normalized matrix N in
which all the columns are identical-that is,

N=

It then follows that the original comparison matrix A can be determined from N by di
viding the elements of column i by Wi (which is the reverse of the process of determin
ing N from A). We thus have

1 WI WI
W:l w"

UI1. 1 UI1.

A= WJ w"

w" w" 1WI w.z

From the given definition of A, we have

1 WI WI
WI nWl WIw.z w"

W2 1 UI1.
Wz nwz WzWj 1V" =n

w" w" 1 wn nWn W nWI w.z

_.~.
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More compactly, given that w is the column vector of the relative weights Wj, i =

1, 2, ... , n, A is consistent if,

Aw = nw

For the case where A is not consistent, the relative weight, Wi, is approximated by
the average of the n elements of row i in the normalized matrix N (see Example 13.1-2).
Letting w be the computed average vector, it can be shown that

In this case, the closer n max is to n, the more consistent is the comparison matrix A.

Based on this observation, AHP computes the consistency ratio as

CR = CI
RI

where

CI = Consistency index of A

nmax - n
=

n - 1

RI = Random consistency of A

1.98(n - 2)
= n

The random consistency index, RI, was determined empirically as the average CI of a
large sample of randomly generated comparison matrices, A.

If CR :5 .1, the level of inconsistency is acceptable. Otherwise, the inconsistency
is high and the decision maker may need to reestimate the elements aii of A to realize
better consistency.

We compute the value of nmax from Aw = nmaxW by noting that the ith equation is

n

~aiiwi = nmaxWj, i = 1,2, ... , n
i=1

Given L~=lWj = 1, we get

This means that the value of I1max can be determined by first computing the column vec
tor Aw and then summing its elements.

Example 13.1-3

In Example 13.1-2, the matrix A L is inconsistent because the columns of its NL are not identical.
Test the degree of consistency of NL.
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We start by computing Ilmax' From Example 13.1-2, we have

WI = .129, W2 = .277, W3 = .594

Thus,

t)(·129) _ (0.3863)2 .277 - 0.8320

1 .594 1.7930

This yields

Ilmax = .3863 + .8320 + 1.7930 = 3.0113

Hence, for n = 3,

C/ = nmax - n = 3.0113 - 3 = .00565
11-1 3-1

1.98(n - 2) 1.98 X 1
R/= = =.~

n 3

CR = ~~ = .~::5 = .00856

Because CR < .1, the level of inconsistency in A L is acceptable.

Excel Moment

Template excelAHP.xls is designed to handle comparison matrices with sizes up to
8 x 8. As in the Excel models in Chapters 10 and 11, user input drives the model.
Figure 13.3 demonstrates the application of the model to Example 13.1-2.1 The com
parison matrices of the problem are entered one at a time in the (top) input data sec
tion of the spreadsheet. The order in which the comparison matrices are entered is
unimportant, though it makes more sense to consider them in their natural hierarchal
order. Upon entering the data for a comparison matrix, the output (bottom) section of
the spreadsheet will provide the associated normalized matrix together with its consis
tency ratio, CR. The user must copy the weights, W, from column J and paste them into
the solution summary area (the right section of the spreadsheet). Remember to use
,::PasteSpetiaI. ===? Values when performing this step to guarantee a permanent
record. The process is repeated until all the comparison matrices have been stored in
columns K:R.

In Figure 13.3, the final ranking is given in cells (K20:K22). The formula in cell K20 is

=$L$4*$L7+$L$5*$N7

This formula provides the final evaluation of alternative VA, and is copied in cells K21
and K22 to evaluate alternatives VB and Uc. Note how the formula in K20 is con
structed: Cell reference to the alternative VA must be column-fixed (namely, $L7 and
$N7), whereas all other references must be row-and-column-fixed (namely, $L$4 and

IThe more accurate results of the spreadsheet differ from those in Example 13.1-2 and 13.1-3 because of
manual roundoff approximation. Columns F:I and rows 11:13 are suppressed to conserve space.
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Excel solution of Example 13.1-2 (file exceIAHP.xls)
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$L$5). The validity of the copied formulas requires that the (column-fixed) alternative
weights of each matrix appear in the same column with no intelvening empty cells.
For example, in Figure 13.3, the AR-weights in column L cannot be broken between
two columns. The same applies to the AL-weights in column N. There are no restric
tions on the placement of the A-weights because they are row- and column-fixed in
the formula.

You can embellish the formula to capture the names of the alternatives directly.
Here is how the formula for alternative VA should be entered:

=$K7&" ="&TEXT( $L$4*$L7+$L$5*$N7,"####0.00000")

The procedure for evaluating alternatives can be extended readily to any number
of hierarchy levels. Once you develop the formula correctly for the fIrst alternative, the
same formula applies to the remaining alternatives simply by copying it into (same col
umn) succeeding rows. Remember that all cell references in the fonnula must be row
and-column-fixed,except for references to the alternatives, which must be column-fixed
only. Problem 1, Set 13.1b, asks you to develop the formula for a 3-level problem.

~lls K21
is con

;L7 and
J$4 and

PROBLEM SET 13.182

1. Consider the data of Problem 1, Set 13.la. Copy the weights in a logical order into the solu
tion summary section of the spreadsheet excelAHExls, then develop the formula for evalu
ating the first alternative, VA, and copy it to evaluate the remaining two alternatives.

ecause of
2Spreadsheet excelAHP.xls should be helpful in verifying your calculations.
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*2. TIle personnel department at C&H has narrowed the search for a prospective employee
to three candidates: Steve (S), Jane (J), and Maisa (M). The final selection is based on
three criteria: personal interview (I), experience (E), and references (R). The department
uses matrix A (given below) to establish the preferences among the three criteria. After
interviewing the three candidates and compiling the data regarding their experiences and
references, the matrices AI, A E, and A R are constructed. Which of the three candidates
should be hired? Assess the consistency of the data.

I E R S J M

A ~ ~(:
2

I) sr 3

I)1 AI = J ~ 1

R 4 5 M ! 54

S J M S J M

sc I 2) S(I 1

D
3 2

A E = J 3 1 ~ A R = J 2 1
M ! 2 1 M 1 22

3. Kevin and June Park (K and J) are in the process of buying a new house. Three houses,
A, B, and C, are available. The Parks have agreed on two criteria for the selection of the
house: yard work (Y) and proximity to work (W), and have developed the following com
parison matrices. Rank the three houses in order of priority, and compute the consistency
ratio for each matrix.

K J

KC ~)A = J ~

y W Y W

A = YC D YC ~)K W 3 A
J = W *

A B C A B C A B C A B C

A( 2 3) A(I 2

1) l
4

~)
A(l 1

:)
2

A KY = B ~ 1 2 A Kw = B ! 1 AJY = B ~ 1 A JW = B ~ 1

C ! 1 1 C 2 3 C ! 1 C ! 1
3 2 2 3 4 3

*4. A new author sets three criteria for selecting a publisher for an OR textbook: royalty
percentage (R), marketing (M), and advance payment (A). Two publishers, Hand P, have
expressed interest in the book. Using the following comparison matrices, rank the two
publishers and assess the consistency of the decision.

R M A

Re 1

l)A = M 1 1
A 4 5

H P H P H P

A R = H(l ~) AM = HC 0 AA = HC ~)P ! P 2 P 12

..,;
./: ..:~i:.: ..:..:
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5. A professor of political science wants to predict the outcome of a school board election.
Three candidates, Ivy (I), Bahrn (8), and Smith (5) are running for one position. The pro
fessor places the voters into three categories: left (L), center (C), and right (R). The can
didates are judged based on three factors: educational experience (E), stand on issues
(5), and personal character (P). The following are the comparison matrices for the first
hierarchy of left, center, and right.

A=

Ac =

L

L(lC .!.
2

R 2

E

E(15 !
2

P 1
2

C
2

1
5

5
2

1

1

R

I)
P

:) A R =

E

E(l5 !
3

P 2

E

E(l
5 1
P !

9

5 P

~ I)
5 P

iD
The professor was able to generate nine more comparison matrices to account for

the three candidates at the second hierarchy representing experience, stand on issues,
and personal character. The AHP process was then used to reduce these matrices to the
following relative weights:

;es,
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com

tency

Candidate

Ivy
Bahrn
Smith

E

.1

.5

.4

Left

s

.2

.4

.4

p

.3

.2

.5

E

.3

.4

.3

Center

s

.5

.2

.3

p

.2

.4

.4

E

.7

.1

.2

Right

s

.1

.4

.5

p

.3

.2

.5

c

Determine the winning candidate and assess the consistency of the decision.

6. A school district is in dire need to reduce expenses to meet new budgetary restrictions at
its elementary schools. Two options are available: Delete the physical education program
(E), or delete the music program (M). The superintendent of the district has formed a
committee with equal-vote representation from the School Board (5) and the Parent
Teacher Association (P) to study the situation and make a recommendation. The commit
tee has decided to study the issue from the standpoint of budget restriction (B) and
students needs (N). The analysis produced the following comparison matrices:
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A s =
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B

B(1
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E
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N
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M
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Analyze the decision problem, and make a recommendation.
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7. An individual is in the process of buying a car and has narrowed the choices to three
models, MI, M2, and M3. The deciding factors include purchase price (PP), maintenance
cost (MC), cost of city driving (CD), and cost of rural driving (RD). The following table
provides the relevant data for 3 years of operation:

Car model

Ml
M2
M3

PP($)

6,000
8,000

10,000

MC($)

1800
1200
600

CD($)

4500
2250
1125

RD($)

1500
750
600

Use the cost data to develop the comparison matrices. Assess the consistency of the
matrices, and determine the choice of model.

13.2 DECISION MAKING UNDER RISK

Under conditions of risk, the payoffs associated with each decision alternative are de
scribed by probability distributions. For this reason, decision making under risk can be
based on the expected value criterion, in which decision alternatives are compared based
on the maximization of expected profit or the minimization of expected cost. However,
because the approach has limitations, the expected value criterion can be modified to
encompass other situations.

Real-Life Application-Booking Limits in Hotel Reservations

Hotel La Posada has a total of 300 guest rooms. Its clientele includes both business and
leisure travelers. Rooms can be sold in advance (usually to leisure travelers) at a dis
count price. Business travelers, who usually are late in booking their rooms, pay full
price. La Posada must thus set a booking limit on the number of discount rooms sold to
leisure travelers in order to take advantage of the full-price business customers. Decision
tree analysis is used in Case 10, Chapter 24 on the CD to determine the booking limit.

13.2.1 Decision Tree-Based Expected Value Criterion

The expected value criterion seeks the maximization of expected (average) profit or
the minimization of expected cost. The data of the problem assumes that the payoff (or
cost) associated with each decision alternative is probabilistic.

Decision Tree Analysis. The following example considers simple decision situations
with a finite number of decision alternatives and explicit payoff matrices.

Example 13.2-1

Suppose that you want to invest $10,000 in the stock market by buying shares in one of two com
panies: A and B. Shares in Company A, though risky, could yield a 50% return on investment
during the next year. If the stock market conditions are not favorable (i.e., "bear" market), the
stock may lose 20% of its value. Company B provides safe investments with 15% return in a
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"bull" market and only 5% in a "bear" market. All the publications you have consulted (and
there is always a flood of them at the end of the year!) are predicting a 60% chance for a "bull"
market and 40% for a "bear" market. Where should you invest your money?

The decision problem can be summarized as follows:

I-year return on $10,000 investment

of the

Decision alternative

Company A stock
Company B stock
Probability of occurrence

"Bull" market ($)

5000
1500

.6

"Bear" market ($)

-2000
500
.4
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The problem can also be represented as a decision tree as shown in Figure 13.4. Two types of
nodes are used in the tree: a square (0) represents a decision point and a circle ( 0 ) represents a
chance event. Thus, two branches emanate from decision point 1 to represent the two alternatives
of investing in stock A or stock B. Next, the two branches emanating from chance events 2 and 3
represent the "bull" and the "bear" markets with their respective probabilities and payoffs.

From Figure 13.4, the expected I-year returns for the two alternatives are

For stock A = $5000 X .6 + (-2000) X .4 = $2200

For stock B = $1500 X .6 + $500 X .4 = $1l00

Based on these computations, your decision is to invest in stock A.

Remarks. In the terminology of decision theory, the "bull" and the "bear" markets in
the preceding example are referred to as states of nature, whose chances of occurrence
are probabilistic (.6 versus .4). In general, a decision problem may include 11. states of
nature and m alternatives. If Pj (> 0) is the probability of occurrence for state of
nature j and aij is the payoff of alternative i, given state of nature j(i = 1,2, ... , m;
j = 1,2, ... ,11.), then the expected payoff for alternative i is computed as

EVj = ailPi + ai2P2 + ... + ainPm i = 1, 2, ... , n

By definition, Pi + pz + ... + Pn = 1.

lations

va com
~stment

et), the
nn in a

"Bull" market (.6)
r------ $5000

Invest in stock A
,-------'---'--1 2

"Bear" market (.4)
'------- -$2000

"Bull" market (.6)
,-----------'--'- $1500

Invest in stock B
'---""-'---.::.c....;;.=....:..--=--~---i 3

"Bear" market (.4)
'------- $500

FIGURE 13.4

Decision-tree representation of the stock market
problem
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The best alternative is the one associated with EV* = maxi{ElI;} or EV" ~

mini{ElI;}, depending, respectively, on whether the payoff of the problem represents
profit (income) or loss (expense).

PROBLEM SeT 13.2A

1. You have been invited to play the Fortune Wheel game on television. The wheel operates
electronically with two buttons that produce hard (ll) or soft (5) spin of the wheel. The
wheel itself is divided into white (W) and red (R) half-circle regions. You have been told
that the wheel is designed to stop with a probability of .3 in the white region and .7 in the
red region. The payoff you get for the game is

W R

H

s

$800

-$2500

$200

$1000

Draw the associated decision tree, and specify a course of action.

*2. Farmer McCoy can plant either corn or soybeans. The probabilities that the next harvest
prices of these commodities will go up, stay the same, or go down are .25, .30, and .45, re
spectively. If the prices go up, the corn crop will net $30,000 and the soybeans will net
$10,000. If the prices remain unchanged, McCoy will (barely) break even. But if the prices
go down, the corn and soybeans crops will sustain losses of $35,000 and $5000, respectively.

(a) Represent McCoy's problem as a decision tree.

(b) Which crop should McCoy plant?

3. You have the chance to invest in three mutual funds: utility, aggressive growth, and glob
al. The value of your investment will change depending on the market conditions. There
is a 10% chance the market will go down, 50% chance it will remain moderate, and 40%
chance it will perform well. The following table provides the percentage change in the in
vestment value under the three conditions:

Percent return on investment

Alternative

Utility
Aggressive growth
Global

Down market (%)

+5
-10

+2

Moderate market (%)

+7
+5
+7

Up market (%)

+8
+30
+20

(a) Represent the problem as a decision tree.

(b) Which mutual fund should you select?

4. You have the chance to invest your money in either a 7.5% bond that sells at face value
or an aggressive growth stock that pays only 1% dividend. If inflation is feared, the inter
est rate will go up to 8%, in which case the principal value of the bond will go down by
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10%, and the stock value will go down by 20%. If recession materializes, the interest rate
will go down to 6%. Under this condition, the principal value of the bond is expected to
go up by 5%, and the stock value will increase by 20%. If the economy remains un
changed, the stock value will go up by 8% and the bond principal value will remain the
same. Economists estimate a 20% chance that inflation will rise and 15% that recession
will set in. Assume that you are basing your investment decision on next year's economic
conditions.

(a) Represent the problem as a decision tree.

(b) Would you invest in stocks or bonds?

5. APC is about to launch its new Wings 'N Things fast food nationally.The research depart
ment is convinced that Wings 'N Things will be a great success and wants to introduce it
immediately in all AFC outlets without advertising. The marketing department sees
"things" differently and wants to unleash an intensive advertising campaign. The adver
tising campaign will cost $100,000 and if successful will produce $950,000 revenue. If the
campaign is unsuccessful (there is a 30% chance it won't be), the revenue is estimated at
only $200,000. If no advertising is used, the revenue is estimated at $400,000 with proba
bility .8 if customers are receptive and $200,000 with probability .2 if they are not.

(a) Draw the associated decision tree.

(b) What course of action should AFC follow in launching the new product?

A fair coin is flipped three successive times. You receive $1.00 for each head (ll) that
turns up and an additional $.25 for each two successive heads that appear (remember
that HHH includes two sets of Hll). However, you give back $1.10 for each tail that
shows up. You have the options to either play or not play the game.

(a) Draw the decision tree for the game.

(b) Would you favor playing this game?

You have the chance to play the following game in a gambling casino. A fair die is rolled
twice, leading to four outcomes: (1) both rolls show an even match, (2) both rolls show an
odd match, (3) the outcomes are either even-odd or odd-even, and (4) all other out
comes. You are allowed to bet your money on exactly two outcomes with equal dollar
amounts. For example, you can bet equal dollars on even-match (outcome 1) and odd
match (outcome 2). The payoff for each dollar you bet is $2.00 for the first outcome, $1.95
for the second and the third outcomes, and $1.50 for the fourth outcome.

(a) Draw the decision tree for the game.

(b) Which two choices would you make?

(c) Do you ever come out ahead in this game?

8. Acme Manufacturing produces widget batches with .8%,1 %,1.2%, and 1.4% defectives
according to the respective probabilities .4, .3, .25, and .05. Three customers, A, B, and C,
are contracted to receive batches with no more than .8%, 1.2%, and 1.4% defectives, re
spectively. If the defectives are higher than contracted, Acme will be penalized $100 for
each .1 % increase. Conversely, supplying higher-quality batches than required costs
Acme $50 for each.l%. Assume that the batches are not inspected before shipment.

(a) Draw the associated decision tree.

(b) Which of the three customers should have the highest priority to receive their order?

9. TriStar plans to open a new plant in Arkansas. The company can open a full-sized plant
now or a small-sized plant that can be expanded 2 years later if high. demand conditions
prevail. The time horizon for the decision problem is 10 years. TriStar estimates that the
probabilities for high and low demands over the next 10 years is .75 and .25, respectively.
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The cost of immediate construction of a large plant is $5 million, and a small plant costs
$1 million. Expansion of a small plant 2 years from now costs $4.2 million. The income
from the operation over the next 10 years is given in the following table:

Estimated annual income (in $1000)

Alternative

Full-sized plant now
Small-sized plant now
Expanded plant in 2 years

High demand

1000
250
900

Low demand

300
200
200

(a) Develop the associated decision tree, given that after 2 years TriStar has the options
to expand or not expand the small plant.

(b) Develop a construction stra tegy for TriStar over the next 10 years. (For simplicity,
ignore the time value of money.)

10. Rework Problem 9, assuming that the annual interest rate is 10% and that the decisions
are made considering the time value of money. [Note: You need compound interest tables
to solve this problem. You can use Excel function NPV(i, R) to compute the present
value of cash flows stored in range R for an interest rate i. NPV assumes that each cash
flow occurs at the end of the year.]

11. Rework Problem 9, assuming that the demand can be high, medium, and low with proba
bilities .7, .2, and .1, respectively. Expansion of a small plant will occur only if demand in
the first 2 years is high. The following table gives the annual income. Ignore the time
value of money.

Estimated annual income (in $1000)

Alternative High demand Medium demand Low demand

Full-sized plant now 1000 500 300
Small-sized plant now 400 280 150
Expanded plant in 2 years 900 600 200

*12. Sunray Electric Coop uses a fleet of 20 trucks to service its electric network. The compa
ny wants to develop a schedule of periodic preventive maintenance for the fleet. The
probability of a breakdown in year 1 is zero. For year 2, the breakdown probability is .03,
and it increases annually by .01 for years 3 through 10. Beyond year 10, the breakdown
probability is constant at .13. A random breakdown costs $200 per truck, and a scheduled
maintenance costs only $75 per truck. Sunray wants to determine the optimal period (in
months) between scheduled preventive maintenances.

(a) Develop the associated decision tree.

(b) Determine the optimal maintenance-cycle length.

13. Daily demands for loaves of bread at a grocery store are specified by the following prob
ability distribution:

n

p"

100

.20

150

.25

200

.30

250

.15

300

.10
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The store buys a loaf for 55 cents and sells it for $1.20 each. Any unsold loaves at the
end of the day are disposed of at 25 cents each. Assume that the stock level is restricted
to one of the demand levels specified for Pn'

(a) Develop the associated decision tree.

(b) How many loaves should be stocked daily?

14. In Problem 13, suppose that the store wishes to extend the decision problem to a 2-day
horizon. The alternatives for the second day depend on the demand in the first day. If de
mand on day 1 equals the amount stocked, the store will continue to order the same
quantity for day 2; if it exceeds the amount stocked, the store can order any of the higher
level stocks; and if it is less than the amount stocked, the store can only order any of the
lower-level stocks. Develop the associated decision tree, and determine the optimal or
dering strategy.

*15. An automatic machine produces a (thousands of) units of a product per day. As a in
creases, the proportion of defectives,p, goes up according to the following probability
density function

Each defective item incurs a loss of $50. A good item yields $5 profit.

(a) Develop a decision tree for this problem.

(b) Determine the value of a that maximizes the expected profit.

16. The outer diameter, d, of a cylinder is processed on an automatic machine with upper and
lower tolerance limits of d + tv and d - tL . The production process follows a normal dis
tribution with mean J.L and standard deviation CT. An oversized cylinder is reworked at the
cost of c\ dollars. An undersized cylinder must be salvaged at the cost of C2 dollars. Devel
op the decision tree and determine the optimal selling d for the machine.

17. (Cohan and Associates, 1984) Modern forest management uses controlled fires to reduce
fire hazards and to stimulate new forest growth. Management has the option to postpone
or plan a burning. In a specific forest tract, if burning is postponed, a general administra
tive cost of $300 is incurred. If a controlled burning is planned, there is a 50% chance that
good weather will prevail and burning will be carried out at a cost of $3200. The results of
the burning may be either successful with probability .6 or marginal with probability .4.
Successful execution will result in an estimated benefit of $6000 and marginal execution
will provide only $3000 in benefits. If the weather is poor, burning will be cancelled, and
the associated planning cost is $1200 with no benefit.

(a) Develop a decision tree to determine whether burning should be planned or
postponed.

(b) Study the sensitivity of the solution to changes in the probability of good weather.

18. (Rappaport, 1967) A manufacturer has used linear programming to determine the opti
mum production mix of the various TV models it produces. Recent information received
by the manufacturer indicates that there is a 40% chance that the supplier of a compo
nent used in one of the models may raise the price by $35. The manufacturer thus can
take one of two actions: Continue to use the original (optimum) product mix (AI), or use
a new (optimum) mix based on the higher component price (A2). Action At is ideal if
the price is not raised and action A2 will also be ideal if the price is raised. The following
table provides the resulting total profit per month as a function of the action taken and
the random outcome regarding the component price.
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Price increase (01) No price increase (02)

Original mix (AI)

New mix (A2)

$400,000

$372,000

$295,500

$350,000

(a) Develop the associated decision tree and determine which action should be adopted.

(b) The manufacturer can invest $1000 to obtain additional information about whether
or not the price will increase. This information says that there is a 58% chance that
the probability of price increase will be .9 and a 42 % chance that the probability of
price increase will be .3. Would you recommend the additional investment?

*19. Aspiration Level Criterion. Acme Manufacturing uses an industrial chemical in one of its
processes. The shelf life of the chemical is 1 month, following which any amount left is de
stroyed. The use of the chemical by Acme (in gallons) occurs randomly according to the
following distribution:

{
20~,

f(x) = ~,

100 :5 x :5 200

otherwise

The actual consumption of the chemical occurs instantaneously at the start of the
month. Acme wants to determine the level of the chemical that satisfies two conflicting
criteria (or aspiration levels): The average excess quantity for the month does not
exceed 20 gallons and the average shortage quantity for the month does not exceed
40 gallons.

13.2.2 Variations of the Expected Value Criterion

This section addresses three issues relating to the expected value criterion. The first
issue deals with the determination of posterior probabilities based on experimentation,
and the second deals with the utility versus the actual value of money.

Posterior (Bayes') Probabilities. The probabilities used in the expected value
criterion are usually determined from historical data (see Section 12.5). In some cases,
these probabilities can be adjusted using additional information based on sampling or
experimentation. The resulting probabilities are referred to as posterior (or Bayes')
probabilities, as opposed to the prior probabilities determined from raw data.

Real-Life Application-easey's Problem: Interpreting and Evaluating a New Test

A screening test of a newborn baby, named Casey, indicated a C14:1 enzyme deficien
cy. The enzyme is required to digest a particular form of long-chain fats, and its absence
could lead to severe illness or mysterious death (broadly categorized under sudden in
fant death syndrome or SIDS). The test had been administered previously to approxi
mately 13,000 newborns and Casey was the first to test positive. Though the screening
test does not in itself constitute a definitive diagnosis, the extreme rarity of the condition
led her doctors to conclude that that there was an 80-90% chance that she was suffering
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from this deficiency. Given that Casey tested positive, Bayes' posterior probability is
used to assess whether or not the child has the C14:1 deficiency. The analysis of this sit
uation is detailed in Case 11, Chapter 24 on the CD.

Example 13.2-2

This example demonstrates how the expected-value criterion is modified to take advantage of
the posterior probabilities. In Example 13.2-1, the (prior) probabilities of.6 and .4 of a "bull" and
a "bear" market are determined from available financial publications. Suppose that rather than
relying solely on these publications, you have decided to conduct a more "personal" investiga
tion by consulting a friend who has done well in the stock market. The friend offers the general
opinion of "for" or "against" investment quantified in the following manner: If it is a "bull" mar
ket, there is a 90% chance the vote will be "for." If it is a "bear" market, the chance of a "for"
vote is lowered to 50%. How do you make use of this additional information?

The statement made by the friend provides conditional probabilities of "for/against," given
that the states of nature are "bull" and "bear" markets. To simplify the presentation, let us use
the following symbols:

VI = "For" vote

V:2 = "Against" vote

m\ = "Bull" market

m2 = "Bear" market

The friend's statement may be written in the form of probability statements as

P{Vdml} = .9, P{Vzlmd = .1

P{Vtlm2} = .5, P{V:2lm2} = .5

With this additional information, the decision problem can be summarized as follows:

1. If the friend's recommendation is "for," would you invest in stock A or in stock B?

2. If the friend's recommendation is "against," would you invest in stock A or in stock B?

TIle problem can be summarized in the form of a decision tree as shown in Figure 13.5. Node
1 is a chance event representing the "for" and "against" prossibilities. Nodes 2 and 3 are decision
points for choosing between stocks A and B, given that the friend's votes are "for" and "against," re
spectively. FlOally, nodes 4 to 7 are chance events representing the "bull" and "bear" markets.

To evaluate the different alternatives in Figure 13.5, it is necessary to compute the posterior
probabilities P{milvJ shown on the ml- and mTbranches of chance nodes 4, 5, 6, and 7. These
posterior probabilities take into account the additional information provided by the friend's
"for/against" recommendation and are computed according to the following general steps:
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Step 1. The conditional probabilities P {Vjl mi} of the problem can be summarized as
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Stock A,--=...c-c:..::....:c.=---{ 4

"Bear" market (m )
L........::-::--....,.---,=----=-=-=-,2 -$2000

P{m2Ivl} = .270

"Bull" market (m )...--:::-:-- ....:.1 $1500
P{mllvd = .730

'1-

I

"Against" vote (V2) 3

FIGURE 13.5

1

,--S::.:t:.:.o.:::ck::...;B:::"--I 5

"Bear" market (m )
L-:-- -:-:-2 $500

P{m21vl} = .270

"Bull" market (m )
.----,-------.,.---=-_,.."....,--1 $5000

P{m1Iv2} = .231

.----.:::..$t:..=o.::.:ck:....:A:...:....--{ 6

"Bear" market (m )
'---:,---- --:-::-2 -$2000

P{m2Iv2} = .769

"Bull" market (m ).---- ;........:.1 $1500
P{m1Iv2} ::= .231

Stock B'--::..:.::..:..:::....::=------{ 7

"Bear" market (m2)
$500

P{m2Iv2} ::= .769

Decision tree for the stock market problem with posterior probabilities

Step 2. Compute the joint probabilities as

Given the prior probabilities P{ml} = .6 and P{m2} = .4, the joint probabilities are
determined by multiplying the first and the second rows of the table in step 1 by .6
and .4, respectively. We thus get

ml~

m2~

The sum of all the entries in the table equals 1.

Step 3. Compute the absolute probabilities as

P{Vj} = LP{mi> Vi}' for all j
all i

.,'';'"
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These probabilities are computed from the table in step 2 by summing the rows of
each column, which yields

P{vd P{Vl}

.74 .26

Step 4. Determine the desired posterior probabilities as

These probabilities are computed by dividing the rows of each column in the table of
step 2 by the element of the corresponding column in the table of step 3, which
(rounded to three digits) yields

ml .730 .231

Jnl .270 .769

These are the probabilities shown in Figure 13.5. They are different from the original
prior probabilities P{md = .6 and P{m2} = A.

We are now ready to evaluate the alternatives based on the expected payoffs for
nodes 4, 5, 6, and 7-that is,

"For" Vote

Stock A at node 4 = 5000 X .730 + (-2000) X .270 X = $3110

Stock B at node 5 = 1500 X .730 + 500 X .270 = 1230

Decision. Invest in stock A.

"Against" Vote

Stock A at node 6 = 5000 X .231 + (-2000) X .769 = -$383

Stock B at node 7 = 1500 X .231 + 500 X .769 = $731

Decision. Invest in stock B.

The preceding decisions are equivalent to saying that the expected payoffs at decision
nodes 2 and 3 are $3110 and $731, respectively (see Figure 13.5). Thus, given the probabilities
P{vd = .74 and P{V2} = .26 as computed in step 3, we can compute the expected payoff for
the entire decision tree. (See Problem 3, Set 13.2b.)
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FIGURE 13.6

Excel calculation of Bayes posterior probabilities for
Example 13.2-2 (file excelBayes.xls)

.
----j--- ---,,

--1
-----11--+-----:
-------------.- ~----·-·1

---..- ----- -_..~

Excel Moment

Excel file excelBayes.xls is designed to determine the Bayes posterior probabilities for
prior probability matrices of sizes up to 10 x 10 (rows 7:14 and columns F:K and O:V
are hidden to conserve space). The input data include P{m} and P{v1m}. The spread
sheet checks input data errors and displays an appropriate error message. Figure 13.6
demonstrates the application of the model to the problem of Example 13.2-2.

PROBLEM SET 13.2B

1. Data in a community college show that 75% of new students who took calculus in high
school do well, compared with 50% of those who did not take calculus. Admissions for
the current academic year show that only 30% of the new students have completed a
course in calculus. What is the probability that a new student will do well in college?

*2. Elektra receives 75% of its electronic components from vendor A and the remaining 25%
from vendor B.lhe percentage of defectives from vendors A and Bare 1% and 2%, re
spectively. When a random sample of size 5 from a received lot is inspected, only one defec
tive unit is found. Detennine the probability that the lot is received from vendor A. Repeat
the same for vendor B. (Hint: The probability of a defective item in a sample is binomial.)

3. In Example 13.2-2, suppose that you have the additional option of investing the original
$10,000 in a safe certificate of deposit that yields 8% interest. Your friend's advice applies
to investing in the stock market only.

(a) Develop the associated decision tree.

(b) What is the optimal decision in this case? (Hint: Make use of P{VI} and P{ 'lh} given
in step 3 ofExample 13.2-2 to determine the expected value of investing in the stock
market.)

*4. You are the author of what promises to be a successful novel. You have the option to ei
ther publish the novel yourself or through a publisher. 'The publisher is offering you

.:~
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.;;':':=£1 ~f'.~.~t:.,.
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$20,000 for signing the contract. If the novel is successful, it will sell 200,000 copies. If it
isn't, it will sell only 10,000 copies. The publisher pays a $1 royalty per copy. A market
survey by the publisher indicates that there is a 70% chance that the novel will be suc
cessfuLIf you publish the novel yourself, you will incur an initial cost of $90,000 for print
ing and marketing, but each copy sold will net you $2.

(a) Based on the given information, would you accept the publisher's offer or publish
the book yourself? .

(b) Suppose that you contract a literary agent to conduct a survey concerning the poten
tial success of the novel. From past experience, the agent advises you that when a
novel is successful, the survey will predict the wrong outcome 20% of the time.
When the novel is not successful, the survey will give the correct prediction 85% of
the time. How would this information affect your decision?

5. Consider Farmer McCoy's decision situation in Problem 2, Set 13.2a. The farmer has the
additional option of using the land as a grazing range, in which case he is guaranteed a
payoff of $7500. The farmer has also secured additional information from a broker regard
ing the degree of stability of future commodity prices. The broker's assessment of "favor
able" and "unfavorable" is further quantified by the following conditional probabilities:

.2

.6

.8

.4

P{ajlwil-No campaign

.85 .15

.50 .50

.15 .85

.7

.05

.3

.95

P{a)Vi} -With campaign

The symbols at and a2 represent the "favorable" and "unfavorable" assessment by the
broker, and 5J, 52, and 53 represent, respectively, the up, same, and down change in future
prices.

(a) Draw the associated decision tree.

(b) Specify the optimal decision for the problem.

In Problem 5, Set 13.2a, suppose that AFC management has decided to test-market its
Wings 'N Things in selective locations. The outcome of the test is either "good" (a I) or
"bad" (a2)' The test yields the following conditional probabilities with and without the
advertising campaign:

igh 6.
:or
a
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The symbols Vt and ~ represent "success" and "no success," and WI and W2 represent "re
ceptive" and "not receptive."

(a) Develop the associated decision tree.

(b) Determine the best course of action for AFe.

.:~
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7. Historical data at Acme Manufacturing estimate a 5% chance that a manufactured batch
of widgets will be unacceptable (bad). A bad batch has 15% defective items, and a good
batch includes only 4% defective items. Letting a = lh (= 92) indicate that the batch is
good (bad), the associated prior probabilities are given as

P{a = 8t } = .95 and P{a = 82} = .05

Instead of shipping batches based solely on prior probabilities, a test sample of two items
is used, which gives rise to three possible outcomes: (1) both items are good (Zl)' (2) one
item is good (Z2), and (3) both items are defective (Z3)'
(a) Determine the posterior probabilities P{9i lzJ, i = 1,2; j = 1,2,3.

*(b) Suppose that the manufacturer ships batches to two customers, A and B. The con
tracts specify that the defectives for A and B should not exceed 5% and 8%, respec
tively. A penalty of $100 is incurred per percentage point above the maximum limit.
Supplying better-quality batches than specified by the contract costs the manufactur
er $50 per percentage point. Develop the associated decision tree, and determine a
priority strategy for shipping the batches.

Utility Functions. In the preceding presentation, the expected value criterion has been
applied to situations where the payoff is real money. There are cases where the utility
rather than the real value should be used in the analysis. To illustrate this point, suppose
there is a 50-50 chance that a $20,000 investment will produce a profit of $40,000 or be
lost completely. The associated expected profit is 40,000 x .5 - 20,000 X .5 = $10,000.
Although there is a net expected profit, different individuals may vary in interpreting
the result. An investor who is willing to accept risk may undertake the investment for a
50% chance to make a $40,000 profit. Conversely, a conservative investor may not be
willing to risk losing $20,000. From this standpoint, we say that different individuals
exhibit different attitudes toward risk, meaning that individuals exhibit different utility
regarding risk.

The determination of the utility is subjective. It depends on our attitude toward
accepting risk. In this section, we present a procedure for quantifying the degree of tol
erance of the decision maker toward risk. The end result is a utility function that takes
the place of real money.

In the preceding investment illustration, the best payoff is $40,000, and the worst
is -$20,000. We thus establish an arbitrary, but logical, utility scale, U, from 0 to 100,
in which U( -$20,000) = °and U($40,000) = 100. The utilities for values between
-$20,000 and $40,000 are determined as follows: If the decision maker's attitude is in
different toward risk, then the resulting utility function will.be a straight line joining
(0, -$20,000) and (100, $40,000). In this case, both the real money and its utility will
produce the same decisions. More realistically, the utility function takes other forms
that reflect the attitude of the decision maker toward risk. Figure 13.7 illustrates the
cases of individuals X, Y, and Z. Individual X is risk averse (or cautious) be,cause of ex
hibiting higher sensitivity to loss than to profit. Individual Z is the opposite, and hence
is a risk seeker. The figure demonstrates that for the risk-averse individual, X, the drop
in utility be corresponding to a loss of $10,000 is larger than the increase ab associated
with a gain of $10,000. For the same ± $10,000 changes, the risk seeker, Z, exhibits an
opposite behavior because de > ef. Further, individual Y is risk neutral because the
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FIGURE 13.7

Utility functions for risk averse (X), indifferent (Y), and risk seeker (2) decision makers

suggested changes yield equal changes in utility. In general, an individual may be both
risk averse and risk seekeing, in which case the associated utility curve will follow an
elongated S-shape.

Utility curves similar to the ones demonstrated in Figure 13.7 are determined by
"quantifying" the decision maker's attitude toward risk for different levels of cash
money. In our example, the desired range is (- $20,000 to $40,000), and the corresponding
utility range is (0 to 100). What we would like to do is specify the utility associated with in
termediate cash values, such as -$10,000, $0, $10,000, $20,000, and $30,000. The proce
dure starts by establishing a lottery for a cash amount x whose expected utility is given as:

Vex) = pV( -20,000) + (1 - p)U($40,000),0 < p $ 1

= op + 100(1 - p)

= 100 - lOOp

To determine U(x), we ask the decision maker to state a preference between a
guaranteed cash amount x and the chance to playa lottery in which a loss of -$20,000
occurs with probability p, and a profit of $40,000 is realized with probability 1 - p. The
decision maker translates the preference by specifying the value of p that will render
him indifferent between the two choices. For example, if x = $20,000, the decision
maker may say that a guaranteed $20,000 cash and the lottery are equally attractive if
p = .8. In this case, we can compute the utility of x = $20,000 as

U($20,000) = 100 - 100 x .8 = 20
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We continue in this manner until we generate enough points [x versus U(x)] to
identify the shape of the utility function. We may then determine the desired utility
function by using regression analysis or simply by using a piecewise-linear function.

Although we are using a quantitative procedure to determine the utility function,
the approach is far from being scientific. The fact that the procedure is totally driven by I
the contributed opinion of the decision maker casts doubt on the reliability of the ..
process. In particular, the procedure implicitly assumes that the decision maker is ra
tional, a requirement that cannot always be reconciled with the wide changes in behav-
ior and mood that typify human beings. In this regard, decision makers should take the
concept of utility in the broad sense that monetary values should not be the only criti-
cal factor in decision making.

PROBLEM SET H.2e

*1. You are a student at the University of Arkansas and desperately want to attend the next
Razorbacks basketball game. The problem is that the admission ticket costs $10, and you
have only $5. You can bet your $5 in a poker game, with a 50-50 chance of either doubling
your money or losing all of it.

(a) Based on the real value of money, would you be tempted to participate in the poker
game?

(b) Based on your ardent desire to see the game, translate the actual money into a utility
function.

(c) Based on the utility function you developed in (b), would you be tempted to partici
pate in the poker game?

*2. The Golden family have just moved to a location where earthquakes are known to occur.
TIley must decide whether they should build their house according to the high-standard
earthquake code. TIle construction cost using the earthquake code is $850,000; otherwise, a
comparable house can be constructed for only $350,000. If an earthquake occurs (and there
is a probability of .001 it might happen), a substandard home will cost $900,000 to repair.
Develop the lottery associated with this situation, assuming a utility scale from 0 to 100.

3. An investment of $10,000 in a high-risk venture has a 50-50 chance over the next year
of increasing to $14,000 or decreasing to $8000. Thus the net return can be either $4000
or -$2000.

(a) Assuming a risk-neutral investor and a utility scale from 0 to 100, determine the
utility of $0 net return on investment and the associated indifference probability.

(b) Suppose that two investors A and B have exhibited the following indifference
probabilities:

Indifference probability

Net return ($)

-2000
-1000

a
1000
2000
3000
4000

Investor A

1.00
0.30
0.20
0.15
0.10
0.05
0.00

Investor B

1.00
0.90
0.80
0.70
0.50
0.40
0.00
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Graph the utility functions for investors A and B and categorize each investor as ei
ther a risk-averse person or a risk seeker.

(c) Suppose that investor A has the chance to invest in one of two ventures, I or II. Venture I
can produce a net return of $3000 with probability .4 or a net loss of $1000 with probabil
ity .6. Venture II can produce a net return of $2000 with probability .6 and no return with
probability .4. Based on the utility function in (b), use the expected utility criterion to de
termine the venture investor A should select. What is the expected monetary value asso
ciated with the selected venture? (Hinr. Use linear interpolation of the utility function.)

(d) Repeat part (c) for investor B.

13.3 DECISION UNDER UNCERTAINTY

Decision making under uncertainty, as under risk, involves alternative actions whose
payoffs depend on the (random) states ofnature. Specifically, the payoff matrix of a de
cision problem with m alternative actions and n states of nature can be represented as

SII

le poker

.0 a utility

v(az. sz)

J partici-

) occur.
ndard
lerWlse, a
and there
repair.
0100.

t year
r $4000

~the

~ility.

Ice

The element ai represents action i and the element Sj represents state of nature j. The
payoff or outcome associated with action OJ and state Sj is v(aj, Sj)'

The difference between making a decision under risk and under uncertainty is
that in the case of uncertainty, the probability distribution associated with the states
Sj, j = 1, 2, ... , n, is either unknown or cannot be determined. This lack of information
has led to the development of the following criteria for analyzing the decision problem:

1. Laplace

2. Minimax

3. Savage

4. Hurwicz

These criteria differ in how conservative the decision maker is in the face of uncertainty.
The Laplace criterion is based on the principle of insuffi(:ient reason. Because the

probability distributions are not known, there is no reason to believe that the probabil
ities associated with the states of nature are different. The alternatives are thus evalu
ated using the optimistic assumption that all states are equally likely to occur-that is,
P{Sl} = P{S2} = ... = P{s,J = ~. Given that payoff v(ai, Sj) represents gain, the
best alternative is the one that yields

{
1 /I }max - Lv(aj, Sj)

Qj n j~l

If v(aj, Sj) represents loss, then minimization replaces maximization.
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TIle maximin (minimax) criterion is based on the conservative attitude of making
the best of the worst possible conditions. If v( ai, Sj) is loss, then we select the action
that corresponds to the minimax criterion

~~n{ms~x v(aj, Sj) }

If v( aj, Sj) is gain, we use the maximin criterion given by

mu~{~~n v(ai, Sj) }

The Savage regret criterion aims at moderating conservatism in the minimax
(maximin) criterion by replacing the (gain or loss) payoff matrix v( ai, Sj) with a loss (or
regret) r(ai' Sj) matrix, using the following transformation:

{

v(a;, Sj) - min{v(ak, Sj)}, if v is loss
Uk

r(ai, Sj) =
max{v(ak' Sj)} - v(ai, Sj), if v is gain

ak

To show why the Savage criterion "moderates" the minimax (maximin) criterion,
consider the following loss, v(aj, Sjlo matrix

Row max

$11,000

$10,000

$90

$10,000

$11,000

$10,000 +-- Minimax

The application of the minimax criterion shows that a2, with a definite loss of
$10,000, is preferable. However, we may choose aI, because there is a chance of limit
ing the loss to $90 only if S2 is realized.

Let us see what happens if we use the following regret, r(ai' Vj), matrix instead:

Row max

$1000

$0

$0

$9910

$1000 ~ Minimax

$9910

The minimax criterion, when applied to the regret matrix, will select aI, as desired.
The last test to be considered is Hurwicz criterion, which is designed to reflect

decision-making attitudes, ranging from the most optimistic to the most pessimistic (or
conservative). Define °:::; a :::; 1, and assume that v(aj, Sj) represents gain. Then the
selected action must be associated with

maax{a ffisax v(aj, Sj) + (1 - a)~in v(aj, Sj)}
I J J
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The parameter a is called the index of optimism. If a = 0, the criterion is conservative
because it applies the regular minimax criterion. If a = 1, the criterion produces opti
mistic results because it seeks the best of the best conditions. We can adjust the degree
of optimism (or pessimism) through a proper selection of the value of a in the specified
(0,1) range. In the absence of strong feeling regarding optimism and pessimism, a = .5
may be an appropriate choice.

If v(ai, Sj) represents loss, then the criterion is changed to

Example 13.3-1

National Outdoors School (NOS) is preparing a summer campsite in the heart of Alaska to train
individuals in wilderness survival. NOS estimates that attendance can fall into one of four cate
gories: 200, 250, 300, and 350 persons. The cost of the campsite will be the smallest when its size
meets the demand exactly. Deviations above or below the ideal demand levels incur additional
costs resulting from building surplus (unused) capacity or losing income opportunities when the
demand is not met. Letting al to a4 represent the sizes of the campsites (200,250, 300, and 350
persons) and SI to S4 the level of attendance, the following table summarizes the cost matrix (in
thousands of dollars) for the situation.

S1 S2 SJ S~

°1 5 10 18 25

°2 8 7 12 23

55 of OJ 21 18 12 21
imit-

04 30 22 19 15

tead:

The problem is analyzed using all four criteria.

Laplace. Given P{Sj} = }, j = 1 to 4, the expected values for the different actions are com
puted as

l.
:flect
c (or
1 the

E{ad = }(5 + 10 + 18 + 25) = $14,500

E{a2} = ~(8 + 7 + 12 + 23) = $12,500~ Optimum

E{a3} = }(21 + 18 + 12 + 21) = $18,000

E{a4} = ~(30 + 22 + 19 + 15) = $21,500
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Minimax. The minimax criterion produces the following matrix:

51 52 5J 54 Row max

01 5 10 18 25 25

°2 8 7 12 23 23

a3 21 18 12 21 21~Minimax

Q4 30 22 19 15 30

Savage. The regret matrix is determined by subtracting 5,7,12, and 15 from columns 1 to 4, re
spectively.lllUs,

5\ 52 53 54 Row max

al 0 3 6 10 10

a2 3 0 0 8 8~Minimax

°3 16 11 0 6 16

°4 25 15 7 0 25

HUfWicz. The following table summarizes the computations.

Alternative Row min Row max a(Row min) + (1 - a)(Row max)

aj 5 25 25 - 20a
a2 7 23 23 - 16a

OJ 12 21 21 - 9a
Q4 15 30 30 - 15a

Using an appropriate 0', we can determine the optimum alternative. For example, at 0' = .5,
either a I or a2 will yield the optimum, and at a = .25, a3 is the optimum.

Excel Moment

Template excelUncertainty.xls can be used to automate the computations of Laplace,
maximin, Savage, and Hurwicz criteria. The spreadsheet assumes a cost matrix. To use a
reward matrix, all entries must be multiplied by -1. Figure 13.8 demonstrates the ap
plication of the template to Example 13.3-1. The maximum matrix size is (10 X 10)
(columns F:K are hidden to conserve space).
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:···.·.·:A·· 0-'
:2-- Enter x to select method:

Decision Under Uncertainty
Output Results

) 4, re-

.:3':: Laplace x i
..- ---_.. i-'''--- --.- ... -

:'4 Minimax x i ._
-5 Savage x !

-:6:. Hurwicz x Alpha= 10.5 Optimum strate~ies

FIGURE 13.8

Excel solution of Example 13.3-1 (file exceIUncertainty_xls)

PROBLEM SET 13.3A

*1. Hank is an intelligent student and usually makes good grades, provided that he can re
view the course material the night before the test. For tomorrow's test, Hank is faced
with a small problem_ His fraternity brothers are having an all-night party in which he
would like to participate_ Hank has three options:

a1 = Party all night

a2 = Divide the night equally between studying and partying

03 = Study all night

Tomorrow's exam can be easy (sd, moderate (S2), or tough (S3)' depending on the
professor's unpredictable mood. Hank anticipates the following scores:

1=.5, 85

92

100

60

85

88

40

81

82

place,
usea

le ap
>< 10)

(a) Recommend a course of action for Hank (based on each of the fOUf criteria of deci
sions under uncertainty).

(b) Suppose that Hank is more interested in the letter grade he will get. The dividing
scores for the passing letter grades A to Dare 90,80,70, and 60, respectively. Would
this attitude toward grades call for a change in Hank's course of action?
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2. For the upcoming planting season, Farmer McCoy can plant corn (a1)' plant wheat (a2),
plant soybeans (a3)' or use the land for grazing (a4)' The payoffs associated with the dif
ferent actions are influenced by the amount of rain: heavy rainfall (SI)' moderate rainfall
(S2), light rainfall (S3)' or drought season (S4).

The payoff matrix (in thousands of dollars) is estimated as

5. 52 53 54

aj -20 60 30 -5

a2 40 50 35 0

a3 -50 100 45 -10

a4 12 15 15 10

Develop a course of action for Farmer McCoy.

3. One of N machines must be selected for manufacturing Q units of a specific product. The
minimum and maximum demands for the product are Q* and Q**, respectively. The total
production cost for Q items on machine i involves a fixed cost K; and a variable cost per
unit c;, and is given as

(a) Devise a solution for the problem under each of the four criteria of decisions under
uncertainty.

(b) For 1000 ~ Q ~ 4000, solve the problem for the following set of data:

13.4

13.4 GAME THEORY

Machine i

1
2
3
4

100
40

150
90

C;($)

5
12
3
8

Game theory deals with decision situations in which two intelligent opponents with con
flicting objectives are trying to outdo one another. Typical examples include launching ad
vertising campaigns for competing products and planning strategies for warring armies.

In a game conflict, two opponents, known as players, will each have a (finite or in
finite) number of alternatives or strategies. Associated with each pair of strategies is a
payoff that one player receives from the other. Such games are known as two-person
zero-sum games because a gain by one player signifies an equal loss to the other. It suf
fices, then, to summarize the game in terms of the payoff to one player. Designating the
two players as A and B with m and n strategies, respectively, the game is usually repre
sented by the payoff matrix to player A as
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aim

a2n,

The representation indicates that if A uses strategy i and B uses strategy j, the payoff to
A is aij' which means that the payoff to B is -aij'

Real-life Application-Ordering Golfers on the Final Day
of Ryder Cup Matches

In the final day of a golf tournament, two teams compete for the championship. Each
team captain must submit an ordered list of golfers (a slate) that automatically deter
mines the matches. It is plausible to assume that if two competing players occupy the
same order in their respective slates then there is 50-50 chance that either golfer will win
the match. This probability will increase when a higher-order golfer is matched with a
lower-order one. The goal is to develop an analytical procedure that will support or re
fute the idea of using slates. Case 12, Chapter 24 on the CD provides details on the study.

13.4.1 Optimal Solution of Two-Person Zero-Sum Games

Because games are rooted in conflict of interest, the optimal solution selects one or
more strategies for each player such that any change in the chosen strategies does not
improve the payoff to either player. These solutions can be in the form of a single pure
strategy or several strategies mixed according to specific probabilities. The following
two examples demonstrate the two cases.

Example 13.4-1

Two companies, A and B, sell two brands of flu medicine. Company A advertises in radio (Ad,
television (A 2 ), and newspapers (A 3 ). Company B, in addition to using radio (B l ), television
(B2), and newspapers (B3 ), also mails brochures (B4 ). Depending on the effectiveness of each
advertising campaign, one company can capture a portion of the market from the other. The fol
lowing matrix summarizes the percentage of the market captured or lost by company A.

)fi- Bl B2 B3 B4 Row min
id-
es. AI 8 -2 9 -3 -3
in-
sa A2 6 5 6 8 5<- Maximin

ion
uf- A3 -2 4 -9 5 -9

the Column max 8 5 9 8
re- i

Minimax
0";

,,~
..
-:~~.:..:.
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The solution of the game is based on the principle of securing the best of the worst for each
player. If Company A selects strategy A 1, then regardless of what B does, the worst that can hap
pen is that A loses 3% of the market share to B. This is represented by the minimum value of the
entries in row 1. Similarly, the strategy A 2 worst outcome is for A to capture 5% of the market
from B, and the strategy A 3 worst outcome is for A to lose 9% to B. These result are listed in the
"row min" column. To achieve the best of the worst, Company A chooses strategy A 2 because it
corresponds to the maximin value, or the largest element in the "row min" column.

Next, consider Company B's strategy. Because the given payoff matrix is for A, B's best of
the worst criterion requires determining the minimax value. The result is that Company B should
select strategy B2 .

The optimal solution of the game calls for selecting strategies A 2 and B2, which means that
both companies should use television advertising. The payoff will be in favor of company A, be
cause its market share will increase by 5%. In this case, we say that the value of the game is 5%,
and that A and B are using a saddle-point solution.

The saddle-point solution precludes the selection of a better strategy by either company. If
B moves to another strategy (B1> B3 , or B4 ), Company A can stay with strategy A 2, which en
sures that B will lose a worse share of the market (6% or 8%). By the same token, A does not
want to use a different strategy because if A moves to strategy A 3, B can move to B3 and realize
a 9% increase in market share. A similar conclusion is realized if A moves to AI, as B can move
to B4 and realize a 3% increase in market share.

The optimal saddle-point solution of a game need not be a pure strategy. Instead, the solu
tion may require mixing two or more strategies randomly, as the following example illustrates.

Example 13.4-2

Two players, A and B, play the coin-tossing game. Each player, unbeknownst to the other,
chooses a head (H) or a tail (T). Both players would reveal their choices simultaneously. If
they match (HH or TT), player A receives $1 from B. Otherwise, A pays B $l.

The following payoff matrix for player A gives the row-min and the column-max values cor
responding to A's and B's strategies, respectively.

BH BT Row min

Ali CJ -1

AT -1 1 -1

Column max 1 1

The maximin and the minimax values of the games are - $1 and $1, respectively. Because
the two values are not equal, the game does not have a pure strategy solution. In particular, if
Au is used by player A, player B will select Br to receive $1 from A. If this happens, A can
move to strategy AT to reverse the outcome of the game by receiving $1 from B. The constant
temptation to switch to another strategy shows that a pure strategy solution is not acceptable.
Instead, both players can randomly mix their respective pure strategies. In this case, the opti
mal value of the game will occur somewhere between the maximin and the minimax values of
the game-that is,

maximin (lower) value -< value of the game ::5 minimax (upper) value

;,;~~.__ .
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(See Problem 5, Set 13.4a.) Thus, in the coin-tossing example, the value of the game must lie be
tween -$1 and +$1.

PROBLEM SET 13.4A

1. Determine the saddle-point solution, the associated pure strategies, and the value of the
game for each of the following games. The payoffs are for player A.

*(a) B) B2 B) B4 (b) BJ B2 B) B4

AI 8 6 2 8 A) 4 -4 -5 6

A z 8 9 4 5 A z -3 -4 -9 -2

A) 7 5 3 5 A 3 6 7 -8 -9

A 4 7 3 -9 5

2. The following games give A's payoff. Determine the values of p and q that will make the
entry (2,2) of each game a saddle point:

(a) BI Bz B] (b) 81 B2 B)

Al 1 q 6 AI 2 4 5

Az p 5 10 A z 10 7 q

A) 6 2 3 A] 4 P 6

.her,
y. If

3. Specify the range for the value of the game in each of the following cases, assuming that
cor- the payoff is for player A:

*(a) B, Bz B] B4 (b) B) B2 B3 B4

Al 1 9 6 0 A] -1 9 6 8

Az 2 3 8 4 Az -2 10 4 6

A) -5 -2 10 -3 A3 5 3 0 7

A 4 7 4 -2 -5 A4 7 -2 8 4

lUse (c) BI Bz B) (d) B) B2 B] B4

if, if
AI 3 6 1 AI 3 7 1 3

can
tant Az 5 2 3 Az 4 8 0 -6
lble.
>pti- A) 4 2 -5 A J 6 -9 -2 4

~s of
4. Two companies promote two competing products. Currently, each product controls 50%

of the market. Because of recent improvements in the two products, each company is
preparing to launch an advertising campaign. If neither company advertises, equal market
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shares will continue. If either company launches a stronger campaign, the other is certain
to lose a proportional percentage of its customers. A survey of the market shows that
50% of potential customers can be reached through television, 30% through newspapers,
and 20% through radio.

(a) Formulate the problem as a two-person zero-sum game, and select the appropriate
advertising media for each company.

(b) Determine a range for the value of the game. Can each company operate with a sin
gle pure strategy?

5. Let aij be the (i, j)th element of a payoff matrix with m strategies for player A and n

strategies for player B. The payoff is for player A. Prove that

max min Qi' :s; min max Qj'
i j I j i J

13.4.2 Solution of Mixed Strategy Games

Games with mixed strategies can be solved either graphically or by linear programming.
The graphical solution is suitable for games in which at least one player has exactly two
pure strategies. The method is interesting because it explains the idea of a saddle point
graphically. Linear programming can be used to solve any two-person zero-sum game.

Graphical Solution of Games. We start with the case of (2 X n) games in which player
A has two strategies.

YI Y2 y"
B I 8 2 8 n

XI: Al all al2 aim

1 - XI: A 2 a21 an a2m

The game assumes that player A mixes strategies Al and A 2 with the respective prob
abilities Xl and 1 - XI. 0 :=;; Xl :=;; 1. Player B mixes strategies Bl to Bn with the proba
bilities YI, Y2>' .. , and Ym where Yj 2:: 0 for j = 1,2, ... , n, and Yl + Y2 + ... + Yn = 1.
In this case, A's expected payoff corresponding to B's jth pure strategy is computed as

(alj - a2j)xI + a2j, j = 1,2, ... , n

Player A thus seeks to determine the value of Xl that maximizes the minimum expect
ed payoffs-that is,

max m!n{(alj - a2j)xl + a2j}
Xl J

Example 13.4-3

C~>nsider the following 2 X 4 game. The payoff is for player A.

2

4

2

3

3

2
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The game has no pure strategy solution. A's expected payoffs corresponding to B's pure
strategies are given as

'iate

a sin-

1

B's pure strategy

1
2
3
4

A's expected payoff

-2xl + 4
-XI + 3

XI + 2
-7xl + 6

lming.
ly two
~ point
game.

player

~ prob
proba
~n = 1.
Jted as

~xpect-

Figure 13.9 provides TORA plot of the four straight lines associated with B's pure strategies
(file toraEx13.4-3.txt).3 To determine the best of the worst, the lower envelope of the four lines
(delineated by vertical stripes) represents the minimum (worst) expected payoff for A regardless
of what B does. The maximum (best) of the lower envelope corresponds to the maximin solution
point at x~ = .5. This point is the intersection of lines associated with strategies B3 and B4• Play
er A's optimal solution thus calls for mixing AI and A 2 with probabilities.5, and .5, respectively.

FIGURE 13.9

TORA graphical solution of the two-person zero-sum game of Example 13.4-3 (file toraEx13.4-3.txt)

3From Main·m·enu select Zero~slim Gaines and input the problem data, then select Graphical from the
SOLVEfMODIFY menu.
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The corresponding value of the game, v, is determined by substituting Xl = .5 in either of the
functions for lines 3 and 4, which gives

{

I 5
_ 2 + 2 = 2'
V-I 5

-7(2) + 6 = 2'

from line 3

from line 4

Player B's optimal mix is determined by the two strategies that define the lower envelope of
the graph. This means that B can mix strategies B3 and B4, in which case Yl = Y2 = 0 and
Y4 = 1 - Y3' As a result, B's expected payoffs corresponding to A's pure strategies are given as

A's pure strategy

1
2

B's expected payoff

The best ofthe worst solution for B is the minimum point on the upper envelope of the given
two lines (you will find it instructive to graph the two lines and identify the upper envelope). This
process is equivalent to solving the equation

The solution gives Y3 = ~, which yields the value of the game as v = 4 x G) - 1 = ~.

The solution of the game calls for player A to mix Ai and A z with equal probabilities and for
player B to mix B3 and B4 with probabilities ~ and k. (Actually, the game has alternative solutions
for B, because the maximin point in Figure 13.9 is determined by more than two lines. Any non
negative combination of these alternative solutions is also a legitimate solution.)

Remarks. Games in which player A has m strategies and player B has only two can
be treated similarly. The main difference is that we will be plotting B's expected payoff
corresponding to A's pure strategies. As a result, we will be seeking the minimax,
rather than the maximin, point of the upper envelope of the plotted lines. However, to
solve the problem with TORA, it is necessary to express the payoff in terms of the
player that has two strategies by multiplying the payoff matrix by -1, if necessary.

PROBLEM SET 13.4B4

*1. Solve the coin-tossing game of Example 13.4-2 graphically.

*2. Robin, who travels frequently between two cities, has two route options: Route A is a fast
four-lane highway, and route B is a long winding road. The highway patrol has a limited
police force. If the full force is allocated to either route, Robin, with her passionate desire
for driving "superfast," is certain to receive a $100 speeding ticket. If the force is split 50
50 between the two routes, there is a 50% chance she will get a $100 ticket on route A
and only a 30% chance that she will get the same fine on route B. Develop a strategy for
both Robin and the police.

~eTORA Zero-sum Games module can be used to verify your answer.
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3. Solve the following games graphically. The payoff is for Player A.

(a) 8 1 82 8 3 (b) 8 1 82

AI D Al

0A z 2 4-6 Az 6 5

A 3 5 7

4. Consider the following two-person, zero-sum game:

8 1 8z B3

Al 5 50 50

Az 1 1 .1

A3 10 10

(a) Verify that the strategies (~, O,~) for A and (*' t, 0) for B are optimal, and deter
mine the value of the game.

(b) Show that the optimal value of the game equals

3 3

2: 2:aijX iYj
i=lj=l

Linear Programming Solution of Games. Game theory bears a strong relationship to
linear programming, in the sense that a two-person zero-sum game can be expressed as
a linear program, and vice versa. In fact, G. Dantzig (1963, p. 24) states that 1. von
Neumann, father of game theory, when first introduced to the simplex method in 1947,
immediately recognized this relationship and further pinpointed and stressed the
concept of duality in linear programming. This section illustrates the solution of games
by linear programming.

Player A's optimal probabilities, Xl> x2, •.. , and X m , can be determined by solving
the following maximin problem:

Xl + X2 + ... + X m = 1

Xi ~ 0, i = 1,2, ... , m

Now, let

The equation implies that
m

LaijXi ~ v, j = 1,2, ... , n
i=l
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Player A's problem thus can be written as

Maximize z = v

subject to
m

V - 2:ajjXj :5 0, j = 1,2, ... , n
i=l

Xl + X2 + ... + X m = 1

Xj ~ 0, i = 1,2, ... , m

v unrestricted

Note that the value of the game, v, is unrestricted in sign.
Player B's optimal strategies, Yl> Y2, ... , and Y", are determined by solving the

problem

min{max( i>ljYj, i:a2jYj, ... , i>mjYj)}
Yj }=1 J=l J=1

Yl + Y2 + ... + Yn = 1

Yj ~ 0, j = 1, 2, ... , n

Using a procedure similar to that of player A, B's problem reduces to

Minimize w = v

subject to
n

V - 2:ajjYj ~ O,i = 1,2, ... ,m
j=l
Yl + Y2 + ... + Yn = 1

Yj ~ 0, j = 1, 2, ... , n

v unrestricted

The two problems optimize the same (unrestricted) variable v, the value of the
game. The reason is that B's problem is the dual of A's problem (verify this claim using.
the definition of duality in Chapter 4). This means that the optimal solution of one
problem automatically yields the optimal solution of the other.

Example 13.4-4

Solve the following game by linear programming.

BI B2 B3 Row min

Al 3 -1 -3 -3

A 2 -2 4 -1 -2

A 3 -5 -6 2 -6

Column max 3 4 2
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The value of the game, v, lies between -2 and 2.

Player A's Linear Program

Maximize z = v

subject to

v - 3xt + 2X2 + 5X3 s; 0

V + xl - 4x2 + 6X3 s; 0

V + 3xt + X2 - 2X2 s; 0

v unrestricted

The optimum solutionS is Xl = .39, X2 = .31, x3 = .29, and v = -0.91.

Player B's Linear Program

Minimize z = v

subject to

v - 3Yt + Y2 + 3Y3 ;::: 0

V + 2Yt - 4Y2 + Y3;::: 0

V + 5YI + 6Y2 - 2Y3 ;::: 0

Yt + Y2 + Y3 = 1

v unrestricted

The solution yields YI = .32, Y2 = .08, Y3 = .60, and v = -0.91.

PROBLEM SET 13.4C

1. On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four hiding
locations (A, B, C, and D), and the two members of the hiding team can hide separately
in any two of the four locations. The other team will then have the chance to search any
two locations. The searching team gets a bonus point if they find both members of the
hiding team. If they miss both, they lose a point. Otherwise, the outcome is a draw.

*(a) Set up the problem as a two-person zero-sum game.

(b) Determine the optimal strategy and the value of the game.

2. UA and DU are setting up their strategies for the 1994 national championship college
basketball game. Assessing the strengths of their respective "benches," each coach comes
up with four strategies for rotating his players during the game. The ability of each team
to score 2-pointers, 3-pointers, and free throws is a key factor in determining the final

5TORA zerocsi.lm Garnes => Solve => LP-based can be used to solve any two-person tero-sum game.
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score of the game. The following table summarizes the net points UA will score per pos
session as a function of the different strategies available to each team:

DU1 DU2 DU3 DU4

UA t 3 -2 1 2

UA2 2 3 -3 0

UA) -1 2 -2 2

UA4 -1 -2 4 1

(a) Solve the game by linear programming and determine a strategy for the champi
onship game.

(b) Based on the given information, which of the two teams is projected to win the
championship?

(c) Suppose that the entire game will have a total of 60 possessions (30 for each team).
Predict the expected number of points by which the championship will be won.

3. Colonel Blotto's army is fighting for the control of two strategic locations. Blotto has two
regiments and the enemy has three. A location will fall to the army that attacks with
more regiments. Otherwise, the result of the battle is a draw.

*(a) Formulate the problem as a two-person zero-sum game, and solve by linear
programming.

(b) Which army will win the battle?

4. In the two-player, two-finger Morra game, each player shows one or two fingers, and si
multaneously guesses the number of fingers the opponent will show. The player making
the correct guess wins an amount equal to the total number of fingers shown. Otherwise,
the game is a draw. Set up the problem as a two-person zero-sum game, and solve by lin
ear programming.
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Probabilistic Inventory
Models

Chapter Guide. 111is chapter is a continuation of the material in Chapter 11 on deter
ministic inventory models. It deals with inventory situations in which the demand is
probabilistic. The developed models are categorized broadly under continuous and
periodic review situations. The periodic review models include both single-period and
multiperiod cases. The proposed solutions range from the use of a probabilistic version
of the deterministic EOQ to more complex situations solved by dynamic program
ming. It may appear that the probabilistic models presented here are "too theoretical"
to be practical. But, in fact, a case analysis in Chapter 24 on the CD uses one of these
models to help Dell, Inc. manage its inventory situation and realize sizable savings.

This chapter includes a summary of 1 real-life application, 4 solved examples, 1
Excel template, 22 end-of-section problems, and 2 cases. The cases are in Appendix E
on the CD. The AMPLlExcel/SolverrrORA programs are in folder ch14Files.

Real-Life Application-Inventory Decisions in Dell's Supply Chain

Dell, Inc., implements a direct-sales business model in which personal computers are
sold directly to customers in the United States. When an order arrives from a cus
tomer, the specifications are sent to a manufacturing plant in Austin, Texas, where the
computer is built, tested, and packaged in about eight hours. Dell carries little inven
tory. Instead, its suppliers, normally located in Southeast Asia, are required to keep
what is known as "revolving" inventory on hand in revolvers (warehouses) near the
manufacturing plants. These revolvers are owned by Dell and leased to the suppliers.
Dell then "pulls" parts as needed from the revolvers, and it is the suppliers' responsi
bility to replenish the inventory to meet Dell's forecasted demand. Although Dell
does not own the inventory in the revolvers, its cost is indirectly passed on to cus
tomers through component pricing. Thus, any reduction in inventory directly benefits
Dell's customers by reducing product prices. The proposed solution has resulted in an
estimated $2.7 million in annual savings. Case 13 in Chapter 24 on the CD provides
the details of the study.

531
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14.1 CONTINUOUS REVIEW MODELS

This section presents two models: (1) a "probabilitized" version of the deterministic
EOQ (Section 11.2.1) that uses a buffer stock to account for probabilistic demand, and
(2) a more exact probabilistic EOQ model that includes the probabilistic demand di
rectly in the formulation.

14.1.1 "Probabilitized" EOQ Model

Some practitioners have sought to adapt the deterministic EOQ model (Section 11.2.1)
to reflect the probabilistic nature of demand by using an approximation that superim
poses a constant buffer stock on the inventory level throughout the entire planning
horizon. The size of the buffer is determined such that the probability of running out of
stock during lead time (the period between placing and receiving an order) does not
exceed a prespecified value.

Let

L = Lead time between placing and receiving an order

XL := Random variable representing demand during lead time

ILL = Average demand during lead time

(T L = Standard deviation of demand during lead time

B = Buffer stock size

a = Maximum allowable probability of running out of stock during lead time

The main assumption of the model is that the demand, XL, during lead time L is nor
mally distributed with mean ILL and standard deviation aL-that is, N(ILL, ad·

Figure 14.1 depicts the relationship between the buffer stock, B, and the parame
ters of the deterministic EOQ model that include the lead time L, the average demand

FIGURE 14.1

Buffer stock imposed on the classical EOQ model
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14.1 Continuous Review Models 533

during lead time, ILL, and the EOQ, y*. Note that L must equal the effective lead time
as defined in Section 11.2.1.

The probability statement used to determine B can be written as

P{XL ~ B + ILd ~ a

We can convert XL into a standard N(O, 1) random variable by using the following sub
stitution (see Section 12.5.4):

Thus, we have

Figure 14.2 defines Ka (which is determined from the standard normal tables in
Appendix B or by using file exceIStatTables.xls) such that

P{z 2: Ka } = a

Hence, the buffer size must satisfy

The demand during the lead time L usually is described by a probability density
function per unit time (e.g., per day or week), from which the distribution of the de
mand during L can be determined. Given that the demand per unit time is normal with
mean D and standard deviation (J", the mean and standard deviation, ILL and (J" L, of de
mand during lead time, L, are computed as

The formula for (J"L requires L to be (rounded to) an integer value.

