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PREFACE

Historically, thermal engineering has been somewhat arbitrarily divided into thermody-
namtics, fluid mechanics, and heat transfer due to specialization that has occurred in the
profession. In recent years there has been renewed interest in teaching the field in a more
integrated way. Traditional intreductory textbooks in these three disciplines each approach
1000 pages in length, include many topics that are seldom covered in one- or two-semester
disciplinary courses, and address many advanced topics that are not appropriate for intro-
ductory courses. Our experience teaching these subjects at Rensselaer indicated that many
students failed to see the connections between the three topics; subsequently, we introduced
a two-course sequence that presented the three topics in an integrated manner. Students
responded well to the new approach and their understanding improved. To further aid our
students, we saw a need to write a textbook reflecting the integrated approach.

This textbook is a fresh approach to the teaching of thermal and fluids engineering
a8 an integrated subject. Our objectives are to:

* present appropriate material at an introductory level on thermodynamics, heat
transfer, and fluid mechanics

* develop governing equations and approaches in sufficient detail so that the students
can understand how the equations are based on fundamental conservation laws and
other basic concepts

= explain the physics of processes and phenomena with langnage and examples that
students have seen and used in everyday life

» integrate the presentation of the three subjects with common notation, examples, and
homework problems

* demonstrate how to solve any problem in a systematic, logical manner

Features

An integrated approach: As can be illustrated in countless engineering systems, specific
applications may need only thermodynamics, heat transfer, or fluid mechanics. However,
many other applications require the integration of principles and tools from two or more
of these disciplines. We use unifying themes to tie the text together so that boundaries
between disciplines become transparent. For example, the first law is presented with a
common notation and format as it applies in thermodynamics, fluid mechanics, and heat
transfer. By necessity, topics are introduced in the context of their disciplines. However,
exarnples and problems are given that illustrate how the three disciplines are integrated in
practice.

An emphasis on problem solving: Students learn by problem solving, and the text features
arich collection of example problems (over 150) and end-of-chapter exercises (over 850).
The problems range from the simple (to illustrate one concept or point) to the complex
{to show the need for integration, synthesis of topics and tools, and the use of a logical
problem solution approach). Some of the example problems are industrially relevant; these
example problems and other practical engineering applications are used throughout the
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text to provide motivation to the students, to illustrate where and when certain equations
and topics are needed, and to demonstrate the power and utility of basic concepts. Other
problems, which relate to the student’s personal experience and to established technologies,
are used to develop physical understanding. Finally, many types of tried-and-true problems,
which have been staples in thermal-fluids curricula for many years, are incorporated. The
example problems include, at the beginning of the solution, a discussion of the thought
process used to arrive at a solution procedure. This teaches the student to first focus on a
global understanding of the solution (that is, an identification of all the tasks and parameters
needed and a path to follow) instead of immediately looking up properties or applying an
equation. In addition, assumptions are given in the context of the solution rather than at the
beginning of the example.

A flexible organization: 1t is important for students to have good motivation for studying a
subject and to be able to place in context the concepts and tools presented. Thus, Chapter
I is an introduction that describes numerous engineering applications that require thermo-
dynamics, heat transfer, and/or fluid mechanics, as well as basic concepts and definitions
used throughout the book. The next three chapters (Chapter 2, The First Law; Chapter 3,
Thermal Resistances; Chapter 4, Fundamentals of Fluid Mechanics) are intended to give
the student an introduction to the three disciplines so that reasonable problems can be pre-
sented and solved early in the book. The remaining chapters delve into the topics in more
detail and rigor, and integrated examples and problems are given.

The text is suitable for a single semester introduction to the subject or a twa-semester
sequence of courses. The approach is appropriate for both majors and non-majors. The text
is designed to support a wide variety of syllabi and course structures. After Chapters 2-4,
there are multiple paths through the book depending on the curricular needs (see the figure
below). Chapter 2, which focuses on the first law, is absolutely essential to all students.

1. Introduction

2.The First Law

3. Thermal Resistances
4. Fundamentais of Fluid

Mechanics
5. Thermedynamic Properties 9. Internal Flow |_| 12.Convection 11, Conduction
6. Application of the Energy 10. External Flow Heat Transfer Heat Transfer
Equation to Open Systems 14. Radiation
7. Cycles and the Second Law Heat Transfer
8. Refrigeration, Heat Pump
and Power Cycles

Y

18.ldeal Gas Mixtures
and Combustion

Y

13.Heat Exchangers
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In Chapter 3, heat transfer is introduced with a strong emphasis on thermal resistances.
This chapter includes some of the most useful concepts in heat transfer. Chapter 4 presents
the conservation equations of mass, momentum, and energy in open systems and is the
gateway to further study in both thermodynamics and fluid mechanics. After Chapter 4,
four chapters on thermodynamics are presented; Chapters 5~8 focus on thermodynamic
properties, steady flow devices, and thermodynamic cycles. While these are essential topics
in some engineering disciplines, (e.g., mechanical and aeronautical engineering) they are
much less important in others (e.g., electrical and civil engineering). If the course is designed
for electrical engineering students, the instructor could skip Chapters 5-8 and proceed
directly to Chapter 9 on internal flow. By design, Chapters 2 through 4 present enough of
the rudiments of thermodynamics to allow students access to fluid mechanics (Chapters 9
and 10) and heat transfer (Chapters 11-14) without further thermodynamic study. On
the textbook website, www.wiley.com/college/kaminski, supplementary material is given
that expands or extends information given in the first 14 chapters. Chapter 15 (Ideal Gas
Mixtures and Combustion) presents material on ideal gas mixtures, psychrometrics, and
basic combustion calculations. Each chapter ends with a concise and useful summary of
the important concepts and equations developed in that chapter.

Supporting Material: The textbook has a solution manual to all end-of-chapter exercises;
the solutions are complete and detailed. Note that we have included problems (and
appendices) in both SI and English units. While we would have preferred to use only SI
units, in the United States there are still many companies and industries that resist change;
we believe that students should be exposed to both unit systems because neither we nor the
students know where they will be working once they graduate. Many reference tables of
fluid and solid properties are given in the appendices.

The text is augmented with web-based material to extend the coverage of topics. The
sections that are available on the text website are included in the Table of Contents. Titles for
these sections also appear in the text at the appropriate locations with a reference to the web
address: www.wiley.com/college/kaminski. The material on the website is optional and is
not necessary to preserve the continuity of the material in the printed text. End-of-chapter
problems based on the web material are included in the Problems section at the end of each
chapter and are designated by WEB after the number.
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CHAPTER 1

INTRODUCTION TO THERMAL
AND FLUIDS ENGINEERING

1.1 OVERVIEW OF THERMAL AND FLUIDS SYSTEMS

In thermal—fluids systems, the focus is on energy: its use, conversion, or transmission in
one form or another. For example, consider a few of the energy flows in a car. Gasoline is
stored in a tank until ifs energy is needed to move the vehicle from one place to another,
and then the gasoline is pumped from the tank to the engine. In the engine the fuel is
burned, and some of the released chemical energy is converted to useful mechanical power
to propel the car. Mechanical power is also extracted to drive: the waler pump used in the
engine-cooling system; the alternator to provide electrical power for the CD player, lights,
cooling fan motor, and fuel pump; and the air-conditioning system,

Cars of the 21st century are dramatically improved over those of the early 1900s. The
advances in engineering are the result of improved technical knowledge and the systematic
application of this knowledge. The intelligent use of basic thermal and fluids engineering
principles has improved the design of cars and other thermal-fluids systems as diverse
as buildings, window air conditioners, oil refineries, electrical power plants, computers,
airplanes, wind turbines, water distribution systems, plastic injection molding machines,
and metal processing plants (Figure 1-1).

To analyze these systems, one, two, or three energy disciplines are needed, separately
or in combination. These disciplines are:

Thermodynamics The study of energy use and transformations from one form to
another and the physical properties of substances (solids, liquids, gases) involved
in energy use or transformation

Heat fransfer The study of energy fiow that is caused by a temperature difference

Fluid mechanics The study of fluids (liquids, gases) at rest or in motion and the
interactions between a solid and a fluid either flowing past or acting on the solid
in some manner

‘We can use the automobile to illustrate how these three subjects must be used together
and separately. To begin an analysis, we must decide what aspect of the car we want
to study. Is it the engine, the radiator where heat is removed from the engine coolant
and released into the atmosphere, the water pump, the fuel supply system (pump, fuel
lines, fuel injector), the air-conditioning system, or the passenger compartment? Do we
want to examine the water-cooling system to determine what is needed to pump water
through the engine-cooling system, the heat transfer from the water to the air flowing
through the radiator, the conversion of the chemical energy in the gasoline to mechan-
ical power in the engine, the energy contained within the exhaust gases, the refrigerant
flow in the air-conditioning system, or the air flow through the air-conditioning system
into the passenger compartment? Clearly, we need to identify carefully what we want to
study.

T
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FIGURE 1-1 Typical thermal-fluids systems: {a) office building, {b} wind turbines, (c) F-22
fighter aircraft, {d} room air conditioner, (e) desktop computar.
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FIGURE 1-2 Schematic of engine watercooling system.

Letus consider several of these car systems or subsystems. The water-cooling system
(Figure 1-2) includes four main components: a water pump, the engine block, the radiator,
and the radiator fan. Pipes connect the first three components, and there are water passages
inside the engine block. A thermodynamic analysis of the engine would tell us how much
heat must be removed from the engine block by the water and rejected by the water in
the radiator to the air flowing throngh the radiator. Heat transfer analysis would tell us the
number and size of passages needed in the engine block to remove the heat and would
permit us to determine the necessary size of the radiator. Fluid mechanics would help us
determine the pressure that must be produced by the water pump to overcome resistance to
flow in the water passages, pipes, and water side of the radiator and by the fan to overcome
the flow resistance on the air side of the radiator. Fluid mechanics also would tell us the
power required to drive both the water pump and the fan.

Perhaps our focus is on a single piston-cylinder agsembly in the engine, an idealized
drawing of which is given in Figure 1-3. Thermodynamics would tell us how much energy
might be extracted from a given amount of fuel. Fluid mechanics would be used to determine
how effectively fresh fuel—air mixtures are inducted into the piston—cylinder through the
intake valves and expelled through the exhaust valves. Heat transfer would be used to
determine the energy loss from the hot combustion gases to the cooler cylinder walls.

We can examine another system—a house—to illustrate a different way in which the
three governing disciplines must be used together (Figure 1-4). Consider the systems needed

Intake valve  Spark plug Exhaust valve

Cylinder

FIGURE 1-3 Schematic drawing of
piston-cylinder assembly,
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to maintain a comfortable environment inside the house. By analyzing the construction of
the walls and roof, we learn what heat transfer can tell us about how much heat will enter
the house on a hot summer day. A thermodynamic analysis will tell us the size of the air
conditioner needed to maintain the temperature and relative humidity inside the house.
Fluid mechanics will tell us the size of the fan required to push the air through the air
conditioner and the ducts needed to disiribute the cooled air throughout the house.
Perhaps we want to focus on the air conditioner itself (Figure 1-5). This device is
composed of two heat exchangers, a compressor, and a valve across which the refrigerant
expands. A thermodynamic analysis would tell us how much electric power is needed to
obtain a desired amount of cooling. A heat transfer analysis would tell us how big to build
the two heat exchangers. The fluid dynamics analysis would tell us how big the pipes
connecting the components must be, as well as the needed compressor characteristics.

Air to remove heat from
\ / reirigerant

Heat exchanger
(condenser)

Cool refrigerant Hot refrigerant

Throttling valve + Electricity

Heat exchanger Electric motor

(evaporator) T
Cold refrigerant \/\/\/\

/ \Air to be cooled

FIGURE 1-5 Schematic of vaporcompression refrigeration cycle.

Compressor
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FIGURE 1-8 Sketch of a computer heat sink.

On a smaller scale, consider a cooling system used in computers (Figure 1-6). The
computer chips and power supply must be cooled so that the reliability of the system is
not compromised. One common cooling approach is to force air through the computer
case to remove unwanted heat. A thermodynamic analysis of each chip, power supply, and
component can tell us the amount of energy that must be removed from inside the computer
case 80 that the temperature of the air surrounding electronic components will not exceed a
given level. Heat transfer analysis will tell us what heat sink designs, fins, or other cooling
techniques are needed to maintain the components at a safe temperature. Fluid dynamics
will tell us the fan size needed to draw air through an air filter and blow the air over all the
componerts and out of the computer case.

1.2 THERMAL AND FLUIDS SYSTEMS
ANALYSIS AND ENGINEERING

Additional descriptions, similar to those given in the previous section, can be given of
large industrial systems (e.g., power plants, oil refineries, chemical processing plants) and
industrial processes (e.g., heat treatment of metals, food preparation) that would illustrate
how thermodynamics, heat transfer, and fluid dynamics are all needed in their design.
Indeed, it is the integrated use of these three disciplines that is required for rational and
complete analysis of many systems.

Whenever an engineer is given an assignment to design a new device or troubleshoot
an existing process or predict the performance of a system, the objective of the investigation
must be very clear. Likewise, which aspect of the device, process, or system on which
to focus must be well defined. A systematic approach to the whole analysis is needed.
Figure 1-7 shows a flow diagram of the steps engineers typically take when analyzing and
engineering a thermal fluids system. We always begin with the physical system (e.g., the
engine of a car). That is reality. The engineer’s job is, first, to translate the physical system
into a physical model and, second, to describe the physical model with a mathematical
model. The actual physical system may be so complex that it is impossible to fully describe
each part and/or process. However, an engineer must obtain an answer, a solution, so
he/she must use assumptions and experience to simplify the system sufficiently so that
it can be modeled. Once a physical model is developed, then physical laws that govern
the process (e.g., a force, momentum, mass, or energy balance) are used to create the

Vo
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FIGURE 1-7 Analysis and engineering of thermal fluids systems.

{Adapted from K. Craig, “Is anything really new in mechatronics education?” {EEE Robotics & Automation
Magazine, Vol. 8, No. 2, pp. 12-19, 2001. ©2001 |IEEE. Used with permission.)

mathematical model, which is solved for the quantity being sought. The steps involved in
defining the object being studied and identifying the processes involved in the investigation
aid in quantifying/identifying the terms in the physical laws governing the analysis.

Once the mathematical model is developed and solved, the design and analysis loop
would be closed by (ideally) comparing the model predictions with experimental data
obtained from the actual operating device. If the model and experimental data agree suffi-
ciently well, then the design would be complete, However, if there were disagreement, then
the model would need to be modified or, perhaps, the measurements made in the experiment
checked to ensure that valid data had been obtained. As shown in the figure, design and
analysis are not a sequential process. Feedback and revisions are very common.

This texthook focuses on the tasks included in the shaded box in Figure 1-7. In the
sections and chapters to follow, we show how to reduce a physical system to a physical
model, and we show how the three primary disciplines—thermodynamics, heat transfer,
and fluid dynamics—are used to organize thinking and to develop mathematical models.
By necessity, topics are introduced in the context of their disciplines. However, exam-
ples and problems illustrating how the three disciplines are integrated in practice are
given.

1.3 THERMODYNAMICS

Thermodynamics can be considered the unifying idea for the solution of thermal-fluids
system problems. The governing concepts are: conservation of mass, conservation of energy
(also called the first law of thermodynamics), and the second law of thermodynamics. Before
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we can discuss these concepts, we must set up a systern and terminology for approaching
the subject logically. We begin with identifying what we want to study.

The object we analyze is called a system (Figure 1-8). The region in space that
contains the system is called the control volume. For example, the system may be an entire
car or just its engine or only one piston—cylinder assembly in the engine. We may identify a
complete oil refinery to examine. Likewise, we may wish to examine a particular pump or
a heat exchanger in the refinery. A more detailed need may require us to determine what is
occurring in one tube inside a heat exchanger. Whatever we want to examine, it is important
to specify carefuily what that system is. We do this by drawing a boundary (sometimes
called a control surface) around the object. This line can follow the actual surface of the
object or it might follow an imaginary path around the device or assembly of devices.
Everything inside this line is the system; everything outside this line is the surroundings.
Our analysis is dictated by the choice of the boundary, and several different boundaries might
be chosen. One system boundary may have some advantages over another. Nevertheless,
correct application of governing principles will result in identical results being obtained
from the analyses. The choice of the boundary helps to establish what processes are involved
and to quantify terms in the physical laws governing the process.

In thermodynamics, we can identify three types of systems. A closed system
(Figure 1-9a) is one in which no mass crosses the boundary. Energy in any form can
pass through the boundary. For example, suppose we want to determine how long it would
take to boil water in a pan on a stove. We add a fixed mass of water to the pan and cover
it with a perfectly sealing lid. (Ignore the air in the pan.) We identify the boundary as the
inside surface of the pan and lid, and the system is only the water. We now turn on the
stove. Heat transfer {from the gas flame raises the temperature of the water until it begins to
boil. Because of the 1id, the amount of water (mass) in the system does not change; it is the
same mass as at the beginning of the heating. A slightly more involved example could be a
piston—cylinder assembly, similar to what is used in an engine. We assume there is perfect
sealing between the piston and the cylinder and between the inlet and exhaust valves and
cylinder head, so that no gas can escape from the assembly. We define the boundary to
follow the walls of the cylinder and the top of the piston, so that the system is only the gas
contained in the piston—cylinder assembly. Heat is added, and the piston moves because of
the temperature increase in the gas. In both of these examples, the mass of the system is
fixed. The volume of the first system (pot of water) is constant; the volume of the second
system (piston-cylinder assembly) changes. Heat crosses the boundary in both systems. In
the second system, mechanical work also crosses the boundary. (From physics, mechanical
work, W, is defined as a force operating through a distance, and a force operates on the

]
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piston-face force due to the pressure in the cylinder.} All this information may be needed
to analyze these two systems.

An open system is one in which both mass and energy can pass through the boundary.
For example, consider an energy balance on a car engine. We define the boundary as
shown on Figure 1-9b. Mechanical power preduced by the engine crosses the boundary
at the crankshaft. Energy leaves the system at the radiator, and there is heat transfer to
the surroundings at other locations on the engine. Air enters the system through the intake
manifold, and hot gases leave through the exhaust pipe. Hence, mass, heat, and work all
cross the boundary. It should be noted that work and heat are defined only at boundaries.

Another example is an energy balance on a computer. The cooling fan draws air into
the case. The air is heated by the electrical energy dissipation in the electronic components
and then is blown out of the case. Electricity {a form of work) crosses the boundary to run
the computer. In addition, the case itself may be hotter than the surroundings, and heat
transfer occurs from the case.

The third type of system is an isolated system. Neither mass nor energy crosses its
boundary. Consider a mixing process as shown in Figure 1-10. Two tanks are connected by
a pipe in which a closed valve is placed. Each tank contains a gas at a given temperature
and pressure. When the valve is opened, the gases mix and attain a common pressure and
temperature. With a boundary drawn around both tanks and the connecting pipe, no mass
crosses the boundary. Likewise, we could insulate the system so there is no heat transfer,

FIGURE 1-10 Example of an isolated
system.
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and we do not do any work on the system either. Hence, the system does not interact
with its surroundings in any way. This system could be a simplified physical model of a
chemical processing step in a chemical plant, in which fixed amounts of the gases are mixed
together,

The various devices described above undergo some sort of process. The water in the
pan is heated. Power is extracted from the expanding air in the piston—cylinder assembly.
Heat is transferred from the electronic components in a computer to the air flowing over
them and is blown into the room surrounding the computer. A process occurs whenever
some property of a system changes or if there is an energy or mass flow across the boundary
of the system. In the boiling water example, the properties that change are the temperature
of the water and the total energy in the water. Because the properties of interest are different
between the start and finish of the process (at different times), this is called an unsteady (or
transient) process (Figure 1-11). In the computer-cooling example, both mass and energy
(heat and electrical work) flow across the boundary. The property of interest may be the
temperature of the air. The air temperature changes with location (from inlet to exit) but
does not vary with time at either inlet or exit. This is called a steady process.

An electric power plant has an impressive assembly of pumps, turbines, heat exchang-
ers, pipes, valves, controls, and so on. How would we start an analysis of such a complex
installation? A simpler device to analyze may be one of the turbines used in the power plant
(Figure 1-12). Again, the question is: How would we start an analysis of such a device?
While the photograph of the turbine is interesting, an engineer must translate this picture
into something that can be used in an analysis. In addition, the engineer must organize
any and ail information about the system being analyzed. One of the simplest ways to
accomplish both tasks is to draw a schematic diagram of the system. The purpose of a
schematic diagram is to show the relationship and/or interactions among the various pieces
of equipment, flow streams, and energy transfers. A schematic of a power plant is shown in
Figure 1-13. This drawing does not show the actual physical layout or size of the equipment.
It shows only the relationships between parts. In addition, information about the equipment,
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FIGURE 1-11 Two types of process: {a) steady, and (b} unsteady.
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FIGURE 1-12 Gas turbine.

fiows, or operating conditions is shown. Note that each piece of information is uniquely
identified with a variable name and subscript. For example, pressures are specified at five
locations, which are indicated with a subscripted number. A schematic of a gas turbine is
shown in Figure 1-14. In this schematic, the boundary is indicated, mass and energy flows
across this boundary are noted, and data are uniquely identified.

Many problems are too difficult to solve with all their real complexity. However, an
engineer is expected to analyze the problem and obtain a reasonable or an approximate
solution. Again, consider the internal combustion engine described above and the analysis
of a single piston—cylinder assembly. We used the sentence: "We assume there is perfect
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FIGURE 1-13 Schematic of a Rankine power cycle.
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FIGURE 1-14 Schematic of a gas turbine. FIGURE 1-15 Blackbox representation
of the gas turbine given in Figure 1-14.

sealing between the piston and the cylinder and between the inlet and exhaust valves and
cylinder head, so that no gas can escape from the assembly.” If we did not make this
assumption, then we could not analyze this problem in a simple manner. We would need
to (somehow) estimate the amount of gas that leaks past the piston. An assumption is used
to simplify a problem. It can be considered a limitation or a restriction on the general
applicability of the result obtained. Assumptions must be reasonable and justifiable. It
would be all too easy to assume away the whole problem. Hence, the task of the engineer is
to make enough appropriate assumptions to render the problem solvable, but not so many
as to invalidate the result because the simplified system is too far from the actual situation.

In thermodynamics, we use what is called a blackbox analysis. Once we define the
boundary around the object of our analysis, we infer characteristics of the system or what
is happening inside the system by accounting for all the processes that take place across the
boundary. That is, we account for mass flows into or out of the system, the energy flowing
along with this mass flow, any mechanical work or power that crosses the boundary in either
direction, and heat transfer into or out of the system across the boundary. Figures 1-14 and
1-15 are schematics of a gas turbine. The analysis of these two systems would be identical,
even though they hardly resemble the gas turbine shown in Figure 1-12.

The identification of the object, the definition of a boundary, the making of assump-
tions, the drawing of a schematic, and the recognition of the processes involved all are
intended to aid you in analyzing a system. It helps immensely if we visualize the system
and physically interpret or describe what is occurring. The task of analysis is much simpler
if we take time at the beginning to think about what is going on, rather than jumping in and
writing with little forethought.

1.4 HEAT TRANSFER

Heat is transferred wherever there is a temperature difference between two points in a
substance, whether that substance is a solid, liquid, gas, or plasma. Three types of heat
transfer can occur—conduction, convection, and radiation—but regardless of the mode
of heat transfer, a temperature difference drives the process. The amount or rate of heat
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transfer depends on the magnitude of the thermal resistance between the two points. For
many systems, only one mode of heat transfer is needed in an analysis. In others, two or
all three modes of heat transfer may be involved; this is called muftimode heat transfer.
The magnitude of heat transfer can vary from the 1-2 W typical in a computer chip to
over 3x 10° W in an electric power plant boiler. While thermodynamics uses the blackbox
analysis described above, in heat transfer we must get closer to the process and look at more
details of the process. Below are qualitative descriptions of the three modes of heat transfer.

Conduction heat transfer occurs in all substances, including solids, liquids, and gases

and is energy transfer due to molecular vibrations within the material. A few examples of
conduction heat transfer are:

]

In a northern environment in the winter, the inside of a house is warmer than the
outside. Energy is lost by conduction through the walls, but the loss is minimized
with the use of insulating materials (Figure 1-16).

In cold weather, people wear coats to stay warm. Body heat is conducted through the
coat material out to the air. The coat is designed to minimize conduction.

The temperature of a computer chip must be maintained below a specified temper-
ature to ensure chip reliability. A heat sink (see Figure 1-6) is mounted on a chip to
conduct away unwanted thermal energy (due to electrical power dissipation in the
chip) that could impair its operation. Heat then is removed from the heat sink by air
blowing over it.

Large hydroelectric dams are constructed of concrete. The curing (or drying) of con-
crete is an exothermic reaction; that is, when concrete dries, it produces heat. Thermal
expansion could crack the dam if too large a temperature nonuniformity occurred.
Hence, a conduction heat transfer analysis is used to estimate the temperature distri-
bution in the dam, and this information is used with a stress analysis in the dam design.

Some machine tools are built from exotic metals that must have specific material
properties, including a very hard surface and a softer core. When hot steel is removed
from a furnace, the metal is quenched (cooled rapidly) at a specified cooling rate.
The gradients in the properties depend, among other things, on the size of the grain
structure in the solid. Grain growth and, hence, the material properties depend on
the rate of cooling. A conduction heat transfer analysis can predict the temperatare
variations in the solid as a function of time.

Convective heat transfer occurs whenever a moving fluid (liquid or gas) flows past a

solid surface that is at a temperature different from the fluid. A few examples of convective
heat transfer are:

L]

When you run hot water over your hands, your skin temperature rises. Convective
heat transfer from the hot water to your cooler hands causes the temperature rise.

FIGURE 1-16 A typical wall construction.
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+ In the manufacturing of optical fibers, a long thin filament of glass is drawn continu-
ously from a high-temperature furnace. The moiten glass must be cooled before the
fiber can be coated with a protective seal. This is accomplished by blowing cold gas
over the fiber.

* In the winter, houses often have drafts of cold air along the floor. Heat transfer from
a warm house to the cold outside air causes a decrease in the air temperature near the
inside wall. Due to this cooling, the density of the air near the wall increases, and
buoyancy causes this air to flow downward. Hotter air from near the ceiling replaces
the cooled air, and a circulation cell is formed. This moving air past the solid surface
results in natural convection heat transfer (also called free convection heat transfer).
"Natural” means that buoyancy forces induce flow.

Whereas convection and conduction require some sort of material for heat transfer to
occur, radiation heat transfer can occur in the presence of a vacuum or in the presence of
a transparent or semitransparent solid, liquid, gas, or plasma. A few examples of radiation
heat transfer are:

* On a clear summer day, the interior of a car with all its windows closed will have a
much higher temperature than the outside air. Solar energy passes through the car win-
dows (Figure 1-17), is absorbed by the interior seats, and then is reemitted. However,
the reemitted energy cannot pass through the glass as easily as the solar energy. Hence,
the trapped energy raises the air temperature. This is called the greenhouse effect.

* Concerns about global warming revolve around an energy balance and the greenhouse
effect on the earth. The sun supplies radiant heat (solar energy) to the earth. How
much radiant heat passes through the atmosphere to the earth from the sun or from
the earth to outer space depends on the radiation characteristics of the atmosphere,
which is changed by its chemical composition.

* Infrared radiant heaters are often used in industrial drying or curing processes to
maintain product quality and to save energy. The radiant heat given off is similar to
the radiant heat given off by a campfire, a white-hot sheet of metal as it is removed
from a furnace, or the sun.

* Laser machining of materials is a technique in which precise contouring of surfaces

can be obtained through the selective application of radiant energy. The laser beam
heats and vaporizes the material being machined,

Radiant energy
from the sun
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FIGURE 1-17 The greenhouse
effect causes high temperatures
inside the passenger cabin,
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Heat transfer is intimately coupled to thermodynamics through the first law of
thermodynamics. Thermodynamics concepts might be used for an overall analysis—a sort
of standing back and looking at the big picture from a distance. Heat transfer analysis
requires moving closer in to look at a process in more detail, and information developed
with these concepts is then used in the thermodynamic analysis.

1.5 FLUID MECHANICS

Fluid mechanics is often divided into two general areas, one associated with fluids at
rest—hydrostatics—and the other addressing relative motion between a fluid and a solid
surface—fluid dynamics. In each case, we deal with a substance—a fluid—that will deform
or change shape if a shear (or tangential) force is applied to it, no matter how small this
force is. A fluid will not necessarily deform if we apply a normal force to it. One way
to visualize this is to consider a stack of 500 sheets of paper. If we push down normally
(perpendicularly) on the stack with our finger, nothing moves. However, if we lay our hand
on the stack of paper and push sideways (parallel to the sheets), the sheets will slide over
each other and the stack changes shape.

Hydrostatics (or fluid statics) deals with forces exerted by a stationary fluid on a solid
surface. A few examples follow:

« The Monterey Bay Aquarium is a 326,000-gallon tank in which hundreds of fish
from all over the world are displayed. To design the frames and support structure
around the viewing windows, and to help determine the required window thickness,
hydrostatics is used to calculate the forces on the window. In another example, the
forces exerted on a dam (Figure 1-18) must be calculated so that the strength required
to hold back the reservoir is engineered into the dam.

» Many systems have internal pressures different from that outside. Examples include
aircraft fiying at high altitudes, spacecraft, submarines, pipelines, helium tanks, and
so on. Forces acting on the surfaces separating the two pressures can be calculated
using hydrostatic principles.

¢ Hydraulic systems used in car and aircraft brakes, car hoists, and other hydraulic
machinery employ hydrostatics principles to calculate forces and the amplification
of these forces.

Fluid dynamics deals with the forces needed to push a fluid inside a conduit or past
a solid surface. A few examples follow:

 Car manufacturers advertise how aerodynamically efficient their vehicles are. Fluid
mechanics principles are used to estimate the drag forces on a car and to suggest ways
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FIGURE 1-18 Schematic of a hydroelectric power plant.
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to modify the car body shape. Likewise, plane builders need to know both the drag
and the lift forces acting on their designs (Figure 1-19) so that wings and fuselages
are appropriate for their needs and engines can be specified accordingly. Likewise,
golf ball manufacturers use fluid dynamics principles to design the dimples for the
best performance of the ball.

* If the dam in Figure 1-18 is used for hydroelectric power generation, a pipe (the
penstock) conveys the water from the reservoir to the water turbine, which extracts
energy from the flowing water. Fluid mechanics principles and techniques are used
to calculate the size of the penstock, the water turbine, and the power that can be
extracted from the flowing water.

 Home and car air conditioners have fans that blow air through their cooling coils, The
cooled air is circulated into the conditioned space. How "big" a fan is needed depends
on the flow rate of air desired, the flow path, and the resistance to flow present in the
flow path.

» Incities, utilities supply water to countless buildings of every size over a wide geo-
graphic area (Figure 1-20). Many kilometers of piping and countless valves are used.
Efficient distribution of water, the pressures required, the pipe thickness, and the
power required to drive the pumps are determined with fluid dynamics.

Fluid mechanics is coupled to thermodynamics throngh the conservation of mass,
the first law of thermodynamics, and the second law of thermodynamics. In addition,
conservation of momentum is used for some fluids problems. As with heat transfer, fluid
mechanics concepts often require an up-close examination of details, and this information
then 1s used in a larger view of a process.
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400,350
Burn < Length in %X
P Diameter in mm

100 /s
FIGURE 1-20 Water

& distribution pipeline network
75ls  in a neighborhood.
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EXAMPLE -1

Assumptions:

lilustration of system identification and analysis

Consider the electric hot water heater in a house, as shown in the figure below. Because the water
is at a temperature greater than its surroundings, there Is heat transfer at all times {rom the tank,
and the heat transfer rate depends on the temperature of the water inside. If the temperature in the
tank falls below the thermaostat set point, the heater is turned on, and it is turned off when the water
temperature reaches the set point. At different times during the day, water may or may not flow
through the water tank, and the electric heating element may or may not be activated. Fot this hot
water heater, identify three different control volumes, and describe the processes, mass flows, and
energy flows that occur during different operating modes throughout the day.
Cold water

(temperature
constant)

Hot water

e Electricity

Approach:

Examining the hot water heater and the functions and processes involved in its operation, we can
identify three distinct systems to analyze: the electric heater, the water in the tank, and the water
plus the heater. For these chosen systems, we then can describe the processes involved. When hot
water is withdrawn and sufficient cold water enters, the heater is turned on. When the hot water is
shut off, the water temperature in the tank is below the thermostat set point, so the heater remains
on. Finally, when the water reaches the set point, the heater is turned off. Heat conducts through the
insulation around the tank and convects into the surrounding air until the water temperature falls
below the set point again, and the heater is reactivated.

Solution:

a) Define a contro] volume around only the electric heater, as shown in the figure below.

T, -~ -
water — <— Electricity

I
Heat A/r ' —

transfer - LN Boundary

When the heater is on, electricity (an energy flow we call work) crosses the boundary into the
system. The electrical resistance in the heater converts the electricity to thermal energy (Joulean
heating), and the heater temperature increases to a value greater than that of the water. Because ofthe
temperature difference, there is heat transfer from the heater to the water across the systemn boundary.
No mass crosses the boundary, so this is a closed system. If we consider the heater immediately afier
the heater is turned on, the system would be transient (changing with time) because the temperature
of the electric heater increases with time. If we consider the heater after it has been on for a long
time, then the system would be steady because no system property (temperature, mass, energy
content) changes with time.

Iy} Define a control volume around enly the water in the hot water tank, as shown below.

Cold water
(temperature Hot water
constant)
Boundary
- Heat transfer
TSUH’

- Electricity



A1. No heat transfer
from the tank to the air.

1.5 FLUID MECHANICS 17

If someone in the house is using hot water, then we have an open system, because mass (water)
crosses the boundary in two places. Energy flows along with the water flows. There is heat transfer
from the hot water through the insutated tank wall to the surroundings, becaunse the water temperature
would be much higher than that of the surroundings. However, if the tank is heavily insulated, we
might simplify the problem by ignoring this heat transfer [Al].

When hot water is removed from the tank and cold water enters, we would have a transient
system, because the average temperature level of the water in the tank would decrease with time.
If the hot water temperature drops below the temperature set on the thermostat, then the electric
heater would turn on, and there would be heat transfer from the heater to the water; again, this is a
transient process.

Generally, electric heaters are not large enough to raise the water temperature to the thermo-
stat setting while water flows through the tank continuously. Therefore, after a long time period
with hot water being drawn out of the tank, cold water being added, and the electric heater oper-
ating, the hot water outlet temperature would reach a constant temperature, and we would have a
steady-state, open system.

If no hot water is withdrawn from the tank, then no mass crosses the boundary, and we have
a closed system. Heat transfer from the tank to the surroundings would occur, and the tempera-
ture of the water in the tank would drop. Hence, this would be a transient system. If the water
temperature dropped sufficiently, then the electric heater would turn on to raise the water temper-
ature. The operating heater results in a second heat transfer process, and the system would still be
transient,

¢) Define a control volume around the electric heater and the water in the tank.

Cold water

(temperature Hot water
constant)
/Boundary

) 7’>— Heat transfer

TSU{T

Electricity

If hot water is being used, then this is an open system, because mass crosses the boundary; energy
flows along with the two water flows. With the electric heater turned on, there is only one heat transfer
process, which is from the hot water to the surroundings because of the temperature difference across
the boundary. There is ro heat transfer from the electric heater to the water, because that energy
flow is not across a boundary. The electricity crosses the boundary and must be taken into account,
as we did in part a. We identify electricity crossing a boundary as work,

Depending on how the hot water heater is operated, such as described in part b, the system
defined as the water and electric heater could also operate as a closed system (no water withdrawn),
Likewise, the system could be transient or steady state.

Comments:

For this simple device, the choice of the boundary will affect what we analyze, what processes
occur, and how we will need to account for the energy and/or mass flows. As shown, we could
have a transient or a steady-state system, heat transfer or no heat transfer, and an open or a closed
system. The choice of a boundary is usnally dictated by what is sought from the analysis. As
long as you are careful with your analysis, the chosen boundary will have no effect on the final
answer.

[N
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18 CHAPTER1

SUMMARY

INTRODUCTION TO THERMAL AND FLUIDS ENGINEERING

In countless engineered systems, some aspect of thermody-
namics, heat transfer, and fluid mechanics is used. Only one
discipline might be needed for a specific application, or the prin-
ciples and tools from all three disciplines might be required in the
development of a reasonable solution to a design and/or analysis
of a system. To design any of the above examples or to model or
investigate their performance, three steps are always required:
(1) The problem must be given thought, information organized,
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P1-1 For the following systems, define a control volume and
state whether the system is open or closed and steady or unsteady.
Identify any and all heat transfer, energy flows, mass flows, and
energy transformations.

a. Rocket _

b. Pot of boiling water with no lid
¢. Portable space heater with fan
d. The jet airplane in Figure 1-1c
e. The house in Figure 1-4

P1-2 Describe some of the thermal-fluids systems in a typical
residence, define a boundary, and describe the energy and/or
mass flows associated with them.

P1-3  For the following four systems, define a control volume,
state whether the system is steady or unsteady, is open or closed,
has constant volume or changing volume, and has constant fluid
density or changing fluid density. Also, identify all heat transfer,
encrgy flows, and mass flows.

a. Swimming pool being filled (Choose one control volume as
the whole pool; then choose a second controi volume, one
surface of which follows the surface of the rising water.)

b. Helium tank being filled

¢. Helium balloon being filled

P1-4 A thermal solar energy system consists of a solar collec-
tor on the roof of a house, a hot water storage tank to store hot
water, a heat exchanger through which the hot water passes, a fan
that blows air through the heat exchanger to heat the house, and a

pump to circulate water through the complete system. Define
several different control volumes around different individual
pieces of equipment or collections of equipment, and identify
whether the control volume is steady or unsteady, open or closed;
what heat transfer, energy flows, mass flows, and energy trans-
formations occur; and whether the volume is constant or varying.

Solar collector

Heat
Storage exchanger
fank
Pump
i

P1-5 In hydroelectric plants, electric power is generated from
the fiow of water from a reservoir, such as shown in Figure 1-18.
The water flows continuously with a seemingly endless supply.
How is the water replenished? Where does the energy in the
water come from that is converted to electrical power?



P1-6 The radiater of a car is a heat exchanger. Energy from the
hot water that flows through the heat exchanger is transferred to
the cooler air that also flows through the radiator. For the three
control volumes defined below, state whether the system is steady
or unste ady, open or closed, and what heat transfer, energy flows,
mass flows, and energy transformations occur.

a. Water

b. Air

¢. Complete heat exchanger

Cold

air
A AMN———
— AW ——
.- Hot

water

P1-7 An acorn is planted in the ground. After many years,
the acorn grows into a mighty oak tree. Define a system, and
describe the processes involved. Where did the mass in the tree
come from?

P1-8 A Rankine cycle power plant is shown schematically
in Figuiere 1-13. For the control volumes defined below, state
whether the system is steady or unsteady, open or closed,
and what heat transfer, energy flows, mass flows, and energy
transformations occur.

a. Electic generator

b. Steam generator

¢. Comiplete turbine

d. All the equipment shown

P1-9 .Avapor-compression refrigeration cycle, similar to what
is used in airconditioning systems, is shown schematically in
Figure £-5. Forthe control volumes defined below, state whether
the system is steady or unsteady, open or closed, and what heat
transfer, ¢energy flows, mass flows, and energy transformations
occur.

a. Electric motor

b. Refrigerant flowing through condenser
¢, Complete condenser

d. Thretiling valve

e. All the equipment shown

P1-10 A hot cup of coffee is placed on a tabletop to cool.
Define acontrol volume, and state whether the system is steady
orunsteady, open or closed, and what heat transfer, energy flows,
mass fleows, and energy transformations occur.

P1-11 The water in a canal lock is at the downstream river
level amnd the gates are opened. A boat enters the lock, and the
downstream gates are closed. A valve is opened, and water from
upstreaxn flows into the lock, raising the boat. After the water
reaches the upstream river level, the upstream gates are opened,
and the boat travels upstream. Finally, the first valve is closed
and a sezcond valve is opened, allowing the water in the lock to
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drain to the downstream river level. Another boat arrives from
downstream, and the process is repeated. Neglect the energy
required to open and close the gates and valves, Where does the
energy come from to raise the boat?

Closed gate Open gate
{Upstream <
. river —dgh
? i 5 Downstream !
Closed Open  'ver
valve valve
Start of process
Closed gate

:Upstream
L river

'

Downstream ;

Open gate A

.
Open Closed
valve valve

End of process

P1-12 A closed pan of cold water is placed on a burner of
an electric stove, which is already turned on. For the control
volumes defined below, state whether the system is steady or
unsteady, open or closed, and what heat transfer, energy flows,
mass flows, and energy transformations occur,

a. Pan of water
b. Burner
c¢. Pan of water plus burmer

P1-13 Water from a home swimming pool is pumped through
a filter and returned to the pool. If the system is all the water in
the poot and filter, is this an open or closed system? If the system
is just the water in the filter, is this an open or closed system?

P1-14 Wind turbine systems, such as shown in Figure 1-1b,
consist of a wind turbine, an electric generator connected to the
wind turbine, and a power line connecting the generator either
to the electrical grid or to battery storage. In a steady wind, for
the control volumes defined below, state whether the system is
steady or unsteady, open or closed, and what heat transfer, energy
flows, mass flows, and energy transformations occur.

a. Wind turbine

b. Battery

¢. Electric generator

d. Wind turbine, electric generator, and electrical grid

€. Wind turbine, electric generator, and battery

P1-15 Global warming has been in the news much in recent
years. Define an appropriate control volume to study this system
and state whether it is steady or unsteady, open or closed,
and what heat transfer, energy flows, mass flows, and energy
transformations occur,

Ty
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THE FIRST LAW

2.1 THE FIRST LAW OF THERMODYNAMICS

20

The central organizing idea of thermodynamics is the principle of conservation of energy.
This one idea is vital to understanding an enormous range of processes. In the absence of
nuclear reactions, in which mass is converted to energy, total energy is always conserved
under all circumstances, regardless of the form of energy. Conservation of energy is so
important in thermodynamics that it is called the first law of thermodynamics.

In this chapter, the first law for a closed system will be introduced. As defined earlier,
a closed system consists of a fixed amount of mass. No mass enters or leaves the system.
In a closed system, the first law may be expressed as

AE=Q-W 21

where AE is the change in all forms of energy stored in the system, ( is the net energy that
is added to the system in the form of heat, and W is the net energy that leaves the system in
the form of work. Eq. 2-1 applies to a process that takes place over a finite time interval. The
quantity Q is the net heat that is added during this time interval, and the quantity W is the
net work done during the time interval; Q and W could be positive or negative depending
on the direction of the net energy flow of each quantity. The change in stored energy, AE,
is the difference between the energy of the system at the end of the process and the energy
of the system at the start of the process.

A simple schematic that illustrates the first law for a closed system is shown in
Figure 2-1. The system is the mass contained within the dotted line. Heat and work are
forms of energy that cross the system boundary, while E is a form of energy that is stored
within the system boundary. The first law is a balance among these various forms of energy.

It states that:
change in\ _ fenergy \ ({energy
energy ~ \entering leaving
The energy, E, stored in the system consists of three components: kinetic energy,

potential energy, and internal energy. Kinetic energy, KE, is due to the velocity of the
system and has a magnitude given by

1,02 2-2)

where m is the total mass and < is the magnitude of the velocity of the system relative to
an inertial reference frame. In this text the magnitude of the velocity vector will always be
designated as <" to distinguish it from volume, V. The change in kinetic energy during a
process may be expressed as

AKE = %m‘?/"% — ym? (2-3)

I
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FIGURE 2-1 The stored energy in this closed system changes from E; to £; as time goes from
t to t; {AE = E, — Er). Q is the net energy entering as heat between t; and t, while W is the net
energy leaving as work between # and .

Potential energy, PE, is due to the elevation of the system in a gravitational field and
is given by

PE =mgz (2-4)

where g is the acceleration of gravity and z is the elevation above a reference plane. The
change in potential energy during a process is

APE = mgzy — mgz (2-5)

Internal energy, U, is energy stored at a molecular or atomic level. There is no simple
expression for internal energy that applies to all cases. In single-phase materials such as
solids, liquids, or gases, the internal energy depends primarily on the temperature. Internal
energy is also stored in chemical bonds and in the attractive forces between the molecules
of solids and liquids.

If kinetic, potential, and internal energy are substituted into Eq. 2-1, the result is:

AKE+ APE+AU=0-W (2-6)

where AKE is the change in kinetic energy, APE is the change in potential energy, and -

AU = U — U, is the change in internal energy of the system. Much of the discussion
in this chapter and the next is devoted to explaining each of the five forms of energy in
Eq. 2-6 and showing how they interact in a wide variety of applications. But, before formal
definitions and detailed explanations are given, a few examples of the use of Eq. 2-6 are
presented. This approach develops an intuitive understanding of the first law and will be a
useful introduction to the study of thermal and fluid systems.

Consider a gas contained in a piston—cylinder assembly as shown in Figure 2-2. We
define the closed system as the gas, Its boundary is indicated by a dotted line. The piston,
on which a weight rests, is free to rise or fall. At the start of the process, the gas is at
temperature 7. When heat is added, the gas in the cylinder expands, and the temperature
of the gas increases to 75.

In this process, there is no change in kinetic or potential energy. Therefore, the first
law becomes

AU=Q-W
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| Gas at Ty I

! [

L—o — = FIGURE 2-2 Conversion of heat into work
Q > T, and internal energy in a piston-cylinder

a) Start of process b) End of process assembiy.

As the gas expands, it does work in lifting the weight and in pushing against atmospheric
pressure. The work occurs at the boundary, specifically at the boundary between the gas and
the face of the piston. Heat is also transferred at a boundary, that s, at the bottom surface of
the piston—cylinder assembly as shown in Figure 2-2. During the process, the temperature
of the gas rises. Higher-temperature gas has more internal energy than lower-temperature
gas. Unlike heat and work, the internal energy is stored throughout the volume of the gas. In
effect, the added heat has been converted into work, which leaves the system, and internal
energy, which is stored in the system.

In this example, the heat added to the system has been considered to be a positive
quantity, Conversely, if heat were removed, then the heat would be a negative quantity.
This sign convention will be used throughout the text:

o heat transfer to a system is positive
e heat transfer from a system is negative

Note that if no heat transfer occurs, the system is called adiabatic. Work is also subject to
a sign convention, which is

o work done by a system is positive
s work done on a system is negative

These comventions are arbitrary. If we had defined work done by a system as negative,
then the minus sign on the right hand side of Eq. 2-1 would become a plus sign. A good way
to remember the sign convention is to think of an automobile engine. Heat is transferred
to the engine during combustion of the gasoline. Work is done by the engine to drive the
wheels, In our convention, both are positive quantities. When you worked a statics problem,
you often had to assume the direction of a force on a free-body diagram. For heat and work,
we always assume a consistent direction and let the sign of the quantity tell us the actual
direction.

In Figure 2-3, the example system from Figure 2-2 is modified to include a
paddlewheel and heat loss to the surroundings. The boundary is defined as the surface
that covers the inside of the cylinder and also encloses the paddlewheel blades. Thus the
system is all the gas in the cylinder. The paddlewheel does work on the gas by stirring it. If
we assume the gas is at a temperature higher than the sarrounding air and the sides of the
cylinder are not thermally insulated, then heat is lost from the gas through the wall. There
are two heat interactions shown in Figure 2-3. The quantity Q) is the heat added through
the bottomn of the cylinder @, and the quantity Oz is the heat lost through the side walls
0.~ Both of these heats cross the boundary, but at different locations, There are also two
work interactions. The work W, is the work done by the paddlewheel on the gas Wi, This
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/Qau:

/—Cylinder

FIGURE 2-3 Gasina
piston-cylinder assembly
with a paddlewheel.

work occurs at the boundary of the gas, where it contacts the paddlewheel surfaces. The
work W; is the work done by the gas pushing against the piston and elevating it W,,,. This
work also crosses the boundary, but at a different location.

In Eq. 2-1, Q is the net heat added to the system and W is the net work done by the
system. The net heat is the sum of all the individual heat interactions across the boundary,

that is
Q=> 0
n
where n is the number of interactions, The net work is the sum of all the individual work

interactions, or
W= E Wj
N

For example, suppose 8 kJ of heat are added through the bottom of the cylinder in
Figure 2-3 and 2 kJ of heat are lost through the sides. Then the net heat transfer is

Q=) Qi=Qi+0 =@k)+(—2K)=6K

Note that (5 is negative because heat is leaving the system. Further suppose that the
paddlewheel does 5 kJ of work on the gas and the gas does 9 kJ of work in raising the
piston. Then, the net work is

W= "Wi=Wi+W=(-5kD+OkD=4K

n

In this case W, is negative because the paddlewheel is doing work on the system,
while W is positive because it is work done by the system on the piston and surroundings.
The change in internal energy for this process is

AU=0-W=6kI—4kl =2k

In an actual physical system, there would be additional heat loss from the gas into
the blades of the paddlewheel, To account for this heat loss, an additional term would have
to be included in the equation.

We describe heat, work, and stored energy with units of energy. Two systems of units
will be employed in this text, the Standard International System (SI), used throughout the

Il
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EXAMIPLE 2-1

Assumptions:

A1, Kinetic energy is
negligible.

A2. Potential energy is
negligible.

CHAPTER 2 THE FIRST LAW

world, and the British system, used primarily in the United States. Practicing engineers
typically must be capable of using either system. In the ST unit system, energy has units of
joules (I).

In the British system, heat and stored energy are typically measured in British thermal
units, or Bte. Work is ordinarily measured in ft-bf, where 1bf means “pounds-force.”
Unfortunately, mass in the British system is also usually measured in “pounds.” Although
the same word is used, in fact these two “pounds” are very ditferent. In this text, the symbol
Ibm will be used to designate pounds-mass and the symbol 1bf will designate pounds-force.
More will be said about the relation between lbm and Ibf later in the chapter. Although
work is usually measured in fi-1bf and heat and stored energy are usually measured in
Biu, in fact, both fi-1bf and Btu are units of energy. Units of Btu can be converted into
fi-1bf using

1 Btu = 778.169 fi-1bf

Compression with heat transfer and shaft work

A gas is contained in a piston—cylinder assembly. The gas is compressed when 670 I of work are
done on it. Over the same time period, a paddlewheel does 182 I of work on the gas and the internal
energy decreases by 201 J. How much heat has been transferred during this process? Was the gas
heated or cooled?

W, =670

=

AU=-201J

Approach:

Define the gas as the control volume, Use the first law, assuming kinetic and potential energies are
negligible. Pay careful attention to the signs of all terms. Calculate the net heat transfer. If this is
positive, the gas has been heated. If it is negative, then the gas has been cooled.

Solution:

The system is the gas in the cylinder. Assuming no Kinetic or potential energy changes [A1][A2],
the first law is

AU=0Q0 - W
The change in internal energy may be written as
AU=U - U,

where [/, is the internal energy at the end of the process and U is the internal energy at the stari of
the process. Because the internal energy decreases, Uz < {1 and AU is negative. Thus

AU = -2011
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Both the piston and the paddlewheel do work on the gas. By the sign convention, work done on a
system is negative. The net work in this process is

w

— (670 +182)J
= —8527J

The first law may be rearranged to
Q=AU+W
Then,

Q = —20I + (—852)
g = ~1053J

Because the heat transfer is negative, the system has been cooled.

The next application of the first law involves both kinetic and potential energy.
Consider the motion of a bicycle and rider, as shown in Figure 2-4. Initially, the bicy-
cle is at rest at a point near the top of a hill. The rider releases the brakes and rolls down the
hill without pedaling. After reaching the bottom, the bike climbs the next hill, gradually
slowing down. We analyse this motion for several different cases. In case 1, let us imagine
a perfect world in which there is no friction and no aerodynamic drag. From the first law,

AKE+APE+AU=0—-W

The system is the bicycle and the rider. No work is done, either by the rider in pedaling
the bicycle or by the bicycle in overcoming air resistance, We assume the bike and rider
are at atmospheric temperature at the start of the process. If there is no frictional heating
as the bike moves, then there is no change in temperature of any of the moving parts of the
bicycle. Because the temperature is unchanged, the internal energy of the system remains
constant and no heat is transferred between the bike or rider and the surroundings. Under
these circumstances, the first law reduces to

AKE 4+ APE =0

Suppose the bike starts at rest at an elevation, z;, above the bottom of the hill, Then, in the
perfect world of case 1, the bike rolls down the hill and travels up the next hill, coming to
rest at elevation z,. In this process the kinetic energy is zero at both the start and the finish,

FIGURE 2-4 Motion of a bicycle in hilly terrain.

[
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s0 AKE is zero. The first law then becomes
APE =0 =mgzy — mgz

Clearly, z1 = zz. In case 1, the bike comes to rest at exactly the same elevation at which it
started.

In case 2, the bike again starts at rest and rolls down one hill and up the next while the
rider does not pedal. However, in this case, the real effects of friction and aerodynamie drag
will be considered. The rolling friction of the tires against the pavement and the friction
within the wheel bearings both contribute to a localized rise in temperature and, thus, in
internal energy of the system. During the motion, some of this internal energy is transferred
to the surroundings in the form of heat. Because friction always results in a temperature
rise, AU will be positive in magnitude. Heat, @, leaves the system, so it is negative. The
bike and rider must overcome the drag force exerted by the air. In acting against this drag,
the system does work on the surrounding air. Work done by a system is positive. Note that
the work again occurs at the boundary, this time at the outer surface of rider and machine.
The first law for case 2 is

AKE+APE+AU=0-W
The bike begins and ends at rest, so AKE is zero and
APE=—-AU+0Q0-W
As described above, AU is positive, Q is negative, and W is positive, It follows that

APE <0
Furthermore,
APE =mgz —mgz < 0
orF

2 <n

As shown in Figure 2-4, 7o is the elevation at the end of the bike’s trajectory and
z; is the elevation at the beginning. The first law predicts that z; will be less than z;, in
accordance with physical experience.

In case 3, the bike and rider start at rest at the top of the hill, roll down the first
slope, and start to climb the next hill. This time, the rider sees that the bike will not rise to
the top of the hill and pedals for a short time. The bike comes to rest at exactly the same
elevation as it started. Now there are several new terms in the first law. Within the ridet’s
body, stored chemical energy is converted into muscular energy, and work is done by the
rider’s feet in pressing against the pedals. (If you have ever ridden a bicycle, you know that
this is work). The work done by the rider in operating the pedals is transmitted through the
bicycle drivetrain and is manifested as work done by the tires against the pavement. The
conversion of stored chemical energy into muscular energy is not 100% efficient; some
of the chemical energy is converted into internal energy of the rider’s bedy, and the body
temperature rises. Because the body temperature has risen, some heat is given off from
the body surface to the environment. Internal energy is contained in the chemical bonds of
the glucose that is burned within the body. The chemical change results in a reduction in
internal energy of the rider’s body.
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The first law is
AKE+APE+AU=0-W

Incase 3, the bicycle starts and stops at rest and the net change in elevation is zero. Therefore,
the first law becomes

AU=0-W
‘When each of these terms is expanded to show all the interactions, we get
AU+ AUy + AUz = Q1 + Q2 — (W) + Wa)
where

AU, = internal energy increase due to friction in the tires, wheel bearings, and
drivetrain components

AU, = internal energy increase from the chemical reaction, which causes a rise in
the rider’s body temperature

AU = internal energy reduction due to chemical reaction (the products of reaction
have less internal energy than the reactants)

(1 = heat leaving the surface of the bicycle from parts heated by friction
{J» = heat leaving the surface of the rider’s body

Wi = work done in overcoming air resistance

W, = work done by the tires against the pavement

Note that the work done by the feet on the pedals is not included in this equation.
Work in the first law is energy that crosses the boundary of the system. The system here
is the rider and the bicycle. The feet contacting the pedals are internal to the system.
Likewise, the transmission of power from the chain to the gears is work internal to the
system. The boundary contacts the air and the pavement. Thus only the terms for over-
coming air resistance and friction between the tires and pavement appear as work in the
first law.

The actual calculation of the heat, work, and intemal energy terms in this example
requires arather broad knowledge of thermal and fluids engineering. The calculation of drag,
for example, depends on a knowledge of external flow, which is described in Chapter 10.
The calculation of heat leaving the surface of the bike and rider requires the information
presented in Chapter 12, The chemistry of the reaction within the rider’s body can be
understood using concepts in Chapter 15. Because so much knowledge is required for
most real-world situations, the examples and problems presented in this text are generally
simplified. Nevertheless, they capture the essence of the phenomena under study and include
the most important effects and interactions,

An additional application of the first law is shown in Figure 2-5. When electric power
is first supplied to a resistive element on an electric stove, the temperature of the element
rises. We define the system as the resistive element. Electrical work is done on the element.
This work is converted into heat, which leaves the system, and internal energy, which acts
to raise the resistor temperature. Eventually, the temperature of the element reaches steady
state, and heat from the element is used to cook food.

The examples in this introduction are just a small sample of all the possible appli-
cations of the first law. As you can see, the applications are quite diverse and can involve
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EXAMPLE 2-2

Assumptions:

Heat

FIGURE 2-5 Conversion of work into energy
and heat in a stove's resistive element.

many different forms of work and internal energy. There are alse several different modes
of heat transfer, for example, conduction, convection, and radiation. These are described
qgualitatively in the next section and will be briefly treated quantitatively in Chapter 3,
The first law is a very powerful tool in understanding engineering systems and is one
of the truly great ideas of all time. The first law will be used extensively throughout
the text.

Kinetic and potential energy in the first law

A diver runs down a diving board, jumps into the air, lands on the board, depresses the end by 3.4 m,
and then is launched into the air. The end of the board, when undeflected, is 4 m above the surface of
the water. The board does 900 J of work on the diver, who has a mass of 59 kg. With what velocity
does the diver strike the surface of the water? (Neglect aerodynamic drag and velocity parallel to
the surface of the water.)

Approach:

Define the system as the diver, and divide the problem into two segments. Consider first the motion
of the diver between the end of the board and the high point of the trajectory. Use the first law to
find the maximum height attained. Next, consider the motion from the high point to the surface of
the water. Again apply the first law, this time to calculate the velocity.

31§

Z3=0

Solution:

We define the diver as the system under study. From point | to point 2, the first law for the diver is

AKE+APE+AU=Q-W



A1. The diver is at the
air temperature.

A2. Horizontal velocity
is smal} compared to
vertical velocity.

A3. Aerodynamic drag is
negligible.

2.1 THE FIRST LAW OF THERMODYNAMICS 29

There is no change in internal energy and no heat transferred {A1]. The first law therefore becomes
(KE, — KEy) + (PE; — PE)) = —W

Atpoint 1, the diver has just decelerated to zero velocity and is now changing direction and beginning
to accelerate upward. At point 1, the direction of motion changes and the velocity is instantaneously
zero. At point 2, the diver is again changing direction and the velocity (in the z direction) is
also instantaneously zero. We neglect components of velocity in the horizontal direction [A2].
Therefore,

KE = KE; =0
and the first law reduces to
PE, — PE, = —-W

Work is done on the system, that is, on the diver by the board. We neglect any work done by
aerodynamic drag [A3], so

W=-900TI

At point 1, the board is deflected 0.4 meters below its undeflected position of 4 m, so z; = 3.6 m.
The first law then becomes

mgzy —mgzy = —W
. ] .
(59 kg) (9.8 ;—’2‘) (zz —3.6)m ( Illgin) (“1‘7_1"‘) = (=900 1)
or
Zz=25.15m

In the second part of the analysis, the diver accelerates from point 2 to point 3, which is at the
surface of the water. No heat is transferred and no work is done; therefore, the first law becomes

AKE +APE =0

(KE; — KE;) + (PF3; — PE2) =0

or
1 2 2
(V3 — V) +mglzs —22) =0
Solving for /3
Vi =28z — 23) + V5
Substituting values,

V3 = \/2 (9.8 S%) (515-0) m+0

Y3 = 10m/s

ik
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2.2 HEAT TRANSFER

2.3

Heat is defined as the transfer of energy due to a temperature difference. There are two
fundamental modes of heat transfer, conduction and radiation. Conduction heat transfer
occurs in solids, liguids, and gases. In a solid, molecules vibrate about their equilibrium
positions. The higher the temperature of the solid, the more energetic the vibrations. Now
imagine two solids at different temperatures coming into contact. An example might be
an ice cube and the back of your neck. At the surface of contact, molecules in the hot
solid—your neck—vibrate vigorously, whereas the molecules in the ice cube vibrate less
energetically. Because the surfaces are in contact, the vigorous molecules in the hot solid
excite the sluggish molecules in the cold solid. As a result, energy transfers from the hot
solid to the cold solid, and this process is called heat transfer. As your neck loses heat to
the ice cube, the molecules in your skin vibrate less vigorously, the skin cools precipitously,
and your entire organism is likely to react.

As stated earlier, heat is energy that enters or leaves a system at a boundary. In
the last example, the boundary is the plane of contact between the ice cube and the skin.
In conduction, heat flows across the boundary because of a temperature difference. For
conduction to occur, molecules in the hot and cold substances must be in close proximity.
Heat is not stored in a system. Rather, it is energy in motion across the boundary of a
system.

