
ANSYS CFX-Solver Theory Guide

Release 14.0ANSYS, Inc.
November 2011Southpointe

275 Technology Drive
Canonsburg, PA 15317 ANSYS, Inc. is

certified to ISO
9001:2008.

ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494



Copyright and Trademark Information

© 2011 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any
and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or
trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used
by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service
and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products
and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products
and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.

ANSYS, Inc. is certified to ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software
and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Published in the U.S.A.



Table of Contents

1. Basic Solver Capability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Documentation Conventions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Dimensions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2. List of Symbols ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2.1. Subscripts ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3. Variable Definitions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3.1. Isothermal Compressibility ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3.2. Isentropic Compressibility ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3.3. Reference Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3.4. Static Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3.5. Modified Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3.6. Static Enthalpy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3.6.1. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.7.Total Enthalpy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3.8. Domain Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3.9. Static Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3.9.1. Material with Constant Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3.9.2. Ideal Gas or Solid with cp=f(T) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3.9.3. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3.10. Total Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3.10.1. Material with Constant Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3.10.2. Ideal Gas with constant cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3.10.3. Ideal Gas with cp = f(T) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3.10.4. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3.11. Entropy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3.11.1. Material with Constant Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3.11.2. Ideal Gas with constant cp or cp = f(T) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3.11.3. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3.12. Total Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3.12.1. Incompressible Fluids .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3.12.2. Ideal Gases .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3.12.3. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.3.13. Shear Strain Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3.14. Rotating Frame Quantities ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.3.14.1. Incompressible Fluids .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3.14.2. Ideal Gases .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3.14.3. Material with Variable Density and Specific Heat .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3.15. Courant Number .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.4. Mathematical Notation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.4.1. The Vector Operators ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.4.1.1. Gradient Operator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.4.1.2. Divergence Operator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.4.1.3. Dyadic Operator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.4.2. Matrix Transposition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.4.3. The Identity Matrix (Kronecker Delta function) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.4.4. Index Notation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2. Governing Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1. Transport Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1.1. The Continuity Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1.2.The Momentum Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.



1.2.1.3.The Total Energy Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.1.4. The Thermal Energy Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.2. Equations of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.2.1. Incompressible Equation of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2.2. Ideal Gas Equation of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2.3. Real Gas and Liquid Equations of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.2.3.1. Real Gas Properties ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2.3.1.1. Redlich Kwong Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.2.3.1.1.1. The Standard Redlich Kwong Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2.3.1.1.2.The Aungier Redlich Kwong Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.2.3.1.1.3. The Soave Redlich Kwong Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.2.3.1.2. Peng Robinson Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.2.3.1.3. Real Gas Constitutive Relations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.2.3.2. Real Gas Saturated Vapor Properties ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2.2.3.3. Real Gas Liquid Properties ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2.2.3.4. IAPWS Equation of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.2.3.5. Metastable Superheated Liquid/Supercooled Vapor States .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2.2.3.6. Numerical Testing to Delineate Metastable Regions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.2.2.3.7. The Acentric Factor ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2.2.4. General Equation of State .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2.3. Conjugate Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3. Buoyancy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.1. Full Buoyancy Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.2. Boussinesq Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4. Immersed Solids .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.1. Immersed Solid Boundary Details ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.2. Laminar Flow Treatment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.3.Turbulent Flow Treatment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.4.3.1. Wall Distance .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.3.2. SST Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4.3.3. Scalable Wall Function .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5. Multicomponent Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.1. Multicomponent Notation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.2. Scalar Transport Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.3. Algebraic Equation for Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5.4. Constraint Equation for Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5.5. Multicomponent Fluid Properties ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.5.6. Energy Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.7. Multicomponent Energy Diffusion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.6. Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.6.1. Transport Equations for Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.6.2. Diffusive Transport Equations for Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.6.3. Poisson Equations for Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.6.4. Algebraic Equations for Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.7. Rotational Forces .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.7.1. Alternate Rotation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.8. Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8.1. Momentum Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.8.1.1. Isotropic Loss Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8.1.2. Directional Loss Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.8.1.3. General Momentum Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.8.1.4. Immersed Solid Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.iv

ANSYS CFX-Solver Theory Guide



1.8.2. General Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.3. Mass (Continuity) Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.4. Bulk Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.5. Radiation Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.6. Boundary Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9.1. Inlet (Subsonic) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9.1.1. Mass and Momentum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9.1.1.1. Normal Speed in .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9.1.1.2. Cartesian Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9.1.1.3. Cylindrical Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9.1.1.4.Total Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.9.1.1.5. Mass Flow Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.9.1.2. Turbulence .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.9.1.2.1. Default Intensity and Autocompute Length Scale .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.9.1.2.2. Intensity and Autocompute Length Scale .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.9.1.2.3. Intensity and Length Scale .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.9.1.2.4. k and Epsilon .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.9.1.3. Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.9.1.3.1. Static Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.9.1.3.2. Total Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.9.1.4. Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.9.2. Inlet (Supersonic) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.9.2.1. Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.2.1.1. Static Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.2.1.2. Total Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.9.3. Outlet (Subsonic) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3.1. Mass and Momentum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.9.3.1.1. Static Pressure (Uniform) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3.1.2. Normal Speed .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3.1.3. Cartesian Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3.1.4. Cylindrical Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3.1.5. Average Static Pressure: Over Whole Outlet ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.9.3.1.6. Average Static Pressure: Above or Below Specified Radius .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.9.3.1.7. Average Static Pressure: Circumferential ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.9.3.1.8. Mass Flow Rate: Scale Mass Flows .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.9.3.1.9. Mass Flow Rate: Shift Pressure with or without Pressure Profile ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.9.3.1.10. Mass Flow Rate: Shift Pressure with Circumferential Pressure Averaging .... . . . . . . . . . . . . 66
1.9.3.1.11. Radial Equilibrium ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.9.3.2. Turbulence, Heat Transfer, Convected Additional Variables, and Other Scalars ... . . . . . . . . . . . . . . . 67
1.9.4. Outlet (Supersonic) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.5. Opening .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.9.5.1. Mass and Momentum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.5.1.1. Cartesian Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.5.1.2. Cylindrical Velocity Components .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.5.1.3. Pressure and Direction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.9.5.1.3.1. Loss Coefficient .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9.5.2. Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.9.5.2.1. Static Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9.5.3. Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.9.6. Wall ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.6.1. Mass and Momentum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



1.9.6.1.1. No Slip (Not Moving, No Wall Velocity) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.6.1.2. Free Slip .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.6.1.3. Finite Slip .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.6.1.4. Specified Shear .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.6.1.5. No Slip (Moving, with Wall Velocity) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.9.6.2. Turbulence .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.6.3. Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.9.6.3.1. Adiabatic ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.6.3.2. Fixed Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.6.3.3. Heat Flux .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.6.3.4. Heat Transfer Coefficient .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.9.6.4. Additional Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.9.7. Symmetry Plane .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.10. Automatic Time Scale Calculation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.10.1. Fluid Time Scale Estimate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.10.2. Solid Time Scale Estimate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.11. Mesh Adaption .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.11.1. Adaption Criteria ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.11.2. Mesh Refinement Implementation in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.11.2.1. Adaption in Inflated Regions of the Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.11.2.2. Adaption to the Original Geometry .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1.11.3. Mesh Adaption Limitations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.11.3.1. Mesh Adaption Tips .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.12. Flow in Porous Media .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.12.1. Full Porous Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1.12.1.1. Heat Transfer Through the Fluid Only .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.12.1.2. Additional Variable Transfer Through the Fluid Only .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.12.1.3. Heat Transfer Through the Fluid and Solid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.12.1.4. Additional Variable Transfer Through the Fluid and Solid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.12.1.5. Time-varying Porosity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.12.2. Porous Momentum Loss Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.13. Wall and Boundary Distance Formulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.13.1. 1D Illustration of Concept .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.13.2. Concept Generalized to 3D .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.14. Wall Condensation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.14.1. Wall Condensation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1.14.1.1. Laminar Boundary Layer Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.14.1.2. Turbulent Boundary Layer Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.14.2. Condensation Heat Transfer (CHT) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.14.3. Specification of Secondary Fluxes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2. Turbulence and Wall Function Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.1. Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.1.1. Statistical Turbulence Models and the Closure Problem ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.1.1.1. Reynolds Averaged Navier-Stokes (RANS) Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2. Eddy Viscosity Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.2.1. The Zero Equation Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.2.2. Two Equation Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.2.2.1. The k-epsilon Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2.2.2. Buoyancy Turbulence .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.2.2.3. The RNG k-epsilon Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.2.2.4. The k-omega Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.2.2.4.1. The Wilcox k-omega Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.vi

ANSYS CFX-Solver Theory Guide



2.2.2.5.The Baseline (BSL) k-Omega Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.2.2.6. The Shear Stress Transport (SST) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.2.2.6.1. Blending Functions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.2.2.6.2. The Wall Scale Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.2.2.7. Production Limiters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.2.2.8. Curvature Correction for Two-Equation Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.2.3. The Eddy Viscosity Transport Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.2.3.1. Low Reynolds Number Formulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.3. Reynolds Stress Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.3.1. The Reynolds Stress Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.3.1.1. Pressure-Strain Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.3.2. Omega-Based Reynolds Stress Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.3.2.1. The Omega Reynolds Stress Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.3.2.2. The BSL Reynolds Stress Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.3.2.3. Pressure-Strain Correlation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.3.2.4. Wall Boundary Condition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.3.3. Rotating Frame of Reference for Reynolds Stress Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.3.4. Explicit Algebraic Reynolds Stress Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.3.4.1. Streamline Curvature and System Rotation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.4. ANSYS CFX Transition Model Formulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.4.1. Transition and Rough Walls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.5. Large Eddy Simulation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.5.1. Subgrid-Scale Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.5.1.1. Smagorinsky Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.5.1.1.1. Wall Damping .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.5.1.2. WALE Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2.5.1.3. Dynamic Smagorinsky-Lilly Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.6. Detached Eddy Simulation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.6.1. SST-DES Formulation Strelets et al. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.6.2. Zonal SST-DES Formulation in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.6.3. Discretization of the Advection Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.6.4. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2.7. Scale-Adaptive Simulation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.7.1. Discretization of the Advection Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.8. Modeling Flow Near the Wall ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2.8.1. Mathematical Formulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.8.1.1. Scalable Wall Functions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.8.1.2. Solver Yplus and Yplus .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.8.1.3. Automatic Near-Wall Treatment for Omega-Based Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.8.1.4. Treatment of Rough Walls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2.8.1.4.1. Rough Wall Treatment for Turbulence Models Based on the Dissipation Equa-
tion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.8.1.4.2. Automatic Rough Wall Treatment for Turbulence Models Based on the Omega
Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.8.1.4.3.Transition and Rough Walls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2.8.1.4.4. Wall Function Approach for Omega-Based Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2.8.1.5. Heat Flux in the Near-Wall Region .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.8.1.5.1. Scalable Wall Functions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.8.1.5.2. Automatic Wall Treatment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.8.1.5.3. Effect of Rough Walls ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.8.1.5.4. Treatment of Compressibility Effects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

2.8.1.6. Additional Variables in the Near Wall Region .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vii
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



3. GGI and MFR Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.1. Interface Characteristics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.2. Numerics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4. Transient Blade Row Modeling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.1. Time Transformation Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2. Fourier Transformation Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5. Multiphase Flow Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.1. Multiphase Notation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.1.1. Multiphase Total Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2. The Homogeneous and Inhomogeneous Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2.1. The Inhomogeneous Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.1.1. Interfacial Area Density .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2.1.1.1. The Particle Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.1.1.2. The Mixture Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.2.1.1.3. The Free Surface Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.2. The Homogeneous Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3. Hydrodynamic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3.1. Inhomogeneous Hydrodynamic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.3.1.1. Momentum Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.3.1.2. Continuity Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.1.3. Volume Conservation Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.1.4. Pressure Constraint ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.3.2. Homogeneous Hydrodynamic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2.1. Momentum Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2.2. Continuity Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2.3. Volume Conservation Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.2.4. Pressure Constraint ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4. Multicomponent Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.5. Interphase Momentum Transfer Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.5.1. Interphase Drag .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.5.2. Interphase Drag for the Particle Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5.2.1. Sparsely Distributed Solid Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.5.2.1.1. Schiller Naumann Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.5.2.2. Densely Distributed Solid Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.5.2.2.1. Densely Distributed Solid Particles: Wen Yu Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.5.2.2.2. Densely Distributed Solid Particles: Gidaspow Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.5.2.3. Sparsely Distributed Fluid Particles (Drops and Bubbles) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.5.2.3.1. Sparsely Distributed Fluid Particles: Ishii-Zuber Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.5.2.3.2. Sparsely Distributed Fluid Particles: Grace Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.5.2.4. Densely Distributed Fluid Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5.2.4.1. Densely Distributed Fluid Particles: Ishii-Zuber Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5.2.4.2. Densely Distributed Fluid Particles: Dense Spherical Particle Regime
(Ishii Zuber) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5.2.4.3. Densely Distributed Fluid Particles: Dense Distorted Particle Regime (Ishii
Zuber) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.5.2.4.4. Densely Distributed Fluid Particles: Dense Spherical Cap Regime (Ishii Zuber) ... . . . . 180
5.5.2.4.5. Densely Distributed Fluid Particles: Automatic Regime Selection (Ishii Zuber) ... . . . . 180
5.5.2.4.6. Densely Distributed Fluid Particles: Grace Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5.3. Interphase Drag for the Mixture Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.5.4. Interphase Drag for the Free Surface Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.5.5. Lift Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.5.5.1.The Saffman Mei Lift Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.viii

ANSYS CFX-Solver Theory Guide



5.5.5.2. The Legendre and Magnaudet Lift Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.5.5.3. The Tomiyama Lift Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.5.6. Virtual Mass Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.5.7. Wall Lubrication Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5.7.1. The Antal Wall Lubrication Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.5.7.2. The Tomiyama Wall Lubrication Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.5.7.3.The Frank Wall Lubrication Force Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.5.8. Interphase Turbulent Dispersion Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5.8.1. Favre Averaged Drag Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5.8.2. Lopez de Bertodano Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.6. Solid Particle Collision Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.6.1. Solids Stress Tensor .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6.1.1. Empirical Constitutive Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.6.1.2. Kinetic Theory Models for the Solids Stress Tensor .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6.2. Solids Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.6.2.1. Empirical Constitutive Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.6.2.2. Kinetic Theory Models for Solids Pressure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.6.3. Solids Bulk Viscosity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.3.1. Constitutive Equation Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.3.2. Kinetic Theory Models for Solids Bulk Viscosity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.6.4. Solids Shear Viscosity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.4.1. Constitutive Equation Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.4.2. Kinetic Theory Models for Solids Shear Viscosity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.6.5. Granular Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.6.5.1. Algebraic Equilibrium Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.6.5.2. Zero Equation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.7. Interphase Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.7.1. Phasic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.7.2. Inhomogeneous Interphase Heat Transfer Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.7.2.1. Overall Heat Transfer Coefficients ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.7.2.2. Particle Model Correlations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.7.2.3. Mixture Model Correlations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.7.2.4. The Two Resistance Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.7.3. Homogeneous Heat Transfer in Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.8. Multiple Size Group (MUSIG) Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.8.1. Model Derivation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.8.1.1. Population Balance Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.8.1.2. Size Fraction Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.8.1.3. Source Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.8.2. Size Group Discretization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.8.2.1. Equal Mass Discretization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.8.2.2. Equal diameter discretization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.8.2.3. Geometric Mass Discretization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.8.2.4. Comparison .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.8.3. Breakup Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.8.3.1. Luo and Svendsen Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.8.3.2. User-Defined Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.8.4. Coalescence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.8.4.1. Prince and Blanch Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.8.4.2. User-Defined Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.9. The Algebraic Slip Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.9.1. Phasic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

ix
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



5.9.2. Bulk Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.9.3. Drift and Slip Relations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.9.4. Derivation of the Algebraic Slip Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.9.5. Turbulence Effects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.9.6. Energy Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.9.7. Wall Deposition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.10.Turbulence Modeling in Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.10.1. Phase-Dependent Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.10.1.1.The Eddy Viscosity Hypothesis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.10.1.2. Algebraic Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.10.1.2.1. Zero Equation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.10.1.2.2. Dispersed Phase Zero Equation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.10.1.3. Two-Equation Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.10.1.4. Reynolds Stress Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.10.2. Turbulence Enhancement .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.10.3. Homogeneous Turbulence for Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.11. Additional Variables in Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.11.1. Additional Variable Interphase Transfer Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.11.1.1. Particle Model Correlations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.11.1.2. Mixture Model Correlations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.11.2. Homogeneous Additional Variables in Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.12. Sources in Multiphase Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.12.1. Fluid-specific Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.12.2. Bulk Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.13. Interphase Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.13.1. Secondary Fluxes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.13.2. User Defined Interphase Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.13.3. General Species Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.13.3.1. Equilibrium Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.13.3.1.1. Raoult’s Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.13.3.1.2. Henry’s Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.13.3.2.Two Resistance Model with Negligible Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.13.4. The Thermal Phase Change Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.13.4.1. Wall Boiling Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.13.4.1.1. Partitioning of the Wall Heat Flux .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.13.4.1.2. Sub-models for the Wall Boiling Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.13.4.1.2.1. Wall Nucleation Site Density .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.13.4.1.2.2. Bubble Departure Diameter .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.13.4.1.2.3. Bubble Detachment Frequency .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.13.4.1.2.4. Bubble Waiting Time .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.13.4.1.2.5. Area Influence Factors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.13.4.1.2.6. Convective Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.13.4.1.2.7. Quenching Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.13.4.1.2.8. Evaporation Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.13.4.1.3. Determination of the Wall Heat Flux Partition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.13.5. Cavitation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.13.5.1. The Rayleigh Plesset Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.13.5.2. User Defined Cavitation Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.13.6. The Droplet Condensation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.14. Free Surface Flow .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.14.1. Implementation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.14.2. Surface Tension .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.x