.. ~ .
••-;0_

.:J;' }~J~~.

f(z) FIGURE 14.2

Probability of running out of stock, P {z ~ Kr.r} "" a
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Example 14.1-1

In Example 11.2-1 dealing with determining the inventory policy of neon lights, EOQ 0::

1000 units. If the daily demand is normal with mean D = 100 lights and standard deviation
U = 10 lights-that is, N(lOO, lO)-determine the buffer size so that the probability of running
out of stock is below a = .05.

From Example 11.2-1, the effective lead time is L = 2 days. Thus,

ILL = DL = 100 X 2 = 200 units

UL = y;;'ii = V102 X 2 = 14.14 units

Given K.05 = 1.645, the buffer size is computed as

B 2:: 14.14 X 1.645 ::<:: 23 neon lights

Thus, the optimal inventory policy with buffer B calls for ordering 1000 units whenever the in
ventory level drops to 223 (= B + ILL = 23 + 2 X 100) units.

PROBLEM SET 14.1A

1. In Example 14.1-1, determine the optimal inventory policy for each of the following cases:

*(a) Lead time = 15 days.

(b) Lead time = 23 days.

(c) Lead time = 8 days.

(d) Lead time = 10 days.

2. A music store sells a best-selling compact disc. The daily demand (in number of units) for
the disc is approximately normally distributed with mean 200 discs and standard devia
tion 20 discs. The cost of keeping the discs in the store is $.04 per disc per day. It costs the
store $100 to place a new order. There is a 7-day lead time for delivery. Assuming that the
store wants to limit the probability of running out of discs during the lead time to no
more than .02, determine the store's optimal inventory policy.

3. The daily demand for camera films at a gift shop in a resort area is normally distributed
with mean 300 rolls and standard deviation 5 rolls. The cost of holding a roll in the shop is
$.02. A fixed cost of $30 is incurred each time a new order of films is placed by the shop.
The shop's inventory policy calls for ordering 150 rolls whenever the inventory level drops
to 80 units while simultaneously maintaining a constant buffer of 20 rolls at all times.

(a) For the stated inventory policy, determine the probability of running out of stock
during lead time.

(b) Given the data of the situation, recommend an inventory policy for the shop, assuming
that the probability of running out of films during the lead time does not exceed .10.

14.1.2 Probabilistic EOQ Model

There is no reason to believe that the "probabilitized" EOQ model in Section 14.1.1 will
produce an optimal inventory policy. The fact that pertinent information regarding the
probabilistic nature of demand is initially ignored, only to be "revived" in a totally in
dependent manner at a later stage of the calculations, is sufficient to refute optimality.

.,"", :.,....::.
::::~_.-...
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~Lead time---J

I. Cycle 1 ./.

FIGURE 14.3

Probabilistic inventory model with shortage
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To remedy the situation, a more accurate model is presented in which the probabilis
tic nature of the demand is included directly in the formulation of the modeL

Unlike the case in Section 14.1.1, the new model allows shortage of demand, as
Figure 14.3 demonstrates. The policy calls for ordering the quantity y whenever the in
ventory drops to level R. As in the deterministic case, the reorder level R is a function
of the lead time between placing and receiving an order. The optimal values of y and R
are determined by minimizing the expected cost per unit time that includes the sum of
the setup, holding, and shortage costs.

The model has three assumptions.

1. Unfilled demand during lead time is backlogged.

2. No more than one outstanding order is allowed.

3. The distribution of demand during lead time remains stationary (unchanged)
with time.

To develop the total cost function per unit time, let

f(x) = pdf of demand, x, during lead time

D = Expected demand per unit time

h = Holding cost per inventory unit per unit time

p = Shortage cost per inventory unit

K = Setup cost per order

Based on these defmitions, the elements of the cost function are now determined.

1. Setup cost. The approximate number of orders per unit time is~, so that the
setup cost per unit time is approximately K:.

2. Expected holding cost. The average inventory is

(y+E{R-x})+E{R-x} y
I = = - + R - E{x}

2 2
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The formula is based on the average of the beginning and ending expected in
ventories of a cycle, y + E {R - x} and E {R - x}, respectively. As an approximation
the expression ignores the case where R - E {x} may be negative. The expected hold~
ing cost per unit time thus equals hI.

3. Expected shortage cost. Shortage occurs when x > R. Thus, the expected
shortage quantity per cycle is

S = 1OO

(X - R)f(x) dx

Because p is assumed to be proportional to the shortage quantity only, the ex
pected shortage cost per cycle is pS, and, based on Q cycles per unit time, the shortage
cost per unit time is pDS. Y

The resulting total cost function per unit time is

DK (y ) PD100TCU(y,R) = - + h - + R - E{x} + - (x - R)f(x)dx
y 2 Y R

The solutions for optimal y* and R* are determined from

aTCU = _(DK) +!!.. _ pDS = 0
ay y2 2 y2

_dT_C_U = h _ (_PD) roof(x) dx = 0
aR y JR

We thus get

y* = .j2D(Kh+ pS)

100 hy*
f(x)dx =-D

R* P

(1)

(2)

Because y* and R* cannot be determined in closed forms from (1) and (2), a nu
meric algorithm, developed by Hadley and Whitin (1963, pp. 169-174), is used to find
the solutions. The algorithm converges in a finite number of iterations, provided a fea
sible solution exists.

For R = 0, (1) and (2) above yield

y = .j2D(K : pE{x})

"" PDy=-
h

If Y > y, unique optimal values of y and R exist. The solution procedure recognizes
that the smallest value of y* is v'2~D, which is achieved when S = o.

," .'

.' ~f' t:~~\:- _'~_., .
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The steps of the algorithm are

Step O. Use the initial solution Yl = Y* = \P~D, and let Ro = O. Set i = 1, and go to
step i.

Step i. Use Yi to determine Ri from Equation (2). If Ri ~ Ri- b stop; the optimal so
lution is y* = Yi, and R* = Ri. Otherwise, use R j in Equation (1) to compute
Yi' Set i = i + 1, and repeat step i.

Example 14.1-2

Electro uses resin in its manufacturing process at the rate of 1000 gallons per month. It costs
Electro $100 to place an order for a new shipment. The holding cost per gallon per month is $2,
and the shortage cost per gallon is $10. Historical data show that the demand during lead time is
uniform over the range (0, 100) gallons. Determine the optimal ordering policy for Electro.

Using the symbols of the model, we have

D = 1000 gallons per month

K = $100 per order

h = $2 per gallon per month

p = $10 per gallon

[(x) = 1~'0::;; x::;; 100

E{x} = 50 gallons

First, we need to check whether the problem has a feasible solution. Using the equations for y
and ywe get

~2 x 1000(100 + 10 x 50)y = 2 = 774.6 gallons

~ 10 x 1000
y = 2 = 5000 gallons

Because y ;::: y, a unique solution exists for y* and R*.
The expression for S is computed as

1
100 1 R2

S = (x - R)-dx = - - R + 50
R 100 200

Using S in Equations (1) and (2), we obtain

Gizes

~2 x lOoo( 100 + lOS)
Yi = = V100,ooO + 10,000S gallons

. 2

(00 1 2y;

JR 100 dx = 10 x 1000

(3)
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The last equation yields

(4)

We now use Equations (3) and (4) to determine the solution.

Iteration 1

)2KD ~2 X 1000 X 100
Yl = -h- = 2 = 316.23 gallons

316.23
R 1 = 100 - ----so- = 93.68 gallons

Iteration 2

Rt
S = 200 - R1 + 50 = .19971 gallons

Y2 = YlOO,OOO + 10,000 X .19971 = 319.37 gallons

Hence,
319.39

Rz = 100 - ----so- = 93.612

Iteration 3

R~
S = 200 - R2 + 50 = .20399 gallon

Y3 = Y100,OOO + 10,000 x .20399 =; 319.44 gallons

Thus,
319.44

R3 =; 100 - ----so- = 93.611 gallons

Because Y3 ~ Y2 and R3 ~ Rz, the optimum is R* ~ 93.611 gallons, Y* ~ 319.44 gallons. File ex
celContRev.xls can be used to determine the solution to any desired degree of accuracy. The
optimal inventory policy calls for ordering approximately 320 gallons whenever the inventory
level drops to 94 gallons.

PROBLEM SET 14.1B

1. For the data given in Example 14.1-2, determine the following:

(a) The approximate number of orders per month.

(b) The expected monthly setup cost.

(c) The expected holding cost per month.

(d) The expected shortage cost per month.

(e) The probability of running out of stock during lead time.

*2. Solve Example 14.1-2, assuming that the demand during lead time is unifonn between 0
and 50 gallons.

14

14
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*3. In Example 14.1-2, suppose that the demand during lead time is uniform between 40 and
60 gallons. Compare the solution with that obtained in Example 14.1-2, and interpret the
results. (Hint: In both problems E{x} is the same, but the variance in the present prob
lem is smaller.)

4. Find the optimal solution for Example 14.1-2, assuming that the demand during lead time
is N(lOO, 2). Assume that D = 10,000 gallons per month, h = $2 per gallon per month,
p = $4 per gallon, and K = $20.

14.2 SINGLE-PERIOD MODELS

Single-item inventory models occur when an item is ordered only once to satisfy the
demand for the period. For example, fashion items become obsolete at the end of the
season. This section presents two models representing the no-setup and the setup cases.

The symbols used in the development of the models include

K = Setup cost per order

h = Holding cost per held unit during the period

p = Penalty cost per shortage unit during the period

D = Random variable representing demand during the period

f(D) = pdf of demand during the period

y = Order quantity

x = Inventory on hand before an order is placed.

The model determines the optimal value of y that minimizes the sum of the ex
pected holding and shortage costs. Given optimal y (= y*), the inventory policy calls
for ordering y* - x if x < y; otherwise, no order is placed.

e ex
r.The
ntory

:enO

14.2.1 No-Setup Model (Newsvendor Model)

This model has come to be known in the literature as the newsvendor model (the original
classical name is the newsboy model) because it deals with items with short life such as
newspapers.

The assumptions of this model are

1. Demand occurs instantaneously at the start of the period immediately after the
order is received.

2. No setup cost is incurred.

Figure 14.4 demonstrates the inventory position after the demand, D, is satisfied.
If D < y, the quantity y - D is held during the period. Otherwise, a shortage amount
D - y will result if D > y.

The expected cost for the period, E{C(y) }, is expressed as

E{C(y)} = hl Y

(y - D)f(D) dD + Pl°O(D - y)f(D) dD
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D<y D>y

FIGURE 14.4

(a) (b)

Holding and shortage inventory in a single-period model

The function E{C(y)} can be shown to have a unique minimum because it is convex
in y. Taking the first derivative of E{C(y)} with respect to y and equating it to zero,
we get

h fYfeD) dD - P fOOf(D) dD = 0
~ ~,

or

hP{D ::;; y} - p(1 - P{D < y}) = 0

or

P{D < y*} = P
p+h

The preceding development assumes that the demand D is continuous. If D is-dis
crete, thenf(D) is defined only at discrete points and the associated cost function is

y 00

E{C(y)} = h L (y - D)f(D) + P L (D - y)f(D)
D=O D=y+l

The necessary conditions for optimality are

E{C(y - I)} ~ E{C(y)} and E{C(y + I)} :> E{C(y)}

These conditions are sufficient because E{C(y)} is a convex function. After some al
gebraic manipulations, the application of these conditions yields the following inequal
ities for determining y*:

P{D::;; y* - I}:S; P :s; P{D:s; y*}
p+h

Example 14.2-1

The owner of a newsstand wants to determine the number of USA Now newspapers that must be
stocked at the start of each day. The owner pays 30 cents for a copy and sells it for 75 cents. The
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sale of the newspaper typically occurs between 7:00 and 8:00 A.M. Newspapers left at the end of
the day are recycled for an income of 5 cents a copy. How many copies should the owner stock
every morning, assuming that the demand for the day can be described as

(a) A normal distribution with mean 300 copies and standard deviation 20 copies.

(b) A discrete pdf,f(D), defined as

D 200 220

f(D) .1 .2

300 320

.4 .2

340

.1

vex
~ro,

dis
s

The holding and penalty costs are not defined directly in this situation. The data of the prob
lem indicate that each unsold copy will cost the owner 30 - 5 = 25 cents and that the penalty
for running out of stock is 75 - 30 = 45 cents per copy. Thus, in terms of the parameters of the
inventory problem, we have h = 25 cents per copy per day and p = 45 cents per copy per day.

First, we determine the critical ratio as

p 45
p + h = 45 + 25 = .643

Case (a). The demand D is N(300, 20). We can use excelStatTables.xls to determine the opti
mum order quantity by entering 300 in F15, 20 in G15, and .643 in LI5, which gives the desired
answer of 307.33 newspapers in R15. Alternatively, we can use the standard normal tables in
Appendix B. Define

D - 300
z = 20

Then from the tables

P{z ~ .366} :::::: .643

or

y* - 300
--20-- =: .366

Thus, y* = 307.3. The optimal order is approximately 308 copies.

Case (b). The demand D follows a discrete pdf,j(D). First, we determine the CDF P{D ::; y}
as

e al
lual- y

P{D =:;; y}

200

.1

220

.3

300

.7

320

.9

340

1.0

1St be
i.The

For the computed critical ratio of .643, we have

P(D ~ 220) ::; .643 ::; P(D ::::;; 300)

It only follows that y* = 300 copies.
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PROBLEM SET 14.2A

1. For the single-period model, show that for the discrete demand the optimal order quanti
ty is determined from

P{D :$ y* - I} :$ _P- :$ P{D :$ y*}
p+h

2. The demand for an item during a single period occurs instantaneously at the start of the
period. The associated pdf is uniform between 10 and 15 units. Because of the difficulty
in estimating the cost parameters, the order quantity is determined such that the proba
bility of either surplus or shortage does not exceed .1. Is it possible to satisfy both condi
tions simultaneously?

*3. The unit holding cost in a single-period inventory situation is $1. If the order quantity is 4
units, find the permissible range of the unit penalty cost implied by the optimal condi
tions. Assume that the demand occurs instantaneously at the start of the period and that
demand pdf is given in the following table:

J

1

D

f(D)

o

.05

1

.1

2

.1

3

.2

4

.25

5

.15

6

.05

7

.05

8

.05

4. The U of A Bookstore offers a program of reproducing class notes for participating profes
sors. Professor Yataha teaches a freshmen-level class, where an enrollment of between 200
and 250 students, uniformly distributed, is expected. It costs the bookstore $10 to produce
each copy, which it then sells to the students for $25 a copy. The students purchase their
books at the start of the semester. Any unsold copies of Professor Yataha's notes are shred
ded for recycling. In the meantime, once the bookstore runs out of copies, no additional
copies are printed, and the students are responsible for securing the notes from other
sources. If the bookstore wants to maximize its revenues, how many copies should it print?

5. QuickStop provides its customers with coffee and donuts at 6:00 A.M. each day. The con
venience store buys the donuts for 7 cents apiece and sells them for 25 cents apiece until
8:00 A.M. After 8:00 A.M., the donuts sell for 5 cents apiece. The number of customers buy
ing donuts between 6:00 and 8:00 is uniformly distributed between 30 and 50. Each cus
tomer usually orders 3 donuts with coffee. Approximately how many dozen donuts
should QuickStop stock every morning to maximize revenues?

*6. Colony Shop is stocking heavy coats for next winter. Colony pays $50 for a coat and sells
it for $110. At the end of the winter season, Colony offers the coats at $55 each. The de
mand for coats during the winter season is more than 20 but less than or equal to 30, all
with equal probabilities. Because the winter season is short, the unit holding cost is negli
gible. Also, Colony's manager does not believe that any penalty would result from coat
shortages. Determine the optimal order quantity that will maximize the revenue for
Colony Shop. You may use continuous approximation.

7. For the single-period model, suppose that the item is consumed uniformly during the pe
riod (rather than instantaneously at the start of the period). Develop the associated cost
model, and find the optimal order quantity.

8. Solve Example 14.2-1, assuming that the demand is continuous and uniform during the
period and that the pdf of demand is uniform between 0 and 100. (Hint: Use the results of
Problem 7.)
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lanti-

14.2.2 Setup Model (s-5 Policy)

The present model differs from the one in Section 14.2.1 in that a setup cost K is in
curred. Using the same notation, the total expected cost per period is

,(the
ulty
oba
ondi-

I
E{C(y)} = K + E{C(y)}

= K + hl Y

(y - D)f(D) dD + p J,oo(D - y)f(D) dD

As shown in Section 14.2.1, the optimum value y* must satisfy

y is 4
li
that

P{y <: y*} = P
p+h

Because K is constant, the minimum value of E {C(y)} must also occur at y*.
In Figure 14.5, S = y* and the value of s « S) is determined from the equation

E{C(s)} = E{C(S)} = K + E{C(S)}, s < S

ofes
200

The equation yields another value Sl (> S), which is discarded.
Given that the amount on hand before an order is placed is x units, how much

should be ordered? This question is investigated under three conditions:
uce
r
hred
II

L x < s.
2. s::; x <: S.
3. x> S.

:int?

;on
mtil
; buy
:us-

Case 1 (x < s). Because x is already on hand, its equivalent cost is given by E {C(x)}.
If any additional amount y - x (y > x) is ordered, the corresponding cost given y is
E{C(y)}, which includes the setup cost K. From Figure 14.5, we have

minE{C(y)} = E(C(S)) < E{C(x)}
y>x

Thus, the optimal inventory policy in this case is to order S - x units.

FIGURE 14.5

(s-S) optimal ordering policy in a single-period
model with setup cost

y

E{C(y)}

Do not orderOrder
I. -i-

E{C(S»)

E{C(S)}

sells
de
,all
legli
)at
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Ilts of
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Case 2 (s ::5 X ::5 S). From Figure 14.5, we have

E{C(x)} ::5 minE {C(y)} ;0:: E(C(S))
y>x

Thus, it is not advantageous to order in this case. Hence, y* = x.

Case 3 (x > S). From Figure 14.5, we have for y > x,

E{C(x)} < E{C(y)}

This condition indicates that it is not advantageous to order in this case-that is, y* == x.
The optimal inventory policy, frequently referred to as the s-S policy, is summa

rized as
If x < s, order S - x

If x :> S, do not order

The optimality of the s-S policy is guaranteed because the associated cost func
tion is convex.

Example 14.2~2

The daily demand for an item during a single period occurs instantaneously at the start of the pe
riod. The pdf of the demand is uniform between 0 and 10 units. The unit holding cost of the item
during the period is $.50, and the unit penalty cost for running out of stock is $4.50. A fixed cost
of $25 is incurred each time an order is placed. Determine the optimal inventory policy for the
item.

To determine y*, consider

p ;::: 4.5 =.9
p + h 4.5 + .5

Also,

l
Y* 1 *

P{D $ y*} ;::: -dD ;::: L
o 10 10

Thus,S;::: y* ;::: 9.
The expected cost function is given as

r 1 /10 1
E{C(y)} ;::: .5Jo 10 (y - D) dD + 4.5 Y 10 (D - y) dD

= .25y 2 - 4.5y + 22.5

The value of s is determined by solving

E{C(s)} = K + E{C(S)}

This yields

.25s2 - 4.5s + 22.5 = 25 + .25S2 - 4.5S + 22.5

,'.

:;i:- ~~~\.
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E{C(y))

S=9s = -1 0

Infeasible -i---+lt--------'-Do not order _-'--__range

FIGURE 14.6

s-S policy applied to Example 14.2-2

*' == x.
lmma-

Given S = 9, the preceding equation reduces to

t func- 52 - 18s - 19 = 0

The solution of this equation is s = -1 or 5 = 19. The value of 5 > S is discarded. Because
the remaining value is negative (= -1), s has no feasible value (Figure 14.6). This conclusion
usually happens when the cost function is "flat" or when the setup cost is high relative to the
other costs of the model.

the pe
he item
~ed cost
for the

PROBLEM SET 14.2B

*1. Determine the optimal inventory policy for the situation in Example 14.2-2, assuming
that the setup cost is $5.

2. In the single-period model in Section 14.2.1, suppose instead that the model maximizes
profit and that a setup cost K is incurred. Given that r is the unit selling price and using
the information in Section 14.2.1, develop an expression for the expected profit and de
termine the optimal order quantity. Solve the problem numerically for r = $3, c = $2,
p = $4, h = $1, and K = $10. The demand pdf is uniform between 0 and 10.

3. Work Problem 5, Set 14.2a, assuming that there is a fixed cost of $10 associated with the
delivery of donuts.

14.3 MULTIPERIOD MODEL

1-:;.. ,'.

)~( \t~\-. .-.~

This section presents a ffiultiperiod model under the assumption of no setup cost. Ad
ditionally, the model allows backlog of demand and assumes a zero-delivery lag. It fur
ther assumes that the demand D in any period is described by a stationary pdf/CD).

The multiperiod model considers the discounted value of money. If a « 1) is the
discount factor per period, then an amount $A available n periods from now has a pre
sent value of $anA.

Suppose that the inventory situation encompasses n periods and that unfilled de
mand can be backlogged exactly one period. Define

F';(Xi) = Maximum expected profit for periods i, i + 1, ... , and n, given that Xi

is the amount on hand before an order is placed in period i
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Using the notation in Section 14.2 and assuming that c and r are the cost and revenue
per unit, respectively, the inventory situation can be formulated using the following dy
namic programming model (see Chapter 22 on the CD):

Fi(x;) = ~:;{ -C(Yi - x;) + lYirrD - h(Yi - D)}f(D) dD

+ lOO
[rYi + ar(D - Yi) - p(D - yJ]f(D) dD

+ a l OOFi
+1(Yi - D)f(D) dD}, i = 1,2, ... , n

where Fn+1(YIl - D) = O. The value of Xj may be negative because unfilled demand is
backlogged. The quantity ar(D - Yj) in the second integral is included because (D - yJ
is the unfilled demand in period i that must be filled in period i + 1.

The problem can be solved recursively. For the case where the number of periods
is infinite, the recursive equation reduces to

F(x) = max{ -c(y - x) + (Y[rD - hey - D)]f(D) dD
Y~X Jo

+ J,oo[ry + ar(D - y) - p(D - y)]f(D) dD

+ a100

F(y - D)f(D) dD}

where x and yare the inventory levels for each period before and after an order is re
ceived, respectively.

The optimal value of y can be determined from the following necessary condi
tion, which also happens to be sufficient because the expected revenue function F(x) is
concave.

d(.) l Y 100

- = -c - h feD) dD + [(1 - a)r + p]f(D) dD
oy 0 y

l OOoF( D)
+ a y - feD) dD = 0

o ay

The value of aFCva; D) is determined as follows. If there are {3 (> 0) more units on hand
at the start of the next period, the profit for the next period will increase by c{3, be
cause this much less has to be ordered. This means that

aF(y - D)
=c

ay
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The necessary condition thus becomes

-c - h1Yj
(D) dD + [(1 - a)r + p](1 - 1Yj

(D) dD) + ac1°Oj (D) dD = 0

The optimum inventory level y* is thus determined from

1/ p + (1 - a)(r - c)
j( D) dD = "------'---~--'-

o . P + h + (1 - a)r

The optimal inventory policy for each period, given its entering inventory level x,
is thus given as

If x < y*, order y* - x

If x > y*, do not order

PROBLEM SET 14.3A

1. Consider a two-period probabilistic inventory model in which the demand is backlogged,
and orders are received with zero delivery lag. The demand pdf per period is uniform be
tween 0 and 10, and the cost parameters are given as

Unit selling price = $2

Unit purchase price = $1

Unit holding cost per month = $.10

Unit penalty cost per month = $3

Discount factor = .8

Find the optimal inventory policy for the two periods, assuming that the initial inventory
for period 1 is zero.

*2. The pdf of the demand per period in an infinite-horizon inventory model is given as

feD) = .08D,O :5 D:5 5

The unit cost parameters are

Unit selling price = $10

Unit purchase price = $8

Unit holding cost per month = $1

Unit penalty cost per month = $10

Discount factor = .9

Determine the optimal inventory policy assuming zero delivery lag and that the unfilled
demand is backlogged.
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3. Consider the infinite-horizon inventory situation with zero delivery lag and backlogged de
mand. Develop the optimal inventory policy based on the minimization of cost given that

Holding cost for z units = hz2

Penalty cost for z units = px2

Show that for the special case where h = p, the optimal solution is independent of pdf of I
demand.
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Queuing Systems

Chapter Guide. The objective of queuing analysis is to offer a reasonably satisfactory
service to waiting customers. Unlike the other tools of OR presented in the preceding
chapters, queuing theory is not an optimization technique. Rather, it determines the
measures of performance of waiting lines, such as the average waiting time in queue
and the productivity of the service facility, which can then be used to design the service
installation. This chapter emphasizes the implementation of queuing results in practice.
However, to fully appreciate the practical side of queuing, you will need a reasonable
background in the underlying theory. For this reason, the chapter starts with a presen
tation of the "total randomness" property of two important distributions: the Poisson
and the exponential. This point is important because it helps identify the situations
where queuing results apply in practice.

Queuing results involve computationally difficult formulas, and it is recommend
ed that you use exelPoissonQ.xls or TaRA to carry out these calculations. You will find
TaRA helpful in comparing multiple scenarios. Throughout the chapter, TORA is
used to carry out the computations. The bulk of the discussion concentrates on the
practical interpretations of the results. We recommend that you follow the same proce
dure when you work out the problems in this chapter. In this manner, you are not
"bogged down" in the tedious computational details and can readily test different sce
narios conveniently.

This chapter includes a summary of 2 real-life applications, 17 solved exam
ples, 2 Excel templates, 137 end-of·section problems, and 5 cases. The cases are in Ap
pendix E on the CD. The AMPUExceVSolverffORA programs are in folder ch15Files.

Real-Life Application-Analysis of an Internal Transport System
in a Manufacturi.ng Plant

Three trucks are used in a manufacturing plant to transport materials. The trucks
wait in a central parking lot until requested. A truck answering a request will travel
to the customer location, carry a load to its destination, and then return to the central
parking lot. The principal user of the service is production, followed by the workshop
and maintenance. Other departments occasionally may request the use of the trucks.

549
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Complaints about the long wait for a free truck have prompted users, especially pro
duction, to request adding a fourth truck to the fleet. This is an unusual application,
because queuing theory is used to show that the source of the long delays is mainly
logistical and that with a simple change in the operating procedure of the truck pool,
a fourth truck is not needed. Case 14 in Chapter 24 on the CD provides the details of
the study.

15.1 WHY STUDY QUEUES?

Waiting for service is part of our daily life. We wait to eat in restaurants, we "queue up"
at the check-out counters in grocery stores, and we "line up" for service in post offices.
And the waiting phenomenon is not an experience limited to human beings only: Jobs
wait to be processed on a machine, planes circle in a stack before given permission to
land at an airport, and cars stop at traffic lights. Waiting cannot be eliminated com
pletely without incurring inordinate expenses, and the goal is to reduce its adverse im
pact to "tolerable" levels.

The study of queues deals with quantifying the phenomenon of waiting in lines
using representative measures of performance, such as average queue length, average
waiting time in queue, and average facility utilization. The following example demon
strates how these measures can be used to design a service facility.

Example 15.1-1

McBurger is a fast-food restaurant with three service counters. The manager has commissioned
a study to investigate complaints about slow service.The study reveals the following relationship
between the number of service counters and the waiting time for service:

No. of cashiers

Average waiting time (min)

1

16.2

2

10.3

3

6.9

4

4.8

5

2.9

6

1.9

7

1.3

An examination of these data shows a 7-minute average waiting time for the present 3-counter
situation. Five counters are needed to reduce the waiting time to about 3 minutes.

Remarks. The results of queuing analysis can be used in the context of a cost opti
mization model, where we seek the minimization of the sum of two costs: the cost of of
fering the service and the cost of waiting. Figure 15.1- depicts a typical cost model (in
dollars per unit time) where the cost of service increases with the increase in the level
of service (e.g., the number of service counters). At the same time, the cost of waiting
decreases with the increase in level of service. The main obstacle in implementing cost
models is the difficulty of obtaining reliable estimates of the cost of waiting, particular
ly when human behavior is an integral part of the operation. This point is discussed in
Section 15.9.



15.2 Elements of a Queuing Model 551

Cost-based queuing decision model

FIGURE 15.1

Level of service
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the service facility
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*1. Suppose that further analysis of the McBurger restaurant reveals the following additional
results:l lines

'erage
:mon- No. of cashiers 1 2 3 4 5 6 7

Idleness (%) o 8 12 18 29 36 42

sioned
:mship

2.
7

1.3

ounter

(a) What is the productivity of the operation (expressed as the percentage of time the
employees are busy) when the number of cashiers is five?

(b) The manager wants to keep the average waiting time around 3 minutes and, simulta
neously, maintain the efficiency of the facility at approximately 90%. Can the two
goals be achieved? Explain.

Acme Metal Jobshop is in the process of purchasing a multipurpose drill press. Two mod
els, A and B, are available with hourly operating costs of $18 and $25, respectively. Model
A is slower than model B. Queuing analysis of similar machines shows that when A is
used, the average number of jobs in the queue is 4, which is 30% higher than the queue
size in B. A delayed job represents lost income, which is estimated by Acme at $10 per
waiting job per hour. Which model should Acme purchase?

15.2 ELEMENTS OF A QUEUING MODEL

: opti
of of
leI (in
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The principal actors in a queuing situation are the customer and the server. Customers
are generated from a source. On arrival at a service facility, they can start service im
mediately or wait in a queue if the facility is busy. When a facility completes a service,
it automatically "pulls" a waiting customer, if any, from the queue. If the queue is
empty, the facility becomes idle until a new customer arrives.

From the standpoint of analyzing queues, the arrival of customers is represented
by the interarrival time between successive customers, and the service is described by
the service time per customer. Generally, the interarrival and service times can be

':~ .
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probabilistic, as in the operation of a post office, or deterministic, as in the arrival of ap
plicants for job interviews.

Queue size plays a role in the analysis of queues, and it may have a finite size, as
in the buffer area between two successive machines, or it may be infinite, as in mail
order facilities.

Queue discipline, which represents the order in which customers are selected
from a queue, is an important factor in the analysis of queuing models. The most com
mon discipline is first come, first served (FCFS). Other disciplines include last come,
first served (LCFS) and service in random order (SIRO). Customers may also be se
lected from the queue based on some order of priority. For example, rush jobs at a
shop are processed ahead of regular jobs.

The queuing behavior of customers plays a role in waiting-line analysis. "Human"
customers may jockey from one queue to another in the hope of reducing waiting time.
They may also balk from joining a queue altogether because of anticipated long delay,
or they may renege from a queue because they have been waiting too long.

The design of the service facility may include parallel servers (e.g., post office or
bank operation). TIle servers may also be arranged in series (e.g., jobs processed on
successive machines), or they may be networked (e.g., routers in a computer network).

The source from which customers are generated may be finite or infinite. A finite
source limits the customers arriving for service (e.g., machines requesting the service of
a repairperson). An infinite source is forever abundant (e.g., calls arriving at a tele
phone exchange).

Variations in the elements of a queuing situation give rise to a variety of queuing
models. TIlis chapter provides examples of these models.

PROBLEM SET 15.2A

1. In each of the following situations, identify the customer and the server:
*(a) Planes arriving at an airport.
*(b) Taxi stand serving waiting passengers.

(c) Tools checked out from a crib in a machining shop.
(d) Letters processed in a post office.

(e) Registration for classes in a university.

(I) Legal court cases.
(g) Check-out operation in a supermarket.

*(h) Parking lot operation.

2. For each of the situations in Problem 1, identify the following: (a) nature of the calling
source (finite or infinite), (b) nature of arriving customers (individually or in bulk), (c)
type of the interarrival time (probabilistic or deterministic), (d) definition and type of
service ~ime, (f) queue capacity (finite or infinite), and (g) queue discipline.

3. Study the following system and identify the associated queuing situations. For each situa
tion, define the customers, the server(s), the queue discipline, the service time, the maxi
mum queue length, and the calling source.

Orders for jobs are received at a workshop for processing. On receipt, the supervi
sor decides whether it is a rush or a regular job. Some orders require the use of one of

1



:ap-

e, as
mail

cted
:om
)me,
~ se
at a

[lan"
~ime.

elay,

:e or
don
ark).
finite
.ceof
tele-

~Ulng

ing
(c)
of

situa
naXl-

15.3

..~.;:..,;. --..

15.3 Role of Exponential Distribution 553

several identical machines. The remaining orders are processed in a two-stage produc
tion line, of which two are available. In each group, one facility is assigned to handle
rush jobs.

Jobs arriving at any facility are processed in order of arrival. Completed orders are
shipped on arrival from a shipping zone having a limited capacity.

Sharpened tools for the different machines are supplied from a central tool crib.
When a machine breaks down, a repairperson is summoned from the service pool to
make the repair. Machines working on rush orders always receive priorities both in ac
quiring new tools from the crib and in receiving repair service.

4. True or False?

(a) An impatient waiting customer may elect to renege.

(b) If a long waiting time is anticipated, an arriving customer may elect to balk.
(c) Jockeying from one queue to another is exercised to reduce waiting time.

S. In each of the situations in Problem 1, discuss the possibility of the customers jockeying,
balking, and reneging.

ROLE OF EXPONENTIAL DISTRIBUTION

In most queuing situations, the arrival of customers occurs in a totally random fashion.
Randomness here means that the occurrence of an event (e.g., arrival of a customer or
completion of a service) is not influenced by the length of time that has elapsed since
the occurrence of the last event.

Random interarrival and service times are described quantitatively in queuing
models by the exponential distribution, which is defined as

f(t) = Ae-Ac
, t > 0

Section 12.4.3 shows that for the exponential distribution

E{t} = f
P{t :-:; T} = iTAe-At dt

= 1 - e-AT

The definition of E {t} shows that Ais the rate per unit time at which events (arrivals or
departures) are generated. The fact that the exponential distribution is completely ran
dom is illustrated by the following example: If the time now is 8:20 A.M. and the last ar
rival has occurred at 8:02 A.M., the probability that the next arrival will occur by 8:29 is
a function of the interval from 8:20 to 8:29 only, and is totally independent of the length
of time that has elapsed since the occurrence of the last event (8:02 to 8:20). This result
is referred to as the forgetfulness or lack of memory of the exponential.

Let the exponential distribution, fit), represent the time, t, between successive
events. If S is the interval since the occurrence of the last event, then the forgetfulness
property implies that

P{t > T + Sit> S} = P{t > T}
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.~-

To prove this result, we note that for the exponential with mean ±'
P{t > Y} = 1 - P{t < Y} = e-AY

Thus,

P{t > T + SIt> S} =
P{t > T + S, t > S}

P{t > S}
e-.A(T+S)
-_~= e-A.T

e-AS

P{t> T + 5}
P{t > S}

= P{t > T}

Example 15.3-1

A service machine always has a standby unit for immediate replacement upon failure. The time
to failure of the machine (or its standby unit) is exponential and occurs every 5 hours, on the av
erage. The machine operator claims that the machine "has the habit" of breaking down every
night around 8:30 P.M. Analyze the operator's claim.

The average failure rate of the machine is A = ~ = .2 failure per hour. Thus, the exponential
distribution of the time to failure is

[(I) = .2e-·21 , t > 0

Regarding the operator's claim, we know offhand that it cannot be correct because it con
flicts with the fact that the time between breakdowns is exponential and, hence, totally random.
The probability that a failure will occur by 8:30 P.M. cannot be used to support or refute the op
erator's claim, because the value of such probability depends on the time of the day (relative to
8:30 P.M.) at which it is computed. For example, if the time now is 8:20 P.M., the probability that
the operator's claim will be right tonight is

p{t < ~} = 1 - e-·2(~) = .03278

which is low. If the time now is 1:00 P.M., the probability that a failure will occur by 8:30 P.M. increas
es to approximately .777 (verify!). These two extreme values show that the operator's claim cannot
be supported.

PROBLEM SET 15.3A

L (a) Explain your understanding of the relationship between the arrival rate Aand the
average interarrival time. What are the units describing each variable?

(b) In each of the following cases, detennine the average arrival rate per hour, A, and
the average interarrival time in hours.

*(i) One arrival occurs every 10 minutes.

(ii) Two arrivals occur every 6 minutes.

(iii) Number of arrivals in a 30-minute period is 10.

(iv) The average interval between successive arrivals is .5 hour.
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(c) In each of the following cases, determine the average service rate per hour, IL, and
the average service time in hours.

*(i) One service is completed every 12 minutes.

(ii) Two departures occur every 15 minutes.

(iii) Number of customers served in a 30-minute period is 5.

(iv) The average service time is .3 hour.

2. In Example 15.3-1,determine the following:

(a) The average number of failures in 1 week, assuming the service is offered 24 hours a
day, 7 days a week.

(b) The probability of at least one failure in a 2-hour period.

(c) The probability that the next failure will not occur within 3 hours.

(d) If no failure has occurred 3 hours after the last failure, what is the probability that in
terfailure time is at least 4 hours?

3. The time between arrivals at the State Revenue Office is exponential with mean value
.05 hour. The office opens at 8:00 A.M.

*(a) Write the exponential distribution that describes the interarrival time.

*(b) Find the probability that no customers will arrive at the office by 8:15 A.M.

(c) It is now 8:35 A.M. The last customer entered the office at 8:26. What is the probabili
ty that the next customer will arrive before 8:38 A.M.? That the next customer will
not arrive by 8:40 A.M.?

(d) What is the average number of arriving customers between 8:10 and 8:45 A.M.?

4. Suppose that the time between breakdowns for a machine is exponential with mean
6 hours. If the machine has worked without failure during the last 3 hours, what is the
probability that it will continue without failure during the next hour? That it will break
down during the next .5 hour?

5. The time between arrivals at the game room in the student union is exponential with
mean 10 minutes.

(a) What is the arrival rate per hour?

(b) What is the probability that no students will arrive at the game room during the next
15 minutes?

(c) What is the probability that at least one student will visit the game room during the
next 20 minutes?

6. The manager of a new fast-food restaurant wants to quantify the arrival process of cus
tomers by estimating the fraction of interarrival time intervals that will be (a) less than
2 minutes, (b) between 2 and 3 minutes, and (c) more than 3 minutes. Arrivals in similar
restaurants occur at the rate of 35 customers per hour. The interarrival time is exponen
tially distributed.

*7. Ann and Jim, two employees in a fast-food restaurant, play the following game while
waiting for customers to arrive: Jim pays Ann 2 cents if the next customer does not arrive
within 1 minute; otherwise, Ann pays Jim 2 cents. Determine Jim's average payoff in an
8-hour period. The interarrival time is exponential with mean 1.5 minute.

8. Suppose that in Problem 7 the rules of the game are such that Jim pays Ann 2 cents if the
next customer arrives after 1.5 minutes, and Ann pays Jim an equal amount if the next ar
rival is within 1 minute. For arrivals within the range 1 to 1.5 minutes, the game is a draw.
Determine Jim's expected payoff in an 8-hour period.
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9. In Problem 7, suppose that Ann pays Jim 2 cents if the next arrival occurs within 1 minute
and 3 cents if the interarrival time is between 1 and 1.5 minutes. Ann receives from Jim
5 cents if the interarrival time is between 1.5 and 2 minutes and 6 cents if it is larger than
2 minutes. Determine Ann's expected payoff in an 8-hour period.

*10. A customer arriving at a McBurger fast-food restaurant within 4 minutes of the im-
mediately preceding customer will receive a 10% discount. If the interarrival time is 1
between 4 and 5 minutes, the discount is 6%. If the interarcival time is longer than i
5 minutes, the customer gets 2% discount. The interarrival time is exponential with
mean 6 minutes.
(a) Determine the probability that an arriving customer will receive the 10% discount.

(b) Determine the average discount per arriving customer.

11. The time between failures of a Kencore refrigerator is known to be exponential with
mean value 9000 hours (about 1 year of operation) and the company issues a I-year war
ranty on the refrigerator. What are the chances that a breakdown repair will be covered
by the warranty?

U. The U of A runs two bus lines on campus: red and green. The red line serves north cam
pus, and the green line serves south campus with a transfer station linking the two lines.
Green buses arrive randomly (exponential interarrival time) at the transfer station every
10 minutes. Red buses also arrive randomly every 7 minutes.

(a) What is the probability distribution of the waiting time for a student arriving on the
red line to get on the green line?

(b) What is the probability distribution of the waiting time for a student arriving on the
green line to get on the red line?

13. Prove that the mean and standard deviation of the exponential distribution are equal.

15.4 PURE BIRTH AND DEATH MODELS (RELATIONSHIP BETWEEN
THE EXPONENTIAL AND POISSON DISTRIBUTIONS)

This section presents two queuing situations: the pure birth model in which arrivals
only are allowed, and the pure death model in which departures only can take place.
An example of the pure birth model is the creation of birth certificates for newly born
babies. The pure death model may be demonstrated by the random withdrawal of a
stocked item in a store.

The exponential distribution is used to describe the interarrival time in the pure
birth model and the interdeparture time in the pure death model. A by-product of the
development of the two models is to show the close relationship between the exponen
tial and the Poisson distributions, in the sense that one distribution automatically de
fines the other.

15.4.1 Pure Birth Model

Define

PoCt) = Probability of no arrivals during a period of time t
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Given that the interarrival time is exponential and that the arrival rate is A customers
per unit time, then

poet) = P{interarrival time ~ t}

= 1 - P{interarrival time ~ t}

= 1 - (1 - e-Al )

For a sufficiently small time interval 11, > 0, we have

(Ahf
poeh) = e->..h = 1 - Ah + -- - ... = 1 - Ah + O( 11,2)

2!

The exponential distribution is based on the assumption that during h > 0, at most
one event (arrival) can occur. Thus, as h ~ 0,

Pl(h) = 1 - Po(h) ~ Ah

This result shows that the probability of an arrival during 11, is directly proportional to
11" with the arrival rate, A, being the constant of proportionality.

To derive the distribution of the numberof arrivals during a period t when the in
terarrival time is exponential with mean t, define

PIl(t) = Probability of n arrivals during t

For a sufficiently small 11, > 0,

Pn(t + h) ~ Pn(t)(l - Ah) + PIl-l(t)Ah, n > °
Po(t + h) ~ Po(t)(l - Ah), n = °

In the first equation, n arrivals will be realized during t + h if there are n arrivals dur
ing t and no arrivals during 11" or n - 1 arrivals during t and one arrival during h. All
other combinations are not allowed because, according to the exponential distribution,
at most one arrival can occur during a very small period h. The product law of proba
bility is applicable to the right-hand side of the equation because arrivals are indepen
dent. For the second equation, zero arrivals during t + 11, can occur only if no arrivals
occur during t and h.

Rearranging the terms and taking the limits as 11, - 0, we get

. pAt + h) - Pn(t)
p~(t) = hmh__O 11, = -APn(t) + APn-l(t), n > 0

. Po(t - h) - poet) .
poet) = hmh O 11, = -Apo(t),

where p~(t) is the first derivative of Pn(t) with respect to t.
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The solution of the preceding difference-differential equations yields

(Atte-Al

Pn(t) = I ,n=O,1,2, ...
n.

This is a Poisson distribution with mean E{n It} = At arrivals during t.
The preceding result shows that if the time between arrivals is exponential with

mean *then the number of arrivals during a specific period t is Poisson with mean At.
The converse is true also.

The following table summarizes the strong relationships between the exponential
and the Poisson given an arrival rate of Aarrivals per unit time:

I

Random variable

Range

Density function

Mean value

Cumulative probability

P{no arrivals during period A}

Exponential

Time between
successive arrivals, t
t~O

f(t) = Ae-AJ , t ~ 0

1 . .
"Abme umts

P{t ::::; A} = 1 - e-AA

P{r> A} = e-AA

Poisson

Number of arrivals, n, during a specified
period T
n '" 0,1,2, ...

(AT)"e-AT

Pn(T) = " n = 0, 1, 2, ...
n.

AT arrivals during T

PnsN(T) = Po(T) + Pl(T) + ... + PN(T)

Po(A) = e-AA

Example 15.4-1

Babies are born in a sparsely populated state at the rate of one birth every 12 minutes. The time
between births follows an exponential distribution. Find the following:

(a) The average number of births per year.
(b) The probability that no births will occur in anyone day.
(c) The probability of issuing 50 birth certificates in 3 hours given that 40 certificates were

issued during the first 2 hours of the 3-hour period.

The birth rate per day is computed as

24 x 60 .
A = 12 = 120 births/day

The number of births per year in the state is

At = 120 X 365 = 43,800 births/year

The probability of no births in anyone day is computed from the Poisson distribution as

(120 X 1)Oe-120Xl

Po(1) = O! = e-120 = 0



with
mAt.

~ntial

etime

swere

I

15.4 Pure Birth and Death Models 559

Another way to compute the same probability is to note that no birth in anyone day is
equivalent to saying that the time between successive births exceeds one day. We can thus use the
exponential distribution to compute the desired probability as

P{t > 1} = e-120 = 0

To compute the probability of issuing 50 certificates by the end of 3 hours given that 40 cer
tificates were issued during the first 2 hours is equivalent to having 10 (= 50 - 40) births in one
(= 3 - 2) hour because the distribution of the number of births is Poisson.

Given A ;: ~ = 5 births per hour, we get

(5 X 1) lOe-5X1

PIO(1) = 1O! = .01813

Excel Moment

The calculations associated with the Poisson distribution and, indeed, all queuing for
mulas are tedious and require special programming skill to secure reasonable compu
tational accuracy. You can use Excel POISSON, POISSONDIST, and EXPONDIST
functions to compute the individual and cumulative probabilities Poisson and expo
nential probabilities. These functions are also automated in exceStatTables.xls. For ex
ample, for a birth rate of 5 babies per hour, the probability of exactly 10 births in .5
hour is computed by entering 2.5 in F16, 10 in 116 to obtain the answer .000216 in M16.
The cumulative probability of at most 10 births is given in 016 (= .999938). To deter
mine the probability of the time between births being less than or equal to 18 minutes,
use the exponential distribution by entering 2.5 in F9 and .3 in J9. The answer, .527633,
is found in 09.

TORA/Excel Moment

You can also use TORA (file toraExI5.4-1.txt) or template excelPoissonQ.xls to deter
mine all significant (>10-5 in TORA and 10-7 in Excel) Poisson probabilities automat
ically. In both cases, the input data are the same. For the pure birth model of Example
15.4-1 the data are entered as follows:

Lambda

5

Mu

o

c

(not applicable)

System limit

infinity

Source limit

infinity

Note the entry under Lambda is At = 5 X 1 = 5 births per day.

PROBLEM SET 15.4A

*1. In Example 15.4-1, suppose that the clerk who enters the information from birth certifi
cates into the computer normally waits until at least 5 certificates have accumulated. Find
the probability that the clerk will be entering a new batch every hour.
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2. An art collector travels to art auctions once a month on the average. Each trip is guaran
teed to produce one purchase. The time between trips is exponentially distributed. Deter
mine the following:

(a) The probability that no purchase is made in a 3-month period.

(b) The probability that no more than 8 purchases are made per year.

(c) The probability that the time between successive trips will exceed 1 month.

3. In a bank operation, the arrival rate is 2 customers per minute. Determine the following:

(a) The average number of arrivals during 5 minutes.

(b) The probability that no arrivals will occur during the next .5 minute.

(c) The probability that at least one arrival will occur during the next .5 minute.

(d) The probability that the time between two successive arrivals is at least 3 minutes.

4. The time between arrivals at L&J restaurant is exponential with mean 5 minutes. The
restaurant opens for business at 11:00 A.M. Determine the following:

*(a) The probability of having 10 arrivals in the restaurant by 11:12 A.M. given that 8 cus
tomers arrived by 11:05 A.M.

(b) The probability that a new customer will arrive between 11:28 and 11:33 A.M. given
that the last customer arrived at 11:25 A.M.

5. The Springdale Public Library receives new books according to a Poisson distribution with
mean 25 books per day. Each shelf in the stacks holds 100 books. Determine the following:

(a) The average number of shelves that will be stacked with new books each (30-day)
month.

(b) The probability that more than 10 bookcases will be needed each month, given that
a bookcase has 5 shelves.

6. The U of A runs two bus lines on campus: red and green. The red line serves north cam
pus and the green line serves south campus with a transfer station linking the two lines.
Green buses arrive randomly (according to a Poisson distribution) at the transfer station
every 10 minutes. Red buses also arrive randomly every 7 minutes.

*(a) What is the probability that two buses will stop at the station during a 5-minute interval?

(b) A student whose dormitory is located next to the station has a class in 10 minutes.
Either bus will take the student to the classroom building. The ride takes 5 minutes,
after which the student will walk for about 3 minutes to reach the classroom. What is
the probability that the student will make it to class on time?

7. Prove that the mean and variance of the Poisson distribution during an interval t equal
At, where A is the arrival rate.

8. Derive the Poisson distribution from the difference-differential equations of the pure
birth model. Hint: The solution of the general differential equation

y' + a(t)y = bet)

is

15.4.2 Pure Death Model

In the pure death model, the system starts with N customers at time 0 and no new ar
rivals are allowed. Departures occur at the rate IL customers per unit time. To develop
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the difference-differential equations for the probability PIl(t) of n customers remaining
after t time units, we follow the arguments used with the pure birth model (Section 15.4.1).
Thus,

PN(t + h) = PN(t)(l - /A-h)

Pn(t + h) = Pn(t)(l - p"/z) + Pn+l(t)/A-h,O < n < N

PoCt + h) = Po(t)(l) + Pl(t)fJ-h

As h~O, we get

PN(t) = -/A-PN(t)

p~(t) = -fJ-Pn(t) + /A-Pn+l(t), 0 < n < N

PoCt) = fJ-PI(t)

The solution of these equations yields the following truncated Poisson distribution:

(fJ-t)N-ne-,u
Pn(t)= ( ) ,n=1,2, ... ,N

N - 11!

N

poet) = 1 - LPn(t)
It-I

Example 15.4-2

The florist section in a grocery store stocks 18 dozen roses at the beginning of each week. On the
average, the florist sells 3 dozens a day (one dozen at a time), but the actual demand follows a
Poisson distribution. Whenever the stock level reaches 5 dozens, a new order of 18 new dozens is
placed for delivery at the beginning of the following week. Because of the nature of the item, all
roses left at the end of the week are disposed of. Determine the following:

(a) The probability of placing an order in anyone day of the week.
(b) The average number of dozen roses that will be discarded at the end of the week.

Because purchases occur at the rate of JL = 3 dozens per day, the probability of placing an
order by the end of day t is given as

Pn~dt) = poet) + PI(l) + ... + P5(t)
5 (3t) 18-ne-3t

= poet) + L. ( 8 _ ) I ' t = 1, 2, ... , 7
"=;1 1 n .

The calculations of PIIS5(t) are best done using excelPoissonQ.xls or TORA. TORA's multiple
scenarios may be more convenient in this case. The associated input data for the pure death
model corresponding to t =;; 1,2, ... , and 7 are

Lambda =;; 0, Mu = 3t, C =;; 1, System Limit =;; 18, and Source Limit"" 18

Note that t must be substituted out numerically as shown in file toraExI5.4-2.txt.
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The output is summarized as follows:

t (days) 1 2 3 4 5 6 7

J.Ll 3 6 9 12 15 18 21

P"..s(t) ooסס. .0088 .1242 .4240 .7324 .9083 .9755

The average number of dozen roses discarded at the end of the week (t = 7) is E{nlt = 7}.
To calculate this value we need Pn(7), n = 0, 1,2, ... , 18, which can be detennined using provid
ed software, which yields

18

E{nlt = 7} = LnPn(7) = .664::::: 1 dozen
n=O

PROBLEM SET 15.4B

1. In Example 15.4-2, use excelPoissonQ.xls or TORA to compute Pn(7), n = 1,2, ... , 18,

and then verify manually that these probabilities yield E{nlt = 7} = .664 dozen.
2. Consider Example 15.4-2. In each of the following cases, first write the answer alge

braically, and then use excelPoissonQ.xls or TORA to provide numerical answers.

*(a) The probability that the stock is depleted after 3 days.

(b) The average number of dozen roses left at the end of the second day.
*(c) The probability that at least one dozen is purchased by the end of the fourth day,

given that the last dozen was bought at the end of the third day.

(d) The probability that the time remaining until the next purchase is at most half a day
given that the last purchase occurred a day earlier.

(e) The probability that no purchases will occur during the first day.

(f) The probability that no order will placed by the end of the week.

3. The Springdale High School band is performing a benefit jazz concert in its new 4OO-seat
auditorium. Local businesses buy the tickets in blocks of 10 and donate them to youth or
ganizations. Tickets go on sale to business entities for 4 hours only the day before the
concert. The process of placing orders for tickets is Poisson with a mean 10 calls per hour.
Any (blocks of) tickets remaining after the box office is closed are sold at a discount as
"rush tickets" 1 hour before the concert starts. Determine

(a) The probability that it will be possible to buy rush tickets.

(b) The average number of rush tickets available.
4. Each morning, the refrigerator in a small machine shop is stocked with two cases (24 cans

per case) of soft drinks for use by the shop's 10 employees. The employees can quench
their thirst at any time during the 8-hour work day (8:00 A.M. to 4:00 P.M.), and each em
ployee is known to consume approximately 4 cans a day, but the process is totally ran
dom (Poisson distribution). What is the probability that an employee will not find a drink
at noon (the start of the lunch period)? Just before the shop closes?

*5. A freshman student receives a bank deposit of $100 a month from home to cover inci
dentals. Withdrawal checks of $20 each occur randomly during the month and are
spaced according to an exponential distribution with a mean value of 1 week. Determine
the probability that the student will run out of incidental money before the end of the
fourth week.

:;
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6. Inventory is withdrawn from a stock of 80 items according to a Poisson distribution at the
rate of 5 items per day. Detennine the following:

(a) The probability that 10 items are withdrawn during the first 2 days.

(b) The probability that no items are left at the end of 4 days.

(c) The average number of items withdrawn over a 4-day period.

7. A machine shop has just stocked 10 spare parts for the repair of a machine. Stock replen
ishment that brings the stock level back to 10 pieces occurs every 7 days. The time be
tween breakdowns is exponential with mean 1 day. Determine the probability that the
machine will remain broken for 2 days because no spare parts are available.

8. Demand for an item occurs according to a Poisson distribution with mean 3 per day. The
maximum stock level is 25 items, which occurs on each Monday immediately after a new
order is received. The order size depends on the number of units left at the end of the
week on Saturday (business is closed on Sundays). Determine the following:

*(a) The average weekly size of the order.

*(b) The probability of incurring shortage when the business opens on Friday morning.

(c) The probability that the weekly order size exceeds 10 units.

9. Prove that the distribution of the time between departures corresponding to the truncat
ed Poisson in the pure death model is an exponential distribution with mean! time units.

p.

10. Derive the truncated Poisson distribution from the difference-differential equations of
the pure death model using induction. [Note: See the hint in Problem 8, Set 15.4a.]

GENERALIZED POISSON QUEUING MODEL

This section develops a general queuing model that combines both arrivals and depar
tures based on the Poisson assumptions-that is, the interarrival and the service times
follow the exponential distribution. The model is the basis for the derivation of the spe
cialized Poisson models in Section 15.6.

The development of the generalized model is based on the long-run or steady-state
behavior of the queuing situation, which is achieved after the system has been in opera
tion for a sufficiently long time. This type of analysis contrasts with the transient (or warm
up) behavior that prevails during the early operation of the system. One reason for not
discussing the transient behavior in this chapter is its analytical complexity. Another rea
son is that the study of most queuing situations occurs under steady-state conditions.

The generalized model assumes that both the arrival and departure rates are
state dependent, meaning that they depend on the number of customers in the service
facility. For example, at a highway toll booth, attendants tend to speed up toll collection
during rush hours. Another example occurs in a shop with a given number of machines
where the rate of breakdown decreases as the number of broken machines increases
(because only working machines are capable of generating new breakdowns).

Define

n = Number of customers in the system (in-queue plus in-service)

An = Arrival rate given n customers in the system

fJvn = Departure rate given n customers in the system

Pn = Steady-state probability of n customers in the system
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FIGURE 15.2

Queuing Systems

Poisson queues transition diagram

The generalized model derives Pn as a function of An and /Ln' These probabilities are
then used to determine the system's measures of performance, such as the average
queue length, the average waiting time, and the average utilization of the facility.

The probabilities Pn are determined by using the transition-rate diagram in
Figure 15.2. The queuing system is in state n when the number of customers in the sys
tem is n. As explained in Section 15.3, the probability of more than one event occurring
during a small interval h tends to zero as h~ 0. This means that for n > 0, state n can
change only to two possible states: n - 1 when a departure occurs at the rate ILm and
n + 1 when an arrival occurs at the rate .An. State 0 can only change to state 1 when an
arrival occurs at the rate Ao. Notice that ILo is undefined because no departures can
occur if the system is empty.

Under steady-state conditions, for n > 0, the expected rates of flow into and out
of state n must be equal. Based on the fact that state n can be changed to states n - 1
and n + 1 only, we get

(Expe~ted rate Of)
flow mto state n == An-1Pn-l + ILn+lPn+l

Similarly,

(
Expected rate of )

flow out of state n == (.An + JLn) Pn

Equating the two rates, we get the following balance equation:

An-1Pn-l + ILn+lPn+l = (An + JLn)Pm n = 1,2, ...

From Figure 15.2, the balance equation associated with n = 0, is

AoPo = ILIPI

The balance equations are solved recursively in terms of Po as follows: For n = 0,
we have

Next, for n = 1, we have
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Substituting P1 = (~)Po and simplifying, we get (verify!)

(
,\v\o)

P2 = 1L2J.L1 Po

In general, we can show by induction that

_ (An - 1AII - 2 ... Ao) _
Pn - Po, n - 1, 2, ...

P-nP-n -1 ... P-l

The value of Po is determined from the equation 2:~=oPn = 1

Example 15.5-1

B&K Groceries operates with three check-out counters. The manager uses the following sched
ule to determine the number of counters in operation, depending on the number of customers
in store:

m in
~ sys
rring
'1 can
, and
~n an
scan

d out
! - 1

No. of customers in store

1 to3
4 to 6
More than 6

No. of counters in operation

1
2
3

Customers arrive in the counters area according to a Poisson distribution with a mean rate
of 10 customers per hour. The average check-out time per customer is exponential with mean 12
minutes. Determine the steady-state probability P.. of n customers in the check-out area.

From the information of the problem, we have

Thus,

An = A = 10 customers per hour,

{

~ = 5 customers per hour,
P-n = 2 X 5 = 10 customers per hour,

3 x 5 = 15 customers per hour,

n = 0,1, ...

11 = 0,1,2,3
n = 4,5,6
n = 7,8, ...

! = 0,

Pi = (~)po = 2po

(10)2P2 = "5 Po = 4po

(10)3P3 = "5 Po = 8po

(10)3(10)P4 = "5 10 Po = Bpo

(10)3(10)2Ps = "5 10 Po = 8po

(10)3(10)3P6 = "5 10 Po = 8po

= (!Q)3(!Q)3(lQ)/l-6 = 8(~)n-6
Pn~7 5 10 15 Po 3 Po
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The value of Po is determined from the equation

Po + Po{2 + 4 + 8 + 8 + 8 + 8 + 8(n + 8(~)2 + 8(~r + .. ,} = 1

or, equivalently

Po{31 + 8(1 + (D + (~y + ... )} = 1

Using the geometric sum series

00 12:xi = --, Ixl < 1
i=O 1 - x

we get

Th -lus, Po - 55"

Given Po, we can now determine PII for n > O. For example, the probability that only one
counter will be open is computed as the probability that there are at most three customers in the
system:

PI + P2 + P3 = (2 + 4 + 8)("is) ~ ,255

We can use PII to determine measures of performance for the B&K situation. For example,

(
Expected number)

f 'dl = 3po + 2(PI + P2 + P3) + 1(p4 + P5 + P6)Ole counters

+ O(P7 + Ps + ... )

= 1 counter

PROBLEM SET 15.5A

1. In Example 15.5-1, determine the following:
(a) The probability distribution of the number of open counters.
(b) The average number of busy counters.

2. In the B&K model of Example 15.5-1, suppose that the interarrival time at the check
out area is exponential with mean 5 minutes and that the checkout time per customer is
also exponential with mean 10 minutes. Suppose further that B&K will add a fourth
counter and that counters will open based on increments of two customers. Determine
the following:

(a) The steady-state probabilities, PII for all n.
(b) The probability that a fourth counter will be needed.
(c) The average number of idle counters.

*3. In the B&K model of Example 15.5-1, suppose that all three counters are always open
and that the operation is set up such that the customer will go to the first empty counter.
Determine the following:
(a) The probability that all three counters will be in use.

(b) The probability that an arriving customer will not wait.

J
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4. First Bank of Springdale operates a one-lane drive-in ATM machine. Cars arrive accord
ing to a Poisson distribution at the rate of 12 cars per hour. The time per car needed to
complete the ATM transaction is exponential with mean 6 minutes. The lane can accom
modate a total of 10 cars. Once the lane is full, other arriving cars seek service in another
branch. Determine the following:

(a) The probability that an arriving car will not be able to use the ATM machine be
cause the lane is full.

(b) The probability that a car will not be able to use the ATM machine immediately
on arrival.

(c) The average number of cars in the lane.

5. Have you ever heard someone repeat the contradictory statement, "The place is so crowd
ed no one goes there any more"? This statement can be interpreted as saying that the op
portunity for balking increases with the increase in the number of customers seeking
service. A possible platform for modeling this situation is to say that the arrival rate at the
system decreases as the number of customers in the system increases. More specifically, we
consider the simplified case of M&M Pool Club, where customers usually arrive in pairs to
"shoot pool." The normal arrival rate is 6 pairs (of people) per hour. However, once the
number of pairs in the pool hall exceeds 8, the arrival rate drops to 5 pairs per hour. The
arrival process is assumed to follow the Poisson distribution. Each pair shoots pool for an
exponential time with mean 30 minutes.The pool hall has a total of 5 tables and can ac
commodate no more than 12 pairs at anyone time. Determine the following:

(a) The probability that customers will balk.

(b) The probability that all tables are in use.

(c) The average number of tables in use.

(d) The average number of pairs waiting for a pool table to be available.

*6. A barbershop serves one customer at a time and provides three seats for waiting cus
tomers. If the place is full, customers go elsewhere. Arrivals occur according to a Poisson
distribution with mean four per hour. The/time to get a haircut is exponential with mean
15 minutes. Determine the following:

(a) The steady-state probabilities.

(b) The expected number of customers in the shop.

(c) The probability that customers will go elsewhere because the shop is full.

7. Consider a one-server queuing situation in which the arrival and service rates are given by

An = 10 - n,n = 0,1,2,3
n

/-Ln = 2" + 5, n = 1,2, 3,4

This situation is equivalent to reducing the arrival rate and increasing the service rate as
the number in the system, n, increases.

(a) Set up the transition diagram and determine the balance equation for the system.

(b) Determine the steady-state probabilities.

8. Consider the single queue model where only one customer is allowed in the system. Cus
tomers who arrive and find the facility busy never return. Assume that the arrivals distri
bution is Poisson with mean A per unit time and that the service time is exponential with
mean 1 time units.

Jl.

(a) Set up the transition diagram and determine the balance equations.

(b) Determine the steady-state probabilities.

(c) Determine the average number in the system.
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9. The induction proof for deriving the general solution of the generalized model is applied
as follows. Consider

k-l( A. )
Pk = II _I Po. k = 0, 1,2, ...

;=0 JLi+l

We substitute for Pn-l and Pn-2 in the general difference equation involving Pn. Pn-b
and Pn-2 to derive the desired expression for Pn' Verify this procedure.

15.6 SPECIALIZED POISSON QUEUES

Figure 15.3 depicts the specialized Poisson queuing situation with c parallel servers. A
waiting customer is selected from the queue to start service with the first available server.
The arrival rate at the system is A customers per unit time. All parallel servers are identi
cal, meaning that the service rate for any server is J.L customers per unit time. The number
of customers in the system is defined to include those in service and those waiting in queue.

A convenient notation for summarizing the characteristics of the queuing situa
tion in Figure 15.3 is given by the following format:

(albic):(dlel/)
where

a = Arrivals distribution

b = Departures (service time) distribution

c = Number of parallel servers (= 1,2, ... ,00)

d = Queue discipline

e = Maximum number (finite or infinite) allowed in the system

(in-queue plus in-service)

f = Size of the calling source (finite or infinite)

FIGURE 15.3

Schematic representation of a queuing system with c parallel servers

1+-------- System------~

1+- Queue ...,.,---------Service
~facility

Arrival rate A----!.....I t t t
}-----+-- Departure rate II-

}-----+-- Departure rate II-

>--+- Departure rate f.L

"
.-:·ij ··;':a
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The standard notation for representing the arrivals and departures distributions
(symbols a and b) is

M = Markovian (or Poisson) arrivals or departures distribution
(or equivalently exponential interarrival or service time distribution)

D = Constant (deterministic) time

Ek = Erlang or gamma distribution of time (or, equivalently, the sum of
independent exponential distributions)

GI = General (generic) distribution of interarrival time

G = General (generic) distribution of service time

The queue discipline notation (symbol d) includes

FCFS = First come, first served

LCFS = Last come, first served

SIRO = Service in random order

GD = General discipline (i.e., any type of discipline)

To illustrate the use of the notation, the model (MID/10):(GDj20joo) uses Pois
son arrivals (or exponential interarrival time), constant service time, and 10 parallel
servers. The queue discipline is GD, and there is a limit of 20 customers on the entire
system. The size of the source from which customers arrive is infinite.

As a historical note, the first three elements of the notation (albic), were devised
by D.G. Kendall in 1953 and are known in the literature as the Kendall notation. In
1966, A.M. Lee added the symbols d and e to the notation. This author added the last
element, symbol f, in 1968.

Before presenting the details of the specialized Poisson queues, we show how the
steady-state measures of performance of the generalized queuing situation can be de
rived from the steady-state probabilities Pn given in Section 15.5.

15.6.1 Steady-State Measures of Performance

The most commonly used measures of performance in a queuing situation are

L s = Expected number of customers in system

L q ;, Expected number of customers in queue

Ws = Expected waiting time in system

Wq = Expected waiting time in queue

c = Expected number of busy servers

Recall that the system includes both the queue and the service facility .
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We show now how these measures are derived (directly or indirectly) from the
steady-state probability of n in the system, PI'l as

00

L q = L (n - c)Pn
n""c+l

. The relationship between Ls and Ws (also Lq and Wq) is known as Little's formu
la, and is given as

L s = AeffWs

L q = Aeff~

These relationships are valid under rather general conditions. The parameter Aeff is the
effective arrival rate at the system. It equals the (nominal) arrival rate Awhen all arriving
customers can join the system. Otherwise, if some customers cannot join because the sys
tem is full (e.g., a parking lot), then Aeff < A. We will show later how Aeff is detennined.

A direct relationship also exists between Ws and Wq• By definition,

(E~pec~ed waiting) = (Ex~ect~d waiting) + (Expect~d serVice)
time 10 system time ill queue tIme

This translates to
1

Ws = Wq +
p..

Next, we can relate L s to L q by multiplying both sides of the last formula by Aeff,

which together with Little's formula gives

L = L + Aeff
s q p..

By definition, the difference between the average number in the system, L s , and
the average number in the queue, Lq, must equal the average number of busy servers,
c. We thus have,

c = L - L = Aeff
s q p..

It follows that

(
Facility) c

utilization =-;;

Example 15.6-1

Visitors' parking at Ozark College is limited to five spaces only. Cars making use of this space ar
rive according to a Poisson distribution at the rate of six cars per hour. Parking time is exponen
tially distributed with a mean of 30 minutes. Visitors who cannot find an empty space on arrival
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may temporarily wait inside the lot until a parked car leaves.That temporary space can hold only
three cars. Other cars that cannot park or find a temporary waiting space must go elsewhere. De
termine the following:

(a) The probability, Pm of n cars in the system.
(b) The effective arrival rate for cars that actually use the lot.
(c) The average number of cars in the lot.
(d) The average time a car waits for a parking space inside the lot.
(e) The average number of occupied parking spaces.
(f) The average utilization of the parking lot.

We note first that a parking space acts as a server, so that the system has a total of c = 5 par
allel servers. Also, the maximum capacity of the system is 5 + 3 = 8 cars.

The probability Pn can be determined as a special case of the generalized model in Section
15.5 using

An = 6 carslhour, n = 0,1,2, ... ,8

_ {n(~) =: 2n cars/hour, n =: 1,2,3,4,5

iLn - 5(~) = 10 carslhour, n =: 6, 7 ,8

From Section 15.5, we get

1
3/1
,Po.n.

Pn = 3rt

5! 5n - SPo,

n = 1, 2, 3, 4, 5

n = 6,7,8

L s' and
servers,

The value of Po is computed by substituting P'" n = 1,2, ... ,8, in the following equation

Po + PI + ... + Ps = 1

or

This yields Po =: .04812 (verify!). From Po, we can now compute PI through Ps as

n

PI!

1

.14436

2

.21654

3

.21654

4

.16240

5

.09744

6

.05847

7

.03508

8

.02105

,pace ar
xponen
11 arrival

The effective arrival rate Aeff can be computed by observing the schematic diagram in Figure
15.4, where customers arrive from the source at the rate Acars per hour. An arriving car may enter
the parking lot or go elsewhere with rates Aeff or Alos!> which means that A = Aeff + AloSl' A car will
not be able to enter the parking lot if 8 cars are already in. This means that the proportion of cars
that will not be able to enter the lot is Ps. Thus,

Alos t = AP8 =: 6 X .02105 =: .1263 cars per hour

AefC = A - AloSl =: 6 - .1263 = 5.8737 cars per hour
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FIGURE 15.4

Relationship between A, A"u, and Alosl

Aeff ~
----~.~

\ Alosl

The average number of cars in the lot (those waiting for or occupying a space) equals L s' the
average number in the system. We can compute Ls from Pn as

Ls := Opo + 1Pl + ... + 8ps = 3.1286 cars

A car waiting in the temporary space is actually a car in queue. Thus, its waiting time until a
space is found is Wq. To determine Wq we use

1
W =W--

q S J-t

Thus,

Ls 3.1286
Ws == A

eff
= 5.8737 :;;;; .53265 hour

1
Wq == .53265 - 2 == .03265 hour

The average number of occupied parking spaces is the same as the average number of busy
servers,

Aeff 5.8737
C == Ls - Lq == -;;: = -2- == 2.9368 spaces

From C, we get

. 1 '1" C 2.9368 58736Parkmg at uti lzatlon == - == -- == .
c 5

PROBLEM SET 15.6A

1. In Example 15.6-1, do the following:

*(a) Compute Lq directly using the formula 2:::c+l(n - c)Pn.
(b) Compute Ws from Lq.