Radiation heat transfer, the second fundamental mode of heat transfer, is energy
transfer via electromagnetic waves. Radiation can occur in gases, liquids, and solids. As
an example, consider the radiation from a campfire to a tired hiker. In the molecules of the
hot gas that makes up the flame, electrons fall to lower energy levels and emit photons as a
result. You can see some of these photons, that is, those in the visible range of wavelengths.
The combusting gas in the flame also emits photons in the infrared range. The photons
propagate through the air, and the infrared photons are absorbed on the skin of the hiker’s
outstretched hands. The absorbed photons raise electrons in the skin to higher energy levels
and the hands become warm. Radiation differs from conduction in one important way.
Photons can travel through a vacuum, so radiation does not require a transmission medium.
This is why we can feel radiation from the sun. Conduction, on the other hand, always
occurs within a medium or between two media in contact.

Conduction and radiation are the two fundamental modes of heat transfer. However,
when we consider conduction in the presence of a moving fluid, we generally call this
convective heat transfer. When you fan yourself on a hot day, you benefit from convection
heat transfer. The heat from your face is conducted into nearby air and the air temperature
increases. With the fan, you create a flow that displaces the warm air and replaces it with
cool air. This is the essence of the convection process.

Heat transfer is a major topic in this text. Chapter 3 will introduce a quantitative
description of heat transfer.

INTERNAL ENERGY

When energy is added to or removed from a system, changes in system properties occur.
For example, if energy (either heat or work) is added to a copper block, its temperature will
rise. On a microscopic level, the energy that flows into the block causes more energetic
vibrations of the copper molecules, and temperature depends on these vibrations, On the
other hand, energy addition does not always result in a temperature increase. If heat is
transferred to a block of ice at 0°C, it melts into liquid water, but its temperature does not
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change. In this case, the heat transfer to the ice breaks the bonds in the solid structure and
causes the solid to liquify.

In order to understand changes such as these, the concept of internal energy was
invented. Internal energy is energy stored in the material. It can take many forms. In a
solid, energy is stored in the vibrations of the atonis about their equilibrivm positions. It is
also stored in the interatomic and/or intermolecular bonds that hold a solid crystal in place.
When energy flows into a solid due to heat transfer, that energy is stored as internal energy.
The increased internal energy is manifested either in increased vibrations or in a change of
phase. If vibrations increase, temperature rises; if bonds are broken, temperature remains
constant,

In addition to these examples, there are many other forms of internal energy. The
chemical bonds between the atoms in a molecule contain internal energy. In a gas, the
translation of the molecules, the rotation of the molecules about their centers of mass, and
the internal vibrations of the molecules all contribute to the internal energy. Internal energy
is also stored in the nuclei of atoms.

2.4 SPECIFIC HEAT OF IDEAL LIQUIDS AND SOLIDS

Consider a tank partially filled with liquid, as shown in Figure 2-6. When heat is added
to the tank, as in Figure 2-6a, the temperature will rise. The temperature will also rise if
work is done on the liquid, even if there is no heat transfer. This situation is depicted in
Figure 2-6b, where shaft work is done on a liquid in a heavily insulated tank, so that it
can be considered adiabatic (no heat transfer). The temperature rise can be determined by
experiment. Suppose, for example, we add 5 J of heat to the liquid shown in Figure 2-6a,
and the temperature rises 12°C. If we add 3 T of shaft work as shown in Figure 2-6b, the
temperature again would rise 12°C.

These two cases can be analyzed with the first law. Define the system as the liquid in
the tank. In both cases, there is no change in the liquid kinetic or potential energy. The first
law then becomes

AU=0-W

In case (a), no work is done, and the first law reduces to

AU=0Q=5]
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vperd

G TGN ST

L

f
/

a Insutated tank
(&) &)

FIGURE 2-6 In case (a), heat is added to a liquid in a tank. In case (b}, shaft work is done on a
liquid in an insulated (adiabatic) tank. In this case, we also assume insignificant heat transfer
between the liquid and the paddlewheel blades.
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In case (b), no heat is transferred. Also note that work is done on the system in this case.
Therefore, work is negative and the first law becomes

AU= W=—(=50)=5]

In each case, the internal energy increases by 5 J while the temperature increases by
12°C. If the mass, m, of liquid in the tank is doubled, then the internal energy must increase
by 10 ] to produce a temperature rise of AT = 12°C. These ideas may be expressed as

AU ocmAT

Now suppose a differential amount of heat is added to the liquid and the internal
energy changes by a differential amount dU. Let 4T be the differential temperature rise that
results. Then

dU ocmdTl 2-7)

We can turn Eq. 2-7 into an equality if a proportionality constant is introduced, Experiments
show that, in the general case, the proportionality constant is a function of temperature.
It is common to designate this proportionality constant as o), so that Eq. 2-7 becomes

dU = mc(T) dT (2-8)

where ¢(T) is called the specific heat of the liquid. Eq.2-8 also holds true for solids,
In fact, it applies to so-called ideal liguids and solids. An ideal liquid or solid is one
that is incompressible. By definition, an incompressible substance has a constant volume
per unit mass. Most solids and liquids can be considered incompressible for ordinary
ranges of temperature and pressure. For example, the pressure on an open lank of water at
atmospheric pressure can be doubled and the change in volume of the water will be virtually
imperceptible. If a solid block is heated, its velume will expand slightly. The expansion is
usually so small as to be negligible, so that we can idealize the solid as “incompressible.”

In some cases, the specific heat does not vary significantly with temperature and may
be regarded as constant, Then, integrating Eq. 2-8 between states 1 and 2:

2 2
f dU = f me (1) dT
I 1

If ¢(T) is not a function of temperature, it may be removed from the integral to give

2 2
f di :mcf dar
1 1

where m1, also a constant, has likewise been removed. Integration results in

AU = mcAT constant specific heat (2-9)

Suppose the specific heat varies with temperature. Then, integrating Eq. 2-8:

2 2
f al =f me(T)dT
1 [
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Performing the integral on the left and removing the constant, m, from the integral on the
right gives

2
U — U =mf o(T)dT
1

If an expression for ¢(T") is known, that expression can be substituted into the above equation
and the integral evaluated. In many cases, however, an equation for ¢(T) is not available.
As an approximation, an average value of specific heat, ca.,, representative of the specific
heat during the compiete process, will often produce good results. With this approach

2
Uz—Ul =m[ Cavng
1

or, evaluating the integral,

Uy — Uy = megy (T = Ty) (2-10)
where
Cavg = €(Tavg)
and

Eq. 2-10 will be exactly correct if specific heat varies linearly with temperature. Specific
heat has units of J/kg . K or Btu/lbm . °F,

Specific heat is one of many useful quantities in thermal-fluids engineering that
is determined by experimental measurement. The appendices contain numerous tables of
data for a variety of thermophysical and thermodynamic properties, including specific heat.
Tables A-1 through A-17 present results in SI units and Tables B-1 through B-16 give the
corresponding quantities in British units. Specific heats for many solids are given in Tables
A-2 through A-5 and in Tables B-2 through B-3. Values of specific heat for some liquids
are included in Tables A-6 and B-6.

Specific heat of a solid

A 0.5-kg steel ball is dropped from a height of 60 m. It becomes embedded in the ground. Estimate
the temperature rise of the ball just after impact.

Approach:

The first law will be used to find the potential energy change and to relate this to the change in
internal energy of the ball. Then the relation between internal energy and temperature, that is,

AU = mcAT
will be used to find the temperature rise.
mg
[
I
b 22 iz

bor
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Assumptions:

A1. The ball begins at
the air temperature.

AZ. The ball rises in
temperature rapidly after
impact and does not
exchange heat with the
soil.

A3. Aerodynamic drag is
negligible.

Ad4. The specific heat of
the ball is constant.

Solution:

Define the ball as the system under study. The first law is
AKE + APE 4+ AU =Q — W

In this process, the ball starts at rest and ends at rest. While it does have kinetic energy during flight,
the change in kinetic energy between start and finish is zero. We assume the ball begins at the same
iemperature as the environment [A1], so no heat is transferred during flight. In addition, we would
like to calculate the temperature just after impact, before the ball has time to exchange heat with
the surrounding soil [A2]. These last two points imply that ¢ = 0. The aerodynamic drag on the
ball is small and can be neglected [A3]; therefore, no work is done on the ball by the atmosphere
and W = 0. This leaves

APE+ AU =0
or
(PE; ~ PE)+ (U, - U =0
where points 1 and 2 are shown on the figure. If we assume that the specific heat is constant [A4],
mg(zo —z))+me(T —T) =0
Rearranging,

-z
Tz_leg(lc 2)

Using the specific heat from Table A-2 (in the appendix),
l9.81 22] [60-0) m
s

kg-m
0235 K 10001 | 1=
“7kg-°C 1K N

Lh-T= =2.50°C

1 N-m
1]

Note that T, the temperature at the end of the process when the ball is embedded in the ground, is
greater than T, the initial ball temperature, as expected.

2.5 FUNDAMENTAL PROPERTIES

Before introducing more applications of the first law, certain fundamental properties of a
system must be discussed. To calculate expansion work, for example, we need to under-
stand pressure. To calculate internal energy, temperature is required. Therefore, this section
focuses on three of the most basic quantities used in understanding thermal and fluid
processes—density, pressure, and temperature. Although each is undoubtedly already
familiar to you, there are aspects of these properties that you may never have encoun-
tered. For example, in a gas, any one of these properties may vary as a function of location
within the gas. Each property also has an atomic scale interpretation. Imagining events on
the atomic scale helps to develop an intuitive understanding of many thermal and fluids
Processes.
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2.5.1 Density

Density is defined as the mass per unit volume, or

<3

p:

To measure density, a volume is chosen and the mass of material within that volume is
determined, This approach is adequate to provide an average density over the total volume,
V. For many applications, assuming an average or constant density is sufficient. There are,
however, many important processes that involve variable density, that is, density that varies
with location in a volume. An example occurs in natural convection heat transfer. Suppose a
roast turkey has just been taken out of an oven and placed on a countertop. Heat flows from
the hot surface of the bird into the air, raising the air temperature in the immediate vicinity
of the turkey. The density of the air decreases locally, Colder air above the turkey is now
heavier (more dense). This cold air is dragged downward by gravity, displacing the hot air
next to the bird, and the hot air rises. Throughout this process, density varies continuously
with location in the air.
To allow for spatial variation, density may be written as:

. m
P=m AV

where m is the mass within the differential volume, AV, and g is very small. This definition
allows us to specify the density at a point within the material. Note, however, that as the
volume becomes very small, it may contain only three or four molecules and the size of the
volume could theoretically make a difference in the measurement of density. Figure 2-7
shows a plot of the density of a gas as a function of the volume chosen. At very low volumes,
the density measurement is uncertain because it depends on how many molecules happen
to be included in the measurement volume. At very high volumes, the density measurement
may vary because the density is not homogeneous (constant) in this large volume. But,
for most substances, there is a stable asymptotic value for density somewhere between the
ultrasmall volumes and the rather large volumes. When we use the asymptotic value, we are

: Asymptotic
t  region
P I — ]

Limiting value of density

. AV FIGURE 2-7 Density of a gas
Ulirasmall as a function of the volume
volumes Large volumes chosen for measurement.
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said to be making a continnum assumption. In a continuum, we characterize the material
as if it were infinitely divisible and not composed of discrete molecules. The continuum
assumption is applicable in almost all ordinary circumstances. An exception occurs in very
high altitude plane flights, where the gas molecules are so far apart that the distance between
molecules is significant compared to the size of the solid structores near the gas. So-called
rarefied gases will not be treated in this text. Rather, all substances will be modeled using
the continuum approximation. Note that, for many substances, density is a function of two
other properties—pressure and temperature—which are discussed in the next two sections.

We describe density with units of mass per unit volume. In the SI unit system, density
has the units of kg/m?. Tn the British system, density is typically measured in lbm/ft*.

2.5.2 Pressure

On a macroscopic level, pressure is something we feel as a force acting on our bodies. A
diver who swims deep underwater feels pressure that can hurt the ears and constrict the chest,
On a molecular level, pressure results from the combined motion of many molecules. For
example, in a gas at rest, molecules travel incessantly in random directions with a range of
velocities. This motion was first definitively detected by R. Brown in 1827, Such molecular
motion accounts for the behavior of a dust particle suspended in air. If the particle is small
and light enough, it will not fall due to gravity but will dance about randomly as it is jostled
by collisions with the moving air molecules.

If a flat plate is inserted into a gas, then the gas molecules will strike the plate and
bounce off. The collisions of the molecules with the plate impart a force to the plate.
The integrated effect of all the collisions of the molecules against the plate is observed
macroscopically as the pressure, Thus, pressure, P, is defined as a force per unit area,
that is,

P=

F
Y (2-11)

As with density, we use the continuum approximation so that we can define pressure as
a function that varies continuously throughout a gas or liquid. Because the force in this
definition is due to the motion of the molecules, and this motion has no preferred direction,
pressure in a fluid is independent of direction. It is a scalar rather than a vector quantity.

If a solid surface is placed in a gas or liquid, pressure exerts a force that is normal
{perpendicuar) to the surface because the resultant force from all the collisions of meolecules
is in the normal direction. This can be seen in Figure 2-8, which shows the paths of two
molecules colliding with a surface. Tmagine that molecule A strikes the surface and imparts
a force F) to it. Because the molecules in the fluid are moving in random directions, for
every molecule A moving toward the right, there will be a molecule B moving toward the
left. Molecole B imparts a force F» to the surface. The components of forces F| and F>
parallel to the surface will cancel out, and the resultant net force will be in the normal
direction.

The units of pressure in the British system are pounds-force per square inch (Ibf/in.?),
also known as “psi.” In the SI system, pressure is measured in pascals (Pa). By definition,
a pascal is a newton per square meter, or

N

1Pa=1
& m2

Recall that the newton is a unit of force.
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FIGURE 2-8 A pair of
maolecules in a fluid colliding
with a surface.

There are many instruments available to measure pressure, including manometers,
piezoelectric crystals, McLeod gauges, barometers, Bourdon tubes, and many others. Some
of these devices measure not the actual pressure but rather the pressure relative to atmo-
spheric pressure. As a result, it is common to make a distinction between the so-called
absolute pressure, P, and the gage pressure, Pg, where

Pg=Pabs_Parm

and Py, 1s the atmospheric pressure or ambient pressure surrounding the pressure gauge.

In the British system of units, gage pressure is indicated by “psig” to distinguish it
from absolute pressure, which is called “psia” or simply “psi.” For example, if an engineer
reports that the pressure is 3 psig, then the pressure is 3 pounds-force per square inch
above atmospheric pressure. In this text, “psi” will always mean “psia,” The SI system has
no special designation for gage pressure; generally, pressure is absolute pressure, unless
otherwise stated.

2.5.3 Temperature

We all have experience with hot and cold objects. Although it is usually easy to sense
that one object is hotter than another, it is difficult to specify the precise temperatures
involved. Fortunately, all substances have characteristics that vary with temperature. Any
one of these could be used to specify a temperature scale, though practical considerations
preclude many, One substance that can be applied to temperature measurement is liquid
mercury. A mercury thermometer is shown in Figure 2-9. Liguid mercury expands when it
is heated and contracts when it is cooled. The height, L, of the liquid in the small-diameter
bore of the glass tube is related to the temperature of the mercury in the bulb. One can
define a temperature scale by scribing equally spaced marks on the glass and considering
these as degrees of temperature.

Glass tube

Vapor or inert gas

FIGURE 2-9 A mercury thermometer.

TR
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T(°C)

F (Pa)

iy

FIGURE 2-10 Temperature-pressure
relationship for a constant volume of gas.

The earliest practical thermometer was a mercury-in-glass device of this type devel-
oped in 1715 by Gabriel Fahrenheit. His work built upon that of Isaac Newton, who had
proposed an oil-filled thermometer in 1701. Newton selected the freezing point of water as
the zero in his temperature scale. He selected body temperature as the second fixed point
and divided the scale into 12 parts, in typical British fashion. When Fahrenheit developed
his more accurate thermometer, he depressed the freezing point of water by adding salt
and used this as the zero point in his scale. He introduced eight times as many divisions as
Newton, so that body temperature became 96°. Later recalibration of the Fahrenheit scale
led to the familiar body temperature of 98.6°. On the Fahrenheit scale, pure water freezes
at 32°F and boils at 212°F.

Another temperature scale was introduced in the 18th century by Anders Celsius.
On the Celsius scale, water freezes at 0°C and boils at 100°C. Both the Fahrenbeit and
Celsius temperature scales are widely used today, and both will be used in this text.

One of the problems with using the mercury thermometer to define temperature
is that the definition depends on the properties of a single substance, mercury. A more
universal definition would be desirable. The situation improves if gases are used to define
temperature. Imagine that a fixed amount of gas is contained in a rigid tank. Figure 2-10
shows the measured relationship between temperature and pressure for a gas in this tank.
Point 1 on this figure is the freezing point of water and point 2 is the boiling peint. The
values of pressure depend on the amount of gas in the tank. Smaller amounts of gas will lead
to lower pressures. Experiments show that if the pressures are low enough, then the ratio
P, /Py will approach 1.3661 for all gases. At these low pressures, the relationship between
temperature and pressure is lincar. Therefore, it is possible to extrapolate the line to zero
pressure, shown as point 3 in the figure. The temperature at point 3 is —273.15°C. This
temperature is independent of the type of gas in the thermometer and the actual pressure of
the gas, as long as the pressure is low enough,

The fixed point 3 in Figure 2-10 can be used to define a new temperature scale, the
gas temperature scale. On this scale, point 3 is assigned the value of zero, water freezes at
273.15, and it boils at 373.15. In modern times, this scale has been slightly modified and
designated the Kelvin temperature scale. Using the behavior of gases to define a temperature
scale has some advantages over using the expansion of mercury. The scale is dependent
on the properties of gases in general rather than on the properties of the single substance,
mercury. Nevertheless, the gas scale has some shortcomings. At low enough temperatures,
all gases, even helium, condense to liquids, and the scale is no longer usable except as an
extrapolation. There is a scale that does not depend on the properties of any substance, the
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so-called thermodynamic scale. A description of the modern thermodynamic temperature
scale is given later in the text,

The Kelvin scale is derived from the Celsius scale. The corresponding scale derived
from the Fahrenheit scale is the Rankine scale. All four of the scales are frequently used in
modern engineering practice. The relationships among them are

T(°F) = 1.8T(°C) + 32
T(°C) = [T(°F) — 32]/1.8
T(K) = T(°C) + 273.15
T(R) = T(°F) + 459.67
T(R) = 1.87(K)

The Kelvin and the Rankine scales, are both absolute temperature scales, while
the Celsius and the Fahrenheit scales are relative scales. The observed behavior of gases
shown in Figure 2-10 must be described using an absolute scale rather than a relative one.

Although temperature is a very familiar concept, it is somewhat subtle. Certain com-
mon experiences involving temperature can lead us to incorrect conclusions and confuse
our physical intuition. For example, if a barefoot person steps out of bed in the morning,
a plush carpet will feel much “warmer” than a ceramic tile floor. However, both the carpet
and the tile are at the same temperature. The tile feels cooler because heat is conducted from
the sole of the foot into the tile at a high rate, while heat is conducted into the insulating
carpet at a low rate. The foot contacting the tile cools quickly, and thus the tile seems
cooler.

Even Newton was confused about the distinction between temperature and heat (as
was everyone else in the scientific community of his time). Newton used the same Latin
word, calor, to signify both temperature and heat. Temperature and heat are also distinctly
different from internal energy, although the untrained observer may confuse these three
ideas.

Before proceeding with the study of thermal and fluids systems, it is important to
have a very clear idea of the distinction among temperature, heat, and internal energy.
Temperature is a property of a system, heat is energy in motion across the boundary of a
system, and internal energy is energy stored in a system or substance. The following three
examples will help to clarify these distinctions. In each example, one of the three quantities
remains constant while the other two change.

Example 1 is the compression of a gas in a well-insulated piston—cylinder assembly.
Such a process is called adiabatic, which means that no heat is added or removed. Although
no heat is added, the gas temperature rises due to the compression as work is converted
into internal energy. In this case, both temperature and internal energy increase, but heat
transferred is zero.

Example 2 is the heating of a glass of water containing ice cubes. The system is
the liquid water and the ice. As heat is added, the ice cubes begin to melt. The system,
however, remains at the melting temperature of the ice, that is, at 0°C. This process is
isothermal, meaning that the temperature does not change during the process. Because
bonds between the molecules in the ice crystals are broken during the melting, the internal
energy of the system increases. The internal energy per unit mass of liquid water is greater
than the internal energy per unit mass of ice. As a result of the melting, there is more liquid
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and less ice in the system, so the internal energy of the system increases. In this process,
heat is added, internal energy increases, but temperature remains constant.

In Example 3, an electric current passes through a very-well-insulated rod. The
current does work on the rod. However, the rod is assumed to be perfectly insulated, so no
heat is transferred and the system is adiabatic. The temperature and the internal energy of
the rod rise in this process, even though no heat is transferred.

IDEAL GASES

In the discussion of thermometry, we noted the linear relationship between pressure and
temperature for a low-pressure gas in a rigid tank. When the temperature rises, the pressure
does as well. You may be familiar with this phenomenon in automobile tires. If you measure
the pressure when the tire is cold and later measure it after the car has been driven for some
distance, you will find that the pressure has risen. Friction between the tire and the road
caused the temperature rise. Motorists are warned not to remove air from a hot tire. The
manufacturer has accounted for the rise in pressure due to frictional heating and has specified
the correct tire pressure when the tire is cold.

We can describe the behavior of gases from a molecular viewpoint. Ina gas, individual
molecules are in motion in random directions. Each molecule of mass, m, and velocity, 9/,
has a kinetic energy given by m%"%/2. Temperature is related to the average kinetic energy
of the molecules in the gas. At higher temperatures, the molecules move faster on average,
and at lower temperatures, the molecules move slower. Imagine a rigid container with a
fixed number of molecules of gas. Recall that the pressure on the side of the container is due
to the impact of molecules against the side. If the temperature rises, the molecules travel
faster and more force is imparted on impact. Pressure is by definition a force per unit area,
so the pressure increases, Thus higher temperatures lead to higher pressures.

What happens if the number of molecules in the container is decreased? If the tem-
perature stays constant, the molecules travel just as fast. However, with fewer molecules
striking each unit area of the container, the pressure will decrease.

The last important parameter characterizing the behavior of gases is volume, V.
Suppose that the container is not rigid, but flexible. Imagine the volume is decreased to
half its original size without changing the temperature or the number of molecules. The
molecules move at the same average speed, but they are likely to strike the walls of the
container more often. This increased collision rate leads to higher pressure.

All of these phenomena are embodied in a relationship called the ideal gas law:

PV = nRT (2-12)

where 1 is the number of moles of gas and R is the universal gas constant. The temperature
in the ideal gas law must be expressed on an absolute scale, that is, as either degrees Kelvin
or Rankine. The pressure must be expressed as absolute pressure, not gage pressure.

The ideal gas law applies to all gases for some range of temperature and pressure.
However, it is an approximation to real gas behavior and will sometimes give inaccurate
results. More accurate relationships among P, ', and ¥V have been developed, but none are
as simple and useful as the ideal gas law, and they will not be discussed in this text.

The ideal gas law of Eq. 2-12 involves n, the number of moles. A mole is a fixed
number of molecules of material. Thus two moles of oxygen will have the same number of
melecules as two moles of helium. While dealing with moles is very useful in chemistry,
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mass units are more convenient when no chemical reaction is taking place. Moles are related
to mass through the molecular weight, M, that is,

m=nM (2-13)

The molecular weights in Tables A-1 and B-1 are given without units. They are ratios
of the masses of molecules of different substances. Oxygen has a molecular weight of
31.999, while hydrogen has a molecular weight of 2.016. Thus an oxygen molecule is
about 16 times more massive than a hydrogen molecule. A reference to one mole of oxygen
usually means 31.999 grams of oxygen. Hence, the molecular weight, M, may be thought
of as the number of grams per mole and may be assigned the units g/mol.

Difficulties can arise, however, if mass units other than grams are in use. An en gineer,
for example, might refer to one mole of oxygen and mean 31.999 kg of oxygen, rather than
31.999 g of oxygen. Since we will use different unit systems in this text, we will always
specify the type of mole meant. In this spirit, the molecular weight for oxygen can be

written as:
- & _ ke _ Lbm_
M =31.999 ol = 31.999 ol = 31.999 Tbmol
There are additional forms of the ideal gas law useful in engineering. Substituting

Eq. 2-13 into the ideal gas law (Eq. 2-12) gives

_mRT
PV = M

Recall that the definition of density is mass per unit volume, or

Values of the universal gas constant, R, are:

R = 8.31434 kJ/(kmol.K)

= 1.9858 Btu/(lbmol-R)

= 1545.35 ft.1bf /(lbmol-R)
10.73 psia-ft* /(Ibmol-R)

il

It is important to reemphasize that both temperature and pressure in the ideal gas law
must be expressed on absolute scales. Temperature must be given in degrees Rankine or
Kelvin.

One of the most important gases that we encounter in engineering practice is air.
Strictly speaking, the ideal gas law applies to pure substances, that is, substances that
are composed of a single chemical species. Air is a mixture of gases, including nitrogen,
oxygen, carbon dioxide, and other constituents. Experiments show that air can often be
treated as an ideal gas as long as an appropriate value for the molecular weight is used. This
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EXAMPLE 2-4

Assumptions:

A1, Airat 70°F and 1
atm may be considered
an ideal gas.

A2. The volume
occupied by the furniture
is small.

molecular weight is a weighted average of the molecular weights of all the gases that make
up air (mixtures of ideal gases are discussed in Chapter 15). The value of the molecular
weight of air is included in Tables A-1 and B-1.

There is also one other form of the ideal gas law that is commonly used in thermody-
namics. It involves the specific volume. By definition, the specific volume, v, is the volume
per unit mass, or

The word specific will be used in this text to mean “per unit mass.” When the specific
volume is used in the ideal gas law, it becomes

Pvz%z

Ideal gas law

Calculate the mass of the air in a typical residential living room of size 8 ft by 12 ft. The ceiling is
& ft high. Assume the air is at a uniform temperature of 70°F and a pressure of 1 atm.

] A

Approach:

We define the closed system as the air in the room and assume that air can be treated as an ideal
gas. The size of the room is known, so volume can be calculated from the ideal gas law. Be certain
to convert temperature to Rankine.

Solution:
The system is the air in the room. The ideal gas law [A1] may be rearranged to the form
m=EYM
RT

The molecular weight of air may be found in Table B-1, The mass can be calculated from [AZ2]:

(latm) [(8)(12)(8) ft’] [28'97 %
" o=
psia-ft’ 1 atm
[ 1073 thmol R ] [ 14.7 psia ] oA ®
m = 57.51bm
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Assumptions:

A, The mass of the
piston is insignificant.
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Note that the temperature has been converted to degrees Rankine. One must never use degrees
Fahrenheit in the ideal gas law.

Force balance on a piston

Oxygen is contained in a cylinder fitted with a piston. The cylinder has a height of 8 cm and a
diameter of 3 cm. The piston is held in place by a weight of mass 13.4 kg, as shown in the figure
below. The mass of the oxygen is 0.1 g. Calculate the temperature of the oxygen, in °C. Assume
that the piston itself has negligible mass and atmospheric pressure is 101 kPa,

Weight = P.,,=101kPa

Approach:

We define a closed system that encompasses only the gas contained in the piston-cylinder assembly
and assume that oxygen can be treated as an ideal gas, The temperature can be found from the ideal
gas law. We simply need to rearrange the equation

_ mRT
PV = M

and solve for temperature. The mass is given in the problem statement, and the volume is easily
calculated. The constants K and M can be found in Table A-1, Pressure is a little more problermatic.
To find the pressure, a fundamental force balance en the piston will be needed. Then the pressure
can be found from its definition:

Solution:

To find the pressure of the oxygen, draw a free-body diagram of the piston and weight, as shown
in the figure. Assume that the mass of the piston is very small [A1]. Three forces act on the piston.
The pressure of the atmosphere exerts a downward force, gravity exerts a downward force on the
weight, and the pressure of the oxygen exerts an upward force. Therefore, the upward force, F, due
to the oxygen is given by

F=Fym+ g
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where m,, is the mass of the weight. Using the definition of pressure as a force per unit area, this
eguation can be rewritten in terms of pressure as

PA = Py A + myg

where A is the area of the piston. Solving for the oxygen pressure gives:

{3
P=Pmm+'rALg=Pmm+

Ml
z
D
- (3]
Substituting values

(134 kg) [9.8111_;‘]
§

P — 101 kPa [ 1000 Pﬂ] n =2.87 x 10° Pa

1kPa 3em _Im )?
T [ 2 100cm
A2, Oxygen may be Now that pressure is known, the temperature can be found from the ideal gas law [A2] rearranged as
considered to be an ideal
gas at these conditions. T= PV&’I
mR

Substituting values gives

(287 x 10° Pa [rr [%] 2 (0-08)] m? [(32-°k]:;g01 ]
T =

lkg kJ 1000 J
[0.!g] [iOOOg] [8'314kmol-K] [ 1k

T =625K =356°C

Note that consistent units must be used throughout the calculation. For example, grams were
changed to kg, and kI were changed to J. This is necessary to obtain a dimensionally correct result.
Units can be a major cause of error in working problems. Because there are many important points
that must be understood, the next section deals explicitly with unit systems.

2.7 UNIT SYSTEMS

Two unit systems are used in this text, the SI system and the British system. The approach
taken to ensure that the units are correct will be different in each case. In the SI system, all
values will be converted into the appropriate SI unit. For example, the quantity kJ will be
converted into J, and the quantily atm will be converted into Pa. Thus the units will form a
consistent set, and it will be easy to determine the units of each variable in an equation. This
approach works very well in the SI system, because most quantities are routinely expressed
in ST units or in units that are simple multiples of SI units. For example, in Example 2-5,
this equation arose:

;8
P =P+ ';‘;

Every term in the equation must have the same units. How do we know that the second
term on the right-hand side really has units of pressure? If we use the correct S1 unit for
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each quantity in the equation, then the units would be:

ko I
gsg

Pa =Pa + 3
m

Since I N = 1 kg-m/s?, this may also be written as:

kg3 N
N
Pa=Pa+ § =Pa+ %
m? kgs% m?

Furthermore, [ Pa= 1 N/m?, so the equation is dimensionally correct. Note that the equation
would require conversion factors if we entered mass in g or pressure in kPa. A list of the
correct SI units for quantities that will be commonly used in this text is given in Table 2-1,
Only the unit for mass, the kilogram, has a prefix. All others have no prefix.

When performing calculations in the British system, a different approach will be
followed in this text. In the British system, the commonly used units are often not part of a
consistent set. For example, the consistent set of units includes feet and seconds. But we will
often express flow rate in gallons per hour rather than ft3/s. It is laborious to always convert
the British units into a consistent set, and this approach is rarely followed in engineering
practice.

Most conversion factors in the British system are straightforward, but there is one
that is a little odd. In the British system, mass is often expressed in “pounds” and so is force.
As noted above, we will always distinguish between “pounds-mass” as 1bm and “pounds-
force” as Ibf. The consistent set of units includes ft, s, and Ibf, but does not include Ibm. In
the British system, the consistent unit for mass is the slug. To see how slugs are related to
the other units, consider Newton’s second law,

F=ma

In consistent British units, acceleration is expressed in ft/s?, and force is expressed in 1bf.
I slug is the consistent unit for mass, then

slog - ft

1lbf =1
2

How are Ibm related to slugs? By definition, earth’s gravity exerts one pound force
on a mass of one pound mass at the surface of the earth. From Newton’s second law applied

TABLE 2-1 Consistent Units of the Sl System

Quantity Sl Unit Description
Mass kg Kilogram
Length m Meter
Time s Second
Energy, heat, work J Joule
Power, rate of heat transfer w Watts
Pressure Pa Pascals
Temperature K Kelvin
Current A Amperes
Voltage Ay Volts
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to a gravitational force,
F=mg

The acceleration of gravity, g, at the earth’s surface is 32.174 ft/s®. How many slugs are
pulled by gravity with a force of one pound force at the earth’s surface? Rearranging the
second law

F
H = —
g

Setting F = 1 Ibf and using the value of g gives

11bf 1
= = slug
32.174

ft — 32174

2

A mass of 1/32.174 slug is pulled on by gravity with a force of 1 Ibf at the surface of the
earth; therefore,

1
11bm = 33174 slug
The shug is not a very popular unit and is not recommended in this text. It would be awkward
to convert mass into slugs and then use the relation

slug.-ft

11bf =1
%)

every time a Ibm unit is encounterad. Instead, we will use

(1 | Ibf
[ Ibm = [ 2074 S‘”g] l Slug Tt

1 2

S
which can be shortened to
Llbm = |00 (2-14)
32,174 L
S

Tn this text, we will never mention slugs again. Instead, we will make frequent use of
Eq. 2-14 as a unit conversion factor. Note that in SI units, the equivalent statement is

1=
)

Thaus the difference between the two systems is that the British system uses earth’s gravity
as the acceleration and the SI system uses 1 m/s?, which is not earth’s gravity. (In ST units,
earth’s gravity is 9.81 mv/s?.)

It is plain from Eq. 2-14 that Ibm and 1bf are nof interchangable. One must always
check units carefuily in equations that contain both Ibm and Ibf. Other conversion factors
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commonly used in the British system will be introduced as needed throughout the text.
Conversion factors for both the British system and the SI system are listed on the front
inside cover of the text.

The first law is a relationship among work, heat, and changes in stored energy. There are
many different kinds of work, including shaft work, expansion work, and electrical work.
In this section, quantitative expressions for several of the most common types of work are
developed.

Consider a body moving in a straight line because of an applied force, as shown
in Figure 2-11. In this figure, the velocity vector and the force vector are both in the
same direction. The general case in which the velocity vector and the force vector are in
different directions is not usually important in thermal and fluids engineering and will not
be discussed here. An example of a practical situation in which the net force vector is in
the direction of motion is shown in Figure 2-12, where a crate is being lifted against the
force of gravity.

To get an intuitive feel for work, first consider motion with a constant force. In
Figure 2-13, a body has moved from s; to s under the action of a constant force with
magnitude . The work done is the product of the applied force and the distance traveled, or

W= F(s: — 51)

Now apply this equation to the situation shown in Figure 2-14, where a person is
pushing a piano across a floor. The farther the distance traveled (i.e., larger values of
52 — 51}, the greater the work done. Likewise, the greater the force needed (e.g., fora heavy
piano), the more the work done. Notice that if a force is applied but the piano does not
move, no work is done.

In the general case, the applied force may not be constant. Consider a variable force
that acts in the same direction as s (Figure 2-15). The work done in moving the body from
51 t0 57 is the sum of all the differential contributions to the work as the body moves along

F -
v
rr”*\ Line of motion
\/s FIGURE 2-11 A body moving in the direction s.

FIGURE 2-12 Force and motion in the same direction.
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FIGURE 2-13 A body moving under the action of a
constant force.

1
612 FIGURE 2-14 Work is done in moving a piano
s across a floor.

the path. Each differential contribution of work is given by F(s)ds, so the sum of all those
contributions is

W= [ " F(s)ds (2-15)
5

2.8.1 Compression and Expansion Work

When a gas expands or is compressed, work is done. For example, consider the gas-filled
piston—cylinder assembly shown in Figure 2-16. We define the gas as a closed system. The
gas exerts a force on the bottom of the piston. Imagine that the piston rises a differential
distance dx due to this force. The work done is

W:dex (2-16)

The force on the piston is related to the pressure of the gas. We assume the gas is in
equilibrium at the start of the process, Equilibrium implies a state in which there are no
imbalances in forces, temperatures, pressures, phases, or chemical composition; that is, all
properties are uniform throughout the volume of the gas. In equilibrium, the pressure is the
same at every location in the gas, and there is no driving force causing the gas to flow.

Now imagine heat is transferred to the system and the piston rises. The pressure
in the cylinder is due to the coilision of molecules with the surface of the piston. As the
piston moves, these molecules must adjust to a new equilibrium state with the new position
of the piston, If the piston moves slowly compared to the speed of the molecules, the
molecular adjustment takes place very rapidly and the expansion process can be imagined
as a succession of equilibrium states. This is the so-calied quasi-equilibrium process,
one that passes through a set of equilibrium states. On the other hand, if the piston moves
very rapidly, there will be a delay before the molecules can catch up to the piston and
reestablish equilibrium; this process would not be quasi-equilibrium. For example, asudden
gas expansion into a vacuum would not be a quasi-equilibrium process.

During a quasi-equilibrium process, the force on the piston is given by

F=PFA
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FIGURE 2-15 A body moving under the action
of a variable force.

where A is the area of the piston. With this substitution, the expansion work during a
quasi-equilibrium process becomes

W=dex=fPAdx

Referring again to Figure 2-16, the process begins at time zero at position x; after a
change in time Ar, the new position is x + Ax. Note that Ady is the differential change in
volume, or

Adx=dV

Thus the expansion work becomes

W= f Pdv (2-17)

This expression is valid for any closed system undergoing a quasi-equilibrium process that
has occured over a time interval A¢. The units of work are force times distance. In the SI
unit system, work has the dimensions of joules, where

! joule = (1 newton)(1 meter)

In the British system, the units of work are feet times pounds-force, or ft-1bf.

From calculus, we know that the integral of a function is the area under the plot of that
function. This idea can be used to visualize the amount of work done in a quasi-equilibrium
process. Because

W:/PdV

when pressure is plotted against volume, the work is the area under the curve, as shown
shaded in Figure 2-17. Work depends on how pressure varies with volume. For example,
in Figure 2-18, the end points of the process, points 1 and 2, are the same as in Figure
2-17, but the pressure-volume curve is different. The amount of work done in Figure 2-18

[
rt
[

Piston

Cylinder
FIGURE 2-16 Gas expanding
against a piston.
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P
FIGURE 2-17 Work is the area under the curve of P versus .
1
P 2
Work
FIGURE 2-18 Work for an alternate path between points 1 and
v 2, which are the same points as in Figure 2-17.

is greater than that done in Figure 2-17. The work depends on the path taken between the
end points, not solely on values at the end points.

It is easy to see intuitively how the work depends on the path by considering the work
done in pushing a crate across the floor. In Figure 2-19, path A is longer than path B. More
work is needed to push the crate against friction along path A than along path B.

When work is expressed as a differential quantity, special care is needed. It is tempting
to write

dw = Pdv caution—meaningless equation

However, this expression could be misleading. Suppose we decided to integrate both sides
of the equation to get

2 2
] dW = f Pdv caution—meaningless equation
1 I

If the left-hand side is integrated and evaluated at the limits, then

2
W, — W, = f Pdv caution—meaningless equation
1

This is a meaningless equation and should ror be used, because it is incorrect to assign
values to W, and W at points 1 and 2, We can show that if we do assign a value to W,
then an absurd conclusion is obtained. (Remember that points 1 and 2 are the same in
Figure 2-17 and Figure 2-18.) Let W, have a value of 7 J at point 1 in Figure 2-17. Then W,
would also be 7 J at point 1 in Figure 2-18. Let the area under the curve in Figure 2-17 be
3 J and the area under the curve in Figure 2-18 be 5 J. Then, according to the last equation,

Path A
4 Crate

FIGURE 2-15 Top view of the motion of a crate being
2  pushed along a floor against friction.
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W, would be 7+ 3 = 10 J for the path shown in Figure 2-17, but W, would be 74+5 = 127
for the path shown in Figure 2-18. For two different processes, two different values of W,
are obtained. There is no unique value of Wa, thus demonstrating that the idea of work at
a point is absurd. Writing the differential dW implies that work does have a meaning at a
point, To avoid this problem, it is common to write

§W =Pav (2-18)

where §W is called an inexact differential. This notation serves to. remind us that the
left-hand side cannot be integrated and evalvated at the limits,

EXAMPLE 2-6 Work in a two-step quasi-equilibrium process

Assumptions:

A, The process is slow
and is considered to be
quasi-equilibrium.

Carbon dioxide is slowly heated from an initial temperatuere of 50°C to a final temperature of 500°C.
The process occurs in two steps. In the first step, pressure varies linearly with volume: in the second
step, pressure is constant, as shown in the figure below. The initial pressure, Py, is 100 kPa and the
final pressure, Ps, is 150 kPa. The temperature, T5, at the end of the first step is 350°C. If the mass
of CO; is 0.044 kg, calculate the total work done.

P

Pe=Ps 1 /—-
P1 T

Approach:

Because the process is slow, we may assume it is a quasi-equilibrium process. The work done is then

V3
W= PdVv
Vi

The integral is the area under the curve; therefore, by inspection of the graph, the work is

we (2B m-vy+p0s-w)

The values of pressure are given in the problem statement, and the volume may be calculated from

the ideal gas law:

Solution:

For this quasi-equilibrium process [A1], work is given by

V3
W= Pdv
Vi

The integral is the area under the curve; therefere, by inspection of the figure,

W= 22| v+ R - V)
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A2, Carbon dioxide
behaves as an ideal gas
for these temperatures
and pressures.

To find the volume at state 1, use the ideal gas law [A2] in the form

Substituting values:

i 1000 J
(0.044 kg) [8.314 e ] (50 +273) K [ ]

T
v, = - >
(100 kPa) [44 g _| [ 1090 d]

kmol 1 kPa

v, = 0.0268 m*

where the value of molecular weight, M, for carbon dioxide has been taken from Table A-1. To find
V3, again apply the ideal gas law:

. mETQ

V2 = P.M
ki 1000 ]
, (0.044 kg) [8,314 kmo]_K] (350 + 219 K [WJ_
'2 =
kg 1000 Pa
{150 kPa) [44 kfmm] [ T XPa ]

v, = 0.0345m’

By a similar calculation, V3 = 0.0428 m®. The work may now be calculated as

_ {100+ 150 ’ - 3 { 1000 Pa
W= ( 5 ) kPa (0.0345 — 0.0268) m ( T KPa )

s (1000 Pa
+ (150 kPa) (0.0428 — 0.0345) m ( TkPa )

W =2200]=22KkJ

2.8.2 Electrical Worl

Work is also done in electrical systems. Consider the electrical circuit shown in
Figure 2-20. The battery contains a solution of positive and negative ions. The two terminals
of the battery are constructed of two different materials, for example, zinc and copper. The
negative ions are attracted to one of the terminals and combine chemically with the atoms
in that terminal. Conversely, the positive ions move toward the other terminal and combine
chemically there. An electrostatic force acts on the ions to move them this distance through
the battery, and there is work associated with this force. The differential work required to
move a differential charge dg through the baitery is

SW = £ dg (2-19)

where & is the so-called electromotive force. Note that £ is not actually a force and does
not have the units of force. Its units are work/charge, or joule/coulomb, which is the volt.
Eq. 2-19 is not an expression of force through a distance; instead, it is the definition of
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FIGURE 2-20 A simple resistive circuit.

electromotive force. The work is calculated by other means, and Eq. 2-19 is used to find £,
the voltage of the battery,

The rate of flow of charge with time is current. Eg. 2-19 may be expressed in terms
of current as

5W=g%m=yw

Integrating over time gives the work done as

W=fﬂm

EXAMPLE 2-7 Electrical work

Assumptions:

In the simple circuit shown in Figure 2-20, the battery has a voltage of 10 volts and the resistor
has a resistance of 25 2. In the span of five minutes, how much work is done by the battery on the
resistor?

Approach:

The work will be calculated from
W= f Eldr

Because neither current nor voltage vary with time, this integral is very easy to evaluate. The voltage
is given and the current can be calculated from Ohm’s law, which is:

£=IR
where R is the resistance of the resistor.

Solution:

The current in the circuit is, from Ohm's law,

_&_ 10V _
1—'}_8_259_0'4A

1
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A1, Voltage does not
vary with time.
A2. Current does not
vary with time.

Let us consider the resistor as the system under study. Work is done on the resistor, so, by our
convention, work will be negative. If voltage, £, and current, I, are considered to be positive, then

W = —fgm = —.Elf dt = —(10 V)(0. 4 AX5 min) [ 60s ]

1 min

The voltage and current have been removed from the integral because they do not vary with time
[A1][A2]. The calculated value of work is

W = —1200]J

Volts, amps, and seconds are all part of the consistent set of 81 units; therefore, work will be in the
ST unit for work, which is joules.

2.8.3 Shaft Work

In many practical situations, work is transmitted via a rotating shaft. A good example is the
driveshaft of a car. Another example is the stirring of a fluid by a paddlewheel, as shown in
Figure 2-21. As always, work is a force through a distance, or

W=dex

If we let F represent the tangential force that the rotating member exerts on its environment
and R represent the radius at which the force is applied (Figure 2-22), then the torque on
the shaft is

JI=FR

As the shaft rotates, the differential distance dx traveled at radius R is related to the angle
0 by

dx=Rdo

as long as @ is given in radians. Solving these two equations for F and dx, respectively, and
substituting into the equation for work gives

w= | SRao = | 3dp
_f]_z B N

An alternate expression for work can be obtained using the angular velocity. The angular
velocity w is defined as

oo 0
T odr

Fluid

FIGURE 2-21 Stirring of a fluid by
a paddlewheel.
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Assumptions:
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FIGURE 2-22 Tangential force exerted by a rotating blade,

This allows us to express work as
W=fsd9=fﬁ%dr=f3mdz

Shaft work with variable torque

A constant-speed motor drives a paddlewheel that is submersed in a viscous liquid. With time, the
temperature of the liquid increases, the liquid viscosity decreases, and less torque is needed for the
stirring action, The torque applied as a function of time is determined experimentally to be

I=A+Be™

where A = 55 ft-1bf, B = 20 fi-Ibf, and m = 2.3 hr~!. If the motor rotates at a constant speed of
80 rpm, calculate the work done by the motor on the liquid in the first 10 minutes of operation,

Ligquid

Approach:

‘We define the system as the motor. The work done by the motor is given by
W= f Seo dt

The expression for torque as a function of time is given in the problem statement. This expression is
substituted into the above equation for work. Since rotation occurs at a constant speed, the angular
velocity, w, will be a constant and can be removed from the integral,

Solution:

Substituting the expression for torque into the equation for work results in

¥
W= f (A + Be ™) e dt
L[H

ir I
W= f Awdt + f Bwe™™ dt
[ 0
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A1, Motor speed is
constant.

where # has been used to designated the final time, 1G minutes. Because motor speed is constant,
@ can be removed from the integral [A1]. Performing the integration results in

W= Awty — B2 [ 1]

Substituting values gives

W = (55 te.1bf) [80%] %] (10 min)
(20 ft-1bh) [SOE] IM — 123 1 (10 min) lh
- min 1rev e " h 60 min —1
231 1h
~h 60 min
W = 193,000 ft-Ibf

Note that it was necessary to convert from revolutions to radians. Radians are essentially
dimensionless units.

2.9 KINETIC ENERGY

In Section 2.1, kinetic energy was given by
KE = smV”

It is important to understand the origin of this equation. Kinetic energy is related to the
work done in changing the velocity of a body. From Newton's second law for a constant
mass,

4V
F=m=" (220}

If we consider motion in the s direction, the velecity is given by

_ ds .
V=" (2-21)

Next, substitute Eq. 2-20 into Eq. 2-15 to get
52 k)
W = f Fds = f m%ﬁ ds (2-22)
si 51

where W~ is the work done on the mass to change its velocity. This is an awkward equation
because the velocity is a function of ¢, while the integral is taken over the distance variable
5. To fix this, apply the chain rule from calculus to the velocity derivative and substitute
Eq. 2-21 to get

4V _ dVds _ 4V N
E_dsdt_dsq/ (2-23)

Now substitute Eq. 2-23 into Eq. 2-22 to yield

52 a9 ¥ Rz}
W™ = f md—‘VdS :f mYdYV'=m YdVy
51 o Vi ¥



2.10 POTENTIAL ENERGY 57

where Y7 and 93 are the velocities at s; and s», and a constant mass has been assumed.
Taking the integral and evaloating at the limits gives

2 2
W*:m[%—%&] (2-24)

Eq. 2-24 is the work done in changing the velocity of a body. Although work, in
general, is a function of the path, the work done to change velocity is a special case.
This work is path-independent; that is, the work does not depend on how the velocity
varies between the initial and the final positions, but only on the values of velocity at
these positions. Thus it is possible to define a property of the system called kinetic energy,
which is

KE = %m‘?/"z

With this definition the work becomes

W* = KE; — KE; . (2-25)

where KE; and KF; are the kinetic energies at /] and /3. In analyzing processes using
the first law, changes in velocity will be regarded as part of the change in total energy. In
fact, Eq. 2-25 can be derived from the first law, which is

AKE+APE+AU=0—-W
If there are no changes in potential or internal energy and no heat is transferred, this becomes
ARKE = —-W
or
KFE;, — KEy =-W (2-26)

The work, W*, in Eq. 2-25 is the work done on a mass, m, to change its velocity. The work,
W, in Eq. 2-26 is the work done by a system. If we select the mass as the system, then

W= -w*

and Eq. 2-25 and Eq. 2-26 are consistent.

2.10 POTENTIAL ENERGY

Potential energy is related to the work done by gravity on a body. Imagine a body of mass
m falling in & gravitational field, as shown in Figure 2-23. The amount of work done on the

body as it falls from z; to zj is:
z2
W* = f Fdz
£
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ff-“i—z1
[
e
mg
Earth FIGURE 2-23 A body falling under the influence of gravity.

The force, F, is
F=mg

where g is the acceleration of gravity. With this substitution, the work becomes

E
W*:f mgdz

<1

Since mg is a constant, this can be integrated to give
W* =mg (22 — 1)
By definition, the potential energy is
PE =mgz

The work done by gravity on the body can be expressed in terms of the potential
energy as

W* = (PE, — PE)) (2-27)

This is the work done on the mass by gravity. As with kinetic energy, potential energy can be
defined as a property of a system because the work is path-independent. The work depends
only on the elevations at start and finish, not on intermediate elevations. In analyzing
processes using the first law, work against gravity will be regarded as part of the change in
total energy. Eq. 2-27 can be derived from the first law, which is

AKE+APE+AU=0-W
If there are no changes in kinetic or internal energy and no heat is transferred, this becomes
APE = —W
or

PE, -PE =-W=W* (2-28)

2.11 SPECIFIC HEAT OF IDEAL GASES

In the case of compressible substances, two different types of specific heat are used. To
illustrate these, consider the two cases shown in Figure 2-24. In case (a), heat is added to an
ideal gas in a rigid tank. We define the gas as the system. During this process, the volume
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/ Rigid tank

|- Piston
\deal gas &

Ideal gas
,} + \\ FIGURE 2-24 Addition of heat
7 V4 ) to an ideal gas {(a} in a constant
Q Q Cylinder 5 /ume process and (b) in a
(a) (b constant pressure process.

of gas remains constant and no work is done; furthermore, the kinetic energy and potential
energy of the system remain unchanged. From the first law,

AU=0Q0—-W
Since no work is done, the work is zero, and this becomes
AU=0

If the gas is an ideal gas, then it can be shown experimentally that the internal energy
is only a function of temperature. A specific heat can be defined for gases in much the
same way as the specific heat, ¢, was defined for solids and liquids. If the gas specific heat
is constant and the gas has mass, /m, then the change in internal energy can be related to
temperature change by

AU = me, AT constant specific heat, ideal gas (2-29)

where ¢, is called the specific heat at constant volume. Its name arises from the fact that
it is the proportionality constant when heat is added at constant volume, as in the case just
described. However, ¢, has much broader application than just to this one restricted case.
Eq. 2-29 applies to all processes of an ideal gas with constant specific heat and is not
restricted to constant volume processes. Eq. 2-29 may be written in differential form as

dt = mc, dT
In the general case in which specific heat varies with temperature,
dU = me, (T) dT (2-30)

and
AU:[dU:fmc\,(T) daTr

The internal energy is often expressed on a per unit mass basis. By definition, the specific
internal energy, i, is

Rl
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It follows that

dU =mdu
Using this in Eq. 2-30 gives
du=c,(TYdT
or
eo(T) = G ideal gas (2-31)
dT

Eq. 2-31 applies only to an ideal gas. If a gas is not ideal, a more general definition
of specific heat 1s needed, that is,

c(T,v) = 3 v (2-32)
Eq. 2-32 shows that specific heat is, in general, a function of two variables. Only in
the case of an ideal gas is specific heat a function of temperature alone. A full explanation
of Eq. 2-32 is beyond the scope of this text; it is shown here simply for completeness.
Now, returning to Figure 2-24, the other specific heat that is used for gases will
be developed. In case (b} in Figure 2-24, heat is added to a piston—cylinder assembly,
and the piston rises. A weight rests on the piston. We define the gas as the system under
consideration. Some of the heat transferred into the gas is converted into internal energy
and acts to raise the temperature of the gas, and the remainder is converted into expansion
work. During this process, the pressure of the gas remains constant. This pressure arises
from atmospheric pressure and from the force of gravity acting on the weight and the piston.
Because these weights do not change during the process, neither does the pressure. The
kinetic and potential energies of the system do not change; therefore, a first-law analysis
of case (b) starts with

AU=0-W

Assuming that the process is slow enough to be quasi-equilibrium, the work done, from
Eq. 2-17,1s

W= f Pdv
Because pressure is constant, this becomes
W:Pj dV = P(V, — V|) = PAV

where V) is the volume at the beginning of the process and V5 is the volume at the end of
the process. Substituting this into the first law gives

AU =Q— PAY
This eguation can be rearranged to

Q=AU+PAV =U,—-U )+ P(Va = V) (2-33)
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Certain simplifications will arise if we rewrite this equation in another form. Using the
fact that, for this constant-pressure process, P = P| = Ps, an alternate form of Eq, 2-33 is

Q=+ P:Va)—(Uh + A1VD) (2-34)

This is the first instance in which the quantity U + PV appears. This quantity occurs in
many different circumstances in thermodynamics and is, therefore, given a special name.
It is called enthalpy and it is, by definition,

H=U+PV (2-35)

Using the definition of enthalpy, Eq. 2-33 can be rewritten as

Q0=H,—H constant pressure process of closed system (2-36)

Introducing the enthalpy has resulted in a simpler form for Eq. 2-33. Although we are
specifically interested in ideal gases in this section, Eq. 2-36 was derived without the ideal
gas law and is applicable to any constant-pressure quasi-equilibrium process of a closed
system. Enthalpy is useful in many circumstances and is not limited to ideal gases.

Note that if the ideal gas law is substituted into Eq. 2-35, then

mRT
M

H=U+4

The internal energy, U, of an ideal gas is a function only of temperature. Furthermore, m,
R, and M are constants. Hence, it follows that the enthalpy, H, of an ideal gas is only a
function of temperature.

Previously, for a constant-volume process with constant specific heat, we had

AU = Q = me, AT
Now, for this constant-pressure process, a new specific heat is used to give
AH = Q= mc, AT

where ¢, is called the specific heat at constant pressure. It is the proportionality constant
that determines how much the gas temperature rises when the gas is heated at constant
pressure. However, ¢, is not limited in usefulness just to constant-pressure processes.
As with ¢, ¢, is also useful in processes where the pressure is not constant. For all processes
of an ideal gas with constant specific heat,

AH = mc, AT constant specific heat, ideal gas (2-37)

Eq. 2-37 may be written in differential form as
dH = mc, dT
In the general case in which ¢, is a function of temperature,

dH = mc,(T)ydT (2-38)

[N
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and
AH:de:fmcp(T)dT

The enthalpy is often expressed on a per unit mass basis. By definition, the specific enthalpy,
h, is

3|z

It follows that
dH =mdh
Using this in Eq. 2-38 gives
dh = c,{T)dr

or

T = L& ideal gas (2-39)

Eq. 2-39 applies only to an ideal gas. If a gas is not ideal, a more general definition
of specific heat is needed, that is,

ah
(T, P) = T, (2-40)

Eq. 2-40 shows that specific heat is, in general, a function of two variables. Only in
the case of an ideal gas is specific heat a function of temperature alone. A full explanation
of Eq. 2-40 is beyond the scope of this text.

In some cases, it is necessary to account for the variation of specific heat with tem-
perature. This is especially true if there is a large temperature difference during the process
or if the specific heat of the gas varies substantially with temperature. One way to account
for variable specific heat is to use tables that list the values of u and / directly as a function
of temperature. In this approach, no actual value of specific heat is needed, and the change
in 4 or & during a process is determined from table values. Tables A-9 and B-9 give values
of u and £ for air as a function of temperature.

We can develop another important relationship for ideal gases which shows that ¢,
and ¢, are not independent. Recall that I = mh, U = mu, and V = mv, by definition.
Divide Eq. 2-35 by mass to obtain

h=u+Pv (2-41)

Eq. 2-41 is always true. In the case of an ideal gas,

Pv:];/I—T
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Using this in Eq. 2-41 gives

h:u-l—ﬁ

Differentiate with respect to temperature to obtain

dh _ du

dT ~ dT

Rl

+

For an ideal gas, the term on the left-hand side is ¢, (see Eq. 2-39); the first term on the
right-hand side is ¢, (see Eq. 2-31). Therefore,

M=+ % (2-42)

Note that ¢, > ¢, and is larger by a constant, R/M, even though both ¢p and c, are functions
of temperature.

Heat and work in a constant-pressure expansion

Hydrogen at 30 psia is contained in a piston—cylinder assembly. The gas has a mass of 0.009 1bm
and an initial volume of 0.75 ft*. Assuming the pressure is constant during the process, how much
heat must be added to double the volume? Assume specific heat is constant.

‘ ’ LW
r —————————————— : P,=PFP

. 1=12
| Py =30 psia i Vy=2V,
| m =0.009 lom ]
% =0.75 ft? H |

1

| R

Approach:

Define the system as the hydrogen in the cylinder. The added heat is found by applying the
first law:

AE=AKE+ APE+AU=0-W

Because we have no information on potential or kinetic energy, we assome they are negligible. If we
can calculate AU and W, then Q can be determined. The change in internal energy for an ideal gas
with constant specific heat is

AU = me, AT
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Assumptions:

A1. Kineiic energy is
negligible.

A2. Potential energy is
negligible.

A3. Hydrogen is an ideal
gas under these
conditions.

A4, Specific heat is
constant.

We are not given temperatures. But, because we know pressure and volume, the ideal gas law can be
used to find the missing temperatures. Finally, the work can be determined from Eq. 2-17, which is

W:deV

and since P is constant,
W=Pf dvV =P (Vo — V)

Sofution:

Define the hydrogen as the system under study. Assuming no kinetic or potential energy [A1][A2],
the first law is

0=AU+W
Treating hydrogen as an ideal gas [A3],
Al = me, AT = mc, (T2 — Ty}

To evaluate the internal energy change, the temperatures at the initial and final states must be known.
To find T use

mRT
PV == .
Solving for Ty
T, = MPI_V1
mR

Using values for M from Table B-1 and the given information, 7| may be calculated as

lbm . 3
[2.016 Tomal ] {30 psia) (0.75t°)

T = =470 R

psia-ft?
(0.009 lbm) 110.73 lbmol-R]

Since the volume doubles and the pressure stays constant, Vo = 1.5 e} and P, = 30 psia. The final
temperature is

_ MPVy _ (2.016) (30) (1.5)

== == 0009 (10.73)

=939R

We could now calculate AU if we knew ¢,. Values of ¢, for hydrogen are listed in Table B-8. Note
that ¢, varies with temperature in this table but that the variation is very slight. Using the average
temperature during the process to evalvate ¢, will be a good approximation [A4]. The average
temperature is

=704 R = 244°F

T = T +T, _ 4704939
avg = 2 = )

By interpolation in Table B-§,

Btu
lbm-R

¢y =247
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Using
Al = mc, (T2 - T])

AU

(0.009 Ibm) (2.47 lljiil.lR) (939 —470)R = 104 Biu

Assume a quasi-equilibrium process, so that

szPdV

Because pressure is constant
W:PjﬁV:MW—w)

. 1 Btu
W = (30 psia) (15— 075t [ ——=1
(30 psia) ( ) (5.404 psia-ft3)

W = 4,16 Btu
From the first law
OQ=AU+W=1044+416= 146 B

Alternative solution:

For a constant pressure process of an ideal gas in a closed system:
Q = AH = mecp, AT
From Table B-8, ¢, = 3.455 Bt/(lbm-R} at T, = 244°F. Therefore,

0 = (0.009 bm) (3.455 flé_].lﬁ) (939 - 470) R == 14.6 Btu

This alternative solution shows how useful enthalpy can be in a constant-pressure process of a
closed system.

First law with variable specific heat

A rigid tank with a volume of 400 cm® contains air initially at 22°C and 100 kPa. A paddlewheel
stirs the gas until the final temperature is 428°C. During the process, 600 J of heat are transferred
from the air to the surroundings. Calculate the work done by the paddlewheel two ways:

a) Assuming constant specific heat

b) Assuming variable specific heat

Approach:

Choose the system as the gas in the tank. The work done can be determined from the first law:
AU=0-W

In part a, where specific heat is assumed to be constant, the change in internal energy is found
from AU = mc,(T> — T1). The mass is calculated using the ideal gas law, and the specific heat

I

1
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Assumptions:

At Kinetic energy is
negligible.