ANSYS CFX-Solver Theory Guide



6. Particle Transport Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.1. Lagrangian Tracking Implementation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.1.1. Calculation of Particle Variables .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.1.2. Interphase Transfer Through Source Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.2. Momentum Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.2.1. Drag Force on Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2.2. Buoyancy Force on Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.2.3. Rotation Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.2.4. Virtual or Added Mass Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.2.5. Pressure Gradient Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.2.6. Turbulence in Particle Tracking .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.2.7. Turbulent Dispersion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.3. Heat and Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.3.1. Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.3.2. Simple Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.3.3. Liquid Evaporation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.3.3.1. Extension of the Liquid Evaporation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.3.3.1.1. Examples of ideal mixtures .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.3.3.2. Determination of the Total Vapor Pressure of an Ideal Mixture .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.3.3.3. Diffusion Regime (Non-Boiling Particles) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.3.3.4. Boiling Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.3.4. Oil Evaporation/Combustion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.3.4.1. Light Oil Modification .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

6.3.5. Reactions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.3.5.1. Arrhenius Reactions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.3.5.2. Heat Release .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.3.5.3. Char Oxidation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.3.5.3.1. Field .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.3.5.3.2. Gibb .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.3.5.4. Radiative Preheating .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.3.5.5. Coal Combustion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6.3.5.5.1. Coal Combustion - Gas Phase .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.3.5.5.2. Coal Decomposition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3.5.5.3. Devolatilization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.3.6. Hydrocarbon Fuel Analysis Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.4. Basic Erosion Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.4.1. Model of Finnie .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.4.1.1. Implementation in CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6.4.2. Model of Tabakoff and Grant .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.4.2.1. Implementation in CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.4.2.1.1. Mapping of CFX to Original Tabakoff Constants .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.4.2.1.2. Constants .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.4.3. Overall Erosion Rate and Erosion Output .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.5. Spray Breakup Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

6.5.1. Primary Breakup/Atomization Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.5.1.1. Blob Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.5.1.2. Enhanced Blob Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6.5.1.2.1. Input Parameters for the Enhanced Blob Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.5.1.3. LISA Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

6.5.1.3.1. Film Formation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
6.5.1.3.2. Sheet Breakup and Atomization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.5.1.3.3. User Input Data for the LISA Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xi
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



6.5.1.4. Turbulence Induced Atomization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.5.1.4.1. User Input Data for Turbulence Induced Atomization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.5.1.5. Usage and Restrictions for Primary Breakup Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.5.2. Secondary Breakup Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.5.2.1. Breakup Regimes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.5.2.2. Numerical Approach to Breakup Modeling .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
6.5.2.3. Reitz and Diwakar Breakup Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.5.2.3.1. Bag Breakup .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.5.2.3.2. Stripping Breakup .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

6.5.2.4. Schmehl Breakup Model [] .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.5.2.4.1. Breakup Process for Schmehl Breakup Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.5.2.5. Taylor Analogy Breakup (TAB) Model [] .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
6.5.2.6. ETAB [] ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.5.2.7. Cascade Atomization and Breakup Model (CAB) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

6.5.3. Dynamic Drag Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.5.3.1. Liu [] .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.5.3.2. Schmehl [] .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

6.6. Particle Collision Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.6.1. Introduction to the Particle Collision Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.6.1.1. Background Information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.6.2. Implementation of a Stochastic Particle-Particle Collision Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . 286

6.6.2.1. Implementation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
6.6.2.1.1. Particle Collision Coefficients Used for Particle-Particle Collision Model ... . . . . . . . . . . . . . 288
6.6.2.1.2. Particle Variables Used for Particle-Particle Collision Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

6.6.2.1.2.1. Particle Number Density .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.6.2.1.2.2. Turbulent Stokes Number .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.6.2.1.2.3. Standard Deviation of Particle Quantities ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.6.2.1.2.4. Integration Time Step Size (User Fortran Only) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

6.6.3. Range of Applicability of Particle-Particle Collision Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
6.6.4. Limitations of Particle-Particle Collision Model in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.7. Particle-Wall Interaction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.7.1. Introduction to Particle-Wall Interaction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

6.7.1.1. Background Information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
6.7.2. The Elsaesser Particle-Wall Interaction Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

6.7.2.1. Classification of Impact Regimes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
6.7.2.1.1. Cold Wall with Wall Film (TWall < TPA) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.7.2.1.2. Hot Wall with Wall Film (TPA < TWall < TRA) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.7.2.1.3. Hot Wall Without Wall Film (TWall > TRa) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

6.7.2.2. Wall Roughness .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
6.7.2.3. Range of Applicability, Input Data and Restrictions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.7.3. Stick-to-Wall Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
6.7.4. The Sommerfeld-Frank Rough Wall Model (Particle Rough Wall Model) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.8. Quasi Static Wall Film Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
6.8.1. Assumptions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.8.2. Determination of Flooded Regime .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.8.3. Energy Transfer to and from the Wall Film .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

6.8.3.1. Conductive Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.8.3.1.1. Non-flooded Regime .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.8.3.1.2. Flooded Regime .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

6.8.3.2. Convective Heat Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.8.3.2.1. Non-flooded Regime .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.8.3.2.2. Flooded Regime .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xii

ANSYS CFX-Solver Theory Guide



6.8.3.3. Calculation of the Average Wall Film Temperature .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.8.3.4. Evaporation from Film .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

6.8.3.4.1. Non-flooded Regime (Non-boiling) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.8.3.4.2. Flooded Regime (Non-boiling) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.8.3.4.3. Flooded and Non-flooded Regime (Boiling Particles) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

6.8.4. Mass Transfer to and from the Wall Film .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.8.5. Wall Film Thickness .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.8.6. Wall Film in Moving Mesh Applications .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

6.8.6.1.Wall Film Moving with Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
6.8.6.2.Wall Film Moving Relative to Underlying Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

6.8.7. User Control for Heat and Mass Transfer Terms of Wall Particles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
7. Combustion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

7.1. Transport Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.2. Chemical Reaction Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
7.3. Fluid Time Scale for Extinction Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
7.4. The Eddy Dissipation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

7.4.1. Reactants Limiter ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.4.2. Products Limiter ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.4.3. Maximum Flame Temperature Limiter ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.5. The Finite Rate Chemistry Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.5.1. Third Body Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7.6.The Combined Eddy Dissipation/Finite Rate Chemistry Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.7. Combustion Source Term Linearization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.8.The Flamelet Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

7.8.1. Laminar Flamelet Model for Non Premixed Combustion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.8.2. Coupling of Laminar Flamelet with the Turbulent Flow Field .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
7.8.3. Flamelet Libraries ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

7.9. Burning Velocity Model (Premixed or Partially Premixed) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.9.1. Reaction Progress .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.9.2. Weighted Reaction Progress .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.10. Burning Velocity Model (BVM) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.10.1. Equivalence Ratio, Stoichiometric Mixture Fraction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.11. Laminar Burning Velocity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
7.11.1. Value .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
7.11.2. Equivalence Ratio Correlation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

7.11.2.1. Fifth Order Polynomial ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.11.2.2. Quadratic Decay .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.11.2.3. Beta Function .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.11.2.4. Residual Material Dependency .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
7.11.2.5. Metghalchi and Keck .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.12. Turbulent Burning Velocity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.12.1. Value .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.12.2. Zimont Correlation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.12.3. Peters Correlation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.12.4. Mueller Correlation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

7.13. Extended Coherent Flame Model (ECFM) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.13.1.Turbulent Flame Stretch .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.13.2. Laminar Flame Thickness .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.13.3. Wall Quenching Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.14. Residual Material Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.14.1. Exhaust Gas Recirculation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.14.2. Principal Variables and Transport Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

xiii
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



7.14.3. Mixture Composition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
7.14.4. Reinitialization for Subsequent Engine Cycles .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.14.5. Equivalence Ratio and Conditional Fresh/Residual Mixtures .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

7.15. Spark Ignition Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.16. Autoignition Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

7.16.1. Ignition Delay Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
7.16.2. Knock Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
7.16.3. Ignition Delay Time .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

7.16.3.1. Douaud and Eyzat ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.16.3.2. Hardenberg and Hase .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

7.17. Phasic Combustion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.18. NO Formation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

7.18.1. Formation Mechanisms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7.18.1.1. Thermal NO .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7.18.1.2. Prompt NO ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.18.1.3. Fuel Nitrogen .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.18.1.4. NO Reburn .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.18.1.5. Turbulence Effects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.18.1.6. Temperature Variance Equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
7.18.1.7. Model Control ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

7.18.1.7.1. Adjusting Model Coefficients ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
7.18.1.7.2. User Defined NO Formation Mechanisms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

7.19. Chemistry Post-Processing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
7.20. Soot Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

7.20.1. Soot Formation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
7.20.2. Soot Combustion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
7.20.3. Turbulence Effects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8. Radiation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1. Radiation Transport ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.1.1. Blackbody Emission .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
8.1.2. Quantities of Interest ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.1.2.1. Optical Thickness .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.1.3. Radiation Through Domain Interfaces .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

8.2. Rosseland Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
8.2.1. Wall Treatment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

8.3. The P1 Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.3.1. Wall Treatment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

8.4. Discrete Transfer Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.5. Monte Carlo Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

8.5.1. Monte Carlo Statistics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.6. Spectral Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

8.6.1. Gray .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.6.2. Multiband Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.6.3. Weighted Sum of Gray Gases .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

8.6.3.1. Weighted Sum of Gray Gases Model Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
9. Electromagnetic Hydrodynamic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

9.1. Electromagnetic Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.1.1. Constitutive Relationships .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
9.1.2. Magnetohydrodynamics (MHD) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.1.3. Electrohydrodynamics (EHD) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.1.4. Ferrohydrodynamics (FHD) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.1.5. Electromagnetic Basics: Potential Formulation in ANSYS CFX .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xiv

ANSYS CFX-Solver Theory Guide



9.1.6. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
9.1.7. Transformed Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
9.1.8. Conductive Media Approximation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

9.2. Fluid Dynamics Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10. Rigid Body Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

10.1. Equations of Motion of Rigid Body .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
10.2. Rigid Body Solution Algorithms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

10.2.1. Translational Equations of Motion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
10.2.1.1. Newmark Integration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

10.2.2. Rotational Equations of Motion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.2.2.1. First Order Backward Euler ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.2.2.2. Simo Wong Algorithm ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

11. Discretization and Solution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
11.1. Numerical Discretization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

11.1.1. Discretization of the Governing Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
11.1.1.1. Order Accuracy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
11.1.1.2. Shape Functions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.1.1.2.1. Hexahedral Element .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
11.1.1.2.2. Tetrahedral Element .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
11.1.1.2.3. Wedge Element .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
11.1.1.2.4. Pyramid Element .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

11.1.1.3. Control Volume Gradients .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
11.1.1.4. Advection Term ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

11.1.1.4.1. 1st Order Upwind Differencing Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.1.1.4.2. Specified Blend Factor ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.1.1.4.3. Central Difference Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
11.1.1.4.4. Bounded Central Difference Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
11.1.1.4.5. High Resolution Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

11.1.1.5. Diffusion Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
11.1.1.6. Pressure Gradient Term ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
11.1.1.7. Mass Flows .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

11.1.1.7.1. Pressure-Velocity Coupling .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11.1.1.7.2. Compressibility ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

11.1.1.8. Transient Term ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
11.1.1.9. Mesh Deformation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

11.1.2. The Coupled System of Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.2. Solution Strategy - The Coupled Solver ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

11.2.1. General Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.2.2. Linear Equation Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

11.2.2.1. Algebraic Multigrid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
11.2.3. Residual Normalization Procedure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

11.3. Discretization Errors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
11.3.1. Controlling Error Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
11.3.2. Controlling Error Propagation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Index .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

xv
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ANSYS CFX-Solver Theory Guide



Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xvi



Chapter 1: Basic Solver Capability Theory

This chapter describes the mathematical equations used to model fluid flow, heat, and mass transfer
in ANSYS CFX for single-phase, single and multi-component flow without combustion or radiation. It is
designed to be a reference for those users who desire a more detailed understanding of the mathem-
atics underpinning the CFX-Solver, and is therefore not essential reading. It is not an exhaustive text
on CFD mathematics; a reference section is provided should you want to follow up this chapter in more
detail.

This chapter describes:
1.1. Documentation Conventions
1.2. Governing Equations
1.3. Buoyancy
1.4. Immersed Solids
1.5. Multicomponent Flow
1.6. Additional Variables
1.7. Rotational Forces
1.8. Sources
1.9. Boundary Conditions
1.10. Automatic Time Scale Calculation
1.11. Mesh Adaption
1.12. Flow in Porous Media
1.13.Wall and Boundary Distance Formulation
1.14.Wall Condensation Theory

For information on dealing with multiphase flow:

• Multiphase Flow Theory (p. 165)

• Particle Transport Theory (p. 239)

For information on combustion and radiation theory:

• Combustion Theory (p. 305)

• Radiation Theory (p. 351)

Descriptions of the theory for other physical models are provided in:

• Turbulence and Wall Function Theory (p. 89)

• GGI and MFR Theory (p. 155)

• Transient Blade Row Modeling Theory (p. 159)

• Electromagnetic Hydrodynamic Theory (p. 363)

• Rigid Body Theory (p. 371)

• Discretization and Solution Theory (p. 375)

• Wall Condensation Theory (p. 83)
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Recommended books for further reading on CFD and related subjects:

• Further Background Reading in the CFX Introduction

1.1. Documentation Conventions

The topics in this section are:

• Dimensions (p. 2)

• List of Symbols (p. 2)

• Variable Definitions (p. 7)

• Mathematical Notation (p. 22)

1.1.1. Dimensions

Throughout this manual, dimensions are given in terms of the fundamental magnitudes of length ( ),

mass ( ), time ( ), temperature (�) and chemical amount ( ).

1.1.2. List of Symbols

This section lists symbols used in this chapter, together with their meanings, dimensions and where
applicable, values. Dimensionless quantities are denoted by 1. The values of physical constants (or their
default values) are also given.

More information on the notation used in the multiphase and multicomponent chapters is available:

• Multiphase Notation (p. 165)

• Multicomponent Notation (p. 44).