*(c) Compute the average number of cars that will not be able to enter the parking lot
during an 8-hour period.

*(d) Show that c - (Ls - Lq ), the average number of empty spaces, equals
~c-I

.LJn=O(c - n)Pn'
2. Solve Example 15.6-1 using the following data: number of parking spaces = 6, number of

temporary spaces == 4, A == 10 cars per hour, and average parking time == 45 minutes.
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15.6.2 Single-Server Models

This section presents two models for the single server case (c = 1). The first model sets
no limit on the maximum number in the system, and the second model assumes a finite
system limit. Both models assume an infinite-capacity source. Arrivals occur at the rate
A customers per unit time and the service rate is J.L customers per unit time.

The results of the two models (and indeed of all the remaining models in Section
15.6) are derived as special cases of the results of the generalized model of Section 15.5.

The Kendall notation will be used to summarize the characteristics of each situa
tion. Because the derivations of Pn in Section 15.5 and of all the measures of perfor
mance in Section 15.6.1 are totally independent of a specific queue discipline, the
symbol GD (general discipline) will be used with the notation.

(M/MIl):(GDjoojoo). Using the notation of the generalized model, we have

An = A} ,n = 0,1,2, ...
J.Ln = J.L

Also, Aeff = A and Alos! = 0, because all arriving customers can join the system.
Letting p = ~, the expression for Pn in the generalized model then reduces to

Pn = pnPo, n = 0, 1, 2, ...

To determine the value of Po, we use the identity

Po(1 + p + p2 + ... ) ;= 1

Assuming p < 1, the geometric series will have the finite sum (1 ~ p)' thus

Po = 1 - p, provided p < 1.

The general formula for P'l is thus given by the following geometric distribution

Pn = (1- p)p't,n = 1,2, ... (p < 1)

The mathematical derivation of Pn imposes the condition p < 1, or A < JL. If
A > J.L, the geometric series will not converge, and the steady-state probabilities Pn will
not exist. This result makes intuitive sense, because unless the service rate is larger than
the arrival rate, queue length will continually increase and no steady state can be reached.

The measure of performance L q can be derived in the following manner:

00 00

Ls = LnPn = Ln(1 - p )pn
n=O n=O

d 00

= (1 - p)p- Lpn
dPn=O

d ( 1) P=(l-p)p- -- =--
dp 1 - p 1 - p
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Because Aeff = Afor the present situation, the remaining measures of performance are
computed using the relationships in Section 15.6.1. Thus,

L s 1 1
W =-=----=---

S A ft(l - p) JL - A

1 p
W = W --=---'---

q S ft JL(l - p)

p2
L =AW =-

q q 1 - p

c = L s - L q = p

Example 15.6-2

Automata car wash facility operates with only one bay. Cars arrive according to a Poisson dis
tribution with a mean of 4 cars per hour, and may wait in the facility's parking lot if the bay is
busy. The time for washing and cleaning a car is exponential, with a mean of 10 minutes. Cars
that cannot park in the lot can wait in the street bordering the wash facility. This means that,
for all practical purposes, there is no limit on the size of the system. The manager of the facili
ty wants to determine the size of the parking lot.

For this situation, we have A = 4 cars per hour, and J.t = ~ = 6 cars per hour. Because

p = ; < 1, the system can operate under steady-state conditions.

The TORA or excelPoissonQ.xls input for this model is

Lambda Mu

4 6

c

1

System limit

infinity

Source limit

infinity

The output of the model is shown in Figure 15.5. The average number of cars waiting in the
queue, Lq, is 1.33 cars.

Generally, using L q as the sale basis for the detennination of the number of parking spaces
is not advisable, because the design should, in some sense, account for the maximum possible
length of the queue. For example, it may be more plausible to design the parking lot such that an
arriving car will find a parking space at least 90% of the time.To do this, let S represent the num
ber of parking spaces. Having S parking spaces is equivalent to having S + 1 spaces in the system
(queue plus wash bay). An arriving car will find a space 90% of the time if there are at most S
cars in the system. This condition is equivalent to the following probability statement:

Po + PI + ... + Ps ~ .9

From Figure 15.5, cumulative Pn for n = 5 is .91221. This means that the condition is satisfied for
S ~ 5 parking spaces.

The number of spaces S can be determined also by using the mathematical definition of
Pn-that is,

(1 - p)(1 + p + p2 + '" + pS) ~ .9

.,

..;;: :~.~;;:.
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Scenario1: (M/M/1): (GO/infinity/infinity)

n Probabil i ty pn Cumulative Pn

0 0.33333 0.33333

1 0.22222 0.55556
2 0.14815 0.70370
3 0.09877 0.80247
4 0.06584 0.86831
5 0.04390 0.91221

6 0.02926 0.94147
7 0.01951 0.96098
8 0.01301 0.97399
9 0.00867 0.98266

10 0.00578 0.98844

11 0.00385 0.99229
12 0.00257 0.99486

:;son dis
le bay is
tes. Cars
ans that,
he facili-

Lambda
Lambda eff

Ls
Ws

4.00000
4.00000

2.00000
0.50000

Mu -:= 6.00000
Rho/c 0.66667

Lq 1. 33333
Wq 0.33333

n Probability pn Cumulative Pn

13 0.00171 0.99657

14 0.00114 0.99772
15 0.00076 0.99848
16 0.00051 0.99899
17 0.00034 0.99932
18 0.00023 0.99955

19 0.00015 0.99970
20 0.00010 0.99980
21 0.00007 0.99987
22 0.00004 0.99991
23 0.00003 0.99994

24 0.00002 0.99996
25 0.00001 0.99997

Because

ng in the

rlg spaces
l possible
:h that an
the num
he system
at most S

tisfied for

lnition of

FIGURE 15.5

TORA output of Example 15.6-2 (file toraEx15.6-2.txt)

TIle sum of the truncated geometric series equals 1 1-_P:+'. Thus the condition reduces to

Simplification of the inequality yields

Taking the logarithms on both sides (and noting that log(x) < 0 for 0 < x < 1, which reverses
the direction of the inequality), we get

In(.1 )
S ~ -- - 1 = 4.679 ~ 5

In(~)

PROBLEM SET 15.6B

1. In Example 15.6-2, do the following.

(a) Determine the percent utilization of the wash bay.

(b) Determine the probability that an arriving car must wait in the parking lot prior to
entering the wash bay.

(c) If there are seven parking spaces, determine the probability that an arriving car will
find an empty parking space.

(d) How many parking spaces should be provided so that an arriving car may find a
parking space 99% of the time?
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*2. John Macko is a student at Ozark U. He does odd jobs to supplement his income. Job re
quests come every 5 days on the average, but the time between requests is exponential.
The time for completing a job is also exponential with mean 4 days.

(a) What is the probability that John will be out of jobs?

(b) If John gets about $50 a job, what is his average monthly income?
(c) If at the end of the semester, John decides to subcontract on the outstanding jobs at

$40 each. How much, on the average, should he expect to pay?

3. Over the years, Detective Columbo, of the Fayetteville Police Department, has had phe
nomenal success in solving every single crime case. It is only a matter of time before any
case is solved. Columbo admits that the time per case is "totally random," but, on the av
erage, each investigation will take about a week and half. Crimes in peaceful Fayetteville
are not very common. They occur randomly at the rate of one crime per (four-week)
month. Detective Columbo is asking for an assistant to share the heavy work load. Ana
lyze Columbo's claim, particularly from the standpoint of the following points:

(a) The average number of cases awaiting investigation.
(b) The percentage of time the detective remains busy.
(c) The average time needed to solve a case.

4. Cars arrive at the Lincoln Tunnel toll gate according to a Poisson distribution, with a
mean of 90 cars per hour. The time for passing the gate is exponential with mean 38 sec
onds. Drivers complain of the long waiting time, and authorities are willing to reduce the
average passing time to 30 seconds by installing automatic toll collecting devices, provid
ed two conditions are satisfied: (1) the average number of waiting cars in the present sys
tem exceeds 5, and (2) the percentage of the gate idle time with the new device installed
does not exceed 10%. Can the new device be justified?

*5. A fast-food restaurant has one drive-in window. Cars arrive according to a Poisson distri
bution at the rate of 2 cars every 5 minutes. The space in front of the window can accom
modate at most 10 cars, including the one being served. Other cars can wait outside this
space if necessary. The service time per customer is exponential, with a mean of 1.5 min
utes. Determine the following:
(a) The probability that the facility is idle.

(b) The expected number of customers waiting to be served.
(c) The expected waiting time until a customer reaches the window to place an order.
(d) The probability that the waiting line will exceed the to-space capacity.

6. Customers arrive at a one-window drive-in bank according to a Poisson distribution, with
a mean of 10 per hour.The service time per customer is exponential, with a mean of 5
minutes. There are three spaces in front of the window, including the car being served.
Other arriving cars line up outside this 3-car space.
(a) What is the probability that an arriving car can enter one of the 3-car spaces?

(b) What is the probability that an arriving car will wait outside the designated 3-car space?
(c) How long is an arriving customer expected to wait before starting service?

*(d) How many car spaces should be provided in front of the window (including the car
being served) so that an arriving car can fmd a space there at least 90% of the time?

7. In the (MIMI1):(GD/oo/oo), give a plausible argument as to why Ls does not equal
L q + 1, in general. Under what condition will the equality hold?

8. For the (MIM/I):(GDjoojoo), derive the expression for Lq using the basic definition

2::=2(n - I)Pn o

.:~~. ..;'"".
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9. For the (M/M/l):(GDjoojoo), show that

(a) TIle expected number in the queue given that the queue is not empty = (1 ~ pl'
(b) The expected waiting time in the queue for those who must

wait = C~ ,J

Waiting lime Distribution for (MjM/l):(FCFS/oo/oo).l The derivation of Pn in the
generalized model of Section 15.5 is totally independent of the queue discipline.This means
that the average measures of performance (ws, wq, L s, and L q) apply to all queue disciplines.

Although the average waiting time is independent of the queue discipline, its proba
bility density function is not. We illustrate this point by deriving the waiting-time distribu
tion for the (.MIMIl) model based on the FCFS discipline.

Let T be the amount of time a person just arriving must be in the system (i.e., until
the service is completed). Based on the FCFS discipline, if there are n customers in the
system ahead of an arriving customer, then

T = tl + t2 + ... + til+ 1

where t1is the time needed for the customer currently in service to complete service
and t2, t3, ... , tn are the service times for the n - 1 customers in the queue. The time
tn +1 represents the service time for the arriving customer.

Define w(Tin + 1) as the conditional density function of T given n customers in
the system ahead of the arriving customer. Because the distribution of the service time
is exponential, the forgetfulness property (Section 15.3) tells us that t1is also exponen
tial with the same distribution. Thus, T is the sum of n + 1 identically distributed and
independent exponential random variables. From probability theory, w(Tln + 1) fol
lows a gamma distribution with parameters JL and 11 + 1. We thus have

00

WeT) = ~w(Tln + I)Pn
n=O

00 JL(JLT )"e-/LT
= ~ (1 - p)p"

n=O n!

00 (.AT)"
= (1 - p)f.Le-f.LT~-,-

n=O n.

= (1 - P)JLe-p:reA-r

= (f.L - A)e-(,u.-A)T, T > 0

Thus, w(T) is an exponential distribution with mean Ws = (,u. ~ A)"

Example 15.6-3

In the car wash facility model of Example 15.6-2, it is reasonable to assume that this service is
performed based on FCFS discipline. Assess the reliability of using Ws as an estimate of the wait
ing time in the system.

IThis material may be skipped without loss of continuity.
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One way of answering this question is to estimate the proportion of customers whose wait
ing time exceeds Ws' Noting that Ws = (I' ~ A)' we get

fW,
P{T> Ws } = 1 - Jo w(T)dT

= e-(/L-A)W, = e-1 = .368

( I
TllUS, under FCFS discipline, about 37% of the customers will wait longer than Ws' This appears
excessive, particularly since the current Ws for the car wash facility is already high (= .5 hour).
We note that the computed probability (= e-1 ~ .•368) is independent of the rates A and IL for
any (MIMl1):(FCFSloo/oo), which means that its value cannot be reduced. Thus, if we design
the system based on the average Ws, then we should expect 36.8% of the customers to wait more
than the average waiting time.

The situation can be improved in two ways: (1) we can increase the service rate JL to bring
the value of Ws down to an acceptable level, or (2) we can select the service rate such that the
probability that the waiting time exceeds a prespecified value (say, 10 minutes) remains under a
reasonably small percentage (say, 10%). The first method is equivalent to finding JL such that
Ws < T, and the second method finds JL by solving the inequality P{ T > T} < a, where T and
a are specified by the analyst.

PROBLEM SET 1S.6C

*1. In Problem 3, Set 15.6b, determine the probability that detective Columbo will take more
than 1 week to solve a crime case.

2. In Example 15.6-3, compute the following:

(a) The standard deviation of the waiting time T in the system.

(b) The probability that the waiting time in the system will vary by half a standard devi
ation around the mean value.

3. In Example 15.6-3, determine the service rate JL that satisfies the condition Ws < 10
minutes.

4. In Example 15.6-3, determine the service rate IL that will satisfy the condition
P{T> 10 minutes} <.1.

*5. Consider Problem 5, Set l5.6b. To attract more business, the owner of the restaurant will
give free soft drinks to any customer who waits more than 5 minutes. Given that a drink
costs 50 cents, how much will it cost daily to offer free drinks? Assume that the restaurant
is open for 12 hours a day.

6. Show that for the (MIMll ):(FCFSloo/oo), the distribution of waiting time in the queue is

Then find Wq from wq(t).

{
I - p,

wq(t) = ILP(l _ p)e-(/L-A)l,
t = 0
t>O

"....

(M!Mj1):(GDjNjoo). This model differs from (MIM/l):(GDjoo/oo) in that there is a
limit N on the number in the system (maximum queue length = N - 1). Examples
include manufacturing situations in which a machine may have a limited buffer area,
and a one-lane drive-in window in a fast-food restaurant.
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e wait- When the number of customers in the system reaches N, no more arrivals are al
lowed. Thus, we have

00

/-Ln = /-L, n = 0, 1, ...

The value of Po is determined from the equation 'LPn = 1, which yields
n=O

Using p = ~, the generalized model in Section 15.5 yields
}L

{
pnpo n::5 N

p" = 0, n> N

/l = 0, 1, ... , N - 1

n = N,N + 1{
A,

All = 0,

I
ppears
hour).

1 /-L for
design
tmore

P t:- 1 j, n = 0, 1, ... , N

p = 1

) bring
lat the
ndera
:h that
T and

: more

or

Thus,

{

(1 - p)
1 - pN+l'

Po = 1
N + l'

1
(1 - p)p"

_ 1 - pN+l'
Pn - 1

N + l'

p=F1

p=1

devi-

10

The value of p = ~ need not be less than 1 in this model, because arrivals at the system
}L

are controlled by the system limit N. This means that AC[f, rather than A, is the rate that
matters in this case. Because customers will be lost when there are N in the system,
then, as shown in Figure 15.4,

A10st = APN

Aeff = A - A\OSl = A(1 - PN)

.twill
Irink
aurant

leue is

In this case, ACf[ < /-L .

The expected number of customers in the system is computed as
N

L s = Lnp"
n=l

I-p N
_---:'-:-- ~ II

N+l £.JJ1P1 - p ,,=0

~e is a
mples
. area,

(
l-P)d

N

= 1 - pN+l PdP/~pll

:;;: (1 - p)p !!:.-.-(1 - pN+l)

1 - pN+l dp 1 - P

p[1 - (N + l)pN + NpN+1)
= p*1(1 - p)(1 - pN+l) ,

.f
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Scenario 1: (M/M/1): (GD/5/infinity)

Lambda 4.00000
Lambda eff : 3.80752

Ls 1. 42256
Ws 0.37362

n Probability pn

0 0.36541

1 0.24361
2 0.16241

Mu
Rho/c

Lq =
Wq =

Cumulative Pn n

0.36541 3

0.60902 4
0.77143 5

6.00000
0.66667

0.78797
0.20695

Probability pn

0.10827

0.07218
0.04812

Cumulative Pn

0.87970

0.95188
1. 00000

I

FIGURE 15.6

TORA output of Example 15.6-4 (file toraEx15.6-4.txt)

When p = 1, Ls = If (verify!). We can derive Ws> Wq, and Lq from Ls using Aerf as shown
in Section 15.6.1.

The use of a hand calculator to compute the queuing formulas is at best cumber
some (the formulas will get more complex in later models!). The use ofTORA or tem
plate excelPoissonQ.xls to handle these computations is recommended.

Example 15.6-4

Consider the car wash facility of Example 15.6-2. Suppose that the facility has a total of four park
ing spaces. If the parking lot is full, newly arriving cars balk to other facilities. The owner wishes to
determine the impact of the limited parking space on losing customers to the competition.

In terms of the notation of the model, the limit on the system is N = 4 + 1 "" 5. The fol
lowing input data provides the output in Figure 15.6.

Lambda

4

Mu

6

c

1

System limit

5

Source limit

infinity

Because the limit on the system is N = 5, the proportion of lost customers is Ps = .04812,
which, based on a 24-hour day, is equivalent to losing CAps) X 24 =4 X .04812 X 24 = 4.62 cars
a day. A decision regarding increasing the size of the parking lot should be based on the value of
lost business.

Looking at the problem from a different angle, the expected total time in the system, Ws' is
.3736 hour, or approximately 22 minutes, down from 30 minutes in Example 15.6-3 when all ar
riving cars are allowed to join the facility. This reduction of about 25% is secured at the expense
of losing about 4.8% of all potential customers beca use of the limited parking space.

PROBLEM SET 15.60

*1. In Example 15.6-4, determine the following:

(a) Probability that an arriving car will go into the wash bay immediately on arrival.

(b) Expected waiting time until a service starts.

(c) Expected number of empty parking spaces.
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(d) Probability that all parking spaces are occupied.

(e) Percent reduction in average service time that will limit the average time in the
system to about 10 minutes. (Hint: Use trial and error with excelPoissonQ.xls or
TORA.)

2. Consider the car wash facility of Example 15.6-4. Determine the Dumber of parking
spaces such that the percentage of cars that cannot find a space does not exceed 1%.

3. The time barber Joe takes to give a haircut is exponential witb a mean of 12 minutes.
Because of his popularity, customers usually arrive (according to a Poisson distribu
tion) at a rate much higher than Joe can handle: six customers per hour. Joe really
will feel comfortable if the arrival rate is effectively reduced to about four customers
per hour. To accomplish this goal, he came up with the idea of providing limited seat
ing in the waiting area so that newly arriving customers will go elsewhere when they
discover that all the seats are taken. How many seats should Joe provide to accom
plish his goal?

*4. The final assembly of electric generators at Electro is produced at the Poisson rate of 10
generators per hour. The generators are then conveyed on a belt to the inspection depart
ment for final testing. The belt can hold a maximum of 7 generators. An electronic sensor
will automatically stop the conveyor once it is full, preventing the final assembly depart
ment from assembling more units until a space becomes available.The time to inspect the
generators is exponential, with a mean of 15 minutes.

(a) What is the probability that the final assembly department will stop production?

(b) What is the average number of generators on the conveyor belt?

(c) The production engineer claims that interruptions in the assembly department can
be reduced by increasing the capacity of the belt. In fact, the engineer claims that the
capacity can be increased to the point where the assembly department can operate
95% of the time without intelTuption. Is this claim justifiable? .

5. A cafeteria can seat a maximum of 50 persons. Customers arrive in a Poisson stream at
the rate of 10 per hour and are served (one at a time) at the rate of 12 per hour.

(a) What is the probability that an arriving customer will not eat in the cafeteria because
it is full?

(b) Suppose that three customers (with random arrival times) would like to be seated to
gether. What is the probability that their wish can be fulfilled? (Assume that arrange
ments can be made to seat them together as long as three seats are available.)

6. Patients arrive at a I-doctor clinic according to a Poisson distribution at the rate of 20 pa
tients per hour. The waiting room does not accommodate more than 14 patients. Exami
nation time per patient is exponential, with a mean of 8 minutes.

(a) What is the probability that an arriving patient will not wait?

(b) What is the probability that an arriving patient will find a seat in the room?

(c) What is the expected total time a patient spends in the clinic?

7. The probabilities Pn of n customers in the system for an (M/Mll):(GD/5/oo) are given
in the following table:

arrival.
n

Pn

o

.399

1

.249

2

.156

3

.097

4

.061

5

.038
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The arrival rate Ais five customers per hour. The service rate J.t is eight customers per
hour. Compute the following:

*(a) Probability that an arriving customer will be able to enter the system.

*(b) Rate at which the arriving customers will not be able to enter the system.

(c) Expected number in the system.

(d) Average waiting time in the queue.

8. Show that when p = 1 for the (MIM/l):(GDINloo) the expected number in the system,
Ls, equals~. (Hint: 1 + 2 + ... + i = i(i ; I).)

9. Show that Acre for the (M/M/l):(GDI N1(0 ) can be computed from the formula

Acre = J.t(Ls - Lq )

15.6.3 Multiple-Server Models

This section considers three queuing models with multiple parallel servers. The first
two models are the multiserver versions of the models in Section 15.6.2. The third
model treats the self-service case, which is equivalent to having an infinite number of
parallel servers.

Real-Life Application-Telephone Sales Manpower Planning
at Qantas Airways

To reduce operating costs, Qantas Airways seeks to staff its main telephone sales reser
vation office efficiently while providing convenient service to its customers. Tradition
ally, staffing needs are estimated by forecasting future telephone calls based on
historical increase in business.The increase in staff numbers is then calculated based on
the projected average increase in telephone calls divided by the average number of
calls an operator can handle. Because the calculations are based on averages, the addi
tional number of hired staff does not take into account the fluctuations in demand dur
ing the day. In particular, long waiting time for service during peak business hours has
resulted in customer complaints and lost business. The problem deals with the determi
nation of a plan that strikes a balance between the number of hired operators and the
customer needs. The solution uses (MIMic) queuing analysis imbedded into an integer
programming model. Savings from the model in the Sydney office alone were around
$173,000 in fiscal year 1975-1976.The details of the study are given in Case 15, Chapter
24 on the CD.

(M/MIc):(GD/oo/oo). In this model, there are c parallel servers. The arrival rate is A
and the service rate per server is J.L. Because there is no limit on the number in the
system, Aeff = A.

The effect of using c parallel servers is a proportionate increase in the facility ser
vice rate. In terms of the generalized model (Section 15.5), An and J.Ln are thus defined as

_ {nJ.L,
J.L1l -

CJ.L,

n2::0

n < c

n2::c
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per Thus,

n;:::e

n<e

Pn =

An An pn

J.t(2J.t) (3J.t) ... (nJ.t) Po = n! J-Lil Po = n! Po,
An An pn

(rr~=liJ-L)(eJ-Lt-CPO = c! en-cJ-LnPO = c! en-cPO'

Letting p = ~, and assuming ~ < 1, the value of Po is determined from 2:~=oPn = 1,

which gives,

:ystem,

Ie first
e third
Iber of

{

C-l n c 00 ( )n-C}-l
Po = L ~ + E... L f!-

11=0 n! c! n=c e

{C-l pn pC( 1 )}-l P
= ~-+- -- -<1

LJ, '1 p ,n=O n. e. - ;; e

The expression for L q can be determined as follows:

00

n=c

; reser
dition
,ed on
lsed on
lber of
e addi
Id dur
urs has
~tenni

md the
lnteger
Hound
:hapter

00

= Lkpk+c
k=O

00 pk+c
= Lk-k-PO

k=O c c!

pc+l 00 (p)k-l
= -,-PoLk -

e. C k=O e

Pc+l d 00_ ~(P)k
- c! e Po d(~)~ ;;

pc+l

2 PO
(c - 1)1 (c - p)

Because Aeff = A, Ls = Lq + p. The values of Ws and Wq can be determined by dividing
L s and L q by A.

lte is A
in the

ity ser
ined as

Example 15.6-5

A community is served by two cab companies. Each company owns two cabs and both share the
market equally, as evidenced by the fact that calls arrive at each company's dispatching office at
the rate of eight per hour. The average time per ride is 12 minutes. Calls arrive according to a
Poisson distribution, and the ride time is exponential. The two companies recently were bought
by an investor who is interested in consolidating them into a single dispatching office to provide
better service to customers. Analyze the new owner's proposal

From the standpoint of queuing, the cabs are the servers, and the cab ride is the service.
Each company can be represented by the model (M/M/2):(GDjoojoo) with A = 8 calls per
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Comparative analysis

c

2
4

Lambda

8.000
16.000

Mu

5.000
5.000

L'da eff

8.00
16.00

pO

0.110
0.027

Ls

4.444
5.586

Ws

0.556
0.349

Lq

2.844
2.386

Wq

0.356
0.149

FIGURE 15.7

TORA output for Example 15.6-5 (file toraExI5.6-5.txt)

hour and JL = ~ = 5 rides per cab per hour. Consolidation will result in the model
(M/M/4):(GDjoojoo) with A = 2 X 8 = 16callsperhourandJL::."' 5 rides per cab per hour.

A suitable measure for comparing the two models is the average time a customer waits for
a ride, Wq. TORA comparative analysis input data are given as follows:

Scenario

1
2

Lambda

8
16

Mu

5
5

c

2
4

System limit

infinity
infinity

Source limit

infinity
infinity

Figure 15.7 provides the output for the two scenarios. The results show that the waiting
time for a ride is .356 hour (~21 minutes) for the two-cab situation and .149 (~9 minutes) for
the consolidated situation, a remarkable reduction of more than 50% and a clear evidence that
the consolidation of the two companies is warranted.

Remark. The conclusion from the preceding analysis is that pooling services is
always a more efficient mode of operation. This result is true even if the separate
installations happen to be "very" busy (see Problems 2 and 10, Set 15.6e).

PROBLEM SET 15.6E

1. Consider Example 15.6-5.
(a) Show that the remarkable reduction in waiting time by more than 50% for the consoli

dated case is coupled with an increase in the percentage of time the servers remain busy.
(b) Determine the number of cabs that the consolidated company should have to limit

the average waiting time for a ride to 5 minutes or less.
*2. In the cab company example, suppose that the average time per ride is actually about 14.5

minutes, so that the utilization (= :c) for the 2- and 4-cab operations increases to more than
96%. Is it still worthwhile to consolidate the two companies into one? Use the average wait
ing time for a ride as the comparison measure.

3. Determine the minimum number of parallel servers needed in each of the following
(Poisson arrivaUdeparture) situations to guarantee that the operation of the queuing situ
ation will be stable (i.e., the queue length will not grow indefinitely):
(a) Customers arrive every 5 minutes and are served at the rate of 10 customers per hour.
(b) The average interarrival time is 2 minutes, and the average service time is 6 minutes.
(c) The arrival rate is 30 customers per hour, and the service rate per server is 40 cus-

tomers per hour.
4. Customers arrive at Thrift Bank according to a Poisson distribution, with a mean of 45

customers per hour. Transactions per customer last about 5 minutes and are exponentially
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distributed. The bank wants to use a single-line multiple-teller operation, similar to the
ones used in airports and post offices. The manager is conscious of the fact that customers
may switch to other banks if they perceive that their wait in line is "excessive." For this rea
son, the manager wants to limit the average waiting time in the queue to no more than 30
seconds. How many tellers should the bank provide?

*5. McBurger fast food restaurant has 3 cashiers. Customers arrive according to a Poisson
distribution every 3 minutes and form one line to be served by the first available cashier.
The time to fill an order is exponentially distributed with a mean of5 minutes. The wait
ing room inside the restaurant is limited. However, the food is good, and customers are
willing to line up outside the restaurant, if necessary. Determine the size of the waiting
room inside the restaurant (excluding those at the cashiers) such that the probability that
an arriving customer does not wait outside the restaurant is at least .999.

6. A small post office has two open windows. Customers arrive according to a Poisson dis
tribution at the rate of 1 every 3 minutes. However, only 80% of them seek service at the
windows. The service time per customer is exponential, with a mean of 5 minutes. All ar
riving customers form one line and access available windows on an FCFS basis.

(a) What is the probability that an arriving customer will wait in line?

(b) What is the probability that both windows are idle?

(c) What is the average length of the waiting line?

(d) Would it be possible to offer reasonable service with only one window? Explain.

7. U of A computer center is equipped with four identical mainframe computers. The num
ber of users at any time is 25. Each user is capable of submitting a job from a terminal
every 15 minutes, on the average, but the actual time between submissions is exponential.
Arriving jobs will automatically go to the first available computer. The execution time
per submission is exponential with mean 2 minutes. Compute the following:

*(a) The probability that a job is not executed immediately on submission.

(b) TIle average time until the output of a job is returned to the user.

(c) The average number of jobs awaiting execution.

(d) The percentage of time the entire computer center is idle.

*(e) The average number of idle computers.

8. Drake Airport services rural, suburban, and transit passengers. The arrival distribution
for each of the three groups is Poisson with mean rates of 15, 10, and 20 passengers per
hour, respectively. The time to check in a passenger is exponential with mean 6 minutes.
Determine the number of counters that should be provided at Drake under each of the
following conditions:

(a) The total average time to check a customer in is less than 15 minutes.

(b) The percentage of idleness of the counters does not exceed 10%.

(c) The probability that all counters are idle does not exceed .01.

9. In the United States, the use of single-line, multiple-server queues is common in post of
fices and in passenger check-in counters at airports. However, both grocery stores and
banks (especially in smaller communities) tend to favor single-line, single-server setups,
despite the fact that single-line, multiple-server queues offer a more efficient operation.
Comment on this observation.

10. For the (M/Mlc):(GDjoojoo) model, Morse (1958,p.l03) shows that as ~-1,

L =_P-
q c - P
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Lq = ( )2 Pcc - P

15. For the (MIMlc):(GDjoojoo) model, show that

(3) The probability that a customer is waiting is (c ~ p) Pc'
(b) The average number in the queue given that it is not empty is (c ~ p)"

(c) The expected waiting time in the queue for customers who must wait is JL(C ~ p)"

16. Prove that the probability density function of waiting time in the queue for the
(MIMlc):(GDjoojoo) model is given as

Noting that ~ - 1 means that the servers are extremely busy, use this information to
show that the ratio of the average waiting time in queue in the (MIMlc):(GDjooj00 )

model to that in the (MIM/1):(GDjoojoo) model approaches ~ as ~ -1. Thus, for c = 2,
the average waiting time can be reduced by 50%. The conclusion from this exercise is that
it is always advisable to pool services regardless of how "overloaded" the servers may be.

11. In the derivation of P,I for the (MIMic): (GDjoojoo ) model, indicate which part of the
derivation requires the condition ~ < 1. Explain verbally the meaning of the conditiun.
What will happen if the condition is not satisfied?

12. Prove that L s = L q + cstarting with the definition L q = L~=c+l(n - c)p", where c is

A
the average number of busy servers. Hence, show that c = lie.

13. Show that Pn for the (MIM/1):(GDjoojoo) model can be obtained from that of the
(MIMlc):(GDjoojoo) by setting c = l.

14. Show that for the (MIMlc):(GDjoojoo) that

cp

T>O

T=O

(c - 1)! Po,!
pc

1-( )( ) Po,c-1! c-p
wq(T) = c -p.(c-p)T

ILP e

(Hint: Convert the c-channel case into an equivalent single channel for which

P{t > T} = p{ m~n tj > T} = (e-p.T)ce-p.cT
lsl'SC

where t is the service time in the equivalent single channel.)

17. Prove that for wq(T) in Problem 16

P{T > y} = P{T > O}e-(crA)y

where P {T > O} is the probability that an arriving customer must wait.

18. Prove that the waiting time in the system for the (M/M/c):(FCFSjoojoo) model has the
following probability density function:

(Hint: 'T is the convolution of the waiting time in queue, T [see Problem 16], and the ser
vice time distribution.)

.:~ ..
...:,;~ :'/:.
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(M/M/c):(GDjNjoo), c ~ N. This model differs from that of the (MIM/e):(GDjoojoo)
model in that the system limit is finite and equal to N. This means that the maximum queue
size is N - c. The arrival and service rates are A and IL. The effective arrival rate Aeff is less
than A because of the system limit, N.

In terms of the generalized model (Section 15.5), A" and JLn for the current model
are defined as

= 2,
that
be.

Ie

1Il.

: IS

A= {A,
n 0,

{
nIL,

ILn =
elL,

0-5,n-5,N

n> N

0-5,n<e

c-5,n-5,N

Substituting An and IL" in the general expression in Section 15.5 and noting that p = ~,
I"

we get

where
!

pn
,Po,n.

P.. = pn

rn=c Po,c. c

O~J1<C

Next, we compute Lq for the case where ~ * 1 as

N

Lq = L(n - c)Pn
n=c

~*1
c

1:=1
c

e ser-

N-c
= LjPi+c

j=O

pCp N-c .(p)i-I
= -PoLl -

c!c j=O C

pc+l d N-c p .

= cel Po d(~) ~ (~)I

pc+! {(p)N-C+l (p)(p)N-C}
= 1 - - - (N - c + 1) 1 - - - Po

(c - 1)!(c - p? c c c

It can be shown that for ~ = 1, L q reduces to

pc(N - c)(N - c + 1) p
L = p - = 1

q 2c! 0, c

To determine Wq and hence Ws and Ls, we compute the value of Aeff as
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Scenario1: (M/M/4): (GD/10/infinity)

5.00000
0.80000

Lambda 16.00000 Mu =
Lambda eff 15.42815 Rho/c

Ls 4.23984 Lq
Ws 0.27481 Wq

n Probability pn Cwnu1ative Pn n

0 0.03121 0.03121 6

1 0.09986 0.13106 7
2 0.15977 0.29084 8
3 0.17043 0.46126 9
4 0.13634 0.59760 10

FIGURE 15.8

TORA output of Example 15.6-6 (file toraEx15.6·6.txt)

1.15421
0.07481

Probability pn

0.08726

0.06981
0.05584
0.04468
0.03574

Cwnulative Pn

0.79393

·0.86374
0.91958
0.96426
1.00000

I

Example 15.6-6

In the consolidated cab company problem of Example 15.6-5, suppose that new funds cannot be
secured to purchase additional cabs. The owner was advised by a consultant that one way to re
duce the waiting time is for the dispatching office to inform new customers of potential excessive
delay once the waiting list reaches 6 customers. This move is certain to get new customers to seek
service elsewhere, but will reduce the waiting time for those on the waiting list. Assess the
friend's advice.

Limiting the waiting list to 6 customers is equivalent to setting N = 6 + 4 = 10 customers.
We are thus investigating the model (MIM/4):(GDjlOjoo), where "- = 16 customers per hour
and J.L = 5 rides per he)ur. The following input data provide the results in Figure 15.8.

Lambda

16

Mu

5

c

4

System limit

10

Source limit

infinity

The average waiting time, Wq, before setting a limit on the capacity of the system is .149 hour
(~9 minutes) (see Figure 15.7), which is about twice the new average of .075 hour
(~4.5 minutes). This remarkable reduction is achieved at the expense of losing about 3.6% of po
tential customers (PlO = .03574). However, this result does not reflect the effect of possible loss
of customer goodwill on the operation of the company.

PROBLEM SET 15.6F

1. In Example 15.6-6, determine the following:

(a) The expected number of idle cabs.

(b) The probability that a calling customer will be the last on the list.

(c) The limit on the waiting list if it is desired to keep the waiting time in the queue to
below 3 minutes.

.~:.:. ':.~ ..
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2. Eat & Gas convenience store operates a two-pump gas station. The lane leading to the
pumps can house at most 3 cars, excluding those being serviced. Arriving cars go else
where if the lane is full. The distribution of arriving cars is Poisson with mean 20 per
hour. The time to fill up and pay for the purchase is exponential with mean 6 minutes.
Determine the following:

(a) Percentage of cars that will seek business elsewhere.

(b) Percentage of time one pump is in use.

*(c) Percent utilization of the two pumps.

*(d) Probability that an arriving car will not start service immediately but will find an
empty space in the lane.

(e) Capacity of the lane that will ensure that, on the average, no more than 10% of the
arriving cars are turned away.

(f) Capacity of the lane that will ensure that the probability that both pumps are idle is
.05 or less.

3. A small engine repair shop is run by three mechanics. Early in March of each year, peo
ple bring in their tillers and lawn mowers for service and maintenance. The shop is willing
to accept all the tillers and mowers that customers bring in. However, when new cus
tomers see the floor of the shop covered with waiting jobs, they go elsewhere for more
prompt service. The floor shop can house a maximum of 15 mowers or tillers, excluding
those being serviced. The customers arrive at the shop every 10 minutes on the average,
and it takes a mechanic an average of 30 minutes to complete each job. Both the interar
rival and the service times are exponential. Determine the following:

(a) Average number of idle mechanics:

(b) Amount of business lost to competition per la-hour day because of the limited ca-
pacity of the shop.

(c) Probability that the next arriving customer will be serviced by the shop.

(d) Probability that at least one of the mechanics will be idle.

(e) Average number of tillers or mowers awaiting service.

(f) A measure of the overall productivity of the shop.

4. At U of A, newly enrolled freshmen students are notorious for wanting to drive their
cars to class (even though most of them are required to live on campus and can conve
niently make use of the university free transit system). During the first couple of
weeks of the fall semester, traffic havoc prevails on campus as freshmen try desperate
ly to find parking spaces. With unusual dedication, the students wait patiently in the
lanes of the parking lot for someone to leave so they can park their cars. Let us con
sider a specific scenario: The parking lot has 30 parking spaces but am also accommo
date 10 more cars in the lanes.1l1ese additional 10 cars cannot park in the lanes
permanently and must await the availability of one of the 30 parking spaces. Freshman
students arrive at the parking lot according to a Poisson distribution, with a mean of
20 cars per hour. The parking time per car averages about 60 minutes but actually fol
lows an exponential distribution.

*(a) What is the percentage of freshmen who are turned away because they cannot enter
the lot?

*(b) What is the probability that an arriving car will wait in the lanes?

(c) What is the probability that an arriving car will occupy the only remaining parking
space on the lot?
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*(d) Determine the average number of occupied parking spaces.

(e) Determine the average number of spaces that are occupied in the lanes.

*(1) Determine the number of freshmen who will not make it to class during an 8-hour
period because the parking lot is totally full.

s. Verify the expression for Po for the (M/M/c):(GDjNjoo) given that ~ '* 1.
6. Prove the following equality for the (M/M/c):(GDjNjoo)

where cis the number of busy servers.

7. Verify the expression for Po and Lq for the (M/M/c):(GDjNjoo) when ~ = 1.

8. For the (M/M/c):(GDjNjoo) model in which N = c, define An and j.t" in terms of the
generalized model (Section 15.5), then show that the expression for Pn is given as

pn
P" = I Po, n = 1, 2, ... , C

n.

where

(

c n)-l
Po = 1 + ~:!

(MIMloo):(GDloo/oo)-Self-Service Model. In this model, the number of servers is
unlimited because the customer is also the server. A typical example is taking the
written part of a driver's license test. Self-service gas stations and 24-hour ATM banks
do not fall under this model's description because the servers in these cases are
actually the gas pumps and the ATM machines. The model assumes steady arrival and
service rates, A and j.t, respectively.

In terms of the generalized model of Section 15.5, we have

An = A, n = 0, 1, 2, ...

j.tn = nj.t,11 = 0, 1,2, ...

Thus,

An pn
Pn = -1-/1 Po = - Po, n = 0, 1, 2, ...

n. j.t n!

Because 2:~=o P/I = 1, it follows that

1 1
Po = ------- = - = e-P

p2 eP
l+p+-+

2!
As a result,

e-ppn
Pn = -,-,n = 0,1,2, ...

n.

which is Poisson with mean L s = p. As should be expected, Lq and Wq are zero because
it is a self-service model.

,.
'~l i~:{. .......
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Example 15.6-7

An investor invests $1000 a month on average in one type of stock market security. Because the
investor must wait for a good "buy" opportunity, the actual time of purchase is totally random.
The investor usually keeps the securities for about 3 years on the average but will sell them at
random times when a "sell" opportunity presents itself. Although the investor is generally recog
nized as a shrewd stock market player, past experience indicates that about 25 % of the securities
decline at about 20% a year. The remaining 75% appreciate at the rate of about 12% a year. Es
timate the investor's (long-run) average equity in the stock market.

This situation can be treated as an (MIMloo):(GDloo/oo) because, for all practical pur
poses, the investor does not have to wait in line to buy or to sell securities. The average time be
tween order placements is 1 month, which yields A = 12 securities per year. The rate of selling
securities is J.t = ~ security per year. You can secure the model output using the following input:

Lambda Mu c System limit

12 .3333333 infinity infinity

Source limit

infinity

lers is
19 the
banks
~s are
al and

ecause

,-
'~l {~:{..",- _

Given the values of A and J.t, we obtain

L s = p = ~ = 36 securities
J.t

The estimate of the (long-run) average annual net worth of the investor is

(.25Ls x $1000)(1 - .20) + (.75Ls x $1000)(1 + .12) = $63,990

PROBLEM SET 15.6G

1. In Example 15.6-7, compute the following:

(a) The probability that the investor will sell out completely.

(b) The probability that the investor will own at least 10 securities.

(e) The probability that the investor will own between 30 and 40 securities, inclusive.

(d) The investor's net annual equity if only 10% of the securities depreciate by 30% a
year, and the remaining 90% appreciate by 15% a year.

2. New drivers are required to pass written tests before they are given a road driving test.
These tests are usually administered by the city police department. Records at the City of
Springdale show that the average number of written tests is 100 per 8-hour day. The aver
age time needed to complete the test is about 30 minutes. However, the actual arrival of test
takers and the time each spends on the test are totally random. Determine the following:

*(a) The average number of seats the police department should provide in the test hall.

*(b) The probability that the number of test takers will exceed the average number of
seats provided in the test hall.

(c) The probability that no tests will be administered in anyone day.

3. Show (by using excelPoissonQ.xls or TORA) that for small p = .1, the values of
Ls, Lq, Ws, Wq , and Pn for the (MIMjc):(GDloo/oo) model can be estimated reliably
using the less cumbersome formulas of the (M1M100 ): ( GD1(0 / 00 ) model for c as small
as 4 servers.

4. Repeat Problem 3 for large p = 9 and show that the same conclusion holds except that
the value of c must be higher (at least 14). From the results of Problems 3 and 4, what
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general conclusion can be drawn regarding the use of the (MjMjoo ):(GDjoojoo) to es
timate the results of the (Mj Mjc):(GDjoojoo) model?

15.6.4 Machine Servicing Model-(MIMIR):(GDIKIK), R < K

The setting for this model is a shop with K machines. When a machine breaks down,
one of R available repairpersons is called upon to do the repair. The rate of breakdown
per machine is Abreakdowns per unit time, and a repairperson will service broken ma
chines at the rate of J.L machines per unit time. All breakdowns and services are as
sumed to follow the Poisson distribution.

This model differs from all the preceding ones because it has a finite calling
source. We can see this point by realizing that when all the machines in the shop are
broken, no more calls for service can be generated. In essence, only machines in work
ing order can break down and hence can generate calls for service.

Given the rate of breakdown per machine, A, the rate of breakdown for the entire
shop is proportional to the number of machines that are in working order. In terms of
the queuing model, having n machines in the system signifies that n machines are bro
ken. Thus, the rate of breakdown for the entire shop is

An = (K - n) A, 0 s; n ~ K

In terms of the generalized model of Section 15.5, we have

I

_ {(K - n)A,
All - 0,

_ {nf.L'J.Ln - R f.L,

o <:. n ~ K

n >- K

O~n~R

R~n~K

From the generalized model, we can then obtain (verify!)

{

C~ptlpo,

n' IlPn = C K . P----'---p R:5.n:5.K
Il R! Rn-R 0,

(
R K n' pn )-1

P - "" C Kpn + "" CK-'-'--::-o - £oJ n £oJ n R' R,,-R
n=O n=R+l·

There is no closed form expression for L s , and hence it must be computed using
the following basic definition:

The value of Aeff is computed as

Aeff = E{A(K - n)} = A(K - Ls )

Using the formulas in Section 15.6.1, we can compute the remaining measures of per
formance Ws' Wq, and Lq.
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Example 15.6-8

Tooleo operates a machine shop with a total of 22 machines. Each machine is known to break
down once every 2 hours, on the average. It takes an average of 12 minutes to complete a repair.
Both the time between breakdowns and the repair time follow the exponential distribution.
Tooleo is interested in determining the number of repairpersons needed to keep the shop run
ning "smoothly."

The situation can be analyzed by investigating the productivity of the machines as a function
of the number of repairpersons. Such productivity measure can be defined as

(
Machines ) = Available machines - Broken machines x 100

productivity Available machines

22 - L
22 s X 100

The results for this situation can be obtained using the following input data: lambda = .5,
mu =: 5, R = 1,2,3, or 4, system limit = 22, and source limit = 22. Figure 15.9 provides the out
put. The associated productivity is computed as follows:

Repairperson, R 1

Machines productivity (100%) 45.44
Marginal increase (100%)

2

80.15
34.71

3

88.79
8.64

4

90.45
1.66

The results show that with one repairperson the productivity is low (= 45.44%). By in
creasing the number of repairpersons to two, the productivity jumps by 34.71 % to 80.15%. When
we employ three repairpersons, the productivity increases only by about 8.64% to 88.79%,
whereas four repairpersons will increase the productivity by a meager 1.66% to 90.45%.

Judging from these results, the use of two repairpersons is justifiable. The case for three
repairpersons is not as strong because it raises the productivity by only 8.64%. Perhaps a mon
etary comparison between the cost of hiring a third repairperson and the income attributed to
the 8.64% increase in productivity can be used to settle this point (see Section 15.10 for dis
cussion of cost models). As for hiring a fourth repairperson, the meager increase of 1..66% in
productivity does not justify such an action.

using FIGURE 15.9

TORA comparative analysis output for Example 15.6-8 (file toraEx15.6-8.lxt)

Comparative Analysis

c Lambda Mu L'da eff pO Ls Lq WS Wq

1 0.500 5.00 4.9980 0.0004 12.0040 11. 0044 2.4018 2.2018
2 0.500 5.00 8.8161 0.05!?4 4.3677 2.6045 0.4954 0.2954

f per- 3 0.500 5.00 9.7670 0.1078 2.4660 0.5128 0.2525 0.0525
4 0.500 5.00 9.9500 0.1199 2.1001 0.1102 0.2111 0.0111
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PROBLEM SET 15.6H

1. In Example 15.6-8, do the following:

(a) Verify the values of Aeff given in Figure 15.9.

*(b) Compute the expected number of idle repairpersons given R = 4.

(c) Compute the probability that all repairpersons are idle given R := 3.

*(d) Compute the probability that the majority (more than half) of repairpersons are idle
given R := 3.

2. In Example 15.6-8, define and compute the productivity of the repairpersons for R := 1,
2,3, and 4. Use this information in conjunction with the measure of machine productivity
to decide on the number of repairpersons Tooleo should hire.

3. In the computations in Figure 15.9, it may appear confusing that the average rate of ma
chine breakdown in the shop, Aerr, increases with the increase in R. Explain why the in
crease in Aeff should be expected.

*4. An operator attends five automatic machines. After each machine completes a batch
run, the operator must reset it before a new batch is started. The time to complete a
batch run is exponential with mean 45 minutes. The setup time is also exponential with
mean 8 minutes.

(a) Determine the average number of machines that are awaiting setup or are being
set up.

(b) Compute the probability that all machines are working.

(c) Determine the average time a machine is down.

5. Kleen All is a service company that performs a variety of odd jobs, such as yard work,
tree pruning, and house painting. The company's four employees leave the office with the
first assignment of the day. After completing an assignment, the employee calls the office
requesting instruction for the next job to be performed. The time to complete an assign
ment is exponential, with a mean of 45 minutes. The travel time between jobs is also ex
ponential, with a mean of 20 minutes.

(a) Determine the average number of employees who are traveling between jobs.

(b) Compute the probability that no employee is on the road.

*6. After a long wait, the Newborns were rewarded with quintuplets, two boys and three girls,
thanks to the wonders of new medical advances. During the first 5 months, the babies' life
consisted of two states: awake (and mostly crying) and asleep. According to the Newborns,
the babies "awake-asleep" activities never coincide. Instead, the whole affair is totally ran
dom. In fact, Mrs. Newborn, a statistician by profession, believes that the length of time
each baby cries is exponential, with a mean of 30 minutes. The amount of sleep each baby
gets also happens to be exponential, with a mean of 2 hours. Determine the following:

(a) The average number of babies who are awake at anyone time.

(b) TIle probability that all babies are asleep.

(c) The probability that the Newborns will not be happy because more babies are awake
(and crying) than are asleep.

7. Verify the expression for Pn for the (MIMIR):(GDIKlK) model.

8. Show that the rate of breakdown in the shop can be computed from the formula

Acfr = J.tR

where R is the average number of busy repairpersons.

15
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9. Verify the following results for the special case of one repairperson (R = 1):

K! pn
Pn = (K _ n)! Po

(
R K! pn )-1

Po = 1 + ~ (K - n)

L = K _ (1 - Po)
s

p

(M/G/1):(GD/00/ 00 )-POLLACZEK-KHINTCHINE {P-K} FORMULA

Queuing models in which the arrivals and departures do not follow the Poisson distri
bution are complex. In general, it is advisable to use simulation as an alternative tool
for analyzing these situations (see Chapter 16).

This section presents one of the few non-Poisson queues for which analytic re
sults are available. It deals with the case in which the service time, t, is represented by
any probability distribution with mean E {t} and variance var{t}. The results of the
model include the basic measures of performance L s' Lq, Ws' and Wq• The model does
not provide a dosed-form expression for Pn because of analytic intractability.

Let Abe the arrival rate at the single-server facility. Given E{t} and var{t} of the
service time distribution and that AE{t} < 1, it can be shown using sophisticated
probabilitylMarkov chain analysis that

A2(E2{t} + var{t})
Ls = AE{t} + 2(1 _ AE{t}) ,AE{t} < 1

The probability that the facility is empty (idle) is computed as

Po = 1 - AE{I} = 1 - p

Because Aeff = A, the remaining measures of performance (Lq, Ws' and Wq) can be de
rived from L s, as explained in Section 15.6.1.

Template excelPKFormula.xls automates the calculations of this model.

Example 15.7-1

In the Automata car wash facility of Example 15.6-2, suppose that a new system is installed so
that the service time for all cars is constant and equal to 10 minutes. How does the new system
affect the operation of the facility?

From Example 15.6-2, Aeff = A = 4 cars per hour. The service time is constant so that
E{t} = ~.= i hour and var{t} = O. Thus,

1 42((~)2 + 0)
L s = 4(6) + ( 4) = 1.33 cars

2 1 - 6

Lq = 1.333 - (~) = .667 cars
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W = 1.333 = 333 hour
s 4 .

.667
Wq = -4- = .167 hour

It is interesting that even though the arrival and departure rates are the same as in the
Poisson case of Example 15.6-2 (A = 4 cars per hour and J.1- = E~I} = 6 cars per hour), the ex
pected waiting time is lower in the current model because
the service time is constant, as the following table shows.

lVs (hr)
lVq (hr)

(M/M/l):( GD/oo/oo)

.500

.333

(MIDIl ):(GD/oo/oo)

.333

.167

The results make sense because a constant service time indicates more certainty in the operation
of the facility.

PROBLEM SET 15.7A

1. In Example 15.7-1, compute the percentage of time the facility is idle.

2. Solve Example 15.7-1 assuming that the service-time distribution is given as follows:

*(a) Uniform between 8 and 20 minutes.

(b) Normal with J.1- := 12 minutes and cr = 3 minutes.
(c) Discrete with values equal to 4,8, and 15 minutes and probabilities .2, .6, and .2,

respectively.

3. Layson Roofing Inc. installs shingle roofs on new and old residences in Arkansas. Prospec
tive customers request the service randomly at the rate of nine jobs per 30-day month and
are placed on a waiting list to be processed on a FCFS basis. Homes sizes vary, but it is fair
ly reasonable to assume that the roof areas are uniformly distributed between 150 and 300
squares. The work crew can usually complete 75 squares a day. Determine the following:

(a) Layson's average backlog of roofing jobs.

(b) The average time a customer waits until a roofing job is completed.

(c) If the work crew is increased to the point where they can complete 150 squares a
day, how will this affect the average time until a job is completed?

*4. Optica, Ltd., makes prescription glasses according to orders received from customers.
Each worker is specialized in certain types of glasses. The company has been experienc
ing unusual delays in the processing of bifocal and trifocal prescriptions. The worker in
charge receives 30 orders per 8-hour day. The time to complete a prescription is normally
distributed, with a mean of 12 minutes and a standard deviation of 3 minutes. After
spending between 2 and 4 minutes, uniformly distributed, to inspect the glasses, the work
er can start on a new prescription. Determine the following:

(a) The percentage of time the worker is idle.

(b) The average backlog of bifocal and trifocal prescriptions in Optica.

(c) The average time until a prescription is filled.
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5. A product arrives according to a Poisson distribution at the rate of one every 45 minutes.
The product requires two tandem operations attended by one worker. The first operation
uses a semiautomatic machine that completes its cycle in exactly 28 minutes. The second
operation makes adjustments and minor changes, and its time depends on the condition
of the product when it leaves operation 1. Specifically, the time of operation 2 is uniform
between 3 and 6 minutes. Because each operation requires the complete attention of the
worker, a new item cannot be loaded on the semiautomatic machine until the current
item has cleared operation 2.

(3) Determine the number of items that are awaiting processing on the semiautomatic
machine.

(b) What is the percentage of time the worker will be idle?

(c) How much time is needed, on the average, for an arriving item to clear operation 2?

6. (MIDII );(GD/oojoo). Show that for the case where the service time is constant, the P-K
formula reduces to

leration

p2
L, = p + 2(1 _ p)

Show that the P-K formula reduces to Ls of the (MIMll):(GDloo/OCJ) when the service
time is exponential with a mean of 1 time units.

fL

In a service facility with c parallel servers, suppose that customers arrive according to a
Poisson distribution, with a mean rate of A. Arriving customers are assigned to servers
(busy or free) on a strict rotational basis.

(a) Determine the probability distribution of the interarrival time.

(b) Suppose in part (a) that arriving customers are assigned randomly to the c servers
with probabilities aj, O!j ~ 0, i = 1,2, ... , c, and al + 0!2 + ... + ac = 1. Deter
mine the probability distribution of the interarrival time.

where I.L = dr} and p = ; = AE{t}.

7. (MIEm/l):(GDloo/OCJ). Given that the service time is Erlang with parameters m and J.L

(i.e., E{t} =; and var{t} = ~),show that the P-K formula reduces to

m(l + m)p2
L s = mp + 2( 1 - mp)vs:

8.
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The preceding sections have concentrated on the Poisson queuing models. Queuing lit
erature is rich with other types of models. In particular, queues with priority for service,
network queues, and non-Poisson queues form an important body of the queuing the
ory literature. These models can be found in most specialized books on queuing theory.

15.9 QUEUING DECISION MODELS

The service level in a queuing facility is a function of the service rate, JL, and the num
ber of parallel servers, c. This section presents two decision models for determining
"suitable" service levels for queuing systems: (1) a cost model, and (2) an aspiration-level
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model. Both models recognize that higher service levels reduce the waiting time in the
system. Both models aim at striking a balance between the conflicting factors of service
level and waiting.

15.9.1 Cost Models

Cost models attempt to balance two conflicting costs:

1. Cost of offering the service.
2. Cost of delay in offering the service (customer waiting time).

The two types of costs are in conflict because an increase in one automatically causes
reduction in the other, as demonstrated earlier in Figure 15.1.

Letting x (= J.L or c) represent the service level, the cost model can be expressed as

ETC(x) = EOC(x) + EWC(x)

where

ETC = Expected total cost per unit time

EOC = Expected cost of operating the facility per unit time

EWC = Expected cost of waiting per unit time

The simplest forms for EOC and EWC are the following linear functions:

EOC(x) = C1x

EWC(x) = C2L s
where

C1 = Marginal cost per unit of x per unit time

C2 = Cost of waiting per unit time per (waiting) customer

The following two examples illustrate the use of the cost model. The first example
assumes x to equal the service rate, J,L, and the second assumes x to equal the number of
parallel servers, c.

Example 15.9-1

KeenCo Publishing is in the process of purchasing a high-speed commercial copier. Four
models whose specifications are summarized below have been proposed by vendors.

Copier model

1
2
3
4

Operating cost ($/hr)

15
20
24
27

Speed (sheets/min)

30
36
50
66
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Jobs arrive at KeenCo according to a Poisson distribution with a mean of four jobs per 24-hour day.
Job size is random but averages about 10,000 sheets per job. Contracts with the customers specify
a penalty cost for late delivery of $80 per jobs per day. Which copier should KeenCo purchase?

Let the subscript i represent copier model i (i = 1,2,3,4). The total expected cost per day
associated with copier i is

ETCi = EOCj + EWCj

= Cli X 24 + C2jLsj

= 24CIi + 80Lsi> i = 1,2,3,4

The values of Cli are given by the data of the problem. We determine Lsi by recognizing that,
for all practical purposes, each copier can be treated as an (M/MIl):(GD/co/co) model.The arrival
rate is A = 4 jobs/day. The service rate fJ-i associated with model i is computed as

;sed as
Modeli

1
2
3
4

Service rate JLi Gobs/day)

4.32
5.18
7.20
9.50

ample
lber of

r. Four

Computation of the service rate is demonstrated for model 1.

. 10,000 1
Average time per job =~ X 60 = 5.56 hours

Thus,
24

JJ-l = 5.56 = 4.32 jobs/day

The values of Lsi> computed by TORA or excelPoissonQ.xls, are given in the following table:

Model i Ai (Jobs/day) iJ.-i (Jobs/day) Lsi (Jobs)

1 4 4.32 12.50
2 4 5.18 3.39
3 4 7.20 1.25
4 4 9.50 0.73

The costs for the four models are computed as follows:

Model i EOCj ($) EWCj ($) ETCi ($)

1 360.00 1000.00 1360.00
2 480.00 271.20 751.20
3 576.00 100.00 676.00
4 648.00 58.40 706.40

Model 3 produces the lowest cost.
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PROBLEM SET 15.9A

1. In Example 15.9-1, do the following:

(a) Verify the values of JL2, JL3' and JL4 given in the example.
(b) Suppose that the penalty of $80 per job per day is levied only on jobs that are not "in

progress" at the end of the day. Which copier yields the lowest total cost per day?

*2. Metaleo is in the process of hiring a repairperson for a 10-machine shop. Two candidates
are under consideration. The first candidate can carry out repairs at the rate of 5 ma
chines per hour and earns $15 an hour. The second candidate, being more skilled, receives
$20 an hour and can repair 8 machines per hour. Metaleo estimates that each broken ma
chine will incur a cost of $50 an hour because of lost production. Assuming that machines
break down according to a Poisson distribution with a mean of 3 per hour and that repair
time is exponential, which repairperson should be hired?

3. B&K Groceries is opening a new store boasting "state-of-the-art" check-out scanners.
Mr. Bih, one of the owners of B&K, has limited the choices to two scanners: scanner A
can process 10 items a minute, and the better-quality scanner B can scan 15 items a
minute. The daily (10 hours) cost of operating and maintaining the scanners are $25
and $35 for models A and B, respectively. Customers who finish shopping arrive at the
cashier according to a Poisson distribution at the rate of 10 customers per hour. Each
customer's cart carries between 25 and 35 items, uniformly distributed. Mr. Bih esti
mates the average cost per waiting customer per minute to be about 20 cents. Which
scanner should B&K acquire? (Hint: The service time per customer is not exponential.
It is uniformly distributed.)

4. H&I Industry produces a special machine with different production rates (pieces per
hour) to meet customer specifications. A shop owner is considering buying one of these
machines and wants to decide on the most economical speed (in pieces per hour) to be
ordered. From past experience, the owner estimates that orders from customers arrive at
the shop according to a Poisson distribution at the rate of three orders per hour. Each
order averages about 500 pieces. Contracts between the owner and the customers specify
a penalty of $100 per late order per hour.

(a) Assuming that the actual production time per order is exponential, develop a gener
al cost model as a function of the production rate, JL.

*(b) From the cost model in (a), determine an expression for the optimal production rate.

*(c) Using the data given in the problem, determine the optimal production rate the
owner should request from H&I.

5. Jobs arrive at a machine shop according to a Poisson distribution at the rate of 80 jobs
per week. An automatic machine represents the bottleneck in the shop. It is estimated
that a unit increase in the production rate of the machine will cost $250 per week. De
layed jobs normally result in lost business, which is estimated to be $500 per job per
week. Determine the optimum production rate for the automatic machine.

6. Pizza Unlimited sells two franchised restaurant models. Model A has a capacity of 20
groups of customers, and model B can seat 30 groups. The monthly cost of operating
model A is $12,000 and that of model B is $16,000. An investor wants to set up a buffet
style pizza restaurant and estimates that groups of customers, each occupying one table,
arrive according to a Poisson distribution at a rate of 25 groups per hour. If all the tables
are occupied, customers will go elsewhere. Model A will serve 26 groups per hour, and
model B will serve 29 groups per hour. Because of the variation in group sizes and in the
types of orders, the service time is exponential. The investor estimates that the average
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cost of lost business per customer group per hour is $15. A delay in serving waiting cus
tomers is estimated to cost an average of $10 per customer group per hour.
(a) Develop an appropriate cost mode.

(b) Assuming that the restaurant will be open for business 10 hours a day, which model
would you recommend for the investor?

7. Suppose in Problem 6 that the investor can choose any desired restaurant capacity based
on a specific marginal cost for each additional capacity unit requested. Derive the associ
ated general cost model, and define all its components and terms.

8. Second Time Around sells popular used items on consignment. Its operation can be
viewed as an inventory problem in which the stock is replenished and depleted randomly
according to Poisson distributions with rates Aand J.L items per day. Every time unit the
item is out of stock, Second Time loses $C1 because of lost opportunities, and every time
unit an item is held in stock, a holding cost $Cz is incurred.

(a) Develop an expression for the expected total cost per unit time.

(b) Determine the optimal value of p = ~. What condition must be imposed on the rela
tive values of C1and Cz in order for the solution to be consistent with the assump
tions ofthe (M/M/l):(GDjoojoo) model?

Example 15.9-2

In a multiclerk tool crib facility, requests for tool exchange occur according to a Poisson distrib
ution at the rate of 17.5 requests per hour. Each clerk can handle an average of 10 requests per
hour. The cost of hiring a new clerk in the facility is $12 an hour. The cost of lost production per
waiting machine per hour is approximately $50. Determine the optimal number of clerks for the
facility.

The situation corresponds to an (MIMic) model in which it is desired to determine the opti
mum value of c. Thus, in the general cost model presented at the start of this section, we put
x = c, resulting in the following cost model:

ETC(c) = C\c + CzLsCc)

= 12c + 50Ls(c)

Note that LsCc) is a function of the number of (parallel) clerks in the crib.
We use the (M/M/c):(GDjoojoo) model with A = 17.5 requests per hour and J.L = 10

requests per hour. In this regard, the model will reach steady state only if c > ~-that is, for
the present example, c ~ 2. The following table provides the necessary calculation for de
termining optimal c. The values of LsCc) (determined by excelPoissonQ.xls or TORA) given
below show that the optimum number of clerks is 4.

c LAc) (requests) ETC(c) ($)

2 7.467 397.35
3 2.217 146.85
4 1.842 140.10
5 1.769 148.45
6 1.754 159.70
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PROBLEM SET 15.9B

1. Solve Example 15.9-2, assuming that C1 = $20 and C2 = $45.

*2. Tasca Oil owns a pipeline booster unit that operates continuously. The time between
breakdowns for each booster is exponential with a mean of 20 hours. The repair time
is exponential with mean 3 hours. [n a particular station, two repairpersons attend 10 1
boosters. The hourly wage for each repairperson is $18. Pipeline losses are estimated ~

to be $30 per broken booster per hour. Tasca is studying the possibility of hiring an !.
additional repairperson.

(a) Will there be any cost savings in hiring a third repairperson?

(b) What is the schedule loss in dollars per breakdown when the number of repairper
sons on duty is two? Three?

3. A company leases a wide-area telecommunications service (WATS) telephone line for
$2000 a month. The office is open 200 working hours per month. At all other times, the
WATS line service is used for other purposes and is not available for company business.
Access to the WATS line during business hours is extended to 100 salespersons, each of
whom may need the line at any time but averages twice per 8-hour day with exponential
time between calls. A salesperson will always wait for the WATS line if it is busy at an es
timated inconvenience of 1 cent per minute of waiting. It is assumed that no additional
needs for calls will arise while the salesperson waits for a given call. The normal cost of
calls (not using the WATS line) averages about 50 cents per minute, and the duration of
each call is exponential, with a mean of 6 minutes. The company is considering leasing (at
the same price) a second WATS line to improve service.

(a) Is the single WATS line saving the company money over a no-WATS system? How
much is the company gaining or losing per month over the no-WATS system?

(b) Should the company lease a second WATS line? How much would it gain or lose
over the single WATS case by leasing an additional line?

*4. A machine shop includes 20 machines and 3 repairpersons. A working machine breaks
down randomly according to a Poisson distribution. The repair time per machine is ex
ponential with a mean of 6 minutes. A queuing analysis of the situation shows an aver
age of 57.8 calls for repair per 8-hour day for the entire shop. Suppose that the
production rate per machine is 25 units per hour and that each produced unit generates
$2 in revenue. Further, assume that a repairperson is paid at the rate of $20 an hour.
Compare the cost of hiring the repairpersons against the cost of lost revenue when ma
chines are broken.

5. The necessary conditions for ETC(c) (defined earlier) to assume a minimum value at
c = c* are

ETCCe* - 1) ~ ETCCc*) and ETC(e* + 1) ~ ETC(c*)

Show that these conditions reduce to

C1
Lie*) - Ls(c* + 1) :5 - :5 Lie* - 1) - Ls(e*)

C2

Apply the result to Example 15.9-2 and show that it yields c* = 4.

15.9.2 Aspiration Level Model

The viability of the cost model depends on how well we can estimate the cost parameters.
Generally, these parameters are difficult to estimate, particularly the one associated

,j" ,--~; ." .:..=.:.....
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with the waiting time of customers. The aspiration level model seeks to alleviate this
difficulty by working directly with the measures of performance of the queuing situa
tion. The idea is to determine an acceptable range for the service level (J.L or c) by spec
ifying reasonable limits on conflicting measures of performance. Such limits are the
aspiration levels the decision maker wishes to reach.

We illustrate the procedure by applying it to the multiple-server model, where it
is desired to determine an "acceptable" number of servers, c*. We do so by considering
the following two (conflicting) measures of performance:

1. The average time in the system, Ws'

2. The idleness percentage of the servers, X.

The idleness percentage can be computed as follows:

- c - (L - L ) (A )X = c - c x 100 = s q x 100 = 1 - eff X 100
c c eJ.L

(See Problem 12, Set 15.6e for the proof.)
The problem reduces to determining the number of servers c* such that

Ws ::s a and X ::s {3

where a and {3 are the levels of aspiration specified by the decision maker. For exam
ple, we may stipulate that a = 3 minutes and f3 = 10%.

The solution of the problem may be detennined by plotting Ws and X as a function
of c, as shown in Figure 15.10. By locating a and f3 on the graph, we can immediately de
termine an acceptable range for c*. If the two conditions cannot be satisfied simultane
ously, then one or both must be relaxed before a feasible range can be determined.

Example 15.9-3

In Example 15.9-2, suppose that it is desired to determine the number of clerks such that the ex
pected waiting time until a tool is received stays below 5 minutes. Simultaneously, it is also re
quired to keep the percentage of idleness below 20%.

Offhand, and before any calculations are made, an aspiration limit of 5 minutes on the wait
ing time until a tool is received (i.e., Ws :::; 5 minutes) is definitely unreachable because, accord-

teters.
ciated

FIGURE 15.10

Application of aspiration levels in queuing
decision-making Ws

o

Acceptable range of c

x

~==----------l {3



PROBLEM SET 15.9C

ing to the data of the problem, the average service time alone is 6 minutes. The following table
summarizes Ws and X as a function of c:

Based on these results, we should either reduce the service time or recognize that the Source
of the problem is that tools are being requested at a an unreasonably high rate (,.\ = 17.5 requests
per hour). This, most likely, is the area that should be addressed. For example, we may want to in
vestigate the reason for such high demand for tool replacement. Could it be that the design of the
tool itself is faulty? Or could it be that the operators of the machines are purposely trying to dis
rupt production to express grievances? j

I
1

8

6.0
78.0

7

6.0
75.0

6

6.0
70.8

5

6.1
65.0

4

6.3
56.3

7.6
41.7

32

25.4
12.5

c

Ws (min)
X('Yo)

Queuing Systems

*1. A shop uses 10 identical machines. Each machine breaks down once every 7 hours on the
average. It takes half an hour on the average to repair a broken machine. Both the break
down and repair processes follow the Poisson distribution. Determine the following:

(a) The number of repairpersons needed such that the average number of broken ma-
chines is less than 1.

(b) The number of repairpersons needed so that the expected delay time until repair is
started is less than 10 minutes.

