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Preface 

This book was written as a textbook or guidebook on fluid mechanics for 
students or junior engineers studying mechanical or civil engineering. The 
recent progress in the science of visualisation and computational fluid 
dynamics is astounding. In this book, effort has been made to introduce 
students/engineers to fluid mechanics by making explanations easy to 
understand, including recent information and comparing the theories with 
actual phenomena. 

Fluid mechanics has hitherto been divided into 'hydraulics', dealing with 
the experimental side, and 'hydrodynamics', dealing with the theoretical side. 
In recent years, however, both have merged into an inseparable single science. 
A great deal was contributed by developments in the science of visualisation 
and by the progress in computational fluid dynamics using advances in 
computers. This book is written from this point of view. 

The following features are included in the book: 

1. Many illustrations, photographs and items of interest are presented for 
easy reading. 

2. Portrait sketches of 17 selected pioneers who contributed to the 
development of fluid mechanics are inserted, together with brief 
descriptions of their achievements in the field. 

3. Related major books and papers are presented in footnotes to facilitate 
advanced study. 

4. Exercises appear at the ends of chapters to test understanding of the 
chapter topic. 

5. Special emphasis is placed on flow visualisation and computational fluid 
dynamics by including 14 colour plates to assist understanding. 

Books and papers by senior scholars throughout the world are referenced, 
with special acknowledgements to some of them. Among these, Professor 
R. F. Boucher, one of my oldest friends, assumed the role of editor of the 
English edition and made numerous revisions and additions by checking the 
book minutely during his busy time as Principal and Vice-Chancellor of 
UMIST. Another is Professor K. Kanayama of Musashino Academia 
Musicae who made many suggestions as my private language adviser. In 
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addition, Mr Matthew Flynn and Dr Liz Gooster of Arnold took much 
trouble over the tedious editing work. I take this opportunity to offer my 
deepest appreciation to them all. 

Yasuki Nakayama 
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History of fluid mechanics 

~iiiiiiiiiiiiiiii~i~"'~iii~ '~'~iiiiiii!i~ ~'~ ~.....~iiiii~.......~i~ii~i~.....~i~iii!ii~ii~!~i~i~iii~i~i~i~iii~®~!~!~i~iii~i~ii~!~ ~'~'~- ~i~i~i~ii!}i!i~iiii~iiiiiiiii~iiiiiiiiiiii~!~!i!~ii~iiiiiiiiiiii~iii~iiii~i~i~i~iii~ii~i~iiii~!iiiii!~ii~iii®iii~i~i~iiiiiiiiiiiiiii~ 

There is air around us, and there are rivers and seas near us. 'The flow of a 
river never ceases to go past, nevertheless it is not the same water as before. 
Bubbles floating along on the stagnant water now vanish and then develop 
but have never remained.' So stated Chohmei Kamo, the famous thirteenth- 
century essayist of Japan, in the prologue of Hohjohki, his collection of 
essays. In this way, the air and the water of rivers and seas are always 
moving. Such a movement of gas or liquid (collectively called 'fluid') is called 
the 'flow', and the study of this is 'fluid mechanics'. 

While the flow of the air and the water of rivers and seas are flows of our 
concern, so also are the flows of water, sewage and gas in pipes, in irrigation 
canals, and around rockets, aircraft, express trains, automobiles and boats. 
And so too is the resistance which acts on such flows. 

Throwing baseballs and hitting golf balls are all acts of flow. 
Furthermore, the movement of people on the platform of a railway station 
or at the intersection of streets can be regarded as forms of flow. In a wider 
sense, the movement of social phenomena, information or history could be 
regarded as a flow, too. In this way, we are in so close a relationship to flow 
that the 'fluid mechanics' which studies flow is really a very familiar thing 
to us. 

!i~i~i~i~i~i~s,~,~'~s,'~'~'~ ................ ~®~'~ ~ i~i i~i~ ~i~ii~i~i~i~!~i~i~i .............. ~i~i~i~!~i~iiii!~ii~i~iii~i~I~i~i~i~ii~i~ii~iii~ii~!ii~i~i~i i i ~ ~ ~ ~  ~ 

The science of flow has been classified into hydraulics, which developed from 
experimental studies, and hydrodynamics, which developed through 
theoretical studies. In recent years, however, both have merged into the single 
discipline called fluid mechanics. 

Hydraulics developed as a purely empirical science with practical 
techniques beginning in prehistoric times. As our ancestors settled to engage 
in farming and their hamlets developed into villages, the continuous supply 
of a proper quantity of water and the transport of essential food and 
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Fig. 1.1 Restored arch of Roman aqueduct in Compania Plain, Italy 

materials posed the most important problems. In this sense, it is believed that 
hydraulics was born in the utilisation of water channels and ships. 

Prehistoric relics of irrigation canals were discovered in Egypt and 
Mesopotamia, and it has been confirmed that canals had been constructed 
more than 4000 years Bc. 

Water in cities is said to have began in Jerusalem, where a reservoir to 
store water and a masonry channel to guide the water were constructed. 
Water canals were also constructed in Greece and other places. Above all, 
however, it was the Romans who constructed channels throughout the 
Roman Empire. Even today their remains are still visible in many places in 
Europe (Fig. 1.1). 

The city water system in those days guided relatively clear water from far 
away to fountains, baths and public buildings. Citizens then fetched the water 
from water supply stations at high street corners etc. The quantity of water 
a day used by a citizen in those days is said to be approximately 180 litres. 
Today, the amount of water used per capita per day in an average household 
is said to be approximately 240 litres. Therefore, even about 2000 years ago, 
a considerably high level of cultural life occurred. 

As stated above, the history of the city water system is very old. But in 
the development process of city water systems, in order to transport water 
effectively, the shape and size of the water conduit had to be designed and its 

t ~ , ~ / ~ ~ ' w ~  ~ , .  ~ ~ ~ ~  
'..~r." ~'~'~cr..~ - " ~,~,'" -.. . . . .  e . ~ .  ~ . . . . . .  ~ . , - ~ . . " - ~ ~ ~  

Fig. 1.2 Relief of ancient Egyptian ship 
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Fig. 1.3 Ancient Greek ship depicted on old vase 

inclination or supply pressure had to be adjusted to overcome friction with 
the wall of the conduit. This gave rise to much invention and progress in 
overcoming hydraulic problems. 

On the other hand, the origin of the ship is not clear, but it is easy to 
imagine the course of progress from log to raft, from manual propulsion to 
sails, and from river to ocean navigation. The Phoenicians and Egyptians 
built huge, excellent ships. The relief work shown in Fig. 1.2, which was 
made about 2700BC, clearly depicts a ship which existed at that time. The 
Greeks also left various records of ships. One of them is a beautiful picture 
of a ship depicted on an old Grecian vase, as shown in Fig. 1.3. As these 
objects indicate, it was by progress in shipbuilding and also navigation 
techniques that allowed much fundamental hydraulic knowledge to be 
accumulated. 

Before proceeding to describe the development of hydraulics, the 
Renaissance period of Leonardo da Vinci in particular should be recalled. 
Popularly he is well known as a splendid artist, but he was an excellent 
scientist, too. He was so well versed in the laws of natural science that he 
stated that 'a body tries to drop down onto the earth through the shortest 
path', and also that 'a body gives air the same force as the resistance which 
air gives the body'. These statements preceded Newton's law of gravity and 
motion (law of action and reaction). 

Particularly interesting in the history of hydraulics is Leonardo's note 
where a vast description is made of the movement of water, eddies, water 
waves, falling water, the destructive force of water, floating bodies, efflux and 
the flow in a tube/conduit to hydraulic machinery. As examples, Fig. 1.4 is 
a sketch of the flow around an obstacle, and Fig. 1.5 shows the development 
of vortices in the separation region. Leonardo was the first to find the least 
resistive 'streamline' shape. 



4 History of fluid mechanics 

Leonardo da Vind (1452-1519) 
An all-round genius born in Italy. His unceasing zeal 
for the truth and incomparable power of imagination 
are apparent in numerous sketches and astonishing 
design charts of implements, precise human 
anatomical charts and flow charts of fluids. He drew 
streamlines and vortices on these flow charts, which 
almost satisfy our present needs. It can therefore be 
said that he ingeniously suggested modern flow 
visualisation. 

In addition, he made many discoveries and observations in the field of 
hydraulics. He forecast laws such as the drag and movement of a jet or falling 
water which only later scholars were to discover. Furthermore he advocated 
the observation of internal flow by floating particles in water, i.e. 
'visualisation of the flow'. Indeed, Leonardo was a great pioneer who opened 
up the field of hydraulics. Excellent researchers followed in his footsteps, 
and hydraulics progressed greatly from the seventeenth to the twentieth 
century. 

" p a  ,,,."t "" 

,. ~.,~.<~... ~,~.- -~ ..... 
, " "  " . ' . ~  . ~ ; , .  ~ . .3 r~ . , .  ~ .  

t- -...~.~. ~ -..- .  

;"~-~.t - ~'~'~ ~'~K ~" • 

"~" " .~  t l  ~''~ 'e ' l~"d" '  "" '1 "1"" ~"'l ~1' ' d ' i '~9"  " / l '~r  

" ; 41~  o t "e , 'v 4 n w o. lv ,,~ "# .~ ~ .V l,i #i.l ~ o" 

e d , ~ ,  

', " ,.e,i~ ~,-~ ~ ~ "} 

= .~ -, " • o 

dl-o ,,¢ ,,,g~ ~ ' ~ ~ "  ~ ° " 

Fig. 1.4 Sketches from Leonardo da Vincrs notes (No. 1) 
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- . , - ~ . .  

Fig. 1.5 Sketches from Leonardo da Vinci's notes (No. 2) 

On the other hand, the advent of hydrodynamics, which tackles fluid 
movement both mathematically and theoretically, was considerably later 
than that of hydraulics. Its foundations were laid in the eighteenth century. 
Complete theoretical equations for the flow of non-viscous (non-frictional) 
fluid were derived by Euler (see page 59) and other researchers. Thereby, 
various flows were mathematically describable. Nevertheless, the com- 
putation according to these theories of the force acting on a body or the state 
of flow resulted in a very different outcome from the experimentally observed 
result. 

In this way, hydrodynamics was thought to be without practical use. In 
the nineteenth century, however, it made such progress as to compete fully 
with hydraulics. One example of such progress was the derivation of the 
equation for the movement of a viscous fluid by Navier and Stokes. 
Unfortunately, since this equation has convection terms among the terms 
expressing the inertia (the terms expressing the force which varies from place 
to place), which renders the equation nonlinear, it was not an easy thing to 
obtain the analytical solution for general flows - only such special flows as 
laminar flow between parallel plates and in a round tube were solved. 

Meanwhile, however, in 1869 an important paper was published which 
connected hydraulics and hydrodynamics. This was the report in which 
Kirchhoff, a German physicist (1824-87), computed the coefficient of 
contraction for the jet from a two-dimensional orifice as 0.611. This value 
coincided very closely with the experimental value for the case of an actual 
orifice- approximately 0.60. 

As it was then possible to compute a value near the actual value, 
hydrodynamics was re-evaluated by hydraulics scholars. Furthermore, in the 
present age, with the progress in electronic computers and the development 
of various numerical techniques in hydrodynamics, it is now possible to 
obtain numerical solutions of the Navier-Stokes equation. Thus the barrier 
between hydraulics and hydrodynamics has now been completely removed, 
and the field is probably on the eve of a big leap into a new age. 



Characteristics of a fluid 
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Fluids are divided into liquids and gases. A liquid is hard to compress and 
as in the ancient saying 'Water takes the shape of the vessel containing it', it 
changes its shape according to the shape of its container with an upper free 
surface. Gas on the other hand is easy to compress, and fully expands to fill 
its container. There is thus no free surface. 

Consequently, an important characteristic of a fluid from the viewpoint 
of fluid mechanics is its compressibility. Another characteristic is its viscosity. 
Whereas a solid shows its elasticity in tension, compression or shearing stress, 
a fluid does so only for compression. In other words, a fluid increases its 
pressure against compression, trying to retain its original volume. This 
characteristic is called compressibility. Furthermore, a fluid shows resistance 
whenever two layers slide over each other. This characteristic is called 
viscosity. 

In general, liquids are called incompressible fluids and gases compressible 
fluids. Nevertheless, for liquids, compressibility must be taken into account 
whenever they are highly pressurised, and for gases compressibility may be 
disregarded whenever the change in pressure is small. Although a fluid is an 
aggregate of molecules in constant motion, the mean free path of these 
molecules is 0.06 ~tm or so even for air of normal temperature and pressure, 
so a fluid is treated as a continuous isotropic substance. 

Meanwhile, a non-existent, assumed fluid without either viscosity or com- 
pressibility is called an ideal fluid or perfect fluid. A fluid with compressibility 
but without viscosity is occasionally discriminated and called a perfect fluid, 
too. Furthermore, a gas subject to Boyle's-Charles' law is called a perfect or 
ideal gas. 

All physical quantities are given by a few fundamental quantities or their 
combinations. The units of such fundamental quantities are called base 
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units, combinations of them being called derived units. The system in which 
length, mass and time are adopted as the basic quantities, and from which 
the units of other quantities are derived, is called the absolute system of 
units. 

2.2.1 Absolute system of units 

MK$ system of units 
This is the system of units where the metre (m) is used for the unit of length, 
kilogram (kg) for the unit of mass, and second (s) for the unit of time as the 
base units. 

C6S system of units 
This is the system of units where the centimetre (cm) is used for length, 
gram (g) for mass, and second (s) for time as the base units. 

International system of units ($1) 
SI, the abbreviation of La Syst6me International d'Unit6s, is the system 
developed from the MKS system of units. It is a consistent and reasonable 
system of units which makes it a rule to adopt only one unit for each of 
the various quantities used in such fields as science, education and 
industry. 

There are seven fundamental SI units, namely: metre (m) for length, 
kilogram (kg) for mass, second (s) for time, ampere (A) for electric 
current, kelvin (K) for thermodynamic temperature, mole (mol) for mass 
quantity and candela (cd) for intensity of light. Derived units consist of 
these units. 

Table 2.1 Dimensions and units 
,, 

Quantity Absolute system of units 

Units 

Length 
Mass 
Time 
Velocity 
Acceleration 
Density 
Force 
Pressure, stress 
Energy, work 
Viscosity 
Kinematic viscosity 

1 
0 
0 
1 
1 

-3 
1 

-1 
2 

-1 
2 

0 
0 
1 

-1 
-2  

0 
-2  
-2  
-2  
-1 
-1 

m 

kg 
S 

m / s  
m/s 2 
kg/m 3 
N=kgm/s  2 
Pa =N/m 2 
J 
Pas 
mE/s  
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2.2.2 Dimension 

All physical quantities are expressed in combinations of base units. The index 
number of the combination of base units expressing a certain physical 
quantity is called the dimension, as follows. 

In the absolute system of units the length, mass and time are 
respectively expressed by L, M and T. Put Q as a certain physical 
quantity and c as a proportional constant, and assume that they are 
expressed as follows: 

Q = c L " M ~ T  ~' (SI) (2.1) 

where e, fl and V are respectively called the dimensions of Q for L, M, T. 
Table 2.1 shows the dimensions of various quantities. 

The mass per unit volume of material is called the density, which is 
generally expressed by the symbol p. The density of a gas changes according 
to the pressure, but that of a liquid may be considered unchangeable in 
general. The units of density are kg/m 3 (SI). The density of water at 4°C 
and 1 atm (101 325 Pa, standard atmospheric pressure; see Section 3.1.1) is 
1000 kg/m 3. 

The ratio of the density of a material p to the density of water Pw is called 
the specific gravity, which is expressed by the symbol s: 

s = P/Pw (2.2) 

The reciprocal of density, i.e. the volume per unit mass, is called the specific 
volume, which is generally expressed by the symbol v: 

v - -  1 / p  (ma/kg) (2.3) 

Values for the density p of water and air under standard atmospheric 
pressure are given in Table 2.2. 

Table 2.2 Density of water and air (standard atmospheric pressure) 
, , 

Temperature (°C) 0 10 15 20 40 60 80 100 

p (kg/m 3) Water 999.8  999.7 999.1 998.2 992.2 983.2 971.8 958.4 
Air 1.293 1.247 1.226 1.205 1.128 1.060 1.000 0.9464 



i 
As shown in Fig. 2.1, suppose that liquid fills the space between two parallel 
plates of area A each and gap h, the lower plate is fixed, and force F is needed 
to move the upper plate in parallel at velocity U. Whenever Uh/v  < 1500 
(v = #/p:  kinematic viscosity), laminar flow (see Section 4.4) is maintained, 
and a linear velocity distribution, as shown in the figure, is obtained. Such a 
parallel flow of uniform velocity gradient is called the Couette flow. 

In this case, the force per unit area necessary for moving the plate, i.e. 
the shearing stress (Pa), is proportional to U and inversely proportional to h. 
Using a proportional constant #, it can be expressed as follows: 

F U 
= ~ = / ~  (2.4) 

The proportional constant # is called the viscosity, the coefficient of viscosity 
or the dynamic viscosity. 

Viscosity 9 

F / U 

A 
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O 

Fig. 2.1 Couette flow 
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Fig. 2.2 Flow between parallel plates 
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Isaac Newton (1~2-1727) 
English mathematician, physicist and astronomer; 
studied at the University of Cambridge. His three 
big discoveries of the spectral analysis of light, 
universal gravitation and differential and integral 
calculus are only too well known. There are so 
many scientific terms named after Newton 
(Newton's rings and Newton's law of motion/ 
viscosity/resistance) that he can be regarded as the 
greatest contributor to the establishment of 
modern natural science. 

Newton's statue at Grantham near Woolsthorpe, his birthplace 

Such a flow where the velocity u in the x direction changes in the y 
direction is called shear flow. Figure 2.1 shows the case where the fluid in the 
gap is not flowing. However, the velocity distribution in the case where the 
fluid is flowing is as shown in Fig. 2.2. Extending eqn (2.4) to such a flow, the 
shear stress z on the section dy, distance y from the solid wall, is given by 
the following equation: 

du 
= ( 2 . 5 )  

oy 

This relation was found by Newton through experiment, and is called 
Newton's law of viscosity. 
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Fig. 2.3 Change in viscosity of air and of water under 1 atm 

Viscosity 11 

In the case of gases, increased temperature makes the molecular movement 
more vigorous and increases molecular mixing so that the viscosity increases. 
In the case of a liquid, as its temperature increases molecules separate from 
each other, decreasing the attraction between them, and so the viscosity 
decreases. The relation between the temperature and the viscosity is thus 
reversed for gas and for liquid. Figure 2.3 shows the change with temperature 
of the viscosity of air and of water. 

The units of viscosity are Pa-s (pascal second) in SI, and g/(cm s) in the 
CGS absolute system of units, l g/(cm s) in the absolute system of units is 
called 1 P (poise) (since Poiseuille's law, stated in Section 6.3.2, is utilised for 
measuring the viscosity, the unit is named after him), while its 1/100th part 
is 1 cP (centipoise). Thus 

1P = 100cP = 0.1Pa.s 

The value v obtained by dividing viscosity # by density p is called the 
kinematic viscosity or the coefficient of kinematic viscosity: 

v = ~ (2.6) 
P 

Since the effect of viscosity on the movement of fluid is expressed by v, the 
name of kinematic viscosity is given. The unit is m2/s regardless of the system 
of units. In the CGS system of units 1 cmZ/s is called 1 St (stokes) (since 
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Table 2.3 Viscosity and kinematic viscosity of water and air at standard atmospheric pressure 

Water Air 

Temp. Viscosity,/~ Kinematic Viscosity, p Kinematic 
(°C) (Pa.s x 10 -s) viscosity, v (Pa.s x 10 -s) viscosity, v 

(ml/s  x 10 -6) (m2/s x 10 -6) 

0 179.2 1.792 1.724 13.33 
10 130.7 1.307 1.773 14.21 
20 100.2 1.004 1.822 15.12 
30 79.7 0.801 1.869 16.04 
40 65.3 0.658 1.915 16.98 

Stokes' equation, to be stated in Section 9.3.3, is utilised for measuring the 
viscosity, it is named after him), while its 1/100th part is 1 cSt (centistokes). 
Thus 

1 St = 1 x 10 -4 m2/s 

1 cSt = 1 × lO-6m2/s 
The viscosity # and the kinematic viscosity v of water and air under standard 
atmospheric pressure are given in Table 2.3. 

The kinematic viscosity v of oil is approximately 30-100cSt. Viscosity 

Non-Newtonian~ 

~ "~> 

~ ~ "  Perfect fluid 
Velocity gradient, du/dy 

Fig. 2.4 Rheological diagram 
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sensitivity to temperature is expressed by the viscosity index VI, ~ a 
non-dimensional number. A VI of 100 is assigned to the least temperature 
sensitive oil and 0 to the most sensitive. With additives, the VI can exceed 
100. While oil is used under high pressure in many cases, the viscosity of oil is 
apt to increase somewhat as the pressure increases. 

For water, oil or air, the shearing stress • is proportional to the 
velocity gradient du/dy. Such fluids are called Newtonian fluids. On the 
other hand, liquid which is not subject to Newton's law of viscosity, such 
as a liquid pulp, a high-molecular-weight solution or asphalt, is called a 
non-Newtonian fluid. These fluids are further classified as shown in Fig. 
2.4 by the relationship between the shearing stress and the velocity 
gradient, i.e. a rheological diagram. Their mechanical behaviour is 
minutely treated by rheology, the science allied to the deformation and 
flow of a substance. 

The surface of a liquid is apt to shrink, and its free surface is in such a state 
where each section pulls another as if an elastic film is being stretched. The 
tensile strength per unit length of assumed section on the free surface is called 
the surface tension. Surface tensions of various kinds of liquid are given in 
Table 2.4. 

As shown in Fig. 2.5, a dewdrop appearing on a plant leaf is spherical in 
shape. This is also because of the tendency to shrink due to surface tension. 
Consequently its internal pressure is higher than its peripheral pressure. 
Putting d as the diameter of the liquid drop, T as the surface tension, and p as 
the increase in internal pressure, the following equation is obtained owing 
to the balance of forces as shown in Fig. 2.6: 

o r  

nd  2 
ndT = --~ Ap 

Ap = 4T/d  (2.7) 

The same applies to the case of small bubbles in a liquid. 

Table 2.4 Surface tension of liquid (20°C) 

Liquid Surface liquid N/m 

Water Air 0.0728 
Mercury Air 0.476 
Mercury Water 0.373 
Methyl alcohol Air 0.023 

,,, 

I ISO 2909-1981 
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Fig. 2.5 A dewdrop on a taro leaf 

Whenever a fine tube is pushed through the free surface of a liquid, the 
liquid rises up or falls in the tube as shown in Fig. 2.7 owing to the relation 
between the surface tension and the adhesive force between the liquid and the 
solid. This phenomenon is called capillarity. As shown in Fig. 2.8, d is the 
diameter of the tube, 0 the contact angle of the liquid to the wall, p the 
density of liquid, and h the mean height of the liquid surface. The following 
equation is obtained owing to the balance between the adhesive force of 
liquid stuck to the wall, trying to pull the liquid up the tube by the surface 
tension, and the weight of liquid in the tub~: 

o r  

lrdT cos 0 = --~ pgh 

4T cos 0 
h = ~ (2.8) 

pgd 

\. / 

7/"  4¢ 

T 

Fig. 2.6 Balance between the pressure increase within a liquid drop and the surface tension 
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(a) Water (b) Mercury 

Fig. 2.7 Change of liquid surface due to capillarity 

Whenever water or alcohol is in direct contact  with a glass tube in air under 
normal  temperature,  0 ___ O. In the case of mercury,  0 = 130°-150 °. In the case 
where a glass tube is placed in liquid, 

for water h = 30/d ] 
for alcohol h = 11.6/d ] (2.9) 

for mercury h = - l O / d  

(in ram). Whenever pressure is measured using a liquid column, it is necessary 
to pay attention to the capillarity correction. 

T 

,,, . . . . j  ,.. ~ ~ 

Fig. 2.8 Capillarity 
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As shown in Fig. 2.9, assume that fluid of volume V at pressure p decreased 
its volume by A V due to the further increase in pressure by Ap. In this case, 
since the cubic dilatation of the fluid is A V/V, the bulk modulus K is 
expressed by the following equation: 

K =  Ap 
Av/v 

Its reciprocal fl 

dp (2.10) 
------- = - V  d--V 

/3 = 1/K (2.11) 

is called the compressibility, whose value directly indicates how compressible 
the fluid is. For water of normal temperature/pressure K = 2.06 x 10 9 Pa, 
and for air K = 1.4 x 105 Pa assuming adiabatic change. In the case of water, 
fl = 4.85 x 10 -1° 1/Pa, and shrinks only by approximately 0.005% even if the 
atmospheric pressure is increased by 1 atm. 

Putting p as the fluid density and M as the mass, since p V = M = constant, 
assume an increase in density Ap whenever the volume has decreased by AV, 
and 

Ap dp 
K = p~pp = p~pp (2.12) 

The bulk modulus K is closely related to the velocity a of a pressure wave 
propagating in a liquid, which is given by the following equation (see 
Section 13.2): 

a = = (2.13) 

W 

~- r 7-'--- 

p+ Ap 

) 
.-~ 

/ 

AV 

Fig. 2.9 Measuring of bulk modulus of fluid 



Table 2.5 Gas constant R and ratio of specific heat x 
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Gas Symbol Density (kg/m 3) R (Sl) ~¢ = %/c~ 
(if'C, 760 mm Hg) m2/(s ~ K) 

Helium He 0.178 5 2 078.1 1.66 
Air - 1.293 287.1 1.402 
Carbon monoxide CO 1.250 296.9 1.400 
Oxygen 02 0.089 9 4124.8 1.409 
Hydrogen H: 1.429 259.8 1.399 
Carbon dioxide CO, 1.977 189.0 1.301 
Methane CH4 0.717 518.7 1.319 

:iii iii', ii~ili ~iiiiii~,~,~ ,~: ~,~ ~,~,::~iiiiiii~ ~ ~ii~ ~: ,::~.":=%iiiiii~i~i~ii!iii~',iiiiiiii~!!iiiii~ ii~iii!~i~!~!ii~ %i!i',ii!iiiiiii!l',iii~iii !i?~'i ~i!i~iii~,iiii/~,iiiiiiiiii ~ !  ',',',',iiiii',iii~,ii ii',iiiii~ ~::'~ ~' ~!~ii :,iiiiiiiiii~!i!ii i~ i~,~ ~,~, i i ',ii'~i',iii~,iiiii i',ii',i',',i i ii! i',ii',ii!',i ~,',',',i iii',ii ',i', ',',~,iiiii~i'~ ', ','~ i i i',i'~i i! ',',ii',ii',i ii','~',',~,i ii',iii ~i',', !iii ~,i '~i i i ii~i',iiiii i i '~i iii i'~i!!iiiiiiiiiiiiil !iliii i~!!iiiiiiiiiiiiiiliiiiiiiiiiii!i iiiiiiii~iiii!iiiii iii i',i~,! !!!iiii!i iii!iiiii !iiii',! ii ~,i 

Let p be the pressure of a gas, v the specific volume, T the absolute 
temperature and R the gas constant. Then the following equation results from 
Boyle's-Charles'  law: 

pv = R T  (2.14) 

This equation is called the equation of state of the gas, and v = 1/p (SI) as 
shown in eqn (2.3). The value and unit of R varies as given in Table 2.5. 

A gas subject to eqn (2.14) is called a perfect gas or an ideal gas. Strictly 
speaking, all real gases are not perfect gases. However, any gas at a 
considerably higher temperature than its liquefied temperature may be 
regarded as approximating to a perfect gas. 

rd~ 

\ ~ / A d i a b a t i c  

/ Polytropic 

I s o t h e r m a ~  

' Isobaric O. 

Isochoric 
l < n  n=~¢ 

n - - C ~ 3  

Specific volume, v 

Fig. 2.10 State change of perfect gas 
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The change in state of a perfect gas is expressed by the following 
equation: 

pv" = constant 

where n is called the polytropic exponent. As this value changes from 0 to 
oo, as shown in Fig. 2.10, the state of gas makes five kinds of changes known 
as isobaric, isothermal, polytropic, adiabatic and isochoric changes. In 
particular, in the case of adiabatic change, n = x is obtained. Here x is the 
ratio of specific heat at constant pressure cp to specific heat at constant 
volume co, called the ratio of specific heats (isentropic index). Its value for 
various gases is given in Table 2.5. 

!i i~iiii !iiil l~ili !ii~i ill iiiiiiii iii iii!! !i !iiii ii!i!iiiii ii!iil iiii ~I iiiiiiiiiil i ii!iiii i i!iii!iil 
1. Derive the SI unit of force from base units. 

2. Express the viscosity and the kinematic viscosity in SI units. 

3. The density of water at 4°C and 1 atm is 1000kg/m 3. Obtain the specific 
volume v under such conditions. 

4. Obtain the pressure in SI (Pa) necessary for shrinking the volume of water 
by 1% at normal temperature and pressure. Assume the compressibility 
of water fl = 4.85 x 10 -~° 1/Pa. 

5. When two plates are placed vertically on liquid as shown in Fig. 2.11, 
derive the equation showing the increased height of the liquid surface 
between the plates due to capillarity. Also when fiat plates of glass are 
used with a 1 mm gap, what is the increased height of the water 
surface? 

1 
" 7  

Fig. 2.11 



6. Water at 20°C contains a bubble of diameter 1 mm. How much higher is 
the internal pressure of this bubble compared with the outside pressure? 

7. How much force is necessary to lift a ring, diameter 20 mm, made of fine 
wire, and placed on the surface of water at 20°C? 

8. As shown in Fig. 2.12, a cylinder of diameter 122 mm and length 200 mm 
is placed inside a concentric long pipe of diameter 125 mm. An oil film is 
introduced in the gap between the pipe and the cylinder. What force is 
necessary to move the cylinder at a velocity of 1 m/s? Assume that the 
dynamic viscosity of oil is 30 cSt and the specific gravity is 0.9. 

Fig. 2.12 

/ / / / / / / / / / / / ' / / / / / / / / / / / / / ~ /  

/ / / / / / / / / / / / / 1 / / I / / / I / / 7 / / / / .  

__ 200 _i 
--i 
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9. Calculate the velocity of sound propagating in water at 20°C. Assume that 
the bulk modulus of water K = 2.2 x 109 Pa. 



Fluid statics 

Fluid statics is concerned with the balance of forces which stabilise fluids at 
rest. In the case of a liquid, as the pressure largely changes according to its 
height, it is necessary to take its depth into account. Furthermore,  even in the 
case of relative rest (e.g. the case where the fluid is stable relative to its vessel 
even when the vessel is rotating at high speed), the fluid can be regarded as 
being at rest if the fluid movement is observed in terms of coordinates fixed 
upon the vessel. 

When a uniform pressure acts on a flat plate of area A and a force P pushes 
the plate, then 

p = P / A  (3.1) 

In this case, p is the pressure and P is the pressure force. When the pressure 
is not uniform, the pressure acting on the minute area AA is expressed by the 
following equation: 

p = lira AP _ ~dP (3.2) 
~A~O AA - dA 

3.1.1 Units of pressure 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

The unit of pressure is the pascal (Pa), but it is also expressed in bars or 
metres of water column (mH20). 1 The conversion table of pressure units is 
given in Table 3.1. In addition, in some cases atmospheric pressure is used: 

1 atm = 760mmHg (at273.15 K, g = 9.806 65 m/s  2) = 101 325Pa (3.3) 

1 atm is standard 1 atmospheric pressure in meteorology and is called the 
standard atmospheric pressure. 

Refer to the spread of 'aqua' at the end of this chapter (p. 37). 



Table 3.1 Conversion of pressure units 

Name of unit Unit Conversion 

Pascal Pa 1 Pa = 1 N/m2 

Bar bar 1 bar = 0.1 MPa 
Water column metre mH20 1 mH20 = 9 806.65 Pa 
Atmospheric pressure atm 1 atm = 101 325 Pa 
Mercury column metre mHg 1 mHg - 1/0.76arm 
Torr torr 1 torr - 1 mm Hg 
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3.1.2 Absolute pressure and gauge pressure 

There  are two methods  used to express the pressure: one is based  on the 
perfect vacuum and the other  on the a tmospher ic  pressure.  The fo rmer  is 
called the absolute pressure and the lat ter  is called the gauge pressure.  
Then,  

gauge pressure = absolute  pressure - a tmospher ic  pressure  

In gauge pressure, a pressure under  1 a tmospher ic  pressure  is expressed as a 
negative pressure. This relat ion is shown in Fig. 3.1. Mos t  gauges  are  
const ructed  to indicate the gauge pressure. 

+ 

1 ttm Gauge pr s ur  01] .... 

, -  ~ B 

~ N ~ : { i  Perfect vacuum ~ ~  

Fig. 3.1 Absolute pressure and gauge pressure 
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3.1.3 Characteristics of pressure 

The pressure has the following three characteristics. 

1. The pressure of a fluid always acts perpendicular to the wall in contact 
with the fluid. 

2. The values of the pressure acting at any point in a fluid at rest are equal 
regardless of its direction. Imagine a minute triangular prism of unit width 
in a fluid at rest as shown in Fig. 3.2. Let the pressure acting on the small 
surfaces dA~, dA2 and dA be Pl, P2 and p respectively. The following 
equations are obtained from the balance of forces in the horizontal and 
vertical directions: 

p~dA~ = pdA sin 0 

idA dA2pg p2dA2 = pdA cos 0 + i 

C'  C 

P 

Pl 

B '  

A I I I B 
B P2 

Fig. 3.2 Pressure acting on a minute triangular prism 

The weight of the triangle pillar is doubly infinitesimal, so it is omitted. 
From geometry, the following equations are obtained: 

dA sin 0 = dA~ 

dA cos 0 = dA2 

Therefore, the following relation is obtained: 

Pl = P2 = P (3.4) 

Since angle 0 can be given any value, values of the pressure acting at one 
point in a fluid at rest are equal regardless of its direction. 

3. The fluid pressure applied to a fluid in a closed vessel is transmitted to 
all parts at the same pressure value as that applied (Pascal's law). 

In Fig. 3.3, when the small piston of area A~ is acted upon by the force 
Fl, the liquid pressure p = FI/AI is produced and the large piston is acted 
upon by the force/72 = pA2. Thus 

A2 
= F -r- (3.5) 



Pressure 23 

Blaise Pascal (1623-62) 
French mathematician, physicist and philosopher. He 
had the ability of a highly gifted scientist even in 
early life, invented an arithmetic computer at 19 
years old and discovered the principle of fluid 
mechanics that carries his name. Many units had 
appeared as the units of pressure, but it was decided 
to use the pascal in SI units in memory of his 
achievements. 

F2 

1 ,  I i I Ilia,  1111] IlIIIII!IT, , 111Illl -!.~~-5 A, A2-t-:t:t-t ~t:t-t--t-t- 
. . . . . . .  

Fig. 3.3 Hydraulic press 

So this device can create the large force F 2 from the small force F 1 . This 
is the principle of the hydraulic press. 

3.1.4 Pressure of fluid at rest 

In general, in a fluid at rest the pressure varies according to the depth. 
Consider a minute column in the fluid as shown in Fig. 3.4. Assume that the 
sectional area is dA and the pressure acting upward on the bottom surface is 
p and the pressure acting downward on the upper surface (dz above the 
bottom surface) is p + (dp /d z )d z .  Then, from the balance of forces acting on 
the column, the following equation is obtained: 

p d A  - p + ~ dz  d A  - pg d A  dz = O 

o r  



dA 

P + d ~  dz 

c 

dz 

z 
P 

"/ / / / / / ,  

/90 

.. Weight 

dW = pg dA dz 

Fig. 3.4 Balance of vertical minute cylinder 

dp 
d--i = - P g  (3.6) 

Since p is constant for liquid, the following equation ensues: 

P = - P g  I dz  = - p g z  + c (3.7) 

When the base point is set at Zo below the upper surface of liquid as shown 
in Fig. 3.5, and P0 is the pressure acting on that surface, then p = Po when 
Z "-- Zo, SO 

c = Po + p g z  

Substituting this equation into eqn ( 3 . 7 ) ,  

Fig. 3.5 Pressure in liquid 

_ -_- 
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P = Po + (Zo - z)pg = Po + pgh (3.8) 

Thus it is found that the pressure inside a liquid increases in proportion to 
the depth. 

For the case of a gas, let us study the relation between the pressure and 
the height of the atmosphere surrounding the earth. In this case, since the 
density of gas changes with pressure, it is not possible to integrate simply as 
in the case of a liquid. As the altitude increases, the temperature decreases. 
Assuming this temperature change to be polytropic, then p v " =  constant is 
the defining relationship. 

Putting the pressure and density at z = 0 (sea level) as P0 and P0 
respectively, then 

P P0 
- -  = --~ ( 3 . 9 )  
P" Po 

Substituting p into eqn (3.6), 

d z = - d p = - l P ° - 2 - p - ' / " d p =  d (3.10) 
Pg g Po g Po 

Integrating this equation from z = 0 (sea level), 

z =  d z = l  n Po 1 -  P (3.11) 
g n -  lpo 

The relation between the height and the atmospheric pressure develops into 
the following equation by eqn (3.11): 

p ( z ) =  1 n -  l Oogz (3.12) 
Po n P0 

Also, the density is obtained as follows from eqs (3.9) and (3.12): 

( p(z)  = 1 n -  1 pog z -  (3.13) 
Po n Po 

When the absolute temperatures at sea level and at the point of height z are 
To and T respectively, the following equation is obtained from eqn (2.14): 

P Po 
pT; = p0T0 = g (3.14) 

From eqs (3.12)-(3.14) 

T(z)  n -  1 Pog 
= 1 ~ ~ z  ( 3 . 1 5 )  

To n P0 

From eqn (3.15) 

d T  n -  l pog To = n -  l g (3.16) 
dz = n p0 n R 

In aeronautics, it has been agreed to make the combined values of 
Po = 101.325 kPa, To = 288.15 K and P0 = 1.225 kg/m 3 the standard atmos- 
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pheric condition at sea level. 2 The temperature decreases by 0.65°C every 
100m of height in the troposphere up to approximately 1 km high, but is 
constant at -50.5°C from 1 km to 10 km high. For the troposphere, from the 
above values for P0, To and P0 in eqn (3.10), n = 1.235 is obtained as the 
polytropic index. 

3.1.5 Measurement of pressure 

Manometer 
A device which measures the fluid pressure by the height of a liquid column 
is called a manometer. For example, in the case of measuring the pressure of 
liquid flowing inside a pipe, the pressure p can be obtained by measuring 
the height of liquid H coming upwards into a manometer made to stand 
upright as shown in Fig. 3.6(a). When P0 is the atmospheric pressure and p is 
the density, the following equation is obtained: 

P = Po + pgH (3.17) 

When the pressure p is large, this is inconvenient because H is too high. So 
a U-tube manometer, as shown in Fig. 3.6(b), containing a high-density 
liquid such as mercury is used. In this case, when the density is p', 

or 
p + pgH = Po + P'gH' 

P = Po + p ' g H ' -  pgH (3.18) 

In the case of measuring the air pressure, p'>> p, so pgH in eqn (3.18) may 
be omitted. In the case of measuring the pressure difference between two 
pipes in both of which a liquid of density p flows, a differential manometer as 

p / 

( a )  

Fig. 3.6 Manometer 

P 

i 
(b)  

"2 ~----Po 

":i::i 
:: : '  

iiii . °  ¢ :!:! - --  p 

2 ISO 2533-1975E. 
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(a)  

Fig, 3,7 Differential manometer (1) 

( b )  

iQ__p2 
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shown in Fig. 3.7 is used. In the case of Fig. 3.7(a), where the differential 
pressure of the liquid is small, measurements are made by filling the upper 
section of the meter with a liquid whose density is less than that of the liquid 
to be measured, or with a gas. Thus 

P~ - P2 = (P - p ' ) g H  

and in the case where p' is a gas, 

(3.19) 

Pl - P2 = p g H  (3.20) 

Figure 3.7(b) shows the case when the differential pressure is large. This 
time, a liquid column of a larger density than the measuring fluid is used. 

2 

Fig. 3.8 Differential manometer (2) 
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(a) (b) 

Fig. 3.9 Inclined manometer 

Thus 

P~ - P2 --  (P '  - p ) g H '  (3.21) 

and in the case where p is a gas, 

P l  - -  P 2  - -  p '  g H '  (3.22) 

A U-tube manometer as shown in Fig. 3.7 is inconvenient for measuring 
fluctuating pressure, because it is necessary to read both the right and left 
water levels simultaneously to measure the different pressure. For measuring 
the differential pressure, if the sectional area of one tube is made large 
enough, as shown in Fig. 3.8, the water column of height H could be 
measured by just reading the liquid surface level in the other tube because the 
surface fluctuation of liquid in the tank can be ignored. 

To measure a minute pressure, a glass tube inclined at an appropriate angle 
as shown in Fig. 3.9 is used as an inclined manometer. When the angle of 
inclination is ~ and the movement of the liquid surface level is L, the 
differential pressure H is as shown in the following equation: 

H = L sin ct (3.23) 

Accordingly, if ~ is made smaller, the reading of the pressure is magnified. 
Besides this, Gfttingen-type micromanometer, Chattock tilting micro- 
manometer, etc., are used. 

Elastic- type pressure gauge 
An elastic-type pressure gauge is a type of pressure gauge which measures 
the pressure by balancing the pressure of the fluid with the force of 
deformation of an elastic solid. The Bourdon tube (invented by Eugene 
Bourdon, 1808-84) (Fig. 3.10), the diaphragm (Fig. 3.11), the bellows, etc., 
are widely employed for this type of pressure gauge. 

Of these, the Bourdon tube pressure gauge (Bourdon gauge) of Fig. 3.10 
is the most widely used in industry. A curved metallic tube of elliptical cross- 
section (Bourdon tube) is closed at one end which is free to move, but the 
other end is rigidly fixed to the frame. When the pressure enters from the 
fixed end, the cross-section tends to become circular so the free end moves 
outward. By amplifying this movement, the pressure values can be read. 
When the pressure becomes less than the atmospheric pressure (vacuum), the 
free end moves inward, so this gauge can be used as a vacuum gauge. 
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Bourdon tube 

pring 

Measure pressure p 

Fig. 3.10 Bourdon tube pressure gauge 

d 
1 

Fig. 3.11 Diaphragm pressure gauge 

Electric-type pressure gauge 
The pressure is converted to the force or displacement passing through the 
diaphragm, tourdon tube bellows, etc., and is detected as a change in an 
electrical property using a wire strain gauge, a semiconductor strain gauge 

!ili!~I. 

Iiiili!i 

PGM-C PE-J, P 
(a) Small size (b) For indicating pressure of an engine 

Pressure range (MPa) 0.2-1.0 5-20 
Natural frequency (kHz) 25-40 25-40 

Response frequency (kHz) 5-8 5--8 

Fig. 3.12 Wire strain gauge type of pressure transducer 



30 Fluid statics 

(applied piezoresistance effect), etc. These types of pressure gauge are useful 
for measuring fluctuating pressures. Two examples of pressure gauges 
utilising the wire strain gauge are shown in Fig. 3.12. 

How large is the force acting on the whole face of a solid wall subject to 
water pressure, such as the bank of a dam, the sluice gate of a dam or the wall 
of a water tank? How large must the torque be to open the sluice gate of a 
dam? What is the force required to tear open a cylindrical vessel subject to 
inside pressure? Here, we will study forces like these. 

3.2.1 Water pressure acting on a bank or a sluice gate 
,__,,_ . . . . . . . . . . . . .  ,,,, : . . . . . . . . . . . . . . . . . . . . . .  ,,, ,, i : ~ :  . ~ : : :  ; _  =::~ = ~ - : -  : : : : 

How large is the total force due to the water pressure acting on a bank built 
at an angle 0 to the water surface (Fig. 3.13)? Here, disregarding the 
atmospheric pressure, the pressure acting on the surface is zero. The total 
pressure dP acting on a minute area dA is pgh dA = pgy sin 0 dA. So, the total 
pressure P acting on the under water area of the bank wall A is: 

P=L dP = pg sin O I y dA 
A 

When the centroid 3 of A is G, its y coordinate is YG and the depth to G is 
h~, fAY dA = YGA. So the following equation is obtained: 

P = pg sin OYGA = pghGA (3.24) 

~ . o . o  • . o ~ , .  o 

Fig. 3.13 Force acting on dam 

3 The centre of mass when the mass is distributed uniformly on the plane of some figure, namely 
the point applied to the centre of gravity, is called a centroid. 
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Fig. 3.14 Revolving power acting on water gate (1) (case where revolving axis of water gate is just 
on the water level) 

So the total force P equals the product of the pressure at the centroid G 
and the underwater area of the bank wall. 

Next, let us study a rectangular sluice gate as shown in Fig. 3.14. How 
large is the torque acting on its turning axis (the x axis)? The force P acting 
on the whole plane of the gate is pgyGA by eqn (3.24). The force acting on a 
minute area dA (a horizontal strip of the gate face) is pgy dA, the moment of 
this force around the x axis is pgydA × y and the total moment on the gate 
is ~ pgy2 dA = p# ~ y2 dA. ~ y2 dA is called the geometrical moment of inertia 
Ix for the x axis. 

Now let us locate the action point of P (i.e. the centre of pressure C) at which 
a single force P produces a moment equal to the total sum of the moments 
around the turning axis (x axis) of the sluice gate produced by the total water 
pressure acting on all points of the gate. When the location of C is Yc, 

PYc = pglx (3.25) 

Now, when IG is the geometrical moment of inertia of area for the axis which 
is parallel to the x axis and passes through the centroid G, the following 
relation exists: 4 

Ix = IG + A yZ~ (3.26) 

Values of IG for a rectangular plate and for a circular plate are shown in 
Fig. 3.15. 

Substitute eqn (3.26) into (3.25) to calculate Yc 

I G h 2 
Yc -- YG +-Z-Y--/~yG = y~ + l Zy----~ (3.27) 

4 Parallel axis theorem: The moment of inertia with respect to any axis equals the sum of the 
moment of inertia with respect to the axis parallel to this axis which passes through the centroid 
and the product of the sectional area and the square of the distance to the centroid from the 
former axis. 
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Fig. 3.15 Geometrical moment of inertia for axis passing centroid G 
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Fig. 3.16 Rotational force acting on water gate (2) (case where water gate is under water) 

From eqn (3.27), it is clear that the action point C of the total pressure P is 
located deeper than the centroid G by h2/12YG. 

The position of Yc in such a case where the sluice gate is located under 
the water surface as shown in Fig. 3.16 is given by eqn (3.28) where hG is 
substituted for YG in the second term on the right of eqn (3.27): 

h 2 

Yc = YG + ~ (3.28) 
12h G 

3.2.2 Force to tear a cylinder 
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In the case of a thin cylinder where the inside pressure is acting outward, as 
shown in Fig. 3.17(a), what kind of force is required to tear this cylinder in 
the longitudinal direction? Now, consider the cylinder longitudinally half 
sectioned as shown in Fig. 3.17(b), with diameter d, length l and inside 
pressure p. The force acting on the assumed vertical centre wall ABCD is pdl 
which balances the force in the x direction acting outward on the cylinder 
wall. In other words, the force generated by the pressure in the x direction on 
a curved surface equals the pressure pdl, since the same pressure acts on the 
projected area of the curved surface. Furthermore, this force is the force 2Tl 
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(a) T (b) A 

Fig. 3.17 Cylinder acted on by inertial pressure 

(T is the force acting per unit length of wall which tears this cylinder longi- 
tudinally in halves along the lines BC and AD): 

2 T l  = pdl  

o~  

T = p d / 2  (3.29) 

If the tensile stress due to T is lower than the allowable stress, safety is 
assured. By utilising this principle, a thin-walled pressure tank can be 
designed. 
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Fluid pressure acts all over the wetted surface of a body floating in a fluid, 
and the resultant pressure acts in a vertical upward direction. This force is 
called buoyancy. The buoyancy of air is small compared with the gravi- 
tational force of the immersed body, so it is normally ignored. 

P O  

Fig. 3.18 Cube in liquid 

PO 

..... ~ Body ~ ~ i i~  

~ " ~ ~: ~ g ~  ~, ~ ~ :  ~i",-',.:'..~i~ ~i~'~i:~'~'''~';~ 

(b) 



The greatest mathematician, physicist and 
engineer in ancient Greece, and the discoverer of 
the famous ’Principle of Archimedes’. Archimedes 
received guidance in astronomy from his father, 
an astronomer, and made astronomical obser- 
vations since his early days. He invented a 
planetarium turned by hydropower and a screw 
pump. He carried out research in solid and fluid 
dynamics as well as on the lever, the centre of 
gravity and buoyancy. Archimedes was one of 
those scientists who are talented in both theory 
and practice. 

Suppose that a cube is located in a liquid of density p as shown in 
Fig. 3.18. The pressure acting on the cube due to the liquid in the horizontal 
direction is balanced right and left. For the vertical direction, where the 
atmospheric pressure is po, the force Fl acting on the upper surface A is 
expressed by the following equation: 

F, = (Po PShl)A (3.30) 

The force F2 acting on the lower surface is 

Fz = (Po + PSh2)A (3.31) 

So, when the volume of the body in the liquid is V, the resultant force I; from 
the pressure acting on the whole surface of the body is 

F = F2 - F1 = pg(h2 - h, )A  = p g h A  = PgV (3.32) 

The same applies to the case where a cube is floating as shown in Fig. 
3.18(b). From this equation, the body in the liquid experiences a buoyancy 
equal to the weight of the liquid displaced by the body. This result is known 
as Archimedes’ principle. The centre of gravity of the displaced liquid is 
called ‘centre of buoyancy’ and is the point of action of the buoyancy force. 

Next, let us study the stability of a ship. Figure 3.19 shows a ship of 
weight W floating in the water with an inclination of small angle 6. The 
location of the centroid G does not change with the inclination of the ship. 
But since the centre of buoyancy C moves to the new point C’, a couple of 
forces W s  = Fs is produced and this couple restores the ship’s position to 
stability. 

The forces of the couple W s  are called restoring forces. The intersecting 
point M on the vertical line passing through the centre of buoyancy C’ (action 
line of the buoyancy F )  and the centre line of the ship is called the 
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Fig. 3.19 Stability of a ship 

metacentre, and GM is called the metacentric height, s As shown in the figure, 
if M is located higher than G, the restoring force acts to stabilise the ship, 
but if M is located lower than G, the couple of forces acts to increase the roll 
of the ship and so make the ship unstable. 
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When a vessel containing a liquid moves in a straight line or rotates, if there 
is no relative flow of the liquid while the vessel and liquid move as a body, 
it is possible to treat this as the mechanics of a stationary state. This state is 
called a relatively stationary state. 

3.4.1 Equiaccelerated straight-line motion 
Suppose that a vessel filled with liquid is moving in a straight line at constant 
acceleration on the horizontal level as shown in Fig. 3.20. Further consider a 
minute element of mass m on the liquid surface, where its acceleration is ct, the 
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Fig. 3.20 Uniform accelerating straight-line motion 

s How high is the metacentre of a real ship? It is said that the height of metacentre of a warship 
is about 0.8-1.2rn, a sailing ship 1.0-1.4m and a large passenger ship 0.3-0.7m. When these 
ships go out to sea the wave cycle is 12-13 seconds. 
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forces acting on m are gravity in a vertical downward direction - m g ,  and the 
inertial force in the reverse direction to the direction of acceleration -m~. 

There can be no force component normal to the direction of F, the 
resultant force of gravity and the inertial forces. Therefore, the pressure must 
be constant on the plane normal to the direction of F. In other words, this 
plane identifies the equipressure free surface. 

When 0 is the angle formed by the free surface and the x direction, the 
following relation is easily obtained: 

tan 0 = ~/g (3.33) 

If h is the depth measured in the vertical direction to the free surface, the 
acceleration in this direction is fl = F/m.  Therefore, 

p = pflh (3.34) 

This is the same relation as the stationary state. 

3.4.2 Rotational motion 

Let us study the height of the water surface in the case where a cylindrical 
vessel filled with liquid is rotating at constant angular velocity co. The 
movement at constant angular velocity like this is sometimes called 
gyrostatics, where the liquid surface poses a concave free surface. Then let 
us take cylindrical coordinates (r, 0, z) as shown in Fig. 3.21. Consider a 
minute element of mass m on the equipressure plane. The forces acting on 
it are - m g  due to the gravitational acceleration g in the vertical direction 
and -mrco 2 due to the centripetal acceleration rco 2 in the horizontal 
direction. 

. 

m r  ~ - r - : -_~m / - - ' -  

h°, 

Fig. 3.21 Rotational motion around vertical axis 
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Since the vessel and liquid move in a body and the liquid stays in a 
relatively stationary state, the resultant force F is vertical to the free surface 
as in the previous case. If 4~ is the angle formed by the free surface and the 
horizontal direction, 

but also 

Therefore, 

mr092 rto 2 
tan ~b = ~ = ~ (3.35) 

mg g 

dz  
tan ~ = dr  

dz /.(./)2 
dr g 

Putting c as a constant of integration, 

o) 
z = ~ r 2 + c (3.36) 

If  z = h0 at r = O, c = ho and the following equation is obtained from eqn 

(3.36): to2r 2 

z - h0 - - ~ 9  (3.37) 

The free surface is now a rotating parabolic surface. 

Spread of aqua 
r -  

Aqua means water in Sanskrit, especially water offered to Buddha. The Italian 
word for water is aqua, and the Spanish is agua, both of which have the same 
etymological origin. Also, 'aqualung'  is diving gear meaning water lung. 

The Japanese word aka appeared in Japanese classics in the tenth, eleventh 
and thirteenth centuries. Furthermore, aka also means bilge water. 

It is very interesting to know that Sanskrit aqua spread from India to 
Europe along the Silk Road and to Japan via China. 
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1. What is the water pressure on the sea bottom at a depth of 6500 m? The 

specific gravity of sea water is assumed to be 1.03. 

2. Obtain the pressure p at point A in Figs 3.22(a), (b) and (c). 

Po 
U 

Fig. 3.22 
(a) 

H 

4 

Po P o 

)9' 
(b) (c) 

3. Obtain the pressure difference p~ - P 2  in Figs 3.23(a) and (b). 

H~ ~ 

H2 

(a) 

i 

i p .>P 

~ p '  Pl ---'---- 
(b) 

! 

p P'<P 

Fig. 3.23 

4. On the inclined manometer in Fig. 3.24, whenever h changes by I mm, 
how high (in mm) is H? (Sectional area A = 100a and ~ = 30°.) 

a 

p+ap l 

l )~' i ' ~ I /  Liquid level when p = 0 

A p 
Fig. 3.24 



5. In the case shown in Fig. 3.25, an oblong board 3 m high and 5 m wide 
is placed vertically in water in such a manner that its upper face is 5 m 
deep. Obtain the force acting on this board and the location of the centre 
of pressure. 

6. What are the respective forces F acting on the lower stays of the water 
gates in Figs 3.14 and 3.16, provided that the height b of the water gate is 
3 m, the width is 1 m, and hl in Fig. 3.16 is 2 m? 

7. A water gate 2 m high and 1 m wide is shown in Fig. 3.26. What is the 
force acting on the lower stay? 

8. What is the force acting on a unit width of the dam wall shown in 
Fig. 3.27, if the water is 15 m deep and the wall is inclined at 60°? 
Furthermore, how far along the wall from the water surface is the action 
point of the force? 

5m 

I 
I_ --I 
r- 5m 

2mr [ 
" \ \ ' ~ \ \  <, \ \ ,  ~ \ N ,  - >, .N xN 

h ~ 

Fig. 3.25 Fig. 3.26 Fig. 3.27 

9. As shown in Fig. 3.28, a circular water gate, diameter 2 m, is supported 
by a horizontal shaft. What is the moment around the shaft to keep the 
water gate closed? 