A2, Potential energy is
negligible.

A3. Specific heat is
constant.

A4. Carbon dioxide is an
ideal gas under these
conditions.

V, = V, = 400 cm®
Ty =22°C
P, =100 kPa

T, = 428°C

Qout

is evaluated at the average of T} and 75 using data in Table A-8. Take care to note that heat is
negative, since it leaves the system, and calculate the work done by the paddlewheel.

In part b, the specific heat is variable. The internal energy is calculated from AU = m(uz; — ).
Values of internal energy are obtained from Table A-9 at Ty and 7. As in part a, work is calculated
using the first law.

Solution:

a) Assuming no kinetic or potential energy [A11[A2], the first law is
A=0—-W

If specific heat is assumed constant [A3],

AU =wme, (T — T1)

The specific heat is evaluated at the average of the initial and final temperatares, which is

Tog = 2538 —;m5°c =498 K

From Table A-8, ¢, = 0.742 kJ /kg-K. To find mass, apply the ideal gas law [A4]

MPV
M= ———
RTy

From Table A-1, M = 28.97 for air. Substituting values

kg 3 Im
[28.97 kmol] (100 kPa) (400 cm?) [m]

] (22 + 279K

kJ

[8'314 kmol-K

m = 0.0004725 kg
Rearranging the first law,

W=0-AU=0—mc, (173 —T))

1000 J

= (- - o K - 1000 J
W = (—600J) — (0.0004725 kg) [0.742 kg_K] (428 — 22)C [ T

W = -7423]
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b) In this part, specific heat is allowed to vary with temperature. As before, the first law is
AU=0-W
m—w)=0-W
Using data for « in Table A-9 at the initial temperature of 22°C =295 K,
= 2105 kﬂg

For the final state, it is necessary to interpolate. At the final temperature of T = 428°C = 701 K,

up — 5123 701 — 700
52025123 _ 710 =700

Solving for s,
- K
uz = 513.1 ke

Work is now evaluated from the first law as

W = (—600J) — (0.0004725 kg) (513.1 — 210.5) % (L(I)O%)

W= —743]

Comments:

The work calculated using constant specific heat is very close to that calculated with variable specific
heat. This is often the case as long as the constant value of specific heat is evaluated at the correct
average temperature, Unless otherwise noted, we will assume constant specific heat throughout
the text.

For ideal (i.e., incompressible) liquids and solids, a single specific heat, c, is used.
However, real liquids and solids do change in volume if temperature and/or pressure
changes. In most circumstances, the change is small enough to be neglected. For example,
if a metal bar is heated, it will grow slightly longer due to thermal expansion. Just as in a
gas, the added heat both increases the temperature and increases the volume. The volume
change, however, is very small. If the bar is heated at constant pressure (i.e., the ends are
unconstrained), the work is given by

W=deV=PAV

Because the volume change, AV, is very small, work is very small. For liquids and solids,
the difference between constant-volume heating and constant-pressure heating is generally
insignificant. This is why we were able to use the single specific heat, ¢, in Eq. 2-9.
In effect

cRe, R G ideal liquids and solids

il

]

I
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In tables of specific heat of liquids or solids, values of ¢, are typically reported. Although
it hardly makes a difference, the use of ¢, is more theoretically correct. When a solid is
heated, its ends are not usually confined. The more common case is to let the solid expand
freely. For such an expansion, the “correct” specific heat to use is ¢,

2.12 POLYTROPIC PROCESS OF AN IDEAL GAS

By definition, a polytropic process is one for which

PV" = constant or Pv" = constant (2-43)

where # is a constant. Many common processes are polytropic, including constant-pressure
heat addition, isothermal expansion or compression of an ideal gas, and some adiabatic
processes, as shown below. The constant, #, may take any value from —oo to +oco.

If a polytropic process begins at state 1 and ends at state 2, then

PV =P\V] = P,V} (2-44)

The work done during a quasi-equilibrium, polytropic process of a closed system is

2 2 n
P
W=f PdV:[ —'E,/‘ dv
1 | v

Because P| and V) are both constants, we may write

2
W =PV f v (2-45)
L Vv

If n = 1, this integral has one solution, and if » # 1, the integral has a different
solution. Starting with the n = | case:

2
wzplvlf % =PV, (nVs—1aV))
1

A%}

W:P,Vlln Vl

polytropic process, n = [ (2-46)

The case n = 1 is actually an isothermal expansion or compression. If an ideal gas is
compressed or expanded isothermally from state 1 to state 2, then

=T

Substituting the ideal gas law in each side of this equation gives

PVIM  PVoM
mR mR
which reduces to

PV, =P Va
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This is the equation for a polytropic process with n = 1 (see Eq. 2-44). Thus, an
isothermal process of an ideal gas is polytropic with # = 1. It follows from Eq. 2-46 that
the work done in an isothermal expansion or compression of an ideal gas is

V2

W=PVh 2 " isothermal process, ideal gas (247

Substituting the ideal gas law gives an alternative form:

W= mTRT In % isothermal process, ideal gas {2-48)

If n # 1, then Eq. 2-45 becomes:

Vit vt v vt - (P v

l1—n 1—n

2
W:Pﬂ/;‘fl & =Py

Substituting Eq. 2-44 into this expression gives

eV - e v
- 1—n

which simplifies to

_ PaVa — PV,

4 1—=n

polytropic process, # # 1 (2-49)

Using the ideal gas law, this equation becomes

M M _mﬁ(Tg—T])
1—n T O MA-—-n)

polytropic process, i 3 1 (2-50)

[




70  CHAPTER2 THE FIRST LAW

EXAMPLE 2-11

Assumptions:

A1, Thisisa
quasi-equilibrium
process.

A2, Oxygen hehaves like
an ideal gas under these
conditions.

Isothermal expansion of an ideal gas

Oxygen at 300 K expands slowly and isothermally from 100 kPa to 45 kPa. The mass of oxygen is
0.032 kg. Using the ideal gas model, find the work done.

H AW

[-' __________ ___—I T:T
i = 300K | - a5 P
L Py =100 kPa 2=
:m=0.052kg :
1 O 1
Y A

{

Q

Approach:

Choose the oxygen as the system under study. Because the process is slow, we may assume it is a
quasi-equilibrium process. For an isothermal expansion of an ideal gas,

_mRT | V2

W=y

Use the ideal gas law to rewrite the volumes in terms of pressures and then substitute values.

Scolution:

Define the system as the oxygen in the cylinder. For a slow, isothermal expansion of an ideal gas
[A1][A2], the work done is

_mRT . V2
W= M In v,
Using the ideal gas law, this becomes
mRT B
W= mAI;T In PaM mRT In |:P] :|

mRT M
PM

Substituting given values,

kI
0.052kg) |8.314 300K
W= ( ® [ kmol-K] ( )m 100kPa]

kg 45 kPa
2 kmol

W = 3.24%]

The value of M has been taken from Table A-1.

Another polytropic process is an adiabatic, quasi-equilibrium expansion or com-
pression of an ideal gas with constant specific heats, Although this may seem to be
a very special case, in fact, it has practical importance in understanding reciprocating
engines, compressors, turbines, nozzles, and many other devices. To find the value of the
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exponent, », for this process, begin with the first law (not including kinetic or potential -
Energy):

AU=0-W -
For an adiabatic process between states 1 and 2, @ = (), and the first law becomes
AU =-W
For an ideal gas with constant specific heat, from Eq. 2-29, -
moy AT =me, (T —T) = -W
Rearranging,
W=mc,(T) - T3)

Replacing temperatures using the ideal gas law gives

W =mc, (PI_VIM — Pz_VzM)
Rm Rm

or

Ly

M
W= B (P1V1 — PoV2)

Solving Eq. 2-42 for R and substituting gives

oM =

W= (P1V) — PaVy)

T M — oM

Divide the numerator and denominator by ¢,M to obtain
— 1 —_— — -
W= [cp/cv = ] (P1V] — PaV5) (2-51)

Egq. 2-51 is identical to Eq. 2-49, which is an expression for work in a polytropic process,
if n = ¢,/c,. BEq. 2-51 was derived assuming an adiabatic, quasi-equilibrium process of
an ideal gas with constant specific heats. Therefore, such a process is polytropic with
n = cpfcy. It is conventional to define & as the ratio of specific heats, that is,

k=2
Cy

From Eq. 2-43, pressure varies with volume in a polytropic process as

PV" = constant

Therefore:

PV* = constant adiabatic, quasi-equilibrium, ideal gas,

constant specific heats (2-52)
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An alternate form is

Pv* = constant adiabatic, quasi-equilibrium, ideal gas,

constant specific heats (2-53)

The quantity k is a function of temperature since the specific heats are themselves functions
of temperature. Values of k are included in tables of ideal gas specific heats, such as Tables
A-8 and B-8.

There are several useful equations that apply to a quasi-equilibrium, adiabatic expan-
sion or compression of an ideal gas with constant specific heats. First, from Eq. 2-52 it
follows that

P\VE =PV
An alternate way of writing this is
Lo R B4} ‘ diabatic, quasi ilibrium, ideal gas
70l A adiabatic, gu : 1-equilr , ideal gas, (2-54)
constant specific heats

It is possible to eliminate pressure in this equation by inserting the ideal gas law, that is,

mRT, /MYy [ Vi ] *
mﬁTl JMV, Va

which simptifies to

adiabatic, quasi-equilibrium, ideal gas, (2-55)

2 _ [ Vl ]k-—-]
constant specific heats

nr

The last expression of this series is obtained by substituting the ideal gas law into the
right-hand side of Eq. 2-54 to get

Py lmﬁTl/MPl ]"
Py mRTy/MP;

After some manipulation, this equation becomes

T
_ [ i) ] adiabatic, quasi-equilibrium, ideal gas, (2-56)
constant specific heats
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EXAMPLE 2-12 Adiabatic compression of an ideal gas

A well-insulated piston—cylinder assembly contains 0.031 m® of air at 40°C and 102 kPa. Find the
work required to compress the air slowly to 350 kPa.

1
]
1
1
|
1
1
1
1
E
1
]
Ay

T

AV =0031m? |

1
1
i 7, = 40°C 1 P, = 350 kPa
I3 =
i Py =102 kPa :*
% 1 4
bl i
Al s
= Air 4 .}-;
IEpors PSRRI gﬂ-u)‘,‘/&\\-ﬁ\g
Insulation

Approach:

Define the system as the air, This process is a slow, adiabatic compression of an ideal gas; therefore,
the work is, from Eq. 2-51,

[ _
W= | ) e -am

The initial volume and pressure are known. To find the final volume, use

Relw)

Assumptions: Solution:
The air in the cylinder is the system under study. For a slow, adiabatic compression of an ideal gas
Al Thisisa [AL][AZ][A3]), the work done is (see Eq. 2-51)
quasi-equilibrium
pracess. W= [ —— ] (P1V1 — PaVa)
A2, The process is cpler =1
adiabatic. To find the final volume, use [A4]
A3. Air may be modeled
as an ideal gas, [ ]
Ad. Specific heat is
constant. This may be rearranged to

Substituting values: |
_ 102\ 14
= (0.031)m (350)

Ve, = 0.0128 m°

Work may now be calculated as:

[(102 kPa) (0.031 m%) — (350 kPa) (0.0128 m?)] (ml?q(% za)
14-1

W=

W = -3200T=-320KkJ

[T
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EXAMPLE 2-132

Assumptions:

A1l Thisisa
quasi-equilibrium
process.

A2. The process is
adiabatic.

A3. Air may be modeled
as an ideal gas.

A4, Specific heat is
constant.

CHAPTER 2 THE FIRST LAW

The value of k was taken from Table A-8 at 300 K. Work is negative because work is done on the
gas during this compression process.

Conmment:

We do not know the final temperature of the air, although we could calculate it from the ideal gas
law. Since k depends on temperature, we should ideally use the value of £ at the average of the
initial and final temperatures. However, we note from Table A-8 that & varies only slightly with
temperature, so we are willing to accept the small inaccuracy that results from using k at 300 K.

Adiabatic expansion of an ideal gas

Carbon menoxide with a mass of 0.221 Ibm expands slowly and adiabatically in a refrigeration
process. Initially, the gas is at 30 psia and 80°F. If the volume doubles during the process,

1. find the final temperature and pressure.
b. find the work done.

rm=0.221lbm

! P, = 30 psia

SE

Approach:

Select the carbon monoxide as the system. This process is a slow, adiabatic expansion of an ideal
gas. Assuming constant specific heats, one may write

E _ [}'ﬁ]fffl
Tl - Vg
Use this to find the final temperature. To find the final pressure, use
Lo (w] ’
P W

The work may calculated from the first law, assuming that no heat is transferred.

Solution:

The system is the carbon monoxide gas. For a slow, adiabatic expansion of an ideal gas with constant
specific heats [A11[A2][A3][A4],

E _ h k-1
T~ | W

Solving for Tz,

V. 1-k
n=n i)



Ab. Kinetic energy is
negligible.

AB. Potential energy is
negligible.
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Since the volume doubles, we may substitute V,/V; == 2, The temperature then is
T = (80 + 460) R (2)' 14
where a value for & at 80°F from Table B-8 has been used. The result is
T, =409 R = —50.8°F

If more accuracy were desired, the calculation could be repeated with a value of k taken at the average
of the initial and final temperatures; however, & does not vary significantly over this temperature
range, so iteration is not necessary. To find the final pressure, use

2= (] ¢
P W
which may be rearranged to
Substituting values,
P =30psia(® ' =114 psia
To find the work, start from the first law in the form
AU=0-W

where potential and kinetic energy changes have been neglected [AS][A6]. Since the process is
adiabatic, this reduces to

AU =-W
Assuming constant specific heat,
HCy (T2 - T[) =-—-W

or
W =me, (T — 12)

Substituting values and using specific heat from Table B-8,

_ Btu _ o
W = (0.221] ibm) [0.177 —lbm-R] [80 — (—50.8)]°F

W = 5.11Btu

2.13 THE FIRST LAW IN DIFFERENTIAL FORM

The first law has been stated as
ARKE4+APE+AU=0—-W

This applies to a process in which there are finite changes in each of the constituent quanti-
ties. If, instead, the changes are differential in size, another form is needed. The differential
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form for work, 8 W, has already been discussed. Work is an inexact differential because the
amount of work done depends on the process and not solely on the end states. In contrast,
the change in kinetic energy, AKE, depends only on the end states. Specifically,

AKE = KE, — KEy = sV} — %mq/*f

For closed systems, mass is constant, and the kinetic energy depends only on the velocities
at states 1 and 2, not on how these velocities were attained. Therefore, change in kinetic
energy is an exact differential of form dKE, and it may be integrated as follows:

2
KE;, — KE| =f dKE
1

Change in potential energy is also an exact differential; it depends only on the end
states, that is, the heights z; and z;. Potential energy may be integrated as:

2
PEQ—PEl —_-f dPEzmg32—mgz|
I

Change in internal energy is an exact differential as well, because internal energy change
depends only on the end states. It is correct to write

2
UZ—U1=[ du
1

where U/, and UJ; are the internal energies at states 1 and 2.

By contrast, heat is not an exact differential. Heat is the energy transferred during a
process due to a temperature difference and is not a function of the end states. It depends
on the path. This can be formally demonstrated by the following argument.

Consider two different paths through P — V space, as shown in Figure 2-25. For path
A, the first law may be written

AKE +APE+ AU =Qy — W,

(KEy —KE)+ (PE; —PE)+ (U2 = U =04 — Wy (2-57)
For path B, the first law is

AKE + APE + AU = Qp — Wg
(KE; — KE\) + (PE; — PEN)+ (U2 - U1y =0 — Wp (2-58)

The left-hand sides of Eq. 2-57 and Eq. 2-58 are identical. Therefore, subtracting Eq. 2-58
from Eq. 2-57 and rearranging gives

2
%
P
1 B

v i FIGURE 2-25 The paths between states 1 and 2.

Oy —Wa=0p—Wp (2-59)
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Suppose now that A and B are quasi-equilibrium processes. Work is given by

W=deV

and the work is the area under the curve in Figure 2-25. For the paths shown,
Wy # Wp
It follows from Eq. 2-59 that

Qs # O

Thus, heat depends on the path through P — V space, not solely on the end states. For that
reason, the differential form is written 80, and the first law becomes

dKE + dPE +dll =80 — §W (2-60)

2.14 THE “PIZZA"” PROCEDURE
FOR PROBLEM SOLVING

Now that you have seen a few examples of solved problems, you may have noticed
some common features in the solutions. In every problem, we define the system, orga-
nize information into a schematic, apply governing principles, make assumptions, evaluate
properties, and perform calculations. If problems are tackled in this systematic way, errors
are avoided and correct solutions achieved. In this section, we give an overview of effective
problem-solving technique and offer hints for solving tough problems.

Many students find “getting started” to be the most difficult part of the problem. As
problems become more involved (see, for example, Figure 1-13, which is a schematic of a
Rankine cycle power plant used to generate electricity), the tendency of many students is
to immediately try to calculate something—anything. This approach can cause problems.
First, many students select an equation from the text without thinking about the restrictions
on that equation. For example, a student may be trying to calculate temperature and select
the ideal gas law simply because it contains temperature even though the substance they
are analyzing is a liquid. More subtle errors also occur, such as applying an equation that
is only true for adiabatic (insulated) cases to isothermal cases.

The correct approach to solving problems involves stepping back, avoiding immediate
equation grabbing, and thinking carefully about all aspects of the problem. In other words,
if you sit on your hands and give some thought to the solution before trying to calculate
something, you might make more and faster progress than by an immediate calculation,
On the other hand, it is not always possible to see a solution procedure clearly from start to
finish when beginning a problem. You may need to “play” with the equations to feel your
way to a solution. Problems arise when you use equations that do not apply, so you must
always be sensitive to the appropriate assumptions and restrictions on equations.

Almost all solutions to engineering problems require three tasks. If each of these
tasks is handled correctly, a reasonable and/or accurate solution will be obtainable; if one
task is not handled well, then the odds are poor that the answer obtained will be correct. We
compare the solution procedure to a three-legged stool; remove one leg from the stool, and
the stool falls. For engineering problems, the three “legs” are (1) analysis, (2) application
of governing concepts, and (3) evaluation of properties.

]

i

i
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These “legs” are described below, where we discuss a methodology to solve problems.
We lay out this discussion in the format we use to solve the example problems.

Example Problem Statement

The problem statement gives much information, either explicitly or implicitly. The information
may be described in terms of the value of variables at different locations in the system, a drawing
of an assembly of devices working together, descriptions of how a device operates, and so on. The
question to be answered is asked.

Approach:

The analysis of the problem is wrapped up in the approach to the problem solution. This can be
broken into about three steps (some problems require more, others less):

e Reqd the problem. This scems to be an obvious statement. Nevertheless, many students partially
read the problem and then immediately start trying to calculate something. A quick or partial
reading often misses crucial pieces of information. Tt is useful to read the problem statement at
least twice.

o Draw a schematic and organize the inforamtion. As noted in Chapter 1, a schematic diagram
simply shows the relationship between various pieces of a system. Indicate the processes involved.
Give each location or piece of information a unique symbol consistent with how that information
will be used in an equation. Include units with the given information. Also, write down what is
being sought—not in words copied from the problem statement, but rather with a symbol you
will use in the equations.

o Think. This is the step some students give little attention to. Now is the time to sit on your hands for
a moment or two. Consider what is occurring in the system you have drawn. Does the problem
have to be solved as a steady or unsteady process? Is it a closed or an open system? Decide
which governing principles (e.g., conservation of mass, conservation of energy, conservation of
momenturn, entropy balance, a force balance, a moment balance, etc.) are needed and how you
will attack the problem.

Solution:

This phase of the solution involves application of governing concepts and evaluation of properties.
Develop your equations using symbols. Do not substitute numbers until they are absolutely nec-
essary. Do not look up properties until you know what properties are actually needed. Note that
you may need to work through several equations/concepts before any calculations are possible. The
following points are included in a problem solution:

o Start the problem solution. Where to start a problem can be a difficult decision. Begin with a
governing equation (e.g., the first law} or a definition (e.g., cycle thermal efficiency) that includes
the quantity you seck. This is a reasonable way to attack a problem.

o Apply governing principles. After you have decided how to start the problem, use whichever gov-
erning principles {e.g., conservation of mass, conservation of energy, conservation of momentuin,
entropy balance, a force balance, a moment balance, etc.} or definitions are needed. Leave your
solution in terms of symbols/variable names. Do not substitute values of quantities until it is
absolutely necessary (things may cancel and simplify). Then consider each term in the equation
and whether or not sufficient information is given to evaluate it. If data are lacking, then another
governing equation or definition may be required.

o Make assumptions. When you begin a problem solution, you may be able to immediately
impose some restrictions (assumptions) on the problem (e.g., steady or unsteady). However, as
you go through the solution, you may need to make additional assumptions to be able to solve
the problem. Make those assumptions when required; at the very beginning of the solution, do not
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concern yourself about what all the assumptions must be. Let the solution procedure guide your
thoughts. If you are not sure what assumptions to make, write down the governing equation
with all its terms (e.g., the first law) and examine each term. Ask yourself whether you know
something about the term, whether you can develop information about it from other sources, or
whether you are justified in assuming that the term is zero.

¢ Evaluate properties. When you begin a problem solution, you will not know what properties
are needed until you have done the analysis. Wait to evaluate properties until you need them.
Likewise, make sure you evaluate the properties at the correct temperatures and/or pressures.

s Subsitute numbers into equations. The final step is the substitution of information (given or
developed) into the equations you have developed during the problem solution. Include units;
those provide a quick check on the equation. If the units do not work out, then there is an error,
Use appropriate conversion factors. {Units do make & difference (see Figure 2-26.)] Likewise,
the sign of the answer must make sense.

Comments:

In this part of the solution, you consider your answer and make a judgment about whether it is
reasonable or not (see Figure 2-27). Is the magnitude of your answer consistent with what you
might expect? Do the units match what you expect? Is the sign right? Have the assumptions you
made simplified the problem teo much, or can you speculate about what effect the assumptions
have on the solution? This is an assessment of the overall validity and usefulness of the solution.

P
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FIGURE 2-27 An unreasonable solution. (Foxtrot ©1997 Bill Amend. Reprinted with
permission of Universal Press Syndicate. All rights reserved.)

Because thermal systems problems can be involved, it is important to develop a
systematic way to attack them. If you practice the above procedure on simpler problems,
when you are faced with a more involved problem, you will have the experience and tools
to attack it with confidence. Note that the above procedure is not a linear (serial} process. As
you proceed through a solution and gain more knowledge, you may need to revisit earlier
steps and make changes.

So how does the procedure given above correspond to the title of this section, “The
‘Pizza’ Procedure for Problem Solving”? Consider Figure 1-13, which is a schematic of a
Rankine cycle power plant. This is a complex system. If we wanted to determine how much
power could be produced for a given heat input, where would we start? We approach this
problem the same way we eat a pizza. If someone told you to eat a 45-cm-diameter pizza
all at once, you could not do it. Rather, you cut the pizza into manageable pieces, take biies
of one piece until it is finished, and then move on to the next piece. This is identical to
what we do with engineering problems. We do not solve a problem by thinking we must
include everything all at once. The Rankine cycle shown in Figure 1-13 is our “pizza.”
Each component in the system is a piece of the “pizza.” Cur “bites” from the piece may be
application of a governing principle or evaluation of a property at one of the locations on
the device or some other action.

SUMMARY

Ak et

The first law of thermodynamics states
AE=0Q0-W

There are three types of stored energy considered in this text:
internal energy, kinetic energy, and potential energy. Including
these, the first law is

ARE + APE+ AU =0Q—W

The kinetic energy is due to the velocity of the system, The
change in kinetic energy between two states is

AKE = KE, — KEi = 5m — 3m¥'}



The potential energy is due to the elevation of the system in a
gravitational field. The change in potential energy between two
states is

APE = mg(z — 71}
where z; and z; are the heights at the beginning and the end
of the elevation change. In using the first law, the signs of the

work and heat terms are important. The sign convention for
work is:

e work done by a system is positive
e work done on a system is negative
The sign convention for heat is:
= heat transfer to a system is positive
o heat transfer from a system is negative
For an ideal (i.e., incompressible) solid or liquid, the differential
change in internal energy is
dU = mc(T)dT
where ¢(T) is specific heat. If specific heat is constant

AU = mcAT

If ¢ varies with temperature, using a value evaluated at the
average of the starting and ending temperatures is a reason-
able approximation. By definition, the density is mass per unit
volume, that is,

_m
P=vy

Pressure is defined as a force per unit area, or

_F
P=3

Another important thermophysical property is temperature.
Four different unit systems for temperature are in common
use: Fahrenheit, Celsins, Kelvin, and Rankine. Fahrenheit and
Celsius are relative scales and Kelvin and Rankine are absolute
scales. The scales are related by

T°F) = 1.8T(°C)+ 32
T(°C} = [T(°F) —32] /1.8
T(K) = T(PC) +273.15
T(R) = T(°F) 4+ 459.67
T(R) = 1.8T(K)

The behavior of gases can often be approximated by the ideal
gas law:

PV = uRT

suMmMmary 81

The temperature in this equation must be measured using an
absolute scale, (i.e., either Kelvin or Rankine). Likewise, the
pressure must be the absolute pressure. The mass of the gas is
related to the number of moles, », by

m=nM

where M is the molecular weight. The specific volume is
defined as

g=

=1
V=5

Aiternate forms of the ideal gas law useful in engineering are

_ mRT
PV_—M
_pET
P = M

The universal gas constant in several different units is

R = 8.31434 kI /(kmol-K)

Il

1.9858 Btu/(ibmol-R)

1545.35 ft-1bf/(Ibmol-R)
= 10.73 psia-ft® /(Ibmol-R)

Work is a force through a distance. In general, the work done by
a force F acting in direction x is

W=dex

A quasi-equilibrium process is one that passes through a
series of equilibrium states. These are typically very slow
processes with no abrupt changes. If a gas expands or con-
tracts in a quasi-equilibrium process, the work done may be
expressed as

W=deV

Electrical work is given by

W=f§idt
W=f£‘§wdr

Shaft work is given by

i

i||]
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Enthalpy is defined as
A=U+PV

The specific enthalpy is the enthalpy per unit mass, or

h==
m

As aresult

h=u+PFPv

Enthalpy is useful in finding the heat transfer during a constant-
pressure, quasi-equilibrivm expansion or contraction of a closed
system. This heat transfer is

0=AH

There are two different specific heats commonly used in ther-
modynamics: the specific heat at constant pressure, ¢, and the
specific heat at constant volume, c,. If the specific heat is not
a function of temperature, then, for an ideal gas undergoing a
process between two states,

Al = mc, AT

AH = mep AT
If specific heat varies with temperature, then use Tables A-9
or B-9, which give values of # and & for air as a function of

temperature.
The specific heats of an ideal gas are related by

CP=Cv+%
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PROBLEMS

KINETIC AND POTENTIAL ENERGY

P2-1 A 2000-kg car accelerates from 20 to 60 km/h on an uphill
road. The car travels 120 m and the slope of the road from the
horizontal is 25°. Determine the work done by the engine.




P2-2 A missile is launched vertically upward from the surface
of the earth with an initial velocity of 350 m/s. If the missile
mass is 1200 kg, calculate the maximum height the missile will
attain. Assume no aerodynamic drag or other work during the
flight and no heat transfer.

P2-3 A system of conveyor belts is used to transport a box of
301bm, as shown in the figure. Note that the inclined belt and the
upper belt travel at a faster speed than the lower belt. Calculate
the work done by the motor that drives the inclined belt. Neglect
all friction.

Inclined conveyor belt
4

P2-4 In a front-wheel-drive car, 60% of the braking energy
is dissipated in the front wheels and 40% is dissipated in the
rear. If a car with a mass of 2650 lbm is decelerated from 60
mph to 15 mph on Ievel ground by braking, calculate the energy
dissipated in each front wheel (in Btu). Neglect aerodynamic
drag and rolling resistance.

SPECIFIC HEAT OF SOLIDS AND LIQUIDS

P2-5 A massof 1200 kg of fish at 20°C is to be frozen solid at
—20°C. The freezing point of the fish is —2.2°C and the specific
heats above and below the freezing point are 3.2 and 1.7 kJ/kg-K,
respectively. The heat of fusion (the amount of heat needed to
freeze 1 kg of fish) is 235 kJ/kg. Find the heat transferred.

P2-6 A steel bar initially at 1000°F is quenched by immersion
inabath of liquid water initially at 70°F. The mass of the baris 2.5
1bm, and the volume of the water is 7 ft3. Heat is transferred from
the bath to the surroundings, which are at 70°F, After some time,
the bar and water reach an equilibrium temperature of 70°F. Find
the heat transferred. (For the steel, use ¢ = 0. 106 Bru/lbm-R.)

P2-7 A 0.14-lbm aluminum ball at 400°F is dropped into a
water bath at 70°F. The bath contains 0.52 ft* of water and is
well insulated. What is the final temperature of the ball after the
bail and water reach equilibrinm?

P2-8 Inanew process, a thinmetal film is produced when very-
high-velocity particles strike a surface, melt, and adhere to the
surface. Imagine an aluminurmn particle with a diameter of 40 gm
(1 pm = 10 m) at a temperature of 20°C. The particle strikes
a cold aleminum surface, also at 20°C. The particle energy is
Just high enough so that the particle and a portion of the surface
with the same mass as the particle completely melt. What is the
velocity of the particle? Assume pure aluminum with a constant
specific heat of 1146 J/(kg-K). The heat of fusion (the amount
of heat needed to melt 1 kg of aluminum) is 404 kJ/kg.
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FORCE, MASS, UNITS

P2-9  An object weighs 40 N on a space station that has an
artificial gravitational acceleration of 5 m/s?. What is the weight
of the object on earth?

P2-10 A mass of 5 Ibm is acted on by an upward force of 16
Ibf. The only additional force on the mass is the force of gravity.
Find the acceleration in fi/s®. Is this acceleration up or down?

P2-11 An airplane of mass 18,300 kg travels at 500 mph
through the atmosphere. Calculate the kinetic energy of the plane
inkl.

PRESSURE CONCEPTS

P2-12 A pgas is contained in a piston—cylinder assembly as
shown in the figure. A compressed spring exerts a force of 60 N
on the top of the piston. The mass of the piston is 4 kg, and the
surface area is 35 cm?, If atmospheric pressure is 95 kPa, what
is the pressure of the gas in the cylinder?

a
b
[d

Spring

=i Piston:, TR

my =4 kg
Gas

P2-13 A gas is contained in a piston—cylinder assembly, as
shown in the figure. A compressed spring exerts a downward
force on the piston. The spring is compressed 2 in., and the
spring constant is 6.7 1bf/in. The piston is made of steel with a
density of 490 Ibm/ft® and a thickness of 0.5 in. The cylinder
has a 7-in. diameter. Calculate the gage pressure of the gas in

the tank.
gSpring )
. — . /Plston

Gas

IDEAL GAS LAW

P2-14 Find the density of hydrogen at a pressure of 150 kPa
and a temperature of 50°C.

P2-15 A pressurized nitrogen tank used on a paintball gun has
a volume of 88 in. If the pressure of nitrogen is 4500 psia,
calculate the mass of nitrogen in the tank. Assume a temperature
of 70°F.

P2-16 Airis pumped from a vacuum chamber until the pressure
drops to 3 torr. If the air temperature at the end of the pumping
process is 5°C, calculate the air density. Eventually, the air tem-
perature in the vacuum chamber rises to 20°C because of heat
transfer with the surroundings. Assuming the volume is constant,
find the final pressure, in tort.
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WORI CONCEPTS

P2-17 Calculate the work, in joules, that is done in the quasi-
equilibrium process from state 1 to state 2 shown in the figure.

1o

100 +

50 +

P (kPa}

3 4

2
¥ (em®)

P2-18 In a certain quasi-equilibrium process, pressure
increases from 200 kPa to 350 kPa. The initial gas volume
is 0.2 m?. During the process, pressure varies with volume
according to

(V-0.110° = (P - 100)°

where V is in m® and P is in kPa. Calculate the work done.

P2-19 Airiscontained ina piston-cylinder assembly, as shown
in the figure. The piston, which is assumed massless, is held in
place by a spring. Initially, the spring is not compressed and
exerts no force on the piston. Then the air is heated until the
volume increases by 25%. The force exerted by the spring on
the piston is F=kx, where k = 130 N/cm and x is the amount by
which the spring is compressed. The piston diameter is 6 cm, and
the initial height of the piston is 8 em. Calculate the amount of
work done by the gas during this process. Assume atmospheric
pressure is 101 kPa.

TLTIPistonzaazl]

Air E cm

P2-20 A propeller operating at 85 rpm applies a torque of 61
N.m (Newton meters). If the propeller has been rotating for 30
minutes, find the work done in kWh (kilowatt-hours).

P2-21 A resistance heater is being used to heat a tank of nitro-
@en. If 3 amps are supplied to the resistor, which has a resistance
of 60 §2, how long will it take for 1200 J of work to be done?

P2-22 An electric motor operates in steady state at 1000 rpm
for 45 min. The motor draws 8 amps at 110 velts and delivers a
torque of 7.6 N-m. Find the total electrical energy input in kWh
and the total shaft work produced in both kWh and Btu.

P2-23 Nitrogen at 28°C and 100 kPa is heated in a piston—
cylinder assembly. Initially the spring shown is uncompressed
and exerts no force on the piston, which is massless. If 4.5 J of
work are done by the Na,

a. how far does the piston rise?

h. what is the final temperature?

Py = 100 kPa

k=

&cm 28 Nfcm

RS I T ———
LT T Y

8cm

5cm L

FIRST LAW

P2-24 A piston—cylinder assembly contains 0.4% g of air at a
pressurc of 130 kPa. The initial volume is 425 cm?®. The air is
then compressed while 16.4 ] of work are done and 3.2 J of
heat are transferred to the surroundings. Calculate the final air
temperature,

P2-25 In the figure, a piston is resting on a set of stops. The
cylinder contains CO; initially at —30°C and 45 kPa. The mass
of the piston is 1.2 kg and its diameter is 0.06 m. Assuming
atmospheric pressure is 101 kPa, how much heat must be added
to just lift the piston off the stops?

Piston

CO, gas L=0.042m

P2-26 A closed tank of volume 2.8 ft* contains oxygen at 70°F
and an absolute pressure of 14.3 Ibffin.2, The gas is heated unti}
the absolute pressure becomes 43 Ibffin.2. Treating oxygen as an
ideal gas,

a. find the final temperature.

b. find the total change in enthalpy, #, in Btu for this process.

P2-27 A rigid tank of volume 0.26 m?® contains hydrogen at
15°C and 101 kPa. A paddlewheel] stirs the tank, adding 17.8 kJ
of work. Over the same time period, the tank loses 9.3 kJ of heat
to the environment. Assuming the specific heat of hydrogen does
not vary with temperature, find the final temperature.

{Ideal gas) Hp




P2-28 A chamber is divided equally in two parts by a mem-
brane. One side contains Hz at a pressure of 130 kPa, and the
other side is evacvated. The total chamber volume is 0.004 m>.
Attime r = 0, the membrane ruptures and the hydrogen expands
freely into the evacuated side. If the chamber is considered
adiabatic, find the final pressure.

P2-29  Alr at 20°C, 250 kPa is contained in a piston—cylinder
assembly. Initially, the piston is held in place by a pin. Then the
pin is removed and the gas expands rapidly. During the expan-
sion, there is no time for any heat transfer to occur, The final air
temperature and pressure are — 16°C and 100 kPa. The mass of air
in the cylinder is 0.4 kg. Find the work done on the atmosphere.

P2-30  Nitrogen at 50 psia and 650°F is contained in a piston-
cylinder assembly. The initial volume is 25 ft*. The nitrogen
is cooled slowly while the pressure stays constant until the
temperature drops to 150°F. Find the heat transferred.

P2-31  Airat 30°C is contained in a piston—cylinder assembly,
as shown in the figure. The piston has a weight of 15 N and a
cross-sectional area of (0,12 m2. The initial volume of air is 3.5
m®. Heat is added until the volume of the air becomes 6.5 m®.
Atmospheric pressure is 100 kPa.

a. Find the final air temperature.

b. Determine the work done by the air on both the piston and
the atmosphere.

P am

—/ Piston

Air

P2-32  An ideal gas with ¢, = 0.7 kJ/kg-K and a molecnlar
weight of 25.6 is initially at 75 kPa and 40°C. First the gas is
expanded at constant pressure until its volume doubles. Then it
is heated at constant volume until the pressure doubles. If the
mass of gas is 4.5 kg, find

a. the total work for the entire process.
b. the heat transferred for the entire process.

ISOTHERMAL COMPRESSION OR EXPANSION
OF AN IDEAL GAS

P2-33 A piston—cylinder assembly contains 0.2 kg of argon at
200 K and 50 kPa. If the argon is expanded isothermally to 30
kPa, find the work done.

P2-34 An ideal gas with a molecular weight of 37.2 is con-
tained in a piston—cylinder assembly. The gas is initially at 130
kPa, 25°C, and has a mass of 2. 34 x 10~* kg. The gas expands
slowly and isothermally until the final pressure is 100 kPa.
Caleulate the work done.
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P2-35 Anideal gas with a volume of 0.5 ft* and an absolute
pressure of 15 Ibffin.? is contained in 2 piston—cylinder assembly.
The gas is compressed isothermally until the pressure doubles.
Calculate the heat transferred in Btu. Is the heat moving from
the gas to the surroundings or vice versa?

P2-36 Airin a piston—cylinder assembly is compressed slowly
and isothermally from an initial volume of 350 cm? to a final
volume of 200 cm?. The air is initially at 100 kPa.

a. Find the work done.

b. Find the heat transferred.

P2-37 A piston—cylinder assembly contains 0.4 kg of CQ,. The
gas expands at constant temperature from an initial state of 250
kPa, 100°C to a final pressure of 100 kPa. Calculate the heat
transferred during the process.

P2-38 Air at 180°F and 25 psia is compressed slowly and
isothermally to 86 psia. If the initial mass of air is 0.0043
Ibm, find

a. the work done.
b. the heat transferred.

P2-39 A piston—cylinder assembly of initial volume 150 c¢m’®
contains 0.3 g of oxygen at 120 kPa. The oxygen is then com-
pressed slowly, isothermally, and frictionlessly, while 5.9 T of
heat are removed. Find the final pressure.

P2-40 Carbon dioxide is expanded slowly and isothermally
in a piston—cylinder assembly from 33.7 psia to 14,7 psia. The
initial volume is 39 in.* and the temperature is 100°E. Calculate
the work done.

P2-41 Fifteen grams of nitrogen in a piston—cylinder assembly
are compressed slowly and isothermaily from 100 kPa, 25°C to
2500 kPa. Calculate the heat transferred and the work done.

POLYTROPIC PROCESS OF AN IDEAL GAS

P2-42  Airin a piston—cylinder assembly is slowly compressed
from 100 kPa to 300 kPa. The mass of the air is 1.5 x10~ kg,
and its initial temperature is 20°C. During the entire process,
pressure is related to volume as

PV = a constant

Calculate the work done.

P2-43 Air is compressed from 150 kPa to 600 kPa while
the temperature rises from 20°C to 100°C. The process is
polytropic with

PV" = constant

The initial volume of air is 1 m3. Find

a. the value of n.
b. the work.
¢, the heat transfer,

|

(7
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P2-44 A piston—cylinder assembly of total mass 16 lbm is free
to move within a housing as shown in the figure. Initially the
cylinder contains gas at an absolute pressure of 20 Ibffin.2 and
a volume of (.07 ft* and is at rest. The piston is then moved so
that the entire assembly accelerates rightward and reaches a final
velocity of 7.5 ft/s. During this process, the gas is compressed
to a final pressure of 35 Ibf/in.? The process is adiabatic, and the
pressure is refated to the volume by PV'# = constant. Calculate
the change in internal energy for this process in Btu.

Housing

Fi

/
Piston—cylinder assembly

ADIABATIC COMPRESSION OR
EXPANSION OF AN IDEAL GAS

P2-45 Narural gas is a mixture of methane, ethane, propane,
and butane as well as other components. Composition varies by
point of origin of the gas. Consider natural gas with an equivalent
molecular weight of 23.6 and an equivalent specific heat, ¢, =
2.0I ki/kg-K. The gas is slowly compressed in a frictionless,
adiabatic process from an initial volume of 212 cm® to a final
volume of 98 cm®. If the initial pressure is 39 kPa and the initial
temperature is 15°C, find the final temperature and pressure.
Assume the mixture can be modeled as an ideal gas.

P2-46 Carbon monoxide is expanded slowly in a well-
insulated, frictionless piston—cylinder assembly from 300 cm?,
25°C to 400 cm?. Find the final iemperature.

P2-47 Hydrogen with a mass of 1.1 kg is compressed slowly
and adiabatically from 100 kPa, 25°C to 450 kPa in a pistor—
cylinder assembly. Assuming constant specific heat, calculate
the final temperature and the work done.

P2-48 Air at 147 psia and 100°F is contained in a well-
insulated piston—cylinder assembly of initial volume 0.6 3,

The air is slowly expanded by applying 560 ft-1bf of work. What
is the final pressure? Assume constant specific heats.

P2-49 Oxygen at 14.7 psia and 70°F is contained in a piston—
cylinder assembly with an initial volume of 150 in.? The oxygen
is compressed slowly and adiabatically to a final volume of
50 in.* Assume constant specific heat. Find

a. the final temperature.
b. the final pressure.
¢. the work done (in ft-1bf).

P2-50 Nitrogen at 850 K, 2 MPa expands slowly and adia-
batically until the final temperature is 300 K. Assuming constant
specific heat, find the final pressure and the ratio of final to initial
volume.

P2-51 Air with a mass of 0.17 lbm is slowly compressed
in a well-insulated, frictionless piston—cylinder assembly from
14.7 psia to 68 psia. If the air is inittally at 60°F,

a. find the final temperature.
b. find the work done (in ft-1bf).

VARIABLE SPECIFIC HEAT

P2-52 Air is slowly expanded at constant pressure from an
initial temperature of 300 K to a final temperature of 700 K ina
piston—cylinder assembly. The initial volume of air is 250 cm®,
and the pressure is 150 kPa. Calculate the work done and the
heat transferred

a. using variable specific heats.
b. using constant specific heats.

P2-53 A rigid tank of volume 4.2 ft> contains air initially at
100°F and 14.7 psia. Heat is added until the final pressure is
70.9 psia. Assuming variable specific heat, find the heat added.
P2-54 A rigid tank contains 0.05 kg of air at 800 K and 300
kPa. The tank is cooled while 6.35 kI of heat are transferred.
Find the final air temperature and pressure assuming variable
specific heat.



CHAPTER3

THERMAL RESISTANCES

3.1 THE FIRST LAW AS A RATE EQUATION

Inthe previous chapter, the first law of thermodynamics was applied to a variety of processes.
In each case, we focused on the state of the system at the beginning of the process and
the state at the end of the process. For example, suppose we heat a gas in a rigid tank.
The gas temperature and pressure are known at the beginning of the heating process, and
the first law is used to find the gas temperature and pressure at the end of the process.
Intermediate conditions of the gas are not examined. Also, the time required to heat the gas
was not calculated. This nonrate form of the first law is applied to processes that occur over
a specific time interval and deal with fixed amounts of energy (e.g., kJ or Btu).

In this chapter, the first law is recast in the form of a rate equation, which is applicable
at an instant of time and deals with energy rates (e.g., KW or Btu/h). This equation allows
us to predict the time required for a process to occur. In addition, we examine the various
ways heat can be added or removed from a system as well as the rate of heat transport.

‘We begin by writing the first law in differential form (see Bqg. 2-60) as

dE =80 — W
or

dKE 4 dPE + dU = 50 — §W
Taking the derivative with respect to time, we obtain

dE _8Q W
dr ~ dt dt
or

dKE+dPE+@_5_Q_8_W_
dt dr dat — dr dr

The terms on the left-hand side represent the time rate of change of the total energy of

the system. The terms on the right represent the rate at which heat and work cross the

boundaries of the system and are frequently represented by the shorthand notation

8
°= d_? (3-1
_w
T odr
Incorporating this notation, the first law may be written
dKE | dPE  dU _ » }
i +?+EI——Q w (3-2)
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The rate of work, or power, is W. This can be integrated with respect to time to obtain the
total work over a time interval. Likewise, the heat transfer rate, (J, can be integrated with
respect (o time to give the total heat transferred over a time interval. Thus,

W= {Wdr
0= /Qad

As shown in Chapter 2, for electrical work, W = [ £1 dt. Therefore

W =¢r

Similarly, for shaft work, W = [ Swdt, so that

W = S (3-3)

EXAMPELE 3-1 Transient heating of a block

Assumpticns:

A1. The block is
perfectly insulated.

A2. Kinetic energy is
negligible.

A3. Potential energy is
negligible.

An aluminum block at 50°C is heated by an electrical resistance heater that supplies 100 W. The
block has a volume of 1400 cm?. How long will it take for the block to reach 100°C? The block is
covered with a very thick layer of thermal insulation.

Aluminum
block

Approach:

Choose the aluminum block and the heater as the system under study. The first law in rate form,
as given by Eq. 3-2, can be used to find the time to heat the block. The electrical energy added
is actually the work per unit time. Because the block is well insulated, the rate of heat transfer is
zero, With work and heat known, the rate of change of internal energy can be calculated from the
first law. Temperature rise is related to internal energy change. Using information on the mass and
specific heat of the block, you can calculate the temperature change in a given time period.

Solution:
Define the system as the aluminum block and the heater. The first law is

dKE | dPE | dU _ ~

a Ta Ta eV
Because the system is well insulated, 0 = 0 [A1]. There is no change in kinetic or potential energy
{AZ][A3], so

dU

O =W



Ad. The mass of the
heater is negligible.
AB. Specific heat is
constant.
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We assume the mass of the heater is small compared to the mass of the aluminum [A4] and neglect
the internal energy change of the heater itself, Using dUJ = me dT gives [AS]

ar _ &
mc = w
For a solid ¢ = ¢, & ¢,. Therefore
mcp% =—-W
Separating variables,
__W
dar = ey dt
Integrating,
W W
de——fm—cde —ﬁ[df
or
W
AT = ~mc, At

The power, W, was removed from the integral because it does not vary with time. Solving for Az,

_mcpAT
W

At =
The mass of the block is given by
m=pV

With values for aluminum from Table A-2,

_ kg 3 1m )°_
m= [2702F (1400 cm®) [1000m =3.78kg

Electrical work is be:ing done on the block. By our sign convention, work done on a system is
negative, therefore, W = — 100 W. The heating time may now be calculated as

—(3.78kg) [903 ﬁ ] {100 — 50)°C
Ar=— &

i
MIUOE

where a watt has been expressed as a joule per second and the specific heat is from Table A-2.
Evaluating,

At =1708s = 28.5 min

3.2 CONDUCTION

Conduction heat transfer was first described on a mathematical basis by J. B. Fourier in
1822. He conducted an extensive series of experiments that laid the foundation for the
science of heat transfer. One experiment involved the one-dimensional flow of heat in a




90

CHAPTER 3 THERMAL RESISTANCES

Insulation Rod

Ti=T,

FIGURE 3-1 An insulated rod conducting heat.

rod, as shown in Figure 3-1. At the start of the experiment, the entire rod was at a uniform
temperature. Then the temperature of the left end was raised to a high temperature, T,
while the right end was lowered to a temperature, 7;, The surface of the rod was well
insulated, so no heat escaped from this surface. Heat flowed from the hot end to the cold
end. After a sufficiently long time, the temperatures within the rod no longer changed with
time and the rate at which heat flowed reached a steady-state value.

For this perfectly insulated rod, the steady-state heat transfer rate from one end to the
other can be expressed (for most common materials) as

Q = w (3-4)

where ( is the rate of heat transfer, A is the cross-sectional area, L is the length, and & is a
quantity called the thermal conductivity. In the British system, O has units of Btuw/h. In the
SI system, the units of () are joules per second or watts. The thermal conductivity has units
of Btwh-ft-°F in the British system and W/m-°C in the SI system. Thermal conductivity
has a high value in electrical conductors such as copper and a low value in insulators such
as glass. Table 3-1 gives some representative vatues of thermal conductivity for a variety
of materials. Values of thermal conductivity for a variety of solids are given in Tables A-2
to A-5 and B-2 to B-5. Thermal conductivity is also included in Tables A-6 and B-6 for
liquids and in Tables A-7 and B-7 for gases. In some cases, thermal conductivity varies
with temperature, and then Eq. 3-4 is no longer valid.

Eq. 3-4 does not depend on the shape of the rod and can be applied to other shapes
that have a constant cross-sectional area and an insulated swface. For example, it could

TABLE 3-1 Values of Thermal Conductivity for a Variety of Materials at 300 K

k k
Material W/{m -°C) Btu/({h-ft-°F}
Silver 429 248
Copper am 232
Carbon steal 60 34.7
Stainless steel 15 8.7
Plate glass 14 0.80
Concrete 14 0.80
Water 0.6 0.35
Wooed {oak) 0.17 0.1
Leather 0.16 0.09
Fiberglass insulation 0.04 0.023

Air 0.026 0.015
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apply to a square bar, as long as there is no heat loss from its sides. It is often applied to
large flat plates, where the heat Jost from the edges of the plate is negligible. In general,
Eq. 3-4 applies to plane layers of material of any constant cross-sectional shape in which
all the conduction occurs in only one direction.

Eq. 3-4 relates the heat transfer rate through a plane layer to the temperatures at its
two faces. What happens to the temperature inside the layer? Experimentally, it has been
shown that, if the thermal conductivity is constant, the temperature varies linearly between
the two end values. The temperature profile within the layer is shown in Figure 3-2. The
quantity (T, — T1)/L is, in fact, the slope of the curve of T'(x) versus x. Because the slope
is just the derivative of a function, we may write

@ _T-T _T-T

dxy ~ x—x L

Substituting this into Eq. 3-4 gives

This is Fourier’s law of conduction. It is a relationship of fundamental importance in
conduction heat transfer. In Figure 3-2, temperature decreases with increasing length;
therefore, d7/dx is negative. It is conventional to define { as positive in the direction
of decreasing temperature (heat flows from hot to cold), so a negative sign is used in
Fourier’s law.

The simple one-dimensional heat conduction example described above is a convenient
starting point for the discussion of conduction heat transfer. Chapter 11 discusses conduction
in more detail and rigor. For now, we will use this simple model to illustrate how conduction
is used in the first law.

Temperature probes

T T2
- - L ] . Q‘
s
L N
—x
—] —]
X1 Xo
y
T, 4 Data
= Curve fit
=
T2 T
1
T
L

x FIGURE 3-2 Temperature profile in a plane layer.
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EXAMPLE 3-2 Heat loss through an oven wali

Assumptions:

A1 Conduction is
one-dimensional.

The wall of an oven measures 3 ft by 2 ft by 0.25 in. The wall is covered by a layer of insulation
that is 1.5 in. thick. The thermal conductivity of the wall material is 8§ Btu/h-ft-°F and the thermal
conductivity of the insulation is 0.14 Btu/h-ft-°F. The inside wall temperature is 450°F, and the
temperature at the outside of the insulation is 75°F. These temperatures are constant for a long time,
and a steady-state temperature distribution is established in the wall. Calculate the ammount of heat
lost in Btu through the insulated wall in 1 h.

Ovenwall  Insulation

Oven wall  Insulation

Inside Quiside

(a) Edge view (b) Isometric view

Approach:

We want to calculate the total heat lost, @, from the heat transfer rate, 0, using

szQm

To calculate ¢, the insulated oven wall can be modeled as a large flat plane constructed in two
layers. The formula for one-dimensional heat conduction

; KAAT

Q===
can be used for each layer. Two equations are written; one for the oven wall layer and the other
for the insulation layer, with appropriate values for &, L, and AT for each layer. The heat flowing
through the oven wall is the same as the heat flowing through the insulation, because we assume
the heat travels in only one dimension. We can use this fact to find the temperature at the interface
between the oven wall and the insulation. The interface temperature is needed to calculate the rate
of heat transfer, €. Finally, this rate is integrated over the 1-hour time period to find the total amount
of heat transferred.

Solution:

The two-layer wall is sketched in the figure. Conduction through the oven wall is given by [Al],

H_ kAT —T3)

Q= L

The temperature, T3, is unknown, as is Q; therefore, we need a second equation. All the heat
conducted through the first layer is also conducted through the second, because we assume none is
lost at the edges of the wull. For the insulation layer, then,

_ kA ~-T3)
- L

0
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A2. The system is in

steady state.
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which is the second equation needed. Equating these two expressions gives

MAT —T2) _ kAT, —Th)
L Ly

Solving for the unknown temperature, 73, yields, after some algebra,

LT + kbl Ty

L= k1Ly -+ koL

Substituting values,

(8 Btn/h-it-°F)(L.5 in. }(450°F) 4 (0.14 Btu/h-ft-°F)(0.25 in.)(75°F)
(8 Btu/h-ft-°F)(1.5 in. ) 4 (0.14 Btu/h-ft-*F){0.25 in.)

= 448.9°F

T, =

To find the heat conducted through the wall in I hour, we can use the expression for { for either
the oven wall or the insulation. Arbitrarily selecting the oven wall;

0= bAT=T)
By definition,
therefore, we may write
¥,
o= [" o

or

Q= f ¥ klA(Tl Tz)

where #r = 1 hour. Because temperature does not vary with time [A2],

T kA (T1 ~T3) kAT — Ta) iy
o- [ ar= AL

Using given values and the calculated value 7,

[8 Btu ] (3 £6)(2 f1)(d50 — 448.9°F(1 h)

h-ft-°F
: 12 in.
(0.25in.} [ T ]

Q = 17.45Btu

Note the very large temperature drop across the insulation (448.9°F — 75°F = 373.9°F) compared
to the very small drop (450°F — 448.9°F = 1.1°F) across the metal wall of the oven.

Heat transfer by radiation can occur in solids, liquids, or gases. Radiation in a gas typically
involves absorption and emission of photons throughout the volume of the gas. This is a
very complex process and is beyond the scope of this book. In solids and liquids, photons

til |
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are also emitted and absorbed throughout the volume. However, in opaque materials, the
radiative behavior depends only on what happens at the surface. In an opaque solid or liquid,
photons are absorbed in a very thin layer on the surface. In addition, only the photons emitted
from this thin layer can escape from the opaque material. Photons emitted deep within the
substance are reabsorbed in a very short distance from the point of emission and have
no influence on energy transfer within the material. For opaque substances, radiation can
be considered to be a surface phenomenon. Only opaque substances will be discussed in
this text.

The ideal surface against which all other surfaces are compared is called a black
surface. A black surface is defined as one that absorbs all the radiation incident upon it.
As shown in Chapter 14, a black surface at temperature T emits the maximum possible
radiation that can be emitted at that temperature by any surface. Imagine a black body at a
uniform temperature 7. If surrounding surfaces are far away from the body, then radiation
from the body to the surroundings is governed by

O=0cA(TH-T4))  black surface (3-5)

SHrr

where Ty, is the absolute temperature of the surrounding surfaces (nsually the ambient
temperature), A is the surface area exposed to radiation, and o is the Stefan-Boltzmann
constant, The Stefan-Boltzmann constant is a fundamental physical constant, just as the
acceleration of gravity, g, is a fundamental physical constant. The value of o is

o =0171 x 1075 Bl
h-fe*-R*
5 W
o = 567 x 10 =

Real surfaces, of course, are not black. They reflect some of the radiation incident
upon them. If the fraction of incident radiation reflected by the surface is independent
of the wavelength of the incident radiation, then the surface is called a gray surface. In
addition, if the fraction reflected does not depend on the angle of incidence of the radiation,
then the surface is called a diffuse surface. Radiation from a gray, diffuse surface to the
surroundings may be written

O =coA(T) —T},) gray, diffuse surface (3-6)

SKrr

where ¢ is a quantity called emissivity. Emissivity is a property of the surface. It depends on
the surface material and the surface conditions. It is a dimensionless quantity whose value
varies between 0 and 1. For most electrical insulators, emissivity has a value above (.8.
For metals, the value of emissivity is a sensitive function of the surface condition. Clean
and shiny metals have much lower values of emissivity than unpolished, dirty, or oxidized
surfaces. If ¢ = 1, the body is a blackbody. Representative values of emissivity are listed
in Table 3-2. In addition, Table A-17 lists emissivities for a variety of surfaces.

The temperatures in Eq. 3-5 and Eq. 3-6 must be expressed in absolute terms (i.e.,
degrees Kelvin or degrees Rankine). In addition, these equations only apply to bodies that
are far away from other surfaces. If the surrounding surfaces are close to the body, then
reflections must be taken into account and the above equations must be modified. Radiation
is discussed in more detail and rigor in Chapter 14.



3.4 CONVECTION 95
TABLE 3-2 Emissivity for a Variety of Materials

Material Emissivity
lce 0.96
Soil 0.94
Concrete, rough 0.9
Dull wrought iron 0.91
Black paint 0.90
White paint 0.90
Qak 0.88
Rubber 0.88
Coal 0.78
Oxidized brass 0.60
Oxidized cast iron 0.57
Polished wrought iron 0.29
Aluminum foil 0.05
Polished brass 0.04
Polished silver 0.02

3.4 CONVECTION

Convection heat transfer occurs whenever a gas or liquid at one temperature flows next to
a surface at a different temperature, There are two basic kinds of convection, forced and
natural. In forced convection, flow is induced by some external actuator, such as a pump
or fan, To understand natural convection, consider, for example, the cooking element on
an electric stove when there is no pot covering it. Heat conducts from the cooking element
into the air just above it. As the air heats, its density decreases. The hot air rises and colder,
higher-density air above the hot air flows downward under the action of gravity, creating
a natural flow. We call this a buoyancy-induced flow. Natural convection also occurs on
vertical surfaces and on cold surfaces exposed to a hot fluid.
Heat transferred by convection is expressed as

O = hAAT 3-7)

where A is the surface area exposed to convection, AT is the temperature difference between
the solid and fluid, and % is the heat transfer coefficient. The heat transfer coefficient was
first introduced by Fourier. Its value depends on geometry, velocity of flow, type of gas or
liquid, and sometimes temperature.

In general, % increases with velocity. For a given gas or liquid, the heat transfer
coefficient is usually greater for forced convection than for natural convection. Convec-
tion in gases tends to be less effective than convection in liguids. Fortunately, one of the
most effective liquids for transfering heat by convection is water. Table 3-3 shows some
representative values of heat transfer coefficients.

The heat transfer coefficient is very useful in engineering calculations. Its value can
theoretically be found by the solution of a set of conservation equations, but this approach
is not always practical, A large body of experimental data on heat transfer coefficients for
many different geometries and conditions is available in journals and books. These data are
often generalized by curve fits that a designer can use to predict heat transfer coefficients as
a function of velocity, fluid properties, part sizes, and other parameters. Chapter 12 presents
many such curve fits, called convective heat transfer correlations. The theoretical basis of
convective heat transfer is introduced in Chapter 12.

T
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EXAMPLE 3-3

Assumption:

TABLE 3-3 Typical Values of Heat Transfer Coefficient

Type of
Gas or Liquid Convection AW/{mZ2.°C} h Btu/(h- ft2-°F)
Air Natural 3-12 0.5-2
Forced 10-150 2-30
Liguid fluorocarbon Natural 100-300 20-50
Forced 200-2000 35-350
Water Natural 200-1200 35-200
Forced 3000-7000 500-1250

It is important to recognize that the heat transfer coefficient is not a fundamental
physical property of a substance, as is thermal conductivity or emissivity. Values of thermal
conductivity have been tabulated for a wide variety of materials, such as copper, glass,
brick, rubber, and so on. The heat transfer coefficient is determined not by picking a value
from a table but rather by computing a value from a curve fit (i.e., a correlation). Table 3-3
lists values of heat transfer coefficient only to give the reader an idea of what a reasonable
value might be for the condition listed. In unusual conditions, suchas microchannel cooling,
actual values may fall outside the ranges given.

Convection and radiation from a outdoor griil

The outside surface of a charcoal grill is at a temperature of 50°C. The grill loses heat to the sur-
roundings by natural convection and radiation. The average heat transfer coefficient is 5.4 Wim? °C
and the emissivity is 0.87. If the surface area is 0.63 m?, calculate the heat transfer rate to the
environment. Assume the surrounding temperature is 20°C.

h=54Wim2°C

Tour = 20°C

Approach:

The heat transfer rates by convection and radiation are calculated from

chmv = hA (T\ - Tf )
de = s0A (Tj - T4 )

hItisa

where Ty is the fluid (air) temperature. The total heat transfer rate to the environment is the sum of
chnv and de-
Solution:

To find the total heat transfer rate, add together the convective and the radiative heat transfter
contributions. For convection [A1][AZ2],



AA1. The heat transfer
coefficient is uniform
over the surface of the
grill.

A2. Temperature is
uniform over the surface
of the grill.

A3. There are no
reflective surfaces near
the grilk.