2. In the cost model in Section 15.9.1, it is generally difficult to estimate the cost parameter
C2 (cost of waiting). As a result, it may be helpful to compute the cost C2 implied by the
aspiration levels. Using the aspiration level model to determine c*, we can then estimate
the implied C2 by using the following inequality:

Chapter 15604

(See Problem 5, Set 15.9b, for the derivation.) Apply the procedure to the problem in
Example 15.9-2, assuming c* = 3 and C1 = $12.00.
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Simulation Modeling

Chapter Guide. Simulation is the next best thing to observing a real system. It deals
with a computerized imitation of the random behavior of a system for the purpose of
estimating its measures of performance. Basically, simulation views an operational sit
uation as a waiting line in a service facility. By literally following the movements of cus
tomers in the facility, pertinent statistics (e.g., waiting time and queue length) can be
collected. The task of using simulation starts with the development of the logic of the
computer model in a manner that will allow collecting needed data. A number of com
puter languages are available to facilitate these tedious computations.

A common misuse of simulation is to run the model for an arbitrary time period,
and then view the results as the "true gospel." In fact, simulation output changes
(sometimes drastically) with the length of the run. For this reason, simulation modeling
deals with a statistical experiment whose output must be interpreted by appropriate
statistical tests. As you study the material in this chapter, pay special attention to the
peculiarities of the simulation experiment, including (1) the important role of (0,1)
random numbers in sampling from probability distributions, and (2) the special meth
ods used to collect observations to satisfy the underlying assumption of a true statisti
cal experiment.

The prerequisite for this chapter is a basic knowledge of probability and statistics.
A background in queuing theory is helpful.

This chapter includes 10 solved examples, 2 Excel templates, and 44 end-of
section problems. The AMPLlExcel/SolverrrORA programs are in folder ch16Files.
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16.1 MONTE CARLO SIMULATION

A forerunner to present-day simulation is the Monte Carlo technique, a modeling
scheme that estimates stochastic Of deterministic parameters based on random sam
pling. Examples of Monte Carlo applications include evaluation of multiple integrals,
estimation of the constant '1T' (= 3.14159), and matrix inversion.

This section uses an example to demonstrate the Monte Carlo technique. TIle objec
tive of the example is to emphasize the statistical nature of the simulation experiment.

605
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Example 16.1-1

We will use Monte Carlo sampling to estimate the area of a circle defined as

(x - 1)2 + (y - 2)2 = 25

The radius of the circle is r = 5 em, and its center is (x, y) = (1,2).
The procedure for estimating the area requires enclosing the circle tightly in a square whose

side equals the diameter of the circle, as shown in Figure 16.1. The corner points are determined
from the geometry of the square.

The estimation of the area of the circle is based on the assumption that all the points in the
square are equally likely to occur.Taking a random sample of n points in the square, if m of these
points fall within the circle, then

(
Estimate ot.the ) =: m ( Area of ) = m (10 x 10)

area of the clrcle n the square n

To ensure that all the points in the square occur with equal probabilities, we represent the co
ordinates x and y of a point in the square by the following uniform distributions:

1
flex) = -, -4 s; x s; 6

10

1
hey) = -, -3 s; y :s; 7

10

A sampled point (x, y) based on the distribution fl (x) and h (y) guarantees that all points in the
square are equally likely to be selected.

111e determination of a sample (x, y) is based on the use of independent and uniformly
distributed random numbers in the range (0, 1). Table 16.1 provides a small list of such num
bers which we will use in the example computations. For the purpose of general simulation,
special arithmetic operations are used to generate the 0-1 random numbers, as will be shown in
Section 16.4.

For a pair of 0-1 random numbers, Rl and R2, a random point (x, y) in the square is deter
mined by mapping them on the x and y axes of Figure 16.1 using the following formulas:

x = -4 + [6 - (-4)]R1 = -4 + 10R I

Y = -3 + [7 - (-3)]R2 = -3 + 10R2

FIGURE 16.1 (-4,7) (6,7)
Monte Carlo estimation of the area of a circle

(-4,-3) (6, -3)
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i TABLE 16.1 A Short List of 0-1 Random Numbers

.! .0589 .3529 .5869 .3455 .7900 .6307

g .6733 .3646 .1281 .4871 .7698 .2346

1 .4799 .7676 .2867 .8111 .2871 .4220

~
.9486 .8931 .8216 .8912 .9534 .6991

nose .6139 .3919 .8261 .4291 .1394 .9745

ined I
.5933 .7876 .3866 .2302 .9025 .3428
.9341 .5199 .7125 .5954 .1605 .6037
.1782 .6358 .2108 .5423 .3567 .2569

1 the .3473 .7472 .3575 .4208 .3070 .0546
hese .5644 .8954 .2926 .6975 .5513 .0305

To demonstrate the application of the procedure, consider R1 = .0589 and Rz = .6733. Then

e co-

n the

lrmly
num
ition,
wnin

leter-

x = -4 + lOR I = -4 + 10 x .0589 = -3.411

y = -3 + 10Rz = -3 + 10 x .6733 = 3.733

This point falls inside the circle because

(-3.411 - 1)2 + (3.733 - 2)2 = 22.46 < 25

The procedure is repeated n times, keeping track of the number of points m that fall within the
circle. The estimate of the area is then computed as 100;-. .

Remarks. To increase the reliability of estimating the area of the circle, we use the
same procedures employed in ordinary statistical experiments:

1. Increase the sample size.
2. Use replications.

The discussion in Example 16.1-1 poses two questions regarding the simulation
experiment:

1. How large should the sample size, n, be?
2. How many replications, N, are needed?

There are some formulas in statistical theory for determining nand N, and they depend
on the nature of the simulation experiment as well as the desired confidence level.
However, as in any statistical experiment, the golden rule is that higher values of nand
N mean more reliable simulation results. In the end, the sample size will depend on the
cost associated with conducting the simulation experiment. Generally speaking, how
ever, a selected sample size is considered "adequate" if it produces a relatively "small"
standard deviation.

Because of the random variation in the output of the experiment, it is necessary
to express the results as a confidence interval. Letting A and s be the mean and variance



of N replications, then, for a confidence level a, the confidence interval for the true
area A is

- s - s
A - --t~ N-l :5 A :5 A + --t~N-lVN 2' VN 2'

The parameter t!! N-l is determined from the t-distribution tables given a confidence
2'

level a and N - 1 degrees of freedom (see the Hable in Appendix B or use excelStat-
Tables.xls). Note that N equals the number of replications, which is distinct from n, the
sample size.

Simulation Modeling

Excel Moment

Because the computations associated with each sample in Example 16.1-1 are volumi
nous, Excel template excelCircle.xls (with VBA macros) is used to test the effect of
sample size and number of replications on the accuracy of the area estimate. The input
data include the circle radius, r, and its center, (ex, ey), sample size, n, and number of
replications, N. The entry Steps in cell D4 allows executing several sample sizes in
the same run. For example, if n = 30,000 and Steps = 3, the template will automati
cally produce output for n = 30,000, 60,000, 90,000. Each time the command button
·Press. to Execute Monte Carlo' is pressed, new estimates are realized, because Excel
refreshes the random number generator to a different sequence.

Figure 16.2 summarizes the results for 5 replications and sample sizes of 30,000,
60,000, and 90,000. The exact area is 78.54 cm2, and the Monte Carlo results show that

Chapter 16608

FIGURE 16.2

Excel output of Monte Carlo estimation of the area of a circle (file exceICircle.xls)

,..... '.', ·>B. ",·:":::I:,~:;'~~'.C·:>}~':>;:'.:i>O:::~!;/:+::«~E:';\'~{:1

,1-;; Monte Carlo Estimation of the Area of a Circle
,·2·: InDut data
. :3 ; Nbr. Replications, N = 5 i i
4 Sample size, n = 30000 Steps = I 3:

'5'·, Radius, r = 5 I i
'6.· Center, ex = 1 --------,-----.,

_..~--:- .. ------:
·7·. Center, cy ,.. 2 i i
6 Output results
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16.1 Monte Carlo Simulation 609

the mean estimated area for the three sample sizes varies from A = 78.533 to
A = 78.490 cm2

• We note also that the standard deviation decreases from s = .308 for
n = 30,000 to s = .191 for n = 90,000, an indication that accuracy increases with the
increase in the sample size.

In terms of the present experiment, we are interested in establishing the confi
dence interval based on the largest sample size (i.e., n = 90,000). Given N = 5, A =
78.490 cm2

, and s = .191 cm2
, (025,4 = 2.776, and the resulting 95% confidence interval

is 78.25 ::5 A ::5 78.73. In general, the value of N should be at least 5 to realize reason
able accuracy in the estimation of the confidence interval.

PROBLEM SET 16.1A

1. In Example 16.2-1, estimate the area of the circle using the first two columns of the (0, 1)
random numbers in Table 16.1. (For convenience, go down each column, selecting R1 first
and then R2.) How does this estimate compare with the ones given in Figure 16.2?

2. Suppose that the equation of a circle is

(x - 3f + (y + 2)2 = 16

(a) Define the corresponding distributionsf(x) andf(y), and then show how a sample
point (x, y) is determined using the (0, 1) random pair (RJ, R2 ).

(b) Use excelCircle.xls to estimate the area and the associated 95% confidence interval
given n = 100,000 and N = 10.

3. Use Monte Carlo sampling to estimate the area of the lake shown in Figure 16.3. Base
the estimate on the first two columns of (0, 1) random numbers in Table 16.1.

4. Consider the game in which two players, Jan and Jim, take turns in tossing a fair coin. If
the outcome is heads, Jim gets $10 from Jim. Otherwise, Jan gets $10 from Jan.

*(a) How is the game simulated as a Monte Carlo experiment?

(b) Run the experiment for 5 replications of 10 tosses each. Use the first five columns
of the (0,1) random numbers in Table 16.1, with each column corresponding to one
replication.

(c) Establish a 95% confidence interval on Jan's winnings.

(d) Compare the confidence interval in (c) with Jan's expected theoretical winnings.

FIGURE 16.3

Lake map for Problem 3, Set 16.1a

o 2 3 4
Miles

5 6 7
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5. Consider the following definite integral:

(a) Develop the Monte Carlo experiment to estimate the integral.

(b) Use the first four columns in Table 16.1 to evaluate the integral based on 4 replica
tions of size 5 each. Compute a 95% confidence interval, and compare it with the
exact value of the integral.

6. Simulate five wins or losses of the following game of craps: The player rolls two fair dice.
If the outcome sum is 7 or 11, the player wins $10. Otherwise, the player records the result
ing sum (called point) and keeps on rolling the dice until the outcome sum matches the
recorded point, in which case the player wins $10. If a 7 is obtained prior to matching the
point, the player loses $10.

*7. The lead time for receiving an order can be 1 or 2 days, with equal probabilities. The de
mand per day assumes the values 0, 1, and 2 with the respective probabilities of .2, .7, and
.1. Use the random numbers in Table 16.1 (starting with column 1) to estimate the joint
distribution of the demand and lead time. From the joint distribution, estimate the pdf of
demand during lead time. (Hint The demand during lead time assumes discrete values
from 0 to 4.)

8. Consider the Buffon needle experiment. A horizontal plane is ruled with parallel lines
spaced D cm apart. A needle of length d em (d < D) is dropped randomly on the plane.
The objective of the experiment is to determine the probability that either end of the
needle touches or crosses one of the lines. Define

h = Perpendicular distance from the needle center to a (parallel) line

e = Inclination angle of the needle with a line

(a) Show that the needle will touch or cross a line only if

h :=5 ~sin 8, 0 ::; h ::; D,o :=5 8 :=5 'IT
2 2

(b) Design the Monte Carlo experiment, and provide an estimate of the desired
probability.

(c) Use Excel to obtain 4 replications of size 10 each of the desired probability. Deter
mine a 95% confidence interval for the estimate. Assume D = 20 em and d = 10 em.

(d) Prove that the theoretical probability is given by the formula

2d
p=

7TD

(e) Use the result in (c) together with the formula in (d) to estimate 'IT.

16.2 TYPES OF SIMULATION

The execution of present-day simulation is based generally on the idea of sampling used
with the Monte Carlo method. It differs in that it is concerned with the study of the be
havior of real systems as a function oftime. Two distinct types of simulation models exist.

..;.< ....~ ......
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1. Continuous models deal with systems whose behavior changes continuously
with time. These models usually use difference-differential equations to describe the
interactions among the different elements of the system. A typical example deals with
the study of world population dynamics.

2. Discrete models deal primarily with the study of waiting lines, with the objec
tive of determining such measures as the average waiting time and the length of the
queue. These measures change only when a customer enters or leaves the system. The
instants at which changes take place occur at specific discrete points in time (arrivals
and departure events), giving rise to the name discrete event simulation.

This chapter presents the basics of discrete event simulation, including a descrip
tion of the components of a simulation model, collection of simulation statistics, and
the statistical aspect of the simulation experiment. The chapter also emphasizes the
role of the computer and simulation languages in the execution of simulation models.

PROBLEM SET 16.2A

1. Categorize the following situations as either discrete or continuous (or a combination of
both). In each case, specify the objective of developing the simulation model.

*(a) Orders for an item arrive randomly at a warehouse. An order that cannot be filled
immediately from available stock must await the. arrival of new shipments.

(b) World population is affected by the availability of natural resources, food production,
environmental conditions, educational level, health care, and capital investments.

(c) Goods arrive on pallets at a receiving bay of an automated warehouse. The pallets
are loaded on a lower conveyor belt and lifted through an up-elevator to an upper
conveyor that moves the pallets to corridors. The corridors are served by cranes that
pick up the pallets from the conveyor and place them in storage bins.

2. Explain why you would agree or disagree with the following statement: "Most discrete
event simulation models can be viewed in some form or another as queuing systems con
sisting of sources from which customers are generated, queues where customers may wait,
and facilities where customers are served."

ELEMENTS OF DISCRETE-EVENT SIMULATION

This section introduces the concept of events in simulation and shows how the statistics
of the simulated system are collected.

19 used
the be
(s exist.

16.3.1 Generic Definition of Events

All discrete-event simulations describe, directly or indirectly, queuing situations in
which customers arrive, wait in a queue if necessary, and then receive service before.
they depart the system. In general, any discrete-event model is composed of a network
of interrelated queues.

Given that a discrete-event model is in reality a composite of queues, collection
of simulation statistics (e.g., queue length and status of the service facility) take place
only when a customer arrives or leaves the facility. ll1is means that two principal events
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control the simulation model: arrivals and departures. These are the only two instants
at which we need to examine the system. At all other instants, no changes affecting the
statistics of the system take place.

Example 16.3-1

Metalco Jobshop receives two types of jobs: regular and rush. All jobs are processed on two con
secutive machines with ample buffer areas. Rush jobs always assume nonpreemptive priority
over regular jobs. Identify the events of the situation.

This situation consists of two tandem queues corresponding to the two machines. At first,
one may be inclined to identify the events of the situation as follows:

A 11: A regular job arrives at machine 1.

A21: A rush job arrives at machine 1.

Dll: A regular job departs machine 1.

D21: A rush job departs machine 1.

A12:A regular job arrives at machine 2.

A22: A rush job arrives at machine 2.

D12: A regular job departs machine 2.

D22: A rush job departs machine 2.

In reality, we have only two events: an arrival of a (new) job at the shop and a departure of
a (completed) job from a machine. First notice that events Dll and A12 are actually one and the
same. The same applies to D21 and A22. Next, in discrete simulation we can use one event (ar
rival or departure) for both types of jobs and simply "tag" the event with an attribute that iden
tifies the job type as either regular or rush. (We can think of the attribute in this case as a
personal identification number, and, indeed, it is.) Given this reasoning, the events of the model
reduce to (1) an arrival A (at the shop) and (2) a departure D (from a machine). The actions as
sociated with the departure event will depend on the machine at which they occur.

Having defined the basic events of a simulation model, we show how the model is executed.
Figure 16.4 gives a schematic representation of typical occurrences of events on the simulation
time scale. After all the actions associated with a current event have been performed, the simu
lation advances by "jumping" to the next chronological event. In essence, the execution of the
simulation occurs at the instants at which the events occur.

How does the simulation determine the occurrence time of the events? The arrival events
are separated by the interarrival time (the interval between successive arrivals), and the depar
ture events are a function of the service time in the facility. These times may be detenninistic
(e.g., a train arriving at a station every 5 minutes) or probabilistic (e.g., the random arrival ofcus
tomers at a bank). If the time between events is deterministic, the determination of their occurrence

FIGURE 16.4

Example of the occurrence of simulation events on the time scale
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times is straightforward. If it is probabilistic, we use a special procedure to sample from the cor
responding probability distribution. This point is discussed in the next section.

PROBLEM SET 16.3A

1. Identify the discrete events needed to simulate the following situation: Two types of jobs
arrive from two different sources. Both types are processed on a single machine, with pri
ority given to jobs from the first source.

2. Jobs arrive at a constant rate at a carousel conveyor system. Three service stations are
spaced equally around the carousel. If the server is idle when a job arrives at the station,
the job is removed from the conveyor for processing. Otherwise, the job continues to ro
tate on the carousel until a server becomes available. A processed job is stored in an adja
cent shipping area. Identify the discrete events needed to simulate this situation.

3. Cars arrive at a two-lane, drive-in bank, where each lane can house a maximum of four
cars. If the two lanes are full, arriving cars seek service elsewhere. If at any time one lane
is at least two cars longer than the other, the last car in the longer lane will jockey to the
last position in the shorter lane. The bank operates the drive-in facility from 8:00 A.M. to
3:00 P.M. each work day. Define the discrete events for the situation.

*4. The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all
its pupils. Kids arrive at the dispensing window every 30 seconds. It takes 18 seconds
to receive the lunch tray. Map the arrival-departure events on the time scale for the
first five pupils.

16.3.2 Sampling from Probability Distributions

Randomness in simulation arises when the interval, t, between successive events is
probabilistic. This section presents three methods for generating successive random
samples (t = tb [2,'" ) from a probability distributionf(t):

1. Inverse method.

2. Convolution method.
3. Acceptance-rejection method.

The inverse method is particularly suited for analytically tractable probability densi
ty functions, such as the exponential and the uniform. The remaining two methods deal
with more complex cases, such as the normal and the Poisson. All three methods are root
ed in the use of independent and identically distributed uniform (0, 1) random numbers.

Inverse Method. Suppose that it is desired to obtain a random sample x from the
(continuous or discrete) probability density function f(x). The inverse method first
determines a closed-form expression of the cumulative density function P(x) =

P{y ::::; x}, where °::; P(x) ::; 1, for all defined values of y. Given that R is a random
value obtained from a uniform (0, 1) distribution, and assuming that p-1 is the inverse
of F, the steps of the method are as follows:

Step 1.
Step 2.

Generate the (0, 1) random number, R.
Compute the desired sample, x = P-I(R).
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FIGURE 16.5

Sampling from a probability distribution by the inverse method

Figure 16.5 illustrates the procedures for both a continuous and a discrete ran
dom distribution. The uniform (0, 1) random value R I is projected from the vertical
F(x)-scale to yield the desired sample value Xl on the horizontal scale.

111e validity of the proposed procedure rests on showing that the random vari
able z = F(x) is uniformly distributed in the interval 0 ~ z ~ 1, as the following the
orem proves.

Theorem 16.3-1. Given the cumulative density function F(x) of the random variable
x, -00 < x < 00, the random variable z = F(x),O ~ z :51,hasthefollowinguniform
0-1 density function:

f(z) = 1,0 :5 Z <: 1

Proof. The random variable is uniformly distributed if, and only if,

P{z <: Z} = Z,O :5 Z :5 1

This result applies to F(x) because

P{z :5 Z} = P{F(x) :5 Z} = P{x :5 F-I(Z)} = F[F-1(Z)] = Z

Additionally, 0 <: Z :5 1 because 0 :5 P {z :5 Z} :5 1.

Example 16.3-2 (Exponential Distribution)

The exponential probability density function

represents the interarrival time t of customers at a facility with a mean value of ~. Determine a
random sample t tramf(t).

The cumulative density function is determined as

F(t) = lIAe-A:t dx = 1 - e-Ar , t > 0

"".... :
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Setting R = F(t), we can solve for t, which yields

t = -(~) In(l - R)

Because 1 - R is the complement of R, In(l - R) may be replaced with In(R).
In terms of simulation, the result means that arrivals are spaced t time units apart. For ex

ample, for A = 4 customers per hour and R = .9, the time period until the next arrival occurs is
computed as

t1 = -(~) In(l - .9) = .577 hour = 34.5 minutes

The values of R used to obtain successive samples must be selected randomly from a uni
form (0, 1) distribution. We will show later in Section 16.4 how these (0,1) random values are
generated during the course of the simulation.

PROBLEM SET 16.3B

*1. In Example 16.3-2, suppose that the first customer arrives at time 0. Use the first three
random numbers in column 1 of Table 16.1 to generate the arrival times of the next 3 cus
tomers and graph the resulting events on the time scale.

*2. Uniform Distribution. Suppose that the time needed to manufacture a part on a machine
is described by the foHowing uniform distribution:

1
f(t) = --, a $. t $. b

b-a

Determine an expression for the sample t given the random number R.

3. Jobs are received randomly at a one-machine shop. The time between arrivals is exponen
tial with mean 2 hours. The time needed to manufacture a job is uniform between 1.1 and
2 hours. Assuming that the first job arrives at time 0, determine the arrival and departure
time for the first five jobs using the (0, 1) random numbers in column 1 of Table 16.1.

4. The demand for an expensive spare part of a passenger jet is 0, 1,2, or 3 units per month
with probabilities .2, .3, .4, and .1, respectively. The airline maintenance shop starts opera
tion with a stock of 5 units, and will bring the stock level back to 5 units immediately
after it drops below 2 units.

*(a) Devise the procedure for sampling demand.

(b) How many months will elapse until the first replenishment occurs? Use successive
values of R from the first column in Table 16.1.

5. In a simulation situation, TV units are inspected for possible defects. TIlere is an 80%
chance that a unit will pass inspection, in which case it is sent to packaging. Otherwise,
the unit is repaired. We can represent the situation symbolically in one of two ways.

goto REPAIRl.2, PACKAGEI.S

goto PACKAGE/.S, REPAIRI.2

These two representations appear equivalent. Yet, when a given sequence of (0,1) ran
dom numbers is applied to the two representations, different decisions (REPAIR or
PACKAGE) may result. Explain why.
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6. A player tosses a fair coin repeatedly until a head occurs. The associated payoff is 2/1,
where n is the number of tosses until a head comes up.
(a) Devise the sampling procedure of the game.

(b) Use the random numbers in column 1 of Table 16.1 to determine the cumulative
payoff after two heads occur.

7. Triangular Distribution. In simulation, the lack of data may make it impossible to deter
mine the probability distribution associated with a simulation activity. In most of these
situations, it may be easy to describe the desired variable by estimating its smallest, most
likely, and largest values. These three values are sufficient to define a triangular distribu
tion, which can then be used as a "rough cut" estimation of the real distribution. '

(a) Develop the formula for sampling from the following triangular distribution, whose
respective parameters are a, b, and c:

(c - b)(c - a)'1
2(x - a)

f(x) = (b - a)(c - a)'
2(c - x)

(b) Generate three samples from a triangular distribution with parameters (1,3,7) using
the first three random numbers in column 1 of Table 16.1.

8. Consider a probability distribution that consists of a rectangle flanked on the left and right
sides by two symmetrical right triangles. The respective ranges for the triangle on the left,
the rectangle, and the triangle on the right are [a, b], [b, c], and [c, d], a < b < c < d. Both
triangles have the same height as the rectangle.

(a) Develop a sampling procedure
(b) Determine five samples with (a, b, c, d) = (1,2,4,6) using the first five random

numbers in column 1 of Table 16.1.

*9. Geometric distribution. Show how a random sample can be obtained from the following
geometric distribution:

f(x) = p(l - p)X, x = 0,1,2, ...

The parameter x is the number of (Bernoulli) failures until a success occurs, and p is the
probability of a success, 0 < p < 1. Generate five samples for p = .6 using the first five
random numbers in column 1 of Table 16.l.

10. Weibull distribution. Show how a random sample can be obtained from the Weibull distri
bution with the following probability density function:

where lX > 0 is the shape parameter, and f3 > 0 is the scale parameter.

Convolution Method. The basic idea of the convolution method is to express the
desired sample as the statistical sum of other easy-to-sample random variables. Typical
among these distributions are the Erlang and the Poisson whose samples can be obtained
from the exponential distribution samples.

..;.:i:
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Example 16.3-3 (Erlang Distribution)

The m-Erlang random variable is defined as the statistical sum (convolutions) of m independent
and identically distributed exponential random variables. Let y represent the m-Erlang random
variable; then

Y = Y1 + Y2 + ... + Ym

where Yi, i = 1,2, ... , m, are independent and identically distributed exponential random vari
ables whose probability density function is defined as

f(Yi) = Ae-AYi, Yi > 0, i = 1,2, ... , m

From Example 16.3-2, a sample from the ith exponential distribution is computed as

Yi = -(±) In(Rj),i = 1,2, ... ,m

TIlliS, the m-Erlang sample is computed as

To illustrate the use of the formula, suppose that m = 3, and A = 4 events per hour. The first 3
random numbers in column 1 of Table 16.1 yield R 1R2 R3 =(.0589)(.6733 )(.4799) = .0190, which
yields

Y = -G) 10(.019) = .991 hour

Example 16.3-4 (Poisson Distributions)

Section 15.3.1 shows that if the distribution of the time between the occurrence of successive
events is exponential, then the distribution of the number of events per unit time must be Pois
son, and vice versa. We use this relationship to sample the Poisson distribution.

Assume that the Poisson distribution has a mean value of II events per unit time. Then the
time between events is exponential with mean ttime units. This means that a Poisson sample, n,
will occur during t time units if, and only if,

Period till event n occurs ~ I < Period till event n + 1 occurs

This condition translates to

+ In :$ / < II + t2 + ... + t,,+1> n > 0

o~ t < /1, n = 0
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where ti> i = 1,2 ... , n + 1, is a sample from the exponential distribution with mean t· From the
result in Example 16.3-3, we have

-(~) In(DRi ) ~ t < -(~) In(fjRi } n> 0

o ~ t < -(~) In(RI ), n = 0

which reduces to

n n+l

IlR i ;::: e-M > IIR i , n > 0
i=l i=l

To illustrate the implementation of the sampling process, suppose that A = 4 events per hour
and that we wish to obtain a sample for a period t = .5 hour. This gives e-AJ = .1353. Using the
random numbers in column 1 of Table 16.1, we note that R j = .0589 is less than e-M = .1353.
Hence, the corresponding sample is n = O.

Example 16.3-5 (Normal Distribution)

The central limit theorem (see Section 12.4.4) states that the sum (convolution) of n indepen
dent and identically distributed random variables becomes asymptotically normal as n becomes
sufficiently large. We use this result to generate samples from normal distribution with mean f..L

and standard deviation cr.
Define

The random variable is asymptotically normal by the central limit theorem. Given that the uni
form (0, 1) random number R has a mean of ~ and a variance of f2, it follows that x has a mean of
~ and a variance of fi. Thus, a random sample, y, from a normal distribution with mean p. and
standard deviation cr, N(p" cr), can be computed from x as

( n)x--
y = p, + cr ~2

In practice, we take n = 12 for convenience, which reduces the formula to

y = p, + cr(x - 6)

To illustrate the use of this method, suppose that we wish to generate a sample from N(lO, 2)
(mean p, = 10 and standard deviation cr = 2).Taking the sum of the fIrst 12 random numbers in
columns 1 and 2 of Table 16.1, we get x = 6.1094.lllUs, Y = 10 + 2(6.1094 - 6) = 10.2188.
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The disadvantage of this procedure is that it requires generating 12 random numbers for
each normal sample, which is computationally inefficient. A more efficient procedure calls for
using the transformation

x = COS(27TR2)"V-2In(R])

Box and Muller (1958) prove that x is a standard N(O, 1). Thus, Y = /L + 0"x will produce a sam
ple from N(/J-, 0"). The new procedure is more efficient because it requires two (0, 1) random
numbers only. Actually, this method is even more efficient than stated, because Box and Miller
prove that the preceding formula will produce another N(O, 1) sample if sin(27TR2) replaces
COS(27TR2).

To illustrate the implementation of the Box-Muller procedure to the normal distribution
N(lO, 2), the first two random numbers in column 1 of Table 16.1 yield the following N(O, 1)
samples:

Xl = COS(27T X .6733) v'-2In(.0589) ~ -1.103

X2 = sin(27T X .6733) v'-2In(.0589) ~ -2.109

Thus, the corresponding N(10, 2) samples are

YI = 10 + 2( -1.103) = 7.794

Y1 = 10 + 2( -2.109) = 5.782

PROBLEM SET 16.3C1

*1. In Example 16.3-3, compute an Erlang sample, given m = 4 and A = 5 events per hour.

2. In Example 16.3-4, generate three Poisson samples during a 2-hour period, given that the
mean of the Poisson is 5 events per hour.

3. In Example 16.4-5, generate two samples from N(8, 1) by using both the convolution
method and the Box-Muller method.

4. Jobs arrive at Metaleo jobshop according to a Poisson distribution, with a mean of six
jobs per day. Received jobs are assigned to the five machining centers of the shop on a
strict rotational basis. Determine one sample of the interval between the arrival of jobs at
the first machine center.

5. The ACT scores for the 1994 senior class at Springdale High are normal, with a mean of
27 points and a standard deviation of 3 points. Suppose that we draw a random sample of
six seniors from that class. Use the Box-Muller method to determine the mean and stan
dard deviation of the sample.

*6. Psychology professor Yataha is conducting a learning experiment in which mice are
trained to find their way around a maze. The base of the maze is square. A mouse enters
the maze at one of the four corners and must find its way through the maze to exit at the
same point where it entered. The design of the maze is such that the mouse must pass by
each of the remaining three corner points exactly once before it exits. The multi-paths
of the maze connect the four corners in a strict clockwise order. Professor Yataha esti
mates that the time the mouse takes to reach one corner point froin another is uniformly

1For all the problems of this set, use the random numbers in Table 16.1 starting with column 1.



[(x) = C:+ x - 1p'(1 - py, x = 0,1,2, K

where x is the number of failures until the rth success occurs in a sequence of independent
Bernoulli trials and p is the probability of success, 0 < p < 1. (Hint The negative binomi
al is the convolution of r independent geometric samples. See Problem 9, Set 16.3b.)

distributed between 10 and 20 seconds, depending on the path it takes. Develop a sam
pling procedure for the time a mouse spends in the maze.

7. In Problem 6, suppose that once a mouse makes an exit from the maze, another mouse
instantly enters. Develop a sampling procedure for the number of mice that exit the maze
in 5 minutes.

8. Negative Binomial. Show how a random sample can be determined from the negative bi
nomial whose distribution is given as
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Acceptance-Rejection Method. The acceptance-rejection method is designed for
complex pdfs that cannot be handled by the preceding methods. The general idea of the
method is to replace the complex pdf f(x) with a more analytically manageable "proxy"
pdf h(x). Samples from h(x) can then be used to sample the original pdff(x).

Define the majorizing function g(x) such that it dominates f(x) in its entire
range-that is,

g(x) 2: I(x), -00 < x < 00

Next, define the proxy pdf, h(x), by normalizing g(x) as

g(x)
hex) = 00 , -00 < x < 00

J-«J g(y)d(y)

The steps of the acceptance-rejection method are thus given as

Step 1.

Step 2.

Step 3.

Obtain a sample x = Xl from h(x) using the inverse or the convolution
method.

Obtain a (0,1) random number R.
f(Xt)

If R ~ -(-)' accept Xl as a sample from f(x). Otherwise, discard Xl and
g Xl

return to step 1.

The validity of the method is based on the following equality:

P{x ~ alx = Xl is accepted, -00 < Xl < oo} = J~f(Y) dy, -00 < a < 00

This probability statement states that the sample x = Xl that satisfies the condition of
step 3 in reality is a sample from the original pdff(x), as desired.

The efficiency of the proposed method is enhanced by the decrease in the rejec
tion probability of step 3. This probability depends on the specific choice of the ma
jorizing function g(x) and should decrease with the selection of a g(x) that "majorizes"
f(x) more "snugly."
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g(x)

FIGURE 16.6

x Majorizing function, g(x), for the beta distribution,f(x)1.0o

Example 16.3~6 (Beta Distribution)
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Apply the acceptance-rejection to the following beta distribution:
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f(x) = 6x(1 - x),o:s x :s 1

Figure 16.6 depictsf(x) and a majorizing function g(x).
TIle height of the majorizing function g(x) equals the maximum of f(x), which occurs at

x = .5. Thus, the height of the rectangle is f( .5) = 1.5. 111is means that

g(x) = 1.5,0:s x:s 1

The proxy pdf hex), also shown in Figure 16.6, is computed as

hex) = g(x)
Area under g(x)

1.5
---=10:Sx:s1
1 X 1.5 '

The following steps demonstrate the procedure using the (0,1) random sequence in Table 16.1.

lltion

Step 1.

Step 2.

Step 3.

R = .0589 gives the sample x = .0589 from hex).

R = .6733.

Because ;[:~;~:l = .31~;6 = .2217 is less than R = .6733, we accept the sample Xl = .0589.

To obtain a second sample, we continue as follows:

I and Step 1.

Step 2.

Step 3.

Using R = .4799, we get x = .4799 from hex).

R = .9486.

Because ~[::;~l = .9984 is larger than R = .9486, we reject x = .4799 as a valid beta

sample. This means that the steps must be repeated again with "fresh" random num

bers until the condition of step 3 is satisfied.

.onof
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Remarks. The efficiency of the acceptance-rejection method is enhanced by selecting
a majorizing function g(x) that "jackets" f(x) as tightly as possible while yielding an
analytically tractable proxy hex). For example, the method will be more efficient if the
rectangular majorizing function g(x) in Figure 16.6 is replaced with a step-pyramid
function (see Problem 2, Set 16.3d, for an illustration). The larger the number of steps,
the more tightly will g(x) majorize f(x), and hence the higher is the probability of
accepting a sample. However, a "tight" majorizing function generally entails additional
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PROBLEM SET 16.30

computations which, if excessive, may offset the savings resulting from increasing the
probability of acceptance.

1. In Example 16.3-5, continue the steps of the procedure until a valid sample is obtained.
Use the (0,1) random numbers in Table 16.1 in the same order in which they are used in
the example.

2. Consider the beta pdf of Example 16.3-6. Determine a two-step pyramid majorizing func
tion g(x) with two equal jumps of height liS = .75 each. Obtain one beta sample based on
the new majorizing function using the same (0, 1) random sequence in Table 16.1 that
was employed in Example 16.3-6. The conclusion, in general, is that a tighter majorizing
function will increase the probability of acceptance. Observe, however, that the amount
of the computations associated with the new function is larger.

3. Detennine the functions g(x) and hex) for applying the acceptance-rejection method to
the following function:

Simulation ModelingChapter 16622

sin(x) + cos(x) 7r

f(x) = 2 ,0 s; x s; 2'

Use the (0, 1) random numbers from column 1 in Table 16.1 to generate two samples
fromf(x). [Hint: For convenience, use a rectangular g(x) over the defined range off(x).]

4. The interarrival time of customers at HairKare is described by the following distribution:

k
fl(t) = -!., 12 s; t s; 20

t

The time to get a haircut is represented by the following distribution:

k
h(t) = -f,18 S; t S; 22

t

The constant k l and k2 are determined such that fl(t) and h(t) are probability density
functions. Use the acceptance-rejection method (and the random numbers in Table 16.1)
to determine when the first customer will leave HairKare and when the next customer
will arrive. Assume that the first customer arrives at T = O.

16.4 GENERATION OF RANDOM NUMBERS

Uniform (0,1) random numbers playa key role in sampling from distributions. True (0,1)
random numbers can only be generated by electronicdevices. However, because simula
tion models are executed on the computer, the use of electronic devices to generate ran
dom numbers is much too slow for that purpose. Additionally, electronic devices are
activated by laws of chance, and hence it will be impossible to duplicate the same se
quence of random numbers at will. This point is important because debugging, verifica
tion, and validation of the simulation model often require duplicating the same sequence
of random numbers.

The only plausible way for generating (0, 1) random numbers for use in simula
tion is based on arithmetic operations. Such numbers are not truly random because
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16.4 Generation of Random Numbers 623

they can be generated in advance. It is thus more appropriate to refer to them as
pseudo-random numbers.

The most common arithmetic operation for generating (0,1) random numbers is
the multiplicative congruential method. Given the parameters un, b, C, and m, a pseudo
random number Rn can be generated from the formulas:

Un = (bUn-l + c) mod (m), n = 1,2, ...

Un
Rn = -, n = 1, 2, ...

m

The initial value Uo is usually referred to as the seed of the generator.
Variations of the multiplicative congruential method that improve the quality of

the generator can be found in Law and Kelton (1991).

Example 16.4-1

Generate three random numbers based on the multiplicative congruential method using
b = 9, c = 5, and m = 12. The seed is Uo = 11.

8
Ul = (9 x 11 + 5) mod 12 = 8, R] = 12 = .6667

5
Uz = (9 x 8 + 5) mod 12 = 5, Rz = 12 = .4167

_ 2 .
U3 = (9 x :::> + 5) mod 12 = 2, R3 = 12 = .1667

Excel Moment

Excel template excelRN.xls is designed to carry out the multiplicative congruential cal
culations. Figure 16.7 generates the sequence associated with the parameters of Exam
ple 16.4-1. Observe carefully that the cycle length is exactly 4, after which the sequence
repeats itself. The conclusion here is that the choice of un, b, C, and m is critical in de
termining the (statistical) quality of the generator and its cycle length. Thus, "casual"
implementation of the congruential formula is not advisable. Instead, one must use a
reliable and tested generator. Practically all commercial computer programs are
equipped with dependable random number generators.

PROBLEM SET 16.4A

*1. Use excelRN.xls with the following sets of parameters and compare the results with those
in Example 16.4-1:

b = 17, C = 111, m = 103, seed = 7

2. Find a random number generator on your computer, and use it to generate 500 zero-one
random numbers. Histogram the resulting values (using the Microsoft histogram tool, see
Section 12.5) and visually convince yourself that the obtained numbers reasonably follow
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FIGURE 16.7

Excel random numbers output for the data of Example
16.4-1 (file exceIRN.xls)

f':;7.-i"!F--------;------~;: j
11:
12]
101

. __.._.----_.

the (0, 1) uniform distribution. Actually, to test the sequence properly, you would need to
apply the following tests: chi-square goodness of fit (see Section 12.6), runs test for inde
pendence, and correlation test (see Law and Kelton [1991] for details).

16.5 MECHANICS OF DISCRETE SIMULATION

This section details how typical statistics are collected in a simulation model. The vehi
cle of explanation is a single-queue modeL Section 16.5.1 uses a numeric example to
detail the actions and computations that take place in a single-server queuing simula
tion model. Because of the tedious computations that typify the execution of a simula
tion model, Section 16.5.2 shows how the single-server model is modeled and executed
using Excel spreadsheet.

16.5.1 Manual Simulation of a Single-Server Model

The interarrival time of customers at HairKare Barbershop is exponential with mean
15 minutes. The shop is operated by only one barber and it takes between 10 and 15 min
utes, uniformly distributed, to do a haircut. Customers are served on a first-in, first-out
(FIFO) basis. The objective of the simulation is to compute the following measures of
performance:

1. The average utilization of the shop.
2. The average number of waiting customers.
3. The average time a customer waits in queue.

The logic of the simulation model can be described in terms of the actions associ
ated with the arrival and departure events of the model.

':';':'"
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Arrival Event

1. Generate and store chronologically the occurrence time of the next arrival event
(= current simulation time + interarrival time).

2. If the facility (barber) is idle
(a) Start service and declare the facility busy. Update the facility utilization

statistics.
(b) Generate and store chronologically the time of the departure event for the

customer (= current simulation time + service time).

3. If the facility is busy, place the customer in the queue and update the queue statistics.

Departure Event

1. If the queue is empty, declare the facility idle. Update the facility utilization sta tistics.

2. If the queue is not empty
(a) Select a customer from the queue, and place it in the facility. Update the

queue and facility utilization statistics.

(b) Generate and store chronologically the occurrence time of the departure
event for the customer (= current simulation time + service time).

From the data of the problem, the interarrival time is exponential with mean
15 minutes, and the service time is uniform between 10 and 15 minutes. Letting p
and q represent random samples of interarrival and service times, then, as explained
in Section 16.3.2, we get

p = -15 In( R) minutes, 0::5 R ::5 1

q = 10 + 5R minutes, 0 <: R ::5 1

For the purpose of this example, we use R from Table 16.1, starting with column l.
We also use the symbol Tto represent the simulation clock time. We further assume that
the first customer arrives at T = 0 and that the facility starts empty.

Because the simulation computations are typically voluminous, the simulation is
limited to the first 5 arrivals only. The example is designed to cover all possible situa
tions that could arise in the course of the simulation. Later in the section we introduce
the excelSingleServer.xls template that allows you to experiment with the model with
out the need to carry out the computations manually.

Arrival of Customer 1 at T = O. Generate the arrival of customer 2 at

T = 0 + Pi = 0 + [-15 In( .0589)] = 42.48 minutes

Because the facility is idle at T = O~ customer 1 starts service immediately. The depar
ture time is thus computed as

T = 0 + qi = 0 + (10 + 5 x .6733) = 13.37 minutes
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The chronological list of future events is thus given as:

Time, T

13.37
42.48

Event

Departure of customer 1
Arrival of customer 2

Departure of Customer 1 at T = 13.37. Because the queue is empty, the facility is
declared idle. At the same time, we record that the facility has been busy between T = 0
and T = 13.37 minutes. The updated list of future events becomes

Time, T Event

42.48 Arrival of customer 2

Arrival of Customer 2 at T = 42.48. Customer 3 will arrive at

T = 42.48 + [-15 In( .4799») = 53.49 minutes

Because the facility is idle, customer 2 starts service and the facility is declared busy.
The departure time is

T = 42.48 + (10 + 5 x .9486) = 57.22 minutes

The list of future events is updated as

Time,T

53.49
57.22

Event

Arrival of customer 3
Departure of customer 2

Arrival of Customer 3 at T = 53.49. Customer 4 will arrive at

T = 53.49 + [-15 In( .6139)] = 60.81 minutes

Because the facility is currently busy (until T = 57.22), customer 3 is placed in queue
at T = 53.49. The updated list of future events is

Time, T

57.22
60.81

Event

Departure of customer 2
Arrival of customer 4

Departure of Customer 2 at T = 57.22. Customer 3 is taken out of the queue to start
service. The waiting time is

W3 = 57.22 - 53.49 = 3.73 minutes

The departure time is

T = 57.22 + (10 + 5 x .5933) = 70.19 minutes
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TIle updated list of future events is

lime, T Event

60.81 Arrival of customer 4
70.19 Departure of customer 3

Arrival of Customer 4 at T = 60.81. Customer 5 will arrive at

T = 60.81 + [-151n(.9341)] = 61.83 minutes

Because the facility is busy until T = 70.19, customer 4 is placed in the queue. The up
dated list of future events is

Time, T

61.83
70.19

Event

Arrival of customer 5
Departure of customer 3

busy.

Arrival of Customer 5 at T = 61.83. TIle simulation is limited to 5 arrivals only, hence
customer 6 arrival is not generated. TIle facility is still busy, hence the customer is
placed in queue at T = 61.83. The updated list of events is

Time, T

70.19

Event

Departure of customer 3

Departure of Customer 3 at T = 70.19. Customer 4 is taken out of the queue to start
service. The waiting time is

W4 = 70.19 - 60.81 = 9.38 minutes

The departure time is

T = 70.19 + [10 + 5 X .1782] = 81.08 minutes

The updated list of future events is

lueue Time,T Event

I start

81.08 Departure of customer 4

Departure of Customer 4 at T = 81.08. Customer 5 is taken out of the queue to start
service. The waiting time is

Ws = 81.08 - 61.83 = 19.25 minutes

The departure time is

T = 81.08 + (10 + 5 x .3473) = 92.82 minutes

The updated list of future events is

Time, T

92.82

Event

Departure of customer 5



FIGURE 16.8

Changes in queue length and facility utilization as a function of simulation time, T
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Departure of Customer 5 at T = 92.82. TIIere are no more customers in the system
(queue and facility) and the simulation ends.

Figure 16.8 summarizes the changes in the length of the queue and the utilization
of the facility as a function of the simulation time.

The queue length and the facility utilization are known as time-based variables be
cause their variation is a function of time. As result, their average values are computed as

(
Average value of a) _ Area under curve
time-based variable - Simulated period

Implementing this formula for the data in Figure 16.8, we get

(
Average queue) = Al + A 2 = 32.36 = .349 customer

length 92.82 92.82

(Aver!1~e f~Cility) = A 3 + A 4 = 63.71 = .686 barber
utilIzatIOn 92.82 92.82

The average waiting time in the queue is an observation-based variable whose
value is computed as

(
Average value of an ) _ Sum of observations

observation-based variable - Number of observations

~ -
...... ..:.~_.~
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Examination of Figure 16.8 reveals that the area under the queue-length curve actually
equals the sum of the waiting time for the three customers who joined the queue; namely,

Wi + W2 + W3 + W4 + Ws = 0 + 0 + 3.73 + 9.38 + 19.25 = 32.36 minutes

The average waiting time in the queue for all customers is thus computed as

- 32.36 .
Wq = -5- = 6.47 mmutes

PROBLEM SET 16.5A

1. Suppose that the barbershop of Section 16.5.1 is operated by two barbers, and customers
are served on a FCFS basis. Suppose further that the time to get a haircut is uniformly
distributed between 15 and 30 minutes. TIle interarrival time of customers is exponential,
with a mean of 10 minutes. Simulate the system manually for 75 time units. From the re
sults of the simulation, determine the average time a customer waits in queue, the aver
age number of customers waiting, and the average utilization of the barbers. Use the
random numbers in Table 16.1.

2. Classify the following variables as either observation based or time based:

*(a) Time-to-failure of an electronic component.

*(b) Inventory level of an item.

(c) Order quantity of an inventory item.

(d) Number of defective items in a lot.

(e) Time needed to grade test papers.

(f) Number of cars in the parking lot of a car-rental agency.

*3. The following table represents the variation in the number of waiting customers in a
queue as a function of the simulation time.

;vhose

Simulation time, T (hr)

0,.,; T,.,; 3

3<T$4
4 < T.$ 6
6 < T$ 7
7<T$1O

10 < T.$ 12
12 < T.s; 18

18 < T.$ 20
20 < T.$ 25

No. of waiting customers

o
1
2
1

o
2
3
2
1

.•• '::.::.i.~'~.

Compute the following measures of performance:

(a) TIle average length of the queue.

(b) The average waiting time in the queue for those who must wait.
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4. Suppose that the barbershop of Example 16.5-1 is operated by three barbers. Assume
further that the utilization of the servers (barbers) is summarized as given in the
following table:

Simulation time, T (hr)

O<Ts 10
10 < T s 20
20 < T s 30
30 < T s 40
40 < T s 60
60 < T s 70
70 < T s 80
80 < T s 90
90 < T s 100

No. of busy servers

o
1
2
o
1
2
3
1
o

Determine the following measures of performance:

(a) The average utilization of the facility.

(b) TIle average busy time of the facility.

(c) The average idle time of the facility.

16.5.2 Spreadsheet-Based Simulation of the Single-Server Model

The presentation in Section 16.5.1 shows that simulation computations are typically te
dious and voluminous. Thus, the use of the computer to execute simulation models is a
must. TIlis section develops a spreadsheet-based model for the single server model. 11lC
objective of the development is to reinforce the ideas introduced in Section 16.5.1. Of
course, a single-server model is a simple situation, and for this reason can be modeled
readily in a spreadsheet environment. Other situations require a more involved model
ing effort, which is facilitated by available simulation packages (see Section 16.7).

TIle presentation in Section 16.5.1 shows that the simulation model of the single
server facility requires two basic elements:

1. A chronological list of the model's events.
2. A graph that keeps track of the changes in facility utilization and queue length.

These two elements remain essential in the development of the spreadsheet-based (in
deed, any computer-based) simulation model. The difference is that the implementa
tion is realized in a manner that is compatible with the use of the computer. As in
Section 16.5.1, customers are served in order of arrival (FIFO).

Figure 16.9 provides the output of exceISingleServer.xls. TIle input data allow
representing the interarrival and service time in one of four ways: constant, exponen
tial, uniform, and triangular. The triangular distribution is useful in that it can be used
as a rough initial estimate of any distribution, simply by providing three estimates a, b,
and c that represent the smallest, the most likely, and the largest values of the interar
rival or service time. The only other information needed to drive the simulation is the
length of the simulation run, which in this model is specified by the number of arrivals
that can be generated in the model.

0.:
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FIGURE 16.9

Excel output of a single-server simulation model (file exceISingleServer.xls)

The spreadsheet calculations reserve one row for each arrival. The interarrival
and service times for each arrival are generated from the input data. The first arrival is
assumed to occur at T = O. Because the facility starts idle, the customer starts service
immediately. Thus,

(
Departure time) = ( Arrival time) + ( Service time)
of customer 1 of customer 1 of customer 1

= 0 + 12.83 = 12.83

(
Arrival time) = ( Arrival time) + (Interarrival time)
of customer 2 of customer 1 of customer 1

= 0 + 3.37 = 3.37

To determine the departure time of any customer i, we use the following formula

(
Departure ti~e)
of customer 1

= max{ ( Arrival time.) ( Departure ~ime )}
of customer 1 ' of customer 1 - 1

The formula says that a customer cannot start service until the facility becomes avail
able. To illustrate the use of this formula in Figure 16.9, we have

Departure time of customer 3 = max{9.09, 27.55} + 12.21 = 39.76



We now turn our attention to collecting the statistics of the model. First, note that
for customer i, the waiting time in queue, Wq(i), and in the entire system, Ws(i), are
computed as

W (i) = (Departure ti.t~e) _ (Arrival time.) _ (service time.)
q of customer l of customer l of customer l

W (i) = (Departure ti~e) _ (Arrival time.)
s of customer l of customer l

~

I,
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Next, it may appear that computing the remaining statistics of the model necessitates
tracking the changes in facility utilization and in queue length (as we did in Section
16.5.1). Fortunately, the calculations are simplified by two observations we made in
Section 16.5.1 and explained in Figure 16.8:

1. Area under facility utilization curve = Sum of service times of all arrivals
2. Area under queue length curve = Sum of waiting times of all arrivals

To explain this point, Excel output in Figure 16.9 computes these two sums-namely,

Sum of service times = 264.65

Sum of Wq = 424.8

Sum of Ws = Sum of Wq + Sum of service times

= 689.44 (= 264.65 + 424.8)

Given that the last arrival (customer 20) departs at T = 269.90, it follows that

(
A ver.a~e f~cility) = 264.65 = .9805

utlhzatlOn 269.90

(
Average queue) = 424.80 = 1.57

length 269.90

Percent idleness of the facility is computed as (1 - .98) X 100 = 1.945%.
The remainder of the statistics are calculated in a straightforward manner; namely,

(A~era~e waiting) = Sum of Wq = 424.80 = 21.24
time III queue Number of arrivals 20

(
Average system) Sum of Ws 689.44

. = = = 34.47
ttme Number of arrivals 20

Another spreadsheet was developed for simulating multiserver models (exceIMul
tiServer.xls). The design of the template is based on the same ideas used in the single
server case. However, the determination of the departure time is not as straightforward
and, hence, requires the use of VBA macros.
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PROBLEM SET 16.5B

1. Using the input data in Section 16.5.1, run the Excel simulator for 10 arrivals and graph
the changes in facility utilization and queue length as a function of the simulation time.
Verify that the areas under the curves equal the sum of the service times and the sum of
the waiting times, respectively.

2. Simulate the MIMll model for 500 arrivals given the arrival rate A = 4 customers per
hour and the service rate J.l. = 6 departures per hour. Run 5 replications (by refreshing
the spreadsheet-pressing F9) and determine a 95% confidence interval for all the mea
sures of performance of the model. Compare the results with the steady-state theoretical
values of the MIM/l model.

3. Television units arrive on a conveyor belt every 15 minutes for inspection at a single
operator station. Detailed data for the inspection station are not available. However,
the operator estimates that it takes 10 minutes "on the average" to inspect a unit. Under
the worst conditions, the inspection time does not exceed 13 minutes, and for certain
units inspection time may be as low as 9 minutes.

(a) Use the Excel simulator to simulate the inspection of 200 TV units.
(b) Based on 5 replications, estimate the average number of units awaiting inspection

and the average utilization of the inspection station.

16.6 METHODS FOR GATHERING STATISTICAL OBSERVATIONS

Simulation is a statistical experiment and its output must be interpreted using proper sta
tistical inference tools (e.g., confidence intervals and hypothesis testing). To accomplish
this task, the observations of the simulation experiment must satisfy three conditions:

1. Observations are drawn from stationary (identical) distributions.
2. Observations are sampled from a normal population.
3. Observations are independent.

It so happens that, in the strict sense, the simulation experiment does not satisfy any
of these conditions. Nevertheless, we can ensure that these conditions remain statistically
viable by restricting the manner in which the simulation observations are gathered.

First, we consider the question of stationarity. Simulation output is a function of
the length of the simulated period. The initial period produces erratic behavior and is
usually referred to as the transient or warm-up period. When the output stabilizes, the
system operates under steady state. Unfortunately, there is no way to predict the start
point of steady state in advance. In general, a longer simulation run has better chance
of reaching steady state. This point is demonstrated in Example 16.1-1, where the accu
racy of estimating the area of a circle by Monte Carlo increases with the sample size.
'TIlliS, nonstationarity cali. be accounted for by using a sufficiently large sample size.

Next, we consider the requirement that simulation observations must be drawn
from a nonnal population. This requirement is realized by using the centraL Limit theo
rem (see Section 12.4.4), which states that the distribution of the average of a sample is
asymptotically normal regardless of the parent population from which the sample is
drawn. The central Jimit theorem is thus the main tool we use for satisfying the normal
distribution assumption.
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Collecting simulation data using the subinterval method

TIle third condition deals with the independence of the observations. The nature
of the simulation experiment does not guarantee independence among successive sim
ulation observations. However, by using sample average to represent a simulation ob
servation, we can alleviate the problem of lack of independence. This is particularly
true when we increase the time base used to compute the sample average.

Having discussed the peculiarities of the simulation experiment and ways to cir
cumvent them, we present the three most common methods for collecting observations
in simulation:

1. Subinterval method

2. Replication method

3. Regenerative (or cycles) method

16.6.1 Subinterval Method

Figure 16.10 illustrates the idea of the subinterval method. Suppose that the simulation
is executed for T time units (i.e., run length = T) and that it is desired to collect n ob
servations. TIle subinterval method first truncates an initial transient period, and then
subdivides the remainder of the simulation run into 11 equal subintervals (or batches).
The average of the desired measure of performance (e.g., queue length or waiting time
in queue) within each subinterval is then used to represent a single observation. The
truncation of the initial transient period implies that no statistical data are collected
during the period.

TIle advantage of the subinterval method is that the effect of the transient (non
stationary) conditions is mitigated, particularly for those observations that are collected
toward the end of the simulation run. The disadvantage of the method is that successive
batches with common boundary conditions are necessarily correlated. The effect of cor
relation can be alleviated by increasing the time' base for each batch.

Example 16.6-1

Figure 16.11 shows the change in queue length in a single-queue model as a function of the sim
ulation time. The simulation run length is T = 35 hours, and the length of the transient period is



16.6 Methods for Gathering Statistical Observations 635

Queue
length Q

Transient Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

4
3
2
1

5 10 15 20 25 30 35

FIGURE 16.11

Simulation time

nature
!e sim
on ob
:ularly

to cir
rations

Change in queue length with simulation time in Example 16.6-1

estimated to equal 5 hours. It is desired to collect 5 observations-that is, n = 5. The corre
sponding time base for each batch thus equals (35 5- 5) = 6 hours.

Let Q; represent the average queue length
in batch i. Because the queue length is a time-based variable, we have

- Ai.
Qi = -, l = 1,2, K, 5

t

where Ai is the area under the queue length curve associated with batch (observation) i, and tis
the time base per batch. In the present example, t = 6 hOUfS.

The data in Figure 16.11 produce the following observations:

The sample mean and variance can be used to compute a confidence interval, if desired. The
computation ofthe sample variance in Example 16.6-1 is based on the following familiar formula:

Observation i 1 2 3 4 5

A j 14 10 11 6 15

Qi 2.33 l.67 1.83 l.00 2.5

Sample mean = 1.87 Sample standard deviation = .59
lliation
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This formula is only an approximation of the true variance because it ignores the effect of auto
correlation between the successive batches. The exact formula can be found in Law and Kelton
(2000, pp. 249-253).

16.6.2 Replication Method

In the replication method, each observation is represented by an independent simula
tion run in which the transient period is truncated, as illustrated in Figure 16.12. The
computation of the observation averages for each batch is the same as in the subinterval
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FIGURE 16.12

Collecting simulation data using the replication method

method. The only difference is that the standard variance formula is applicable be-
cause the batches are not correlated. .

TIle advantage of the replication method is that each simulation run is driven by
a distinct (0,1) random number stream, which yields observations that are truly statis
tically independent. The disadvantage is that each observation may be biased by the
initial effect of the transient conditions. Such a problem may be alleviated by making the
run length sufficiently large. I

16.6.3 Regenerative (Cycle) Method

The regenerative method may be regarded as an extended case of the subinterval
method. The motivation behind the new method is that it attempts to reduce the effect
of autocorrelation that characterizes the subinterval method by requiring similar start
ing conditions for each batch. For example, if the variable we are dealing with is the
queue length, each batch would start at an instant where the queue length is zero. Un
like the subinterval method, the nature of the regenerative method may result in un
equal time bases for the different batches.

Although the regenerative method may reduce autocorrelation, it has the disad
vantage of yielding a smaller number of batches for a given run length. This follows be
cause we cannot predict when a new batch will start or how long its time base will be.
Under steady-state conditions, however, we should expect the starting points for the
successive batches to be more or less evenly spaced.

The computation of the average for batch i in the regenerative method is gener-
a

ally defined as the ratio of two random variables ai and bl-that is, Xi = t.. The defini-
tions of ai and bi depend on the variable being computed. Specifically, if the variable is
time based, then ai would represent the area under the curve and bi would equal the as
sociated time base. If the variable is observation based, then ai would be the total sum of
the observations within batch i and.bi would be the associated number of observations.

Because Xi is the ratio of two random variables, an unbiased estimate of the sam-
ple average can be shown to be .

II

LYi
_ i== I
y=-

n



na (n - l)(na - ai) .
y = - - --------'- l = 1,2, K, n

L b nb - bi '
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In this case, a confidence interval is based on the mean and standard deviation of Yi'

Example 16.6-2

Figure 16.13 represents the number of busy servers in a single facility with three parallel servers.
The length of the simulation run is 35 time units, and the length of the transient period is 4 time
units. It is desired to estimate the average utilization of the facility based on the regenerative
method.

After truncating the transient period, Figure 16.13 yields four batches with the common
characteristic of starting with all three servers idle. The associated values of Qj and bi are given in
the following table:

Batch i
nterval
~ effect
,r start
1 is the
roo Un
,In un-

1
2
3
4

Averages

12
6

10
6

a = 8.50

9
5

10
7

b = 7.75

: disad
)WS be
will be.
for the

Based on these data, we have

4 X 8.5 (4 - 1) X (4 X 8.5 - aj) 102 - 3aj
Yi = - = 4.39 - ----.:.

7.75 4 X 7.75 - bj 31 - hi

These computations can be automated readily using Excel template exceIRegenerative.x1s.

FIGURE 16.13

Changes in the number of busy servers as a function of time in Example 16.6-2
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PROBLEM SET 16.6A

1. In Example 16.6-1, use the subinterval method to compute the average waiting time in
the queue for those who must wait.

*2. In a simulation model, the subinterval method is used to compute batch averages. The
transient period is estimated to be 100, and each batch has a time base of 100 time units as
well. Using the following data, which provide the waiting times for customers as a function
of the simulation time, estimate the 95% confidence interval for the mean waiting time.

Time interval

0-100
100-200
200-300
30()...400
400-500
500--600

Waiting times

10,20,13,14,8,15,6,8
12,30,10,14,16
15,17,20,22
10,20,30,15,25,31
15,17,20,14,13
25,30,15

3. In Example 16.6-2, suppose that the start point for each observation is the point in time
where all the servers have just become idle. Thus, in Figure 16.13, these points correspond
to t = 10, 17, 24, and 33. Compute the 95 % confidence interval for the utilization of the
servers based on the new definition of the regenerative points.

4. In a single-server queuing situation, the system is simulated for 100 hours. The results of
the simulation show that the server was busy only during the following time intervals: (0,
10), (15, 20), (25,30), (35,60), (70, 80), and (90,95). The length of the transient period is
estimated to be 10 hours.

(a) Define the observation start point needed to implement the regenerative method.

(b) Compute the 95% confidence interval for the average utilization of the server based
on the regenerative method.

(c) Apply the subinterval method to the same problem using a sample size n = 5. Com
pute the corresponding 95% confidence interval, and compare it with the one ob
tained from the regenerative method.

16.7 SIMULATION LANGUAGES

Execution of simulation models entails two distinct types of computations: (1) file manip
ulations that deal with the chronological storage and processing of model events, and (2)
arithmetic and bookkeeping computations associated with generation of random samples
and collection of model statistics. The first type of computation involves extensive logic
development in list processing, and the second type entails tedious and time-consuming .1.

calculations. The nature of these computations makes the computer an essential tool for
executing simulation models, and, in turn, prompts the development of special computer
simulation languages for performing these computations conveniently and efficiently.

Available discrete simulation languages fall into two broad categories:

1. Event scheduling
2. Process oriented
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In event scheduling languages, the user details the actions associated with the occur
rence of each event, in much the same way they are given in Example 16.5-1. The
main role of the language in this case is (1) automation of sampling from distribu
tions, (2) storage and retrieval of events in chronological order, and (3) collection of
model statistics.

Process-oriented languages use blocks or nodes that can be linked together to
form a network that describes the movements of transactions or entities (i.e., cus
tomers) in the system. For example, the three most prominent blocks/nodes in any
process-simulation language are a source from which transactions are created, a queue
where they can wait if necessary, and a facility where service is performed. Each of
these blocks/nodes is defined with all the information needed to drive the simulation
automatically. For example, once the interarrival time for the source is specified, a
process-oriented language automatically "knows" when arrival events will occur. In ef
fect, each block/node of the model has standing instructions that define how and when
transactions are moved in the simulation network.

Process-oriented languages are internally driven by the same actions used in
event-scheduling languages. The difference is that these actions are automated to re
lieve the user of the tedious computational and logical details. In a way, we can regard
process-oriented languages as being based on the input-output concept of the "black
box" approach. This essentially means that process-oriented languages trade modeling
flexibility for simplicity and ease of use.

Prominent event-scheduling languages include SIMSCRIPT, SLAM, and SIMAN.
Over the years, these languages have evolved to include process-oriented capabilities.
All three languages allow the user to write (a portion of) the model in higher-level
language, such as FORTRAN or C. This capability is necessary to allow the user to
model complex logic that otherwise cannot be achieved directly by the regular facili
ties of these languages. A major reason for this limitation is the restrictive and perhaps
convoluted manner in which these languages move transactions (or entities) among
the model's queues and facilities.

Several modern commercial packages currently dominate the simulation market,
induding Arena, AweSim, and GPSS/H, to mention only a few. These packages use ex
tensive user interface to simplify the process of creating a simulation model. They also
provide animation capabilities where changes in the system can be observed visually.
However, to the experienced user, these interfaces may appear to reduce the develop
ment of a simulation model to a "slow-motion" pace. It is not surprising that some
users prefer to write simulation models in such general programming languages as C,
Basic, and FORTRAN.

PROBLEM SET 16.7A2

1. Patrons arrive randomly at a three-clerk post office. TIle interarrival time is exponential
with mean 5 minutes. The time a clerk spends with a patron is exponential with a mean of

2Work these problems using a simulation language of your choice, or using BASIC, FORTRAN, or C.
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10 minutes. All arriving patrons form one queue and wait for the first available free clerk.
Run a simulation model of the system for 480 minutes to determine the following:

(a) The average number of patrons waiting in the queue.

(b) The average utilization of the clerks.

(c) Compare the simulation results with those of the MIMic queuing model (Chapter 15)
and with the spreadsheet MultiServerSimulator.xls.

2. Television units arrive for inspection on a conveyor belt at the constant rate of 5 units per
hour. The inspection time takes between 10 and 15 minutes, uniformly distributed. Past
experience shows that 20% of inspected units must be adjusted and then sent back for
reinspection. The adjustment time is also uniformly distributed between 6 and 8 minutes.
Run a simulation model for 480 minutes to compute the following:

(a) The average time a unit takes until it passes inspection.

(b) The average number of times a unit must be reinspected before it exits the system.

3. A mouse is trapped in a maze and desperately "wants out." After trying between 1 and 3
minutes, uniformly distributed, there is a 30% chance that it will find the right path. Other
wise, it will wander around aimlessly for between 2 and 3 minutes, uniformly distributed, and
eventually end up where it started, only to try once again. The mouse can "try freedom" as
many times as it pleases, but there is a limit to everything. With so much energy expended in
trying and retrying, the mouse is certain to expire if it does not make it within a period that
is normally distributed, with a mean of 10 minutes and a standard deviation of 2 minutes.
Write a simulation model to estimate the probability that the mouse will be free. For the
purpose of estimating the probability, assume that 100 mice will be processed by the model.

4. In the final stage of automobile manufacturing, a car moving on a transporter is situated
between two parallel workstations to allow work to be done on both the left and right
sides of the car simultaneously. TIle operation times for the left and right sides are uni
form between 15 and 20 minutes and 18 and 22 minutes, respectively. The transporter ar
rives at the stations area every 20 minutes. Simulate the process for 480 minutes to
determine the utilization of the left and right stations.

5. Cars arrive at a one-bay car wash facility where the interarrival time is exponential, with
a mean of 10 minutes. Arriving cars line up in a single lane that can accommodate at most
five waiting cars. If the lane is full, newly arriving cars will go elsewhere. It takes between
10 and 15 minutes, uniformly distributed, to wash a car. Simulate the system for 960 min
utes, and estimate the time a car spends in the facility.
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Chapter Guide. This chapter provides a basic background about Markov chains and
their use in practice, including cost-based models. Markov chain notation is "cumber
some" and its computations are tedious. To alleviate this problem, the more readable
matrix notation is used where possible. With regard to the computations, two Excel
templates are provided to handle the basic calculations for a Markov chain of any size,
including n-step transition and absolute probabilities, steady-state probabilities, and
first passage times in both ergodic and absorbing chains. Both spreadsheets should be
helpful in solving end-of-section problems.

This chapter includes 17 solved examples, 42 end-of-section problems, and 2
Excel templates. The AMPLlExcel/SolverffORA programs are in folder chl7Files.

DEFINITION OF A MARKOV CHAIN

Let XI be a random variable that characterizes the state of the system at discrete points
in time t = 1,2, ... The family of random variables {Xc} forms a stochastic process.
The number of states in a stochastic process may be finite or infinite, as the following
two examples demonstrate:

Example 17.1-1 (Machine Maintenance)

The condition of a machine at the time of the monthly preventive maintenance is characterized
as fair, good, or excellent. For month t, the stochastic process for this situation can be represent
ed as:

{

0, if the condition is poor}
XI = 1, if the condition is fair , t = 1, 2, ...

2, if the condition is good

The random variable Xc is finite because it represents three states: poor (0), fair (1), and good (2).

641



XI == 0,1,2, ... , t > 0

A stochastic process is a Markov process if the occurrence of a future state de
pends only on the immediately preceding state. This means that given the chronologi
cal times to, t b ... , tno the family of random variables {Xd = {xj, X2,"" xn } is said to
be a Markov process if it possesses the following property:

Example 17.1-2 (Job Shop)

Jobs arrive randomly at a job-shop at the average rate of 5 jobs per hour. The arrival process fol
lows a Poisson distribution which, theoretically, allows any number of jobs between zero and infin
ity to arrive at the shop during the time interval (0, t). The inifinte-state process describing the
number of arriving jobs is

642 Chapter 17 Markov Chains
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In a Markovian process with n exhaustive and mutually exclusive states (out
comes), the probabilities at a specific point in time t = 0, 1,2, ... is usually written as

Pij = P{X1 = j1X1- 1 = I}, (i,j) = 1,2, ... ,n,t = 0, 1,2, ... ,T

Ibis is known as the one-step transition probability of moving from state i at t - 1 to
state j at t. By definition, we have

~Pij = 1, i = 1,2, ... ,11
j

Pij 2:: 0, (i, j) = 1, 2, ... , n

A convenient way for summarizing the one-step transition probabilities is to use the
following matrix notation:

p=

Pit Pl2 P13 Pin

P2I P22 P23 P2n

Pnl PII2 Pn3 Pnn

TIle matrix P defines the so-called Markov chain. It has the property that all its transi
tion probabilities Pij are fixed (stationary) and independent over time. Although a
Markov chain may include an infinite number of states, the presentation in this chapter
is limited to finite chains only, as this is the only type needed in the text.

Example 17.1·3 (The Gardener Problem)

Every year, at the beginning of the gardening season (March through September), a gardener
uses a chemical test to check soil condition. Depending on the outcome of the test, productivity
for the new season falls in one of three states: (1) good, (2) fair, and (3) poor. Over the years, the
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gardener has observed that last year's soil condition impacts current year's productivity and
that the situation can be described by the following Markov chain:

State of the
system next

year

2 3

.5 .3)

.5 .5

o 1

1

State of {I (.2
P = the.system 2 0

this year 3 0

The transition probabilities show that the soil condition can either deteriotate or stay the
same but never improve. If this year's soil is good (state 1), there is a 20% chance it will not change
next year, a 50% chance it will become fair (state 2), and a 30% chance it will deteriorate to a poor
condition (state 3). If this year's soil condition is fair (state 2), next year's productivity may remain
fair with probability .5 or become poor (state 3), also with probability .5. Finally, a poor condition
this year (state 3) can only lead to an equal condition next year (with probability 1).

The gardener can alter the transition probabilities P by using fertilizer to boost soil condi
tion. In this case, the transition matrix becomes:
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1 to

1

1(.30
PI = 2 .10

3 .05

2 3

.60 .10)

.60 .30

.40 .55

e the

The use of fertilizer now allows improvements in the deteriorating condition. There is a 10%
chance that the soil condition will change from fair to good (state 2 to state 1), a 5% chance it
will change from poor to good (state 3 to state 1), and a 40% chance that a poor condition will
become fair (state 3 to state 2).