10. A circular segment water gate, 5 m long, is set as shown in Fig. 3.29. Water 
is stored up to the upper face of the water gate. Obtain the magnitudes of 
the horizontal and vertical components of force and also the magnitude 
and the direction of the resultant force acting on this water gate. 

~,'/ / / / / / e ' J f / / /  

% ~ j  6~0~0~ ~ ~ 

Problems 39 

Fig. 3.28 Fig. 3.29 
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11. An iceberg of specific gravity 0.92 is floating on the sea with a specific 
gravity of 1.025. If the volume of the iceberg above the water level is 
100 m 3, what is the total volume of the iceberg? 

12. As shown in Fig. 3.30 a body of specific gravity 0.8 is floating on the 
water. Obtain the height of its metacentre and the period of vibration 
whenever its side A is perturbed. 6 The effect of the additional mass of 
water can be omitted. 

_ 7  A 

Fig. 3.30 
13. A cylindrical vessel of radius r0 filled with water to height h is rotated 

around the central axis, and the difference in height of water level is 
h'. What is the rotational angular velocity? Furthermore, assuming 
r0= 10cm and h = 18cm, obtain to when h ' =  10cm and also the 
number of revolutions per minute n when the cylinder bottom begins 
to appear. 

6 If h is the height of the metacentre, V the displacement volume, I the sectional secondary 
moment around the centre line of the water plane, and e the height from the centre of buoyancy 
to the centre of gravity, then 

h = ( I / V )  - e 

If J is the moment of inertia around the longitudinal axis passing through the centre of gravity, 
0 the inclination angle and m the mass, the movement equation for crosswise vibration is 
(whenever 0 is small), then 

d20 
J - ~  = - m g h O  

If T is the period, k = ~ the turning radius around the centre of gravity, then 

k 
T = 2 r c ~  



Fundamentals of flow 

There are two methods for studying the movement of flow. One is a method 
which follows any arbi trary particle with its kaleidoscopic changes in velocity 
and acceleration. This is called the Lagrangian method.  The other is a 
method by which, rather  than following any particular fluid particle, changes 
in velocity and pressure are studied at fixed positions in space x, y, z and at 
time t. This method is called the Eulerian method. Nowadays  the latter 
method  is more common and effective in most cases. 

Here we will explain the fundamental  principles needed whenever fluid 
movements  are studied. 
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A curve formed by the velocity vectors of each fluid particle at a certain time 
is called a streamline. In other words, the curve where the tangent at each 
point indicates the direction of fluid at that point is a streamline. Float ing 
aluminium powder on the surface of flowing water and then taking a 
photograph,  gives the flow trace of the powder as shown in Fig. 4.1(a). A 
streamline is obtained by drawing a curve following this flow trace. F r o m  the 
definition of a streamline, since the velocity vector has no normal  component ,  
there is no flow which crosses the streamline. Considering two-dimensional  
flow, since the gradient of the streamline is dy/dx,  and putting the velocity in 

Shutter opening time 

:" . . . . . . . . . . . . . . .  :':~::::~:~i~i Streamline 
Dyes 

Bailoo~~ 
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Fig. 4.1 Lines showing flows 

(a) Streamline (b) Streak line (c) Path line 
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Fig. 4.2 Relative streamlines and absolute streamlines 
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Movement of body 

- - - - - -  Relative velocity 

-~=== Absolute velocity 

the x and y directions as u and v respectively, the following equation of the 
streamline is obtained: 

dx/u = dy/v (4.1) 

Whenever streamlines around a body are observed, they vary according 
to the relative relationship between the observer and the body. By moving 
both a cylinder and a camera placed in a water tank at the same time, it is 
possible to observe relative streamlines as shown in Fig. 4.2(a). On the other 
hand, by moving just the cylinder, absolute streamlines are observed (Fig. 
4.2(b)). 

In addition, the lines which show streams include the streak line and the 
path line. By the streak line is meant the line formed by a series of fluid 
particles which pass a certain point in the stream one after another. As shown 
in Fig. 4.1(b), by instantaneously catching the lines by injecting dye into the 
flow through the tip of a thin tube, the streak lines showing the turbulent flow 
can be observed. On the other hand, by the path line is meant the path of 
one particular particle starting from one particular point in the stream. As 
shown in Fig. 4.1 (c), by recording on movie or video film a balloon released 
in the air, the path line can be observed. 

In the case of steady flow, the above three kinds of lines all coincide. 
By taking a given closed curve in a flow and drawing the streamlines 

passing all points on the curve, a tube can be formulated (Fig. 4.3). This tube 
is called a stream tube. 

Since no fluid comes in or goes out through the stream tube wall, the fluid 
is regarded as being similar to a fluid flowing in a solid tube. This assumption 
is convenient for studying a fluid in steady motion. 



Three-, two- and one-dimensional flow 43 

Fig. 4.3 Stream tube 
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A flow whose flow state expressed by velocity, pressure, density, etc., at any 
position, does not change with time, is called a steady flow. On the other 
hand, a flow whose flow state does change with time is called an unsteady 
flow. Whenever water runs out of a tap while the handle is being turned, the 
flow is an unsteady flow. On the other hand, when water runs out while the 
handle is stationary, leaving the opening constant, the flow is steady. 

iiiiili!!~,~,#f : mii!!!ii!i!!ii!ili!i~ii~',iiil!iii',ii! 

All general flows such as a ball flying in the air and a flow around a moving 
automobile have velocity components in x, y and z directions. They are called 
three-dimensional flows. Expressing the velocity components in the x, y and 
z axial directions as u, v and w, then 

u = u (x ,  y,  z, t) v = v (x ,  y,  z, t) w = w ( x ,  y,  z, t) (4.2) 

Consider water running between two parallel plates cross-cut vertically to 
the plates and parallel to the flow. If the flow states are the same on all planes 
parallel to the cut plane, the flow is called a two-dimensional flow since it 
can be described by two coordinates x and y. Expressing the velocity 
components in the x and y directions as u and v respectively, then 

u = u (x ,  y ,  t) v = v (x ,  y ,  t) (4.3) 

and they can be handled more simply than in the case of three-dimensional 
flow. 

As an even simpler case, considering water flowing in a tube in terms of 
average velocity, then the flow has a velocity component in the x direction 
only. A flow whose state is determined by one coordinate x only is called a 
one-dimensional flow, and its velocity u depends on coordinates x and t 
only: 
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u = u(x ,  t) (4.4) 

In this case analysis is even simpler. 
Although all natural phenomena are three dimensional, they can be studied 

as approximately two- or one-dimensional phenomena in many cases. Since 
the three-dimensional case has more variables than the two-dimensional case, 
it is not easy to solve the former. In this book three-dimensional formulae 
are omitted. 

On a calm day with no wind, smoke ascending from a chimney looks like a 
single line as shown in Fig. 4.4(a). However, when the wind is strong, the 
smoke is disturbed and swirls as shown in Fig. 4.4(b) or diffuses into the 
peripheral air. One man who systematically studied such states of flow was 
Osborne Reynolds. 

Reynolds used the device shown in Fig. 4.5. Coloured liquid was led to 
the entrance of a glass tube. As the valve was gradually opened by the handle, 
the coloured liquid flowed, as shown in Fig. 4.6(a), like a piece of thread 
without mixing with peripheral water. 

When the flow velocity of water in the tube reached a certain value, he 
observed, as shown in Fig. 4.6(b) that the line of coloured liquid suddenly 
became turbulent on mingling with the peripheral water. He called the former 
flow the laminar flow, the latter flow the turbulent flow, and the flow velocity 
at the time when the laminar flow had turned to turbulent flow the critical 
velocity. 

A familiar example is shown in Fig. 4.7. Here, whenever water is allowed 
to flow at a low velocity by opening the tap a little, the water flows out 
smoothly with its surface in the laminar state. But as the tap is gradually 
opened to let the Water velocity increase, the flow becomes turbulent and 
opaque with a rough surface. 

. . . . . . . . . . . .  
========================== 
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(a) 

Fig. 4.4 Smoke from a chimney 
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(b) 
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Fig. 4.5 Reynolds' experiment 1 

~,, ,~ , . . . .  , ,, 
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I l l  - -  

(a) Laminar flow 

L 

(b) Turbulent flow 

(c) Turbulent flow (observed by electric spark) 

Fig. 4.6 Reynolds' sketch of transition from laminar f low to turbulent f low 

Reynolds, O., Philosophical Transactions of the Royal Society, 174 (1883), 935. 
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~ , , #  

(a) laminar flow (b) Turbulent flow 

Fig. 4.7 Water flowing from a faucet 
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Reynolds conducted many experiments using glass tubes of 7, 9, 15 and 
27 mm diameter and water temperatures from 4 to 44°C. He discovered that 
a laminar flow turns to a turbulent flow when the value of the non- 
dimensional quantity pvd/l~ reaches a certain amount whatever the values of 
the average velocity v, glass tube diameter d, water density p and water 
viscosity/z. Later, to commemorate Reynolds' achievement, 

Re = .pod =~vd (v is the kinematic viscosity) (4.5) 
~ v 

was called the Reynolds number. In particular, whenever the velocity is the 
critical velocity v¢, Re¢ = v¢d/v is called the critical Reynolds number. The 
value of Re¢ is much affected by the turbulence existing in the fluid coming 
into the tube, but the Reynolds number at which the flow remains laminar, 
however agitated the tank water, is called the lower critical Reynolds 
number. This value is said to be 2320 by Schiller 2. Whenever the experiment 
is made with calm tank water, Re¢ turns out to have a large value, whose 
upper limit is called the higher critical Reynolds number. Ekman obtained a 
value of 5 x 10 ~ for i t .  
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In general, liquid is called an incompressible fluid, and gas a compressible 
fluid. Nevertheless, even in the case of a liquid it becomes necessary to take 
compressibility into account whenever the liquid is highly pressurised, such 

2 Wien, W. und Harms, F., Handbuch der Experimental Physik, IV, 4 Teil, Akademische 
Verlagsgesellschaft (1932), 127. 
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Osborne Reynolds (1842-1912) 
Mathematician and physicist of Manchester, 
England. His research covered all the fields of physics 
and engineering - mechanics, thermodynamics, 
electricity, navigation, rolling friction and steam 
engine performance. He was the first to clarify the 
phenomenon of cavitation and the accompanying 
noise. He discovered the difference between laminar 
and turbulent flows and the dimensionless number, 
the Reynolds number, which characterises these 
flows. His lasting contribution was the derivation of 
the momentum equation of viscous fluid for 
turbulent flow and the theory of oil-film lubrication. 

as oil in a hydraulic machine. Similarly, even in the case of a gas, the 
compressibility may be disregarded whenever the change in pressure is small. 
As a criterion for this judgement, Ap/p or the Mach number M (see Sections 
10.4.1 and 13.3) is used, whose value, however, varies according to the nature 
of the situation. 

Fluid particles running through a narrow channel flow, while undergoing 
deformation and rotation, are shown in Fig. 4.8. 

Fig. 4.8 Deformation and rotation of fluid particles running through a narrowing channel 
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Time t + dt 
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Fig. 4.9 Deformation of elementary rectangle of fluid 

Now, assume that, as shown in Fig. 4.9, an elementary rectangle of fluid 
ABCD with sides dx, dy, which is located at O at time t moves to O' while 
deforming itself to A'B'C'D' time dt later. 

AB in the x direction moves to A'B' while rotating by de~, and AD in the 
y direction rotates by de2. Thus 

Ov 
del = -~x dx dt 

~u 
de2 = - "z'- dy d t  

oy 

dO~ -- de--L _- Ov dt dO 2 _- ~de2 = _~Ou dt 
dx Ox dy Oy 

The angular velocities of AB and AD are 091 and 092 respectively: 

dOl Ov dO2 
09~= dt =Ox 092= d t -  Oy 

For centre O, the average angular velocity co is 

'(co,+ ~o~)= ~ o(~ o~) 0 9 - - ~  ~ - -  (4.6) 

Putting the term in the large brackets of the above equation as 
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(a) Forced vortex flow 

Fig. 4.10 Vortex flow 

. . . .  

(b) Free vortex flow 

0v 0u (4.7)3 
= ax ay 

gives what is called the vorticity for the z axis. The case where the vorticity 
is zero, namely the case where the fluid movement obeys 

Ov Ou 
- - - -  = 0 ( 4 . 8 )  
Ox Oy 

is ca l led  i r r o t a t i o n a l  flow. 
As  s h o w n  in Fig.  4 .10(a) ,  a c y l i n d r i c a l  vessel  c o n t a i n i n g  l i q u i d  sp ins  a b o u t  

the  ver t ica l  axis  a t  a c e r t a i n  a n g u l a r  ve loc i ty .  T h e  l i qu id  m a k e s  a r o t a r y  

3 In general, vector c, with the following components x, y, z for vector V (components x, y, z 
are u, v, w) is called the rotation or curl of vector 1I, which can be written as rot V, curl V and 
V x V (V is called nabla). Thus 

law av au awav ~ ]  
= r o t V = c u r l V =  ay az'az ax ' ax  

Equation (4.7) is the case of two-dimensional flow where w = 0. V is an operator which 
represents 

a a a 
i ~ + j ~ + k  o-i 

where i, j, k are unit vectors on the x, y, z axes. 
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Fig. 4.11 Tornado 

movement along the flow line, and, at the same time, the element itself 
rotates. This is shown in the upper diagram of Fig. 4.10(a), which shows how 
wood chips float, a well-studied phenomenon. In this case, it is a rotational 
flow, and it is called a forced vortex flow. Shown in Fig. 4.10(b) is the case of 
rotating flow which is observed whenever liquid is made to flow through a 
small hole in the bottom of a vessel. Although the liquid makes a rotary 
movement, its microelements always face the same direction without 
performing rotation. This case is a kind of irrotational flow called free vortex 
flow. 

Hurricanes, eddying water currents and tornadoes (see Fig. 4.11) are 
familiar examples of natural vortices. Although the structure of these vortices 
is complex, the basic structure has a forced vortex at its centre and a free 
vortex on its periphery. Many natural vortices are generally of this type. 

i iiiiiiiiii i ii il i! !i !iii iJ ::Jiii i !iili i 
As shown in Fig. 4.12, assuming a given closed curve s, the integrated v'~ 
(which is the velocity component in the tangential direction of the velocity vs 
at a given point on this curve) along this same curve is called the circulation 



Circulation 51 
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Fig. 4.12 Circulation 

F. Here, counterclockwise rotation is taken to be positive. With the angle 
between Vs and O's as 0, then 

F = ~ v's ds = ~ Vs cos O ds (4.9) 

Next, divide the area surrounded by the closed curve s into microareas by 
lines parallel to the x and y axes, and study the circulation dF of one such 
elementary rectangle ABCD (area dA), to obtain 

d F = u d x +  v +-~xdX dy - u +-~y dy dx - vdy = - dxdy  

= ( dx dy = ( dA (4.10) 

is two times the angular velocity co of a rotational flow (eqn (4.6)), and 
the circulation is equal to the product of vorticity by area. Integrate eqn 
(4.10) for the total area, and the integration on each side cancels leaving only 
the integration on the closed curve s as the result. In other words, 

F = ~ v's ds - ~,4 ( dA (4.11) 

From eqn (4.11) it is found that the surface integral of vorticity ( is equal to 
the circulation. This relationship was introduced by Stokes, and is called 
Stokes' theorem. From this finding, whenever there is no vorticity inside a 
closed curve, then the circulation around it is zero. This theorem is utilised in 
fluid dynamics to study the flow inside the impeller of pumps and blowers 
as well as the flow around an aircraft wing. 
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George Gabriel Stokes (1819-1903) 
Mathematician and physicist. He was born in Sligo in 
Ireland, received his education at Cambridge, 
became the professor of mathematics and remained 
in England for the rest of his life as a theoretical 
physicist. More than 100 of his papers were 
presented to the Royal Society, and ranged over 
many fields, including in particular that of 
hydrodynamics. His 1845 paper includes the 
derivation of the Navier-Stokes equations. 

Reynolds" gleanings 
I I  

Sir J. J. Thomson wrote: 

As I was taking the Engineering course, the Professor I had most to do with in my first 
three years at Owens was Professor Osborne Reynolds, the Professor of Engineering. 
He was one of the most original and independent of men and never did anything or 
expressed himself like anybody else. The result was that we had to trust mainly to 
Rankine's text books. Occasionally in the higher classes he would forget all about having 
to lecture and after waiting for ten minutes or so, we sent the janitor to tell him that 
the class was waiting. He would come rushing into the room pulling on his gown as he 
came through the door, take a volume of Rankine from the table, open it apparently 
at random, see some formula or other and say it was wrong. He then went up to the 
blackboard to prove this. He wrote on the board with his back to us, talking to himself, 
and every now and then rubbed it all out and said that was wrong. He would then start 
afresh on a new line, and so on. Generally, towards the end of lecture he would finish 
one which he did not rub out and say that this proved that Rankine was right after all. 

Reynolds never blindly obeyed any scholar's view, even if he was an authority, without 
confirming it himself. 
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1. Put appropriate words in the blanks[ ]below. 

(a) A flow which does not change as time elapses is called a[  [ 
. . . . . . .  

flow. [ 1, [ [and[ [of flow in a steady flow are 

functions of position only, and most of the flows studied in 

hydrodynamics are steady flows. A flow which changes as time elapses 

is called an [ ] flow. I l, [ 

flow in an unsteady flow are functions of l 

Flows such as when a valve is l I/[ 

from a tank belong to this flow. 

(b) The flow velocity is l 

and is] II 

l and  [ .... l of 

land[ l. 
ior the[ [ 

[ to  the radius for a free vortex flow, 

I to the radius for a forced vortex flow. 

Problems 53 

2. When a cylindrical column of radius 5 cm is turned counterclockwise in 
fluid at 300rpm, obtain the circulation of the fluid in contact with the 
column. 

3. When water is running in a round tube of diameter 3 cm at a flow velocity 
of 2m/s ,  is this flow laminar or turbulent? Assume that the kinematic 
viscosity of water is 1 x 10 -6 m 2/s. 

4. If the flow velocity is given by the following equations for a two- 
dimensional flow, obtain the equation of the streamline for this flow: 

u = k x  v = - k y  

5. If the flow velocities are given as follows, show respectively whether the 
flows are rotational or irrotational: 

(a) u = - k y  (b) u - x  2 -  y2 (c) u = 

v = k x  v = - 2 x y  v = 

k y  

X 2 + y2 

k x  

x 2 + y :  

(k is constant). 

6. Assuming that the critical Reynolds number of the flow in a circular pipe 
is 2320, obtain the critical velocity when water or air at 20°C is flowing in 
a pipe of diameter 1 cm. 
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7. A cylinder of diameter 1 m is turning counterclockwise at 500rpm. 
Assuming that the fluid around the cylinder turns in contact with the 
column, obtain the circulation around it. 



One-dimensional flow: 
mechanism for 

conservation of flow 
properties 

General flows are three dimensional, but many of them may be studied 
as if they are one dimensional. For example, whenever a flow in a tube 
is considered, if it is studied in terms of mean velocity, it is a one- 
dimensional flow, which is studied very simply. Presented below are the 
methods of solution of those cases which may be studied as one-dimensional 
flows by using the continuity equation, energy equation and momentum 
equation. 
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In steady flow, the mass flow per unit time passing through each section does 
not change, even if the pipe diameter changes. This is the law of conservation 
of mass. 

For the pipe shown in Fig. 5.1 whose diameter decreases between 
sections 1 and 2, which have cross-sectional areas A~ and A2 respectively, 
and at which the mean velocities are v~ and v2 and the densities P l and P2 
respectively, 

namely, 

p~A~v~ = p2A2v2 

pAy = constant (5.1) 

If the fluid is incompressible, e.g. water, with p being effectively constant, 
then 

Av = constant (5.2) 
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Section 2 

Section 

Fig. 5.1 Mass flow rate passing through any section is constant 

pAy is the mass of fluid passing through a section per unit time and this is 
called the mass flow rate. Av is that volume and this is called the volume 
flow rate, which is therefore constant is an incompressible pipe flow. 

Equations (5.1) and (5.2) state that the flow is continuous, with no loss or 
gain, so these equations are called the continuity equations. They arc an 
expression of the principle of conservation of mass when applied to fluid flow. 
It is clear from eqn (5.1) that the flow velocity is inversely proportional to 
the cross-sectional area of the pipe. When the diameter of the pipe is reduced, 
the flow velocity increases. 
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5.2.1 Bernoulli's equation 

Consider a roller-coaster running with great excitement in an amusement 
park (Fig. 5.2). The speed of the roller-coaster decreases when it is at the top 
of the steep slope, and it increases towards the bottom. This is because the 
potential energy increases and kinetic energy decreases at the top, and the 
opposite occurs at the bottom. However, ignoring frictional losses, the sum 
of the two forms of energy is constant at any height. This is a manifestation 
of the principle of conservation of energy for a solid. 

Figures 5.3(a) and (b) show the relationship between the potential energy 
of water (its level) and its kinetic energy (the speed at which it gushes out of 
the pipe). 

A fluid can attain large kinetic energy when it is under pressure as shown 
in Fig. 5.3(c). A water hydraulic or oil hydraulic press machine is powered by 
the forces and energy due to such pressure. 

In fluids, these three forms of energy are exchangeable and, again ignoring 
frictional losses, the total energy is constant. This is an expression of the 
law of conservation of energy applied to a fluid. 
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Fig. 5.2 Movement of roller-coaster 
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(b) 

(c) 

Fig. 5.3 Conservation of fluid energy 

A streamline (a line which follows the direction of the fluid velocity) is 
chosen with the coordinates shown in Fig. 5.4. Around this line, a cylindrical 
element of fluid having the cross-sectional area dA and length ds is 
considered. Let p be the pressure acting on the lower face, and pressure 
p + (Op/Os)ds acts on the upper face a distance ds away. The gravitational 
force acting on this element is its weight, pg dA ds. Applying Newton's second 
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,~  ~s ...,-% 

p g d A d s  
Streamline 

Fig. 5.4 Force acting on fluid on streamline 

law of motion to this element, the resultant force acting on it, and producing 
acceleration along the streamline, is the force due to the pressure difference 
across the streamline and the component of any other external force (in this 
case only the gravitational force) along the streamline. 

Therefore the following equation is obtained: 

p dA ds dv Op -~ = -dA-~s ds - pg dA ds cos 0 

o r  

dv 10p 
dt = p Os g cos O (5.3) 

The velocity may change with both position and time. In one-dimensional 
flow it therefore becomes a function of distance and time, v = v(s, t). The 
change in velocity dv over time dt may be written as 

The acceleration is then 

Ov Ov 
d v = -ff i d t +-~sdS 

dv av Ov ds Ov Ov 
d t  = a t  + 0-7 d t  = a t  + v as  

If the z axis is the vertical direction as shown in Fig. 5.4, then 

cos 0 = dz/ds  

So eqn (5.3) becomes 

Ov Ov 10p dz 

0-7 + ~ Os = - - A  Os - g Tss 

In the steady state, Ov/Ot = 0 and eqn (5.4) would then become 

(5.4) 
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Leonhard Euler (1707-83) 
Mathematician born near Basle in Switzerland. A 
pupil of Johann Bernoulli and a dose friend of Daniel 
Bernoulli. Contributed enormously to the mathe- 
matical development of Newtonian mechanics, while 
formulating the equations of motion of a perfect 
fluid and solid. Lost his sight in one eye and then 
both eyes, as a result of a disease, but still continued 
his research. 

dv 1 dp dz 
v d--s = - p d-~ - g dss (5.5) 

Equation (5.4) or (5.5) is called Euler's equation of motion for one- 
dimensional non-viscous fluid flow. In incompressible fluid flow with two 
unknowns (v and p), the continuity equation (5.2) must be solved 
simultaneously. In compressible flow, p becomes unknown, too. So by 
adding a third equation of state for a perfect gas (2.14), a solution can be 
obtained. 

Equation (5.5) is integrated with respect to s to obtain a relationship 
between points a finite distance apart  along the streamline. This gives 

v2 I dp ~ + gz = constant (5.6) 
2 - +  P 

and for an incompressible fluid (P = constant), 

t~ 2 
- -  + P- + gz = constant (5.7) 
2 P 

between arbitrary points, and therefore at all points, along a streamline. 
Dividing each term in eqn (5.7) by g, 

v 2 
- - +  P + z = H = constant (5.8) 
2g pg 

Multiplying each term of eqn (5.7) by p, 
p v  2 

+ p +  pgz = constant (5.9) 
2 

The units of the terms in eqn (5.7) are m2/s 2, which can be expressed as 
kgm2/(s2kg ). Since kgm2/s2 = J (for energy), then v2/2, p/p and gz in eqn 



60 One-dimensional flow 

Daniel Bernoulli (1700-82) 
Mathematician born in Groningen in the 
Netherlands. A good friend of Euler. Made efforts 
to popularise the law of fluid motion, while 
tackling various novel problems in fluid statics 
and dynamics. Originated the Latin word hydro- 
dynamica, meaning fluid dynamics. 

(5.7) represent the kinetic energy, energy due to pressure and potential energy 
respectively, per unit mass. 

The terms of eqn (5.8) represent energy per unit weight, and they have 
the units of length (m) so they are commonly termed heads. 

/32 
n : velocity head 
2g 

P "  pressure head 
Pg 

z" potential head 

H:  total head 

The units of the terms of eqn (5.9) are kg/(s 2 m) expressing energy per unit 
volume. Thus, eqns (5.7) to (5.9) express the law of conservation of energy in 
that the sum of the kinetic energy, energy due to pressure and potential 
energy (i.e. the total energy) is always constant. This is Bernoulli's equation. 

If the streamline is horizontal, then the term pgh can be omitted giving 
the following: 

p/32 
--~- -t- Ps --- Pt (5.10) 

where pv2/2 is called the dynamic pressure, Ps the static pressure, and Pt the 
total pressure or stagnation pressure. 

Static pressure Ps can be detected, as shown in Fig. 5.5, by punching a small 
hole vertically in the solid wall face parallel to the flow. 

As Bernoulli's theorem applies to a flow line, it is also applicable to the 
flow in a pipe line as shown in Fig. 5.6. Assume the pipe line is horizontal, 
and z~ = z2 in eqn (5.8). The following relative equation is obtained: 



Fig. 5.5 Picking out of static pressure 

Ps 

r 
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T~/tal head 

. . . . .  

1 

-5 

192 ! 

A1 - 1 
/ 

. , . , . . . - - , . _  

Fig. 5.6 Exchange between pressure head and velocity head 

2 
vi p~ /)2 P2 
2g pg 2g pg 

(5.11) 

Also, from the continuity equation, 

/~lAl = 192A 2 (5.12) 

Consequently, whenever A~ > A2, then v~ < 1)2 and p~ > P2. In other words, 
where the flow channel is narrow (where the streamlines are dense), the flow 
velocity is large and the pressure head is low. 

As shown in Fig. 5.7, whenever water flows from tank 1 to tank 2, the 
energy equations for sections l, 2 and 3 are as follows from eqn (5.8): 

V2 Pl  V2 2 P2 V~ P3 
"~+- -+p  zl = ~- + - -+p  z2 + h2 = ~- +- -+p  z3 + h3 (5.13) 
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A1 A2 A3 

Fig. 5.7 Hydraulic grade line and energy line 

h 2 and h3 are the losses of head between section 1 and either of the respective 
sections. 

In Fig. 5.7, the line connecting the height of the pressure heads at 
respective points of the pipe line is called the hydraulic grade line, while that 
connecting the heights of all the heads is called the energy line. 

5.2.2 Application of Bernoulli's equation 
Various problems on the one-dimensional flow of an ideal fluid can be solved 
by jointly using Bernoulli's theorem and the continuity equation. 

Venturi tube 
As shown in Fig. 5.8, a device where the flow rate in a pipe line is measured 
by narrowing a part of the tube is called a Venturi tube. In the narrowed part 
of the tube, the flow velocity increases. By measuring the resultant decreasing 
pressure, the flow rate in the pipe line can be measured. 

Let A be the section area of the Venturi tube, v the velocity and p the 
pressure, and express the states of sections 1 and 2 by subscripts 1 and 2 
respectively. Then from Bernoulli's equation 

V~ P2 t~ P__.L + + z~ = -  + + z2 
pg 

Assuming that the pipe line is horizontal, 

Z I ~ Z 2 

v2-v~ p~-p2 
2g pg 

From the continuity equation, 

V 1 - -  v 2 A 2 / A  1 
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Giovanni Battista Venturi (1746-1822) 
Italian physicist. After experiencing life as a priest, 
teacher and auditor, finally became a professor of 
experimental physics. Studied the effects of eddies 
and the flow rates at various forms of mouthpieces 
fitted to an orifice, and clarified the basic principles 
of the Venturi tube and the hydraulic jump in an 
open water channel. 

There fo re ,  

and  

1 / 2  P l  - -  P2 (5 .14)  
v2 = V/i _ (AE/AI)2 9 P g  

C o n s e q u e n t l y ,  the  flow ra te  

Pl - -  P2 

Pg 
~ = H  

In the case of  water  

I I  I I  

Section 1 Section 2 
o .  

A l'~q: ), 

i I 
t I 

I 

I I  

,,YA~ 
g'/ 

I al 
t~ In the case of air 

t j ~!ii 
t ~!ii 
,; ~iil 
:1 :::. ~:! ]I! 

Fig. 5.8 Venturi tube 
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f "x 

Henry de Pitot (1695-1771) 
Born in Aramon in France. Studied mathematics and 
physics in Paris. As a civil engineer, undertook the 
drainage of marshy lands, construction of bridges 
and city water systems, and flood countermeasures. 
His books cover structures, land survey, astronomy, 
mathematics, sanitary equipment and theoretical 
ship steering in addition to hydraulics. The famous 
Pitot tube was announced in 1732 as a device to 
measure flow velocity. 

A2 v / ~ H  (5 15) 
Q = Azv2 = ~/i - (A2/A , )  z 

In the case where the flowing fluid is a gas, Pl - P2 is measured by a U-tube. 
However, since there is some loss of energy between sections AI and A2 in 

actual cases, the above equation is amended as follows: 

A2 x/~H (5 16) 
Q = C ~ I _ ( A z / A , ) 2  

C is called the coefficient of discharge. It is determined through experiment. 
Equation (5.16) is also applicable to the case where the tube is inclined. 

Pitot tube 
Pitot, who was engaged in research work, hit upon an idea one day for a very 
simple measuring device of flow rate. It was a device where the lower end of 
a glass tube is bent by 90 ° and supported against the flow. The flow velocity 
was to be measured by measuring the increased height of the water level. It is 
said that, as soon as he had hit upon this idea, he rushed to the River Seine 
carrying a glass tube with a bent end. The result of an experiment as shown 
in Fig. 5.9 confirmed his expectation. The device incorporating that idea is 
shown in Fig. 5.10. This device is called a Pitot tube, and it is widely used 
even nowadays. 

The tube is so designed that at the streamlined end a hole is opened in the 
face of the flow, while another hole in the direction vertical to the flow is used 
in order to pick out separate pressures. 

Let PA and VA respectively be the static pressure and the velocity at 
position A of the undisturbed upstream flow. At opening B of the Pitot 
tube, the flow is stopped, making the velocity zero and the pressure PB- B is 
called the stagnation point. Apply Bernoulli's equation between A and B, 
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'As expected, whenever the tube 
faces into the flow, water in the 
tube goes up. From its height, 

X~.. the flow velocity can be 
_ computed.' 

c? -,,~ 

--------C 

:':~.~~ 

Fig. 5.9 Pitot's first experiment 

A ~ _ _ ~  ~Z~:~~ 

Fig. 5.10 Pitot tube 
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and 

o r  

P_.AA + v2 PB 
pg 2g pg 

/ 

= / 2 g  PB -- PC VA (5.1 7) 
V P 

In a parallel flow, the static pressure PA is the same on the streamline adjacent 
to A and is detected by hole C normal to the flow. Thus, since Pc = PA, 
eqn (5.17) becomes: 

/ 

/ 9  PB -- PC 
/)A V- 

P 

And, since (PB -- Pc)/Pg = H, the following equation is obtained: 

VA = v / ~ H  

(5.18) 

(5.19) 

In the case where the flowing fluid is a gas, PB--Pc is measured with a U- 
tube. 

However, with an actual Pitot tube, since some loss occurs due to its shape 
and the fluid viscosity, the equation is modified as follows: 

VA = C v ~ g H  (5.20) 

where C~ is called the coefficient of velocity. 

Flow through a small hole I: the case where water level does not change 
As shown in Fig. 5.11, we study here the case where water is discharging from 
a small hole on the side of a water tank. Such a hole is called an orifice. As 

H A 

. ! VB 

o 
B 
?? 

Fig. 5.11 Flow through a small hole (1) 
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shown in the figure, the spouting flow contracts to have its smallest section 
B a small distance from the hole. Here, it is conceived that the flow lines are 
almost parallel so that the pressures are uniform from the periphery to the 
centre of the flow. This part of the flow is called the vena contracta. 

Assume that fluid particle A on the water surface has flowed down to 
section B. Then, from Bernoulli's theorem, 

p ,  + p, 
P g ~9 + z , = ~ g ~o + z s 

Assuming that the water tank is large and the water level does not change, 
at point A, vA = 0 and ZA = H, while at point B, za = 0. If PA is the 
atmospheric pressure, then 

2 
P__A -t- H = P---5-A + .  v--9- 
Pg Pg ZO 

o r  

vs = x / ~ H  

Equation (5.21) is called Torricelli's theorem. 

(5.21) 

Coefficient of contraction Ratio Cc of area ac of the smallest section of the 
discharging flow to area a of the small hole is called the coefficient of 
contraction, which is approximately 0.65: 

ac = Cca (5.22) 

Coefficient of velocity The velocity of spouting flow at the smallest section 
is less than the theoretical value vC2oH produced by the fluid velocity and the 
edge of the small hole. Ratio Cv of actual velocity v to ~ is called the 
coefficient of velocity, which is approximately 0.95: 

v = Cvvs = Cv~/~H (5.23) 

Coefficient of discharge Consequently, the actual discharge rate Q is 

9. = Cca CvvB = C~Cvax/~n (5.24) 

Furthermore, setting CcCv - C, this can be expressed as follows: 

Q = Cax /~H (5.25) 

C is called the coefficient of discharge. For a small hole with a sharp edge, 
C is approximately 0.60. 

Flow through a small hole 2: the case where water level changes 
The theoretical flow velocity is 

v = v/29H 
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dH 

HI I 

H2 

Fig. 5.12 Flow through a small hole (2) 

Assume that dQ of water flows out in time dt with the water level falling by 
- d H  (Fig. 5.12). Then 

dO - Cav/~,qH dt = -dHA 

dt = 
- A  dH 

Ca~/2gH 

Ii A I~ "2 dH 
, dt= -Ca---"~ , V~H 

The time needed for the water  level to descend from H~ to H 2 is 

2A 
t2 - t, = C a 4 ~  ( v/-~ - v/-~2 ) (5.26) 

Flow through a smal l  hole 3: the section o f  water tank where the 
descending velocity o f  the water level is constant 
Assume that the bot tom has a small hole of area a, through which water  
flows (Fig. 5.13), then 

dQ = Cav/~H dt = - d H  A = -dH rcr 2 

Whenever the descending velocity of the water level ( -dH/dt  = v) is 
constant, the above equation becomes 

dH CaM"~I~ 
- ~ = (5.27) v = dt r~r 2 

( gV r4 (5.28) H--  Ca 

H cx r 4 (5.29) 
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H 

F- 
Fig. 5.13 Flow through a small hole (3) 

In other words, whenever the section shape has a curve of r 4 against the 
vertical line, the descending velocity of the water level is constant. 

Figure 5.14 shows a water clock made in Egypt about 3400 years ago, 
which indicates the time by the position of the water level. 

Fig. 5.14 Egyptian water clock 3400 years old (London Science Museum) 

Weir 
As shown in Fig. 5.15, in the case where a water channel is stemmed by a 
board or a wall, over which the water  flows, such a board or wall is called a 
weir. A weir is used to adjust the flow rate. 
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Fig. 5.15 Weir 
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In the figure, assume a minute depth dz at a given depth z from the water 
level. Let b be the width of the water channel and assume a minute area b dz 
as an orifice. From Bernoulli's equation 

v =  2 x ~  

The flow rate dQ passing here is as follows assuming the coefficient of 
discharge is C: 

d Q = C b dz 2v~ 

Integrating the above equation, 

Q = C b q ~  ~ dz = 2 Cb~2-~H3/2 (5.30) 

By measuring H, the discharge Q can be computed from eqn (5.30). 

5.3.1 Equation of momentum 
A flying baseball can simply be caught with a glove. A moving automobile, 
however, is difficult to stop in a short time (Fig. 5.16). Therefore, the velocity 
is not sufficient to study the effects of bodily motion, but the product, My, 
of the mass M and the velocity v can be used as an indicator of the 
consequences of motion. This is called the linear momentum. By Newton's 
second law of motion, the change per unit time in the momentum of a body is 
equal to the force acting on the body. 

Now, assume that a body of mass M (kg) will be at velocity v (m/s) in t 
seconds. The acting force F (N) is given by the following equation: 
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M 

F--.My ......... small Where t and t' are the respective times 
t from the collision to stopping 

F '  M'v' _ : " . . . . . . . .  l a r g e  . . . . .  
tP V__._~t 

. . . .  M / ~  

Fig. 5.16 Car does not stop immediately 

F = My2 - My1 (5.31) 
t 

In other  words, the acting force is conserved as an increase in unit t ime in 
momentum.  This is the law of conservation of momentum.  

Whenever  the reaction force of a jet or the force acting on a solid wall in 
contact  with the flow is to be obtained, by using the change in momen tum,  
such a force can be obtained comparat ively simply without  examining the 
complex internal phenomena. 

In an actual computat ion,  keeping in mind an assumed control volume in 
the flow, the relation between the change in momen tum and the force within 
that  volume is obtained by using the equation of momentum.  In the case 
where fluid flows in a curved pipe as shown in Fig. 5.17, let ABCD be the 
control volume, A~, A2 the areas, v~, v2 the velocities, and p~, P2 the pressures 
of sections AB and CD respectively. Fur thermore ,  let F be the force of  fluid 
acting on the pipe; the force of the pipe acting on the fluid is - F .  This force 
and the pressures acting on sections AB and CD act on the fluid, increasing 
the fluid momentum by such a combined force. 1 If  F~ and Fy are the 
component  forces in the x and y directions of F respectively, then f rom the 
equat ion of momentum,  

- Fx + AlPl COS Cq -- A2P2 cos~2 = re(v2 cos ch - vl cos ~1) ! (5.32) 

- Fy + Alpl  sin ~i - A2P2 sin ~2 = re(v2 sin ~2 - vl sin ctl) ! 

Increase in momentum = momentum going out - momentum coming in. 
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Fig. 5.17 Flow in a curved pipe 

In this equation, m is the mass flow rate. If Q is the volumetric flow rate, then 
the following relation exists: 

m = pQ = pAlVl = pA2v2 = pQ 

From eqn (5.32), Fx and Fy are given by 

Fx = m(vl cos ~l - v2 cos ~2) + AlP1 cos ~l - A2P2 cos ~2 I 

Fy = m(v~ sin ~ - v2 sin a2) + A1Pl sin ctl - A2P2 sin a2 I 
(5.33) 

Equation (5.32) is in the form where the change in momentum is equal to 
the force, but since m refers to mass per unit time, note that the equation 
shows that the time-sequenced change in momentum is equal to the force. 

The combined force acting on the curved pipe can be obtained by the 
following equation: 

F = ;F2x + F2y (5.34) 

5.3.2 Application of equation of momentum 
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The equation of momentum is very effective when a fluid force acting on a 
body is studied. 

Force of  a jet 
Let us study the case where, as shown in Fig. 5.18, a two-dimensional jet flow 
strikes an inclined fiat plate at rest and breaks into upward and downward 
jets. 

Assume that the internal pressure of the jet flow is equal to the external 
one and that no loss arises from the flow striking the flat plate. Since no loss 
occurs, it is assumed that the fluid flows out at the velocity v along the fiat 
board after striking it. The control volume is conceived as shown in Fig. 5.18. 
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I v ~¢' Control volume jl 

Fig. 5.18 Force of jet acting on a flat plate at rest 

Examining the direction at right angles to the flat plate, since the velocity of 
the jet turns out to be zero after it has struck the flat board at v sin 0, 

F = pQv sin 0 (5.35) 

Force Fx acting in the direction of the jet is 

Fx = F sin 0 = pQv sin 2 0 (5.36) 

Force F~. acting in the direction at right angles to the jet is 

Fy - F cos 0 = pQv sin 0 cos 0 (5.37) 

Then the flow rate along the flat plate separates into Q, and Q2- Let us obtain 
the change in the ratio of Q, to Q2 according to the inclined angle 0. In this 
case, since no force acts along the flat board if the flow loss is disregarded, 
applying the equation of momentum to the direction along the flat board, 

pQv cos 0 = pQlv - pQ2 v Q cos 0 = Ql - Q2 

Q, and Q2 are obtained using the continuity equation Q = Q, + Q2, and 

Q, = Q(1 + cos 0)/2 (5.38) 

Q2 = Q(1 - cos 0)/2 (5.39) 

In the case where the flat board in Fig. 5.18 moves in the same direction 
as the jet flow at velocity u, since the relative velocity of the jet flow compared 
with the flat board is v -  u, the flow rate Q' reaching the flat board is given 
by 

/3--/,/ Q ' = Q ~  
1.) 

Since the change in velocity in the direction at right angles to the flat board 
is ( v -  u)sin 0, force F acting on the flat board is therefore 



74 One-dimensional flow 

( v -  u)  2 

F = pQ'(v - u) sin 0 = pQ sin 0 (5.40) 
v 

Loss in a suddenly expanding pipe 
For a suddenly expanding pipe as shown in Fig. 5.19, assume that the pipe 
is horizontal, disregard the frictional loss of the pipe, let hs be the expansion 
loss, and set up an equation of energy between sections 1 and 2 as 

o r  

V2 P2 V2 
Pl ÷ = ~ + + h~ 
pg 2g pg 

2 __ vzZ hs = Pl - P2 4 v] (5.41) 
pg 2g 

Next, the streamlines in the smaller pipe are parallel at its very end, so 
the pressure there is p~. And it can be considered that the pressure at the cross 
section is constant, so the pressure on the annular face at the pipe joint is also 
pl. Apply the equation of momentum setting the control volume as shown 
in Fig. 5.19. Thus 

P Q ( v 2  - V l )  - -  ( p l  - P2)A2 (5.42) 
Since Q = AlV~ = A 2 v  2, from the above equation, 

Pl - -  P______~2 _ Q v2 - Vl - -  _ _  /)_~2 ( D  2 __ 131) 

Pg A2 g g 
(5.43) 

Substituting eqn (5.43) into (5.41), 

( v ,  - v ~ )  ~ 
II s - -  2g 

2v12 (5.44) :(l 
is obtained. This hs is called the Borda-Carnot  head loss or simply the 
expansion loss. 

hs 
B 

v_L 2~ 
29 

P_A2 
Pg 
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- ~ : ~ : ~ ~ - - - - =  
pl '::::::::::::::::::::?:::::::::::::::::::::::::::::~---- ~ Cont ro l  
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Sect ion 1 Sect ion  2 
A1 A2 

Fig. 5.19 Abruptly enlarging pipe 



Conservation of momentum 75 

Jet pump 
A jet pump is constructed as shown in Fig. 5.20. By making a water jet spout 
out into a larger water pipe, mixing with the surrounding water occurs so that 
it is carried out with that jet flow. 

: : : ~  
_ ..... ~.:~ v o 

@ Section 1 

P2 = V2 

Section 2 

Fig. 5.20 Jet pump 

If v0 is the velocity of the jet discharging at section 1 and v~ the velocity 
of the surrounding water, and assuming that  mixing finishes at section 2 and 
the flow is then at uniform velocity v2, then we have the following: 

~zO2 pv2 
outflow momentum: 4 

7Z 7t 
inflow in momentum: ~ (D 2 -  d2)pv~ +-~d2pv] 

increase in momentum: ; p[D2v 2 - (D 2 - d2)v 2 - d2v 2] 

force acting on the fluid: -4D2(pl-  P2) 

By the law of momentum, 

p[DEv~ - ( D2 - dE) v2 - dEv2] = D2(pl - P2) 

Rearranging using the continuity equation, 

d 2 D 2 _ d  2 
P2 - Pl --- P~---~ D E (v0 - Vl) 2 (5.45) 

This equation shows that P 2 -  Pl is always positive. In other words, a jet 
pump can force out water against the differential pressure. 

Efficiency of a propeller 
In the case shown in Fig. 5.21, a propeller of diameter D moving from right 
to left at velocity U can be considered as the case where a flow from left to 
right at velocity U strikes a propeller at rest. It can also be assumed that 
the fluid downstream has been accelerated to velocity U + u. Furthermore,  
the pressures upstream and downstream of the propeller are equally 
constant p. 

From the changes in momentum and kinetic energy across the revolving 
face of the propeller, the thrust T is given by 

T = -~ D2pu U + (5.46) 



76 One-dimensional flow 

p, U Slipstream 
boundary 

D 

_i 

Propeller 

Fig. 5.21 Flows upstream and downstream of a propeller 

p , U  

U + u  

] 
] 

and the efficiency r/by 

2 
1'1 = 2 + u / U  (5.47) 

Since the losses due to the fluid viscosity and the revolution of the wake 
are disregarded in this computation, this theory gives the attainable upper 
limit. 
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5.4.1 Equation of angular momentum 
The angular momentum in the case where a body of mass M is rotating at 
radius r and rotational velocity 13 is given by 

Angular momentum = moment of inertia × angular velocity 
13 

= M r  2 x - = M r v  
(5.48) 

The torque (rotational couple) on this body is given by 

Torque = change of angular momentum 

= moment of inertia x angular acceleration 
(5.49) 

This is equivalent to Newton's second law of motion, and expresses the law 
of conservation of angular momentum. 

Figure 5.22 shows a diagram of an ice skater. Whenever the skater revolves 
with the same angular momentum, if she spreads out her arms and stretches 
out one of her legs to enlarge the moment of inertia, she will slow down. This 
graphically expresses the relation of eqn (5.49). 

If the relation of eqn (5.49) is applied to fluid flow, the torque acting on 
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(a) Slow spin 

Fig. 5.22 Ice skater 

(b) Quick spin 
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Fig. 5.23 Flow in curved tube supported so as to turn around shaft 0 

the shaft of a water wheel or a pump when the fluid runs over its rotating 
impeller can be obtained. 

In the case where fluid is running in a curved tube as shown in Fig. 5.23, 
let T be the moment (torque), 2 which tries to turn the pipe around shaft O, 
generated by the force which the fluid between section A1 and section A2 
exerts on the pipe wall. Then from the equation of angular momentum 

T + A2P2r2cosoe 2 - A l p l r l  c o s  Oel - -  m(rEv2COSOe2 -- rlVl COS Oel) (5.50) 

2 The directions of rotation and torque are usually positive whenever they are counterclock- 
wise. 
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5.4.2 Power of a water wheel or pump 

Fluid flows at mass flow rate m along the blade in Fig. 5.24 due to rotation 
of the pump impeller. At radii r~, r2, the peripheral velocities are Ul, u2 
and v~, v2 are the absolute velocities at angles ~ ,  ~2 to them. The relative 
velocities to the impeller are w~ and w2. As seen from Fig. 5.24, since the 
direction of the pressures passes through the centre of the impeller, the 
second and third terms on the left eqn (5.50) turn out to be zero. The 
torque is as follows: 

T = m ( r 2 v  2 COSt~ 2 - -  rlvl C O S ~ l )  (5.51) 

In this way, the torque acting on the impeller shaft can be obtained just from 
the states of the velocities at the inlet and outlet of the impeller. 

If co is the angular velocity of the impeller, the power L given to the shaft 
is 

L = To9 (5.52) 

The torque and power for a water wheel can be obtained similarly. 

U2 ' ~ 2  

W2 

Fig. 5.24 Flow along blade of centrifugal pump 
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1. Derive Bernoulli's equation for steady flow by integrating Euler's 
equation of motion. 

2. Find the flow velocities v~, v2 and v3 in the conduit shown in Fig. 5.25. 
The flow rate Q is 800 L/min and the diameters d~, dz and d 3 at sections 
1, 2 and 3 are 50, 60 and 100 mm respectively. 

3. Water is flowing in the conduit shown in Fig. 5.25. If the pressure p~ at 
section 1 is 24.5 kPa, what are the pressures P2 and P3 at sections 2 and 3 
respectively? 
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2 
3 

Fig. 5.25 

4. In Fig. 5.26, air of flow rate Q flows into the centre through a pipe of 
radius r, and radially between two discs, and then flows out into the 
atmosphere. Obtain the pressure distribution between the discs. Also 
calculate the pressure force acting on the lower annular ring plate whose 
inner diameter is r~ and outer diameter is r2. Neglect frictional losses. 

J  -hi .... 

Fig. 5.26 

5. In Fig. 5.26, if water flows at rate Q = 0.013 m 3 / s radially between two 
discs of radius r2 = 30cm each from a pipe of radius r~ = 7 cm, obtain 
the pressure and the flow velocity at r = 12 cm. Assume that h = 0.3 cm 
and neglect the frictional loss. 

6. As shown in Fig. 5.27, a tank has a hole and a << A. Find the time 
necessary for the tank to empty. 

7. As shown in Fig. 5.28, water flows out of a vessel through a small hole 
in the bottom. What is a suitable section shape to keep the velocity of 
descent of the water surface constant? Assume the volume of water in the 
vessel is 21, R/d = 100 (where R is the radius of the initial water surface 
in the vessel, d the small hole on the bottom), and the flow discharge 
coefficient of the small hole is C = 0.6. What should R and d be in order 
to manufacture a water clock for measuring 1 hour? 
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8. In the case shown in Fig. 5.29, water at a flow rate of Q = 0.2 m 3/s is 
supplied to the cylindrical water tank of diameter 1 m discharging 
through a round pipe of length 4 m and diameter 15 cm. How deep will 
the water in the tank be? 

9. As shown in Fig. 5.30, a jet of water of flow rate Q and diameter d strikes 
the stationary plate at angle 0. Calculate the force on this stationary 
plate and its direction. Furthermore, if 0 = 6 0  °, d =  25mm and 
Q = 0.12 m 3 / s, obtain Q~, Q2 and F. 

Fig. 530 

Q1 

10. As shown in Fig. 5.31, if water flows out of the tank of head 50cm 
through the throttle, obtain the pressure at the throat. 
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50 c 

2 cm 

Fig. 5.31 

11. Figure 5.32 shows a garden sprinkler. If the sprinkler nozzle diameter is 
5 turn and the sprinkler velocity is 5 m/s, what is the rate of rotation? 
What torque is required to hold the sprinkler stationary? Assume there is 

no friction. 

CO 

60* 

20. cm 

Fig. 5.32 

12. A jet.propelled boat as shown in Fig. 5.33 is moving at a velocity of 
10rn/s. The river is flowing against the boat at 5rn/s. Assuming the jet 
flow rate is 0.15 rn 3/s and its discharge velocity is 20m/s, what is the 
propelling power of this boat? (Jet boats like this are actually in use.) 

Pump 

Fig. 5.33 



Flow of viscous fluid 

All fluids are viscous. In the case where the viscous effect is minimal, the flow 
can be treated as an ideal fluid, otherwise the fluid must be treated as a 
viscous fluid. For  example, it is necessary to treat a fluid as a viscous fluid in 
order to analyse the pressure loss due to a flow, the drag acting on a body 
in a flow and the phenomenon where flow separates from a body. In this 
chapter, such fundamental matters are explained to obtain analytically the 
relation between the velocity, pressure, etc., in the flow of a two-dimensional 
incompressible viscous fluid. 
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Consider the elementary rectangle of fluid of side dx, side dy and thickness 
b as shown in Fig. 6.1 (b being measured perpendicularly to the paper). The 
velocities in the x and y directions are u and v respectively. For  the x 

y . 

dy 

0 " 

pu, 

a(p") p + dy 
t 

. ° o ~ ° • ° • ° °  

° . ° ° ° ° 

• ° 

~ ° . ° . . ° . . ° 

~ °  " .  ° ° 

dx 

+ 3(PU)dx 
-,ou Or. 

Fig. 6.1 Flow balance in a fluid element 
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direction, by deducting the outlet mass flow rate from the inlet mass flow rate, 
the fluid mass stored in the fluid element per unit time can be obtained, i.e. 

oub d y - Ou + O ) dx b d y = Ox 

Similarly, the fluid mass stored in it per unit time in the y direction is 

O(,ov) b dx d y 
By 

The mass of fluid element (obdx dy) ought to increase by O(pb dxdy/Bt) in 
unit time by virtue of this stored fluid. Therefore, the following equation is 
obtained: 

O(pu) O(pv) b(pb dx dy) 
~x b d x d y -  By bdxdy= at 

o r  

O-[+OP 0(~;) + O(pv),By, = 0 (6.1) 1 

Equation (6.1) is called the continuity equation. This equation is applicable 
to the unsteady flow of a compressible fluid. In the case of steady flow, the 
first term becomes zero. 

For an incompressible fluid, p is constant, so the following equation is 
obtained: 

0u By 
+ -z-- = 0 (6.2) ~ 

By 

This equation is applicable to both steady and unsteady flows. 
In the case of an axially symmetric flow as shown in Fig. 6.2, eqn (6.2) 

becomes, using cylindrical coordinates, 

Ou 1 O(rv) 
4 = 0 ( 6 . 3 )  

Ox r Or 
As the continuity equation is independent of whether the fluid is viscous or 
not, the same equation is applicable also to an ideal fluid. 

ii ii iiii i i  iiiiii i iiii iiiiiiii  iii ii i 
Consider an elementary rectangle of fluid of side dx, side dy and thickness b 
as shown in Fig. 6.3, and apply Newton's second law of motion. Where the 

Ou/Ox + Or~By + Ow/Oz is generally called the divergence of vector V (whose components  x, y, 
z are u, v, w) and is expressed as div V or VV. If  we use this, eqns (6.1) and (6.2) (two-dimensional 
flow, so w = 0) are expressed respectively as the following equations: 

Op Op 
Ot + div(p V) = 0 or ~-  + V(p V) = 0 (6.1)' 

div(p V) = 0 or V(p V) = 0 (6.2)' 
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Fig. 6.2 Axially symmetric flow 

a~ ~ a f  ~+~dy u p+ dy Y r + ~  
# 7"1 

d~/ ...>..~!i!~!:.<!~.~!~i~.:.. 

- " " ~ X  . . . . . .  "---Z ~ 
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k 1 G L 'I _~i G ,- - , -  ' -, (e )  --~r~ 

(d) 
Fig. 6.3 Balance of forces on a fluid element: (a) velocity; (b) pressure; (c) angular deformation' 
(d) relation between tensile stress and shearing stress by elongation transformation of x direction; 
(e) velocity of angular deformation by elongation and contraction 

forces acting on this element are F(Fx, Fy), the following equations are 
obtained for the x and y axes respectively: 

du / pbdx  dy -~  = Fx 

dv 
p b dx d Y -d-i = Fy 

(6.4) 
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The left-hand side of eqn (6.4) expresses the inertial force which is the 
product of the mass and acceleration of the fluid element. The change in 
velocity of this element is brought about both by the movement of position 
and by the progress of time. So the velocity change du at time dt is expressed 
by the following equation: 

Ou Ou Ou 
d u = -ff [ d t + -~x d X + ~y d y 

Therefore, 

du Ou Ou dx Ou d y Ou Ou Ou 
d--/= Ot + ~x-~ + Oydt ot+U-~x+Voy 

(6.5) 

Substituting this into eqn (6.4), 

p -~[+ U-~x+ v bdxdy  = Fx 

p --ffi+ U-~x+ v bdxdy  = Fy 

Next, the force F acting on the elements comprises the body force 
Fe(Bx, By), pressure force Fp(Px, Py) and viscous force Fs(Sx, Sy). In other 
words, Fx and Fy are expressed by the following equation: 

Fx = Bx + Px + Sx (6.6) 
Fy = By + Py + S,, 

Body force Fb(B~, By) 
(These forces act directly throughout the mass, such as the gravitational 
force, the centrifugal force, the electromagnetic force, etc.) Putting X and Y 
as the x and y axis components of such body forces acting on the mass of 
fluid, then 

Bx = Xpb dx dy ! (6.7) 
By = Ypb dx dy I 

For the gravitational force, X = 0, Y = -g.  