A4. The surface of the
egrill is gray and diffuse
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Qr:orw = hA (Ts - Tf)

where (., refers to convective heat. Substituting given values yields

Qconv = [5-4m2“:C ] (063 mz) (50 —_ 20)0 C=102W

For radiation [A3], [A4]

de = g0A (T: - surr)

I

©.87) {5.67 x 1078 % ] (0.63 m2) [(50 + 273)* — (20 + 273)*] K*

O = 109W
The total heat transfer rate is

Orot = Ocom + Oraa = 102W + 109 W =211 W

3.5 THE RESISTANCE ANALOGY FOR
CONDUCTION AND CONVECTION

The equations for the heat transfer rate by conduction and convection have certain features
in common. These equations are

: kA(T, — T
Qeond = ( iL 2)

Qcanv = hA (Ts - T:{')

In both cases, the heat transfer rate is proportional to a temperature difference. Similar types
of equations are encountered in electric circuit theory. For a linear resistor, the current is
related to the voltage drop by Ohm’s law, which is

_Af
=%

where A£ is the voltage drop across the resistor, / is the current, and R is the resistance.
Another way to describe this is

_ driving potential

flow = ————
resistance to flow

We can apply this concept to heat transfer. If we compare current to heat transfer
rate and voltage drop to temperature drop, we can define a so-calied thermal resistance.
Let us recast the equation for one-dimensional conduction into the form

; nh-r
Qcoﬂd = %
cond

fi §

T
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where

Reond = 'k_IA"

The quantity R..,s is the conductive thermal resistance. Likewise, the equation for
convection may be rewritten in the form

T.-T, T,-T

Qcanv = [ L ] = Reonr
hA

where

1

Reony = h_A

In this equation, R4, is the convective thermal resistance.

The resistance analogy is especially useful in describing systems with multiple parts.
For example, consider the multilayer wall in Figure 3-3. The wall consists of three layers
cooled convectively on both sides and is at a steady-state condition. Each layer has a thermal
resistance, and there are thermal resistances associated with convection at the boundaries as

well; all these resistances are in series. Focusing for the moment on the first two resistances,
Ro and R]Z

_ 1
Ro= 74
_ L
R =12

The corresponding rate of heat transfer for each is

n_To—T
Q—**"“—*RO

Hh_ =T
Q—'—r]

The same rate of heat transfer applies in both these equations because whatever is convected
to the surface is then conducted through the wall. The heat has no place else to go. Solving

Flow Flow
ho i A
0@ i ko ks % 5
o T T Linl 75

Q FIGURE 3-3 Heat transfer through a multilayer wall.
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these two equations for T gives
Ty =Ty — RoQ
Ti=T2+RQ
Eliminating Ty yields
To—ReQ =To + RIQ
which may be rewritten as

~_T—=T
Q_R0+R1

This equation shows that the total thermal resistance between Tp and T> may be regarded
as the sum of the two resistances Ry and Rp. Extending these ideas to the entire multilayer
wall with convection on both surfaces results in

O = Ty —Ts
Ro+Ri+Ry+ R+ R,

The total thermal resistance is the sum of the individual resistances:

Ry =Ro+Ri+Ry+Ra+ Ry
so that

H_To—T;s
2= "R

The idea that resistances add in series may be familiar to you from electric circuit theory.

EXAMPLE 3-4 Conduction and convection in a computer chip

A2 cmby 2 em chip in a small computer is cooled by forced air flow with a heat transfer coefficient
of 152 W/m?.°C. Electronic devices are deposited in a very thin layer on the bottom surface of the
chip. If the air temperature is 20°C and the devices generate 1.6 W of heat distributed uniformly
over the boitom of the chip, estimate the temperature at the device plane. Assume no heat transfer
through the solder bumps.

Approach:

Heat is conducted upward through the silicon chip and then removed by convection from the top
of the chip (Figure 3-4.) The problem will be solved by two methods. In the first method, the heat
transfer by conduction is equated to the heat transfer by convection. Therefore,

kAT — 1) _

L rA (T2 — Ty)

This equation can be solved for T7. The temperature at the top surface of the chip, 7%, can be found
using

Q= hA (T — Ty)

Wl

JHR
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Assumptions:

Al All heat is conducted
upward and none travels
downward.

A2. Conduction is
one-dimensional, and no
heat leaves from the edge
of the chip.

Air flow

Chip, silicon

Device junctions
at device plane

| —— Board

FIGURE 3-4 A chip mounted on
{b} Top view a circuit board.

In the second method, the resistance by conduction and the resistance by convection are each
calculated. The total resistance, Ry, is the sum of these two resistances. Then the temperature at
the device plane is calculated from

h=A4T _ n-T
RID-' Rff)f

where AT is the difference between the device plane temperature and the air temperature, and Qs
the total heat generated.

Solfution:

The devices (transistors, diodes, etc.) are in a very thin layer on the solder-bump side of the chip,
as shown in Figure 3-4. Heat generated in this plane is conducted through the silicon chip and
then convected from the silicon surface [Al]. A sketch of the chip with temperature and thermal
resistances is given in Figure 3-5. The problem will be solved in two ways.

Meihod 1
Conduction through the silicon chip is governed by [A2]

szA(TlL—TZ)

All of the heat generated conducts through the chip and into the air. Therefore, this same heat
teansfer rate appears in the convection equation, which is

O=hi (12— T))
Eliminating £ between the two equations results in

KAT —Ty) _

L M(TZ—T})

FIGURE 3-8 Thermal resistances through the chip.
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Solving for T,

Tt=—L T—Tr)+Ta

hk(

To find 75, rearrange the convection equation to give

Q0
T = A + 1
Substituting values
T, = - 1L.6W : S+20°C
m
T, = 46.32°C

The temperature at the device plane, Ty, then becomes

[152 7. ](3mrn) [IOOOmm

148 ﬁ

n =

(46.32 —20)° C 4 46.32°C

T\ = 4640°C

where the thermal conductivity of silicon from Table A-2 has been used. Notice that the temperature
difference between the top and bottom of the silicon is only 0.08°C. The chip is thin, and silicon is
a good conductor.

Method 2

In this approach, the resistances for conduction and convection are calculated. For conduction,

lem
Reond = = Cmm [IOmm =0.0507 <
cond = kA = . W
[]48 °C] (2cm) (2em) [IOOCm
For convection,
Reomy = L = 1

[152 5 °C] (2cm)(2 cm) [ 100cm

= <
Reome = 16.45

The two resistances appear in series; therefore, the total resistance is the sum of the individual
resistances:

Riort = Reora + Beony = 0.0507 "Wg+16-45 "WC* =165 WC

The temperature at the device plane is now calculated using

T, - T,
9= %.

ol

il
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or

Tl = QRI(J! + 7}
T, = (1L6W) (16.5) WC 420 = 46.40°C

The convective resistance is much higher than the conductive resistance. As a result, most of the
temperature drop is across the solid—fluid boundary and very little is across the silicon, as calculated
in Method I above.

It is also possible to define a thermal resistance for conduction in cylinders. Gne-
dimensional conduction through a cylindrical shell is depicted in Figure 3-6. Heat travels
in the r-direction only. The inner surface is at temperature T;, and the outer surface is at
temperature 7. Fourier’s law may be written in cylindrical coordinates as

: dr

0=kl

In this equation, A is the area across which heat flows. This area is shown by the dotted line
in Figure 3-6. Notice that the area varies with r, being smaller near the inner radius and
larger near the outer radius. For a cylinder of length L, the area, A, is the circumference at
radius 7 times the length, or

A(r) = 2rrL
Using this in Fourier’s law gives

)= — ar
Q= —k2nrL ar
This is a first-order differential equation for T as a function of r. To solve the equation,
separate the variables

Odr

ok =4

and integrate from the inner to the outer radius

9] - T.
Qdr 72
2tk = fp, T

ry

The heat transfer rate, ), does not vary with r. Recall that heat transfer rate is defined as
heat flow per unit time. In steady state, all the heat per unit time that enters at the inner

FIGURE 3-6 One-dimensional conduction through a
cylindrical surface of length L.




EXAMPLE 3-5

Assumption:

A1. Conduction is
one-dimensicnal in the
radial direction,
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radius will exit at the outer radius; thus { is a constant. This makes the integration easy

and gives the result
= ]n(r_2) =T ~T

which may be rearranged to

By comparison to the standard resistance analogy,

S i =T
Q=—73

and the resistance through the cylindrical shell is

in[ 7]
Rcyn'indcr = m

By a similar line of analysis, the resistance through a spherical shell is

Bm—n

Rsphere - 4 7o k

Conduction and convection from a steam pipe

An insulated steel pipe carries steam at 400°F. The heat transfer coefficient at the inner radins is 12
Btwh-ft*.°F. On the outside of the insulation, the heat transfer coefficient is 5 Btu/h-ft2.°F, Ambient
air is at 65°F. The insulation fails at 380°F. Will it survive under these conditions? See Figure 3-7
for geometry and thermal conductivities.

Approach:

To determine whether the insulation would fail, we must calculate the highest temperature reached
by the insulation. Find the convection resistance on the inside, the conduction resistance of each
layer, and the convection resistance on the outside. Sum these four resistances to find the total
resistance. With the known gas temperatures on the inside and outside, the desired insulation
temperature can be found. Because heat is flowing from inside to cutside, T; > Ty > To > T3 > I;.
Therefore, the maximum insulation temperature is . Use a resistance network to find Ts.

Solution:

The temperature at the pipe-insulation interface can be found from the resistance analogy assuming
one-dimensional radial heat conduction [A1]. In Figure 3-7, R; is the resistance to convection on
the inside, R; is conductive resistance through the steel, R; is conductive resistance through the
insulation, and R, is convective resistance on the outside of the insulation. These resistances will
be calculated for a 1-ft length of the pipe. The same values of temperature would be obtained if we
used a 6-in. length, or a 2-ft length, or any arbitrary length.
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Airat T

Insulation

kj = 0015 Btu

hefts

Btu
h-ft-R

Stesl, k= 20

{a} Geometry siructure

H1 Hz Rs F?4
AAMNAMN=ANN—
i 1 2 3

! FIGURE 3-7 Heat transfer from an
(b) Resistance network insulated pipe.

The resistances are

Ri= 1 = !
T ohA T Btu 11t
[lzh-ftz-R 2 (3 in) [ o ] (111)
R, = 0.0531 §—$
For the steel pipe
¥a 3.375
o_n(#] n (257
2T Tapik T B
2 (1 ft) [20 LR
Ry = 0.000037 BB R h
For the insulation
4,375
< In 3375]
3 =
27 (1 ft) [0015 B“‘R]
_ R-h
Ry = 275 =— Bu
For the exterior
R = | 1

B h.A - Btu lft
[Shfz 271(4375111)[1 ]( ft)

_ R-h
Ry = 0.0873 B
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We do not need to calculate all of the temperatures. We are only interested in whether the insulation
fails. The hottest temperature in the insulation will be at the point in the insulation nearest the steam,
thatis, the inner radius of the insulation. The temperature at that pointis 7;. Referring to Figure 3-7b,
the heat flowing into T from the left must equal the heat flowing out to the right. In other words,

Oino=01.y
or
- Th-%

Ri+R ™~ Rs+Rs

where resistances have been added in series.
Solving for T3 gives

Ty = Ri+R)Tr+(Rs+R)T;
2= Ri+Ry+Rs + Ry

subsitituting values:

T, = (0.0531 4- 0.000937) 65 + (2.75 + 0.0873) 400
2= 0.0531 + 0.000937 + 2.75 +- 0.0873

T, = 394°F

Too bad. The insulation fails.

3.6 THE LUMPED SYSTEM APPROXIMATION

In some circumstances involving two thermal resistances, one resistance may be much larger
than the other. In that case, certain simplifications are possible. For example, consider
a two-layer structure where both layers have the same thickness but different material
composition, as shown in Figure 3-8. One layer is made of copper, which has a very high
thermal conductivity, and the other is made of soft rubber, which has a much lower thermal
conductivity. Now imagine that the left side of the copper layer is held at 40°C and the
right side of the rubber layer is held at 20°C. If each layer has a thickness of 0.02 m, then
the thermal resistance for a 1-m? area of the copper layer is

Re=l = 0‘-22 m =499 x 107 &
¢ [401 ﬁ] (1 m?)

Copper Soft rubber

40 °C 20°C

5 FIGURE 3-8 A two-layer structure made of
0.02m copper and rubber.

0.02m
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where the thermal conductivity of copper has been taken from Table A-2. For the rubber
layer, the thermal resistance is

L 0.02m K
R = = =0.154 5
kA [0.13 m—WIZ] (1m?) W

As you can see, the resistance of the rubber layer is more than three orders of magnitude
greater than the resistance of the copper layer. We can calculate the temperature at the
interface between the copper and the rubber, which is T in Figure 3-8, by equating the heat
flux across the copper and rubber layers to obtain

s N =T Th-T;
Q= R, - R,

Substituting values for all but the unknown T3, we get

40 —T5) °C (I, —20) °C

s K7 K
4.99 x 107 & 0.154 &

In this equation, the numerator contains a difference in temperature in °C. The denominator
shows the resistance per degree Kelvin. A difference of 1°C is equal to a difference of 1 K,
therefore, these units cancel and each side of the equation is in watts. Solving for T gives

Ty =39.99°C

Recall that the temperature within a plane layer varies linearly across the layer (as long
as the thermal conductivity is not a function of temperature). Figure 3-9 is a plot of the
temperature variation in the copper and rubber layers. Becanse the thermal resistance of
the copper is so low, there is virtually no temperature drop across this layer; its temperature
drops from 40°C to 39.99°C. Meanwhile, almost all the temperature drop is across the
rubber.

Many problems can be simplified by assuming that the thermal resistance is negligi-
ble. For example, the resistance due to conduction in a copper pipe is usually very small
compared to convective resistance on the inside and/or outside of the pipe. In some transient
systems, conduction resistance is much smatler than convection resistance. In that case, the
so-called lumped system approximation can be used. The rest of this section describes
and develops the Jumped system approximation.

Consider an arbitrarily shaped body that is initially at a uniform high temperature 73,
as shown in Figure 3-10. The body is suddenly immersed in a celd fluid at temperature 7.

Copper Soft rubber

N

40°Ce

120 °C
i FIGURE 3-9 Temperature distribution in the
copper-rubber structure.
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Cold fluid - - Hot Solid

FIGURE 3-10 An arbitrarily shaped hot
solid immersed in a cold fluid.

As the solid cools, the temperature will drop near the surface of the body, while the center
will remain hot. With time, the effect of the cold fluid will penetrate into the solid, lowering
the temperature in places nearer and nearer to the center. Eventually, the entire solid will
reach the fluid temperature.

Heat transfer from the surface due to convection is caiculated as

Q = hA(T; — Ty)

where T is the surface temperature. But, in this case, the surface temperature varies with
time, T,(¢). In addition, the solid temperature varies with location and time inside the
body, so changes in internal energy will be difficult to calculate. There is, however, one
condition under which the temperature will not change significantly with location in the
solid. This occurs if the thermal resistance due to conduction within the solid is much
smaller than the thermal resistance due to convection at the surface. Recall the copper—
rubber structure example above. There was negligible variation of temperature within
the copper because the copper’s thermal resistance was so much lower than the rubber’s
thermal resistance. In the present transient situation, if the conduction resistance is much
less than the convection resistance, temperature variation with location will be negligi-
ble as well. We can develop a criterion to indicate when this assumption will be valid by
comparing the magnitudes of the conduction and convection resistances associated with
the body.

Assume the heat transfer coefficient is uniform over the surface of the body. The
convection resistance is given by

Rconv = %

where A is the total surface area of the object.
The conduction resistance is more difficult to specify. For one-dimensional conduc-
tion in a plane wall, the resistance is

L
Reong = H

Because of the arbitrary shape of the body shown in Figure 3-10, simple one-
dimensional conduction is not accurate. However, if the conduction resistance is so small
that it can be ignored, then accuracy is not particularly important. Simply calculating
an approximate resistance based on a one-dimensional model will be useful in deciding
whether the conduction resistance is small compared to the convection resistance.

To find the conduction resistance, it is first necessary to specify a characteristic
length, Ly, and an area, A, which characterizes heat flow inside the arbitrarily shaped
solid. A natural choice for area is the total surface area of the object, The recommended
choice for Loy is

[

R
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X
y
/ FIGURE 3-11 A thin, flat plate.

Ldmr = % (3"8)

where V is the volume of the body and A is the surface area. To illustrate the meaning of Eq.
3-8, we will apply it to a very simple shape: a large, thin, flat plate, as shown in Figure 3-11.
If the height, y, and the width, z, are very large compared to the thickness, x, then the surface
area is dominated by the two large, flat sides. For all practical purposes, the surface area of
the four edges is insignificant. Neglecting the edges, the ratio of volume to surface area is

I vV _xyz_ x
cimr—}f—j};g—i

If the large flat plate is immersed in a cold liquid bath, it will be cooled from both sides.
Intuijtively, the important distance that determines the rate at which the plate cools down is
the distance between the middle of the plate and the surface, which is x/2. This is what the
definition of Ly, produces when applied to the flat plate. In fact, when Eq. 3-8 is applied
to arbitrarily shaped objects, it produces reasonable values of Loy,

The relative magnitude of the conduction and the convection resistances for an
arbitrarily shaped body is calculated by taking their ratio:

[ Lchm' ]
kA — thhar

1 k
L7a)
where Ly, is given by Eq. 3-8 and Bi is called the Biot number. Note that the Biot number
is a ratio of resistances and is, therefore, dimensionless. If the Biot number is equal to 0.1,
then the conduction resistance is 1/10 of the convection resistance. In that case, most of
the temperature drop is between the surface and the fluid, and there is little temperature
variation within the solid.

Therefore, the lumped system approximation is valid when the Biot number is small,
typically less than about 0.1; that is,

Bi =

Bi =~ 0.1 criterion for valid use of lumped system approximation (3-9)

All the mass within the solid body is “lumped” together and assumed to be at the same
temperature. The temperature of the body varies with time but not with location. So, at any
moment, the body is isothermal. With this approximation, we can now apply the first law
of thermodynamics (o the cooling of the arbitrary body shown in Figure 3-10.

In rate form, the first law can be written

du  ; .
r A
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where kinetic and potential energies are ignored. No boundary work is done in this process;
therefore, W = 0 and

auv _
E_Q

For a solid, dU = mcdT = mc, dT = mc, dT. We assume the entire mass of the body
(including its surface) is at temperature 7. Convective heat transfer is O = #A (T - 1‘}),
but because heat is transferred from the system, this heat is negative. The first law is then

mcp ﬁij —hA (T — Tr)

where 77 is the temperature of the fluid. To solve this differential equation, separate variables
so that

_dr __ _hA
T-7) e

Integrate from an initial temperature, 7}, at ¢ = 0 to a final state 7, at time #;

fT ar_ _ _ha [,
T T—Ty - mc, 0
T-Tf _ BA
(=) --He-0--
Taking the exponential of both sides, we obtain
T -7 hA
m = eXp ('—m—cpf (3-10)
Remember that m = pV and Ly, = V/A. Substituting these into Eq. 3-10 gives
TO-1 _ rA ) _ B
T-T cxp[—PTCpt] —exp[“PCchhart] G-11)

Note that both sides of this equation are nondimensional. It applies only when Bi <~ 0.1
(Recall that Bf = AL, /k). In addition, this equation applies to either a hot solid immersed
in a cold fluid or to a cold solid immersed in a hot fluid. Solving for the time, ¢, to reach a
specified temperature T'(z),

_ _pCchfmr T(t) - I:f sl
r= -2 ]n[ T, Bi <~ 0.1 (3-12)

Furthermore, Eq. 3-11 can be rearranged to give the body temperature after an elapsed
time, ¢, as

T = (T: — Tf) exp[ —r

] +T;  Bi<~0l (3-13)
PCp cirar

Plots of the temperature of the solid as a function of the elapsed time are shown in
Figure 3-12. In both heating and cooling, the temperature changes steeply at early times
and then approaches the fluid temperature asymptotically at later times.

Il

AR
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4
T;
T
e

(a) Cooling
T
T

. t FIGURE 3-12 Solid temperature versus
(b) Heating time for a lumped system.

The exponent in Eq. 3-11 is nondimensional. The quantity pcplenar/# is calied the
time constant of the system, and it controls the transient behavior of the body. The magni-
tude of the temperature difference (T; — Tf) has no effect on the speed of the transient. After
about five time constants, the body temperature will have essentially reached a steady-state
value.

We can rearrange the exponent to show explicitly how the Biot number affects the
transient. Multiply the numerator and denominator of the exponent by (Lk) and rearrange
variables to get

ht [Lchark] . [hL]cchar] [pL t ] (3-14)

C, cp 2
4 chImr Lc‘hark P Lc.'mr

The first factor on the right-hand side, AL, /%, is the nondimensional Biot number.
Physically it represents aratio of internal to external thermal resistances. (The internat resis-
tance is conduction and the external resistance is convection.) The second factor contains
the grouping of material properties k/pc,. This group is called the thermal diffusivity
and is given the symbol & = k/pc,. The thermal diffusivity arises naturally in the study
of transient heat transfer, as will be shown in Chapter 11. The complete second factor in
Eq. 3-14 is called the Fourier number, that is,

ot
Fo = 72

‘char

Physically, the Fourier number represents a ratio of the rate at which heat is conducted
across a body to the rate at which heat is stored in the body, as shown in Chapter 11. Using
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the Fourier number, we can rewrite Eq. 3-11 as:

T() — Ty

T_‘—Tf = exp ( — Bilv)

It is very common in the study of thermal and fluids engineering to encounter nondi-
mensional numbers such as the Biot number and the Fourier number. Others will appear
frequently in the chapters to come.

EXAMPLE 3-6 Annealing of a steel ball

Assumptions:

A1, Thermal
conductivity is constant.

A hot steel ball is annealed by dropping it into a cool oil bath. The ball is 0.5 in. in diameter and
is initially at 4C0°F. If the heat transfer coefficient between the ball and oil is 16 Btu/h-f2.°F, how
long will it take for the ball to cool to 150°F? Assume the oil tank is large enough that the oil
temperature does not rise during the process but remains at 70°F.

Ti=400°F

Approach:

First calculate the Biot number to see if the lumped system approximation can be used. If Bi <~ 0.1,
then the time to cool will be given by Eq, 3-12:

e

_pchchar In T(I) — Tf ]
2 T—1;

Solution:

The system under consideration is the steel ball. First calculate the Biot number to see if the lumped
system approach can be applied. The Biot number is

Bi = hLz’rar

A representative length for the Biot number is, from Eg. 3-8,

3
% _ @3TR R _ 0833in.

Lc ar =
’ 4 R? 3

To calculate the Biot number, the thermal conductivity of steel is needed. Property values for & are
given in Table B-2. Note that k varies somewhat with temperature. In this case T} = 400°F = 860
R and T3 = IS0°F &2 610 R. The average temperature is

The value of k at 720 R, which for plain carbon steel is 32.8 Buw/(h-ft-R), will be close enough
[A1]. With this value,

R

IR
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A2. The lumped system
approximation is valid.
A3. The oil temperature
is constant.

Ad, Specific heat is
constant.

[16 ‘?g“or](ooswm)[llft ]
Bi = =339 x 1077
3pg Blu_ Biu
hftR

Clearly, Bi <= 0.1, and the conduction resistance is so much less than the convection resistance
that we can ignore conduction and use the lumped system approximation [AZ2]. The ball is small
compared Lo the total mass of oil in the tank, and heat transfer from the ball will not significantly
increase the oil temperature [A3]. From Eq. 3-12:

pCch‘.'!ur In T(I) — Tf
T~ 1

Property values for o and ¢, are given in Table B-2. Note that ¢, varies somewhat with temperature.
As we did above for thermal conductivity, we will use the value of ¢, at 720 R, which, for plain
carbon steel is 0.116 Btu/lbm-R [A4]. With these values,

Ibm Biu i 1
l490 3 —] [0 N ] (0.0833in.) [ 12in. ] 150 — 70
. B [ 400 — 70

h-f?.°F
0.035h = 2.1 min

_,
fl

3.7 THE RESISTANCE ANALOGY FOR RADIATION

If a gray, diffuse surface at temperature T transfers heat by radiation to surrounding surfaces
at Ty, and the surrounding surfaces are far away, the heat transfer rate can be written as

O =eoA (T4 Tfmr)
This is a nonlinear equation and is not of the form
2 AT
O ==
However it is possible to force the equation into the desired form by factoring the term
(T8 - ). The result is

O = e0A(Ty — Tourr) (T5 + Toure) (T2 + T2,

SHH‘

Now define a thermal resistance for radiation in the form
1
e0A (Ts + Tourr) (T2 -+ Tfm,)

This resistance is commonly written in terms of a heat transfer coefficient for radiation,
which is defined as

Rywg =

1
Rywd = Tyt A
1l

So that

hmd = &0 (T + Twn) (T + mrr)
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Gas at T;

FIGURE 3-13 A body exchanging
heat hy both convection and
radiation.

Unfortunately, the thermal resistance for radiation depends on the temperature of the surface
and the surroundings. If these are not known in advance, the values may have to be assumed.
A problem of this type is given in Example 3-7. Before proceeding to the example, we
consider the common case of a surface cooled by both convection and radiation,

In Figure 3-13, a small body with surface temperature 7y is placed in an oven filled
with hot gas at 7. The walls of the oven are cooler than the gas and are at T',,,. Heat
leaving the body travels along two paths, a convective path and a radiative path. The
resistance analogy may be used to represent these paths by two resistors, as shown in
Figure 3-14. The convective path involves the gas temperature, and the radiative path
involves the temperature of the surrounding surfaces. The total heat leaving the surface is

Q = Qrad + Qconv

where the subscripts rad and cony refer to radiative and convective, respectively.

In many cases, the gas cooling the surface and the surrounding surfaces are both at
the same temperature, To,. The two resistances are then connected in parallel, as shown in
Figure 3-15. The total heat leaving the surface becomes

: : : T, —T T, — T
— + = S5 o0 + Ry [on]
Q de Qconv Rrad Rcww
TSU-’T Tf
1 - : 1
Faa=p- 2 Torad anvT Beane =%
TQ FIGURE 3-14 Resistance analog for

heat transfer from a surface cooled by
both convection and radiation.

o |

b

il
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Roomy=———
cony hCOﬂV A

FIGURE 3-15 Resistance analog for a
surface cooled by convection and radiation
when the gas and the surroundings are at
the same temperature, 7.

Combining terms gives
0=+ i) @ -t
Rrad Rconv

The total resistance for the parallel combination is

; _Ts_Too
9= "R,

Comparing the last two equations reveals that

1L_ 1
Ror Rraa'

+

(3-15)

RCGHP

You may be familiar with this equation as the equation for two electrical resistances in
parallel. Eq. 3-15 may be solved for R, to give

R rad R coiy

3-16
Rrad + Rcwrv ( )

Rigr =

which is an alternate form for the parallel combination of two resistors. Using R.g =
1/(ArqqA) and Regyy = 1/(BeomA) in Eq. 3-15 produces

hrorA = RaaA + kconvA

or

fuor = Read + Feom

So for a surface exchanging heat by convection and radiation to the same temperature, the
heat transfer coefficients are additive.

Radiation is important for surfaces cooled by gases. With liquid cooling, radiation
is generally insignificant. If a surface is cooled by forced convection, radiation is typically
small relative to convection and can be ignored unless surface temperatures are quite high.
On the other hand, if a surface is cooled by natural convection in a gas, radiation is likely to
be as important as convection. It is very common to encounter a surface cooled by natural
convection in air, and, in such cases, radiation must be considered.
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EXAMPLE 3-7 Temperature of a heating element

Someone takes a teapot off the stove and forgets to tum off the heating element, which is a coiled
flat resistor with a resistance of 15 £2. The top surface area of the element is 16 in.? Its emissivity is
0.85. The convective heat transfer coefficient from the top of the element is 3.7 Bu/h-f22.R. If the
voltage drop across the element is 30V, how hot will it become at steady state? Assume that all the
heat leaves by convection and radiation from the top of the element and that the room is at 70°F.

AR T O

Approach:

Define the system as the heating element. The air temperature and the wall temperatures of the
room are assumed to be equal at 70°F. To find the heat dissipated from the top of the element, we
would use

0 = b A (Ts — Teo}

where Ay, is the total heat transfer coefficient, that is, the sum of the convective and radiative heat
transfer coefficients. We are given the convective heat transfer coefficient. We need to calculate the
radiative heat transfer coefficient with

hrd = €0 (T + Too) (T2 + T2)

Unfortunately, /g depends on T, the unknown surface temperature of the heatin g element. To
make further progress, it is necessary to assume a value for T; and use this to calculate an approximate
value for fz4. An improved value of £, will be found later, as you will see. The next step is to use
the first law in the form:

dU A

da Q-
Because we are interested only in steady-state temperatures, there will be no changes with time and

the left-hand side of this equation becomes equal to zero. The electrical work done on the heating
element is

W’irt =$l

The current, I, can be found from Ohm’s law and the voltage, £, is given in the problem state-
ment. After O and W are substituted, the only unknown is the surface temperature, which can be
determined.

From this point, a new value of A4 is computed using the surface temperature. The calculation
is repeated to find a second estimate of surface temperature, which leads to third estimate for A4,
and so on. This iteration continues until the surface temperature no longer changes significantly
from one iteration to the next.

Solution:

We choose the heating element as the system under study. First find the rate of work, or power, in
the heating element. This is
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Al. The resistor is linear.
A2. The electrical
resistance of the resistor
does not depend on
temperature.

A3. The system is in
steady state.

Win - “;:I
From Ohm’s law [A1][A2],
£E=IR

where R is the electrical resistance. Therefore,

G §-2
Wﬂl - R
Using given values,
_ (30v)? B
"= 150 OW = —-W

Heat leaves the top of the element by convection and radiation. The total heat transfer coefficient is
Tor = Rrag + heon

To evaluate the radiative heat transfer coefficient, the surface temperature must be assumed. A rea-
sonable value to start with is 300°F. Later, we can correct it if necessary. Using our assumed value,
h,qq becomes

hmd

g0 (T + Too) (T2 + TZ,)

g = 0.85 lo.m X 10-f‘hf]5:’%R4 (760 + 530) [ (760)* + (530)* R’

B
By = 1.61
¢ h-f2-R

Absolute temperatures must always be used in radiative calculations, so the temperatures have been
converted to Rankine. The total heat transfer coefficient is

Btu
h-f-R

Iy = hrﬂd + hcone == 1.61 +3.7 =596

The heat leaving the element is

Q = hpA(T; — Too)
Applying the first law to the heating element gives

i

At steady state [A3],

du _
E_O

Heat and work are both negative, because heat is leaving the system and work is being done on the
element, The first law becomes

0= _hrarA(Ts - oo) — (*60 W)
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Substituting values and converting units,

3.412 —ma

1w

Btu .2 1112 o
0= |596 16in. T, — 70)°F + (60W
[ h.ftz-R]( " )[144in.2]( ) +(60W)

Evaluating and solving for T yields
T, =379°F

Recall that we assumed T; = 300°F in order to calculate hy,q. What would A,y be if we use 379°F?
Redoing the calculation gives hy,; == 1,96 W/m®-K and total resistance fi,, = 5.66 W/m2.K. The
new value of T'; computes to 396°F. We may continue the iteration if more precision is needed.
A table of the assumed and computed values of T'; is given below.

Assumed Calculated
Iteration T.°F T.°F
1 300 379
2 379 396
3 396 391
4 391 392
5 392 392

This calculation has converged to three significant figures after five iterations. Notice that even the
first calculated value of Ty, 379°F, is not too far from the final converged value of 392°F, This is
what makes the concept of A, useful.

Comments:

Tterative solutions oceur frequently in thermal and fluids engineering, although most examples will
be noniterative in keeping with the introductory nature of this text. Note that it is possible to solve
this problem without the use of h,,y. The solution would still be iterative, but it might not converge
as quickly (or at all). The essential merit in Ay is that it provides a very good starting guess for the
subsequent iteration. If high accuracy is not needed, then using A4 allows one to get a reasonable
estimate in just one iteration.

3.8 COMBINED THERNMAL RESISTANCES

The resistance analogy can be extended to rather complex systems. The best way to under-
stand its scope is through examples. As a start, consider a wall in a residential buiiding, as
shown in Figure 3-16. The wall is built of wooden boards called studs. These are typically
(nominally) 2 in. by 4 in. or 2 in. by 6 in. in cross-section. On the outside, a layer of foam-
board is nailed to the studs. Exterior siding (wooden planks in this example) covers the
foamboard. On the interior of the house, the space between the studs is filled with thermal
insulation and a layer of wallboard is nailed to the studs,

In cold weather, the insulated wall prevents heat loss to the outside; in hot weather,
it keeps heat from conducting into an air-conditioned room. The thermal resistance of
this composite system can be estimated from the resistance analogy. The studs repeat
periodically along the wall; therefore, one can define a *“unit cell” of the wall. The unit cell
is the section of wall between the dotted lines in Figure 3-16. The resistance through this
cell wili be characteristic of the wall as a whole.

iR}

f
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/

Insulation

Wall board

L)
u_-ﬁ’ Wall board

ky
Foam board

e
T Wood planks

y Qutside

ks

FIGURE 3-16 Cross-sectional
view of a residental wall.

Tn the real situation, heat will be conducted in both the x- and y-directions in
Figure 3-16; however, the predominant direction of heat flow will be the y-direction. It
is important to correctly model heat flow in the y-direction but much less important to cor-
rectly model it in the x-direction. As a result, we may simplify the analysis by assuming that
the thermal conductivity in the x-direction, ,, is either zero or infinity. The real situation
falls somewhere between these two limits.

ky =0

In this case, no heat flows in the x-direction. The resulting resis-
tance network is shown in Figure 3-17a. The outer surface of the
wallboard is at temperature Ty. The wallboard is divided into two
parts: one of width w covering the stud and the other of width
wy covering the insulation. The resistances Ry and R4 corre-
spond to these two wallboard segments. The resistance through
the stud is R, and the resistance through the insulation is Rs.
The foamboard is also divided into two segments, with R, being
the resistance through a section of width w and Rg being the
resistance through a section of width w4, Finally, R3 and R;
are resistances of segments of wood plank of width wy and v,
respectively. Note that the left leg of the resistance network cor-
responds Lo a slice through the wall containing the stud and
having a width w. The right leg corresponds to a slice of width
w, containing the insulation.

The resistance Ry can be expressed as

L _ _L
kA - k(]W]H

Ry =

where H is the height of the room and the other dimensions
are shown on Figure 3-16. Using values given in Table 3-4, Ry
becomes:

Ry = Btgs?s in. — 03479 BR
[ 0.098 (o | (1.375in.)(8 1)

The resistance through the stud, Ry, is given by

L L _ bR
R = kaw H =487 Btu

{Continued)
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Ry

Ry = 2

Ry

Rs =

Re

Gog =30 58

hi:: = =0.696 1R
ﬁ = 0.0211 %
kszzH =084 &2
ﬁﬁ =014 2R
hfp‘; - =00423 LR

The total thermal resistance is found by combining resistances
in series and parallel. For the left and right legs

Rigp = R0+R1+R2+R3=8.94h§'t%
Rigne = R4y +Rs+ Re + Ry = 1.09 hB_E%

The total resistance is

Rietr Rrigha

Ry = 5——5—
o Rlefr + Rn‘ght

_ 0976 BR

= 0.976 B

This is the resistance for a “unit cell,” which has an area of
Acen = H(w 4+ wp)

For a wall of area A,,, the resistance would be

Rw = Rro;;iceﬂ

FIGURE 3-17 Alternate resistance
networks.

TABLE 3-4 Parameters for the thermal analysis of the insulated wall in Figure 3-16

Thermal

Dimension inches Conductivity Btu/{h .ft .°F) Dimension ft
wy 1.375 ) 0.098 H 8
w; 22.625 k 0.022

L, 0.375 k2 0.063

Ls 3.375 k3 0.015

iz 0.5 ky 0.098

Ly 0.75
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k. = o0

In Case Study 3-1, the thermal conductivity in the x-direction,
k., was zero. This implied that no heat could flow in the x-
direction. The opposing limit is that k is infinity. This implies
that it is extremely easy for heat to flow in the x-direction, and,
as a result, there are negligibly small temperature drops in the
x-direction. In Case Study 3-2, the temperature is assumed to be
independent of x. The resulting resistance network is shown in
Figure 3-17b.

Again, Ty is the temperature of the outer surface of the
wallboard. The resistance, Ry, in this case, applies to a segment
of wallboard of width w| +ws. T is the temperature of the inner
surface of the wallhoard. Temperature is assumed not to vary
in the x-direction; therefore, T| is temperature both adjacent to
the stud and adjacent to the insulation. This is in contrast to Case
Study 3-1 {see Figure 3-17a). In this case, T is the temperature
of the inner surface of the wallboard near the stud and Ty is
the temperature near the insulation.

Evaluating the resistances in Figure 3-17b gives

L _ Ly

Ro =14 = Yol + wH

_ h-R
= 0.0199 Biu

L _,g bR
R kow H =487 Bw

_ L h-R
Ry = k] WzH 0.848 T Btll

_ Ls _ h-R
Ry = kalw| + wi)H =017 g

_ Ly — h-R
Ry = T (o = wo)H = 00399 Btu

Combining resistances in series and parallel (see Figure 3-17h),

RiRy hR
R+ R +R3+R4ﬁ0955

Ripy = R +

In Case 1, where &, =0, total resistance was 0.976, while
in Case 2, where k, = co, the resistance is .955. The actual
resistance lies somewhere between these two extremes. The two
values differ by less than 3%. For most practical circurnstances,
it is not necessary to know the resistance to a higher level of
accuracy than 3%, thus justifying the use of a one-dimensional
resistance network in this case.

SUMMARY

The first law may be written in differential form as
dKE 4+ dPE +dU =8Q — 8W

The rate equation form of the first law is

dKE dPE | dU __ ;
& tar =0-W
where oo 50
T odt
_aw
T odr
or

Fourier’s law for heat conduction is

dr

Q= kA o dx

For one-dimensional, steady conduction through a plane layer,
5 _ KA —To)
0= L

For convection on a surface of area, A,

O = hA(T, — T})

For radiation between a diffuse, gray surface at T and surround-
ing surfaces at Ty, which are large and far away from the
surface,

0 =ec AT =T,
For electrical work,
W=¢71
For shaft work,
W = Sw
The Biot number is defined as
h]—'c.'mr

Bi= X



where L., is a characteristic length of the solid given by

chmr = ATV

If Bi <~ (.1, the lumped system approximation can be used.

‘With this approximation, the time for a solid to heat or cool by
convection is

1o

_pchchar In T(t) - T:f
h =T

where T; is the initial temperature, 7'(7) is the temperature at time
¢ and T} is the fluid temperature. The temperature of the solid
after a time ¢ is given by rearranging this equation to

T(6) = (T; — Ty) exp [WIZWI] +71r

The effective thermal resistance for conduction through a plane
layeris

Repnd = é

For conduction through a cylindrical shell,

R _In (rn/r1)
oylinder = W

For conduction through a spherical shell,

n—n
4k

Rsphere =
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The thermal resistance for convection is

R conv — %

The thermal resistance for radiation is
1
Ry = ——
rad hrad A
where

hrad = E0 (Ts + Tsurr) (Tsz =+ T:Tzurr)

The total heat transfer cocfficient for a surface exchanging heat
by convection and radiation to a gas and surfaces at the same
temperature is:

h.wr = hrad + hcww
When two resistances are in series, the total resistance is the sum
Rm: =R 1+ Rz

When two resistances are in parallel, the total resistance is

L1
Ra K TR
or
RRy
Rlai‘ Rl +R2 ]
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FIRST LAW IN RATE FORM

P3-1 An arctic explorer builds a temperary shelter from wind-
pack snow. The shelter is roughly hemispherical, with an inside
radius of 1.5 m. After completing the shelter, the explorer crawls
inside and ¢loses off the entrance with a block of snow. Assume
the shelter is now airtight and loses negligible heat by conduc-
tion through the walls. If the air temperature when the explorer

completes the shelter is —10°C, how long will it take before the
air temperature inside reaches 10°C? Assume the explorer does
not freeze to death or suffocate, but sits patiently waiting for the
temperature to rise. The explorer generates body heat at a rate
of 300 kJ/h.

P3-2 A well-insulated room with a volume of 60 m* contains
air initially at 100 kPa and 25°C. A 100-W lightbulb is turned

|
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on for three hours. Assuming the room is airtight, estimate the
final temperature.

P3-3 An elevator is required to carry eight people to the top of
a [2-story building in less than 1 min. A counterweight is used
to balance the mass of the empty elevator cage. Assume that an
average person weighs 155 Ibf and that each story has a height
of 12 ft. What is the minimum size of motor (in hp) that can be
used in this application?

P3-4 A climate-controlled room in a semiconductor factory
contains a conveyor belt. Electric power is supplied to the motor
of the conveyor belt at 220 V and a current that varies linearly
with time as J = 1.0 t, where / is in amps when  is in minutes.
An air conditioner removes heat from the room at a constant rate
of 2 kW. The volume of air in the room is 600 m*. At = 0, the
air is at 25°C and 101 kPa. Assume the mass of air is constant
during this process and assume constant specific heats.

a. Find the mass of air in the room (in kg).

b. Find the air temperature after 30 min. (in °C); ignore any
temperaiure change of the motor or conveyor belt.

P3-5 Aninterplanetary probe of volume 300 t® contains air at
14.7 psia and 77°F. The heaters fail and the air begins to cool.
Assume heat is dissipated from the outside of the spacecraft
by radiation at a steady rate of 60 Btwh. On-board electronics
generate 12 W on average. Estimate the time required for the air
to cool to —30°F.

P3-6 A fanis instalied in a 35-m* sealed box containing air at
101 kPa and 20°C. The exterior of the box is perfectly insulated.
The fan does 250 W of work in stirring the air and operates for
1 h. Find the final temperature and pressure of the air. Ignore the
temperature change of any fan parts.

ONE-DIMENSIONAL CONDUCTION IN
RECTANGULAR COORDINATES

P3-7 A room contains four single-pane windows of size 5 ft
by 2.5 ft. The thickness of the glass is 1/4 in. If the inside glass
surface is at 60°F and the outside surface is at 30°F, estimate the
heat loss through the windows.

P3-8 AnL-shaped extrusion made of aluminum alloy 2024-T6
is well insulated on all sides, as shown in the figure. Heat flows

Insulation

axially in the extrusion at a rate of 35 W. If the cool end is at
25°C, find the temperature at the hot end.

P3-9 The wall of a furnace is a large surface of fire clay brick,
which is 6.5 cm thick. The outer surface of the brick is measured
to be at 35°C. The inner surface receives a heat flux of 2.3 W/em?,
Estimate the temperature of the inner surface of the brick.

RADIATION HEAT TRANSFER

P3-10 A tungsten filament in a 60-W lightbulb has a diameter
of 0.04 mm and an electrical resistivity of 90 pn&-cm. The
filament loses heat to the environment, which is at 20°C,
by thermal radiation. The emissivity of the filament is 0.32 and
the voltage across it is 115 V. Find the length of the filament and
the filament surface temperature. (Electrical resistance equals
electrical resistivity times filament length divided by filament
cross-sectional area.)

P3-11 On a cold winter day, the interior walls of a room are
at 55°F. A man standing in the room loses heat to the walls by
thermal radiation. The man’s surface area is 16 ft2, his clothing
has an emissivity of 0.93 and his surface temperature is 70°F. He
generates 300 Btu/h of body heat. What percentage of the man’s
body heat is transferred by radiation to the walls?

P3-12 The sun can be approximated as a spherical black body
with a surface temperature of 5762 K. The irradiation from the
sun as measured by a satellite in earth orbit is 1353 W/m?. The
distance from the earth to the sun is approximately 1.5 x 10'' m.
Assuming that the sun radiates evenly in all directions, estimate
the diameter of the sun.

CONVECTION AND RADIATION

P3-13 A high-torque motor has an approximately cylindrical
housing 9.5 in. long and 6 in. in diameter. The motor delivers 1/8
hp in steady operation and has an efficiency of 0.72. All the heat
generated by motor losses is removed by natural convection and
radiation from the outer surface of the housing. The convective
coefficient is 1.68 Btu/h-fi2.°F, and the housing emissivity is
0.91. If the surroundings are at 58°F, what is the housing’s outer
surface temperature?

P3-14 A flat plate solar collector 6 ft by 12 ft is mounted on
the roof of a house. The outer surface of the collector is at 1 [0°F
and its emissivity is 0.9. The outside air is at 70°F and the sky
has an effective temperatare for radiation of 45°F The collector
transfers heat by natural convection to the air with a heat transfer
coefficient of 3.2 Btu/h-ft*-°F and also transfers heat by radiation
to the sky. Calculate the total heat lost from the solar collector.
P3-15 A CPU chip with a footprint of 3 cm by 2 cm is mounted
on a circuit board. The chip generates 0.31 W/cm? and rejects
heat to the environment at 28°C by convection and radiation. The
outer casing of the chip has an emissivity of 0.88, and the heat
transfer coefficient is 48 W/ m*.K. Neglecting the thickness of
the chip and any conduction into the circuit board, calculate the
chip surface temperature.

P3-16 A metal plate 16 cm by 8 cm is placed outside on a clear
night. The plate, which has an emissivity of 0.7, exchanges heat



by radiation with the night sky, which is at —40°C. Airat —10°C
flows over the top of the plate, cooling it with a heat transfer
coefficient of 42 W/m?.K. The plate is insulated on its underside
and heated by an electric resistance heater. How much electric
power must be supplied to maintain the plate at 55°C?

CONDUCTION AND CONVECTION

P3-17 A home freezer is 1.8 m wide, 1 m high, and 1.2 m
deep. The interior surface of the freezer must be kept at —10°C.
The walls of the freezer are made of polystyrene insulation
sandwiched between two thin layers of steel. The combined con-
vective/radiative heat transfer coefficient on the exterior is 8.2
W/m?-K and the ambient is at 25°C. If the power of the refriger-
ation unit is limited to 150 W, what thickness of polystyrene is
needed ? Assume the conduction resistance of the thin metal wall
panels is very small and can be neglected and that the bottom of
the freezer is perfectly insulated.

P3-18- The windshield of an automobile is heated on the inside
by a flow of warm air. Cold air at —15°F flows over the exterior
of the windshield. The heat transfer coefficient on the inside is
16 Btu/h£t2.°F, and the heat transfer coefficient on the outside
is 49 Biwh-ft>.°F. The glass of the windshield has a thickness
of 0.25 in, What temperature should the inside air be so that the
exterior surface temperature of the windshield is 3°F?

P3-19 A copper busbar of length 40 cm carries electricity and
produces 4.8 W in joule heating, The cross-section is square, as
shown in the figure, and is covered with insulation of thermal
conductivity 0.036 W/m-K. All four sides are cooled by air at
20°C with an average heat transfer coefficient of 18 W/m?-K.
Assuming the copper is isothermal, estimate the maximum
termperature of the insulation.

Insulation

P3-20 A freezer maintains one side of aslab of ice 3 cm thick at
—10°C. The other side exchanges heat with the ambient air and
surfaces at 15°C by combined natural convection and radiation.
In steady state, the ice does not melt. Find the highest possible
value of the heat transfer coefficient on the ice surface exposed
to the ambient air.

P3-21 The door of a kitchen oven contains a window made
of a single pane of 1/4-in.-thick Pyrex glass. The interior oven
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temperature is 550°F and the room air is at 68°F. The combined
convective/radiative heat transfer coefficient on the oven interior
is 1.7 Buw/h-ft*.°F, and on the oven exterior it is 0.88 Btu/h-ft2-°F
A toddler comes by and touches the window. Calculate the
temperature of the surface that the child’s hand contacts.

MULTILAYER WALL

P3-22 Anelectronic device may be modeled as three plane lay-
ers, as shown in the figure. The entire package is cooled on both
sides by airat20°C. Heat is generated in a very thin layer between
two contacting surfaces at a rate of 500 W/m?, as shown. The
heat transfer coefficient on both sides is 8.7 W/m?.K. Assume
the layers are very large in extent in the direction not shown.
Using data in the figure below, calculate the temperature 75,

YA = 500 W/m?

ki
ky = 0.34 W/m - K
S A
Lk = 0.16 W/m - K
.4""'"’
T4 T T T
—Al-y 1 2 3 4 w
L1 L1=0003m
> et
L,=0.0194m

P3-23 A cardboard box is used to ship flowers on a summer
day when the ambient temperature is 80°F. The air inside the
box is maintained at 45°F by the use of cold packs. The box
is lined with a layer of Styrofoam (k; = 0.015 Btu/h-ft-R) 1/2
in. thick. The cardboard itself is 1/8 in. thick and has k. = 0.13
Buw/h-ft-R. The box measures 8 in. by 8 in. by 2.5 ft. Assume
h on the inside is 2.0 Btwh.ft*.R and k on the outside is 9.3
Btwh-ft?.R. Calculate the rate of heat transfer into the box.
Neglect heat transfer on the ends.

P3-24 A living room floor 3 m by 4.5 m is constructed of a
layer of oak planks 1.2 cm thick laid over plywood 2.0 em thick.
In winter, the basement air is at 15°C, while the living room air
is at 20°C. The heat transfer coefficients on the living room floor
and the basement ceiling are 3.6 and 6.8 W/m?.K, respectively.
If the home is heated electrically and the cost of electricity is
$0.08 per kWh, estimate the cost per month of the energy lost
through the floor. If the roem is carpeted with wall-to-wall car-
peting 1.6 cm thick (£ = 0.06 W/m-K), what would the energy
cost be?

P3-25 The wall of a furnace must be designed to transmit no
more than 220 Btu/h-ft2. Two types of bricks are available for
construction: one with a thermal conductivity of 0.38 Btu/h-ft.R
and a maximum allowable temperature of 1400°F and the other
with & thermal conductivity of 0.98 Btu/h-ft-R and a2 maximum
allowable temperature of 2300°F. The inside wall of the furnace
is at 2100°F and the outside wall is at 300°F. Both types of bricks
have dimensions of 9 in. by 4.5 in. by 3 in., and both cost the
same. If the bricks can be laid up in any manner, determine the
most economical arrangement of bricks.
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CONDUCTION AND CONVECTION IN
CYLINDRICAL COORDINATES

P3-26 A chemical reactor is in the shape of a long cylinder, as
shown in the figure. The reactor is covered with a layer of insula-
tion 17.7 cm thick. The reactor loses heat through the insulation
ata rate of 15.3 W per meter of length. The thermal conductivity
of the insulation is 0.04 W/m-K. On the outside of the insulation,
air at 26°C removes heat by forced convection, with a heat trans-
fer coefficient of 32 W/m?-K. Find the maximum temperature of
the insulation. Neglect radiation.

Reactor

Insulation

17.7 om

P3-27 An insulated copper wire with a length of 1.2 m cairies
20A of current. The copperis | mm indiameter and the insulation
(k = 0.13 W/m-*C} has a thickness of 0.8 cm. Air at 25°C blows
in crossflow over the wire to produce an external convective
heat transfer coefficient of 219 W/m?.K. Assuming the copper
is isothermal, find the copper temperature. Take the electrical
resistivity of copper to be constant at 2.1 x 107%Q.m.

P3-28 The wall of a submarine is 1-in-thick stainless steel
(AISI 304) insulated on the interior with a 1.5-in. layer of
polyurethane foam (k = 0.017 Btw/h-ft-°F). The heat transfer
coefficient on the interior is 3.7 Btu/h-ft-°F. At full speed, the
exterior heat transfer coefficient is 135 Btu/h-fi-°F. The sub is
approximately cylindrical with the length 240 ft and the outer
diameter 30 ft. If the seawater is at 40°F, at what rate must
heat be added to the interior air to keep it at 70°F? As a first
approximation, neglect heat transfer through the ends.

P3-29 An aluminum wire 2.5 m long conducts 12 A with an
imposed voltage of 1.5 V. The wire, which has a diameter of
2.4 mm, is covered with a layer of insulation 2 mm thick. The
thermal conductivity of the insulation is 0.15 W/m-°C. Air at
40°C flows over the exterior of the wire to give a convective
heat transfer coefficient of 32 W/m?-°C. Assume the aluminum
is isothermal and compute the temperature on the inside surface
and also on the outside surface of the insulation.

P3-30  An insulated steel pipe carries hot water at 80°C, The
outer surface of the insulation loses heat to the environment by

Insulation  k=0.038 W/m-K

convection and radiation. For convection, assume f1 ., = 5.8
Wim?.°C. The emissivity of the insulation is 0.88. The surround-
ings are at 30°C. Assume the inner surface of the insulation is
at the water temperature, What is the surface temperature of the
insulation? Use the data shown on the figure.

P3-31 A cylinder of radius r| is covered with a layer of insula-
tion of thermal conductivity, k. A fluid flows over the outside of
the insulation, exchanging heat with a heat transfer coefficient,
h. Let ro be the radius at the outer surface of the insulation,
Cooling of the cylinder is controlled by the combination of con-
duction and convection resistances. If #; is small, the conduction
resistance is small. As rp increases, the conduction resis-
tance increases, but the surface area of exposed insulation alse
increases, and this results in a decrease in convective resistance.
As aresult, there is an optimal value of r; that produces the largest
possible total resistance to heat transfer. Derive an expression for
the optimum value of 1, as a function of r, k, and f.

P3-32 A frozen pipe is filled with ice at 0°C. A heating tape
wrapped around the pipe provides 90 W per meter of pipe length.
Insulation is placed over the heating tape. The insulation has a
thickness of 0.5 ¢ and a thermal conductivity ot 0.082 W/m.-*C.
Convection and radiation occur from the outside of the insula-
tion to the environment, which is at —15°C. The heat transfer
coefficient is 7.7 W/m?-°C, and the emissivity is 0.94. The pipe
wall remains at 0°C during the heating, and the healing tape is
very thin. The pipe has an inside diameter of 3 cm and a wall
thickness of 4 mm. How much time is required to compietely
melt the ice? (heat of fusion of ice = 3.34 x 10° I/kg, density of
ice = 921 kg/m®)

CONDUCTION AND CONVECTION IN
SPHERICAL COCRDINATES

P3-33  Show that the conduction thermal resistance of a spher-
ical shell of inner radius ry and outer radius r» is given by:
ry —

R:;phere = iz f']i‘gk

P3-34 A hollow sphere made of pure aluminum has an inner
radius of 3 em and an outer radius of 18 cm. The temperature
at the inner radius is maintained at 0°C. The outer surface is
exposed (o air at 25°C. The convective heat transfer coefficient
is 63 W/m*.K, and radiation may be neglected. Calculate the
rate of heat transfer and the temperature of the outer surface of
the sphere.

P3-35 A bathosphere of inside diameter 3.4 m is at an ocean
depth where the water temperature is 5°C. The wall of the batho-
sphere is made of 5-cm-thick steel. The convective heat transfer
coefficient between the air and the inside wall is 9.2 W/m?. K and
that between the water and the outside wall is 860 W/m?.K. After
the divers return to the surface, they complain to the designer that
the bathosphere was chilly. If the maximum power of the heater
is 2.3 kW, estimate the air temperature inside the bathosphere.

P3-36 A high-pressure chemical reactor contains a gas mixture
at FO00°F. The reactor is made of AISI 1010 carbon steel and is



spherical, with an inner diameter of 3.2 ft and a wall thickness
of (.75 in. The outer wall of the reactor is encased in a 2.5 in.
thick layer of insulation (k = 0.03 Btu/h.ft-R). The convective
heat transfer coefficient on the inside wall of the reactor is 8.3
Bw/h-ft2-°F, and on the outside of the insulation the combined
convective/radiative heat transfer coefficient is 1 1.7 Btu/h-ft2.°F.
If the ambient temperature is 80°F, find the rate of heat transfer
from the reactor to the surroundings.

P3-37 A novelty drink container is made of plastic in the shape
of a sphere. The container has an outside diameter of 6.5 cm and
a wall thickness of 2.5 mm. The container is initfally filled with
soda and crushed ice. The ice occupies 30% of the volume of
the drink. The plastic has a conductivity of 0.07 W/m-K and an
emissivity of (L.92. The inside surface of the container may be
assumed to be at the freezing temperature of water. The heat
transfer coefficient due to convection on the outside of the con-
tainer is 9.4 W/m?.K. Ambient temperature is 18°C. The latent
heat of fusion of water is 333.7 kJ/kg, and the density of ice is
921 kg/m®. Neglecting any transient effects, estimate the time
until all the ice has just melted.

LUMPED SYSTEMS

P3-38 A small rod made of pure copper is (.5 ¢m in diameter
and 1.4 cm long. The rod is initially at 10°C. It is then exposed
to a hot air flow at 30°C. The heat transfer coefficient between
the rod and the air is 25 W/m?2.°C. What will the rod temperature
be after 45 s?

P3-39 A slab of aluminum (2024-T6), which measures 16 cm
by 16 cm by 1.5 cm s initially at 750 K. The slab is then annealed
by a water spray at 15°C, which strikes both sides of the slab.
The convective heat transfer coefficient is estimated to be 1500
Wim? K., How much time is required to cool the slab to 320 K?
Neglect convection off the edges of the slab since almost all the
surface area is on the two 16 cm by 16 cm sides.

P3-40 Buckshot initially at 450°F is quenched in an oil bath at
85°F. The buckshot is spherical with a diameter of 0.2 in. and is
made of lead. The shot falls through the bath, reaching the bot-
tom after 20 s. The convective heat transfer coefficient between
buckshot and oil is 36 Btu/h-ft?-°F, Calculate the temperature of
the shot just as it reaches the bottom of the bath.

P3-41 A thermocouple is a temperature-measuring device
that relies on quantum mechanical effects. Thermocouples are
constructed of two thin wires of different metals welded together
to form z spherical bead. Consider a thermocouple 0.1 mm in
diameter that is suddenly immersed in ice water. Ideally, the
thermocouple bead should immediately drop to 0°C, but in
practice, there is a time delay. The heat transfer coefficient
between the thermocouple and the ice water is 32 W/m?.°C. The
density, specific heat, and thermal conductivity of the bead are
8925 kg/m?, 385 J/kg K, and 23 W/m-K, respectively. Assuming
no conduction in the thermocouple wires and an initial thermo-
couple temperature of 25°C, estimate the time required for the
bead to reach 0.1°C.
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P3-42 A long uninsulated Nichrome wire of diameter 1/16 in.
is cooled convectively by air at 70°F. The heat transfer coefficient
is 6.6 Bru/h-fi?-°F. Current runs through the wire, generating heat
at a rate of 1.9 W per foot.

a. Find the steady-state temperature of the wire.

b. Assume the wire is initially at 70°F. After the current is turned
on, how Iong will it take for the wire temperature to rise to
90% of the difference between its initial temperature and its
steady-state temperature?

P3-43 A copper sphere 3 cm in diameter is painted black so
that it has an emissivity very close to 1. The sphere is heated to
700°C and then placed in a vacuum chamber whose walls are
very cold. How long will it take for the sphere to cool to 300°C?
Use the lumped system model.

COMBINED THERMAL RESISTANCES

P3-44 The roof of a house is partially covered with snow.
The roof is made from plywood covered with shingles. (kg =
0.4 Btu/h-ft-°F). In the attic space, the heat transfer coefiicient
between the air and the plywood is 3.1 Btw/h-ft2-°F. The heat
transfer coefficient over the snow and the exposed shingles on
the outside of the roof is 7.6 Btu/h-ft2.°F. Assume the snow has
a density of 12 Ibm/ft® and it covers 64% of the roof area. Cal-
culate the thermal resistance from the attic air to the outside air
for the 30 ft by 60 ft roof panel shown in the figure.

Shingles

Snow

Piywood

Attic space Outside air

3
- 1/2"
34" =

P3-45 A dining area has a glass ceiling built of square units.
Each unit consists of two glass panes supported by a steel frame,
as shown in the figure. The space between the panes contains a
gas. The heat transfer coefficients, as shown on the figure, are

h = 4.11 W/m2-°C (inside the room)
ha = 3.63 W/m2-°C (between the pancs)
hy = 745 W/mz-"C (outside the room)

The air in the room is at 26°C and the exterior air is at 15°C. The
glass has a thermal conductivity of 1.4 W/m-K and the steel has
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a thermal conductivity of 37.7 W/m-K. Using dimensions on the
figure, find the total heat loss through one unit.

Top view Side view

P3-46 A man is wearing a shirt and a jacket that is unzipped.
His skin temperature is 70°F. The convective and radiative heat
transfer coefficients on the outside of the jacket and exposed part
of the shirt are estimated as 0.8 and 0.43 Btwh-ft*-°F respec-
tively. Model the man’s torso as a cylinder of diameter 1.3 ft and
height 2 ft. Assume the shirt is a layer of cloth of thickness 0.05
in. with &; = 0.12 Btw/h-ft-R. The jacket is 0.4 in. thick with
k; = 0.094 Btu/h-ft-R, Assume the jacket covers half the man’s
torso. The surroundings are at 45°F, Calculate the total rate of
heat loss from the man’s torso. Neglect the thermal resistance
due to any air layers between the shirt and the skin or the shirt
and the jacket.

f3 Jacket

P3-47 The inside wall of a machine is covered with acoustic
tile 3.5 cm thick for noise abatement. The tile increases the
thermal resistance of the wall, and, as a result, the interior air
temnperature rises to unacceptable levels. An engineer suggesis
drilling holes in the tile and welding steel rods 3.5 cm long and
1.8 cm in diameter to the wall so as to increase its effective
thermal conductivity, as shown in the figure. The tods are in a
square array on 10-cm centers. The machine dissipates 150 W
per square meter of wall area through its outer wall. The heat

Steel wall
Acoustic tile

Steel rods

transfer coefficients on the interior and exterior are 4.6 and 11.4
W/m?-K, respectively. If the exterior air temperature is 25°C,
calculate the interior air temperature with and without the rods.