PROBLEM SET 17.1A
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1. An engineering professor purchases a new computer every two years with preferences
for three models: MI, M2, and M3. If the present model is Ml, the next computer may
be M2 with probability .2 or M3 with probability .15. If the present model is M2, the
probabilities of switching to Ml and M3 are .6 and .25, respectively. And, if the present
model is M3, then the probabilities of switching to Ml and M2 are .5 and .1, respectively.
Represent the situation as a Markov chain.

*2. A police car is on patrol in a neighborhood known for its gang activities. During a patrol,
there is a 60% chance that the location where help is needed can be responded to in time,
else the car will continue regular patrol. Upon receiving a call, there is a 10% chance for
cancellation (in which case the car resumes its normal patrOl) and a 30% chance that the
car is already responding to a previous call. When the police car arrives at the scene, there
is a 10% chance that the instigators will have fled (in which case the car returns back to
patrOl) and a 40% chance that apprehension is made immediately. Else, the officers wiII
search the area. If apprehension occurs, there is a 60% chance of transporting the suspects
to the police station, else they are released and the car returns to patrol. Express the prob
abilistic activities of the police patrol in the form of a transition matrix.



3. (eyert and Associates, 1963) Bank1 offers loans which are either paid when due Or are
delayed. If the payment on a loan is delayed more than 4 quarters (1 year), Bank1 COn
siders the loan a bad debt and writes it off. TIle following table provides a sample of
Bank! '8 past experience with loans.

Express Bankl's loan situation as a Markov chain.

4. (Pliskin and Tell, 1981) Patients suffering from kidney failure can either get a transplant
or undergo periodic dialysis. During anyone year, 30% undergo cadaveric transplants
and 10% receive living-donor kidneys. In the year following a transplant, 30% of the ca
daveric transplants and 15% of living-donor recipients go back to dialysis. Death percent
ages among the two groups are 20% and 10%, respectively. Of those in the dialysis pool,
10% die and of the ones who survive more than one year after a transplant, 5% die and
5% go back to dialysis. Represent the situation as a Markov chain.

Loan amount Quarters late

$10,000 0

$25,000 1

$50,000 2

$50,000 3
$100,000 4

Payment history

$2000 paid, $3000 delayed by an extra quarter, $3000 delayed by 2
extra quarters, and the rest delayed 3 extra quarters.
$4000 paid, $12,000 delayed by an extra quarter, $6000 delayed by
2 extra quarters, and the rest delayed by 3 extra quarters.
$7500 paid, $15,000 delayed by an extra quarter, and the rest
delayed by 2 extra quarters.
$42,000 paid and the rest delayed by an extra quarter.
$50,000 paid.

Markov ChainsChapter 17644

17.2 ABSOLUTE AND n-STEP TRANSITION PROBABILITIES

Given the initial probabilities 3(0) = {ajO)} of starting in state j and the transition matrix

P of a Markov chain, the absolute probabilities a(n) = {ajll)} of being in state j after n
transitions (n > 0) are computed as follows:

a(l) = a(O)p

a(2) = a(l)p = a(O)pp = a(O)p2

3(3) = a(2)p = a(0)p2p = a(0)p3

Continuing in the same manner, we get

a(n) = a(O)p'\ n = 1, 2, ...

The matrix pn is known as the n-step transition matrix. From these calculations we can

see that
pn = p"-lp

or
pn = pn-mpm,O < m < n

These are known as Chapman-Kolomogorov equations.
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The initial condition of the soil is good-that is a(O) == (1,0,0). Determine the absolute probabil
ities of the three states of the system after 1,8, and 16 gardening seasons.

Example 17.2-1

The following transition matrix applies to the gardener problem with fertilizer (Example 17.1-3):

.2650)

.3550

.4275

.372733)

.372863

.372863

.36026)

.37129

.37857

.525514

.525435

.525384

.53295

.52645

.52193

.5800 .2650)

.5400 .3550

.4900 .4275

2 3

.60 .10)

.60 .30

.40 .55

.36026)

.37129

.37857

.36026)(.10679

.37129 .10226

.37857 .09950

.372733)

.372863

.372863

.372733)(.101753

.372863 .101702

.372863 .101669

.372881)

.372881

.372881

1

1(.30
P == 2 .10

3 .05

.5800 .2650) (.1550

.5400 .3550 .1050

.4900 .4275 .0825

(

.30 .60 .10)(.30 .60 .10) (.1550 .5800
p2 = .10 .60 .30 .10 .60 .30 = .1050 .5400

.05 .40 .55 .05 .40.55 .0825 .4900

(

.1550
p4 = .1050

.0825

(

.10679 .53295
= .10226 .52645

.09950 .52193

(

.10679 .53295
pS = .10226 .52645

.09950 .52193

(

.101753 .525514
= .101702 .525435

.101669 .525384

(

.101753 .525514
p16 = .101702 .525435

.101669 .525384

(

.101659 .52454
== .101659 .52454

.101659 .52454
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a(8) = (1 0

a(16) = (1 0

(101753 .525514 .372733)
0) .101702 .525435 .372863 = (.101753 .525514 .372733)

.101669 .525384 .372863

(101659 .52454 .372881)
0) .101659 .52454 .372881 = (.101659 .52454 .372881)

.101659 .52454 .372881

The rows of p8 and the vector of absolute probabilities a(8) are almost identicaL The result
is more pronounced for P 16. It demonstrates that, as the number of transitions increases, the ab
solute probabilities are independent of the initial a(O). In this case the resulting probabilities are
known as the steady-state probabilities.

Remarks. The computations associated with Markov chains are quite tedious. Template
excelMarkovChains.xls provides a general easy-to-use spreadsheet for carrying out these
calculations (see Excel moment following Example 17.4-1).

PROBLEM SET 17.2A

1. Consider Problem 1, Set 17.1a. Determine the probability that the professor will pur
chase the current model in four years.

*2. Consider Problem 2, Set 17.1a.1f the police car is currently at a call scene, determine the
probability that an apprehension will take place in two patrols.

3. Consider Problem 3, Set 17.1a. Suppose that Bankl currently has $500,000 worth of out
standing loans. Of these, $100,000 are new, $50,000 are one quarter late, $150,000 are two
quarters late, $100,000 are three quarters late, and the rest are over four quarters late.
What would the picture of these loans be like after two cycles of loans?

4. Consider Problem 4, Set 17.1a.

(a) For a patient who is currently on dialysis, what is the probability of receiving a trans
plant in two years?

(b) For a patient who is currently a more-than-one-year survivor, what is the probability
of surviving four more years?

17.3 CLASSIFICATION OF THE STATES IN A MARKOV CHAIN

The states of a Markov chain can be classified based on the transition probability Pij of P.

1. A state j is absorbing if it returns to itself with certainty in one transition-that is
Pjj = 1.

2. A state j is transient if it can reach another state but cannot itself be reached back
from another state. Mathematically, this will happen if lim p~J~J) = 0, for all i.

n~ao

3. A state j is recurrent if the probability of being revisited from other states is L
This can happen if, and only if, the state is not transient.

4. A state j is periodic with period t > 1 if a return is possible only in t, 2t, 3t, . ..
steps. This means that PJ;) = 0 whenever 11. is not divisible by t.

.'....z.. :..{....
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Based on the given definitions, a finite Markov chain cannot consist of all tran
sient states because, by definition, the transient property requires entering other "trap
ping" states, thus never revisiting the transient state. The "trapping" state need not be a
single absorbing state. For example, in the chain

states 1 and 2 are transient because they cannot be reentered once the system is
"trapped" in states 3 and 4. States 3 and 4, which, in a sense, play the role of an absorb
ing state, constitute a closed set. By definition, all the states of a closed set must
communicate, which means that it is possible to go from any state to every other state
in the set in one or more transitions-that is, ptn ) > 0 for all i :j:. j and n c 1. Notice
that states 3 and 4 can both be absorbing states if P33 = P44 = 1. In such a case, each
state forms a closed set.

A closed Markov chain is said to be ergodic if all its states are recurrent and
aperiodic (not periodic). In this case, the absolute probabilities after n transitions,
a(n) = a(O)pn, always converge uniquely to a limiting (steady-state) distribution as
n ---7 00 that is independent of the initial probabilities a(O), as will be shown in

Section 17.4.
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Example 17.3-1 (Absorbing and Transient States)

Consider the gardener Markov chain with no fertilizer.

trans- (

.2

p = ~

.5

.5

°
.~)
.)

1

ability
States 1 and 2 are transient because they reach state 3 but can never be reached back. State 3
is absorbing because P33 = 1. These classifications can also be seen when lim p~Jn) = 0 is

n .......OO
computed. For example,

'ijofP.

-that is

(

0 0
p(IOO) = 0 0

o 0

d back
I i.

es is 1.

,3t, ...

which shows that in the long run, the probability of ever reentering transient state 1 or 2 is zero,
whereas the probability of being "trapped" in absorbing state 3 is certain.

Example 17.3-2 (Periodic States)

We can test the periodicity of a state by computing pn and observing the values of p~;') for
n = 2,3,4, .... These values will be positive only at the corresponding period of the state. For



example, in the chain
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we have

Markov Chains

p = (~
.6

.6
1
.4

C
4 .76

0) C.904 0960) C576 .9424 o)
p2 = ~ 1 o ,p3 = 0 1 o ,p4 = 0 1 o ,

.76 .24 .144 .856 o 0 .9424 .0576

( 0 .97696 .or)p5 = 0 1
.03456 .96544

Continuing with n = 6,7, ... , pl1 shows that PI! and P33 are positive for even values of nand

zero otherwise. This means that the period for states 1 and 3 is 2.

PROBLEM SET 17.3A

1. Classify the states of the following Markov chains. If a state is periodic, determine its

period:

G
1

D*(a) 0

0

(i
.!. 1

!)
4 4

*(b)
0 1
0 1

3

0 0

0 1 0 0 0 0

0 .5 .5 0 0 0

0 .7 .3 0 0 0
(c)

0 0 0 1 0 0

0 0 0 0 .4 .6

0 0 0 0 .2 8

C
0

~)(d) .7 .3

.2 .7 .1

1
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STEADY-STATE PROBABILITIES AND MEAN RETURN TIMES
OF ERGODIC CHAINS

In an ergodic Markov chain, the steady-state probabilities are defined as

- I' (n) . - 0 1 27l"j - 1m a
J
. , ] - , , , •••

11---+00

These probabilities, which are independent of {a)O)}, can be determined from the
equations

7T = 7TP

(One of the equations in 7T = '1TP is redundant.) What '1T = 7TP says is that the prob
abilities 7T remain unchanged after one transition, and for this reason they represent
the steady-state distribution.

A direct by-product of the steady-state probabilities is the determination of the
expected number of transitions before the systems returns to a state j for the first time.
This is known as the mean first return time or the mean recurrence time, and is com
puted in an n-state Markov chain as

1 .
JLjj = -, J = 1,2, ... , n

7l"j

Example 17.4-1

To determine the steady-state probability distribution of the gardener problem with fertilizer
(Example 17.1-3), we have

.1)

.3

.55

which yields the following set of equations:

7T[ = .37Tl + .17T2 + .057T3

7T2 == .67Tj + .67T2 + .47T3

7T3 "" .17Tl + .37T2 + .557T3·

Recalling that one (anyone) of the first three equations is redundant, the solution is
7Tj = 0.1017, 7T2 = 0.5254, and 7T3 = 0.3729. What these probabilities say is that, in the long run,
the soil condition approximately will be good 10% of the time, fair 52% of the time, and poor
37% ofthe time.



The mean first return times are computed as

111
/Lit = .1017 = 9.83, /L22 = .5254 = 1.9, /L33 = .3729 = 2.68

In this case, 7fl = 0.31, 7T2 = 0.58, and 7T3 = 0.11, which yields JLll = 3.2, /L22 = 1.7, and
/L33 = 8.9, a reversal of the "bleak" outlook given previously.

.6 .05)

.6 .1

.4 .35
(

.35
P = .3

.25

Markov Chains

This means that, depending on the current state of the soil, it will take approximately 10 garden
ing seasons for the soil to return to a good state, 2 seasons to return to a fair state, and 3 seasons
to return to a poor state. These results point to a more "bleak" than "promising" outlook for the
soil condition under the proposed fertilizer program. A more aggressive program should im
prove the picture. For example, consider the following transition matrix in which the probabili
ties of moving to a good state are higher than in the previous matrix:

Chapter 17650

Excel Moment

Figure 17.1 shows the output of the gardener example using the general Excel template
excelMarkovChains.xls to compute n-step, absolute, and steady-state probabilities, and
mean return time for a Markov chain of any size. The steps are self-explanatory. In step
2a, you may override the default state codes (1,2,3, ... ) by a code of your choice.
These codes will be automatically updated everywhere else in the spreadsheet when
you execute step 4.

FIGURE 17.1

Excel Spreadsheel for Markov chain computations

:~1 Markov Chains

~,2: Stee.._!~ 3 Ste 2a: Initial~~abilities-=--. -J_
3: ~_~ef'._?_:_ C<Xles: 11 21 31

-::4:- I 11 0: 01 _
.'K:, Ste 3: Number of transitions - __ 8 Ste 2b: .lnpu~M~~ov~~.~!'.!, h • __ • __~
:&- _!i~~e_~:- I 1! 2 i 3 ._.
'T_ 1 0.3; 0.6: 0.1
:g' 0 ut Results --- 2 ----'Ur-----6:6j·-------0.3-
:9.. i Absolute! Steady IMean retu - ..------3 --(fQs'---0.4I·-O.55 --

JO "-Stat-~ -r(6~~-t~~i--·I-·-~t;t;·-1-----ti;~--· =_=-- OutputJ~-step)~~ans~tion matri'~
.H 11 0.10175i 0.10169519.8333254 . 11 2T 3

-'ii~.-==-~]r-6-:52-5·5~_J!.525424r 1.90'32248= 1 O.1017~j O.52~~14UP72733 =
13 31 0372731 037288212.6818168 _ 2 0.1017LJ!:.~25435lJ!:37?864_
14 . .. --J ._l.. ~l-.-__ ._.__ 3 0.101671 0.5253841 0.372947



'den
ISons
,r the
j im
abili-

and

plate
"and
.step
loice.
N"hen

17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains 651

Example 17.4-2 (Cost Model)

Consider the gardener problem with fertilizer (Example 17.1-3). Suppose that the cost of the fer
tilizer is $50 per bag and the garden needs two bags if the soil is good. The amount of fertilizer is
increased by 25% if the soil is fair and 60% if the soil is poor. The gardener estimates the annual
yield to be worth $250 if no fertilizer is used and $420 if fertilizer is applied. Is it worthwhile to
use the fertilizer?

Using the steady state probabilities in Example 17.4-1, we get

Expected annual cost of fertilizer = 2 x $50 X 'lT1 + (1.25 x 2) x $50 X 'lT2

+ (1.60 x 2) x $50 X 'lT3

= 100 x .1017 + 125 x .5254 + 160 x .3729

= $135.51

Increase in the annual value of the yield = $420 - $250 = $170

The results show that, on the average, the use of fertilizer nets 170 - 135.51 = $34.49. Hence
the use of fertilizer is recommended.

PROBLEM SET 17.4A

*1. On a sunny Spring day, MiniGolf can gross $2000 in revenues. If the day is cloudy, rev
enues drop by 20%. A rainy day will reduce revenues by 80%. If today's weather is
sunny, there is an 80% chance it will remain sunny tomorrow with no chance of rain. If it
is cloudy, there is a 20% chance that tomorrow will be rainy and 30% chance it will be
sunny. Rain will continue through the next day with a probability of .8, but there is a 10%
chance it may be sunny.

(a) Determine the expected daily revenues for MiniGolf.

(b) Determine the average number of days the weather will not be sunny.

2. Joe loves to eat out in area restaurants. His favorite foods are Mexican, Italian, Chinese,
and Thai. On the average, Joe pays $10.00 for a Mexican meal, $15.00 for an Italian meal,
$9.00 for a Chinese meal, and $11.00 for a Thai meal. Joe's eating habits are predictable:
There is a 70% chance that today's meal is a repeat of yesterday'S, and equal probabilities
of switching to one of the remaining three.
(a) How much does Joe pay on the average for his daily dinner?

(b) How often does Joe eat Mexican food?

3. Some ex-cons spend the rest of their lives in one fOUT of states: free, on trial, in jail, or on
probation. At the start of each year, statistics show that there is 50% chance that a free
ex-con will commit a new crime and go on trial. The judge may send the ex-con to jail
with probability .6 Qr grant probation with probability .4. Once in jail, 10% of ex-cons
will be set free for good behavior. Of those who are on probation, 10% commit new
crimes and are arraigned for new trials, 50% will go back to finish their sentence for vio
lating probation orders, and 10% will be set free for lack of evidence. Taxpayers under
write the costs associated with the punishment of the ex-felons. It is estimated that a trial



will cost about $5000, an average jail sentence will cost $20,000, and an average probation
period will cost $2000.

(a) Determine the expected cost per ex-con.

(b) How often does an ex-con return to jail? Go on trial? Get set free?
4. A store sells a special item whose daily demand can described by the following pdf:

The store is comparing two ordering policies: (1) Order up to 3 units every 3 days if the
stock level is less than 2, else do not order. (2) Order 3 units every 3 days if the stock
level is zero, else do not order. The fixed ordering cost per shipment is $300 and the cost
of holding excess units per unit per day is $3. Immediate delivery is expected.

(a) Which policy should the store adopt to minimize the total expected daily cost of
ordering and holding?

(b) For the two policies, compare the average number of days between successive inven
tory depletions.

*5. There are three categories of income tax filers in the United States: those who never
evade taxes, those who sometimes do it, and those who always do it. An examination of
audited tax returns from one year to the next shows that of those who did not evade
taxes last year, 95% continue in the same category this year,4% move to the "some
times" category, and the remainder move to the "always" category. For those who some
times evade taxes, 6% move to "never," 90% stay the same, and 4% move to "always."
As for the "always" evaders, the respective percentages are 0%, 10%, and 90%.

(a) Express the problem as a Markov chain.

(b) In the long run, what would be the percentages of "never," "sometimes," and
"always" tax categories?

(c) Statistics show that a taxpayer in the "sometimes" category evades taxes on about
$5000 per return and in the "always" category on about $12,000. Assuming an av
erage income tax rate of 12% and a filers population of 70 million, determine the
annual reduction in collected taxes due to evasion.

6. Warehouzer owns a renewable forest land for growing pine trees. Trees can fall into one
of four categories depending on their age: baby (0--5 years), young (5-10 years), mature
(11-15 years), and old (more than 15 years). Ten percent of baby and young trees die be
fore reaching the next age group. For mature and old trees, 50% are harvested and only
5% die. Because of the renewal nature of the operation, all harvested and dead tree are
replaced with new (baby) trees by the end of the next 5-year cycle.

(a) Express the forest dynamics as a Markov chain.

(b) If the forest land can hold a total of 500,000 trees, determine the long-run composi
tion of the forest.

(c) If a new tree is planted at the cost of $1 per tree and a harvested tree has a market
value of $20, determine the average annual income from the forest operation.

7. Population dynamics is impacted by the continual movement of people who are seeking
better quality of life or better employment. The city of Mobile has an inner city population,
a suburban population, and a surrounding rural population. The census taken in la-year
intervals shows that 10% of the rural population move to the suburbs and 5% to the

652 Chapter 17 Markov Chains

Daily demand, D 0

P{D} .1

1 2 3

.3 .4 .2



lation

the
k
cost

)f

Inven-

:r

n of
e

Dme

vs."

"bout
n av
e the

) one
iture
lie be-
only
e are

lposi-

uket

king
llation,
)-year
he

17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains 653

inner city. For the suburban population, 30% move to rural areas and 15% to the inner
city. Inner-city population would not move into suburbs, but 20% of them move to the
quiet rural life.

(a) Express the population dynamics as a Markov chain.

(b) If the greater Mobile area currently includes 20,000 rural residents, 100,000 subur
banites, and 30,000 inner city inhabitants, what will the population distribution be in
10 years? In 20 years?

(c) Determine the long-run population picture of Mobile.

S. A car rental agency has offices in Phoenix, Denver, Chicago, and Atlanta. The agency al
lows one- and two-way rentals so that cars rented in one location may end up in another.
Statistics show that at the end of each week 70% of all rentals are two-way. As for the
one-way rentals: From Phoenix, 20% go to Denver, 60% to Chicago, and the rest goes to
Atlanta; from Denver, 40% go to Atlanta and 60% to Chicago; from Chicago, 50% go to
Atlanta and the rest to Denver; and from Atlanta, 80% go to Chicago, 10% to Denver,
and 10% to Phoenix.

(a) Express the situation as a Markov chain.

(b) If the agency starts the week with 100 cars in each location, what will the distribution
be like in two weeks?

(c) If each location is designed to handle a maximum of 110 cars, would there be a long
run space availability problem in any of the locations?

(d) Determine the average number of weeks that elapse before a car is returned to its
originating location.

9. A bookstore keeps daily track of the inventory level of a popular book to restock it to a
level of 100 copies at the start of each day. The data for the last 30 days provide the fol
lowing end-of-day inventory position: 1,2,0,3,2, 1,0,0,3,0, 1,1, 3,2,3,3,2,1,0,2,0,1,3,
0,0,3,2, 1,2,2.

(a) Represent the daily inventory as a Markov chain.

(b) Determine the steady-state probability that the bookstore will run out of books in
anyone day.

(c) Determine the expected daily inventory.

(d) Determine the average number of days between successive zero inventories.

10. In Problem 9, suppose that the daily demand can exceed supply, which gives rise to short
age (negative inventory). The end-of-day inventory level for the past 30 days is given as:
1,2,0, -2,2,2, -1, -1,3,0,0,1, -1, -2,3,3, -2, -1,0,2,0, -1, 3,0,0,3, -1, 1,2, -2.

(a) Express the situation as a Markov chain.

(b) Determine the long-term probability of a surplus inventory in anyone day.

(c) Determine the long-term probability of a shortage inventory in anyone day.

(d) Determine the long-term probability of the daily supply meeting the daily demand
exactly.

(e) If the holding cost per (end-of-day) surplus book is $.15 per day and the penalty
·cost per shortage book is $4.00 per day, determine the expected inventory cost
per day.

11. A store starts a week with at least 3 PCS. The demand per week is estimated at 0 with
probability .15,1 with probability .2,2 with probability .35,3 with probability .25, and 4
with probability .05. Unfilled demand is backlogged. The store's policy is to place an



order for delivery at the start of the following week whenever the inventory level drops
below 3 PCs. The new replenishment always brings the stock back to 5 PCs.

(a) Express the situation as a Markov chain.

(b) Suppose that the week starts with 4 PCS. Determine the probability that an order
will be placed at the end of two weeks.

(c) Determine the long-run probability that no order will be placed in any week.

(d) If the fixed cost of placing an order is $200, the holding cost per PC per week is $5,
and the penalty cost per shortage PC per week is $20, determine the expected inven
tory cost per week. .

12. Solve Problem 11 assuming that the order size, when placed, is exactly 5 pieces.

13. In Problem 12, suppose that the demand for the PCS is 0, 1,2,3,4, or 5 with equal proba
bilities. Further assume that the unfilled demand is not backlogged, but that the penalty
cost is still incurred.

(a) Express the situation as a Markov chain.

(b) Determine the long-run probability that a shortage will take place.

(c) If the fixed cost of placing an order is $200, the holding cost per PC per week is $5,
and the penalty cost per shortage PC per week is $20, determine the expected order
ing and inventory cost per week.

*14. The federal government tries to boost small business activities by awarding annual grants
for projects. AIL bids are competitive, but the chance of receiving a grant is highest if the
owner has not received any during the last three years and lowest jf awards were given in
each of the last three years. Specifically, the probability of getting a grant if none were
awarded in the last three years is .9. It reduces to .8 if one grant was awarded,.7 if two
grants were awarded, and only .5 if 3 were received.

(a) Express the situation as a Markov chain.

(b) Determine the expected number of awards per owner per year.

15. Jim Bob has a history of receiving many fines for driving violations. Unfortunately for
Jim Bob, modern technology can keep track of his previous fines. As soon as he has accu
mulated 4 tickets, his driving license is revoked until he completes a new driver education
class, in which case he starts with a clean slate. Jim Bob is most reckless immediately after
completing the driver education class and he is invariably stopped by the police with a
50-50 chance of being fined. After each new fine, he tries to be more careful, which re
duces the probability of a fine by .1.

(a) Express Jim Bob's problem as Markov chain.

(b) What is the average number of times Jim Bob is stopped by police before his license
is revoked again?

(c) What is the probability that Jim Bob will lose his license?

(d) If each fine costs $100, how much, on the average, does Jim Bob pay between succes
sive suspensions of his license?

654 Chapter 17 Markov Chains

17.5 FIRST PASSAGE TIME

In Section 17.4, we used the steady state probabilities to compute J-Ljj, the mean first re
turn time for state j. In this section, we are concerned with the determination of the
mean fiest passage time P-ij, the expected number of transitions needed to reach state j
from state i for the first time. The calculations are rooted in the determination of the

.J

...;.;.l i..:::



:lrops

-deT

is $5,
I invell-

proba
~nalty

is $5,
j order-

11 grallts
t if the
given in
were
[ two

ly for
.as accu
ducatioll
telyafter
~ith a
~h re-

s license

17.5 First Passage Time 655

probability iij of at least one passage from state i to state j as hj = 2:':=lffp), where
fft) is the probability of a first passage from state i to state j in n transitions. An ex
pression for ffp) can be determined recursively from

11-1

Pen) = fen) + ~[(~)p{!1-k) 1~ = 1 2
IJ IJ .LJ IJ II ,. " •••

k=1

The transition matrix P = Ilpijll is assumed to have m states.

1. If fij < 1, it is not certain that the system will ever pass from state i to state j and
I-Lij = 00.

2. If hj = 1, the Markov chain is ergodic and the mean first passage time from state
i to state j is computed as

00

/Lij = 2:nffp)
n=l

A simpler way to determine the mean first passage time for all the states in an
m-transition matrix, P, is to use the following matrix-based formula:

where

1 = (m - 1)-identity matrix

N j = transition matrix P less its jth row and jth column of target state j

1 = (m - 1) column vector with all elements equal to 1

The matrix operation (I - Nj f 11 essentially sums the columns of (I - Njtl
.

Example 17.5~1

Consider the gardener Markov chain with fertilizers once again.

To demonstrate the computation of the first passage time to a specific state from all others,
consider the passage from states 2 and 3 (fair and poor) to state 1 (good). Thus, j = 1 and

n succes-

~ first re
m of the
ch statej
)n of the

.'

, ..:.:.l i::.. _
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N1 = .40

(

.30 .60
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.05 .40

.30) ( _ N )-1 = ( .4
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.55
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.45 = 6.67
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6.67



FIGURE 17.2

Excel spreadsheet calculations of firsl passage time of Example 17.5-1 (file exceIFirstPassTime.xls)

This means that, on the average, it will take 12.5 seasons to pass from fair to good soil and 13.34
seasons to go from bad to good soil.

Similar calculations can be carried out to obtain ILl2 and IL32 from (I - N2) and ILn and ILl)

from (I - N3), as shown below.

5.00)(1) (12.50)
6.67 1 = 13.34(

IL2l) = (7.50
IL31 6.67

Markov Chains

lllUS,

Excel Moment

The calculations of the mean first passage times can be carried out conveniently by
Excel template exceIFirstPassTime.xls. Figure 17.2 shows the calculations associated
with Example 17.5-1. Step 2 of the spreadsheet automatically initializes the transition
matrix P to zero values per the size given in step 1. In step 2a, you may override the
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default state codes in row 6 with a code of your choice. The code will then be transferred
automatically throughout the spreadsheet. After you enter the transition probabilities,
step 3 creates the matrix I - P. Step 4 is carried out entirely by you using I - P as the
source for creating I - Nj (j = 1,2, and 3). You can do so by copying the entire I - P
and its state codes and pasting it in the target location, and then using appropriate Excel
Cut and Paste operations to rid I - P of row j and column j. For example, to create
I - N2, first copy I - P and its state codes to the selected target location. Next, high
light column 3 of the copied matrix, cut it, and paste it in column 2, thus eliminating col
umn 2. Similarly, highlight row 3 of the resulting matrix, cut it, and then paste it in row 2,
thus eliminating row 2. The created 1 - N2 automatically carries its correct state code.

Once I - Nj is created, the inverse, (I - Njt\ is computed in the target location.
The associated operations are demonstrated by inverting (I - N1) in Figure 17.2:

1. Enter the formula =MINVERSE(B18:C19) in E18.
2. Highlight E18:F19, the area where the inverse will reside.
3. Press F2.
4. Press CTRL + SHIFf + ENTER.

The values of the first passage times from states 2 and 3 to state 1 are then com
puted by summing the rows of the inverse-that is, by entering =SUM(E18:FI8) in
HIS and then copying HI8 into H19. After creating I - N for i = 2 and i = 3, the re
maining calculations are automated by copying E18:F19 into E22:F23 and E26:F27,
and copying H18:H19 into H22:H23 and H26:H27.

PROBLEM SET 17.5A

*1. A mouse maze consists of the paths shown in Figure 17.3. Intersection 1 is the maze en
trance and intersection 5 is the exit. At any intersection, the mouse has equal probabili
ties of selecting any of the available paths. When the mouse reaches intersection S, it will
be allowed to recirculate in the maze.

(a) Express the maze as a Markov chain.

(b) Determine the probability that,starting at intersection 1, the mouse will reach the
exit after three trials.

(c) Determine the long-run probability that the mouse will locate the exit intersection.
(d) Determine the average number of trials needed to reach the exit point from inter

section 1.

j
j
j

I,
j
I
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I
I

:1

)

2

3
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4

FIGURE 17.3

Mouse maze for Problem 1, Set 17.5a



2. In Problem 1, intuitively, if more options (routes) are added to the maze, will the average
number of trials needed to reach the exit point increase or decrease? Demonstrate the
answer by adding a route between intersections 3 and 4.

3. Jim and Joe start a game with five tokens, three for Jim and two for Joe. A coin is tossed
and if the outcome is heads, Jim gives Joe a token, else Jim gets a token from Joe. The
game ends when Jim or Joe has all the tokens. At this point, there is 30% chance that Jim
and Joe will continue to play the game, again starting with three tokens for Jim and two
for Joe.

(a) Represent the game as a Markov chain.

(b) Determine the probability that Joe will win in three coin tosses. That Jim will win in
three coin tosses.

(c) Determine the probability that a game will end in Jim's favor. Joe's favor.

(d) Determine the average number of coin tosses needed before Jim wins. Joe wins.

4. An amateur gardener with training in botany is experimenting with scientific cross
pollination of pink irises with red, orange, and white irises. His annual experiments
show that pink can produce 60% pink and 40% white, red can produce 40% red, 50%
pink, and 10% orange, orange can produce 25% orange, 50% pink, and 25% white, and
white can produce 50% pink and 50% white.

(a) Express the gardener situation as a Markov chain.

(b) If the gardener started the cross-pollination with equal numbers of each type iris,
what would the distribution be like after 5 years? In the long run?

(c) How many years on the average would a red iris take to produce a white bloom?

*5. Customers tend to exhibit loyalty to product brands but may be persuaded through
clever marketing and advertising to switch brands. Consider the case of three brands: A,
B, and C. Customer "unyielding" loyalty to a given brand is estimated at 75%, giving the
competitors only a 25% margin to realize a switch. Competitors launch their advertising
campaigns once a year. For brand A customers, the probabilities of switching to brands B
and Care .1 and .15, respectively. Customers of brand B are likely to switch to A and C
with probabilities .2 and .05, respectively. Brand C customers can switch to brands A and
B with equal probabilities.

(a) Express the situation as a Markov chain.

(b) In the long run, how much market share will each brand command?

(c) How long on the average will it take for a brand A customer to switch to brand B?
To brand C?

658 Chapter 17 Markov Chains

17.6 ANALYSIS OF ABSORBING STATES

In the gardener problem without fertilizer the transition matrix is given as

(

.2 .5 .3)
P 0.5.5

001

States 1 and 2 (good and fair soil conditions) are transient and State 3 (poor soil
condition) is absorbing, because once in that state the system will remain there in
definitely. A Markov chain may have more than one absorbing state. For example,
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TIle matrix P can be rearranged and partitioned as

The arrangement requires all the absorbing states to occupy the southeast corner
of the new matrix. For example, consider the following transition matrix:

2 4

.3 .1

.3 .2

1 0
o 1

1 2 3 4

1 .2 .3 .4 .1
2 0 1 0 0p=
3 .5 .3 0 .2

4 0 0 0 1

1 3
1 .2 .4

P~' = 3 .5 0
2 0 0
4 0 0

p = (~ I ~)

an employee may remain employed with the same company until retirement or may
quit a few years earlier (two absorbing states). In these types of chains, we are interested
in determining the probability of reaching absorption and the expected number of
transitions to absorption given that the system starts in a specific transient state. For
example, in the gardener Markov chain given above, if the soil is currently good, we
will be interested in determining the average number of gardening seasons till the soil
becomes poor and also the probability associated with this transition.

The analysis of Markov chains with absorbing states can be carried out conve
niently using matrices. First, the Markov chain is partitioned in the following manner:
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Given the definition of A and N and the unit column vector 1 of all 1 elements, it
can be shown that:
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Expected time in state j starting in state i = element (i, j) of (I - Nrl

Expected time to absorption = (I - Nfl!

Probability of absorption = (I - N)-lA



s1 i1 s2 i2 J G
sl 0 .95 0 0 .05 0

i1 .07 0 .9 0 .03 0

P = s2 0 0 0 .95 .05 0

i2 0 0 .07 0 .03 .9

J 0 0 0 0 1 0

G 0 0 0 0 0 1

Thus,

sl i1 s2 i2 J G

SIC .95 0

n (05
~)N = it .07 0 .9 A = .03

s2 0 0 0 .05

i2 0 0 .07 .03

Example 17.6-1 1

A product is processed on two sequential machines, I and II. Inspection takes place after a prod
uct unit is completed on a machine. There is a 5% chance that the unit will be junked before in
spection. After inspection, there is a 3% chance the unit will be junked and a 7% chance of its
being returned to the same machine for reworking. Else, a unit passing inspection on both ma
chines is good.

(a) For a part starting at machine I, determine the average number of visits to each station.
(b) If a batch of 1000 units is started on machine I, how many good units will be pro

duced?

For the Markov chain, the production process has 6 states: start at I (s1), inspect after I (it),
start at II (s2), inspect after II (i2), junk after inspection I or II (1), and good after II (G). Units
entering J and G are terminal and hence J and G are absorbing states. The transition matrix is
given as

660 Chapter 17 Markov Chains

Using the convenient spreadsheet calculations in exceIEx17.6-1.xls (see Excel moment following
Example 17.5-1), we get

(I _ N)-' ~ (-;07
-.95 0

°r (107
1.02 .98 0.93)

1 -.9 o 0.07 1.07 1.03 0.98

0 0 -.95 0 0 1.07 1.02

0 -.07 1 0 0 0.07 1.07

(1.07 1.02 .98 093)(05
0) C84)

(1- Nr'A ~ or 1.07 1.03 0.98 .03 o .12 .88

0 1.07 1.02 .05 o .08 .92

0 0.07 1.07 .03 .9 .04 .96

I Adapted from J. Shamblin and G. Stevens, Opera/ions Research: A Fwulamental Approach, McGraw-Hili,
New York, Chapter 4, 1974.
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The top row of (I - Nrl gives the average number of visits in each station for a part start
ing at machine I. Specifically, machine I is visited 1.07 times, inspection I is visited 1.02 times,
machine II is visited .98 times, and inspection II is visited .93 times. The reason the number
of visits in machine I and inspection I is greater than 1 is because of rework and re-inspection.
On the other hand, the corresponding values for machine n are less than 1 because some parts
are junked before reaching machine n. Indeed, under perfect conditions (no parts junked and
no rework), the matrix (I - Nrl will show that each station is visited exactly once (try it by as
signing a transition probability of 1 for all the stations). Of course, the duration of stay at each
station could differ. For example, if the processing times at machines I and II are 20 and 3Q minutes
and if the inspection times at I and II are 5 and 7 minutes, then a part starting at machine 1 will
be processed (i.e., either junked or completed) in 1.07 X 20 + 1.02 X 5 + .98 X 30 + .93 X

7 := 62.41 minutes.
To determine the number ofcompleted parts in a starting batch of 1000 pieces, we can see from

the top row of (I - Nr1A that

Probability of a piece being junked = .16

Probability of a piece being completed := .84

This means that 1000 X .84 = 840 pieces will be completed in a starting batch of 1000.

PROBLEM SET 17.6A

1. In Example 17.6-1, suppose that the labor cost for machines I and II is $20 per hour and
that for inspection is only $18 per hour. Further assume that it takes 30 minutes and 20
minutes to process a piece on machines I and II, respectively. The inspection time at each
of the two stations is 10 minutes. Determine the labor cost associated with a completed
(good) piece.

When I borrow a book from the city library, I usually try to return it after one week. De
pending on the length of the book and my free time, there is a 30% chance that I may
keep it for another week. If I have had the book for two weeks, there is a 10% chance
that £'11 keep it for an additional week. Under no condition do I keep it for more than
th ree weeks.

(a) Express the situation as a Markov chain.

(b) Determine the average number of weeks I keep a book before returning it to the
library.

In Casino del Rio, a gambler can bet in whole dollars. Each bet will either gain $1 with
probability .4 or lose $1 with probability .6. Starting with three dollars, the gambler will
quit if all money is lost or the accumulation is doubled.

(a) Express the problem as a Markov chain.

(b) Determine the average number of bets until the game ends.

(c) Determine the probability of ending the game with $6. Of losing all $3.

4. Jim must make five years worth of progress to complete his doctorate degree at ABC
University. However, he enjoys the life of a student and is in no hurry to finish his degree.
In any academic year there is a 50% chance he may take the year off and a 50% chance
of his pursuing the degree full time. After completing three academic years, there is a
30% chance that Jim may "bailout" and simply get a master's degree, a 20% chance of



his taking the next year off but continuing in the Ph.D. program, and 50% chance of his
attending school full time toward his doctorate.

(a) Express Jim's situation as a Markov chain.

(b) Determine the expected number of academic years before Jim's student life comes
to an end.

(c) Determine the probability that Jim will end his academic journey with only a mas
ter's degree.

(d) If Jim's fellowship pays an annual stipend of $15,000 (but only when he attends
school), how much will he be paid before ending up with a degree?

s. An employee who is now 55 years old plans to retire at the age of 62 but does not rule
out the possibility of quitting earlier. At the end of each year, he weighs his options (and
state of mind regarding work). The probability of quitting after one year is only .1 but
seems to increase by approximately .01 with each additional year.

(a) Express the problem as a Markov chain.

(b) What is the probability that the employee stay with the company until planned re
tirement at age 62?

(c) At age 57, what is the probability the employee will call it quits'?

(d) At age 58, what is the expected number of years before the employee is off the payroll?

6. In Problem 3, Set 17.1a,

(a) Determine the expected number of quarters until a debt is either repaid or lost as
bad debt.

(b) Determine the probability that a new loan will be written off as bad debt. Repaid in full

(c) If a loan is six months old, determine the number of quarters until its status is settled.

7. In a men's singles tennis tournament, Andre and John are playing a match for the cham
pionship. The match is won when either player wins three out of five sets. Statistics show
that there is 60% chance that Andre will win anyone set.

(a) Express the match as a Markov chain.

(b) On the average, how long will the match last and what is the probability that Andre
will win the championship?

(c) If the score is 1 set to 2, John's favor, what is the probability that Andre will win?

(d) In Part (c), determine the average number of sets till the match ends and interpret
the result.

*8. Students at U of A have expressed dissatisfaction with the fast pace at which the math
department is teaching the one-semester Call. To cope with this problem, the math de
partment is now offering Call in 4 modules. Students will set their individual pace for
each module and, when ready, will take a test that will elevate them to the next module.
The tests are given once every 4 weeks, so that a diligent student can complete all 4 mod
ules in one semester. After a couple of years with this self-paced program, it is observed
that for the first module 20% of the students do not complete it on time. The percentages
for modules 2 through 4 are 22%,25%, and 30%, respectively.

(a) Express the problem as a Markov chain.

(b) On the average, would a student starting with module 1 at the beginning of the current
semester be able to take Cal II the next semester (Call is a prerequisite for Cal II)?

(c) Would a student who has completed only one module last semester be able to finish
Call by the end of the current semester?

(d) Would you recommend that the use of the module idea be extended to other basic
math classes? Explain.

662 Chapter 17 Markov Chains
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9. At U of A, promotion from assistant to associate professor requires the equivalent of five
years of seniority. Performance reviews are conducted once a year and the candidate is
given either an average rating, a good rating, or an excellent rating. An average rating is
the same as probation and the candidate gains no seniority toward promotion. A good
rating is equivalent to gaining one year of seniorily, and an excellent rating adds two
years of seniority. Statistics show that in any year 10% of the candidates are rated aver
age,70% are rated good, and the rest are rated excellent.

(a) Express the problem as a Markov chain.

(b) Determine the average number of years until a new assistant professor is promoted.

*10. (Pfifer and Carraway, 2000) A company targets its customers through direct mail adver
tising. During the first year, the probability that the customer will make a purchase is .5,
which reduces to .4 in year 2, .3 in year 3, and .2 in year 4. If no purchases are made in
four consecutive years, the customer is deleted from the mailing list. Making a purchase
resets the count back to zero.

(a) Express the situation as a Markov chain.

(b) Determine the expected number of years a new customer will be on the mailing list.

(c) If a customer has not made a purchase in two years, determine the expected number
of years on the mailing list.

11. An NC machine is designed to operate properly with power voltage setting between 108
and 112 volts. If the voltage falls outside this range, the machine will stop. The power reg
ulator for the machine can detect variations in increments of one volt. Experience shows
that change in voltage take place once every 15 minutes and that within the admissible
range (118 to 112 volts), voltage can go up by one volt, stay the same, or go down by one
volt, all with equal probabilities.

(a) Express the situation as a Markov chain.

(b) Determine the probability that the machine will stop because the voltage is low. High.

(c) What should be the ideal voltage setting that will render the longest working dura-
tion for the machine?

12. Consider Problem 4, Set 17.1a, dealing with patients suffering from kidney failure. Deter
mine the following measures:

(a) TIle expected number of years a patient stays on dialysis.

(b) The longevity of a patient who starts on dialysis.

(c) The life expectancy of a patient who survives one year or longer after a transplant.

(d) The expected number of years before an at-Ieast-one-year transplant survivor goes
back to dialysis or dies.

(e) The quality of life for those who survive a year or more after a transplant (presum
ably, spending fewer years on dialysis signifies better quality of life).
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Classical Optimization Theory

Clrapter Guide. Classical optimization theory uses differential calculus to determine
points of maxima and minima (extrema) for unconstrained and constrained functions.
The methods may not be suitable for efficient numerical computations, but the under
lying theory provides the basis for most nonlinear programming algorithms (see
Chapter 19).This chapter develops necessary and sufficient conditions for determining
unconstrained extrema, the Jacobian and Lagrangeal1 methods for problems with
equality constraints, and the Karush-Kuhn- Tucker (KKT) conditions for problems
with inequality constraints. The KKT conditions provide the most unifying theory for
aU nonlinear programming problems.

This chapter includes 10 solved examples, 1 Excel spreadsheet, and 23 end-of
chapter problems. The AMPLlExcel/SolverrrORA programs are in folder ch18Files.

ssachu-

iversity

CHAPTER 1 8

...;-i ..:....._..

18.1 UNCONSTRAINED PROBLEMS

An extreme point of a function f(X) defines either a maximum or a minimum of the
f . M h . 11 . X - ( .0 0 0) . . 'function. at ematlca y, a pomt 0 - Xl?"" Xj, .•• , X n IS a maxImum I

f(X o + h) ~ f(X o)

for all h = (h b ... , hj , ... , hn ) where Ihjl is sufficiently small for allj. In other words,Xo
is a maximum if the value off at every point in the neighborhood of Xodoes not exceed
!(Xo). In a similar manner, Xo is a minimum if

f(Xo + II) ~ !(Xo)

Figure 18.1 illustrates the maxima and minima of a single-variable function f(x) over
the interval [a,b]. The points Xl> X2, X3, X4, and X6 are all extrema of f(x), with Xl> X3,
and X6 as maxima and X2 and X4 as minima. Because

f(X6) is a global or absolute maximum, and f(x}) and f(x]) are local or relative maxima.
Similarly,f(x4) is a local minimum and f(X2) is a global minimum.

665



:i: .
.,

666 Chapter 18 Classical Optimization Theory

f(x)

FIGURE 18.1

Examples of extreme points for a single-variable function

Although Xl (in Figure 18.1) is a maximum point, it differs from remaining local
maxima in that the value of f corresponding to at least one point in the neighbor
hood of Xl equals f(xd. In this respect, Xl is a weak maximum, whereas X3 and X6 are
strong maxima. In general, for h as defined earlier, Xo is a weak maximum if
f(X o + h) ::::;; f(Xo) and a strong maximum if f(X o + h) < f(X o).

In Figure 18.1, the first derivative (slope) offequals zero at all extrema. However,
this property is also satisfied at inflection and saddle points, such as Xs' If a point with
zero slope (gradient) is not an extremum (maximum or minimum), then it must be an
inflection or a saddle point.

18.1.1 Necessary and Sufficient Conditions

This section develops the necessary and sufficient conditions for an n-variable function
f(X) to have extrema. It is assumed that the first and second partial derivatives off(X)
are continuous for all X.

Theorem 18.1-1. A necessary condition for Xo to be an extreme point of f(X) is that

Vf(Xo) = 0

Proof. By Taylor's theorem, for 0 < 8 -< 1,

f(X o + h) - f(Xo) = Vf(Xo)h + ~hTHhlXo+llh

For a sufficiently small Ihjl, the remainder term ~hTHh is of the order hJ hence

f(Xo + h) - f(X o) = Vf(Xo)h + OChy) ::::;: Vf(Xo)h
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We show by contradiction that Vf(Xo) must vanish at a minimum point Xo. For
suppose it does not, then for a specific j the following condition will hold.

af(Xo) af(Xo)
---<Oar >0

aXj aXj

By selecting h j with appropriate sign, it is always possible to have

af(Xo)
h· < 0

/ ax-
/

Setting all other h j equal to zero, Taylor's expansion yields

f(Xo + h) < f(Xo)

This result contradicts the assumption that Xo is a minimum point. Thus, 'Vf(Xo) must
equal zero. A similar proof can be established for the maximization case.

Because the necessary condition is also satisfied for inflection and saddle points,
it is more appropriate to refer to the points obtained from the solution of 'Vf(Xo) = 0
as stationary points. The next theorem establishes the sufficiency conditions for Xo to
be an extreme point.

Theorem 18.1-2. A sufficient condition for a stationary point Xo to be an extremum is
that the Hessian matrix H evaluated at Xosatisfy the following conditions:

(i) H is positive definite ifXois a minimum point.
(ii) H is negative definite ifXois a maximum point.

Proof. By Taylor's theorem, for 0 < () < 1,

f(Xo + h) - f(X o) = 'Vf(Xo)h + ~hTHhlxo+eh

Given Xo is a stationary point, then \If(Xo) = 0 (111eorem 18.1-1). Thus,

f(Xo + h) - f(Xo) = ~hTHhlxo+eh

If Xo is a minimum point, then

f(Xo + h) > f(XoL h =1= 0

Thus, for Xo to be a minimum point, it must be true that

~ hTHh1 Xo+8h > 0

Given that the second partial derivative is continuous, the expression! hTHh must have
the same sign at both Xo and Xo + 8h. Because hTHhl Xo defines a quadratic form (see
Section 0.3 on the CD), this expression (and hence hTXh!Xo+8h) is positive i( and only if,
HIXo is positive-definite. This means that a sufficient condition for the stationary
point Xo to be a minimum is that the Hessian matrix, H, evaluated at the same point
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is positive-definite. A similar proof for the maximization case shows that the corre
sponding Hessian matrix must be negative-definite.

Example 18.1-1

Consider the function

The necessary condition "i/f(Xo) = 0 gives

af
- = 1 - 2Xl = 0
ax!

af
- = X3 - 2X2 = 0
aX2

af
- = 2 + X2 - 2x3 = 0
aX3

The solution of these simultaneous equations is

To determine the type of the stationary point, consider

a2f alf cPf

aXI dXldX2 ax.ax3

-D
a2f cPf a2f C 0

Hlxo =
aX20Xl ax~ aX2ax3 = 0 -2

a2f a2f a2f
0 1

aX3aXl aX3aX2 dX~ Xu

The principal minor determinants of Hlxo have the values -2,4, and -6, respectively. Thus, as

shown in Section D.3, HIXu is negative-definite and Xo = (4,~, 5) represents a maximum point.

In general, if "Ixo is indefinite, Xo must be a saddle point. For nonconclusive
cases, Xo mayor may not be an extremum and the sufficiency condition becomes
rather involved, because higher-order terms in Taylor's expansion must be considered.

The sufficiency condition established by Theorem 18.1-2 applies to single-variable
functions as follows. Given that Yo is a stationary point, then

(i) Yo is a maximum if fit (Yo) < O.

(ii) Yo is a minimum if t" (Yo) > o.

If fit (Yo) = 0, higher-order derivatives must be investigated as the following theorem
requires.



Theorem 18.1-3. Given Yo, a stationary point off(y), if the first (n - 1) derivatives are
zero and f(Il)(yo) i' 0, then

Example 18.1-2

Figure 18.2 graphs the following two functions:

FIGURE 18.2

Extreme points of f(y) = land
g(y) = y3

18.1 Unconstrained Problems 669

yo

fey) = l
g(y) = l

(i) If n is odd, Yo is an inflection point.
(ii) lfn is even then Yo is a minimum if t(n)(yo) > 0 and a maximum if t(I1)(yO) < o.

Te-

For fey) = y4, F(y) = 4y3 = 0, which yields the stationary point Yo = O. Now

reO) = reO) = [(3)(0) = 0, [(4)(0) = 24 > 0

Hence, Yo = 0 is a minimum point (see Figure 18.2).

For g(y) = i, g' (y) = 3l = 0, which yields Yo = 0 as a stationary point. AIso

lS, as

,.,., g'(O) = g"(O), g(3)(O) = 6 #- 0

oint. Thus, Yo = 0 is an inflection point.
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PROBLEM SET 18.1A

1. *(a) [(x) = x 3 + x

~'(b) [(x) = x 4 + x 2

(c) f(x) = 4x4 - x2 + 5

(d) f(x) = (3x - 2)2(2x - 3)2

*(e) f(x) =:= 6x5 - 4xJ + 10

2. Determine the extreme points of the following functions.

(a) f(X) = x1 + x~ - 3Xlx2

(b) [eX) = 2xT + x~ + x~ + 6(x, + X2 + X3} + 2X\x2x3



[Hint: min f2(x[, X2) occurs at r(x), X2) = 0.]
5. Prove Theorem 18.1-3.

3. Verify that the function

f(x], X2, xJ) = 2X)X2X3 - 4XIXJ - 2X2XJ + XI + x~ + x~ - 2XI - 4X2 + 4xJ

X2 - XI = 0

X2 - Xl = 2

Classical Optimization Theory

has the stationary points (0, 3, 1), (0, 1, -1), (1,2,0), (2, 1, 1), and (2, 3, -1). Use the suf
ficiency condition to identify the extreme points.

*4. Solve the following simultaneous equations by converting the system to a nonlinear ob
jective function with no constraints.

610 Chapter 18

18.1.2 The Newton-Raphson Method

In general, the necessary condition equations, "/(X) = 0, may be difficult to solve nu
merically. The Newton-Raphson method is an iterative procedure for solving simulta
neous nonlinear equations.

Consider the simultaneous equations

fi(X) = 0, i = 1,2, ... , m

Let X k be a given point. Then by Taylor's expansion

Thus, the original equations, fi(X) = 0, i = 1,2, ... , m, may be approximated as

These equations may be written in matrix notation as

If Bk is nonsingular, then

The idea of the method is to start from an initial point Xoand then use the equa
tion above to determine a new point. The process continues until two successive points,
X k and X k +b are approximately equal.

A geometric interpretation of the method is illustrated by a single-variable func
tion in Figure 18.3. The relationship between Xk and Xk+l for a single-variable function
[(x) reduces to

or
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Illustration of the iterative process in the Newton-Raphson method
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The figure shows that Xk+1 is determined from the slope of f(x) at Xb where
tan () = f' (Xk)'

One difficulty with the method is that convergence is not always guaranteed un
less the functionfis well behaved. In Figure 18.3, if the initial point is a, the method will
diverge. In general, trial and error is used to locate a "good" initial point.

Example 18.1-3

To demonstrate the use of the Newton-Raphson method, consider determining the stationary
points of the function

To determine the stationary points, we need to solve

f(x) == g'(x) = 72x3
- 234x2 + 241x - 78 = 0

Thus, for the Newton-Raphson method, we have

f'(x) = 216x2
- 468x + 241

nx3
- 234x2 + 241x - 78

xk+1 = xk - 216x2 - 468x + 241



PROBLEM SET 18.1B

=( 72*A3"3 -234*A31\2+241 *A3 -78 l/( 216*A31\2-468*A3 +241)

Starting with Xo = 10, the following table provides the successive iterahons:

k
[(xd

Xk
f'(xd

Xk+l

0 10.000000 2.978923 7.032108
1 7.032108 1.976429 5.055679
2 5.055679 1.314367 3.741312
3 3.741312 0.871358 2.869995
4 2.869995 0.573547 2.296405
5 2.296405 0.371252 1.925154
6 1.925154 0.230702 1.694452
7 1.694452 0.128999 1.565453
8 1.565453 0.054156 1.511296
9 1.511296 .0108641 1.500432

10 1.500432 .00043131 1.500001

Classical Optimization Theory

1. Use NewtonRaphson.xls to solve Problem I(c), Set IS.la.

2. Solve Problem 2(b), Set I8.la by the Newton-Raphson method.

Excel Moment

Template excelNR.xls can be used to solve any single-variable equation. It requires en
tering f(x)/f' (x) i~ cell C3. For Example 18.1-3, we enter

The method converges to x = 1.5. Actually, f(x) has three stationary points at
x = ~, x = M, and x = ~. The remaining two points can be found by selecting different values for
initial xo. In fact, Xo = .5 and Xo = 1 should yield the missing stationary points.

The variable x is replaced with A3. The template allows setting a tolerance limit /1,
which specifies the allowable difference between Xk and Xk+l that signals the termina
tion of the iterations. You are encouraged to use different initial Xo to get a feel of how
the method works.

In general, the Newton-Raphson method requires making several attempts before
"all" the solutions can be found. In Example 18.1-3, we know beforehand that the equa
tion has three roots. This will not be the case with complex or multi-variable functions,
however.

Chapter 18672

18.2 CONSTRAINED PROBLEMS

ll1is section deals with the optimization of constrained continuous functions. Section
18.2.1 introduces the case of equality constraints and Section 18.2.2 deals with inequality

..::
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18.2 Constrained Problems 673

constraints. The presentation in Section 18.2.1 is covered for the most part in Beightler
and Associates (1979, pp. 45-55).

18.2.1 Equality Constraints

This section presents two methods: the Jacobian and the Lagcangean. The Lagrangean
method can be developed logically from the Jacobian. This relationship provides an in
teresting economic interpretation of the Lagrangean method.

Constrained Derivatives (Jacobian) Method. Consider the problem

Minimize z = f(X)

subject to

g(X) = 0

where

x = (Xl> X2, , Xn )

g = (gJ, g2, , gmf

The functions f(X) and g(X), i = 1,2, ... , m, are twice continuously differentiable.
The idea of using constrained derivatives is to develop a closed-form expression

for the first partial derivatives of f(X) at all points that satisfy the constraints g(X) = O.
TIle corresponding stationary points are identified as the points at which these partial
derivatives vanish. The sufficiency conditions introduced in Section 18.1 can then be
used to check the identity of stationary points.

To clarify the proposed concept, consider f(xl> X2) illustrated in Figure 18.4. This
function is to be minimized subject to the constraint

where b is a constant. From Figure 18.4, the curve designated by the three points A, B,
and C represents the values of f(x}> X2) for which the given constraint is always satis
fied. The constrained derivatives method defines the gradient of f(Xl, X2) at any point
on the curve ABC. Point B at which the constrained derivative vanishes is a stationary
point for the constrained problem.

The method is now developed mathematically. By Taylor's theorem, for X + D-X
in the feasible neighborhood of X, we have

f(X + D-X) - f(X) = Vf(X) D-X + OeD-x})

and

g(X + D-X) - g(X) = Vg(X) D-X + O( D.xJ)

As D-Xj~ 0, the equations reduce to

af(X) = Vf(X) ax
and

ag(X) = Vg(X) ax
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Constrained
curve

Constrained
minimum

Constraint g (X) = x2 - b = 0
X2

FIGURE 18.4

X2 = b
Contour of constrained
optimum objective value

X2

Demonstration of the idea of the Jacobian method

For feasibility, we must have g(X) = 0, ag(X) = 0, and it follows that

af(X) - \If(X) ax = 0

\Ig(X) ax = 0

This gives (m + 1) equations in (n + 1) unknowns, af(X) and aX. Note that af(X) is
a dependent variable, and hence is determined as soon as ax is known. This means
that, in effect, we have n"1. equations in n unknowns.

If m > n, at least (m - 11) equations are redundant. Eliminating redundancy, the
system reduces to m :s; 11. If m = n, the solution is ax = 0, and X has no feasible
neighborhood, which means that the solution space consists of one point only. The re
maining case, where m < n, requires further elaboration.

Define

x = (Y, Z)
such that

y = (YbY2,···,Ym),Z = (Zh Z2,···,Zn-m)
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The vectors Y and Z are called the dependent and independent variables, respectively.
Rewriting the gradient vectors of f and g in terms of Y and Z, we get

\If(Y, Z) = (\lyf, \lzf)

Vg(Y, Z) = (\lyg, Vzg)

Define

JmXm is called the Jacobian matrix and C l7lx /7- m the control matrix. The Jacobian J is
assumed nonsingular. This is always possible because the given m equations are inde
pendent by definition. The components of the vector V must thus be selected from
among those of X such that J is nonsingular.

The original set of equations in af(X) and ax may be written as

af(Y, Z) = vyfav + vzfaz
and

JaY = -CdZ

Because J is nonsingular, its inverse J-1 exists. Hence,

Substituting for aY in the equation for af(X) gives af as a function of aZ-that is,

af(Y, Z) = ('iJzf - VyfJ-1C)aZ

From this equation, the constrained derivative with respect to the independent vector
Z is given by

Vf = acf(Y,Z) = Vf - V fJ-1C
C a Z Z y

C

where \Icf is the constrained gradient vector of f with respect to Z. Thus, Vcf(V, Z)
must be null at the stationary points.

The sufficiency conditions are similar to those developed in Section 18.1. The
Hessian matrix will correspond to the independent vector Z, and the elements of the
Hessian matrix must be the constrained second derivatives. To show how this is ob
tained, let



aWj aWj aYj
=--

aZi aYi aZi

Example 18.2-1

Consider the following problem:

Given the feasible point XO = (1,2, 3), we wish to study the variation in f( =acf) In

the feasible neighborhood of Xc.
Let

Classical Optimization Theory

f(X) = XI + 3x~ + 5xjx~

gj(X) = XjX3 + 2X2 + x~ - 11 == 0

g2(X) = XI + 2XjX2 + x~ - 14 = 0

It thus follows that the ith row of the (constrained) Hessian matrix is a:;/. Notice that
W is a function of Y and Y is a function of Z. Thus, the partial derivative of Vcf with re
spect to Zi is based on the following chain rule:

Chapter 18676

Thus,

af
Vzf = - = 6X2

i)x2

Suppose that we need to estimate acf in the feasible neighborhood of the feasible point
Xo = (1,2,3) given a small change aX2 = .01 in the independent variable X2" We have

-~)(6) -;:::: (_2.83)
12 2 2.50

,
::\1
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Hence, the incremental value of constrained f is given as

By specifying the value of OXl for the independent variable Xl, feasible values of dXI and BX2 are
determined for the dependent variables Xl and x3 using the formula

oY = -rlcaz
Thus, for BX2 = .01,

We now compare the value of dcf as computed above with the difference f(Xo + aX) 
f(Xo), given aX2 = .01.

Xo + aX = (1 ~ .0283,2 + .01,3 + .025) = (.9717,2.01,3.025)

111is yields

f(X o) = 58, f(X o + ax) = 57.523

or

f(Xo + aX) - f(Xo) = -.477

The amount -.477 compares favorably with dcf = -46.01ax2 = - .4601. The difference between
the two values is the result of the linear approximation in computing acf at XQ.

PROBLEM SET 18.2A

1. Consider Example 18.2-1.

(a) Compute acf by the two methods presented in the example, using aX2 = .001 in
stead ofax2 = .01. Does the effect of linear approximation become more negligible
with the decrease in the value ofaxl?

*(b) Specify a relationship among the elements of ax = (ax}. aX2, aX3) at the feasible
point X o = (1,2,3,) that will keep the point X o + ax feasible.

(c) lty = (Xl, X3) and Z = Xl> what is the value of ax! that will produce the same
value of ocf given in the example?

Example 18.2-2

This example illustrates the use of constrained derivatives. Consider the problem

Minimize [(X) = XI + x~ + x~

subject to

gl (X) = Xl + X2 + 3X3 - 2 = 0

g2(X) = 5XI + 2X2 + X3 - 5 = 0



Thus,

-l)'c = G)

Classical Optimization Theory

We determine the constrained extreme points as follows. Let

Hence,

678 Chapter 18

The equations for determining the stationary points are thus given as

Vcf = 0

gl(X) = 0

g2(X) = 0

or

The solution is

Xo ::::: (.81, .35, .28)

The identity of this stationary point is checked using the sufficiency condition. Given that X3
is the independent variable, it follows from Vcf that

(

dXl)
(J~f = !Q(dXl) _ ~(dX2) + 2 = (!.Q _~) dX3 + 2

:::l x2 3 dx 3 dx 3 ' 3 dX2"c 3 3 3 _

dX3

From the Jacobian method,

(J2f
Substitution gives~ = ~ > O. Hence, Xois the minimum point.

(JcX3
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Sensitivity Analysis in the Jacobian Method. The Jacobian method can be used to
study the effect of small changes in the right-hand side of the constraints on the
optimal value off Specifically, what is the effect of changing gi(X) = 0 to gi(X) = iJgi

on the optimal value of f? This type of investigation is called sensitivity analysis and is
similar to that carried out in linear programming (see Chapters 3 and 4). However,
sensitivity analysis in nonlinear programming is valid only in the small neighborhood of
the extreme point. The development will be helpful in studying the Lagrangean method.

We have shown previously that

iJf(Y, Z) = "VyfiJY + "Vzfaz

ag = JaY + COZ

Given ag =I- 0, then

aY = J-1ag - J-1CaZ

Substituting in the equation for af(Y, Z) gives

where

"Vel = "Vzf - "VyfJ-1C

as defined previously.The expression for af(Y, Z) can be used to study variation in fin
the feasible neighborhood of a feasible point Xoresulting from small changes ag and az.

At the extreme (indeed, any stationary) point Xo = (Yo, Zo) the constrained gra
dient 'Vcf must vanish. Thus

or

The effect of the small change ag on the optimum value offcan be studied by evaluat
ing the rate of change of f with respect to g. These rates are usually referred to as
sensitivity coefficients.

Example 18.2-3

Consider the same problem of Example 18.2-2. The· optimum point is given by Xo =
(XOh X02, X03) = (.81, .35, .28). Given Yo = (XOl> X02), then

Consequently,

( iJt iJt) _ -1 _ (-~, - VyJJ - (1.62, .7) 5
(Jgl ag2 3

1) .-i = (.0876, .3067)
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This means that for agj = 1, twill increase approximately by .0867. Similarly, for ag2 = 1, twill in
crease approximately by .3067.

Application of the Jacobian Method to an LP Problem. Consider the linear program

Maximize z = 2xI + 3xz

subject to

Xl + Xz + X3 = 5

Xl - Xz + X4 = 3

Xl> XZX3, X4 :;::: 0

To account for the nonnegativity constraints Xj ;::= 0, substitute Xj = wJ. With this substi
tution, the nonnegativity conditions become implicit and the original problem becomes

Maximize z = 2wI + 3w~

subject to

WI + w~ + w~ = 5

wI - w~ + w~ = 3

To apply the Jacobian method, let

Y = (Wb wz) and Z = (W3' W4)

(In the terminology of linear programming, Y and Z correspond to the basic and non
basic variables, respectively.) Thus

J = (2W1
2WI

C = (2~3

) (

1 1 )2w - -
Z J-1 = 4Wj 4wI wand Wz "* 0

2 ' 1 -1' 1
- Wz 4W2 4Wz

o ), \ly! = (4Wb 6wz), \lz! = (0,0)
2W4

so that

The solution of the equations comprised of 'Vcf = 0 and the constraints of the problem
yield the stationary point (WI = 2, Wz = 1, W3 = 0, W4 = 0). The Hessian is given by

iJ'j o'j
-2 dcW:!OcW 4

= (-~ ~)H =
dcW 3

e iJ;t d'j
cJcW:!OcW•

-2
OcW 4

Because He is indefinite, the stationary point does not yield a maximum.

..2
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18.2 Constrained Problems 681

The reason the solution above does not yield the optimum solution is that the
specific choices of Y and Z are not optimum. In fact, to find the optimum, we need to
keep on altering our choices of Y and Z until the sufficiency condition is satisfied.
This will be equivalent to locating the optimum extreme point of the linear program
ming solution space. For example, consider Y = (wz, W4) and Z = (WI> W3). The cor
responding constrained gradient vector becomes

\lcf = (4Wb 0) - (6wz, 0)(2f~ ~ )(2W
l

- 2104 2W4 2WI

The corresponding stationary point is given by Wi = 0, 10. = -VS, W3 = 0, W4 = -vs.
Because

(
-2

He = 0

is negative-definite, the solution is a maximum point.
The result is verified graphically in Figure 18.5. The first solution (Xl = 4,

X2 = 1) is not optimal, and the second (Xl = 0, X2 = 5) is. You can verify that the re
maining two (feasible) extreme points of the solution space are not optimal. In fact, the
extreme point (Xl = 0, X2 = 0) can be shown by the sufficiency condition to yield a
minimum point.

The sensitivity coefficients \lyo /J- I when applied to linear programming yield the
dual values. To illustrate this point for the given numerical example, let UI and U2 be
the corresponding dual variables. At the optimum point (WI = 0, W2 = v'5, W3 = 0,
W4 = V8), these dual variables are given by

I ( __1
(Ub U2) = \lYl-l = (6W2'0) 2rz

2W4

The corresponding dual objective value is SUI + 3U2 = 15, which equals the optimal
primal objective value. The given solution also satisfies the dual constraints and hence
is optimal and feasible. This shows that the sensitivity coefficients are the same as the
dual variables. In fact, both have the same interpretation.

FIGURE 18.5

)lem
n by

.J '.,-<

Extreme points of the solution space
of the linear program



PROBLEM SET 18.2B

1. Suppose that Example 18.2-2 is solved in the following manner. First, use the constraints
to express Xl and X2 in terms of X3; then use the resulting equations to express the objec
tive function in terms of X3 only. By taking the derivative of the new objective function
with respect to X3, we can determine the points of maxima and minima.

(a) Would the derivative of the new objective function (expressed in terms of X3) be dif
ferent from that obtained by the Jacobian method?

(b) How does the suggested procedure differ from the Jacobian method?

2. Apply the Jacobian method to Example 18.2-1 by selecting Y = (X2' X3) and Z = (xd.
*3. Solve by the Jacobian method:

We can draw some general conclusions from the application of the Jacobian method
to the linear programming problem. From the numerical example, the necessary condi
tions require the independent variables to equal zero. Also, the sufficiency conditions indi
cate that the Hessian is a diagonal matrix. Thus, all its diagonal elements must be positive
for a minimum and negative for a maximum. The observations demonstrate that the nec
essary condition is equivalent to specifying that only basic (feasible) solutions are needed
to locate the optimum solution. In this case the independent variables are equivalent to
the nonbasic variables in the linear programming problem. Also, the sufficiency condition
demonstrates the strong relationship between the diagonal elements of the Hessian ma
trix and the optimality indicator Zj - Cj (see Section 7.2) in the simplex method:

Classical Optimization TheoryChapter 18682

n

Minimize f(X) = 2:x7
i=l

subject to
n

IIxi = C
;=1

where C is a positive constant. Suppose that the right-hand side of the constraint is ~
changed to C + 0, where 0 is a small positive quantity. Find the corresponding change in ~

the optimal value of f
4. Solve by the Jacobian method:

Minimize f(X) = 5xf + x~ + 2XtX2

subject to

(a) Find the change in the optimal value off(X) if the constraint is replaced by
XlX2 - 9.99 = O.

(b) Find the change in value of f (X) if the neighborhood of the feasible point (2,5)
given that XIX2 = 9.99 and (lxl == .01.

lFor a formal proof of the validity of these results for the general linear programming problem, see H. Taha
and G. Curry, "Classical Derivation of the Necessary and Sufficient Conditions for Optimal Linear Pro
grams," Operations Research, Vol. 19, pp.l045-1049, 1971. The paper shows that the key ideas of the simplex
method can be derived by the Jacobian method.

~ .....:.: .2... ,
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5. Consider the problem:

Maximize f(X) = xi + 2x~ + lOxj + 5X1X2

subject to

gl (X) = Xl + x~ + 3X2X3 - 5 = 0

g2(X) = XI + 5XIX2 + x~ - 7 = 0

Apply the Jacobian method to find af(X) in the neighborhood of the feasible point (1, 1; 1).
Assume that this neighborhood is specified by ogl = -.01, ag2 = .02, and aXI = .01

6. Consider the problem

Minimize f(X) = xI + x~ + xj + x~

subject to

gl(X) = Xl + 2X2 + 3X3 + 5X4 - 10 = 0

g2(X) = Xl + 2x2 + 5X3 + 6X4 - 15 = 0

(a) Show that by selecting X3 and X4 as independent variables, the Jacobian method
fails to provide a solution and state the reason.