Pressure force Fp(P~, Py) 
Here, 

P x = p b d y -  p+~xdX bdy 

Op b dx dy = - o y  

0p 
= - -~xbdxdy  

(6.8) 

Viscous force F~(5~, Sy) 
Force in the x direction due to angular deformation, Sx~ Putting the strain of 
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the small element of fluid 7 = 71 + 72, the corresponding stress is expressed 
as z = # ~lOt: 

= ~ = l, - f f + - f f  = l, + 

So, 

Or 02u 02v b dx dy = # b dx dy (6.9) 
Sx, = -~y b dx d y = # + Ox O y O-x ~ 

Force in the x direction due to elongation transformation, Sx2 Consider the 
rhombus E F G H  inscribed in a cubic fluid element ABCD of unit thickness as 
shown in Fig. 6.3(d), which shows that an elongated flow to x direction is a 
contracted flow to y direction. This deformation in the x and y directions 
produces a simple angular deformation seen in the rotation of the faces of the 
rhombus. 

Now, calculating the deformation per unit time, the velocity of angular 
deformation OT/Ot becomes as seen from Fig. 6.3(e). 

or v S ~ x  Ou 
at V~ ax 

Therefore, a shearing stress z acts on the four faces of the rhombus EFGH.  

ay at, 
z = g ~ = g ~ g x  

For equilibrium of the force on face EG due to the tensile stress trx and 
the shear forces on EH and HG due to z 

trx = 2 x ~c2z cos45 ° = 2z 

0u 
trx = 2 /~x  x 

Considering the fluid element having sides dx, dy and thickness b, the 

tensile stress in the x direction on the face at distance dx becomes 
&rx 

trx +-~-x dx. This stress acts on the face of area b dy, so the force axe in the 

x direction is 

Sx2 = -(trx)xb dy + (tr~)x+dxb dy = -tr~ + trx + -~x dx b dy 

Oax b dx dy = 2# ~ u  = Ox -~x 2 b d x d y  (6.10) 

Therefore, 

S~ = S~1 + S~2 = # + b dx dy 

Sy = # + b d x d y  

(6.11) 



Navier-Stokes equation 87 

Louis Marie Henri Navier (1785-1836) 
Born in Dijon, France. Actively worked in the 
educational and bridge engineering fields. His 
design of a suspension bridge over the River Seine 
in Paris attracted public attention. In analysing fluid 
movement, thought of an assumed force by 
repulsion and absorption between neighbouring 
molecules in addition to the force studied by Euler 
to find the equation of motion of fluid. Thereafter, 
through research by Cauchy, Poisson and Saint- 
Venant, Stokes derived the present equations, 
including viscosity. 

Substituting eqns (6.7), (6.8) and (6.10) into eqn (6.5), the following equation 
is obtained" 

(~u ~ ) ~ ~(~ ~3) p -gf+u~+~ = p x - ~ + #  + 
(6.12) 

P -'d;+U-~x+V-~v = ~,~PY- -~y +# -~x2 3y2+-- 
, ~ 

Inertia term Body forex Pressure Viscous term 
term term 

These equations are called the Navier-Stokes equations. In the inertia term, 
the rates of velocity change with position and 

(~u ~~) (~ o~) 
u-ff-xx + V u-ff; + v 

and so are called the convective accelerations. 
In the case of axial symmetry, when cylindrical coordinates are used, eqns 

(6.12) become the following equations: ~(~ ~u ~u) ~ ~u 1~ ~u~ 
p + u ~ + ~ - p X - y x + ~ \ o ~ + -  + r -~r Or 2 ,] 

(Or Ov Or) Op {OZv ' 3 v v  O2v'~ (6.13) 

p -gi + u ~ +  ~ - p R - ~ +  # \Ox~ + rO~ ~ F ~3 
where R is the r direction component of external force acting on the fluid of 
unit mass. 

The vorticity ~ is 

and the shearing stress is 

3v 3u 
= ~ - - -  (6.14) 

Ox 3r 

au av) (615) 
~ - - ~  ~+Yxx 
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The continuity equation (6.3), along with equation (6.15), are convenient 
for analysing axisymmetric flow in pipes. 

Now, omitting the body force terms, eliminating the pressure terms by 
partial differentiation of the upper equation of eqn (6.12) by y and the lower 
equation by x, and then rewriting these equations using the equation of 
vorticity (4.7), the following equation is obtained: 

p + U~xx+ = It ~ + (6.16) 

For ideal flow,/~ = 0, so the right-hand side of eqn (6.11) becomes zero. 
Then it is clear that the vortieity does not change in the ideal flow process. 
This is called the vortex theory of Helmholz. 

Now, non-dimensionalise the above using the representative size I and the 
representative velocity U: 

x* = x / l  y* = y / l  

u*=u/U v*=v/U 
t* = t U / l  

(" = o v * / O x *  - Ou ' /Oy"  

Re = pUl/la 

(6.17) 

Using these equations rewrite eqn (6.16) to obtain the following equation: 

+ ~ + ay* = Re \~*~  + Oy*'/ 
Equation (6.18) is called the vorticity transport equation. This equation 

shows that the change in vortieity due to fluid motion equals the diffusion of 
vortieity by viscosity. The term 1~Re corresponds to the coefficient of 
diffusion. Since a smaller Re means a larger coefficient of diffusion, the 
diffusion of vortieity becomes larger, too. 

iiiiii  ii  i i iii®iiiiNii ii i!iiiliii iiiii i!ii! !ii 
In the Navier-Stokes equations, the convective acceleration in the inertial 
term is non-linear 2. Hence it is difficult to obtain an analytical solution for 
general flow. The strict solutions obtained to date are only for some special 
flows. Two such examples are shown below. 

6.3.1 Flow between parallel plates 
Let us study the flow of a viscous fluid between two parallel plates as shown 
in Fig. 6.4, where the flow has just passed the inlet length (see Section 7.1) 

2 The case where an equation is not a simple equation for the unknown function and its partial 
differential function is called non-linear. 
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Y Umaxu ~~ 

Fig. 6.4 Laminar flow between parallel plates 

where it had flowed in the laminar state. For the case of  a parallel flow like 
this, the Navier-Stokes equation (6.12) is extremely simple as follows: 

1. As the velocity is only u since v = 0, it is sufficient to use only the upper 
equation. 

2. As this flow is steady, u does not change with time, so Ou/Ot = O. 

3. As there is no body force, p X  - O. 

4. As this flow is uniform, u does not change with position, 
so ~u/ax = 0 ,  ~ u / a x  2 = 0. 

5. Since v = 0, the lower equation of (6.12) simply expresses the hydrostatic 
pressure variation and has no influence in the x direction. 

So, the upper equation of  eqn (6.12) becomes 
d2u dp 

# dy 2 = d--~ 
(6.19) 3 

3 Consider the balance of forces acting on the respective faces of an assumed small volume 
dx dy (of unit width) in a fluid. 

y . 

__ot 

dr ~- ~ - ~  
dg 

--'td' dx P-'t- dx P 

x 

Forces acting on a small volume between parallel plates 
Since there is no change of momentum between the two faces, the following equation is 

obtained: 

( ~-~Px ) ( dz ) p d y  - p +  dx  dy-zdx+ T+~ydy dx=O 

Therefore dz dp 
dy dx 

and du d2u dp (6.19)' z=#~yy since /~dy 2=d-x 
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By integrating the above equation twice about y, the following equation is 
obtained: 

1 d p y  2 
u = ~---7-- + c,y + cz (6.20) 

z/~ox 

Using u = 0 as the boundary condition at y = 0 and h, c 1 and c 2 are found 
as follows: 

1 dp (h - y )y  (6.21) 
u = 2/zdx 

It is clear that the velocity distribution now forms a parabola. 
At y = hi2, du/dy  = 0, so u becomes Umax" 

Umax ,-- 

T h e  volumetric flow rate Q becomes 

1 dp h2 (6.22) 
8/zdx 

Ii ~ 1 dp h3 (6.23) 
Q =  udy  = 12pdx 

From this equation, the mean velocity v is 

v =  Q 1 dPh 2 1 
= l Zudx = ~ U m a x  (6.24) 

The shearing stress T due to viscosity becomes 

du 1 dp ( h -  2y) (6.25) 
z = # ~ y =  2dx 

The velocity and shearing stress distribution are shown in Fig. 6.4. 
Figure 6.5 is a visualised result using the hydrogen bubble method. It is 

clear that the experimental result coincides with the theoretical result. 
Putting I as the length of plate in the flow direction and Ap as the pressure 

difference, and integrating in the x direction, the following relation is 
obtained: 

Fig. 6.5 Flow, between parallel plates (hydrogen bubble method), of water, velocity 0.5m/s, 
Re- 140 
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U 

(a) 

Fig. 6.6 Couette-Poiseuille flow 4 

y 

oT x 

U 

I 
h 

(b) 

d p _  _ Ap (6.26) 
dx l 

Substituting this equation into eqn (6.23) gives 

Aph3 (6.27) 
Q = 12/~/ 

As shown in Fig. 6.6, in the case where the upper plate moves in the x 
direction at constant  speed U or - U ,  from the boundary conditions of  u = 0 
at y = 0 and u = U at y = h, Cl and c2 in eqn (6.20) can be determined. Thus 

Ap Uy (6.28) 
u = -~lul(h- y)y 4- h 

Then, the volumetric flow rate Q is as follows: 

Ii Aph 3 Uh 
Q =  u d y =  12#14 2 (6.29) 

6.3.2 Flow in circular pipes 
, , , ,  j j , , t .  . . . . . . . . . . . . . . . . . . . . . . .  . , , , , ,  , , , :  . . . . . . . . . .  , . . . . .  , , . . . . .  = : _ _ _ _ _ _  

A flow in a long circular pipe is a parallel flow of axial symmetry  (Fig. 6.7). 
In this case, it is convenient to use the Navier-Stokes equation (6.13) using 
cylindrical coordinates. Under  the same conditions as in the previous section 
(6.3.1), simplify the upper equation in equation (6.13) to give 

dp /rd2u ldu '~ (6.30) 
d--x = / /k ,  dr 2 + r dr} 

Integrating, 

1 dp r2 + Cl log r + c2 (6.31) 
u = 4---~ d--x 

According to the boundary conditions, since the velocity at r = 0 must  be 
finite c~ = 0 and c2 is determined when u = 0 at r = r0" 

4 Assume a viscous fluid flowing between two parallel plates; fix one of the plates and move the 
other plate at velocity U. The flow in this case is called Couette flow. Then, fix both plates, and 
have the fluid flow by the differential pressure. The flow in this case is called two-dimensional 
Poiseuille flow. The combination of these two flows as shown in Fig. 6.6 is called Couette- 
Poiseuille flow. 
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- - 0  
37 

J . . . .  

Fig. 6.7 Laminar flow in a circular pipe 

1 dp 
u =  4/~ dx (~  - r2 ) (6.32) 

From this equation, it is clear that the velocity distribution forms a 
paraboloid of revolution with Umax at r = 0: 

1 dp 
U m a x  - -  4# d--~ ~ 

The volumetric flow rate passing pipe Q becomes 

Ii ° Q = 2nru dr = rcr~ dp 
81a dx 

From this equation, the mean velocity v is 

Q r~ dp 1 
v = -~o2= - 8/~dx - 2 Umax 

The shear stress due to the viscosity is, 

du 1 dp 
= = 

(6.33) 

(6.34) 

(6.35) 

(6.36) 5 

The velocity distribution and the shear distribution are shown in Fig. 6.7. 

5 Equation (6.36) can be deduced by the balance of forces. From the diagram 

r 
- dp 

Force acting on a cylindrical element in a round pipe 

dp 
- rcr 2 - ~  + 2nrz dx  = 0 

du 
Z = la"~r 

(Since d u / d r  < O, T is negative, i.e. leftward.) 

Thus du 1 dp 

d r  = 2---~ d-~ r 
is obtained. 

(6.36)' 
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Gotthilf Heinrich Ludwig Hagen (1797-1884) 
German hydraulic engineer. Conducted experi- 
ments on the relation between head difference 
and flow rate. Had water mixed with sawdust flow 
in a brass pipe to observe its flowing state at the 
outlet. Was yet to discover the general similarity 
parameter including the viscosity, but reported 
that the transition from laminar to turbulent flow 
is connected with tube diameter, flow velocity and 
water temperature. 

A visualisation result using the hydrogen bubble method is shown in 
Fig. 6.8. 

Putting the pressure drop in length l as Ap, the following equation is 
obtained from eqn (6.33): 

128 plQ 32 #lv 
Ap= rcd4 = d2 (6.37) 

This relation was discovered independently by Hagen (1839) and Poiseuille 
(1841), and is called the Hagen-Poiseuille formula. Using this equation, the 
viscosity of liquid can be obtained by measuring the pressure drop Ap. 

Fig. 6.8 Velocity distribution, in a circular pipe (hydrogen bubble method), of water, velocity 2.4m/s, 
Re-- 195 
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Jean Louis Poiseuille (1799-1869) 
French physician and physicist. Studied the pumping 
power of the heart, the movement of blood in vessels 
and capillaries, and the resistance to flow in a 
capillary. In his experiment on a glass capillary 
(diameter 0.029-0.142 mm) he obtained the experi- 
mental equation that the flow rate is proportional to 
the product of the difference in pressure by a power 
of 4 of the pipe inner diameter, and in inverse 
proportion to the tube length. 

......... ~ ........................... ~:~~ ::"~'~ ~':~~'~ I~:~'~'~'~::~%:':~ .................. ~ ............................ ; ............................................................. ?"?71i ................... ?Z ................................................................................................................................................................................................................... 

As stated in Section 4.4, flow in a round pipe is stabilised as laminar  flow 
whenever the Reynolds number Re is less than 2320 or so, but  the flow 
becomes turbulent through the transition region as Re increases. In turbulent  
flow, as observed in the experiment where Reynolds let coloured liquid flow, 
the fluid particles have a velocity minutely fluctuating in an irregular short  
cycle in addition to the timewise mean velocity. By measuring the flow with a 
hot-wire anemometer,  the fluctuating velocity as shown in Fig. 6.9 can be 
recorded. 

For  two-dimensional flow, the velocity is expressed as follows: 

u = ~ + u '  v = ~ + v '  

U 

0 

Mean velocity 

- l  

Fig. 6.9 Turbulence 
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Fig. 6.10 Momentum transport by turbulence 

where fi and ~ are the timewise mean velocities and u' and v' are the 
fluctuating velocities. 

Now, consider the flow at velocity u in the x direction as the flow between 
two flat plates (Fig. 6.10), so u = ~ + u' but v = v'. 

The shearing stress z of a turbulent flow is now the sum of laminar flow 
shearing stress (viscous friction stress) Zl, which is the frictional force acting 
between the two layers at different velocities, and so-called turbulent shearing 
stress ~t, where numerous rotating molecular groups (eddies) mix with each 
other. Thus 

Z = Z 1 "+" 17 t (6 .38)  

Now, let us examine the turbulent shearing stress only. As shown in 
Fig. 6.10, the fluid which passes in unit time in the y direction through minute 
area dA parallel to the x axis is pv' dA. Since this fluid is at relative velocity 
u', the momentum is pv' dAu'. By the movement of this fluid, the upper fluid 
increases its momentum per unit area by pu'v' in the positive direction of x 
per unit time. Therefore, a shearing stress develops on face dA. In other 
words, it is found that the shearing stress due to the turbulent flow is 
proportional to pu'v'. Reynolds, by substituting u = ~ + u', v = ~ + v' into the 
Navier-Stokes equation, performed an averaging operation over time and 

... .  

derived -pu'v'  as a shearing stress in addition to that due to the viscosity. 
Thus 

-'7-7 
Z t - -  - - p U  13 (6 .39)  

where z t is the stress developed by the turbulent flow, which is called the 
Reynolds stress. As can be seen from this equation, the correlation 6 U~v ' of 

6 In general, the mean of the product of a large enough number of two kinds of quantities is 
called the correlation. Whenever this value is large, the correlation is said to be strong. In 
studying turbulent flow, one such correlation is the timewise mean of the products of fluctuating 
velocities in two directions. Whenever this value is large, it indicates that the velocity fluctuations 
in two directions fluctuate similarly timewise. Whenever this value is near zero, it indicates that 
the correlation is small between the fluctuating velocities in two directions. And whenever this 
value is negative, it indicates that the fluctuating velocities fluctuate in reverse directions to each 
other. 
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Ludwig Prandtl (1875-1953) 
Born in Germany, Prandtl taught at Hanover 
Engineering College and then G6ttingen University. 
He successfully observed, by using the floating 
tracer method, that the surface of bodies is covered 
with a thin layer having a large velocity gradient, 
and so advocated the theory of the boundary layer. 
He is called the creator of modern fluid dynamics. 
Furthermore, he taught such famous scholars as 
Blasius and K~rm~n. Wrote The Hydrology. 

the fluctuating velocity is necessary for computing the Reynolds stress. Figure 
6.11 shows the shearing stress in turbulent flow between parallel fiat plates. 

Expressing the Reynolds stress as follows as in the case of laminar flow 

d~ 
zt  = pv--~_ (6.40) uy 

produces the following as the shearing stress in turbulent flow: 

"17 = 171 -q- 17 t ~" p(V %" Vt ) Rd~ 
dy 

(6.41) 

This v t is called the turbulent kinematic viscosity, v t is not the value of a 
physical property dependent on the temperature or such, but a quantity 
fluctuating according to the flow condition. 

Prandtl assumed the following equation in which, for rotating small parcels 

r t  - - - " - , O U  t V t 

du =' = dy 

~ - -  r I -I- rt 
. . . .  

Fig. 6.11 Distribution of shearing stresses of flow between parallel flat plates (enlarged near the 
wall) 
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t 

of fluid of turbulent flow (eddies) travelling average length, the eddies 
assimilate the character of other eddies by collisions with them: 

]d~ 
lu'l ~ Iv'l : 1 (6.42) 

Prandtl called this I the mixing length. 
According to the results of turbulence measurements for shearing flow, 

the distributions of u' and v' are as shown in Fig. 6.12, where u'v' has a large 
probability of being negative. Furthermore, the mixing length is redefined as 
follows, including the constant of proportionality: 

so that 

- - U V  - ' -  

, d/', '~ 2 
T t - "  m p U  V --" p l  2 (6.43) 7 

The relation in eqn (6.43) is called Prandtl's hypothesis on mixing length, 
which is widely used for computing the turbulence shearing stress. Mixing 
length 1 is not the value of a physical property but a fluctuating quantity 
depending on the velocity gradient and the distance from the wall. This 

7 According to the convention that the symbol for shearing stress is related to that of velocity 
gradient, it is described as follows: 

1 7 t - - - p l 2 l  du I du 
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Fig. 6.13 Smoke vortices from a chimney 

introduction of I is replaced in eqn (6.40) to produce a computable fluctuating 
quantity. 

At this stage, however, Prandtl came to a standstill. That is, unless some 
concreteness was given to 1, no further development could be undertaken. At 
a loss, Prandtl went outdoors to refresh himself. In the distance there stood 
some chimneys, the smoke from which was blown by a breeze as shown in 
Fig. 6.13. He noticed that the vortices of smoke near the ground were not so 
large as those far from the ground. Subsequently, he found that the size of 
the vortex was approximately 0.4 times the distance between the ground and 
the centre of the vortex. On applying this finding to a turbulent flow, he 
derived the relation l = 0.4y. By substituting this relation into eqn (6.43), the 
following equation was obtained: 

d__~fi_ 1 ~/~ (6.44) 
dy 0.4y 

Next, in an attempt to establish 17t, he focused his attention on the flow near 
the wall. There, owing to the presence of wall, a thin layer 6o developed where 
turbulent mixing is suppressed and the effect of viscosity dominates as shown 
in Fig. 6.14. This extremely thin layer is called the viscous sublayer, s Here, 
the velocity distribution can be regarded as the same as in laminar flow, and 
V t in eqn (6.41) becomes almost zero. Assuming z0 to be the shearing stress 
acting on the wall, then so far as this section is concerned: 

o r  

d u  u 
• 0 = #~ay = ~ y  (Y -< ~0) 

T o u 
- - =  v -  (6.45) 
P Y 

has the dimension of velocity, and is called the friction velocity, 

8 Until some time ago, this layer had been conceived as a laminar flow and called the laminar 
sublayer, but recently research on visualisation by Kline at Stanford University and others found 
that the turbulent fluctuation parallel to the wall (bursting process) occurred here, too. 
Consequently, it is now called the viscous sublayer. 
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Fig. 6.14 Viscous sublayer 

symbol/3, (v star). Substituting, eqn (6.45) becomes: 

U v , y  

/3, ~) 
(6.46) 

Putting u = u6 whenever y = 60 gives 

u~ v , ~  o 
- - =  ...... = R~ (6.47) 
/3, 

where R6 is a Reynolds number. 
Next, since turbulent flow dominates in the neighbourhood of the wall 

beyond the viscous sublayer, assume zt = %,9 and integrate eqn (6.44): 

u 
- -  = 2.5 In y + c (6.48) 
/3, 

Using the relation ~ = u~ when y = ~0, 

c - -  _ _ m  
u~ 

/3, 
2.5 In ~0 = R~ - 2.5 In 60 (6.49) 

Substituting the above into eqn (6.48) gives 

u = 2 . 5 1 n  Y +R~ 
/3, 

Using the relation in eqn (6.47), 

u = 2.51n(~-~) + A (6.50) 
/3, 

If ~/v,, is plotted against loglo(V,y/v), it turns out as shown in Fig. 6.15 giving 
A = 5.5. l° 

9 " ~ t  = "!70 was the assumption for the case in the neighbourhood of  the wall, and this equation is 
reasonably applicable when tested off the wall in the direction towards the centre. (Goldstein, S., 
Modern Developments in Fluid Dynamics, (1965), 336, Dover, New York).  
~0 It may also be expressed as ~/v. = u +, v ,y /v  = y+. 
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Theodor von Kdrmdn (1881-1963) 
Studied at the Royal Polytechnic Institute of Budapest, 
and took up teaching positions at GSttingen University, 
the Polytechnic Institute of Aachen and California 
Institute of Technology. Beginning with the study of 
vortices in the flow behind a cylinder, known as the 
K~rmdn vortex street, he left many achievements in fluid 
dynamics including drag on a body and turbulent flow. 
Wrote Aerodynamics: Selected Topics in the Light of 
Their Historical Development. 

u = 5.75 log(~.y) + 5.5 (6.51) V, 
This equation is considered applicable only in the neighbourhood of the 

wall from the viewpoint of its derivation. As seen from Fig. 6.15, however, it 
was found to be applicable up to the pipe centre from the comparison with 
the experimental results. This is called the logarithmic velocity distribution, 
and it is applicable to any value of Re. 

In addition, Prandtl separately derived through experiment the following 

30 

20 

10 

l Laminar eq~tion (6.46) ~e 
j~ , , , ,~  ~F,~ns! ! ] ioRe=4.0x103_3.2x 

tion fr m laminar to turbulent flow 

I I 

f 
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Fig. 6.15 Velocity distribution in a circular pipe (experimental values by Reichardt) 
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Fig. 6.16 Velocity distribution of turbulent flow 

equation of an exponential function as the velocity distribution of a turbulent 
flow in a circular pipe as shown in Fig. 6.16: 

-- (~011/n u = y (0 < y < r0) (6.52) 
Umax 

n changes according to Re, and is 7 when Re = 1 x 105. Since many cases 
are generally for flows in this neighbourhood, the equation where n = 7 is 
frequently used. This equation is called the Khrmb.n-Prandtl 1 /7 power law. ll 
Furthermore, there is an experimental equation 12 of n = 3.45Re °°7. V/Umax is 
0.8-0.88 

Figure 6.16 also shows the overlaid velocity distributions of laminar and 
turbulent flows whose average velocities are equal. 

Most flows we see daily are turbulent flows, which are important in such 
applications as heat transfer and mixing. Alongside progress in measuring 
technology, including visualisation techniques, hot-wire anemometry and 
laser Doppler velocimetry, and computerised numerical computation, much 
research is being conducted to clarify the structure of turbulent flow. 

If the movement of fluid is not affected by its viscosity, it could be treated 
as the flow of ideal fluid and the viscosity term of eqn (6.11) could be omitted. 
Therefore, its analysis would be easier. The flow around a solid, however, 
cannot be treated in such a manner because of viscous friction. Nevertheless, 
only the very thin region near the wall is affected by this friction. Prandtl 
identified this phenomenon and had the idea to divide the flow into two 
regions. They are: 

1. the region near the wall where the movement of flow is controlled by the 
frictional resistance; and 

2. the other region outside the above not affected by the friction and, 
therefore, assumed to be ideal fluid flow. 

The former is called the boundary layer and the latter the main flow. 

'~ Schlichting, H., Boundary Layer Theory, (1968), 563, McGraw-Hill, New York. 
~2 Itaya, M, Bulletin of JSME, 7-26, (1941-2), 111-25. 
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This idea made the computation of frictional drag etc. acting on a body 
or a channel relatively easy, and thus enormously contributed to the progress 
of fluid mechanics. 

6.5.1 Development of boundary layer 
As shown in Fig. 6.17, at a location far from a body placed in a flow, the flow 
has uniform velocity U without a velocity gradient. On the face of the body 
the flow velocity is zero with absolutely no slip. For this reason, owing to the 
effect of friction the flow velocity near the wall varies continuously from zero 
to uniform velocity. In other words, it is found that the surface of the body 
is covered by a coat comprising a thin layer where the velocity gradient is 
large. This layer forms a zone of reduced velocity, causing vortices, called a 
wake, to be cast off downstream of the body. 

We notice the existence of boundary layers daily in various ways. For 
example, everybody experiences the feeling of the wind blowing (as shown in 
Fig. 6.18) when standing in a strong wind at the seaside; however, by 
stretching out on the beach much less wind is felt. In this case the boundary 
layer on the ground extends to as much as 1 m or more, so the nearer the 

U 

• ...-..:~ i I 

Fig. 6.17 Boundary layer around body 
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C 

Fig. 6.18 Man lying down is less affected by the coastal breeze than woman standing up 
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Fig. 6.19 Development of boundary layer on a flat plate (thickness 5 mm) in water, velocity 0.6 m/s 

ground the smaller the wind velocity. The velocity u within the boundary 
layer increases with the distance from the body surface and gradually 
approaches the velocity of the main flow. Since it is difficult to distinguish the 
boundary layer thickness, the distance from the body surface when the 
velocity reaches 99% of the velocity of the main flow is defined as the 
boundary layer thickness 6. The boundary layer continuously thickens with 
the distance over which it flows. This process is visualized as shown in Fig. 
6.19. This thickness is less than a few millimetres on the frontal part of a 
high-speed aeroplane, but reaches as much as 50 cm on the rear part of an 
airship. 

When the flow distribution and the drag are considered, it is useful to use 
the following displacement thickness 5* and momentum thickness 0 instead 
of~. 

g6* = ( U -  u)dy (6.53) 

pU20 = p u ( U -  u)dy (6.54) 

5" is the position which equalises two zones of shaded portions in Fig. 
6.20(a). It corresponds to an amount 6* by which, owing to the development 

-Y U Y U 

5"* ' x 0 u 

(a) (b) 

Fig. 6.20 Displacement thickness (a) and momentum thickness (b) 

x 
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Fig. 6.21 Boundary layer on a flat board surface 

of the boundary layer, a body appears larger to the external flow compared 
with the case where the body is an inviscid fluid. Consequently, in the case 
where the state of the main flow is approximately obtained as inviscid flow, a 
computation which assumes the body to be larger by ~* produces a result 
nearest to reality. Also, the momentum thickness 0 equates the momentum 
decrease per unit time due to the existence of the body wall to the momentum 
per unit time which passes at velocity U through a height of thickness 0. The 
momentum decrease is equivalent to the force acting on the body according to 
the law of momentum conservation. Therefore the drag on a body generated 
by the viscosity can be obtained by using the momentum thickness. 

Consider the case where a flat plate is placed in a uniform flow. The flow 
velocity is zero on the plate surface. Since the shearing stress due to viscosity 
acts between this layer and the layer immediately outside it, the velocity of 
the outside layer is reduced. Such a reduction extends to a further outside 
layer and thus the boundary layer increases its thickness in succession, 
beginning from the front end of the plate as shown in Fig. 6.21. 

In this manner, an orderly aligned sheet of vorticity diffuses. Such a layer 
is called a laminar boundary layer, which, however, changes to a turbulent 
boundary layer when it reaches some location downstream. 

This transition to turbulence is caused by a process in which a very minor 
disturbance in the flow becomes more and more turbulent until at last it 
makes the whole flow turbulent. The transition of the boundary layer 
therefore does not occur instantaneously but necessitates some length in the 
direction of the flow. This length is called the transition zone. In the 
transition zone the laminar state and the turbulent state are mixed, but the 
further the flow travels the more the turbulent state occupies until at last it 
becomes a turbulent boundary layer. 

The velocity distributions in the laminar and turbulent boundary layers 
are similar to those for the flow in a pipe. 

6.5.2 Equation of motion of boundary layer 
Consider an incompressible fluid in a laminar boundary layer. Each 
component of the equation of motion in the y direction is small compared 
with that in the x direction, while 02u/Ox 2 is also small compared with 
O2u/Oy 2. Therefore, the Navier-Stokes equations (6.12) simplify the following 
equations: 



Boundary layer 

(ou 
p U-~x+ v = - - ~ x  + la~oy 2 (6.55) 

~n 
~ = 0 (6.56) ay 

The continuity equation is as follows: 

Ou Ov 
~xx+~y= 0 (6.57) 

Equations (6.55)-(6.57) are called the boundary layer equations of laminar 
flow. 

For a steady-state turbulent boundary layer, with similar considerations, 
the following equations result: 

( ) ~ ~ ~+--  (6.58) 

Oii 
,v = la-~y - pu'v'  (6.59) 

O-pp = 0 (6.60) 
Oy 

O--~ + ~yy = 0 (6.61) 

Equations (6.58)-(6.61) are called the boundary layer equations of turbulent 
flow. 
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6.5.3 Separation of boundary layer 
In a flow where the pressure decreases in the direction of the flow, the fluid 
is accelerated and the boundary layer thins. In a contraction flow, the 
pressure has such a negative (favourable) gradient that the flow stabilises 
while the turbulence gradually decreases. 

In contrast, things are quite different in a flow with a positive (adverse) 
pressure gradient where the pressure increases in the flow direction, such as a 
divergent flow or flow on a curved wall as shown in Fig. 6.22. Fluid far off 
the wall has a large flow velocity and therefore large inertia too. Therefore, 
the flow can proceed to a downstream location overcoming the high pressure 
downstream. Fluid near the wall with a small flow velocity, however, cannot 
overcome the pressure to reach the downstream location because of its small 
inertia. Thus the flow velocity becomes smaller and smaller until at last the 
velocity gradient becomes zero. This point is called the separation point of 
the flow. Beyond it the velocity gradient becomes negative to generate a flow 
reversal. In this separation zone, more vortices develop than in the ordinary 
boundary layer, and the flow becomes more turbulent. For this reason the 
energy loss increases. Therefore, an expansion flow is readily destabilised 
with a large loss of energy. 
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Fig. 6.22 Separation of boundary layer 

As shown in Fig. 6.23, consider two planes with a wedge-like gap containing 
an oil film between them. Assume that the upper plane is stationary and of 
length l inclined to the x axis by ~, and that the lower plane is an infinitely 
long plane moving at constant velocity U in the x direction. By the movement 
of the lower plane the oil stuck to it is pulled into the wedge. As a result, 
the internal pressure increases to push up the upper plane so that the two 
planes do not come into contact. This is the principle of a bearing. In this 
flow, since the oil-film thickness is small in comparison with the length of 
plane in the flow direction, the flow is laminar where the action of viscosity is 
very dominant. Therefore, by considering it in the same way as a flow 
between parallel planes (see Section 6.3.1), the following equation is obtained 
from eqn (6.12): 

dp 02u 
dxx = #~Oy 2 (6.62) 

p 

X 

. i -"x 
- - -7  

I - -  - 7  

Fig. 6.23 Flow and pressure distribution between inclined planes (slide bearing) 
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In this case, the pressure p is a function of x only, so the left side is an 
ordinary differential. 

Integrate eqn (6.62) and use boundary conditions u = U, y = h and u = 0 
at y = 0. Then 

dph2 Y ( 1 - h )  (6.63) 
u = U ( 1 - h )  dx2#h 

The flow rate Q per unit width passing here is 

Q = udy 

Substituting eqn (6.63) into (6.64), 

Uh h 3 dp 

Q =  2 12/~ dx 

From the relation (h~ - h2)/l = ~, 

h =  hi - ~ x  

Substituting the above into eqn (6.65), 

dp 6#U 
dx 

Integrating eqn (6.67), 

12#Q 
(hl--~x) 2 (hl--~x) 3 

6/~u 
P = ~(hl - ~x) 

Assume p = 0 when x = 0, x = l, so 

hlh2 U 
Q = h l  +h2 

Equation (6.68) becomes as follows: 

6#Q 
~(hl - ~x) 2 

4-c 

C "--- 
6#U 

~t(hl 4- h2) 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

6 # U ( h -  h2) 
P = (h, + h2)h 2 x (6.69) 

From eqn (6.69), since h > h2, p > 0. Consequently, it is possible to have the 
upper plane supported above the lower plane. This pressure distribution is 
illustrated in Fig. 6.23. By integrating this pressure, the supporting load P 
per unit width of bearing is obtained: 

I0 [ ( ~ )  - h 2 ]  (6.70) ! 6~U12 log - 2h~ h2 
P = p dx --" ( h l  __ h 2 ) 2  hi + 

From eqn (6.70), the force P due to the pressure reaches a maximum when 
hl/h 2 -- 2.2. At this condition P is as follows: 

Pma~ = 0.16 ~Ul2 h~ (6.71) 

This slide bearing is mostly used as a thrust bearing. The theory of 
lubrication above was first analysed by Reynolds. 
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The principle of the journal bearing is almost the same as the above case. 
However, since oil-film thickness h is not expressed by the linear equation of 
x as shown by eqn (6.66), the computation is a little more complicated. This 
analysis was performed by Sommerfeld and others. 

Homer sometimes nods 
This is an example in which even such a great figure as Prandtl made a wrong assumption. On 
one occasion, under the guidance of Prandtl, Hiementz set up a tub to make an experiment 
for observing a separation point on a cylinder surface. The purpose was to confirm 
experimentally the separation point computed by the boundary layer theory. Against his 
expectation, the flow observed in the tub showed violent vibrations. 

Hearing of the above vibration, Prandtl responded, 'It was most likely caused by the 
imperfect circularity of the cylinder section shape.' 

Nevertheless, however carefully the cylinder was reshaped, the vibrations never ceased. 
K~rm~n, then an assistant to Prandtl, assumed there was some essential natural 

phenomenon behind it. He tried to compute the stability of vortex alignment. Summarising the 
computation over the weekend, he showed the summary to Prandtl on Monday for his 
criticism. Then, Prandtl told K~rm~n, 'You did a good job. Make it up into a paper as quickly as 
possible. I will submit it for you to the Academy.' 

o.. 

' !I i ! 

A bird stalls 
K~rm~n hit upon the idea of making a bird stall by utilising his knowledge in aerodynamics. 
When he was standing on the bank of Lake Constance with a piece of bread in his hand, a gull 
approached him to snatch the bread. Then he slowly withdrew his hand, and the gull tried to 



slow down its speed for snatching. To do this, it had to increase the lift of its wings by 
increasing their attack angles. In the course of this, the attack angles probably exceeded their 
effective limits. Thus the gull sometimes lost its speed and fell (see'stall', page 164). 

Problems 109 

..... !:!i;ii .... 

..... i!!!i!::ii.~:~:: i : ; : ~  : ..:ili:/~i::i:ii::i~::.::ii:ii::i~.:,:: ~:.: 

~ . : " ! .  :.:. 

. . . . . . . . .  ::;i:: . . . . . . . . . . . .  '-"; ;"~ 

~ii:ii:iiiiiiiiiiil i ' ........ [~ii.:,,: :. 

Benarl and K,~rm,~n 
E~rmcSn's train of vortices has been known for so long that it is said to appear on a painting 
inside an ancient church in Italy. Even before E~rm~n, however, Professor Henry Benarl 
(1874-1939) of a French university observed and photographed this train of vortices. 
Therefore, Benarl insisted on his priority in observing this phenomenon at a meeting on 
International Applied Dynamics. K,irm,in responded at the occasion '1 am agreeable to calling 
Henry Benarl Street in Paris what is called K&rm&n Street in Berlin and London.' With this joke 
the two became good friends. 

1. Show that the continuity equation in the flow of a two-dimensional 
compressible fluid is as follows: 

ap a(pu) a(pO o + 

2. If the flow of an incompressible fluid is axially symmetric, develop the 
continuity equation using cylindrical coordinates. 

3. If flow is laminar between parallel plates, derive equations expressing 
(a) the velocity distribution, (b) the mean and maximum velocity, (c) the 
flow quantity, and (d) pressure loss. 
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If flow is laminar in a circular tube, derive equations expressing (a) the 
velocity distribution, (b) the mean and maximum velocity, (c) the flow 
quantity, and (d) pressure loss. 

If flow is turbulent in a circular tube, assuming a velocity distribution 
u--Umax(Y/rO) 1/7, obtain (a) the relationship between the mean velocity 
and the maximum velocity, and (b) the radius of the fluid flowing at 
mean velocity. 

Water is flowing at a mean velocity of 4cm/s in a circular tube of 
diameter 50cm. Assume the velocity distribution u = Umax(Y/rO) 1/7. If the 
shearing stress at a location 5cm from the wall is 5.3 x 10-3N/m 2, 
compute the turbulent kinematic viscosity and the mixing length. Assume 
that the water temperature is 20°C and the mean velocity is 0.8 times 
the maximum velocity. 

Consider a viscous fluid flowing in a laminar state through the annular 
gap between concentric tubes. Derive an equation which expresses the 
amount of flow in this case. Assume that the inner diameter is d, the gap 
is h, and h << d. 

Oil of 0.09 Pa s (0.9 P) fills a slide bearing with a flat upper face of length 
60 cm. A load of 5 x 102N per 1 cm of width is desired to be supported 
on the upper surface. What is the maximum oil-film thickness when the 
lower surface moves at a velocity of 5 m/s? 

Show that the friction velocity ~ (z0: shearing stress of the wall; p: 
fluid density) has the dimension of velocity. 

The piston shown in Fig. 6.24 is moving from left to right in a cylinder 
at a velocity of 6m/s.  Assuming that lubricating oil fills the gap 
between the piston and the cylinder to produce an oil film, what is the 
friction force acting on the moving piston? Assume that the kinematic 
viscosity of oil v = 50cSt, specific gravity = 0.9, diameter of cylinder 
d~ = 122 mm, diameter of piston d2 = 125 mm, piston length l = 160 mm, 
and that the pressure on the left side of the piston is higher than that on 
the right side by 10 kPa. 

Fig. 6.24 

" 1 / ~ " ] / l l / / . t / / 1 " / / /  / / / / [ ¢ / ,  

//1/i/11,, l i l l  / , , k  / / X ; , ~ ' I i / ,  

1_ 160 ' 
I ~ ~ i  



iiiiiiiii iii fiiYif!iiiiiii!i!iZii iiii iiiiiiii !i 

!iiii!i ii!iil iii ii ii !!i!!!il 

Flow in pipes 

Consider the flow of an incompressible viscous fluid in a full pipe. In the 
preceding chapter efforts were made analytically to find the relationship 
between the velocity, pressure, etc., for this case. In this chapter, however, 
from a more practical and materialistic standpoint, a method of expressing 
the loss using an average flow velocity is stated. By extending this approach, 
studies will be made on how to express losses caused by a change in the cross- 
sectional area of a pipe, a pipe bend and a valve, in addition to the frictional 
loss of  a pipe. 

Lead city water pipe (Roman remains, Bath, England) 
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Sending water by pipe has a long history. Since the time of the Roman 
Empire (about lac) lead pipes and clay pipes have been used for the water 
supply system in cities. 

Consider a case where fluid runs from a tank into a pipe whose entrance 
section is fully rounded. At the entrance, the velocity distribution is roughly 
uniform while the pressure head is lower by. v~/2g (v: average flow velocity). 

Since the velocity of a viscous fluid is zero on the wall, the fluid near the 
wall is decelerated. The range subject to deceleration extends as the fluid 
flows further downstream, until at last the boundary layers develop up to the 
pipe centre. For this situation, shown in ,,Fig. 7.1, the section from the 
entrance to just where the boundary layer develops to the tube centre is called 
the inlet or entrance region, whose length is called the inlet or entrance 
length. For the value of L, there are the following equations: 

Laminar flow: 

L = O.065Red / computation by Boussinesq 
/ experiment :, by Nikuradse 

L = O.06Red computation by Asao, Iwanami and Mori 

Turbulent flow: 

L = 0.693Rel/4d computation by Latzko 

L = (25 -~ 40)d experiment by Nikuradse 

Downstream of the inlet region, the ~static pressure of the pipe line as 
measured by the liquid column gauge set in,the pipe line turns out, as shown 
in Fig. 7.1, to be lower by H than the water level of the tank, where 

l v 2 v 2 
H = 2 ~ 9 9 +  ¢ 29 (7.1) 

2(l/d)(vZ/29) expresses the frictional loss of head (the lost energy of fluid per 
unit weight). ~(v2/20) expresses the pressure reduction equivalent to the sum 
of the velocity stored when the velocity distribution is fully developed plus 
the additional frictional energy loss above that in fully developed flow 
consumed during the change in velocity distribution. 

The velocity energy of the fluid which has attained the fully developed 
velocity distribution when x -- L is 

[ d/2 p u  2 

E = 2rcru--~-dr (7.2) 
dO 

E is calculated by substituting the equations for the velocity distribution for 
laminar flow (6.32) into u of this equation. The velocity energy for the same 
flow at the average velocity is 
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Turbulent 
L Laminar Transition boundary Turbulent 

boundary layer flgw layer flow 

~!-- L_ Inlet region -,-I 

(b) 

(c) 

Fig. 7.1 Flow in a circular pipe: (a)laminar flow; (b) turbulent flow; (c) laminar flow (flow visualisation 
using hydrogen bubble method) 

E' lzd 2 p/32 

=-4 -~ 2 

Putting E/E' = ~ gives ~ = 2. For the case of turbulent flow, ~ is found to be 
1.09 through experiment. ~ is known as the kinetic energy correction factor. 

The velocity head equivalent to this energy is 

E /3 2 
l nd-----.---T~ = ( - -  (7.3) vpg 2g 

This means that, to compensate for this increase in velocity head when the 
entrance length reaches L, the pressure head must decrease by the same 
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amount. Furthermore, with the extra energy loss due to the changing velocity 
distribution included, the value of ¢ turns out to be much larger than ~. 
~(v2/2#) expresses how much further the pressure would fall than for 
frictional loss in the inlet region of the pipe if a constant velocity distribution 
existed. With respect to the value of ~, for laminar flow values of ~ = 2.24 
(computation by Boussinesq), 2.16 (computation by Schiller), 2.7 (experiment 
by Hagen) and 2.36 (experiment by Nakayama and Endo) were reported, 
while for turbulent flow ~ = 1.4 (experiment by Hagen on a trumpet-like tube 
without an entrance). 

~!ii!~!~i~iiiii~ii~',~',,,',~iiii~,~,',',',~iiii~!iiill ,~',,iiiiiiiii~iiii!~iiiiii~!~i~ii~i ~%iii!~iiii!~ii~i~ii!ii!i!i!~iiiiii!~!~iii~i~i~ii~i~i!iiii~ii~i~i!i~!i!~iiii~ii!i~i!i~i~iiii~iii~i~iiii~ii~iii~ii~~ii~iiiii~ii~ii~iiiii~i~i!!~iiiiiiii~iii!i~i~iiiii~iii~i~~i~ii!~!iii~iii~!!iiiiii!~!i~i~!~!~iiiii~ii~i~ii 

Let us study the flow in the region where the velocity distribution is fully 
developed after passing through the inlet region (Fig. 7.2). If a fluid is flowing 
in the round pipe of diameter d at the average flow velocity v, let the pressures 
at two points distance 1 apart be p~ and P2 respectively. The relationship 
between the velocity v and the loss head h = ( p ~ -  Pz)/P9 is illustrated in 
Fig. 7.3, where, for the laminar flow, the loss head h is proportional to the 
flow velocity v as can clearly be seen from eqn (6.37). For the turbulent flow, 
it turns out to be proportional to v ~75~2. 

The loss head is expressed by the following equation as shown in eqn 
(7.1): 

h 

Fig. 7.2 Pipe frictional .loss 
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Fig. 7.3 Relationship between flow velocity and loss head 

l V 2 
h = 2 - - -  (7.4) 

d2g 

This equation is called the Darcy-Weisbach equation 1, and the coefficient 2 
is called the friction coefficient of the pipe. 

7.2.1 Laminar flow 
~,.  , , _ . ,  , , .  . . . .  , ,  . , . 1 . , ,  . . . . . . . . .  , . , . . . ~  , , , , , .  , , , ,  . . . . . . . . . . .  , , ,  . . . . . . . .  = , ,  , , , ,  L u , , ,  , , , ~ _ 1 ~  

In this case, from eqns (6.37) and (7.4), 

2 = 6 4  p 64 
pvd = R--~ (7.5) 

No effect of wall roughness is seen. The reason is probably that the flow 
turbulence caused by the wall face coarseness is limited to a region near the 
wall face because the velocity and therefore inertia are small, while viscous 
effects are large in such a laminar region. 

7.2.2 Turbulent flow 
- - _ - _ - ; ~ _ - . _ . , , ,  , , . . . ,  _ . . . . .  ~ _ .  : _ _ m _ ~ _ _ _ : :  . . . . . . . . . . . . . .  : . . . . .  _ ~  . . . . . . . .  = : : _ :  ~ : . ~__~__  ~_  = : : : =  : = : : : : __= :  : : ~  : . :  . . . . . .  _ ~ . , . , .  , , , ,  , , .  , ,  , ,  

2 generally varies according to Reynolds number and the pipe wall 
roughness. 

Smooth circular pipe 
The roughness is inside the viscous sublayer if the height e of wall face 
ruggedness is 

e <_ 5v/v (fluid dynamically smooth) (7.6) 

In place of 2, many British texts use 4f  in this equation. Since friction factor  f = 2/4, it is 
essential to check the definition to which a value of  friction factor refers. The symbol  used is not  
a reliable guide. 
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From eqn (6.45) and Fig. 6.15, no effect of roughness is seen and 2 varies 
according to Reynolds number only; thus the pipe can be regarded as a 
smooth pipe. 

In the case of a smooth pipe, the following equations have been developed: 

equation of Blasius: 2 = 0.3164Re -~/4 (Re = 3 x 10 ~,~ 1 x 10 ~) (7.7) 

equation of Nikuradse: 

2 = 0.0032 + 0.221 R e  -°'237 (Re = 105 --- 3 x 106) (7.8) 

equation of K~irm~in-Nikuradse: 

2 = 1/[21og]0(ReVt2)- 0.8] 2 (Re = 3 x 10 3,`` 3 x 10 6) (7.9) 

equation of Itaya: 2 2 = 0.314 
0.7 - 1.65 log~0(Re) + (lOgl0 Re) ~ (7.10) 

By combining eqn (7.4) with (7.7), the relationship h = cv '7~ (here c is a 
constant) arises giving the relationship for turbulent flow in Fig. 7.3. 

Rough circular pipe 
From eqn (6.51) and Fig. 6.15, where 

e, > 7Or~v, (fully coarse) (7.11) 

the wall face roughness extends into the turbulent flow region. This defines 
the rough pipe case where 2 is determined by the roughness only, and is not 
related to Reynolds number value. 

To simulate regular roughness, Nikuradse performed an experiment in 
1933 by lacquer-pasting screened sand grains of uniform diameter onto the 
inner wall of a tube, and obtained the result shown in Fig. 7.4. 
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Fig. 7.4 Friction coefficient of coarse circular pipe with sand grains 

33. ~ 10-3 

16. 35 

3.97 

1.98 

O. 986 

2 Itaya, M., Journal of JSME, 48 (1945), 84. 
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Fig. 7.5 Moody diagram 
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According to this result, whenever Re > 900(e/d), it turns out that 

1 
2 = [1.74-  2 log~0(2~/d)] ~- (7.12) 

The velocity distribution for this case is expressed by the following 
equation: 

u/v. = 8.48 + 5.75 log~0(y/~ ) (7.13) 

For a pipe of irregular coarseness found in practice, the Moody diagram 3 
shown in Fig. 7.5 is applicable. For a new commercial pipe, 2 can be easily 
obtained from Fig. 7.5 using s/d in Fig. 7.6. 
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In the case of a pipe other than a circular one (e.g. oblong or oval), how 
can the pressure loss be found? 

Where fluid flows in an oblong pipe as shown in Fig. 7.7, let the pressure 
drop over length I be h, the sides of the pipe be a and b respectively, and the 
wall perimeter in contact with the fluid on the section be s, where the shearing 
stress is %, the shearing force acting on the pipe wall of length I is l%s, and 
the balancing pressure force is pghA. Then 

pghA = zosl (7.14) 

This equation shows that for a given pressure loss % is determined by A/s 
(the ratio of the flow section area to the wetted perimeter). A/s = m is called 
the hydraulic mean depth (see Section 8.1). In the case of a filled circular 
section pipe, since A = (n/4)d ~-, s = n d ,  the relationship m = d/4 is obtained. 
So, for pipes other than circular, calculation is made using the following 
equation and substituting 4m (which is called the hydraulic diameter) as the 
representative size in place of d in eqn (7.4): 

Flow d i r e c t i o n ~  ~:~!?::-~-.::-.-----.::-::.-i--::;-!..:.-------.;~!-:~::.:--:::-';~il 
• ~ . . . .  . . . 1 . % . . . , ~ . ; . . . . . ~ . . . , = . . . . . . . . ~ .  - . . . - . . . . . . w . . . . - . , . . . , . . . ' . . . - . . . - . . . . - . . . ,  

Section area A f L l F ' ~  . . . .  

Fig. 7.7 Flow in oblong pipe 

hq 

_. ,_  ' ; ~  

J 

3 Moody, L.F. and Princeton, N.J., Transactions of the ASME, 66 (1944), 671. 
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l /32 
h = 2-~m~9 2 = f ( R e ,  e /4m) (7.15) 

Here, assuming Re = 4my~v, e /d  = e /4m  may be found from the Moody 
diagram for a circular pipe. Meanwhile, 4m is described by the following 
equations respectively for an oblong section of a by b and for co-axial pipes 
of inner diameter d~ and outer diameter d2: 

4 a_____~b = 2ab 4 (n/4)(d~ - d~) = d2 _ d l  (7.16) 
2(a + b) a + b n(d~ + dE) 

iii iiiiiii~i~iS iiii~i~iiiii~iiii~i~iiii~iiiiiiiiiiii~ii iii iiiii~iiii~iiiiiiiiii~iiiiiiiiii!!iiiiiiiiii~ii~iiii~ii~iiii~!~i!~!!!ii!ii!!!ii!!i~!ii!i~iiiiiii~iiii~iiiiiiiiiiiiiiiiiiiii!ii~ii~i~iiii!ii~iiiiiiiii~iii~ii!i~i!i~i~!iii~iiiii!iiii~ 

In a pipe line, in addition to frictional loss, head loss is produced through 
additional turbulence arising when fluid flows through such components as 
change of area, change of direction, branching, junction, bend and valve. The 
loss head for such cases is generally expressed by the following equation: 

/32 
hs = ~ 29 (7.17) 

v in the above equation is the mean flow velocity on a section not affected 
by the section where the loss head is produced. Where the mean flow velocity 
changes upstream or downstream of the loss-producing section, the larger 
of the flow velocities is generally used. 

7.4.1 Loss with sudden change of area 

,1:1o w expansion 
The flow expansion loss hs for a suddenly widening pipe becomes the 
following, as already shown by eqn (5.44): 

hs - (Vl - 1)2)2 = 1 _ A1 ~Vl (7.18) 
- -  2g ~22 29 

In practice, however, it becomes 

hs = ~ (vl - v2) 2 
20 (7.19) 

or as follows: 

2 
Vl (7.20) hs = ~  

~ - ¢ 1 - ~ (7.21) 

Here, ~ is a value near one. 
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At the outlet of the pipe as shown in Fig. 7.8, since v2 = 0, eqn (7.19) 
becomes 

hs = ~ ~gg (7.22) 

,,, ,, 

i i l l  

Fig. 7.8 Outlet of pipe line 

Flow contraction 
Owing to the inertia, section 1 (section area A~) of the fluid (Fig. 7.9) shrinks 
to section 2 (section area A~), and then widens to section 3 (section area 
Az). The loss when the flow is accelerated is extremely small, followed by a 
head loss similar to that in the case of sudden expansion. Like eqn (7.18), it is 
expressed by 

= 20 = ~ - l ] ~ o O =  - 1  ~0 (7.23) 

Here C¢ = A d A  2 is a contraction coefficient. For example, when A2/A] -- 0.1, 
Cc =0.61.4 

, cTct'°° 

V c  
. . . . 1 ~  k ' l  ~ _ , . . . _  _ ,. ! - 

I Separation region 

I 

i ..v~ 

t - 
I 

Section 1 Section 2 Section 3 
Al Ac A2 

Fig. 7.9 Sudden contraction pipe 

4 Summarised in Donald S. Miller Internal Flow Systems, British Hydromechanics Research 
Association (1978). 
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Fig. 7.10 Inlet shape and loss factor 

Inlet o f  pipe line As shown in Fig. 7.10, the loss of head in the case where 
fluid enters from a large vessel is expressed by the following equation: 

1) 2 
h~ = ~ 2--g (7.24) 

In this case, however, ( is the inlet loss factor and v is the mean flow 
velocity in the pipe. The value of ( will be the value as shown in Fig. 7.10. 5 

Throttle A device which decreases the flow area, bringing about  the extra 
resistance in a pipe, is generally called a throttle. There are three kinds of 
throttle, i.e. choke, orifice and nozzle. If the length of the narrow section is 
long compared with its diameter, the throttle is called a choke. Since the 
orifice is explained in Sections 5.2.2 and 11.2.2, and a nozzle is dealt with in 
Section 11.2.2, only the choke will be explained here. 

The coefficient of discharge C in Fig. 7.11 can be expressed as follows, as 
eqn (5.25), where the difference between the pressure upstream and 
downstream of the throttle is Ap: 

O = c  7 (7.25) 

and C is expressed as a function of the choke number  a = Q/vl. C is as shown 
in Fig. 7.12, and is expressed by the following equations: 6 if the entrance is 

s Weisbach, J., Ingenieur- und Machienen-Mechanik, I (1896), 1003. 
6 Hibi, et al., Journal of the Japan Hydraulics & Pneumatics Society, 2 (1971), 72. 
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Fig. 7.11 Choke 
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Fig. 7.12 Coefficient of discharge for cylindrical chokes: (a) entrance rounded; (b) entrance not 
rounded 

rounded :  
1 

C - (7.26) 
1.16 + 6 .25a -°61 

and  if  the ent rance  is no t  rounded :  

1 
C = 1 + 5 .3 /~ /~  (7.27) 
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7.4.2 Loss with gradual change of area 

Divergent pipe or diffuser 
The head loss for a divergent pipe as shown in Fig. 7.13 is expressed in the 
same manner as eqn (7.19) for a suddenly widening pipe: 

(v ,  - v~) ~ 
h~ = ~ (7.28) 

29 

The value of ~ for circular divergent pipes is shown in Fig. 7.14. 7 The value 
of ~ varies according to 0. For a circular section ~ = 0.135 (minimum) when 
0 = 5o30 '. For the rectangular section, ~ = 0.145 (minimum) when 0 = 6 °, 
and ~ = 1 (almost constant) whenever 0 = 50o-60 ° or more. 