ValueDimensionsDescriptionSym-

bol

− − −
�

� � �linear energy source coeffi-
cient

��

− −� �linear resistance coefficient�	 


−�quadratic resistance coeffi-
cient

�
 �

�-� turbulence model con-
stant

�� �

− �
�

RNG �-� turbulence model
coefficient

�� ����

�-� turbulence model con-
stant

 ! "

RNG #-$ turbulence model
constant

%& '()*

+-, turbulence model con-
stant

-.
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ValueDimensionsDescriptionSym-

bol

Reynolds Stress model con-
stant

�� ��

RNG �-� turbulence model
constant

�� �	


−�fluid speed of sound�

−
concentration of components
A and B (that is, mass per

� �� �

unit volume of components
A and B (single-phase flow))

Reynolds Stress model con-
stant

��

− −
�

� ��specific heat capacity at con-
stant pressure

��

− −
�

� ��specific heat capacity at con-
stant volume

��

Reynolds Stress model con-
stant

� !

Reynolds Stress model con-
stant

"# $

−%&binary diffusivity of compon-
ent A in component B

'()

−*+kinematic diffusivity of an

Additional Variable, , -.

/0

distance or length1

constant used for near-wall
modeling

2

Zero Equation turbulence
model constant

3
4

RNG-5-6 turbulence model
coefficient

7
8

−9gravity vector:

For details,
see Static En-

thalpy (p. 8).

−;<specific static (thermodynam-
ic) enthalpy

= =>?@?

Hartmann Number: the ratio
of the Lorentz forces to the
viscous forces.

AB

= 





CD EF
G

H

I
J

− −
K

L Mheat transfer coefficientNO
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ValueDimensionsDescriptionSym-

bol

For details,
see Total En-

thalpy (p. 10).

−��specific total enthalpy����

−��turbulence kinetic energy per
unit mass

�

local Mach number,� 	


−�mass flow rate�

− −
 �shear production of turbu-
lence

��

For details,
see Static

− −� �static (thermodynamic) pres-
sure

� �
����

Pres-

sure (p. 8).

For details,
see Reference

− −� �reference pressure�
���

Pres-

sure (p. 7).

For details,
see Total Pres-

sure (p. 16).

− −� �total pressure�
 ! 

For details,
see Modified

− −" #modified pressure′$

Pres-

sure (p. 8).

− −
%

& '(universal gas constant)*

Reynolds number, + , - ./0

Magnetic Reynolds Number:
the ratio between the mag-

123

netic advection and magnetic
diffusion.

=456
78

9

location vector:

volume fraction of phase ;<=

− −> ?energy source@A

− −B Bmomentum sourceCD

− −E Fmass sourceGH I

turbulent Schmidt number,

J K
L L

MNO
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ValueDimensionsDescriptionSym-

bol

Stanton number��

−�mass flow rate from phase �

to phase .

�� �

For details,
see Static

�static (thermodynamic) tem-
perature

� �	
�


Temperat-

ure (p. 10).

For details,
see Domain

�domain temperature
���

Temperat-

ure (p. 10).

�buoyancy reference temperat-
ure used in the Boussinesq
approximation

����

�saturation temperature����

For details,
see Total

�total temperature����

Temperat-

ure (p. 11).

−�vector of velocity  ! " #$ $%

−&velocity magnitude'

−(fluctuating velocity compon-
ent in turbulent flow

)

− −* +fluid viscous and body force
work term

,-

molecular weight (Ideal Gas
fluid model)

.

mass fraction of component
A in the fluid

/0

used as a subscript to indic-
ate that the quantity applies
to phase 1

2

used as a subscript to indic-
ate that the quantity applies

to phase 3

4

−
5
6coefficient of thermal expan-

sion (for the Boussinesq ap-
proximation)

7

RNG 8-9 turbulence model
constant

:
;<=

− −> >diffusivity?

5
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ValueDimensionsDescriptionSym-

bol

− −� �molecular diffusion coeffi-

cient of component �
��

− −� �dynamic diffusivity of an Ad-
ditional Variable

��

− −� �turbulent diffusivity�	

identity matrix or Kronecker
Delta function




−��turbulence dissipation rate


− −� �bulk viscosity�

Von Karman constant�

− −
�

� �thermal conductivity�

− −� �molecular (dynamic) viscosity�

− −� �turbulent viscosity�
�

− −� �effective viscosity, +� �
�

�
���

− density!

laminar Prandtl number,

" # $%

&'

turbulent Prandtl number,

( ) *
+ +,

-./

turbulence model constant

for the 0 equation

12

3-4 turbulence model con-
stant

56

7-8 turbulence model con-
stant

9:

Reynolds Stress model con-
stant

;< =>

RNG ?-@ turbulence model
constant

AB CDE

RNG F-G turbulence model
constant

HI JKL

− −M Nshear stress or sub-grid scale
stress

O

molecular stress tensor

−P Qspecific volumeR
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ValueDimensionsDescriptionSym-

bol

−�Additional Variable (non-react-
ing scalar)

�

general scalar variable�

−�angular velocity�

1.1.2.1. Subscripts

Quantities that appear with subscripts �, �,� refer to that quantity for component �, 	,
 in a mul-
ticomponent fluid.

Quantities that appear with subscripts �, �, 
 refer to that quantity for phase �, �, � in a multiphase

flow.

Such quantities are used only in the chapters describing multicomponent and multiphase flows.

• Multicomponent Flow (p. 44)

• Multiphase Flow Theory (p. 165)

1.1.3. Variable Definitions

1.1.3.1. Isothermal Compressibility

The isothermal compressibility defines the rate of change of the system volume with pressure. For details,
see Variables Relevant for Compressible Flow in the CFX Reference Guide.

(1–1)




















�

��

��
�

1.1.3.2. Isentropic Compressibility

Isentropic compressibility is the extent to which a material reduces its volume when it is subjected to
compressive stresses at a constant value of entropy. For details, see Variables Relevant for Compressible
Flow in the CFX Reference Guide.

(1–2)




















�

��

��
�

1.1.3.3. Reference Pressure

The Reference Pressure Equation 1–3 (p. 8) is the absolute pressure datum from which all other
pressure values are taken. All relative pressure specifications in ANSYS CFX are relative to the Reference
Pressure . For details, see Setting a Reference Pressure in the CFX-Solver Modeling Guide.

7
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(1–3)����

1.1.3.4. Static Pressure

CFX solves for the relative Static Pressure  (thermodynamic pressure) Equation 1–4 (p. 8) in the
flow field, and is related to Absolute Pressure Equation 1–5 (p. 8).

(1–4)�
����

(1–5)= +� � �
	
� ��	� 
��

1.1.3.5. Modified Pressure

A modified pressure is used in the following circumstances:

• When certain turbulence models are used, (for example �-�, �-�, and Reynolds Stress), the modified
pressure includes an additional term due to the turbulent normal stress. For details, see Equa-

tion 2–14 (p. 93).

• When buoyancy is activated, the modified pressure excludes the hydrostatic pressure field. For details,
see Buoyancy and Pressure.

1.1.3.6. Static Enthalpy

Specific static enthalpy Equation 1–6 (p. 8) is a measure of the energy contained in a fluid per unit
mass. Static enthalpy is defined in terms of the internal energy of a fluid and the fluid state:

(1–6)= +� �
�

�
���� ����

����

����

When you use the thermal energy model, the CFX-Solver directly computes the static enthalpy. General
changes in enthalpy are also used by the solver to calculate thermodynamic properties such as temper-
ature. To compute these quantities, you need to know how enthalpy varies with changes in both tem-
perature and pressure. These changes are given by the general differential relationship Equa-

tion 1–7 (p. 8):

(1–7)= 


∂
∂




+





∂
∂




��

�

�
��

�

�
��

�  

which can be rewritten as Equation 1–8 (p. 9)
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(1–8)= +






+ 


∂
∂










�� � ��
�

�

�

�

�
���

�

where �� is specific heat at constant pressure and 	 is density. For most materials the first term always

has an effect on enthalpy, and, in some cases, the second term drops out or is not included. For example,
the second term is zero for materials that use the Ideal Gas equation of state or materials in a solid
thermodynamic state. In addition, the second term is also dropped for liquids or gases with constant
specific heat when you run the thermal energy equation model.

1.1.3.6.1. Material with Variable Density and Specific Heat

In order to support general properties, which are a function of both temperature and pressure, a table

for 
 � �  is generated by integrating Equation 1–8 (p. 9) using the functions supplied for 
 and

��. The enthalpy table is constructed between the upper and lower bounds of temperature and pressure

(using flow solver internal defaults or those supplied by the user). For any general change in conditions

from � �
�� �

 to � �
�� �

, the change in enthalpy, ��, is calculated in two steps: first at constant

pressure, and then at constant temperature using Equation 1–9 (p. 9).

(1–9)∫ ∫− = +






+ 


∂
∂










� � � ��
 

�

 

 

�
�!

"

"

#
#

#

#

$ %

&

'

&

'

To successfully integrate Equation 1–9 (p. 9), the CFX-Solver must be provided thermodynamically
consistent values of the equation of state, (, and specific heat capacity, )*. “Thermodynamically consist-

ent” means that the coefficients of the differential terms of Equation 1–8 (p. 9) must satisfy the exact
differential property that:

(1–10)
∂
∂




∂
∂




= ∂
∂






∂
∂






+

,

- -

,

+
. / /

.

or, in terms of the expressions given in Equation 1–9 (p. 9):

(1–11)





∂
∂




 =














∂
∂




 −




 +









∂
∂




+








0

1 2

3
2

3

3

2

2

3

4

5 4
4

6

6

6

To satisfy 78 in Equation 1–11 (p. 9), variables of the form '<Material Name>.Property Residual' are

computed and should resolve to zero.

The equation of state derivative within the second integral of Equation 1–9 (p. 9) is numerically evaluated
from the using a two point central difference formula. In addition, the CFX-Solver uses an adaptive
number of interpolation points to construct the property table, and bases the number of points on an
absolute error tolerance estimated using the enthalpy and entropy derivatives.
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1.1.3.7. Total Enthalpy

Total enthalpy is expressed in terms of a static enthalpy and the flow kinetic energy:

(1–12)= + ⋅� �� ���� ����

where � is the flow velocity. When you use the total energy model the CFX-Solver directly computes
total enthalpy, and static enthalpy is derived from this expression. In case of turbulence models for

which the kinetic turbulent energy � is available (such as k-epsilon, k-omega, SST, and so on), � is included
in the total enthalpy. In rotating frames of reference, the total enthalpy includes the relative frame
kinetic energy. For details, see Rotating Frame Quantities (p. 18).

1.1.3.8. Domain Temperature

The domain temperature,	
��, is the absolute temperature at which an isothermal simulation is per-

formed. For details, see Isothermal in the CFX-Solver Modeling Guide.

1.1.3.9. Static Temperature

The static temperature,
����, is the thermodynamic temperature, and depends on the internal energy

of the fluid. In ANSYS CFX, depending on the heat transfer model you select, the flow solver calculates
either total or static enthalpy (corresponding to the total or thermal energy equations).

The static temperature is calculated using static enthalpy and the constitutive relationship for the ma-
terial under consideration. The constitutive relation simply tells us how enthalpy varies with changes
in both temperature and pressure.

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
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1.1.3.9.1. Material with Constant Density and Specific Heat

In the simplified case where a material has constant � and ��, temperatures can be calculated by integ-

rating a simplified form of the general differential relationship for enthalpy:

(1–13)− = −� � � � ����	� 
�� ��	� 
��

which is derived from the full differential form for changes in static enthalpy. The default reference

state in the CFX-Solver is =
 ����  and =� � � ���� .

1.1.3.9.2. Ideal Gas or Solid with cp=f(T)

The enthalpy change for an ideal gas or CHT solid with specific heat as a function of temperature is
defined by:

(1–14)∫− =� � � � ��

�

�

�� ! "#$

%&'

()*)

When the solver calculates static enthalpy, either directly or from total enthalpy, you can back static
temperature out of this relationship. When +, varies with temperature, the CFX-Solver builds an enthalpy

table and static temperature is backed out by inverting the table.

1.1.3.9.3. Material with Variable Density and Specific Heat

To properly handle materials with an equation of state and specific heat that vary as functions of tem-
perature and pressure, the CFX-Solver needs to know enthalpy as a function of temperature and pressure,

- . / .

0 1 2  can be provided as a table using, for example, an .rgp  file. If a table is not pre-supplied,

and the equation of state and specific heat are given by CEL expressions or CEL user functions, the CFX-

Solver will calculate 3 4 5  by integrating the full differential definition of enthalpy change.

Given the knowledge of 6 7 8  and that the CFX-Solver calculates both static enthalpy and static

pressure from the flow solution, you can calculate static temperature by inverting the enthalpy table:

(1–15)− = −9 9 9 : ; 9 : ;<=>= ?@A <=>= <=>= ?@A ?@A

In this case, you know BCDED, F
GHIH

 from solving the flow and you calculate JKLML by table inversion.

1.1.3.10. Total Temperature

The total temperature is derived from the concept of total enthalpy and is computed exactly the same
way as static temperature, except that total enthalpy is used in the property relationships.
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1.1.3.10.1. Material with Constant Density and Specific Heat

If � and �� are constant, then the total temperature and static temperature are equal because incom-

pressible fluids undergo no temperature change due to addition of kinetic energy. This can be illustrated
by starting with the total enthalpy form of the constitutive relation:

(1–16)− = −� � � � ����� 	
� ��� 	
�

and substituting expressions for Static Enthalpy (p. 8) and Total Pressure (p. 16) for an incompressible
fluid:

(1–17)= + ⋅� �
 
��� ����

(1–18)= + ⋅� �� � �
��� ����

some rearrangement gives the result that:

(1–19)=� ���� ����

for this case.

1.1.3.10.2. Ideal Gas with constant cp

For this case, enthalpy is only a function of temperature and the constitutive relation is:

(1–20)− = −� � �   !"#$ "#$

which, if one substitutes the relation between static and total enthalpy, yields:

(1–21)= + ⋅% %
& &

'(
)*) +),)

If the −- . turbulence model is employed, turbulence kinetic energy, /, is added to the total enthalpy,
giving the modified total temperature for constant 01:

(1–22)= + ⋅ +2 2
3 3

4

5

46 6
787 97:7

1.1.3.10.3. Ideal Gas with cp = f(T)

The total temperature is evaluated with:
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(1–23)∫− =� � � � ��

�

�

���� �	


��


���

using table inversion to back out the total temperature.

1.1.3.10.4. Material with Variable Density and Specific Heat

In this case, total temperature is calculated in the exact same way as static temperature except that
total enthalpy and total pressure are used as inputs into the enthalpy table:

(1–24)− = −� � � � � � � ���� ��� ��� ��� ��� ���

In this case you know ����, and you want to calculate ����, but you do not know �
� �

. So, before calcu-

lating the total temperature, you need to compute total pressure. For details, see Total Pressure (p. 16).

For details, see Rotating Frame Quantities (p. 18).

1.1.3.11. Entropy

The concept of entropy arises from the second law of thermodynamics:

(1–25)= −! "# "$
"%

&

which can be rearranged to give:

(1–26)= −'(
')

*

'+

, *

Depending on the equation of state and the constitutive relationship for the material, you can arrive
at various forms for calculating the changes in entropy as a function of temperature and pressure.

1.1.3.11.1. Material with Constant Density and Specific Heat

In this case, changes in enthalpy as a function of temperature and pressure are given by:

(1–27)= +-. / -0
-1

2
3

and when this is substituted into the second law gives the following expression for changes in entropy
as a function of temperature only:
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(1–28)=�� �
��

�
�

which, when integrated, gives an analytic formula for changes in entropy:

(1–29)− =








� � �

�

�
�	
�

	
�

1.1.3.11.2. Ideal Gas with constant cp or cp = f(T)

For ideal gases changes in entropy are given by the following equation:

(1–30)∫− = −








� �


 �

�
�� �

�

��

�

�
���

������

which for general functions for �� the solver computes an entropy table as a function of both temper-

ature and pressure. In the simplified case when �� is a constant, then an analytic formula is used:

(1–31)− =








 −









� � �

 

 
!