P3-48 In a certain localized area, the earth can be approxi-
mately represented by areas of stone, soil, and iron ore, as shown
in the figure. Using data on the figure and assuming the geome-
try is two-dimensional, find the “effective” thermal conductivity
in the vertical direction. This is the conductivity that the earth
would have if it were all made of the same material.

5
, Ta | Stone
0.5 T <41 ky=1.6Btu/h+ft*R
25'
Soil Soil Soit
4 T k=03 Btuh-ft« R
1.5' | < 1.5'
Y L A
—_— - — | -
0.25' 025'
Iron ore ko= 25 Btu/h - ft+ R
P3-49 A drinking glass with an outside diameter of 3.5 in. and

a wall thickness of 0.125 in. is filled to the height of 6.2 in. with
a mixture of soda and ice. The glass is placed in an insulated
soft rubber sleeve 0.75 in. thick. (Cut-away view is shown in the
figure.) The exposed top surface of the drink is at 32°F and gains
heat by natural convection and radiation from the surroundings,
which are at 85°F. On the top surface, the heat transfer coeffi-
cients for convection and radiation are 1.6 Bto/h-ft*.°F and 0.7
Bru/h-fi2.°F, respectively. The natural convective heat transfer
coefficient between the soda—ice mixture and the inside wall of
the glass is 57 Btwh-ft?-°F. On the outside of the rubber sleeve,
the heat transfer coefficients for convection and radiation are 2.3
Btu/h-ft2-°F and 0.85 Btw/h-ft?.°F, respectively. Assume no heat
is transferred through the bottom of the glass. The initial mass
of ice in the drink is 0.09 Ibm. The latent heat of fusion of water
is 143.5 Bt/Ibm. Assuming a steady-state temperature profile in
the glass wall and rubber, calculate the time required for the ice
to completely melt. (Assume no one takes a sip from the glass.)

Glass

Rubber
sleeve




THERM ©ODYNAMICS AND HEAT TRANSFER

P3-50 A reacting gas is contained in a cubical tank of side
length 33 cm. The gas is stired by a paddlewheel that rotates
at 60 rpoca tinder a torque of 37 J. The convective heat transfer
coefficierat on the interior wall of the tank is 62 W/m?.K, and,
on the ex terior, the combined cenvective/radiative heat transfer
coefficierat is 7 W/m?.K. The tank wall is 0.5 cm thick and is
made of AISI347 stainless steel. The bottom of the tank rests on
a highly insulating surface. Due to chemical reaction, 180 W of
heat are generated in the tank. The ambient temperature is 25°C.
Find the steady-state temperature of the gases in the tank.
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P3-51 A piston—cylinder assembly is filled with carbon dioxide
gas at 250°C, 390 kPa. The piston and the curved walls of the
cylinder are perfectly insulated. The bottom wall is maintained
at 325°C by an external heater. Initially, the piston is 11 cm
above the bottom of the cylinder, which has an inside diameter
of 6 cm. As heat is transferred by convection to the CO; from
the cylinder base, a control system lifts the piston so as to keep
the average CO; temperature constant. If the piston rises 3 cm
in 11 s, determine the convective heat transfer coefficient.
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CHAPTER ’

FUNDAMENTALS OF FLUID
MECHANICS

4.1 INTRODUCTION

In everyday langnage, the word fluid generally is used to mean a liquid. However, in
engineering terminology, a fluid is a liquid or a gas. Of course, gases and liquids have
significant differences. If a liquid, such as water, is poured into an open flask, it will
form a layer of fluid with a distinct surface, called a free surface. Gases do not form free
surfaces but rather expand to fill their containers. An “empty” glass sitting on a table is,
in fact, filled with air. However, ligquids and gases have similar behavior when there is
no free surface present. For exarnple, the same principles and equations can be used to
analyze the flow of liquids and gases in a pipe—as long as the liquid completely fills
the pipe.

The study of stationary fluids is called fluid statics. Water at rest in an aquarium tank
exerts forces on the sides of the tank. Pressure in the atmosphere varies with height above
sea level, becoming noticeably lower at high altitudes. Hydraulic brakes in a car provide
mechanical advantage so that the car can be stopped with minimal force on the brake
pedal. These different phenomena can all be understood using the principles of fluid statics,
In addition, fluid statics deals with the buoyancy of floating objects, such as ships, buoys,
swimmers, and so on.

Fluid dynamics involves moving fluids. The flow of air over a truck, the flow of
oil in a pipeline, and the flow of water issuing from a fire hose are just a few of the many
examples of fluid flow that can be analyzed using fluid dynamics. In this chapter, equations
for conservation of mass, momentum, and energy of a moving fluid will be infroduced.
These equations, which are among the most basic ideas in fluid mechanics, apply to a very
wide range of processes and phenomena.

4.2 FLUID STATICS

128

Imagine that you are standing next to a swimming pool. A pressure is exerted on you by the
weight of the atmosphere above your head. You are not consciously aware of the pressure
level. However, if you dive to the bottom of the pool, you would feel a significant increase
in pressure on your eardrums. In both cases, the pressure in the static fluid depends on the
depth of the fluid above you and on its density.

Many engineered systems must withstand pressure forces caused by a stationary fluid.
As an example, consider the design of a submarine. The interior spaces in the submarine
are kept at near-atmospheric pressure for the comfort of the sailors. Outside the submarine,
the pressure of the water can be very large, especially at great depths, The hull must be
designed to withstand the forces exerted on it by the pressure difference across the hull.
Thus one of our first tasks is to develop an equation that will permit us to calculate the
pressure at any depth in a fluid.

L
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4.2.1 Pressure in a Fluid at Rest

How does pressure vary with depth and type of fluid? We will answer this question by
considering how pressure varies with depth in the ocean. The result will be applicable to
static fluids in general.

Figure 4-1 shows a section of the ocean. Define a control volume that encloses a
portion of the ocean, as shown in Figure 4-1, and perform a force balance on the control
volume. This is similar to performing a force balance on an object, except that our “object”
is all the mass within the control volume.

We consider two types of forces: surface forces, which act only on the surface of
the control volume, and body forces, which act on every particle throughout the control
volume. There are seven forces that act on the contrel volume, as shown in Figure 4-1.
Pressure (surface) forces act at each of the six faces of the box-shaped control volume,
and a gravitational (body) force acts on the mass within the control volume, Note that the
pressure forces are all normal to the control volume faces and all point inward.

The pressure forces act in the inward direction, because the water outside the control
volume exerts a pressure force on the water inside the control volume. It is equally true that
the water inside the control volume exerts a force on that outside, but we are not doing a
force balance on the water outside the control volume and need not consider the outward
forces.

For the force balance, first consider the forces in the x-direction in Figure 4-1. The
water in the control volume is assumed to be at rest; therefore, the forces must be balanced.
By Newton’s second law of motion, the net force on the west face equals the net force on
the east face, or F,, = F,. By similar reasoning, a force balance in the y-direction shows
that F,, = Fj.

In the vertical direction, there are three forces. The weight of the water due to gravity
plus the force on the top of the control volume must balance the force on the bottom of the
control volume. This force balance may be written

Fi+F,=F, (4-1)

The top face of the control volume is at the ocean surface and is exposed to the
atmosphere. The force there is equal to the area of the control volume face times atmospheric
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EXAMPLE 4-1

Assumptions:

A1, Water density is
constant with depth.

pressure. (See the definition of pressure, Eq. 2-11.) The gravitational force is the mass times
the acceleration of gravity. At depth & in Figure 4-1, the pressure will be designated as P,
and F, will equal this pressure times the area of the bottom face. With these simplifications,
Eq. 4-1 becomes:

Pom A; + mg = PAg (4'2)
At this point, we make the assumption that the ocean is a fluid of constant density (incom-
pressible). The ocean may reasonably be assumed to be incompressible if the depth is not
very large and the salinity does not vary significantly. If we write the areas in Eq. 4-2

in terms of lengths and replace the mass of water in the control volume by density times
volume, Eq. 4-2 becomes

Popm(wd) + p (wdh) g = P{wd)

which reduces to

Palm + .Ogh =P (4'3)

Thus, for a constant density fluid (gas or liquid) at rest, the pressure is a function of the depth
and density. Note that pressure is not a function of horizontal location. At any horizontal
location in a stationary fluid, the pressure will be the same. The case of variable fluid density
is treated in Section 4.2.2 below.

Pressure in a stationary fluid

A submarine dives to a depth of 4000 ft. What is the water pressure outside the hull? Assume
atmospheric pressure is 14.7 psia.

Pam= 14.7 psia

A

4000 ft

R TS

Approach:
Apply Eq. 4-3.

Solution:

The pressure is calculated using Eq. 4-3 {Al]

P =Parm +,Ogh
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Using the density of water from Table B-6, the pressure is

Ibf lbm ft 1 Ibf 1 ft?
P=147-2 5 (62422} (32,1742 ) (4000 £t
in.2 *+ ( ft> ) ( Sz)( ) 32_174”3“;‘& (l44in.2)
B
P = 17485
in.

Note that the relationship

1bf = 32.17410mAt
S

has been used as if it were a conversion factor. This is an effective way to keep track of units when
dealing with the British system.

The simple relationship between pressure and depth in a static fluid can be used as
a way of measuring pressure differences. The U-tube manometer, shown in Figure 4-2,
is a device that relies on this principle. The gas in the round container is at some pressure
higher than atmospheric pressure. The bent U-tube of the manometer contains a liquid of
known density. The top of the U-tube is open to the atmosphere.

The pressure difference between point A and point F is being measured. The pressure
at point B is the same as that at point A because there is no vertical distance between the
two and the fluids are at rest. The pressure at point C is related to that at B by

P¢ = peghy + Pp
where p, is the density of the gas. The pressure at point D is related to the pressure at C by
Pp = peghs + Pc = peghy + pyght + Py

where py is the density of the liquid. The pressure at point D can also be calculated starting
with the pressure at point IF and working downward. At F, the tube is open to the atmosphere

Manometer liquid FIGURE 4-2 A manometer.
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EXAMPLE 4-2

Assumptions:

A The density of the
mercury is constant.

and, therefore, the pressure there is atmospheric pressure. The pressure at D can be written
Pp = Pr+ peghs + peghs = Popy + peghs + peghs
Equating the expressions for Pp from these last two equations gives
pegha + peghy + Pp = FPau + pegla -+ peghs

which, with Py = Pg, simplifies to

Pa — Pagn = peghs — nghl (4-4)

Note that the contribution from C to D, p;ghs, cancelled out with the contribution from E
to D. In fact, the pressure at C is the same as that at E, since they are both the same vertical
distance above D and are connected by a continuous column of the same fluid.

iVianometer used to measure gas pressure

A manometer containing liquid mercury is used to measure the pressure of a mass of nitrogen gas.
The density of the gas is known to be 1.6 kg/m?. If the heights &) and A3 in Figure 4-2 are 1.5 em and
4.32 cm, respectively, what is the pressure of the gas? Assume the manometer is in an environment
where the temperature is 20°C and the atmospheric pressure is 101 kPa.

Approach:
Apply Eq. 4-4.

Solution:

Rearranging Eq. 4-4, the pressure of the nitrogen is [Al].
Py = Py + P£8h3 - nghl

Using the density of mercury at 20°C from Table A-6, the pressure is

_ 1000 Pa kg m I m
Py = 101 kPa ( 1 kPa ) + (13,579 m3) (9.81 52) (432 cm) (lOOcm)

kg m lm
- (1.6 F) (9.81 5—2) (L.5cm) (100Cm)

Py = 101,000Pa +5,755Pa — 024 Pa
P, = 1.07 x 10° Pa = 107 kPa
Commernits:

In this calculation, each quantity in the equation was converted to the appropriate SI unit. Thus,
kilopascals were converted to pascals and centimeters were converted to meters. The mass unit,
kilograms, is already an SI unit, so no conversion is necessary. If this practice is followed when
using the ST system, the units will always be compatible. Also note that, compared to the mercury,
the gas height adds little to the pressure measurement.

In Example 4-2, the pgh term due to the gas was much smaller than the pgh term
due to the liquid, because the density of the gas is so much smaller than that of the liquid.
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In fact, this will nearly always be the case, since gases, in general, are so much less dense
than liquids. As a result, Eq. 4-4 is usually approximated as

PA - Parm = chhs (4'5)

When gas pressure is measured with a U-tube manometer, this approximation will be used
unless otherwise noted. If a mancmeter is used to measure the pressure of a liquid, then
Eq. 4-4 applies.

The left-hand side of Eq. 4-5 is the difference between measured pressure and atmeo-
spheric pressure. As defined in Chapter 2, this pressure is called gage pressure. In British
units, the gage pressure is indicated by “psig” to distinguish it from the absolute pressure,
which is called “psia.”

Many types of pressure gauges, including the manometer described above, actually
measure only the “gage pressure.” In the manometer, the height of fiuid is the measured
quantity. The atmospheric pressure must be known from some other measuring device
before the absolute pressure can be found. If “psi™ is used, it shouid be clear from the
context which is meant. In the SI system, pressure is typically measured in kPa. Both
absolute pressures and gage pressures are expressed in kPa, and the engineer must recognize
whether absolute or gage is meant.

Atmospheric pressure can be measured using a barometer, as shown in Figure 4-3.
In a barometer, a closed tube is first filled with liquid mercury and then quickly inverted into
an open container of mercury. The mercury in the tube falls under the influence of gravity.
However, since the end is closed, no air can enter the tube, The space above the column of
mercury contains only mercury vapor in equilibrium with the liquid mercury in the tube.
The pressure of the mercury vapor is very low (much less than that of the atmosphere), so the
column of mercury comes to equilibrium without emptying completely into the container.

The height of mercury in the tube is related to atmospheric pressure according to

Pvapor + 02gh = Pa (4-6)

where Py, is the pressure of the gaseous mercury above the liquid column and p; is the
density of liquid mercury. Py,p,, is the pressure at which liquid mercury will boil; that is,
it is the saturation pressure of the mercury, also called vapor pressure. At a temperature
of 20°C, the saturation pressure of mercury is 0.158 Pa. Atmospheric pressuze is typically
101.3 kPa. Clearly Pygpor is much less than Py, and Eq. 4-6 can be approximated as

ngh = Pum

FIGURE 4-3 A simple barometer for measuring
atmospheric pressure.

1

Kl
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Thus the height of the mercury can be used to determine atmospheric pressure. The
barometer was invented by Evangelista Torricelli (1608-1647). The torr, a unit of pressure
equal to the pressure exerted by a column of mercury 1 mun in height, is named in his honor.

Manometers and barometers are simple mechanical devices for measuring pressure,
but it is labor-intensive to take readings of pressure visually, especially if many measure-
ments are needed or if measurement is continuous. They are also not suitable for making
high-pressure measurements. In most modemn applications, pressure transducers, which
produce an electric signal in response to fluid pressure, are used. These devices can eas-
ily be incorporated into computer-controlled data acquisition systems. A wide variety are
available to measure either absolufe or gage pressure.

Often, in fluid statics, the density of a liquid is calculated using the specific gravity.
By definition, specific gravity is the ratio of the density of a liquid to the density of water
at4°C:

SG = P

IOWﬂlEr

where SG is the specific gravity. The density of water varies slightly with temperature,
reaching a maximum value of 1000 kg/m?® at 4°C, so this is chosen as the reference value.
Specific gravity is a dimensionless quantity. For example, the specific gravity of kerosene
is 0.817; therefore, in SI units, the density of kerosene is 817 kg/m3, In British units, the
density of kerosene is 0.817 x 62.7 Ibm/ft® or 51.2 Tbm/ft>.

Specific gravity applies to solids as well as to liquids. The specific gravity of a solid
is the ratio of its density to that of water at 4°C. If the specific gravity of a solid is less than
1, then the solid will float in water; if specific gravity is greater than 1, the solid will sink.
If the specific gravity of a liquid is less than 1 and the liquid is immiscible with water, then
the liquid will form a layer on top of the water. If the specific gravity of an immiscible
liquid is greater than 1, then the liquid will form droplets and sink to the bottom of the
water, ending up in a layer under the water.

In some applications of fluid statics, more than one fluid is present. Consider, for
example, the situation in Figure 4-4, where three fluid layers are stacked one upon the other
in a tank. The fluids are assumed to be immisible; that is, they do not mix together but
stratify into distinct layers separated by fluid interfaces. Oil and water are immisible fluids;
if oil is added to a container of water, the oil will rest in a distinct layer above the water.

Pressure varies with depth in a multilayer system. If each of the three fluids has a
constant density, the variation of pressure with depth is easily calculated. In Figure 4-4, the
pressure at point 1 is

P\ = Py + pcghc

Pa!m
Pe C||lh
e
Pe B hg
.2
X
pA A hA
L Y FIGURE 4-4 A multilayer fluid system.
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where the subscript C denotes fluid C. The pressure at point 2 can be found once the pressure
at point 1 is known;

Py = Py + ppghg
Eliminating P; between the last two equations gives

Py = Pum + pcghc + ppghe

The pressure at the bottom of two layers is the sum of the pressure changes across each
layer. By extension, the pressure at the bottom of three layers, Ps, is

Py = Pon + poghc + ppghs + pagha
In terms of specific gravity, the pressure is
Py = Pum + om0 (SGeghe + SGaghp + SGagha)

This is a useful insight into the character of pressure in static fluid Jayers that can be used
to simplify many analyses.

In a continuous static fluid, pressure is only a function of depth; pressure is not a
function of horizontal position. When there are multiple fluids present, the pressure will be
the same at two points of equal depth if the points can be connected by an imaginary line
that lies entirely within a single fluid. For example, consider the two fluids in Figure 4-5.
Points 3 and 4 can be connected by the dotted line as shown, and this dotted line in entirely
within fluid A. Points 3 and 4 are at the same pressure. Points 1 and 2 are at the same
horizontal location, but any line between them passes through both fluid A and fluid B.
Hence, points 1 and 2 are not at the same pressure. In fact, point 1 is at atmospheric
pressure and point 2 is at some pressure higher than atmospheric because of the mass of
fluid B above point 2.

As another examplie, consider the three fluids in Figure 4-6. Points 2 and 3 both lie
within fluid B and can be connected by a line that remains within fluid B; thus points 2 and
3 are at the same pressure. Point 1 is also in fluid B, and it is at the same depth as points
2 and 3; however, there is no Iine that joins points 1 and 2 without crossing into fluid A
(or crossing into the atmosphere, which may be considered as fluid D). Points 1 and 2 are
definitely not at the same pressure. A greater mass of fluid lies above point 2 than lies above
point 1, so the pressure is greater at point 2.

P1$P2

g P3=F

FIGURE 4-5 A divided tank with two fluid
layers.
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TABLE 4-1 Centroids and area moment of inertia for common surfaces.

distributed hydrostatic force, the moment produced by the resultant force must be the same
as the moment produced by the distributed hydrostatic force. Mathematically,

(yp —yc) Fr = f (y — yc)P(y)dA (4-11)
A

where yp and yc are shown in Figure 4-9. Note that when y lies below yc, the pressure
force tends to rotate the plate counterclockwise and the integrand on the right-hand side is
positive in sign, When y lies above y¢, the pressure force tends to rotate the plate clockwise
and the integrand on the right-hand side is negative. By taking the integral, the negative
clockwise contributions are added to the positive counterclockwise contributions to give a
net result of a counterclockwise rotation.

Substituting Eq. 4-7 into Eq. 4-11 yields

(yp—¥yc) Fr = f (¥ = ¥} [Pawn + pgy sin 0] dA
A



A3. Assume room
temperature is 70°F.

EXAMPLE 2-4
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Values of the density of water and hydraulic fluid are given in Table B-6. Since the temperature
is not specified, a reasonable assumption is to use a room temperature of 70°F [A3]. The vaiue
of density for the hydraulic fluid was approximated as the average of the values at 60° and 80°F,
The gage pressure is calculated as

_ Ibm AP 11bf 1ft 2
o = (27528 (s2rme &) ainy | IBE | (4 ) (1)
1741008
+622)321783) [ o (L}
432, w174 )\12 )\ 12
P, = 0.169 psig

b) In calculating the distance, d, in the inclined tube, it is important to remember that pressure in
a static fluid is not a function of horizontal location but only a function of vertical location. The
water fills the inclined tube to a vertical height of 4 sin @. This is the equivalent height that should
be used in Eq. 4-5. The upper surface of the water in the tube is exposed to the atmosphere.

The gage pressure at the bottom of the inclined tube is then

Py = p,gdsing

To find the distance, solve for 4 to get

= Pg
~ pwgsing
It \ ( 144in2\ ( 12in.
oo o) () (32)
Iom ) . LIbf
622 —) (32.174 -) sin(20) | —LoE__
( f’ s 32.174 bm-t
§
d = 137in.

Comments:

Inclined manometers are often used when the pressure to be measured is smail. A much larger
deflection can be obtained than for a traditional U-tube manometer, The larger deflection results in
a more accurate pressure reacing,

Pressure in a piston—cylinder assembly with manometer

Water is contained in a piston—cylinder assembly, as shown in the figure. The piston is held in place
by a spring with an unstretched length of 7 ¢m and a spring constant of 158 N/m. The piston is
circular and has a diameter of 4 cm. The manometer fluid is mercury, Using data on the figure, find
the mass of the piston.

Approach:

The pressure at the lowest point of the manometer, designated as P,, can be found using

Py =Pa!m+pmgh1

3

il
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Assumptions:

A1, The mercury density
is constant.

A2. The water density is
constant.

Note: Figure not drawn to scale

where p,, is the density of mercury. Once this pressure is known, one can deduce the pressure at
the top of the water just under the piston face, Pg. Simply add the pgh terms for each fluid layer,
keeping in mind that pressure increases with depth. As a final step, draw a free-body diagram of
forces on the piston. Balance the forces due to the atmosphere, the spring, and the weight of the
piston against the upward pressure force of the water.

Solution:
Let P, be the pressure at the lowest point in the manometer, Then P, may be written as [Al]

Pa = Py + onghy

where p,, is the density of mercury. Let Py be the pressure in the water just underneath the piston.
Then P, is related to Py by [AZ]:

Pa = Pg + pwghs + pugha + punghs
where p,, is the density of water. Eliminating P4 between these two equations gives
Paw + pught = Py + puwghs + puwgha + pmghs
To find Pg, perform a force balance on the piston:

PoamAp + Fs +mpg=P3Ap

where F, is the force of the spring, A, is the area of the piston, and mp is the mass of the piston.
Eliminating Pp between these last two equations and combining terms gives
mpg

Fs
Popn + prmg(hL — 13) = Papn + A_P + '-'A-p— + pwglhs + k)

Solving for the mass of the piston,

Fs
mp = Pmlfy — h3)Ap — pwlhs + hZ)Ap - ?

The spring force is given by F, = k Ax, where k is the spring constant and Ax is the differ-
ence between the unstretched length and the compressed length of the spring. The area of the
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piston is 4, = n(Dp/2)2. Using these relations and inserting values, the piston mass can be

calculated as:
ke 4\ 1m®
2
e = (13’ 7 F) (3 =5y em [n (5) o } (106 cm3)

2
kg 4 2 1m3
- (998.2—m‘"'_1,) (154-3) cm ':n' (5) cm j] (—«106 cm3)

N 1
(158 3) (7 -3) em (IOOIEm)

m
8.81 2

m, = 0.239kg

A3. Room temperature

The density values were taken at 20°C, which is close to room temperature [A3]. Since all quantities
is 20°C.

were converted into 81 units—that is, cm to m—the units in the last term will automatically work
out to be mass units, as they must to be consistent with the other terms in the equation.

The principles of fluid statics can be used to gain mechanical advantage. A hydraulic
Jack, as shown in Figure 4-7a , is used to lift heavy objects, such as cars, parts of buildings,
packing crates, and so on. In each leg of the lift shown, the hydraulic fluid comes to the

same level, ; therefore, the fluid pressure is the same at points 1 and 2. Since pressure is
force per unit area,

m_R”
Al T Ay
Solving for Fy,
A
F= /TQLFZ

If A, is much smaller than A,, then a small force Fy can counterbalance a large force Fa.
Typically, the large force is due to the weight of the object being lifted.

mg FIGURE 4-7 (a) A hydraulic jack.
(a) {b) {b} A lever-fulcrum system.

nl

(KR
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Mechanical advantage never comes without a price. If force F; in the small-diameter
leg pushes the fluid downward a small amount, A#,, the level in the large tube will rise,
lifting the load. However, the volume of the hydraulic Auid stays the same, so the rise in
the large tube will be

Vi=A Al =V, =A: Al

Ay

Ahy = A,

Al

Since A; is much smaller than A», the load is lifted a small distance compared to the
decrease in fluid level in the small tube, This is similar to what happens in a lever—fulcrum
system, as shown in Figure 4-7b. The force Fapplied to the end of the lever is smailer than
the weight of the object being lifted; however, the long arm of the lever must travel a long
distance to raise the object a short distance.

In some applications, the transmission of force is all that is required. For example,
in cars and trucks, the force applied by the driver to the brake pedal is magnified by the
hydraulic brake system, so that a person of normal strength can stop a moving vehicle.

4.2.2 Pressure in a Static Compressible Fluid

(Go to www.wiley.com/college/kaminski)

4.2.3 Forces on Submerged Plane Surfaces

If a surface is immersed in a fluid, a force is exerted on the surface due to the pressure of
the surrounding fluid. It is more difficult to remove the plug from a sink filled with water
than it is to remove a plug from an empty sink. Pressure forces from the water wedge the
plug into place and aid in forming a seal between the plug and the drain.

In cases where force on a submerged surface is important, the pressure is typically
different on each side of the surface. For example, at the Philadelphia zoo, the polar bear
exhibit includes a large pond in which the bears swim. Below the surface of the pond, a
viewing area has been constructed with thick windows so visitors can watch the bears dive
and navigate under water. The window is subject to hydrostatic pressure on the pond side
and atmospheric pressure on the visitor side and must be designed to withstand the net
force due to this pressure. Other examples of submerged surtaces where force is important
occur in dams, canal locks, and submarines.

In Figure 4-8, an arbitrarily shaped flat plate is submerged in a liquid. An infinite
plane that extends in the x- and y-directions and contains the plate makes an angle 6 with the
surface of the liquid, as shown. The x-direction is perpendicular to the y- and z-directions;
it is not shown in the figure. The y-coordinate is the distance along the imaginary plane

Pafﬂi

" Flat plate,
& front view
dA
FIGURE 4-8 An arbitrarily shaped flat plate

Flat plate, edge on immersed in a static fluid.
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from the liquid surface. The pressure in the liquid is a function of the depth, z, which is the
coordinate perpendicular to the liquid surface, The pressure is

P(z) = Pam + pgz
The pressure may be expressed as a function of y as
P(y) = Pap + pgy sin 0 4-7)
Remember that pressure is always normal to the submerged plate. The force on a

differential area of the plate is the pressure at that location multiplied by the differential
area. To find the total force on the plate, integrate over the plate area to obtain

F.R=/'Pd*’4=.[[Pcu‘m"}—pgysn-le]qu
A A

where Fg represents the resultant force on the plate due to liquid pressure. Integrating the
first term and removing constants from the integral in the second term gives

Fr=PymA+ pg sin 8 f ydA (4-8)
A

The integral in this expression depends on the shape of the plate. It is possible to define an
“average” y for the plate as

ycA:fydA
A

or
ye=5 | yaa (4-9)
C A A

The reader may recognize y¢ as the y-coordinate of the centroid of the area. The locations of
centroids for many common shapes are listed in Table 4-1. Eliminating the integral between
Eq. 4-8 and Eq. 4-9 results in

Fr = PayA + pg sin GyCA 4-10

This is the magnitude of the resultant force on one side of a submerged plane surface.
In addition to the magnitude, it is often necessary to know the location at which the resultant
force is applied. For example, in a canal lock, massive doors hold back upstream water that
can reach a depth of 30 £t or more. The door hinges experience large forces and moments
due to hydrostatic pressure. The moment can be calculated only if the point of application
of the resultant force is known.

In Figure 4-9, point P is the location at which Fy acts. Point P always lies below
point C, the centroid of the surface. The reason is simple. If a horizontal line is drawn
through point C, as shown in Figure 4-9, then this line bisects the surface into two equal
areas. This is one of the properties of centroids that can be demonstrated using Eq. 4-9. The
area below the line is at a greater depth than that above the line, so there is more total force
on the area below the line; thus the resultant force must lie in the lower half of the area.

To develop a mathematical expression for the Iocation of P, we take moments about
the centroid of the submerged area. For the resultant force to cause the same effect as the

Pl

i
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TABLE 4-1 Centroids and area moment of inertia for common surfaces.

distributed hydrostatic force, the moment produced by the resultant force must be the same
as the moment produced by the distributed hydrostatic force. Mathematically,

(yp — yo) Fr = fA(y—yc)P(y)dA @-11)

where yp and yc are shown in Figure 4-9. Note that when y lies below v, the pressure
force tends to rotate the plate counterclockwise and the integrand on the right-hand side is
positive in sign. When y lies above yc, the pressure force tends to rotate the plate clockwise
and the integrand on the right-hand side is negative. By taking the integral, the negative
clockwise contributions are added to the positive counterclockwise contributions to give a
net result of a counterclockwise rotation.

Substituting Eq. 4-7 into Eq. 4-11 yields

(yp —¥c) Fr= f (¥ — ¥¢) [ Pam + pgy sin 6] dA
A



42 FLUID sTATICS 143

FIGURE 4-9 Point of application of the resultant
foree, Fa.

Substituting Eq. 4-10 into the left-hand side and expanding the right-hand side gives

(yp — yc) (PamA + pgyc sin 84) =

. (4-12)
Pun [ (r=3c)ah + pg sin [ (r=yoryaa
A A
The first integral on the right-hand side can be evaluated as
[o=yoraa= [ yas~sea
A A

Bat, using the definition of y¢ given in Eq. 4-9 this reduces to

Jo-vaa=o @13)
A

The second integral on the right-hand side of Eq. 4-12 is related to the area moment of
inertia of the surface about the centroid, which is, by definition,

Igec= ]A(y —yc)(y —yc)dA

Expanding terms:

Ixc =/A(y-yc)yM—L(y—yc)ycM

The constant yc can be removed from the second integral and, by application of Eq. 4-13,
the integral is zero. Therefore,

e = [ (= yo)yaa (4-14)
A
Substituting Eq. 4-13 and Eq. 4-14 into Eq. 4-12 gives

(¥p — Yc)(PamA + pgyc sin 8A) = pg sin 0 L

which can be rearranged as

I

yp=yc+ —=E (4-15)
A + Pa.!mA

ye pg sin 8

boHl

A
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EXAMPLE 4-5

Atmosphere Almosphere
Faim | Aimosphere Atmosphere
e —Jor{
Water r ™ I Water 5
F > = p é
/ ‘f [-—{ ' atm i
/ > [
HT» | \Door H7_H
/

(b)

FIGURE 4-10 Pressure forces on a submerged door in a tank. (a) with forces due to
atmospheric pressure and (b) without forces due to atmospheric pressure.

(a) Pwater Pwater

This equation was derived by taking into account the pressure forces on one side
of a surface. In many circumstances, there are also pressure forces on the other side of
the surface. Consider, for example, a tank containing water, as shown in Figure 4-10.
In Figure 4-10a, the force on the left side of the door is the sum of that due to atmospheric
pressure and that due to the water. The force on the right side is due solely to atmospheric
pressure. This right-side pressure does not vary significantly with location on the door. The
net force on the door is shown in Figure 4-10b, where atmospheric pressure has canceled
out. In cases where the atmospheric pressure acts on both sides of a surface, one can set
Pum = 0in Eq. 4-10 and Eq. 4-15, giving

Fr = pg sin 0 ycA (4-16)

_ [.\'x,C
yp =Y+ }Cj (4-11

Force and moments on a submerged flat surface

A rectangular gate hinged at the bottom separates a tank into two compartments, one containing
water and the other containing oil, as shown in Figure 4-11. The depth of the water is 6.5 ft and the
height of the gate is 6 in. The oil has a specific gravity of 0.77. Initially the water and the oil are at
the same depth, and the gate remains firmly closed, because the pressure due to the water is greater
than that due to the oil. The oil depth is then increased, and the force on the right side of the gate
becomes larger and more nearly counterbalances the force on the left. Find the height of the oil, ki,
at which the gate will just open and allow oil to bubble into the water.

FIGURE 4-11 A divided tank containing cil and
water.

Approach:

The key to the solution to this problem is to recognize that the gate will remain shut as long as
the moment around the gate hinge due to the water is greater than the moment induced by the oil.



Assumptions:

A1, Water density is
constant.

A2, Oil density is
constant.
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Thus we need to find the magnitude and location of the forces due to the water and the oil. The
resultant forces on each side of the gate can be found from Eq. 4-16 with # = 90°. We do not need
to include atmospheric pressure because both the water and the oil are exposed to the atmosphere
at their upper surfaces. The gate is rectangular, so information on the location of the centroid of
a rectangle, as listed in Table 4-1, is used to find the depths of the centroids on the water and oil
sides. The points of application of the resultant forces for il and water are different on each side
of the gate; these are found from Eq. 4-17. The final step in the analysis is to take moments about
the hinge of the gate. The moment equation contains the unknown oil height, which is the quantity
requested in the problem statement.

e i

T s

¥m

Figure 4-12 Location of resultant forces
and gate centroid.

Sp ey B
[T 1

Solution:

The first step is to calculate the magnitude of the resultant forces acting on the gate. We need the
centroid of the area in this calculation. From Table 4-1, the centroid of a rectangle is located at its
center. Therefore, the depth of the centroid on the water side of the gate is

Yo = hy — % (4-18)
Similarly on the oil side, the centroid is
yoo=h -4 (4-19)

Note that the location of the centroid on the oil side depends on the unknown depth 4;. We will
keep everything in equation form for as long as is practical. This is a good practice in general, and
it is especially useful in examples like this where the. unknown quantity, iz, will appear in several
different equations.

The resultant force on the water side of the gate is [A1]

Fr1 = pay08 sin 8 yc1A
In this case, & = 90°, and the area of the gate {s width, W, times height, H. Therefore:
Fpi = pmo gyaWH (4-20)
By similar reasoning, the resultant force on the oil side is [A2]
Fro = pougyca WH 4-21)
The resultant force on the water side acts at point y,, given by

[.tt, C

Yo

Ypr=Ycr+

i Ll

L
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Substituting the expression for the area moment of inertia, /.., from Table 4-1 gives

_ WH?
YL = ¥1 + 12)7(:1A

Since the area, A, is the width times the height, this becomes

2

_ WH? H B
Yp1 = Y1 + IZyCIWH =yc1 -+ 12}'::‘1 (4 22)

The corresponding equation on the oil side is

2

— H -
Ypz =Y + 3562 (4-23)

Finally, we take moments about the hinge on the gate. The gate will be neutrally balanced
when the clockwise moment from the water pressure just balances the counterclockwise moment
from the oil pressure, Referring to Figure 4-12:

(11 — yp1)FR1 = (M2 — Y2 )FR2 (4-24)
Substituting Eq. 4-20 and Eq. 4-21 into Eq. 4-24 gives
(1 — ¥y X o 08ye 1 WH) = (hy — ¥ X 0oig8yc2 WH)

Simplifying and noting that oy = 0.77 pg, 0 produces

(= yp1¥yer = (hy — yp2 )07 yc2

Substituting Eq. 4-22 and Eq. 4-23 into this expression results in

2 2
(hl — Yo — %ya) Yo = (hz — Y2 — %;2) 0.7 yea

The right-hand side may be simplified by substituting Eq. 4-19 into the first occurance of yc2
to give

2 2
(’11 —Yc1— 151?) Yo = |:h2 — (hz - %) - l_gﬁ:l 0.7y (4-25)

To simplify the left-hand side, first evaluate y¢y from Eq, 4-18 as

vor = hy - % =6.5—%§ = 6251t

Substituting this value for y¢; into Eq. 4-25 and simplifying the right-hand side gives

2
[6.5 625 Lﬂz_] 6.5 < 0.77 [075 vy — O3 ]

{12)(6.25) 12

Solving for yea:
ye2 = 8.091ft

The desired oil depth, /1;, may now be found as (see Eq. 4-19)

By = yea + % =809+ % = 8341t
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Comments:

The depth on the water side is 6.5 ft. It makes sense that a greater depth of oil is needed to
counterbalance the water. The oil is 77% as dense as the water, so an o0il depth of 8.34 ft is an
intuitively reasonable result.

4.2.4 Forces on Submerged Curved Surfaces

{Go to www.wiley.com/college/kaminski)

425 Buoyancy

Many humans love to swim. An aerial view of a typical American suburb reveals a landscape
dotted with swimming pools. People are able to swim on the surface of the water because
buoyant forces provide support. These forces act on all objects immersed in a fluid, including
air, water, and all other gases and liquids. Buoyancy in water is critical in the design of
submarines, surface vessels, buoys, offshore cil rigs, and so on. Hot-air balloons and
helium-filled dirigibles depend on buoyant forces to float in the atmosphere.

The pressure in a static fluid increases with depth. An arbitrarily shaped three-
dimensional object (Figure 4-13a) will experience pressure forces on all sides, but the
pressure, and hence the forces, on the lower surfaces of the object will be greater than those
on the upper surfaces, and the net resultant force, Fpg, of all the fluid pressure forces will
be upward,

It is not necessarily obvious that the net buoyant force, Fj, is vertical as shown in
Figure 4-13a. In Figure 4-13b, a volume of fluid with the same shape and at the same
depth as the object in Figure 4-13a is indicated with a dotted line. The bucyancy forces
acting on this fluid volume are identical to those acting on the object in Figure 4-13a. The
forces depend only on the pressure field outside the control volume, which is the same
whether the control volume is filled with fluid or with an arbitrary object. Since the fluid in
Figure 4-13b is stationary, the fluid in the control volume is in static equilibrium. Horizontal
forces cancel, so there is no horizontal movement; the same is true in the vertical plane. One
vertical force is the weight of the fluid in the control volume acting downward. The only
other force is the buoyancy force. We conclude that the buoyancy force must be equal in
magnitude and opposite in sign to the weight of the fluid in the control volume. In addition,
there must be no moment on the stationary fluid in the control volume. The weight acts
through the center of gravity of the object. The buoyant force F must, therefore, also act

Control volume

Y7
& .* ,’—""-.\/
ECH AN
!\ lmg 1'
S e

FIGURE 4-13 Pressure
Fg forces on a stationary object
of arbitrary shape immersed
in a fluid.

(a) (&)
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through the center of gravity. For an object of uniform density, the center of gravity is the
same as the centroid of the object. Summarizing:

The buoyent force on an immersed object is equal to the weight of the fluid displaced
by the object. This force acts upward through the center of gravity of the object.

This principle was known to the ancient Greeks and is attributed to Archimedes
(287-212 ge). In equation form, it is

Fg=prVg (4-26)

where py is the density of the fluid in which the body is immersed and V is the immersed
volume.

An object in water will experience a buoyant force that may be greater than, less
than, or equal to the weight of the object. If the object is less dense than water, its weight
is not sufficient to overcome the buoyant force, and it will rise. Conversely, if the object
is more dense than water, it will sink. Wood rises in water and comes to rest floating on
the surface, while iron sinks and comes to rest on the bottom. If the object has exactly the
density of water, it will float, suspended, totally immersed, at least in theory. In practice,
this is a position of unstable equilibrium, and the object would tend to drift either upward,
downward, or laterally due to small currents or to slight differences between its density and
that of water.

In many applications, we are interested in a body floating at the interface between
two fluids, as shown in Figure 4-14. An example is a ship floating on the ocean, where the
upper thuid is air and the lower fluid is water.

By an argument exactly like that given above, the buoyant force for the object in
Figure 4-14 is

Fp=(mVi + p2Va)g

where p, and p; are the densities of the upper and lower fluids and V7 and V; are the
volumes that the body occupies in each of the two fluids. The floating body is held in
static equilibrium by a balance between buoyancy forces and gravity forces. The force of
gravity is

F =myg
Setting the buoyancy force equal to the gravity force yields

meg = (M V1 + p2Va)g

FIGURE 4-14 A body floating at the interface of two
fluids.
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Water

FIGURE 4-15 A body floating in water,

Rewriting this in terms of the total volume, V,,,, and the density p,, of the object, and
dividing by g gives
PoVir = (01 V1 + 02 V2)

where

Ve =V +V,

A special case of great practical importance is the case of a body floating in water,
as shown in Figure 4-15. For this situation, the buoyant force is

Fg = (p,Vs + puVi)g

where p, is the density of air and p,, is the density of water. Since the density of air is so
much smaller than that of water, we may write

Fp= Lw ng
The buoyant force is equal to the weight of the object, so

PoVir 8 = puVug

where p, is the density of the object, V,, is the volume submerged in the water, and V,,, is
the total volume of the object. An alternate form is

Po_ Yy
P Vior

This equation can be used, for example, to calculate the submerged volume of an iceberg
or a raft.

Buoyancy of a hot-air balloon

A hot-air balloon cartying a person of mass 163 Ibm floats in the atrnosphere at a constant altitude
of 5000 ft. The bailoon has a diameter of 44 ft, The mass of the balloon when uninflated, including
the basket, the burner, and the fabric, is 350 1bm. The surrounding atmospheric air is at 47°F and
12.5 psia. The heat transfer coefficient between the bailoon fabric and the air is 1.1 Btu/h. fi2.°F
on both the inside and outside surfaces of the balloon. The fabric is 0.01 in. thick and has a thermal
conductivity of 0.014 Bru/h-ft-°F. Calculate the average rate of heat generation in the burner so that
the balloon maintains constant aititude,

i
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Assumptions:

A1. The balloon is
spherical.

AZ. Air behaves like an
ideal gas under these
conditions.

hr=1.1 Biu/h- 2. °F
———

T
h=1.1Btuh-f®«°F

k=0.014 Btu/h - ft - °F

Taim = 47°F
Pam=12.5 psia

Approach:

First determine the termperature of the air inside the balloon so that it is neutrally buoyant
{maintaining a constant altitude). The balloon will be neutrally buoyant when the buoyancy force
on it exactly matches its weight. The weight of the air inside the balloon plus the weight of
the balloon itself and the passengers must match the weight of the 47°F air that is displaced by the
balloon. To find the inside air temperature from the calculated inside air mass, use the ideal gas law.
Consider the balloon to be a sphere of radius 22 ft. Once the inside air temperature is known, the
thermal resistances due to convection on the inside of the balloon, conduction through the fabic,
and convection on the outside of the balloon are added in series to produce total thermal resistance.
The required rate of heat generation is the temperature drop between inside and outside air divided
by the total thermal resistance.

Solution:

The volume of the balloon is [Al]

4

4 _p3
—3JTR

v
or

V= ;iﬂ(zz fty> = 44,600 fr°

The mass of atmospheric air at 47°F and 12.5 psia displaced by this volume is [A2]

m = —}.)—_V—M
RT,

Substituting values,

. 3 Ibm
(12.5 psia)(44, 600 1t*) (28-97 lbmol)

. . 3
(10.73%%) (47 + 460)R

m; = 29691bm
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Define total mass as the sum of m;, the mass of air in the balloon, ms, the mass of the uninflated
balloon, and m4, the mass of the passenger:

Mgy = Mz -+ m3 +my

The balloon is neutrally buoyant when the buoyancy force exactly matches the weight. The buoyancy
force equals the weight of the displaced air as given by

F B=mg
Setting buoyancy force equal to total weight
Fg=rmg=mug=(m+ms+m)g

Simplifying and solving for the unknown mass of air in the baltoon, m;,
my = m — M3 — M4
my = 2969 — 350 — 165 = 2454 1bm

To find the temperature, use the ideal gas law. For the hot air in the balloon

T, = 2M
Rmz

where we have assumed that the air inside the balloon is at the same pressure as the air outside the
A3, Pressure is the same  balloon [A3]. Substituting values,
inside and outside of the

. 3 Ibm
balloon. . (12.5 psia)(44, 600 ft°) (28.97 Ibmol)
2 =

- ) 3
(10.73115)?;; f_‘R) (2454)Tom

Ty = §13R = 153°F

The heat loss from the balloon may be represented by the following resistance network:

T Ty

where R; is the convection resistance on the inside of the balloon, R, is the conduction resistance
through the fabric, and Rj is the convection resistance on the outside of the balloon. The inside
convection resistance is
1 1
R = ——= —
'TRA T panR?

where the formula for the surface area of a sphere has been used and R is the balloon radius. Because
A4, The surface areas of  the fabric is thin, the inside and outside radii of the balloon are very nearly equal [A4]. With this
the inside and the outside simplification,
of the balloon are

virtually the same. Ry = = 1 — 0.0001495 °BFnl]1
tu 2
1.1 4r (221t
( h-ft2-°F) m(221)
ABb. Conduction through Because the fabric is very thin compared to the radius of the balloon, the conduction through

the fabric is planar. the fabric may be modeled as conduction through a plane layer [A5]. The conduction thermal

S
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;:..
%]

resistance becomes

L L 0.01in. °F-h
A 2 : Bt
kR (0.014—B‘“ ) A (22 fr)? ( 12 ‘“-) !

h-ft-°F 1ft
The convective resistance on the outside of the balloon is given by

— L1
R =32 = vanre

Since we have assumed A is the same on both inside and out, and since the heat transfer
coefficient is also the same on both inside and out,

P °F-h
R;=R) = 0'0001495—Btu

The total resistance is found by adding the three resistances in series to get

R = Ry + Ry + Ry = (00001495 + 0.000117 + 0.0001495) =2

R, = 0.000416%

The heat that must be added to the balloon by the burner is equal to the heat lost, so

N TQ—T] . (153—47)°F _ @
0= 2= s = 256,00058
0.000416 T

Comnents:

The heat transfer coefficients used are typical of those for natural convection. If a strong wind flows
over the balloon, the heat transfer coefficient would increase and more input heat would be required
to maintain altitude.

FHAMPLE 4-7 Using bucvaney te deiermine density

Legend has it that Hiero II, king of the ancient Greek city of Syracuse, asked Archimedes in 220 BC
to verify that his crown was made of pure gold. Archimedes reputedly discovered the principle of
buoyancy in trying to solve this problem. Suppose that Archimedes had weighed the crown in both
air and water and found it to weight 110 N in air and 103 N in water. What could Archimedes
conclude? (Of course, Archimedes did not use the units of force called newtons, but the principle
is the same.)

110N



Assumptions:

A1. Buoyancy force on
the crown in air is very
small.
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103 N

Approach:

The weight of the crown must be the same whether immersed in air or in water. The difference in
the measured weights is due to buoyancy forces on the crown, Basic force balances on the crown
in air and in water, including buoyancy forces, can be used to determine the volume of the crown.
The weight in air can then be used to find the density of the crown. If the crown has a density less
than that of gold, one can conclude that a base metal with a density lower than that of gold has been
alloyed into the crown.

Solution:
A force balance on the crown in air gives

chwn.air = Fweighr — FB. air

110N = m.g — paVeg

where m, is the mass of the crown, p, is the density of air, and V, is the volume of the crown.
The second term on the right-hand side represents the buoyancy force of the air on the crown.
This is typically very small, because the density of air is very low. Therefore, we use the common
approximation [Al]

110N = m.g
Likewise, a force balance on the crown in water gives
F crown, water — F weight — F B, water
103N = meg — pVeg
Eliminating »1, between these two equations results in

103N = 110N — p,V.g

Solve for V., the volume of the crown, to get

V. = (110 — 103)N
€T Pw
Substituting values,

(110 —103)N

kg m
—= Bl1=
(997 - ) (9 52)

=7.16 x 10~*m?

Ve =

Bk

|
|
il
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In air, the crown weighs 110 N; therefore,
ocVeg = 110N

where p, is the density of the crown. Solving for o,

g, — LION _ 110N — 15,667

1 ke
¢ (716 x 107 m?) (9.31%) m
5

From Table A-2, the density of pure gold is 19,300 kg/m’. The crown has a lower density, implying
that the crownmaker may not have used pure gold.

Comments:

One might think a little about the accuracy with which Archimedes was able to make measurements.
Furthermore, a crown must have some structural strength, and pure gold is rather weak. The gold
nust have been alloyed in any event. The real question is how much alloying metal was used.

4.3 OPEN AND CLOSED SYSTEMS

Every system that has been considered so far has been a closed system. A closed system
is one in which there is no mass inflow or outflow; that is, no mass crosses the system
boundary. By contrast, if mass does flow across the system boundary, either entering or
leaving, the system is called an open system. For example, consider a car tire. Define the
system as the air within the tire so that the system boundary lies along the inside of the tire.
When the tire is being inflated, mass (air) crosses the system boundary; therefore, this is
an open system. Nexl consider a tire on a moving vehicle where the air within the tire is
heated by frictional forces. As before, we define the system as the air within the tire, and
the system boundary is coincident with the inside wall of the tire, In this case, however, no
air is added or removed; therefore, we have a closed system.

In thermal-fluids analysis, it is important to carefully define the boundaries of the
system under consideration. This is done by using a so-called control volume, Control
volumes have been used already in this text. In this section, we use control volumes in
new ways, that is, for open-system analysis. As previcusly stated, a control volume is a
well-defined region in space that sets the boundaries of the system.

For example, if the efiect of a fireplace on the room energy balance is being studied
and we want to determine the air flow rate and temperature exiting the chimney, one might
define the control volume to encompass all the air within the fireplace and chimney (see
control volume A in Figure 4-16). For this control volume, air is drawn in from the room
and exhausted through the chimney, thus crossing the boundary in two places. This is
an open system. Alternatively, one might define the control volume to encompass the air
within the room, the fireplace, and the chimney (see control volume B in Figure 4-16).
Air enters this control volume through doors or windows and is exhausted up the chimney,
crossing the boundary in several places. Control volume B is also an open system, but it is
a different open system than control volume A. The details of the analysis of the effect of
the fireplace on the room energy balance will change depending on the choice of control
volume, but the final results (air flow rate and temperature leaving the chimney) will be
the same.
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Control volume B Control volume A
{fireplace, chimney, . (fireplace
and room) and chimney)

Control Control
VO]L.j/me B wvolume A

e Fireplace
1

FIGURE 4-16 Two control volumes for analyzing the effect of a fireplace on a room energy
balance.

Sometimes a control volume changes shape and/or size during a process. For example,
suppose the filling of a washing machine with water is being analyzed. The control volume
might be defined as the volume containing all the water within the tub. As the machine is
filled, mass crosses the boundary, the volume of water increases, and the volume of the
control volume increases. This is an open system. Now suppose that the fill cycle is finished
and the machine advances to a soak cycle. The control volume is still defined as the volume
containing all the water in the tub, but now no water enters or leaves. Thus the scak cycle
would be a closed system.

Occasionally, the same process can be analyzed as either an open system or a closed
system. For example, in Figure 4-17, two piston—cylinder assemblies are connected by a
line. At the start of the process, cylinder 1 is filled with pressurized gas and cylinder 2 is
evacuated. When the valve is opened, gas flows through the line and raises the piston in
cylinder 2. Let control volume A be the volume containing all the gas in cylinder 1. Control
volume A then defines an open system, since gas flows across its boundary. Alternatively,
control volume B might be defined as all the volume in both cylinders. This is a closed
system with a control volume that changes shape during the process. The choice of control
volume can make the analysis easy or difficult, and it is not always obvious which choice
leads to an easier analysis. Experience will help in making the choice.

Cylinder 2 Cylinder 1

(a) Start of process, valve closed

Cylinder 2 Cylinder 1

-—=Control
volume A

===Control
volume B

(b) During process, valve open

FIGURE 4-17 Two alternate choices of
contro! volume.

TN

P
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4.4 CONSERVATION OF MASS FOR AN OPEN SYSTEM

In an open system, we often need to keep track of how much mass is in the control volume
at a given time, Te do this, consider the control volume in Figure 4-18. Figure 4-18a shows
the control volume at time ¢, Here Am; is a small mass that will enter the control volume
during the time period At. Likewise, Am, is a small mass that will exit the control volume in
the time period At (Any is not necessarily equal to Am,). The mass in the control volume,
My, is all the mass within the dotted line. Figure 4-18b shows the control volume at lime
t + At. The mass at the inlet, Am;, has entered the control volume and the mass at the exit,
Am,, has left the control volume. If we equate all the mass shown in Figure 4-18a with all
the mass shown in Figure 4-18b, then

Am; + me, (1) = Am, + mg, (F -+ AD

where m,,(t) is the mass in the control volume at time ¢, and m,, (¢ + Ar) is the mass in the
control volume at time ¢ + At. The quantity m,,(f) contains within it the differential mass
Am,. Similarly the quantity m,(f + Ar) includes the differential mass Am;. The equation
may be rearranged to the form

Mot + A1) — m (1) = Am; — Am,
Divide hoth sides by the time period Ar to get

Myt 4 A —me(t) _ Any  Am,
At T Ar At

Take the limit as At approaches zero so that the equation becomes

dme, _ dm;  dm,

dt — dr dt @-27)

The term dm; /dt is called the inlet mass flow rate and is often abbreviated as

?L’E_m.
de — "

P \\\
2w Gontrol volume
4 ~
by

i ~

/,_w_
-~
2
-~
b
=
=
’
;
\_“ Lo

~ e .
(&) At time t
P - T TS
g/ <~—— Control volume
1 .
! ~.
. -
hY

1‘ mg, (f+ Af) \

exiting a control volume.
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Similarly,

dnt,
dr e

With these substitutions, Eq. 4-27 takes the form

dmg,

a e

Physically, this equation states that the time rate of change of mass within the control
volume equals the mass flow rate into the control volume minus mass flow rate out of
the control volume. The equation applies at an instant in time. Note that dm,, /dt is never
written as ., The different notation for m and dm,,/dt is intended to signify that s is
a flow rate and dm,,/dt is a rate of accumulation or depletion of mass within the control
volume.

For simplicity, the preceding derivation involved only one entering stream and one
exiting stream. If there are multiple streams going in or out, the derivation is essentially
the same except that all entering streams are added and all exiting streams are added, The
resulting open system mass balance equation in rate form is

er PREDI (4-28)

out

Open systems are often operated in steady state; that is, dm, /df = 0. In this case,
total mass neither increases nor decreases in the control volume, and the mass in the control
volume is constant with time. If there is only one stream flowing in and one stream flowing
out, then, in steady state, their flow rates are equal.

There are useful alternative expressions for the flow rates on the right-hand side of
Eq. 4-28. Refer to Figure 4-19, which shows a small quantity of mass Am, which will enter
the control volume in time period At. This mass is contained in a differential volume that
has a cross-sectional area A and a height Ax. The velocity with which the mass enters the
control volume is also shown. This differential mass Am is related to a differential volume
AV by

Am=p AV (4-29)

where o is the density of the fluid entering the control volume. The differential volume is
given by

AV = AxA

FIGURE 4-19 A differential mass entering a control
volume,
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The differential mass flows into the control volume with velocity of

_ Ax

V=7

where the definition of velocity has been used, and the velocity is assumed uniform over
the area A. Combining the last two equations gives

AV = VArA (4-30)

Substituting Eq. 4-30 in Eq. 4-29 produces

Am = pUYALA
or
Am _
A T PVA
In the limit as At approaches zero
= pVA (4-31)

In this equation, velocity and density were assumed to be uniform over the area A. In
the commeon situation of flow in a duct, velocity is not completely uniform but is different
at each differential flow area, dA, as shown in Figure 4-20. (Likewise, the density could
vary in the general case.) The molecules of fluid in a very thin layer next to the wall are
at the speed of the wall, which is zero, The next layer of fluid is slowed by friction with
the stagnant layer near the wall and accelerated by friction with a faster layer nearer the
center of the duct. As a result, this layer takes on some velocity between that of the two
bounding layers. Each successive layer of fluid is sandwiched between a slower layer and
a faster layer and experiences a drag force from each. Near the center of the duct, there is
often very little difference in velocity between layers, and the profile tends to flatten out,
Thus, to obtain a total mass flow rate for the flow shown in Figure 4-20, we integrate over
the total flow area to get

m:fpf?/’dA
A

It is useful to define an average velocity across the duct. The average velocity is
defined so that the mass flow rate becomes

i = pViugh (4-32)

Average velocity  Wall

%dA

Velocity profile

_d(

4

YYY

FIGURE 4-20 Velocity distribution in a duct.
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Eliminating r between the last two equations (assuming density is constant) and rearranging

produces

The resulting average velocity is sketched in Figure 4-20,

fwwg=%ij

(4-33)

It is also common to describe flow in terms of a volumetric flow rate. To derive the
volumetric flow rate, start with Eq. 4-30, which is

AV =V AtA
Dividing by At gives
AV
ar =74
In the limit as A¢ approaches zero
av _ o
g V=%vA

The quantity V is called the volumetric flow rate. If velocity varies over the area, A, then

the volumetric flow rate may be written as
av _ ¢
ar =V= %ng
Combining this with Eq. 4-32 produces
m= pf/

EXANPLE 4-8 Conservation of mass in an open system

(4-34)

A bathtub is being filled with water, but the drain plug does not fit properly and water leaks out.
The volumetric flow rate of water down the drain is proportional to the pressure drop across the

plug according to

V=

90(P — P, arm)

where flow rate is in gal/min and pressure is in psia. The flow rate from the faucet is 30 gal/min.

Idealize the bathiub as a rectangular container 5 ft long, 2.5 ft wide, and 2 ft high.

a) What is the final height of water in the tub?

b} How long will it take to fill the tub to 90% of the final height?

&

FIGURE 4-21 Filling of a bathtub with a leaky plug.

NREEEE]
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Assumpiions:

A7, Water is
incompressible,

Approach:

The principle governing this problem is conservation of mass for an open system (Eqg. 4-28).
Defining the control volume as the water in the tub, we have an open system with one flow entering
and one flow leaving. The final height of water occurs when the system is in steady state and the
flow entering equals the flow exiting. To find the flow exiting, note that the pressure at the top of the
drain is a function of the height, &, of liquid above the drain; that is, P = Pgy, + pgh. Use this with
the given equation for volumetric flow rate leaking by the plug to express flow rate as a function of
height. Match the known entering flow rate with the exiting flow rate to determine the steady-state
height.

For the second part of the problem, in which one must determine the time to fill to 90%
of the final height, again start with conservation of mass (Eq. 4-28). The mass of the water is
me, = pVeo = pdox, where x is the height of the water in the bathtub, as shown in Figure 4-21.
The mass flow rate into the tub, #;, is a constant. The flow out of the tub, ., is a fanction of x.
Use 7, = pV. to write the rate as a volumetric flow rate and then substitute V, = 90(P — P,;,,) and
P — P = pgx. Now you will have a differential equation in x. Separate variables and integrate
to get an expression for height as a function of time. In this expression, set x = 0. 904 to determine
the time required.

Solution:

1) Define the control volume to contain all the water in the bathtub. The pressure at the bottom of
the tub is given by Eq. 4-3, which is

P == Py + pgh
Using this, we see that the volumetric flow rate down the drain is
Ve = 90(P — Pom) = 90(pgh)

Conservation of mass gives
dm,, Z . .
—= = i — E .,
dr 4 i (i
1 out

The final height of the water will be reached when the mass in the control volume is no longer
changing. At that point

dmg, -0
dt
S0
ﬁl,‘ = n'[(,

where the summation, X, has been dropped since there is only one stream in and one stream out.
Mass flow rate is related to the volumetric flow rate by

= pV

The density of the water is constant [A1]; therefore,

According to the given equation for exiting volumetric flow rate, it follows that

Vi =90pgh
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Solving for h,
v

"= Sopg

Before evaluating this equation, one must think carefully about units. From the problem statement,
volumetric flow rate is in gal/min and pressure is in psia. Since V, = 90 (P — P,g,), the units of the
constant, 90, must be in gal/min-psia or gal.in.2/min- Ibf. Now k may be evaluated as

30%
h =
90 galin.? caolbm fay o ft 11bf 1fi?
min-Ibf s ) Va7 M 144in?
S
h=0771

The density of water from Table B-6 has been used.
b) To determine how liquid height varies with time, start with conservation of mass in the form

dmg,
dr

= ’hi - me
The control volume is all the water in the bathtub. The mass of the water is
My, = pVo, = pAgx

where x, the height of the water in the bathtub, varies with time. Using this expression and

wm=pV
conservation of mass becomes
d{pAsx . .
"'(B"fo'—) = P(Va - Ve)
or
Acv;_d‘: = Ve - Ve

Using the given expression for V.,
Aoy B = V; = 90(P — Pum)
Pressure is a function of the height of the water according to
P =Puy + pgx
Therefore,
dx

A 50 = Vi — 90(pgx)

Separating vartables and integrating

X2 ]
f M = f dt
n Vi—90pgx Jy

“hl

KN

[T




162

EXAMPLE 4-9

CHAPTER4 FUNDAMENTALS OF FLUID MECHANICS

which becomes

—Agy
90pg

In [V, --90,ogx] =h—1

Initially, at time #; = 0, the bathtub is empty, so x; = 0. The expression can be rearranged so that
the time required to reach a water depth, x3, is written as

—Agy In |:Vf - glo.pgx?-]
~ 90pg V;

At the final time (¢ = £,), the bathtub is filled to 90% of the final height. Therefore

X = 0.94 = (09071t
¥ = 0.693 ft
Substituting values
1 gal
()2 | —==——
(5)2.3) (0.1337&3)
tr =
(gal)(in.?) lbm ft 11bf 1 f?
20 tmmyndy \ 522 g ) (327 5 bt | \ 1442
3217 2=
S
al){in. 2
30 8L _ gg(in’) )(6221‘3“‘) (32 17 )(0 603 o | —LIbf ( 16t 2)
min (mir)(Ibf) 1217 lbﬂ;'ft 144 in.
x In ) s
30 £ g
t» = 5,5 min
Comments:

After studying thermal—fluids engineering, students often begin to appreciate the merits of the metric
system of units.