For a two-dimensional duct, if 0 is small the fluid flows attaches to one of 
the side walls due to a wall attachment phenomenon (the wall effect). 8 In the 
case of a circular pipe, when 0 becomes larger than the angle which gives 
the minimum value of ¢, the flow separates midway as shown in Fig. 7.15. 
Owing to the turbulence accompanying such a separation of flow, the loss of 
head suddenly increases. This phenomenon is visualised in Fig. 7.16. 

A divergent pipe is also used as a diffuser to convert velocity energy into 
pressure energy. In the case of Fig. 7.13, the following equation is obtained 
by applying Bernoulli's principle: 

section i Section 2 

A1 A2 

Fig. 7.13 Divergent flow 

7 Gibson, A. H., Hydraulics, (1952), 91, Constable, London; Uematsu, T., Bulletin ofJSME, 2 
(1936), 254. 
s An adjacent wall restricts normal flow entrainment by a jet. A fall in pressure results which 
deflects the jet such that it can become attached to the wall. This is called the Coanda effect, 
discovered by H. Coanda in 1932. The effect is the basic principle of the technology of fluidics. 
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Fig. 7.14 Loss factor for divergent pipes 

Separation point 

Fig. 7.15 Velocity distribution in a divergent pipe 

Fig. 7.16 Separation occurring in a divergent pipe (hydrogen bubble method), in water; inlet velocity 
6 cm/s, Re (inlet port) - 900, divergent angle 200 



v~ P2 v~ 
Pl f = ~ - i -  + hs 
p g  29 pg  ~9 

Therefore 

p2 - p, ~ - v~ 

p g  29 

Putting P2th for P2 for the case where there is no loss, 
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(7.29) 

2 __ v~ Pzth - -  Pl Vl 
= ~ (7.30) 

P9 29 

The pressure recovery efficiency r/for a diffuser is therefore 

P2 -- Pl hs = ~ =  1 -  (7.31) 
q P2th -- Pl (V~ -- V~)/29 

Substituting in eqn (7.28), the above equation becomes 

11 = 1 - ~ vl - v_..__..~2 : 1 - ~ 1 - A l I A  2 (7.32) 
Ol "J¢" ~)2 1 + A l I A  2 

Convergent pipe 
In the case where a pipe section gradually becomes smaller, since the pressure 
decreases in the direction of the flow, the flow runs freely without extra 
turbulence. Therefore, losses other than the pipe friction are normally 
negligible. 

7.4.3 Loss whenever the flow direction changes 
. . . . . . . . . . . . . . . . . . . .  , ,  ~ ~ - ~  . . . . . . . . . .  ~ . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Bend 
The gently curving part of a pipe shown in Fig. 7.17 is referred to as a pipe 

V 

Fig. 7.17 Bend 

B ~  

A 

B 

- -d 1 
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Table 7.1 Loss factor ~ for bends (smooth wall Re - 225 000, coarse wall face Re -- 146 000) 

Wall  face 0 ° R / d  = 1 2 3 4 5 

Smooth  15 ° 0.03 0.03 0.03 0.03 0.03 

22.5 ° 0.045 0.045 0.045 0.045 0.045 

45 ° 0.14 0.14 0.08 0.08 0.07 
60 ° 0.19 0.12 0.095 0.085 0.07 
90 ° 0.21 0.135 0.10 0.085 0.105 

Coarse 90 ° 0.51 0.51 0.23 0.18 0.20 

bend. In a bend, in addition to the head loss due to pipe friction, a loss due 
to the change in flow direction is also produced. The total head loss hb is 
expressed by the following equation: 

hb = Cb~gg = ¢ + 2 (7.33) 

Here, (b is the total loss factor, and ( is the loss factor due to the bend effect. 
The values of ~ are shown in Table 7.1.9 

In a bend, secondary flow is produced as shown in the figure owing to the 
introduction of the centrifugal force, and the loss increases. If guide blades 
are fixed in the bend section, the head loss can be very small. 

Elbow 

Fig. 7.18 Elbow 

9 Hoffman, A., Mtt. Hydr. lnst. T. H. Miinchen, 3 (1929), 45; Wasielewski, R. Mitt, Hydr. Inst. 
T. H. Miinchen, 5 (1932), 66. 
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As shown in Fig. 7.18, the section where the pipe curves sharply is called an 
elbow. The head loss hb is given in the same form as eqn (7.33). Since the flow 
separates from the wall in the curving part, the loss is larger than in the case 
of a bend. Table 7.2 shows values of ( for elbows. ~° 

Table 7.2 Loss factor ~' for elbows 

19 ° 5 ° 10 ° 15 ° 22.5 ° 30 ° 45 ° 6 0  ° 9 0  ° 

S m o o t h  0 .016  0 .034 0 .042  0.066 0 .130 0.236 0.471 1.129 

Coarse 0.024 0 .044 0 .062 0.154 0.165 0.320 0.687 1.265 
. . . .  

7.4.4 Pipe branch and pipe junction 

Pipe branch 
As shown in Fig. 7.19, a pipe dividing into separate pipes is called a pipe 
branch. Putting hsl as the head loss produced when the flow runs from pipe ® 
to pipe ®, and hs2 as the head loss produced when the flow runs from pipe 
• to pipe @, these are respectively expressed as follows: 

hs, = (,~-~g hs2 = (2~-~g (7.34) 

Since the loss factors ~1, (2 vary according to the branch angle 0, diameter 
ratio dl/d2 o r  d l / d  3 and the discharge ratio Q~/Q2 o r  Q1/Q3, experiments were 
performed for various combinations. Such results were summarised. ~ 

Pipe junction 
As shown in Fig. 7.20, two pipe branches converging into one are called a 
pipe junction. Putting hs2 as the head loss when the flow runs from pipe ® to 
pipe ®, and hs2 as the head loss when the flow runs from pipe @ to pipe ®, 
these are expressed as follows: 

h~l = (~-~g h,2 = (2~--~g (7.35) 

Values of (~ and ~2 are  similar to the case of the pipe branch. 

~0 Kirchbach, H. und Schubart,  W., Mitt. Hydr. Inst. 7". H. Miinchen, 2 (1929), 72; 3 (1929), 
121. 
~l Vogel G., Mitt. Hydr. Inst. T. M. Miinchen, 1 (1926), 75; 2 (1928), 61" Peter-Mann, F., Mitt. 
Inst. T. H. Miinchen, 3 (1929), 98. 
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1 .  f 

Q~: d~-- O~ Q-~ d~ -- O~ / - O~ 
Vl Vs ~- t ) l -  V3 ~- 

) . . . .  -~--t---~ 
® 

Fig. 7.19 Pipe branch Fig. 7.20 Pipe junction 

7.4.5 Valve and cock 

Head loss on valves is brought about by changes in their section areas, and 
is expressed by eqn (7.17) provided that v indicates the mean flow velocity at 
the point not affected by the valve. 

Gate valve 
The valve as shown in Fig. 7.21 is called a gate valve. Putting d as the 
diameter and d' as the valve opening, ( varies according to d'/d. Table 7.3 
shows values of ( for a I inch (2.54 cm) nominal diameter valve. ~2 

Fig. 7.21 Gate valve 

~2 Corp, C.I., Bulletin of the University of Wisconsin, Engineering Series, 9-1 (1922), 1. 
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Globe valve 
Table 7.4 shows values of ~ for the globe valve shown in Fig. 7.22, at various 
openings .  13 

Table 7.3 Values for ~ for 1 inch gate valves ( d -  25.5 mm) 
, , ,  

d' /d 118 1/4 3/8 1/2 3/4 1 

~" 211 40.3 10.15 3.54 0.882 0.233 

Table 7.4 Values of ~r for 1 inch screw-in globe valves (d = 25.5 mm) 

1/d 1/4 1/2 3/4 1 

16.3 10.3 7.63 6.09 

! 1 ! 

Fig. 7.22 Globe valve 

Butterfly valve (Fig. Z23) 
Table 7.5 shows values of ( for a butterfly valve. ~4 As the inclination angle 0 
of the valve plate increases, the section area immediately downstream of the 
valve suddenly increases, bringing about an increased value of ~. 

~30ki, I., Suirikigaku (Hydraulics), 344, Iwanami, Tokyo. In addition, for popet valves, 
Ichikawa, T. and Shimizu, T., 31 (1965), 317; Kasai, K., Trans. JSME, 33 (1967), 1088. 
~4 Weisbach, J., Ingenieur- und Meschienen'Mechanik' I (1896), 1050. 
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Fig. 7.23 Butterfly valve 

Table 7.5 Values of ( for circular butterfly valves 

0 o 1 0  o 2 0  ° 3 0  ° 5 0  ° 7 0  ° 

z 0.52 1.54 3.91 32.6 751 

For a circular butterfly valve, when 0 = 0 °, the value of ( is 

( = t /d  (7.36) 

Cock (Fig. Z24) 
Table 7.6 shows values of ~ for a cock. For cocks, too, as angle 0 increases, 
large changes in section area of flow are brought about, increasing the value 
of( .  

Fig. 7.24 Cock 

J 

Table 7.6 Values of ~ for cocks 

0 ° 1 0  ° 3 0 "  5 0  ° 6 0  ° 

~" 0.29 5.47 52.6 206 



Other valves 
Values of ~ for various valves are shown in Table 7.7. '5 

Various losses in pipe lines 131 

Table 7.7 Loss factor for various valves 

Valve Loss coefficients, 

Relief valve 

h / d  0.05 0.1 0.15 0.2 
3.35 2.85 2.4 2.4 

0.25 0.3 
1.7 1.35 

Disc valve Throttle area a = rcdx 

Section area of valve seat hole A = red 2/4 
W h e n x = d / 4  a = A 

Loss coefficient ( = 1.3 + 0 . 2 ( A / a )  2 

Needle valve 
////////f/A/ i / / / / / z / / , / H//t 

t 
I d  - -  

/ ! I I / i / ~  . 
2C ~q[1IIII I I ! 11 /  t" 

a = r f fdx  tan 0/2 - x z tan 2 0/2) 

A x  = 0 when x = 0 
= 0 . 5 + O . 1 5 ( A / a )  2 

Ball valve a ~_ 0 . 7 5 n d x  

= 0.5 + O . 1 5 ( A / a )  2 

Spool valve At full open position 
~ = 3 ~ 5 . 5  

7.4.6 Total loss along a pipe line 

For a pipe with flow velocity v, inner diameter d and length l, the total loss 
from pipe entrance to exit is 

l ) V  2 
h =  2 ~ + E  ( ~ (7.37) 

15 Yeaple, F. D., Hydraul ic  and Pneumat ic  Power  Control, (1966), 89, McGraw-Hill, New York. 
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The first term on the right expresses the total loss by friction, while ~ ~(v 2/2g) 
represents the sum of the loss heads at such sections as the entrance, bend and 
valve. Whenever a pipe line consists of pipes of different diameters, it is 
necessary to use the appropriate valve for the flow velocity for each pipe. 

When two tanks with a water-level differential h are connected by a pipe 
line, the exit velocity energy is generally lost. Therefore, 

l ) v  2 
h =  2 ~ + ~ ¢ + 1  ~gg (7.38) 

However, when the pipe line is long such tha t / /d  > 2000 and it has no valves 
of small opening etc., losses other than frictional loss may be neglected. 

Conversely, if h is known, the flow velocity could be obtained from eqn 
(7.37) or eqn (7.38). 

In general, for urban water pipes, v = 1.0 ~, 1.5 m/s  is typical for long pipe 
runs, while up to approximately 2.5 m/s  is typical for short pipe runs. For 
the headrace of a hydraulic power plant, 2 --- 5 m/s  is the usual range. 

~i}~!!}}i}iiiiiii}~'~'~'~'~'~i!iii~'~'~'~'!i~iiii~i ~'~'~i~ii~i~ii}i~ii~!!~ii~iiii!!~i!ii!ii~{~iii!ii~:'~ii~i!~i}i} ~Ii~i~%i~ii~i#~iiiiiii~!i~ii~i~ii~i}i}i}ii~i~!~i!~i~i~iii}iIiii}ii~ii~~ii~iiiii}ii~i~ii~i~ii~!!~iii~ii~i!~i~i~ii!i~!ii~i~i~!~ii~iiiiii~i~iii~iiiii~i!~!~i~}}~i~ii}}~#}!i 

A pump can deliver to higher levels since it gives energy to the water (Fig. 
7.25). The head H across the pump is called the total head. The differential 

~-- hd 1 Discharge water level 

l 

I h s  . . . . . . . . . . .  
~ ~ T - ' - T  

 ooool 
_ S u c t i o n  w a t e r  l e v e l  

Fig, 7.25 Storage pump H total head" Ha actual head; Ha,s suction head; Hs,d discharge head; hs 
losses on suction s; hd losses on discharge side 
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height H a between two water levels is called the actual head and 

H = H a -k h (7.39) 

where h is the sum of hs and h d expressing the total loss. 
The volume of water which passes through a pump in unit time is called 

the pump discharge. Since the energy which a pump gives water in a unit time 
is H per unit weight, the energy Lw given to water per unit time is 

Lw = pgQH (7.40) 

This is sometimes known as the water horsepower. 
The power Ls needed by a pump is called the shaft horsepower: 

Lw/Ls = r/ (7.41) 

where r/is the efficiency of the pump. Since the energy supplied to a pump is 
not all transmitted to the water due to the energy loss within the pump, it 
turns out that r /< 1. 

As shown in Fig. 7.26, the curve which expresses the relationship between 
the pump discharge Q and the head H is called the characteristic curve or 
head curve. In general, the head loss h is proportional to the square of the 
mean flow velocity in the pipe, and therefore to the square of the pump 
discharge, and is called the resistance curve. It must be summed with Ha to 
give the pump load curve. 

The pump discharge is given, as shown in Fig. 7.26, by the intersecting 
point of the head curve and this load curve. 

~ f . . ~  . . ~ "  ~ "  I I 

0 

Ha 
I I 
I I 
I I 
I I 
I I 

a: Valve opening small I t 
t 

b :  V a l v e  o p e n i n g  l a r g e  i I 
i I 
I I 
I t 
I I 

Qb 
Fig. 7.26 Total head and load curve of pump 
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i iiii iiii i   iiEiiiiii iiiii; iiiiiii! !i! i!!iiiiiii2  ii !iiii!!i iii 
1. Verify that the kinetic energy for laminar flow in a circular pipe with a 

fully developed velocity distribution is twice that with uniform velocity. 

2. What is the relationship between the flow velocity and the pressure loss 
in a circular pipe? 

3. For laminar flow in a circular pipe, verify that the pipe frictional 
coefficient can be expressed by the following equation: 

2 = 64~Re 

4. For turbulent flow in a circular pipe, show that, assuming the pipe 
frictional coefficient is subject to 2 = 0.3164Re -~/4, the pressure loss is 
proportional to a power of 1.75 of the mean flow velocity. 

5. For flow in a circular pipe, with constant pipe friction coefficient, show 
that the frictional head loss is inversely proportional to the fifth power of 
the pipe diameter. Also, if the diameter is measured with ct% error, what 
would be the percentage error in head loss? 

6. How much head loss will be produced by sending 0.5 m 3/min of water a 
distance of 2000m using commercial steel pipes of diameter 50mm? 
Also, what would be the head loss if the diameter is 100 mm? The water 
temperature is assumed to be 20°C. 

7. What is the necessary shaft horsepower to send 1 m3/min of water 
through a conduit 100mm in diameter as shown in Fig. 7.27? Assume 
pump efficiency 17 = 80%, loss coefficient of sluice valve (v = 0.175, of 90 ° 
elbow ~'90 = 1.265, of 45 ° elbow ~45 = 0.320, and pipe frictional coefficient 
2 = 0.026. 

Fig. 7.27 

Sluice valve,,, i i 10 m 45* elbow 

6 

8. A flow of 0 . 6 m 3 / s  of air discharges through a square duct of sides 
20 cm. What is the pressure loss if the duct length is 50 m? Assume an air 
temperature of 20°C, standard atmospheric pressure, and smooth walls 
for the duct. 
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9. Water flows through a sudden expansion where a circular pipe of 
40 mm diameter is directly connected to one of 80 mm. If the discharge is 
0.08 mm3/min, find the expansion loss. 

10. Obtain the head loss and the pressure recovery rate when a circular pipe 
of 40mm diameter is connected to one of 80mm diameter by a 10 ° 
diffuser. 



Flow in a water channel 

A flowing stream of water where the flow has a free surface exposed to the 
open air is called a water channel. Included in the water channels, for 
example, are sewers. Roman waterworks were completed in 302Bc with a 
water channel as long as 16.5 km. In Ao305, 14 aqueducts were built with 
their water channels extending to 578 km in total, it is said. Anyway, water 
channels have a long history. Figures 1.1 and 8.1 show some remains. 

Water channels have such large hydraulic mean depths that the Reynolds 
numbers are large too. Consequently the flow is turbulent. Furthermore, at 
such large Reynolds number, the friction coefficient becomes constant and is 
determined by the roughness of the wall. 

Fig, 8,1 Remains of Roman aqueduct 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~  i iiii~ii~iiii!~ii~!ii~i~ii~i~ii~i!~iii~iii~!~i!ii~iii~iii~i~iiiiii!!!iii~i~i~i~ii~iii!ii~i~iii~i~ii~i~ii~iiiiii~iii!!!~i!i~iiiiii~iii~iiiiii!i~ii~!izi~i~iii~i~iiiiii~ii~ii~iiii~ ~ ~ i  

In an open channel, the flowing water has a free surface and flows by the 
action of gravity. As shown in Fig. 8.2, assume that water flows with constant 
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- /  • . - - - .  . . _ _ _  

• - - . -  . . . . .  