*(b) Solve the problem using Xl and x3 as independent variables and apply the sufficien
cy condition to determine the type of the resulting stationary point.

(c) Determine the sensitivity coefficients given the solution in (b).

7. Consider the linear programming problem.

II

Maximize f(X) = 2>jXj
j=l

subject to
n

gj(X) = ~aijXj - b j = 0 i = 1,2, ... , m
j=1

Xj ;::: 0, j = 1, 2, ... , 11

Neglecting the nonnegativity constraint, show that the constrained derivatives Vcf(X) for
this problem yield the same expression for {Zj - Cj} defined by the optimality condition
of the linear programming problem (Section 7.2)-that is,

Can the constrained-derivative method be applied directly to the linear programming
problem? Why or why not?

Lagrangean Method. In the Jacobian method, let the vector A represent the sensitivity
coefficients-that is

af
ag



This yields the following necessary conditions:

Example 18.2-4

L(X, A) = f(X) - Ag(X)

1

Classical Optimization Theory

Thus,

give the necessary conditions for determining stationary points of f(X) subject to
g(X) = O. Sufficiency conditions for the Lagrangean method exist but they are gener
ally computationally intractable.

aL = 0 aL =°
aA ' ax

Consider the problem of Example 18.2-2. The Lagrangean function is

L(X, A) = xt + x~ + xj - AI(Xt + X2 + 3x) - 2) - A2(5xt + 2X2 + x) - 5)

af - Aag = 0

This equation satisfies the necessary conditions for stationary points because af is

computed such that Vcf = O. A more convenient form for presenting these equa~~ns
is to take their partial derivatives with respect to all Xj' This yields

a .
- (f - Ag) = 0, } = 1,2, ... , n
aXj

The resulting equations together with the constraint equations g(X) = 0 yield the fea
sible values of X and A that satisfy the necessary conditions for stationary points.

The given procedure defines the Lagrangean method for identifying the station
ary points of optimization problems with equality constraints. Let

TIle function L is called the Lagrangean function and the parameters A the Lagrange
multipliers. By definition, these multipliers have the same interpretation as the sensi
tivity coefficients of the Jacobian method.

The equations

aL- = 2XI - Al - 5A2 = 0
aXl

aL
- = 2X2 - Al - 2A2 = 0
aX2

aL- = 2x) - 3A) - A2 = 0
ax)

aL- = -(Xl + X2 + 3x3 - 2) = 0aA I

aL
- = -(5XI + 2X2 + x3 - 5) = 0aA2

The solution to these simultaneous equations yields

Chapter 18684
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18.2 Constrained Problems 685

Xo = (Xl, X2, X3) = (.8043, .3478, .2826)

A = (A., A2 ) = (.0870, .3043)

This solution combines the results of Examples 18.2-2 and 18.2-3. The values of the Lagrange
multipliers A equal the sensitivity coefficients obtained in Example 18.2-3. The result shows
that these coefficients are independent of the specific choice of the dependent vector Y in the
Jacobian method.

PROBLEM SET 18.2C

1. Solve the following linear programming problem by both the Jacobian and the La
grangean methods:

Maximize f(X) = 5x} + 3X2

subject to

g}(X) = Xl + 2x2 + X3 - 6 = 0

g2(X) = 3x} + X2 + X4 - 9 = 0

*2. Find the optimal solution to the problem

Minimize f(X) = x1 + 2x~ + 10xj

subject to

g,(X) = Xl + x~ + X3 - 5 = 0

g2(X) = Xl + 5X2 + X3 - 7 = 0

Suppose that gl (X) = .01 and g2(X) = .02. Find the corresponding change in the opti
mal value of f(X).

3. Solve Problem 6, Set 18.2b, by the Lagrangean method and verify that the values of the
Lagrange multipliers are the same as the sensitivity coefficients obtained in Problem 6,
Set 18.2b.

18.2.2 Inequality Constraints-Karush-Kuhn-Tucker (KKT) Conditions2

This section extends the Lagrangean method to problems with inequality constraints.
The main contribution of the section is the development of the general Karush-Kuhn
Tucker (KKT) necessary conditions for determining the stationary points. These condi
tions are also sufficient under certain rules that will be stated later.

Consider the problem

Maximize z = [(X)

2Historically,w. Karush was the first to develop the KKT conditions in 1939 as part of his M.S. thesis at the Uni
versity of Chicago. The same conditions were developed independently in 1951 by W Kuhn and A. Tucker.



The inequality constraints may be converted into equations by using nonnegative slack
variables. Let S7 (~ 0) be the slack quantity added to the ith constraint gi(X) :os; 0 and
define

686 Chapter 18

subject to

Classical Optimization Theory

g(X) ~ 0

S = (S1> S2,".' sml, 82 = (Sr, S~, ... , S~)T

where m is the total number of inequality constraints. The Lagrangean function is thus
given by

L(X, 8, A) = f(X) - A[g(X) + 82
]

Given the constraints

g(X) :os; 0

a necessary condition for optimality is that A be nonnegative (nonpositive) for maxi
mization (minimization) problems. This result is justified by noting that the vector A
measures the rate of variation off with respect to g-that is,

af
A=

ag

In the maximization case, as the right-hand side of the constraint g(X) < 0 increases
from 0 to the vector ag, the solution space becomes less constrained and hence f can
not decrease, meaning that A ~ O. Similarly for minimization, as the right-hand side
of the constraints increases, f cannot increase, which implies that A :s; O. If the con
straints are equalities, that is, g(X) = 0, then A becomes unrestricted in sign (see
Problem 2, Set 18.2d).

The restrictions on A holds as part of the KKT necessary conditions. The remain
ing conditions will now be developed.

Taking the partial derivatives of L with respect to X, S, and A, we obtain

aL
aX = \If(X) - A\lg(X) = 0

aL
-S = - 2A jS; = 0, i = t 2, ... , m
a i

aL
- = -(g(X) + 82

) = 0
aA

The second set of equations reveals the following results:

1. If Ai "* 0, then S7 = 0, which means that the corresponding resource is scarce,
and, hence, it is consumed completely (equality constraint).

2. If s'f > 0, then Ai = O. This means resource i is not scarce and, consequently, it
has no affect on the value oft (i.e., Ai = ~ = 0).
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18.2 Constrained Problems 687

From the second and third sets of equations, we obtain

Aigi(X) = 0, i = 1,2, ... , m

This new condition essentially repeats the foregoing argument, because if Ai > 0,
gi(X) =°or Sf = 0; and if gi(X) < 0, Sf > 0, and Ai = 0.

The KKT necessary conditions for maximization problem are summarized as:

A~O

Vf(X) - AVg(X) = 0

Aigi(X) = 0, i = 1,2, ... , m

g(X) :::; 0

These conditions apply to the minimization case as well, except that A must be non
positive (verify!). In both maximization and minimization, the Lagrange multipliers
corresponding to equality constraints are unrestricted in sign.

Sufficiency of the KKT Conditions. The Kuhn-Tucker necessary conditions are also
sufficient if the objective function and the solution space satisfy specific conditions.
These conditions are summarized in Table 18.1.

It is simpler to verify that a function is convex or concave than to prove that a so
lution space is a convex set. For this reason, we provide a list of conditions that are eas
ier to apply in practice in the sense that the convexity of the solution space can be
established by checking the convexity or concavity of the constraint functions. To pro
vide these conditions, we define the generalized nonlinear problems as

Maximize or minimize z = f (X)

subject to
gi(X) :::; 0, i = 1, 2, , r

gi(X) ~ 0, i = r + 1, , p

gi(X) = 0, i = P + 1, , m
rpm

L(X, S, A) = f(X) - ~Ai[gi(X) + Sf] - 2: Ai[gi(X) - sn - 2: Aigi(X)
i=l i=r+1 i=p+l

where Ai is the Lagrangean multiplier associated with constraint i. The conditions for
establishing the sufficiency of the KKT conditions are summarized in Table 18.2.

The conditions in Table 18.2 represent only a subset of the conditions in Table 18.1
because a solution space may be convex without satisfying the conditions in Table 18.2.

TABLE 18.1

Required conditions
:e,

it

Sense of
optimization

Maximization
Minimization

Objective function

Concave
Convex

Solution space

Convex set
Convex set



subject to

This is a minimization problem, hence A ::5 O. The KKT conditions are thus given as

o
1
o = 0

o
-1

= A5g5 = 0

g(X) sO

g3(X) == 1 - XI ::50

g4(X) == 2 - X2 ::50

g5(X) = - x3 ::50

2 1

1 0

(2Xh 2X2, 2X3) - UIl, A2• A3• A4, As) -1 0
o -1
o 0

Classical Optimiz':3tion Theory

Minimize f(X) == xi + x~ + xj

gl (X) = 2xI + Xz - 5 ::5 0

gz(X) == XI + X3 - 2 ::5 0

Table 18.2 is valid because the given conditions yield a concave Lagrangean func
tion L(X, S, A) in case of maximization and a convex L(X, S, A) in case of minimiza
tion. This result is verified by noticing that if gi(x) is convex, then Aigi(x) is convex if
Ai ;::::. 0 and concave if Ai :5 O. Similar interpretations can be established for all the re
maining conditions. Observe that a linear function is both convex and concave. Also, if
a functionfis concave, then (-f) is convex, and vice versa.

Example 18.2-5

Consider the following minimization problem:

688 Chapter 18
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18.2 Constrained Problems 689

These conditions reduce to

2Xl - 2AI - A2 + A3 = 0

2X2 - AI + A4 = 0

2X3 - A2 + As = 0

AI(2xI + X2 - 5) = 0

A2(XI + X3 - 2) = 0

A3(1 - xd = 0

A4(2 - X2) = 0

2xI + X2 :s; 5

Xl + X3 :s; 2

Xl ~ 1, x2 ~ 2, x3 ~ 0

The solution is XI = 1, X2 = 2, X3 = 0, Al = A2 = As = 0, AJ = -2, A4 = -4. Because both
f(X) and the solution space g(X) :s; 0 are convex, L(X, S, A) must be convex and the resulting
stationary point yields a global constrained minimum. The KKT conditions are central to the de
velopment of the nonlinear programming algorithms in Chapter 19.

PROBLEM SET 18.20

1. Consider the problem:

Maximize f(X)

subject to
g(X) ~ 0

Show that the KKT conditions are the same as in Section 18.2.2, except that the La
grange multipliers A are nonpositive.

2. Consider the following problem:

Maximize [(X)

subject to

g(X) = 0

Show that the KKT conditions are

'Vf(X) - A'Vg(X) = 0

g(X) = 0

A unrestricted in sign



3. Write the KKT necessary conditions for the following problems.

(a) Maximize f(X} = XI - x~ + XIX~

subject to

690 Chapter 18 Classical Optimization Theory

Xl + x~ + X3 = 5

5xf - x~ - X3 ;::: 2

Xl> X2, x3 2': 0

(b) Minimize I(X} = x1 + x~ + 5XIX2X3

subject to

xi - x~ + x~ ::; 10

xI + x~ + 4x~ ;::: 20

4. Consider the problem

Maximize I(X)

subject to

g(X) = 0

Givenf(X) is concave and gi(X)(i = 1,2, ... , m) is a linear function, show that the KKT
necessary conditions are also sufficient. Is this result true if gi(X) is a convex nonlinear
function for all i? Why?

5. Consider the problem

Maximize f(X)

subject to

Develop the KKT conditions and give the stipulations under which the conditions are
sufficient.
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CHAPTER 1 9

Nonlinear Programming
Algorithms

Chapter Guide. The solution methods of nonlinear programming generally can be
classified as either direct or indirect algorithms. Examples of the direct methods are the
gradient algorithms, where the maximum (minimum) of a problem is found by following
the fastest rate of increase (decrease) of the objective function. In the indirect methods,
the original problem is replaced by an auxiliary one from which the optimum is deter
mined. Examples of these situations include quadratic programming, separable pro
gramming, and stochastic programming.

This chapter includes 9 solved examples. 1 AMPL model, 2 Solver models, and
24 end-of-section problems. The AMPLlExcel/SolverITORA programs are in folder
ch19Files.

19.1 UNCONSTRAINED ALGORITHMS

This section presents two algorithms for the unconstrained problem: the direct search
algorithm and the gradient algorithm.

19.1.1 Direct Search Method

Direct search methods apply primarily to strictly unimodal single-variable func
tions. Although the case may appear trivial, Section 19.1.2 shows that optimization
of single-variable functions is key in the development of the more general multi
variable algorithms.

The idea of direct search methods is to identify the interval of uncertainty that is
known to include the optimum solution point. The procedure locates the optimum by
iteratively narrowing the interval of uncertainty to any desired level of accuracy.

Two closely related algorithms are presented in this section: dichotomous and
golden section search methods. Both algorithms seek the maximization of a unimodal
tunctionf(x) over the interval a ~ x ~ b, which is known to include the optimum point
x*. The two methods start with /0 = (a, b) representing the initial interval of uncertainty.

691
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General Step i. Let I i - l = (XL, x R) be the current interval of uncertainty (at iteration 0,
XL = a and xR = b). Next, identify Xl and X2 in the following manner:

Dichotomous method Golden section method

XI = ~(XR + XL - A)

X2 = ~(XR + xL + A)

XI = XR - (v\- ')(XR - XL)

X2 = XL + (\152- I)(XR - XL)

The selection of Xl and x2 guarantees that

FIGURE 19.1

Illustration of the general step of the dichotomous/golden section search methods

I
XI x2 xR b

Ii-I
-I

I, Ii
-I

10 -I

(b)

f(X2)

I
I
I
I
I
I
I
I
I
! I

a XL XI X2 XR b

I, Ii-I .,
I, Ii

-I

I-
10 -I

(a)

1. If f(XI) > f(X2)' then XL < x* < X2. Let XR = X2 and set Ii = (XL, X2) [see
Figure 19.1(a)].

2. If f(Xl) < f(X2)' then Xl < x* < XR. Let XL = Xl and set Ii = (Xl> XR) [see
Figure 19.1(b)J.

3. If f(XI) = f(X2)' then Xl < x* < X2· Let XL = Xl and XR = x2; set Ii = (Xl> X2).

The manner in which Xl and X2 are determined guarantees that Ii+ 1 < Ii. as will
be shown shortly. The algorithm terminates at iteration k if h <: !J., where !J. is a user
specified level of accuracy.

XL < X I < X2 < X R

The next interval of uncertainty, Ii. is determined in the following manner:
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or

a2 +a-1=0

XL + a[xL + a(xR - xd - xd = XR - a(xR - xd

which finally simplifies to

. . f() {3X,
MaXImIze x = h- x + 20),

In the dichotomous method, the values Xl and X2 sit symmetrically around the
midpoint of the current interval of uncertainty. This means that

I i +1 = .5Ui + ~)

Repeated application of the algorithm guarantees that the length of the interval of un
certainty will approach the desired accuracy, Ii..

In the golden section method, the idea is more involved. We notice that each iter
ation of the dichotomous method requires calculating the two values f(xd and !(X2),
but ends up discarding one of them. What the golden section proposes is to save com
putations by reusing the discarded value in the immediately succeeding iteration.

Define for 0 < a < 1,

Xl = xR - a(xR - xd

X2 = XL + a(xR - xd

Then the interval of uncertainty Ii at iteration i equals (XL, X2) or (Xl> XR)' Consider
the case Ii = (XL, X2), which means that Xl is included in 1;. In iteration i + 1, we select
X2 equal to Xl in iteration i, which leads to the following equation:

x2(iteration i + 1) = Xl (iteration i)

Substitution yields

XL + a[x2(iteration i) - xd = XR - a(xR - xd

The golden section method converges more rapidly than the dichotomous method be
cause, in the dichotomous method, the narrowing of the interval of uncertainty slows
down appreciably as I ~ ~. In addition, each iteration in the golden section method
requires half the computations because the method always recycles one set of compu
tations from the immediately preceding iteration.

Example 19.1-1

This equation yields a = -1 ~ v'5. Because 0 ::; a ::; 1, we select the positive root
= -1 + v'5 ~ 681a 2 ""'. •

The design of the golden section computations guarantees an a-reduction in suc
cessive intervals of uncertainty-that is

nO,

will
lser-

[see

[see



Continuing in the same manner, the interval of uncertainty will eventually narrow down to the
desired IJ..-tolerance.

The maximum value of f(x) occurs at x = 2. The following table demonstrates the calcu
lations for iterations 1 and 2 using the dichotomous and the golden section methods. We will
assume IJ.. = .1.

Excel Moment

Template excelDiGold.xls handles either method. The input data include f(x), a, b, and
fj.. The functionf(x) is entered in cell E3 as

11 = (1.146, 3) '" (XL, XR)

Xl = X2 in iteration 0 = 1.854,
[(Xl) = 5.562

X2 = 1.146 + .618(3 - 1.146) == 2.292. f (X2) = 5.903

f(X2) > f(Xl)~XL = 1.854, II =: (1.854,3)

Golden section method

Iteration 2

Iteration 1

10 = (O, 3) "" (XL. XR)
Xl = 3 - .618(3 - 0) == 1.146, f(XI) == 3.438
X2 = 0 + .618(3 - 0) = 1.854, f (X2) == 5.562
/(X2) > f(Xl) =xL == 1.146,11 = (1.146,3)

Nonlinear Programming Algorithms

Iteration 2

h = (1.45, 3) '" (XL, XR)
XI = 1.45 + .5(3 - 1.45 - .1) == 2.175,

f(xd = 5.942

X2 = 3 + 1.~5 + .1 = 2.275,/(X2) = 5.908

f(xd > f(X2)=XR = 2.275, h == (1.45,2.275)

Dichotomous method

Iteration 1

10 = (0. 3) "" (XL. XR)

XI == 0 + .5(3 - 0 - .1) == 1.45, f (Xl) == 4.35
X2 == 0 + .5(3 - 0 +-.1) =: 1.55,f(X2) =: 4.65
/ (X2) > f (xd =XL = 1.45, II == (1.45, 3)

Chapter 19694

=IF(C3<=2,3*C3,(-C3+20l/3l

Cell C3 plays the role of x inf(x). Limits a and b are entered in cells B4 and D4 to rep~

resent the admissible search range for f(x). Also, the tolerance limit, 11, is entered in
cell B3. The search method is selected by entering the letter x in either D5 (dichoto
mous) or F5 (golden section).

Figure 19.2 compares the two methods. The golden section method requires less
than half as many iterations as the dichotomous method. Additionally, each iteration
requires half the calculations, as explained previously.

PROBLEM SET 19.1A

1. Use Excel template excelDiGold.xls to solve Example 19.1-1 assuming that!1 = .01. Com
pare the amount of computations and the accuracy of the results with those in Figure 19.2.

2.. Find the maximum of each of the following functions by dichotomous search. Assume
that IJ.. = .05.

19.

1
(a) f(x) = I(x _ 3)31'

(b) f(x) = x cos x,

*(c) f(x) = x sin 7TX, 1.5 ::s x ::s 2.5
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:5.; Solution: Enl.... lo ••lec:l> Dichotomous:

8:. xl. xR )(1 x2

:'6: x· = 200909 f(x'j =

';2: In ut dala: T C3 in E3. where C3 re resents x in f(x

::4." Minimum x c 0 Maximum x 'IO!

"'7:'i C1alculations:

p
in
0-

03

u
ill

55
m

FIGURE 19.2

Excel output of the dichotomous and golden section methods applied to Example 19.1-1 (file exceIDiGold.xls)

(d) f(x)

*(e) f(x)

-(x - 3f, 2 s; x :5 4

{
4X, 0 ::::; x ::::; 2

4 - x, 2::::; X :5 4
1-

19.1.2 Gradient Method

This section develops a method for optimizing functions that are twice continuously
differentiable. The idea is to generate successive points in the direction of the gradient
of the function.

The Newton-Raphson method presented in Section 18.1.2 is a gradient method
for solving simultaneous equations. This section presents another technique, called the
steepest ascent method.



Termination of the gradient method occurs at the point where the gradient vector
becomes null. This is only a necessary condition for optimality. Optimality cannot be
verified unless it is known a priori that f(X) is concave or convex.

Suppose that f(X) is maximized. Let Xobe the initial point from which the proce
dure starts and define 'Vf(Xk ) as the gradient offat point X k- The idea is to determine
a particular path p along which;; is maximized at a given point. This result is achieved
if successive points X k and X k + 1 are selected such that

696 Chapter 19 Nonlinear Programming Algorithms

where 'k is the optimal step size at X k ·

The step size 'k is determined such that the next point, X k +1, leads to the largest
improvement in f This is equivalent to determining r = rk that maximizes the function

Because her) is a single-variable function, the search method in Section 19.1.1 may be
used to find the optimum, provided that her) is strictly unimodal.

The proposed procedure terminates when two successive trial points XI< and
X k +1 are approximately equal. This is equivalent to having

rk \If(Xk ) ~ 0

Because rk "* 0, the necessary condition \If(Xk ) = 0 is satisfied at X k•

Example 19.1-2

Consider the following problem:

Maximize f(Xb Xl) = 4Xl + 6X2 - 2xr - 2XIX2 - 2x~

Th . ( * *) (I 4)e exact optImum occurs at Xl' X2 = 3' 3 .

We show how the problem is solved by the steepest ascent method. The gradient of f is
given as

\If(X) = (4 - 4Xl - 2X2,6 - 2xl - 4X2)

The quadratic nature of the function dictates that the gradients at any two successive points are
orthogonal (perpendicular to one another).

Suppose that we start at the initial point Xo = (1,1). Figure 19.3 shows the successive solu
tion points.

Iteration 1

Vf(Xo) = (-2,0)

The next point X1 is obtained by considering

x = (1,1) + r(-2,0) = (1 - 2r,1)

Thus,

her) = J(1 - 2r, 1) = -2(1 - 2rf + 2(1 - 2r) + 4
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X2

-~~-----¢ XO

FIGURE 19.3

Maximization of f(xl> X2) = 4xj + 6X2 - 2xI - 2XjX2 - 2x~ by the steepest-ascent method

The optimal step size is obtained using the classical necessary conditions in Chapter 18 (you may
also use the search algorithms in Section 19.1.1 to determine the o~timum).The maximum value
of her) is 1"1 = ~, which yields the next solution point as Xl = G, 1).

Iteration 2

'Yf(X1) = (0,1)

X = G,l) + ,(0,1) = G,l + r)
her) = -2(1 + rf + 5(1 + 1') + ~

This gives 1'2 = ~ and X 2 = G, n·
Iteration 3

V!(X2) = (-~, 0)

X = G,~) + 1'(-k, 0) = e; r,~)

her) = -~(1 - 1')2 + ~(1 - 1') + ¥

Hence,'3 = ~ and X3 = (~, ~).
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Iteration 4

Nonlinear Programming Algorithms

Vf(X3) = (O,~)

X = (~,~) + r(O,~) = (~, 5: r)

h(r) = -~(5 + r)2 + ~(5 + r) + ~

.1

,
,~
)

19.

Th 1 (3 2l)us, r4 = 4and X4 = 8' 16 .

Iteration 5

Vf(X4 ) = (-~, 0)

X = (~, ti) + r( -~, 0) = e; r, ti)

h(r) = -t(3 - r)2 + H(3 - r) + i~~

Th" 1 d X (11 21)IS gIves r5 = 4" an 5 = 32> 16 .

Iteration 6

Vf(Xs) = (O,ft)

Because Vf(Xs) ~ 0, the process can be terminated at this point. The approximate maximum
point is given by Xs = (.3438,1.3125). The exact optimum is X* =(.3333, 1.3333).

PROBLEM SET 19.1B

*1.• Show that, in general, the Newton-Raphson method (Section 18.1.2) when applied to a
strictly concave quadratic function will converge in exactly one step. Apply the method to
the maximization of

2. Carry out at most five iterations for each of the following problems using the method of
steepest descent (ascent). Assume that XO = 0 in each case.

(a) min f(X) = min f(X) = (X2 - x?)2 + (1 - xd

(b) maxf(X) = eX + X TAX

where

e = (1,3,5)

19.

(

-5

A = =~

(c) minf(X) = Xl - X2 + Xl
2

- XIX2
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19.2 CONSTRAINED ALGORITHMS

The general constrained nonlinear programming problem is defined as

Maximize (or minimize) z = f(X)
subject to

g(X) ::; 0

The nonnegativity conditions, X ~ 0, are part of the constraints. Also, at least one of the
functions f(X) and g(X) is nonlinear and all the functions are continuously differentiable.

No single algorithm exists for handling the general nonlinear models, because of
the erratic behavior of the nonlinear functions. Perhaps the most general result applica
ble to the problem is the KKT conditions (Section 18.2.2). Table 18.2 shows that unless
f(X) and g(X) are well behaved (based on the convexity and concavity conditions), the
KKT conditions are only necessary for realizing optimality.

This section presents a number of algorithms that may be classified generally as
indirect and direct methods. Indirect methods solve the nonlinear problem by dealing
with one or more Linear programs derived from the original program. Direct methods
deal with the original problem.

The indirect algorithms presented in this section include separable, quadratic, and
chance-constrained programming. The direct algorithms include the method of linear
combinations and a brief discussion of SUMT, the sequential unconstrained maximization
technique. Other important nonlinear techniques can be found in the list of references at
the end of the chapter.

19.2.1 Separable Programming

A function f(x!> X2,' .. , xn) is separable if it can be expressed as the sum of n single
variable functions fl(xl), fz(X2)"'" fn(xn)-that is,

f(x!> x!> ... , xn ) = fl(Xj) + f2(X2) + ... + fn(x n )

For example, the linear function

hex}> X2,"" Xn) = alxl + a2x2 + ... + anxn

is separable (the parameters ai, i = 1,2, ... , n, are constants). Conversely, the function

hex!> X2, X3) = XI + Xl sin(x2 + X3) + X2ex3

is not separable.
Some nonlinear functions are not directly separable but can be made so by appro

priate substitutions. Consider, for example, the case of maximizing z = XIX2' Letting
y = XIX2, then In y = In Xl + In X2 and the problem becomes

Maximize z = y
subject to

In y = In X I + In X2

which is separable.The substitution assumes that Xl and X2 are positive variables because
the logarithmic function is undefined for nonpositive values.
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The case where Xl and Xz assume zero values (i.e., Xl> Xz ~ 0) may be handled in
the following manner. Let 01 and Oz be positive constants and define

WI = Xl + 01

W2 = Xz + 82

In the substitution
X1 XZ = W1W Z - 8ZW 1 - 81wz + 0182

the new variables, Wi and w2, are strictly positive. Letting y = W1WZ, the problem is ex
pressed as

subject to

In y = In WI + In 'Wz

which is separable.
This section shows how an approximate solution can be obtained for any separable

problem by linear approximation and the simplex method of linear programming. The
single-variable function [(x) can be approximated by a piecewise linear function using
mixed integer programming (Chapter 9). Suppose that [(x) is to be approximated over
an interval [a, b]. Define ak, k = 1,2, ... , K, as the kth breakpoint on the x-axis such
that al < az < ... < aK' The points a1 and aK coincide with end points a and b of the
designated intervaL Thus,f(x) is approximated as follows:

K

[(x) ~ ~[(ak)wk
k=1

K

X = ~akwk
k=1

where Wk is a nonnegative weight associated with the kth breakpoint such that

K

'2: Wk = 1, Wk ~ 0, k = 1,2, ... , K
k=1

Mixed integer programming ensures the validity of the approximation by imposing
two conditions:

1. At most two wk are positive.
2. If Wk is positive, then only an adjacent wk+1 or wk-l can assume a positive value.

To show how these conditions are satisfied, consider the separable problem
n

Maximize (or minimize) z = "2J/Xj)
j=l

subject to
n

'2:gi/Xj) :5 bi, i = 1,2, ... , m
j=l

:.j
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This problem can be approximated by a mixed integer program as follows. Let l

ajk = breakpoint k for variable Xj } _ . _
.. . . k -1,2, ... ,K·,J -1,2, ... ,n

Wjk = weight with breakpomt k of vanable Xj J

Then the equivalent mixed problem is

n K j

Maximize (or minimize) z = L '2J/ajk)Wjk
j=lk=l

subject to

II K i

L Lgjk(ajk)Wjk ::s bi> i = 1,2, ... , In
j=lk=l

°::s Wj! ::s Yjb j = 1, 2, , n

o:::s wjk::s Yj,k-l + Yjb k = 2,3, ,Kj - 1, j = 1,2, ... ,n

o ::s WJ'K- ::s YJ' K ,_ b j = 1, 2, , n
} • I

Ki-l

2: Yjk = 1, j = 1,2, ... , n
k=l

Ki

LWjk = 1, j = 1,2, ... ,n
k=l

Yjk = (0,1), k = 1,2, ... , K jo j = 1,2, ... , n

The variables for the approximating problem are Wjk and Yjk'

This formulation shows how any separable problem can be solved, at least in prin
ciple, by mixed integer programming. The difficulty is that the number of constraints
increases rather rapidly with the number of breakpoints. In particular, the computational
feasibility of the procedure is questionable because there are no consistently reliable
computer codes for solving large mixed integer programming problems.

Another method for solving the approximate model is the regular simplex
method (Chapter 3) using restricted basis. In this case the additional constraints in
volving Yjk are dropped. TIle restricted basis modifies the simplex method optimality
condition by selecting the entering variable Wj with the best (Zjk - cjd such that two
w-variables can be positive only if they are adjacent. The process is repeated until the
optimality condition is satisfied or until it is impossible to introduce new Wjk without
violating the restricted basis condition, whichever occurs first. The last tableau gives
the approximate optimal solution to the problem.

I It is more accurate to replace the index k with k j to correspond uniquely to variable j. However, we will not
do so to simplify the notation.



subject to

3XI + 2x~ :$ 9

Maximize Z = xl + x~

Nonlinear Programming Algorithms

Example 19.2-1

Consider the problem

fl(xd = Xl

h(X2) = X~

gl(Xt) = 3XI

g2(X2) = 2x~

The mixed integer programming method yields a global optimum to the approxi
mate problem, but the restricted basis method can only guarantee a local optimum.
Additionally, in the two methods, the approximate solution may not be feasible for the
original problem. In fact, the approximate model may give rise to additional points that
are not part of the solution space of the original problem.

k a2k hCa2k) = a~k g2(a2k) = 2a~k

1 0 0 0
2 1 1 2
3 2 16 8
4 3 81 18

This yields

The functions !l(xI) and gl (x I) remain the same because they are already linear. In this case,
Xl is treated as one of the variables. Considering !2(X2) and g2(X2), we assume four breakpoints:
a2k :=: 0,1,2, and 3 for k = 1,2,3, and 4, respectively. Because the value of X2 cannot exceed 3,
it follows that

The exact optimum solution to this problem, obtained by AMPL or Solver, is Xl = 0,
X2 = 2.12132, and z" = 20.25. To show how the approximating method is used, consider the

separable functions

Chapter 19702

Similarly,

The approximating problem thus becomes

Maximize z = XI + ~2 + 16Wn + 81w24
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Next, WZ4 is the entering variable, which is admissible because W23 is positive. The simplex
method shows that SI will leave. Thus,

o

9
1

Solution

o

o
1

Wzl

16 16

-8 1
1 1

Wzl Solution

o

1
o

o

1
o

18
1

10
1

Wz4

-81

-65

8
1

-16

2
1

15 0

-6 0
1 1

-1

3
o

3
o

-1

-1

z

z

Basic

Basic

Basic XI tun Wz3 W24 SI WzI Solution

z 37 -24 0 0 13 -36 22!"2 "2 2

3 6 0 1 I H I
Wz4 TO -TO TO -TO iii

3 16 1 0 I 18 9
Wz3 -TO 10 -10 TO 10

3Xl + 2W22 + 8U23 + 18wz4 :s; 9

WZI + WZ2 + W23 + 'W24 = 1

xl ~ 0, U'2k 2: 0, k = 1,2,3,4

The values of W2k, k = 1, 2, 3, 4, must satisfy the restricted basis condition,
The initial simplex tableau (with rearranged columns to give a starting solution) is given by

The variable Sl (2: 0) is a slack. (This problem happened to have an obvious starting solution. In
general, one may have to use artificial variables, Section 3.4.)

From the z-row coefficients, 'W24 is the entering variable. Because Wzl is currently basic
and positive, the restricted basis condition dictates that it must leave before W24 can enter the
solution. By the feasibility condition, Sl must be the leaving variable, which means that Wz4
cannot enter the solution. The next-best entering variable, W23, requires U21 to leave the basic
solution, a condition that happens to be satisfied by the feasibility condition. The new tableau
thus becomes

~

~

~
1lI

~""
.;~

:,
:;
"'1
':J
.'j

j
~i
,~
2
J

"",
1
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,:i
:;,
",':'1
I,
]
~
:~

j
J
~
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~l
'3
J
;J
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J
~

I, :t-,
a;:
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~
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~
l
1
~'i

j
~
,~

The tableau shows that W2l and lU22 are candidates for the entering variable. Because W2l is not
adjacent to basic W2J or Wz4, it cannot enter. Similarly, Wz2 cannot enter because Wz4 cannot leave,
The last tableau thus is the best restricted-basis solution for the approximate problem.

The optimum solution to the original problem is

Xl = 0

x2 ~ 2Wz3 + 3W24 = 2(/0) + 3(to) = 2.1
2. = 0 + 2.14 = 19.45

The value X2 = 2.1 approximately equals the true optimum value (= 2.12132).
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Kj

gij(Xj) ~ ''2/ijkXjk + gij(ajo)
k=l

o <: Xjk .s; ajk - aj,k-b k = 1,2, ... , K j , j = 1,2, ... , n

Piecewise-linear approximation of a convex function

Kj

Xj = LXjk
k=l

°~ Xjk ~ ajk - aj,k-l' k = 1,2, ... , K j

K j

fj(xj) ~ LrjkXjk + /j(ajo)
k=l

Separable Convex Programming. A special case of separable programming occurs
when gij(Xj) is convex for all i and j, which ensures a convex solution space. Additionally,
if fj(xj) is convex (minimization) or concave (maximization) for allj, then the problem
has a global optimum (see Table 18.2, Section 18.2.2). Under such conditions, the
following simplified approximation can be used.

Consider a minimization problem and let h(Xj) be as shown in Figure 19.4. The
breakpoints of the function h(Xj) are Xj = ajk' k = 0,1, ... , K j . Let Xjk define the in
crement of the variable Xj in the range (aj,k-h ajk), k = 1,2, ... , Kj , and let 'jk be the
corresponding rate of change (slope of the line segment) in the same range. Then

FIGURE 19.4

The fact that /j(Xj) is convex ensures that rjl < 'rl.. < ... < 'jKr This means that in the
minimization problem, for p < q, the variable Xjp is more attractive than Xjq Conse
quently, Xjp will always reach its maximum limit before Xjq can assume a positive value.

The convex constraint functions gij(Xj) are approximated in essentially the same
way. Let 'ijk be the slope of the kth line segment corresponding to gij(Xj)' It follows that

The complete problem is thus given by
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where

The maximization problem is treated essentially the same way. In this case,
'jt > rj2 > ... > 'jK

j
, which means that, for p < q, the variable Xjp will always reach

its maximum value before Xjq is allowed to assume a positive value (see Problem 7, Set
19.2a, for proof).

The new problem can be solved by the simplex method with upper-bounded vari
ables (Section 7.3). The restricted basis concept is not needed because the convexity
(concavity) of the functions guarantees correct selection of basic variables.

Example 19.2-2

Consider the problem

Maximize z = Xl - Xz

subject to

3xj + Xz :$ 243

XI + 2x~ ::::; 32

Xz ;:;: 3.5

The separable functions of this problem are

These functions satisfy the convexity condition required for the minimization problems. The
functions fl(xd, h(xz), g!2Cxz), and gZl(xd are already linear and need not be "approximated."

The ranges of the variables Xl and Xz (estimated from the constraints) are 0 ::::; Xl ::::; 3 and
o ::::; Xz ::::; 4. Let K1 = 3 and Kz = 4. The slopes corresponding to the separable functions are
determined as follows.



(19.1)

(19.2)

(19.3)

(19.4)

(19.5)

(19.6)

(19.7)

(19.8)

~ 2.1

=:; 243

X2 c 3.5

o =:; xlk =:; 1, k = 1,2,3

o =:; X2k =:; 1, k = 1,2, 3,4

X21 + X22 + x23 + X24 - x2 = 0

3Xll + 45x12 + 195x13 + X2

Maximize z = Xl - X2

The complete problem then becomes

z == - .52, Xl == 2.98, X2 == 3.5, XI1 == X12 == 1, Xl3 == .98, X21 == X22 == X23 == 1, X24 == .5

Constraints 5 and 6 are needed to maintain the relationship between the original and new
variables. The optimum solution is

AMPL Moment

subject to

The modeling of nonlinear problems in AMPL is very much the same as in linear prob
lems. Obtaining the solution is an entirely different matter, however, because of the "un
predictable" behavior of the nonlinear functions. Figure 19.5 gives the AMPL model of
the original problem of Example 19.2-2 (file amplExI9.2-2.txt). The only deviation from
LP (other than the nonlinearity, of course) is that you may need to specify "appropriate"
initial values for the variables to get the solution iteration to converge. In Figure 19.5, the
arbitrary initial values Xl == 10 and X2 = 10 are specified by appending: =10 to the
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For j = 1,

k alk gU(alk) == 3a1k rllk Xlk

0 0 0
1 1 3 3 Xu

2 2 48 45 X12

3 3 243 195 Xl3

For j = 2,

k a2k g22(a2k) = 2a~ '22k X2k

0 0 0
1 1 2 2 X21
2 2 8 6 Xn
3 3 18 10 X2J

4 4 32 14 X24



PROBLEM SET 19.2A

subject to

FIGURE 19.5

AMPL model of Example 19.2-2
solve;
display z,x1,x2;

maximize z: xl-x2;
subject to cl: 3*xl A 4+x2<=243;
subject to c2: x1+2*x2 A 2<=32;
subject to c3: xl>=2.1;
subject to c4: x2>=3.5;

XIX2 + X2 + X1X3 s: 10

Xb X2X3 ~ 0

Approximate the problem as a linear program for use with the restricted basis method.

*4. Show how the following problem can be made separable.

subject to

Maximize z = XtX2X3

*2. Repeat Problem 1 using the restricted basis method. Then find the optimal solution.

3. Consider the problem

XI + x2 :=; 3

Xl. X2 ;::: 0

Xl
2 + X2 + x3 s: 4

XJ, X2, X3 ~ 0

19.2 Constrained Algorithms 707

1. Approximate the following problem as a mixed integer program.

Maximize z = e-x1 + Xl + (X2 + 1)2

subject to

var x1>~0 :~10; #inital value = 10
var x2>=0 :=10; #initial value = 10

definition of the two variables. If you do not specify initial values at all, AMPL will
not reach the optimum solution and will print the message "too many major itera
tions." Although a solution is given in this case, it usually is not correct. In essence,
the most logical way to deal with a nonlinear problem is to specify different initial
values for the variables and then decide if a consensus can be reached regarding the
optimum solution.

Remark. AMPL provides a special syntax for handling convex separable programs.
This representation appears to work more reliably if the nonlinearity occurs in the
objective function only. Else, the behavior is quite erratic and, indeed, AMPL may
claim that the constraints are infeasible when in fact they are not.

new

9.1)

9.2)

9.3)

9.4)

9.5)

9.6)

9.7)

.9.8)

rob
"un
elof
'rom
ate"
;, the
~ the
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X4 unrestricted in sign

M · . . 4 2Immlze Z = Xl + X2 + X3

subject to

subject to

6. Show how the following problem can be made separable.

7. Show that in separable convex programming, it is never optimal to have Xki > 0 when
xk-I,i is not at its upper bound.

8. Solve as a separable convex programming problem.

5. Show how the following problem can be made separable.

Chapter 19708

subject to

XI + X2 + xj :$ 4

IXI + x21 :=;; 0

X2 unrestricted in sign

9. Solve the following as a separate convex programming problem.

Minimize Z = (Xl - 2f + 4(X2 - 6)2

subject to

19.2.2 Quadratic Programming

A quadratic programming model is defined as

Maximize z = ex + xTnx
subject to

AX ~ b, X ;::: 0
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where

x = (Xl>X2, •.. ,xnf

e = (Cl> C2, , e,,)

b = (bbb2, ,bm )T

The function XTDX defines a quadratic from (Section 0.3 on the CD). The matrix
o is assumed symmetric and negative definite. This means that z is strictly concave. The
constraints are linear, which guarantees a convex solution space.

The solution to this problem is based on the KKT necessary conditions. Because
z is strictly concave and the solution space is a convex set, these conditions (as shown
in Table 18.2, Section 18.2.2) are also sufficient for a global optimum.

The quadratic programming problem will be treated for the maximization case.
Conversion to minimization is straightforward. The problem may be written as

Maximize z = ex + XTOX

subject to

G(X) = (~I)X - (:) =s 0

Let

A = (Al> A2,"" Amf

U = (,ub ,u2, ... , ,u,,)T

be the Lagrange multipliers corresponding to constraints AX - b =s 0 and -X::;:; 0,
respectively. Application of the KKT conditions yields

A ~ 0, U 2: 0

\lz - (AT, U T ) \lG(X) = 0

Ai(bi - ±ai;x;) = 0, i = 1,2, ... , m
J=1

ILjXj = 0, j = 1,2, ... , n

AX =s b

-X =s 0
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Now

Consider the problem

:~
-;

= (C;)
X

~) ~
S

-I

o

Vz = C + 2XTn

VG(X) = (~l)

Hence, the necessary conditions may be combined as

Example 19.2-3

/LjXj = 0 = Aj5j, for all i and j

A, U, X, S ;?: 0

II-X- = 0 = AS for all i and J'oj J ! !

A, U, X, S ~ 0

Because nT = D, the transpose of the first set of equations can be written as

-lDX + ATA - U = CT

Let S = b - AX ~ 0 be the slack variables of the constraints. The conditions reduce to

-2XTn + ATA - U T = C

AX + S = b

subject to

Except for the conditions jLjXj = 0 = Ai5j , the remaining equations are linear functions
in X, A, U, and S. Thus, the problem is equivalent to solving a set of linear equations with
the additional conditions /LjXj = 0 = Aj5i . Because z is strictly concave and the solution
space is convex, the feasible solution satisfying all these conditions must yield a unique
optimum solution.

The solution of the system is obtained by using phase I of the two-phase method
(Section 3.4.2). The only restriction is to satisfy the conditions Ai5i = 0 = jLjXj' This
means that Ai and Si cannot be positive simultaneously, and neither can /Lj and Xj. This
is the same idea of the restricted basis used in Section 19.2.l.

Phase I will render all the artificial variables equal to zero provided the problem
has a feasible space.

Xl + 2X2 :5 2

Xl, X2 ;::: 0
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The initial tableau for phase 1 is obtained by introducing the artificial variables R1 and R2 and
updating the objective row. Thus

Basic Xl X2 AI ILL IL2 RI Rz SI Solution

r 6 6 3 -1 -1 0 0 0 10

RI 4 2 1 -1 0 1 0 0 4
R2 2 4 2 0 -1 0 1 0 6
51 1 2 0 0 0 0 0 1 2

-l)(Xl)
-2 X2

XI

G
2 1 -1 0 n

X2

~ G}!'IX' ~ ",x, ~ A,s, ~ 04 2 0 -1 Al

2 0 0 0 11-1

11-2

Sl

Iteration 1 Because 11-1 = 0, the most promising entering variable Xl can be made basic with
R1 as the leaving variable. This yields the following tableau:

Basic Xj X2 Aj ILL IL2 Rl R2 51 Solution

R 0 3 3 1 -1 3 0 0 4:2 2 -2:

1 ! 1 1 0 1 0 0 1Xl 2 4 -4 4

Rz 0 3 ~ 1 -1 1 1 0 42 "2 -2
0 3 1 1 0 _1 0 1 1sl "2 -4 4 4

Iteration 2 The most promising variable Xz can be made basic because 11-2 = O. This gives

Basic Xl X2 Al ILl IL2 RI R2 51 Solution

r 0 0 2 0 -1 -1 0 -2 2

1 0 1 I 0 1 0 I ~XI "3 -) 3 -:3 3

Rl 0 0 2 0 -1 0 1 -2 2

0 1 I I 0 1 0 ~ 2
XI -6 6 -6 3 :3

Maximizez = (4,6)(Xi) + (Xb X2)(-2
X2 -1

subject to

This problem can be put in matrix form as follows:

The KKT conditions are given as
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Iteration 3

Nonlinear Programming Algorithms

Because Sl = 0, AJ can be introduced into the solution. This yields

Basic Xl x2 Al f-tl f-t2 RI R2 8, Solution

r 0 0 0 0 0 -1 -1 0 0

XI 1 0 0 _1 1 I I 0 1
3 6 3 -6 3

Al 0 0 1 0 _1 0 1 -1 12 2

0 1 0 1 _2- 1 2- 1 5
X2 6 12 -6 12 2: 6

The last tableau gives the optimal solution for phase I. Because r = 0, the solution, x~ = 5,
x; = ~, is feasible. The optimal value of Z, computed from the original problem, is 4.16.

Solver Moment

Figure 19.6 provides the solution for Example 19.2-3 using Solver (file exceIQP.xls).
The data are entered in a manner similar to the one used in linear programming
(see Section 2.4.2). The main difference occurs in the way the nonlinear functions
are entered. Specifically, in Example 19.2-3, the nonlinear objective function

z = 4Xl + 6X2 - 2xI - 2X1X2 - 2x~

FIGURE 19.6

Solver solution of the quadratic program of Example 19.2-3 (file exceIQP.xls)

.. f· i
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is entered in target cell D5 as

=4*B10+6*clO-2*B10 A 2-2*B10*C10-2*C10 A 2

Here, the changing cells are BlO:ClO [ a (Xl> X2)}. Notice that cells B5:C5 are not used
at all in the model. For readability, we entered the symbol NL to indicate that the asso
ciated constraint is nonlinear. Also, you can specify the nonnegativity of the variables
either in the Options dialogue box or by adding explicit nonnegativity constraints.

PROBLEM SET 19.2B

*1. Consider the problem

subject to

Show that z is strictly concave and then solve the problem using the quadratic program
ming algorithm.

*2. Consider the problem:

subject to

Xl + X2 + X3 ~ 1

3xI + 2X2 + X3 s; 6

Show that z is strictly convex and then solve by the quadratic programming algorithm.

19.2.3 Chance-Constrained Programming

Chance-constrained programming deals with situations in which the parameters of the
constraints are random variables and the constraints are realized with a minimum prob
ability. Mathematically, the problem is defined as

n

Maximize z = LCjXj
j=1

subject to



and define

where

Nonlinear Programming Algorithms

Now

h. - E{h.}
where 'vvarud is standard normal with mean zero and variance one. This means thatvar i

x = (Xl> ... ,xn)T

D,- = ith covariance matrix

(

var{aid cov{ail> a in })

= cov{a:maid var{ain}

n

hi = :L.aijXj
jo=l

The parameters aij and bi are random variables and constraint i is realized with a mini~

mum probability of 1 - ai, 0 < Cij < 1.
Three cases are considered:

1. Only aij is random for all i and j.
2. Only bi is random for all i.

3. Both aij and bj are random for all i and j.

In all three cases, it is assumed that the parameters are normally distributed with known
means and variances.

/I

E{hJ :L.E{aij}Xj
jo=l

var{h;} = XTDiX

Case 1. Each aij is normally distributed with mean E {aij}, variance var{aij}, and
coy{aij, ai'j'} of aij and ai'j"

Consider

Then hi is normally distributed with

714 Chapter 19

where F represents the CDF of the standard normal distribution.
Let Ko. be the standard normal value such that,



This yields the following nonlinear deterministic constraint:

Then the statement P{hi <: bi } ~ 1 - (Xi is realized if and only if
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n

Lvar{aij)xy :s bi
j=!

n

LE{aij}Xj + K ai
j=l

n

Yi = L varJajj)xy, for all i
j=l

and the last constraint reduces to

n

LE{aij}Xj + Ka;VXTDiX :s bi
j=l

For the special case where the parameters aij are independent,

COy {aij, ai'j'} = 0

This constraint can be put in the separable programming form (Section 19.2.1) by using
the substitution
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Thus, the original constraint is equivalent to

n

LE{aij}Xj + Ka;Yi <: bi
j=l

and
n

Lvar{aij}xy - Y7 = 0
j=l

Case 2. Only bi is nonnal with mean E {bi } and variance var{bi }. The analysis is
similar to that of case 1. Consider the stochastic constraint

As in case 1,

1at
{

b- - E{b-}P I I

Vvar{bi }

This can hold only if
n

~ a·x- - E{b}LJ LJ J L
j=l
-'-------;===-- <: K a

Vvar{bi } ,
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Thus, the stochastic constraint is equivalent to the deterministic linear constraint

n

22aijXj :5 E{bJ + KajVvar{biJ
j=1

Case 3. In this case all aij and bi are normal random variables. Consider the constraint

n

~aijXj :5 bi
j=1

This may be written
n

'" a··x· - b· <: 0LJ IJ J I -
;=1

Because all ajj and bi are normal, ~;=lajjxj - bi is also normal.This shows that the
chance constraint reduces to the situation in case 1 and is treated in a similar manner.

Example 19.2-4

Consider the chance-constrained problem

Maximize z = 5Xl + 6xz + 3X3

subject to

P{aUXl + a12x2 + a13x3 ~ 8} ~ .95

P{5Xl + X2 + 6X3 ~ bz} 2: .10

Assume that the parameters a1;, j = 1,2,3, are independent and normally distributed random
variables with the following means and variances:

E{all} = 1, E{ad = 3, E{a13} = 9

var{all} = 25,var{a12} = 16,var{a13} =4

The parameter bz is normally distributed with mean 7 and variance 9.
From standard normal tables in Appendix B (or excelStatTables.xls),

For the first constraint, the equivalent deterministic constraint is

Xl + 3x2 + 9X3 + 1.645\125xY + 16x~ + 4xj :5 8

and for the second constraint

5Xl + Xz + 6X3 :5 7 + 1.285(3) = 10.855

:'.;
.,
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The resulting problem can be solved as a nonlinear program using AMPL or Solver, or it can be
converted to a separable program as follows:

y2 = 25xf + 16x~ + 4x~

The problem becomes

Maximize z = 5x] + 6X2 + 3X3

subject to

Xl + 3x2 + 9X3 + 1.645y ::; 8

25xy + 16x~ + 4xj - l = 0

5Xl + X2 + 6X3 ::; 10.855

which can be solved by separable programming.

Solver Moment

Excel optimum solution of the nonlinear problem of Example 19.2-4 is given in Figure 19.7
(file exceICCP.xls). Only the left-hand side of constraint 2 is nonlinear, and it is entered in
cell F7 as

PROBLEM SET 19.2C

*1. Convert the foHowing stochastic problem into an equivalent deterministic model.

Maximize z = XI + 2X2 + 5X3

subject to

P{ajXt + 3x2 + a3x3 ::; lO} ;::: 0.9

P{7XI + 5X2 + X3 $; b2} ;::: 0.1

Assume that al and a3 are independent and normally distributed random variables with
means E{ad = 2 and E{a3} = 5 and variances var{ad = 9 and var{a3} = 16, and that
b2 is normally distributed with mean 15 and variance 25.

2. Consider the following stochastic programming model:

M . . 2
aXlmlze Z = Xl + X2 + X3

subject to
p{Xr + a2X~ + a3"VX; ::; 10} ;::: 0.9
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19.2.5 Linear Combinations Method

8
o

Limits

10.855

. 1.645
3

x3x2

1

x1

>=0

i)";\: Constraint 2

::'5';~;: Ob'ective
;:~:;: Constraint 1

;.J';

:i4:·:

:;1g~

;:;tti

;'(~()' Out ut results:

U~i;; Constraint 3

The parameters 02 and a3 are independent and normally distributed random variables
with means 5 and 2, and variance 16 and 25, respectively. Convert the problem into a (de
terministic) separable programming form.

AX < b,X ~ 0

The procedure is based on the steepest-ascent (gradient) method (Section 19.1.2).
However, the direction specified by the gradient vector may not yield a feasible solu
tion for the constrained problem. Also, the gradient vector will not necessarily be null

This method deals with the following problem in which all constraints are linear:

Maximize z = f(X)

FIGURE 19.7

Solver solution of the chance-constrained program of Example 19.2-4 (file excelCCP.xls)

subject to
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at the optimum (constrained) point. The steepest ascent method thus must be modified
to handle the constrained case.

Let X k be the feasible trial point at iteration k. The objective function f(X) can be
expanded in the neighborhood of X k using Taylor's series. This gives

The procedure calls for determining a feasible point X = X* such thatf(X) is maximized
subject to the (linear) constraints of the problem. Because f(X k) - Vf(Xk)X k is a con
stant, the problem for determining X* reduces to solving the following linear program:

subject to

AX <: b,X:;:::: 0

Given that Wk is constructed from the gradient of f(X) at X b an improved solu
tion point can be secured if and only if Wk(X*) > Wk(Xk), From Taylor's expansion,
the condition does not guarantee that f(X*) > f(X k ) unless X* is in the neighborhood
ofXk. However, given Wk(X*) > Wk(X k), there must exist a point Xk+l on the line seg
ment (Xk, X*) such that f(Xk+d > f(X k). The objective is to determine X k+1. Define

X k +1 = (1 - r)Xk + rX* = X k + r(X* - Xk),O < r :5 1

This means that Xk+l is a linear combination of X k and X*. Because X k and X* are
two feasible points in a convex solution space, X k +1 is also feasible. In terms of the
steepest-ascent method (Section 19.1.2), the parameter r represents step size.

The point Xk+l is determined such that f(X) is maximized. Because Xk+l is a
function of r only, X k + 1 is determined by maximizing

The procedure is repeated until, at the kth iteration, Wk(X*) :5 wk(Xd. At this
point, no further improvements are possible, and the process terminates with X k as the
best solution point.

The linear programming problems generated at the successive iterations differ
only in the coefficients of the objective function. Post-optimal analysis procedures pre
sented in Section 4.5 thus may be used to carry out calculations efficiently.

Example 19.2-5

Consider the quadratic programming of Example 19.2-3.

Maximize f(X) = 4xl + 6X2 - 2xr - 2X1X2 - 2x~

subject to
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Let the initial trial point be Xo = G, ~), which is feasible. Now

Iteration 1

Vf(Xo) :=: (1,3)

The associated linear program maximizes WI = Xl + 3X2 subject to the constraints of
the original problem. This gives the optimal solution x* = (0, 1). The values of Wl at Xoand X*
equal 2 and 3, respectively. Hence, a new trial point is determined as

Xl = (4, U+ r[ (0,1) - G, D] = C~ r, 1 ~ r)

The maximization of

h(r) :=: fe ~ r, I ~ r)

yields rl :=: 1. Thus Xl :=: (0,1) with f(X I ) = 4.

Iteration 2

The objective function of the new linear programming problem is~ = 2Xl + 2X2' The opti
mum solution to this problem yields X* = (2,0). Because the values of Wz at XI and X* are 2
and 4, a new trial point must be determined. Thus

X 2 = (0,1) + r(2, 0) - (0,1)] = (2r,1 - r)

The maximization of

her) = f(2r, 1 - r)

yields r2 = i. Thus X2 = G,~) with f(X 2 ) ~ 4.16.

Iteration 3

The corresponding objective function is 'W3 = XI + 2x2' The optimum solution of this problem
yields the alternative solutions X* = (0, 1) and x* :=: (2,0). The value of W3 for both points
equals its value at X2. Consequently, no further improvements are

possible. The approximate optimum solution is X2 = n,~) with f(X 2 ) ~ 4.16. This happens to
be the exact optimum.

PROBLEM SET 19.2D

1. Solve the following problem by the linear combinations method.

Minimize f(X) = XI + x~ - 3X1X2

. ~

-i,

19.



n

~.;

1
ij

19.2 Constrained Algorithms 721

subject to

19.2.6 SUMT Algorithm

In this section, a more general gradient method is presented. It is assumed that the ob
jective function f(X) is concave and each constraint function gi(X) is convex. More
over, the solution space must have an interior. This rules out both implicit and explicit
use of equality constraints.

The SUMT (Sequential Unconstrained Maximization Technique) algorithm is
based on transforming the constrained problem into an equivalent unconstrained prob
lem. The procedure is more or less similar to the Lagrange multipliers method. The trans
formed problem can then be solved using the steepest-ascent method (Section 19.1.2).

To clarify the concept, consider the new function

(

Tn 1 n 1)
p(X,t) = f(X) + t ? -(X) - ?-:

1=1 gl J=1 XJ

where t is a nonnegative parameter. The second summation sign accounts for the non
negativity constraints, which must be put in the form - Xj ~ 0 to be consistent with the

original constraints. Because gi(X) is convex, g}X) is concave. This means that p(X,t) is
concave in X. Consequently,p(X,t) possesses a unique maximum. Optimization of the
original constrained problem is equivalent to optimization of p(X,t).

The algorithm is initiated by arbitrarily selecting an initial nonnegative value for
t. An initial point Xois selected as the first trial solution. This point must be an interior
point-that is, it must not lie on the boundaries of the solution space. Given the value
of t, the steepest-ascent method is used to determine the corresponding optimal solu
tion (maximum) of p(X,t).

The new solution point will always be an interior point, because if the solution
point is close to the boundaries, at least one of the functions g;(~) or -~ will acquire a
very large negative value. Because the objective is to maximize p(X,t), such solution
points are automatically excluded. The main result is that successive solution points
will always be interior points. Consequently, the problem can always be treated as an
unconstrained case.

Once the optimum solution corresponding to a given value of t is obtained, a new
value of tis generated and the optimization process (using the steepest-ascent method)
is repeated. If t' is the current value of t, the next value, til, must be selected such that
0< ttl < t'.

The SUMT algorithm ends when, for two successive values of t, the correspond
ing optimum values of X obtained by maximizing p(X,t) are approximately the same.
At this point further trials will produce little improvement.

Actual implementation of SUMT involves more details than have been presented
here. Specifically, the selection of an initial value of t is an important factor that can affect



the speed of convergence. Further, the determination of an initial interior point may re
quire special techniques. These details can be found in Fiacco and McCormick (1968).
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APPENDIX A

AMPL Modeling Language1

723

RUDIMENTARY AMPL MODEL

lFolder AppenAFiles on the CD includes all the files for this appendix.

FIGURE A.l

Rudimentary AMPL model (file RM1.txt)

var xl >=0;
var x2 >=0;
maximize z: 5*xl+4*x2;
subject to

cl; 6*xl+4*x2<=24;
c2: xl+2*x2<=6;
c3: -xl+x2<=1;
c4; x2<=2;

solve;
display z,xl,x2;

ampl: model RMI.txt;

AMPL provides a facility for modeling mathematical programs (linear, integer, and non
linear) in a long hand fonnat. Figure A.1 gives the (self-explanatory) LP code for the
Reddy Mikks model (file RM1.txt). All reserved words, other than the special opera
tors (+ - *, ; : > < =) are in bold. The remaining symbols are generated by the user.

AMPL uses command lines and operates in a DOS environment. A recent beta
version of a Windows interface can be found in www.OptiRisk-Systems.com.

You can execute a model by clicking on ampl.exe in the AMPL folder and, at the
amp) prompt, typing the following command followed by Return:

This appendix presents the principal syntactic rules of AMPL needed for the devel
opment and solution of complex mathematical programming models. For additional
details, you may consult the basic language reference given at the end of this appendix
(Fourer and Associates, 2003). You may also consult the Web site www.ampl.com for
additional resources as well as the latest news and updates.
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A.2

The output will be displayed on the screen as2

MINOS 5.5: Optimal solution found.
2 iterations
z = 21
xl 3
x2 = 1. 5

The rudimentary long hand format given here is not recommended for solving
practical problems because it is problem-specific. The remainder of this appendix pro
vides the details of how AMPL is used in practice.

COMPONENTS OF AMPl MODEL

Figure A.2 specifies the general structure of an AMPL model. The model is comprised
of two basic segments: The top segment (elements 1 through 4) is the algebraic repre
sentation of the model, and the bottom segment (elements 5 through 7) supplies the
data that drive the algebraic model. Thus, in LP, the algebraic representation in AMPL
exactly parallels the following mathematical model:

n

Maximize z = ~:CjXj
j=l

subject to
n

L aijXj .:=:; bi, i = 1,2, ... , m
j=l

FIGURE A.2

Basic structure of an AMPL model

Algebraic representation 1. Sets definitions.

2. Parameters definitions.

3. Variables definitions.

4. Model representation (objective and constraints)

Model implementation 5. Input data.

6. Solution of the model.

7. Output results.

2Every version of AMPL has a default solver that carries out the computations needed to optimize the
AMPL model. In the student version, MINOS is the default solver and it can handle linear and nonlinear
problems. The CD includes other solvers: CPLEX, KNITRO, LPSOLVE, and LOQO. CPLEX handles lin
ear, integer, and quadratic problems. LPSOLVE handles linear and integer problems. KNITRO and LOQO
handle linear and nonlinear problems.
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A.2 Components of AMPL Model 725

The advantage of this arrangement is that the same algebraic model can be used to
solve an LP problem of any size simply by changing the input data: m, n, Cj, aij, and bi 

A number of syntax rules apply to the development of an AMPL model:

1. AMPL files must be plain text (Windows Notepad editor creates plain text).
2. Commented text may appear anywhere in the model preceded with #.

3. Each AMPL statement, comments excluded, must terminate with a semicolon (;).
4. An AMPL statement may occupy more than one line. Breakpoints occur at a prop

er separator, such as a blank space, colon, comma, parenthesis, brace, bracket, or
mathematical operator. An exception to this rule occurs with strings (enclosed in
quotes' , or " ,,) where a breakpoint is designated by adding a backslash (\).

5. All keywords (with few exceptions) are in lower case.
6. User-generated names are case sensitive. A name must be alphanumeric, inter

spersed with underscores, if desired. No other special characters are allowed.

We will use the Reddy Mikks problem of Section 2.1 to show how AMPL works.
Figure A.3 gives the corresponding model (file RM2.txt). For convenience, key (or re
served) words are emphasized in bold.

The algebraic model starts with the sets that define the indices of the general LP
model. The user-generated names resource and paint each preceded by the keyword
set correspond to the sets {i} and {j} in the general LP model. The specific elements
of the sets resource and paint that define the Reddy Mikks model are given in the
input data section of the model.

The parameters are user-generated names preceded by the keyword param that
define the coefficients of the objective function and the constraints as a function of the
variable and constraint sets. The parameters unitprofit{paint} , aij {resource,

paint}, and rhs{resource} correspond, respectively, to the mathematical symbols
Cj, aij, and bi in the general LP model. The subscripts i and j are represented by AMPL
sets resource and paint, respectively. The input data provide specific values of the
parameters.

The variables of the model, Xj' are given the name product preceded by the
keyword var. Again, product is a function of the set paint. We can add the non
negativity condition (>=0) in the same statement. Else, the default is that the variables
are unrestricted in sign.

Having defined the sets, parameters, and variables of the model, the next step is
to express the optimization problem in terms of these elements. The objective-function
statement specifies the sense of optimization using the keyword maximize or minimize.

The objective value z is given the user name profit followed by a colon (:) and its
AMPL statement is a direct translation of the mathematical expression LCjx/

j

sum{j in paint} unitprofit[j]*product[j];

The index j is user specified. Note the use of braces in {j in paint} to indicate that
j is a member of the set paint, and the use of brackets in [jJ to represent a subscript.
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#********************ALGEBRAIC MODEL*******************
#--------------------------------------------------sets
set paint;
set resource;
#--------------------------------------------parameters
param unitprofit(paint};
param rhs {resource};
param aij (resource,paint};
#---------------------------------------------variables
var product(paint} >= 0;
#-------------------------------------------------mode1
MaXLmize profit: sum{j in paint} unitprofit[j]*product[j);
subject to limit{i in resource}:

sum(j in paint} aij[i,j)*product[j) <= rhs[i];
#************************DATA**************************
data;
set paint := exterior interior;
set resource := ml m2 demand market:
param unitprofit :=

exterior 5
interior 4;

param rhs:=
ml 24
m2 6
demand I

market 2;

param aij: exterior interior :=

ml 6 4
m2 1 2
demand -1 I
market 0 I;

#**********************SOLUTION************************
solve;
#----------------------------------------output results
display profit, product, limit.dual, product.rc;

FIGURE A.3

AMPL model for the Reddy Mikks problem (file RM2.txt)

A model may include one or more constraint statements, and each such state
ment can be preceded by the keywords subj ect to or simply s . t. Actually, s . t. and
subject to are optional, and AMPL assumes that any statement that does not start
with a keyword is a constraint. The ReddyMikks model has only one set of constraints
named limit and indexed over the set resource:

limit{i in resource}:

sum{j in paint} aij[i,j}*product[j) <= rhs[i]:

The statement is a direct translation of constraint i, "2:aijXij :::s bi.
j

;)
.~

.~
"!

:.j



'<1
:.J
:j

-:j
,

'~:

:~
·.-i
-)

.-
.,~

,.

-'7

:~
,1
,j

-~
,;
'!

:.j
~:J

.;
.1
"1
"
~

~

"1
"

~

~
.]
j
'I
:i

i
'I

i;':
~
~
:j

j
:~
':1
,;1

;i
i
Ii
j

1

~
~
d
'I
1
,]
'I
~

~- 1

cd
:~
J
;1-,

rt ~
ts 'I

:1
..'
J
~
1
3
],

A.2 Components of AMPl Model 727

The idea of declaring variables as nonnegative can be generalized to allow estab
lishing upper and lower bounds on the variables, thus eliminating the need to declare
these bounds as explicit constraints. First, the two bounds are declared with the user
generated names lowerbound and upperbound as

param lowerbound{paint};
pararn upperbound{paint};

Next, the variables are defined as

var product{j in paint}>=lowerbound[j],<=upperbound[j];

Notice that the syntax does not allow comparing "vectors". Thus, an error is generated
if we use

var product{paint}>=lowerbound{paint},<=upperbound{paint};

We can use the same syntax to set conditions on parameters as well. For example,
the statement

param upperbound{j in paintJ>=lowerbound[j];

will guarantee that upperbound is never less than lowerbound. Else AMPL will issue
an error. The main purpose of using bounds on parameters is to prevent entering con
flicting data inadvertently. Another instance where such checks may be used is when a
parameter is required to assume nonnegative values only.

The algebraic model in Figure A.3 is general in the sense that it applies to any
number of variables and constraints. It can be tailored to the Reddy Mikks situation by
specifying the data of the problem. Following the statement data; we first define the
members of the sets and then use these definitions to assign numeric values to the dif
ferent parameters.

The set paint includes the names of two variables, which we suggestively call
exterior and interior. Members of the set resource are given the names ml, m2,

demand, and market. The associated statements in the data section are thus given as

set paint ;= exterior interior;
set resource := ml m2 demand market;

Members of each set appear to the right of the reserved operator : =separated by a
blank space (or a comma). String indices must be enclosed in double quotes when
used outside the data segment-that is, paint ["exterior"), paint [n interior"] ,
limi t [ "ml n], limit ["m2 n), 1 imi t [" demandn] , and limit [nmarket n] . Otherwise,
the string index will be incorrectly interpreted as a (numeric) parameter.

We could have defined the sets at the start of the algebraic model (instead of in
the data segment) as

set resource ={"ml","m2","demand","rnarket"};
set paint = {"exterior", "interior"};
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(Note the mandatory use of the double quotes .. II, the separating commas, and the
braces.) This convention is not advisable in general because it is problem specific,
which may limit tailoring the model to different input data scenarios. When this con
vention is used, AMPL will not allow modifying the set members in the data segment.

The use of alphanumeric names for the members of the sets resource and paint

can be cumbersome in large problems. For this reason, AMPL allows the use of purely
numeric sets-that is, we can use

set paint:: 1 2;
set resource:= 1 .. 4;

The range 1 .. 4 replaces the explicit 1 2 3 4 representation and is useful for sets with
a large number of members. For example, 1 .. 1000 is a set with 1000 members starting
with 1 and ending with 1000 in increments of 1.

The range representation can be made more general by first defining m and n as
parameters

param m;
param n;

In this case, the sets 1 ..mand 1 .. n can be used directly throughout the entire model as
shown in Figure A.4 (file RM2a.txt), eliminating altogether the need to use the set
names resource and paint.

FIGURE A.4

AMPL model for the Reddy Mikks problem (file RM2a.txt)

param m;
pararn n;
param unitprofit{l .. n};
pararn rhs {l .. m} ;
param aij (1 .. m, 1 .. n);
#---------------------------------------------variables
var product(l .. n}>= 0;
#-------------------------------------------------mode1
maximize profit:sum(j in 1 .. n}unitprofit[jJ*produet(jj;
subject to 1imit{i in 1 .. m}:

surn{j in 1 .. n)aij(i,jj*produet[jj<=rhs(ij;
data;
pararn m:=4;
param n: =2 ;
pararn unitprofit := 1 5 2 4;
param rhs:= 1 24 2 6 3 1 4 2;
pararn aij: 1 2:=

1 6 4
2 1 2
3 -1 1
4 0 1;

solve;
display profit, product, limit. dual , product.re;

:.~

"
"



h.e
IC,

u-
1t.
rrt

~ly

lth
ng

as

as
set

A.2 Components of AMPl Model 729

Actually, the syntax 1 .. m(or 1 .. n) has the general format

start .. end by step

where start, end, and step are defined AMPL parameters whose values are speci
fied under data. If start < end and step > 0, then members of the set begin with
s tart and advance by the amount step to the highest value less than or equal to
end. The opposite occurs if start > end and step < o. For example, 3 .. 10 by 2

produces the members 3,5, 7, and 9, and 10 . . 3 by -4 produces the members 10,8,
6, and 4. The default for step is 1, which means that start .. end by 1 is the same as
start .. end.