"

"
#$%&

$%& $%&

1.1.3.11.3. Material with Variable Density and Specific Heat

This is the most general case handled by the CFX-Solver. The entropy function, ' ( ) , is calculated

by integrating the full differential form for entropy as a function of temperature and pressure. Instead
of repetitively performing this integration the CFX-Solver computes a table of values at a number of
temperature and pressure points. The points are chosen such that the approximation error for the entropy
function is minimized.

The error is estimated using derivatives of entropy with respect to temperature and pressure. Expressions
for the derivatives are found by substituting the formula for general enthalpy changes into the second
law to get the following expression for changes in entropy with temperature and pressure:

(1–32)= + 


∂
∂




*+
,

-
*-

.

.

-
*/

0

0
1

which when compared with the following differential form for changes in entropy:

(1–33)= 


∂
∂




+





∂
∂




23

3

4
24

3

5
25

6 7

gives that:
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(1–34)



∂
∂




=�

�

�

�
�

�

(1–35)





∂
∂




 = 


∂
∂




�

� �

�

�
� 	




The derivative of entropy with respect to temperature is exactly evaluated, while the derivative with
respect to pressure must be computed by numerically differentiating the equation of state. Note that
when properties are specified as a function of temperature and pressure using CEL expressions the
differential terms in Equation 1–32 (p. 14) must also satisfy the exact differential relationship:

(1–36)
∂
∂




∂
∂




= ∂
∂






∂
∂






�

�


 


�

�
� � �

�

or,

(1–37)
∂
∂







= ∂
∂










∂
∂








�

�

� � �

�

�
�

�

� �
�

Also, see the previous section on Static Enthalpy (p. 8) for more details.

Unless an externally provided table is supplied, an entropy table is built by using the � and �� functions

supplied by the user and integrating the general differential form:

(1–38)∫ ∫− = + 


∂
∂




� �
�

�
��

�

�

�
��

 

 

!

!

!

!

" # $

%

&

%

&

To calculate total pressure, you also need to evaluate entropy as a function of enthalpy and pressure,
rather than temperature and pressure. For details, see Total Pressure (p. 16).

The recipe to do this is essentially the same as for the temperature and pressure recipe. First, you start

with differential form for ' ( ) :

(1–39)= 


∂
∂




+





∂
∂




*+

+

,
*,

+

-
*-

. /

and comparing this with a slightly rearranged form of the second law:
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(1–40)= −��
��

�

��

� �

you get that:

(1–41)



∂
∂




=�

� �
	

(1–42)





∂
∂




 = −


� � 

�

In this case, the entropy derivatives with respect to � and � can be evaluated from the constitutive re-

lationship � � �  (getting �  from � and � by table inversion) and the equation of state � � � .

Points in the � � �  table are evaluated by performing the following integration:

(1–43)∫ ∫− = −� �
�

� 
! �

�"

#

#

$

$

%&'

()* ()*

over a range of + and ,, which are determined to minimize the integration error.

1.1.3.12. Total Pressure

The total pressure, -
./.

, is defined as the pressure that would exist at a point if the fluid was brought

instantaneously to rest such that the dynamic energy of the flow converted to pressure without losses.
The following three sections describe how total pressure is computed for a pure component material
with constant density, ideal gas equation of state and a general equation of state (CEL expression or
RGP table). For details, see Multiphase Total Pressure (p. 166).

The terms Pressure and Total Pressure are absolute quantities and must be used to derive the Total
Pressure when using an equation of state (compressible) formulation (particularly for Equa-

tion 1–48 (p. 17)).

The setting of the Total Pressure Option, described in Compressibility Control in the CFX-Pre User's

Guide, determines which equation is used to derive the total pressure.

1.1.3.12.1. Incompressible Fluids

For incompressible flows, such as those of liquids and low speed gas flows, the total pressure is given
by Bernoulli’s equation:

(1–44)= + ⋅0 01 1 2
343 5363

which is the sum of the static and dynamic pressures.
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1.1.3.12.2. Ideal Gases

When the flow is compressible, total pressure is computed by starting with the second law of thermo-
dynamics assuming that fluid state variations are locally isentropic so that you get:

(1–45)=��
��

�

The left hand side of this expression is determined by the constitutive relation and the right hand side
by the equation of state. For an ideal gas, the constitutive relation and equation of state are:

(1–46)=�� � � ���

(1–47)=	 


� �

which, when substituted into the second law and assuming no entropy variations, gives:

(1–48)∫=

















 

�

� �

�
��

�

�

�

��� ����
����

���

where ����� and  !"! are the static and total temperatures respectively (calculation of these quantities

was described in two previous sections, Static Temperature (p. 10) and Total Temperature (p. 11)). If #$

is a constant, then the integral can be exactly evaluated, but if %& varies with temperature, then the

integral is numerically evaluated using quadrature. For details, see:

• Entropy (p. 13)

• Ideal Gas Equation of State (p. 28).

1.1.3.12.3. Material with Variable Density and Specific Heat

Total pressure calculations in this case are somewhat more involved. You need to calculate total pressure
given the static enthalpy and static pressure, which the CFX-Solver solves for. You also want to assume
that the local state variations, within a control volume or on a boundary condition, are isentropic.

Given that you know ' ( )  (from integrating the differential form for enthalpy) and * + , , you

can compute two entropy functions - . /  and 0 1 2 . There are two options for generating these

functions:

• If 3 4 5  and 6 7 8  are provided by a .rgp  file then 9 : ;  is evaluated by interpolation from

< = >  and ? @ A  tables.

• If CEL expressions have been given for B and CD only, then E F G , H I J  and K L M  are all

evaluated by integrating their differential forms.
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Once you have the � � �  table, calculated as described in Entropy (p. 13), computing total pressure

for a single pure component is a relatively trivial procedure:

1. The CFX-Solver solves for ���� and �
��	�

2. Calculate 
��
� from ����

3. Calculate entropy =� � � ����� ���� ����

4. Using the isentropic assumption set =� ���� ����

5. Calculate total pressure by inverting =� � � �� � � � � �

For details, see Rotating Frame Quantities (p. 18).

1.1.3.13. Shear Strain Rate

The strain rate tensor is defined by:

(1–49)=





∂
∂

+
∂
∂




!

"

#

"

#
$%

$

%

%

$

This tensor has three scalar invariants, one of which is often simply called the shear strain rate:

(1–50)=






∂
∂







&

'
(

)

*
)*

+
,

with velocity components -.,/0,12, this expands to:

(1–51)

=















∂
∂




+





∂
∂




 + 


∂
∂










+





∂
∂

+
∂
∂




 + 


∂
∂

+ ∂
∂




+





∂
∂

+ ∂
∂













3

4

3

5

3

6

3

5

3

4

3

6

3

4

3

6

3

5

7 8 9

7 8 7 9 8 9

:
;

< < <

< < <

The viscosity of non-Newtonian fluids is often expressed as a function of this scalar shear strain rate.

1.1.3.14. Rotating Frame Quantities

The velocity in the rotating frame of reference is defined as:
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(1–52)= − ×� � � ���� ���

where 	 is the angular velocity, 
 is the local radius vector, and ��
� is velocity in the stationary frame

of reference.

1.1.3.14.1. Incompressible Fluids

For incompressible flows, the total pressure is defined as:

(1–53)= + ⋅ − × ⋅ ×� � � � � �� � �
��� ���� ��� ���

where �
����

 is static pressure. The stationary frame total pressure is defined as:

(1–54)= + ⋅� �  !
"#"$%"& %"'" %"& %"&

1.1.3.14.2. Ideal Gases

For compressible flows relative total pressure, rotating frame total pressure and stationary frame total
pressure are computed in the same manner as in Total Pressure (p. 16). First you start with the relative
total enthalpy, rothalpy and stationary frame total enthalpy:

(1–55)= + ⋅( () )*+* ,*-* ./0 ./0

(1–56)= + ⋅ − × ⋅ ×1 1 2 3 2 34 56787 9:; 9:;

(1–57)= + ⋅< <= =>?>@A>B A>C> A>B A>B

where DEFGF is the static enthalpy. In a rotating frame of reference, the CFX-Solver solves for the total

enthalpy, HIJI, which includes the relative kinetic energy.

Important

Rothalpy K  is not a positive definite quantity. If the rotation velocity is large, then the

last term can be significantly larger than the static enthalpy plus the rotating frame kinetic
energy. In this case, it is possible that total temperature and rotating total pressure are un-
defined and will be clipped at internal table limits or built in lower bounds. However, this is
only a problem for high angular velocity rotating systems.

If you again assume an ideal gas equation of state with variable specific heat capacity you can compute
relative total temperature, total temperature and stationary frame total temperature using:
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(1–58)∫− =� � � � ��

�

�

���� �	


��


�������

and:

(1–59)∫− =� � � � ��

�

�

����

���

� �

and:

(1–60)∫− =! ! " # $#

%

%

&'(')*'+ ,-.

/01

2324526

where all the total temperature quantities are obtained by inverting the enthalpy table. If 78 is constant,

then these values are obtained directly from these definitions:

(1–61)= + ⋅9 9
: :

;<
=>=?@AB C=D=

@AB @AB

(1–62)= + ⋅ − × ⋅ ×E E F G F G
H H

IJ
KLK MKNK

OPQ OPQ

(1–63)= + ⋅R R
S S

TU
VWVXYVZ YV[V

YVZ YVZ

At this point, given \]^]_`ab, cded, fghgijgk, l
mnon

 and pqrsr you can compute relative total pressure, total

pressure or stationary frame total pressure using the relationship given in the section describing total
pressure. For details, see Total Pressure (p. 16).

The names of the various total enthalpies, temperatures, and pressures when visualizing results in CFD-
Post or for use in CEL expressions is as follows.

Table 1.1  Variable naming: Total Enthalpies, Temperatures, and Pressures

Short Variable

Name

Long Variable

Name

Variable

htotTotal Enthalpy
tuvu

rothalpyRothalpyw
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Short Variable

Name

Long Variable

Name

Variable

htotstnTotal Enthalpy in
Stn Frame

��������

TtotrelTotal Temperat-
ure in Rel Frame

����	
��

TtotTotal Temperat-
ure


���

TtotstnTotal Temperat-
ure in Stn Frame

��������

ptotrelTotal Pressure in
Rel Frame

��������

ptotTotal Pressure
����

ptotstnTotal Pressure in
Stn Frame

 !"!#$!%

The Mach Number and stationary frame Mach numbers are defined as:

(1–64)= &
'

(

)*+

(1–65)= ,
-

.
/01

/01

where 2 is the local speed of sound.

1.1.3.14.3. Material with Variable Density and Specific Heat

Rotating and stationary frame total temperature and pressure are calculated the same way as described
in Total Temperature (p. 11) and Total Pressure (p. 16). The only changes in the recipes are that rotating

frame total pressure and temperature require rothalpy, 3, as the starting point and stationary frame

total pressure and temperature require stationary frame total enthalpy, 45657859.

1.1.3.15. Courant Number

The Courant number is of fundamental importance for transient flows. For a one-dimensional grid, it is
defined by:

(1–66)= : ;

<

where = is the fluid speed, > is the timestep and ? is the mesh size. The Courant number calculated
in ANSYS CFX is a multidimensional generalization of this expression where the velocity and length
scale are based on the mass flow into the control volume and the dimension of the control volume.

For explicit CFD methods, the timestep must be chosen such that the Courant number is sufficiently
small. The details depend on the particular scheme, but it is usually of order unity. As an implicit code,
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ANSYS CFX does not require the Courant number to be small for stability. However, for some transient
calculations (for example, LES), one may need the Courant number to be small in order to accurately
resolve transient details.

For certain compressible flow calculations, the acoustic Courant number is also calculated. For a one-
dimensional grid, the acoustic Courant number is defined as:

(1–67)= ++ � �

(1–68)= −− �

(1–69)= + −
������	�

where 
 is the local speed of sound.

CFX uses the Courant number in a number of ways:

1. The timestep may be chosen adaptively based on a Courant number condition (for example, to reach
RMS or Courant number of 5). The acoustic Courant number is used for compressible flow calculations
having the expert parameter setting ‘compressible timestepping = t’.

2. For transient runs using the Automatic timestep initialization option, the Courant number is used to
calculate the blend between the previous timestep and extrapolation options. The acoustic Courant
number is used for compressible flow calculations.

3. For transient runs, the maximum and RMS Courant numbers are written to the output file every
timestep.

4. The Courant number field is written to the results file.

1.1.4. Mathematical Notation

This section describes the basic notation that is used throughout the CFX-Solver documentation.

1.1.4.1. The Vector Operators

Assume a Cartesian coordinate system in which �, � and 
 are unit vectors in the three coordinate dir-

ections. ∇ is defined such that:

(1–70)∇ =





∂
∂

∂
∂

∂
∂






� � �

1.1.4.1.1. Gradient Operator

For a general scalar function � � � � , the gradient of � is defined by:
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(1–71)∇ = ∂
∂

+ ∂
∂

+ ∂
∂

� � ��
�

�

�

�

�

�

1.1.4.1.2. Divergence Operator

For a vector function � � 	 
  where:

(1–72)=

















�

�

�

�

�




�

the divergence of � is defined by:

(1–73)∇ = ∂
∂

+
∂
∂

+ ∂
∂

�
�

�

�

�

�

�

� � �

1.1.4.1.3. Dyadic Operator

The dyadic operator (or tensor product) of two vectors,� and � , is defined as:

(1–74)⊗ =



















� �

� � � � � �

� � � � � �

� � � � � �

� � � � �  

� � � � �  

 �  �   

By using specific tensor notation, the equations relating to each dimension can be combined into a
single equation. Thus, in the specific tensor notation:

(1–75)⊗∇ =














∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

+ ∂
∂














! !

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

"

#
"

$
"

%
"

#
"

$
"

%
"

#
"

$
"

%
"

& & ' & ( &

& ' ' ' ( '

& ( ' ( ( (

1.1.4.2. Matrix Transposition

The transpose of a matrix is defined by the operator ) . For example, if the matrix is defined by:
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(1–76)∇ =













∂
∂
∂
∂
∂
∂













�

�

�

�

�

�

�

then:

(1–77)
 ∇ 

 =






∂
∂

∂
∂

∂
∂







�
�

�

�

�

�

�

�

1.1.4.3. The Identity Matrix (Kronecker Delta function)

The Identity matrix is defined by:

(1–78)=














	

1.1.4.4. Index Notation

Although index notation is not generally used in this documentation, the following may help you if
you are used to index notation.

In index notation, the divergence operator can be written:

(1–79)∇ = ∂
∂



�

�







where the summation convention is followed; that is, the index � is summed over the three components.

The quantity ⊗� �  can be represented by � �� � (when � and �  are vectors), or by � �� �� (when �

is a vector and �  is a matrix), and so on.

Hence, the quantity ⊗∇ � �� can be represented by:

(1–80)
∂

∂  
! " "

#
# $

Note the convention that the derivatives arising from the divergence operator are derivatives with respect

to the same coordinate as the first listed vector. That is, the quantity ⊗∇ % %&  is represented

by:
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(1–81)
∂

∂ �
� � �

�
� �

and not:

(1–82)
∂

∂ �
� � �

�
	 �

The quantity 
 � (when � and 
 are matrices) can be written by � ��� ��.

1.2. Governing Equations

The set of equations solved by ANSYS CFX are the unsteady Navier-Stokes equations in their conservation
form.

If you are new to CFD, review Computational Fluid Dynamics in the CFX Introduction.

A list of recommended books on CFD and related subjects is available in Further Background Reading
in the CFX Introduction.

For all the following equations, static (thermodynamic) quantities are given unless otherwise stated.

1.2.1. Transport Equations

In this section, the instantaneous equation of mass, momentum, and energy conservation are presented.
For turbulent flows, the instantaneous equations are averaged leading to additional terms. These terms,
together with models for them, are discussed in Turbulence and Wall Function Theory (p. 89).