7 

A 

/ 
~~~~~~~~~~li f t  

Fig. 8.2 Open channel 

pgA1 

velocity v in an open channel of constant section and inclination angle 0 of 
the bot tom face. Now examine the balance of forces on water between the 
two sections a distance 1 apart. Since the water depth is uniform, the forces 
F~ and/72 acting on the sections due to hydrostatic pressure balance each 
other. Therefore, the only force acting in the direction of the flow is that 
component of water weight. Since the flow is not accelerating this force must 
equal the frictional force due to the wall. If the cross-sectional area of the 
open channel is A, the length of wetted perimeter s, and the mean value of 
wall shearing stress z0, then 

pgAl sin 0 = zosl 

Since 0 is very small, 

inclination i = tan 0 ~ sin 0 

Then 
A 

"Co = Pg s i = pgmi (8.1) 

Here, m = A/s is the hydraulic mean depth. 
Expressing z0 as Zo =fpv2/2  using the frictional coefficient1 f, then 

v = ~ ~  mi (8.2) 

/ 

Chezy expressed the velocity by the following equation as it was 
proportional to ~/-~: 

v = c4 5 (8.3) 

This equation is called Chezy's formula, with c the flow velocity coefficient. 
The value of c can be obtained using the Ganguil let-Kutter  equation: 

23 + 1/n + 0.00155/i 
c = (8.4) 

1 + [23 + (O.O0155/i)](n/~/--m) 

Note that f = 2/4 (see eqn (7.4)). 
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Table 8.1 Values of n in the Ganguillet-Kutter, the Manning and oc in the Bazin equations 

Wall surface condition n 

Smoothly shaved wooden board, smooth cement coated 
Rough wooden board, relatively smooth concrete 
Brick, coated with mortar or like, ashlar masonry 
Non-finished concrete 
Concrete with exposed gravel 
Rough masonry 
Both sides stone-paved but bottom face irregular earth 
Deep, sand-bed river whose cross-sections are uniform 
Gravel-bed river whose cross-sections are uniform and 

whose banks are covered with wild grass 
Bending river with large stones and wild grass 

,, 

0.010-0.013 
0.012-0.018 
0.013-0.017 
0.015-0.018 
0.016-0.020 
0.017-0.030 
0.028-0.035 
0.025-0.033 
0.030-0.040 

0.035-0.050 2.0 

0.06 

0.46 

1.30 

It is also obtainable from the Bazin equation: 

87 
¢ - - "  

More recently the Manning equation has often been used: 

1 m2/3 il/2 v = - (8.6) 
n 

n in eqns (8.4) and (8.6) as well as ~t in eqn (8.5) are coefficients varying 
according to the wall condition. Their values are shown in Table 8.1. In 
general, the flow velocity is 0 .5-3m/s .  These equations and the values 
appearing in Table 8.1 are for the ease of SI units (units m, s). 

The discharge of a water channel can be computed by the following 
equation: 

Q = A v  = Acq / - -~  = _1 Am2/3il/2 (8.7) 
n 

The flow velocities at various points of the cross-section are not uniform. 
The largest flow velocity is found to be 10--~ 40% of the depth below the 
water surface, while the mean flow velocity v is at 50 -~ 70% depth. 

(8.5) 

If the section area A of the flow in an open channel is constant, and given that 
c and i in eqn (8.3) are also constant, if the section shape is properly selected 
so that the wetted perimeter is minimised, both the mean flow velocity v and 
the discharge Q become maximum. 

Of all geometrical shapes, if fully charged, a circle has the shortest length 
of wetted perimeter for the given area. Consequently, a round water channel 
is important. 
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8.2.1 Circular water channel 

Consider the relationship between water level, flow velocity and discharge 
for a round water channel of inner radius r (Fig. 8.3). 

From eqns (8.6) and (8.7) 

V =-n ill: Q = n s 2/3 

A= rE(O) - r2 cos (~)  sin (2 ) = rE(o--  
2 

S ' - -  ?'O 

sin 0) 

s 0° ) m = ~  1 - ~  

i.e .  

v =  n (8 .8 /  

l il/~ O~/~ ( ~_~)~/~ Q = ~  2- ~ 1 -  (8.9) 

Putting Vfun and Qfull respectively as the flow velocity and the discharge 
whenever the maximum capacity of channel is flowing, 

v (1 si0 0)2/3 = - ~ (8.10) 
/)full o( sinO)" 

Q full--2"~ 1 -  0 (8.11) 

The relationship between 0 and v, Q, is shown in Fig. 8.4. 

Fig. 8.3 Circular water channel 
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1.0 

.2.. 

V 

0.5 

7C 

8 
Fig. 8.4 Relationship between 0 and v, Q 

Qfull 

I I I I I _ 

8.2.2 Rectangular water channel 

For the case of Fig. 8.5, obtain the section shape where s is a minimum: 

A 
s = B + 2 H  = - ~ + 2 H  

ds A 
CIH = H 2 + 2 = 0  

A = 2H 2 

Therefore, 

I/ 
i /  
i /  
/ i  
i ,  / ,  
i 

B 

Fig. 8.5 Rectangular water channel 
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H 1 
I 

B 2 

In other words, when c, A and i are constant, in order to maximise v and Q, 
the depth of the water channel should be one-half of the width. 

~s~s~,,~ ii~i~~i~i~i~iiiii~i~iEii~ii ~i~iiii ii~iii~iiiii~iii ii#ii i~i i ii~i i!~i! ii~ ii ii ~ ~ii iii ii ~ii~ ~il il ii~i ii iii i~!ii ii i iii ii iii~i ~ 
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Many open channel problems can be solved using the equation of energy. If 
the pressure is p at a point A in the open channel in Fig. 8.6, the total head of 
fluid at Point A is 

/)2 

total head = ~99 + p + z + z0 
P9 

If the depth of water channel is h, then 

h = P + z  
P9 

Consequently, the total head may be described as follows: 

/3 2 
total head = ~99 + h + z0 (8.12) 

However, the total head relative to the channel bottom is called the specific 
energy E, which expresses the energy per unit weight, and if the cross- 
sectional area of the open channel is A and the discharge Q, then 

Q~ 
E = h -~ 29AE (8.1 3) 

This relationship is very important for analysing the flow in an open channel. 

A~ 

Fig. 8.6 Open channel 

Datum level (horizontal) 
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There are three variables, E, h, Q. Keeping one of them constant gives the 
relation between the other two. 

iiiiiii i  iiiii i ii ii ii i!iiiii i iiiii iiii iii 
For constant discharge Q, the relation between the specific energy and the 
water depth is as shown in Fig. 8.7. The critical point of minimum energy 
occurs where dE/dh = O. 

__ Q2 dA dE 1 -  
dh gA 3 dh 

- - - - - - ' 0  

Then 

dA gA 3 

dh Q2 

When the channel width at the free surface is B, dA = B dh. So the critical 
area Ac and the critical velocity vc become as follows. 

hc 

js 

I / 

I Q2 

v~ , , - /  
L\ h,c , ~ , , - ~  
' ,  ;-t ' /  

~_ I / /  ! /¢ Tranquil flow 

", I,," ¢ t 
" ~ . - ; ; ~  . . . . .  -~- . . . . .  1 . . . . .  

, , , ' ~ ~  ~. ~ Rapid flow 

f f  
jP 

Ec 
E 

Fig. 8.7 Curve for constant discharge 
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1/3 

A,, = ~ - - )  

Q ,/2 (8.14) 

Taking the rectangular water channel as an example, when the discharge 
per unit width is q, Q = qB. As the sectional area A = hB, the water depth h~, 
eqn (8.15), which makes the specific energy minimum, is obtained from eqn 
(8.14). 

ho = (8 .~5)  

At the critical water depth h¢, 

From eqn (8.15) 

q2 
E¢ = ~ + he 

q2 = 9h~ 

he 
E¢ = ~- + hc = 1.5he (8.16) 

The specific energy (total head) in the critical situation E,. is thus 1.5 times 
the critical water depth he. The corresponding critical velocity vc becomes, 
as follows from eqn (8.15), 

q 
v¢ = ~ =  ~ (8.17) 

In the critical condition, the flow velocity coincides with the travelling 
velocity of a wave in a water channel of small depth, a so-called long wave. 

If the flow depth is deeper or shallower than he, the flow behaviour is 
different. When the water is deeper than he, the velocity is smaller than the 
travelling velocity of the long wave and the flow is called tranquil (or 
subcritical) flow. When the water is shallower than he, the velocity is larger 
than the travelling velocity of the long wave and the flow is called rapid (or 
supercritical) flow. 

For the case of the rectangular water channel, from eqn (8.13). 

q2 ._ 29(h 2E -- h 3) 

dq 9 (2Eh _ 3h 2 ) = 0  - - -  m 

dh q 

Ec = 1.5hc (8.18) 



h=E 

Comparing eqn (8.16) with (8.18), both the situation where the discharge 
is constant while the specific energy is minimum and that where the specific 
energy is constant while the discharge is maximum are found to be the same 
(Fig .  8.8). 

hc 

E/h 
3.0 

~ , E constant 

Tranquil flow ,, N~ 
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hc=~ E 

Fig, 8.8 Curve for constant specific energy 
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For the case of the rectangular water channel, from eqn (8.13). 

2 ° 0 -  

1 . 5  

1.0 

1.0 

Fig. 8.9 Curve for constant water depth 

2-TO 
q 
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E q2 
- -  1 - + - ~  ( 8 . 1 9 )  
h 2gh 3 

The relationship between q / x / ~  and E/h is plotted in Fig. 8.9. In words, 
the specific energy increases parabolically from 1 with q and, when the water 
depth is critical, i.e. q2 = gh 3, E/h = 1.5. 

Rapid flow is unstable, and if decelerated it suddenly shifts to tranquil flow. 
This phenomenon is called hydraulic jump. For example, as shown in Fig. 
8.10(a), when the inclination of a dam bottom is steep, the flow is rapid. 
When the inclination becomes gentle downstream, the flow is unable to 
maintain rapid flow and suddenly shifts to tranquil flow. A photograph of 
this situation is shown in Fig. 8.11. 

Energy line hi, 
,,.==..,=!.,,. . . . . . . . . . .  ~ ,,=, . . .  ,....,.. ,.., .,. ,.,. . . . . .  

" - ~----- ~ .  v~ 29 

• T / - / / / / / / / / / / / / / / / / / / / I  ~ " / / / / / / / / / / ,  I ,  
hi 

(a) 

Fig. 8.10 Hydraulic jump 

E 2  

h2 

0 
E 1  

(b) 

E 

Fig. 8.11 Rapid flow and hydraulic jump on a dam 



146 Flow in a water channel 

The travelling velocity a of a long wave in a water channel of small depth 
h is v ~ .  The ratio of the flow velocity to the wave velocity is called the 
Froude number. The Froude number of a tranquil flow is less than one, i.e. 
the flow velocity is smaller than the wave velocity. On the other hand, the 
Froude number of a rapid flow is larger than one; in other words, the flow 
velocity is larger than the wave velocity. Thus, tranquil flow and rapid flow in 
a water channel correspond to subsonic and supersonic flow, respectively, of 
a compressible gas. 

For the flow of gas in a convergent-divergent nozzle (see Section 13.5.3), 
supersonic flow which has gone through the nozzle stays supersonic if the back 
pressure is low. If the back pressure is high, however, the flow suddenly shifts to 
the subsonic flow with a shock wave. In other words, there is an analogy 
between the hydraulic jump and the shock wave. 

When a hydraulic jump is brought about, energy is dissipated by it 
(Fig. 8.10(b)). Thus erosion of the channel bottom further downstream can 
be prevented. 

1. It is desired to obtain 0.Sm3/s water discharge using a wooden open 
channel with a rectangular section as shown in Fig. 8.12. Find the 
necessary inclination using the Manning equation with n = 0.01. 

2. For a concrete-coated water channel with the cross-section shown in 
Fig. 8.13, compare the discharge when the channel inclination is 0.002 
obtained by the Chezy and the Manning equation. Assume n = 0.016. 

3. Find the discharge in a smooth cement-coated rectangular channel 5 m 
wide, water depth 2 m and inclination 1/2000 using the Bazin equation. 

4. Water is sent along the circular conduit in Fig. 8.14. What is the angle 0 
and depth h which maximise the flow velocity and the discharge if the 
radius r - 1.5 m? 

5. In an open channel with a rectangular section 3 m wide, 15 m 3/s of water 
is flowing at 1.2 m depth. Is the flow rapid or tranquil and what is the 
specific energy? 

, .. __________ '__.__/  

40c 

' ~ . / / / / / i / / / / / / z  / 

60 cm 

2 . 5 m ~  i 
Fig. 8.12 Fig. 8.13 Fig. 8.14 
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William Froude (1810-79) 
Born in England and engaged in shipbuilding. In 
his sixties started the study of ship resistance, 
building a boat testing pool (approximately 75m 
long) near his home. After his death, this study was 
continued by his son, Robert Edmund Froude 
(1846-1924). For similarity under conditions of 
inertial and gravitational forces, the non- 
dimensional number used carries his name. 

6. Find the critical water depth and the critical velocity when 12m3/s of 
water is flowing in an open channel with a rectangular section 4 m wide. 

7. What is the maximum discharge for 2 m specific energy in an open channel 
with a rectangular section 5 m wide? 

8. Water is flowing at 20m3/s in a rectangular channel 5 m wide. Find the 
downstream water depth necessary to cause this flow to jump to tranquil 
flow. 

9. In what circumstances do the phenomena of rapid flow and hydraulic 
jump occur? 



Drag and lift 

In Chapters 7 and 8 our study concerned 'internal flow' enclosed by solid 
walls. Now, how shall we consider such cases as the flight of a baseball or 
golf ball, the movement of an automobile or when an aircraft flies in the air, 
or where a submarine moves under the water? Here, flows outside such solid 
walls, i.e. 'external flows', are discussed. 

~:~.~:~:~:~..~:~:~.~:~..~;~:~.~:~:~::~.~.~:~:~.~::::::::::::::::::::::~.~.~::~::~z~:~:?̀..:~:~:~:~:~:~.:?~.*~:~:~.~..~.~:.~*~:~:~:~:~:~:~:~:~:~:~:~:~:~:~::~:~.̀.~.~.:~:~.~:~:~.̀..~:~..~..~:~:~...~:~:~:::.;~:~:~:~.~::.~: 

Generally speaking, flow around a body placed in a uniform flow develops a 
thin layer along the body surface with largely changing velocity, i.e. the 
boundary layer, due to the viscosity of the fluid. Furthermore, the flow 
separates behind the body, discharging a wake with eddies. Figure 9.1 shows 
the flows around a cylinder and a flat plate. The flow from an upstream point 
a is stopped at point b on the body surface with its velocity decreasing to 
zero; b is called a stagnation point. The flow divides into the upper and lower 
flows at point b. For a cylinder, the flow separates at point c producing a 
wake with eddies. 

Let the pressure upstream at a, which is not affected by the body, be Po~, 
the flow velocity be U and the pressure at the stagnation point be P0. Then 

pU 2 
Po = Poe + ~  (9.1) 

2 

p= U 

a 

(a) Cylinder 

Fig. 9.1 Flow around a body 

u 
Poe ---* 

~ b  
-Po -__ 

(b) Plate 



T h e  d r a g  

~i',,,i iiiii~il i',iiii i ii!',i! i', ii~i', ,i~,~!i~ i ,,i~ ~:~:!~i,,i~ii :y::~:: ~:',~i~ i i~il ',ii', i i',ii!iiiiiii', ~,i !!~,'~', i i!i !i!',~iii'~ !iiii'~!',! ii i!ii! i~ ~i'~iii'~!iiiiiiiiii~:ii~,~ii'~i',ili~iiiiiiii'~iii',ii',i~i i'~!i i',ii '~ii i',',!iiiiii!i'~i!,~iil i!i!iiiiiii'~iiiiiii % ill ~i',!ili~i',iiiiiiii':%',iiii',i~i~,i~,~ ~i !i!iii!iiiiiiiii!i'~iiiiii!'~i',i!!',i!ii ~ i ! ~  !iiii!'~iiii',i'~',i',ill iiiiii~iiiii~i!~iiiiiiii ~ii~iiiiiiiii!i~ili!!iiiiiiiii!ii~iiiii! !iliiii!i',iiii',',',i~ ~ii',~,ii '~ii i~ii'~', ',i~iii!',',',~',ili',i'~i',iii'~ii iii',ii!ii',iii',iii',ii iii', !~,iiii~ii ~iii', !iii',i'~i ~,i i l i',ii i i',i',iii! i li i i'~!iii iiii~,iiiii!!!'~iiii', ' , iiiiiii~ ii!i~iiiiiii!i '~iii',',iiil ii~ !i ii',~iii ',i',i',~,i',i iii~!ii~ii',~ ~,i',',, 

Whenever a body is placed in a flow, the body is subject to a force from the 
surrounding fluid. When a fiat plate is placed in the flow direction, it is only 
subject to a force in the downstream direction. A wing, howeveL is subject to 
the force R inclined to the flow as shown in F18. 9.2. In general, the force R 
acting on a body is resolved into a component D in the flow direction U and 
the componem L in a direction normal to U. The former is called drag and 
the latter lift. 

Drag and lift develop in the following manner. In Fig. 9.3, let the pressure 
of fluid acting on a given minute area dA on the body surface be p, and the 
friction force per unit area be z. The force p d A  due to the pressure p acts 
normal to dA, while the force due to the friction stress z acts tangentially. 
The drag D~, which is the integration over the whole body surface of the 
component in the direction of the flow velocity U of this force p dA, is called 
form drag or pressure drag. The drag Dy is the similar integration of z dA 
and is called the friction drag. Dp and Dy are shown as follows in the form of 
equations: 

= _[~ p dA cos 0 (9.2) Dp 

= fA Z dA sin 0 (9.3) 

The drag D on a body is the sum of the pressure drag D~ and friction drag 
D I, whose proportions vary with the shape of the body. Table 9.1 shows the 
contributions of D~ and Df for various shapes. By integrating the component 
of p dA a n d ,  dA normal to U, the lift L is obtained. 

~rdA 

L R 

= ..... A pdA  

Fig. 9.2 Drag and lift Fig. 9.3 Force acting on body 
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9.3.1 Drag coefficient 
The drag D of a body placed in the uniform flow U can be obtained from eqns 
(9.2) and (9.3). This theoretical computation, however, is generally difficult 
except for bodies of simple shape and for a limited range of velocity. 
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Table 9.1 Contributions of Dp and Df for various shapes 

Shape Pressure drag Friction drag 
D, (%) D/(%) 

u ~  0 100 

U ~ _  ~ 10 ~90  
.... 

U _...__.~ ~90  ~, 10 = _ ~ _ , ~  

~ ~_._~__~ ~ 1 O0 0 

Therefore, there is no other way but to rely on experiments. In general, drag 
D is expressed as follows: 

D = CoA oU,,_2 (9.4) 
2 

where A is the projected area of the body on the plane vertical to the 
direction of the uniform flow and Co is a non-dimensional number called 
the drag coefficient. Values of Co for bodies of various shape are given in 
Table 9.2. 

9.3.2 Drag for a cylinder 

Ideal fluid 
Let us theoretically study (neglecting the viscosity of fluid) a cylinder placed 
in a flow. The flow around a cylinder placed at right angles to the flow U of 
an ideal fluid is as shown in Fig. 9.4. The velocity vo at a given point on the 
cylinder surface is as follows (see Section 12.5.2): 

vo = 2U sin 0 (9.5) 

Putting the pressure of the parallel flow as Po~, and the pressure at a given 
point on the cylinder surface as p, Bernoulli's equation produces the 
following result: 

pU 2 pv~ 
poo q---~--= p-}---~- 

p ( u  ~ - r 2) 

P - Poo = 2 = 

P-Po~ = 1 - 4 s i n  20 
pU2/2 

pU 2 
(1 - 4 sin 2 O) 

(9.6) 
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Body Dimensional 
ratio 

Datum area, 
A 

Drag coefficient, 

Co 

Cylinder (flow direction) 

U , -  , -~ 

l / d =  1 

2 

4 

7 

/t d2 
4 

0.91 
0.85 
0.87 
0.99 

Cylinder (right angles to flow) 

" U  l 
2-- 

l /d = 1 

2 

5 

10 
40 
oO 

dl 

0.63 
0.68 
0.74 
0.82 
0.98 
1.20 

Oblong board 
(right angles to flow) 

/ U  

a/b = 1 

2 

4 

10 
18 
O0 

ab 

1.12 
1.15 
1.19 
1.29 
1.40 
2.01 

Hemisphere (bottomless) 

U I II 

II 

/r d2 
4 

0.34 

1.33 

Cone 

-- I : ~ d  

U 

a = 6 0  ° 

a =  30 ° 

d 2 
4 

~ d  2 
4 

0.51 

0.34 

1.2 

Ordinary passenger car Front projection area 

0.28-0.37 
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~ X  

Poo 

Fig. 9.4 Flow around a cylinder 

0 

t:a. 

--2 

- -3  0 

/ 
Turbulent separation point / 

\ / 
/ " - -  - V -  

,~ B 
/ I~i\ Laminar 

~'~\ separation point ; 

Ideal fluid j ~ ' \  ~ /  i / point 
~ / I i i 

Laminar separation point 

20* 40* 60* 80* 100 ° 120" 140 ° 160" 180" 

Fig. 9.5 Pressure distribution around cylinder: A, Re - 1.1 x 10 s < Rec; B, Re = 6.7 x 10 5 > Rec; 
C, Re= 8.4 x 10 6 > Rec 

This pressure distribution is illustrated in Fig. 9.5, where there is left and 
right symmetry to the centre line at right angles to the flow. Consequently the 
pressure resistance obtained by integrating this pressure distribution turns 
out to be zero, i.e. no force at all acts on the cylinder. Since this phenomenon 
is contrary to actual flow, it is called d'Alembert's paradox, after the French 
physicist (1717-83). 
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Viscous f lu id  
For a viscous flow, behind the cylinder, for very low values of Re < 1 
(Re = Ud/v), the streamlines come together symmetrically as at the front 
of the cylinder, as indicated in Fig. 9.4. If Re is increased to the range 
2-~ 30 the boundary layer separates symmetrically at position a (Fig. 9.6(a)) 
and two eddies are formed rotating in opposite directions.' Behind the eddies, 
the main streamlines come together. With an increase of Re, the eddies 
elongate and at Re = 40 ,~ 70 a periodic oscillation of the wake is observed. 
These eddies are called twin vortices. When Re is over 90, eddies are 
continuously shed alternately from the two sides of the cylinder (Fig. 9.6(b)). 
Where 102 < Re < 105, separation occurs near 80 ° from the front stagnation 
point (Fig. 9.6(c)). This arrangement of vortices is called a K~trmhn vortex 
street. Near  Re = 3.8 x 105, the boundary layer becomes turbulent and the 
separation position is moved further downstream to near 130 ° (Fig. 9.6(d)). 

For a viscous fluid, as shown in Fig. 9.6, the flow lines along the cylinder 
surface separate from the cylinder to develop eddies behind it. This is 
visualised in Fig. 9.7. For the rear half of the cylinder, just like the case of a 
divergent pipe, the flow gradually decelerates with the velocity gradient 
reaching zero. This point is now the separation point, downstream of which 
flow reversals occur, developing eddies (see Section 7.4.2). This separation 
point shifts downstream as shown in Fig. 9.6(d) with increased Re = Ud/v (d: 
cylinder diameter). The reason is that increased Re results in a turbulent 
boundary layer. Therefore, the fluid particles in and around the boundary 
layer mix with each other by the mixing action of the turbulent flow to make 

(a) Re = 2-30 (b) Re-- 90 

Laminar Turbulent 
boundary layer ~ ~ ,  l ] Laminar boundary layer 

.~~-----------~- boundary laYer/..e.---- - - - - - _ _ . ~  

h _ 0.281 (K~rn(m's calculation) ' " q ' ~ - ~ - - - - - - ~  
Separation Separation point 

point 

(c) Re < Rec (d) Re >Rec 

Fig. 9.6 Flow around a cylinder 

' Streeter, V.L., Handbook of Fluid Dynamics, (1961), McGraw-Hill, New York. 
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Fig. 9.7 Separation and K~rm~Sn vortex sheet (hydrogen bubble method)in water, velocity 2.4 cm/s, 
Re- 195 

separation harder to occur. Figure 9.8 shows a flow visualisation of the 
development process from twin vortices to a Kfirm/m vortex street. The 
Reynolds number Re = 3.8 x 105 at which the boundary layer becomes 
turbulent is called the critical Reynolds number Rec. 

The pressure distribution on the cylinder surface in this case is like curves 
A, B and C in Fig. 9.5 with a reduced pressure behind the cylinder acting to 
produce a force in the downstream direction. 

Figure 9.9 shows, for a cylinder of diameter d placed with its axis normal 
to a uniform flow U, changes in drag coefficient Co with Re and also 

Re = 1.06 R e  = 2 1 2  

Re = 32.1 Re = 275 

Fig. 9.8 Flow around a cylinder 
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Fig. 9.9 Drag coefficients for cylinders and other column-shaped bodies 

comparison with oblong and streamlined columns. 2 When Re = 103 ~ 2 x 105, 
Co = 1 --, 1.2 or a roughly constant value; but when Re = 3.8 x 105 or so, Co 
suddenly decreases to 0.3. To explain this phenomenon, it is surmised that 
the location of the separation point suddenly changes as it reaches this Re, as 
shown in Fig 9.6(d). 

G. I. Taylor (1886-1975, scholar of fluid dynamics at Cambridge 
University) calculated the number of vortices separating from the body every 
second, i.e. developing frequency f for 250 < Re < 2 x 105, by the following 
equation: 

U (  19.7) 
f = 0 . 1 9 8 ~  1 -  (9.7) 

fd/U is a dimensionless parameter called the Strouhal number St (named 
after V. Strouhal (1850-1922), a Czech physicist; in 1878, he first investigated 
the 'singing' of wires), which can be used to indicate the degree of regularity 
in a cyclically fluctuating flow. 

When the Khrmhn vortices develop, the body is acted on by a cyclic force 
and, as a result, it sometimes vibrates to produce sounds. The phenomenon 
where a power line 'sings' in the wind is an example of this. 

In general, most drag is produced because a stream separates behind a 
body, develops vortices and lowers its pressure. Therefore, in order to reduce 
the drag, it suffices to make the body into a shape from which the flow does 
not separate. This is the so-called streamline shape. 

2 H o e r n e r ,  S . F . ,  Fluid Dynamic Drag, (1965) ,  H o e r n e r ,  M i d l a n d  P a r k ,  N J .  
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9.3.3 Drag of a sphere 
The drag coefficient of a sphere changes as shown in Fig. 9.10.  3 Within the 
range where Re is fairly high, Re = 103 ~ 2 × 105, the resistance is proportional 
to the square of the velocity, and Co is approximately 0.44. As Re reaches 
3 × 105 or so, like the case of a cylinder the boundary layer changes from 
laminar flow separation to turbulent flow separation. Therefore, Co decreases 
to 0.1 or less. On reaching higher Re, Co gradually approaches 0.2. 

Slow flow around a sphere is known as Stokes flow. From the Navier- 
Stokes equation and the continuity equation the drag D is as follows: 

D = 3n#Ud ] 

i 24 
Co =Ree 

(9.8) 

This is known as Stokes' equation. 4 This coincides well with experiments 
within the range of Re < 1. 

10" 

10 

10- 

10-  
10 -I l 10 102 103 10' 105 10 ~ 107 

Re 

Fig. 9.10 Drag coefficients of a sphere and other three-dimensional bodies 

9.3.4 Drag of a flat plate 
As shown in Fig. 9.11, as a uniform flow of velocity U flows parallel to a flat 
plate of length /, the boundary layer steadily develops owing to viscosity. 

3 Streeter, V.L., Handbook of Fluid Dynamics, (1961), McGraw-Hill, New York. 
4 Lamb, H., Hydrodynamics, 6th edition, (1932), Cambridge University Press. 



U 

0 

Y J U 

j / J  y 

_ : : x  

Fig. 9.11 Flow around a flat plate 
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Now, set the thickness of the boundary layer at a distance x from the leading 
edge of the flat plate to ~. Consider the mass flow rate of the fluid pu dy 
flowing in the layer dy within the boundary layer at the given point x. From 
the difference in momentum of this flow quantity pudy before and after 
passing over this plate, the drag D due to the friction on the plate is as 
follows: 

D = pu(U - u)dy (9.9) 

Now, putting the wall face friction stress as "Co, and since dD = "Co dx, then 
from above 

d 
"Co = dx = P-~x u(U - u)dy (9.10) 

Laminar boundary layer 
Now, treating the distribution of u as a parabolic velocity distribution like 
the laminar flow in a circular pipe, 

y u 
= 2r/-/72 (9.11) 

Substituting the above into eqn (9.10), 

.Co = pu2 d6 L u ( _~) d& 
~xx U 1 - d r / -  O.133pU2dy (9.12) 

On the other hand, 

To = ~  
du 

y=O 

=2/~U 
f 

(9.13) 

Therefore, from eqns (9.12) and (9.13), 
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U ~  v 

. . . . . .  1--- X 

0 

Fig. 9.12 Changes in boundary layer thickness and friction stress along a flat plate 

d6 = 15.04 ~ dx 

62 v 
15.04~x + c Y 

From x = 0 and ~ = 0, c = 0. Therefore 

= 5.48 vV~ 5.48 = VrR-~X (9.14) 

However, since R = Ux/v, substitute eqn (9.14) into (9.13), 

%--0.365~/~p U3 = O.730 PU2 ~/,' 
X ~ X (9.15) 

As shown in Fig. 9.12, the boundary layer thickness 6 increases in proportion 
to ~c~, while the surface frictional stress reduces in inverse proportion to 

The friction resistance for width b of the whole (but one face only) of that 
plate is expressed as follows by integrating eqn (9.15): 

D= zodx=0.73 #pU3lb (9.16) 

D = C:l °U2 2 (9.17) 

Defining the friction drag coefficient as C:, this becomes 

1.46 
C s = vrR~ t (9.18) 

where R = Ul/v. The above equations roughly coincide with experimental 
values within the range of R < 5 x 105. 

Turbulent boundary layer 
Whenever R ! is large, the length of laminar boundary layer is so short that 
the layer can be regarded as a turbulent boundary layer over the full length 
of a flat plate. Now, assume the distribution of u to be given by 
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Fig. 9.13 Friction drag coefficients of a flat plate 

u 
_ . . (y) , /7  r/1/7 ( 9 . 1 9 )  ~ - ~  = 

like turbulent flow in a circular pipe, and the following equations are 
obtained: 5 

0.37x 
6 = ~ (9.20) 

Rx,/5 

To = 0.029pU 2 (~x), /5 (9.21) 

O.036pUZl 
O = R]/5 (9.22) 

C: = 0.072R~ -'/5 (9.23) 

The above equations coincide well with experimental values within the range 
of 5 x 105 < Rt < 107. From experimental data, 

C: = 0.074R} -~/s (9.24) 

gives better agreement. 
In the case where there is a significant length of laminar boundary layer 

at the front end of a flat plate, but later developing into a turbulent boundary 
layer, eqn (9.12) is amended as follows: 

0.074 1700 
C: = o1/5 R, (9.25) 

Jt~, i 

The relationship of C: with R! is shown in Fig. 9.13. 

5 Streeter, V. L., Handbook of Fluid Dynamics, (1961), McGraw-Hill, New York. 
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9.3.5 Friction torque acting on a revolving disc 
If a disc revolves in a fluid at angular velocity to, a boundary layer develops 
around the disc owing to the fluid viscosity. 

Now, as shown in Fig. 9.14, let the radius of the disc be r 0, the thickness 
be b, and the resistance acting on the elementary ring area 2~r dr at a given 
radius rco be dF. Assuming that dF is proportional to the square of the 
circular velocity rto of that section, and the friction coefficient is f, the torque 
T~ due to this surface friction is as follows: 

dF = f P(2°°)E 2~r dr 

o r  

T~ = r dF = ptoEr~ (9.26) 
=0 

Now, putting the friction coefficient at the cylindrical part of the disc to 
f '  and the resistance acting on it to F', 

F' = f ' p(r°to)2 
2 2=r0b 

Torque T2 due to this surface friction is as follows: 

T2 = ltf'ptoEr~b (9.27) 

Assuming f = f ' ,  the torque T needed for rotating this disc is 

T = 2T~ + T2 =rcfptoZr~(~ro+b) (9.28) 

- F - - - - ' - -  

dr+ 
TO 

'rl 

Fig. 9.14 A revolving disc 

r- 

J 



Therefore 

and the power L needed in that case is 

L =  Tog = r~f po93r~(2ro + b) (9.29) 

These relationships are used for such cases as computing the power loss 
due to the friction of the impeller of a centrifugal pump or water turbine. 
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9.4.1 Development of lift 
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Consider a case where, as shown in Fig. 9.15, a cylinder placed in a uniform 
flow U rotates at angular velocity ~o but without flow separation. Since the 
fluid on the cylinder surface moves at a circular velocity u = r0og, sticking to 
the cylinder owing to the viscosity of the fluid, the flow velocity at a given 
point on the cylinder surface (angle 0) is the tangential velocity vo caused by 
the uniform flow U plus u. In other words, 2U sin 0 + r0~o. 

Putting the pressure of the uniform flow as p~, and the pressure at a given 
point on the cylinder surface as p, while neglecting the energy loss because 
it is too small, then from Bernoulli's equation 

P U 2  2 p~ + ~ = p + (2 U sin 0 + r0to) 2 

U .  

P - Poo = l _ (2 U sin O + ro~) 2 
pU2/2 U (9.30) 

Consequently, for unit width of the cylinder surface, integrate the component 
in the y direction of the force due to the pressure p -  p~ acting on a minute 
area r0 dO, and the lift L acting on the unit width of cylinder is obtained: 

X 
i 
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Fig. 9.15 Lift acting on a rotating cylinder 
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[ ~/2 

L = 2 - ( p  - p~)ro dO sin 0 
,J - rt l 2 

f n / 2 [ _ _ (  )2] 
= -rop U 2 1 2 U sin 0 + roco sin 0 dO 

J -~/2 U 

- - - r o p U 2 f / 2 [ 1  - (~ .~)2_ 4rot 0 sin 0 _ 4 sin20] sin OdO 
J -,~/2 U 

= 2 n ~ o p U  = 2nroupU (9.31) 

The circulation around the cylinder surface when a cylinder placed in a 
uniform flow U has circular velocity u is 

F = 2nrou 

Substituting the above into eqn (9.31), 

L = p U F  (9.32) 

This lift is the reason why a baseball, tennis ball or golf ball curves or slices 
if spinning. 6 This equation is called the Kut ta-Joukowski  equation. 

In general, whenever circulation develops owing to the shape of a body 
placed in the uniform flow U (e.g. aircraft wings or yacht sails) (see Section 
9.4.2), lift L as in eqn (9.32) is likewise produced for the unit width of its 
section. 

9.4.2 Wing 

Of the forces acting on a body placed in a flow, if the body is so 
manufactured as to make the lift larger than the drag, it is called a wing, 
aerofoil or blade. 

The shape of a wing section is called an aerofoil section, an example of 
which is shown in Fig. 9.16. The line connecting the leading edge with the 
trailing edge is called the chord, and its length is called the chord length. The 
line connecting the mid-points of the upper and lower faces of the aerofoil 

6 The reason why the golf ball surface has many dimple-like hollows is to reduce the air 
resistance by producing turbulence around the ball, and to produce an effective lift while keeping 
a stable flight by making the air circulation larger (see Plate 4). The number of rotations (called 
spin) per second of a golf ball can be 100 or more. 
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Fig. 9.16 An aerofoil section 
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section is called the camber line. The height of the camber line from the chord 
is called the camber, which mostly means its maximum value in particular. 
The thickness of a wing as measured vertically to the camber or chord is 
called its thickness, whose maximum value is called the maximum thickness. 
Furthermore, the angle ~ between the chord and the flow direction U is called 
the angle of attack. Putting the wing width as b, and the maximum projection 
area of the wing as A, b2/A is called the aspect ratio. Assuming the length 
of the chord is L since A = bl for an oblong wing, the aspect ratio becomes 
b2/A =b/l. 

Of the studies on the characteristics of wing shape, those most well known 
have been performed by the USA's NACA (National Advisory Committee 
for Aeronautics, renamed in 1959 as NASA (National Aeronautics and Space 
Administration)), by the UK's RAE (Royal Aircraft Establishment) and by 
Germany's G6ttingen University. The particular wing shapes are named after 
them. 

The lift L, drag D and moment M (moment about the wing leading edge 
or the point on the chord 1/4 from the leading edge) acting on the wing are 
expressed respectively for unit width by the following equations: 

pU 2 
L = C,I---~-- 

P U2 
D = .~ol--~- 

M = CM 12 pU2 ---f- 

(9.33) 

CL, Co and CM are called respectively the lift coefficient, drag coefficient 
and moment coefficient to be determined by the aerofoil section, Mach 
number and Reynolds number. The wing characteristic is indicated by the 
values of CL, Co and CM for the angle of attack ~, or by plotting Co and CM 
on the abscissa and CL on the ordinate. These plots are called the character- 
istic curves. Some examples of them are shown in Figs 9.17, 9.19 and 9.20. 

The lift coefficient CL reaches zero at a certain angle of attack ~, called 
the zero lift angle. As the angle of attack increases from the zero lift angle, 
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Fig. 9.17 Characteristic curves of a wing 

the lift coefficient CL increases in a straight line. As it further increases, 
however, the increase in CL gradually slows down, reaches a maximum value 
at a certain point, and thereafter suddenly decreases. This is due to the fact 
that, as shown in Fig. 9.18, the flow separates on the upper surface of the 
wing because the angle of attack has increased too much. This phenomenon 
is completely analogous to the separation occurring on a divergent pipe or 
flow behind a body and is called stall. Angle ct at which CL reaches a 
maximum is the stalling angle and the maximum value of CL is the maximum 
lift coefficient. Figure 9.19 shows the characteristic with changing wing 
section. 

Fig. 9.18 Flow around a stalled wing 
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Fig. 9.19 Aerofoil section and characteristic 
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Figure 9.20 shows a wing characteristic by putting Co on the abscissa and 
CL on the ordinate, and is called the lift-drag polar, from which the angle of 
attack maximising the lift-drag ratio C,~/C~, can easily be found. 

The reason why a wing produces lift is because a circulatory flow is 
produced just like for a rotating cylinder. In the case of a wing section, the 
circulatory flow is produced because the trailing edge is sharpened. A wing 
moves from a stationary state initially as shown in Fig. 9.21(a). Owing to its 
behaviour as potential flow, a rear stagnation point develops at point A. 
Consequently, the flow develops into a flow running round the trailing edge 
B. Since the trailing edge is sharp, however, the flow is unable to run round 
the wing surface but separates from it producing a vortex as shown in (b) of 

I 
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0.5- ~_ (C/ '~ 

o , , 

~ _ 6 o 0 . 1  0.2 
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Fig. 9.20 Characteristic curve of a wing (lift-drag curve) 
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Fig. 9.21 Development of circulation around aerofoil section 

the same figure. This vortex moves backwards being driven by the main flow. 
The flow on the upper surface of the wing is drawn towards the trailing edge, 
which itself develops into a stagnation point, and thus the flow is now as 
shown in (c) of the same figure. As one vortex is produced, another vortex of 
equal strength is also produced since the flow system as a whole should be 
in a net non-rotary movement. Therefore a circulation is produced against 
the start-up vortex as if another vortex of equal strength in counterrotation 
had developed around the wing section. The former vortex is called a starting- 
up vortex because it is left at the starting point; the latter assumed vortex is a 
wing-bound vortex. The situation where the flow runs off the sharp trailing 
edge of a wing as stated above is called the Kutta condition or Joukowski's 
hypothesis. Figure 9.22 shows the visualised picture of a starting vortex. 

The blades of a blower, compressor, water wheel, steam turbine or gas 
turbine of the axial flow type are distributed radially in planes around the 
shaft and the blade sections of the same shape are found arranged at a certain 
spacing as shown in Fig. 9.23. This is called a cascade. 

The action of a cascade is to change the flow direction with small loss by 
using the necessary stagger angle. 

The lift acting on a blade is expressed by pv~F from eqn (9.32) where voo 
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Fig. 9.22 Starting vortex (courtesy of the National Physical Laboratory) 

/~'"\ 

Fig, 9.23 Cascade: v 1, v 2, velocities at infinity in front and behind the cascade; ~1, inlet angle (angle 
of velocity v~ to axial direction); 0~2, exit angle (angle of velocity v 2 to axial direction);/, chord length; 
t, space between blades; I/t, solidity;/~, stagger angle;/9 = 0q - 0~2, turning angle of flow 

represents the mean flow velocity of v~ and v2. The magnitude of the 
circulation around a blade in a cascade is affected by the other blades giving 
less lift compared with a solitary blade. 

For the same blade section, setting the lifts of a solitary blade and a 
cascade blade to L0 and L respectively, 

k = L /Lo  (9.34) 

k is called the interference coefficient. It is a function of l/t  and fl, and is near 
one whenever l / t  is 0.5 or less. 
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According to Bernoulli's principle, as the velocity increases, the pressure 
decreases correspondingly. In the forward part on the upper surface of a wing 
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U 

Fig. 9.24 An aerofoil section inside the flow 

section placed in a uniform flow as shown in Fig. 9.24, for example, the flow 
velocity increases while the pressure decreases. 

If a section of a body placed in liquid increases its velocity so much that 
the pressure there is less than the saturation pressure of the liquid, the liquid 
instantaneously boils, producing bubbles with cavities. This phenomenon is 
called cavitation. In addition, since gas dissolves in liquid in proportion to 
the pressure (Henry's Law), as the liquid pressure decreases, the dissolved gas 
separates from the liquid into bubbles even before the saturation pressure is 
reached. When these bubbles are conveyed downstream where the pressure is 
higher they are suddenly squeezed and abnormally high pressure develops. 7 
At this point noise and vibration occur eroding the neighbouring surface and 
leaving on it holes small in diameter but relatively deep, as if made by a 
slender drill in most cases. These phenomena as a whole are also referred to 
as cavitation in a wider sense. 

The blades of a pump or water wheel, or the propeller of a boat, are 
sometimes destroyed by such phenomena. They can develop on liquid- 
carrying pipe lines or on hydraulic devices and cause failures. 

The saturation pressures at various temperatures are shown in Table 9.3, 
while the volume ratios of air soluble in water at 1 atm are given in Table 9.4. 

When an aerofoil section is placed in a flow of liquid, the pressure 
distribution on its surface is as shown in Fig. 9.25. As the cavity grows, the 
upper pressure characteristic curve lowers while vibration etc. grow. When 
the liquid pressure is low and the flow velocity is large, the cavity grows 
further. When it grows beyond twice the chord length, the flow stabilises, 
with noise and vibration reducing. This situation is called supercavitation, 
and is applied to the wings of a hydrofoil boat. 

Let the upstream pressure not affected by the wing be p~, the flow velocity 
U and the saturation pressure p,,. When the pressure at a point on the wing 
surface or nearby has reached Pv, cavitation develops. The ratio of p~ - p,, to 
the dynamic pressure is expressed by the following equation: 

7 According to actual measurements, a pressure of 100-200 atmospheres, or sometimes as high 
as 500 atmospheres, is brought about. 



Table 9.3 Saturation pressure for water 

Temp. (°C) Pa Temp. (°C) Pa 

0 608 
10 1226 
20 2334 
30 4236 
40 7375 

50 12330 
60 19 920 
70 31 160 
80 47 360 

100 101 320 
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Table 9.4 Solubility of air in water 
,, 

Temp. (°C) 0 20 40 60 80 100 

Air 0.028 8 0.0187 0.0142 0.0122 0.011 3 0.011 1 

Cavitation development 
Intrados Extrados 

i 
I 

~ I ~ l d  
~ s s t f f e  o n  
intrados 

o~ 

Vapour pressure 

Fig. 9.25 Development of cavitation on an aerofoil section 

kd = Poo -- P~ (9.35) 
pU2/2 

k d in this equation is called the cavitation number.  When kd is small, 
cavitation is likely to develop. 

1. Obtain the terminal velocity of a spherical sand particle dropping freely 
in water. 
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2. A wind of velocity 40 m/s is blowing against an electricity pole 50 cm in 
diameter and 5m high. Obtain the drag and the maximum bending 
moment acting on the pole. Assume that the drag coefficient is 0.6 and 
the air density is 1205 kg/m 3. 

3. A smooth spherical body of diameter 12 cm is travelling at a velocity of 
30m/s in windless open air under the conditions of 20°C temperature 
and standard atmospheric pressure. Obtain the drag of the sphere. 

4. If air at standard atmospheric pressure is flowing at velocity of 4 km/h  
along a fiat plate of length 2.5m, what is the maximum value of 
the boundary layer thickness? What is it when the wind velocity is 
120km/h? 

5. What are the torque and the power necessary to turn a rotor as shown 
in Fig. 9.13 at 600rpm in oil of specific gravity 0.9? Assume that the 
friction coefficient f = 0.147, r0 = 30cm and b = 5 cm. 

6. When walking on a country road in a cold wintry wind, whistling sounds 
can be heard from power lines blown by the wind. Explain the 
phenomenon by which such sounds develop. 

7. In a baseball game, when the pitcher throws a drop or a curve, the ball 
significantly and suddenly goes down or curves. Find out why. 

8. An oblong barge of length 10m, width 2.5 m and draft 0.25 m is going 
up a river at a relative velocity of 1.5 m/s to the water flow. What are the 
friction resistance suffered by the barge and the power necessary for 
navigation, assuming a water temperature of 20°C? 

9. If a cylinder of radius r = 3cm and length l - - 5 0 c m  is rotating at 
n = 1000 rpm in air where a wind velocity u = 10m/s, how much lift is 
produced on the cylinder? Assume that p = 1.205 kg/m 3 and that air on 
the cylinder surface does not separate. 

10. A car of frontal projection area 2m 2 is running at 60 km/h  in calm air 
of temperature 20°C and standard atmospheric pressure. What is the 
drag on the car? Assume that the resistance coefficient is 0.4. 



Dimensional analysis and 
law of similarity 

The method of dimensional analysis is used in every field of engineering, 
especially in such fields as fluid dynamics and thermodynamics where 
problems with many variables are handled. This method derives from the 
condition that each term summed in an equation depicting a physical 
relationship must have same dimension. By constructing non-dimensional 
quantities expressing the relationship among the variables, it is possible to 
summarise the experimental results and to determine their functional 
relationship. 

Next, in order to determine the characteristics of a full-scale device 
through model tests, besides geometrical similarity, similarity of dynamical 
conditions between the two is also necessary. When the above dimensional 
analysis is employed, if the appropriate non-dimensional quantities such as 
Reynolds number and Froude number are the same for both devices, the 
results of the model device tests are applicable to the full-scale device. 

When the dimensions of all terms of an equation are equal the equation is 
dimensionally correct. In this case, whatever unit system is used, that 
equation holds its physical meaning. If the dimensions of all terms of an 
equation are not equal, dimensions must be hidden in coefficients, so only the 
designated units can be used. Such an equation would be void of physical 
interpretation. 

Utilising this principle that the terms of physically meaningful equations 
have equal dimensions, the method of obtaining dimensionless groups of 
which the physical phenomenon is a function is called dimensional analysis. 

If a phenomenon is too complicated to derive a formula describing it, 
dimensional analysis can be employed to identify groups of variables which 
would appear in such a formula. By supplementing this knowledge with 
experimental data, an analytic relationship between the groups can be 
constructed allowing numerical calculations to be conducted. 
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In order  to perform the dimensional  analysis,  it is convenient to use the n 
theorem. Consider  a physical phenomenon  having n physical variables v~, rE, 
v3 . . . . .  v~ and k basic dimensions ~ (L, M, T or L, F, T or such) used to 
describe them. The phenomenon  can be expressed by the relat ionship among 
n - k = m non-dimensional  groups  n~, n2, n 3 . . . . .  n m. In other  words, the 
equat ion expressing the phenomenon  as a function f of  the physical 
variables 

f (v~,  1)2,  13 3 . . . . .  Un) = 0 (10.1) 

can be substi tuted by the following equat ion  expressing it as a function ~b of 
a smaller number  of  non-dimensional  groups:  

q~(nl, n2, r~3 . . . . .  r~) = 0 (10.2) 

This is called Buckingham's  r~ theorem.  In order  to produce n~, n2, r~3 . . . . .  n~, 
k core physical variables are selected which do not  form a r~ themselves. Each n 
group will be a power  product  of  these with each one of the m remaining 
variables. The powers of  the physical  var iables  in each n group are determined 
algebraically by the condi t ion tha t  the powers  of  each basic dimension must 
sum to zero. 

By this means the non-dimensional  quant i t ies  are found among  which there 
is the functional relat ionship expressed by eqn (10.2). If  the experimental  
results are a r ranged  in these non-d imens iona l  groups, this functional 
relat ionship can clearly be appreciated.  
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10.3.1 Flow resistance of a sphere 

Let us study the resistance of a sphere placed in a uniform flow as shown in 
Fig. 10.1. In this case the effect of  gravi ta t ional  and buoyancy  forces will be 
neglected. First  of  all, as the physical  quant i t ies  influencing the drag D of a 
sphere, sphere d iameter  d, flow velocity U, fluid density p and fluid viscosity 
p, are candidates.  In this case n = 5, k - 3 and m = 5 - 3 = 2, so the number  
of necessary non-dimensional  groups  is two. Select p, U and d as the k core 
physical quantities, and the first non-d imens iona l  group 7r, formed with D, 
is 

n, = DpxVYdZ = [ L M T - 2 I [ L - 3 M ] X [ L  T-I]y[L]: 

"- LI-3x+y+zMI+XT-2-Y (10.3) 

' In general the basic dimensions in dynamics are three- length [L], mass [M] and time [T]-  
but as the areas of study, e.g. heat and electricity, expand, the number of basic dimensions 
increases. 
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Fig. 10.1 Sphere in uniform flow 
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i . e .  

L: 1 - 3 x - t - y + z = O  

M: l + x = 0  

T: - 2 - y = 0  

Solving the above simultaneously gives 

x = - I  y = - 2  

Substituting these values into eqn (10.3), then 

D 
re1 = U2d------- ~ 

P 

Z ~ - - 2  

(10.4) 

Solving the above simultaneously gives 

x = - I  y = - I  

Substituting these values into eqn (10.5), then 

D 
g2 --" pUd 

L" - 1 - 3 x +  y + z = O  

M" l + x = 0  

T" -1 - y = 0  

Z - -  - - 1  

(10.6) 

Therefore, from the rc theorem the following functional relationship is 
obtained: 

~z~ = f(rt2) (10.7) 

Consequently 

i .e .  

Next, select p with the three core physical variables in another group, and 

rr2 = #pxUYdZ - [L-I MT-~][L-3M]X[L T-I]y[L]" 

= LI-3x+y+zMI+XT -1-y (10.5) 
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pU2d 2 = f (10.8) 

In eqn (10.8), since d 2 is proportional to the projected area of sphere 
A = (red2/4), and p U d / p  = U d / v =  Re (Reynolds number), the following 
general expression is obtained: 

D = CoA p U2 (10.9) 
2 

where Co = f ( R e ) .  Equation (10.9) is just the same as eqn (9.4). Since CO is 
found to be dependent on Re, it can be obtained through experiment and 
plotted against Re. The relationship is that shown in Fig. 9.10. Even through 
this result is obtained through an experiment using, say, water, it can be 
applied to other fluids such as air or oil, and also used irrespective of the size 
of the sphere. Furthermore, the form of eqn (10.9) is always applicable, not 
only to the case of the sphere but also where the resistance of any body is 
studied. 

10.3.2 Pressure loss due to pipe friction 
- -  i ,  , . , , i ,  i . , i ,  . - . . . . . .  ~ . .  . .  i . j ,  , , , ,  . 

As the quantities influencing pressure loss Ap/l  per unit length due to pipe 
friction, flow velocity v, pipe diameter d, fluid density p, fluid viscosity/~ and 
pipe wall roughness e, are candidates. In this case, n = 6 ,  k =  3, 
m = 6 - 3 = 3 .  

Obtain hi, ~2, r~3 by the same method as in the previous case, with p, v 
and d as core variables: 

~l - - -  ~ P  xvyd" = [L-3F][L-4FT2]X[L T-']Y[L] z -- Ap d (10.10) 
- l pv 2 

n2 = lzpXvYd z = [L-2FT][L-4FT2]X[L T-']Y[L] z = # (10.11) 
pvd 

F, 
n3 = e.pXvYd z = [L][L-4FT2]X[L T-']Y[L] z = ~ (10.12) 

Therefore, from the rc theorem, the following functional relationship is 
obtained: 

n, - f (n2,  n3) (10.13) 

and 

That is, 

_ f  12 
l pv  2 

l pv2f(~vd d )  A p  - -d (10.14) 

The loss of head h is as follows: 
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( 1  d )  lV2 lv  2 
h = A___pppg = f  Re '  ~-~# = 2~2--- ~ (10.15) 

where 2 =f(Re ,  e/d). Equation (10.15) is just the same as eqn (7.4), and 2 
can be summarised against Re and e/d as shown in Figs 7.4 and 7.5. 
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When the characteristics of a water wheel, pump, boat or aircraft  are 
obtained by means of a model, unless the flow conditions are similar in 
addit ion to the shape, the characteristics of the prototype cannot be assumed 
from the model test result. In order to make the flow conditions similar, the 
respective ratios of the corresponding forces acting on the prototype and the 
model should be equal. The forces acting on the flow element are due to 
gravity FG, pressure Fp, viscosity Fv, surface tension Fr (when the prototype 
model is on the boundary of water and air), inert ia/ ' i  and elasticity FE. 

The forces can be expressed as shown below. 

gravity force 

pressure force 

viscous force 

surface tension force 

inertial force 

elasticity force 

FG = m g =  pL3g 

Fe = (Ap)A = (Ap)L 2 

Fv = \ d y ] A  = ~ L 2 =/avL 

F r =  TL 

L T-:  ['i = me< -- pLa-T- 5 = p L  4 = p v 2 L  2 

FE = KL 2 

Since it is not feasible to have the ratios of all such corresponding forces 
simultaneously equal, it will suffice to identify those forces that are closely 
related to the respective flows and to have them equal. In this way, the 
relationship which gives the conditions under which the flow is similar to the 
actual flow in the course of a model test is called the law of similarity. In 
the following section, the more common force ratios which ensure the flow 
similarity under appropriate conditions are developed. 

10.4.1 Non<limensionai groups which determine flow 
similarity 

Reynolds number 
Where the compressibility of the fluid may be neglected and in the absence 
of a free surface, e.g. where fluid is flowing in a pipe, an airship is flying in 
the air (Fig. 10.2) or a submarine is navigating under water, only the viscous 
force and inertia force are of importance: 
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Fig. 10.2 Airship 

__:_-~_._~-~_- :- . ~_. : __  ..... ~ . ~ ~  

inertia force _- ~F I _- p1)2L2 _- Lvp _- Lv  -- Re 

viscous force Fv ,uvL # v 

which defines the Reynolds number Re, 

Re = L1)/v (10.16) 

Consequently, when the Reynolds numbers of the prototype and the model 
are equal the flow conditions are similar. Equations (10.16) and (4.5) are 
identical. 

Froude number 
When the resistance due to the waves produced by motion of a boat (gravity 
wave) is studied, the ratio of inertia force to gravity force is important: 

inertia force FI pv2 L 2 132 
gravity force -- FG pL3 g gL 

In general, in order to change 1) 2 above to v as in the case for Re, the square 
root of v2/gL is used. This square root is defined as the Froude number Fr, 

1) 
Fr = (10.17) W/: 

If a test is performed by making the Fr of the actual boat (Fig. 10.3) and of 
the model ship equal, the result is applicable to the actual boat so far as the 
wave resistance alone is concerned. This relationship is called Froude's law of 
similarity. For the total resistance, the frictional resistance must be taken into 
account in addition to the wave resistance. 

Also included in the circumstances where gravity inertia forces are 

Fig. 10.3 Ship 
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important are flow in an open ditch, the force of water acting on a bridge 
pier, and flow running out of a water gate. 

Weber number  
When a moving liquid has its face in contact with another fluid or a solid, 
the inertia and surface tension forces are important:  

inertia force FI pv 2 L 2 pv 2 L 

surface tension FT T L T 

In this case, also, the square root is selected to be defined as the Weber 
number We, 

We = vv /pL/  T (10.18) 

We is applicable to the development of surface tension waves and to a poured 
liquid. 

Math number 
When a fluid flows at high velocity, or when a solid moves at high velocity 
in a fluid at rest, the compressibility of the fluid can dominate so that the 
ratio of the inertia force to the elasticity force is then important  (Fig. 10.4): 

inertia force ['i pvE L 2 1) 2 D E 

elastic force -- Fe K L  K / p  a 2 

Again, in this case, the square root is selected to be defined as the Mach 
number M, 

M = v / a  (10.19) 

M < l, M = 1 and M > 1 are respectively called subsonic flow, sonic flow 
and supersonic flow. When M = I  and M <  1 and M >  1 zones are 
coexistent, the flow is called transonic flow. 

Fig. 10.4 Boeing 747 full length, 70.5m; full width, 59.6m; passenger capacity, 498 persons; 
turbofan engine and cruising speed of 891 km/h (M - 0.82) 

10.4.2 Model testing 
~ , ~ , ~ = ~ = . . . . ~ . . .  . . . . . .  ~ ~ .  . . ~ ~ ~ ~ = , , ~ , ~  - . . ~  . . . . . . .  ~ . . . .  

From such external flows as over cars, trains, aircraft, boats, high-rise 
buildings and bridges to such internal flows as in tunnels and various 
machines like pumps, water wheels, etc., the prediction of characteristics 
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Ernst Mach (1838-1916) 
Austrian physicist/philosopher. After being professor at 
Graz and Prague Universities became professor at 
Vienna University. Studied high-velocity flow of air and 
introduced the concept of Mach number. Criticised 
Newtonian dynamics and took initiatives on the theory 
of relativity. Also made significant achievements in 
thermodynamics and optical science. 

through model testing is widely employed. Suppose that the drag D on a car 
is going to be measured on a 1 : 10 model (scale ratio S = 10). Assume that the 
full length I of the car is 3 m and the running speed u is 60 km/h. In this case, 
the following three methods are conceivable. Subscript m refers to the 
model. 

Test in a wind tunnel In order to make the Reynolds numbers equal, the 
velocity should be u, = 167m/s, but the Mach number is 0.49 including 
compressibility. Assuming that the maximum tolerable value M of incom- 
pressibility is 0.3, urn = 102m/s and ReJRe = um/Su = 0.61. In this case, 
since the flows on both the car and model are turbulent, the difference in C ,  
due to the Reynolds numbers is modest. Assuming the drag coefficients for 
both D / (  puZl2 /2 )  are equal, then the drag is obtainable from the following 
equation: 

(10.20) 

This method is widely used. 

Test in a circulatingjlume or towing tank In order to make the Reynolds 
numbers for the car and the model equal, urn = uSu,/u = 11.1 m/s. If water is 
made to flow at this velocity, or the model is moved under calm water at this 
velocity, conditions of dynamical similarity can be realised. The conversion 
formula is 

(10.21) 
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Test in a variable density wind tunnel If the density is increased, the 
Reynolds numbers can be equalised without increasing the air flow velocity. 
Assume that the test is made at the same velocity; it is then necessary to 
increase the wind tunnel pressure to 10 atm assuming the temperatures are 
equal. The conversion formula is 

D = D m /9 $2 (10.22) 
Pm 

Two mysteries solved by Math 
i i  iiii 

[No. 1] The early Artillerymen knew that two bangs could be heard downrange from a gun 
when a high-speed projectile was fired, but only one from a low-speed projedile. But they did 
not know the reason and were mystified by these phenomena. Following Mach's research, it 
was realised that in addition to the bang from the muzzle of the gun, an observer downrange 
would first hear the arrival of the bow shock which was generated from the head of the 
projectile when its speed exceeded the velocity of sound. 

By this reasoning, this mystery was solved. 

! 

V g & V O  

Bang wave 
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[No. 2] This is a story of the Franco-Prussian war of 1870-71. It was found that the novel 
French Chassep6t high-speed bullets caused large crater-shaped wounds. The French were 
suspected of using explosive projectiles and therefore violating the International Treaty of 
Petersburg prohibiting the use of explosive projectiles. Mach then gave the complete and 
correct explanation that the explosive type wounds were caused by the highly pressurised air 
caused by the bullet's bow wave and the bullet itself. 

So it was clear that the French did not use explosive projectiles and the mystery was solved. 

o "  " " 

High pressure 

1. Derive Torricelli's principle by dimensional analysis. 

2. Obtain the drag on a sphere of diameter d placed in a slow flow of 
velocity U. 

3. Assuming that the travelling velocity a of a pressure wave in liquid 
depends upon the density p and the bulk modulus k of the liquid, derive 
a relationship for a by dimensional analysis. 

4. Assuming that the wave resistance D of a boat is determined by the 
velocity v of the boat, the density p of fluid and the acceleration of 
gravity g, derive the relationship between them by dimensional analysis. 

5. When fluid of viscosity/~ is flowing in a laminar state in a circular pipe 
of length 1 and diameter d with a pressure drop Ap, obtain by 
dimensional analysis a relationship between the discharge Q and d, Ap/l 
and/~. 

6. Obtain by dimensional analysis the thickness ~ of the boundary layer 
distance x along a flat plane placed in a uniform flow of velocity U 
(density p, viscosity/~). 

7. Fluid of density p and viscosity /~ is flowing through an orifice of 
diameter d bringing about a pressure difference Ap. For discharge Q, the 
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discharge coefficient C = Q/[(ndZ/4)v/2Ap/p], and Re = dv/2pAp/la, show 
by dimensional analysis that there is a relationship C = f(Re). 

8. An aircraft wing, chord length 1.2m, is moving through calm air at 
20°C and 1 bar at a velocity of 200 km/h. If a model wing of scale 1:3 is 
placed in a wind tunnel, assuming that the dynamical similarity 
conditions are satisfied by Re, then: 

(a) If the temperature and the pressure in the wind tunnel are 
respectively equal to the above, what is the correct wind velocity in 
the tunnel? 

(b) If the air temperature in the tunnel is the same but the pressure is 
increased by five times, what is the correct wind velocity? Assume 
that the viscosity/~ is constant. 

(c) If the model is tested in a water tank of the same temperature, what 