Actually, the parameters start, end, and step can be any legitimate AMPL
mathematical expressions computed during execution. For example, given the parame
ters m and n, the set j in 2 *n .. m+n A 2 by n/2 is perfectly legal. Note, however, that a
fractional step is used directly to create the members of the set. For example, for In =

5, n = 13, the members of the set m.. n step m/2 are 5, 7.5,10, and 12.5.
The Reddy Mikks model includes single- and two-dimensional parameters. The

parameters uni tpro fit and rhs fall in the first category and the parameter ai j in the
second. In the first category, data are specified by listing each set member followed by
a numeric value, as the following statements show:

param unitprofit .
exterior 5
interior 4;

param rhs:=
ml 24
m2 6
demand 1
market 2;

Again, the list is totally free-formatted so long as the logical sequential order is pre
served and the elements are separated by blank spaces.

AMPL allows assigning default values to all the elements of a parameter.

The elements of the list may be "strung" into one line, if desired. The only requirement
is a separation of at least one blank space. The format given here promotes better
readability.

Input data for the two-dimensional parameter aij are prepared similar to that of
the one-dimensional case, except that the order of the columns must be specified after
aij: to eliminate ambiguity, as the following statement shows:

param aij:
ml
m2
demand
market

exterior interior.-
6 4
1 2

-1 1

o 1;
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For example, suppose that for a parameter c, Cl = 11 and Cg = 22 with Ci = a for
i = 2,3, ... ,7. We can use the following statements to specify the data for c:

param c {1 .. 8} ;

data;
param c:=l 11 2 0 3 0 4 0 5 0 6 0 7 0 8 22;

A more compact way of achieving the same result is to use the following statements:

param c{l . . 8} default 0;

data;
param c:=l 11 8 22;

Initially, c [1] through e [8] aSSUITl£ the default value 0, with e [1] and e [8] changed to
11 and 22 in the data segment. In general, default may be followed by any mathe
matical expression. This expression is evaluated only once at the start of the execution.

The final segment of the AMPL model deals with obtaining the solution and the
presentation of the output. The command solve is all that is needed to solve the
model. Once completed, specific output results may be requested. The command
display followed by an output list is but one way to view the results. In the Reddy
Mikks model, the statement

display profit, product, limit.dual, product.re;

requests the optimal values of the objective function and the variables, pro fi t and
product, the dual values of the constraints, 1 imi t . dual, and the reduced costs of the
variables, product. re. The keywords dual and re are suffixed to the names of the
constraints limi t and variables product separated by a period. They may not be used
as stand-alone keywords. The output defaults to the screen. It may be directed to an ex
ternal file by inserting>filename immediately before the semicolon. Section A.5 pro
vides more details about how output is directed to files and spreadsheets.

The execution command in DOS is

ampl: model RM2. txt;

The associated output is displayed on the screen, as the snapshot in Figure A.S shows.
The layout of the output in Figure A.S is a bit "cluttered" because it mixes the in

dices of the constraints and the variables. We can streamline the output by placing its el
ements in groups of the same dimension using the following two display statements:

display profit, product. product.re;
display limit.dual;

In a typical AMPL model, such as the one in Figure A.3, the segment associated
with the logic of the model preferably should remain static.The data and output segments
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MINOS 5.5: optimal solution found.
2 iterations, objective 21

profit 21

nts:

demand
exterior
interior
m1
m2
market

product limit.dual
o

3
1.5

0.75
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o

product.rc
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FIGURE A.5

AMPL output using display profit, product, limit. dual. product .re; in the Reddy Mikks model

are changed as needed to match specific LP scenarios. For this purpose, the AMPL
model is represented by two separate files: RM2b.txt providing the logic of the model
and RM2b.dat accounting for the input data and the output results.3 In this case, the
DOS line commands are entered sequentially as:

ampl: model RM2b. txt;
ampl: data RM2b.dat;

We will see in Section A.7 how commands such as solve and display can be issued in
teractively rather than being hard-coded in the model.

The Reddy Mikks model provides only a "glimpse' of the capabilities of AMPL.
We will show later how input data may be read from external files and spreadsheet ta
bles. We will also show how tailored (formatted) output can be sent to these media.
Also, AMPL interactive commands are important debugging and execution tools, as
will be explained in Sectiton A.7.

PROBLEM SET A.2A

1. Modify the Reddy Mikks AMPL model of Figure A.3 (file RM2.txt)to account for a
third type of paint named "marine." Requirements per ton of raw materials m1 and m2 are
.5 and .75 ton, respectively. The daily demand for the new paint lies between .5 ton and
1.5 tons. The revenue per ton is $3.5 (thousand). No other restrictions apply to this prod
uct.

2. In the ReddyMikks model of Figure A.3 (file RM2.txt), rewrite the AMPL code using the
following set definitions:

(a) paint and {I .. m} .

(b) {l..n} and resource.

(c) (1. .m) and (l. .n).

3Actually, the output command may be processed separately instead of being included in the .dal file, as wiII
be explained in Section A.7



3. Modify the definition of the variables in the Reddy Mikks model of Figure A.3 (file
RM2.txt) to include a minimum demand of 1 ton of exterior paint and maximum de
mands of 2 and 2.5 tons of exterior and interior paints, respectively.

4. In the Reddy Mikks model of Figure A.3, the command
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display profit;

provides the value of the objective function. We can use the same command to display the
contribution of each variable to the total profit as follows:

display profit, {j in paint} unitprofit[j]~product[j];

Another convenient way to accomplish the same result is to use defined variable state
ments as follows:

var extProfit=unitprofit["exterior"]*product["exterior n
]

var intProfit=unitprofit[linterior"]*product[linterior"]

In this case, the objective function and display statements may be written in a less compli
cated form as

max~ize profit: extProfit + intProfit;
display profit, extProfit, intProfit;

In fact, defined variables can be in indexed form as:

var varProfit(j in paint) = unitproEit[j]*product[j];

The resulting objective function and display statement will then read as

maximize profit: sum {j in paint} varProfit[j];
display profit, varProfit;

Use defined variables with the Reddy Mikks model to allow displaying each variable's
prOfit contribution and resource consumption of raw materials ml and m2.

5. Develop and solve an AMPL model for the diet problem of Example 2.2-2 and find the op
timum solution. Determine and interpret the associated dual values and the reduced costs.

MATHEMATICAL EXPRESSIONS AND COMPUTED PARAMETERS

We have seen that AMPL allows placing upper and lower bounds on parameters. Ac
tually, the language affords more flexibility in defining parameters as complex mathe
matical expressions, modified conditionally, if desired.

To illustrate the use of computed parameters, consider the case of a bank offering
n types of loans that charges an interest rate ri for loan i,O < ri < 1, i = 1,2, ... , n.
Unrecoverable bad debt, both principal and interest, for loan i equals Vi of the amount
of loan i. The objective is to determine the amount Xi the bank allocates to loan i to
maximize the total return subject to a set of restrictions.

The use of computed parameters will be demonstrated by concentrating on the
objective function. Algebraically, the objective function is expressed as

n n 11

Maximize z = 2: ri(1 - V;) Xi - 2:ViXi = 2: [ri - Vi(ri + 1)]Xi
i~1 i=1 i=1



:he

te-

)Ii-

.e's

lp
s.

~c

le-

ng
n.

mt
to

he

A.3 Mathematical Expressions and Computed Parameters 733

A direct translation of z into AMPL is the following:

pararn r{l .. n}>O, <1;
param v{1 .. n}>O, <1;
var x{l .. n}>:=O;

maximize z: sum{i in l .. n} (r[i)-v[i)*(r[i)+l))*x[i);

(constraints)

Another way to handle the bank situation is to use a computed parameter to rep
resent the objective function coefficients in the following manner:

param r{l .. n}>O, <1;
param v{l .. n»O, <1;
pararn c{i in 1 .. n}=(r[i)-v[i]*(r[i]+l));
var x{l. .n}>=O;

maximize z: sum{i in 1 .. n}c[i]*x[i];

(constraints)

AMPL will compute the parameter c (i] and use its value in the objective statement z.

The new formulation enhances readability. But in some cases the use of computed pa
rameters may be essential.

In general, the expression defining the value of a computed parameter can be of
any complexity and may include any of the built-in arithmetic functions familiar to any
programming language (e.g., sin, max, log, sqrt, exp).An important requirement
is that the expression evaluate to a numeric value.4

Computed parameters may also be evaluated conditionally using the construct

parameter = if condition then expression1 else expression2;

The condition compares arithmetic quantities and strings using the familiar operators
=, <, >, < =, > =, and < > (together with and/or). Note that nonlinearity will result ifcon
dition is a function of the model variables. As in other programming languages, the construct
may be used without else expression2. Nested if is also allowed following then and else.

The if-then-else construct gives the computed parameters the numeric value
of either expressionl or expression2. This is the reason the if-then-else presented
here is an expression and not a statement. (Section A.7 introduces the if-then-else
statement together with the loop statements for{}, repeat while{}, and repeat
until {). These statements are used mainly for automating solution scenarios and for
matting output.)

We will use a simple case to demonstrate the use of the if expression. In a rnulti
period manufacturing situation, units of a certain item are produced to meet variable
demand. Unit production cost is estimated at p dollars for the first m periods, and in
creases by 10% for the next m periods and by 20% for the following m periods.

4AMPL manual provides an "exception" when a parameter is declared binary, in which case it can also be
treated as logical. This distinction is artificial, because treating such a parameter as numeric still produces the
same result.
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The constraints of this model deal with capacity restrictions for each period and the
balance equations that relate inventory, production, and demand. To demonstrate the
use of the if expression, we will concentrate on the objective function. Let

Xj = units produced in period j, j = 1,2, ... , 3m

The objective function is given as
Minimize

z = P(X1 + X2 + ... + x m ) + 1.1p(xm +1 + X m +2 + ... + X2m)

+ 1.2P(X2m+1 + X2m+2 + ... + X3m)

We can model this function in AMPL as

param p;
var x{l .. 3*m}>=O;

minimize cost: p*(sum{j in 1 .. m}x[j]+l.l*surn{j in m+1 .. 2*m)x[j]+
1.2*sum{j in 2*m+1 .. 3*m}x[j]);

(constraints)

A more compact way that also enhances readability is to use if-then-else to
represent the objective-function parameter c [j ] :

param m;
param n=3*m;
param p;
param c{j in 1 .. n}= if j<=m then p else

(if j>m and j<=2*m then 1.1*p else 1.2*p);

var x{j in l .. n};

minimize z: sum{j in 1 .. n}c[j]*x[j];

(constraints)

Note the nesting of the conditions. The parentheses 0 enclosing the second if are not
necessary and are used to enhance readability. Observe that then and else are always
followed by what must evaluate to numeric values. Note also that c can be defined as

param c{j in 1 .. n}=p*( if j<=m then 1 else
(if j>m and j<=2*m then 1.1 else 1.2));

A particularly useful implementation of if-then-else occurs in the situation
where parameters or variables are defined recursively. A typical example of such a pa
rameter occurs in determining the inventory level It in period t, t = 1,2, ... , n, with
initial zero inventory. The production amount and demand in period t are PI and dr, re
spectively. 111US, the inventory level is

10 = 0

It = It- 1 + Pt - dr, t = 1,2, ... , n
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The amount It can be computed recursively in AMPL as follows:

param p{l .. n};
param d{l .. n};
var I{t in l .. n}: if i=l then 0 else I[t-l]l+p[t}-d[t];

Notice that it would be somewhat cumbersome to compute I, were it not for the use of
the if-then-else expression (see also Set A.3a).

PROBLEM SET A.3A

*1. Consider the following set of constraints:

Xj + Xj+\ ;::: Cj, i = 1,2, .. " n - 1

Use if-then-else to develop a single set of constraints that represents all n inequalities.
2. In a muItiperiod production-inventory problem, let Xl> Z/, and d( be, respectively, the

amount of entering inventory, production quantity, and demand for period
t, t = 1,2, ... , T. The balance equation associated with period t is Xl + Ze -

d, - X'+l = O. In a specific situation, XI = C (>0) and XT+l = O. Write the AMPL con
straints corresponding to the balance equations using if-then-else to account for
Xl = candxT+1 = O.

SUBSETS AND INDEXED SETS

Subsets. Suppose that we have the following constraint:

There are 7 variables in the model, and this particular constraint does not include the
variables X3 and X4'

We can model this constraint by using subsets in a number of ways (all new key
words are in bold):

#---------------------- method 1 ----------------------------------
var x{l.. 7}>=O;
subject to lim: sum{j in 1 .. 7: j<=2 or j>=5}x[j]<~15;

#---------------------- method 2 ----------------------------------
var xC! .. 7}>=O;
subject to lim: sum{j in 1 .. 2 union 5 .. 7}x[j]<=15;

#---------------------- method 3 ----------------------------------
var x{l. .7}>=O;
subject to lim: sum{j in 1 .. 7 diff 3 .. 4}x[j]]<=15;

#---------------------- method 4 ----------------------------------
var x{l.. 7}>=O;
subject to lim: sum{j in 1 .. 7 diff (1 .. 4 inter 3 .. 7)}x[jl]<=15;

#------------------------------------------------------------------
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In method 1, the set {j in 1 .. 71 deletes the elements 3 and 4 by imposing re
strictions on j. A colon separates the modified set from the condition(s). Keywords
union, diff.. and inter play the roles of AU B, A - B, and An B, respectively.
Method 4 is a convoluted set representation. Nevertheless, it serves to represent the
use of the operator inter.

Indexed sets. A powerful feature of AMPL allows indexing sets over the elements of a
regular set. Suppose that two components A and B are used to produce products 1,2,3,
4, and 5. Component A is used in products 1,3, and 5, and component B is used in prod
ucts 1, 2, 4, and 5. Each product requires one unit of the specified components. The
maximum availabilities of components A and Bare 200 and 300 units, respectively. The
problem deals with determining the number of assembly units of each product. Other
pertinent data will be needed to complete the description of the problem, but we will
concentrate only on the constraints dealing with the components availability.

Let Xi be the production quantity of product i, i = 1, 2, ... ,5. Then the con
straints for components A and B can be expressed mathematically as

Component A: Xl + X3 + Xs :s; 200

Component B: Xl + X2 + X4 + Xs :s; 300

The AMPL representation of the constraints can be achieved using indexed sets as
follows:

set comp;
set prod{comp);
param d{comp};
var x{l .. 5}>=O;

#-----objective function here
subject to

C{i in comp}:surn{j in prod[i]}x[j]]<=d[i];
#-----other constraints here
data;
set comp:= A B;
set prod[A):=1 3 5;
set prod[B) :=1 2 4 5;
param d:= A 200 B 300;

The indices of set prod are the elements A and B of set camp. thus defining the
two indexed sets prod [AJ and prod [BJ . Next, the data of the problem define the ele
ments of prod {A] and prod [B] . With these data, the constraints of the components
(regardless of how many there are) are defined by the single statement:

C{i in comp}:sum(j in prod[i]}x(j]]<=d[i];

The applications of indexed sets are demonstrated aptly in the AMPL moments fol
lowing Examples 6.5-4 and 9.1-2.
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read item-list <filename;

PROBLEM SET A.4A
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A.S ACCESSING EXTERNAL FILES

500
400
900
700
100

Minimum availabilityProducts that use the component

1,2,5,10
3,6,7,8,9
1,2,3,5,6,7,9
2,4,6,8,10
1,34,5,6,7,9,10

1
2
3
4
5

Component

*2. Suppose that 5 components (one unit per product unit) are used in the production of 10
products according to the following schedule:

The unit assembly cost of each product is a function of the component used: $9, $4, $6, $5, and
$8 for components 1 through 5, respectively. The maximum demand for any of the products is
300 units. Use AMPL indexed sets to determine the optimal product mix that minimizes the
installation cost. (Hint: Let xii be the number of units of product i that use component j.)

3. Repeat Problem 2 assuming that the unit installation cost of the components is a function
of the assembled product: $1, $3, $2, $6, $4, $9, $2, $5, $10, and $7 for products 1 through
10, respectively.

1. Use subsets to express the left-hand side by means of a single sum () function:
m n q

(a) LXj + L Xj + L Xj ? C
i=1 j=m+k j=II+p

II 2'I+k

(b) 2>i + L Xi :5 C, k > 1
i=m i=n+k

More details can be found in Fourer and Associates, 2003, Chapter 10.

1. External files, including screen and keyboard.
2. Spreadsheets.

So far, we have used "hard-coded" data to drive AMPL models. Actually, AMPL data
may be accessed from external files, spreadsheets, and/or databases. The same is true for
retrieving output results. This section deals with reading data from or writing output to

The item-list is a comma-separated list of nonindexed or indexed parameters. [n the in
dexed case, the syntax is {indexing} paramName[index]. The list can include parameters
only. This means that any set members must be accounted for under data prior to invoking
the read statement. (We will see in Sections A.5.3 and A.5A how set members are read
from formatted files and spreadsheets.)

A.5.1 Simple Read Files

The statement for reading data from an unformatted external file is
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*2. For the Reddy Mikks model, explain why the following read statement is cumbersome:

File RM3.dat lists the data in the exact order in which the items appear in the
read list-that is,

read {j in paint)unitprofit(j],
{i in resource)rhs(i],
{i in resource. j in paint}aij[i,j)<RM3.dat;
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4
6
4
2
1

1

5
24

6
1
-1

o

read (i in resource)
(

rhs [i] ,

{j in paint} (unitprofit[jl,aij[i,j])
) <RM3xx.dat;

1. Prepare the input file RM3x.dat for the Reddy Mikks model (file RM3.txt), assuming the
that the read statement is given as

read {j in paint}
{i in resource)
(

rhs til,
(j in paint}aij[i,j]
) <RM3x.datj

To illustrate the use of read, consider the Reddy Mikks model where all the data
for the parameters unitpro fit, rhs, and a i j are read from a file named RM3.dat
per the model in file RM3.txt. The associated read statement is:

5Hidden codes in . dat files (and in . tab files which will be presented later in this section) can trigger
AMPL errors such as "too few elements in line xx" or "unexpected end of file" (xx stands for a numeric
value) even though the text file may appear perfectly legal. To get rid of these hidden codes, click immedi
ately to the right of the last data element in the file, then press the following keys in succession: Return,
Backspace, and Return.

TIle multiple-row organization of the data enhances readability, in the sense that we
could have had all the elements on one line (separated by blank spaces).5 Note that
this file happens to be all numeric. For convenience, nonnumeric data (such as parame
ter names) can appear in the data file provided that they are declared symbolic (for
details, see Sections 7.8 and 9.5 in Fourer and Associates, 2003).

The read statement allows accessing data from the keyboard. In this case, the
filenam,e is replaced with a minus sign-that is, using <-. The execution of read in this
case will produce the DOS prompt amp1 ?, and will be repeated until all the data re
quested by read have been accounted for.

738 Appendix A
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a
It

A.5.2 Using Print or Printf to Retrieve Output

A simple way to retrieve output data in AMPL is to use pre-formatted print or for
matted printf . As an illustration, in the Reddy Mikks model we can use the following
statements to send output data to a file we name file. out (output defaults to the
screen if a file is not designated):

te

printf "Objective value is %6.2f\n",profit >file.out;
printf (j in paint};

"%8s%8.2f%8.3f\n",j,product[j],product[j] .rc >file.out;

PROBLEM SET A.5B

Constraint Slack amount Dual price

Profit ($)QuantityProduct

Objective value =

1. Use printf statements to present the optimal solution of the Reddy Mikks model (file
RM2.txt) in the following format where the suffixes. slack and. dual are used to re
trieve slack amount and the dual price:

The output format always precedes the output list and must be enclosed in double
quotes. The same statement can be used with print simply by removing the format code.

In the first printf statement, the format includes the optional descriptive text
Obj ective value is and mandatory specifications of how the output list is printed.
The code %6. 2f says that the value of profit is printed in a field of length 6 with two
decimal points. The code \n moves printing to the next line in the file. These format
codes are the same as in C programming.

In the second print statement, the output list includes j I product [j }, prod
uct [j ] . rc, where j is one of the members (exterior, interior) in the AMPL set
paint. The code %8s reserves the first eight fields for printing the name exterior or
interior. If j were numeric (e.g., {j in 1 .. 2}), then the format specification would
have to be integer; e.g., %3i.

The format specifications in this section are limited to %s, %i, %f, and \n.AMPL
provides other specifications (see Table A-lO in Fourer and Associates, 2003).

The read statement in Section A.5.l does not allow reading set members. This situa
tion is accounted for using table statements.

In table files, the data are presented as tables with properly-labeled rows and
columns using the members of the defining sets. Access to table files requires a com
panion read statement.The table statement formats the data, and the read statement
makes the data available to the model.

A.5.3 Input Table Files
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The syntax of table and read statements is as follows:

table tableName IN "fileName": SetNamc<- [SetCoIHdngl. parameters-ParamColHdng;
read table tableName;

This syntax allows reading both the members of AMPL sets and the parameters from
tabLeName in fiLeName.

The default fileName where the text table is stored is tableName . tab. It may be
overridden by explicitly specifying fileName (in double quotes) with mandatory. tab

extension following the keyword IN. IN (in caps) means INput (as contrasted with OUT

which, as shown later, is used to OUTput data to a table file). SetColHdng may be an
arbitrary heading name in the table which is cross-referenced to the elements of
SetName using <-. Similarly, AMPL parameters are cross-referenced to the arbitrary
names ParamColHdng using "'. If SetColHdng happens to be the same as SetName, the
syntax SetName<-[SetCoLHdng] may be replaced with [SetName] IN. In the case of pa
rameters, ~ParamColHdng is deleted from the statement.

To illustrate the use of tables, Figure A.6 gives the contents of the files named
RM4profit.tab, RM4rhs. tab, and RM4aij. tab for inputting the parameters uni tprofit.

rhs I and aij of the Reddy Mikks model. The first line in each file must always follow
the format

The first element, ampl. tab I identifies the table as a . tab file, with the succeeding two
elements providing the number of indexing sets of the parameters that will be read
from the table. In RMprof it. tab and RMrhs . tab. only one set is needed to define the

Contents of the table files for inputting the parameters
uni tprofit I rhs I and aij of the Reddy Mikks model

FIGURE A.6

COL2
5
4

exterior
interior

File RM4profit.tab:
ampl.tab I I
COLI

File RM4rhs.tab:
arnpl.tab I 1
resource rhs
ml 24

m2 6
demand 1
market 2

File RM4aij.tab:
ampl.tab 2 1
resource paint aij
ml exterior 6
ml interior 4
m2 exterior 1
m2 interior 2
demand exterior -1
demand interior 1
market exterior 0
market interior 1
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parameters uni tprofi t and rhs, and for this reason ampl. tab 1 1 is used as the
header line in these two files. For the parameter ai j, two sets are needed, which re
quires the use of the header line arnpl . tab 2 1.

The header line is followed by a list of the exact or substitute names of the sets
and the parameters. TIle succeeding rows in the respective file list the values of the
input parameter as an explicit function of its indexing set(s) using blank space(s) as
separators. For uni tpro fi t and rhs, the listing is straightforward. For the double
indexed parameter aij, each parameter list is identified by two explicit indices, even
at the expense of redundancy.

For the ReddyMikks model, the associated tables are defined as follows:

table RM4profit IN: paint <- [COLI], unitprofit-COL2;
table RM4rhs IN: [resource] IN, rhs;
table RM4aij IN: [resource,paint], aij;

Following the declaration of the table statements, we can use the following statements
to read in the data:

read table RMprofit;
read table RMrhs;
read table RMaij;

For readability, it is recommended that the table declaration statements follow the con
straints segment. The read statements are then placed immediately below the table de
clarations (see file RM4.txt).

The table statements above illustrate four syntactic rules:

1. In all three tables, the default file name is the table name with . tab extension
(else a file name enclosed in II" must be given immediately before the colon).

2. In the profit statement, the syntax paint<- [COLI] tells AMPL that the entries
in the COLI-column in file RM4pro fit. tab define the members of the set paint .

3. In the pro fi t statement, the syntax uni tpro fi t -COL2 cross-references the en
tries in COL2 with the parameter uni tprof it.

4. In the rhs statement, [resource] IN automatically defines the members of the set
resource because the name resource is used as a column heading in the table.

5. In the aij statement, aij has (at least) two dimensions, hence the statement
cannot be used to read the members of the associated sets. Instead, these sets
must be read from the single-dimensional tables RM4profit and RM4rhs. Thus,
[resource, paint] in the aij statement are used only to define the indices of
the parameter ai j. In general, if a model has no indexed parameters, a table can
be declared for the sale purpose of reading in the members of a set from a file. In
this case, the header line in the . tab file must read ampl. tab 1 0, indicating
that the file includes one column for the set members and no parameters. For ex
ample, the following statement declares the table for reading the elements of the
set paint from file paintSet. tab:

table paintSet IN: [paint] IN;
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In this case, the contents of paintSet . tab will be

ampl.tab 1 0
paint
exterior
interior

In some cases it may be convenient to read the data of a two-dimensional pa
rameter as an array in place of two indexed single elements, as given above for
aij. AMPL allows this by changing the definition of the table to:

table RM4arrayAij IN: [i-resource),{j in paint}<aij[i,j]-(j»;

(The new table definition is somewhat "overcoded" in the sense that - (j )

appears redundant. Nevertheless, it gets the job done.) In this case the file
RM4arrayAij.tab must appear as

ampl.tab 1 2
resource exterior interior
ml 6 4

m2 1 2
demand -1 1
market 0 1

Note that the header ampl. tab 1 2 indicates that table RM4arrayAij has
one key index (namely, [i-resource]) and two data columns with the headings
exterior and interior. The new table, RM4arrayAij, does not permit reading
the members of the sets resource and paint, the same restriction table RM4aij
has. (See file RM4.txt.)

A.5.4 Output Table Files

Table files may also receive output from AMPL after the solve command has been ex
ecuted. The syntax is similar to that of the input files, except that in the table declara
tion, IN is replaced with OUT. For example, in the Reddy Mikks model, suppose that we
are interested in retrieving the following information:

1. Values of the variables and their reduced costs.
2. Slack and dual values associated with the constraints.

This information requires the use of two tables because the two item are functions of
distinct sets: paint and resource:

table varData OUT: [paintl,product,product.rc;
table conData OUT:

[resource],1imit.slack-slack,limit.dual-Dual;

The OUT-table declaration statements should be placed after the constraints segment
to ensure that names of variables and constraints used in these statements have al
ready been defined (see file RM4.txt). The syntax limit. slack-slack and

i
j

1
1
j
j
!
J
1

1
'1

.~
1
j
j

~
~

1

l
'

. - . _..



a
Jf

i)
Ie

as
gs

x
a
ve

of

nt
ll
Id
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limit. dual-Dual assigns the descriptive header names slack and Dual to the
columns where the corresponding data are written in the file. Otherwise, the default
header names will be limit. slack and limit. dual.

To retrieve the output, we need to issue the command solve and then follow it
with the following wri te statements:

write table varData;

write table conData;

The output will be sent to files varData. tab and conData. tab, respectively. As with
the input case, we can override the default file name by entering (in double quotes) a
specific name (with. tab extension) following the keyword OUT and immediately be
fore the colon.

Output tables can also be used to send two-dimensional arrays to a file. For ex
ample, either one of the following two definitions can be used to send the array ai j to
a . tab file:

table AijMatrix OUT: [resource, paint] , aij;

table Aijout OUT:{i in resource}-> {RESOURCES] , {j in paint}<aij[i,j]-(j»;

In the first definition, file AijMatrix.tab lists each element of aij with its two indices
on the same row. In the second, file Aijout.tab lists aij in an array format, with the
user-specified name RESOURCES being the heading of the first (key) column.

PROBLEM SET A.5C

*1. In RM4.txt, suppose the statements

read table RM4profit;
read table RM4rhs;
read table RM4aij;

are replaced with

read table RM4aij;
data;
pararn unitprofit:= exterior 5 interior 4;
pararn rhs:=ml 24 m2 6 demand 1 market 2;

Explain why AMPL will not execute properly with the proposed change. (Hin t: The best
way to find out the answer is to experiment with the modeL)

2. Suppose that the contents of file RM4rhs.tab read as

ampl.tab 1 1
constrName Availability
ml 24
m2 6
demand 1
market 2

Make the necessary changes in RM4.txt and execute the model.
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A.5.5 Spreadsheet Input/Output Tables

Accessing data from and sending data to a spreadsheet uses a syntax similar to that of the
table files presented in Section A.5.4. The following statements show how the input data of
the Reddy Mikks model can be accessed from an Excel spreadsheet file named RM5.xls:

table profitVector IN "OOBC" "RM5.xls":paint<-[COLl), unitprofit-COL2;
table rhsVector IN "OOBC" "RM5.xls": [resource] IN,rhs;
table aijMatrix IN "OOBC" "RM5.xls": [resource, paint] , aij;

The user-generated names profi tVector, rhsVector, and aijMatrix are those of the
tables within the spreadsheet RM5.xls. These names define the ranges in the spreadsheet
that correspond to the respective data tables.6 nODBcn is the standard data-handling inter
face for the spreadsheet. A read table then inputs the data to the model (see file
RM5.txt). Note the use of COLl and COL2 in table profitVector, which cOlTespond to
the (arbitrary) column names in the spreadsheet.The syntax is the same as in input tables
(Section AS3). Each data table of the model may be stored in a separate sheet, if desired.

As in Section A.5.3, two-dimensional data can be read in an array format using
the following table definition:

table aijArray IN nOOBC" "RM5.xls": [i-resource), {j in paint}<aij[i,j)-(j»;

A.6

In this case, the array aij appears in the range aijArray of RM5.xls and must include
the proper row and column headings. It is also important to remember that numeric col
umn headings when used in the table must be converted to strings by using Excel TEXT

function, else AMPL will issue some undecipherable error messages.
The same table declaration can be used to export output data to a spreadsheet.

The only difference is to replace IN with OUT, exactly as in the case of table files. In this
case, a write table command (following the solve command) will send the output to
the spreadsheet. The following examples demonstrate the use of OUT tables:

table variables OUT "ODBC" "RM5a.xls";
[paint),product-solution,product.rc-reducedCost;

table constraints OUT "OOBC" "RM5a.xls n ;
(resource),limit.slack-slack,limit.dual-dual;

The output tables variables and constraints will go to Excel file RMSa.xls follow
ing the execution of the wri te table command, each appearing automatically in the
northwest corner of a separate sheet.

INTERAalVE COMMANDS

AMPL allows the user to solve the model interactively and to check/modify data and
retrieve output to the screen or to a file. The following is a partial list of a number of
useful commands:

delete comma-separated names ofobjective function and constraints;

drop comma-separated names ofobjective function and constraints;

ITo name a range, highlight it and type its name in the "name box" to the left of the Excel formula bar then
click Enter, or use Excel's InsertlNames/Define.
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A.6 Interactive Commands 745

res tore comma-separated names ofobjective function and constraints;
display comma-separated item_list;

print/printf unformatted/formatted item_list;

expand comma-separated names ofobjective function and constraints;
let parameter or variable (indexed or nonindexed) : =value;

fix variable (indexed or nonindexed) : =value;
unfix variable (indexed or noindexed);

reset;

reset data;

solve;

Such commands are entered interactively at the ampl: prompt. Some, such as display

and print I may appropriately be hard-coded in the model, if desired.
The delete command completely removes the listed objective function and/or

constraints, whereas drop temporarily yanks them out of the model. The drop com
mand may be annulled by the restore command. A new objective function or con
straint may be added to the model by entering it from the keyboard, exactly as we do
in a hard-coded model. (See Example 9.2-1 for an application to the B&B algorithm.)

We have used display with the Reddy Mikks model. The output may be direct
ed to an external file using >filename immediately before the terminating semicolon.
Else, the output defaults to the screen.

The print/printf command has been discussed earlier in Section A.5.2. The
output defaults to the screen or it may be directed to an output file as in display.

The expand command provides a long hand representation of the objective func- .
tion and the constraints. For example, in the Reddy Mikks model, the command

expand profit;

prints out the objective function as

maximize profit:5*product[nexterior"]+4*product["interior n];

In this manner, the user can see if the model has retrieved the input data correctly. In a
similar manner, the command

expand limit;

will expand all the constraints of the model. If you are interested in a specific con
straint, then 1 irni t must be properly indexed. For example,

expand limit[DmI"];

will display the first constraint of the model.
The let command allows entering new values of parameters and variables

(using: = as assignment operator). The right-hand side may be a simple numeric value
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A.7

or a mathematical expression. It is used to test different solution scenarios as we will
show in Section A.7.

The fix command is used to assign a specific value to a variable prior to solving
the model. For example, suppose that the following statements are issued interactively
prior to solving the ReddyMikks model

ampl: fix product [nexterior"l ::::1.5;
ampl : solve;

With these commands, AMPL solves the problem with the added restriction
product ["exterior"] =1. 5. The change caused by fix can be undone by issuing the
unfix command as

ampl: unfix product ["exterior"] ;

TIle fix/unfix conunands can be useful in experimenting with the model when some of
the variables are either eliminated (= 0) or held constant. (See AMPL Moment following
Example 9.3-4 on page 392 for an application to the traveling salesperson problem.)

The command reset removes all reference to the current model from AMPL. A
fresh model command will thus be necessary to restart the model. Also, the command
reset data; will delete all the data, while reset data abc; will delete the values of
parameters a, b, and c. Also, AMPL requires the use of reset; between successive
model commands. Else, undecipherable errors will result.

There is a large number of useful interactive commands in AMP, but their de
tailed presentation is beyond the scope of this abridged presentation.

ITERATIVE AND CONDITIONAL EXECUTION OF AMPl COMMANDS

Suppose in the Reddy Mikks model we are interested in studying the sensitivity of the
optimal solution to changes in specific parameters. For example, in file RM2.txt, how is
the optimal solution affected when the availability of raw material ml (=rhs ["ml" ] )

is changed from its current value of 24 tons to the new values of 27 and 30 tons? After
executing RM2.txt and getting the solution for rhs ["mI"] =24, we can enter the fol
lowing statements interactively:

ampl: let rhs[lIrnl Q ):= 27;
ampl: solve;
ampl: display profit, product;

The output will be displayed on the screen (it can also be sent to a file, if desired, as we
explained earlier). To secure results for rhs [nml n ]=30, the same statements are re
peated with the let statement specifying the new value. This, however, is not the most
efficient way to do the task.

AMPL allows building convenient conunands files that will eliminate the unnec
essary chore of retyping commands. Specifically, for the present example, a command
file (which we arbitrarily name cmd.txt) may have the following statements:

for (i in 1 .. 2 }
{

let rhs("ml"J :=rhs("ml"J+3;

j
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solve;
display profit, product;
}

Following the execution of the model (with rhs ["ml"} =24), we can execute the re
maining two cases by entering

ampl: commands cmd.txt;

Of course, we can modify cmd.txt to include rhs [nmI n} =24 as well. See Problem 1,
Set A.7a.

We can use the statement repeat while condition{ ... }; or repeat until
condi ti on { ... } ; to replace for { ... ) as follows:

repeat while rhs[·ml"]<=30
{

let rhs["ml·j :=rhs["ml"] +3;
solve;
display profit, product;
} ;

Alternatively, we may use

repeat until rhs[-ml"]<30
(

let rhs(nml n ]:=rhs[nml·]+3;
solve.
display profit,rhs(nml"J, product;
) ;

Note that repeat while will loop so long the condition is true, whereas repeat

until will loop so long as the condition is false.
Another useful statement in commands file is if-then-else. In this case, if

may be followed by any legitimate condition, whereas then and else can be followed
only by command statements. With the if statement, AMPL commands continue;

and break; may be used within the loop construct to either skip to the next index of
the loop or exit the loop altogether.

Example 9.3-5 (Figure 9.14) provides a good illustration of the use of the loop
and conditional statements to print formatted output.
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PROBLEM SET A.7A

1. Modify RM2.txt so that rhs ["ml"] will assume the values 20 to 35 tons in steps of 5 tons.
All solve commands must be executed from within the command file cmd.txt in the fol
lowing manner:

ampl: mode1 RM2.txt;
ampl: c~ds cmd.txt;
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The command file cmd.txt is developed using the three different versions to construct the
loop:

(a) forO.

(b) repeat while{};.

(c) repeat until{};.

A.a SENSITIVITY ANALYSIS USING AMPL

We have seen previously how the dual values and the reduced costs can be determined
in an AMPL LP model by using the ConstraintName. dual and VariableName. rc in
the display command. To complete the standard LP sensitivity analysis report,AMPL
additionally provides facilities for the determination of the optimality ranges for the
objective-function coefficients and the feasibility ranges for the (constant) right-hand
sides of the constraints. We will use file RM2.txt (see Figure A.3) to demonstrate how
AMPL generates the sensitivity analysis report.

In the model in Figure A.3, replace the solve and display statements with T

Fourer, R., D. Gay, and B. Kernighan, A MPL, A Modeling Language for Mathematical Program
ming, 2nd ed., Brooks/Cole-Thomson, Pacific Grove, CA, 2003.

option solver cplex;
option cplex_options 'sensitivity';
solve;
display ~imit.down,limit.current,limit.up,limit.dual;

display product.down,product.current,product.up,product.rc;

The output can be directed to a file if desired (see file RM6.txt). The two option state
ments must precede the solve command. The first display command provides the
feasibility ranges for all the constraints (named limit in the model). The suffixes
. down I • current I and. up give the lower, current, and upper values for the right-hand
side of each member constraint. In a similar manner, the second display command
provides the optimality ranges for the objective-function coefficients. The following
output is self-explanatory.

o
o
o
o
o
o
o
o
o
o
1
1
1
1
1

1
1
1
1
1

2
2

~!

-1

product.rc
o
o

product.up
6

10

product. current
5
4

profit'" 21
product.down

exterior 2
interior 3.33333

limit.down limit limit .up
demand -1.5 0 le+20
ml 20 0.75 36
m2 4 0.5 6.66667
market 0 0 0

REFERENCE
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TABLE B.2 Continued

v a = 0.10 a = 0.05 a = 0,025 a=O.Q1 a = 0.005 v

to 23 1.319 1.714 2.069 2.500 2.807 23

6
24 1.318 1.711 2.064 2.492 2.797 24

:6 25 1.316 1.708 2.060 2.485 2.787 25

i2 26 1.315 1.706 2.056 2.479 2.779 26

f4
27 1.314 1.703 2.052 2.473 2.771 27

'4
28 1.313 1.701 2.048 2.467 2.763 28

:1 29 1.311 1.699 2.045 2.462 2.756 29

:6
Inf. 1.282 1.645 1.960 2.326 2.576 info

10 •Abridged by permission of Macmillan Publishing Co., Inc., from Slolislica[ Methods for Research

13
Workers, 14th ed, by R. A. Fisher. Copyright © 1970 University of Adelaide.

15
17
18 J

"j
TABLE B.3 ~.• (Chi-square) Values*i

J
.~ v a = 0.995 a = 0.99 a = 0.975 a = 0.95 a = 0.05 a = 0.025 (l' = 0.01 a = 0.005 v

1 0.0000393 0.000157 0.000982 0.00393 3.841 5.024 6.635 7.879 1
2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597 2
3 0.0717 0.115 0.216 0.352 7.815 9.348 11.345 12.838 3

j
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 4
5 0.412 0.554 0.831 1.145 11.070 12.832 15.056 16.750 5i 6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 6.,

;j 7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7
~,

8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 81
j 9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9
:~ 10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10
) 11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11

12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26

;1
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27.i, 28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28.'J
29 13.121 14.256 16.047 17.708 42.557 45.772 49.588 52.336 29oj

1 30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30
J
'1
.I "1l1is table is based on Table 8 of Biometrika Tables for Statisticians, Vol. 1, by permission of the Biom.etrika trustees.
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APPENDIX C

Partial Answers to Selected
Problems1

CHAPTER 1

Set 1.1a

4. 17 minutes
5. (a) Jim's alternatives: Throw curve or fast ball.

Joe's alternatives: Prepare for curve or fast ball.
(b) Joe wants to increase his batting average.

Jim wants to reduce Joe's batting average.

CHAPTER 2

Set 2.1a

1. (a) - x I + X2 ~ 1
(c) Xl - X2 :5 0
(e) .5XI - .5x2 2:: 0

3. Unused Ml = 4 tons/day

Set 2.2a

1. (a and e) See Figure Cl.
2. (a and d) See Figure C.2.

lSolved problems in this appendix are designated by * in the text.

753



754 Appendix C

fiGURE C.1

5. Let

Partial Answers to Selected Problems

FIGURE C.2

(a)

..~

Xl = Number of units of A

X2 = Number of units of B

Maximize z = 20XI + 50X2 subject to

-.2xI + .8X2 :s 0,2XI + 4X2 s; 240

Xl :s 100, XI. X2 >- 0

Optimum: (XI. X2) = (80,20), Z = $2,600

7. Let

Xl = Dollars invested in A

X2 = Dollars invested in B

Maximize z = .05Xl + .08X2 subject to

.75xI - .25x2 ~ 0, .5Xl - .5X2 ~ 0,

Xl - .5X2 ;::: 0, Xl + X2 :$ 5000, xl> X2 ~ 0

Optimum: (Xl> X2) = (2500,2500), z = $325

11. Let

Xl = Play hours per day

X2 = Work hours per day

Maximize z = 2XI + X2 subject to

Xl + X2 :s 10, Xl - X2 -< 0

Xl s; 4, xI. X2 ;::: 0

Optimum: (Xl> X2) = (4,6), z = 14

-j

1
.J
.!
,i
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14. Let

Xl = Tons of Cl per hour

X2 = Tons of C2 per hour

Maximize z = 12000XI + 9000X2 subject to

-200XI + 100X2 -< 0,2.1xI + .9Xl -< 20, Xl> Xl ;:=: 0

Optimum: (Xl> Xl) = (5.13,10.26), z = 153,8461b

(a) Optimum ratio Cl: C2 = .5.
(b) Optimum ratio is the same, but steam generation will increase by 7692 Ib/hr.

18. Let

Xl = Number of HiFil units

X2 = Number of HiFi2 units

Minimize z = 1267.2 - (15xl + 15x2) subject to

6Xl + 4X2 =:; 432,5xl + 5X2 =:; 412.8

4XI + 6X2 =:; 422.4, xl> Xl ;:=: 0

Optimum: (Xl> X2) = (50.88,31,68), z = 28.8 idle min.

Set 2.2b

1. (a) See Figure C.3

FIGURE C.3
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5. Let

Partial Answers to Selected Problems

Xl = Thousand bbl/day from Iran

X2 = Thousand bbl/day from Dubai

Minimize z = Xl + X2 subject to

-.6XI + .4x2 -< 0, .2XI + .lx2 ;;::: 14

.25xl + .6X2 ;;::: 30, .1xl + .15x2 :2: 10

.15xI + .lx2 > 8, Xl> X2 ;;::: 0

Optimum: xl = 55, X2 = 30, z = 85

7. Let

Xl = Ratio of scrap A alloy

X2 = Ratio of scrap B alloy

Minimize z = 100XI + 80X2 subject to

.03 ::; .06XI + .03X2 -< .06, .03 -< .03XI + .06X2 ::; .05

.03 $ .04XI + .03X2 :5 .07, Xl + X2 = 1, Xl> X2 ;;::: 0

Optimum: Xl = .33, X2 = .67, z = $86,667

Set 2.3a

3. Let

Xij = Portion of project i completed in year j

Maximize z = .05(4Xll + 3x12 + 2x13) + .07(3x22 + 2X23 + X24)

+ .15(4x31 + 3X32 + 2X33 + X34) + .02(2x43 + X44)

subject to

Xll + X12 + X13 = 1, X43 + X44 = 1

.25 .5 X22 + X23 + X24 + X25 :5 1

.25 :5 X31 + X32 + X33 + X34 + X35 $ 1

5Xll + 15x31 ::; 3,5x12 + 8X22 + 15x32 :5 6

5xn + 8X23 + 15x33 + 1.2x43 :5 7

8X24 + 15x34 + 1.2x44 :5 7, 8X25 + 15x35 :5 7

all Xij ;;::: 0

Optimum: Xu = .6, Xu = .4, X24 = .255, X25 = .025

X32 = .267, X33 = .387, X34 = .346, X43 = 1, Z = $523,750
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Set 2.3b

2. The model can be generalized to account for any input currency p and any output
currency q. Define Xij as in Example 2.3-2 and fij as the exchange rate from cur
rency i to currency j. The associated model is
Maximize z = Y subject to

capacity: Xij :s; c;, for all i * j

Input currency p: I + Lrjpxjp = LXpj
j#p j#p

Output currency q: Y + LXqj = '2JjQXjq
j#q j#q

Currency i * P or q: 'LJjiXji = LXij
j*i j*i

Rate of return: 1.8064% for $~ $, 1.7966% for $~ €, 1.8287% for $~ £,
2.8515% for $~ ¥, and 1.0471% for $~ KD. Wide discrepancies in ¥ and KD
currencies may be attributed to the fact that the given exchange rates may not be
totally consistent with the other rates. Nevertheless, the problem demonstrates
the advantage of targeting accumulation in different currencies.
[Note: Interactive AMPL (file ampI2.3b-2.txt) or Solver (file solver2.3b-2.xls) is
ideal for solving this problem. See Section 204.]

Set 2.3c

2. Let

Xi = Dollars invested in project i, i = 1,2,3,4

Yj = Dollars invested in bank in year j, j = 1,2,3,4

Maximize z = Ys subject to

Xl + X2 + X4 + Yl :$ 10,000

.5Xl + .6X2 - X3 + AX4 + 1.065Yl - .Y2 = 0

.3x} + .2x2 + .8X3 + .6X4 + 1.065.Y2. - Y3 = 0

1.8Xl + 1.5x2 + 1.9X3 + 1.8x4 + 1.065Y3 - Y4 = 0

1.2x l + 1.3x2 + .8X3 + .95x4 + 1.065Y4 - Ys = 0
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Optimum solution:

Xl = 0, x2 = $10,000, X3 = $6000, X4 = °
YI = 0, Y2 = 0, Y3 = $6800, Y4 = $33,642

z = $53,628.73 at the start of year 5

5. Let XiA = amount invested in year i using plan A, i = 1,2,3

XiB = amount invested in year i using plan B, i = 1,2,3

Maximize z = 3X2B + 1.7x3A subject to

XIA + XIB :=s 100 (start of year 1)

-1.7XIA + X2A + X2B = 0 (start of year 2)

-3XIB - 1.7x2A + X3A = ° (start of year 3)

XiA, XiB ~ 0, i = 1, 2, 3

Optimum solution: Invest $100,000 in plan A in year 1 and $170,000 in plan B in
year 2. Problem has alternative optima.

Set 2.3d

3. Let Xj = number of units of product j, j = 1,2,3

Maximize z = 30XI + 20X2 + 50x3 subject to

2XI + 3X2 + 5x]:=s 4000

4XI + 2X2 + 7X3::; 6000

Xl + .5X2 + .33x3 <: 1500

2Xl - 3X2 = °
5X2 - 2X3 = 0

Xl ~ 200, X2 ::> 200, X3 ~ 150

Optimum solution: Xl = 324.32, X2 = 216.22, X3 = 540.54, z = $41,081.08

7. Let Xij = Quantity produced by operation i in month j, i = 1,2, j = 1,2,3

I ij = Entering inventory of operation i in month j, i = 1,2, j = 1,2,3
3

Minimize z = 2: (CljXlj + C2jX2j + .2/Ij + A/2j ) subject to
j=l

.6Xll ::; 800, .6x12 ::; 700, .6x13 s; 550

.8X21 :=s 1000, .8X22 ::; 850, .8X23 :=s 700
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Xlj + II,j-l = X2j + I lj , X2j + IZ,j-l = d j + 12j, j = 1,2,3

11,0 = 12,0 = 0, all variables ;::: 0

dj = 500,450, 600 for j = 1, 2, 3

elj = 10, 12, 11 for j = 1,2,3

C2j = 15,18,16 for j = 1,2,3

Optimum: Xu = 1333.33 units, X13 = 216.67, X21 = 1250 units, X23 = 300 units,
z = $39,720.

Set 2.3e

2. Let Xs = lb of screws/package, Xb = lb of bolts/package, Xn = lb of nuts/package,
X w = lb of washers/package

Minimize z = 1.1xs + 1.5xb + G~)xn + (;~)xw subject to

Y = Xs + Xb + Xn + Xw

Y ;::: 1, Xs ;::: .ly, Xb ;:::: .25y, Xn :=; .15y, Xw :5 .1y

(1~)Xb < Xm (s~)Xb :5 Xw

All variables are nonnegative

Solution: z = $1.12, Y = 1, Xs = .5, Xb = .25, XIl = .15, Xw = .1

Let XA = bbl of crude A/day, XB = bbl of crude B/day, Xr = bbl of regular/day
x p = bbl of premium/day, Xj = bbl of jet fueVday

Maximize z = 50(xr - s;) + 70(xp - s;) + 120(xj - sf)
- (10s~ + 15s; + 20sj + 2s; + 3s; + 4sj)
- (30XA + 40XB) subject to

XA :=; 2500, XB :=; 3000, Xr = .2XA + .25xB' xp = .1xA + .3xB' Xj = .25xA + .1xB

x r + s~ - s; = 500, xp + s; - s; = 700, Xj + sj - Sf = 400, All variables;::: 0

Solution:

z = $21,852.94, XA = 1176.47 bbl/day, XB = 1058.82, XI' = 500 bbl/day

x p = 435.29 bbllday, Xj = 400 bbl/day, s; = 264.71

Set 2.3f

1. Let x;(y;) = Number of 8-hr (12-hr) buses starting in period i
6 6

Minimize z = 2 LX; + 3.5 LY; subject to
;=1 i=l

Xl + X6 + Yl + Ys + Y6 ;::: 4, Xl + Xz + Yl + Yz + 'y6 ~ 8,

X2 + X3 + YI + Yz + Y3 > 10, X3 + X4 + Yz + Y3 + Y4 ;:::: 7,

X4 + Xs + Y3 + Y4 + Ys ;:::: 12, Xs + X6 + Y4 + Ys + Y6 ;:::: 4
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All variables are nonnegative

Solution: Xl = 4, Xz = 4, X4 = 2, Xs = 4, Y3 = 6, all others = 0, z = 49.

Total number of buses == 20. For the case of 8-hr shift, number of buses = 26 and
comparable z = 2 X 26 = 52. Thus, (8-hr + 12-hr) shift is better.

5. Let Xi = Number of students starting in period i (i = 1 for 8: 01 A.M., i == 9 for
4:01 P.M.)

Minimize z = Xl + X2 + X3 + X4 + X6 + X7 + Xg + x9 subject to

Xl 20: 2, Xl + x2 ~ 2, Xl + Xz + x3 20: 3,

X2 + X3 + X4 20: 4, x3 + x4 :> 4, X4 + x6 :> 3,

X6 + X7 ;::::: 3, X6 + X7 + Xs ~ 3, X7 + Xg + x9 ?: 3

Xs = 0, all other variables are nonnegative

Solution: Hire 2 at 8:01, 1 at 10:01,3 at 11:01, and 3 at 2:01. Total == 9 students

Set 2.39

1. (a) 1150L ft2

(b) (3,0,0), (1,1,0), (1,0,1), and (0,2,0) with respective 0, 3, 1, and 1 trim loss per
foot.

(c) Number of standard 20'-rolls decreased by 30.

(d) Number of standard 20'-rolls increased by 50.

6. I 81 ly11 'j------------i!
I '2 I 82 IY2t-1----'2 I
I '3 I 83~Y31
1-------------'--------2.2minutes-------I

Let gi, Yi, and ri be the durations of green, yellow, and red lights for cars exiting
highway i. All time units are in seconds. No cars move on yellow.

maximize z = 3(500/3600)gl + 4(600/3600)gz + 5(400/3600)83 subject to

(500/3600)gl + (600/3600)82 + (400/3600)g3 ::; (510/3600)(2.2 X 60 - 3 X 10)

gl + 82 + g3 + 3 X 10 ::; 2.2 X 60, 81 ;;::::: 25, 82 ~ 25, 83 ~ 25

Solution: gl == 25 sec., g2 == 43.6 sec., 83 = 33.4 sec. Booth income = $58.04/hr

Set 2.4a

2. (d) See file solver2.4a-2(d).xls in folder AppenCFiles.

Set 2.4b

2. (c) See file ampI2.4b-2(c).txt in folder AppenCFiles.

(f) See file ampI2.4b-2(f).txt in folder AppenCFiles.

'.j

1,
j
:1
.j

:1
::i
:J..~
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CHAPTER 3

Set 3.1a

1. 2 tons/day and 1 ton/day for raw materials Ml and M2, respectively.
4. Let Xij = units of product i produced on machine j.

Maximize z = lO(xn + X12) + 15(x21 + X22) subject to

XIl + X21 - X12 - X22 + Sl = 5

- Xu - X21 + Xl2 + X22 + Sz = 5

Xu + X2l + S3 = 200

Xl2 + X22 + S4 = 250

Sj, Xij 2: 0, for all i and j

Set 3.1b

3. Let Xj = units of product j, j = 1,2,3.
Maximize z = 2XI + 5X2 + 3X3 - 15xt - 10xs

subject to

2XI + X2 + 2X3 + xi - xt = 80

Xl + X2 + 2X3 + Xs - Xs = 65
- + - + 0

Xb XZ,X3,X4,X4,XS,XS 2:

Optimum solution: Xz = 65 units, xi = 15 units, all others = 0, z = $325.

Set 3.2a

1. (c) Xl = ~, Xz = If, z = ~8.

(e) Corner points (Xl = 0, X2 = 3) and (Xl = 6, Xz = 0) are infeasible.
3. Infeasible basic solutions are:

(Xl> X2) = (~, -~), (Xl> X3) = (8, -2)

(x], X4) = (6, -4), (xz, x3) = (16, -26)

(X2,X4) = (3,-13),(x3,x4) = (6,-16)

Set 3.3a

3. (a) Only (A, B) represents successive simplex iterations because comer point A
and B are adjacent. In all the remaining pairs the associated corner points are
not adjacent.

(b) (i) Yes. (ii) No, C and I are not adjacent. (iii) No, path returns to a previous
corner point, A.

5. (a) X3 enters at value 1, z = 3 at corner point D.
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Set 3.3b

3.

Partial Answers to Selected Problems

New basic variable

Value
Leaving variable

1.5

X2

1 o .8
Xg Xs

6. (b) X2, xs, and X6 can increase value of z. If X2 enters, Xg leaves and
!!.z = 5 X 4 = 20. If Xs enters, Xl leaves and tlz = 0 because Xs equals 0 in
the new solution. If X6 enters, no variable leaves because all the constraint
coefficients of X6 are less than or equal to zero. tlz = 00 because x6 can be
increased to infinity without causing infeasibility.

9. Second best value of z = 20 occurs when S2 is made basic.

Set 3.4a

3. (a) Minimize z = (8M - 4)Xl + (6M - 1)x2 - MS2 - MS3 = 10M
(b) Minimize z = (3M - 4)Xl + (M - 1)x2 = 3M

6. The starting tableau is

Basic Xl X2 X3 X4 Solution

z -1 -12 0 0 -8

X3 1 1 1 0 4
x4 1 4 0 1 8

Set 3.4b

1. Always minimize the sum of artificial variables because the sum represents the
amount of infeasibility in the problem.

7. Any nonbasic variable having nonzero objective coefficients at end of Phase I
cannot become positive in Phase II because it will mean that the optimal objec
tive value in Phase I will be positive; that is, infeasible Phase I solution.

Set 3.5a

1. (a) A ~ B~ C ---.:;- D.
(b) 1 at A, 1 at B, C~ = 6 at C, and 1 at D.

Set 3.5b

1. Alternative basic optima: (0,0, If), (0,5,0), (1, 4, ~). Nonbasic alternative optima:

(a3,5a2 + 4a3,~al + ~a3),al + a2 + a3 = 1,0 s; ai s; l,i = 1,2,3.

-.~

.~

~.,
j
)

i
1
1
j
j
l
J
j
j
1

1
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Set 3.Sc

2. (a) Solution space is unbounded in the direction of xz.
(b) Objective value is unbounded because each unit increase in Xz increases z

by 10.

Set 3.Sd

1. The most that can be produced is 275 units.

Set 3.6a

2. Let

Xl = number of Type 1 hats per day

Xz = number of Type 2 hats per day

Maximize z = 8XI + 5x2 subject to

2XI + X2 :5 400

Xl :5 150, X2 :5 200

(a) See Figure C.4: Xl = 100, X2 = 200, z = $1800 at point B.
(b) $4 per Type 2 hat in the range (200,500).
(c) No change because the dual price is $0 per unit in the range (100,00).
(d) $1 worth per unit in the range (100,400). Maximum increase = 200 Type 2.

Set 3.6b

3. (a) a < ~ < 2.

(b) New ~ = 1. Solution remains unchanged.

FIGURE C4

A = (0,200)
B = (100,200) optimum
C = (150, 200)
D = (150, 100)
E = (150,0)
F = (0,400)

o 100 E 200 Xl
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Set 3.6c

2. (a) Yes, because additional revenue per min = $1 (for up to 10 min of overtime)
exceeds additional cost of $.83/min.

(b) Additional revenue is $2/min (for up to 400 min of overtime) = $240 for 2 hr.
Additional cost for 2 hr = $110. Net revenue = $130.

(c) No, its dual price is zero because the resource is already abundant.
(d) D l = 10 min. Dual price = $lImin for D l < 10. Xl = 0, Xz = 105, X3 = 230,

net revenue = ($1350 + $1 X 10 min) - ($6~ X 10 min) = $1353.33.
(e) Dz = -15. Dual price = $2/min for Dz ;;:= -20. Decrease in revenue -= $30.

Decrease in cost = $7.50. Not recommended.
6. Let

Xl = radio minutes, Xz = TV minutes, x3 = newspaper ads

Maximize z = Xl + 50xz + 10x3 subject to

15xl + 300X2 + 50x3 + Sl = 10,000, X3 - Sz = 5,

Xl + s3 = 400, -xl + 2xz + S4 = 0, Xl> xz, X3 ~ 0,

(a) Xl = 59.09 min, Xz = 29.55 min, X3 = 5 ads, z = 1561.36
(b) From TORA, z + .15851 + 2.879Sz + OS3 + 1.364s4 = 156.364. Dual prices

for the respective constraints are .158, -2.879,0, and 1.36. Lower limit set
on newspaper ads can be decreased because its dual price is negative
(= -2.879). There is no advantage in increasing the upper limit on radio
minutes because its dual price is zero (the present limit is already abundant).

(c) From TORA, Xl = 59.9091 + .00606Dl ;;:= 0, x3 = 5, S3 = 340.90909 +
.00606Dl > 0, Xz = 29.54545 + .00303Dl > O. Thus, dual price = .158 for
the range -9750 :5 Dl :5 56,250. A 50% increase in budget (D l = $5000) is
recommended because the dual price is positive.

11. (a) Scarce: resistor and capacitor resource; abundant: chip resource.
(b) Worths per unit of resistor, capacitor, and chips are $1.25, $.25, and $0.
(e) Change D3 = 350 - 800 = -450 falls outside the feasibility range D3 >

-400. Hence problem must be solved anew.
13. (b) Solution xl = Xz = 2 + ~ is feasible for all Ii > O. For 0 < Ii :5 3"1 + 'z ::=:

~ :5 1~ feasibility confirmed. For 3 :5 Ii < 6,'1 + 'z = 1> 1 => feasi
bility not confirmed. For Ii > 6, the change falls outside the ranges for Dl

and Dz.

Set 3.6d

2. (a) Xl = Cans of Ai, Xz = Cans of Az, X3 = Cans of BK.
Maximize z = 80XI + 70xz + 60X3 subject to
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Optimum: Xl = 166.67, Xz = 333.33, X3 = 0, Z = 36666.67.

(b) From TaRA, reduced cost per can of BK = 10. Price should be increased by
more than 10 cents.

(c) d l = dz = d3 = -5 cents. From TaRA, the reduced costs for the nonbasic
variables are

X3: 10 + d2 - d3 :> 0, satisfied

51: 73.33 + .67dz + .33dl 2: 0, satisfied

53: 1.67 - .17d2 + .17d1 2: 0, satisfied

Solution remains the same.

s. (a) Xi = Number of units of motor i, i = 1,2,3,4.

Maximize z = 60Xl + 40X2 + 25x3 + 30X4 subject to

Optimum: Xl = 500, x2 = 500, X3 = 375, X4 = 0, Z = $59,375
(b) From TaRA, 8.75 + d2 2: O. Type 2 motor price can be reduced by up to

$8.75.

(c) d 1 = -$15, dz = -$10, d3 = -$6.25, d4 = -$7.50. From TaRA,

X4: 7.5 + 1.5d3 - d4 :> 0, satisfied

51: 6.25 + .25d3 :> 0, satisfied

52: 10 - 2d3 + d1 2: 0, satisfied

S3: 8.75 - 1.25d3 + d2 2: 0, satisfied

Solution remains the same, but z will be reduced by 25%.

(d) Reduced cost of X4 = 7.5. Increase price by more than $7.50.

Set 3.6e

S. The dual price for the investment constraint XIA + XIS :$ 100 is $5.10 per dollar
invested for any amount of investment.

9. (a) Dual price for raw material A is $10.27. The cost of $12.00 per lb exceeds
the expected revenue. Hence, purchase of additional raw material A is not
recommended.

(b) Dual price for raw material B is $0. Resource is already abundant and no ad
ditional purchase is warranted.
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CHAPTER 4

Set 4.1a

Partial Answers to Selected Problems

2. Let Yl> Y2, and Y3 be the dual variables.

Maximize w = 3YI + 5Y2 + 4Y3 subject to

YI + 2Y2 + 3Y3 :s 15,2YI - 4Y2 + Y3 :s 12

YI 2= 0, Y2 :s 0, Y3 unrestricted

4. (c) Let Yl and Y2 be the dual variables.

Minimize z = 5YI + 6Y2 subject to

2Yl + 3Y2 = 1, YI - Yz = 1

YI, Y2 unrestricted

5. Dual constraint associated with the artificial variables is Y2 ~ - M.
Mathematically, M ~ (Xl ~ Y > - (Xl, which is the same as Yz being unrestricted.

Set 4.2a

1. (a) AV1 is undefined.
(e) V2A = (-14 -32)

Set 4.2b

1 I 0 04 2
1 3 0 01. (a) Inverse = -8 4
3 5 1 08 4
1 3 0 18 4

Set 4.2c

3. Let Yl and Y2 be the dual variables.

Minimize w = 30Yl + 40Y2 subject to

YI + yz ~ 5, 5Yi - 5Y2 2= 2,2Yl - 6yz ~ 3

Yl ~ - M (~ Yi unrestricted), Yz ~ 0

Solution: Yl = 5, Y2 = 0, w = 150.

6. Let Yl and Y2 be the dual variables.

Minimize w = 3Yl + 4yz subject to

Yl + 2yz ~ 1,2YI - yz > 5, Yl ~ 3

Yz unrestricted

Solution: Yl = 3, Yz = -1, W = 5
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8. (a) (Xl> X2) = (3,0), z = 15, (Yh Y2) = (3,1), w = 14. Range = (14,15)
9. (a) Dual solution is infeasible, hence cannot be optimal even though z = w = 17.

Set4.2d

2. (a) Feasibility: (X2, X4) = (3, 15) ==> feasible.
Optimality: Reduced costs of (Xl> X3) = (0,2) ==> optimal.

4.

Basic XI X2 X3 X4 Xs Solution

0 0 _£ I 0 12
Z s -5 5

1 0 3 1 0 3
Xl -5 s 5

0 1 4 3 0 6
X2 :5 -5 5
Xs 0 0 -1 1 1 0

Solution is optimal and feasible.

7. Objective value: From primal, z = CIXI + C2X2, and from dual, w = b1YI +
biY2 + b3Y3' bi = 4, b2 = 6, b3 = 8, Cl = 2, C2 = 5::::;. z = w = 34.

Set 4.3a

2. (a) Let (Xl> X2, X3, X4) = daily units of SC320, SC325, SC340, and SC370
Maximize z = 9.4Xl + 1O.8x2 + 8.75x3 + 7.8x4 subject to

10.5xl + 9.3x2 + l1.6x3 + 8.2x4 -< 4800

20Axi + 24.6x2 + 17.7x3 + 26.5x4 :5 9600

3.2xl + 2.5x2 + 3.6x) + 5.5x4:5 4700

5x) + 5X2 + 5x3 + 5x4 :5 4500

Xl ;;::: 100, X2 ;;::: 100, X3 > 100, X 4 ;;::: 100

(b) Only soldering capacity can be increased because it has a positive dual price
(= .4944).

(c) Dual prices for lower bounds are:50 (-.6847, -1.361,0, and -5.3003), which
means that the bounds have an adverse effect on profitability.

(d) Dual price for soldering is $.4944/min valid in the range (8920, 10201.72),
which corresponds to a maximum capacity increase of 6.26% only.

Set 4.3b

2. New fire truck toy is profitable because its reduced cost = -2.
3. Parts PP3 and PP4 are not part of the optimum solution. Current reduced costs

are .1429 and 1.1429. Thus, rate of deterioration in revenue per unit is $.1429 for
PP3 and $1.1429 for PP4.
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Set 4.4a

1. (b) No, because point E is feasible and the dual simplex must stay infeasible until
optimum is reached.

4. (c) Add the artificial constraint Xl -< M. Problem has no feasible solution.

Set 4.5a

4. Let Q be the weekly feed in Ib (= 5200, 9600, 15000,20000,26000,32000,38000,
42000, for weeks 1, 2, ... , and 8). Optimum solution: Limestone = .0280,
corn = .649Q, and soybean meal = .323Q. Cost = .81221Q.

Set 4.5b

1. (a) Additional constraint is redundant.

Set 4.5c

2. (a) New dual values = G, 0, 0, 0). Current solution remains optimal.

(c) New dual values = (-~, ~, 0,0). z - .125s1 + 2.75sz = 13.5. New solution:
xl = 2, Xz = 2, X3 = 4, Z = 14.

Set4.5d

1. i&i(Yl + 3yz + Y3) - 3 :> O. For Yl = 1, Yz = 2, and Y3 = 0, p :> 42.86%.

3. (a) Reduced cost for fire engines = 3Yl + 2yz + 4Y3 - 5 = 2 > O. Fire engines
are not profitable.

CHAPTER S

Set S.la

4. Assign a very high cost, M, to the route from Detroit to dummy destination.

6. (a and b) Use M = 10,000. Solution is shown in bold. Total cost = $49,710.

2 3 Supply

Demand 36

(c) City 1 excess cost = $13,000.

600 700 400

25
320 300 350

23 17
500 480 450

25 5
1000 1000 M

13

25

4()

13

30

3042

Plant 3

Plant 1

Plant 2

Excess
Plant 4
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9. Solution (in million gallons) is shown in bold. Area 2 will be 2 million gallons
short. Total cost = $304,000.

Al A2 A3 Supply

Refinery 1

Refinery 2

Refinery 3

Dummy

12 18 M

4 2
30 10 8

4 1
20 25 12

6
M 50 50

2

6

5

6

2

Set S.2a

Demand 4 8 7

2. Total cost = $804. Problem has alternative optima.

Sharpening service

Day New Overnight 2-day 3-day Disposal

Monday 24 0 6 18 0
Tuesday 12 12 0 0 0
Wednesday 2 14 0 0 0
Thursday 0 0 20 0 0
Friday 0 14 0 0 4
Saturday 0 2 0 0 12
Sunday 0 0 0 0 22

5. Total cost = $190,040. Problem has alternative optima.

Period Capacity Produced amount Delivery

1 500 500 400 for (period) 1 and 100 for 2
2 600 600 200 for 2, 220 for 3, and 180 for 4
3 200 200 200 for 3
4 300 200 200 for 4

Set S.3a

1. (a) Northwest: cost = $42. Least-cost: cost = $37. Vogel: cost = $37.

Set S.3b

5. (a) Cost = $1475.
(b) ClZ ;::: 3, C13 ;::: 8, CZ3 2:: 13, C31 ;::: 7.
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Set 5.4a

Partial Answers to Selected Problems

5. Use the code (city, date) to define the rows and columns of the assignment prob
lem. Example: The assignment (D, 3)-(A,7) means leaving Dallas on lun 3 and
returning from Atlanta June 7 at a cost of $400. Solution is shown in bold.
Cost = $1180. Problem has alternative optima.

(A,7) (A, 12) (A, 21) (A, 28)

(D,3) 400 300 300 280

(D,lO) 300 400 300 300

(D,17) 300 300 400 300

(D,2S) 300 300 300 400

6. Optimum assignment: I-d, II-c, III-a, IV-b.

Set 5.5a

4. Total cost = $1550. Optimum solution summarized below. Problem has alterna
tive optima.

CHAPTER 6

Set 6.1a

Factory 1

Factory 2

Store 1

50

50

Store 2

o

200

Store 3

~I

1. For network (i): (a) 1-3-4-2. (b) 1-5-4-3-1. (c and d) See Figure C.5.
4. Each square is a node. Adjacent squares are connected by arcs. Each of nodes 1

and 8 has the largest number of emanating arcs, and hence must appear in the
center. Problem has more than one solution. See Figure C.6.

FIGURE C5

Tree Spanning tree

FIGURE C6

~
5

7 1 8 2

4 6

'I

1
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Set 6.2a

2. (a) 1-2,2-5,5-6,6-4,4-3. Total length = 14 miles.
5. High pressure: 1-2-3A-6. Low pressure: 1-5-7 and 5-9-8.

Set 6.3a

1. Buy new car in years 1 and 4. Total cost = $8900. See Figure C7.
4. For arc (i, Vi)-(i + 1, Vi+l), define p(q) = value(number of item i). Solution:

Select one unit of each of items 1 and 2. Total value = $80. See Figure C8.

Set 6.3b

1. (c) Delete all nodes but 4, 5, 6, 7, and 8. Shortest distance = 8 associated with
routes 4-5-6-8 and 4-6-8.

Set 6.3c

1. (a) 5-4-2-1, distance = 12.
4. Figure C9 summarizes the solution. Each arc has unit length. Arrows show one

way routes. Example solution: Bob to Joe: Bob-Kay-Rae-Kim-Joe. Largest num
ber of contacts = 4.