The instantaneous equations of mass, momentum and energy conservation can be written as follows
in a stationary frame:

1.2.1.1. The Continuity Equation

(1–83)
∂
∂

+ ∇ =�
�

�
�

1.2.1.2. The Momentum Equations

(1–84)⊗∂
∂

+ ∇ = − ∇ + ∇ +�
� � �

�

�
� � � �

Where the stress tensor, �, is related to the strain rate by
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(1–85)= 


∇ + ∇ − ∇ 


� � �� � �
�

1.2.1.3. The Total Energy Equation

(1–86)
∂

∂
− ∂

∂
+ ∇ = ∇ ∇ + ∇ + +� � � � �

� �

	




	
� � � � 
 � �

���
���

Where ���� is the total enthalpy, related to the static enthalpy � � �  by:

(1–87)= + �� ����
�

The term ∇ � �  represents the work due to viscous stresses and is called the viscous work term.

This models the internal heating by viscosity in the fluid, and is negligible in most flows.

The term �  !  represents the work due to external momentum sources and is currently neglected.

1.2.1.4. The Thermal Energy Equation

An alternative form of the energy equation, which is suitable for low-speed flows, is also available. To

derive it, an equation is required for the mechanical energy " .

(1–88)= #$
%

The mechanical energy equation is derived by taking the dot product of & with the momentum equation
(Equation 1–84 (p. 25)):

(1–89)
∂

∂
+ ∇ = − ∇ + ∇ +' ' ' ' (

) *

+
) * , - .

Subtracting this equation from the total energy equation (Equation 1–86 (p. 26)) yields the thermal energy
equation:

(1–90)
∂

∂
− ∂

∂
+ ∇ = ∇ ∇ + ∇ + ∇ +/ / / 0

1 2

3

4

3
1 2 5 6 4 7 8

The term ∇ 9:  is always positive and is called the viscous dissipation. This models the internal heating
by viscosity in the fluid, and is negligible in most flows.

With further assumptions discussed in a moment, we obtain the thermal energy equation:
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(1–91)
∂

∂
+ ∇ = ∇ ∇ + ∇ +� � �

� �

�
� � � � � �

This equation can be derived from Equation 1–90 (p. 26) with two different sets of assumptions:

• If 	 is actually interpreted as internal energy,

(1–92)= −
 �
�




then Equation 1–90 (p. 26)can be written as

(1–93)
∂

∂
+ ∇ = ∇ ∇ − ∇ + ∇ +� � � �

� �

�
� � � � � � �

which is equivalent to Equation 1–91 (p. 27) if we neglect − ∇ ��  and interpret � as �. This inter-

pretation is appropriate for liquids, where variable-density effects are negligible. Note that the
principal variable is still called 'Static Enthalpy' in CFD-Post, although it actually represents internal
energy. Note also that, for liquids that have variable specific heats (for example, set as a CEL expres-

sion or using an RGP table or Redlich Kwong equation of state) the solver includes the � � contri-

bution in the enthalpy tables. This is inconsistent, because the variable is actually internal energy.
For this reason, the thermal energy equation should not be used in this situation, particularly for
subcooled liquids.

• On the other hand if 
∂
∂
�

�
 and ∇ ! are neglected in Equation 1–90 (p. 26) then Equation 1–91 (p. 27)

follows directly. This interpretation is appropriate for low Mach number flows of compressible gases.

The thermal energy equation, despite being a simplification, can be useful for both liquids and gases
in avoiding potential stability issues with the total energy formulation. For example, the thermal energy
equation is often preferred for transient liquid simulations. On the other hand, if proper acoustic beha-
vior is required (for example, predicting sound speed), or for high speed flow, then the total energy
equation is required.

1.2.2. Equations of State

The transport equations described above must be augmented with constitutive equations of state for
density and for enthalpy in order to form a closed system. In the most general case, these state equations
have the form:

=" " # $

= +∂
∂

∂
∂

% & % ' % (
)

* +

)

+
*

= + ∂
∂

, - . - /0
1

0
2

=3 3 4 56 6
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Various special cases for particular material types are described below.

1.2.2.1. Incompressible Equation of State

This is the simplest case: density is constant and �� can be (at most) a function of temperature.

=� �
����

= +� � 	 � 
�
��




=� � �� �

1.2.2.2. Ideal Gas Equation of State

For an ideal gas, density is calculated from the Ideal Gas law and �� can be (at most) a function of

temperature:

=�
��

� �

���

�

=� � � � � 

=! ! "# #

where $ is the molecular weight, %
&'(

 is the absolute pressure, and )* is the universal gas constant.

1.2.2.3. Real Gas and Liquid Equations of State

In the current version of ANSYS CFX, the Redlich Kwong equation of state is available as a built-in option
for simulating real gases. It is also available through several pre-supplied CFX-TASCflow RGP files. The
Vukalovich Virial equation of state is also available but currently only by using CFX-TASCflow RGP tables.

Note

It is not possible to couple particles with gases that use the 'real gas' equations of state.

This limitation is caused by the way the particle tracker stores and accesses material properties
for coupled gas components and particle components. For performance reasons, the particle
tracker uses its own material database--which is limited to either constant properties or
temperature-dependent properties (specific heats, enthalpy). The property database of the
particle tracker does not support pressure-dependent properties.

1.2.2.3.1. Real Gas Properties

Cubic equations of state are a convenient means for predicting real fluid behavior. They are highly
useful from an engineering standpoint because they generally only require that the user know the fluid
critical point properties, and for some versions, the acentric factor. These properties are well known for
many pure substances or can be estimated if not available. They are called cubic equations of state
because, when rearranged as a function volume they are cubic in volume. This means that cubic state
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equations can be used to predict both liquid and vapor volumes at a given pressure and temperature.
Generally the lowest root is the liquid volume and the higher root is the vapor volume.

Four versions of cubic state equations are available: Standard Redlich Kwong, Aungier Redlich Kwong,
Soave Redlich Kwong, and Peng Robinson. The Redlich-Kwong equation of state was first published in
1949 [85] and is considered one of the most accurate two-parameter corresponding states equations
of state. More recently, Aungier (1995) [96] has modified the Redlich-Kwong equation of state so that
it provides much better accuracy near the critical point. The Aungier form of this equation of state is
the default cubic equation used by ANSYS CFX. The Peng Robinson [157]] and Soave Redlich Kwong
equation of state were developed to overcome the shortcomings of the Redlich Kwong equations to
accurately predict liquid properties and vapor-liquid equilibrium.

1.2.2.3.1.1. Redlich Kwong Models

The Redlich Kwong variants of the cubic equations of state are written as:

(1–94)=
− +

−
+

�
� �

� � �

� �

� � �

where � is the specific volume =� 	 .

1.2.2.3.1.1.1. The Standard Redlich Kwong Model

The Standard Redlich Kwong model sets the parameter 
 to zero, and the function � to:

(1–95)=










−

� �






�

�
�

where � is  and

(1–96)=�
� �

�

�

�

�

� �

(1–97)=�
� �

�

�

�

1.2.2.3.1.1.2. The Aungier Redlich Kwong Model

The Aungier form differs from the original by a non-zero parameter � which is added to improve the
behavior of isotherms near the critical point, as well as setting the exponent � differently. The parameter
  in Equation 1–94 (p. 29) is given by:
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(1–98)
=

+
+ −

+

�
� �

�
� ��

� � �

	

	

	


 


�

and the standard Redlich Kwong exponent of =�  is replaced by a general exponent 
. Optimum
values of � depend on the pure substance. Aungier (1995) [96] presented values for twelve experimental
data sets to which he provided a best fit polynomial for the temperature exponent � in terms of the
acentric factor,�:

(1–99)= + +� � �
�

1.2.2.3.1.1.3. The Soave Redlich Kwong Model

The Soave Redlich Kwong real gas model was originally published by Soave (1972). The model applies
to non-polar compounds and improves on the original Redlich Kwong model by generalizing the attrac-
tion term to depend on the acentric factor, which accounts for molecules being non-spherical, and ac-
counting for a range of vapor pressure data in the development of the temperature dependency of this
parameter.

The Soave Redlich Kwong equation is explicit in pressure, and given by:

(1–100)=
− +

−
+

�
� �

� � �

� �

� � �

where:

(1–101)=�
��

�

�

�

as in the original Redlich Kwong equation, and

(1–102)=



 +




 −









 !  "

!

!#
$

%

where:

(1–103)=&
' (

)

*

*
+

, ,

and the parameter n is computed as a function of the acentric factor, ω:
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(1–104)= + −� � �
�

1.2.2.3.1.2. Peng Robinson Model

The Peng Robinson model also gives pressure as a function of temperature and volume:

(1–105)=
−

−
− +

�
��

� �

� �

� �� �
	 	

where:

(1–106)=

��




�

�

as in the original Redlich Kwong equation, and

(1–107)=



 +




 −









� � � �

�
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�

�

where:

(1–108)=�
� �

�

�

�
�

� �

and the parameter n is computed as a function of the acentric factor, ω:

(1–109)= + −� � �
�

1.2.2.3.1.3. Real Gas Constitutive Relations

In order to provide a full description of the gas properties, the flow solver must also calculate enthalpy
and entropy. These are evaluated using slight variations on the general relationships for enthalpy and
entropy that were presented in the previous section on variable definitions. The variations depend on
the zero pressure, ideal gas, specific heat capacity and derivatives of the equation of state. The zero
pressure specific heat capacity must be supplied to ANSYS CFX while the derivatives are analytically
evaluated from Equation 1–94 (p. 29)and Equation 1–105 (p. 31).

Internal energy is calculated as a function of temperature and volume (� , ) by integrating from the

reference state (!"#$ ,%&'( ) along path 'amnc' (see diagram below) to the required state () ,*) using the

following differential relationship:
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(1–110)= +
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−
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
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��
� ���

�

First the energy change is calculated at constant temperature from the reference volume to infinite
volume (ideal gas state), then the energy change is evaluated at constant volume using the ideal gas
��. The final integration, also at constant temperature, subtracts the energy change from infinite volume

to the required volume. In integral form, the energy change along this path is:

(1–111)∫ ∫ ∫

− =
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
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

−
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
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��� ���

�
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���

���

Once the internal energy is known, then enthalpy is evaluated from internal energy:

= +� � � �

The entropy change is similarly evaluated:
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(1–112)∫ ∫ ∫
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where ��� is the zero pressure ideal gas specific heat capacity. By default, ANSYS CFX uses a 4th order

polynomial for this and requires that coefficients of that polynomial are available. These coefficients
are tabulated in various references including Poling et al. [84].

In addition, a suitable reference state must be selected to carry out the integrations. The selection of
this state is arbitrary, and can be set by the user, but by default, ANSYS CFX uses the normal boiling
temperature (which is provided) as the reference temperature and the reference pressure is set to the
value of the vapor pressure evaluated using Equation 1–118 (p. 34) at the normal boiling point. The
reference enthalpy and entropy are set to zero at this point by default, but can also be overridden if
desired.

Other properties, such as the specific heat capacity at constant volume, can be evaluated from the in-
ternal energy. For example, the Redlich Kwong model uses:

(1–113)= 


∂
∂




= ∂
∂

− + 


+ 


�
�

�

�

�

� � �

� �

�

�
�

�

�

where �� is the ideal gas portion of the internal energy:

(1–114)∫= − = −   ! " # $"

%

%

&'()*+

,-.

specific heat capacity at constant pressure, /0, is calculated from 12 using:

(1–115)= +3 3 4 5
6

7
8 9

:

where ; and < are the volume expansivity and isothermal compressibility, respectively. These two values

are functions of derivatives of the equation of state and are given by:
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(1–116)= −
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∂
∂
∂

�
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�

� �
�
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(1–117)
= − ∂

∂

�

�
�

� 	

1.2.2.3.2. Real Gas Saturated Vapor Properties

When running calculations with liquid condensing out of the vapor (equilibrium phase change or Eu-
lerian thermal phase change model) or dry calculations, the flow solver needs to know the form of the
vapor pressure curve. Pressure and temperature are not independent in the saturation dome, so vapor
saturation properties are evaluated by first assuming an equation that gives the dependence of vapor
pressure on temperature, and then substituting that into the equation of state.

For materials that use the cubic equations of state ANSYS CFX approximates the vapor pressure curve
using a form given by Poling et al. [84]:

(1–118)








 = + 


− 








�

�
�


�

�

�

Vapor saturation properties are calculated by evaluating the equation of state and constitutive relations
along the saturation curve.

1.2.2.3.3. Real Gas Liquid Properties

As previously mentioned, it is possible to derive liquid densities directly from the cubic state equations,
however, this is not always desirable. For example, the Redlich Kwong models are very inaccurate, and
sometimes completely wrong, in the compressed liquid regime.

Instead, when you select to use one of the Redlich Kwong variants for a liquid, the properties are assumed
to vary along the vapor pressure curve as a function of saturation temperature. These properties are
approximate and should only be used when the amount of liquid in your calculation will be small. For
example, they work well with the equilibrium condensation model or non-equilibrium small droplet
phase change model.

To derive the liquid enthalpy and entropy, such that they are completely consistent with the gas phase,
requires all the same data as is provided for the gas phase: the critical point data, the acentric factor
and the zero pressure specific heat coefficients.

To calculate saturated liquid densities, an alternative equation of state originally published by Yamada
and Gunn (1973), is used by CFX that gives liquid specific volume as a function of temperature:
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(1–119)= − −
� � �

� �
�

� � �
� �	

This equation is convenient because it only requires knowledge of the critical volume and temperature

as well as the acentric factor. The valid temperature range for the liquid equation of state is 0.4
� < �

< 0.99
�. The solver will clip the temperature used in this equation to that range.

Saturated liquid enthalpy is calculated using knowledge of the gas saturation enthalpy and the following
equation:

(1–120)= −� � ���� ��� ��

where the enthalpy of vaporization, ���, is given by the following expression taken from Poling et al.

[84]:
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Saturated liquid entropy can easily be derived using the second law and the gas saturation entropy:

(1–122)= −$ $
%

&
' (

'(

Prediction of liquid specific heat capacity with the Redlich Kwong equation has a similar problem to
the liquid density, so ANSYS CFX uses an alternative form presented by Aungier (2000):

(1–123)= +
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
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+
, ,-

. .

/0

which requires knowledge of the zero pressure heat capacity coefficients, as well as the acentric factor.
For the saturated liquid it is assumed that =1 12 3.

Note that the use either of the Redlich Kwong models for flows of almost entirely pure liquid is highly
discouraged. If you want to use one of the cubic equations of state for this type of problem, then use
the Peng Robinson equation of state which, by default, will force the liquid phase properties to be de-
pendent on temperature and pressure fully consistent with that equation of state.

1.2.2.3.4. IAPWS Equation of State

The IAPWS-IF97 database represents an accurate equation of state for water and steam properties. The
database is fully described elsewhere [125], but a summary will be provided in this section. The IAPWS
database uses formulations for five distinct thermodynamic regions for water and steam, namely:

• subcooled water (1)

• supercritical water/steam (2)
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• superheated steam (3)

• saturation data (4)

• high temperature steam (5)

Figure 1.1  Regions and Equations of IAPWS-IF97

Region 5 has not been implemented in ANSYS CFX because it represents a thermodynamic space at
very high temperatures (1073.15 - 2273.15 K) and reasonably low pressures (0-10 MPa) that can be ad-
equately described using other property databases already in ANSYS CFX (that is, Ideal Gas EOS with
NASA specific heat and enthalpy). Furthermore, because this region is not defined for pressures up to
100 MPa, as is the case for regions 1, 2 and 3, problems arise in filling out the pressure-temperature
space in the tables when temperatures exceed 1073.15 K and pressures exceed 10 MPa. The database
implemented in CFX therefore covers temperatures ranging from 273.15 to 1073.15 K and pressures
ranging from 611 Pa to 100 MPa.

The reference state for the IAPWS library is the triple point of water. Internal energy, entropy and enthalpy
are all set to zero at this point.