is the correct velocity of the model? 

9. Obtain the Froude number when a container ship of length 245 rn is 
sailing at 28 knots. Also, when a model of scale 1:25 is tested under 
similarity conditions where the Froude numbers are equal, what is the 
proper towing velocity for the model in the water tank? Take 
1 knot -- 0.514 m/s. 

10. For a pump of head H, representative size I and discharge Q, assume that 
the following similarity rule is appropriate: 1(~m)1/2(~)-1/4 
where, for the model, subscript rn is used. 

If a pump of Q = 0.1 m 3 / s  and H = 40m is model tested using this 
relationship in the situation Qm = 0.02 m 3 /s  and H m --  5 0 m ,  what is the 
model scale necessary for dynamical similarity? 



Measurement of flow 
velocity and flow rate 

To clarify fluid phenomena, it is necessary to measure such quantities as 
pressure, flow velocity and flow rate. Since the measurement of pressure was 
covered in Section 3.1.5, in this chapter we cover the measurement of flow 
velocity and flow rate. Fluid includes both gas and liquid. According to the 
type and condition of the fluid, or if it flows in a pipe line or open channel, 
various methods of measurement were developed and are in practical use. 
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11.1.1 Pitot tube 

Figure 11.1 shows the shape of a commonly used standard Pitot tube (also 
called a Pitot-static tube). The flow velocity is given by the following equation 
from total pressure Pl and static pressure P2, both to be measured as in the 
case of eqn (5.20): 

v = c v / 2 ( p ,  - P 2 ) / P  (l 1. I) 

where c is called the Pitot tube coefficient, which may be taken as having 
value l for a standard-type Pitot tube. However, when compressibility is to 
be taken into account, refer to Section 13.4. 

A Pitot tube is also used to measure the flow in a large-diameter pipe. In 
this case, the cross-section of the pipe is divided into ring-like equal areas, 
and the flow velocity at the centre of the area of every ring is measured. The 
mean flow velocity is obtained from their mean value, and the total flow rate 
is obtained from the product of the mean velocity and the section area. Apart 
from the standard type, there are various other types of Pitot tube, as 
follows. 

Cylinder-type Pitot tube 
This type of Pitot tube is used to measure simultaneously the direction and 
the flow velocity of a two-dimensional flow utilising the pressure distribution 
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Section A-A 

_ 8d ! 
J- 0 . 8 d , _  

., ,l' . . -  . . . .  ?1 l: 

8 holes of diameter 0.13d, "~ ' 
not to exceed 1 mm diameter, 
equally distributed and 
free from burrs 

Outer tube @ d - - - - ~ ! ~  

.Inner tube 

16d 

Fig. 11.1 NPL-type Pitot tube 

J 

:) o 

ngle plate 

I 

U 
Enlarged left 
bulb section 

Fig. 11.2 Cylinder-type Pitot tube Fig. 11.3 Five-hole spherical Pitot tube 
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on the cylinder surface wall that is shown in Fig. 9.5. Figure 11.2 shows the 
measuring principle. The body is rotated in a flow until Ah = 0, and the 
centre-line direction is then the flow direction. The static pressure is obtained 
if 0 = 330-35 °. Then, if one of the holes is made to face the flow direction 
by rotating the cylinder, it measures the total pressure. If a third measuring 
hole is provided on the centre line, the flow direction and both pressures can 
be measured at the same time. A device which measures the flow direction 
and velocity in this way is called a yawmeter. 

Five-hole spherical Pitot tube 
This is constructed as shown in Fig. 11.3, and is capable of measuring the 
velocity and direction of a three-dimensional flow. 

Pitot tube for measuring the flow velocity near the wall face 
For measuring the velocity of a flow very near the wall face, a total pressure 
tube from a flattened fine tube as shown in Fig. l l.4(a) is used. For 
measuring the velocity of a flow even nearer to the wall face, a surface Pitot 
tube as shown in Fig. 11.4(b) is used. By changing the width of opening B 
while moving the tube, the whole pressure distribution can be determined. In 
this case, the static pressure is measured by another hole on the wall face. 

"--" B .Wall 
, /  • 

A-A ~ ~ ~  
It  L'q Pr ss.   

~~1111111111111, 97111/1111/il/1// ~, ! H " ~  pickup hole 

A 
(a) (b) 

Fig. 11.4 Pitot tubes for measuring the velocity of flow near the wall face: (a) total pressure tube; 
(b) surface Pitot tube 

11.1.2 Hot-wire a n e m o m e t e r  
_ _ _  . . . . . . . . . . . . . . . . . . . . . . . . .  . .  , , , , ,  . . . . . . . . . . . . . .  . . . . . . . .  ~ . . . . . .  , ,  

If a heated fine wire is placed in a flow, the temperature of the hot wire 
changes according to the velocity of the fluid so changing its electrical 
resistance. A meter which measures the flow by utilising this change in 
resistance is called a hot-wire anemometer. 

One method is shown in Fig. 11.5(a). The flow velocity is obtained by 
reading the changing hot-wire temperature as a change of electrical resistance 
(using the galvanometer G) while keeping the voltage between C and D 
constant. This is called the constant voltage anemometer. A second method is 
shown in Fig. 11.5(b). The flow velocity is obtained by reading the voltmeter 
when the galvanometer (G) reading is zero after adjusting the variable 
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5-20pm 
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Fig. 11.5 Hot-wire anemometer: (a) constant voltage type; (b) constant temperature type; (c) probe 

electrical resistance to maintain the hot-wire temperature, i.e. the electrical 
resistance, constant as the velocity changes. This is called the constant 
temperature anemometer (CTA). 

Since the CTA has a good frequency response characteristic because 
thermal inertia effects are minimised, almost all currently used meters are of 
this type. It is capable of giving the flat characteristic up to a frequency of 
100 kHz. 

11.1.3 Laser Doppler anemometer 
i , , .  i i i i L . . , . ,  i l l . , . . .  . 

Point laser light at a tracer particle travelling with a fluid, and the scattered 
light from the particle develops a difference in frequency from the original 
incident light (reference light). This difference is due to the Doppler effect and 
is proportional to the particle velocity. A device by which the flow velocity 
is obtained from the velocity of tracer particles by measuring the difference in 
frequency fo using a photocell or photodiode is called a laser Doppler 
anemometer. 

Laser Doppler anemometers include the three types shown in Fig. 11.6 
and described below. 

Reference beam type 
When a particle is moving in a fluid at velocity u as shown in Fig. 11.6(a), 
by measuring the difference in frequency fD between the reference light and 
the scattered light observed in the direction of angle 20, the flow velocity u 
can be obtained from the following equation: 

u - ~  (11.2) 
2 sin 0 

where 2 is the wavelength of the laser light. 
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Fig. 11.6 Laser Doppler anemometers (a) reference beam type; (b) interference fringe type' (c) single- 
beam type 

Interference fringe type 
As shown in Fig. 11.6(b), the flow velocity is obtained by using a photomulti- 
plier to detect the alternating light intensity scattered when a particle passes 
the interference fringes. The velocity is again calculated using eqn (11.2). 

Single-beam type 
As shown in Fig. 11.6(c), by using the interference of the scattered light in 
two directions from a single incident beam, the flow velocity can be obtained 
as for the interference type. 

i i~i~i~i~ii~!!i~i!~i~!ii~i!iiii~iiill~ii!~iiiii~iiii~iiiiiiii!ii~iii~!iiiii!i~i~iii~!~i~iii~iii~!iii~iii~!~i~ii!i~iiiii!iiiiiiii!ii!~iiiii~iiiiiii~iii~iiiiiiiii~!ii~iiii!!!!ii!i~!ii!i~iiiiiiii!iiiiiiiiiiiiii!i!i!i~!ii~ii 

11.2.1 Method using a collecting vessel 
This method involves measuring the fluid discharge by collecting it in a vessel 
and measuring its weight or volume. In the case of a gas, the temperature 
and pressure of the gas in the vessel are measured allowing conversion to 
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another volume under standard conditions of temperature and pressure or 
to mass. 

11.2.2 Methods using flow restrictions 
Discharge measurement using flow restrictions is widely used in industry. 
Restrictions include the orifice, nozzle and Venturi tube. The flow rate is 
obtained by detecting the difference in pressures upstream and downstream 
of the device. Flow measurement methods are stipulated in British Standards 
BS1042 (1992). 1 

Orifice plate 
The construction of an orifice plate is shown in Fig. 11.7. It is set inside a 
straight pipe. The flow rate is found by measuring the difference in pressures 
across it. The flow rate is calculated as follows: 

Q= T (11.3) 

where 0c is called the flow coefficient and Ap is the pressure difference across 
the orifice plate. 

The symbol C was used for the coefficient of discharge in eqn (5.25). For 

,~\\\\\~\\\\ 
Flow 
=:~ 

Orifice plate 

, \ \ \ "  _ ~ N N \ "  

Fig. 11.7 Orifice plate with pressure tappings (corner and flange) 

' British Standards BS1042, Measurement of  Fluid Flow in Closed Conduits, British Standards 
Institution. 
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all the above cases, the relationship between flow coefficients ~ and coefficient 
of discharge C is 

C = ~/E (11.4) 

where the approach velocity coefficient E = ( 1 -  [34) -1/2 and the throttle 
diameter ratio fl = d/O. 

It can be seen that the effect of the flow velocity in the pipe is to increase 
the flow rate for the same pressure drop Ap by the factor E, compared with 
flow from a tank or reservoir as in eqn (5.25). 

To obtain the pressure difference either the corner tappings or flange 
tappings (Fig. 11.7) or pipe tappings are used. 

For the case of a gas, an expansion factor is needed as follows: 

Qvl -- ~e ~ , 2 ~  ~p (11.5) 
V P~ 

/td 2 
m = ~e--~ v/2plAp 

where Qo~ is the upstream volume flow rate, m is the mass flow rate, and/91 
is the upstream fluid density. 

(11.6) 

Nozzle 
The design of a nozzle is shown in Fig. 11.8, and the measuring method and 
calculation formula are therefore the same as those for an orifice plate. For a 
nozzle, the flow loss is smaller than for an orifice, and also the flow coefficient 
is larger. 

& \ \ \ \ ~ \ \ \ \ ' ,  

Flow 

Fig. 11.8 ISA 1932 nozzle 

V e n t u r i  tube 
The principle of the Venturi tube was explained in Section 5.2.2. British 
Standards provides the standards for both nozzle-type and cone-type Venturi 
tubes as shown in Fig. 11.9. 
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Fig. 11.9 Venturi tubes: (a) nozzle type; (b) cone type 

The calculation of the discharge is again the same as that for the orifice 
plate: 

Q= -T (11.7) 

In the case of a gas, as for the orifice plate, eqns (11.4) and (11.5) are 
used. 

11.2.3 Area flowmeter 2 

The flowmeters explained in Section 11.2.2 indicate the flow from the 
pressure difference across the restriction. An area flowmeter, however, has a 
changing level of restriction such that the pressure difference remains 
constant, and the flow rate is induced by the flow area. Area meters include 
float, piston and gate types. 

A float-type area flowmeter (rotameter) has, as shown in Fig. 11.10, a float 
which is suspended in a vertical tapered tube. The flow produces a pressure 
difference across the float. The float rests in a position where the combined 
forces of pressure drag, frictional drag and buoyancy balance its weight. In 
this case, ignoring friction, flow Q is expressed by the following equation: 

Q - Cdax, /2gV(pf  -- P) (11.8) 
V pao 

where p is the fluid density, Ca is the coefficient of discharge, ax is the area 

2 British Standard BS7405, (1992). 
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E 

, red tube 

Float 

! 

E 

Fig. 11.10 Float-type area flowmeter (Rotameter) 

of the annulus through which the fluid passes outside the float, V is the float 
volume, pf is the float density and a0 is the maximum section area of the float. 
Since ax changes in proportion to the float position, if Cd is constant the 
equilibrium height of the float in the tube is proportional to the flow. 

11.2.4 Positive displacement flowmeter 
. . . . . . . . .  . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . .  

A positive displacement flowmeter with continuous flow relies on some form 
of measuring chamber of constant volume. It is then possible to obtain the 
integrated volume by counting the number of times the volume is filled, and 
the flow rate by measuring the number of times this is done per second. As a 

• . - , ' . "  : 

(a) (b) 

Fig. 11.11 Positive displacement fiowmeters" (a) oval gear type; (b) Roots type 



Measurement of flow discharge 191 

typical example, Fig. l l . l l  shows oval gear and Roots-type positive 
displacement meters. 

Because of the difference between the flow inlet pressure p~ and the flow 
outlet pressure P2 of fluid, the vertically set gear (Fig. 11.1 l(a)) turns in the 
direction of the arrow. Thus, every complete revolution sends out fluid of 
volume 4 V. 

11.2.5 Turbine flowmeter 
If a turbine is placed in the course of a flow, the turbine rotates owing to 
the velocity energy of the fluid. Since they are almost proportional, the flow 
velocity is obtainable from the rotational velocity of the turbine, while the 
integrated volume can be calculated by counting the number of revolutions. 

The flowmeter has long been used as a water meter. Figure 11.12 shows a 
turbine meter used industrially for flow rate measurement of various fluids. A 
pulse is induced every time the blade of the turbine passes the magnetic coil 
face and the pulse frequency is proportional to the volume flow rate. 

Flow rectifier Impeller of axial flow turbine 

Flow-- 
Rotor bearing 

Frequency pickup 

To frequency 
meter  

Fig. 11.12 Turbine flowmeter 

11.2.6 Magnetic flowmeter 
m 

As shown in Fig. 11.13, when a conducting fluid flows in a non-conducting 
section of a measuring tube to which a magnetic field of flux density B is 
applied normal to the flow direction, an electromotive force E proportional 
to the mean flow velocity v is induced in the liquid (Faraday's law of electro- 
magnetic induction) which, after amplification, permits computation of the 
volume flow rate Q. The electromotive force is detected by inserting two 
electrodes into the tube in contact with the fluid and normal to both the flow 
and magnetic field directions. In other words, if the tube diameter is d, then 

E = B d v  (11.9) 

and 
r~dE 

Q - 4B (11.10) 
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0 

4 

, P o w e r  

Fig. 11.13 Magnetic flowmeter 

Since this flowmeter has no pressure loss, measurement can be made 
irrespective of the viscosity, specific gravity, pressure and Reynolds number 
of the fluid. 

11.2.7 Ultrasonic flowmeter 

As shown in Fig. 11.14, piezocrystals A and B are located a distance I apart  
on a line passing obliquely through the pipe centre line. Assume that an 
ultrasonic wave pulse sent from a transmitter at A is received by the detector 
at B t~ seconds later. Then, exchanging the functions of A and B by the 
send-receive switch, an ultrasonic wave pulse sent from B is detected by A t 2 
seconds later. Thus 

1 1 
t l  - - -  t 2  - - -  

a + v cos 0 a - v cos 0 

1 1 a + v c o s 0  a - v c o s 0  2vcos0 
_ _ _ _ _ _  - - - -  _ _  - - - -  

t~ t2 l l I 

\ 

I . !  
~ Send-receive switch 

,, 

Fig. 11.14 Ultrasonic fiowmeter 
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where a is the sonic velocity in the fluid. From this equation, 

v = 2cos 0 (11.11) 

This flowmeter has the same merits as an electromagnetic flowmeter and an 
additional benefit of usability in a non-conducting fluid. On the other hand it 
has the disadvantages of complex construction and high price. 

11.2.8 Vortex shedding flowmeter 3 
~ , , m .  ~ - ~ - - - - -  r -  . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - -  . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . ~ , ,  

If a cylinder (diameter d) is placed in a flow, Kfirmfin vortices develop behind 
it. The frequency f of vortex shedding from the cylinder is shown in eqn 
(9.7). The Strouhal number changes with the Reynolds number, but it is 
almost constant at 0.2 within the range of R e  = 300-100 000. In other words, 
the flow velocity U is expressed by the following equation: 

U = f d / 0 . 2  (11.12) 

One practical configuration, shown in Fig. 11.15, induces fluid movement 
through the cylinder for electrical detection of the vortices, and thus 
measurement of the flow rate. 

hot wire, etc. 

Fig. 11.15 Vortex shedding flowmeter 

11.2.9 Fluidic flowmeter 

As shown in Fig. 11.16, with an appropriate feedback mechanism a wall 
attachment amplifier can become a fluidic oscillator whose jet spontaneously 
oscillates at a frequency proportional to the volume flow rate of the main jet 
flow. The device can thus be used as a flowmeter. 4'5 

3 Yamazaki, H. et al., Journal of lnstrumentation and Control, 10 (1971), 173. 
4 Boucher, R. F. and Mazharoglu, C., International Gas Research Conference, (1987), 522. 
5 Yamazaki, H. et al., Proc. FLUCOME'85, Vol. 2 (1985), 617. 
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Fig. 11.18 Fluidic flowmeter 

11.2.10 Weir 6 

As shown in Fig. 11.17, the three principal weir configurations are classified 
by shape into triangular, rectangular and full-width weirs. 

Table 11.1 shows the flow computation formulae and the applicable scope 
for such weirs. 

B v 

90* 

, f l  l ; ~  

i d  r. 

___ B 

:i:-:- : ----~ ~r . . . . . . . .  ~ H_ 

" - ~ - - - . _ ' - . _ -  __-: . . . .  : -  D 

(a) 

,3H-B 

50 or morel 

50 or mor~ 
i ' ' 

¢ 1o-3o 

. " ' ' '  

-:-.::-- 

(c) 

(b) 
B - 

Fig. 11.17 Weirs: (a) triangular; (b) rectangular; (c) full width 

6 British Standard BS3680. 



Table 11.1 Flow computation formulae for weirs in British Standard BS 3680 

Kind of weir Triangular we ir  Rectangular weir Full-width weir 

Problems 195 

Discharge 
c o m p u t a t i o n  

formula 

Q -~- 8 C,¢~H5/2 (m 3/s) Q = C~ ~j~bH 3/2 (m 3/s) Q = C~,v/'2-gbH 3/2 (m 3 is) 

io t H = H + 0.00085 2 0.003615 - 0.0030 C = 0.596 + 0.091 HD 

C = .578 + 0.037 + i " H ' ¥ ' 0 ~  H = n + 0.001 

b 4 H 2 

A p p l i c a b l e  

r ange  

H b b 
< 0.4 ~ > 0.3 ~ = 1.0 

H H H 
- -  < 0.2 - -  < 1.0 - -  < 2.5 
B D D 

0 . 0 5 m  < H < 0 . 3 8 m  0 . 0 2 5 m  < H < 0 .80m H > 0.03 

D > 0 . 4 5 m  D > 0 . 3 0 m  b > 0.20 

B > 1 . 0 m  D > 0.10 

1. The velocity of water flowing in a pipe was measured with a Pitot tube, 
and the differential pressure read on a connected mercury manometer  
was 8 cm. Assuming that the velocity coefficient for the Pitot tube is one, 
obtain the flow velocity. Assume that the water temperature is 20°C 
and the specific gravity of mercury s = 13.5. 

2. Air flow was measured with the three-hole Pitot tube shown in 
Fig. 11.18, and it was found that the heights B and C of the water 
manometer  were equal whilst A was 5 cm lower. What  was the air flow 
velocity? Assume that the temperature was 20°C and the air density is 
1.205 k g / m  3. 

Fig. 11.18 

Three-hole 
Pitot tube 

A B C 

5cm  . . . . .  

i . . . . . . .  

Manometer 

3. An orifice of diameter 50cm on a pipe of diameter 100 mm was used to 
measure air flow. The differential pressure read on a connected mercury 
manometer  was 120mm. Assuming that the discharge coefficient 

= 0.62 and the gas expansion coefficient e = 0.98, obtain the mass flow 
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rate. Assume that the pressure and temperature upstream of the orifice 
are 196 kPa and 20°C respectively. 

4. A volume of 3.6 x 10 -3 m 3 of water per second flows from an orifice of 
diameter d = 50mm in the side of the water tank shown in Fig. 11.19. 
The minimum section diameter of the jet flow is d ' =  40 mm. Obtain the 
contraction coefficient Cc, velocity coefficient Cv and discharge coefficient 
C of this orifice. 

Fig. 11.19 

46 cm 

I 

5. A pipe line contains both an orifice and a nozzle. When Re = 1 x 105, 
and with a throttle diameter ratio/3 = 0.6 for both, the flow coefficient 
is 0.65 for the orifice but 1.03 for the nozzle. Explain why. 

6. Explain the principle of a hot-wire flow anemometer. Over what points 
should caution be especially exercised? 

7. Explain the principles and features of the laser Doppler anemometer. 

8. With a vortex-shedding flowmeter, cylinder diameter 2 cm, the shedding 
frequency was measured as 5 Hz. What was the flow velocity? 

9. Obtain the flow formulae for a rectangular weir and a triangular weir. 

10. Assuming a reading error of 2% for both rectangular and triangular 
weirs, what are the resulting percentage flow errors? 



Flow of an ideal fluid 

When the Reynolds number Re is large, since the diffusion of vorticity is 
now small (eqn (6.18)) because the boundary layer is very thin, the over- 
whelming majority of the flow is the main flow. Consequently, although the 
fluid itself is viscous, it can be treated as an ideal fluid subject to Euler's 
equation of motion, so disregarding the viscous term. In other words, the 
applicability of ideal flow is large. 

For an irrotational flow, the velocity potential ~b can be defined so this flow 
is called the potential flow. Originally the definition of potential flow did 
not distinguish between viscous and non-viscous flows. However, now, as 
studied below, potential flow refers to an ideal fluid. 

In the case of two-dimensional flow, a stream function ~, can be defined 
from the continuity equation, establishing a relationship where the Cauchy- 
Riemann equation is satisfied by both ~ and ~,. This fact allows theoretical 
analysis through application of the theory of complex variables so that q~ and 
~k can be obtained. Once q~ or ~, is obtained, velocities u and v in the x and 
y directions respectively can be obtained, and the nature of the flow is 
revealed. 

In the case of three-dimensional flow, the theory of complex variables 
cannot be used. Rather, Laplace's equation A2q~ = 0 for a velocity potential 
~b = 0 is solved. Using this approach the flow around a sphere etc. can be 
determined. 

Here, however, only two-dimensional flows will be considered. 

~itiiiiiit!!!iJiiiii!ii~i ,'~'~,',~i~,'~'iiiiiiiitii ~i~i~iiiii~iiii~i~iiiI~iiii!i~i!i~iiii~iiiii!~ii~i~ii~ii~i!i~ii~iii~i~ii~i~i~iii~i~i!iiiti!~iiiiii~iii~iii!i~i!iiiiiiiiiii~!~!~iiiiiiiiiiiii~iiii!iii~ii~i~!ii!ttiiiiiii!iitiiiiiiii~iiiii~iiiiiii!iiii~iiiii!iiii~iti~ii~i 

Consider the force acting on the small element of fluid in Fig. 12.1. Since 
the fluid is an ideal fluid, no force due to viscosity acts. Therefore, by 
Newton's second law of motion, the sum of all forces acting on the element 
in any direction must balance the inertia force in the same direction. The 
pressure acting on the small element of fluid dx dy is, as shown in Fig. 12.1, 
similar to Fig. 6.3(b). In addition, taking account of the body force and also 
assuming that the sum of these two forces is equal to the inertial force, the 
equation of motion for this case can be obtained. This is the case where the 
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dy, P-~  

p + ~-~y dy 

1 
• ° • o ° 

dx 

,,----- p +-~-xP dx 

Fig. 12.1 Balance of pressures on fluid element 

= - X  

viscous term of eqn (6.12) is omitted. Consequently the following equations 
are obtainable: 

p + u ~ + o  =pX-~ 

P +U-~x+V =PY--~y 
(12.1) 

These are similar equations to eqn (5.4), and are called Euler's equations of 
motion for two-dimensional flow. 

For a steady flow, if the body force term is neglected, then: 

Ou O~y) Op 
p u ~  +, ,  = -~  
( ~ ~) ~P p .~+~ 

(12.2) 

If u and v are known, the pressure is obtainable from eqn (12.1) or eqn 
(12.2). 

Generally speaking, in order to obtain the flow of an ideal fluid, the 
continuity equation (6.2) and the equation of motion (12.1) or eqn (12.2) 
must be solved under the given initial conditions and boundary conditions. In 
the flow fluid, three quantities are to be obtained, namely u, v and p, as 
functions of t and x, y. However, since the acceleration term, i.e. inertial 
term, is non-linear, it is so difficult to obtain them analytically that a solution 
can only be obtained for a particular restricted case. 

~:ii~:~i!:ii! :: i,i,~ =i:: i: ii !~ . . . . . . . . . .  ~ ..... ~ = * = ~ = ~ : : : i = : !  ...... i i : :~=~=~=~==' : : i i=i i=i  = ii~i~i!!~.~!iii i!i i!i i i i i~iii i~ii~i~i:ii i i i i i i i i i i i i i i~!~!~i~i!ii~ii~i~!~iiii i~iii i~i~i~i i i i i i i i i i i i i i i i i i i i i i i i i ! i i i i ! i i i ! i i i i i i ! i i i ! i i  ~ii !i!i!~ iiiiiiiiiii!i ii~iiiiiii i ii !iiii!iii!i! ii!!iCil ii!iii~iiiiii!i!i i!ii!iiiiiiiiil  ~i!!il 

The velocity potential ~b as a function of x and y will be studied. Assume 
that 
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u -- ~ v -- - -  (12.3) 1 
Ox Oy 

F r o m  O u / O y -  82dp/OyOx = 02dp/OxOy = Ov/Ox the following re la t ionship is 
obtained: 

Ou Ov 
- - - - -  = 0  (12.4) 
Oy Ox 

This is the condit ion for i r ro ta t ional  mot ion.  Conversely,  if a flow is 
irrotat ional ,  function ~b as in the following equat ion must  exist for u and v: 

d~ = u dx + v dy (12.5) 

Using eqn (12.3), 

aO oep 
d~b = ~x  dx + ~ y  dy (12.6) 

Consequently,  when the function q~ has been obtained,  velocities u and  v can 
also be obtained by differentiation, and thus the flow pa t te rn  is found.  This 
function ~b is called velocity potential ,  and such a flow is called potent ia l  or 
i r rotat ional  flow. In other words,  the velocity potent ia l  is a funct ion whose 
gradient is equal to the velocity vector.  

Equat ion  (12.6) turns out as follows if expressed in polar  coordinates:  

v~ Or Vo r O0 (12.7) 

For  the potential  flow of an incompressible fluid, subst i tute  eqn (12.3) into 
continuity equations (6.2), and the following rela t ionship is obtained" 

024~ 024~ 0 (12.8) 2 
Ox---f + Oy---y = 

Equat ion  (12.8), called Laplace 's  equat ion,  is thus satisfied by the velocity 
potential  used in this manner  to express the cont inui ty  equat ion.  F r o m  any 
solution which satisfies Laplace 's  equat ion and the par t icu lar  b o u n d a r y  
conditions, the velocity dis t r ibut ion can be determined.  It is par t icular ly  

In general, whenever u, v and w are respectively expressed as OcklOx, OcklOy and OcklOz for vector 
V(x, y and z components are respectively u, v and w), vector V is written as grad ~ or V~b: 

V=grad4~=V~= ~x '3y '  

Equation (12.3) is the case of two-dimensional flow where w = 0, and can be written as grad 4~ 
or V4~. 
2 That is 

[-~x 3dp] Ou Ov Ow div V = div[u, v, w] = div(grad q~) = div V~b = div O~ ig~b , ~ y , ~  = ~ + ~ + ~  

~ +  + ~  
= 3x---y " ~y 3z 2 

02/Ox 2 + 02/Oy 2 + 02/Oz "- is called the Laplace operator (Laplacian), abbreviated to A. Equation 
(12.8) is for a two-dimensional flow where w = 0, expressed as A~b = 0. 
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noteworthy that the pattern of potential flow is determined solely by the 
continuity equation and the momentum equation serves only to determine 
the pressure. 

A line along which ~b has a constant value is called the equipotential line, 
and on this line, since d~b = 0 and the inner product of both vectors of 
velocity and the tangential line is zero, the direction of fluid velocity is at 
right angles to the equipotential line. 

iii ii iiiii iiiiii iiiiiiii ii iii i  iiiiiii i ............. 
For incompressible flow, from the continuity equation (6.2), 

0u 0v 
~xx+~y = 0 (12.9) 

This is eqn (12.4) but with u and v respectively replaced by - v  and u. 
Consequently, corresponding to eqn (12.5), it turns out that there exists a 
function ~ for x and y shown by the following equation: 

d~ = - v d x  + udy (12.10) 

In general, since 

dff = ~ x d X +  dy (12.11) 

u and v are respectively expressed as follows: 

- v  = - -  u = - -  (12.12) 
ax ay 

Consequently, once function ff has been obtained, differentiating it by x and 
y gives velocities v and u, revealing the detail of the fluid motion. ¢ is called 
the stream function. 

Expressing the above equation in polar coordinates gives 

a¢, a¢ 
v, = - -  Vo = (12.13) 

r O0 Or 

In general, for two-dimensional flow, the streamline is as follows, from 
eqn (4.1): 

dx dy 

u v 

o r  

- v d x  + u d y  = 0 (12.14) 

From eqns (12.12) and (12.14), the corresponding d~ = 0, i.e. ~ = constant, 
defines a streamline. The product of the tangents of a streamline and an 
equipotential line at the crossing point of both lines is as follow from eqns 
(12.3) and (12.12): 
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~p ~p+ d~P 

r v dx 

Fig. 12.2 Relationship between flow rate and stream function 

= o')(.~x / <:')yO) x O(-~-x/O.~y~) = - I  

This relationship shows that the streamline intersects normal to the 
equipotential line at the crossing point of the two lines. 

As shown in Fig. 12.2, consider points A and B on two closely 
neighbouring streamlines, ~ and ~ + dO. The volume flow rate dQ flowing in 
unit time and crossing line AB is as follows from the figure: 

dQ = u d y -  v dx  = z - d y  +-z - -dx  = dO 
ay o x  

The volume flow rate Q of fluid flowing between two streamlines ff = ~ 
and ff = if2 is thus given by the following equation: 

Q = dQ = dO - -  0 2  - -  I ~ / 1  (12.15) 
1 

Substituting eqn (12.12) into (4.8) for flow without vorticity, the following 
is obtained, clarifying that the stream function satisfies Laplace's equation: 

02~ ~- °m~ - 0 (12.16) 
oqx---T - ~ y  

~!i!ii!~!~!iiii!i!i!!i!i!!!!!ii!!!!!!!!i!!ii!ii!i!ii~i!~i!iii!!iii!iiii~i~ii~i~iiii!i!+~i~ii~ii}!i!i i iiiiiiiiiiiiiiiiiiiiiiiiiii~iiiiiii~i!iiiiiiiiii i i i ili i! iiiiiii!ii!iiiiiiiiiiii iii!iiii! i! iiii i! iiiiiiiiiiiiiiiiiiiiiiili i i i i i i i i  iiiiiiii!!!!iiiiiiiiiiilf 

+i i i ~ + + j ~ i + ~ + , . + +  +i +i+++ ++ ++++++~+++ +i++ ++ii+i+++++ ++++++ +i++++++++ ++++++ i++ !++++++++++++++ i ++++++ i++ i+++ ++++ if+ ii++++++++ +++ +++ ++ ++ +i 
++•++++++++++++++++++i+•++++•++++++++++++++++++++++++++!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++;•+++++++++++++++:++++++•++++++++++++++++++++++i+++++++++++++++++++•++++++++++++P+++P++++++++ 

For a two-dimensional incompressible potential flow, since the velocity 
potential ~b and stream function ¢ exist, the following equations result from 
eqns (12.3) and (12.12)" 
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04, o~, 04, o~, 
0---~ = -~y Oy = Ox (12.17) 

These equations are called the Cauchy-Riemann equations in the theory of 
complex variables. In this case they express the relationship between the 
velocity potential and stream function. The Cauchy-Riemann equations 
clarify the fact that ~ and ~ both satisfy Laplace's equation. They also clarify 
the fact that a combination of ~b and ff satisfying the Cauchy-Riemann 
conditions expresses a two-dimensional incompressible potential flow. 

Now, consider a regular function 3 w(z) of complex variable z = x + iy and 
express it as follows by dividing it into real and imaginary parts: 

w(z) = ~ + i~ ] 

I z = x + iy = r(cos 0 + i sin 0) = r e  i° 

= ~(x, y) ¢J = ~(x,  y) 
(12.18) 

and tk and ~k above satisfy eqn (12.17) owing to the nature of a regular 
function. Consequently, real part q~(x, y) and imaginary part @(x, y) of the 
regular function w(z) of complex number z can respectively be regarded as 
the velocity potential and the stream function of the two-dimensional 
incompressible potential flow. In other words, there exists an irrotational 
motion whose equipotential line is ~b(x,y)=constant  and streamline 
@(x, y ) =  constant. Such a regular function w(z) is called the complex 
potential. 

From eqn (12.18) 

0w ow 
dw = ~xxdX +-0--~y dy = + i dx + + i dy 

= (u - iv)dx + (v + iu)dy = (u - iv)(dx + i dy) = (u - iv)dz 

Therefore 

dw 
d---i = u -  iv (12.19) 

Consequently, whenever w(z) is differentiated with respect to z, as shown 
in Fig. 12.3, its real part yields velocity u in the x direction, and the negative 
of its imaginary part yields velocity v in the y direction. The actual velocity 
u + iv is called the complex velocity while u - iv in the above equation is the 
conjugate complex velocity. 

3 The function whose differential at any point with respect to z is independent of direction in 
the z plane is called a regular function. A regular function satisfies the Cauchy-Riemann 
equations. 



Fig. 12.3 Complex velocity 
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12.5.1 Basic example 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

Parallel flow 
F o r  t h e  u n i f o r m  f l o w  U s h o w n  in  F i g .  1 2 . 4 ,  f r o m  e q n  ( 1 2 . 3 )  

a4, a4, 
u = - - = U  v = - - = O  

Ox Oy 

T h e r e f o r e  

a~ a~ 
d dp = .~x d X + -~-~ d y = U d x 

ok= Ux 

0 

, ~ = constant 

,, : : : g  
! | ! 

! I , , I, 

. . . . . . .  : ' ~ ' Z - W = constant 
n / 

I i 

I ...... ' ,  : ~ -  
: , , : 
I I I 

I I I I 
i I 

, 
I I n I 
I , ,  I I , I  = X 

Fig. 12.4 Parallel flow 



204 Flow of an ideal fluid 

From eqn (12.12) 

u - - ~ - - U  v ' -  
Oy Ox 

_ m - -  0 

Therefore 

a¢ a~, 
de = T~ d~ + ~ dy = V dy 

g t = U y  

w(z) = ¢ + i~ = U(x + iy) = Uz (12.20) 

The complex potential of parallel flow U in the x direction emerges as 
w ( z )  = uz .  

Furthermore,  if the complex potential is given as w(z) = Uz, the conjugate 
complex velocity is 

dw 
d---~- = U (12.21) 

clarifying again that it expresses a uniform flow in the direction of the x 
axis. 

Source 
As shown in Fig. 12.5, consider a case where fluid discharges from the origin 
(point O) at quantity q per unit time. Putting velocity in the radial direction 
on a circle of radius r to Vr, the discharge q per unit thickness is 

q = 2rcrvr = constant (12.22) 

From eqns (12.7) and (12.22) 

Fig. 12.5 Source 

 - ons t 

, _ , ¢ = constant / ," -, x 
,,' ; " <  \ / /  ~ ', \ 

' ' " " " ~' x 

', ~ "  "-J I ~,-" "-,~ .; 
,. /". /"--I-"% .;~ ,' 
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Also, from eqn (12.7), 

Vr " - ' - ~ "  
Or 

q 

2rcr 

0¢ 
r O0 

Integrating d~b in the above equation gives 

= 0  

~b = ~ l o g r  

Then, from eqns (12.13) and (12.22), 

Therefore 

O~ q 

Vr = r oo = 2rcr V O ~  " - -0  
Or 

(12.23) 

q 
qJ = ~--~n 0 (12.24) 

Consequently, the complex potential is expressed by the following equation: 

(12.25) q (log r + i0) = q log(re i°) = ~ log z 

From eqns (12.23) and (12.24) it is known that the equipotential lines are a 
set of circles centred at the origin while the streamlines are a set of radial lines 
radiating from the origin. Also, it is noted that the flow velocity Vr is inversely 
proportional to the distance r from the origin. 

Whenever q > 0, fluid flows out evenly from the origin towards the 
periphery. Such a point is called a source. Conversely, whenever q < 0, fluid 
is absorbed evenly from the periphery. Such a point is called a sink. Iql is 
called the strength of the source or sink. 

Free vortex 
In Fig. 12.6, fluid rotates around the origin with tangential velocity Vo at 
any given radius r. The circulation F is as follows from eqn (4.9): 

fi= = Vo ds = vor dO = 2rcrvo 
=0 

VO --" 

The velocity potential ~b is 

Therefore 

o~ ~ o~ = o 
rOO=2~r Vr= o- 7 

F 
q~ = ~-~n 0 (12.26) 

It emerges that Vo is inversely proportional to the distance from the centre. 
The stream function ~ is 
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I)o 

Fig. 12.6 Vortex 

Therefore 

a~ r a~ 
V 0 - -  - - ~  - -  t ~  r - - "  ~ - -  0 

Or 2rtr r O0 

F 
= - ~ l o g r  (12.27) 

Consequently, the complex potential is 

F iF iF 
w(z) = 4~ + iqJ = ~nn (0 = i log r) = - ~nn (log r + i0) = - ~ log z (12.28) 

For clockwise circulation, w(z) = (iF/2n). 
From eqns (12.26) and (12.17), it is known that the equipotential lines are 

a group of radial straight lines passing through the origin whilst the flow lines 
are a group of concentric circles centred on the origin. This flow appears in 
Fig. 12.5 with broken lines representing streamlines and solid lines as equi- 
potential lines. The circulation F is positive counterclockwise, and negative 
clockwise. 

This flow consists of rotary motion in concentric circles around the origin 
with the velocity inversely proportional to the distance from the origin. Such 
a flow is called a free vortex while the origin point itself is a point vortex. 
The circulation is also called the strength of the vortex. 

12.5.2 Synthesising of flows 
. . . . . . . . . . . . . . . .  ~ . . . . . . . .  ~ : ~  ~ ~ ~ :~ :~  ~ : : ~ : ~ . . ~ . ~ -  - ~  ~ : ~ - - ~ :  ~ : ~ , :  . =  - . - - ~ - v ~  . . . .  ~ ~ - , , w  ~ . . . .  - - .  ~ i  - ~ - - . ~ - , , , , =  ~ : : ~ :  r ~ : ~  ~ ~ v ~ - : ~ : ~  - -  ,, . ,  . . . . . .  

When there are two regular functions w~(z) and Wz(Z), the function obtained 
as their sum 

w(z) -- wl (z) + w2(z) (12.29) 
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is also a regular function. If w~ and w2 represent the complex potentials of 
two flows, another complex potential is obtained from their sum. By 
combining two two-dimensional incompressible potential flows in such a 
manner, another flow can be obtained. 

Combining a source a n d  a sink 
Assume that, as shown in Fig. 12.7, the source q is at point A (z = - a )  and 
sink - q  is at point B (z = a). 

The complex potential Wl at any point z due to the source whose strength 
is q at point A is 

q log(z + a) (12.30) W l  ~ ~- '~  

The complex potential w2 at any point z due to the sink whose strength is q 
is 

q log(z - a) (12.31) W 2 - -  - -  ~--~ 

Because of the linearity of Laplace's equation the complex potential w of 
the flow which is the combination of these two flows is 

q [ l o g ( z  + a)  - -  l o g ( z  - -  a)]  w = ~-~n 

Now, from Fig. 12.7, since 

z + a = r I e i°1 2 - -  a - - -  r 2  e i °2  

from eqn (12.32) 

- - -  + i ( 0 ,  - 02) w log r2 

(12.32) 

(12.33) 

Therefore 

m r / ,  

+o A o ! 

Z 

2 

_ T - - ~ - - - - -  X 

q B  

Fig. 12.7 Definition of variables for source A and sink B combination 
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~b = ~ log (12.34) 

q (0 02) (12.3 5/ , -  

Assuming ~ = constant from the first equation, equipotential lines are 
obtainable which are Appolonius circles for points A and B (a group of 
circles whose ratios of distances from fixed points A and B are constant). 
Taking ¢ = constant, streamlines are obtainable which are found to be 
another set of circles whose vertical angles are the constant angle (01 - 02) for 
chord AB (Fig. 12.8). 

Consider the case where a--+ 0 in Fig. 12.8, under the condition of 
aq = constant. Then from eqn (12.32), 

( Ia l ( a )  3 q 1 +  a / z~  q + _ 
w = N l o g  l " - a / z ] = - ~  -3 z + 5  -z + " "  =m=__ZrZ Z (12.36) 

A flow given by the complex potential of eqn (12.36) is called a doublet, 
while m = aq /n  is its strength. The concept of a doublet is the extremity of a 
source and a sink of equal strength approaching infinitesimally close to each 
other whilst increasing their strength. 

From eqn (12.36), 

m x -  iy 
w = ~ = m y2 (12.37) x + i y  x 2 + 

1 

' ~ - A I ~ - - - . ~  0 

/._/ 

p : constant 

/ '  N ~ - ' - - - / ' - ,  / ~b: constant 

' | ~ X 

 Bx- ; 
/ \ \ ,, 

",,',/... \ 

Fig. 12.8 Flow due to the combination of source and sink 
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ap = constant 
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%% 

Fig. 12.9 Doublet 

m x ,  

"-  X 2 "l- y2 ( 1 2 . 3 8 )  

m y  
~ = x 2 + y2 (12.39) 

From these equations, as shown in Fig. 12.9, an equipotential line is a circle 
whose centre is on the x axis whilst being tangential to the y axis, and a 
streamline is a circle whose centre is on the y axis whilst being tangential to 
the x axis. 

Flow around a cylinder 
Consider a circle of radius 1"0 centred at the origin in uniform parallel flows. 
In general, by placing a number of sources and sinks in parallel flows, flows 
around variously shaped bodies are obtainable. In this case, however, by 
superimposing parallel flows onto the same doublet shown in Fig. 12.9, flows 
around a circle are obtainable as follows. 

From eqns (12.29) and (12.36) the complex potential when a doublet is in 
uniform flows U is 

m ( m l )  
w(z )  = U z  + -  = U z +  

z -6 
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Now, put m/U = r 2, and 

w z, 

Decompose the above using the relationship z = r(cos 0 + i sin 0), and 

w ( z ) = U ( r + r 2 ) r  cosO+iU(r -~)  sinO 

~ b = U  r + - -  cos0 
t 

~ = U(r - ~ )  sin0 (12.42) 

Also, the conjugate complex velocity is 

dw Ur~ 
d--~ = U -  z-- T- (12.43) 

with stagnation points at z = =kr0. The streamline passing the stagnation 
point ~ = 0 is given by the following equation: 

r - - -  sin0 = 0 
r 

This streamline consists of the real axis and the circle of radius r0 centred at 
the origin. By replacing this streamline with a solid surface, the flow around a 
cylinder is obtained as shown in Fig. 12.10. 

The tangential velocity of flow around a cylinder is, from eqn (12.41), 

18~ ( r02 ) vo = - ~ = - U 1 + sin 0 (12.44) 
r a0 

Since r = r0 on the cylinder surface, 

vo = - 2 U  sin 0 

(12.40) 

(12.41) 

Fig. 12.10 Flow around a cylinder 



Y 

V 0 

Example of potential flow 211 

~ X  

Fig. 12.11 Definitions of v o and 0 

When the directions of 0 and vo are arranged as shown in Fig. 12.11, this 
becomes 

vo = 2U sin 0 (12.45) 

The complex potential when there is clockwise circulation F around the 
cylinder is, as follows from eqns (12.28) and (12.40), 

ro 2) ir 
w(z)  = U z + - -  + logz 

z 
(12.46) 

The flow in this case turns out as shown in Fig. 12.12. The tangential 
velocity v~ on the cylinder surface is as follows: 

!i - 

Fig. 12.12 Flow around a cylinder with circulation 
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F 
v~ = 2 U sin 0 q 2nro (12.47) 
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A simple flow can be studied within the limitations of the z plane as in the 
preceding section. For a complex flow, however, there may be some 
established cases of useful mapping of a transformation to another plane. 
For example, by transforming flow around a cylinder etc. through mapping 
functions onto some other planes, such complex flows as the flow around a 
wing, and between the blades of a pump, blower or turbine, can be 
determined. 

Assume that there is the relationship 

= f (z )  (12.48) 

between two complex variables z = x + iy and ( = ~ + iq, and that ( is the 
regular function of z. Consider a mesh composed of x = constant and 
y = constant on the z plane as shown in Fig. 12.13. That mesh transforms to 
another mesh composed of ~ = constant and t / =  constant on the ( plane. In 
other words, the pattern on the z plane is different from the pattern on the 
plane but they are related to each other. 

Further, assume that, as shown in Fig. 12.14, point (0 corresponds to point 
z0 and that the points corresponding to points Zl and z2 both minutely off z0 
are (~ and (2. Then 

21  - -  2 0 - - -  r I C i01 

+~ - ~2 = R,e t~' 
g 2 - -  Z O  ~- -  p2c i02  

~2 -- (o = Reifl2 

From eqn (12.48), 

y 

!!ii~i~!~!~i~!~i~.+..o_~ ...... ~ii~iii!!i!-iiiii i ................ ; 

r !ili!...6.. iii !iiiiiii,"!,,i!ii ili 
, t:':':'5::::::~ ,, 

P,i:i:i:i:i:!:::!:i:l ~i:i:!'!~::i:'!l 

t:i:i:!O:i:i:i3 ::::::::::::::::::::: rb:- ; .  ".'.'-1 g+ : . ' - ' . ' . ' . ' : ' , ' 4  
. . . .  ~ " ' " " '  : : : : : : : : : : : : : : : : ; : : :1 ::~:.:.,..:~:,:::~" ......... ~ ..... ~:::::::.:.:.:~:.:+ 

i!~i!i~il~i~i~ ~iii~!~iiii~ii~iiii! i ,,. ~x  

Fig. 12.13 Corresponding mesh on ( and zplanes 

T , F ~  •. ii!ii!i!i!i ii!ii! i   iiiii 

,,....+ 
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Fig. 12.14 Conformal mapping 
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o r  

lim ( ( ~ -  ~'°~) = d(~zz ) =1im~_~2((2- ( 0 ) z 2  Zo 
Zl-~Z2 SkZl - -  Z O J  z'-zo 

R l  ei/h R2 ei/~2 

rlei°l  m r2el02 

From the above, it turns out that 

r E -  --RE 0 2 - -  0 "~ f12 - -  fll 
rl --Rl 1 

and the minute triangles on the z plane are 

Azozlz2 oc A(0(l(2 (12.49) 

This shows that even though the pattern as a whole on the z plane may be 
very different from that on the ( plane, their minute sections are similar and 
equiangularly mapped. Such a manner of pattern mapping is called 
conformal mapping, and f (z)  is the mapping function. 

Now, consider the mapping function 
a 2 

= z + - -  ( a > 0 )  (12.50) 
z 

Substitute a circle of radius a on the z plane, z = ae i°, into eqn (12.50), 

= a ( e  i° + 1 / e  i°) - -  a ( e  i° + e - i°)  - -  2a cos 0 (12.51) 

At the time when 0 changes from 0 to 2n, ( corresponds in 
2a ~ 0 ~ - 2 a  ~ 0 ~ 2a. In other words, as shown in Fig. 12.15(a), the 
cylinder on the z plane is conformally mapped onto the flat board on the 
plane. The mapping function in eqn (12.50) is renowned, and is called 
Joukowski's transformation. 

If conformal mapping is made onto the ( plane using Joukowski's mapping 
function (12.50) while changing the position and size of a cylinder on the z 
plane, the shape on the ~ plane changes variously as shown in Fig. 12.15. 
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(d) 

X 

2a 

z plane ~" plane 

Fig. 12.15 Mapping of cylinders through Joukowski's transformation (a) flat plate (b) elliptical 
section; (c) symmetrical wing' (d) asymmetrical wing 
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The flow around the asymmetrical wing appearing in Fig. 12.15(d) can be 
obtained by utilising Joukowski 's  conversion. Consider the flow in the case 
where a cylinder of eccentricity z0 and radius r0 is placed in a uniform flow U 
whose circulation strength is F. The complex potential of this flow can be 
obtained by substituting z - z0 for z in eqn (12.46), 

( r°2 ~ + i  F 
w = U (z - z0) + 1og(z - z0) (12.52) 

z - Z o /  

Putting z = Zo + re i°, from w = ~b + iff 

~b - U r + cos0 - ~-~n0 (12.53) 

O = U  r - - -  s i n O -  logr  (12.54) 

On the circle r = r0, ~ = constant, comprising a streamline. According to 
the Kut ta  condition 4 (where the trailing edge must become a stagnation 
point), 

dd~ = 2 Uro sin B - ~ = 0 (12.55)  

Therefore 

F = 4zt Uro sin fl (12.56) 

Y 

l l l i , 

/ _ ~ ,  

0 I,).:-..;:3:.:;:i: 

. = 

i ! ! 

I I t 

77 
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-! i i1: ~ i f ~  
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- - i  ~, : i ! ! I 

I . I ~ r 

. I t i o , , I ! I I 

- =~ i I 1 t f f 
o ! ( i 
, , , , °, I t 

(a) Z plane (b) ~ plane 

F i g .  12.16 Mapping of flow around cylinder onto flow around wing 

4 If the trailing edge was not a stagnation point, the flow would go around the sharp edge at 
infinite velocity from the lower face of the wing towards the upper face. The Kutta condition 
avoids this physical impossibility. 
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Equipotential lines and streamlines produced by substituting values of F satis- 
fying eqn (12.56) into eqns (12.53) and (12.54) are shown in Fig. 12.16(a). 
They can be conformally mapped onto the ( plane by utilising Joukowski's 
conversion by eliminating z from eqns (12.50) and (12.52) to obtain the 
complex potential on the ( plane. The resulting flow pattern around a wing 
can be found as shown in Fig. 12.16(b). In this way, by means of conformal 
mapping of simple flows, such as around a cylinder, flow around complex- 
shaped bodies can be found. 

Since the existence of analytical functions which shift z to the outside 
territory of given wing shapes is generally known, the behaviour of flow 
around these wings can be found from the flow around a cylinder through a 
process similar to the previous one. In addition, there are examples where it 
can be used for computing the contraction coefficient 5 of flow out of an orifice 
in a large vessel and the drag 6 due to the flow behind a fiat plate normal to 
the flow. 

1. Obtain the velocity potential and the flow function for a flow whose 
components of velocity in the x and y directions at a given point in the 
flow are u0 and v0 respectively. 

2. Show the existence of the following relationship between flow function 
and the velocity components v,, vo in a two-dimensional flow: 

I ;  0 - - -  

o¢ o~, 
ar v, = r Oo 

3. What is the flow whose velocity potential is expressed as 4, = F0/2n? 

4. Obtain the velocity potential and the stream function for radial flow 
from the origin at quantity q per unit time. 

5. Assuming that ~ = U ( r -  r2/r)sin 0 expresses the stream function around 
a cylinder of radius r0 in a uniform flow of velocity U, obtain the velocity 
distribution and the pressure distribution on the cylinder surface. 

6. Obtain the pattern of flow whose complex potential is expressed as 
W - - X  2. 

7. What is the flow expressed by the following complex potential? 

iF 
w(z) = 4, + i~, = ~ log z 

5 Lamb, H., Hydrodynamics, (1932), 6th edition, 98, Cambridge University Press. 
6 Kirchhoff, G., Grelles Journal, 70 (1869), 289. 
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8. Obtain the complex potential of a uniform flow at angle ~ to the x axis. 

9. Obtain the streamline y = k and the equipotential line x = c of a flow 
parallel to the x axis on the z plane when mapped onto the ( plane by 
mapping function ( = 1/z. 

10. Obtain the flow in the case where parallel flow w = U z  on the z plane is 
mapped onto the ~ plane by mapping function ~ - z ~/3. 



Flow of a compressible 
fluid 

Fluids have the capacity to change volume and density, i.e. compressibility. 
Gas is much more compressible than liquid. 

Since liquid has low compressibility, when its motion is studied its density 
is normally regarded as unchangeable. However, where an extreme change in 
pressure occurs, such as in water hammer, compressibility is taken into 
account. 

Gas has large compressibility but when its velocity is low compared with 
the sonic velocity the change in density is small and it is then treated as an 
incompressible fluid. 

Nevertheless, when studying the atmosphere with large altitude changes, 
high-velocity gas flow in a pipe with large pressure difference, the drag 
sustained by a body moving with significant velocity in a calm gas, and the 
flow which accompanies combustion, etc., change of density must be taken 
into account. 

As described later, the parameter expressing the degree of compressibility 
is the Mach number M. Supersonic flow, where M > 1, behaves very 
differently from subsonic flow where M < 1. 

In this chapter, thermodynamic characteristics will be explained first, 
followed by the effects of sectional change in isentropic flow, flow through a 
convergent nozzle, and flow through a convergent-divergent nozzle. Then the 
adiabatic but irreversible shock wave will be explained, and finally adiabatic 
pipe flow with friction (Fanno flow) and pipe flow with heat transfer 
(Rayleigh flow). 

iTiii!iiTiiiiiili'~i~i~i~i~ii~i~i~iiiiiiii ~i ~'~'~iiii!ii:i~!!i!!ii!!~iiiiiiii!ii!ii!!!!!!i!:!i~ii~!~ii!!iiiili iiiiiiiii ~iiiii~i~iiiii~ii!i!!!~!!~!iiiii~iiiiiii~ii~i~:!~!~ii~!i!i!i~ii!~i!i!i:i~i~!~i~i :iiii! ~''~iiiiiiiii!iiiii~i~i ~iiiii~iii!iiii!ii!i~i iiii!iiiiii~ii~i~iiiii~ii~i~i:iiii~ii!ii i̧ii~i~i!i~i ~ii!i~ii ~!!!ITii!iiiiiii!i~iiiiiiii~i ~i ~iiii!iiiii!i~iiiiiiii!!ii!!!~i!i~ii!ii~iii~iiTiii~i!i!!ii~i!!~i!iiiiiii!~iii!!!!~i ~ii!i!!i~iiii!!iiiiiiii!iiiii!iii!~iii~i~ii~i~!ii~iii!i~ii!iiiii!~iiii~!~!~i!~! 

Now, with the specific volume v and density p, 

p v -  1 (13.1) 

A gas having the following relationship between absolute temperature T 
and pressure p 

pv  = R T  (13.2) 



Thermodynamical characteristics 219 

o r  

p = R p T  (13.3) 

is called a perfect gas. Equations (13.2) and (13.3) are called its equations of 
state. Here R is the gas constant, and 

R =  Ro 
, t l  

where R0 is the universal gas constant (R0 = 8314 J / (kgK))  and J is the 
molecular weight. For example, for air, assuming ,W = 28.96, the gas 
constant is 

8314 
R = 28.9-~ = 287 J/(kg K) = 287 m2/(s 2 K) 

Then, assuming internal energy and enthalpy per unit mass e and h 
respectively, 

specific heat at constant volume: c~ = de = c~ dT (13.4) 
p 

Specific heat at constant pressure: cp = dh = cp d T (13.5) 
p 

Here 

h = e + pv (13.6) 

According to the first law of thermodynamics, when a quantity of heat dq 
is supplied to a system, the internal energy of the system increases by de, and 
work p do is done by the system. In other words, 

dq = de + p dv (13.7) 

From the equation of state (13.2), 

p d v  + vdp  = R d T  (13.8) 

From eqn (13.6), 

dh = de + p d v  + v d p  (13.9) 

Now, since dp = 0 in the case of constant pressure change, eqns (13.8) 
and (13.9) become 

pdv  = R d T  (13.10) 

dh = de + p d v  = dq (13.11) 

Substitute eqns (13.4), (13.5), (13.10) and (13.11) into (13.7), 

c p d T  = c v d T  + R d T  

which becomes 

cp - c,, = R (13.12) 

Now, cp/c,, = k (k: ratio of specific heats (isentropic index)), so 
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k 
cp = k _--Z]- R (13.13) 

1 
c~ = ~ R  (13.14) 

k - 1  

Whenever heat energy dq is supplied to a substance of absolute 
temperature T, the change in entropy ds of the substance is defined by the 
following equation: 

ds = d q / T  (13.15) 

As is clear from this equation, if a substance is heated the entropy 
increases, while if it is cooled the entropy decreases. Also, the higher the gas 
temperature, the greater the added quantity of heat for the small entropy 
increase. 

Rewrite eqn (13.15) using eqns (13.1), (13.2), (13.12) and (13.13), and the 
following equation is obtained: 1 

dq 
~- = c~ d(log pv k) (13.16) 

When changing from state (p~, v~) to state (P2,/32), if reversible, the change 
in entropy is as follows from eqns (13.15) and (13.16): 

s2 - Sl = cv Iog~o-~l k (13.17) 

In addition, the relationships of eqns (13.18)-(13.20) are also obtained. 2 

~From 

Therefore 

pv R T  dp dv d T  
p v T 

dq dT p dT dv dp dv ( ~  ~ )  
- ~ - = c v - ~ +  d v = c,, - -~  + R - -  = " p + Cv - -  = + k 

2 Equations (13.18), (13.19) and (13.20) are respectively induced from the following equations: 

dq dT dp dT dp 
ds = - - ~  = c,,---~--- R ~  = --f- - ( k - l )c~.~p 

dq d T  dv d T  dv d T  dp 
ds T -7 ~ W p = = c,.--f- + R = (c,. - R)-~- + R- -  = kc,, - (k - l)c,, 

dq dp dv dp dp dp kc,. dp 
ds = -~- = C , . p +  q , - -  = p - cp P = c,. P - P 
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s2 - sl = c~ log ~ \ ~ ]  

s 2 - s ~ = c ~ l o g  T2 k Pl (13.19) 

(13. o> 

for the reversible adiabatic (isentropic) change, ds = 0. Putting the pro- 
portional constant equal to c, eqn (13.17) gives (13.21), or eqn (13.22) from 
(13.20). That is, 

pv k = c (13.21) 

p = cp k (13.22) 

Equations (13.18) and (13.19) give the following equation: 

T = cp k-1 = cp (k-l)/k (13.23) 

When a quantity of heat AQ transfers from a high-temperature gas at T~ 
to a low-temperature gas at T,, the changes in entropy of the respective gases 
are -AQ/711  and A Q / T 2 .  Also, the value of their sum is never negative. 3 Using 
entropy, the second law of thermodynamics could be expressed as 'Although 
the grand total of entropies in a closed system does not change if a reversible 
change develops therein, it increases if any irreversible change develops.' This 
is expressed by the following equation: 

ds > 0 (13.24) 

Consequently, it can also be said that 'entropy in nature increases'. 

iiii Jiiiii!iiii  i!i ii !iiiii iiiiii il i iii! i   ii!ii ii  i 
It is well known that when a minute disturbance develops in a gas, the 
resulting change in pressure propagates in all directions as a compression 
wave (longitudinal wave, pressure wave), which we feel as a sound. Its 
propagation velocity is called the sonic velocity. 

Here, for the sake of simplicity, assume a plane wave in a stationary fluid 
in a tube of uniform cross-sectional area A as shown in Fig. 13.1. Assume 
that, due to a disturbance, the velocity, pressure and density increase by u, dp 
and dp respectively. Between the wavefront which has advanced at sonic 
velocity a and the starting plane is a section of length I where the pressure has 
increased. Since the wave travel time, during which the pressure increases in 
this section, is t = l /a ,  the mass in this section increases by A l  d p / t  = A a  d p  

3 In a reversible change where an ideal case is assumed, the heat shifts between gases of equal 
temperature. Therefore, ds = 0. 
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u 

p + d p  

m 

Fig. 13.1 Propagation of pressure wave 

per unit time. In order to supplement it, gas of mass Au(p  + dp)=  Aup flows 
in through the left plane. In other words, the continuity equation in this case 
is 

o r  

Aa dp = Aup 

a dp = up (13.25) 

The fluid velocity in this section changes from 0 to u in time t. In other words, 
the velocity can be regarded as having uniform acceleration u/ t  = ua/l. 
Taking its mass as Alp and neglecting dp in comparison with p, the equation 
of motion is 

o r  

u a  

Alp---i- = A dp 

pau = d p  (13.26) 

Eliminate u in eqns (13.25) and (13.26), and 

a = v /dp/dp  (13.27) 

is obtained. 
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Since a sudden change in pressure is regarded as adiabatic, the following 
equation is obtained from eqns (13.3) and (13.23): 4 

a - ~/kR T (13.28) 

In other words, the sonic velocity is proportional to the square root of 
absolute temperature. For  example, for k = 1.4 and R = 287 m 2 / (s 2 K), 

a = 20VET (a = 340 m/s  at 16°C (289 K)) (13.29) 

Next, if the bulk modulus of fluid is K, from eqns (2.13) and (2.15), 

dp = - K  dv K dp 
v p 

and 

dp K 

dp p 

Therefore, eqn (13.27) can also be expressed as follows: 

a = v /K/p  (13.30) 

The ratio of flow velocity u to sonic velocity a, i.e. M = u/a, is called Mach 
number (see Section 10.4.1). Now, consider a body placed in a uniform flow 
of velocity u. At the stagnation point, the pressure increases by Ap = pU2/2 
in approximation of eqn (9.1). This increased pressure brings about an 
increased density Ap = Ap/a 2 from eqn (13.27). Consequently, 

o o 
(13.31) 

In other words, the Math  number is a non-dimensional number expressing 
the compressive effect on the fluid. From this equation, the Mach number M 
corresponding to a density change of 5% is approximately 0.3. For this 
reason steady flow can be treated as incompressible flow up to around Mach 
number 0.3. 

Now, consider the propagation of a sonic wave. This minute change in 
pressure, like a sound, propagates at sonic velocity a from the sonic source in all 
directions as shown in Fig. 13.2(a). A succession of sonic waves is produced 
cyclically from a sonic source placed in a parallel flow of velocity u. When u is 
smaller than a, as shown in Fig. 13.2(b), i.e. if M < 1, the wavefronts propagate 
at velocity a -  u upstream but at velocity a + u downstream. Consequently, 
the interval between the wavefronts is dense upstream while being sparse 

4 p = cp k, d p / d p  = ckp  k-l = k p / p  = k R T .  
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Mach cone 

(c) (d) 

Fig. 13.2 Mach number and propagation range of a sonic wave: (a) calm; (b) subsonic (M < 1); (c) 
sonic (M = 1); (d) supersonic (M > 1) 

downstream. When the upstream wavefronts therefore develop a higher 
frequency tone than those downstream this produces the Doppler  effect. 

When u = a, i.e. M = 1, the propagat ion velocity is just  zero with the 
sound propagat ing downstream only. The wavefront is now as shown in Fig. 
13.2(c), producing a Mach wave normal  to the flow direction. 

When u > a, i.e. M > 1, the wavefronts are quite unable to propagate  
upstream as in Fig. 13.2(d), but flow downstream one after another.  The 
envelope of these wavefronts forms a Mach cone. The propagat ion of sound 
is limited to the inside of the cone only. If  the included angle of this Mach  
cone is 2~, then '  

sin ~ = a/u = 1 /M (13.32) 

is called the Mach  angle. 

For  a constant  mass flow m of fluid density p flowing at velocity u through 
section area A, the continuity equation is 

~ Actually, the three-dimensional Mach line forms a cone, and the Mach angle is equal to its 
semi-angle. 
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m = puA - constant 

or by logarithmic differentiation 

dp du dA 
+ -  + = 0 p u -A- 

Euler's equation of motion in the steady state along a streamline is 

ldp  d ( ~  ) 
p d---~ q- ~ss u 2 = 0  

(13.33) 

(13.34) 

o r  

J dp 1 U2 --p- + ~- - constant 

Assuming adiabatic conditions from p = cp k, 

7 - -  c k p  k-2 do = k -  1 p 

Substituting into eqn (13.35), 

k p 
k - l p  

o r  

~ -  + constant 

(13.35) 

1 u2 
~ -  + ~ = constant (13.36) 

k 1 u2 
k--Z-- i- R T + ~ = constant (13.37) 

Equations (13.36) and (13.37) correspond to Bernoulli's equation for an 
incompressible fluid. 

If fluid discharges from a very large vessel, u = uo ~ 0 (using subscript 0 
for the state variables in the vessel), eqn (13.37) gives 

1 k k RT  "JI- U 2 - - ~ R T o  
k ~  2 - k -  1 

o r  

1 k -  l u  2 k -  1M2 
_--T° _ 1 + ---- 1 + (13.38) 
T RT k 2 2 

l k - l u  2 
In this equation, To, T and R k 2 are respectively called the total tem- 

perature, the static temperature and the dynamic temperature. 
From eqns (13.23) and (13.38), 

(_~) k/Ck-~)= ( k -12 ) k/(k-~) PO= 1 + .... M 2 
P 

(13.39) 

This is applicable to a body placed in the flow, e.g. between the stagnation 
point of a Pitot tube and the main flow. 

Correction to a Pitot tube (see Section 11.1. I) 
Putting P~o as the pressure at a point not affected by a body and making a 
binomial expansion of eqn (13.39), then (in the case where M < 1) 
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Table 13.1 Pitot tube correction 

M 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1 (Po - P~)/  ~ P u2 -- C 
Relative error of 
u = (~c~_ 1) x 100% 

1.000 1.003 1.010 1.023 1.041 1.064 1.093 1.129 1.170 
0 0.15 0.50 1.14 2 .03  3 .15 4.55 6 .25  8.17 