Conservation of mass in nozzle flow

Air enters a nozzle at 90°C, 180 kPa with an average velocity of 60 m/s. The duct has an iniet
diameter of 10 cm. The exit has a diameter of 6.3 cm and is open to the atmosphere. If the velocity
at the exit is 249 m/s, what is the temperature there?

" I
1
{
I
i
i
I
7
)

Air |
—;)'— :I _—
Ty =90°C i - P, =100 kPa
P, = 180 kPa / V3 = 249 m/s
Vi =60m/is

Approach:

The control volume is chosen to follow the inside surface of the nozzle and cut across the
entrance and exit. Assume the flow is steady; therefore, the inlet mass flow rate equals the outlet



Assumptions:

A1. The nozzle operates
in steady state.

A2. Air is an ideal gas
under these conditions.
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mass flow rate. For each mass flow rate, substitute an expression of the form # = p9 A. Use the
ideal gas law to eliminate density in favor of temperature and pressure. Then it will be possible to
solve for the outlet temperature.

Solution:

Define the control volume to follow the inside surface of the nozzle and cut across the entrance and
exit. This is a steady flow with one inlet and one outlet [A1]. By conservation of mass,

damg,

a e

Because the flow is steady, the mass in the contrel volume does not change with time and

dmg,
dr 0
Therefore
ﬁl,' = Iﬁe
This may also be written as
piViA; = p VoA,
Assuming air is an ideal gas [A2]
Py = % and Py, = %
or, since
vl
i
RT; RT,
P,-_% and Pe—p‘M‘

Solving for p and substituting gives

PMYVA; _ PMYVCA,
RT, RT,

which simplifies to
P,'(]/;"A,' —_ Pe%Ae

T; 7,

Solving for the exit temperature,

_ PAVeA o
T PYA

At the exit, the nozzle is open to the atmosphere; therefore, pressure is atmospheric.
Substituting values,

2
(100KkPz) (249 %) % ( 6'32““)

e 2
(180 kPa) (60 %) P (10%)

(90 +273)K = 332K = 59.2°C

Note that absclute temperatures were necessary in this example because equations were derived
using the ideal gas law,

RN

'
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4.% CONSERVATION OF ENERGY
FOR AN OPEN SYSTEM

The first law of thermodynamics is an expression of the principle of conservation of energy.
In Chapter 2, the first law was derived for a closed system, that is, for a fixed quantity of
mass with no mass crossing through the system boundary. In this section, the first law for
an open system is developed.

Consider the control volume shown in Figure 4-22a. Here Amy; is a differential
quantity of mass that enters the control volurme over the time period Az, Similarly, Am, is
a differential quantity of mass that exits the control volume over Af; Am, is not necessarily
equal to Am;. The differential quantities §Q,,, and W, are the heat and work that cross the
boundary during A¢. Figure 4-22b shows the control volume at time 7 4+ Az. The mass Anz;
has entered, and the mass Am, has left. In the derivation that follows, several definitions
are used:

E,,(t} = energy in the control volume at time 7

E.(t + At) = energy in the control volume at time ¢ + A
E(t) = energy of the closed system at time ¢

E(t 4 At) = energy of the closed system at time 1 + At

The closed system is all the mass shown in Figure 4-22, while the control volume is
all the mass inside the dotted line. Therefore, referring to Figure 4-22a, the energy of the
closed system at time £ is the energy within the control volume plus the energy contained
in the mass Am;. The mass Am; carries energy into the control volume as it enters. This
energy consists of internal energy, kinetic energy, and potential energy; the total energy in
the closed system can be expressed in mathematical form as

2
E(O) = Eot) + Am (us TR/ gz,-)

‘ A
Time {t+ At) \‘:
" Am,

t

i i
: C SRR 4-27 Control volumes for
(b) Attime (t+ At} derivation of the first law.
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Similarly, at time # - At, the total energy of the closed system is the energy within the
control volume plus the energy contained in the mass Am,:

2
E(t + A = E,(t + Ay + Am, (ue + % + gzg)
Subtracting the last two equations, we see that the change of energy of the closed system
in time At is
fV‘z
BU+AD—E@®) = | Bt +AD+ Am, | 4, + T"’ + gz,

2
- [Ecv ) + Amy (Hs + (VT’ + 82;)1' (4-35)

Recall that the first law for a closed system is, from Eq. 2-1,

AE=0Q—-W
In differential form, this is
dE =60 — 8W
which may also be written
dE = E(t + At} — E(t) = 8Q — W {4-36)

Substituting Eq. 4-35 into Eq. 4-36 gives
(V2
Eo (t 4 At) — E () + Am, (”e + _28" + gze)

o2
—Am | u+ T’ + gz | =80 — W @-37

The evaluation of the last term, §W, is a little tricky. This term includes expansion or
contraction work and shaft work. In addition, work is required to push mass into and out
of the contro! volume, and this form of work is called flow work. Using the definition of
work as a force through a distance, and noting that the differential masses Am; and Am,
travel a distance Ax as they enter or leave the control volume, we see that flow work is

8Wyow = F Ax
The force acting on the differential mass is due to pressure within the fluid, so
Wy = PA Ax
Area times the distance Ax is the volume of the differential mass; therefore,
8Wgow = PAV =PvAm

As the mass Amy; enters the control volume, work is done on the closed system. There must
be some exterior force pushing the mass into the control volume. Since the mass is part of
the closed system, work is being done on that system. By our sign convention, work done
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on the system is negative. As the mass Am, leaves the control volume, work is done by the
closed system. Work done by the system is positive. With these considerations, flow work
may be written

SWﬂDW = nge Amg - P,‘V,j Am,- (4-38)

The total work for the system is the sum of the flow work and any other work on the control
volume. In other words,

W = W + 8Wpow (4-39)
The term §W,, includes compression and expansion work, shaft work, and any form of

work other than flow work. Eq. 4-37, Eq. 4-38, and Eq. 4-39 may be combined to give

Eo(t - At) — Eq(8) -+ Ay { ue -+ 5t 8z | Amy | wi + - 8z

=80 — 8W,, — Pove A, + Piv; Ay (4-40)

Combining terms,

2

v v
Eo(t+ AD — E (D) -+ Am, (ue + Py, + —26— -!-gze) — Amy (u,- 4 Py + T’ + gz,-)

= Bch — W, (4-41)

In this equation, §Q has been set equal to §Q,,. There is no heat associated with the
entering and leaving masses, so the heat for the closed system is the same as the heat for the
control volume. In Eq. 4-41, the combination u# + Pv appears. This is enthalpy, which was
introduced in Chapter 2 as a convenient definition. Now we see that enthalpy is a useful
quantity when analyzing open systems. Using the definition 4 = u+ Pv, Eq. 4-41 becomes

v V?
E.(t+ A — E(O)+ Am, | h, + -—f— +gz. | —om{ b+ -i- + 8%
= 5ch - Sch

Dividing by At and letting At approach zero,

- Co ¥ . v?
% = Qe — We + iy (h.-+7'+gz;) — m, (he‘l‘Te‘l‘gZe)

This equation has been derived for one inlet and one outlet. If there are multiple streams
entering or leaving, the contribution of each stream is added. The resulting form of the first
law is

dEcv > T . q/;'z . (?/;2
ar =Qu—Wo+t E i (h, + 3 + gZi) - E Mg (he + 2 + gze) (4-42)
in

out

This mathematical representation of the first law of thermodynamics, which is also called
the energy equation or energy balance equation, is applicable at an instant in time and



EXAMPLE 4-10

Assumptions:

A Flow is steady.

A2, The pipe is perfectly
insulated from the
surroundings.

A3. Kinetic energy is
negligible.

A4. Potential energy is
negligible.
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deals with rates of energy flow. It is one of the most widely used equations in thermal—
finids engineering. Physically, it states that the time rate of change of total energy within
the control volume is equal to the difference between the net heat transfer to the control
volume and the net power produced by the control volume plus the difference in energy
flowing into and out of the control volume. Example 4-10 illustrates the use of Eq. 4-42 in
one type of pipe flow. Chapter 6 is devoted entirely to applications of the energy equation
in a wide range of devices and processes.

Conservation of energy in a heated pipe

Air flows in a pipe at a rate of 0.0064 m*/s. The air enters at 25°C and 101 kPa. A heating tape
is wound around the outside of the pipe, and the tape is covered with a thick layer of thermal
insulation. A voltage of 120 V is supplied to the tape, which has a resistance of 30 Q. Assuming
constant specific heat, find the exit temperature of the air.

Insulation .
Heating tape

AN
AN s
Pl

Air i ; ; I Pipe wall

—_—— 1
v=0004m¥s Lo} L«— Control volume
Tj=25°C A I IR
P=101kPa  SUMAE SN ans

20V +
Approach:

This problem deals with heat addition in an open system, Thus we need the first law (Eq. 4-42)
to determine the exit air temperature. All terms in the equation are zero except the heat input and
the enthalpy terms. We can use the enthalpy of an ideal gas with constant specific heat to eliminate
enthalpy from the first law in favor of temperature. The mass flow rates are related to the volumetric
flow rate by

= pV

Using Ohm’s law, we calculate the heat input as voltage squared divided by current. Finally,
propetties are located in Table A-7 and the exit temperature is calculated.

Solution:

Define the control volume to encompass the inside of the pipe and cut across the ends. The flow
is steady [Al], so dE;, /dt = 0. The electrical power supplied to the heating tape flows into the
air as heat [A2]. There is no work done on or by the air. Velocity is assumed to be low, so kinetic
energy effects are negligible [A3)]. (Kinetic energy of flowing streams is treated in greater detail in
Chapter 6.) There is no elevation change and, thus, no potential energy change [A4]. With these
simplifications, the energy equation reduces to

0= ch+ Zmahr - Zmehe

out

The pipe has one inlet and one exit, so
0 = Qv +rish; — tighe

At steady state, from conservation of mass, the mass flow rate entering equals the mass flow rate
leaving, that is,

=M=

ERERERNI
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A5, Airis an ideal gas
under these conditions.

L3, Specific heat is
constant,
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Therefore,
0= ch -+ m(ha - he)

Air may be assumed to be an ideal gas [A5], and if we further assume constant specific heat [A6],
Eq. 2-37 gives

AH =mcy AT

In our case, this becomes

H; — H, = mey(T; — T)
Dividing by # and using A = H/m,

by — by = c(T; = T.)

Substituting this into the first law gives

0 = Qe + icy(T; — To)
From Eq. 4-34, the mass flow rate may be expressed as

H = pff

which leads to

0= Q0+ pVep(Ti — To)

Rearranging and solving for exit temperature gives

7,= Lo o7
pVep

Heat is generated in the heating tape at a rate of

. _52
ch—'g"l—ﬁ

where £ is voltage, [ is current, and R is electric resistance (by Ohm’s law, £ = IR).
Substituting given values,

_(120V)
Qo = "3~ =480W
The specific heat and density of air at atmospheric pressure are given as functions of temperature
in Table A-7. The inlet air temperature is 25°C (298 K). As an approximation, we will use the table
values at 300 K. One could also apply the ideal gas law to find density, but using Table A-7 is more
convenient in this special case where the pressure is atmospheric. With table values, the first Jaw
becomes

T, = 480 W +25°C

kg o’ J
(1.18 F) (0.0064 T) (]005 kg_K)

T, = 88.2°C
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EXAMPLE 4-11 Conservation of energy in a desktop computer

Assumptions:

A1, Theflowis steady.
A2, The channel is
perfectly insulated from
the surrcundings.

A3, No work is done.
A4, Kinetic energy
change is negligible.
ADB, Potential energy
change is negligible.

AB. Airis an ideal gas
under these conditions.
A7 Specific heat is
constant.

Alir at 17°C enters a channel between two printed circuit boards in a desktop computer. Four rows
of chips are installed along one of the circuit boards, as shown in the figure. Within the chips, heat
is generated at the device plane at the rate of 0.7 W per cm of row depth. The heat generated is
conducted through a layer of silicon 4 mm thick and then convected to the air in the channel. The
air flows at a mass flow rate of 9x 107 *kg/s per cm of row depth, and the resultant heat transfer
coefficient in the channel is 220 W/m?-K. The components on the device plane must be kept below
85°C to ensure reliable operation. Will the design succeed or fail?

e

T,=17°C
=9 x 10 kg/s

1
I
I
1
I
]
1
I

4 mm

Device plane

Approach:

The air will increase in temperature as it travels down the channel. The hottest chip will be the
chip at the end of the chanel (in row 4) which is exposed to the highest air temperature. The exit
air temperature can be found using the first law, Eq. 4-42. All terms are zero except the heat input
and the enthalpy terms. The enthalpy change of an ideal gas with constant specific heat is used
to eliminate enthalpy from the first law in favor of temperature. Once the air exit temperature is
known, the thermal resistances for conduction through the silicon and convection from the chip
surface are calculated. The total resistance, which is the sum of these two, is used to calculate the
temperature at the device plane of the chip in row 4 using

thip = T

Solution:

For the first part of the analysis, we choose the control velume as shown in the figure. The flow is
steady [Al], so dE,, /dt = 0. The electrical power generated in the chips heats the air. The channel
itself is assumed to be insulated from the surroundings [AZ2]. There is no work done on or by the
air [A3]. Velocity is assumed to be low, so kinetic energy effects are negligible [A4]. There is no
elevation change and, thus, no potential energy term [AS5]. With these simplifications, the energy

equation reduces to
0= Qo+ by =) che
in

out

The channel has one inlet and one exit, so
0= ch + ’hfki - mehe
In steady state, the mass flow rate entering equals the mass flow rate leaving, that is,

Hy =, =
Therefore,
0= ch + m(hr - he)

Air may be assumed to be an ideal gas [A6]; therefore, for an ideal gas with constant specific heat
[A7], Eq. 2-37 gives:

AH =mc, AT

e

IERERLE
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AB. Heat leaves only
from the top of the chip
(heat transfer is
one-dimensional).

A9, The heat transfer
coefficient does not
change along the
channel,

In our case, this becomes
Hi—H,=mc, (T; — T,)
Dividing by m and using h = H/m,
hi —he = cp (T; ~ To)
Substituting this into the first law gives
0= Qe + ey (Ti = T2)
Solving for exit air temperature yields

o Do
Te=Ti+ tie,

Heat is generated in each of the four rows of chips. Both the heat generated and the air mass
flow rate are known for a 1-cm depth of the channel (depth is direction perpendicular to the plane
of the figure.) Therefore, the exit temperature may be calculated as

4 (0.7 %)

_4 kg I
4

where the specific heat of air was taken from Table A-7. The heat generated at the device plane
where transistors and other electronic components are located is conducted through the layer of
silicon and then convected fo the air. The resistance for conduction is

L
KA

=20.1°C

T8=T,-+ﬁQ1—z_"=17°C+
P

Regna =

Here L is the thickness of the silicon and A is the surface area of the top of one row of chips per cm
of depth. We neglect any heat convected off the sides of the chip[A8]. The conduction resistance is

~

Reona = = 4mm = 0208 X
(148 ﬁ) (l cm)} 1.3 cm) (

1m )
10,000 cm?
where the thermal conductivity of silicon has been taken from Table A-2. The convection resistance
is [A9]
1 I

Ry = —= =
Cony hA W ] m2
220 1 1.3 —_—
( mz.K) (1 em)(1.3 cm) (10,000 cmz)

=350&
=350 3

Heat first flows through the silicon and then leaves by convection, so these two resistances are
in series. The total resistance is

Rrar = Rccmd -+ chnu =352 %

The heat generated in the last row of chips is related to the temperature drop across the chip by

- _ Td)ip - Te
Qenip = T Ra
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where T, is the temperature at the device plane in the last row of chips and 75 is the exit air
temperature. Solving for Ty,

Tetip = Oetip Riot + Te = (0.7 W) (35.2 %) ++20.1°C = 119°C

This is higher than the allowable limit of 85°C. The chip will fail and the system needs redesign.

Comments:

The controlling resistance is the convective resistance. Improving the design will require either a
lower heat generation rate or a higher heat transfer coefficient.

4.6 THE BERNOULLI EQUATION

In this section, the energy equation is applied to a particular class of problems, We restrict
our discussion to isothermal, incompressible flows with zero viscosity (inviscid). That may
seem like a ot of restrictions, but, in fact, many important cases are in this category or may
be approximated with these assumptions, including the flow of air and water through short
pipelines, the draining of a sink, and the flow of water issuing from a hose.

By definition, an incompressible flow is a flow with constant density. Most common
liquid flows are virtually incompressible. Liquids strongly resist changes in volume under
mild pressure. But even liquids sometimes exhibit compressibility effects if the pressure is
high enough.

In Chapter 2, we used the ideal gas law to calculate changes in the density of gases as
a function of pressure and temperature. However, you may be surprised to learn that gases
are often assumed to be incompressible. Air at standard temperature and pressure is, in
fact, rather difficult to compress. Try squeezing a balloon full of air into a smaller volume.
Not so easy. It is not difficult to deform a balloon of air, but it is difficult to reduce its
volume. Air and other gases are approximately incompressible for small pressure changes
and are compressible for large pressure changes. Gases, however, will flow under rather
small pressure differences. As a rule of thumb for flow problems, if the gas velocity is less
than about 100 m/s, the flow can be considered incompressible.

The next assumption that we discuss is the inviscid (zero viscosity) assumption. There
are, in general, three forces that act on flowing fluids—gravity, pressure, and friction. In
an inviscid flow, frictional effects are zero. This is often valid if the viscosity of the fluid
is very low and the flow channel is short. Other sources of frictional losses in pipe flow
include sudden contractions, serpentine passages through valves, and flow through porous
media. If the flow has a smooth route with rounded corners and no major flow restrictions,
it can often be approximated as inviscid.

The final assumption is the isothermal assumption. This simply means that the fluid
does not change temperature.

For flow in a pipe or duct with one inlet and one outlet, the steady-state form of the
energy equation (i.e., dE,, /dr = 0} is

\ . . qr2 ) qr?
O=ch—ch+m(h1+Tl+gZ1)-m(h2+Tz+gZz) (4-43)

Substitute the definition of enthalpy ( # = u + Pv) into this equation (o get

. _ o2 a2
0=ch_ch+’h(ul+P1V1+Tl+g3[) _m(u2+P2v2+T2+gZZ)
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EXAMPLE 4-12

Assume the flow is incompressible; therefore, v; = v2 = v = 1/p. Substitute this and also
divide by the mass flow rate to get

P VT 2
0=ger —wer + (”l + Bl‘ =+ Tl + 821) - (Hz + % + —2-2* +822) (4-44)

where, by definition,

Q\’.‘L‘
ey — —
fev L

W,,
Wep = —
[ht W

The units of ¢, and w,, are Btw/lbm or J/kg. They represent heat transfer per unit mass
of fluid Aowing and control volume work per unit mass of fluid flowing, respectively. We
now consider a flow that does not exchange heat with its surroundings, (ie., go = 0).
The flow is inviscid, meaning there is no friction. No heat is produced by friction, and no
heat enters from outside the flow. The flow is incompressible, so there is no temperature
change due to expansion or contraction. Therefore, the flow is isothermal. Recall that for an
incompressible fluid, internal energy, i, depends only on temperature. So, for an isothermal,
incompressible flow, u; = u>. Applying these conditions and assumptions to Eq. 4-44 and
rearranging gives

v v3

=D+ 2+ (4-45)

P
F‘H;’ZHr 5

If, in addition, no shaft work is added to or removed from the flow via a pump, turbine, or
other device (i.e., we, = 0),

2

2
Py Yi_p i
5 Teut =4 +8n+ = (4-46)

This is the Bernoulli equation, first presented by Daniel Bernoulli (1700-1782). It is
one of the most famous and useful equations in fluid mechanics. It applies for a steady,
incompressible, inviscid, and isothermal flow with no work.

Draining of a tank assuming frictionless flow

Water drains at a steady rate from a very large tank through a pipe of diameter 4 cm. Assume
frictionless, incompressible flow. Because the area of the top surface of the water is large compared
10 the cutlet pipe diameter, we also assume that the velocity of the receding top surface is negligible.
Find the rate at which mass drains from the tank.

- ..U%Q_FAJ

0.8m
Liquid water

[

%
_|_>.
@



Assumptions:

A1 The flow is
frictionless.

A2. The flow is
incompressible.

A3. The tank is large, so
the velocity of receeding
water surface is very
small.

A4, The water is at room
temperature.

EXAMPLE 4-13
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Approach:

Define station 1 at the top surface of the water in the tank and station 2 at the exit. We assume that
the tank diameter is very large compared to the pipe diameter, so the velocity at station 1 is small
relative to the velocity at 2 and can be approximated as zero. Apply the Bernoulli equation, noting
that Py and P, are both atmospheric pressure, and solve for 93. Once the velocity is known, the
mass flow rate is found from /. = p3 A.

Solution:

Define station 1 at the top surface of the water in the tank and station 2 at the exit, Assume the flow
is frictionless and incompressible [A1][A2]. The Bernoulli equation is

2 2
Py Vi_ P 3
7 +ng+T— 2 + gz + 5

The velocity at station 1 is assumed to be zero [A3). With this simplification, and setting P; and P;
equal to atmospheric pressure,

2
Pam o Pom V3
) + gz = o + 5 + g2
which reduces to
a2
gz —n)= TQ

or

V2 = /28(z1 ~ )

= [2 (9.8 %) (0.8 m)
&

The mass flow rate is found from

= p34As

Using the density of water at 25°C [A4] from Table A-6,

2
o kg m 2 .2 1m
(997 _m3) (3.96 ?) {2 cm (——~—100 cm)

kg
496 -2

5.
|

Flow in a free jet

Water issues from a pipe into the atmosphere as a vertical free jet. If the velocity at the pipe exit is
6 m/s, calculate the jet height, . Assume fluid friction is negligible.

Approach:

Assume the flow is incompressible. For an incompressible, isothermal, frictionless flow, the
Bemoulli equation applies. The pressure at both the exit of the pipe and the top of the jet is
atmospheric. The velocity at the top of the jet is zero. The height is calculated from the elevation
term in the Bernoulli equation.

]

pl T
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Assumptions:

A1, The flow is
incompressible.
A2. The flow is
frictionless.
A3. The flow is
isothermal.

Solution:

Assume the density of the water is constant [A1] and the flow is inviscid [A2] and isothermal [A3].
From the Bernoulli equation,

where station 1 is the exit of the pipe and station 2 is the top of the jet. Within an inviscid free jet,
the pressure is the same at all radial locations. At the jet exit, the water contacts the atmosphere
and the pressure at station 1 is atmospheric. The pressure is also atmospheric at station 2; therefore,
Py =Py =Py Settingz) =0, zp =k, and V3 =0,

v il
= (3)-(4

7

-2 ¥4
V3 =97
2g

Solving for A,
hoe=

Substituting values:

0- (%)
2 (9.81 g)

The Bernoulli equation has been used for finite control volumes with one inlet and
one outlet. It can also be applied to infinitesimal control volumes and to control volumes
with more than one inlet and/or outlet. In Figure 4-23, a flow through a nozzle is shown.

h= = 1.84m

Streamlines

Nozzle wall

Control volume FIGURE 4-22 Streamlines in a nozzle.
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FIGURE 4-24 Water issuing from a tank FIGURE 4-25 Water flowing between two

through two different exits. tanks by two different routes,

The figure includes so-called streamlines. A streamline indicates the path that a flnid
particle takes as it accelerates through the nozzle. Because a streamline is always tangent
to the velocity vector, no mass flow crosses a streamline.,

Figure 4-23 shows a control volume aligned with the streamline and extending from
point 1 to point 2. This control volume is finite in length but infinitesimally thin in the
dimension perpendicular to the streamline. Such a control volume is sometimes called a
streamtube. Fluid enters the left side of the streamtube at point 1 and leaves through the
right side at point 2. No fluid flows out the lateral sides. The flow within the streamtube
meeis the criteria for the Bernoulli equation; that is, it is incompressible, inviscid, and
isothermal. Therefore, Bernoulli’s equation applies along a streamline.

The Bernoulli equation can sometimes be used if there is more than one inlet or outlet,
For example, in Figure 4-24 water drains from a tank through two different outlets. The
dotted line is a streamline that divides the flow into two regions. The upper region contains
all the fluid that leaves through the upper outlet, and the lower region contains ail the fluid
that leaves through the lower outlet. It is possible to calculate the shape and placement of
the dividing streamline, but that is beyond the scope of this text. The dividing streamline
is parallel to the velocity vector. No mass flows across the dividing streamline. As a result,
we may write the Bernoulli equation for the upper region as

2 P, 2

Py Vi_P ¥
F+321+ 7 =5 + 822 -+ 5

For the lower region, the Bernoulli equation is

2

2
idl Yi_»p Vs
F; + gz + 5 = +gz3 + 5

3
0
Both of these equations apply simultanecusly.

In some circumstances, the fluid can take multiple paths from one point to another.
For example, in Figure 4-25 fluid flows from the right tank to the left tank by one of two
paths. Again, it is possible to imagine the dividing streamline that separates the flow into
two regions. The Bernoulli equation applies simultaneously to each region.

4.7 FLOW MEASUREMENT

(Go to www.wiley.com/college/kaminski)
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4.3 CONSERVATION OF LINEAR
MOMENTUM FOR AN OPEN SYSTEM

Fluids flowing over or against surfaces can exert significant forces on those surfaces. Surfers
take advantage of this effect when they ride waves into the shore. Wind flowing over sails
can drive a boat across the ocean, and water flowing over a water wheel is used to produce
mechanical work. To calculate the forces on a control volume due to the flow of fluid
through the control volume, conservation of momentum is used. While this is a conservation
equation, similar to conservation of mass and conservation of energy, there is a significant
difference between momentum and the two quantities, mass and energy. Mass and energy
only have magnitude (i.e., they are scalars). Momentum involves force that has magnitude
and direction (i.e., it is a vector). Hence, the momentum equation is a vector equation that
can be written as three scalar equations—one for each component of momentum in the x-,
y-, and z-directions—or comparable directions in cylindrical or spherical coordinates.

We now develop the momentum equation in the x-direction in a rectangular coordi-
nate system. The equations in the y- and z-directions are exactly analogous. We use the
same approach to develop the open-system momentum equation as we used to develop the
open-system energy equation. Figure 4-26 shows a control volume at two different times.
For interpreting this figure, a few definitions are useful:

B, (1) = total momentum in the control volume at time ¢ in the x-direction

B, »(t+ Aty = total momentum in the control volume at time ¢+ At in the x-direction

B, () = total momentum of the closed system at time ¢ in the x-direction

B, (r + A1) = total momentum of the closed system at time ¢ 4+ A in the x-direction

The closed system is all the mass shown in Figure 4-26a, while the control volume is
all the mass inside the dotted line. Within the time period A, a small quantity of mass Amy;

enters the control volume, and a small quantity of mass Am, exits; Am, is not necessarily
equal to Asm;. Momentum is mass times velocity, or

B =mYV

/ Time t i
1 ’
1 /

ol .

,
‘\'-.__.._-_
(&) Attime ¢

=TT ™
'
Time (t + Af) [

(b) Attime (t+ Af) FIGURE 426 A control volume at two times.
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In the x-direction,
B:c = m%

where 7V s the component of velocity in the x-direction. The momentum of the closed
system at time ! is the momentum within the control volume plus the momentum carried
in with the mass Am;. In other words,

By(8) = Bror () + AmyiV 3y

Figure 4-26b contains the same amount of mass as Figure 4-26a. Therefore, at time 1 + At,
the momentum of the closed system is the momentum within the control volume plus the
momentum carried out with the mass Am,. Mathematically, this is

Bt + Af) = By, (1 + AD + Am, Vs e
The change of momentum of the closed system in time At is
By(t + At) = Bu(f) = By (t + AD) — Byoy (0} + Am Vi — AmiYVs;
Divide this expression by Af to get

B {t+ A —B.(t) Brow (- Aty — By oy (1)
At o At

Am, Ay a0
+ Ve~ SV (44T
From Newton’s second law, the sum of the forces is equal to the rate of change of

mom_t;ntum, or
' dv, dB. .. {B,(t+AD—B.(®
Z Fr dt dt Al:—»() ( At ) (4-48)

Substituting Eq. 4-47 into Eq. 4-48 gives

T Bx,cv (t + At) _ Bx,(.'v (t) Ame Am,'
ZFI = llm ( + At ‘]/},e— th/;'i

Ar—>0 At
Taking the limit,
d . .
D Fa= 7 Bra) + eV — MY
This is the momentum equation for an open system for the x-direction. It states that the sum
of the forces is equal to the time rate of change of momentum within the control volume

plus the momentum leaving minus the momentum entering. The equation has been written
for the x-direction. The equivalent equations for the y- and z-directions are

SF = %(By,w) + Vs — Vs
Z F, = %(Bz,cv) + Ve — Ve

If there is more than one stream in or out, the contribution of cach stream is simply added.
For example, the x-momentum equation becomes

Z F. = %(Bx,cv) + Z me%,e - Z I’;’l,‘qf;.i
out in

There are similar expressions in the y- and z-directions.
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EXAMPLE 4-14 Anchoring force in a pipe

Assumptions:

Water flows at a constant rate into a pipe junction at station 1 at a velocity of 8 m/s, as shown in
Figure 4-27. Water leaves at station 2 at 6 m/s. The diameter of all three pipes is 4 cm. The values
of pressure are: P; = 106 kPa, Py = Py = Pay = 100 kPa. Calculate the anchoring force needed
to hold the pipe in place. Neglect the weight of the pipe and the water.

\
. \,’/\’\x
RN R
+|_ I = ,// \
+ 1 ”p ,‘\l \
:‘y” % FIGURE 4-27 ({a) Contro! volume
el for flow in a pipe. (b) Atmospheric
X pressure forces on the control
(b) volume.
Approach:

The anchoring force is the force that the pipe exerts on the water, which is balanced by the force
of the water on the pipe wall. The anchoring force is found with the linear momentum equations
in the x- and y-directions applied to the water. The unknown anchoring force is one of the forces
on the left-hand side of the momentum equation; pressure forces are also on the left-hand side.
Since the flow outlets are not normal to either the x- or y-direction, the pressure force, which is
normal to the exit, will have both an x- and a y-component. Pressure is tricky because pressure
forces act on the sides of the pipes as well as on the inlets and outlets. It is possible to subtract out
the action of these side pressure forces by using gage pressure instead of absolute pressure. This
is similar to what was done in computing forces on submerged surfaces. In evaluating the velocity
terms, care must be taken to use negative values for velocity components in the negative x- and
y-directions.

Solution:

We choose as our control volume the volume inside all three branches of the pipe, The water flow
exerts a force on the pipe, pushing it rightward and downward. The anchoring force counteracts
the water force. To find the anchoring force, use conservation of momentum. Starting with the
x-direction,

ont

ZF.V = c_id-t. (Bx,cv) + Zmeqf;ﬁe - Zmlq{;'
in



A1. The weight of the
water and pipe are
negligible compared to
the other forces in the
system.

A2. The system is in
steady state.
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The control volume is shown by a dotted line in Figure 4-27a. The forces consist of pressure forces

at the inlet and outlets and the anchoring force [A1]; therefore,

> Fy=Fya+ PiA; — Py cos 0 Ay + P3 cos 043

The x-component of the anchoring force, F. 4, is assumed to be positive in the positive x-direction.
{Physical intvition would lead uvs to conclude that the actual anchoring force must point in the

negative x-direction, and it does. We will find that F, , has a negative value.)

As always, force is pressure times area. All values of pressure are taken as positive. Note from
the figure that the pressure forces always point inward and are normal to the control volume faces.
At station 2, the component of force due to pressure in the x-direction is the projection of this force
in the x-direction. It is negative, since it points in the negative x-direction. Similar reasoning is

applied to the pressure force at station 3.
This is a steady flow situation [A2], and the control volume is stationary, so

2 (Bre) =0

The final terms in the momentum equation are

Do Vie— Y Vi

out in
= Vap +mVes — Vi
= %3 cos O + i3 [~ V3 cos 8] — rin V]

Note the sign change in the second term, which oceurs because the projection of /3 in the x-direction

is in the negative x-direction.
Substituting all these terms into the momentum equation resulis in

Feg+ P1A] — P cos 8 A; + P3 cos 6 As
= V3 cos 8 — i3 cos @ —m Y

The cross-sectional area of all three pipes is the same:

2
A=Ay =A; = 1r(2cm)2 (lolon(;lﬂl) = 0.0012611'12

At station 1,
ry = pViA

_ kg /om 2
= (997 m3) (32) .00126 m?)

= 10.05 kg
)
where the density of water from Table A-6 has been used. Similarly, at station 2

iy = pV24,
= (997)(6)(0.00126)

kg
= 75372

AR
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A3. Buoyancy forces on
the pipe are negligible.

By conservation of mass

50

iy = g + fis

ﬁ13 = ?i‘!| - rilz

= 10.05 —7.537 =2.512 k?g

The velocity at station 3 can be found from

kg
2512 =2

¥ =
A
P (997 k—%) (0.00126 m?)
m

= m
=200

We might think that it is time to plug in values and get the anchoring force, but, in fact, there
is just one more important thing to think about. We have not really included all the forces. We
left out the forces exerted by atmospheric pressure! Figure 4-27b shows the pipe as it would
look with no flow. Atmospheric pressure pushes on it from all sides. The vector sum of all these
pressure forces equals the buoyancy force of the air on the pipe. Since the density of air is small,
this buoyancy force is very small and will be neglected [A3]. The pressure forces at inlet and
outlets include the atmospheric pressure portion, which contributes only to the buoyancy. We can
remove buoyancy effects by subtracting atmospheric pressure from the pressures at the inlet and
outlets of the control volume. In other words, the above momentum equation will be correct if
we use gage pressure rather than absolute pressure at inlet and outlets. With that, the anchoring

force is

F. x.a

Il

mal7 cos 6 — V3 cos 8 — i V] — P1A 4+ Py cos 8 Az — Py cos 0 As

(7.537 k_sg) (6 n?]) cos (30} — (2.512)(2.00) cos (30) — (10.05)(8)

— (106 — 100) kPa ( 1000 Pa) (0.00126 m?)

1kPa

-+ (100 — 100y cos (30)(0.00126) — (100 — 100) cos (30)(0.00126)

Fra=-531N

The force is negative, implying that a force must be applied in the negative x-direction to hold the
pipe in place. This accords with intuition.
We also need the component of the anchoring force in the y-direction. This is found from

Z Fy = %(B)’,cv) + Z me%,e - Zmi%,i
in

out

which, following the same steps as in the x-direction, becomes

F_\‘,a ~— Py sin 8 A; + P3 sin 8 Ax

=Y sin € — Y3 sin @
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Assumptions:

A1, Neglect the weight
of the oil and the pipe.

A2, The flow is steady.
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or
kg

Fra = (7_537 T) (62} sin 30 — (2:512)(2.00) sin 30

Fy, = 20.IN

As expected, this force points upward.

Comment:

In this example, we retained four significant figures in the calculated mass flow rates. If only three
significant figures had been retained, the calculated velocity at station 3 would have been 1.96 m/s.
Since all pipes have the same diameter and the flow is incompressible, 97 = V3 73. Given values
of V7 and 93 are 8 m/s and 6 m/s; therefore, 3 is 2 m/s. Roundoff error often occurs during the
subtraction of two large numbers that are close in size. In this example, mass flow rate at station 3
was computed by such a subtraction. If only three significant figures had been used, the final values
of force in the x- and y-directions would have been —52.6 and 20.1 N, an error of about 1%.

Anchoring force in a gradual expansion

Oil with a density of 52 lbm/ft® flows at a steady rate through the gradual pipe expansion shown
in the figure below. Using data on the figure, calculate the anchoring force needed to hold the pipe
expansion in place. Assume frictionless and incompressible flow and neglect the weight of the oil
and the pipe.

F, 4 =5
) = fV"
U =45 tls ___F i >
@ ﬂ &
——>12in. 4in ——
P, =30 psia—~ 1} P
PP
1

Approach:

Define the volume in the expansion as the control volume. All the forces on this control volume are
in the x-direction; therefore, only conservation of momentum in the x-direction will be needed. The
pressure and velocity at the outlet will have to be evaluated. To find the velocity, use conservation
of mass; to find the pressure, use Bernoulli’s equation. As in the previous example, gage pressure
must be used.

In this problem, we need to solve conservation of mass, momentum, and energy simultaneously.
(Recall that Bernoulli’s equation was derived from the energy equation.) It is very common in
thermal-fluids applications to use these three equations simultaneously.

Solution:

The control volume is chosen to lie along the inside of the pipe wall and cut across the ends. We
ignore the vertical anchoring force needed to support the weight of the oil and the pipe itself [A1].
To find the anchoring force in the x-direction, use conservation of momentum:

ZF = %(Br.cv) + Z f’he%,e - z’h"%v‘:

out in

For steady flow [A2], this becomes

Fra+ PiAL — PaAs = 1 %3 — i N
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The mass flow rates are given by

Hy = fiy = pViA,

_ Ibm ft 2, o f _1ft
- (52 o )(45 ) @ ?yin. (—144in.2)
. 1bm

=351.1 e

To find V3, use

PV1Al = pViA;

_ Vidr _ (st (m(1)?
V=% H(455)(rr(2)2)

_ ft
=11.25 i
A3. The flow is To find the pressure at station 2, use Bernoulli’s equation {A3][A4],
incompressible.
Ad. The flow is inviscid. P a2 2
Tt e =%+Tz+37,z

For this frictionless flow with no elevation change, this becomes

PV _ P VS
o 2 T op 2
Solving for P,
Py =P+ 57T -0
52”137? fi? L1bf 1 1¢
Py = 30psi 457 —(11.257] U ( L )
2 psia + 3 [( ) ( ) ] 32 3217 1bn12ft ]441!]2
s
P, = 40.7 psia
The anchoring force may now be calculated from
Fra=m2 (V2 — Vi) + P2As — P1A;
_ (51 1bm PSS D gy o o2y
= (511 B2M) 125 - 45) By | T 407 - 14.7) 25 (12%) in.
32175~
8
~(30— 14.7) L (71212
in.

= —53.6+ 326.7 — 48.1
Fea=2251bf

Comments:

Note that in the momentum equation, gage pressure has been used, as explained in Example 4-14,
The positive value of F\, tells us that we assumed the correct direction.
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The specific gravity of a liquid or solid is the ratio of its density
to the density of water at 4°C:

56 = L

Prater
Pressure is a force per unit area:

F

P=z

The pressure force on a surface immersed in a fluid is always
normal to the surface. In a static fluid of constant density, the

pressure is a function of depth, A, according to
P=P atm + pgh

In a static fluid of variable density, the pressure variation
with depth, z, is found by solving the differential equation

dP _
= o(2)g

A functional form for the variation of density, p, with depth,
z, is needed before this equation can be solved.

The magnitude of the resultant force on one side of a
submerged plane surface is

Fp = Py + pg sin 8 ycA

where yc is the oblique depth of the centroid of the surface (see
Figure 4-9). The resultant force is applied at

I.\:x.C
‘PHHHA
pg sin @

yr=Yc+
YA+

where I, ¢ is the area moment of inertia of the surface. The
location of the centroid and the area moments of inertia for
some common shapes are given in Table 4-1. If the shape of
the immersed surface is not in Table 4-1, the values of y¢ and
I+ ¢ can be computed by integration from Eq. 4-9 and Eq. 4-14.

If the submerged surface is exposed to the atmosphere on
one side and to a fluid whose upper surface is at atmospheric
pressure, the equations for Fr and yp simplify to

Fp = pgsin 8ycA

Ixx,C

ye =)’c+yCA

If the submerged surface is curved, then the horizontal and
vertical projections of the curved surface are used to define a
volume of fluid bounded by these projections and by the curved
surface. A static equilibrium analysis on this fluid volume yields
the force on the submerged curved surface.

The principle of buoyancy can be simply stated as: The
buovant force on an immersed object Is equal to the weight of
the fluid displaced by the object. This force acts upward through
the center of gravity of the object.

If an object is floating in water exposed to the atmosphere,
then the submerged volume of the object can be calculated
from

Po _ Vv
Pw Vir

where p, is the density of the object, p,, is the density of water,
V. is the volume submerged in the water, and V,,, is the total
volume of the object.

A closed system is one in which no mass crosses the system
boundary. By contrast, if mass flows across the system bound-
ary (either entering or leaving), the system is called an open
system.

In an open system, conservation of mass is given by

dity . .
= T~ T

The mass flow rate may be expressed in terms of the average
velocity using

m= ,Oq/;ng
The volumetric flow rate is defined as
V=% A

The volumetric flow rate is related to the mass flow rate by

Conservation of energy for an open system may be given as:

dE, _ » o . ¥
dtv = Qo — Wep + Zml‘ (kr' + 5" +EZ,')

in

q/-Z
- Zme (he -+ Te +gZe)

out

If the energy equation is applied to an isothermal, incompress-
ible, frictionless flow with no heat transfer, then

A Py V)
0=—ww+(7‘+7'+gz1)-(72+—2&+gz;
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where w,, is the work done per unit mass flow:

W,
m

Wer =

The Bernoulli equation, which applies to an isothermal, incom-
pressible, frictionless flow with no work or heat transfer is

"2 2

P v P V3
I+T'+3’Z|=Fz+—2;+gzz

o
The flow rate of a Venturi meter is given by

? 2 I—(A2/ A1)
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Y R=dBw+ Y Ve~ Y Vi
in

out

There are similar cquations in the y- and z-directions. In using
this equation for a pipe flow, it is important to use gage pressure
instead of absolitte pressure.
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PRESSURE VARIATION WITH DEPTH

P4-1 If atmospheric pressure is 14.7 1bfAn.2, what is the
pressure at a depth of 10 ft of water?

P4-2 Hoover Dam stands at a height of 725 ft above the Col-
orado river. Assuming atmospheric pressure is 14.7 1bffin.2,
calculate the pressure in the reservoir at the base of the dam.

Dam

725 ft

River

ﬁ@;\

P4-3 In a manometer containing liquid mercury, the differen-
tial height is read as 6 in. If atmospheric pressure is 100 kPa,
what pressure is the manometer reading {(in kPa)?

P4-4 A vatinachemical processing plant contains liquid ethy-
lene glycol at 20°C, The air space at the top of the closed vat is
maintained at 110 kPa. If the depth of the liguid is 0.8 m, what
is the pressure at the bottom of the tank?

P4-5 (WEB) At great ocean depths, the hydrostatic pressure
is very high. Suppose that seawater density varies with pressure
according to

p=cin(£}1c

v, + G

where €, = 2.24 x 10° Pa, C; = 1 x 10° Pa, and p, =
1024 kg/m®. Assume this relation holds at any depth, z, and
use it to find the pressure at a depth of 3000 m. What would the
pressure be if seawater density were assumed to be constant at
1024 kg/m®? Assume atmospheric pressure is 1 x 10° Pa.

P4-6 (WEB) A large tank contains a liquid solution whose
density varies with depth as shown in the table. A gas space at
the top of the tank contains air at 60 psia. Find the pressure at a
depth of 30 ft using numerical integration.

depth, ft density, lbm/ft?
0 40.2
b 41.0

10 42.7

15 44.9

20 47.7

25 50.9

30 54.6
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MANONMETERS P4-11  Two piston—cylinder assemblies are connected by a
tube, as shown in the figure. The diameter of each cylinder is
8 ¢m, and the mass of each piston is 0.4 kg. A mass rests on top
of each piston. The fluid in the tube is mercury, at 20°C. Using
data on the figure, calculate the unknown mass ms.

P4-7 A manometer is attached to a rigid tank containing gas
at pressure P. The manometer fluid is mercury at 20°C. Using
data on the figure, find the pressure in the tank.

T T
WSAGIRT

AL
) ‘]'
m; =5 kg
hy=15cm
16 ¢cm h,=45cm

'Y  Py,=101kPa

P4-8 Write an equation for the mass of the piston, m,, in terms
of om0, L, 6, and A,. See the figure. P4-12 In the device shown in the figure, calculate the gage
pressure of the gas in the tank.

Qil —
Pait = 49 Ibm/ﬁs 3in.
4
Water Y
Tank Gas at
P4-9 Liquid water is contained in a piston—cylinder assembly P 86in
as shown in the figure. An inclined manometer filled with water T
is attached to the bottomn of the cylinder. Using data given on the
figure, calculate the force exerted by the spring on the piston. 4 Y

2.210n.
Spring
Apiston = 30 in2

P4-13 In the manometer shown in the figure, 2 g of oil and
11 g of water are introduced. The oil has a density of 620
kg/m®. Find the length, !, to which the water rises in the inclined
section.

mp,-smn = 0.5 Ibm

hA=2in.

P4-10 A tank contains air at 80°F. A manometer connected
to the tank contains liquid mercury, also at 80°F. Assuming
atmospheric pressure is 14.2 psia and using data on the figure,
calculate the density of the air in the tank.

Air 15.4 In.
P4-14 A manometer connects a large water tank open to the
atmosphere to a closed spherical tank of air. The manometer
contains both oil and water. Using data on the figure, find the

zage pressure of the air in tank A.

S e
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P4-17 A hydraulic lift is used to raise a crate, as shown in
the figure. The large tube has a 3-ft diameter and the small tube
Fatm has a I-in. diameter. The fluid is oil with a specific gravity of
SG,;=07 0.86. The plate under the crate has negligible mass. Initially the

H.0 n system is at rest with the oil heights of 1.4 ft and 6 in., as shown.
= 2

AP . .
% IS 3 a. Find the mass of the crate in Ibm.
© b. Oil is poured into the small tube until the crate rises 1 in,
3 Calculate the volume of oil added.

1in.

P4-15  The manometer in the figure is designed to measure
small changes in pressure. Using the data in the table, answer
the following questions.

Plate

o

1.41t
a, Determine the initial gage pressure of the gas in the sphere

b. The pressure is increased so that i, becomes 2.0 cm. During
this process, none of the liquid interfaces change in diameter.

Find the final gage pressure of the gas. FORCES ON SUBMERGED PLANE SURFACES
e - P4-18 Anunderwater gate 8 m wide is held closed by a force,
Um:ha'_-'?ed Initial Final F, as shown in the figure. If the force is applied at the middle of
Quantities value value . gate, what is the minimum value required to keep the gate
d 1cm I 9.1cm closed?
D 9cm ha 2.2cm 2.0cm
5G; 0.86kg/m®* hy 4.6cm Almosphere
5G; 1M1.3kg/m®*  hy 10.7cm
2m
Water Atmosphere

Pressurized £ am
gas | | 60°
b 4
T 7 AU (W NT AL . . . . . .
1 \i“/g-.\l\//\i“ﬂ/\—,\f‘,/ “‘A- P4-19 A horizontal pipe 1.4 m in diameter is half filled with
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liquid oxygen (S§G = 1.18). The gas above the liquid is at a
pressure of 250 kPa. The pipe is ¢losed on both ends by vertical,

s flat surfaces. Find the magnitude of the resultant force of the
fluid and gas acting on one of the end surfaces.

S
o] %
2I FrEpTTETE R e e e et P4-20 A gravity dam made of concrete (p = 2200 kgfm®)

sl e
86 holds back water that is 5.5 m deep, as shown, The bottom of the
dam rests on the soil and is held in place by friction. Calculate
STATIC PRESSURE APPLICATIONS the minimum coefficient of friction between the dam and the soil

. so that the dam does not slide.
P4-16 A glass tube containing oil is inserted into a tank of

water, as shown in the figure. Using data on the figure, calculate 31m
the oil density. Assume the temperature is 20°C.

A
L,=11.5¢cm 7.7m

. R S
Soil 9.1im

L, =96cm

Water

P4-21 A conduit leading from a reservoir is closed by a square
gate pivoted along its midline, as shown. Calculate the force of
the gate on the stop that holds it closed.




-
Water
18 ft
Square gate
N

Pivot 15it Y
point 15t
\Stop

P4-22 A square plate, called a paddle, covers a passage in
a canal lock, as shown, The angle, «, is 15°. Find the vertical

force, F, needed to open the paddle.

Upriver

407t} paddie

FORCES ON SUBNMERGED CURVED SURFACES

P4-23 (WEB) A cylinder 5 m long and 4 m in diameter is
wedged into a rectangular opening in the bottom of a tank of
water, The cylinder seals the opening, which is alse 5 m long.
The center of the cylinder is 1 m above the floor of the tank, and
the water depth is 8 m. Find the net force of the water on the

cylinder.

2 ﬂi Paddle
2

[

7m

F

im
.

P4-24 (WEB) A semicircular gate hinged at the bottom holds
back a tank of water 4 ft deep. If the gate is 15 ft wide, what
force, F, is required to keep the gate closed?

f
-

A

41t

Hinge
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P4-25 (WEB) A hemisphere filled with oil (SG = 0.72) is
inverted on a flat surface. A narrow tube partially filled with oil
protrudes from the top of the hemisphere, which has a mass of
5 kg. At what height, A, will the hemisphere lift off the surface?
Neglect the weight of the tube and the oil it contains,

BUOYARNCY

P4-26  1If the “tip of the iceberg” (that is, the volume of the
iceberg above the water surface) is 79 m?, what is the volume
of the submerged iceberg? For seawater density use reawater =
1.027 glem?.

P4-27 A small boat has a mass of 650 Ibm when empty. If the
volume of the hull is 166 f1*, determine the maximum load the
boat can carry in fresh water.

P4-28 A layer of oil 6 cm thick covers a layer of water. A
cylinder made of soft pine floats in this two-layer fluid, as shown.
Using data on the figure, find the height, x, by which the cylinder
protrudes from the fluid.

P4-29 A hot-air balloon has a mass of 250 kg and carries two
passengers whose average weight is 185 Ibf. The balloon, which
has a diameter of 12 m, rises through atmospheric air, which is
at 20°C. Find the minimum possible average temperature of the
air inside the balloon. Atmospheric pressure is 100 kPa.

P4-30 A rectangular gate 12 fthigh and 3 ft wide is held closed
by water pressure, as shown in the figure. A counterweight of
mass m is connected to the gate by a cable that runs over a pulley
and attaches to the top of the gate. The counterweight, which is
partially immersed in the water, is cylindrical with a diameter
of 1.5 ft and a mass of 800 lbm. Air at atmospheric pressure is
above the water and on the back side of the gate, Calculate the
minimum water depth, 4, for which the gate will stay closed.

HITTE
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Counterweight

Palm

Hinge

CONSERVATICN OF MASS

P4-31  Rain falling on a roof flows downward over the shingles
and is collected in a gutter. The gutter, which is closed at one
end and open at the other, is slightly inclined so that water runs
out the open end. In a heavy downpour, rain falls steadily for
several hours and the flow in the gutter reaches steady state. Due
to the addition of runoff from the roof, the depth of water in the
gutter increases gradually along the length of the gutter in the
direction of flow. Using data in the figure, calculate the inches
per hour of rainfall that will cause the gutter to be completely
filled with water at the open end. At rainfall rates higher than
this, the gutter is inadequate to handle the water flow and excess
water spills over the sides of the gutter before reaching the end.
Assume that the exit velocity of the water from the gutter is
3 ft/s and that all the rain striking the roof is collected in the
gutter. (Note that the homeowner has been too cheap to install
downspouts.)

Pl o
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P4-32 Inahome, airinfiltrates from the outside through cracks
around doors and windows, Consider a residence where the total
length of cracks is 62 m and the total internal volume is 210 m?,
Due to the wind, 9.4 x 107> kg/s of air enters per meter of crack
and exits up a chimney. Assume that air temperature is the same
inside and out and that air density is constant at 1.186 kg/m>. If
windows and doors are not opened or closed, estimate the time
required for one complete air change in the building.

P4-33  The hull of a vessel develops a leak and takes on water
at arate of 57.5 gal/min. When the leak is discovered, the lower
deck is already submerged to a level of 7.5 in. At this time, a
sailor turns on the bilge pump, which begins to remove water at a

rate of 73.8 gal/min. As an approximation, the lower deck can
be modeled as a flat-bottomed container with a bottom sur-
face area of 510 ft® and straight vertical sides. How long will
it be after the pump is turned on until the deck is clear of
water?

P4-34  On April 1, a reservoir has a water depth of 1] n1. The
reservoir is fed by a stream that becomes swollen with snowmelt
as the month progresses. The volumetric flow rate of stream
water entering the reservoir during the month of April is

Vi =2.5 x 107exp(0.026 1)

where 1 is the time in days and the volumetric fiow rate has units
of m¥day (+ = 0 at 12:01 am. on April 1). Water issues from
the reservoir through a dam. The flow rate of the discharge at
the dam is steady at a rate of 0.4 x 107 m%/day for the first 15
days of the month, At midnight on April 15, the sluice gates
are adjusted to allow a higher flow rate of 6.35 x 107 m¥/day.
This rate remains constant until the end of the month. If the
surface area of the reservoir is 2.8 x 10% m®, find the depth
on April 30. Assume that the surface area remains unchanged
during the month and that the effects of rainfall and evaporation
are negligible.

CONSERVATION OF EMNERGY
iN OPEN SYSTEWNS

P4-35 Hydraulic fluid enters a square conduit 2 in. on a side
at a velocity of 14.2 ft/s and a temperature of 60°F. The fluid
leaves the conduit at 100°F. Neglecting frictional heating and
kinetic energy, find the rate of heat addition to the fluid in steady
state.

P4-36 Air at 20°C and 101 kPa enters a passage between
two printed circuit boards inside a desktop computer. One
board contains nine chips each dissipating 2 W and five chips
each dissipating 1.3 W. No heat enters the passage from the
other card. If the exit temperature is 28.5°C, find the volumet-
ric flow rate of the air. Neglect kinetic and potential energy
changes.

P4-37  ‘Water flows in a pipe 1.7 cm in diameter and 430 cm
long at a velocity of 8.8 m/s. The water enters at 100°C and
exits at 80°C. Calculate the rate of heat removal per square
centimeter of pipe wall. Neglect frictional losses and kinetic
energy.

P4-38 1In asolar collector, air is heated as it flows in a rectan-
gular channel under the collector surface, as shown in the figure.
Assume the rate of heat addition on the top surface is constant
and uniform at 400 W/m? and that all other sides of the channel
are insulated. The air enters at [5°C and 101 kPa with a velocity
of 5 m/s. The heat transfer coefficient inside the channel is 155
W/m?.K. Find the minimum and maximum temperatures of the
collector surface.



20 cm

Collector surface

W=3m/is
Ty = 15°C
P, =101 kPa

BERNOULLI EQUATION

P4-39  Water is siphoned from a waterbed into a bathtub
through a 1-in.-diameter hose, The top surface of the water in the
bed is 26 in. above the exit of the hose. Assume that the pressure
in the waterbed is atmospheric and that the top surface recedes
with negligibly small velocity. Also assume negligible frictional
effects in the hose. What is the flow rate, in gal/min, of water
into the bathtub?

4
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P4-40 Water flows at 25 kg/s through a gradual contraction
in a pipe. The upstream diameter is 8 cm and the downstream
diameteris 5.6 cm. If the exit pressure is 60 kPa, find the entrance
pressure. Assume frictionless flow.

P4-41 A constriction in a water tube is used to provide suc-
tion on a submerged thin disk, as shown in the figure. Find
the mass of the heaviest disk that can be supported. Assume
that pressure is constant across the cross-sectional area of the
constriction.

Py =101 kPa

¥ =3 mis
—_ D,=82cm [D;=13.1cm
Water :
Air h1 =4.6cm
3
Dy=1.5¢cm f,=3.7¢m

Water

P4-42 Water issues from a hole in a large tank, as shown.
Assuming frictionless flow, find L.

FROBLEMS 189

Water

P4-43 A firefighter aims a jet of water at a window in a burning
building, as shown in the figure. The jet is horizontal when it
enters the window. If the nozzie has a diameter of 2.5 in., what is
the mass flow rate of the water? (Assume there is no aerodynamic
drag on the jet and the water is at 50°F)

P4-44 Water flowing in a horizontal pipe branches into two
pipes, as shown in the figure, and issues into the atmosphere.
Neglecting all viscous effects, find the volumetric flow rate in
each pipe and the diameter, Ds.

P,=101kPa

D, =2.50m

P, =120 kPa Ds
—
V,=0.02m¥s

Py=101kPa

/

P4-45 Water at 20°C issues from the bottom of a large tank
that is filled to a height of 4 m. The air pressure above the
water is atmospheric. The water flows over an aluminum rod
of diameter 1.1 ¢m and length 3 cm. The heat transfer coeffi-
cient between the water and the rod depends on velocity and is
given by

k= 1609°%%

JL
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where # is in W/m?-K and 9is in m/s. The rod is initiaily at
65°C. How long will it take for the rod to cool to 30°C? Assume

the surface of the water recedes very slowly, so that the depth of
the water remains at 4 m throughout the process.

Water at

am 20°C

FLOW MEASUREMENT

P4-46 (WEB) Air at 17°C, 100 kPa flows in a duct. A stagna-
tion tube connected to a U-tube manometer filled with mercury is
placed in the duct. Using data on the figure, find the air velocity.
Assume atmospheric pressure is 100 kPa.

XY, Arat17°C, 100 kPa

Mercury

P4-47 (WEB) Oil (§G = 0.77} flows in a pipe with a sudden
contraction, as shown in the figure. A stagnation tube open to
the atmosphere is placed in the upstream section. If the oil in the
stagnation tube rises to a height of i = 22 cm, find the velocity
at the exit of the pipe.

P4-48 (WEB) Hydraulic fluid at 80°F flows through a Venturi
meter. The diameter at the entrance is 8.1 in., and at the throat
itis 5.2 in. The pressure at the entrance is 14.7 psia. If the pressure

at the throat is measured to be 10.8 psia, find the velocity at the
entrance.

CONSERVATION OF LINEAR MOMENTUM

P4-49 A block of mass 4 kg is propelled along a flat surface
by a water jet, as shown in the figure. It moves to the right at a
constant velocity of 2.5 m/s. The coefficient of friction between
block and surface is p¢ = 0.33. If the inket jet area is 6.7 cm?, find
the inlet and outlet velocities of the water. Neglect wall shear and
elevation changes.

W
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P4-50 Water at 20°C flows through a pipe, as shown in the
figure. At a point 0.8 meter above the pipe bend, the velocity
is 6 m/s, The exit pressure is 101 kPa. Assuming frictionless,
incompressible, steady flow, find the magnitude and direction of
the anchoring force.

l ém/s

9 cm

0.8m

L

5cm

101 kPa

P4-51 A water jet moving at 18 ft/s strikes a vane and is turned
through 120°, as shown in the figure. If the flow rate is 27 gal/min
and the flow is frictionless, find the magnitude and direction of
the anchoring force needed to hold the vane in place.




P4-52 A jet engine on a commercial aircraft exhausts com-
bustion gases at a rate of 8 kg/s. Upon landing, a thrust reverser
blocks the exhaust and redirects the flow forward, as shown in
the figure.. This aids in braking the plane. The exhaust gases may
be assumed to flow at 200 m/s relative to the plane and to have
properties very similar to those of air. Find the anchoring force
needed to hold the thrust reverser on the back of the engine.

Thrust reverser

proBLEMs 191

P4-53 A jet of water of arca 1.6 in.? and velocity 22 fu/s strikes
a plate and is deflected into two symmetrical streams, as shown
in the figure. If # = 42°, find the anchoring force necessary to
hold the plate in place.

PITT




CHAPTER 5

THERMODYNAMIC PROPERTIES

5.1 INTRODUCTION

Problems in thermal-fluids engineering often involve properties such as temperature,
pressure, density, internal energy, and enthalpy. These properties have heen used extensively
in prior chapters and will continue to be important in the chapters that follow. Until now
we have focused on ideal gases because of the ease of use and utility of that model.
In this chapter, however, we depart from ideal gases. The limitations of the ideal gas
model are discussed and alternatives for real gas behavior are presented.

In addition, for all processes discussed thus far, substances have remained in the same
phase (i.e., solid, liquid, or gas). For example, while gas temperature may have decreased
in a problem, the gas remained a gas at the end of the process and did not condense into
a liquid state. Likewise, liquids did not boil, and solids did not melt. In this chapter,
processes involving phase change are described, and methods to evaluate the properties of
substances changing phase are presented. Examples of first-law applications with boiling,
condensation, sublimation, freezing, and other phase-change processes are given.