Tref = 273.16 K, Pref = 611.657 Pa, uliquid = 0 J/kg, sliquid = 0 J/kg/K, hliquid = 0 J/kg

In ANSYS CFX, the analytical equation of state is used to transfer properties into tabular form, which
can be evaluated efficiently in a CFD calculation. These IAPWS tables are defined in terms of pressure
and temperature, which are then inverted to evaluate states in terms of other property combinations
(such as pressure/enthalpy or entropy/enthalpy). When developing the IAPWS database for ANSYS CFX,
therefore, properties must be evaluated as functions of pressure and temperature. For the most part,
this involves a straightforward implementation of the equations described in the IAPWS theory [125].
Region 4 involves saturation data that uses only pressure or temperature information.

However, some difficulties are encountered when evaluating the properties around Region 3 (near the
critical point), where the EOS is defined explicitly in terms of density and temperature. In this region,
the density must be evaluated using Newton-Raphson iteration. This algorithm is further complicated
in that the EOS is applicable on both the subcooled liquid and superheated vapor side leading up to
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critical conditions. Therefore, depending on the pressure-temperature state, one may be evaluating a
subcooled liquid or a superheated vapor with the same EOS. To apply the Newton-Raphson scheme in
a reliable way, one must detect on which side of the saturation dome the pressure-temperature state
applies, and apply an appropriate initial guess. Such an iteration scheme, including logic for an initial
guess, has been implemented in ANSYS CFX so that table generation around the critical region is possible.

1.2.2.3.5. Metastable Superheated Liquid/Supercooled Vapor States

The IAPWS library also extends to metastable states, so that this equation of state is available for non-
equilibrium phase change models such as the Droplet Condensation Model. The EOS for regions 1 and
3 in Figure 1.1 (p. 36) are stated to have reasonable accuracy for metastable states close to the saturation
line d liquid states [125]. However, the term “reasonable” is not quantified, and therefore the degree
to which the extrapolation of the EOS can be applied is unknown.

In region 2, an additional set of equations have been developed for supercooled vapor conditions under
10 MPa. These equations have been tuned to match the saturation data. Above 10 MPa, the EOS for
the superheated region can safely be extrapolated into supercooled conditions, but it does not match
smoothly with the specialized supercooled equations below 10 MPa.

1.2.2.3.6. Numerical Testing to Delineate Metastable Regions

In order to make the IAPWS database as robust as possible, numerical testing has been done to determine
approximate metastable vapor/liquid spinodal lines. Figure 1.2 (p. 37) is given to demonstrate these
spinodal lines that are essentially boundaries up to which metastable conditions can exist. These would
be defined similar to saturation curves as functions of either temperature or pressure. The IAPWS
database tables are always generated up to these limits regardless of what flow models are specified
(equilibrium or non-equilibrium) and thus allow non-equilibrium phase change models to be applied.

Figure 1.2  Spinodal Limits Built into Tables

1.2.2.3.7. The Acentric Factor

The acentric factor must be supplied when running the real gas models and is tabulated for many
common fluids in Poling et al. [84]. If you do not know the acentric factor, or it is not printed in a
common reference, it can be estimated using knowledge of the critical point and the vapor pressure
curve with this formula:
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(1–124)= −
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where the vapor pressure, �
�

, is calculated at =� �	. In addition to the critical point pressure, this

formula requires knowledge of the vapor pressure as a function of temperature.

1.2.2.4. General Equation of State

User-defined equations of state are also supported:

=
 
 � �

=
 
 � �� �

Noting that:

= −∂
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∂
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where =� �,

the equation of state for enthalpy therefore follows as:
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Note, however, that user-defined expressions for ! and "# must be thermodynamically consistent.

Consistency requires that mathematical properties for exact differentials be satisfied. For example,

suppose $ % & '  is an exact differential defined as:

= +( ) * + , (* - (+

= ∂
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= ∂
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Consistency then requires that:
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8 7

Applying this concept to Equation 1–125 (p. 38), it therefore follows that general equations of state
must obey:
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1.2.3. Conjugate Heat Transfer

CFX enables you to create solid regions in which the equations for heat transfer are solved, but with
no flow. This is known as conjugate heat transfer, and the solid regions are known as solid domains.

Within solid domains, the conservation of energy equation can account for heat transport due to solid
motion, conduction, and volumetric heat sources:

(1–126)
∂

∂
+ ∇ ⋅ = ∇ ⋅ ∇ +�

�	



� 	 � �
 �

where �, �, and � are the enthalpy, density, and thermal conductivity of the solid, respectively.�� is

the solid velocity, if specified, and �� is an optional volumetric heat source. The solid motion advection

term (the term including ��) is optional and is added only when a solid motion velocity is set.

Additional information on plotting variables at a solid-fluid interface is available in Solid-Fluid Interface
Variable Values in the CFX Reference Guide.

1.3. Buoyancy

For buoyancy calculations, a source term is added to the momentum equations as follows:

(1–127)= −� � � ������ !"#

The density difference −$ $
%&'

 is evaluated using either the Full Buoyancy model or the Boussinesq

model, depending on the physics.

When buoyancy is activated, the pressure in the momentum equation excludes the hydrostatic gradient
due to (

)*+
. This pressure is related to the absolute pressure as follows:

(1–128)= + + −, , , - . / /
012 345 345 345

ur ur ur

where 6 789
ur

 is a reference location. The buoyancy reference location option is set under the Ref.

Location  option in CFX-Pre and can be set to a particular location. For details, see Buoyancy and
Pressure.

Absolute pressure is used to evaluate fluid properties that are functions of pressure; it can be visualized
in CFD-Post.

1.3.1. Full Buoyancy Model

For buoyancy calculations involving variable density, −: :
;<=

 is evaluated directly. This option is set

automatically when the simulation involves multicomponent flow, multiphase flow, or a fluid having
density set as a function of pressure, temperature, or other field variables.
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1.3.2. Boussinesq Model

For buoyant flows where the density variation is driven only by small temperature variations, the
Boussinesq model is used. In this model, a constant reference density �

���
 is used for all terms other

than the buoyancy source term. The buoyancy source term is approximated as:

(1–129)− = − −� � � � � �
��	 ��	 ��	

where 
 is the thermal expansivity:

(1–130)= − ∂
∂

�
�

�



�

and ����  is the buoyancy reference temperature.

1.4. Immersed Solids

The following topics are discussed:
1.4.1. Immersed Solid Boundary Details
1.4.2. Laminar Flow Treatment
1.4.3.Turbulent Flow Treatment

1.4.1. Immersed Solid Boundary Details

This section describes notation used in the following sections pertaining to immersed solids.
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Figure 1.3  Notation for Nodes Near the Immersed Solid Boundary

Figure 1.3 (p. 41) shows a schematic diagram of an immersed solid boundary (shown as a red line). The
nodes and points near the boundary are labeled for reference in the following sections. The meaning
of each label is tabulated below.

MeaningLabel

in-wall nodeIW

in-wall pointIW′

near-wall nodeNW

point on the immersed solid boundaryIB

fluid nodeFL

fluid pointFL′

In the figure, the orange arrow represents the wall normal direction corresponding to the given NW
node.

Other notes about notation:

• “NIBG” elements are elements between corresponding NW and IW nodes. These are elements which
the immersed solid surface cuts through, and are colored blue in the figure above.

• “NIBF” elements are elements between corresponding FL and NW nodes. These are elements which are
immediately adjacent to the “NIBG” elements and are colored white in the figure above.

• � is the wall distance between the NW node and the IB point along the wall normal direction.

• �
����

 is the wall distance between the NW node and the IW′ point.
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• �
����

 is the wall distance between the FL′ point and the NW node.

1.4.2. Laminar Flow Treatment

For laminar flows, no wall scale equation is solved. Instead, the velocity near the immersed boundary
is computed based on the wall distance, assuming constant wall shear in the boundary profile region.

The tangential fluid velocity at the near-wall fluid nodes is governed by:

(1–131)
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where ���
�

����
 is the tangential component of the forcing velocity at the NW node, �

��
 is

the dynamic viscosity at the NW node,� ! and "
#$

 are, respectively, the fluid velocity and dynamic

viscosity at the FL node, and %
&'()

 is the distance between the corresponding FL′ point and NW

node. Note that +* *
+,-.

 is essentially the normal distance between this node and the

immersed boundary.

The normal component of the forcing velocity at the NW node is computed as the normal component
of the velocity at the IB point on the immersed boundary:

/01
023

4567

The fluid velocity at the near-wall nodes is forced to be:

(1–132)= +8 8 89:
;

<=
<>?

9@AB 9:
;

CDEF

In this way, the velocity field is forced to flow around the immersed boundary to avoid (or alleviate)
the problem of streamlines penetrating the immersed solid.

1.4.3. Turbulent Flow Treatment

For moving immersed solids or high Reynolds number turbulence cases, it is usually not possible to
generate a fine mesh that resolves the laminar sub-layer. Hence, wall functions are used for fluid elements
near the immersed boundary. The implementation of wall functions for immersed solids is more com-
plicated than for wall functions near regular walls because of the non-uniform wall distance for elements
next to the immersed boundary.

1.4.3.1. Wall Distance

For fluid nodes that are inside the immersed solid, the wall distance is set to zero. For fluid nodes near
the immersed solid, the wall distance is computed as a function of the wall scales. The wall scales are
set algebraically to zero for fluid nodes inside the immersed solid, but the shape of the immersed
boundary is not properly taken into account for the wall scale equation.
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For the near-immersed-boundary nodes, the physical distance from the immersed boundary tracking
method is used to implement the turbulent wall functions.

1.4.3.2. SST Model

The wall distance from the modified wall scale equation is used to compute the two blending factors.
The production and dissipation terms inside the immersed solid are reset to zero for both the turbulent
kinetic energy equation and turbulent frequency equation. This way, the turbulent kinetic energy and
turbulent frequency will be solved without any source terms and solutions will serve as a natural con-
dition for the fluid turbulence equations.

In the SST turbulence model, the turbulent eddy viscosity is computed from the turbulent kinetic energy
and turbulent frequency:

(1–133)=� �� �
�

1.4.3.3. Scalable Wall Function

In general, it is impractical (if not impossible) to have a mesh which resolves the sublayer, and therefore,
it is necessary to specify ����� taking account of the logarithmic region.

(1–134)=
∗

∗	



� �
 ��

���

�

���

(1–135)=∗
� � ��

��� ���

(1–136)=∗ ∗
� � �  

(1–137)=
+

=∗ +!
"

# $ %

"

!
&
'()

(1–138)= ∗
* +, , -./00

Here, 1  is the fluid tangential velocity relative to the immersed boundary, and 2 is computed as

the distance from the near-immersed-solid nodes to the immersed boundary. In the scalable wall

function, the lower value of 
∗

3  is limited to 11.06 at the intersection between the logarithmic and the

linear near wall profile.

Further, the velocity at the NW nodes is forced according to the wall function:
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(1–139)= + 


 − 




+

+� �

� �

� �

� ���
�

����
	

	��

����
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��

�
 ���� 	

	��

����

Similar to the case of laminar flow, the tangential velocity on the NW nodes is enforced according to
equation Equation 1–139 (p. 44) and the momentum source term is computed taking into account both
the wall normal velocity and tangential forcing velocity:

(1–140)= +� � ���
�

��
���

���� ��
�

����

In this way, the velocity field will be forced to flow around the immersed boundary to avoid (or alleviate)
the problem of streamlines penetrating the immersed solid.

1.5. Multicomponent Flow

The following topics will be discussed:

• Multicomponent Notation (p. 44)

• Scalar Transport Equation (p. 44)

• Algebraic Equation for Components (p. 46)

• Constraint Equation for Components (p. 46)

• Multicomponent Fluid Properties (p. 47)

• Energy Equation (p. 48)

• Multicomponent Energy Diffusion (p. 49)

1.5.1. Multicomponent Notation

Components are denoted using capital letters , , , etc. In general, a quantity subscribed with , ,

, and so on, refers to the value of the quantity corresponding to , , , etc. For example, the density

(�) of component  would be written �
�

.

1.5.2. Scalar Transport Equation

For a multicomponent fluid, scalar transport equations are solved for velocity, pressure, temperature
and other quantities of the fluid. For details, see Governing Equations (p. 25). However, additional
equations must be solved to determine how the components of the fluid are transported within the
fluid.

The bulk motion of the fluid is modeled using single velocity, pressure, temperature and turbulence
fields. The influence of the multiple components is felt only through property variation by virtue of
differing properties for the various components. Each component has its' own equation for conservation
of mass. After Reynolds-averaging (see Turbulence Models (p. 89)) this equation can be expressed in
tensor notation as:
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(1–141)

∂
∂

+
∂

∂

= − ∂
∂

− − ″ ″ +

∼ ∼ ∼

∼ ∼

�

� � �

�

�

�

�

�
� � �

� � �

�

�
� �� � � � �

where:

∼
�
�
 is the mass-average density of fluid component 	 in the mixture, that is, the mass of the component

per unit volume,

∑=
∼ ∼ ∼

 
� �� 
 
�  is the mass-average velocity field,

∼
��� is the mass-average velocity of fluid component �,

−
∼ ∼
� ��

� �� �  is the relative mass flux,

�� is the source term for component � which includes the effects of chemical reactions.

Note that if all the terms in the expanded form of Equation 1–141 (p. 45) are summed over all compon-
ents, the result is the standard continuity equation,

(1–142)
∂
∂

+
∂

∂
=

∼
��

�

�

�

�

�

because the reaction rates �� must sum to zero.

The relative mass flux term accounts for differential motion of the individual components. This term
may be modeled in a number of ways to include effects of concentration gradients, a pressure gradient,
external forces or a temperature gradient. Of these possible sources of relative motion among the
mixture components, the primary effect is that of concentration gradient. The model for this effect gives
rise to a diffusion-like term in Equation 1–141 (p. 45).

(1–143)− = −
∂
∂

∼ ∼
∼

  !
"

!

!

#
$ $% %

$ $

%

The molecular diffusion coefficient, &', is assumed to be equal to ( )*, where +, is the Kinematic

Diffusivity set on the Fluid Models tab for a domain in CFX-Pre. For details, see Fluid Models Tab in
the CFX-Pre User's Guide. A detailed description of the effects of the relative mass flux term and various
models for it may be found in reference [29].

Now, define the mass fraction of component - to be:
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(1–144)=
∼

∼
�

�

�
�

�

Note that, by definition, the sum of component mass fractions over all components is 1. Substituting
Equation 1–144 (p. 46) and Equation 1–143 (p. 45) into Equation 1–141 (p. 45), you have:

(1–145)

∂
∂

+
∂

∂

= ∂
∂


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∂
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� �

 � 


The turbulent scalar fluxes are modeled using the eddy dissipation assumption as:

(1–146)− ″ ″ = ∂
∂

∼

�
 �
�

��

�

�
� �

�

�

�

�

where ��� is the turbulent Schmidt number. Substituting Equation 1–146 (p. 46) into Equa-

tion 1–145 (p. 46) and assuming now that you have mass weighted averages of ��:

(1–147)
∂

∂
+

∂
∂

= ∂
∂






∂
∂




 +

∼ ∼ ∼
�� �

�

� �

� �
 

�

�
!

" # "

# #
"

"

#
"$%%

where:

(1–148)= +& &
'

()
* *

+

+
,--

Equation 1–147 (p. 46) is simply a general advection-diffusion equation of the form common to the
equations solved for each of the other dependent variables in the fluid flow calculation. Thus, it is

convenient to solve for the ./ in order to establish the composition of the fluid mixture.

1.5.3. Algebraic Equation for Components

The specified equation is used to calculate the component mass fraction throughout the solution domain.

1.5.4. Constraint Equation for Components

The CFX-Solver solves −01  mass fraction equations (either transport equations or algebraic equations)

for all but one of the components. The remaining component is known as the constraint component
because its mass fraction is determined by the constraint equation:
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(1–149)∑ =
= …

�

� � � �

�

�
� � �

�

The performance of the CFX-Solver will not be affected by your choice of constraint component.