k kM4 k(2 - k) ) 
P0 = Poo 1 -+-~M 2 -+-~ + 4-- - - - -~M 6 + A 

1 ( 1 2 - k  ) 
= P ~ + 2  pu~ 1 + 4  M ~ +  24 M a + A  

(13.40) 6 

1 For an incompressible fluid, Po = Poo + ~ P u2. Consequently, for the case when 
the compressibility of fluid is taken into account, the correction appearing 
in Table 13.1 is necessary. 

From Table 13.1, it is found that, when M = 0.7, the true flow velocity is 
approximately 6% less than if the fluid was considered to be incompressible. 

13.5.1 Flow in a pipe (Effect of sectional change) 
- : -  . . . . . .  _ .  - . . . . .  , . . . . . .  - , , , ,  , . ,  - . ,  , , , , . , . -  . . . . . . . . . .  ~ -  . . . . . . . . . . . . . .  = ~ = - - r - 7 ,  , , , , . ,  - - - , , , . , ,  

Consider the flow in a pipe with a gradual sectional change, as shown in 
Fig. 13.3, having its properties constant across any section. For the fluid at 
sections 1 and 2 in Fig. 13.3, 

continuity equation: 

equation of momentum conservation: 

isentropic relationship: 

sonic velocity: 

dp du dA 
- - - ~ - - -  + = 0 (13.41) p u --J- 

- dp A = ( A p u ) d u  (13.42) 

p = cp k (13.43) 

a2 = dp 
dp (13.44) 

From eqns (13.41 ), (13.42) and (13.44), 

du 
- a 2 d p  = p u d u  = pu  2 h  

u 

M 2  du dp du d A  

u p u A 

U 2 k u  2 

pookM 2 = p~k-~ = p~ kRT P ~  U 2 - - . . - ~  ~ p u  2 
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Fig. 13.3 Flow in pipe with gentle sectional change 
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Therefore 

(M 2 -  1)du dA 
u A 

(13.45) 

or 

Also, 

Therefore, 

du 1 u 
dA M 2 -  1A 

(13.46) 

dp _ _ M  2 du 
P -- -~- (13.47) 

dp / du M2 (13.48) p / Y  = 

From eqn (13.46), when M < 1, du/dA < 0, i.e. the flow velocity decreases 
with increased sectional area, but when M > 1, - d p / p  > du/u, i.e. for 
supersonic flow the density decreases at a faster rate than the velocity 
increases. Consequently, for mass continuity, the surprising fact emerges that 
in order to increase the flow velocity the section area should increase rather 
than decrease, as for subsonic flow. 

Table 13.2 Subsonic flow and supersonic flow in one-dimensional isentropic flow 

C h a n g i n g  i t e m  

F l o w  s t a t e  

S u b s o n i c  S u p e r s o n i c  

Changing area 
Changing velocity/Mach number 
Changing density / pressure / temperature 

- + - + 

+ - _ + 
- + + - 
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From eqn (13.47), the change in density is in reverse relationship to the 
velocity. Also from eqn (13.23), the pressure and the temperature change in a 
similar manner to the density. The above results are summarised in Table 
13.2. 

13.5.2 Convergent nozzle 
, , ,  , ,  , - - : . : ~ . : :  . . . . . .  : : _ _ _ . : _ _ ~  . ~ : . . . . . . . . . . . .  , . . . . . .  _ .  ~ : : : : _ _ ~  : ~ . _  : . . . . . . . . . .  : :  - . .  : : : : - ~  . . . . . . . . . . . . . . . . . . . . .  

Gas of pressure P0, density P0 and temperature To flows from a large vessel 
through a convergent nozzle into the open air of back pressure Pb 
isentropically at velocity u, as shown in Fig. 13.4. Putting p as the outer plane 
pressure, from eqn (13.36) 

U 2 k p k Po 

2 k -  l p  k -  lpo 

Using eqn (13.23) with the above equation, 

u =  2 k _ l ~  1 \Po/  (13.49) 

Therefore, the flow rate is 

Vessel 

Po 

r0 ~ 
Uo= 0 . . . . ~ P  ~ Pb 

: 
! 

1 
I 
! 

I 
| 

t 

P/P~ Po) P/Po 
1 w.----- - - 3  

, ~ ~ : t  p=pb(pb > 
p*) 

0 528 ------='~---- - 0.528 
• ~-ho~,~ iiow ~- 

0 _ 0 
Position in nozzle 

(a) 

Fig. 13.4 Flow passing through convergent nozzle 

/s 

j l  / 

Mass flow 

(b) 
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m = puA = A 

Writing P/Po = x, then 

(13.50) 

O m _ o  x = p =  (k 2 )k/(k-1) 
0--~- Po + 1 (13.51) 

When P/Po has the value of eqn (13.51), m is maximum. The corresponding 
pressure is called the critical pressure and is written as p*. For air, 

P*/Po = 0.528 (13.52) 

Using the relationship between m and P/Po in eqn (13.50), the maximum 
flow rate occurs when P/Po = 0.528 as shown in Fig 13.4(b). Thereafter, 
however much the pressure Pb downstream is lowered, the pressure there 
cannot propagate towards the nozzle because it is discharging at sonic 
velocity. Therefore, the pressure of the air in the outlet plane remains p*, and 
the mass flow rate does not change. In this state the flow is called choked. 

Substitute eqn (13.51) into (13.49) and use the relationship Po/P~ = p/pk 
to obtain 

= , /k  e = a (13.53) u* 

v p 

In other words, for M = 1, under these conditions u is called the critical 
velocity and is written as u*. At the same time 

Po k + 1 = 0.634 (13.54) 

7"* 2 
=0.833 (13.55) 

To k + l  

The relationships of the above equations (13.52), (13.54) and (13.55) show 
that, at the critical outlet state M = 1, the critical pressure falls to 52.5% of 
the pressure in the vessel, while the critical density and the critical 
temperature respectively decrease by 37% and 17% from those of the vessel. 

13.5.3 Convergent-divergent nozzle 
A convergent--divergent nozzle (also called the de Laval nozzle) is, as shown 
in Fig. 13.5, 7 a convergent nozzle followed by a divergent length. When back 
pressure Pb outside the nozzle is reduced below P0, flow is established. So long 
as the fluid flows out through the throat section without reaching the critical 
pressure the general behaviour is the same as for incompressible fluid. 

When the back pressure decreases further, the pressure at the throat section 

7 Liepmann, H. W. and Roshko, A., Elements of Gasdynamics, (1975), 127, John Wiley, New 
York. 
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Fig. 13.5 Compressive fluid flow passing through divergent nozzle 

reaches the critical pressure and M = 1; thereafter the flow in the divergent 
port is at least initially supersonic. However, unless the back pressure is low 
enough, supersonic velocity cannot be maintained. Instead, a shock wave 
develops, after which the flow becomes subsonic. As the back pressure is 
replaced, the shock moves further away from the diverging length to the exit 
plane and eventually disappears, giving a perfect expansion. 

A real ratio A/A* between the outlet section and the throat giving this 
perfect expansion is called the area ratio, and, using eqns (13.50) and 
(13.51), 

A (2)1" ] 
A-;= k + l  k - 1  1 -  (13.56) 

When air undergoes large and rapid compression (e.g. following an 
explosion, the release of engine gases into an exhaust pipe, or where an 
aircraft or a bullet flies at supersonic velocity) a thin wave of large pressure 
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Shock w a v e  J , / / / ~  

d...: "'" ~ 

Fig. 13.6 Jet plane flying at supersonic velocity 

change is produced as shown in Figs 13.6 and 13.7. Since the state of gas 
changes adiabatically, an increased temperature accompanies this increased 
pressure. As shown in Fig. 13.8(a), the wave face at the rear of the com- 
pression wave, being at a higher temperature, propagates faster than the 
wave face at the front. The rear therefore gradually catches up with the front 
until finally, as shown in Fig. 13.8(b), the wave faces combine into a thin 
wave increasing the pressure discontinuously. Such a pressure discontinuity is 
called a shock wave, which is only associated with an increase, rather than a 
reduction, in pressure in the flow direction. 

Since a shock wave is essentially different from a sound wave because of 
the large change in pressure, the propagation velocity of the shock is larger, 
and the larger the pressure rise, the greater the propagation velocity. 

. . . . : .  

. ~ .  . . ~  

Shock wave 

Fig. 13.7 Cone flying at supersonic velocity (Schlieren method)in air, Mach 3 
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(a) (b) Shock wave 

2- a 2  ' 1 ~  
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~ X  

Fig. 13.8 Propagation of a compression wave 

If a long cylinder is partitioned with Cellophane film or aluminium foil to 
give a pressure difference between the two sections, and then the partition is 
ruptured, a shock wave develops. The shock wave in this case is at right 
angles to the flow, and is called a normal shock wave. The device itself is 
called a shock tube. 

As shown in Fig. 13.9, the states upstream and downstream of the shock 
wave are respectively represented by subscripts 1 and 2. A shock wave Ax is 
so thin, approximately micrometres at thickest, that it is normally regarded 
as having no thickness. 

Now, assuming A~ = A2, the continuity equation is 

P l U l  = R2U2 (13.57) 

the equation of momentum conservation is 

Pl + Pl u2 -- P2 "1- p2 u2 (13.58) 

and the equation of energy conservation is 

Fig. 13.9 Normal shock wave 

. , i i i .2  
M1 a 

I I 
IIA ~ ]  I ~ I 0,2 
,LvJI I ~ ! " " 2  
" - - - - "  I ( ! 

'li A1 I s A~ 
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u~ k Pl U~ k P2 
= I 

2 k -  1 Pl 2 k -  1 P2 

o r  

= k -  1 - 

From eqns (13.57) and (13.58), 

U~ = P 2 - - P l P 2  

,02 --  Pl Pl  

U~ - -  P2 - - P l  P l 

t92 --  Pl 192 

Substituting eqns (13.60) and (13.61 ) into (13.59), 

192 a ---  

Pl 

[(k + 1 ) / ( k -  1)](p2/p~)+ 1 
[(k + 1)/(k - 1)1 + PE/Pl 

Or, using eqn (13.3), 

T2 [(k + 1)/(k - 1)1 + PE/Pl 
T1 [(k + 1)/(k - 1)] + Pl/P2 

(13.59) 

Ul  

U2 

(13.60) 

(13.61) 

(13.62) 

(13.63) 

Equations (13.62) and (13.63), which are called the Rankine-Hugoniot 
equations, show the relationships between the pressure, density and 
temperature ahead of and behind a shock wave. From the change of entropy 
associated with these equations it can be deduced that a shock wave develops 
only when the upstream flow is supersonic. 8 

It has already been explained that when a supersonic flow strikes a 
particle, a Mach line develops. On the other hand, when a supersonic flow 
flows along a plane wall, numerous parallel Mach lines develop as shown in 
Fig. 13.10(a). 

When supersonic flow expands around a curved wall as shown in Fig. 
13.10(b), the Mach waves rotate, forming an expansion 'fan'. This flow is 
called a Prandtl-Meyer expansion. 

In Fig. 13.10(c), a compressive supersonic flow develops where numerous 
Mach lines change their direction, converging and overlapping to develop a 
sharp change of pressure and density, i.e. a shock wave. 

8 F rom eqns (13.57) and (13.58), 

Likewise 

Therefore 

_ 2k P 2 =  1 + (M 2 - l) 
p~ 

2k 
P-Z~= 1 + ( M ~ -  1) 
P2 

2 + (k - 1)M~ 

2 k M ~  - ( k  - 1) 
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Fig. 13.10 Supersonic flow along various wave shapes 
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Figure 13.10(d) shows the ultimate state of a shock wave due to supersonic 
flow passing along this concave wall. Here, 6 is the deflection angle and tr is 
the shock wave angle. 

A shock wave is called a normal shock wave when tr = 90 ° and an oblique 
shock wave in other cases. 

From Fig. 13.11, the following relationships arise between the normal 
component u, and the tangential component ut of the flow velocity through 
an oblique shock wave: 

ul 
r o l l  | 

Pl, Pa, T1 

Oblique shock wave 

L 

P2, P2, T2 

Fig. 13.11 Velocity distribution in front of and behind an oblique shock wave 
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U l n  - -  U 1 sin a / / i t  - - -  U 1 C O S  0" 

u2~ = u2 sin(o - 6)  U2t = u2 cos(or - 6) (13.64) 

From the momentum equation in the tangential direction, since there is no 
pressure gradient, 

U l t  = U2t ( 1 3 . 6 5 )  

From the momentum equation in the normal direction, 

Uin -- U2n = k--L- ]- - (13.66) 

This equation is in the same form as eqn (13.59), and the Rankine- 
Hugoniot equations apply. When combined with eqn (13.64), the following 
relationship is developed between c5 and a: 

cosc~ = ( k +  1 M~ - 1) tancr (13.67) 
2 M~ s i n 2 a -  1 

When the shock angle a = 90 ° and a = sin-l(l /MI),  6 = 0 so the maximum 
value 6m of 6 must lie between these values. 

The shock wave in the case of a body where 6 < 6m (Fig. 13.12(a)) is 
attached to the sharp nose A. In the case of a body where 6 > 6m (Fig. 
13.12(b)), however, the shock wave detaches and stands off from nose A. 

Shock wave 

Shock wave 

Fig. 13.12 Flow pattern and shock wave around body placed in supersonic flow: (a) shock wave 
attached to wedge; (b) detached shock wave 
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Since an actual flow of compressible fluid in pipe lines and similar conduits 
is always affected by the friction between the fixed wall and the fluid, it can 
be adiabatic but not isentropic. Such an adiabatic but irreversible (i.e. non- 
isentropic) flow is called Fanno flow. 

Alternatively, in a system of flow forming a heat exchanger or combustion 
process, friction may be neglected but transfer of heat must be taken into 
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Rayleigh line 
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Entropy s 
Fig. 13.13 Fanno line and Rayleigh line 

M--1 

account. Such a flow without friction through a pipe with heat transmission 
is called Rayleigh flow. 

Figure 13.13 shows a diagram of both of these flows in a pipe with fixed 
section area. The lines appearing there are called the Fanno line and Rayleigh 
line respectively. For both of them, points a or b of maximum entropy 
correspond to the sonic state M = 1. The curve above these points 
corresponds to subsonic velocity and that below to supersonic velocity. 

The states immediately ahead of and behind the normal shock wave are 
expressed by the intersection points 1 and 2 of these two curves. For the flow 
through the shock wave, only the direction of increased entropy, i.e. the 
discontinuous change, 1 ~ 2 is possible. 

i i ! i l i~~i  !! i! i iiiii!ill ........ ........ iiiii ........ ii ......... iiiiiiiii! ii ................... i ilii .................................. i iiii!iii! .................. i! ............ ............. i ........................ ii ! .................................................................................... 
1. When air is regarded as a perfect gas, what is the density in kg/m 3 of 

air at 15°C and 760 mm Hg? 

2. Find the velocity of sound propagating in hydrogen at 16°C. 

3. When the velocity is 30m/s,  pressure 3.5 x 10SPa and temperature 
150°C at a point on a streamline in an isentropic air flow, obtain the 
pressure and temperature at the point on the same streamline of velocity 
100m/s. 

4. Find the temperature, pressure and density at the front edge (stagnation 
point) of a wing of an aircraft flying at 900 km/h  in calm air of pressure 
4.5 x 104 Pa and temperature -26°C.  
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, 

. 

From a Schlieren photograph of a small bullet flying in air at 15°C and 
standard atmospheric pressure, it was noticed that the Mach angle was 
50 ° . Find the velocity of this bullet. 

When a Pitot tube was inserted into an air flow at high velocity, the 
pressure at the stagnation point was 1 x 105 Pa, the static pressure was 
7 x 104pa, and the air temperature was -10°C. Find the velocity of this 
air flow. 

7. Air of gauge pressure 6 x 104 Pa and temperature 20°C is stored in a 
large tank. When this air is released through a convergent nozzle into air 
of 760 mm Hg, find the flow velocity at the nozzle exit. 

8. Air of gauge pressure 1.2 x 105 Pa and temperature 15°C is stored in a 
large tank. When this air is released through a convergent nozzle of exit 
area 3 cm 2 into air of 760 mm Hg, what is the mass flow? 

o 

10. 

11. 

12. 

Find the divergence ratio necessary for perfectly expanding air under 
standard conditions down to 100mmHg absolute pressure through a 
convergent-divergent nozzle. 

The nozzle for propelling a rocket is a convergent-divergent nozzle of 
throat cross-sectional area 500cm 2. Regard the combustion gas as a 
perfect gas of mean molecular weight 25.8 and x = 1.25. In order to 
make the combustion gas of pressure 32 x 10SPa and temperature 
3300 K expand perfectly out from the combustion chamber into air of 
1 x 105 Pa, what should be the cross-sectional area at the nozzle exit? 

When the rocket in Problem 10 flies at an altitude where the pressure is 
2 x 104 Pa, what is the obtainable thrust from the rocket? 

A supersonic flow of Mach 2, pressure 5 x 104pa and temperature 
-15°C develops a normal shock wave. What  is the Mach number, flow 
velocity and pressure behind the wave? 



Unsteady Flow 

From olden times fluid had mostly been utilised mechanically for generating 
motive power, but recently it has been utilised for transmitting or 
automatically controlling power too. High-pressure fluid has to be used in 
these systems for high speed and good response. Consequently the issue of 
unsteady flow has become very important. 

When the viscous frictional resistance is zero, by Newton's laws (Fig. 14.1), 

p O ( g 2  - -  z~)A = - p A i n t  t (14.1) 

O(Zl - z~) + I dv dt = 0  (14.2) 

Moving the datum for height to the balanced state position, then 

O(z2 - z~) = 2Oz 

Also, 

and from above, 

Therefore 

dv dZz 

dt dt 2 

dZz 29 
dt  z = - --[- z (14.3) 

z =  C~ cos v /~ t  + C: s i n ~ t  (14.4) 

Assuming the initial conditions are t = 0  and z = z0, then d z / d t  = 0 ,  
C~ = z0, C2 = 0. Therefore 
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Fig. 14.1 Vibration of liquid column in a U-tube 
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~0 

-- - 0  

z = z0 cos ~ / / t  (14.5) 

This means  tha t  the liquid surface makes  a singular v ibra t ion  of  cycle 
T = 2~/i /29.  

14.1 .2  Laminar  fr ict ional  resistance 

In this case, with the viscous frictional resistance in eqn (14.1), 

ldV 32vvl 
9(z2 - zl) + d t +  D - - T -  = 0 (14.6) 

Subst i tut ing 2z -- (z2 - zi) as above, 

dZz 
dt 2 

dZz dz 
dt 2 t- 2~O~n ~ + 092 z -- 0 

32vdz 
z = 0  

where co. = ~~@ and ~ - 
16v 1 

(14.7) 
D 2 O)n 

The general solution of eqn (14.7) is as follows: 
(a) when ( < 1 

z-e-~'°"'[Clsin(09.V/1-(2t)-k-C2 cos (O)nV/1- (2t)]  

Assume z = z0 and  dz/dt = 0 when t = 0. Then 

(14.8) 
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z = z°e-¢°"' I ~ s i n ( ° g n V / 1 -  C - ( ~ t ) +  cos(oonV/1- ~:t)l 

_ Zo . s i n ( m n ~ i  (2t  A_ q~) 
v/1 '(2 e-~°'~ 

~b--tan_1 (x/1 ~'-(2) 

(14.9) 

(b) when ~ > 1 

z-'z°e-C'°nt[ ~ -1 
z0 = ~ e -"°n' sinh con ~2 1 t + q~ 

v / ¢  ~ - 

o: I 1 

(14.10) 

Equations (14.9) and (14.10) can be plotted using the non-dimensional 
quantities of o~nt, z/zo as shown in Fig. 14.2. With large frictional resistance 
there is no oscillation but as it becomes smaller a damped oscillation 
occurs. 

1.0 

o.s ~'=2 
0.6 
0.4 
0.2 

--0. 2! 

- o .  4 : ~'=0.2 

--0. 61~ 
--0. 8[ 

--1.0 

Fig. 14.2 Motion of liquid column with frictional resistance 

1 2 3 4 6 7 8x9~10~11 12 
~nt 
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In the system shown in Fig. 14.3, a tank (capacity V) is connected to a pipe 
line (diameter D, section area ,4 and length l). If the inlet pressure is suddenly 
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v -- P~ V ,¢ / 
L l ,,, _1 

Fig. 14.3 System comprising pipe line and tank 

changed (from 0 to p~, say), it is desirable to know the response of the outlet 
pressure P2. Assuming a pressure loss Ap due to tube friction, with 
instantaneous flow velocity v the equation of motion is 

dv 
p A l  = - ~  = A(p~ - P2 - -  Ap) (14.11) 

If v is within the range of laminar flow, then 

32/z/ 
Ap  = ---~- v (14.12) 

Taking only the fluid compressibility fl into account since the pipe is a rigid 
body, 

1 A v d t  
dp2 - fl V (14.13) 

Substituting eqns (14.12) and (14.13) into ( 14.11 ) gives 

32v dp2 A 
d2p2 ~ DE d- ( P E - - P l ) : 0  
dt 2 dt  p l fl V 

Now, writing 

~ p A  16v 1 
co~ = l f lV ~ = O 2 co n P2 - -  Pl = P 

then 

d2p ~- 2(co. dp 
d t  2 -~-~ -I- C02np --- 0 (14.14) 

Since eqn (14.14) has the same form as eqn (14.7), the solution also has 
the same form as eqn (14.9) with the response tendency being similar to that 
shown in Fig. 14.2. 
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W h e n  t h e  v a l v e  a t  t h e  e n d  o f  a p i p e  l ine  o f  l e n g t h  l a s  s h o w n  in  F i g .  14 .4  is 
i n s t a n t a n e o u s l y  o p e n e d ,  t h e r e  is a t i m e  l a p s e  b e f o r e  t h e  f l o w  r e a c h e s  s t e a d y  
s t a t e .  W h e n  t h e  v a l v e  f irs t  o p e n s ,  t h e  w h o l e  o f  h e a d  H is u s e d  f o r  a c c e l e r a t i n g  
t h e  f low.  A s  t h e  v e l o c i t y  i n c r e a s e s ,  h o w e v e r ,  t h e  h e a d  u s e d  f o r  a c c e l e r a t i o n  
d e c r e a s e s  o w i n g  t o  t he  f lu id  f r i c t i o n  l o s s  h~ a n d  d i s c h a r g e  e n e r g y  h2. 
C o n s e q u e n t l y ,  t h e  e f f ec t ive  h e a d  a v a i l a b l e  t o  a c c e l e r a t e  t h e  l i q u i d  in  t h e  p i p e  
b e c o m e s  pg(H-  h~ - hE). So t h e  e q u a t i o n  o f  m o t i o n  o f  t h e  l i q u i d  in  t h e  p i p e  
is a s  f o l l o w s ,  p u t t i n g  A as  t h e  s e c t i o n a l  a r e a  o f  t h e  p i p e ,  

p g A ( H -  h~ - hE) = pgAl dv g d t  ( 1 4 . 1 5 )  

g i v i n g  

a n d  

1 V 2 Id 2 l) 2 

hl--2-~-~g=k-~-~g h2 = 2-- ~ 

v 2 I dv  
H - (k + 1 ) ~ g  = g d t  ( 1 4 . 1 6 )  

A s s u m e  t h a t  v e l o c i t y  v b e c o m e s  v0 ( t e r m i n a l  v e l o c i t y )  in  t h e  s t e a d y  s t a t e  
(dv/dt = 0). T h e n  

(k + 1)v~ = 2oh 

k =2gh 1 

S u b s t i t u t i n g  t h e  v a l u e  o f  k a b o v e  i n t o  c q n  ( 1 4 . 1 6 ) ,  

( V~o ) l dv H 1 -  

l v~ 
dt = gH v~ - v 2 dv 

Fig. 14.4 Transient flow in a pipe 
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1.0 

~l~o. 5 

Fig. 14.5 Development of steady flow 

o r  

lvo ($2 + S) t = 2--~log _ (14.17) 

Thus, time t for the flow to become steady is obtainable (Fig. 14.5). 
Now, calculating the time from V / V o - 0  to V/Vo = 0.99, the following 

equation can be obtained: 

lvo (1 .99)  Ivo 
t = :zOno.o~:-:" log\~-27~, ] = 2.646--9h (14.18) 
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The velocity of a pressure wave depends on the bulk modulus K 
(eqn (13.30)). The bulk modulus expresses the relationship between change of 
pressure on a fluid and the corresponding change in its volume. When a small 
volume 1I of fluid in a short length of rigid pipe experiences a pressure wave, 
the resulting reduction in volume dE produces a reduction in length. If the 
pipe is elastic, however, it will experience radial expansion causing an 
increase in volume d V~. This produces a further reduction in the length of 
volume V. Therefore, to the wave, the fluid appears more compressible, i.e. to 
have a lower bulk modulus. A modified bulk modulus K' is thus required 
which incorporates both effects. 

From the definition equation (2.10), 

dp dV1 
= ~ (14.19) 

K V 

where the minus sign was introduced solely for the convenience of having 
positive values of K. Similarly, for positive K', 

dp dV~ -dV~ 
- - -  = (14.20) 

K' V 
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where the negative d V2 indicates that, despite being a volume increase, it 
produces the equivalent effect of a volume reduction dV~. Thus 

1 1 dV2 
K----7 = ~ 4- V d-'--~ (14.21) 

If the elastic modulus (Young's modulus) of a pipe of inside diameter D 
and thickness b is E, the stress increase dtr is 

dD 
d a = E ~  

D 

This hoop stress in the wall balances the internal pressure dp, 

Therefore 

da = ~bdP 

dD D dp 
D 2bE 

Since V = ~D2/4 and dV2 = n D d D / 2  per unit length, 

dV2=2dD DdP 
. . . . . .  - . - -  

V D bE 

Substituting eqn (14.22) into (14.21), then 

1 1 D 

K---; = K + b-E 

(14.22) 

o r  

K 
K' = (14.23) 

1 + ( D / b ) ( K / E )  

The sonic velocity a0 in the fluid is, from eqn (13.30), 

ao = v / K / P  

Therefore, the propagation velocity of the pressure wave in an elastic pipe is 

g J 1 a = = 1 + ( D / b ) ( K / E )  = ao 1 + ( D / b ) ( K / E )  (14.24) 

Since the values of D for steel, cast iron and concrete are respectively 
206, 92.1 and 20.6 GPa, a is in the range 600-1200m/s in an ordinary water 
pipe line. 
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Water flows in a pipe as shown in Fig. 14.6. If the valve at the end of the pipe 
is suddenly closed, the velocity of the fluid will abruptly decrease causing a 
mechanical impulse to the pipe due to a sudden increase in pressure of the 
fluid. Such a phenomenon is called water hammer. This phenomenon poses a 
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- - . - - - . . - -  m 

Fig. 14.6 Water hammer 

a Ap 

B 
l 

very important problem in cases where, for example, a valve is closed to 
reduce the water flow in a hydraulic power station when the load on the 
water wheel is reduced. In general, water hammer is a phenomenon which 
is always possible whenever a valve is closed in a system where liquid is 
flowing. 

14.5.1 Case of instantaneous valve closure 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ - - ~  ~ , , , ~  , , , _ 4  

When the valve at pipe end C in Fig. 14.6 is instantaneously closed, the flow 
velocity v of the fluid in the pipe, and therefore also its momentum, becomes 
zero. Therefore, the pressure increases by dp. Since the following portions 
of fluid are also stopped one after another, dp propagates upstream. The 
propagation velocity of this pressure wave is expressed by eqn (14.24). 

Given that an impulse is equal to the change of momentum, 

dpA-l = p A l v  
a 

o r  

dp = pva (14.25) 

When this pressure wave reaches the pipe inlet, the pressurised pipe begins 
to discharge backwards into the tank at velocity v. The pressure reverts to 
the original tank pressure P0, and the pipe, too, begins to contract to its 
original state. The low pressure and pipe contraction proceed from the tank 
end towards the valve at velocity a with the fluid behind the wave flowing at 
velocity v. In time 21/a from the valve closing, the wave reaches the valve. 
The pressure in the pipe has reverted to the original pressure, with the fluid in 
the pipe flowing at velocity v. Since the valve is closed, however, the velocity 
there must be zero. This requires a flow at velocity - v  to propagate from 
the valve. This outflow causes the pressure to fall by dp. This -dp  propagates 
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21 
a 

z~p 

(a) 

2x  
a 

~p 

[ 
(b) 

[ I 
Fig. 14.7 Change in pressure due to water hammer, (a) at point C and (b) at point B in Fig. 14.6 

upstream at velocity a. At time 31/a, from the valve closing, the liquid in 
the pipe is at rest with a uniform low pressure o f - d p .  Then, once again, the 
fluid flows into the low pressure pipe from the tank at velocity v and pressure 
p. The wave propagates downstream at velocity a. When it reaches the valve, 
the pressure in the pipe has reverted to the original pressure and the velocity 
to its original value. In other words, at time 41/a the pipe reverts to the state 
when the valve was originally closed. The changes in pressure at points C 
and B in Fig. 14.6 are as shown in Fig. 14.7(a) and (b) respectively. The pipe 
wall around the pressurised liquid also expands, so that the waves propagate 
at velocity a as shown in eqn (14.24). 

14.5.2 Valve closure in time tc 
When the valve closing time t¢ is less than time 21/a for the wave round-trip 
of the pipe line, the maximum pressure increase when the valve is closed is 
equal to that in eqn (14.25). 

When the valve closing time t~ is longer than time 21/a, it is called slow 
closing, to which Allievi's equation applies (named after L. Allievi (1856- 
1941), Italian hydraulics scholar). That is, 

1 (n 2 + nv/n2 + 4 ) (14.26) Pmax = 1 + 
p0 

Here, Pmax is the highest pressure generated when the valve is closed, P0 is 
the pressure in the pipe when the valve is open, v is the flow velocity when the 



valve is open, and n = plv/(pot¢). This equation does not account for pipe 
friction and the valve is assumed to be uniformly closed. 

In practice, however, there is pipe friction and valve leakage occurs. To 
obtain such changes in the flow velocity or pressure, either graphical analysis ~ 
or computer analysis (see Section 15.1) using the method of characteristics 
may be used. 
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1. As shown in Fig. 14.8, a liquid column of length 1.225 m in a U-shaped 

pipe is allowed to oscillate freely. Given that at t = 0, z = z0 = 0.4 m and 
dz/dt = 0, obtain 

(a) the velocity of the liquid column when z = 0.2 m, and 

(b) the oscillation cycle time. 

Ignore frictional resistance. 

l 

/ 

Fig. 14.8 

2. Obtain the cycle time for the oscillation of liquid in a U-shaped tube 
whose arms are both oblique (Fig. 14.9). Ignore frictional resistance. 

Fig. 14.9 

Parmakian, J., Waterhammer Analysis, (1963), 2nd edition, Dover, New York. 



248 Unsteady Flow 

3. Oil of viscosity v = 3 x 10 -5 m2/s extends over a 3 m length of a tube of 
diameter 2.5 cm, as shown in Fig. 14.8. Air pressure in one arm of the U- 
tube, which produces 40cm of liquid column difference, is suddenly 
released causing the liquid column to oscillate. What is the maximum 
velocity of the liquid column if laminar frictional resistance occurs? 

4. As shown in Fig. 14.10, a pipe line of diameter 2 m and length 400m is 
connected to a tank of head 18 m. Find the time from the sudden opening 
of the valve for the exit velocity to reach 90% of the final velocity. Use a 
friction coefficient for the pipe of 0.03. 

H 

i . , , | 
~d 

_1 

Fig. 14.10 

5. Find the velocity of a pressure wave propagating in a water-filled steel 
pipe of inside diameter 2 cm and wall thickness 1 cm, if the bulk modulus 
K = 2.1 x 109pa, density p = 1000kg/m 3 and Young's modulus for steel 
E = 2.1 x 1011Pa. 

6. Water flows at a velocity of 3 m/s  in the steel pipe in Problem 5, of length 
1000m. Obtain the increase in pressure when the valve is shut 
instantaneously. 

7. The steady-state pressure of water flowing in the pipe line in Problem 6, 
at a velocity of 3 m/s,  is 5 x 10SPa. What is the maximum pressure 
reached when the valve is shut in 5 seconds? 
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Computational fluid 
dynamics 

For the flow of an incompressible fluid, if the Navier-Stokes equations of 
motion and the continuity equation are solved simultaneously under given 
boundary conditions, an exact solution should be obtained. However, since 
the Navier-Stokes equations are non-linear, it is difficult to solve them 
analytically. 

Nevertheless, approximate solutions are obtainable, e.g. by omitting the 
inertia terms for a flow whose Re is small, such as slow flow around a sphere 
or the flow of an oil film in a sliding bearing, or alternatively by neglecting 
the viscosity term for a flow whose Re is large, such as a fast free-stream flow 
around a wing. But for intermediate Re, the equations cannot be simplified 
because the inertia term is roughly as large as the viscosity term. 
Consequently there is no other way than to obtain the approximate solution 
numerically. 

For a compressible fluid, it is further necessary to solve the equation of 
state and the energy equation simultaneously with respect to the thermodyna- 
mical properties. Thus, multi-dimensional shock wave problems can only be 
solved by relying upon numerical solution methods. 

Of late, with the progress of computers, it has become popular to solve 
flow problems numerically. By such means it is now possible to follow a 
kaleidoscopic change of flow. 

This field of engineering is referred to as numerical fluid mechanics or 
computational fluid dynamics. It can be roughly classified into four 
approaches: the finite difference method, the finite volume method, the finite 
element method and the boundary element method. 

15.1.1 Finite difference indication 
One of the methods used to discretise the equations of flow for computational 
solution is the finite difference method. 

The fundamental method for indicating a partial differential coefficient in 
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Ax 

j + l  

J 

. . . . . . . . . .  j - 1  

i-1 l i+1  

, . . . . . . .  ~ . L  - - X '  

Fig. 15.1 Finite difference method 

finite difference form is through the Taylor series expansion of functions of 
several independent variables. Assume a rectangular mesh, for example. 
Subscripts (i, j )  are to indicate (x, y) respectively as shown in Fig. 15.1. The 
mesh intervals in the i and j directions are Ax and Ay respectively, while f is a 
functional symbol. Space points (i,j) mean (xi = Xo + iAx, y~ = Yo +jAy). 

The forward, backward and central differences of the first-order differential 
coefficient Of/Ox can be induced in the manner stated below. Provided that 
function f is continuous, permitting Taylor expansion of f~+t and f~_~, then 
considering the x direction alone, 

~f l ~ f  103/ 
f,+l =.f +Vxx Ax ,Ax + 

Of] l O2f l 103f 
f i-1 = f i -- -'~X , A X  "2f" ~ l iAx2 -- -'6 ~X3 

Ax 3 + . . .  (15.1) 
i 

Ax 3 + . . .  (15.2) 
i 

Solving eqn (15.1) for Of/Oxli, 

/gx 
=f'+'  - f' + O(6x)  (15.3) 

i Ax 

Here, O(Ax) means the combination of terms of order Ax or less. Since this 
finite difference approximation, omitting O(Ax), is approximated by the 
functional value f~ of x~ and functional value f~÷l at x~+~ on the side of 
increasing x, it is called the forward difference. This finite difference 
indication has a truncation error of the order Ax and it is said to have first- 
order accuracy. The backward difference is approximated by the functional 
value f~-i on the side of decreasing x and f~ through a similar process, and 

af  [ -'~- -f~---------~ + O(Ax) (15.4) 
~x~ Ax 

Furthermore, solving eqns (15.1) and (15.2) for ~f/~xl~, then by 
subtraction, 
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of 
Ox 

f ,+ ,  -f_,  
2Ax 

+ O(Ax 2) (15.5) 

Since this finite difference representation is approximated by functional 
values f_~ and f+l on either side of xi, it is called the central difference. As 
seen from eqn (15.5), the central difference is said to have second-order 
accuracy. This method of representation is also applicable to the differential 
coefficient for y. 

Next, the central difference for 02f/ax21i is obtainable by adding eqn (15.1) 
to eqn (15.2). In other words, it has second-order accuracy: 

o2f I L ,  - 2f +f_~ 
, = 2Ax2 q- O(Ax 2) (15.6) 

In this way, a partial differential coefficient is expressed in finite difference 
form as an algebraic equation. By substituting these coefficients a partial 
differential equation can be converted to an algebraic equation. 

15.1.2 Incompressible fluid 
__L .  . . ,  ,, , , .  ,, , , ,  . , , .  , , , ,  , , , , , .  , , ,  ' ,  , . , ' ,  ' , " ' ' 

Method using stream function and vorticity 
To begin with, an explanation is given of the case where the flow pattern is 
obtained for the two-dimensional steady laminar flow of an incompressible 
and viscous fluid in a sudden expansion of a pipe as shown in Fig. 15.2. In 
this case, what governs the flow are the Navier-Stokes equations and the 
continuity equation. 

In the steady case, a vorticity transport equation is derived from the 
Navier-Stokes equation and is expressed in non-dimensional form. It 
produces the following equation by putting O~/Ot = 0 in eqn (6.18) and 
additionally substituting the relationship of eqn (12.12), u=O~/Oy, 
v = -aq~/ax: 

,,4/,,,,,,///_,,/Z,,,,,,,,,,/,,/,,,_ 

F - -  I 

i 
Section 1 t. _.~ . . . .  

f 
[ Section 2 
i_ _ 31 _1 
I--" -I 

Fig. 15.2 Flow in a sudden expansion 
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0¢0~ 0¢0~ 1 (02~'+ (15.7) 
ay a~ ax ay = ~ k a~ ~ 

Also, the vorticity definition equation (4.7) can be expressed in terms of the 
stream function ¢ using the relationship in eqn (12.12)" 

ox--- ~ + ~ay 2 = -~ (] 5.8) 

The actual numerical computation is made by approximating the above 
partial differential equations by finite difference equations. In this 
computation, since the flow appearing in Fig. 15.2 is symmetric about the 
centre line, only the lower half of the pipe is the computational area and it is 
covered by a parallel mesh of interval h as shown in Fig. 15.3. Using eqns 
(15.5) and (15.6) for qJ, 

o ~  .~  ~, ,+ , . j - q, ,_ , . j 

Ox 2h 

a__~ ~ q',,J+, - q, , , j_,  
Oy 2h 

o~, ,~ ¢,_~.j - 2¢,.j + ~,,+,.j 
Ox 2 h 2 

Oz¢ ,~ ~'.J-' - 2¢,.i + ~,.j+, 
Oy 2 h 2 

(15.9) 

A similar approximate equation to eqn (15.9) is obtained for (. Substitute 
these into eqns (15.7) and (15.8) and rearrange for (u and ~'0 respectively, 

h i 

h 

i--1 
Fig. 153 Grid mesh and grid points 

~r 

( i , j )  

i + 1  

j + l  

' j 

j _ ]  
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1 
~i,j --- 4 ( ~ i - l , j  + ~i,j-I -~ ~i+ l , j  + ~ i , j + l )  

Re 
+ ] g  [(~,+, , j  - ~,- , , j )(~, , j+l  - ~, , j- ,)  

- -  (I/¢i , j+l - -  ~l,,j-l)(~i+l,j  -- ~ / - 1 , j ) ]  (15.10) 

1 "Or- ~/i,j-I "Jl" ~/i+l,j "a¢" ~/i,j+l "~ h2~i,j) (15.11) 

Equations (15.10) and (15.11) show the relationship between vorticity ~0 (as 
well as stream function if0) at mesh points (L j )  in Fig. 15.3 and the vorticities 
(as well as stream functions) at the surrounding mesh points. If they are 
described for all mesh points, simultaneous equations are obtained. In general, 
because such equations have many unknowns and are also non-linear, they 
are mostly solved by iteration. In other words, substitute into eqns (15.10) and 
(15.11) the given values of the boundary condition on inlet section 1, the centre 
line and the wall face for ~ and ft. Set the initial value for the mesh points inside 
the area to zero. The values of ~ and ff will be new values other than zero when 
their equations are first evaluated. Repeat this procedure using these new 
values and the value obtained by extrapolating the unknown boundary value 
on outlet section 2 from the value at the upstream inner mesh point. When 
satisfactory convergent mesh point values are reached, the computation is 
finished. Figure 15.4 shows the streamlines and the equivorticity lines in the 
pipe obtained through this procedure when Re = 30. 

This iteration method is called the Gauss-Seidel sequential iteration 
method. Usually, however, to obtain a stable solution in an economical 
number of iterations, the successive over-relaxation (SOR) ~ method is used. 

0.0 

-1.5 
-1 .0  

- ' - - - -  .. g=O li I 121 
. 0.3 [ 

0.2""""-" 
• , ~ ~ _ 

" ~  ;.oi ~'° .... ..~=o.o ~ I 

3L 

Fig. 15.4 Equivorticity lines (upper half) and streamlines (lower half) of flow through sudden 
expansion 

1 Forsythe, G. E. and Wasow, W. R., Finite-Difference Methods .for Partial Differential 
Equations, (1960), 144, John Wiley, New York. 
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Furthermore, when the left-hand side of eqn (15.7) is discretised using 
central differences, a stable convergent solution is hard to obtain for flow at 
high Reynolds number. In order to overcome this, the upwind difference 
method 2 is mostly used for this finite difference method. 

This method is based upon the idea that most flow information comes from 
the upstream side. For example, if the central difference is applied to O~/Oy 
of the first term of left side but the upwind difference to O~/Ox, then the 
following equations are obtained. 

and 

0___~_~ .__ ~i,j+l -- ~i,j-1 (15.12) 
Oy 2h 

Ox h 

( i+l , j  - -  (i,j 

(ll¢i,j+l >" ~i , j - l '  when ui > O) 

(¢i,j+l < ~]i,j-l' when u, < O) 

(15.13) 

Equation (15.13) is still only of first order accuracy and so numerical errors 
can accumulate, sometimes strongly enough to invalidate the solution. 

Method using velocity and pressure 
In the preceding section, computation was done by replacing the flow velocity 
and pressure with the stream function and vorticity to decrease the number 
of dependent variables. In the case of complex flow or three-dimensional 
flow, however, it is difficult to establish a stream function on the boundary. 
In such a case, computation is done by treating the flow velocity and pressure 
in eqns (6.2) and (6.12) as dependent variables. Typical of such methods is 
the MAC (Marker And Cell) method, 3 which was developed as a numerical 
solution for a flow with a free surface, but was later improved to be 
applicable to a variety of flows. In the early development of the MAC 
method, markers (which are weightless particles indicating the existence of 
fluid) were placed in the mesh unit called a cell, as shown in Fig. 15.5, and 
such particles were followed. One of the examples is shown in Fig. 15.6, 
where a comparison was made between the photograph when a liquid drop 
fell onto a thin liquid layer and the computational result by the MAC 
method. 4,5 

More recently, however, a technique with the variables of flow velocity 
and pressure separately located (using a staggered mesh) as shown in 
Fig. 15.7 was adapted from the MAC method. Markers are not needed but 
are used only for the presentation of results. 

2 Gosman, A. D. et al., Heat and Mass Transfer in Recirculating Flow, (1969), 55, Academic 
Press, New York. 
3 Harlow, F. H. and Welch, J. E., The Physics of Fluids, 8, (1965), 2182. 
4 Nakayama, Y. and Nakagome, H., (photograph only). 
5 Nichols, B. D., Proc. 2nd Int. Conf. on Numerical Methods in Fluid Dynamics, (1971), 371. 
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Fig. 15.5 Layout of cell and marker particles used for computing flow on inclined free surface 

(9 

® 

® 

® 

C r o w n  6 

Fig. 15.6 Liquid drop falling onto thin liquid layer: (!) start; ~ at 0.0002 s; ~ at 0.0005 s; (~ at 0.0025 s 

6 Fujii,  K. a n d  N a k a g o m e ,  H . ,  Reading Physical Phenomena (1978), 102, Kodansha ,  T o k y o  ( i n  

J a p a n e s e ) .  
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Fig. 15.7 Layout of variables in the MAC method 
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Fig. 15.8 Time-sequenced change of K~rm~n vortex street: (D start; (~ at 0.1 s; ~ at 0.2 s 
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As an example, in Fig. 15.8 comparison is made between the kaleidoscopic 
change of K/trm/m vortices in the flow behind a prism and the computational 
result. 7 

15.1.3 Compressible fluid 

Tirne-marching method 
For a compressible fluid, the equation of a thermodynamic quantity in 
addition to the equations of continuity and momentum must be evaluated. 
One-dimensional isentropic flows etc. are solvable analytically. However, the 
development of a multi-dimensional shock wave, for example, can be solved 
by numerical methods only. For example, in the MacCormack method, 8 the 
differential equation is developed from the conservation form 9 for the mass, 
momentum and energy, neglecting the viscosity. 

Figure 15.9 is the equi-Mach-number diagram of a rocket head flying at 
supersonic velocity calculated by using this method. ~° 

One of the methods used to solve the compressible Navier-Stokes equation 
taking the viscosity into account is the IAF (Implicit Approximate 

/ /  

/ 
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// 
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/ ../ ////~/ / 

! / / L ~ 7 , / / .  / 
I s;s7., ~/, ..... / 

I ...... 

High-speed air flow @ L_ ~ Rocket head 

=¢, 
Fig. 15.9 Equi-Mach number diagram of rocket nose in supersonic flow 

7 Nakayama, Y., Aoki, K. and Oki, M., Proc. 3rd Asian Symp. on Visualization, (1994), 453. 
8 MacCormack, R. W., AIAA Paper, 69-354, (1969). 
9 The conservation form of a one-dimensional inviscid compressible fluid is 

-~+~-~x=0 f =  g =  p + p u  2 
e u(e + p) 

~0 Hirose, N. et al., National Aerospace Lab., Japan. 
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Factorisation) method which is sometimes called the Beam-Warming 
method. 11 In Fig. 15.10 it is applied to a transonic turbine cascade. The 
solution is produced by using this method only for the region near the turbine 
cascade, while using the finite element method for the other region. Results 
matching the test result well are obtained. 12 As an example of a three- 
dimensional case, Plate 513 shows the result obtained by solving the 
compressible Navier-Stokes equation for the density distribution of the flow 
on the rotating fan blades and spinner of a supersonic turbofan engine by the 
IAF method. 

,..~22y//,g~- ~- .... \ ~ ,  

III//IIIIIII/;~ "~ ,, - ~  ~--_~.._ " 

t~t flif. ..... 7- ! I 1 ~  ~.~_~_ 

(a) (b) 

Fig. 15.10 Equidensity diagram of a transonic turbine cascade (a) computation; (b) experiment 
(photograph of Mach-Zehnder interference fringe) 

Method of characteristics 
Figure 15.11 is a test rig for water hammer, which is capable of measuring 
the pressure response waveform by the pressure transducer set just upstream 
of the switching valve. When the switching valve is suddenly closed, pressure 
p increases and propagates along the pipe as a pressure wave. To obtain its 
numerical solution, the wave phenomenon is expressed by a hyperbolic 
equation, and the so-called method of characteristics ~4 is used. 

I 

[Camera t-~ Oscilloscope t-L Amp. ~-~ P°wer I / source I 
t 

Hydropower unit f,~ i 
[ ~ Electromagnetic ~¢ 
' ~ ] D \ s w i t c h i n g  ' 

b Test pipe (20 m) 

' 

! I T  I I ' S e m i c o n d u c t o r  
pressure transducer 

Fig. 15.11 Water hammer testing device 

11 Beam, R. M. and Warming, R. F., AIAA Journal, 16 (1978), 393. 
12 Nakahashi, K. et al., Transactions of the JSME, 54, (1988), 506. 
13 Nozaki, O. et al., Proc. Int. Symp. on Air Breathing Engines, (1993). 
14 Steerer, V. L., Fluid Mechanics, (1975), 6th edition, 654, McGraw-Hill, New York. 
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Now, putting f as the friction coefficient of the pipe and a as the 
propagat ion velocity of the pressure wave, linearly combine the continuity 
equation, which is the one-dimensionalised equations (6.1) and (6.12), with 2 
times the momentum equation, to get 

Pa 2 -ff[ + v + -~x + -~ + (v + 2 ) ~  + vlvl = 0 

Here, assume that 

(15.14) 

a 2 dx dx 
v + ~ = d t  v + 2 = ~  ( 2 = + a )  (15.15) 

and partial differential equation (15.14) is converted to an ordinary 
differential equation. Furthermore, discretise it, and, as shown in Fig. 15.12, 
v and p of point P after time interval At are obtained as the intersection of the 
curves C ÷ (2 = a) and C- (2 = - a )  which are expressed by eqn (15.15) from 
the initial values of velocity v and pressure p at A and C. 

t 
to + 4At = = ~ 0 o i 

"~ t [ ~  ~ - ' ~ ~  
c)-o > -- ~ o to + 4At o o 

[': t0+2At ~ , - 

to +,At 

to X 
1 2 3 A B C N-1  N N + I  

Position 

Fig. 15.12 x-tgrid for solution of single pipe line 
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Fig. 15.13 Pressure response wave in water hammer action 
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Figure 15.13 shows the comparison between the pressure waves thus 
calculated and the actually measured values. ~5 The difference between them 
arises from the fact that the frequency dependent pipe friction is not taken 
into account in eqn (15.14). 

15.1.4 Turbulence 

Turbulence model 
As already stated in Section 6.4, making some assumption or simplification 
for computing the Reynolds stress zt, expressed by eqn (6.39), is called the 
modelling of turbulence. It is mainly classified by the number of transport 
equations for the turbulence quantity used for computation. The equation for 
which zt is given by eqn (6.40) or (6.43) is called a zero-equation model. The 
equation for which the kinetic energy k of turbulence is determined from the 
transport equation, while the length scale l of turbulence is given by an 
algebraic expression, is called a one-equation model. And the method by 
which both k and l are determined from the transport equation is called a 
two-equation model. The k-e model, using the turbulence energy dispersion e 
instead of l, is typical of the two-equation model. As an example, Fig. 15.14 
shows the mesh diagram used to compute the flow in a fluidic device and also 
the computational results of streamline, turbulence energy and turbulence 
dispersion. 16 

(55 97) 

(7~77) (13.77) 

c1~ ~ 

13, 43) , (55 26 

r ~J  ~ 
9.86 .. l 10.73 [55.11 

23.59 

(a) 

om01 

~o ~: 

(b) 

(d) 

Fig. 15.14 Flow in a fluidic device' (a) mesh diagram; (b) streamline; (c) turbulent energy; (d) 
turbulent dispersion. Re - 10 4, Qc/Qs - 0.2 (Qc: control flow rate; Os, supply flow rate) 

15 Izawa, K., MS thesis, Faculty of Engineering, Tokai University, (1976). 
16 Ogino, H. and Nakayama, Y., Bulletin of the JSME, 29 (1986), 1515. 
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LE$ (Large Eddy S imu la t ion )  
In computations based on the time-averaged Navier-Stokes equation using 
turbulence models, time is averaged and the change in turbulence is treated 
as being smooth. However, a method by which computation can follow the 
change in irregularly changing turbulence for clarifying physical phenomena 
etc. is LES. 

LES is a method where the computation is conducted by modelling only 
vortices small enough to stay inside the mesh in terms of local mean (mesh 
mean model), while large vortices are not modelled but computed as they are. 
Figure 15.15(a) shows a solution for the flow between parallel walls. ~7 
Comparing this with Fig. 15.15(b), a visualised photograph of bursts by the 

] ! / ,': 
(a) 

(b) 

Fig. 15.15 Time lines near the wall of a flow between parallel walls: (a) computed; (b) experimental 

Fig. 15.16 Turbulent flow over step (large eddy simulation). Reynolds number based on a channel 
width, Re -- 1.1 x 10 4 

17 Moin, P. and Kim, J., Journal of Fluid Mechanics, 118, (1982), 341. 
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hydrogen bubble method, 18 it is clear that they coincide well with each other. 
In Fig. 15.16, the turbulent flow over a step is computed and its time lines 
are shown graphically. ~9 Plate 2 shows the computational result for turbulent 
flow around a rectangular column. 2° 

Direct simulation 
If the Navier-Stokes equation and continuity equation are computed directly 
as they are, then turbulence can be computed without using a model. This is 
called the direct simulation of turbulence. Even with the number of mesh 
points available in the latest large computer, only the larger turbulent 
vortices can be found. Nevertheless, interesting results on the large structure 
of turbulence have been obtained. 2~ 

(a) t = 5.0 

(b) t= 10.0 

, | 

(c) t = 15.0 

(d) t = 20.0 

Fig. 15.17 Flow behind a step 

18 Kim, H. T. et al., Journal of Fluid Mechanics, 50, (1971), 113. 
~9 Kobayashi, T. et al., Report IIS, University of Tokyo, 33 (1987), 25. 
20 Kobayashi, T., Atlas of Visualization III, Plate 10, (1997), CRC Press, Boca Raton, FL. 
21 Kuwahara, K., Simulation of Turbulence, Journal of Japan Physics Academy, 40, (1985), 877. 
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These methods simulate the movement of a large vortex by making the 
accuracy of the upwind difference scheme, shown in Fig. 1 5.13, of higher 
order and also by making the numerical viscosity 22 smaller. As one such 
example, the computed and visualised flows behind a step are shown in Fig. 
1 5.17. 23 It can be seen that the movement of the vortex behind the step with 
the passage of time is well simulated. 

'~""~"~ .iiiiii..i~! ~ii!i'~!~',~ii~'~ ::~'~,~"~:=:ii i iU"~ii!iiii 'Y: ~':~' 'i% ~iii~'%i',~ii!iiii~,i!iiiii~iii~Ji"ii',ii i ii!ii~,i i',iii~,iii ' , i',iii',ii',i~,i~,i iii~!i!iiiiiiiiiiii',~!~',i ',',~,ii!iiii',', i'~'~ iii~ ~" '!ii!iiil '~i~'~iii'~i',i '~i i:,',i ?"~ii .~ i l i~ i i i i i i l  i~iii! i i ~ , i iiiii',iii ~ , !',i!ii iii i iiiiiiiiiiiiii ~i',ii!iiii i ii i',iiiiiiii!iii~!ii!i~iiiiiiiiiiiiii',i ~ i ~  .i!iiii~iiii~iliiii~!!i~iiiiii!~iii.ili!i!i.iiiiiii!~ii.ii!i. i ili i i ~ii ',',i i~,',ii ii ',i',iiiiii!'~'~iii i',iii ',ii~,i i i'~iiii',iiiiiiiiii iiiiii! i'~',!~,iii!',iiii ~ , ~iii!i!~ i iiiiii~i!ii iliiii ',i',iiiiiiiii~,i!!ii~,i!i',iii ~,i ~,i i!iiii~,i'~iiil i', ',iiiiii ',i ',i'~i !iii!i'~',','~ ',','~ 

The finite volume method is a technique which discretises in a small region 
(the control volume shown in Fig. 15.18) the integration equation of the 
continuity equation and the Navier-Stokes equation written in conservative 
form. 24 The boundary volumes are then obtained using the neighbouring grid 
points. 25 

In the examples which appeared in the preceding sections, the grid was a 
regular structured grid in a line. Of late, however, the boundary-fitted grid 
following an irregular boundary or an unstructured grid has also been used. 
In the finite volume method, these new grids are easier to apply. As examples, 
the application of these techniques to an unstructured grid of triangles, the 
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Boundary 
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Fig. 15.18 Control volume 

22 This means the artificial propagation term produced by the finishing error of the upwind 
differential. 
23 Oki, M. et al., JSME International Journal, 36-4, B (1993), 577. 
24 For example, the Navier-Stokes equation written in preservative form is obtained by 
expressing uou/ax, vau/~y, etc., the inertia term of eqn (16.12), in the form of a(u.u)/Ox, 
a(u.v)/Oy. 
25 Patankar, S. V., Numerical Heat Transfer and Fluid Flow, (1980), Hemisphere, New York. 
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Fig. 15.19 Unstructured grid 26 

flow around a column, the mesh and the computed pressure distribution and 
velocity vector diagram are shown in Fig. 15.19 and Plate 1. 

15.3.1 Division of elements 

The finite difference method is a mathematical method by which the 
differential calculus appearing in the governing equation is directly 
approximated by finite difference equations. In the finite element method, 
however, by using physical approximations to discretise the differential 
equations, simultaneous algebraic equations are developed for the whole 
elements. Thus an approximate solution of the differential equations 
satisfying the boundary conditions is obtained. The flow zone was divided 
into a right-angled mesh as a rule in the finite difference method. In the finite 
element method, however, by dividing the area into proper-sized triangular 
or quadrangular elements as shown in Fig. 15.20, any complex-shaped area 
can be treated. The corners of the triangles or quadrangles are called nodal 
points, at which such variables as x, y, u, v and p are defined. 

v v w 

Fig. 15.20 Two-dimensional elements 

26 Oki, M. et al., Trans. JSME,  65-631, B (1999), 870. 
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15.3.2 Method of weighted residuals 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  . . . . . . . . . . . . .  : : : : : : : :  : - - - - - : = = -  : : . . . . .  . . . . . . . . .  

For discretisation by the finite element method, the variational principle or 
the method of weighted residuals is used. The variational principle is also 
called the minimum energy principle, which uses the principle that the 
potential energy is a minimum in the state of equilibrium. As this method has 
limited application, the method of weighted residuals is widely used. 

Consider the potential flow around a cylinder placed between fiat plates 
as shown in Fig. 15.21. 

in region S containing fluid 020 b = 0 
0x - 7 -  ~ y  

At inlet and on wall surface S~ ~ = ~ (15.16) 

At outlet $2 which is free boundary 0__~ = 0__~$ 
On On 

where the bars above the letters indicate that the applicable values are those 
on the boundary. 

Next, in order to obtain the stream function $, multiply by a given 
function which is ~* = 0 on boundary S1 (and can be any value in other areas 
by eqn (15.16)). Then integrate for the whole region. The following equation 
is obtained: 

(a~~ a~¢ 
Js \~__x + __) if, dA + Js2 (~~ n ay 2 aS ~n/¢* dS - 0  (15.17) 

Here, function $* is called the weighting function. In eqn (15.17), assume 
function $* and its derivative aS~an are approximate values. The first term 
on the left expresses the quantity obtained by multiplying the error of the 
differential equation in the area (here, called the residual) by a given function 
and integrating for the whole area. Likewise, the second term expresses the 
quantity obtained by applying a similar process to the residual on boundary 
$2. This is called a weighted residual expression. When the right solution is 
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Fig. 15.21 Flow around cylinder 
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obtained, this equation applies strictly to the given function @*. The 
approximate solution which distributes the error to satisfy the function 
if* = 0 is called the method of weighted residuals. 

15.3.3 Interpolating function 
In the finite element method, improvement is made by applying an algebraic 
equation derived using the values at nodal points to approximate the 
unknowns in each element. This equation is called an interpolating function. 
Where a weighting function of the same type is chosen it is called the 
Galerkin method. 

It is not easy to obtain an approximate function effective all over sections 
[a, b] for the one-dimensional function ~ = @(x) shown in Fig. 15.22. 
Nevertheless, the section [a, b] can be divided into large and small linear 
elements. For example, divide the subsection where the function changes 
abruptly into (1, 2), and divide the subsection of the gentler change into (3, 4). 
Then for each of them @ can be expressed by a one-dimensional (linear) 
function. 

In the two-dimensional case, as shown in Fig. 15.23, by using triangular 
elements their size can be determined to the extent that the functions are 
expressible by a one-dimensional function of coordinates according to how 
abruptly or gently the functional change is expected. In other words, 

~/ -"  0C 1 q- 0C2X -I" t~3y ( 1 5 . 1 8 )  

Assume the function values at the comers of triangle 1, 2 and 3 to be ff~, ~2 
and ~3 respectively, then 

J 

0 a 12 3 

Fig. 15.22 One-dimensional function 

J 

4 b 
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Fig. 15.23 Triangular element 
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From the above, 

E' XI 
= 1 X 2 

1 X 3 

[1 xl yl 
~2 - -  1 X 2 Y2 

t~ 3 1 X 3 Y3 

Substitute eqn (15.20) into (15.18), 

YlI{ I ] 
Y2 0~2 

Y3 0(3 

(15.19) 

(15.20) 

I~ ---" ~)l~/1 + (])21//2 --[- (])31//3 ---- 2 (~i~li ( 1 5 . 2 1 )  
i=1 

In other words, @ is the interpolating function expressed as the linear 
combination of nodal point values ~;. Hence, in the following form, 

dp~ -- ai + b,x + c~y (i = 1, 2, 3) (15.22) 

it is called the shape function, and at, b~ and cg are determined by the 
coordinates of the nodal points. 

15.3.4 Equation-overlapping elements 
Approximate the unknown function ~ and weighting function ~* respectively 
in eqn (15.17) by interpolating the functional equation (15.21) using the nodal 
point values in the element and the same equation with ~k changed to if*. 
Substituting these functions into the weighted residual equation, which is the 
deformed equation (15.17), gives the quantitative relation for each element. 
By overlapping them, a simulated linear equation covering the whole 
analytical area is developed. By solving these equations, it is possible to 
obtain the values at each nodal point and thus to draw the streamline of 

= constant. 
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15.3.5 Applicable cases 

To compute the flow shown in Fig. 15.21, as this is the symmetrical flow, 
the upper half only of the flow is divided into large and small triangular 
elements as shown in Fig. 15.24. For the finite element method, it is enough, 
unlike the finite difference method, just to divide the flow section finely 
around the cylinder where the velocity changes abruptly. 

The computed streamline and velocity vector are shown in Fig. 15.25. 27 

With the finite element method also, as for the finite difference method, 
analysis of viscous and compressible fluids is possible. More recently, 
computation using a turbulence model has been carried out. As examples for 
a viscous fluid, the computational result for laminar flow around a pipe nest 
is shown in Fig. 15.26, 28 while that for the turbulence velocity distribution of 
the flow in a clean room using the k-e model is shown in Plate 3. 29 

Fig. 15.24 Mesh diagram of flow around cylinder (180 elements and 115 nodes) 

(a) 
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(b) 

Fig. 15.25 Flow around cylinder' (a) streamline; (b)velocity vector 

27 Hayashi, K. et al., Flow Analysis by Personal Computer, (1986), 73, Asakura-Shoten,  Tokyo. 

2s Nakazawa, J., Journal of JSME, 87 (1984), 316. 
29 Ikegawa. M. et al., Proc. Int. Symp. on Supercomputers for Mechanical Engineering, JSME, 
(1988),57. 
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. = - - - .  r-, 

(b) 

(c) 

(d) 

Fig. 15.26 Flow around tube bank' (a) divided element" (b) velocity vector; (c) streamline; 
(d) pressure (Re-- 100) 

Instead of solving the difference equation which governs fluid movement under 
the given boundary conditions, the boundary element method uses an integral 
equation which must satisfy values on the boundary. To derive the integral 
equation, one can use the method using Green's formula and also the method of 
weighted residuals. Green's formula method has long been used for analysing 
potential flow, and more recently has been systematised as the 'panel 
method', used for analysing external flows around aircraft, automobiles, etc. 

Brebbia derived an equation by the more general method of weighted 
residuals with wider applicability, and named it the boundary element 
method. 3° It is often compared with the finite element method, and has been 
used in many fields of application. 

30 Brebbia, C. A., The Boundary Element Method for Engineers, (1978), Pentech Press, London. 
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In this method, the weighting function in the method of weighted residuals 
described in Section 15.3.2 is selected so as to satisfy the Laplace equation 
(15.16) within area S, and converted to an integral equation on boundary $2 