Set 6.3d

1. (a) Right-hand side of equations for nodes 1 and 5 are 1 and -1, respectively, all
others = O. Optimum solution: 1-3-5 or 1-3-4-5, distance = 90.

4100 FIGURE C.7

~.~y

'I

1

FIGURE C8
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FIGURE C9 2 4

Set 6.4a

1. Cut 1: 1-2, 1-4, 3-4, 3-5, capacity = 60.

Set 6.4b

1. (a) Surplus capacities: arc (2-3) = 40, arc (2-5) = 10, arc (4-3) = 5.
(b) Node 2: 20 units, node 3: 30 units, node 4: 20 units.
(c) No, because there is no surplus capacity out of node l.

7. Maximum number of chores is 4. Rif-3, Mai-1, Ben-2, Kim-5. Ken has no chore.

Set 6.5a

3. See Figure CI0.

Set 6.5b

1. Critical path: 1-3-4-5-6-7. Duration = 19.

Set 6.5c

3. (a) 10. (b) 5. (c) O.
5. (a) Critical path: 1-3-6, duration = 45 days.

(b) A, D, and E.

FIGURE Cl0
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(c) Each of C, D, and G will be delayed by 5 days. E will not be affected.
(d) Minimum equipment = 2 units.

CHAPTER 7

Set 7.1a

2. (1,0) and (0,2) are in Q, but A(1, 0) + (1 - A)(O, 2) = (A,2 - 2..\) does not lie
in Q for 0 < ..\ < 1.

Set 7.1b

2. (b) Unique solution with Xl > 1 and 0 < X2 < 1. See Figure CU.
(d) An infinite number of solutions.
(f) No solution.

3. (a) Basis because det B = -4.

(d) Not a basis because a basis must include exactly 3 independent vectors.

Solution is feasible but nonoptimaL
4. Optimal z = 34.

Maximize z = 2XI + 5X2 subject to Xl < 4, X2 < 6, Xl + X2 :s 8, Xl> X2 ::::: 0

.,
1
i
j

1
:j
I

1
j

~

.L

-2 -1

3

1

b

\
\.

\.
\. Xl > 1,0 < x2 < 1

\
\.

\.
>

2 3

FIGURE C.11
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Set 7.2a

Partial Answers to Selected Problems

1. (a) PI must leave.
(b) B = (Pz, P4) is a feasible basis.

2. For the basic vector X B , we have

{Zj - Cj} = cBB-1n - CB = cBI - CB = CB - CB = 0

7. Number of adjacent extreme points is n - m, assuming nondegeneracy.
10. In case of degeneracy, number of extreme points is less than the number of basic

solutions, else they are equal.

11. (a) new Xj = ~ old xi"

(b) new Xj = ; old Xj.

Set 7.2b

2. (b) (Xl> Xz, X3) = (1.5,2,0), Z = 5.

Set 7.3a

Set 7.4a

2. Maximize w = Yb subject to YA ~ C, Y >- o.

Set 7.4b

5. Method 1: (bl> bz, b3 ) = (4,6,8) => dual objective value = 34.
Method 2: (Cl> cz) = (2,5) => primal objective value = 34.

7. Minimize w = Yb subject to YA = C, Y unrestricted.

Set 7.5a

z1. -7 ~ t ~ 1
2. (a)

Basic solution

(x2' X3, X6) = (5, 30, 10)

(X2. Xl, XI) = (¥, ~. 5)

(X2' X4, XI) = @, 15, 20)

Applicable range of t

O$tS~

! <; t :S ~
3 - 2

~$t:SOO

{ }
_ ( 3/ 3/2 2 / /2)5. Zj - Cj }=1,4,5 - 4 - 2" - 2,1 - [ ,2 - 2 + 2 . Basis remains optimal for

0<[:$1.
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Set 7.5b

1. (a) t1 = 10, Bl = (P2, P3, P4 )

2. At t = 0, (Xl> X2, X4) = (.4,1.8,1). It remains basic for 0 :::; t :::; 1.5. No feasible
solution for t > 1.5.

CHAPTERS

Set 8.1a

1. Gs: Minimize sr, 55xp + 3.5xf + 5.5xs - .0675xg + s5 - st = o.
3. Let Xl = No. of in-state freshmen, X2 = No. of out-of-state freshmen, X3 = No.

of international freshmen.

G i : Minimize si, i = 1,2, ... ,5, subject to Xl + X2 + X3 + s1" - st = 1200,

2Xl + X2 - 2X3 + S2 - s! = 0, - .1xl - .lx2 + .9X3 + s3 - sj = 0,

.125xl - .05X2 - .556x3 + s4" - S4 = 0, -.2XI + .8X2 - .2x3 + S5 - st = 0

All variables are nonnegative

5. Let Xj = No. of production runs in shift j, j = 1, 2; 3.

Minimize z = sl + st, subject to -100Xl + 40X2 - 80X3 + s1" - st = 0,

4 ~ Xl ~ 5, 10 :5 x2 ~ 20, 3 ~ x3 :5 20

Set 8.2a

1. Objective function: Minimize z = sl + S2 + s3" + S4 + st
Solution: xp = .0201, XI = .0457, X s = .0582, xg = 2 cents, sr = 1.45

Gasoline tax is $1.45 million short of goal.

4. Xl = lb of limestone/day, X2 = lb of corn/day, X3 = lb of soybean meal/day.

<?bjective function: Minimize z = sl + s! + s3" + S4 + sr
Solution: Xl = 166.08Ib, X2 = 2778.561b, X3 = 3055.36Ib, z = O. Problem has
alternative optima. All goals are satisfied but goals 3 and 4 are overachieved.

7. Xj = No. of units of productj, j = 1,2.

Assign a relatively high weight to the quota constraints.

Objective function: Minimize z = 100s1" + 100s2 + sj + S4
Solution: Xl = 80, X2 = 60, S3 = 100 minutes, S4 = 120 minutes.

Production quota can be met with 100 minutes of overtime for machine 1 and 120
minutes of overtime for machine 2.

Set 8.2b

2. G l solution: x p = .01745, XI = .0457, X s = .0582, xg = 21.33, s4 = 19.33, all
others = O. Goals G i , G2, and G] are satisfied. G4 is not.
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G4 problem: Same constraints as G1 plus s1' = 0, S2 = 0, s3" = O.
G4 solution:· xp = .0201, xf = .0457, X s = .0582, xg = 2, st = 1.45. All other
variables = O. Goal Gs is not satisfied.
Gs problem: Same as G4 plus s! = O.

G5 solution: Same as G4 , which means that goal 5 cannot be satisfied (st = 1.45).

CHAPTER 9

Set 9.1a

3. Xij = No. of bottles of type i assigned to individual j, where i = 1 (full), 2 (half
fUll), 3 (empty).
Constraints:

Xu + Xl2 + X13 = 7, X21 + X22 + X23 = 7, X31 + X32 + X33 = 7

Xu + .5X21 = 3.5, Xu + .5X22 = 3.5, x13 + .5X23 = 3.5

XII + X21 + x31 = 7, Xu + X22 + X32 = 7, X13 + x23 + X33 = 7

All Xij are nonnegative integers
Solution: Use a dummy objective function.

No. bottles assigned to individual

Status

Full
Half full
Empty

1

1
5
1

2

3
1
3

3

3
1
3

6. y = Original sum of money. X j = Amount taken on night j, j = 1, 2, 3.
X4 = Amount given to each mariner by first officer.
Minimize z = y subject to 3XI - Y = 2, xl + 3X2 - Y = 2, xl + X2 + 3X3 - Y =

2, y - Xl - X2 - X3 - 3X4 = 1. All variables are nonnegative integers.
Solution: y = 79 + 81n, n = 0, 1,2, ...

10. Side 1: 5,6, and 8 (27 minutes). Side 2: 1,2,3,4, and 7 (28 minutes). Problem has
alternative optima.

12. Xij = 1 if student i selects course j, and zero otherwise, Cij = associated preference
10 6

score, C j = course j capacity. Maximize z = 2: 2:CjjXij subject to
i=1 (=1

6 W

2>ij = 2,i = 1,2, ... ,10, LXij -< Cj,j = 1,2, ... ,6
j=l i=1

Solution: Course 1: students (2,4,9),2: (2, 8), 3:(5, 6,7,9),4:(4,5,7,10),5: (1,3, 8,
10),6: (1,3). Total score = 1775. .;.,

1
·1-

t
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Set9.1b

1. Let xi = 1 if route j is selected and 0 otherwise. Total distance of route (ABC,
1,2,3,4, ABC) = 10 + 32 + 4 + 15 + 9 = 80 miles.
Minimize z = 80Xl + 50x2 + 70X3 + 52x4 + 60xs + 44x6 subject to

Solution: Select routes (1, 4, 2) and (1, 3, 5), z = 104. Customer 1 should be
skipped in one of the two routes.

2. Solution: Committee is formed of individuals a, d, and f Problem has alternative
optima.

7. XI = 1 if transmitter t is selected, 0 otherwise. Xc = 1 if community c is covered, 0
otherwise. Cr = cost of transmitter t. Sc = set of transmitters covering community
c. P j = population of community j.

15
Maximize z = L PcXc subject to

c=l

7

LXI > xc, C = 1,2, ... ,15, 'Lctxr ::; 15
leSe t=l

Solution: Build transmitters 2,4,5,6, and 7. All but community 1 are covered.

Set 9.1c

2. Let Xi = Number of widgets produced on machine j, j = 1,2,3. Yj = 1 if ma
chine j is used and 0 otherwise. Minimize z = 2Xl + 10x2 + 5x3 + 300Yl +
lOOY2 + 200Y3 subject to Xl + X2 + X3 2:: 2000, Xl - 600Yl ::; 0,X2 - 800Y2 ::; 0,
X3 - 1200Y3 ~ 0, Xl> X2, X3 > 500 and integer, Yb Y2, Y3 = (0,1).
Solution: Xl = 600, X2 = 500, X3 = 900, z = $11,300.

3. Solution: Site 1 is assigned to targets 1 and 2, and site 2 is assigned to targets 3
and 4. z = 18.

10. X e = Number of Eastem (one-way) tickets, Xu = Number of US Air tickets,
Xc = Number of Continental tickets. eb and e2 binary variables. u and C nonnega
tive integers. Maximize z = 1OO0(xe + 1.5xu + 1.8xc + 5el + 5e2 + lOu + 7c)
subject to el s; x/2, e2 s; xel6, u s; x)6, and c -< xc/5, xe + Xu + Xc = 12.

Solution: Buy 2 tickets on Eastern and 10 tickets on Continental. Bonus =

39000 miles.

Set 9.1d

1. Let Xii = Integer amount assigned to square (i, j). Use a dummy objective func
tion with all zero coefficients.
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Constraints:

3 3

LXij = 15,1i = 1,2,3, LXij = 15, j = 1,2,3,
j=l )Yo i=l

Xu + X22 + X33 = 15, X31 + X22 + X13 = 15,

(Xu ~ X12 + 1 or Xu ::;: x12 - 1), (xu ~ Xl3 + 1 or Xu :::; Xl3 - 1),

(Xl2 ~ X13 + 1 or Xl2 ::5 Xl3 - 1), (xn ::> X21 + lor Xu :::; X21 - 1),

(xu ~ X31 + lor Xu <: X3I - 1), (X21 ~ X3I + lor x21 :::; X31 - 1),

Xij = 1,2, ... , 9, for all i and j

Solution:
2
7
6

9
5
1

4
3
8

Alternative solutions are direct pennutations of rows and/or columns.
3. Xj = Daily number of units of product j.

Maximize z = 25xl + 30X2 + 22x3 subject to

Xl> X2, X3 ::> 0 and integer

Solution: Produce 26 units of product 1,3 of product 2, and none of product 3, and
use location 2.

Set 9.2a2

2. (a) z = 6,Xl = 2,X2 = o.
(d) z = 12, Xl = 0, X2 = 3.

3. (a) z = 7.25, Xl = 1.75, X2 = 1.
(d) z = 10.5, Xl = .5, X2 = 2.

9. Equivalent 0-1 ILP:

Maximize z = 18Yll + 36Yl2 + 14Y21 + 28Y22 + 8Y31 + 16Y32 + 32Y33

subject to 15Yll + 30Y12 + 12Y21 + 24Y22 + 7Y31 + 14Y32 + 28Y33 < 43
All variables are binary.
Solution: z = 50, Yl2 = 1, Y21 = 1, all others = O. Equivalently, Xl = 2, x2 = 1.
The O~1 version required 41 nodes. The original requires 29.

2Use TORA integer programming module to generate the B&B tree.
'j
I
1
i

J
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Set 9.2b

1. (a) Legitimate cut because it passes through an integer point and does not elim
inate any feasible integer point. You can verify this result by plotting the cut
on the LP solution space.

6. (a) Optimum integer solution: (Xb X2, X3) = (2,1,6), z = 26.
Rounded solution: (Xb X2, X3) = (3, 1,6), which is infeasible.

Set 9.3a

1. The table below gives the number of distinct employees who enterlleave the man
ager's office when we switch from project i to project j. The objective is to find a
"tour" through all projects that will minimize the total traffic.

1 2 3 4 5 6

1 4 4 6 6 5

2 4 6 4 6 3

3 4 6 4 8 7

4 6 4 4 6 5

5 6 6 8 6 5

6 5 3 7 5 5

Set 9.3c

2. See Figure C.12.

FIGURE C.12

1

z = 26
(1-3-1)
(2-4-2)
(5-6-5)

X31 = 0 x13 = 0

5

Fathomed z = 26
by z (1-2-4-3-1

at CD (5-6-5)

x56 = 0

3

Fathomed z = 26
by z (1-5-6-2-

'j at CD 4-3-1)
.'j
i

j
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CHAPTER 10

Set 10.1a

Partial Answers to Selected Problems

1. Solution: Shortest distance = 21 miles. Route: 1-3-5-7.

Set 10.2a

3. Solution: Shortest distance = 17. Route: 1-2-3-5-7.

Set 10.3a

2. (a) Solution: Value = 120. (m!> m2, m3) = (0,0,3), (0,4,1), (0,2,2), or (0,6,0).
5. Solution: Total points = 250. Select 2 courses from I, 3 from II, 4 from III, and 1

from IV,
7. Let Xj = 1 if application j is accepted, and °otherwise. Equivalent knapsack

model is
Maximize Z = 78xl + 64x2 + 68x3 + 62x4 + 85xs subject to

7Xl + 4X2 + 6X3 + 5X4 + 8xs ::-s; 23, Xj = (0,1), j = 1,2, ... ,5

Solution: Accept all but the first application. Value = 279.

Set 10.3b

1. (a) Solution: Hire 6 for week 1, fire 1 for week 2, fire 2 for week 3, hire 3 for week 4,
and hire 2 for week 5.

3. Solution: Rent 7 cars for week 1, return 3 for week 2, rent 4 for week 3, and no
action for week 4.

Set 10.3c

2. Decisions for next 4 years: Keep, Keep, Replace, Keep. Total cost = $458.

Set 10.3d

3. (a) Let Xi and Yi be the number of sheep kept and sold at the end of period i and
define Zi = Xi + Yi'

fn(ZIl) = max{PnYn}
Yn=Zn

)'i$Z,.

CHAPTER 11

Set 11.3a

2. (a) Total cost per week = $51.50.

(b) Total cost per week = $50.20, y* = 239.05 lb.

J.
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4. (a) Choose policy 1 because its cost per day is $2.17 as opposed to $2.50 for
policy 2.

(b) Optimal policy: Order 100 units whenever the inventory level drops to 10 units.

Set 11.3b

2. Optimal policy: Order 500 units whenever level drops to 130 units. Cost per
day = $258.50.

4. No advantage if TCU1(Ym) ::; TCU2(q), which translates to no advantage if the
discount factor does not exceed .9344%.

Set 11.3c

1. AMPLISolver solution: (Yh Yz, Y3, Y4, Ys) (4.42,6.87,4.12, 7.2,5.8), cost =
$568.12,

4 365Dj
4. Constraint: 2:-- ::; 150.

i=l Yi
Solver/AMPL solution: (Yl> Y2, Y3, Y4) = (155.3, 118.82, 74.36, 90.09), cost =

$54.71.

Set 11.4a

1. (a) 500 units required at the start of periods 1,4,7, and 10.

Set 11.4b

3. Produce 173 units in period 1, 180 in period 2,240 in period 3, 110 in period 4, and
203 in period 5.

Set 11.4c

1. (a) No, because inventory should not be held needlessly at end of horizon.
(b) (i) °-::; Zl ::; 5, 1 ::; Z2 ::; 5, 0 :.=:; zJ ::; 4; Xl = 4, 1 -< X2 :.=:; -6,0 :.=:; X3 :::5 4.

(ii) 5 :::; Zl :::5 14,0 -< Z2 :::5 9,0 :.=:; Z3 -< 5; Xl = 0,0 :::5 X2 -< 9,0 :::5 X3 :::5 5.
2. (a) Zl = 7, Z2 = 0, Z3 = 6, Z4 = O. Total cost = $33.

Set 11.4d

1. Use initial inventory to satisfy the entire demand of period 1 and 4 units of
period 2, thus reducing demand for the four periods to 0, 22, 90, and 67, respec
tively. Optimal solution: Order 112 units in period 2 and 67 units in period 4. Total
cost = $632.

Set 11.4e

1. Solution: Produce 210 units in January, 255 in April, 210 in July, and 165 in
October.
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CHAPTER 12

Set 12.1a

1. (a) .15 and .25, respectively. (b) .571. (c) .821.
2. n :> 23.

3. n > 253. "\

Set 12.1b

5
3. 32'

4. Let p = probability Liz wins. Probability John wins is 3p, which equals the prob
ability Jim will win. Probability Ann wins is 6p. Because one of the four wins,
p + 3p + 3p + 3p + 6p = 1.

3
(a) -.

13

(b) :!-.
13
6

(c) 13'

Set 12.1c

3. (a) .375. (b) .6.

7..9545.

Set 12.2a

2. (a) K = 20.

3. P{Demand:=: 1l00} = .3.

Set 12.3a

3. (a) P{50 :::; copies sold:::; 70} = .6667.

(b) Expected number of unsold copies = 2.67

(c) Expected net profit = $22.33

Set 12.3b

1. Mean = 3.667, variance = 1.556.

Set 12.3c

1. (a) P(XI = 1) = P(X2 = 1) = .4, P(xl = 2) = P(X2 = 2) = .2, P(Xl = 3) =
P(X2 = 3) = .4.

(b) No, because P(Xh X2) #- P(XdP(X2)' i
j .

1
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Set 12.4a

1. GFo.
3•.0547.

Set 12.4b

1. .8646.

3. (a) P{ n = O} = O.

(b) P{n :> 3}; 1.

Set 12.4c

1. .A = 12 arrivals/min. P {t ~ 5 sec} = .63.

Set 12.4d

2..001435.

CHAPTER 13

Set 13.1a

1. Weights for A, B, and C = (.44214, .25184, .30602).

Set 13.1b

2. CR > .1 for all matrices except A. (ws, wj, WM) = (.331, .292, .377). Select Maisa.
4. All matrices are consistent. (wH, W p) = (.502, .498). Select H.

Set 13.2a

2. (a) See Figure C13.

(b) EV(corn) = -$8250, EV(soybeans) = $250. Select soybeans.
6. (a) See Figure C.14.

(b) EV(game) = -$.025. Do not play the game.

Corn

Soybeans

U .25 FIGURE C13
$30,000

S .30
$0

D .45 -$35,000

U .25 $10,000

S .30 $0

D .45 -$5000
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FIGURE (,14

.125(HHH)

.125(HHT)

.l25(HTH)

.125(HIT)
Play

.125(THH)

.125(THT)

.125(TIH)

.125(TIT)

Do not play

$3.50

$1.15

$.90

-$1.20

$1.15

-$1.20

-$1.20

-$3.30

$0

12. Optimum maintenance cycle = 8 years. Cost per year = $397.50.
15. Optimum production rate = 49 pieces per day.
19. Level must be between 99 and 151 gallons.

Set 13.2b

2. Let z be the event of having one defective item in a sample of size 5.
Answer: p{Alz} = .6097, p{Blz} = .3903.

4. (a) Expected revenue if you self-publish = $196,000.
Expected revenue if you use a publisher = $163,000.

(b) If survey predicts success, self-publish, else use a publisher.
7. (b) Ship lot to B if both items are bad, else ship lot to A.

Set 13.2c

1. (a) Expected value = $5, hence there is no advantage.
(b) For 0 -< x < 10, Vex) = 0, and for x = 10, Vex) = 100.
(c) Play the game.

2. Lottery: Vex) = 100 - lOOp, with U( -$1,250,000) = 0 and U($900,000) = 100.

Set 13.3a

1. (a) All methods: Study all night (action Ql)'

(b) All methods: Select actions Q2 or Q3'

Set 13.4a

2. (a) Saddle-point solution at (2,3). Value of game = 4.

3. (a) 2 < v < 4.



Chapter 13 785

Set 13.4b

1. Each player should mix strategies 50-50. Value of game = O.
2. Police payoff matrix:

A

B

100%A

100

o

50%A-50%B

50

30

100%B

o
100

Strategy for Police: Mix 50-50 strategies 100%A and 100%B.
Strategy [or Robin: Mix 50-50 strategies A and B. Value of game = $50
(= expected fine paid by Robin).

Set 13.4c

1. (a) Payoff matrix for team 1:

AB AC AD BC BD CD

AB 1 0 0 0 0 -1

AC 0 1 0 0 -1 0

AD 0 0 1 -1 0 0

BC 0 0 -1 1 0 0

BD 0 -1 0 0 1 0

CD -1 0 0 0 0 1

Optimal strategy for both teams: Mix AB and CD 50-50. Value of the
game = O.

3. (a) (m, n) = (Number of regiments at location 1, No. of regiments at locations 2).
Each location has a payoff of 1 if won and -1 if lost. For example, Botto's
strategy (1, 1) against the enemy's (0,3) will win location 1 and lose location
2, with anet payoff of 1 + (-1) = O. Payoff matrix for Colonel Blotto:

3,0 2,1 1,2 0,3

2,0 -1 -1 0 0

1,1 0 -1 -1 0

;
:; 0,2 0 0 -1 -1
~
~

~
j

j~-
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Optimal strategy for Blotto: Blotto mixes 50-50 strategies (2-0) and (0-2), and
the enemy mixes 50-50 strategies (3-0) and (1-2). Value of the game = - .5,
and Blotto loses. Problem has alternative optima.

CHAPTER 14

Set 14.1a

1. (a) Order 1000 units whenever inventory level drops to 537 units.

Set 14.1b

2. Solution: y* = 317.82 gallons, R* = 46.82 gallons.
3. Solution: y* = 316.85 gallons, R* = 58.73 gallons. In Example 14.1-2, y* =

319.44 gallons, R* = 93.61 gallons. Order quantity remains about the same as in
Example 14.1-2, but R* is smaller because the demand pdf has a smaller variance.

Set 14.2a

3. .43 :5 P $ .82
6. 32 coats.

Set 14.2b

1. Order 9-x if x < 4.53, else do not order.

Set 14.3a

2. Order 4.61-x if x < 4.61, else do not order.

CHAPTER 15

Set 15.1a

1. (a) Productivity = 71 %.

(b) The two requirements cannot be met simultaneously.

Set 15.2a

1.

Situation

(a)
(b)
(h)

Customer

Plane
Passenger
Car

Server

Runway
Taxi
Parking space



j
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Set 1S.3a

1. (b) (i) A = 6 arrivals per hour, average interarrival time = ~hour.

(c) (i) j.L = 5 services per hour, average service time = .2 hour.
3. (a) f(t) = 20e-201 , t > O.

(b) p{t > ~~} = .00674.
7. Jim's payoff is 2 cents with probability P{t -< 1} = .4866 and -2 cents with

probability P {t 2: 1} = .5134. In 8 hours, Jim pays Ann = 17.15 cents.
10. (a) P(t -< 4 minutes} = .4866.

(b) Average discount percentage = 6.208.

Set 1S.4a

1. Pn2:s(l hour) = .55951.
4. (a) P2(t = 7) = .24167.

6. (a) Combined A = 1~ + ~, P2(t = 5) = .219.

Set 15.4b

2. (a) poet = 3) = .00532.
(c) Pns,17(t = 1) = .9502.

5. poe4) = .37116.
8. (a) Average order size = 25 - 7.11 = 17.89 items.

(b) poet = 4) = .00069.

Set 1S.5a

3. (a) Pn2:3 = .4445.
(b) PIlS,2 = .5555.

6. (a) Pj = .2,j = 0,1,2,3,4.
(b) Expected number in shop = 2 customers.

(c) P4 = .2.

Set 15.6a

1. (a) L q = Ip6 + 2P7 + 3P8 = .1917 car.
(c) A10s t = .1263 car per hour. Average number lost in 8 hr = 1.01 cars.

8 8

(d) No. of empty spaces = c - (Ls - Lq ) = C - Lnpn + L (n - c)Pn'
11"'0 n=c+l

Set 15.6b

2. (a) Po = .2.
(b) Average monthly income = $50 X j.Lt = $375.
(c) Expected payment = $40 X L q = $128.
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5. (a) Po = .4.
(b) L q = .9 car.

(c) ~ = 2.25 min.

(d) Pn~l1 = .0036.
6. (d) No. of spaces is at least 13.

Set 1S.6c

1. P{-r > I} = .659.

5. $37.95 per 12-hour day.

Set 1S.6d

1. (a) Po = .3654.

(b) ~ = .207 hour.
(c) Expected number of empty spaces = 4 - L q = 3.212.

(d) Ps = .04812.
(e) 40% reduction lowers ~ to about 9.6 min (JL = 10 cars/hr).

4. (a) Pa = .6.
(b) Lq = 6.34 generators.

(c) Probability of finding an empty space cannot exceed .4 regardless of belt ca
pacity.This means that the best utilization of the assembly department is 60%.

7. (a) 1 - Ps = .962.

(b) Alost = APS = .19 customer per hour.

Set 1S.6e

2. For c = 2, ~ = 3.446 hour and for c = 4, ~ = 1.681 hour, an improvement of
over 51 %.

5. Let K be the number of waiting-room spaces. Using TORA, Po + Pl + ... +
PK+2::::: .999 yields K 2': 10.

7. (a) Pn~4 = .65772.
(e) Average number of idle computers = .667 computer.

Set 15.6f

2. (c) Utilization = 81.8%.

(d) P2 + P3 + P4 = .545.
4. (a) P40 = .00014.

(b) P30 + P31 + L + P39 = .02453.
(d) Expected number of occupied spaces = L s - L q = 20.043 - .046 ~ 20.

(f) Probability of not finding a parking space = 1 - Pn:5.29 = .02467. Number of
students who cannot park in an 8-hour period is approximately 4.

..
;

.~
.,
~
,l

,~
..j~-
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Set 15.69

2. (a) Approximately 7 seats.

(b) Pn"28 = .2911.

Set 15.6h

1. (b) Average number of idle repairpersons = 2.01.

(d) P {2 or 3 idle servers} = Po + PI = .34492.

4. (a) L s = 1.25 machines.

(b) Po = .33342.
(c) ~ = .25 hour.

6. A = 2 calls per hour per baby, JL = .5 baby per hour, R = 5, K = 5.
(a) Number of awake babies = 5 - L s = 1 baby.
(b) Ps = .32768.

(c) Pns;,2 = .05792.

Set 15.7a

2. (a) E{t} = 14 minutes and var{t} = 12 minutes2. Ls = 7.8672 cars.
4. A = .0625 prescriptions per minute, E{t} = 15 minutes, var{t} = 9.33 minutes2

•

(a) Po = .0625.

(b) L q = 7.3 prescriptions
(c) ~ = 132.17 minutes.

Set 15.9a

2. Use (M/M/1):(GD/10/1O). Cost per hour is $431.50 for repairperson 1 and $386.50
for repairperson 2.

J¥2A
4. (b) JL = A + -

Cl

(c) Optimum production rate = 2725 pieces per hour.

Set 15.9b

2. (a) Hourly cost per hour is $86.4 for two repairpersons and $94.80 for three.
(b) Schedule loss per breakdown = $30 X W s = $121.11 for two repairpersons

and $94.62 for three.
4. Rate of breakdowns per machine, A = .36125 per hour, JL = 10 per hour. Model

(M/M/3):(GD/20/20) yields Ls = .70529 machine. Lost revenue = $36.60 and
cost of three repairpersons = $60.

Set 15.9c

1. (a) Number of repairpersons 2: 5.
(b) Number of repairpersons 2: 4.
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CHAPTER 16

Partial Answers to Selected Problems

Set 16.1a

4. (a) P{H} = P{T} = .5. ItO ::; R::; .5,Jirngets$10.00.If.5 < R -< 1,Jangets
$10.00.

7. Lead time sampling: It 0 -< R ::; .5, L = 1 day. If .5 < R -< 1, L = 2 days.
Demand per day sampling: If 0 :s R :s .2, demand = 0 unit. If .2 < R ::; .9,
demand = 1 unit. If .9 < R ::; 1, demand = 2 units. Use one R to sample L. If
L = 1, use another R to sample demand for one day, else if L = 2, use one R to
generate demand for day 1 and then another R to generate demand for day 2.

Set 16.2a

1. (a) Discrete.

Set 16.3a

4. See Figure C.I5.

Set 16.3b

1. t = -~ln(1 - R), A = 4 customers per hour.

Customer R t (hr)

1
2 0.0589 0.015176
3 0.6733 0.279678
4 0.4799 0.163434

Arrival time

o
0.015176
0.294855
0.458288

2. t = a + (b - a)R.

4. (a) 0 -< R < .2:d = 0,.2 -< R < .5:d = 1,.5 ::; R < .9:d = 2,.9 :s R -< 1:
d = 3.

9. If 0 ::; R -< p, then x = 0, else x = (largest integer -< In(lln~ R)).

FIGURE C.15

18 48 78 108 138

o

J.,

1
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Set 16.3c

1. y = -!In(.0589 x .6733 x .4799 x .9486) = .803 hour.
6. t = Xl + X2 + X3 + X4, where Xi = 10 + lORi, i = 1,2,3,4.

Set 16.4a

1. In Example 16.4-1, cycle length = 4. With the new parameters, cycling was not
evident after 50 random numbers were generated. The conclusion is that judi
cious selection of the parameters is important.

Set 16.5a

2. (a) Observation-based.
(b) Time-based.

3. (a) 1.48 customers.
(b) 7.4 hours.

Set 16.6a

2. Confidence interval: 15.07 < JL < 23.27.

CHAPTER 17

Set 17.1a

2. S1: Car on patrol
S2: Car responding to a call
S3: Car at call scene
S4: Apprehension made.
S5: Transport to police station

j.,

L

$1

$2

S3

$4

S5

S1

0.4

0.1

0.1

0.4

1

S2

0.6

0.3

{)

()

o

S3

o

0.6

D.S

o

o

S4

o

()

0.4

o

o

S5

o

o

o

0.6

o
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Set 17.2a

Partial Arisvvers to Selected Problems

2. Initial probabilities:

SI

o

S2

o
S3

1

S4

o
S5

o

Input Markov chain:

SI S2 S3 S4 55

51 0.4 0.6 0 0 0

52 0.1 0.3 0.6 0 0

53 0.1 0 0.5 0.4 0

54 0.4 0 0 0 0.6

55 1 0 0 0 0

Output (2-step or 2 patrols) transition matrix. (p2)

S1 S2 S3 S4 55

SI 0.22 0.42 0.36 0 0

52 0.13 0.15 0.48 0.24 0

53 0.25 0.06 0.25 0.2 0.24

54 0.76 0.24 0 0 0

S5 0.4 0.6 0 0 0

Absolute 2-step probabilities = (0010 0)p2

State Absolute (2-step)

51 0.25
S2 0.06
S3 0.25
S4 0.2
55 0.24

P{ apprehension, S4, in 2 patrols} = .2

Set 17.3a

1. (a) Using exceIMarkovChains.xls, the chain is periodic with period 3.
(b) States 1,2, and 3 are transient, State 4 is absorbing.
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Set 17.4a

1. (a) Input Markov chain:

S C R

S 0.8 0.2 0

C 0.3 0.5 0.2

R 0.1 0.1 0.8

Steady state probabilities:

( 7T l> 7TZ, 7T3) = (7Tb 7TZ, '1T3)P
7Tl + 7TZ + 7T3 = 1

Output Results:

Scate Steady state Mean return time

s
C
R

0.50
0.25
0.25

2.0
4.0
4.0

Input Markov chain:

never some always

0.95 0.04 0.01

0.06 0.9 0.04

0 0.1 0.9

never

always

some

Expected revenues = 2 X .5 + 1.6 X .25 + .4 X .25 = $1,500
(b) Sunny days will return every JLss = 2 days-meaning two days on no sunshine.

5. (a)

(b)

Output Results

State Steady slate Mean return time

never
some
always

0.441175
0.367646
0.191176

2.2666728
2.7200089
5.2307892

44.12% never, 36.76% sometimes, 19.11% always
(c) Expected uncollected taxes/year = .12($5000 X .3676 + 12,000 X .1911)

X 70,000,000 = $34,711,641,097.07
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14. (a) State = (i, j, k) = (No. in year -2, No. in year -1, No. in current year),
i, j, k = (0 or 1)
Example: (1-0-0) this year links to (0-0-1) if a contract is secured next yr.

0-0-0 1-0-0 0-1-0 0-0-1 1-1-0 1-0-1 0-1-1 1-1-1

0-0-0 0.1 0 0 0.9 0 0 0 0

1-0-0 0.2 0 0 0.8 0 0 0 0

0-1-0 0 0.2 0 0 0 0.8 0 0

0-0-1 0 0 0.2 0 0 0 0.8 0

1-1-0 0 0.3 0 0 0 0.7 0 0

1-0-1 0 0 0.3 0 0 0 0.7 0

0-1-1 0 0 0 0 0.3 0 0 0.7

1-1-1 0 0 0 0 0.5 0 0 0.5

(b)

State Steady slate

0-0-0 0.014859
1-0-0 0.066865
0-1-0 0.066865
0-0-1 0.066865
1-1-0 0.178306
1-0-1 0.178306
0-1-1 0.178306
1-1-1 0.249629

Expected nbr. of contracts in 3 yrs = 1(0.066865 + 0.066865 + 0.066865)

+ 2(0.178306 + 0.178306 + 0.178306)

+ 3(0.249629) = 2.01932

Expected nbr. of contracts/yr = 2.01932/3 = 0.67311

Set 17.5a

1. (a) Initial probabilities:

1

1

2

o
3

o

4

o
5

o

'i ..,

J



Input Markov chain:
1 2 3 4 5

Chap~er 17 795

0 .3333 .3333 .3333 0

.3333 0 .3333 0 .3333

.3333 .3333 0 0 .3333

.5 0 0 0 .5

0 .3333 .3333 .3333 0

State

1
2
3
4
5

Absolute (3-step)

.07407
.2963
.2963

.25926

.07407

Steady state

.214286

.214286

.214286

.142857
.214286

'i .
"

J

(b) as = .07407
(c) 7TS = .214286
(d) ILlS = 4.6666.

(I - Nfl Mu

1 2 3 5

1 2 1 1 .6667 4.6666

2 1 1.625 .875 .3333 3.8333

3 1 .875 1.625 .3333 3.8333

4 1 .5 .5 1.3333 3.3333

5. (a) Input Markov chain:
A B C

A .75 .1 .15

B .2 .75 .05

C .125 .125 .75

(b)

State Steady state

A .394737
B .307018
C .298246

A: 39.5%, B: 30.7%, C: 29.8%
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(c) (I - N)-l Mu

A C B

A 5.71429 3.42857 A 9.14286

C 2.85714 5.71429 C 8.57143

1 2 C

A 5.88235 2.35294 A 8.23529

B 4.70588 5.88235 B 1.5882

A - B: 9.14 years
A - C: 8.23 years

Set 17.6a

2. (a) States: 1wk, 2wk, 3wk, Library

MatrixP:

1

2

3

lib

1

o

o

o

o

2

0.3

o

o

o

3

o

0.1

o

o

lib

0.7

0.9

1

1

(b) (I - N)-l Mu

1 2 3 lib

1 1 0.3 .03 1 1.33

2 0 1 .01 2 1.1

3 0 0 1 3 1

I keep the book 1.33 wks on the average.

8. (a) MatrixP:

1 2 3 4 F

1 0.2 0.8 0 0 0

2 0 0.22 0.78 0 0

3 0 0 0.25 0.75 0

4 0 0 0 0.3 0.7

F 0 0 0 0 1
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(b) (I - N)-l Mu

1 2 3 4 F

1 1.25 1.282 1.333 1.429 1 5.29

2 0 1.282 1.333 1.429 2 4.04

3 0 0 1.333 1.429 3 2.76

4 0 0 0 1.429 4 1.43

(c) To be able to take Cal II, the student must finish in 16 weeks (4 transitions)
or less. Average number of transitions needed = 5.29. Hence, an average stu-
dent will not be able to finish Cal I on time.

(d) NO,per answer in (c).
10. (a) states:O, 1,2,3, D (delete)

Matrix P:

0 1 2 3

0 0.5 0.5 0 0

1 0.4 0 0.6 0

2 0.3 0 0 0.7

3 0.2 0 0 0

D 0 0 0 0

(b) A new customer stays 12 years on the list.

(I - N)-l

0 1 2 3

0 5.952 2.976 1.786 1.25

1 3.952 2.976 1.786 1.25

2 2.619 1.31 1.786 1.25

3 1.19 0.595 0.357 1.25

(c) 6.96 years.

D

o

o

o

0.8

1

Mu

D

o 12

1 9.96

2 6.96

3 3.39

CHAPTER 18

Set 18.1a

1. (a) No stationary points.
(b) Minimum at x = O.
(e) Inflection point at x = 0, minimum at x = .63, and maximum at x = - .63.



798 Appendix C Partial Answers to Selected Problems

Set 18.2a

Set 18.2b
x2

3. Necessary conditions: 2(Xi - if) =: 0, i = 1,2, ... , n - 1. Solution is Xi =: vtC,
i =: 1,2, ... , n. af =: 28\!C2 - n.

6. (b) Solution (Xl, X2, X3' X4) =: (-;4' -~~, ~1, ~~), which is a minimum point.

Set 18.2c

2. Minima points: (Xl> x2, X3) =: (-14.4,4.56, -1.44) and (4.4, .44,.44).

CHAPTER 19

Set 19.1a

2. (c) X =: 2.5, achieved with £:::. =: .000001.
(e) X =: 2, achieved with £:::. =: .oo1סס0.

Set 19.1b

1. By Taylor's expansion, Vf(X) =: Vf(Xo) + H(X - XO). The Hessian H is inde
pendent of X because f(X) is quadratic. Also, the given expansion is exact because
higher-order derivatives are zero. Thus, '\If(X) =: 0 yields X =: XO - H-1V'f(XO).
Because X satisfies Vf(X) =: 0, X must be optimum regardless of the choice of
initial XO.

Set 19.2a

2. Optimal solution: Xl =: 0, X2 =: 3, z =: 17.

4. Let Wj =: Xj + 1, j =: 1,2,3, VI = WIW2, Vl =: WIW3' Then,
Maximize z =: VI + V2 - 2WI - W2 + 1
subject to Vi + Vl - 2WI - W2 :s; 9, In VI - In WI - In W2 =: 0,

In V2 - In WI - In W3 =: 0, all variables are nonnegative.

Set 19.2b

1. Solution: Xl = 1, X2 = 0, Z =: 4.
2. Solution: Xl =: 0, X2 =: .4, X3 =: .7, Z =: -2.35.
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Set 19.2c

1. Maximize z = Xl + 2X2 + 5x3

subject to 2xl + 3X2 + 5X3 + 1.28y :5 10

9xI + 16x~ - i = 0

7Xl + 5X2 + X3 :5 12.4, Xl> X2, X3, Y ;::: 0

CHAPTER 20

Set 20.1a

1. See Figure C.16.

Set 20.1b

1. Case 1: Lower bound is not substituted out.

X12 Xu X24 X32 X34

Minimizez 1 5 3 4 6

Node 1 1 1 = 50
Node 2 -1 1 -1 = -40
Node 3 -1 1 1 "" 20
Node 4 -1 -1 == -30

Lower bound 0 30 10 10 0
Upper bound 00 40 00 00 00

~
Case 2: Lower bound is substituted out.

f X12 Xu X24 X32 X34

Minimizez 1 5 3 4 6

Node 1 1 1 = 20
Node 2 -1 1 -1 = -40
Node 3 -1 1 1 == 40
Node 4 -1 -1 = -20

Upper bound 00 10 00 00 00

fiGURE C.16

[430] [-100} [-110} [-95] [-125]
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Set 20.1c

Partial Answers to Selected Problems

1. Optimum cost = $9895. Produce 210 units in period 1 and 220 units in period 3.

5. Optimal solution: Total student miles = 24,300. Problem has alternative optima.

Number of students

Set 20.2a

Minority area 1
Minority area 2
Minority area 3
Nonminority area 2
Nonminority area 2

Schooll

a
450

a
1000

a

School 2

500
o

300
o

1000

1. (c) Add the artificial constraint X2 <: M. Then

(Xl> X2) = al(O, 0) + a2(10, 0) + a3(20,1O) + a4(20, M) + as(O, M)

al + a2 + a3 + a4 + as = 1, aj > 0, j = 1,2, ... ,5

2. Subproblem 1: (Xl> X2) = al(O,O) + a2(~' 0) + a3(O, 12)

Subproblem 2: (X4' xs) = f31(5,0) + f32(50,0) + (33(0,10) + (34(0,5)

Optimal solution: at = a2 = 0, a3 = 1 => Xl = 0, x2 = 12

(31 = .4889, (32 = .5111, {33 = {34 = 0 =;> X4 = 28, Xs = 0.

6. Since the original problem is minimization, we must maximize each subproblem.

Optimal solution: (Xl> X2' X3, X4) = (~, ~, 0, 20), z = 195.

CHAPTER 22

Set 22.1a

2. Solution: Day 1: Accept if offer is high. Day 2: Accept if offer is medium or high.
Day 3: Accept any offer.

Set 22.2a

1. Solution: Year 1: Invest $10,000. Year 2: Invest all. Year 3: Do not invest. Year 4:
Invest all. Expected accumulation = $35,520.

4. Allocate 2 bikes to center 1,3 to center 2, and 3 to center 3.

Set 22.3a

3. Solution: First game: Bet $1. Second game: Bet $1. Third game: Bet $1 or none.
Maximum probability = .109375.

,

J
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a.

n.

h.

4:

e.

,,
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CHAPTER 23

Set 23.1a

2. Do not fertilize, fertilize when in state 1, fertilize when in state 2, fertilize when in
state 3, fertilize when in state 1 or 2, fertilize when in state 1 or 3, fertilize when in
state 2 or 3, or fertilize regardless of state.

Set 23.2a

1. Years 1 and 2: Don't advertise if product is successful; otherwise, advertise. Year 3:
Don't advertise.

3. If stock level at the start of month is zero, order 2 refrigerators; otherwise, do not
order.

Set 23.3a

1. Advertise whenever in state 1.

APPENDIX A

SetA.3a

1. rest{i in 1 .. n}: (if i<=n-1 then x[i]+x[i+1] else x[l]+x[n]»=c[i);

Set A.4a

2. See file AAa-2.txt

Set A.Sa

2. Data for unitprofit must be re-read four times with convoluted ordering of
data elements.

24 5 6 4 4
6 5 1 4 2
1 5 -1 4 1

2 5 0 4 1

SetA.Sc

1. Error will result because members of sets paint and resource cannot be read
from the double-subscripted table RMaij.
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100% feasibility rule in Lp, 139
100% optimality rule in LP, 146
6-sigma limits, 479 .

A

Absorbing state. See Markov chains.
Additive 0-1 algorithm, 370
Algorithm, definition of,S
Alternative optima in LP, 116
AMPL, 73-80, 148,216,225,723-748

· current (sensitivity analysis) suffix, 148,748
· down (sensitivity analysis) suffix, 148
·dual suffix, 148
· rc suffix, 148
· slack suffix, 739
· tab file, 740
·up (sensitivity analysis) suffix, 148,748
application models, IRe
conunands command, 148,347,746
components of a model, 724
constraints, 73, 75, 726
data (input) statement, 75, 79, 727
data command, 347, 731
default,275,290,261,730
delete command, 744
diff (set) operator, 735
display command, 76, 79, 730, 745
drop command, 375,744
expand command, 745
expression:

conditional. See if then else.
mathematical, 732

fix command, 347, 394,745

for statement, 261,275,290,397,746
if then else

expression, 78-79, 733
statement, 747

indexed set, 355-356, 736
inter (set) operator, 735
let command, 148, 745
model command, 76, 723
objective function, 73, 75, 725

indexed, 345
param ,75,725
print statement, 79, 739
printf statement, 261, 275, 290, 397, 739
read input data from

keyboard, 738
spreadsheet, 744
table, 739-742
text file, 737

read statement, 737
read table statement, 740
repeat statement, 747
reset command,746
res tore command, 745
sensitivity analysis in linear programming,

148,748
set,

defined, 725
indexed, 736

solve conunand, 76, 723
solvers

CPLEX, 148,355,724
KNITRO,724
LOQO,724
LPSOLVE,724
MINOS, 724

'IBC in page numbers refers to the software summary listed in the Inside Back Cover. The prefiX CD refers
to chapter/appendix material on the accompanying CD.
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AMPL (Continued)
subsets using

conditions, 735-736
union, diff, and inter, 735

table statement, 740
trunc function, 77
unfix command, 394, 745
union set operator, 735
var, 75, 723, 725
variable

defined, 725
bounds on, 727
initial value using :=, 706. See also

let command.
write output data to

spreadsheet, 744
table, 742

wri te table statement, 742, 744
Analytic Hierarchy Process (AHP),490-497

comparison matrix, 492
consistency, 494-495
Excel-based calculations of, 496-497
normalizing a comparison matrix, 493

Applications of OR, selected. See Case analyses.
Art of modeling,S
Artificial constraints in dual simplex method,

178
Artificial variable in simplex method, 104.

See also M-method
Aspiration level criterion in queues, 602
Assignment model, 221-229

relationship to simplex method, 228
traveling salesperson problem, use in,

385-386,392
Attribute in simulation, 612

B

Backward pass in CPM; 283
Balking in queues, 552
Balance equation in queues, 564
Balancing transportation model, 196-197
Basic solution, 86, 88, 300

relationship to corner (extreme) point, 86, 300
Basic variable, 88, 300

Basis, 300. See also Inverse.
vector representation of, 301-302
restricted, 701, 710

Bayes' probabilities, 467, 506-510
Excel-based calculations of,510

Binomial distribution, 475
Poisson approximation of, 477
probability calculations with

excelStatTables.xls,477
Blending and refining model, 51-54.
Box-Muller sampling method for normal

distribution, 619
Bounded variables

definition, 315
dual simplex algorithm for, 321
primal simplex algorithm for, 315-319

Branch-and-bound algorithm,
integer programming, 370-375
traveling salesperson (TSP),392-394

Bridges of Konigsberg, 237
Bus scheduling model, 58

c
Capacitated network model, CDI-14 of Ch. 20

AMPL solution, CD14 of Ch. 20
conversion to uncapacitated, CD9 of Ch. 20
Solver solution, CD14 of Ch. 20
LP equivalence, CD4-6 of Ch. 20
simplex-based algorithm, CD9-14 of Ch. 20

Capital budgeting, 350
Cargo-loading model. See Knapsack model.
Case analysis:

AHP
CIM facility layout, CD118-125 of Ch. 24

assignment model
scheduling trade events, CD89-93 of Ch. 24

Bayes' probabilities
9lsey's medical test evaluation,CD128-131

ofCh.24
decision trees

hotel booking limits, CD125-128 of Ch. 24
dynamic programming,

Weyerhauser log cutting, CD113-118
of Ch. 24
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24

l31

game theory
Ryder Cup matches, CD131-133 of Ch. 24

goal programming
CIM facility layout, CD123-126 of Ch. 24
Mount Sinai hospital, CDl04-108 of Ch. 24

heuristics
fuel tankering, 12, CD79-85 of Ch. 24
scheduling trade events, CD89-93 of Ch. 24

integer programming
Mount Sinai hospital, CD103-l07 of Ch. 24
PFG building glass, CD107-113 of Ch. 24
Qantas telephone sales staffing, 57,

CD139-l44 of Ch. 24
ship routing,CD97-103 of Ch. 24

inventory
Dell's supply chain, CD133-136 of Ch. 24

linear programming
fuel tankering, 12, CD79-85 of Ch. 24
heart valve production, 82, CD86-89

ofCh.24
queumg

internal transport system, CD 136-138
of Ch. 24

Qantas telephone sales staffing, 57,
CD139-144 of Ch. 24

shortest route
saving federal travel dollars, CD93-97

ofCh.24
transportation

ship routing, CD97-103 of Ch. 24
Case studies, CD161-197 of App. E

decision theory, CD188-190 of App. E
dynamic programming, CDl85, CD197

ofApp.E
goal programming, CDI77-178 of App. E
integer programming, CD178-185 of App. E
inventory, CD186-187 of App. E
linear programming, CD161-I66, CD173-176

of App. E
networks, CD171-I?3, CD195 of App. E
transportation, CD167-I71 of App. E
queuing, CD192-195 of App. E

CDF. See Cumulative density function.
Central limit theorem, 479
Chance-constrained programming, 713
Chapman-Kolomogrov equations, 644

Index 805

Chebyshev model for regression analysis, 338
Chi-square statistical table, 751
Chi-square test. See Goodness-of-fit test.
Circling in LP See Cycling in LP
Classical optimization:

constrained, 665-672
Newton-Raphson method, 670

unconstrained,672-689
Jacobian method, 673
Karush-Khun-Tucker conditions, 685
Lagrangean method, 683

Column-dropping rule in goal programming,
343-345

Column-generation algorithm, CD174 of App. E
CPM. See Critical Path Method.
Concave function, CD161 of App. D
Conditional probability, 465
Connected network, 237
Constrained gradient, 675
Continuous probability distribution, 467
Continuous review in inventory, 428
Convex combination, 298
Convex function, CD161 of App. D
Convex set, 298
Corner point in LP, 18. See also Extreme

point in LP.
relationship to basic solution, 86
relationship to extreme point in LP, 298

Correlation coefficient, CD44 of Ch. 21
Covariance, 472
Critical activity in CPM:

definition, 282
determination of, 283

Critical path method (CPM) calculations,
282-284

AMPL-based,289-291
Cumulative density function (CDF),467
Currency arbitrage model, 32-36
Curse of dimensionality in Dp, 424
Cuts in:

integer programming, 379-383
maximum flow network, 264
traveling salesperson problem, 395-396

Cutting plane algorithm,
ILP, 379-383
TSp, 395-396
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Cycle. See loop.
Cycling in LP, 114,116

o
Decision-making, types of:

certainty, 490-497
risk, 500-514
uncertainty, 515-519

Decision trees, 501,507
Decomposition algorithm, CDl6-25 of Ch. 20
Degeneracy, 113. See also Cycling in LP.
Determinant of a square matrix, CD150

ofApp.D
Deviational variables in goal programming, 335
Dichotomous search, 691
Die rolling experiment, 468, 471
Diet problem, 23
Dijkstra's algorithm, 248-250. See also Floyd's

algorithm
Direct search method, 691-694
Discrete distribution, 467
Discrete-event simulation:

languages, 638
mechanics of, 624-629
sampling, 613--621
steady state, 633
statistical observations, gathering

of 633-638
regenerative method, 636
replication method, 635
subinterval method, 634
transient state, 633

Dual price,
algebraic determination o~ 130,159,323
graphical determination of, 124
relationship to dual variables, 170

Dual problem in LP:
economic interpretation:

dual constraint, 172
dual variable, 170. See also Dual price

definition of, 151-155, 322
optimal solution, 159, 161,323
use in transportation algorithm, 220
weak duality theory, 322

Dual simplex method, 174-177. See also
Generalized simplex algorithm.

artificial constraints in, 178
bounded variables, 321
feasibility condition, 174
optimality condition, 174
revised matrix form, 314

Dual variable,
optimal value o~ 159
relationship to dual price, 170,324

Dynamic programming, 399-426,
applications:

equipment replacement, 416-419
inventory

deterministic, 450-457
probabilistic, 545-547

investment, 420-423
knapsack problem, 405-408
mill operation, CD1l4 of eh. 24
shortest route model, 400
work-force size, 413-415

backward recursion, 403
deterministic models, 399-426
dimensionality problem, 424
forward recursion, 403
Markovian decision process, CD59-78 of Ch. 23
optimality principle, 403
probabilistic models, CD47-57 of Ch. 22
recursive equation, 402

E

Economic order quantity. See EOQ.
Edge in LP solution space, 91
Efficient solution in goal programming. 340
Either-or constraint, 364
Elevator problem, 7
Empirical distribution, 481
EGQ:

constrained,440
dynamic,

no setup model,445
setup model, 449-453

static,
classic, 430-434
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Integer programming algorithms {Continued)
implicit enumeration. See Additive algorithm
traveling salesperson, 385-396

branch and bound, 392':·-394
cutting plane, 394-396
heuristic, 389-391

Interior point algorithm, CD27-35 of Ch. 20
Interval of uncertainty, 691
Interval programming, CD175 of App. E
Inventory models:

application, CD135-138 of Ch. 24
deterministic,

EOQ,430-434
constrained EOQ, 440
static, 430-440
dynamic, 445-453
heuristic (Silver-Meal), 457-460

probabilistic,528-548
EOQ,532-537
newsvendor problem, 539-542
s-S policy, 543-545
multiple-period, 545-547

Inventory policy, 427
Inverse of a matrix, CD150-151 of App. D

computing methods,
adjoint, CD151 of App. D
Excel-based, CD156 of App. D
partitioned matrix, CD 155-156

ofApp.D
product form, CD153-154 of App. D
row (Gauss-Jordan) operations, CD152

ofApp.D
determinant of, CD148 of App. D
location in the simplex tableau, 158

Investment model, 37-39, 420-423
Iteration, definition of, 5

J

Jacobian method, 673-680
relationship to Lp, 680
relationship to Lagrangean method, 683

Job sequencing model, 364, 367
Jockeying, 552
Joint probability distribution, 472

K

Kamarkar algorithm. See Interior point algorithm.
Kendall notation, 569
Knapsack problem, 247,405-408
Karush-Khun-Tucker (KKT) conditions, 685
Kolmogrov-Smirnov test, 485

L

Lack of memory property. See Forgetfulness
property.

Lagrangean method, 683
Lagrangean multipliers, 684
Laplace criterion, 515
Lead time in inventory models, 432
Least-cost transportation method, 208
Linear combinations method, 718
Linear independence of vectors, 300
Linear programming:

additivity property, 15
applications, 27-68. See also Case analysis
corner-point solution, 18. See also Extreme-

point solution.
feasible solution, 14
graphical solution of a two-variable model

maximization, 16
minimization, 23

infeasible solution, 14
linearity properties, 14-15
optimum feasible solution, 14
sensitivity analysis. See also Post-optimal

analysis.
graphical,

objective function, 126-128
right-hand side, 123-126

algebraic,
objective function, 139-144
right-hand side, 129-134

dual price, 124, 130, 170,324
reduced cost, 140, 172, 307
using AMPL. See AMPL.
using Solver. See Solver (Excel-based).
using TORA, 146

L
L
L

Iv.
Iv.
Iv.
Iv.
Iv.
Iv
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post-optimal analysis. See also Linear
programming sensitivity analysis.

additional constraint, 185-186
additional variable, 189-190
feasibility (right-hand side) changes,
182-184
optimality (objective function) changes,
187-189

Little's queuing formula, 570
Loop in a network, 237
Lottery in a utility function, 512-514

M

MIDII queue. See Pollaczek-Khintchine formula.
MIMI1 queue, 573-582
MIMIc queue, 582-588
MIMIR queue, 592
M-method, 104. See also Two-phase method
Machine repair queuing model, 592
Majorizing function, 620
Manpower planning model, 57-59. See also

Workforce size.
Marginal probability distribution, 472
Markov process, definition of, 642
Markov chains, 641--664

absolute probabilities, 644
absorption, probability of, 659
closed set, 647
cost-based decision model, 651
Excel-based calculations, 650
first passage -time, 654
initial probabilities, 644
mean return time, 649
n-step transition matrix, 644
steady state probabilities, 646
state classification in Markov chains:

absorbing, 646
transient, 646
recurrent, 646
ergodic, 647
periodic, 646

Markovian decision process, CD58-77 of Ch. 23
Exhaustive enumeration solution, CD64 of Ch. 23
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linear programming solution, CD73-77
ofCh.23

policy iteration method, CD67-73, of Ch 23
Materials requirement planning. See MRP
Mathematical model, definition of, 3, 12
Matrices, CD145-157 of App. D

addition of, CD147 of App. D
product of, CD147-148 of App. D
simple arithmetic operations, review of, 156-157
Excel-based manipulations, CD156 of App. D

Maximal flow model, 264-269
algorithm, 264
AMPL solution of, 273
cuts in, 264
Solver solution of, 273
LP formulation, 273

Maximization, conversion to minimization, 100
Maximin criterion, 516
Mean return time. See Markov chains.
Mean value, 471. See also Expected value,

definition of.
Military planning, 66
Minimal spanning tree algorithm, 239
Mixed cut, 383
Mixed integer problem, 350
Modeling

art of, 5
levels of abstraction in, 5

Monte Carlo simulation, 60S--609
Moving average technique, CD37-39

of Ch. 21
MRp,444
Multipliers, method of, 212. See also

Transportation algorithm
Multiplicative congruential method for random

numbers, 622

N

Needle spinning experiment, 468, 471
Network definitions, 236
Networks LP representation,

capacitated network, CD1-3 of Ch. 20
critical path method, 292
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Networks LP representation (Continued)
maximum flow, 273
shortest route, 257

Newsvendor problem, 539-542
Newton-Raphson method, 670
Nonbasic variable, 88
Nonlinear programming algorithms, 691-722
Nonnegativity restriction, 14
Non-Poisson queues, 595, 597
Nonsingular matrix, 300, CD152 of App. D
Normal distribution, 478

calculations with exceIStatTables.xls, 480
statistical tables, 785

Northwest-corner method, 208

o
Observation-based variable in simulation, 628
Optimal solution, 3,14
OR study, phases of, 8
OR techniques, 4-5

p

Parametric programming, 326-332. See also
Linear programming: sensitivity analysis

Partitioned matrices,
inverse, CD155 of App. D
product of, CD148 of App. D

Path in networks, 237
pdf. See Probability density function.
Penalty method in LP. See M-method
Periodic review in inventory, 428
PERT. See Program evaluation and review

technique.
Poisson distribution, 476, 556-558

approximation of binomial, 476
calculations with .exceIStatTables.xls, 477
truncated, 561

Poisson queuing model, generalized, 563
Policy iteration, CD65, 68,71 of Ch. 23
Pollaczek-Khintchine formula, 595
Posterior probabilities. See Bayes' probabilities

Post-optimal analysis, 181-190. See also
Parametric programming.

Preemptive method in goal programming, 341
Price breaks in inventory, 436
Primal-dual relationships in LP, 156-161,

303-305
Primal simplex algorithm. See Simplex

algorithm
Principle of optimality, 403
Prior probabilities, 506. See also Bayes'

probabilities
Probability density function:

definition of,467
joint, 472
marginal,472

Product form of inverse, CD155 of App. D
in the revised simplex method, 310

Production-inventory control
multiple period, 44, 201

with production smoothing, 46
shortest route model, viewed as a, 247
single period, 42

Probability laws
addition, 464
conditional, 465

Probability theory, review of, 463-488
Program evaluation and review technique

(PERT),293-296
Pseudo-random numbers, 623
Pure birth model, 556-559
Pure death model, 560--562
Pure integer problem, 350

Q

Quadratic forms, CD157-158 of App. D
Quadratic programming, 708-713
Queue discipline, 552
Queuing models., 549-604

decision models, 597-604
aspiration level, 602
cost, 598

generalized model, 563-566
machine service model, 592



;!

L

multiple-server models, 582-592
single-server models, 573-582,595
non-Poisson models, 595,597

R

Random variables:
definition of, 467,
expected value, 469, 472
standard deviation, 470
variance, 470

Random number generator, 622
Reddy Mikks model, 12
Reduced cost, 140, 172, 307
Regression analysis, CD42-44 of Ch. 21

using mathematical programming,
65,338

Regret (Savage) criterion, 516
Reneging in queues, 552
Reorder point in inventory, 432
Residuals in network, 264
Resource, types of:

scarce, 98
abundant, 98

Restricted basis, 701, 710
Revised simplex method,

dual, 314, 321
primal, 309-313

Risk, types of,
averse, 512
neutral, 512
seeker, 512

Roundoff error in simplex method, 105, 109

s
s-S policy, 543-545
Saddle point, 522
Sample space in probability, 463
Sampling in simulation, methods of:

acceptance-rejection, 620
convolution, 616
inverse, 613

Index 811

normal distribution transformation,
Box~Muller,619

Sampling from distributions:
beta, 621
discrete, 614
Erlang (gamma), 617
exponential,614
geometric, 616
normal,618
Poisson, 617
triangular, 616
uniform, 615
Weibull,616

Savage criterion. See Regret criterion
Secondary constraints, 186
Seed of a random number generator, 623
Self-service queuing model, 590
Sensitivity analysis in:

dynamic programming, 408
Jacobian method, 679
linear programming. See Linear

programming.
Separable programming, 699-707

convex, 704
Set covering problem, 354
Shadow price. See Dual price
Shortest-route problem

algorithms
Dijkstra's,248
DP,400
Floyds's, 251
LP,257
transshipment, 231

applications, 243-246
computer solution using

AMPL,261
Soiver,258
TORA, 250,255

Silver-Meal heuristic, 457
Simplex algorithm. See also Generalized

simplex algorithm
entering variable, 92,94, 307
feasibility condition, 95,99,307
Gauss-Jordan row operations, 95
leaving variable, 92, 95, 307
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Simplex algorithm (Continued)
ratios, 94
optimality condition, 94, 99, 307
steps of, 100, 309

Simplex method, types of,
dual, 174,314,321
generalized, 180
primal,93-100
revised, 309

Simplex multiplier, 212. See also Dual price
Simplex tableau, 93

layout of, 158
matrix computation of, 165-166
matrix form of, 303

Simultaneous linear equations, types of
solutions, 300-302

Simulation, 5. See also Discrete-event
simulation.

Slack variable, 82
Solver (Excel-based), 69-73

application models, IBC
Spanning tree, definition of,237

basic solution in capacitated network,
CD10 of Ch. 20

State classification. See Markov chains.
Statistical tables, 749-751

chi-square, 751
Excel-based (16 pdfs), 471, 475, 477,

478,480
normal, 749
student t, 750

Steepest ascent method. See Gradient method
Stage in DP, definition of, 400
State in DP, definition of, 402
Steady-state in

Markov chains. See Markov Chains
queuing. See Queuing models.
simulation. See Discrete event simulation.

Stock-slitting problem. See Trim-loss problem
Strategies in games, mixed and pure, 522
Student t statistical tables, 750
Suboptimal solution, 3
SUMT algorithm, 721
Surplus variable, 83

T

Tankering (fuel), 12, CD83 of Ch. 24
Time-based variable in simulation, 628
Tool sharpening model, 202-204
TORA models, IBC
TOYCO model, 129
Traffic light control, 65
Transient period in simulation, 633
Transition probability. See Markov chains.
Transition-rate diagram in queues, 564
Transportation model:

algorithm, 206-215
applications, 194,201-204
balancing of, 196
definition, 194
LP equivalence, 195
solution using,

AMPL,216
Solver, 216

tableau, 195
Transpose of a matrix, CD147 of App. D

Excel-based calculations, CD156 of App. D
Transshipment model, 229-230
Traveling salesperson problem, 385-397

algorithm,
B&B,392-394
cutting plane, 395-396
heuristics, 389-390

subtour, 386
tour, 386

Tree, definition of, 237
Trim-loss problem, 60. See also Column

generation model
Triple operation (Floyd's algorithm), 252
TSP. See Traveling salesperson problem.
Two-person zero-sum game, 521
Two-phase method, 108. See also M-method.

u

Unbounded solution in LP, 119,323
Unit worth of a resource. See Dual price.

,i
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Uniform distribution, 468
Unrestricted variable, 84

in goal programming. See Deviational
variables.

Upper-bounded variables, 315
Urban renewal model, 27-30
Utility functions, 512-514

v

VAM. See Vogel approximation method.
Value of a game, 522
Variables, types of:

artificial, 104
basic,88
binary, 370
deviational, 335
integer, 350
nonbasic, 88
slack,82
surplus, 83
bounded, 315
unrestricted, 84
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Variance of a random variable, 470-471
Vectors, CD145 of App. D

linear independence, 300, CD146 of App. D
Vogel approximation method (VAM), 209

w
Waiting line models. See Queuing models.
Waiting time distribution, first-come

first-serve, 577
Warm-up period, see Transient period.
Water quality management, 66
Weak duality theory, 322
Weights method in goal programming, 338
Wilson's economic lot size. See EOQ.
Workforce size model using DP, 413-415

z
Zero-one integer problem,

conversion to, 370
Zero-sum game, 520
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Assignment model, chSFiles
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Manpower planning at Qantas, ch24Files
Mt. Sinai Hospital, ch24Files
PGF Glass optimization, ch24Files
Set covering, ch9Files'
Ship routing, ch24Files
Trim loss (interactive), AppenEFiles

Linear Programming models
Bus scheduling, ch2Files
Currency arbitrage, ch2Files
Fuel tankering, ch24Files
Heart valves production, ch24Files
Reddy Mik,ks model, ch2Files
Trim loss (interactive), AppenEFiles
Urban renewal, ch2Files

Nonlinear programming models
Constrained EGQ, chiiFiles
NLp, chI9Files

Network models
CPM, ch6Files
Maximum flow, ch6Files
Min-cost capacitated network, ch20Files
Shortest route, ch6Files .

Transportation model, chSFiles
Traveling salesperson problem (TSP)

Bran~h and bound (interactive), ch9Files
Cutting plane, ch9Files

Excel:
AHp, ch13Files
Bayes' probabilities, dl13Files
Decisions under uncertainty, ch13Files
Search methods

Dichotomous, chI9Files
Golden section, chi9Files
Newton-Raphson, ch18Files

Histogramming, ch2IFiles
Inventory,

Continuous review, ch14Files
EOQ, chi1Files
General Dp, chllFiles
Wagner-Whitin Dp, chllFiles
Silver-Meal Heuristic, chllFiles

Knapsack problem, DP, chiOFiles
Matrix manipulation, AppenDFiles
Markov chains

Absolute probabilities, ch17Files
Absorption probabilities, chI7Files
First passage time, chI 7Files
n-step transition matrix, ch17Files

Excel (cont.)
steady-state probabilities, chI7Files

Moving average method, ch21Files
Queues,
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P-K formula, chI5Files
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Simulation,

Monte Carlo (area of a circle), chI6Files
Single server queue, ch16Files
Multi-server queue, ch16Files
Random number generator, chl6Files
Regenerative (cycles) method, chl6Files

Statistical tables, "electronic", chl2Files
TSP heuristic, ch9Files

Solver:
Constrained EOQ inventory model, chilFiles
Integer programming B&B, ch9Files
Linear programming models

TOYCO, ch3Files
Reddy Mikks, ch3Files
Sensitivity analysis, ch3Files
Currency arbitrage model, ch2Files
Urban renewal, ch2Files

Network models
Maximum flow, ch6Files
Min-cost capacitated network, ch20Files
Shortest route, ch6Files

Quadratic programming, chl9Files
Stochastic programming, chl9Files
Transportation model,
Tora:
Equipment replacement, ch5Files
Integer programming models

B&B, ch9Files
Capital budgeting, ch9Files
Set covering, ch9Files
Fixed Charge, ch9Files
Either-or, ch9Files
TSP cuts, ch9Files

Linear programming models
Bounded variables, Ch7Files
Diet, ch2Files
M-method, ch3Files
Reddy Mikks, ch2Files
Sensitivity analysis, ch3Files
TOYCO, ch3Files

Network models
CPM, ch6Files
Maximum flow, ch6Files
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New for the Eighth Edition:

" AMPL, the powerful commercial modeling language, has been
integrated throughout the book using numerous examples
ranging from linear and network to integer and nonlinear
programming. The syntax of AMPL is given and the content
is cross-referenced within the examples in the book.

" Chapter 2 is dedicated to linear program modeling, with
applications in the areas of urban renewal, currancy arbitrage,
investment, production planning, blending, scheduling, and
trim loss. This chapter includes end-of-section problems that
deal with topics ranging from water quality management and
traffic control to warfare.

" Chapter 3 presents the general LP sensitivity analysis in a
simple and straightforward manner as a direct extension of
the simplex tableau computations.

'J Chapter 4 is now dedicated to LP post-optimal analysis based
on duality.
An Excel-based combined nearest neighbor-reversal heuristic
is presented for the traveling salesperson problem.

" Markov chains treatment has been expanded in a new
Chapter 17.

" ApproXimately 50 end-of chapter mini-cases of real-life
situations are included. There are more than 1000 end-of
section problems in the book.

" Each chapter starts with a study guide that facilitates the
understanding of the material and the effective use of the
accompanying software.

~ Excel spreadsheet implementations are used extensively
throughout the book. The interactive user input in some
spreadsheets is designed to promote a better understanding
of the underlying techniques.

r· The use of Excel Solver has been expanded significantly
throughout the book, particularly in the areas of linear,
network, integer, and nonlinear programming.

<> The totally new Chapter 24, on the CD, presents 15 fully
developed real-life applications. The analysis, which often
cuts across more than one OR technique, deals with the
modeling, data collection, and computational aspects of
solVing the problem. These applications are cross-referenced
in pertinent chapters to provide an appreciation of the use of
OR techniques in practice.

<> TORA continues to play the key role of tutorial software.
~ All computer-related material has been deliberately

compartmentalized either in separate sections or as
AMPUExcel/SolverfTORA moment subsections to minimize
disruptions in the main presentation in the book.
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