1.5.5. Multicomponent Fluid Properties

The physical properties of general multicomponent mixtures are difficult to specify. The default treatment
in ANSYS CFX 14.0 makes the assumption that the components form an ideal mixture. For details, see
Ideal Mixture in the CFX-Solver Modeling Guide.

Now consider a given volume �  of the fluid mixture. Let 	
 be the mass of component � present in

this volume, then =� 
 �
� � . The partial volume of component � is defined to be the volume,��, that

would be occupied by the given mass of the component at the same (local) temperature and pressure
as the mixture. The “thermodynamic density” of the component, which results from evaluating its

equation of state at the mixture temperature and pressure, may be expressed as =� � �
� � �. Because

the partial volumes of all components must sum to the total volume,� , you have:

(1–150)

∑ ∑

∑ ∑

= =

= =

= … = …

= … = …
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�

� �
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�

�

�

  

  

! !

! !

or:

(1–151)∑=
= …"

#

"$ % &

'

$

$
(

)

Thus, the mixture density may be calculated from the mass fractions *+ and the thermodynamic density

of each component, which may require knowledge of the mixture temperature and pressure, as well
as an appropriate equation of state for each component.

Note carefully the distinction between ,
-
 and .

/
. The component mass density, 0

1
, is a quantity

relating to the composition of the mixture, while the thermodynamic density, 2
3

, is a material

property of the component.

An arbitrary constitutive fluid property may be calculated from:
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(1–152)∑=
= …

� � �

� � �

�

� �
�

�

where � 	 is the property value for fluid component 
. While it may appear anomalous at first sight that

density does not conform to this expression, the specific volume (volume per unit mass, that is, �
�

)

does indeed conform, as can be seen by considering Equation 1–152 (p. 48). Properties that may be
evaluated for a multicomponent mixture using Equation 1–152 (p. 48) include the laminar viscosity 
,

the specific heat at constant volume ��, the specific heat at constant pressure ��, and the laminar

thermal conductivity �.

1.5.6. Energy Equation

Recall that Equation 2–5 (p. 91) is the Reynolds-averaged conservation equation for energy of a single
component fluid. Extending this equation for multicomponent fluids involves adding an additional dif-
fusion term to the energy equation:

(1–153)∑∂
∂
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�

For turbulent flow, this term is Reynolds-averaged (see Turbulence Models (p. 89)) giving:

(1–154)∑∂
∂
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�

"

This expression introduces several terms involving the fluctuations of diffusion coefficient, component
enthalpy and species concentration. Under certain circumstances, the fluctuating components could
be an important component of the diffusion process. However, adequate models are not available
within the existing turbulence model to account for these effects. Thus, only the mean component is
retained in the current version of ANSYS CFX.

The implemented conservation of energy equation for multicomponent fluids involves only mean
scalar components and is expressed as:
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1.5.7. Multicomponent Energy Diffusion

The energy equation can be simplified in the special case that all species diffusivities are the same and
equal to thermal conductivity divided by specific heat capacity,

(1–156)= =� �
�

�
�

�

Equation 1–156 (p. 49) holds when the Lewis number is unity for all components: = =�� � � �� � � .

For turbulent flow, assuming = !"  for all components is usually just as good as the common practice

of using the fluid viscosity for the default component diffusivity (unity Schmidt number, = =#$ % &' ' ).

For =()* , the energy equation (Equation 1–155 (p. 49)) simplifies exactly to the following:

(1–157)
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Equation 1–157 (p. 49) has the advantage that only a single diffusion term needs to be assembled, rather
than one for each component plus one for heat conduction. This can significantly reduce numerical
cost, in particular when the fluid consists of a large number of components.

When component-dependent turbulent Schmidt numbers are specified, the turbulent energy flux needs
to be generalized. This is achieved by splitting the turbulent fluctuation of enthalpy into the contributions
from temperature fluctuation, pressure fluctuation and fluctuations of component mass fractions:

(1–158)∑≈ + ∂
∂

+ ″
=

: ; <
:

=
= : >

??
@
?? ??

A

B

A A
C

D

Using this transformation, the turbulent energy flux can be modeled by applying the eddy diffusivity
model with turbulent Prandtl number to the temperature fluctuations plus the sum of the secondary
enthalpy transport terms derived from the component mass fluxes:
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Inserting the eddy diffusivity model for the turbulent component mass fluxes yields the following
model for the turbulent enthalpy flux:
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The previous relation is equivalent to the eddy diffusivity model applied to enthalpy and generalized

for different ABC and DEF GH , as can be derived by expanding the enthalpy gradient term according to

the chain rule =I I J K LM :
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Using the above relations, the energy equation for generalized turbulent component transport becomes:
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And for the special case that the eddy diffusivity assumption is used for modelling the turbulent mass
flux for each component:
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For the Thermal Energy heat transfer model the pressure gradients are assumed to be small compared
to the other terms, and the corresponding terms are neglected from the equation.

1.6. Additional Variables

There are several types of Additional Variable equations supported by CFX-Solver:

• Transport Equations for Additional Variables (p. 51)

• Diffusive Transport Equations for Additional Variables (p. 52)

• Poisson Equations for Additional Variables (p. 52)

• Algebraic Equations for Additional Variables (p. 53)

1.6.1. Transport Equations for Additional Variables

The general form of the transport equation for an Additional Variable is:

(1–168)
∂

∂
+ ∇ = ∇ ∇ +1

2 3

4
2 3 2 5 3 67 8

where:

• 9 is the fluid velocity in the case of a fluid or porous domain, or ≡: :; in the case of a solid domain

with a specified solid motion velocity, where <= is the solid velocity.

• > is the mixture density, mass per unit volume

• ? is the conserved quantity per unit volume, or concentration

• =@ A B is the conserved quantity per unit mass
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• �� is a volumetric source term, with units of conserved quantity per unit volume per unit time

• �� is the kinematic diffusivity for the scalar

For turbulent flow, this equation is Reynolds-averaged (see Turbulence Models (p. 89)) and becomes:

(1–169)
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where:

• ��� is the turbulence Schmidt number

• �
�
 is the turbulence viscosity

1.6.2. Diffusive Transport Equations for Additional Variables

The general form of the diffusive transport equation for an Additional Variable (non-reacting scalar) is:

(1–170)
∂

∂
= ∇ ∇ +� �

�
� � � �� �

where:

• � is the mixture density, mass per unit volume.

• � is the conserved quantity per unit volume, or concentration.

• =� � � is the conserved quantity per unit mass.

•  ! is a volumetric source term, with units of conserved quantity per unit volume per unit time

• "# is the kinematic diffusivity for the scalar.

1.6.3. Poisson Equations for Additional Variables

The general form of the Poisson equation for an Additional Variable (non-reacting scalar) is:

(1–171)∇ ∇ + =$ % & '( )

where:

• * is the mixture density, mass per unit volume.

• + is the conserved quantity per unit volume, or concentration.

• =, - . is the conserved quantity per unit mass.

• /0 is a volumetric source term, with units of conserved quantity per unit volume per unit time

• 12 is the kinematic diffusivity for the scalar.
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1.6.4. Algebraic Equations for Additional Variables

Additional Variables may be set up as either algebraic equations or transport equations. For algebraic
Additional Variables, you must provide an expression for its value throughout the domain. An algebraic
Additional Variable definition can be as simple as a copy of an existing variable.

Important

Results obtained using an Additional Variable that references an existing variable may differ
from results obtained using the referenced variable directly. This is because the calculation
recipes used for such Additional Variables may differ from those used for the variable refer-
enced. An example of this occurs when the referenced variable is a wall or boundary only
variable. In particular, a variable-specific recipe may exist to gather integration point values
to nodes and this recipe may differ from the generic recipe applied for Additional Variables.

1.7. Rotational Forces

For flows in a rotating frame of reference, rotating at a constant angular velocity �, additional sources
of momentum are required to account for the effects of the Coriolis force and the centrifugal force:

(1–172)= +� � �� ���� ��� �	


where:

(1–173)= − ×� �
 ����

(1–174)= − × ×� �� � ����

and where � is the location vector and � is the relative frame velocity (that is, the rotating frame velocity
for a rotating frame of reference).

In the energy equation, the advection and transient terms use the rothalpy, �, defined by Equa-

tion 1–175 (p. 53), in place of the total enthalpy.

(1–175)= + −� � � �  !"#"
$ % %

1.7.1. Alternate Rotation Model

By default, the advection term in the momentum equation models the relative frame velocity:
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(1–176)
⊗∂

∂
+ ∇

= ∇ − + ∇ + ∇ − × − × ×

�
� �

� � � �

�

�
�

� � � � � � � �
�

The alternate rotation model modifies the advection and transient terms so they involve the absolute

frame velocity,	
��, rather than the relative frame velocity,
.

The change of variable in the advection term requires a modification of the original Coriolis source
term. The final form of the momentum equation becomes:

(1–177)
⊗∂

∂
+ ∇

= ∇ − + ∇ + ∇ − × − × ×

�
� �

� � � �

�

�
�

� � � � � � � �

���

�

Modeling details and recommendations on when this should be used are available in Alternate Rotation
Model in the CFX-Solver Modeling Guide.

1.8. Sources

Additional source terms can be applied either to a volume defined by a subdomain, or to a point
within a domain. A point source is actually implemented as a volumetric source within a single domain
element whose center is nearest to the specified point.

This section describes:
1.8.1. Momentum Sources
1.8.2. General Sources
1.8.3. Mass (Continuity) Sources
1.8.4. Bulk Sources
1.8.5. Radiation Sources
1.8.6. Boundary Sources

For additional details, see Sources in the CFX-Solver Modeling Guide.

1.8.1. Momentum Sources

A momentum source is implemented in ANSYS CFX as a force per unit volume acting on the fluid(s).
Momentum sources can be used to model isotropic losses in porous regions, directional losses in porous
regions, or other processes. These situations are described further in the following sections. More in-
formation on how to use the momentum source models is available in Momentum Sources in the CFX-

Solver Modeling Guide.

1.8.1.1. Isotropic Loss Model

The momentum loss through an isotropic porous region can be formulated using permeability and loss
coefficients as follows:
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(1–178)

= − −

= − −

= − −

� �

� �

� �

�

�
� �

�
�

�

�
� �

�
�

�

�
� �

�
�

� � � �

� � � �

� 	 	 	



��
�

����



��
�

����



��
�

����

where ����� is the permeability and ����� is the quadratic loss coefficient. The linear component of

this source represents viscous losses and the quadratic term represents inertial losses.

Note

����� may be thought of as a 'pressure gradient per dynamic head'. An engineering handbook

may provide data in the form of a 'pressure drop per unit head'. To calculate � !"", divide

by the distance over which the pressure drop occurs (which could be the thickness of a
perforated plate, for example).

The source may alternatively be formulated using linear and quadratic resistance coefficients, substituting

two coefficients #$ % and &' ( as follows:

(1–179)=)
*

+
, -

./01

(1–180)=2 3
4

5 6 7899

1.8.1.2. Directional Loss Model

The momentum source through an anisotropic porous region (such as a honeycomb or perforated
plate) may be modeled using the directional loss model. With this model, the streamwise direction
(which is permitted to vary in space), must be specified. Consider a streamwise-oriented coordinate

system ( ′ ′ ′: ; < ) such that the ′= -axis is aligned with the streamwise direction and the ′ ′> ?  axes lie

on the transverse plane. The momentum losses in these directions are:
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(1–181)

= − −

= − −

= − −

′ ′ ′

′ ′ ′

′ ′ ′

� �

� �

� �

�

�

� �
�

�

�

�

� �
�

�

�

�

� �
�

�

� � � �
�

�

� 	 
 	



	

� � 
 �



�

�


���

����

�


���

����

�


���

����

where �����
�

 and �����
�

 are the streamwise and transverse permeabilities, and  !"##
$

 and %&'((
)

 are the

streamwise and transverse quadratic loss coefficients. These quantities may also be expressed in terms
of linear and quadratic resistance coefficients.

In addition, the transverse loss may be modeled by multiplying the streamwise coefficients by some
factor. If this option is used together with a streamwise permeability, the implied transverse permeab-
ility is equal to the streamwise permeability divided by this factor.

Note

Each of *+,--
.

 and /0122
3

 may be thought of as a 'pressure gradient per dynamic head'. An

engineering handbook may provide data in the form of a 'pressure drop per unit head'. To

calculate 45677
8

 or 9:;<<
=

, divide by the distance over which the pressure drop occurs (which

could be the thickness of a perforated plate, for example).

1.8.1.3. General Momentum Sources

The general momentum source is available for specifying momentum sources that are not covered by
the isotropic or directional loss models. A different source can be specified for each direction as follows:

(1–182)=> ?@A B BC DEFGC

(1–183)=H IJK L LM NOPQM

(1–184)=R STU V VW XYZ[W

where the \ ]^_`ab  quantities are the specified momentum components. In ANSYS CFX 14.0, a represent-

ative scalar linearization coefficient based on the derivative:

(1–185)
∂
∂
c

d

e

u ru

ur

may be specified to provide robust convergence when a general momentum source is present.
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1.8.1.4. Immersed Solid Sources

The presence of an immersed solid in the flow field is modeled through a body force similar to the
general momentum source. The solver automatically updates the mesh positions of the immersed solid
at the beginning of each time step, and then sets up a list of fluid nodes that lie inside the given im-
mersed solid. The solver applies the immersed solid sources to the fluid nodes which lie inside the im-
mersed solid in order to drive the fluid velocity towards the immersed solid velocity. You can apply a
scaling factor to the solver-calculated source coefficient to control how strongly the fluid velocity is
forced to match the immersed solid velocity; this affects accuracy and robustness; for details, see Im-
mersed Solid Control in the CFX-Pre User's Guide.

1.8.2. General Sources

Any scalar equation may have a source term ��. This covers the energy, Additional Variable, turbulence,

and mass fraction equations.

A linearization coefficient

(1–186)
∂
∂
�

�

�

may also be specified to provide robust convergence when sources are present. For the energy equation,
the derivative is actually taken with respect to temperature.

For details, see General Sources in the CFX-Solver Modeling Guide.

1.8.3. Mass (Continuity) Sources

The mass source contribution, �� � , to the conservation equation for the fluid mass is specified exactly

as for a general source.

The mass source contributes an additional term to all other transported variables �:

(1–187)= +	 	 
 	 
� � 
 � � � � � �

The exterior �
� �

 must be specified in the case that �� �  is positive, in which case, the source behaves

very much like an inlet boundary condition.

For details, see Mass (Continuity) Sources in the CFX-Solver Modeling Guide.

1.8.4. Bulk Sources

For details, see Sources in Multiphase Flow (p. 216).

1.8.5. Radiation Sources

For details, see Radiation Theory (p. 351).
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1.8.6. Boundary Sources

For details, see Boundary Sources in the CFX-Solver Modeling Guide.

1.9. Boundary Conditions

The following topics will be discussed:

• Inlet (Subsonic) (p. 58)

• Inlet (Supersonic) (p. 63)

• Outlet (Subsonic) (p. 63)

• Outlet (Supersonic) (p. 67)

• Opening (p. 67)

• Wall (p. 69)

• Symmetry Plane (p. 71)

1.9.1. Inlet (Subsonic)

1.9.1.1. Mass and Momentum

1.9.1.1.1. Normal Speed in

The magnitude of the inlet velocity is specified and the direction is taken to be normal to the boundary.

The direction constraint requires that the flow direction,��, is parallel to the boundary surface normal,

which is calculated at each element face on the inlet boundary.

1.9.1.1.2. Cartesian Velocity Components

The boundary velocity components are specified, with a non-zero resultant into the domain.