5.2 PROPERTIES OF PURE SUBSTANCES
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The ideal gas law gives an excellent approximation of real gas behavior in many
circumstances. It is a relationship among pressure, temperature, and density, that is,

_ pRT

P=7

A more accurate way to determine the properties of a gas is from a table of experi-
mental valnes. In these tables, it is typical to use specific volume instead of density. Recall
that the specific volume, v, is defined as

T
Since density represents the mass per unit volume, specific volume represents the volume
per unit mass. The term specific is frequently used to indicate a quaatity defined per unit
INass.

Tables of experimental values are available for a variety of pure substances. For
example, Table A-12 gives the properties of the gaseous form of water (i.e., steam) as
a function of pressure. For each pressure level, four properties—vy, specific volume; u,
internal energy; h, enthalpy; and s, entropy—are listed at different temperatures (see
Table A-12). While we have already discussed v, u, and h, entropy, s, is new. Entropy is a
major topic in Chapter 7 and will be presented in detail there. Table A-12 gives property
values in SI units. The corresponding British unit table is Table B-12.

As long as we are dealing with water in its gaseous form (steam), the values in
Table A-12 can be used instead of the ideal gas law to find property information.

IR




EXANMPLE 5-1

Assumptions:

A1. In part a, the steam
is assumed to behave like
an ideal gas.
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In Example 5-1, we compare the results of a problem using an idealization—the ideal
gas law—to that using the more accurate data from a property table; this example also
illustrates how Table A-12 can be used.

Use of steam tables to determine properties

Pressure vessels are designed to withstand high pressures. The application pressure must be lower
than the design rupture pressure, since rupture of the vessel could lead to loss of life or, at a
minimum, extensive property damage. A pressure vessel is filled with 20.26 Ibm of pressurized
steam at 550°F. If the volume of the vessel is 15 ft*, determine the gage pressure of the steam
using

a) the ideal gas law.
b) Table B-12.

Approach:

Part a of the problem is a straightforward application of the ideal gas law. Part b is a little tricky
because of the way information is arranged in Table B-12. The table gives the specific volume for a
known pressure and temperature. In this case, pressure is unknown. To use the table, first calculate
the specific volume of the steam in the pressure vessel by dividing velume by mass. Then assume
a value for the pressure, check the specific velume for the given temperature of 550°F, and see if
the table value matches that calculated. It is unlikely that the first guess for pressure will be correct,
s0 a second guess will be needed. Continue iterating on pressure until the table value for specific
volume matches the calculated value.

Solution:
a) The ideal gas law may be written as [Al]

_RT

P=u

The specific volume, v, of the steam in the pressure vessel is

3 3
A 1 SR

V= = 20,62 Ibm bm

The pressure can now be calculated as

. . 3
(10.73 psia-ft ) (550 + 460) R

7 Tbmol K
P=wi= i3 lbm
(0.7274 m) (18.015 ]bmol)

P = 826.7psia
To find the gage pressure, subtract the aimospheric pressure of 14.7 psia to get
P =3812psig

1) To find the pressure using Table B-12, one must look for the pressure at which the specific
volume is 0.7274 f3/lbm when the temperature is 550°F. For example, at a pressure of 180 1bffin.2
and a temperature of 550°F, the specific volume is 3.228 ft*/Ibm. This specific volume is too high,
so try another pressure. It does not matter if you choose a higher or a lower pressure. If you go the
wrong way, you will soon discover that and realize you should reverse direction. If you pick a pres-
sure of 250 1bf/in.2, the specific volume at 550°F is 2.29 ft*/Ibm. This is still too high, but at least it is

TTTTT
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closer to the desired result. At a pressure of 700 Ibf/in.,?, the specific volume is 0.7275 fi3/1bm at
550°F. So the final result is

P =700psia = 685.3 psig

Comments:

Note that the ideal gas law predicts a much higher pressure than the tables show. The tables are more
accurate. Steam does not behave like an ideal gas under these conditions. Under other conditions,
the steam tables and the ideal gas law will often give much closer results. How to evaluate properties
correctly is the focus of the remainder of this chapter.

Atlow enough temperatures, all gases condense into liquids. To iHlustrate this process,
consider the piston—cylinder assembly shown in Figure 5-1a. This closed system contains
only water vapor. The weight holding the piston in place establishes the pressure in the
cylinder. Now imagine that the water vapor is cooled so that it changes from state A to state B,
as shown in Figure 5-1b. The temperature decreases, but the pressure remains constant
because the same weight is used to compress the water vapor. The lower-temperature
molecules now move less vigorously, so more collisions per unit area with the lower piston
face are needed to maintain equilibrium. More collisions will occur if the molecules occupy
a smaller volume; hence, state B has a lower volume than state A. The same mass fills
a smaller volume, so the specific volume decreases. Process A-B can be plotted on a
T-v diagram, as shown in Figure 5-2.

Now further cool the water vapor until it exists at state C. As the temperature falls,
the water vaper molecules travel more and more slowly on the average and are closer
together. At some point, they become close enough and are traveling slowly enough that
intermolecular attractive forces become important. If more energy is removed from the gas
at state C by further cooling, some of the slower molecules can no longer resist attractive
forces from other molecules, and groups of molecules begin to coalesce into liquid drops.
With further cooling, more molecules enter the liguid state. During this condensation
process, the specific volume decreases because liquid water occupies less space than water
vapor. The molecules left in the vapor phase travel at the same average speed throughout the

State A State B . State C
(@) ) (c)

Gas

Liquid - Liquid

State D SateF  pGURE 5-1 Condensation of a gas
(d) ity at constant pressure {not to scale).
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» FIGURE 5-2 A plot of the condensation
v process at constant pressure.

condensation process. This is the mimimum speed that will keep them in the vapor phase.
If energy is removed from them, they do not travel more slowly; instead, they coalesce into
droplets. So the temperature, which is proportional to the average speed of the molecules,
remains constant during this constant-pressure condensation.

The line CDE in Figure 5-2 represents the condensation process. At state C, only
vapor exists. At state E, only liquid exists. Between these two, the cylinder contains a
mixture of liquid and vapor. If the liquid in state E is cooled further, the temperature falls
and the specific volume decreases slightly to point E (The change in specific volume from
E to F for the temperature change Ty to Tr is exaggerated for illustration purposes only.)

Line ABCDEF in Figure 5-2 is called an isobar, that is, a line of constant pressure.
Certain physical states along the isobar have special names. The water vapor at point C
is called a saturated vapor. This means that the vapor is just at the point where, if any
energy is removed from it, some of the vapor will turn into liquid. Removing energy from
a saturated vapor does not lower the temperature; instead, it alters the state from vapor to
liquid. If energy is added to a saturated vapor, its temperature will increase and it enters the
superheated vapor region. Points A and B in Figure 5-2 indicate superheated vapor states.
The mixture of liquid and vapor that exists at any point between C and E {e.g., point D) is
called a two-phase mixture, At point E, all the vapor has condensed. The liquid at state I2 is
called a saturated liquid. The addition of any energy to a saturated liquid vaporizes some of
it and the fiuid enters the two-phase region, but its temperature remains constant. Removal
of any energy from the liguid at point E results in a drop in temperature and the liquid enters
the subcooled (or compressed) liquid region (e.g., point F}. States E, D, and C are all at
the same temperature. This special temperature is called the saturation temperature.

What happens at higher pressures? In Figure 5-3, two isobars at different pressures are
shown. Compare points E and E’, which are both saturated liquids. At the higher pressure

A's— High pressure

Low pressure

- FIGURE 5-3 Two isobars at
v different pressures.

PTETE
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A

Py
P
Saturaied liquid  Critical point Py
line
T |Compressed, Superheated
tiquid vapor region
region /E' c'
Saturated
/{E Saturated liquid—vapor C < “r?eura ed vapor
/ region
> FIGURE 54 The liquid-
v vapor dome.

of point E’, water boils at a higher temperature; the higher pressure acts to keep the molecules
in the liquid state. Essentially, the vapor molecules must move faster to resist the higher
pressure, and faster movement implies a higher temperature,

If isobars for a variety of pressures are drawn, one can map out different regions of
the T-v diagram, as shown in Figure 5-4. All the points at which water vapor just begins
to condense are on the saturated vapor line. The points C and C' from Figure 5-3 fall on
this line. All the points at which water just begins to boil are on the saturated liguid line.
The eritical point separates these two lines,

The region enclosed by the saturated liquid and saturated vapor lines is the two-phase
region, also called the liquid—vapor dome. Under the dome, the liquid phase and vapor
phase exist together in equilibrium. The surface of the liquid separates the two phases. The
superheated vapor region lies to the right of the saturated vapor line, while the subcooted
liquid region (also called the compressed liquid region) lies to the left of the saturated
liquid line.

The critical point merits special attention. In Figure 5-3, the critical isobar—the
isobar that passes throngh the critical point—is shown. The pressure of the critical isobar is
called the critical pressure, P.. Likewise, for the critical point there is & critical temperature,
T,, and a critical specific volume, v.. At temperatures higher than the critical temperature,
liquid and vapor cannot exist together in equilibrium. At pressures higher than the critical
pressure, liquid and vapor cannot exist together in equilibrium either.

For example, suppose a stoppered test tube contains only liquid water and water vapor
at state 1 in Figure 5-5. There will be a meniscus separating the two phases, as shown in
Figure 5-6. When the test tube is heated, the temperature rises, but the volume remains
the same, as does the mass. On the T-v diagram of Figure 5-5, the state will move from

Critical isobar,
Critical

P
point N

Tlef——"" Superheated vapor

Comprgssed
liquid

FIGURE 5-5 The critical point and the
v critical isobar.
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Stopper
Vapor

Meniscus
Liquid

Test tube
estiu FIGURE 5-6 Test tube containing a two-phase mixture.

state 1 along the constant specific volume line shown toward the critical point. When the
temperature reaches the critical temperature, the meniscus will disappear and two separate
phases can no longer be identified. For substances above the critical temperature, it is not
meaningful to talk of liquids and vapors. Here we have a fluid that is neither a liquid nor a
vapor.

Under the liquid—vapor dome, the specific volume depends on the relative proportions
of liquid and vapor present. In Figure 5-7, state A is saturated liquid with no vapor present.
State B contains mostly liquid with some vapor, state C contains more vapor and less liquid,
and state D contains saturated vapor with no liquid present. We can specify the mass fraction
of vapor present in a two-phase mixture with a quantity called quality. Quality is defined
as the mass of vapor divided by the total mass of the vapor-liquid mixture:

e :
x_mf+mg 5-1)

where my, is the mass of vapor and my is the mass of liguid. (The unusunal subscripts
designating vapor and liquid, respectively, come from the German words for vapor and
liquid. These subscripts are widely used in engineering practice.) If a state has a quality
of zero (x = 0}, only saturated liquid is present. Likewise, if a state has a quality of one
(x = 1), only saturated vapor is present. If a mixture of liquid and vapor exists together, the
quality will equal some value between zero and one. The idea of quality does not apply to
superheated vapors or subcooled liquids. It is not meaningful to tafk about the quality of a
superheated vapor or a subcooled liquid.

The specific volume is the volume per unit mass. The specific volume for a two-phase
mixture, for the liquid part of the mixture, and for the vapor part of the mixture are

V V
o, Y

V;
v = ol _
Mg

= y
Mo 4 My

P = constant

FIGURE 5-7 Points along an isobar in the
v liquid-vapeor dome.

IR




198

CHAPTER 5 THERMODYNAMIC PROPERTIES

where fot designates total and f and g represent liquid and vapor, as before. The total
volume is the sum of the liquid and vapor volumes, or

Vi = Vf + Vg
Writing these volumes in terms of masses and specific volumes gives
VR = Veitly + Vil

This may be rearranged as:

_ Viilf Veily
T omptmy o my g

where the total mass m,,, has been written as the sum of the masses of the vapor and the
liguid. Using the definition of quality, Eq. 5-1, this equation may be rewritten as:

v=(1—x)v; +xv, (5-2}

The righi-hand side of this equation shows that the specific volume of the mixture is the
mass-weighted average of the contributions from the saturated liquid specific volume and
the saturated vapor specific volume. Eq. 5-2 may be rearranged to the form

v= vy x{vg —vp) = vy g (5-3)

The symbol vy, is often used to designate the change in specific volume between the saturated
vapor and saturated liquid states; that is, v, = v, — vy. Solving Eq. 5-3 for x gives another
useful equation:

R G . ) (5-4)
Vg =V Vig

Values for vy, vy, and vy, are available in thermedynamic tables for many substances.
For example, Table A-11 gives the properties of (wo-phase steam—water mixtures as a
function of pressure in SI units. The saturation temperature at each pressure is indi-
cated, along with the specific volume of the saturated liquid and saturated vapor. Other
properties, such as internal energy and enthalpy for saturated liquid and vapor are
also included. Table A-10 is a similar table, except that properties are given for even
values of temperature instead of pressure. Tables B-11 and B-10 give the same infor-
mation in British units. Tables are also available in the appendix for Refrigerant 134a
(R-134a). In the following example, the use of a saturated thermodynamic table is
illustrated.
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EXAIMPLE 5-2 Quality of a two-phase mixture

EXAMPLE 5-3

A two-phase mixture of steam and water at 100 psia occupies a volume of 0.7 ft3. If the mass is 1.2
lbm, what is the quality?

Water vapor P=100 psia
V=071
Liquid water m=1.2lbm

Approach:

Divide volume by mass to find the specific volume, v, of the mixture. Determine vy and v, at
P = 100 psia from Table B-11. Finally, use Eq. 5-3 to find x.

Salution:

By definition, the specific volume of the mixture is

3 3
pem QT8 ogy f0

1.2 Ibm Ibm
From Eq. 5-3,
v=vr+x(v, —v)
Solving for quality gives
_ V=
Vg — ¥

The values for v and v, are found in Table B-11. Inserting these and using the value for the specific
volume of the mixture calculated above results in

. 0.583 — 0.01774

*= 3434 —001774

x=0.128

Comment:

This quality means that 12.8% of the total mass is vapor and 87.2% of the total mass is liquid.

Properties of a two-phase refrigerant mixture

Refrigerant 134a with a quality of 0.4 and a temperature of 12°C is contained in a rigid tank that
has a volume of 0.17 m®. Find the mass of liquid present.

SN
e

Vapor .
R-134a T=12°C

x=04
V=0.17md

[BEEEE
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Approach:

Using the known quality and temperature, you can calculate the specific volume of the mixture.
Then the total mass is obtained from

net
From the definition of quality,
Mg = mx
Finally, the mass of liquid is just
mp =y
Solution:

The specific volume of the two-phase mixtuze is given by
v= vy +x{iy - %)

Values of the specific volumes of the saturated liquid and vapor at 12°C are obtained from
Table A-14. Using these property values,

0.000797 + 0.4 (0.046 — 0.000797)

<
Il

3
_ m
v = 0.0189 e
The total mass of the mixture is

mﬂy_zmw__=9_00kg
v o 0.0189mYkg

From the definition of quality, the mass of vapor present is
Mg = X = (9) (0.4) =36 kg
The total mass is the sum of the vapor and liquid masses, so

mp=m—m, =9—-36=54kg

EXAMPLE 5-4 Cavitation in a vena contracta

Water flows through a pipe of variable area. At the entrance the water velocity is 10 m/s and
the pressure is 150 kPa. The entrance area is 0.015 m?. At the narrowest point, the pipe area
is 0.0075 m2. Assuming frictionless, isothermal flow at 20°C, find the pressure at the narrowest

9% =10 mfs _
Py=150kPa |—""" [ T
O] ®




Assumptions:

A1, The flow is steady.

A2. The flow is
incompressible.

A3, The flow is
frictionless and
isothermal.
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point (station 2). For the calculated pressure at station 2, will the water change phase or remain a
compressed liquid?
Approach:
Assume the flow is incompressible. Use conservation of mass and the Bernoulli equation simuita-
neously. Apply conservation of mass between stations 1 and 2. Then use it = VA to determine
the velocity at station 2. Apply the Bernoulli equation between 1 and 2 to find the pressure at 2.
Use Table A-10 to determine the state at station 2.
Solution:
From conservation of mass for steady flow [Al],

Wy = A
This may be written

pVIA| = pV3As
The density of the water is constant [A2); therefore,

v (10 %) (0.015m?)

= = =2
Vi= 7 (0.0075m?) 0

m|8

From the Bernculli equation [A3],

2 2
(P (P, Y
0—(p+2+g21) (p+2+g22
Noting that z; = z» and solving for Pa,

P=P+ 8 (97 -9%)

o975E \ )
= 150kPa + —5 [(IO%) - (20%) :| 0007

= 045kPa

The pressure at the narrow part of the duct is very smail, only 0.45 kPa. The temperature
of the water is 20°C, From Table A-10, we find that the saturation pressure for water at 20°C is
2.339 kPa. This means that when the pressure is reduced to 2.339 kPa or less, the water boils
and vapor bubbles form. The state at the narrow point is no longer a compressed liquid, and the
density is not constant at all points in the flow. This violates the assumptions we invoked in deriving
the Bernoulli equation, so the result obtained in this example is not valid and has no physical
meaning.

Comments:

The formation of vapor bubbles in an isothermal liquid flow due to a localized low-pressure region is
called cavitation. It is a serious problem in some equipment, especially pumps. The vapor bubbles
that are formed are carried along with the flow. When the flow reaches a larger area, the pressure
increases and the bubbles collapse suddenly. If the bubbles are near a wall, their collapse results in
very high localized forces that can actually damage the solid surface. In addition, cavitation causes
noise and vibration as the bubbles collapse.

SENE RPN
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' /Critical isotherm

Critical point

Superheated
vapor region

Compregsed
liguid Saturated liquid—vapor
region region

- FIGURE 5-8 Evaporation of a liquid
v along an isotherm,

We have plotted temperature versus specific volume and examined lines of constant
pressure. It is also possible to plot pressure versus specific volume and examine lines of
constant temperature, as in Figure 5-8. At point A, we have a compressed liquid held at
high pressure. Now let the pressure be reduced while maintaining a constant temperature
through the addition of heat. At point B, the pressure is low enough that the liquid starts
to boil. The reduction in pressure allows the molecules to escape from the liquid state. As
more heat is added from point B to point C, all the liquid is converted to vapor. State C
consists of saturated vapor. With a further reduction in pressure at constant temperature,
the specific volume of the vapor increases as shown schematically by point D.

In Figure 5-9, a thermodynamic diagram that includes the solid state is shown.
In addition to the liquid—vapor two-phase region, there is a solid-liquid region and a
solid—vapor region. State A is a saturated solid state. This is a solid that is just about
to melt. At state B, the solid and liquid exist together in equilibrium. The process from
A to C is melting, while the process from C to A is freezing. State D is also a saturated
solid state, but here the pressure is so low that the solid turns directly into vapor, bypassing
the liquid state. The process from D to F is called sublimation. You may be familiar with
this if you have ever seen “dry ice.” Dry ice is frozen carbon dicxide that turns directly
into vapor at atmosphere pressure. It is sometimes used in theatrical productions to create
a dramatic fog. At state E, solid and vapor exist together in equilibrium.

Figure 5-9 also includes the so-called triple line. At points along this line, solid,
liquid, and vapor all exist together in equilibrium. Imagine a container with a solid layer
covered by a liquid layer. Above the liquid layer is a vapor region. Since we are dealing
with pure substances, the solid, lquid, and vapor all have the same chemical identity.

1 Solid-liquid
Adle—bc Compressed liquid

Critical point

Superheated vapor
P | Solid
! T = constant

Liquid—vapor Triple line

o AN
/D Sofid I\E/a o FVTE constant G URE 5.9 A diagram
I P > showing solid, liquid, and vapor
v states,
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Critical point

Constant-pressure
line

Pressure

Te FIGURE 5-10 Isometric
view of the relation
among temperature,
pressure, and volume.

The temperatore and pressure are the same at all points along the triple line. These are
called the triple-point temperature and triple-point pressure,

We have now seen temperature versus specific volume and pressure versus specific
volume. Another way to visualize the behavior of pure substances is with a three-
dimensional plot of pressure versus temperature and specific volume, as shown in
Figure 5-10. The two-phase regions are highlighted in blue. When we project the
three-dimensional plot onto the P-v plane, we obtain Figure 5-9. When we project the
three-dimensional plot onto the T-v plane, we obtain a figure similar to Figure 5-4 but with
a solid region included. It is also useful to consider a projection onto the P-T plane, as
shown in Figure 5-11. Here each of the two-phase regions has collapsed onto a line. These
lines separate the single-phase regions where solid, liquid, and vapor exist. The triple line
projects onto a triple point. At point A, for example, liquid and vapor exist in equilibrium

with a range of possible values of specific volume.

The diagrams shown so far all deal with pure substances that contract upon freezing.
In Figure 5-9, the solid at state A has a lower specific volume than the liquid at state C.

g
N L Critical
@ Liquid point
e
. [s)]
g Solid :E»E a’i\o‘\
= I¢ oget™
apozai—
o d-\\o“ Triple point Vapor
N
e°
FIGURE 5-11 Projection of

T Figure 5-10 onto the PT plane.
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Pressure

Critical
=t e
= =
[ (723
(72} o
o o
o a
Solid-vapor
Temperature Specific volume
(b) (c)

FIGURE 5-12 P-v-T relationship for a substance that expands on freezing (e.g., water).
{a) Pv-T relationship. (b) Projection onto the P-T plane. (c) Projection onto the Pv plane.

It is reasonable to expect that the solid would occupy less space than the liquid. However,
there is one very important substance that is an exception to this rule—water. Ice takes
up more space than the corresponding volume of liquid water. The fact that water
expands on freezing has had important implications for the geological history of our
planet. Water that has collected in cracks in rock expands on freezing and fractures the
rock, accelerating erosion. In addition, if water did not expand upon freezing, ice would
not float. The thermodynamic diagrams for water are shown in Figure 5-12.

5.3 INTERNAL ENERGY AND ENTHALPY
INTWO-PHASE SYSTEMS

Thermodynamic tables generally contain more than pressure, temperature, and specific
volume data. Values for internal energy and enthalpy are also available. The procedure
for arriving at these values is beyond the scope of this text; however, we can say that the
data result from experimental measurements. Values of internal energy and enthalpy for
steam-—water are given in Tables A-10 through A-13 in SIunits and in Tables B-£0 through
B-13 in British units.
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For anideal gas, internal energy, «, and enthalpy, &, are only functions of temperature.
However, in general in the single-phase regions, # and A depend on temperature and
pressure, though the variation with pressure is often small. The internal energy per unit
mass is called the specific internal energy. You may recall that the tables also contain the
specific volume, v, which is the volume per unit mass. Similarly, # is the enthalpy per unit
mass, that is,

where m is the total mass of the system.

In atwo-phase region, specific volume results from the mass-weighted average of the
saturated liquid and saturated vapor specific volumes. In like manner, the internal energy
of a mixture is also a mass-weighted average. For example, in the liquid-vapor two-phase
region, the specific internal energy of the liquid phase is denoted as uy, while the specific
internal energy of the vapor phase is u,. The specific internal energy of the mixture is

u = (1 —x)ur + xug
=ty +x (g — 1y) (5-5)
= Uy + Xt

where g = u, — wy. This equation is derived in exactly the same way that Eq. 5-2 and
Eq. 5-3 for specific volume were derived. Enthalpy in the two-phase region is given by a
similar set of equations as

h = (1 —x)hf +xh,
= hy +x (hy — hy) (5-6)
= by + xhyg

where hg = hy, — hy is called the enthalpy of vaporization or heat of vaporization.
Finaily, we can write

m v—v H—u h—h 5§—5
¥ = & = g — i = of — f (5_7)
mgtmg Vg — vy lg— U hg—hy  Sp— 3

Entropy, s, is included here for completeness, though it will not be discussed or used until
Chapter 7.

We have now introduced seven thermodynamic properties—7, P v, u, £, s, and x.
A property is a quantity that characterizes a system in equilibrium. We say that a system is
at a given state due to the values of its properties. For example, if & gas is at temperature T
and pressure Py, then T and P; are properties of the gas at state 1. Quantities such as heat
and work are not properties. They characterize the process that takes place when a system
moves from one state to another. If a gas at state 1, characterized by 7 and Py, is heated
while volume remains constant until it reaches 75 and P;, then we say that the system has
moved from state 1 to state 2 while heat is transferred. The value of a property at a state is
not dependent on the process used to arrive at that state.

g

EENERER
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EXAMPLE 5-5

Assumptions:

A1. Volume is constant
during the process.

These definitions of property and state are helpful in applying the first law of
thermodynamics. A particularly powerful concept that we will use often throughout the
rest of the text is the stafe principle. A simple statement of this principle is:

Two independent thermodynamic properties are needed to completely specify the state
of a pure substance.

This statement implies that if we know two independent properties of a substance,
then the state of the substance is fixed, and we can evaluate all other properties of that
substance at that state. Later in this chapter, a more rigorous statement of the state principle
is given. We have seen an example of the state principle in the ideal gas law. If we know
T and P, then v can be found from the ideal gas law. Likewise, if v and P are known, T is
easily determined. Less obvious is the fact that i and x are properties. If we know P and x,
for example, it will be possible to find T and v using thermodynamic tables. That is very
useful, as is demonstrated in the next example.

Heating of a two-phase mixture in a rigid tank

A rigid tank, which has a volume of 1.5 ft*, contains HyO at a quality of 0.87 and a pressure of
30 psia. Heat is added until only saturated vapor remains. How much heat is added?

| i
| V=151 :
I P, = 30 psia :
1 xy =087 1
| 1
1 1| Xo= 1
I 1
1 |
; Water |
i vapor |
1 |
l__‘_'g_‘_.-;. _L
L. 7 Liquid water |

Approach:

Choose the systeri to be both the water vapor and the liquid water. To determine the heat transferred,
apply the first Jaw. In this process, the volume remains constant, no work is done, and there are no
changes in kinetic or potential energy; therefore, the first law reduces to AU = Q. Furthermeore,
the specific volume remains constant. The specific volume at the initial state can be calculated from
the given information and the stream tables used to find the initial value of internal energy. The
final state is saturated vapor with the same value of specific volume as the initial state. Knowing
that, you can determine the final internal energy from the saturated sieam fables.

Solution:

The system under stidy is the mixture of vapor and liquid. The heating process can be visualized
on a P-v diagram. At state 1, the initial state, a two-phase mixture exists. Since the tank is rigid, the
volume does not change [Al]. Mass is not added or removed, so the mass does not change either.
It follows that the specific volume v = V /s does not change during the process. At the final state,
state 2, the tank is filled with saturated vapor. The process is plotted in the figure.

To find the heat added, apply the first law for a closed system:

AKE+APE+AU =0~ W



A2. Kinetic energy does
not change.

A3. Potential energy
does not change.
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In this process, there is no change in the kinetic or potential energy [A2][A3]. There is also no work
done, so the first law reduces to

AU=Q
or
U-U=0
The heat, Q, is the quantity we want to determine. The total internal energy, Uy, is given by
U 1 = My
We can find the mass, m, if we know the volume and specific volume. At state 1, the pressure and
quality are known, as given in the problem statement. Since these are two independent properties,

by the state principle, we can find all other thermodynamic properties of state 1. From Table B-11
at P; = 30 psia, vy = 0.017 f3/Ibm and v, = 13.75 £3/Ibm. At state 1, the specific volume is

v = Vr+x(v — )

vy = 0.017 +0.87(13.75 — 0.017)
_ fit}

v = 11.97 bm

The mass can now be found as

3
m=Y = L3 _ 5 1951pm
v ft?
119745
Ibm

The specific internal energy at state 1 is

Btu B
uy = up +x (g — up) = [218.84 + 0.87 (1088 — 218.84) |52 = 975.0

where values of uyy and u, were obtained from Table B-11 at P; =30 psia. To find 1z, we need
to make use of the fact that v; =v» = 11.97 f*/Ibm. We know that state 2 is a saturated vapor
with v, =v, =11.97 ft*/lbm. Therefore, we know two properties at state 2—specific volume and
quality (x =1). By the state principle, we could find all other properties at state 2 if we needed
them. In Table B-11, if v, = 11.97 f*/lbm, then P = Py, = 35 psia and #; = u, = 1090.3 Btu/lbm.
We now have all the picces we need to calculate heat as

Q=U:-Uy=m(u—u)

Btu

@ =0.1251bm (1090.3 — 975.() bm

¢ =1441Bw

PITE 1
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EXARMPLE 5-6 An immersion heater in a rigid tank

Assumptions:

A1. The tank is rigid.

A2. The heater is
submerged throughout
the process.

A well-insulated rigid tank with a volume of 360 in.* initially contains a two-phase mixture of
R-134a at 5°F. At the start of the process, the tank is half-filled by volume with liquid and half-filled
with vapor. A cylindrical heater of length 2.5 in. and diameter 0.5 in. is inserted in the liquid, as
shown in the figure. A voltage drop of 60 V is imposed across the heater, which has a resistance of
35 . The heat transfer coefficient on the outside of the heater is 365 Btu/ h-fi>.°F The heater is
operated until the final pressure is 100 psia. The heater remains covered by liquid during the entire
process. Calculate

) the time required for the process.

b) the maximum surface temperature of the heater.

R-134a

Approach:

Choose the system 1o be the vapor and liquid R-134a. Use the first law to find the total amount of
heat transferred. Assume that all the electrical work done on the heater is transferred as heat to the
R-134a and that none is diverted to raising the temperature of the heater itself (the heater mass is
small). To caleulate internal energy, the initial quality is needed, which can be determined from
the known initial volumes of vapor and liquid. To fix the final state, use the fact that the tank is
rigid and, therefore, specific volume is constant. From the given value of final pressure and the final
specific volume, the final quality can be calculated. This is used to find the final internal energy
and, hence, the total heat, .

The power generated by the heater, (2, is the voltage times the current. The time for the process
is found from f=Q/(. During the process, the temperature of the two-phase system increases.
Therefore, the maximum surface temperature of the heater will occur at the end of the process
when the R-134a is hottest. The final R-134a temperature is the saturation temperature, which
corresponds to the given final pressure. To determine the surface temperature of the heater, use

Q=hAT:—Th).

Solution:

a) Define the closed system to be all the R-134a present. The heating process can be visualized on
a P-v diagram, as shown in the figure. State 1, the initial state, is in the two-phase region. Since
the tank is rigid and the total mass is constant, the specific volume does not change [A1] and the
process follows a vertical line on the P-v diagram. State 2, the final state, is still in the two-phase
region since the heater remains submerged in liquid at the final state [A2].




A3, Kinetic energy does
not change.

AA4. Potential energy
does not change.
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To find the heat added, apply the first law for a closed system:
AKE+ APE-AU=Q-W

In this process, there is no change in the kinetic or potential energy, and no work is done [A3][A4].
The first law reduces to

AU=¢Q

or
ULb-U=0=m(uz—w)

To calculate the internal energy, 1), we will need the initial quality. The mass of vapor present in
the tank at the initial state is
Vgl Vv / 2

Me1 =
8 Vg1 Va1

where V is the total volume of the tank (the vapor occupies half the tank). The specific volume, vy,
is found from Table B-14 at 5°F. Substituting values,

(360in.2)( 1t )3
2 121,
= 0.05421bm

Mg =

Similarly, the mass of liquid present is

(360in.2)( 1t )3
v, 3 )\ zm:
/(4 =/ —8751bm

T ver v 3
o (0.0119“%)

The total mass is
m = mygy + myp = 0.0542 4-8.75 = 8.81 lbm

By definition, the initial quality is

_ Mg _ 0.05421bm _
M= S = R gibm — 000616

The initial internal energy may now be determined using
uy = g1+ %3 (g1 — st )

With values for specific internal energy from Table B-14 at 5°F,

uy = 13.09 + 0.00616 (94.01 - 13.09) = 13.6 %ryn‘

To find the final internal energy, we need to fix the final state. We know that the specific volume
is constant during this process because the tank is rigid. Therefore

vy = vy = v+ a0 (Vg — vp1)

ST
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Ab, The mass of the
heater is small.

AG6. Heat generation rate
is constant.

Substituting values from Table B-14 at 5°F,

3
v =0.0119 4 0.00616(1.92 — 0.0119) = 0.0236 li)Lm

The final quality can be determined from

= V2 — V2
g = eSS
Vg2 — V52

At the final state, the pressure is given as 100 psia. Using values of vyz and vy at 100 psia from
Table B-15,

_ 0.0236 — 0.0133

%2 0475 —0.0133 02

The final internal energy may now be calculated as
ty = Hpg + X3 (Ltgp_ — Lt_fz)

Using values in Table B-15,

> = 36.75 + 0.0224 (103.7 — 36.75) = 38.251%—?;
The total heat transferred to the R-134a during this process is
O = m (2 — 1) = (8.81 1bm) (38.25 — 13.6) %‘;‘1 =217Bw

We assume all the electrical work in the heater is converted fo heat that enters the R-134a
mixture. In actuality, some heat is needed to raise the temperature of the heater itself; however, we
assume the heater has a small mass and little heat is required to raise its temperature [AS].

The rate of heat generated in the heater is voltage times current, or

£ _ (60V)?

Q=§1=R 3o = 1B W

Assuming the rate of heat generation is constant with time [A6],

0= [Qdr = O
Solving for elapsed time gives
t= g = 2173‘“& Ay = 0619
u
(103W) (3.412 T )

b} We now need the maximurn surface temperature of the heater. As heat is added to the refrigerant,
the pressure and temperature of the two-phase mixture both increase. The heater surface will be
hottest when the two-phase mixture is hottest, that is, at the final state. From Table B-13, the
saturation temperature at the final pressure of 100 psia is 75 = 79. 2°F, The heat generated by the
heater is related to surface temperature through

Q= hA (T, — T»)



53 INTERNAL ENERGY AND ENTHALPY INTWO-PHASE SYSTEMS 211

where T is surface temperature and the heat transfer coefficient, &, is assumed to be uniform over
A7 The heat transfer the surface of the heater [A7]. The area of the cylindrical heater, including both ends and the curved
coefficient is uniform portien, is

over the cylinder.
4 A=27r +nrL

where r is radius and L is length. Substituting values,
A =27 (025in)% 4+ 7 (0.25in.) (2.5in.) = 2.36 in.2
Solving for surface temperature and substituting values gives

Btu

o 351 T

TS = —_— + Tz =
hA Btu . 1ft>
365 2.36in.2
( o) 23600) (1441n2

+79.2°F = 138°F

EXAMPLE 5-7 Heating at constant pressure

Two kilograms of saturated liquid water at 50 kPa are heated slowly at constant pressure. During
this process, 5876 kI of heat are added. Find the final water temperature.

Py=Fy

Q= 5876J

Approach:

Select the saturated water as the closed system. Because the process occurs at constant pressure, the
first law reduces to @ = AH. State 1 is a saturated liquid. The enthalpy of saturated liquid water
at the given pressure, #), can be found in Table A-11. Using & and the given values of mass and
0, the enthalpy of the final state, k2, can be calculated. The final pressure is the same as the initial
pressure; hence, two independent properties of the final state are known, enthalpy and pressure,
Therefore, by the state principle, all other properties, including temperature, can be determined.

The final state could be either a two-phase mixture or a superheated vapor. If k; is greater than
the enthalpy of saturated liquid but less than that of saturated vapor, the final state will be two-phase.
Otherwise, it will be superheated vapor. The final state is located in the appropriate table, and the
temperature is determined.

Assumptions: Solution:

Define the system to be the water in the piston—cylinder assernbly. For a closed system, the first law is
AKE+APE+AU=0-W

A, The process is slow.  Assuming that the process is slow enough to be considered quasi-equilibrium, work is given by [A1]

W=deV

K EENTR
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A2. Kinetic energy
changes are negligible.
A3, Poiential energy
changes are negligible.

Substituting this into the first law and neglecting kinetic and potential energy changes [A2][A3],

AU=0— [ Pdv
This is a constant-pressure process; therefore,
AU:QfPde=Q—PAV
which may be rearranged to
Q=AU+ PAV
By definition, H = U + PV, therefore,
O=AH=H,—H =m(h—h)

This equation was previously derived in Chapter 2 (see Eq. 2-36). Solving for si; produces

_9
hy = Pl L
The enthalpy of saturated liquid water at state 1, ky, is found in Table A-11. Using this and the given
values, /; becomes

hy = 5827&1‘] + 3405k /kg

hy = 3278KJ/kg

To find the final temperature, 7>, we need to apply the state principle. Since i, and P; are known,
it should be possible to find T,. The problem is that it is not cbvious which table to look in. Is the
final state a two-phase mixture, a saturated vapor, or a superheated vapor?

Where is the
final state?

Let us assume for the moment that the final state is a two-phase mixture. In Table A-11 at 50 kPa,
the enthalpies of saturated liquid and saturated vapor are

e = 340.5Kk]/kg
h = 2305.4kJ/kg

All the values of enthalpy for a mixture of liquid and vapor fall between these two values. This is
because the enthalpy of the mixture is a weighted average of the enthalpies at the liquid and vapor
states.

The value of A calculated above (hy = 3278 kl/kg) is higher than Ag. This indicates that
the final state is not a two-phase mixture, but a superheated vapor. Therefore, from Table A-12,
at P = 50 kPa (0.05 MPa) and /i, = 3278 kl/keg,

T, = 400°C.
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EXAMPLE 5-8 Power production and heat transfer in a reciprocating steam engine

Assumptions:

A1, Potential and kinetic
energy effects are
negligible.

A2, Heat transfer is
one-dimensional.

A3. The heat transfer
rate Is constant.

In a reciprocating steam engine, a piston—cylinder assembly is 30 cm in diameter. Initially, the
pisten is 7.5 cm from the end of the cylinder, and the enclosed volume contains saturated water
vapor at 500 kPa. The steam expands to 100 kPa and four times the initial volume. The engine
operates at 120 rpm. Qutside the assembly, air at 25°C flows over the cylinder with a convective
heat transfer coefficient of 100 W/m?.K. From previous experience you can estimate the outside
surface temperature of the cylinder as the average of the steam’s initial and final temperatures and
the area for heat transfer as the area of the cylinder when the steam is fully expanded. Because
of the danger of someone getting burned on the hot cylinder, the cylinder is covered with 3 cm of
insulation (k¢ = 0.05 W/m-K). Determine the following:

a) The work produced during one expansion before the insulation is added (in kJ)

b} The work produced during one expansion after the insulation is added (in kI)
¢) The temperature on the outside surface of the insulation {in °C)

Approach:

We want to determine work produced, so we select the steam as the system and apply the closed-
system energy equation. In part a, where there is no insulation, the heat transferred is determined
from & = kA (Tm,g — 'I}), where T, is the average of the initial and final steam temperature and T
is the air temperature. In parts b and ¢, where there is insulation, the thermal resistance is the series
combination of the conduction resistance through the insulation and the convection resistance on
the outside of the insulation.

Insulation
S=3cm, k=0.05W/m-K

P =500kPa W
Saturated vapor

Py=100kPa  §
Vy = 4V, 3

A e A A R A I

T;=25°C  h=100W/m?:K

Solution:

a) We define the system as the steam contained in the piston—cylinder assembly. For this system
the closed system energy equation is

AKE+APE+ AU =0Q0-W
Assuming negligible change in kinetic and potential energy [Al], and solving for work,
W=0—-AU=0—-m(u —uy)
The heat transfer is evaluated from the basic rate equation [A2]:

o AT
Rw!
Integrating this equation with respect to time, and assuming the heat transfer rate is constant over
the time, 1, of the expansion [A3],

il T
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A4. There is no heat
transfer through the
piston,

Ab. The surface of the
cylinder at maximum
piston extension is at the
average of the initial and
final steam temperature.

AT
= t
€= R

Because heat transfer is out of the assembly, it must be negative; and assuming there is no heat
transfer through the piston [A4],

W= _Qendt - Qsidet —m (u2 - ul)

Using the convective resistance, and assuming the average temperature of the assembly is

T+ T
Tavg=( 1-5 2)

and Qsiz.'g =

Tavg - Tf
1/hAua

Dens = Taw = Ty
- 1 / hAsidr.'

We now can begin evaluating all the parameters in the equations. The properties of the steam
at the initial state (saturated vapor, P, == 500 kPa) are obtained from Table A-11: v| = v, =
0.3749 m3 kg w) = uy = 2561.2kJ/kg; T\ = 151.86°C. The mass is

Vi _ /9D (w/4%0.3m)* (0.075 m)
e v T 03749m¥fkg

m=

=0.0141kg

For the final state, we need a second property in addition to P, = 100 kPa, From the problem
statement, Vo = 4V, which results in

vo =4y = 4(0.3749 m¥kg) = 1.500 m*/kg
From Table A-11, this state is in the two-phase region, so T, = 99.63°C and

vz— vz (1.500—0.001043)

S s = (16940 < 0.001043) — 088
Uy = g + Xaltgy
uy = 417.36 kJ/kg + (0.885)(2088.7 kI /kg) = 2266.7 kI /kg

The average surface temperature is:

151.86°C +99.63°C .
Tong = 7 =1257°C

The area of the cylinder wall exposed to the steam changes as the piston moves in and out.
After many cycles, the wall reaches the approximately constant wall temperature, Tg,,. We use the
surface area of the cylinder at its maximum volume rather than at its minimum volume to calculate

heat transfer because the entire wall is exposed to the steam for at least part of the cycle. The areas
of the end and sides are [AS]

A = 5 D = 5(0.30m)* =0.0707 m
Asge = DAL = 7(0.30m)(4)(0.075 m) = 0.283 m*

The time for one-half revolution {for the expansion process) is

f= (0.5 rev){60s/1 min)
- 120 rev/min

=0.25s
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Therefore,

) 125.7 — 25)°C(1 kI /10007
Oend = { ) 1( / )=0.712%

(100 W/mZ-K)(O.O'.I‘O'JT m?)

, (125.7 — 25)°C(1 kI /1000 T)
Osde = CUK/I000D _ 5 550K

(100 W /m?.K)(0.283 m?)

=
Il

~ (072 %) 0255) - (2850 %) (0.255) — (0.0141 kg)(2266.7 2561.2)Ej—g

= 3.62kJ

b) When insulation is added, we must take into account both the convective and conductive
resistances. Note also that the area of the side increases:

Asie = 7 (P +28)4L; = 7 [0.30m -+ 2 (0.03 m)] (4) (0.075 m) = 0.339 m?

Oue = ——Tme = Tr
e 1, (/n)
hAside 2?TkL|
5 (125.7 — 25)°C(1 k3/1000 1) _ kI
Qsiae = 1 In (0.36/0.30) = 00515
(100w / m?.K)0.339m?)  2m(0.05W / m-K)(4)(0.075 m)
For the end:
. Tav - T
Qena = _lg—""%""‘“
_— + _—
hAend kAerrd
where § is the thickness of the insulation. Substituting values
_— (125.7 — 25°C (1kJ /10007T} oo X
Qend = 1 0.03m T

(100W /m? K) (0.0707m%)

(0.05W /m-K) (0.0707 m?)
W=— (0.012 %) (0.255) — (0.051%) (0.255) — (0.0141 kg) (2266.7 — 2561.2) }’:J—g
= 415K

¢) The surface temperature of the insulation can be obtained from the rate equation and the heat
transfer rate found above, For the end surface:

5 0.012kW ( 1??(%:,”)
Tog = Ty + =24 = 25°C =26.7°C
=Y R ena * (100w /m? K) (00707 )
For the side surface:
. 0.051 kW ( “1)?{2”‘”)
Tode = Ty + Dize _ 950¢ 4 = 26.5°C

hAsize (100 W /m*.K) (0.339 m?)
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Comments:

In part a without the insulation, the heat loss was equivalent to 100(0.891/3.62) = 24.6% of the
work produced. In part b with the insulation, the heat loss was reduced to only 0.38% of the work
produced and the surface temperature was reduced from 125.7°C to near 25°C. The addition of the
insulation has a very positive impact and would pay for itself quickly.

5.4 PROPERTIES OF REAL LIOQUIDS AND SOLIDS

Ideal liquids and solids are, by definition, incompressible. Their densities are constant
under all conditions. Ordinarily this is a very good assumption; however, there are some
important exceptions. The expansion of liquid mercury as a function of temperature is the
principle used in making thermometers. Bridges are constructed with expansion joints to
allow the roadway to increase in size without buckling as temperature increases. The density
of seawalter is elevated at great depths. In this section, we present the use of thermodynamic
tables to deal with real compressible liquids and solids.

As in ideal gases, the internal energy of ideal solids and liguids depends only on
temperature. In differential form

du =, dT
If ¢, 1s not a function of temperature,
Au = ¢, AT

What about enthalpy? The enthalpy of an ideal gas depends only on temperature. Is this
true for ideal solids and liquids? By definition,

h=u-+ Py
For a process that starts at state 1 and ends at state 2,
h =u + Py,
hy = 1y + Povy
If we assume an ideal solid or liquid, the volume does not change and
V=wm =V

The difference in enthalpy is then

hy —hy=us —uy +v{Pr— Pp) (5-8)

The internal energy, u, is a function only of temperature for an ideal solid or liquid; however,
the enthalpy depends on pressure as well. For an isothermal process, i; = uz and Eq. 5-8
reduces to

by —hy=v(Pr—Pp) (5-9)

For real solids and liquids, internal energy and enthalpy are typically strong functions
of temperature and weak functions of pressure. Because the variation with pressure is so
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slight, it is rare to find a table that gives properties of compressed liquids, especially for
low values of pressure. Instead, practitioners typically approximate v, i, and & for the
compressed liquid by using data available in the saturated liquid—vapor tables.

A word about the meaning of a “compressed liquid” is appropriate here. This means
that a liquid at a given temperature, T, is at a pressure higher than the saturation pressure
corresponding to T. For example, consider a glass of water sitting on a dining room table
at room temperature (=2 20°C). The pressure in the room is 100 kPa. At 20°C, the water’s
saturation pressure is 2.38 kPa. Because the room pressure is greater than the saturation
pressure, the water is in the compressed liquid region. A compressed liquid and a subcooled
liquid are the same thing, and the following approximations are often used:

WT, P) = ve(T)

u(T, Py = up(T)

In words, the specific volume or internal energy of a compressed liquid at T and
P is approximately equal to the specific volume or internal energy, respectively, of the
saturated liquid at temperature T. Note that it is the femperature of the saturated liquid, not
the pressure, that is the important parameter. At very high pressures, these approximations
are not accurate, but at ordinary pressures, they are excellent approximations.

To approximate enthalpy for a compressed liquid, apply Eq. 5-9 to an isothermal
compression from a saturated liquid to a compressed liquid. If state 1 is a saturated liquid
at temperature T and state 2 is a compressed liquid at temperature T and pressure P, then
Eq. 5-9 becomes

A(T, P) — hy(T) % v [P — Py (T)]

In this equation specific volume is constant. The specific volume of the saturated liquid at
temperature T is an excellent approximate value for the specific volume during this process.
Using this and solving for enthalpy results in

T, P) = he(T) + vr (T) [P — Pyor(T)] compressed liquid (5-10)

Consider the common process in which a solid or liquid is heated at constant pressure.
For example, if an empty frying pan is heated on a range top, heat is added at constant
pressure. In this case, the metal expands as it heats. The atmosphere presses on the frying
pan and keeps it at constant pressure. From Eq. 2-36, the heat added in a constant-pressure
process of a closed system is

O=H,—H

The most accurate way to find the enthalpy in this equation is to use thermodynamic tables.
However, it is often more convenient to use specific heat data. By definition, the specific
heat at constant pressure is (see Eq. 2-40)

dh

e (T,P) = Y
P

When enthalpy is a function only of temperature, this may be written as

& (T,P) = 22
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EXAMPLE 5-9

Separating variables and integrating from state 1 to state 2 gives

2 2
f dh:f ¢, (T,P) dT
1 1

If we assume that ¢, is not a function of temperature or pressure, then

hy—hy =c¢, (F; —=17) (5-11)

Substituting A = H /m, this becomes
Hy — Hy = mc, (T~ T)

As mentioned above, for a constant-pressure heating process, QO = H, — H; therefore,

Q=mc, (I, —T1) (5-12)

This equation applies as long as ¢, is not a function of temperature. It can also be used as
an approximation when ¢, is a function of temperature. In that case, the value of ¢, at the
average temperature of the process is used.

Heating of a subcooled liquid at constant pressure

Estimate the heat required to raise 3 1bm of liquid water at atmospheric pressure from 40°F to 160°F
(in Btu).

a) Use specific heat data.
b) Use the steam tables.

T, = 160°F

Approach:

Choose the water as the closed system. If specific heat data are used, the heat is given by
Q =mc, AT

The specific heat is calculated at the average temperature for the process. Values are available in
Table B-6. As an alternate approach, the steam tables can be consulted. To find heat transfer, use

Q=ml—h)
To find the enthalpy of the compressed liquid at %,, use the following approximation:
By = hy (1) + v (T [Py — P ()]

Values of properties to insert in the right-hand side of this equation may be found in Table B-10.
The final enthalpy, 42, is calculated similarly.



Assumptions:

A1, Specific heat is
constant.

5.4 PROPERTIES OF REAL LIQUIDS AND SOLIDS

Solution:

a) Define the liquid water as the system. This is a constant pressure process, so
Q =mc, AT
Use the value of ¢, at the average water temperature of [A1]:

404 160 o
Ty = —5 = 100°F

‘With the value of ¢, at 1060°F from Table B-6,

= (31bm)(0.99 le“‘

0 =339Bw
b) Alternatively
g=mh—h)
Using Eq. 5-10, A, is approximated as
By = he (T) + v T [Py — Poa (T1)]

With values from Table B-10 at 40°F,

2
h1—802Bm+0016—[147 0.122] lbf( 1Btu )(144“‘-)

778 f-Iof 1fi2
_ Btu
hi =806
Similarly for ka,
B 1Btu 144 in.?
by = 12888 10,0164, fL [147 475] (778ft lbf) ( fi? )

Btu Btu B
hy = 128lb + 00302— R 128lbm

219

Notice that the pressure-correction term was so small that it makes no difference to three significant

figures. Finally, the heat is calculated as
- _ B
0 = 31bm (128 — 8.06) bm
0 = 360Bm

As you can see, the differences are slight. Both of these methods are approximate.

Comment:

If the pressure is moderate, as in this example, the enthalpy of the compressed liquid is nearly equal

to the enthalpy of the saturated liquid at the same temperature.
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5.2 THE STATE PRINCIPLE

Several thermodynamic properties have been used to characterize the state of a system,
These properties fall into two categories: those that depend on the size of the system and
those that do not. Pressure and temperatuore, for example, do not depend on the size of the
system. If a system at temperature T is divided in half, each half will have temperature T,
Volume, on the other hand, does depend on the size of the system. Cutting a system in half
halves the volume. Specific volume, which is the reciprocal of density, does not depend on
the size of the system.

We call those properties that depend on the size, or extent, of the system extensive
properties. Those that are independent of size are called intensive properties. The exten-
sive properties include V, I/, and /. Some intensive properties are T, P, u, v, and &. The
total internal energy, I/, depends on the mass of the system, while the specific internal
energy, #, which is internal energy per unit mass, does not depend on the total mass of the
system.

The intensive properties of a system are not all independent. The state principle,
which addresses this point, was introduced above in simplified form. We are now in a
position to develop a miore rigorous statement of the state principle.

If the pressure and specific volume of an ideal gas are known, then the temperature
can be determined from the ideal gas law. Furthermore, this temperature can be used to
determine u and h. In this case, specifying the two thermodynamic properties P and v
is enough to uniquely determine all the other thermodynamic properties. We could also
have specified P and T and calculated v, i, and %. As a further example, if v and u were
known, it would be possible to find P, T, and . Note, however, that we run into trou-
ble if we only specify T and u. Since u depends only on T for an ideal gas, there is
no way to determine what P and v are. These observations are embodied in the state
principle:

For a pure substance consisting of a single chemical species, specifying any two
independent intensive thermodynamic properties uniquely determines all the remaining
intensive thermodynamic properties.

In the case of an ideal gas, P and T are independent, but 7" and i are not. The state
principle applies to real gases and to solids and liquids as well. For example, in a two-
phase mixture of liquid and vapor, specifying T and v allows calculation of quality, x.
The quality can then be used to find # and 4. As soon as the temperature of a two-phase
mixture i1s known, the pressure can be determined. So for a two-phase mixture, 7" and
v are independent properties. Note that T and P are not independent. In the two-phase
region, quality, x, is also an intensive thermodynamic property. Pressure and guality are
independent parameters, as are temperature and quality.

In a compressed liquid, pressure and temperature can be used to find v, u, and A.
However, since v, 1, and /1 are weakly dependent on pressure, it is not practical to choose
T and ¢ or T and % as independent properties.

The state principle given above applies to a simple compressible substance, that is, one
that is subject only to expansion or compression work. If other forms of work are present,
then additional parameters are needed to specify the state of the system. For example, if an
object is falling in a gravitational field, then the earth does work on the object. In this case,
work is related to the change in potential energy, and the elevation is needed to specify the
state. In other systems, work may be done by magnetic fields or surface tension or other
effects. In those cases, additional parameters will be needed to specify the state.
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5.6 USE OFTABLESTO EVALUATE PROPERTIES

We have been using various tables to find values of thermodynamic properties. It is not
always obvious which table applies in a given situation, especially if the phase of the
substance is unknown. Furthermore, extracting data from the tables can present challenges
to the novice user. This section gives an overview of the use of thermodynamic tables.
A systematic approach to evaluating properties is described.

Thermodynamic property tables may be classified according to the type of data they
contain: saturation properties (liquid—vapor and sometimes solid—vapor), superheated vapor
properties, and compressed liquid properties. The two main questions we have to answer
when evaluating properties at a given state are: What table do we use? How do we obtain
the necessary data from the table?

Consider the T-v diagram in Figure 5-4. For a given T and v, we could fix the region
in which the state lies; that is, we could determine whether the substance were two-phase,
superheated vapor, saturated liquid, saturated vapor, or subcooled liquid. But without these
two independent properties, we could not fix the location on this diagram.

The procedure we use to evaluate properties from tables is similar to using a roadmap.
For example, suppose aclassmate invites you home for semester break and tells you only the
name of the town. To go there, do you just jump in your car and drive blindly? Eventually,
you might arrive at your destination, but chances are you would get lost. Instead, you might
get a map and, using the map’s index, find two coordinates associated with the town. These
two coordinates are sufficient to locate the town on the map. At that point you can plan a
logical route to your friend’s home. The “index™ to use when evaluating thermodynamic
properties is the table containing the saturation properties. As described below, comparison
of given information with saturated liquid or saturated vapor properties will indicate in
which region the state lies.

Evaluating properties at a given state requires us to do the following:

1. Identify two independent properties.
2. Determine the region in which the state lies (saturated, superheated, or subcooled/
compressed liquid) nsing these two properties.

3. Use the table for that region to find all additional properties of interest.

This task is easy when using a graphical representation of the property data. It is slightly
more difficult when we use tables, but the resulting data are more accurate.

The key to determining which table to use lies in the saturated liquid—vapor table.
Below is a step-by-step procedure to obtain correct data. (We will deal primarily with
liquids and vapors. Solid—vapor saturation tables will be ignored.) For completeness in
the discussion that follows, we will include the common property entropy, s, described in
Chapter 7.

Identify two independent properties Intheory, any two of the properties listed
below for a particular region are independent:
Compressed liquid region:
P,T,v,u,h,s
Superheated vapor region:
P.T,v,uhs

HIRE
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Two-phase region: (P and T are not independent)
P,ov,uh, 8%
T,v,u,h,s,x
However, some combinations (e.g.,  and 2) would be very difficult to use in practice. Most

often, one of the independent properties is either 2 or 7. The second independent property
then can be any of the others.

Determine the region Given two properties, we compare one of the properties to
the saturated liquid and/or vapor property.

1. Assume that we are given P and T. Two different approaches can be taken.

A. Evaluate the saturation temperature, Ty, of the fluid at P. Compare T, to T.
o If ' > T, then the substance is a superheated vapor.
o If T < Ty, then the substance is a subcooled/compressed liguid.

e If T = Ty, then the state is indeterminate. The substance could be a saturated
liquid, a saturated vapor, or a two-phase mixture.

B. Evaluate the saturation pressure, Py, of the fluid at 7. Compare Py, to P,
s If P < P, then the substance is a superheated vapor.
e If P > P, then the substance is a subcooled/compressed liquid.

o If P = P, then the staic is indeterminate. The substance could be a saturated
liquid, a saturated vapor, or a two-phase mixture.

2, Assume that we are given either P or T and one of v, u, h, or s (entropy). At either P
or T, evaluate the corresponding saturated liquid (subscript ) and/or saturated vapor
(subscript g) property.

A. Ifv,u, b, or s is greater than the corresponding saturated vapor property (v, g, 1,
or 5.}, then the substance is a superheated vapor.

B. If v,u, h, or s is less than the corresponding saturated liquid property (vf, uy, Ay,
or s¢), then the substance is a subcooled/compressed liquid.

C. Tf v,u, h, or s has a value between the corresponding saturated liguid property
(vy, uy, Ry, or 57} and the corresponding saturated vapor property (v, iy, fg. OF Se)s
then the substance is in the two-phase mixture region.

Evaluaie the property Omnce the region has been identified, then the property can
be evaluated by the following methods:

1. Saturated liquid, saturated vapor, superheated vapor, subcooled/compressed
liquid: For these regions, the value of the property can be read directly from a table. If
the desired value falls between table values, then the property sought is evaluated by
interpolation. Suppose we have atable, as shown below, where Z is an independent property
and Y is the property whose value we need to determine.

Z ¥y
Za ¥y
Zs Y;

If we know Z;, then we can read ¥ directly. On the other hand, if our given Z is between
Z) and Z,, then we must interpolate. Many different interpolation schemes are available.
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We will rely only on linear interpolation. To evalnate the property ¥ at the given value of

Z, use the following formula:

Z-7 Y-y
-2 h-T

2. Two-phase mixture: The liquid and the vapor are in thermal equilibrium in this
region. Both fluids are at their saturation values. To obtain a property (other than P or T') in
this region, the superposition principle is used. The mixture property is the mass-weighted
average of the contributions from the saturated liguid and the saturated vapor properties.

Recall that x is the mass fraction of vapor in the liquid—vapor mixture; x is called the
qualiry. Note that {1 — x) is the mass fraction of liquid in the mixture. When x = 0, we
have all saturated liquid. When x = 1 (or 100%), we have all saturated vapor. Letting s,
equal the mass of vapor and my equal the mass of liquid in a mixture, then

nig V—Vf U — U h—-hf S—Sf
X = = = = =
my + my Ve — Vf Ug — Uy hg—hf S — 8¢

3. Subcooled/compressed liquid approximation: If subcooled/compressed liquid
tables are not available for a particular fluid (and this is typically the normy), then we can
use an approximation to evaiuate the properties of a subcooled liquid. In general, states are
a function of two properties; for example, ¥ (P, T) where Y is v, u, or s. However, in the sub-
cooled/compressed liquid region, the effect of changing pressure on properties is small. The
properties are mostly a function of temperature. Hence, to evaluate subcooled/compressed
liquid properties, the saturated liquid values at the given temperature are used.

Let Y equal one of the properties v,u, or s, For a given P and 7, if T is less
than the saturation temperature at P, then we are in the subcooled liquid region and the
approximation is

Y(P,T) = Y/(T)

That is, we use the saturated liquid value evaluated at the given temperature to approximate
the subcooled/compressed liquid property of interest. This approximation can also be used
for enthalpy. However, noting that # = u + Pv, we can obtain a better approximation with

P, T) = h(T) + ve(T)P — Psar(T)]

This equation was derived in Section 5.4, The second term often is quite small and can be
neglected if improved accuracy is not needed.

5.7 REAL GASES AND COMPRESSIBILITY

(Go to www.wiley.com/collegefkaminski)

SUMMARY

The ideal gas law is not the most accurate way to relate P, T',  for vapors. When liquid and vapor exist together in equilibrium,
and v. Thermodynamic tables, which give the most accurate  the quality of the mixture is defined as
relationship among the three variables, are available for a variety . me

of substances. These tables give values for liquids as well as T omp4my
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If the quality is zero (x = 0), only saturated liquid is present. If
the quality is one (x = 1), only saturated vapor is present. The
specific volume of a two-phase mixture of saturated liquid and
vapor is

b=y (5 = ) = vy +

The specific internal energy of a two-phase mixture is given by
=y +x (1tg — ur) = sty + xu,

The specific enthalpy is
h =ty +x (kg — hy) = by + xhy,

The specific entropy is

s=157+x (s, — 57} = 5y +x55

Furthermore,
. i, _vaI_ufuf=hﬁqu:.€—.qu
Tompbmg T v, — v T g — Uy By — by Sp — §f

The specific volume, internal energy, enthalpy, and entropy of
compressed or subeooled liquids may be approximated using
values for the saturated liquid at the same temperature, that is,

WT, P) = vy (T)
w(T, P) =2y (T)
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PROBLEMS

(et

Problems designated with WEB refer to material available at
www.wiley.com/college/kaminski.

VAPOR-LIOUID EQUILIBRIUM TABLES

P5-1 Atwhat pressure (in kPa) does water boil if 7 = 170°C?

P5-2  What is the specific volume of saturated water vapor at
600 kPa?

P5-3 What is the temperature of saturated water vapor with
v = 0.3468m>/kg?