surrounding the area as shown by the following equation: 

Is~. a~, L 0¢* 2 ~ n d S -  25' -~-ndS-O (15.23) 

Next, the boundary is divided into a number of line-segment elements. 
For example, in the case of the flow shown in Fig. 15.24, the mesh division is 
as shown in Fig. 15.27. Then, the value at a given point in the element is 
expressed in terms of the value of the nodal point by the interpolating 
equation (15.21) in the finite element method. The simultaneous linear 
equation for the value at the nodal points can then be solved. 

The computational result for the case of Fig. 15.27 is shown in Fig. 
15.28. 30 Here, a~k/On expresses the flow velocity along the boundary. 

Since the boundary element method only requires division of the 
boundary of the region into the elements, it is popular for cases where the 
velocity or the pressure distribution on a body surface needs to be obtained. 

Fig. 15.27 Mesh diagram by boundary element method of flow around cylinder 
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Fig. 15.28 Solution by boundary element method 

30 Brebbia, C. A., The Boundary Element Method for Engineers, (1978), Pentech Press, London. 
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Fig. 15.29 Mesh diagram for computing flow around full model of transonic plane 

Figure 15.29 is the mesh diagram for the case of flow around a full model 
of a transonic plane using the panel method. The computational result of the 
pressure distribution obtained is shown in Plate 6(a), which coincides very 
well with the result of the wind tunnel experiment as shown in Plate 6(b). 3~ 

Finally, a new kind of finite volume method has been proposed. This 

u ~  a 

© Vortex point 

~x 

Fig. 15.30 Modelling by discrete vortex element 

31 Kaiden, T. et aL, Proc. 6th NAL Symp. on Aircraft Computational Aerodynamics, (1988), 141. 
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Fig. 15.31 Flow pattern around the rectangular column illustrated in Fig. 15.30 

technique replaces the successive distribution of vorticity produced in a flow 
field containing varied viscosity and density with discrete vortex elements. 
Each vortex motion is followed by the Lagrange method and thus analyses 
the unsteady flow field. This technique is called the discrete vortex method. 
As an example, the computational results for an unsteady flow around a 
square column in a uniform flow are shown in Fig. 15.30. 32 

32 Inamoto,  T. et al., Finite Element Flow Analysis, Universi ty of Tokyo Press, (1982), 931. 
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In Fig. 15.3 l(a) and (b) the left and right sides show respectively the flow 
pattern of vortex points and streamlines. In any of these cases, the positive 
vortex (clockwise rotation) develops from point A and the negative vortex 
(counterclockwise rotation) from points B and C. These vortices develop 
behind the rectangular column and the K~trm~m vortex street is formulated in 
the wake. 



Flow visualisation 

The flow of air cannot be seen by the naked eye. The flow of water can be 
seen but not its streamlines or velocity distribution. The consolidated science 
which analyses the behaviour of fluid invisible to the eye like this as image 
information is called 'flow visualisation', and it is extremely useful for 
clarifying fluid phenomena. The saying 'seeing is believing' most aptly 
expresses the importance of flow visualisation. Analytical studies clarifying 
hitherto unclear flows and the developmental studies of flows in and around 
machinery have been much assisted by this science. 

About a century ago, Reynolds made the great discovery of the law of 
similarity by visualisation. Thereafter, Prandtl's concept of the boundary 
layer and his ideas for its control, K~trmfin's clarification of his vortex street, 
Kline's discovery of the bursting phenomenon allied to developing the 
mechanism of turbulence, and other major discoveries concerned with fluid 
phenomena were mostly achieved by flow visualisation. Furthermore, in the 
clarification of turbulent structure, the establishment of mathematical models 
of turbulence, etc., which currently still pose big problems, flow visualisation 
is furnishing extremely important information 

In recent years, with the progress of computers, its use has been enhanced 
by image processing. Also, computer-aided flow visualisation (CAFV), the 
image presentation of numerical computations and measured results, is 
making great advances. 
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The visualisation techniques are classified as shown in Table 16.1 and divided 
roughly into experimental methods and computer-aided visualisation methods. 

16.2.1 Wall-tracing method 
The oil-film method, typical of this technique, has long been used, so the 
technique is well established. There are many applications, and it is used for 



Table 16.1 Classification of visualisation techniques 

Visualisation technique Air Water Explanation 
flow flow 

Experimental visualisation method 
1. Wall tracing method 

Oil-film method. oil-dots method 

Mass transfer method 

Electrolytic corrosion method 

Temperature-sensitive-film method 

Pressure-sensitive-paint method 

Pressure-sensitive-paper method 

2. Tuft methods 
Various tuft methods 

Luminescent mini-tuft method 

0 .  

0 .  

0 

0 .  

0 .  

0 .  

0 .  

0 .  

By attaching oil film or oil dots to the body surface, from the stream pattern 
generated, the state including the direction of the flow can be visualised 
By utilising the dissolution, evaporation or sublimation into the fluid of a film of a 
substance attached to the body, the flow state on the body surface can be visualised 
By utilising the corrosion due to electrolysis, the flow state on the body surface can 
be visualised 
The surface temperature is visualised according to the colour distribution of a liquid 
crystal or such attached to the body 
By utilising the luminescence of a substance applied to the body surface, the 
pressure distribution on the surface can be. visualised 
By utilising the colour density of the pressure-sensitive paper, the pressure 
distribution on the body surface can be visualised 

Method by which the flow direction is visualised from the fight behaviour of 
numerous short pieces of thread (tufts). By the surface tuft method the flow near the 
surface is visualised, while by the depth tuft method the flow at a given point just 
off the surface, and by the tuft grid method the flow on a given section, and by the 
tuft stick method the flow at a given point is visualised, respectively 
Method by which, hardly having any effect on the flow, a single filament of nylon 
soaked in luminescent dye beforehand is photographed under highly luminous 
ultraviolet rays 



Table 16.1 Continued 

Visualisation technique 

3. Injected tracer method 
Injection streak line method'a' 

Injection path line method'b' 
Suspension method"' 

Surface floating tracer methodtd' 

Time line method'e' 

4. Chemical reaction tracer method 
Non-electrolytic reaction method 

Electrolytic colouring method 

5. Electric controlled tracer method 
Hydrogen bubble method 

Spark tracing method 

Smoke wire method 

6. Optical method 
Shadowgraph method 

Air 
flow 

0 

0 
0 

0 

0 

0 

Water 
flow 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 0 

Explanation 

Continuously inject tracers, capture the picture at a certain instant, and thus 
visualise the stream and streak line 
Intermittently inject tracers for some duration. Visualise the path line 
Evenly suspend liquid or solid particles in the fluid in advance. Thus visualise the 
stream- and path lines 
Let the tracer float on the liquid surface and thus visualise the stream- and streak 
lines on the liquid surface 
Inject the tracer vertically into the flow and thus visualise the time line 

By utilising the chemical reaction of a fluid with another specified substance, the 
flow behaviour on the solid surface or the boundary between two fluids can be 
visualised 
By utilising an electrolytically coloured substance as the tracer, the stream line/ 
streak line can be visualised 

Utilises as the tracer hydrogen bubbles developed through electrolysing with a tine 
metal wire as the negative pole. Visualise the stream, streak, path and time lines 
Visualise the time line by means of groups of discharge sparks obtained one after 
another by the high-voltage pulse 
Instantaneously heat an oiled fine metal wire to produce white smoke. Visualise the 
streak and time lines using the white smoke as the tracer 

Let a light emitted from a single point or parallel rays go through a flow region; the 
flow is visualised by means of the dark and grey shadow thus developed according 
to the changes in light density 



Schlieren photograph method 0 

Mach-Zehnder interferometer method 0 

Laser holographic interferometer 
method 

Laser light sheet method 

Speckle method 

wnputer-aided visualisation method 
Visualised image analysing method 
PIV (Particle Imaging Velocimetry) 

0 

0 

0 

0 

0 

0 

0 

0 

Parallel rays are made to deflect through a flow field with a difference in density. 
The deflected rays are cut with a knife edge, and the density gradient is visualised 
according to the difference in brightness thus developed 
Parallel rays are divided into two, one of which is made to go through a flow with a 
difference in density. Quantitative judgement of density and pressure is made from 
the interference fringe developed by combining the two 
A laser light is separated into two beams. Interference, the fringe pattern, from an 
object and another beam (reference beam) between the scattered beam is recorded 
on the hologram film. Illuminating this film by the reference beam, the object can be 
reconstructed. 
Laser rays are made to strike a cylindrical lens or a revolving or vibrating mirror to 
make a sheet-like ray, and the three-dimensional flow is visualised as a two- 
dimensional flow by light scattered from tracer particles 
The flow velocity distribution is obtained by optically processing the speckle pattern 
obtained by instantaneously photoshooting at  short intervals a fluid with suspended 
tracer particles 

PTV (Particle Tracking Velocimetry) is where the flow velocity distribution is obtained by pursuing 
every now and then the tracer particles distributed in a fluid relatively thinly in terms of particle density. 
Correlation method is where the flow velocity distribution is obtained according to the similarity of 
distribution patterns developing at short intervals of the tracer particles distributed relatively 
densely in a fluid in terms of particle density 
LSV (Laser Speckle Velocimetry) is where the flow velocity distribution is obtained by optically 
processing the speckle pattern obtained through instantaneous exposure at short intervals of tracer 
particles suspended in a fluid 
HPIV (Holographic PIV) i s  where three-dimensional velocity information is obtained by recording 
locational information on holograms and reconstructing it 



Table 16.1 Continued 

Visualisation technique Explanation 

Computer tomography 

Remote sensing 

Thermographical method 

8. Numerical data visualisation methods 
Contour manifestation method 
Area colouring manifestation 
method 
Isosurface manifestation method 
Volume rendering method 
Vector manifestation met hod 
Animation method 

9. Measured data visualisation method 

Such integral value data as the density and temperature from whole cylindrical directions of a given 
section are collected, and the density and temperature distribution on the section is obtained 
through computation 
The type and conditions of a body are clarified by capturing the original electromagnetic waves 
emitted from the body by an aircraft or satellite 
By catching the infrared rays radiated from the liquid surface, the surface temperature can be 
measured 

Physically equal values are connected by a contour 
Manifestation is made by painting the areas in colours respectively corresponding to their levels of 
physical quantity 
The values of physically equal value are three-dimensionally manifested in a surface 
The levels of equi-value area manifestation are manifested by changing their degree of transparency 
The size and direction of the flow velocity vector etc. are manifested in arrow marks 
Still images on a display are developed into as-if-moving images by continuous shooting 

Methods are practised such as those which utilise flow velocimeters and pressure gauges where the 
velocity distribution, pressure distribution, etc., obtained are to be manifested in an image by 
processing the data simultaneously, and those which utilise the acoustic intensity method so that the 
size and direction at every point in the observation arena are manifested in terms of vectors 

For injection tracer methods, the names of typical tracers are as follows: 
‘“’smoke (O),  colouring matter (0); ‘b’soap bubble (O),  air bubble (O),  oil drop (a), luminescent particle (0); “’metaldehyde (O), air bubble (O) ,  
cavitation (O), liquid tracer (O), aluminium powder (O), polystyrene particle (0); (d) aluminium powder (O), sawdust (a), foaming polystyrene (0); 
(”smoke (o), colouring matter (0). 
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Fig.16.1 Limiting streamlines of Wells turbine for wave power generator (revolving direction is 
counterclockwise) in water, flow velocity 3.2 m/s, angle of attack 11 ° 

both water and air flow. The flows in the neighbourhood of a body surface, of 
a wall face inside fluid machinery, etc., have been observed. Figure 16.1 shows 
the oil-film pattern on the blade surface of a Wells turbine for a wave power 
generator. ~ From this pattern the nature of the internal flow can be surmised. 

16.2.2 Tuft method 
Although this is an unsophisticated method widely used for fluid experiments 
for some time, it has recently become easier to use and more informative as 
detailed experiments and analyses have been made of the static and dynamic 
tuft characteristics. It is utilised for visualising flows near and around the 
surfaces of aircraft, hulls and automobiles as well as those behind them, the 
internal flows of pumps and blowers, and ventilation flows in rooms. 
Figure 16.2 shows an example of the visualised flow behind an automobile, 2 
while Fig. 16.3 shows that around a superexpress train. 3 Figure 16.4 shows 
an example of the utilisation of extremely fine fluorescent mini-tufts which 
hardly disturb the flow. 4 

16.2.3 Injection tracer method 
• . ~ . ~  - ,  ~ .  _ ~ , ~ . ~ . , , ~ , ~ , : , ~ , , - . , , ~ , y ~ , ~ , ~ , , . , ~ , ~ , ~ , ~ , , ~ , ~ ,  . . . . . . . . .  . ~ . , ~ , . . ~ , ~ , . . . ~ , ~ . , . . ~ , ~ . ~ .  . . . . .  . , ~ .  . . . . .  

For water flow, the colour streak method has widely been used for a long 
time. In the suspension method, aluminium powder or polystyrene particles 

J Tagori, T, et al., Flow Visualization, 4, Suppl. (1984), 51. 
= Tagori, T. et al., Proc. Flow Visualization Symp., (1980), 13. 
3 Japan National Railways. 
4 Saga, T. and Kobayashi, T., Flow Visualization, 5, Suppl. (1985), 87. 
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Fig.16.2 Wake behind an automobile (tuft grid method) in water, flow velocity 1m/s, length 
530 mm (scale 1 8), Re = 5 x 10 s 

Fig.16.3 Flow around a superexpress train (surface tuft method) 

Fig.16.4 Flow around an automobile (fluorescent mini-tuft method) 
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(a) 

(b) 
Fig.16.5 Flow around a double delta wing aircraft in water, angle of attack 15°: (a) colour streak line 
method; (b) suspension method (air bubble method) 

are used, while in the surface floating tracer method, sawdust and aluminium 
power are used. The smoke method is used for air flows. 

There are many examples for visualising the flow around or behind wings, 
hulls, automobiles, buildings and bridge piers, as well as for the internal flow 
of pipe lines, blood vessels and pumps. 

Figure 16.5 is a photograph where the flow around a double delta wing 

Fig.16.6 Flow around an automobile (smoke method) 
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aircraft is visualised by a water flow. 5 It can be seen how the various vortices 
develop. These vortices act to increase the lift necessary for a high-speed 
aircraft to undertake low-speed flight. 

Plate 7 6 and Fig. 16.6 7 visualise the flow around an automobile  by the 
smoke method. The flow pattern is clearly seen. 

Figure 16.7 shows observation, by the floating sawdust method,  of the flow 
in a bent divergent pipe. 8 

Figure 16.8 visualises a K~trm~in vortex street using as the tracer the white 
condensation produced when water is electrolysed with the cylinder as the 
positive pole. 9 

Fig.16.7 Flow in a bent divergent pipe (floating sawdust method)in water, flow velocity 0.4m/s, 
Re -- 2.8 x 104 

Fig.16.8 K~rm~n vortex street behind a cylinder (electrolytic precipitation method)in water, flow 
velocity 10 mm/s, diameter of cylinder 10 mm, Re -- 105 

5 Werle, H., Proc. ISFV, Tokyo (1977), 39. 
6 Flow Visualization Society, Tokyo, Flow Visualization Handbook, (1997), 103. 
7 Hucho, W. H. and Janssen, L. J., Proc. ISFV, Tokyo (1997), 103. 
8 Akashi, K. et al., Syrup. oll Flow Visualization (lst), (1973), 100. 
9 Taneda, S., Fluid Mechanics Learned from Pictures, Asakura Shoten, (1988), 92. 
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16.2.4 Chemical reaction tracer method 

There are various techniques using chemically reactive substances. Since they 
have negligible change in density due to chemical reaction, the settling 
velocity of the tracer is small and thus many of them are suitable for 
visualising low-velocity flow. 

The method has been used for visualising the flow around and behind a flat 
board, wing and hull, the flow inside a pump and boiler, and natural/thermal 
convection. 

Figure 16.9 is an observation of flow using the streaks developed by 
injecting saturated liquid ammonium sulphide through a fine tube onto a 
mixture of white lead and a quick-drying oil which has been applied to the 
surface of a model yacht. ~° 

Fig.16.9 Flow on a model yacht surface (surface film colouring method)in water, flow velocity 
1.0 m/s, length of model 1.5 m, Re = 1.34 x 106, white lead and ammonium sulphide used 

16.2.5 Electrically controlled tracer method 
Included in this method arc three categories: the hydrogen bubble method, 
spark tracing method and smoke wire method. Any one of them is capable of 
providing quantitative measurement. 

By these methods the flow around and the vortex behind a cylinder, flat 
board, sphere, wing, aircraft and hull, the flow in a cylinder, the flow around 
a valve, and the flow in a blower/compressor have been observed. 

Plate 8 is a picture visualising the flow around a cylinder by the hydrogen 
bubble method, ~ while Plate 9 shows the flow around a sphere by the spark 
tracing method, is Figure 16.10 shows the flow around a wing by the same 
method, 13 and Fig. 16.11 shows the flow around an automobile by the smoke 
wire method. ~4 

10 Matsui ,  S., Nishinihon Ryutaigiken Co., Nagasaki, Japan. 
!1 Endo, H. et al., Symp. of Flow Visualization (2nd), (1947), 135. 
12 Nakayama, Y., Flow Visualization, 8 (1988), 14. 
13 Nakayama, Y. et al., Syrup. on Flow Visualization (4th), (1976), 105. 
14 Nakayama, Y., Faculty of Engineering, Tokai University. 
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Fig.16.10 Flow around a wing (spark tracing method) in air, flow velocity 28m/s. angle of attack 
10°, Re = 7.4 x 10 ~ 

Fig.16.11 Flow around an automobile (smoke wire method) 

16.2.6 Optical visualisation method 
This method, whose most significant characteristic is the capability of 
complete visualisation without affecting the flow, is widely used. The 
Schlieren method utilises the change in diffraction rate due to the change in 
density (temperature). The interference method, which uses the fact that the 
number of interference fringes is proportional to the difference in density, is 
mostly applied to air flow. For free surface water flow, the stereophotography 
method is used. The unevenness of a liquid surface is stereophotographed to 
determine the difference in the height of the liquid surface and thus the state 
of flow is known. The moir6 method is also used for water flows. The state of 
the flow is checked by obtaining as light and dark stripes the contours 
indicating the unevenness of the liquid surface. 



Experimental visualisation methods 285 

Fig.16.12 Flow at bottom dead point of vertically vibrating wing (Schlieren method)in air, flow velocity 
5 m/s, chord length 100 mm0 Re = 3 x 104, vibration frequency 90 Hz, single amplitude 4 mm 

Fig.16.13 Flow at air inlet of supersonic aircraft engine (colour Schlieren method), M =  2.0, 
Re-- 1.0 x 107 

A new technique, the laser holographic method, has been developed 
recently. An optical reference path is added to the optical system of the 
shadowgraph method or the Schlieren method. 

Various actual examples of the optical visualisation method are shown in 
Plates 415 and 1016 and Figs 16.12 ~7, 16.1318 and 16.14. ~9 

1~ Hara, N. and Yoshida, T., Proc. of FLUCOME Tokyo '85, Vol. II (1986), 725. 
16 Fujii, K., Journal of Visualization, 15 (1995), 142. 
17 Ohashi, H. and Ishikawa, N., Journal of the ISME, 74 (1975), 1500. 
~8 Asanuma, T. et aL, Report of Aerospace Research Institute of University of Tokyo, 9 
(1973), 499. 
19 Nagayama, T. and Adachi, T., Joint Gas Turbine Congress, Paper No. 36 (1977). 
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Fig.16.14 Equidensity interference fringe photograph of driven blade on low-pressure stage in steam 
turbine (Mach-Zehnder interferometer method)in air, inlet Mach number 0.275, outlet Mach number 
2.123, pitch 20 mm 
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16.3.1 Visualised image analysis 

In this method, a visualised image is put into a still or video camera so that 
its density values are digitised. It is then put into a computer to be processed 
analytically, statistically, in colour distribution and otherwise, and thus is 
made much easier to interpret. Various techniques for this method have been 
developed. Among them, PIV (Particle Imaging Velocimetry) in particular 
has recently been popular. As an example of PTV (Particle Tracking 
Velocimetry), Plate 11 shows the velocity vectors obtained for flow over a 
cylinder by following, from time to time, the spherical plastic tracer particles 
of diameter 0.5 mm suspended in the water. 2° Plate 12 is an example of an 
image treated by a density correlation method. The image was obtained by 
injecting a smoke tracer into the room from the floor under the chair on 
which a man was sitting and natural convection around a human body was 

21 visualised. Figure 16.15 is an example of the hydrogen bubble technique 

20 Boucher, R. F. and Kamala,  M. A., Atlas of Visualization, Vol. 1 (1992), 197. 
21 Kobayashi ,  T. et al., Journal of Visualization, Socie~ of Japan, 17-66 (1997), 204 
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(e) 
Fig.16.15 Kgrmfin vortex street behind a cylinder (hydrogen tube method)" (a) visualised image: (b) 
binarisation' (c) change to fine line; (d) velocity vector; (e) velocity vector at grid point 

where the time line and the streak line are visualised simultaneously. The 
visualised image is caught by a CCD camera, converted to binary codes and 
fine lines, and thus the velocity vector is obtained. 22 

In Plate 4, the flow around a cone flying at supersonic speed is visualised 
by the laser holographic interferometer method, and the density distribution 
on a section is obtained by the computer tomography method. 

16.3.2 Numerical data visualisation method 
. . . . . . . . . . . . .  

_ l  . . . . . . . . . . . . . . . . . . . . .  

In this method, a flow field is numerically analysed by computer, and its 

22 Nakayama, Y. et al., Report of Research Results (5th), Faculty of Engineering, Tokai 
University (1987), 1. 
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enormous computational output is presented in an easy-to-understand figure 
or image by computer graphics techniques. 

The kinds of presentation include: contours, where physically equal values 
are connected by a curve; area colouring, where areas are painted in colours 
respectively corresponding to the physical quantity level of areas; isosurface, 
where physically equal values are three-dimensionally manifested in surfaces; 
volume rendering, where the levels expressed in isosurfaces are manifested 
by changing the degree of transparency; and vectorial, where sizes and 
directions of flow velocity etc. are manifested by arrow marks. Presentation 
can also be as graphs or animation. 

Examples of contour presentation are Fig. 15.4, where streamlines (which 
are the contours of stream function) and contours of vorticity are manifested, 
Fig. 15.10, where contours of density are shown, and Plate 5 where the 
presentation is made three-dimensionally. 

Examples of area eolouring are Plates l(a) and 2, where the pressure 
distribution is shown, and Plate 6(a) where the presentation is three- 
dimensional. And an example of isosurfaee presentation is shown in Plate 
13, 23 and those of the vector presentation in Fig. 15.25(b), Fig. 15.26(b), Plate 
1 (b) and Plate 3. 

16.3.3 Measured data visualisation 

If a flow field is minutely measured with a Pitot tube, hot-wire anemometer, 
laser Doppler velocimeter, pressure gauge, thermometer, etc., such results can 
be processed by computer, and thus the phenomena are visualised as images. 

In Plate 1 4, pressure-sensitive light-emitting diodes are placed transversely. 
The total pressure pattern of a wake of an aircraft wing is then obtained by 
photographing the diode emissions, whose colours change with total 
pressure. 24 Figure 1 6.1 6 shows the measured result of the flow velocity in the 
area behind a model passenger car obtained using a three-dimensional laser 
Doppler velocimeter, presented as a velocity vector diagram. 25 In Fig. 1 6.1 7 
the acoustic power flow from a cello is visualised by the acoustic intensity 
method. The size and direction of the energy flow at each point is obtained 
through a computational process from the cross-vector of the sonic pressure 
signal on a microphone. 26 

23 Miyachi, H., How to Visualize your Data using A VS, (1995), Fig. 5.28, Kubota Co., Tokyo. 
24 Visualization Society of Japan, Fantasy of Flow, (1993), 47, Ohmsha, Tokyo, and IOS .Press, 
Amsterdam. 
25 Visualization Society of Japan, Computer Graphics of Flow, (1996), 124, Asakura Shoten, 
Tokyo. 
26 Tachibana, H. et al., Atlas of Visualization, Vol. 2, (1996), 203. 
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Fig.16.16 Flow behind an automobile with spoiler (laser Doppler velocimeter method) (a) measured 
region (b) mean velocity vector 
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Fig.16,17 Radiating power flow of a cello (acoustic intensity method) 



Answers to problems 

1. kgm/s  2 

2. Viscosity: Pa s, Kinematic viscosity: m2/s 

3. v = 0.001 m 3/kg 

4. 2.06 x 107 Pa 

2 T cos 0 
5. h = ~ , h = l . 4 8 c m  

p g b  

6. 291 Pa 

7. 9.15 x 10 -aN 

8. 1.38N 

9. 1461 m/s 

!!i~ii~i~i~ii~~ ~'~ '~ ~ ' ~ i i ~ ! i i ! i  ~ ~i~ii~i~iiii~ ~i~i~ii~iiiiiii~i~ii~ii ~iii~i~iii~ii!ii!iiiiiiiiiiiiiii!~ i~iiiiiii~iiil i ii~i!ii!iiiiiii!!iiiii~ iiiiii~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil ~i!i iiii!iiiiiiii!iiii~iiiiiiiiiiiii~iiiiiiiiiiiiiiiiiiiiiii!iiii!ii!~!ii~ii!i!i i!i! ilii lii~i i! iii!i ! ~ !i ill !iii~iiiiiiii~!~i~ii~iii~!iiiiiiiii~iiiiiiiiiii!ii~!i~iiii!iiiii~i~iii~iiiiiiiiiiiiiiiiiiii~!iii~ ~iii~iiii!~ !~i  iii! ii~ii 

1. 6 .57x107Pa 

2. (a) p = Po + p g H ,  

(b) p = Po - p g n ,  

(c) p = Po + p ' g H '  - p g H  

3. (a) p~ - P2 = (P' - p ) g H  + p g H , ,  

(b) p, - P2 = (P - p ' ) g H  

4. 50 mm 

5. Total pressure P = 9.56 x 105 N, h~ = 6.62 m 
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6. 2.94 x 10 4 N, 5.87 x 104 

7. 9 .84x103N 

8. Force acting on the unit width: 1.28 x 106 N, Action point located along 
the wall from the water surface: 11.6 m 

9. 7700Nm 

10. Horizontal component Px = 1.65 x 105N, Vertical component Py = 1.35x 
105N, total pressure P = 2.13 x 105N, acting in the direction of 39.3 ° 
from a horizontal line 

11. 976m 3 

12. h = 0.22m, T = 0.55s 

1 v/~gh, r id/s ,  09 l0 cm, speed of rotation when 13. co = - -  - 14rad/s at h ' =  
r0 

the cylinder bottom begins to appear n = 4.23 s -~ = 254 rpm 

1. (a) A flow which does not change as time elapses is called a I steady I 
flow. i Velocity l, I Pressure I and ! density I ° f  flow in a steady flow are 

functions of position only, and most of the flows studied in 

hydrodynamics are steady flows. A flow which changes as time elapses 

is called an [ unsteady i flow. [ Velocity I, I pressure land I density "] of 

flow in an unsteady flow are functions of[ t ime land[posit ion [. Flows 

such as when a valve is I opened 1/[ closed] or the I discharge [ from a 

tank belong to this flow. 

(b) The flow velocity is [.proportional I to the radius for a free vortex flow, 

and is [inverselyl iproportional [ to the radius for a forced vortex 

flow. 

2. F = 0.493 m 2 / s 

3. Re = 6 x 10 a, turbulent flow 

dx dy 
4. ~ = - ~  namely xy  = const 

x y 

5. (a) Rotational flow 
(b) Irrotational flow 
(c) Irrotational flow 



6. W a t e r  v~ = 23.3cm/s ,  air v,. = 3 .5m/s  

7. F =  82m2/s  
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~,i ~,i il iiiii:, iili i',ii iiii ~ '~ '~ '~ '~iii il ili', iiiiiii! iii~,::,',' :::~::i! ,,,~ ~i'~ i!!iiiii',iiii'~!ii!i '~ii ',i ',~, ','~i! !i ','~ii '~ "~::~', i i',i~i !i ~,i i iii ',i i!! !i', i i', ii iiiii'~'~ !ii~,~,i',~ ' , ',', iiii~,i i i "~"~!i i', i~,iii ' , !~,iiiii', ':i i','~i! il ',', ',! ii'~"ii"i"i~'i !i ',ii~" '~" ': ': ::ili !i i', iii ~ , ~', ~,', ',i~,: , i~,i',ii~,i '~i ',~ i', ','~ '~'~ !i iiii', i! i~ ili! ', ~, ', ', ', i l ' , ',ii~/,i i'~,i ',',',i ~ , i iii i iii iii', i ~ , i', i ~ , !'~';, ~,', i'~ '~'~ ',~,i! ~,', ~,i ',ili!ii!i!ii i', ',ii',',ii !! i'~iiil i i'?, i i!ii',!',',iiii i i~,i',',i !', ii :,i ii i!i'~ ~ :!!i!iiiii: ii!~iii!i:~iii:!iii~ ~ ! i i i ~ ! i ~ ! i ! i i i i i ~  ~ i  ',i !!ii'~ i', i~,','~',',i,i!!~,', ' , i i !i '~i i', ~,', :,', i',!i,i:/,i ':'~',ii !i ',i !iii !i i', il ~i~i ~,i ~,i ii~iii',i :,i i lil ~ i!!i ~,! ',! ~,i '~i ~,i !:, !~!ii!i',!:, !i i i i! :,ii',',i :~i i ~ , i i i~ '~i ii i!i!i'~ !!'?~i~!',!iii!!'~i',i',i ',!',! ',i',i i!iil, '~i':i ',! ',i ill i i i: 

1. See text. 

2. v~ = 6 .79m/s ,  1)2 --- 4 .02m/s ,  v3 = 1 .70m/s  

3. P2 --- 39.5 kPa, P3 = 46.1 kPa 

4. P0: Atmospheric pressure, p: Pressure at the point of arbi trary radius r 

) Po - P = 8-- ~ - ~ -  

pQ2 [ r~ 1( rf l 
Total  pressure (upward direction) P = 4nh~ log r 1 - 2  1 - ~ j  j 

5. Vr = 5.75m/s ,  p , - -P0 = - - 1 . 3 8  x 104 Pa 

6. t = ~  
CaV~-ff ( 2 

7. Condit ion of section shape H = C ~rV r4  

Q = 12.9 m ~ / s, d = 1.29 m m  

8. H = 2 .53m 

1 + cos 0 1 - cos 0 
9. Q~ = 2 Q' Q~ = 2 Q, F = p Qv sin 0 

Q~ = 0.09m3/s,  Q2 = 0.03 m3/s, F = 2.53 x 104 N 

10. -7 .49  m H 2 0  

11. n = 6.89 s - t  = 4 1 3  r p m ,  torque 8.50 x 10  -2 N m 

12. F = 749 N 

~ii~,~,iiiiii~i! ..... ~i',i',i',ii',!!i. " " : ~ i  :~,ii ~:-: . . . . . . .  : '  .-~i!~ i ! :  i : ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :~~:~:f.~..i i i~.. .`: .~i~::i~::~ii~i!~ii~:~i!i!iii i~i~ii~::~i~:iii i i!~iiii : : i : : :~i!~i~::i:: i~ii:: i i i i~ii:~ii~::ii~:i  

1. See text. 

2. 1 8(rv) 8u Ov v Ou 
0---~- + ~x 

=O,  o r ~ . ~ + - + r  ~ = 0  

3. ( a )  u = 6 v  - , 

1 
(b) v = ~ . 5  Umax 
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h 3 Ap 
(c) Q = 1 2 #  l '  

12#/Q 
(d) A p -  h3 

4. ( a ) u = 2 v [ 1 -  (~0)2 ] 

1 
(b) /2 "-- ~ Uma x 

~zd 4 Ap 
(c) Q =  128u l 

128/dQ 
(d) A p =  r~d4 

5. (a) v = 0.82Umax, 

(b) r = 0.76ro 

6. e = 4.57 x 10 -5 m2/s, l = 2.01 cm 

~rdh 3 Ap 

7" Q =  12# 1 

8. h2 = 0.72 mm 

9. LT -~ 

10. 8.16N 

: ~::~.:.~:~:~:-~::~::~: ~:~.~:: ~:~t,~:;:~:.~:; ~:~:~:~:~-~ ~.'.:~:~~ii:: : ~ : ~ . ~ : " ~ . ~ i  ~:~ :-:~ :~:~:~:~:~:~-'-:~:~:~:~:::~ ~:~:.:;?-~ :~:::~ :~:~:-:~:::-.'.~:~:~ :~:~:~:~:~:~:~: ~:~."-.~.::~:~?-~:~:~:~::::'.~:."-.~: ~ ~-~: ~:~:~:~:t~;~:::~:::~:,.~::-~::: ::~,::~:::~.:-'..~:;:-~:~ ~-:~:~:-~~:;:::~:~:~:~.-'.~A:~.5.::~:~:~e.~:~:,~::~:~ ~.:::::;:~:~:~:-:..::: ::~: ~:~ :::::::::::::::::::::::::::::::::::::::: ":~.....-:~:..'.'..~:~: ~: ~:~:~:~:~:~:~:~: ~:~; :~:~:~::~ :-:~:~:~ :~:~:~:;:~:~:~: ~: ~:~:~:~:~:~: ~-: ~:~:~:~:.,.:~:~:~:~:~:~:::~:~:~::~.: :~ ~:~ ~: ~;~:~:~:~: ~:~:~:;:;~;~:;:~:~:;~-:: ~:; :~:: ;: 

1, 2, 3, 4. See applicable texts. 

5. See applicable text. Error of loss head h is 5~ (%) 

6. h = 733 m at diameter 50mm, h = 26.4m at diameter 100mm 

7. 24.6 kW 

8. Pressure loss Ap = 508 Pa 

9. 3.2 cm H20 

10. h, = 6.82 cm, r /=  0.91 

4.56 
1. i = ~  

1000 



2. F r o m  Ch6zy's equation 
Q = 40.9 m 3 / s 

3. Q = 19.3m3/s 
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Q =40.4 m 3/s, from Manning 's  equation 

4. F low velocity becomes maximum at 0 = 257.5 °, h = 2.44 m and discharge 
becomes maximum at 0 = 308 °, h = 2.85 m 

5. Tranqui l  flow, E = 1.52 m 

6. h~ = 0.972 m, 3.09 m / s  

7. Qr~x = 14.4m3/s 

8. 1 .18m 

9. See applicable text. 

1. Using Stokes equation, terminal velocity v =- i~v ~ -  1 where d is 

d iameter  of a spherical sand particle and Pw, P~ are density of water  and 

sand respectively. 

2. D = 1450 N, Maximum bending moment  Mm,x = 3620 N m 

3. D = 2 .70N 

4. ~m,x = 3.2cm at wind velocity 4k in /h ,  ~,~,x = 4.1 cm at wind velocity 

1 2 0 k m / h  

5. T = 7 2 2 N m ,  L = 4.54 x 1 0 4 N m / s  

6, 7. See texts. 

8. D I = 88.9 N, Required power P - 133 N m / s  

9. L = 3 .57N 

10. D = 134N 

'~iiii',iii!i',iii',iiiii',i',ii::::, i l i ! i~  ~ ::' ~::',ili!::::, ~ :: ~::iiiiii',i',iiiiiiii~iil ~ ', ~ ~, ~ ::~iii~' ', ~i',iiiii!iii',i',i',ii#ii',iiiiiiiiiiiii~i~,iiii i~ii i:?~:~iiil ~i! iii ~-ii !i!~.i::::iii!~!i~i!iii!i~iii~i~ii~i~iiiiiiii~i::::iiiiiiiiiii!iii~iii~.i~ii~iii!~ i ~ii i ~:~ iii!!!iiiiii~i~!iiii iii::::i iiii: :iiiiiiiiiiiii~iiiiii~,i~,~i!ii~ iii!~ii ii~:~::iiii',iiiiiiiil ~iiiii',iii!i!ii~i~::::::~iiiii#iii!iii:::::ii::,~, ~, i~iiiiiiii',iiiiii ~!iiiiiiii',',iii',iii',i i i~i i i i ! i i i i i i~i  i ii!iiii ~iii',i',iiii',ii~,ii',!',',iii',!ii!i iii i',ii'~iiiiii~iiiiiiiiiiiiiiiii',',iii',iiii',iii'~iiiii',ii',iiiiiiii~,',: 

1. Consider  v, g,H as the physical influencing quanti t ies and perform 

dimensional analysis, v = C4"ff// 

2. D = C#Ud 

3. a = C ~  

4. v - p , /CO 
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d 4 Ap 
5. Q = C - - ~  

# l 

6. ~=xf ( - -UX)v  

7. c = f ( dv/2pAp = f (Re) 

8. (a) 167m/s  

(b) 33.3 m/s  

(c) 11.1 m/s  

9. Towing velocity for the model vm = 2.88 m / s  

1 
10. 

2.36 

~iiii i ~i i i i ~  i i ~ :: i i ::~ i ! :: ! ! i!~.."..i~i ~iii::i~::~ii::i~!i i~::ii:: ii ii::ii~!~! i ii~i~ii::ii~::i !iii!! :: ::::i!i ! ! i i:::: ::i!:: !~iiii::::i~iii:: ::::ii!ii::::!iii':i il ii~i~::iiiii:; ::ii!i::::::ii~!i~i!i::~ i~::::~:;:~:,~iii i i i ~ , : i i i ~ ! ~ : : i  ::~ii ! i : : i ~ . : . i i i i ~ i ~ ~ i i ! i i ! . i i i : :  ~::i!ii::~::i i';:;~ ~ ~ii~::ii::!:::: ::~ ~!i~:: iiii!ii! iii ii ii::::!i! !i!:: iiii::!~:~!~iir!~e~',!i::i::~::i!!ii!ii~:: ................... ~ : ' : " ~ i ~ : : i i i i ~  i i;iiiii ~I i ! i i i i ~ i ' :  ii?:ii!iiii:: i~':!~::iiii~! !!!!il i~i::!i::i~i!~ii::iiii ii~ii:: ::i!ii~i::::iii?:iiii i~ii~ i~ i! i i f : :  ::iii::ii::~ili !ii:: ::: 

1. v = 4 .44m/s  

2. v = 28.5 m/s  

3. Mass flow rate m = 0.325 kg / s  

4. C¢ = 0.64, Cv = 0.95, C = 0.61 

5, 6, 7. See applicable texts. 

8. U = 50cm/s  

9. See applicable texts. 

10. Error  for rectangular weir is 3%, error for t r iangular  is 5%. 

i i i iii i iii!i',i',i', !',iii',ii ~:: ~" :':'ii":' ~'~': ~: ~!ii~i~ii ~, i iiiii~i':" '':':'~: :: :~iiii',ii i!iii',i'~iii!i',iiiiiiiiiiiiiiiiiiii~iiiii::i::iiill i ii': :::ii!ii',i! ~iiiii::~::::' i i i i:: i i i ii!iiiiiii::i~iiiii~:: ::i!iiil i ii~ ............. i~i:~i!i!', i i!i i i~ii i~ili~:: :::!iiiiiiiiiiil i~!i ~',i~ii~i~,iiii!il ', i iiii',i', i iiii',iil ',i',iii~,i',iiii ',i i iiiiii if!i i ill i~ii~i i iiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiii ~',i i i'~i~iii',iii',i !i',iiiii ~i',i i iiiii',iiiii!i ~,iiiiii!!i i i!ili!~iii i ii~!ii', i iii!~,ii~i i iiiiiiiii',i~ililill i iiii~iii!i~ii~i~i i i~iiii~i~i~ ~i!i~i ~iii ~iiiiiii!iiiiiiii!iiiiii i i!ili i~ii~ili~ i~',~',~i'~ii~i i iii~i~ii~!~'~i~ ~i!!i~i~iii~i~', i!~iiii!iiiii~ii~ii i i i iii~!ili~,!~,iiii 

.,::,. ~,:: ,.,...: ::,: - •: :.:,: ...::..,~..:::::: ::: .,.:,:: ~: :~..:~:,:,:,: :.:.:.:: :.:.:: :.:.~;.:.:...s;....:::.:..:.:..:.:.:.:..,:.;.:.:....,:.:,:... ........................ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ............ : :::,:.:.-..-:::::::, .:::-..,:.:. ::-:.:-,:::-:.-- s,,: .:..,:::. ,;. : ,.~:-.. •, - - :.-..,:, :, ,.., .: ,::: :.-::: ........... :::::::::::::::::::::::::::::::: 

1. rk = UoX + roy, ~' = u o y -  VoX 

2. See applicable text. 

3. Flow in counterclockwise ro ta ry  motion,  vo = F/2nr, v~ = 0, around the 
origin. 

4. ~ b = ~ l o g r , ~ = ~ 0  

5. Putting r=r0,  ~, =0 ,  the circumference becomes one stream line. Velocity 

distribution Vo = - 2 U  sin 0, Pressure distr ibution p - P-------~ = 1 - 4  sin 2 0 
pU2/2 



6. T h e  f low a r o u n d  a r e c t a n g u l a r  c o r n e r .  

7. F l o w  in c l o c k w i s e  r o t a r y  m o t i o n ,  vo = 

8 .  W - -  U z e  -ia 

9. rl 

10. 

~ = k  

~ ° ~ - c  

~ plane 

0 .~,xx%\x 
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F 
2n r '  v, = 0, a r o u n d  the  o r ig in .  

........... ~ i  ........... !~ ............................... ~:,..Li.!iii.i i.i i iii i!K ii; 6ii ............... iii!iii6!i ...................... i ........... ii...iiiiiiii~ii~ii~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii¢i~iiiiiii~iiiiiiiiiiiiiii~ii~iii!8i!iiiiiii~iiii!iiiiii~iii!!iii.iiii@ii~ii~i!~iii.iiiiiiiiiiii@.i.iiT;i~.iiiiiiii~iiiiiii~iiiiiii~ii!!iiiiii~!iiii@~i i:ii:i 

i ! i l i ~ i i ! ! ~ ~ i ~  ° '  ~i~i{iii }iii !i~i?i i!ii iiiiiiiii~i! ii~iii{! ii~iiiiii !!!~ii~ii i! i!!i iiiii~iii!i iiili 
P 

1. p = RT~ = 1 . 2 2 6 k g / m  3 

2. a = ~ / k R T  = 1297 m / s  

l x - l l  
3. T2 = T~ + ~ ~ - - ( u ~ x  R - u~) = 418 K 

t 2 = 145°C  

P 2 = P ~  ~ -  = 3 . 4 x 1 0  S P a  

4. To = 278 .2  K ,  to = 5 .1°C  

P0 = 6.81 x 10 4 P a  

Po = 0 .85 k g / m  3 

5. v -  4 4 4 m / s  

6. M = 0 .73,  a = f f x R T  = 325 m / s ,  v = a M  = 237  m / s  
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7. v = 2 7 2 m / s  

8. p = 0.45 < 0.528, m - 0.0154 kg/s  
Po 

A2 
9. ~-~-, = 1.66 

10. A, = 2354 cm 2 

11. 2.35 x 105N 

12. Mach number 0.58, flow velocity 246 m/s ,  pressure 2.25 x 105 Pa 

dz 
1. ~ =  + l . 3 9 m / s ,  T = 1.57s 

2. T 2re 
(sin 01 + sin 02i 

3. 0.69 m/s  

4. t = l m i n 2 0 s  

5. a = 8 3 7 m / s  

6. A p = 2 . 5 1  x l 0 6 P a  

7. Pm,x = 1.56 x 106 Pa 



Index 

Absolute pressure 21 
Absolute streamlines 42 
Absolute system of units 7 
Acoustic intensity method 278, 290 
Adiabatic change 18 
Aerofoil 162 

section 162 
Air bubble method 281 
Allievi's equation, valve closure 246 
Anemometer 

hot-wire 184-5 
interference fringe 186 
laser Doppler 185-6 
reference beam 185, 186 
single-beam 186 

Angle of attack, wing 163 
Angular momentum 

conservation 76-8 
equation of 76-7 

Animation method 278 
Applications 

Bernoulli's equation 62-70 
dimensional analysis 172-4 
equation of momentum 72-6 

Appolonius circles 208 
Archimedes 34 

principle 34 
Area colouring manifestation method 278 
Area flowmeter 189-90 

float-type 189-90 
Aspect ratio, wing 163 
Atmospheric pressure 20, 21 

standard 20 
Attachment amplifier 193 

Backward difference 250 
Ball valve, loss factor 131 
Bars 20 
Base units 6-7 
Bazin equation, open channel 138 
Beam-Warming method 257 
Bellows, pressure gauges 28-9 
Bend, pipes 125-7 

Bernoulli 60 
equation 56-70 

applications 62-70 
Blade 162 
Body force 85 
Borda-Carnot, head loss 74 
Boundary element method 269-73 

Green's formula 269 
panel method 269 

Boundary layer 101-6, 148 
development 102-4 
displacement thickness 103 
equation of motion 104-5 
main flow 101 
momentum thickness 103, 104 
separation 105-6 
thickness 103 
transition zone 104 

Boundary-fitted grid, finite volume method 
262 

Bourdon 
gauge 28-9 
tube 28 

pressure gauges 28-9 
Boyle's-Charles' law 17 
Branch pipes 127, 128 
Buckingham's rr Theorem 172 
Bulk modulus 16, 223 
Buoyancy 33-5 

Archimedes' principle 34 
Bursting 

phenomenon, Kline 274 
process 98 

Butterfly valves 129-30 

Camber line 163 
Capillarity 14-15 

correction 15 
and liquid surface 15 

Cascade 166, 167 
Cauchy-Riemann equations 202 
Cavitation 167-9 

number 169 
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CCD camera 287 
Central difference 251 
Centre of pressure 31 
CGS system, units 7 
Change in flow quantity, pipe line 242-3 
Characteristic curve, pumping 133 
Chattock tilting manometer 28 
Chemical reaction tracer method 276, 

283 
Chezy's formula, open channel 137 
Choke 121 

number 121 
Choked flow 229 
Chord length 162 
Circular 

pipes, flow 91-4 
water channel 139--40 

Circulating flume, model testing 178 
Circulation 50-1 
Cocks 130-1 

loss factor 130 
Coefficient 

of contraction 67 
of diffusion 88 
of discharge 64, 67 
drag 163 
friction drag 158 
interference 167 
lift 163 
moment 163 
Pitot tube 182 
of velocity 66, 67 
of viscosity 9 

Colour streak method 279-83 
Complex 

potential 201-3 
velocity 202 

Compressibility 6, 16--17 
Compressible fluids 6, 46-7, 218-37 

finite difference 257-9 
Compression wave, propagation 234 
Computational fluid mechanics, 249-73 
Computer tomography 278, 287 
Computer-aided 

flow visualisation (CAFV) 274 
visualisation 277, 286-90 

Cone 
drag coefficient 151 
supersonic velocity 231 

Conformal mapping 212-16 
Conjugate complex, velocity 202 
Conservation 

of angular momentum 76-8 
of energy 56-70 
of mass, principle of 56 

Constant 
discharge, water channels 142-3 
gas 17 
pressure, specific heat 18 
specific energy 143, 144 
volume, specific heat 18 
water depth 143-4 

Contact angle 14 
Continuity equation 55-6, 88 

viscous fluid 82-3 
Contour 

manifestation method 278 
presentation 288 

Contraction, coefficient of 67 
Control volume 71,262, 263 
Convective accelerations 87 
Convergent 

nozzle 228-9 
pipes 125 

Convergent-divergent nozzle 229-30 
Conversion of units, pressure 21 
Correction 

capillarity 15 
Pitot tube 225-6 

Correlation 95 
Couette flow, viscosity 9 
Couette-Poiseuille flow 91 
Critical 

density 229 
depth 142 
pressure 229 
Reynolds number 46, 154 
temperature 229 
velocity 44, 46, 143, 229 

Curl 49 
Cylinder 

drag 150-1 
coefficient 151 

flow around 152, 153 
pressure distribution 152 

Cylinder-type, Pitot tube 182--4 
Cylindrical coordinates 87 

rotational motion 36 

d'Alembert's paradox 152 
Darcy-Weisbach equation 115 
De Laval nozzle 229-30 
Density 8 

correlation method 277 
critical 229 

Depth, critical 142 
Depth tuft method 275 
Derived units 7 
Development 

boundary layer 102--4 
lift 161-2 

Diaphragm, pressure gauges 28-9 
Differential manometer 27-8 
Dimension 8 
Dimensional analysis 171-4 

applications 172-4 
Direct simulation, turbulence 261-2 
Disc valve 131 
Discharge 

coefficient of 67 
pumping 133 

Discrete vortex 
element 271 
method 272 
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Discretisation 265 
Displacement thickness, boundary layer 

103 
Divergence 83 
Divergent pipes 123-5 
Division of elements, finite element method 

264 
Doppler effect 224 
Doublet 208 
Drag 

of a body 149-61 
coefficient 149-50, 163 

cone 151 
cylinder 151 
hemisphere 151 
oblong board 151 
passenger car 151 

cylinder 150-1 
flat plate 156-60 
form 149 
friction 149, 150 
ideal fluid 150-3 
pressure 149, 150 
sphere 156 
turbulent boundary layer 158-60 
twin vortices 153 
viscous fluid 153-6 

Dynamic pressure 60 
Dynamic temperature 225 
Dynamic viscosity 9 

Eddying water currents 50 
Efficiency, propeller 75-6 
Ekman 46 
Elastic-type pressure gauges 28-9 
Elbow pipes 126, 127 
Electric-type pressure gauges 29-30 
Electrically controlled tracer method 276, 

283 
Electrolytic colouring method 276 
Electrolytic corrosion method 275 
Electrolytic precipitation method 282 
Energy 

conservation of 56-70 
internal 219 
kinetic 56 
law of conservation 56 
line 62 
potential 56 

Enthalpy 219 
Entrance length, pipes 112 
Entrance region, pipes 112 
Entropy 220 
Equation-overlapping elements, finite 

element method 267 
Equations 

of angular momentum 76-7 
of Blasius 116 
of Itaya 116 
of Kfirm~n-Nikuradse 116 
of momentum 70-1 

application 72-6 

of motion 
boundary layer 104-5 
Euler's 59 

of Nikuradse 116 
Equi-value area 

manifestation method 278 
presentation 289 

Equiaccelerated straight-line motion, 
relatively stationary state 35-6 

Euler 5, 59 
equation of motion 59, 197-8 

Eulerian method, flow 41 
Examples, potential flow 203-12 
Experimental visualisation methods 274 
Exterior flows 148-70 

Fanno flow 235-6 
Fanno line 236 
Finite difference 

compressible fluid 257-9 
indication 249-51 
method 249--62 
turbulence 259-62 

Finite element method 264-9 
division of elements 264 
equation-overlapping elements 267 
Galerkin method 266 
interpolating function 266-7 
weighted residuals 265-6 

Finite volume method 262-4 
boundary-fitted grid 262 
control volume 262, 263 
preservative form 262 
structured grid 262 
unstructured grid 262, 264 

Five-hole spherical Pitot tube 183, 184 
Flat plate 

drag 156-60 
laminar boundary layer 157-8 

Float-type, area flowmeter 189-90 
Floating sawdust method 282 
Floating tracer method 276, 281 
Flow 

around cylinder 152, 153 
choked 229 
circular pipes 91-4 
contraction, losses 120-1 
Couette-Poiseuille 91 
curved pipe 72 
discharge, measurement 186-95 
Eulerian method 41 
expansion, losses 119-20 
Fanno 235-6 
forced vortex 50 
free vortex 50 
irrotationa149, 199 
Lagrangiam method 41 
laminar 44--6 
one-dimensional 43-4, 55-81 
parallel plates 9, 88-91 
in pipes 110-35 
potential 199 
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Flow (contd) 
Rayleigh 235-6 
resistance, sphere 172-4 
restrictions 187-8 

nozzle 187, 188 
orifice 187 
Venturi tube 187, 188-9 

rotational 50 
steady 43 
synthesising 206-12 
three-dimensional 43 
turbulent 44 6 
two-dimensional 43 
unsteady 43 
velocity 

coefficient, open channel 137 
measurement 182-6 

visualisation 274-90 
computer-aided (CAFV) 274 

Flowmeter 
area 189-90 
fluidic 193-4 
magnetic 191-2 
positive displacement 190 
turbine 190-1 
ultrasonic 192-3 
vortex-shedding 193 

Fluctuating velocities, velocity distribution 
95 

Fluidic 
flowmeter 193-4 
oscillator 193 

Fluids 
at rest, pressure 23-6 
compressible 6, 46-7 
ideal 6 
incompressible 6, 46-7, 251-7 
Newtonian 13 
non-Newtonian 13 
perfect 6 

Fluorescent mini-tuft method 280 
Force 

body 85 
inertial 85 
jet 72--4 
pressure 85 
restoring 35 
viscous 85-6 

Forced vortex, flow 50 
Forces acting on a body 149 
Form drag 149 
Forward difference 250 
Free vortex 

flow 50 
potential flow 205-6 

Friction 
coefficient, pipes 115 
drag 149, 150 

coefficient 158 
pipes 114-18 
torque, revolving disc 160-1 
velocity 98 

Frictional loss, pipes 118-19 
Froude 146 

number 145 
law of similarity 176-7 

Function mapping 213 

Galerkin method, finite element method 
266 

Ganguillet-Kutter equation, open channel 
137-8 

Gas 
constant 17, 219 
ideal 17 
perfect 17-18 

Gases 6 
Gate valves 128, 129 
Gauge pressure 21 
Gauss-Seidel sequential iteration method 

253 
Geometrical moment of inertia 31 
Globe valves 128, 129 
G6ttingen University 163 
G6ttingen-type manometer 28 
Green's formula, boundary element method 

269 
Gyrostatics, rotational motion 36 

Hagen 93 
Hagen-Poiseuille formula 93 
Head loss, Borda-Carnot 74 
Head pumping 133 
Height of liquid surface 14-15 
Helmholtz 5 

vortex theory 88 
Hemisphere, drag coefficient 151 
Henry's Law 168 
Higher critical Reynolds number 46 
Holographic Particle Imaging Velocimetry 

(HPIV) 277 
Hot-wire anemometer 184-5 
Hurricanes 50 
Hydraulic 

grade line 62 
jump 144-6 
mean depth 

open channel 137 
pipes 118 

press 23 
Hydraulics 1 
Hydrodynamics 1 
Hydrogen bubble method 276, 283 

Ideal fluids 6, 197-217 
Ideal drag 150-3 
Ideal gas 6, 17-18 
Image 

presentation 274 
processing 274 

Implicit Approximate Factorisation (IAF) 
method 257 

Inclined manometer 28 
Incompressible fluids 6, 46-7, 251-7 
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Indication, finite difference 249-51 
Inertia term 87 
Inertial force 85 
Injected tracer method 276 
Injection 

path line method 276 
streak line method 276 

Inlet 
length, pipes 112 
loss factor 121 
region, pipes 112 

Instantaneous valve closure 245--6 
Interference 

coefficient 167 
fringes 284 

anemometer 186 
Internal energy 219 
Interpolating function, finite element 

method 266-7 
Irrotational flow 49, 199 
Isaac Newton 10 
lsentropic 

flow 226-30 
index 18, 219 

Isobaric change 18 
Isochoric change 18 
Isothermal change 18 

Jet 
force of 72-4 
plane 231 
pump 75 

Joukowski's hypothesis 166 
Journal bearing, theory of lubrication 

108 
Junction pipes 127, 128 

k-e model 260 
Khrm~n 101 

vortex 153 
Kinematic 

viscosity 11 
turbulent flow 96 

Kinetic energy 56 
Kline, bursting phenomenon 274 
Kutta condition 166 
Kutta-Joukowski equation 162 
Kutta condition 215 

La Systrme International d'Unitrs, see SI 
units 

Lagrangian method, flow 41 
Laminar 

boundary layer, flat plate 157-8 
flow 44-6 

pipes 115 
velocity distribution 88-94 

frictional resistance 239-40 
sublayer 98 

Laplace's equation 199 
Large Eddy Simulation (LES), turbulence 

261 

Laser Doppler 
anemometer 185-6 
velocimeter, three-dimensional 290 

Laser holographic interferometer method 
277, 285, 287 

Laser light sheet method 277 
Laser Speckle Method (LSM) 277 
Law of conservation of energy 56 
Law of similarity 175-80 

Froude number 176-7 
Mach number 177 
non-dimensional groups 175-7 
Weber number 177 

Law of viscosity, Newton 10 
Leading edge 162 
Length, chord 162 
Leonardo da Vinci 3-4 
Lift 161-7 

coefficient 163 
development 161-2 
stall 164 
stalling angle 164 
wing 162-7 

Lift--drag 
polar, wing 165 
ratio 165 

Liquids 6 
column, U-tube 238-40 
rotation and spinning 47-50 
surface 

and capillarity 15 
height of 14-15 

Logarithmic velocity distribution 100-1 
Loss factor 

ball valve 131 
cocks 130 
disc valve 131 
needle valve 131 
relief valves 131 
spool valve 131 

Loss of head 62, 112 
Losses 

flow contraction 120-1 
flow expansion 119-20 
inlet loss factor 121 
in pipe lines 119-32 

Lower critical Reynolds number 46 
Lubrication, theory of 106-9 
Luminescent mini-tuft method 275 

MacCormack method 257 
Mach 178 

angle 224 
cone 224 
number 223-4 

law of similarity 177 
sonic flow 177 
subsonic flow 177 
supersonic flow 177 
transonic flow 177 

wave 224 
Mach-Zehnder interferometer method 277 
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Magnetic flowmeter 191-2 
Main flow, boundary layer 101 
Manning equation, open channel 138 
Manometer 26-8 

Chattock tilting 28 
differential 27-8 
Grttingen-type 28 
inclined 28 
U-tube 26 

Mapping 
conforma1212-16 
function 213 

Marker and Cell (MAC) method 254 
Mass 

flow rate 56 
transfer method 275 

Maximum thickness, wing 163 
Mean free path 6 
Measured data visualisation 289-90 

method 278 
Measurement 

flow discharge 186-95 
flow velocity 182-6 
pressure 26-30 

Mercury, surface tension 13 
Metacentre 35 
Metacentric height 35 
Method of characteristics 257-9 
Methyl alcohol, surface tension 13 
Metres of water column, pressure 20 
Micromanometers 28 
Mixing length 

Prandtl's hypothesis 97 
turbulent flow 97 

MKS system, units 7 
Model testing 177-9 

circulating flume 178 
towing tank 178 
wind tunnel 178, 179 

Moir6 method 284 
Moment 

coefficient 163 
of inertia 40 

geometrical 31 
Momentum 

equations 70-1 
law of conservation 70-6 
thickness, boundary layer 103, 104 

Moody diagram 117 

Nabla 49 
National Advisory Committee for 

Aeronautics (NACA) 163 
National Aeronautics and Space 

Administration (NASA) 163 
Navier 5, 87 
Navier-Stokes equation, viscous fluid 83-8 
Needle valve, loss factor 131 
Newton, law of viscosity 10 
Newtonian fluids 13 
Non-dimensional groups 

law of similarity 175-7 

Reynolds number 175-6 
Non-electrolytic reaction method 276 
Non-Newtonian fluids 13 
Normal shock wave 234 
Nozzle, flow restrictions 187, 188 
Numerical 

data visualisation method 278, 287-9 
viscosity 262 

Numerical fluid mechanics 249-73 

Oblique shock wave 234 
Oblong board, drag coefficient 151 
Oil-dots method 275 
Oil-film method 275 
One-dimensional flow 43--4, 55-81 

compressible flow 224--6 
One-equation model 260 
Open channel 136-8 

Bazin equation 138 
Chezy's formula 137 
flow velocity coefficient 137 
Ganguillet-Kutter equation 137-8 
hydraulic mean depth 137 
Manning equation 138 
shape of 138, 141 
specific energy 141-2 
wetted perimeter 137 

Optical 
method 276 
visualisation method 284--5 

Orifice 66 
flow restrictions 187 
plate 187 

Oval gear type, positive displacement 
flowmeter 190 

Panel method, boundary element method 
269 

Parallel 
flow 203-4 
plates, flow 9, 88-91 

Particle Imaging Velocimetry (PIV) 277, 286 
Particle Tracking Velocimetry (PTV) 286 
Pascal 20, 23 

law 23 
Passenger car, drag coefficient 151 
Path line 41, 42 
Perfect fluids 6, 197-217 
Perfect gas 6, 17-18 
Pipe lines 

change in flow quantity 242-3 
losses in 119-32 
pressure propagation 240-1 
pressure wave velocity 243-4 
total loss 131-2 

Pipes 110-35 
bend 125-7 
branch 127, 128 
convergent 125 
divergent 123-5 
elbow 126, 127 
entrance length 112 
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entrance region 112 
friction 114-18 

coefficient 115 
pressure loss 174-5 

frictional loss 118-19 
hydraulic mean depth 118 
inlet length 112 
inlet region 112 
junction 127, 128 
laminar flow 115 
suddenly expanding 74 
turbulent flow 115-18 
wetted perimeter 118 

Pitot 64 
tube 64-6, 182-4 

coefficient 182 
correction 225--6 
cylinder-type 182-4 
five-hole spherical 183, 184 
surface 184 
total pressure 184 

Point vortex 206 
Poiseuille 93, 94 
Polytropic change 18 
Polytropic exponent 18 
Positive displacement 

flowmeter 190 
oval gear type 190 
roots-type 190 

Potential energy 56 
Potential flow 197, 199 

examples 203-12 
free vortex 205-6 
source 205-6 

Potential head 60 
Power 

pump 78 
water wheel 78 

Prandtl-Meyer expansion 233 
Prandt196 

hypothesis on mixing length 97 
Preservative form, finite volume method 

262 
Pressure 

absolute 21 
atmospheric 20, 21 
bars 20 
centre of 31 
conversion of units 21 
critical 229 
distribution, cylinder 152 
drag 149, 150 
dynamic 60 
fluid at rest 23-6 
force 20, 85 
gauges 21, 28-30 

bellows 28-9 
Bourdon tube 28-9 
diaphragm 28-9 
elastic-type 28-9 
electric-type 29-30 

head 60 

loss, pipe friction 174-5 
measurement 26-30 
metres of water column 20 
Pascal (Pa) 20 
propagation, pipe line 240-1 
recovery efficiency 125 
stagnation 60 
static 60 
total 60 
units of 20-1 
and velocity 254 
wave velocity, pipe line 243-4 

Pressure force 20, 85 
Pressure-sensitive-paint method 275 
Pressure-sensitive-paper method 275 
Principle of conservation of mass 56 
Propagation, compression wave 234 
Propeller, efficiency 75--6 
Pump 

discharge 133 
jet 75 
power 78 

Pumping 132-3 
characteristic curve 133 
discharge 133 
head 133 
resistance curve 133 
shaft horsepower 133 
total head 132 
water horsepower 133 

Rankine-Hugoniot equations 233 
Ratio, specific heat 18, 219 
Rayleigh 

flow 235-6 
line 236 

Recovery efficiency, pressure 125 
Rectangular water channel 140--1 
Reference beam, anemometer 185, 186 
Regular function 202 
Relative streamlines 42 
Relatively stationary state 35-7 

equiaccelerated straight-line motion 35-6 
rotational motion 36-7 

Relief valves, loss factor 131 
Remote sensing 278 
Residuals 265 
Resistance curve, pumping 133 
Restoring force 35 
Revolving disc, friction torque 160-1 
Reynolds 46, 47 

experiment 45 
number 46 

critical 46, 154 
higher critical 46 
lower critical 46 
non-dimensional groups 175-6 

stress 95 
Rheological diagram 13 
Rheology 13 
Roots type, positive displacement flowmeter 

190 
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Rotational flow 50 
Rotational motion 

cylindrical coordinates 36 
gyrostatics 36 
relatively stationary state 36-7 

Rough circular pipe, turbulent flow 11 6-18 
Royal Aircraft Establishment 163 

Schiller 46 
Schlieren 

method 284, 285 
photograph method 277 

Section, aerofoil 162 
Semiconductor strain gauge 29-30 
Separation 

boundary layer 105-6 
point 105, 153 

Shadowgraph method 276 
Shaft horsepower, pumping 133 
Shape 

open channel 138, 141 
streamline 3 

Shear flow 10 
Shock waves 230-5 

normal 234 
oblique 234 

SI units 7 
Single-beam anemometer 186 
Sink 

and source 207-9 
strength of 205 

Smoke method 281 
Smoke wire method 276, 283, 284 
Smooth circular pipes, turbulent flow 

115-16 
Sommerfeld 108 
Sonic flow, Mach number 177 
Sonic velocity 221-3 
Source 

potential flow 205-6 
and sink 207-9 
strength of 205 

Spark tracing method 276, 283, 284 
Specific energy 

constant 143, 144 
open channel 141-2 

Specific gravity 8 
Specific heat 

constant pressure 18, 219 
constant volume 18, 219 
ratio 18, 219 

Specific volume 8 
Speckle method 277 
Sphere 

drag 156 
flow resistance 172--4 

Spool valve, loss factor 131 
Spread of aqua 37 
Stagnation point 64, 148 
Stagnation pressure 60 
Stall, lift 164 
Stalling angle, lift 164 

Standard atmospheric pressure 20 
Starting vortex 166, 167 
Static pressure 60 
Static temperature 225 
Steady flow 43 
Stereophotography method 284 
Stokes 5 

theorem 51 
Streak line 41, 42 
Stream 

function 200-1 
and vorticity 251-4 

Stream tube 42, 43 
Streamlines 41-2 

absolute 42 
relative 42 
shape 3, 155 

Strength 
of sink 205 
of source 205 
vortex 206 

Strouhal number 155 
Structured grid, finite volume method 

262 
Sublayer 

laminar 98 
viscous 98 

Subsonic flow 227 
Mach number 177 

Successive over-relaxation (SOR) method 
253 

Sudden expansion 251 
pipe 74 

Supercavitation 168 
Supersonic 

flow 227, 230 
Mach number 177 

velocity 
cone 231 
jet plane 231 

Surface floating tracer method 276, 281 
Surface tension 13-15 

mercury 13 
methyl alcohol 13 
water 13 

Surface tuft method 280 
Suspension method 276 
Synthesising flows 206-12 

Temperature 
critical 229 
dynamic 225 
static 225 
total 225 

Temperature-sensitive-film method 275 
Theory of lubrication 106-9 

journal bearing 108 
thrust bearing 107 

Thermodynamics, second law 221 
Thermographical method 278 
Thickness, boundary layer 103 
Three-dimensional flow 43 
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Three-dimensional laser Doppler 
velocimeter 290 

Throttle 121 
Thrust 75-6 
Thrust bearing, theory of lubrication 

107 
Time line method 276 
Tornadoes 50 
Torricelli's theorem 67 
Total head 60 

pumping 132 
Total loss, pipe line 131-2 
Total pressure 60 

Pitot tube 184 
Total temperature 225 
Towing tank, model testing 178 
Trailing edge 162 
Transition zone, boundary layer 104 
Transonic flow, Mach number 177 
Transport equation, vorticity 88 
Tuft grid method 280 
Tuft method 275 
Tuft stick method 275 
Turbine flowmeter 190-1 
Turbulence 44-6 

direct simulation 261-2 
finite difference 259-62 
large eddy simulation 261 
model 259--60 

Turbulent boundary layer, drag 
158-60 

Turbulent flow 
kinematic viscosity 96 
mixing length 97 
pipes 115-18 
rough circular pipes 116-18 
smooth circular pipes 115-16 
velocity distribution 94-101 

Twin vortices, drag 153 
Two-dimensional flow 43 
Two-equation model 260 

U-tube 
liquid column 238-40 
manometer 26 

Ultrasonic flowmeter 192-3 
Units 6-8 

absolute system 7 
base 6-7 
CGS system 7 
derived 7 
MKS system 7 
of pressure 20-1 
SI 7 

Universal gas constant 219 
Unsteady flow 43, 238-48 
Unstructured grid, finite volume method 

262, 264 
Upwind difference method 254 

Valves 128-30 
butterfly 129-30 

closure 246-7 
Allievi's equation 246 
instantaneous 245-6 

gate 128, 129 
globe 128, 129 

Variational principle 265 
Vector manifestation method 278 
Vector presentation 289 
Velocity 

absolute 78 
coefficient of 67 
complex 202 
conjugate complex 202 
critical 44, 46, 143, 229 
distribution 

fluctuating velocities 95 
laminar flow 88-94 
logarithmic 100-1 
turbulent flow 94-101 

friction 98 
head 60 
peripheral 78 
potential 198-200 
and pressure 254 
relative 78 

Vena contracta 67 
Venturi 63 

tube 62, 63-4 
flow restrictions 187, 188-9 

Viscosity 6, 9-13 
coefficient of 9 
Couette flow 9 
dynamic 9 
index 13 
kinematic 11 
Newton's law of 10 

Viscous 
fluid 82-110 

continuity equation 82-3 
drag 153-6 
Navier-Stokes equation 83-8 

force 85-6 
sublayer 98 

Visualisation methods 274-86 
Visualised image analysis 277, 

286--7 
Volume rendering method 278 
Volumetric flow rate 56 
Vortex 

free 205-6 
Khrmb.n 153 
point 206 
starting 166, 167 
strength of 206 
theory, Helmholtz 88 
wing-bound 166 

Vortex-shedding flowmeter 193 
Vorticity 49 

and stream function 251-4 
transport equation 88 

Wake 102, 148 
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Wall 
attachment phenomenon 123 
effect, s e e  wall attachment 

phenomenon 
Wall-tracing method 274, 275, 279 
Water 

channels 136-47 
constant discharge 142-3 

depth, constant 143--4 
horsepower, pumping 133 
surface tension 13 

Water clock 69 
Water hammer 244-7 
Water wheel, power 78 
Wave resistance 176 
Weber number, law of similarity 177 
Weighted residuals, finite element method 

265-6 

Weighting function 265 
Weirs 69-70. 194-5 
Wetted perimeter 

open channel 137 
pipes 118 

Whirl. and rotation 47-50 
Wind tunnel, model testing 178. 179 
Wing 

angle of attack 163 
aspect ratio 163 
lift 162-7 
lift--drag polar 165 
maximum thickness 163 

Wing-bound vortex 166 
Wire strain gauge 29-30 

Zero-equation model 259-60 
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