P5-4  Find the temperature in°F at which

a. water boils if P = 35 psia.

b. the specific volume of saturated water vapor is 1207 ft*/1bm.
P5-5 Find the pressure in kPa at which

a. water condenses if 77 = 195°C.
b. the specific volume of saturated water vapor is (.05 m*/kg.

P5-6 A rigid can contains 0.90 g of saturated water vapor at
450 kPa. Calculate the volume of the can in cubic centimelers.



P5-7 A piston—cylinder assembly contains 0.12 f’of saturated
water vapor at 350°F, What is the mass of vapor in the tank?

SUPERHEATED VAPORTABLES

P5-8 Find the specific volume of gaseous R-134a at 40°C for
P = 100 kPa, 400 kPa, and 800 kPa. Use both the ideal gas law
and tabulated values.

P5-9 TFind the density of steam at 3.5 MPa and 415°C
a. using the steam tables.

b. using the ideal gas law.

P5-10 Refrigerant 134a at a pressure of 20 psia and a temper-
ature of 40°F occupies a volume of 0.5 ft. Find the mass
a. from table values.

b. from the ideal gas law.

P5-11 A container is filled with 0.026 kg of R-134a at a
temperature of 40°C. What is the pressure if the volume is

a. 364 cm3,
b. 1560 cm?®.

P5-12 A tank contains 0.05 Ibm of water vapor at 20 psia and
500°F. Find the volume of the tank (in ft?).

P5-13 A container of volume 0.047 m? is filled with 6.7 kg of
steam at 600°C. Calculate the system pressure.

QUALITY

P5-14 A piston—cylinder assembly with a volume of 400 in.}
contains a steam-—water mixture at 80 psia. If the total mass
of the mixture is 0.066 Ibm, find the volume of liquid present
(in in3).

P5-15 A two-phase mixture of steam and water has a quality
of 0.79 and occupies a space of 0.51 ft3, If the total mass is
0.087 Ibm,

a. find the temperature.
b. find the volume of liquid present (in in.3),

P5-16 A tank contains a two-phase mixture of steam and water
at 40 psia. If the volume of the vapor is 10 times that of the liquid,
what is the quality?

P5-17 A tank of volume 530 cm® contains a two-phase mixture
of R-134a at —12°C. The mass of liquid present is four times the
mass of vapor.

a. Find the total mass of R-134a in the tank.
b. Find the volume of liquid present.

P5.18 A tank with a volume of 4.8 ft® contains 6 Ibm of Tiquid
water. The tank also contains water vapor in equilibrivm with
the liquid. If the pressure in the tank is 30 psia, calculate the
quality.

P5-19 A wvial of volume 280 cc contains a two-phase mixture
of steam and water at 30°C. The quality is 0.45. Find the mass

In grams.
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SATURATED, SUPERHEATED, AND
COMPRESSED LIQUID TABLES

P5-20 A tank of volume 0.04 m® contains 0.6 kg of R-134a at
a pressure of 0.2 MPa. ’

a. Find the temperature.

b. If the volume is (.068 m?, then what is the temperature?

P5-21 Findthe specific volume of HO in each of the following
states:

a. Saturated liquid at 160°F
b. Superheated vapor at 80 psia and 440°F

¢, Two-phase mixture at a quality of 0.7 and a pressure of
40 psia

d. Subcooled liquid at 120°F, 14.7 psia

P5-22 Determine the volume, in m?, of 0.23 kg .of H;O at a
temperature of 150°C and

a. apressure of 0.2 MPa.
b. a quality of 0.6.

¢. a pressure of 5 MPa.

P5-23  Find the specific volume of
a. compressed liquid water at 100°F, 1000 psia.
b. saturated liquid water at 100°F.

¢. saturated liquid water at 1000 psia.

P5-24 Fill in the values of the specific volume of compressed
liquid water at the conditions shown in the table. Use scientific
notation with four significant figures, for example, 0.6216 x
1073,

Psat Psat 5 MPa 10 MPa
2,339kPa 0.3613 MP
X 1072 X102
x 1072 x 107

Does v depend more on temperature or pressure?

P5-25 Calculate the enthalpy of compressed liquid water at
40°C two ways: using the approximate relationship for enthalpy
of a compressed liquid and using the compressed liquid tables.
Perform the calculation at these pressures:

a. 10 MPa
bh. 20 MPa
¢. 50 MPa

CTTT
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FIRST-LAW APPLICATIONS

P5-26 A rigidtank of volume 0.6 m® contains saturated R-134a
vapor at 24°C. The contents are cooled until the temperature is
0°C. How much heat is removed? Show the process on a P-v
diagram.

P5-27 A mixture of steam and water is contained in a rigid
tank of volume 3030 cm?. The mixture has a quality of 0.55 and
a temperature of 120°C. Heat is added until the temperature is
140°C. Find

a. the finat quality.

b. the amount of heat added.

P5-28 A rigid tank contains a two-plase mixture of water and
steam at a quality of 0.65 and a pressure of 20 psia. The nass
of the mixture is 0.26 lbm. The mixture is heated until the final
quality is 0.95. Compute the finat pressure and the heat added.

P5-29 A two-phase mixture of steam and water at 800 kPa,
x =10.85, is contained in arigid, well-insulated tank. An electric
resistance heater supplies 50 W to the mixture, which has a total
mass of 1.3 kg. How long nust the heater operate for the steam
to reach a final temperature of 190°C?

P5-30 R-134a at 40°F, 15 psiag, is contained in a rigid tank of
volume 228 in.?. The tank is cooled at a rate of 6 Btu/h. How
much time is needed to cool the R-134a to the point where it just
begins to condense?

P5-31 A rigid tank filled with 0.7 Ibm of saturated water vapor
at 400°F is cooled at constant volume. If the final temperature is
260°F,

a. find the final mass of liquid.
b. find the heat transferred.

P5-32 A well-insulated piston—cylinder assembly of volume
0.006 m* contains 6.25 g of steam at 150°C. The steam expands
and, during this process, 0.759 kJ of work is done. If the final
temperature is 95°C, what is the final volume?

P5-33 A two-phase mixture of steam and water with a tem-
peratwre of 160°C and a quality of 0.6 is contained in a
piston—cylinder assembly. The two-phase mixture, which has
a total mass of 0.9 kg, is compressed slowly and isothermally
until only satorated liquid is present. What is the work done on
the system?

I’5-34 Refrigerant 134a is contained in a perfectly insulated
piston—cylinder assembly. The refrigerant is initially a saturated
vapor at 10°F with a volume of (.32 ft*, It is then compressed to
a superheated vapor at 120°F and 80 psia. Find the work done.

P5-35 A two-phase mixture of water and steam with a quality
of 0.63 and T =300°F expands isothermally until only satu-
rated vapor remains. The initial volume is 0.114 ft*. During the
process, 16.2 Btu of heat are added. Find the work done.

P5-36 A piston—cylinder assembly contains .25 kg of satu-
rated Refrigerant 134a vapor at 16°C. The refrigerant is cooled
at constant pressure until the volume is one-half of its original
value, Calculate the heat transferred.

P3-37 A piston—cylinder assembly contains 0.15 kg of satu-
rated steam at 130°C. The piston is held in place by a weight.
To reach the final state, 8300 J of heat are added. Find the final
temperature.

4
/
Q

P5-38 Twelve kilograms of H,O at 800 kPa and 400°C are
cooled in a constant-pressure process until 2 kg of liquid water
are present, Find the heat transferred.

P5-39 R-134a at —20°C and 200 kPa is heated at constant
pressure. If the mass of refrigerant present is 6.2 kg and the heat
added is 380 kl, determine the final state.

P5-40 Saturated liquid water at 70 psia is cooled at constant
pressure to 80°F. If the volume of water present is 0.71 ft3, find
the heat transferred.

P5-41 A piston—cylinder assembly of initial volume 0.6 m?
contains H>O at 500 kPa and 280°C. The system is cooled in a
two-step process:

1-2 Constant volume cooling until only saturated
VapOor remains
2-3 Constant temperature cooling until only satu-

rated liquid remains

a. Sketch the process on a T-v diagram.

b. For process [-2 , calculate the work done and the heat
transferred.

¢. For process 2-3, calculate the work done.

P5-42 A two-phase mixture of water and steam at 190°F is
contained in a piston—cylinder assembly. Initially the piston rests
on stops. The combined mass of the water and steam is (.06 bm,
and the initial quality is 0.3. The piston has a diameter of 6 in,
and a mass of 12 lbm. How much heat must be added to triple
the volume? Assume Pgy,, = 14.7 psia. Sketch the process on a
P-v diagram.




FIRST-LAW APPLICATIONS WITH THERMAL
RESISTANCES

P5-43 A runner whose surface area is 1.8 m? generates
650 W of body heat. On a hot and cloudy day, the air is at
25°F, The heat transfer coefficient between runner and air is
14 Bt/ h-ft2-°F.

a. If the runner is wearing only shorts and does not sweat, what
would the skin temperature be (in°F)?

b. What volume of sweat (in fluid oz) must be evaporated per
hour to keep the skin temperature at 70°F? Assume sweat has
the properties of water.

P5-44 R-134a with an initial quality of 0.73 is contained in
a piston—cylinder assembly, as shown in the figure. The curved
walls of the cylinder are perfectly insulated. Initially, the R-134a
occupies a volume of height 20 cm and diameter 7.5 cm. The
piston—cylinder assembly is placed on a surface at 10°C, and heat
conducts upward through the bottom wall and boils the liquid
R-134a. The piston may be assumed to be massless and fric-
tionless. The cylinder is constructed of stainless steel (AISI 304)
with a wall thickness of 0.8 cm. The heat transfer coefficient
between the liquid and the bottom of the cylinder is 268 W/m?.K.
How long will it take for the piston to rise 5 cm?

Pam=100 kPa

Tw=10°C

P5-45 A rigid box made of aluminum with a wall thickness
of 0.25 in. contains saturated steam at a pressure of 60 psia.
The convective heat transfer coefficient on the interior is
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1.9 Btw/ h-fi2-°F, and on the exterior, it is 3.6 Btu/ h-fi>-°F. The
box is a cube with a side length of 1.4 ft. A heater inside the box
maintains the steam at a steady-state temperature. The exterior
air temperature is 60°F. Find the power input to the heater.
P5-46 A piston—cylinder assembly contains water and steam
at a quality of 0.7, The piston, which is made of carbon steel, is
1.5 cm thick and 6 cm in diameter. Initially the piston rests on
the steam 9 cm above the bottom of the cylinder, compressing
the two-phase system by its weight. The sides and bottom of the
cylinder are well insulated, but heat is lost off the top of the
piston. The convective heat transfer coefficient on the top of
the piston is 9 W/m?. The convective heat transfer coefficient
on the bottom of the piston is 6.2 W/m?-K. How long will it
be before the piston sinks to half its initial height? Assume the
surroundings are at 20°C.

COMPRESSIBILITY

P5-47 (WEB) Estimate the specific volume of carbon
monoxide at 150 K and 10 MPa using

a. the compressibility chart.

b. the ideal gas law.

P5-48 (WEB) Steam at 800°F and 5000 psia has a mass of
25 Ibm. Calculate the volume using

a. the steam tables.

b. the compressibility chart.

P5-49 (WEB) Does sulfer dioxide at a pressure of 2000 psia
behave like an ideal gas at these temperatures?

a. 1500°F
b. &850°F
¢ 350°F
P5-50 (WEB) A rigid container with a volume of 0.77 m®

contains 110 kg of paseous propane at 208°C. Using the
compressibility chart, estimate the pressure of the gas.

FEETE T




CHAPTER 6

APPLICATIONS OF THE ENERGY
EQUATION TO OPEN SYSTEMS

6.1 INTRODUCTION

An open system is one in which mass enters and/or leaves the contrel volume during a
process that can be either steady or transient. In a steady flow process, nothing changes as
a function of time. Although mass flows in and out, no mass accumulates in the control
volume. The thermodynamic state of the masses entering and leaving are also constant with
time. Any heat or work crossing the boundary enters or leaves at a constant rate. If one
took a snapshot of the contrel volume at a given time and noted the temperature, pressure,
amount of mass, and so on of the material in the control volume, and then later took another
snapshot, none of the properties would have changed, even though mass flowed in and out.

Inatransient system, properties do change with time. Consider the filling of a partially
full bathtub with hotter water. Initially, the water in the tub is at one temperature. Adding
hot water changes both the mass and total internal energy of the water in the tub and results
in a higher final temperature. The system’s propertics have changed with time.

There are many devices that operate for long periods of time in steady state. Some
of the most important ones include nozzles, diffusers, turbines, compressors, pumps, heat
exchangers, mixing chambers, and throttles. These devices will be introduced in the first
part of this chapter. The last part of the chapter will deal with transient processes.

6.2 NOZZLES AND DIFFUSERS

228

A nozzle is a duct with a smoothly varying cross-sectional area in which the fluid velocity
increases from the entrance to the exit, as shown in Figure 6-1a. Nozzles are used in a
wide variety of applications ranging from the ordinary garden hose to jet engines and
rockets. A diffaser, shown in Figure 6-1b, also has a smoothly varying cross-sectional area
simijlar to a nozzle, but in a diffuser the velocity decreases from entrance to exit. Diffusers
are used, for example, downstream of steam turbines and at the entrance to jet engines.
In both nozzles and diffusers, there is a trade-off between pressure and velocity.

In subsonic flow, the area of a nozzle decreases in the flow direction and the area of
a diffuser increases. In supersonic flow, the opposite is true: at the exit a nozzle flares out
and a diffuser necks down. To increase the velocity in supersonic flow, it is necessary first
to decrease the flow area and then to increase the area, counter to intuition {Figure 6-2).
In such a nozzle, the inlet flow is subsonic and the exit flow is supersonic.

Both subsonic and supersonic nozzles and diffusers can be analyzed using the first
law. The first law for an open system is, from Eq. 4-42;

B _ 5 _ , v’ - v
7’“‘ = — We + Zm; (hf T3 T gz;) - ch (hc +5 + 8Ze) (6-1)

in out

]
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N S— N e %
/-— —'\ FIGURE 6-1 Example nozzle
and diffuser: (a) a subsonic nozzle;

{a) B (b) a subsonic diffuser.

/—-\ FIGURE 86-2 A converging—diverging
nozzle for supersonic flow at the exit.

Nozzles and diffusers are typically operated as steady flow devices, so the left-hand
side of Eq. 6-1 is zero. The rate of heat transfer is usvally very small and is neglected.
There is no control volume work in a nozzle or diffuser, since there are no turning shafts,
expanding boundaries, or electrical circuits. The elevation change between inlet and outlet
is usually small or zero, so the potential energy change is rarely important. On the other
hand, the conversion between pressure and velocity is the purpose of nozzles and diffusers,
so kinetic energy is very important. Neglecting transient terms, heat, work, and potential
energy, Eq. 6-1 becomes

. AT V3
0=mny (hl-l-Tl)—mz(hz-l-Tz)

The subscript 1 designates the stream entering and 2 designates the stream exiting, Because
nozzles and diffusers have only one inlet and one outlet, from conservation of mass,

iy =ty

Incorporating this result, the first law for a nozzle or diffuser can be written as

2 2
hy + % =h+ % nozzle or diffuser (6-2)

Flow in a nozzle

Water vapor enters a well-insulated nozzle at 300 kPa and 500°C, with a velocity of 75 m/s.
The entrance area is 0.5 m2. The water vapor exits at 100 kPa and 200°C.

a) Find the exit velocity.
b) Find the exit area.

v

T1=500°C T5=200°C
Py =300 kPa P>=100KkPa
W=75mfs

— | —

Water vapor

W v e

H

i1
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Approach:

Solve the energy equation for a nozzle (Eq. 6-2) for exit velocity. Use values for enthalpy of water
vapor from Table A-12. To find the exit area, apply conservation of mass. Substitute i = p)A
and p = 1/v into the conservation of mass equation. Values for specific volume, v, are in the steam

tables.
Assumptions: Solution:
A1. The nozzle is a) Since the nozzle is well insulated and the flow is steady [A1][A2],
adiabatic. 5 5
i 8 s
A2. The flow is steady. hy + __2_1 it Tz

Solving for exit velocity

Vi =200 — k) + V7

Values for the enthalpy of water vapor can be found in Table A-12. With these values,

2
vy = ‘/2 (3486 — 2875.3) % (%) + (75 %) = 11082

The flow is supersonic at the exit. Note that all the units were converted to consistent ST units. Both
kilograms and joules are consistent SI units, but kI are net. If this is done carefully, the result will
be in the appropriate SI units, in this case m /s.

b) From conservation of mass,

This may also be written
P ViAL = p2 V242
Substituting p = %,

VAL _ VA,
V) - Va

4= () ()

With given values and values from Table A-12,

_(21m\{ 15 2
A2 = (1.1867) (1103) ©5)m

A; = 0.0619m?

Solving for A,,

6.3 TURBINES

e —

A turbine is a modern-day descendant of the windmill. It is a device for extracting energy
from a flowing stream and using it to rotate a shaft. In the past, windmills were used to grind
grain into flour. Today, wind turbines like those shown in Figure 6-3 are used to produce
electric power. The rotating shaft of the turbine drives an electrical generator. The power
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FIGURE 6-3 Three wind
turbines near Madison, NewYork.
Each turbine is 67 m high and can
produce 1.65 MW. (Photo by
author.}

induced within the coils of the generator is provided to homes and businesses through a
distribution network of electric cables.

High-pressure steam can also be used to drive turbines. In a power plant, a boiler
fueled by oil, coal, or nuclear energy produces high-temperature, high-pressure steam. The
steam is fed into a turbine that is then used to drive an electrical generator. Steam turbines
typically have several sets of blades on the same shaft, as shown schematically in Figure 6-4.

Guide vanes
Stator

flow High-
pressure stage
Low-pressure

stage

FIGURE 6-4 Schematic diagram of a steam turbine.

IR
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T T NN T & TR R
FIGURE 6-5 GE's MS7001FB gas turbine on the half shell during assembly. This unit is rated
at 280 MW in combinad cycle {Photo courtesy of General Electric Co., Schenectady, NY).

Figure 6-5 shows an actual turbine installed in a test bed. Each set of blades on the shaft
is called a stage. At the inlet to the turbine, high-pressure fluid strikes the stage with the
smallest diameter. The fluid imparts some of its energy to the turbine as it flows over the
blades and exits the first siage at a lower pressure. The second stage is larger in diameter
so that it can extract energy from a fluid that is now somewhat depleted. Each successive
stage has a larger diameter and higher surface area to draw energy from an increasingly
low-pressure and low-density fluid. The characteristic symbol for a turbine, shown in Figure
6-6, emphasizes its expanding shape.

The turbine rotor shown in Figure 6-4 is supported by bearings and encased within
a stator, which does not rotate. The stator has several stages of stationary blades that are

Steam in

:J/jg

Steam out FIGURE 6-6 Typical symbof used to designate a turbine.
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. . o o
FIGURE 6-7 GE’s A Series reheat steam turbine rated from 85 to 160 MW—final assembly.

[Photo courtesy of General Electric Co., Schenectady, NY).

designed to direct flow over the rotating blades. A photograph of a steam turbine being
lowered into a stator is reproduced as Figure 6-7.

Another type of turbine, the hydroturbine, is used to extract energy from flowing
water. Hydroturbines are descendants of the water wheel. As shown in Figure 6-8a, water
is delivered to the top of the wheel and fiows over the paddles, impelled by gravitational
force. The water wheel was used extensively up until about 1850, when hydroturbines
began to appear. The hydroturbine occupies less space, operates at higher speeds, works
submerged, and is not limited by ice formation. The blades on a hydroturbine rotor are
shown in Figure 6-8b.

Turbines are used not only in generating electric power but also in many other appli-
cations. Gas turbines are used in jet engines, in turbo-charged vehicles, in flow meters, and
even in dental drills,

[N}

iTTTh
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(@) (b)

FIGURE 6-8 (a) A steel-overshot water wheel used extensively in the 19th century.
(Seurce: Daugherty, R.L., Hydraulic Turbines, McGraw-Hiil, NewYork, 1813) (b} A 4.5-m diameter
hydrotrubine runner that delivers 54 MW. (Photograph courtesy of Voith Siemens
Hydropower Generation, Inc.)

To determine the power output of a turbine, the first law for an open system, Eq. 6-1,
is used. In some circumstances, terms can be dropped from the equation because they are
relatively small. For example, the heat loss from the turbine can often be neglected. Any
heat loss to the environment reduces the arnount of work that can be produced, so this heat
loss is minimized by design. Recall that a system with no heat transfer in or out is said to
be adiabatic. Turbines are frequenily idealized as adiabatic.

in a turbine, velocities of entering and leaving streams are often low, so kinetic energy
can be neglected. A useful rule of thumb is that kinetic energy is probably unimportant if air
velocities are less than 30 m/s. In addition, for all turbines except hydroturbines, potential
energy changes are unimportant. In a hydroturbine, the elevation change is the major source
of energy for the turbine, and it certainly must be included.

For an adiabatic turbine with a single inlet at state 1 and a single outlet at state 2
operating in steady state with no kinetic or potential energy eftects, Eq. 6-1 simplifies to

0=—W., +mh —h) adiabatic turbine, no KE or PE 6-3)

This is the simplest meaningful equation for analyzing turbines. If heat transfer,
kinetic energy, or potential energy must be considered, then it is best to start from the first
law, Eq. 6-1, and eliminate small terms, as illustrated in the examples that follow. The work
and the enthalpy terms are never eliminated from the first law for a turbine.
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FIGURE 6-9 P-v diagram for a steam
11 turbine showing two passible operating
conditions starting from two different
states, 1 and 1’. The exit state can be either
single- or two-phase.The inlet state is
2 typically superheated vapor or saturated
vapor. (In the two examples shown,
v both 1 and 1’ are superheated.)

Figure 6-9 shows a P-v diagram for a steam turbine. High-pressure steam enters at
state 1 and low-pressure steam exits at state 2. Sometimes state 2 is in the two-phase region.
Although steam turbines can tolerate some liquid droplets, a quality less than about 0.9 can
lead to unacceptable erosion of the turbine blades. As the steam flows through the turbine,
temperature decreases and specific volume increases. -

Expansion in a steam turbine

Steam enters an adiabatic turbine at 1.2 MPa and 500°C. The inlet pipe is 0.5 m in diameter, and
the steamn flows at 18 m/s. The exit pressure is 20 kPa, and the exit quality is 0.93.

a) Find the exit temperature.
b) Find the power produced.

P1 =1.2 MPa
T, =500°C
¥ =18 mfs tCD

—_—————

PE =20kPa
X = 0.98

Approach:

To solve part a, one must recognize that the exit state has a quality between O and 1; therefore,
it is a two-phase mixture of liquid and vapor. Knowing the exit pressure, you can read the exit
temperature directly from Table A-11.

HELERE




236 CHAPTER& APPLICATIONS OFTHE ENERGY EQUATIONTO QOPEN SYSTEMS

Assumptions:

A1. The flow is steady.
AZ2. The turbine is
adiabatic.

A3. Potential energy
change is zero.

A4, Kinetic energy at the
exit is negligible.

For part b, the energy equation for an open system, Eq. 6-1 is used. The turbine is assumed to
be adiabatic with no change in potential energy. Inlet kinetic energy is caleulated from the known
inlet velocity, while exit kinetic energy is assumed to be negligible. The mass flow rate through
the turbine is calculated from sy = pV74,. The specific volume and enthalpy for the inlet state
are available in Table A-12, while properties at the exit are found using Table A-11. After careful
consideration of units, the power can be calculated from the energy equation.

Solution:

a) For the exit state, the pressure and quality are given. Because the quality is between 0 and |,
the exit condition must be two-phase. Table A-11 gives the properties of a saturated steam—water
mixture with entries in even units of pressure. At 20 kPa, the saturation temperature is 60.06°C.
This is the exit temperature.

b) Define a control volume enclosing the turbine. The first law for this open system is

2
(]/‘
dd“ = Q“, Wm. + Zm, (k + = v - gz,) Zme (he + gze)

out

Assume the turbine is operating in a steady state, [A1] so the left-hand side is zero. There is no
heat transferred for an adiabatic turbine [A2]. In addition, there is no elevation change, so the
potential energy terms may be dropped [A3]. As mentioned previously, if the velocity is less then
about 30 m/fsec, the kinetic energy terms may be neglected. But, since we happen to know the
velocity at the inlet, we include the kinetic energy term just to see how big it is. There is not enongh
information given to calculate the velocity at the exit, but it is probably negligible [A4]. With these
considerations, the first law becomes

2
0=—W, +m (h, + %) — ritin

At the inlet, the steam is superheated. This is evident from Table A-12, because there is an entry at
1.2 MPa and 500°C. The enthalpy from the table is

=376 K
I = 3476 {2

The exit state is two-phase. With values of Ay and 4, from Table A-11,

o hf + X2 (hg - ]’tf)

kb, = 251.4 4 0.98 (2609.7 — 251.4)

2563.

kJ
hy 5 ks

To find the power produced, the mass flow rate is needed. This may be found from

V1A

iy = o VA = V)

Using values for v from Table A-12,

(18 llSl) (05) rm? kg

ff’“: =12T

m?
0.2946 e
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Because there is only one stream in and one stream out and the system is steady, conservation of

mass gives

Power is calculated from the first law as

Hy =fp =

2
ch =1 (hl + %) — thy
2
kg kJ K i 1kI
- 8
W = (12?) 3476 E —2563.5 k_g + 310007

Wey = 41,712 - 30,762 + 1.944 = 10,952%) = 10,9526w

Notice that the last term arose from the kinetic energy, which has a value of only 1.944 kW, It is
negligible compared to the enthalpy terms, which are 41,712 and 30,762 kW. The velocity is only
18 m/s. Recall the rule of thumb that the kinetic energy is important for velocities above about
30 m/s. It would have been appropriate to drop the kinetic energy term in this case.

EXANPLE 6-3 Expansion in a gas turbine

A gas turbine is designed to operate with a mass flow rate of 5.4 kg/s. The turbine drives both a
compressor and a generator, providing 881 kW to the compressor and 1.4 MW to the generator.
A total of 22 kW of heat are lost to the environment from the turbine’s outer casing. If the exit
temperature is 110°C, find the inlet temperature. For gas properties, use the properties of air

Assumptions:

at 110°C.

Approach:

Air

Compressor

o ] |

-

N
=
Controt_~" ™=~

volume

= 5.4 kgfs

D .-

’i/ QOLII'

Generator

Tp=110°C

Select the turbine as the control volume, Start with the first law, because it includes power (W) and
fluid properties from which the inlet temperature may be determined. Assume kinetic and potential
energy are negligible. To find the enthalpy change, assume an ideal gas and use AH = mc, AT.
The total work is the sum of the werk to the compressor and the work to the generator. With this
information and the values of specific heat from Table A-7, the inlet temperature can be calculated.

Solution:

Define the turbine as the control volume under stucy. The first law for an open system is

o . v
dEy _ Oup — W,y + Zm; (h,- + —23“' + 8z

dt

2

2
) - Zﬁle (he + % +gZe)

EERL
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A1 The flow is steady. The turbine is assumed to operate in steady state with one inlet and one outlet [Al]. Kinetic and
A2, Kinetic energy is potential energy effects are assumed to be negligible [A2][A3]. The fitst law reduces to
negligible. . .

A3, Potential energy is 0 =Qc — Wy +(hy — h)

negligible.

A4, Combustion gases The gas is assumed to be air with constant specific heat [A4][AS][A6]. The enthalpy change is then
have the properties of air.

AS5. The combustion AH = mcp AT
gases behave like an o ) )

ideal gas. Substituting /' = mh and expanding the A terms gives

AB. Specific heat is

constaI;lt. hy —hy =, (1) = T2)

Substituting this into the first law results in
0= Qn — Wo, +titc, (T1 — T2)
Solving for the inlet temperature,

T] = ch__ ch - Tz

ey

The specific heat of air at 116°C (383 K) is found by interpolation in Table A-7, The two work

terms are added to give the total control volume work, W,.,.. By the sign convention, oy = — Q.
Then the inlet temperature is

1000 W
(881 + l400—(—22)]kW( b )
T = - o T 110°C
g
(5.4 ?) (1.012 kg-°c) ( o )
T, = 531°C

Comments:

In the problem statement, it was suggested that the specific heat be evaluated at the exit temperature
of 110°C. Atthat point, the inlet temperatore was unknowr. Now that a value for the inlet temperature
is available, it would be more appropriate to estimate the specific heat at the average of the inlet
and outlet temperatures. Then the inlet temperature could be recalculated using this new value of
specific heat. Iterating in this fashion produces a better estimate of the inlet temperature. Because
the specific heat is not a strong function of temperature, only a few iterations would be needed.
We used the properties of air in this example. Actual gas flowing through a gas turbine typically
results from combustion of natural gas and contains nitrogen, carbon dioxide, carbon monoxide,
water vapor, nitrous oxides, excess oxygen, and other gases. Nevertheless, nitrogen dominates,
since it is the major constituent of air and the major constituent in combustion gas. Therefore, air
properties are reasonable to use in this example.

6.4 COMPRESSORS, BLOWERS, FANS, AND PUMPS

A compressor is a device used to raise the pressure of a gas. There are many different
types of compressars, including axial flow, reciprocating, and centrifugal. Figure 6-10
shows an axia! flow compressor, which resembles a gas turbine, Flow enters the stage with
the largest diameter at low pressure and exits the stage with the smallest diameter at high
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Stator

FIGURE 6-10 An axial flow compressor.

pressure. Hence, this compressor is similar to a turbine with the gas flowing in the opposite
direction. Figure 6-11 shows two other types of compressors, one reciprocating and the
other centrifugal. Additional compressor configurations are also available.

Although these various compressors differ greatly in geometry, they can all be ana-
lyzed in the same manner. To drive every compressor, work is added by some external
agent. This agent may be a motor or a turbine. Figure 6-12 shows an axial compressor
driven by a turbine in a jet engine. Heat transfer is typically small in a compressor and is
often neglected. Other terms that are usually insignificant are kinetic and potential energy.
As aresult, the equation for a compressor is identical to that for a turbine, and Eq. 6-3 may
be used.

Blowers and fans also raise the pressure of a gas, but to a lower level than a compres-
sor. If the gas density increases more than 7% from inlet to exit, then the device is called a
compressor. For density increases less than 7%, the gas is assumed to be incompressible and
the device is called a blower or fan. Note that a fan has the lowest pressure rise, and often
the goal is high gas velocity rather than pressure rise. Whether the device is a compressor,
blower, or fan, the same form of the first law, Eq, 6-3, can be used in its analysis.

A pump is used to increase the pressure of a liquid. Eq. 6-3 applies to pumps as well
as to compressors and turbines, Eq. 6-3 is

0= —We, &+ (hy — ho) (6-4)

Typically, a pump does not significantly increase the temperature of a liquid. There are some
frictional losses, and these result in the exiting liquid being slightly hotter than the entering
liquid; however, this effect is not usually significant. Therefore, the pumping process is

Qutlet

Outlet
(a) Reciprocating compressor (b} Centrifugal compressor

FIGURE 6-11 Two types of compressors: {a} reciprocating compressor; (b) centrifugal
compressor.

EHREE
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Air flows through fixed guide Cuter casing provides structural support  Turbine. Turbine blades connected to
vanes between the first-stage and and forms part of the fiow passage. rotating shaft. These are also cooled
second-slage compressor rotors. by air flowing inside them.

Fuel injectors force the fuel
into the combustion chanber. The
liguid fuel is usually broken into small
droplets to facilitate combustion.

Stationary blades form
turbine nozzles. These
are cooled by air flowing
through passages in
Centrifugal second-stage the blades.

compressorrotor . ..

Aft bearing housing

et 4 \\\’ - shl LA Exhaust nozzle. The
e . - pressure of the gas from the
{urbine drops further and the
gas accelerates to form the

Forward bearing housing

Mixed-flow first-stage high-velocity exhaust jet.
compressor rotor. Fixed guide vanes to straighten Struts maintain the relative location
Mixed flow means the flow going into the combustion of the aft bearing housing and the
that the air enters axially chamber. Doing this reduces the outer casing. The struts are also cooled
but leaves with a radial overall engine size. by air flowing through thern.

velogity component.

Combustion chamber. Air from the compressor flows
through many holes in the combustion chamber walls to mix
with fuel and provide a high-temperature gas stream to the turbine nozzles.
FIGURE 6-12 |n this jet engine, air flows through the compressor, where its pressure and
temperature increase. Fuel is infected into the air stream and burned in the combustion
chamber.The high-temperature combustion gases flow through the turbine, which then drives
the compressor, The gases leave the turbine and are expanded in the nozzle, providing thrust.
{Source: J.B. Jones and R.E. Dugan, Engineering Thermodynamics, Prentice Hall, Englewood Cliffs,
New Jersey, 1996, p. 8. Used with permission.)

often considered isothermal. The enthalpy change of an ideal (incompressible) liquid in an
isothermal process is given by Eq. 5-9, which is

hz*h] =V(P2—P1) (6-5)

The rise in enthalpy across a pump becomes

ha=h +v(Pr—Py) pump (6-6)

Substituiing Eq. 6-5 into Eq. 6-4 and solving for power gives an expression for the
work done by a pump:

W = iy (P — P2) pump (6-7)

This is a useful equation for determining pumping power.
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EXANPLE 6-4 Compression of saturated steam

Assumptions:

A Kinetic energy is
negligible.

A2, Potential energy is
negligible.

A3. Flow is steady.

Saturated steam at 230°F enters a compressor and is compressed to 80 psia. The mass flow rate
is 30 lbmvh. Heat loss from the compressor to the surroundings occurs at a rate of 112 Bu/h.
The power input is 1.5 hp. Find the exit steam temperature.

Saturated T = 230°F
steam i1 = 50 Ibm/h
@
i
I .
1
~ W,=15h

! e I el
i ﬂ:#
1
I 1
1 1
1
1
1
L P, = 80 psia

Qgut = 112 Biu/h

Approach:

Choose a control volume around the compressor. Start from the first law, eliminating kinetic energy,
potential energy, and the transient term to get

0=ch—ch+ﬁi(h1—h2)

The enthalpy at the inlet can be determined from the given information. The first law can then
be solved for the exit enthalpy. Using this exit enthalpy and the given outlet pressure, you can
determine the exit temperature from property tables,

Solution:

Define a control velume to enclose the compressor. If you neglect kinetic and potential energy and
assume steady flow [A1][A2][A3], the first law is

0=ch_ch+m(hl _hZ)

State I is saturated steam at 230°F. From Table B-10, k) = 1157.1 Btu/lbm. The first law may be
solved for hy to get

ch _ ch
hz - ) + hl
Because of the sign convention for heat and work, 0., = —Qu, and W, = —Wj,. Substituting
values,
. 2544 %%E
u
_ Btu
b = bm + 1157.1 bm
50 =—
h
b = 12312 B

rhede 1l
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EXAMPLE 6-5

Assumptions:

A1 The oil is
incompressible.

A2. The flow is steady.
A3. The flow is
frictionless.

The final state is determined by two independent properties. State 2 has an enthalpy, #;, of
1231.2 Btu /h and a pressure, P3, of 80 psia. The expected outlet state of a compressor is superheated
vapor. From Table B-12,

T; = 400°F

Determination of pumping power

Oil with a specific gravity of 0.82 is pumped from a pressure of 100 kPa to 550 kPa. The oil flows
at 12 m/s through a pipe 2.5 cm in diameter. Neglecting frictional losses, determine the power
requirement of the pump.

Fi=i e N
D W =12 mls

l d=25cm P, =550 kPa

Oil 5G=0.82

Approach:

Choose a control volume to enclose the pump. The power of the pump may be found from Eg. 6-7,
which is W, = s (P — P2). To find the mass flow rate, use 2 = pYA. The specific volume
of the oil is the inverse of the density. The density is found from the definition of specific gravity,
that is, 0 = 0.82Dwater-

Solution:

The control velume encloses the pump. The mass flow rate of the oil is
d 2
m= pYWA=pVi (5)

Since the specific gravity of the oil is (.82, this becomes
2 k, 25 2 ke
tit = 0.82purer Vit (%) = 0.82 (1000 —%) (122)x (M) =483 -8
m s 5

where the definition of specific gravity has been used. The pumping power is given by Eq. 6-7,
which is [AIJ[AZ][A3]

W,, = v (P1 — P2)
Substituting v = 1/p gives

Wey = (Pr—Pa)fp

Inserting values,

kg 1000 Pa

0.82 (1000 k—%)
m

W, = —2651 W = —2.65kW
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Comments:

The work is negative because work is being done on the fluid in the control volume. By our sign
convention, work done by the control volume is positive and work done on the conirol volume is
negative.

6.5 THROTTLING VALVES

A throttling valve (also called a flow restriction) is a device used to reduce the pressure
of a flowing fluid. The flow restriction produces a large reduction in pressure over a short
distance. The water faucet in a shower is a common example. Other examples of throttles
are shown in Figure 6-13,

The first law for a throttling valve takes on a particularly simple form. Recall that the
first law is

2
i

dE., . . ) Q@ . 92
-—E:— = ch_'ch+Emi (h,—I—T-i-gZ,) —ng (he+Te+gZe)

in oul

No work is done by throttling valves, and they typically operate in steady state with
one inlet and one outlet. Kinetic and potential energy changes are usually negligible. Over
the short distance of the flow restriction, there is insignificant heat transfer, With these
assumptions, the first law for a throttling valve reduces to

h=h throttling valve (6-8)

A throttling valve is said to be an isenthalpic device.
Throttling devices are often used in refrigerators and air conditioners. In this
application, the inlet is usually a saturated liquid and the outlet is a two-phase mixture.

Porous plug

High Low
pressure pressu?e

High E Low
pressure pressure

B)

FIGURE 6-13 Throttling devices.

FITTE
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EXAMPLE 6-6 Throttling of a refrigerant

Assumptions:

A1, Kinetic energy is
negligible.

A2. Potential energy is
negligible.

A3, The flow is steady.
A4, The process is
adiabatic.

AB. No work is done on
or by the device.

R-134a at 140 kPa with a quality of 0.6 is throttled to 100 kPa. Find the exit state.

P, = 140 kPa P, =100 kPa
X =08 ———=—-
P
I 1 1 T
: E
R-134a ——--=- !

Approach:

The control volume is drawn around the throttling valve. The first law for a throttling valve is
I = hp. State | is two-phase, so enthalpy is given by 7y = hy) +x; (hg| - hf]). Since fy = hy,
the exit enthalpy, h;, may be calculated. The exit state has an enthalpy of 4, and a pressure of
100 kPa. However, the exit state could be either two-phase or superheated vapor. To determine
which, check Table A-15. If the outlet enthalpy is between that of the saturated liquid and the
saturated vapor, then it is two-phase. Otherwise, it is superheated vapor,

Solution;

Define a control volume around the trottling valve. For a throttling valve [A1I[A2][A3][A4][AS],
h=h
State 1 is in a two-phase region. Enthalpy is given by
hy = by +x1 (kg — hy1)
Using values from Table A-135,

hy

25774 0.6 (236.04 — 25.77)

hy

kI
151.93 ke

The exit state will have the same enthalpy as state 1 and a pressure of 100 kPa. From Table A-13, k3,
which equals 151.93, falls between iy and &, at 100 kPa. Therefore, state 2 is also in the two-phase
region, and is given by

hy = hipy + 22 (2 hy2)
Solving for xs,

_ ki —hn 15193 —16.29

2T ha—hn | 231.35—16.29

=0.63

Comments:

As the pressure is lowered, the quality rises. Less pressure means a higher proportion of vapor
in the two-phase mixture. Note that the temperature of the refrigerant decreases from —18.8°C to
—26.43°C. In refrigeration systems, farge changes in temperature across throttling valves are used
to obtain the cooling effect. This is discussed in Chapter 8.
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6.6 MIXING CHAMBERS

EXAMPLE 6-7

In a mixing chamber, two or more streams of fluid are mixed and a single stream of fuid
exits, as illustrated in Figure 6-14. A simple example of a mixing chamber is a fancet
that is fed by both hot and cold water lines. Adjusting the valve of this mixing chamber
produces water at a variety of temperatures. We restrict attention to mixing chambers in
which all entering streams have the same chemical composition. Typically, kinetic and
potential energy effects are unimportant for mixing chambers. There may or may not be
any control volume work or heat transfer. When dealing with mixing chambers, it is usnally
best to start with the first law and eliminate terms as appropriate.

FIGURE 6-14 Fluids at different states enter at stations 1
@ ’ @ 3 and 2, are intimately mixed within the mixing chamber, and
exit at station 3.

Heating of a room with infiltration from the exterior

A room is heated by a hot-air system, which supplies 8.5 lbm/min of air at 85°F, Air infiltrates into
the room at a rate of 3.1 Ibm/min from the outside, which is at 0°F. Air leaves through the open
damper in the fireplace. Two people are sitting in the room watching TV. Each person generates
72 Cal/h and the TV generates 330 W, What is the steady-state temperature of the air in the room

assuming perfect mixing?

My = 3.1 Ibm/min
T2 = 00 F

My = 8.5 Ibm/min
T,=85F

Approach:

This preblem is solved by using both conservation of mass and conservation of energy, The flow

rates of air into the room are known. The mass flow rate out must equal the sum of the two entering
mass flow rates. (We assume steady state.) Use conservation of energy assuming no work and
negligible kinetic and potential energy. The heat generated by the two people and the TV set must

be taken into account. To find the enthalpies, assume air is an ideal gas with constant specific heat,

so that As = ¢, AT. Combining the conservation of mass and energy equation, we can solve for
the unknown exit temperature.

PTTT T
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Assumptions:

A1. The flow is steady.
The mass of air within
the room does not
change with time.

AZ. The air is perfectly
mixed before it leaves
the room.

A3. Kinetic energy is
negligible.

Ad. Potential energy is
negligible.

AB. Conduction through
the walls is insignificant.

AB. Air may be treated
a$ an ideal gas.

A7 Specific heat is
constant.

CHAPTER 6 APPLICATIONS OF THE ENERGY EQUATIONTC OPEN SYSTEMS

Solution:

We define the control volume to include the volume inside the room, excluding the people, the TV
set, and any other furnishings. The room is a mixing chamber with two streams entering, one at 85°F
and the other at 0°F. There is also air leaving the room through the fireplace [A1]. Conservation of
mass requires

my iy =1

where stream 1 is the hot-air supply, stream 2 is the infiltration of cold air that leaks into the room,
and stream 3 is the mixed air that leaves the room [A2]. Using given values for the entering streams,
Ibm

y=854+31=116—
min

The first law for a steady process is

0= ch - ch + Z m; (k + = '+' gz,)

There is no work done on or by the air in the control volume. Kinetic and potential energy may
be neglected [A3][A4]. There is heat added to the control volume by the two people and the TV.
‘We assume no heat is conducted through the walls [A5]. With these considerations, the first law
reduces to

> i (h + =t +gzg)

Que

0 = Qeu -+ rinhy + finghy — razhy
Using conservation of mass, this may be rewritten as
0= Qv 4 rihy + tighy — ity + #i) b3
Rearranging terms,
0 = Qo -+ i1y (g — h3) + 12 (hp — ha)

If we make the reasonable assumption that air is an ideal gas with constant specific heat, then
[AG][AT]

0= ch + ”hlcp (I —T3)+ ﬁt’ch (T - T3)

Solving for T,

Qa + mlc,,Tl + #ncp T
mlc,, -l—mch

;=

or

Q” + ATy + Ty

Ty =
? Aty + fi

The heat generated by the people and the TV set is

- Cal 1 B Ih 1Bt /s 1kW \ [ 60s
Qo = (@) (72 T) (O.ZSZCaI) (GOmin) +(330W) (1.055kw T000W ) \ Tmin

_ Btu
Qw =283 00 min
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The specific heat of air may be found in Table B-8. Note that the variation with temperature is
insignificant in this case. With given values, the exit temperature is

(28'3 Eﬁ?l) b Ib:

n o 111 o
W—Bm + (8.5 ﬁ) (85°F) + (3.1 —min) (0°F)

“* bm-R

Ty =

(3.5 —"’¥“) + (3.1 —"’!n)

min min

Ty = 72.5°F

Commentis:

In reality, there will be some heat loss by conduction through the walls of the room, but that
effect is not considered here. Note that it is not necessary to use absolute temperature because only
temperature differences are involved in the energy equation. If absolute temperature had been used,
the final result would have been the same, If the power generated by the TV and the people had not
been included in the analysis, the final temperature would have been 62.3°F,

6.7 HEAT EXCHANGERS

In a heat exchanger, two different fluid streams exchange heat across a wall. An example is
shown in Figure 6-15. Here a cold fluid enters the inner tube of the heat exchanger. A hot
fluid enters the surrounding jacket and flows over the outside of the tube. The cold fluid
temperature increases, while the hot fluid temperature decreases.

Heat exchangers are built in a wide variety of configurations for many different
purposes. Chapter 13 discusses heat exchangers in depth, and Figure 13-1 illustrates several

I@ Hot

> FIGURE 6-15 A one-pass shell and tube heat
exchanger: (a) geometry; (b} temperature as a
(b) function of x.
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EXAMPLE 6-8

types of heat exchangers. In this section, we focus attention on one aspect of heat exchanger
design: the application of the energy equation to heat exchangers.

You may be familiar with the heat exchanger in your automobile, which, for historical
reasons, is called a radiator. Air flows over the radiator as the vehicle moves and cools
the water-antifreeze mixture inside the radiator. The water—antifreeze mixture, in turn,
is circulated through the engine block to cool it. Heat exchangers are widely used in the
chemical process industry, in power plants, in refrigeration equipment, and in numerous
other applications. Sometimes the {luid within the heat exchanger changes phase. In that
case, the heat exchanger is usuvally called a condenser or an evaporator.

All heat exchangers share certain features in common. Usually kinetic and potential
energy changes are negligible. In addition, no control volume work is done within a heat
exchanger. While there may be significant energy flow from one fluid to another within
the heat exchanger, very little heat usually leaves or enters the heat exchanger from the
surroundings. So, if the entire heat exchanger is selected as the control volume, it is
reasonable to assume adiabatic conditions, On the other hand, if a control volume is defined
as just the cold or just the hot fluid, the heat transfer into or out of the control volume is a
major term in the energy equation. The selection of control volume depends on the nature
of the analysis, on what is known, on what is sought, and so on. Choosing an appropriate
control volume is a matter of experience.

The pressure changes within a heat exchanger are typically very small. There must
be some pressure change so that the fluids will flow; however, this pressure change is
small enough to have negligible influence on the thermodynamic states. If, for example,
a fluid condenses within a heat exchanger, the condensation may be approximated as
a constant-pressure process even though a small pressure change is necessary to drive
the flow.

Evaporation of refrigerant in a heat exchanger

Refrigerant R-134a enters the evaporator of an air-conditioning system with a quality of (.42 and a
temperature of —12°C. It exits as saturated vapor. The flow rate of refrigerant is 8 kg/min. The other
fluid, air, enters at 25°C and atmospheric pressure and exits at [8°C. Find the volumetric flow rate
of air at the exit.

@ Air
Ty=25°C
1T TTTTTTh
1 1
—+— ——
@ ! | @ R-134a
BR—134a (o __ I X =
x; =042 T,=-12°C
Ti=—12°C @ Air
T,=18°C

Approach:

Select the entire heat exchanger as the control volume. All terms in the energy equation are dropped
except the enthalpy terms. The air and the R-134a do not mix, so #y = #p and iy = .
For the refrigerant, use Table A-i4 to find enthalpy. For the air, use ideal gas relations to find
enthalpy.



Assumptions:

A1 The flow is steady.
A2. Kinetic energy is
negligible.

A3. Potential energy is
negligible.

Ad. The exterior casing
of the heat exchanger is
perfectly insulated.

AD. Specific heat is
constant,

6.7 HEAT EXCHANGERS

Solution:

Define the control volume to enclose the entire heat exchanger. The first law is

dEy _ 5 _ , v} . v
dtw = Qo — ch"‘Zmi (hi+ T! +ng) - Zme (he+ Te + 82¢
mn

out
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Assume that the heat exchanger operates in steady state [Al]. Kinetic and potential energy changes
are negligible, and no work is done [A2][A3]. Also assume that there is no heat transfer between

the outside of the heat exchanger and the environment [A4]. The first law then becomes

0 = ryhy + msha — Bk — Mahy

The air and the refrigerant do not mix in the heat exchanger. Therefore, by conservation of mass,

my = iy = i,
mS = m‘i = rha
Using these in the first law,

0 =1ty (1 — o) + 1 (B3 — ha)

Solving for the mass flow rate of the air,

e U — i)
M s — )

ity =

Assuming a constant specific heat for the air [A5],

(hy — h2)

tig = —pity—oL 2
@ = T e T — Ta)

The enthalpy at state 1 is
hy = by + 31 (g — Iy)
Using Table A-14,

- k] - K
hy = 3439 ke -+ (0.42) (240 — 34.39) ke

=M
=121

With values from Tables A-14 and A-8,

(121 - 240) &

g = —8 & — 136 &
min | K 25 - 18)°C min
kg-K (
The volumetric flow rate at the exit is
"/ _ I].‘Ia
= 24

el

N ENN
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EXAMPLE 6-S

Assumptions:

A1, The system is steady.
A2. No work is done on
ar by the control volume,

CHAPTER 6 APPLICATIONS OF THE ENERGY EQUATION TO OPEN SYSTEMS

The density of air could be evaluated from the ideal gas law using atmosphere pressure and the
exit temperature of the air stream. However, it is easier to use Table A-7, which give the density of

air at atmospheric pressure for a range of temperatures. From this table, p = 1.22 kg/m® and the
volumetric flow rate becomes

136 &

min
1228
m

Vi

3
1 B

V. d
4 min

This is the amount of cold air that can be supplied by the air conditioner.

Design of an air conditioner

The cooling coil of an air conditioner is to be designed for a cooling capacity of 25 kW. The cooling
coil is a heat exchanger that has an array of inline copper tubes (as shown in the schematic) with
inside diameter of 4.8 mm and outside diameter of 6.0 mm. Refrigerant 134a, which flows inside the
tubes, enters the heat exchanger at a pressure of 0.20 MPa and 15% quality and leaves as a saturated
vapor. The outlet velocity of the refrigerant is set at 40 m/s, and the resulting refrigerant-side heat
transfer coefficient is 350 W/m?-K, Air at 40°C flows perpendicular to the outside of the tubes, with
a heat transfer coefficient of 175 W/m?-K; because of the high air mass flow rate, we can assume the
air temperature remains relatively constant (as a first approximation). Determine the following:

a) The mass flow rate of the refrigerant (in kg/s)
) The number of tubes required, and
¢} The length of the tubes (in m)

Air ey a
e SRIOLS

40°C S EEieie.
hgyr =175 WIM? - K 5. '§%§%§%—i§§
?i 2

b
(EE=d :

X, =0.15
B = 350 W/im2 - K

Approach:

Define the control volume to include only the volume inside the tubes where refrigerant flows
{exclude the air). Because we are given the heat transfer rate, we can use the open-system energy
equation to calculate the required total mass flow rate. Once the mass flow rate is known, the given
diameter and velocity in each tube can be used to calculate the required number of tubes. The heat
transfer rate equation then is used to calculate the required tube length.

Solution:

@) ‘We define the control volume to contain only the refrigerant. For this control volume, assuming
[Al], [A2], and {A3], the open systemn energy equation is

0 =Q + ik — fighs



A3. Potential and kinetic
energy effects are
negligible.

A4, There is no pressure
drop across the heat
exchanger.

AB, The heat transfer is
one-dimensional.
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Trom the conservation of mass equation, using the same assumptions,
O=wmy—rmy — M=M=
Combining the two equations, and solving for mass flow rate,
PR
h2 - h]

From Table A-15 for R-134a at 0.20 MPa, T, = —10.09°C, iy = 36.84 kl/kg, h, = 24130 kl/kg,
and v, = 0.0993 m*/kg. For the entering refrigerant,

By = Ry + 21 (kg — k)
hy = 36.84 + (0.15)(241.30 — 36.84) = 67.51 kI /kg

For the leaving refrigerant, assuming [A4), ks = h,. Because heat transfer is to the control volume,
the heat transfer rate is positive:
25kW) {1 kI /KW
e W (K/IWS) o ke
(2413 — 67.51)kJ/kg s

b) The definition of mass flow rate is

m=pya=T4
For multiple tubes, N, in parallel, A = Nz D? / 4. Substituting this into the mass flow rate expression
and seiving for N:

4y 4(0.144kg/s) (0.0993 m° [kg)

= = = 19.73 tubes
7D/ 7 (0.0048m)” (40m/s) !

We need an integral number of tubes, so we use N = 20,
¢) The air and the refrigerant have constant temperatures; so assuming [AS5], the heat transfer rate
equation is

5 _ AT
Q_R!al

The total thermal resistance is composed two convective resistances and one conduction resistance:

Ry = Rref + Rcond + Rair

where
PO 1 _ 000947 m-K
" 7 huymDIN ~ (350 W/m®-K) x (0.0048 m) L (20) L W
1 1 _ 00152 mK

m
Ry = = = m-5
"7 hairwDLN T (175W /m?-K) 7 (0.006 m) L (20) L W

From Table A-2 for copper, & = 401 W/m-K.

e _In(D./D) _  W(0006/00048) _ 44310 mK
cond = "OmkLN 271 (401W/m.K)L (21 3 W

T

R

[
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At0.2 MPa, the saturation temperature of R-134a is Ty, = —10.09°C. (See Table A-15.) Combining
the resistances with the heat transfer rate equation, and solving for length, L,

L (23000W) (0.00947 + 4.43 x 107 + 0.0152) (m-K /W)

=123m

Comments:

[40 — (—10.09)}K

In this example, we needed to use conservation of mass, conservation of energy, and the heat transfer
rate equation, with appropriale resistances, in a sequential order. To accommodate this length in a
reasonably sized package, the tubes would be laid out in a serpentine pattern. Note that the thermal
resistance for conduction through the metal tube wall is very small compared to the convective
resistances and could have been neglected.

6.8 TRANSIENT PROCESSES

(Go to www.wiley.com/college/kaminski)

SUMMARY

The first law for an open system is

dEp _ 5 o . v
7“' = o — Weo £ Zfﬂi (h.‘ + T,' +ng)

in

2
- the (hc + q;:e ‘I'gZe)

out

In an adiabatic nozzle or diffuser, the first Iaw often reduces to

(-V-Z
it =kt

i
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Problems designated with WEB refer to material available at
www.wiley.com/college/kaminski.

NOZZLES AND DIFFUSERS

P6-1 Steam at 160 psia and 400°F enters a nozzle with a volu-
metric flow rate of 6,615 cfm (cubic feet per minute). The inlet
area is 14.5 in.2. If the steam leaves at 1500 ft/s at a pressure of
40 psia, find the exit temperature.

P6-2 Oxygen at 220°F enters a well-insulated nozzle of inlet
diameter 0.6 ft. The inlet velocity is 60 ft/sec. The oxygen leaves
at 75°F, 10 psia. The exit area is 0.01767 ft>. Calculate the
pressure at the inlet.

P6-3 A well-insulated nozzle has an entrance area of 0.28 m?
and an exit area of 0.157 m2. Air enters at 2 velocity of 65 mfs
and leaves at 274 m/s. The exit pressure is 101 kPa, and the exit
temperature is 12°C. What is the entrance pressure?

P6-4 Carbon monoxide enters a nozzle at 520 kPa, 100°C,
with a velocity of 10 m/s. The gas exits at 120 kPa and 500 m/s.
Assuming no heat transfer and ideal gas behavior, find the exit
temperature.

P6-5 Low-velocity steam with negligible kinetic energy enters
anozzle at 320°C, 3 MPa. The steam leaves the nozzle at 2 MPa
with a velocity of 410 m/s. The mass flow rate is 0.37 kg/s.

a. Determine the exit state.
b. Determine the exit area.

P6-6 Steam enters a diffuser at 250°C and 50 kPa and exits at
300°C and 150 kPa. The diameter at the entrance is 0.25 m and
the diameter at the exit is 0.5 m. If the mass flow rate is 9.4 kg/s,
find the heat transfer to the surroundings.

P6-7 Air enters a diffuser at 50 kPa, 85°C with a velocity of
250 m/s. The exit pressure is atmospheric at 101 kPa. The exit
temperature is 110°C. The diameter at the inlet is 8 cm.

a. Find the exit velocity.

b. Find the diameter at the exit.

Assume constant specific heats.

P6-8 Superheated steam enters a well-insulated diffuser at 14.7

psia, 320°F, and 400 ft/s. The steam exits as saturated vapor at a
very low speed. Find the exit pressure and temperature.

TURBINES

P6-9 Steam enters an adiabatic turbine at 0.8 MPa and 500°C.
It exits at 0.05 MPa and 150°C. If the turbine develops 24.5 MW
of power, what is the mass flow rate?

P6-10  Air enters an adiabatic turbine at 900 K and 1000 kPa.
The air exits at 400 K and 100 kPa with a velocity of 30 m/s.
Kinetic and potential energy changes are negligible. If the power
delivered by the turbine is 1000 kKW,

a. find the mass fiow rate.
b. find the diameter of the duct at the exit.

P6-11 Saturated steam at 320°C enters a well-insulated
turbine. The mass flow rate is 2 kgfs and the exit pressure is
50 kPa. Determine the final state if the power produced is

a. 100 kW,
b. 400 kW.

P6-12  Superheated steam at 1.6 MPa, 600°C enters a well-
insulated turbine. The exit pressure is 50 kPa. The turbine
produces 10 MW of power. If the exit pipe is 1.6 m in diam-
eter and carries 11 kgfs of flow, find the velocity at the exit,
Neglect kinetic energy.

P6-13  Air at 550°C and 900 kPa is expanded through an
adiabatic gas turbine to final conditions of 100 kPa and 300°C.
The total power output desired is 1 MW. If the inlet velocity is
30 m/fs, what should the inlet pipe diameter be? Neglect kinetic
and potential energy.

P6-14  Air at 510°C and 450 kPa enters an ideal, adiabatic
turbine. The exit pressure is 101 kPa. In steady state, the turbine
produces 50 kW of power.

a. Find the exit temperature. (Hint: use Eg. 2-56)
b. Find the mass flow rate.

P6-15  Saturated steam at 3 MPa enters a well-insulated turbine
operating in steady state. The turbine produces 600 kW of power.
The mass flow rate through the turbine is 84 kg/min and the exit
quality is 0.93. Find the exit temperature,

COMPRESSORS

P6-16 In a 3-hp compressor, carbon dioxide flowing at
0.023 Ibm/s is compressed to 120 psia. The gas enters at
60°F and 14.7 psia. The inlet and outlet pipes have the same
diameter. Find the final temperature and the volumetric flow
rate at the exit (in ft’/min). Assume constant specific heat
at 100°F.

P6-17 A well-insulated compresser is used to raise saturated
R-134a vapor at a pressure of 360 kPa to a final pressure of
900 kPa. The compressor operates in steady state with a power
input of 850 W. If the flow rate is 0.038 kg/s, what is the final
temperature?

P6-18 Air flowing at 0.5 m*/min enters a compressor at 101
kPa and 25°C. The air exits at 600 kPa and 300°C. During this
process, 250 W of heat are lost to the environment. What is the
required power input?

P6-19 Refrigerant 134a enters a compressor at 0°F and 10 psia
with a volumetric flow rate of 15 f3/min. The refrigerant exits
at 70 psia and 140°F. If the power input is 2 hp, find the rate of
heat transfer in Btu/h.

K]

REE
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PUMPS

P6-20 A pump is used to raise the pressure of a stream of water
from 10 kPato 0.7 MPa. The temperature of the water is the same
at the inlet and outlet and equal to 20°C. The velocity also does
not change across the pump. If the mass flow rate is 14 kg/s,
what power is needed to drive the pump? Assume frictionless
flow and no significant elevation change.

P6-21 A 2-hp pump is used to raise the pressure of saturated
liquid water at 5 psia to a higher value. Assume the velocity is
constant, the water is incompressible, and the flow is frictionless.
If the mass flow rate is 6 lbm/s, find the final pressure.

P6-22 Water is pumped at 12 m/s through a pipe of diameter
1.2 cm. The inlet pressure is 30 kPa. If the pump delivers 6 kW,
find the final pressure. Assume frictionless, incompressible flow
with no elevation or velocity changes.

P6-23 A 1-hp pump delivers oil at a rate of 10 lbm/s through a
pipe 0.75 in. in diameter. There is no eievation change between
inlet and exit, no velocity change, and no oil temperature change.
The oil density is 56 [bm/ft}. Find the pressure rise across the
pump.

P6-24 An architect needs to pump 2.3 Ibm/s of water to the
top of the Empire State Building, which is about 1000 ft high.
Assume water at 45 psia is available at the base of the building.
What is the power of the pump needed, in hp, if the flow is
assumed to be frictionless? The velocity of the water is constant.

@
P, =14.7 psia
1000 ft

@

£y =45 psia

THROTTLING RDEVICES

P6-25 Air at 150°C, 40 kPa is throttled to 100 kPa. The inlet
velocity is 3.6 m/s. Find the exit velocity.

P6-26  Saturated liquid R-134a at 24°C is throttled until the
final quality is 0.116. Find the final temperature and pressure.