(1–188)= + +� � � �� � �	
��
 ���� ���� ����

1.9.1.1.3. Cylindrical Velocity Components

In this case the velocity boundary condition is specified in a local cylindrical coordinate system. Only
the axial direction of the local coordinate system needs to be given and the components of velocity in
the r, theta and z directions are automatically transformed by the CFX-Solver into Cartesian velocity
components. So, in this case you would specify:

(1–189)= + +� � � � � � �� � ������ � � �! � � �! � � �!

‸ ‸ ‸

and the solver will compute the rotation matrix that transforms these components from the cylindrical
components to the Cartesian components such that the boundary condition is the same as if Cartesian
components were specified:
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(1–190)= + +� � � �� � ���	
� �

� �

� �

�

For details, see Cylindrical Velocity Components in the CFX-Solver Modeling Guide.

1.9.1.1.4. Total Pressure

The Total Pressure (p. 16), �
���

, is specified at an inlet boundary condition and the CFX-Solver computes

the static pressure needed to properly close the boundary condition. For rotating frames of reference
one usually specifies the stationary frame total pressure instead.

The direction constraint for the Normal To Boundary option is the same as that for the Normal Speed

In option. Alternatively, the direction vector can be specified explicitly in terms of its three components.
In both cases, the boundary mass flow is an implicit result of the flow simulation.

1.9.1.1.5. Mass Flow Rate

The boundary mass flow rate is specified along with a direction component. If the flow direction is
specified as normal to the boundary, a uniform mass influx is assumed to exist over the entire boundary.
Also, if the flow direction is set using Cartesian or cylindrical components, the component normal to
the boundary condition is ignored and, again, a uniform mass influx is assumed. The mass influx is cal-
culated using:

(1–191)∫
=� �

�

��

�

where

(1–192)∫ ��

�

is the integrated boundary surface area at a given mesh resolution. The area varies with mesh resolution

because the resolution determines how well resolved the boundary surfaces are. The value of � �  is

held constant over the entire boundary surface.

1.9.1.2. Turbulence

For the �-� turbulence model and Reynolds stress models, the inlet turbulence quantities, � and  , are
either specified directly or calculated using expressions that scale the distribution at the inlet according

to the turbulence intensity, !, where:

(1–193)="
#

$

The inlet flows of % and & involve advection and diffusion.
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(1–194)= +� � �
� � �

����� ��	�
� ����
�

(1–195)= +� � �
� � �

����� ������ ������

The advection flows are evaluated using the computed inlet values of � and �:

(1–196)= ! "
#

$%&'() *+'(

(1–197)=, - .
/

012345 6734

The diffusion flows are assumed to be negligible compared to advection, and are equated to zero.

1.9.1.2.1. Default Intensity and Autocompute Length Scale

When default inlet turbulence intensity is selected, the value is set to:

(1–198)= =8
9

:

which is an approximate value for internal pipe flow. The inlet turbulence energy is calculated using:

(1–199)=; < =>?@AB
C C

and the turbulence dissipation calculated using:

(1–200)=D E F
G

H
IJKLMN

N

O

where:

(1–201)=P Q P
R

1.9.1.2.2. Intensity and Autocompute Length Scale

The turbulence intensity is specified directly and the distributions of S and T at the inlet calculated using
the same relationships as the Default Intensity and Autocompute Length Scale  option.

1.9.1.2.3. Intensity and Length Scale

The turbulence intensity and length scale are both specified. The turbulence kinetic energy and dissip-
ation are calculated using:
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(1–202)=� � ������
� �

and

(1–203)=	



�
�
���

�

�
�

1.9.1.2.4. k and Epsilon

Both � and � are specified directly:

(1–204)=� ������ ����

and

(1–205)=� �� !"# $%"&

When the Reynolds stress model is employed, the Inlet boundary conditions are specified with the same

turbulence options as those for the '-( model. Additionally, the stress tensors are extracted using the

computed value of ). This is done by assuming the Inlet boundary to be isotropic with respect to the
Reynolds stresses, such that the normal stress components are:

(1–206)= = =* * * * * * +, , - - . .

and the shear stress components are equal to zero:

(1–207)= = =/ / / / / /0 1 0 2 1 2

1.9.1.3. Heat Transfer

1.9.1.3.1. Static Temperature

The inlet static temperature is specified:

(1–208)=3 34565789:;5 4<;=

The inlet energy flow involves advection and diffusion.

(1–209)= +> > >
?@ABC DEFBGC EHIIJK

The energy flow by advection is a function of the specific total enthalpy, LMNM:
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(1–210)=� � �
������ �	�

where 
��� is computed from the specific static enthalpy, 
����, and the inlet boundary velocity:

(1–211)= +� � ���� ����
�

The static enthalpy is computed using the specified value of �����, the boundary values of �  and �,

and the thermodynamic relationship for =� �  !  for the given fluid. The evaluation of "  depends

upon the nature of the mass and momentum specification for the boundary condition.

The Inlet energy flow by diffusion is assumed to be negligible compared to advection, and equated to
zero.

1.9.1.3.2. Total Temperature

The boundary advection and diffusion terms for specified total temperature are evaluated in exactly
the same way as specified static temperature, except that the static temperature is dynamically computed
from the definition of total temperature:

(1–212)=# #$%$&'()*$ +,*-

which for a fluid with constant heat capacity is:

(1–213)= −. .
/

01
2343567893 3:3567893

;

Additional information on the treatment of variable specific heat is available in Ideal Gas Equation of

State (p. 28).

1.9.1.4. Additional Variables

The value of the Additional Variable is specified explicitly at an inlet:

(1–214)=< <=>?@A BC@D

The inlet flow of E involves advection and diffusion:

(1–215)= +F F F
G G G

HIJKL MNOKPL NQRRST

and the advection quantity is evaluated using the specified value of U:
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(1–216)=� � �
�

�����	 
���

The inlet flow by diffusion is assumed to be negligible compared to advection, and set to zero.

1.9.2. Inlet (Supersonic)

1.9.2.1. Heat Transfer

1.9.2.1.1. Static Temperature

The static temperature is specified at the supersonic inlet boundary:

(1–217)=� �
��������� 
���

1.9.2.1.2. Total Temperature

Total temperature is specified at the supersonic inlet boundary:

(1–218)=� ���������� � �!

Static temperature is dynamically computed from the definition of total temperature.

1.9.3. Outlet (Subsonic)

1.9.3.1. Mass and Momentum

1.9.3.1.1. Static Pressure (Uniform)

Relative Static Pressure is specified over the outlet boundary:

(1–219)=" "
#$%$&'($)*$ #+*,

1.9.3.1.2. Normal Speed

The magnitude of the outlet velocity is specified and the direction is taken to be normal to the
boundary at mesh resolution.

1.9.3.1.3. Cartesian Velocity Components

The boundary velocity components are specified, with a non-zero resultant out of the domain.

(1–220)= + +- . / 01 2 3456786 9:8; 9:8; 9:8;

1.9.3.1.4. Cylindrical Velocity Components

These are handled the same way as for an Inlet (Subsonic) (p. 58) boundary condition.
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1.9.3.1.5. Average Static Pressure: Over Whole Outlet

The Outlet Relative Static Pressure allows the pressure profile at the outlet to vary based on upstream
influences while constraining the average pressure to a user-specified value �

����
, where:

(1–221)∫=�
�

� ��

�
	
��
�

where �
��

 is the imposed pressure at each integration point and the integral is evaluated over the entire

outlet boundary surface. To enforce this condition, the pressure at each boundary integration point is
set to:

(1–222)= + −� � � �
�� ���� � �

So, the integration point pressure in this case is set to the specified value plus the difference between
the local nodal value and the average outlet boundary pressure. In this way the outlet pressure profile
can vary, but the average value is constrained to the specified value.

1.9.3.1.6. Average Static Pressure: Above or Below Specified Radius

In this case, the average pressure is only constrained in the region above or below the specified radius
by shifting the calculated pressure profile by the difference between the specified average and the
nodal average above or below the specified radius.

1.9.3.1.7. Average Static Pressure: Circumferential

The circumferential averaging option divides the exit boundary condition into circumferential bands
(oriented radially or axially depending on the geometry). The pressure within each band is constrained
to the specified average pressure value the same way as is done for the overall averaging:

(1–223)= + −� � � � � �
�� � � � � !"#

where the specified value is applied within a band and the nodal average pressure is also calculated
within a band.

1.9.3.1.8. Mass Flow Rate: Scale Mass Flows

The mass flux distribution across the outlet is determined by starting with the local mass flow rate dis-
tribution calculated by the flow solver at each integration point:

(1–224)= $% & '() () () ()

From that distribution, you calculate the estimated total mass flow rate through the outlet boundary
condition:
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(1–225)∑=� ������

���

���

where the summation is over all boundary integration points. A scaling factor is computed at the end
of each coefficient loop that is used to scale the local integration point mass flows such that they add
up to the specified mass flow rate:

(1–226)=	






��
�

���


��

Iteratively, during the computation, � can be greater than or less than unity. The final integration point
mass flows are reset by multiplying the integration point mass flows by the scaling factor:

(1–227)= �� � � ��� �� �� ��

In this way, the mass flux profile is an implicit result of the solution and at the same time gives exactly
the specified mass flow rate.

1.9.3.1.9. Mass Flow Rate: Shift Pressure with or without Pressure Profile

This condition differs from the last one in that pressure is shifted in the continuity equation to get the
specified mass flow rate. Generally speaking, the mass flow rate at each boundary integration point is
dependent upon both velocity and pressure:

(1–228)= �� � � � �� � � � � !"#$

where the integration point velocity depends upon nodal velocity and integration point pressures
through the Rhie-Chow coupling. For this boundary condition, the integration point pressures are given
by an expression of the form:

(1–229)= + − − +% & % & % % %
'( )*+, -+./ -+./ 012,3

where 4
5678

 is an optional specified pressure profile, 9
:;<=

 is the boundary node pressure, >
?@AB

 is

the outlet boundary nodal average pressure, C is the Pressure Profile Blend factor that sets how much
the specified profile influences the boundary condition, and D

EFGHI
 is the level shift factor automatically

computed by the CFX-Solver each coefficient loop to enforce the specified mass flow rate, such that:

(1–230)
∑= JK L M N O
PQ
PQ

PQ PQ PQRSTU VWXT

where the sum, in this case, is over all the outlet boundary condition integration points.
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1.9.3.1.10. Mass Flow Rate: Shift Pressure with Circumferential Pressure Averaging

A further extension of the shift pressure feature for outlet mass flow rate conditions (or outlet bound-
aries using an Average Static Pressure specification) enforces the specified profile as an average pressure
profile (or average pressure) in circumferential bands (radial or axial), held at a particular value.

Starting with the original formula for the integration point pressure in Equation 1–229 (p. 65): instead
of imposing a particular profile distribution, an average pressure profile within bands is introduced:

(1–231)= + − +� � � � � � � �
�� � ����	 
��� 
��� 
��	�

where: � �
�����

 is the average pressure desired in band �
�

, and � �
���� 

 is the current average

nodal value in band !
"

. # corresponds to the Pressure Profile Blend factor. When the specified profile

spatially varies, the flow solver will compute the average of that profile within each band and then use

those values for $ %
&'()*

.

1.9.3.1.11. Radial Equilibrium

The radial equilibrium option divides the boundary condition into radially oriented circumferential
bands. The pressure within each band is constrained by the radial equilibrium condition:

=
+ ,

+-
.
/

-

0 1

0

2

This equation is used to calculate the pressure gradient 3 4 35
6

 in each band, 7
8

, based on the band

averaged tangential velocity, 9 :, and density, ;, as well as the band centre radius, <=. The band edge

pressures, >
?

, are obtained by integrating this equation starting from the specified pressure at the ra-

dial reference position. This pressure is used to constrain the solution pressure with the following
equation:

= + − + −@ A @ B C A @ @ C @ C
DE F F G F F G F

where:

• H I
J K

 is the area average nodal pressure, within a band L
M

• N O P
Q Q

 is linearly interpolated between the band edge values to the local face radius, r

• and R S
T T

 is the evaluated at the band mid-radius.

As for all average static-pressure options, the pressure profile blend factor, F, can be applied to this
boundary condition. If the factor F=,1 then the pressure at each face is fully constrained to the pressure

obtained from the radial equilibrium condition, U V W
X X

, so that a circumferential profile is not allowed

within the band. If the factor F=0, then a circumferential profile is allowed to develop with the average
of that profile equal to the radial equilibrium pressure.

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.66

Chapter 1: Basic Solver Capability Theory



1.9.3.2. Turbulence, Heat Transfer, Convected Additional Variables, and Other Scalars

For scalar quantities, the CFX-Solver imposes a constant gradient constraint (generally non-zero) at the
outlet boundary.

1.9.4. Outlet (Supersonic)

The specification of a supersonic outlet boundary condition requires no accompanying values, except
for the radiation intensity if radiation is modeled.

1.9.5. Opening

An opening boundary condition allows the fluid to cross the boundary surface in either direction. For
example, all of the fluid might flow into the domain at the opening, or all of the fluid might flow out
of the domain, or a mixture of the two might occur. An opening boundary condition might be used
where it is known that the fluid flows in both directions across the boundary.

1.9.5.1. Mass and Momentum

1.9.5.1.1. Cartesian Velocity Components

The Cartesian components of the flow velocity are specified at the opening boundary:

(1–232)= + +� � � �� � ���	
�
� 
�	� 
�	� 
�	�

1.9.5.1.2. Cylindrical Velocity Components

These are handled the same way as for an Inlet (Subsonic) (p. 58) boundary condition.
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1.9.5.1.3. Pressure and Direction

An opening boundary condition can also be specified with a Relative Pressure value:

(1–233)=� �
������� ����

The value is interpreted as relative total pressure for inflow and relative static pressure for outflow.

The direction component, normal to boundary condition or direction components, must also be specified.
The magnitude of the velocity at the opening boundary is then part of the solution.

1.9.5.1.3.1. Loss Coefficient

You can optionally specify a loss coefficient, 	 :

(1–234)=
 

��
�

with a velocity component specification at an opening boundary. The pressure drop is calculated using:

(1–235)=� � � ������

�

where �� is the magnitude of the velocity component normal to the opening boundary. For inflows,

the constraint on pressure and velocity becomes:

(1–236)− =� � � � ��� !"

#

�$%$

and for outflows, the constraint becomes:

(1–237)+ =& ' ( ) &*+,-.

/

+010

The coefficient can be used to model the pressure drop across a screen or other planar resistance.

1.9.5.2. Heat Transfer

1.9.5.2.1. Static Temperature

Opening temperature or Static temperature can be specified at the opening boundary:

(1–238)=2 234546789:;:< 389=

1.9.5.3. Additional Variables

For flow into the domain, the value of the Additional Variable at an opening boundary is that specified
on the Additional Variable Details tab:
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(1–239)=� �������� ����

For flow out of the domain the specified value is not used. The value for flow out of the domain is cal-
culated by the CFX-Solver and is the Additional Variable value taken from the solution field.

1.9.6. Wall

1.9.6.1. Mass and Momentum

1.9.6.1.1. No Slip (Not Moving, No Wall Velocity)

The velocity of the fluid at the wall boundary is set to zero, so the boundary condition for the velocity
becomes:

(1–240)=	
���

1.9.6.1.2. Free Slip

In this case, the velocity component parallel to the wall has a finite value (which is computed), but the
velocity normal to the wall, and the wall shear stress, are both set to zero:

(1–241)=
������

(1–242)=��

1.9.6.1.3. Finite Slip

For details on finite slip wall, see Finite Slip Wall in the CFX-Solver Modeling Guide

1.9.6.1.4. Specified Shear

For details on specified shear wall, see Specified Shear in the CFX-Solver Modeling Guide

1.9.6.1.5. No Slip (Moving, with Wall Velocity)

In this case, the fluid at the wall boundary moves at the same velocity as the wall. There are three dif-
ferent options for the wall velocity:

• Cartesian Components: You can directly specify Cartesian components in a local coordinate frame or
the global coordinate frame:

(1–243)= + +� � � �� � ����� � !" � !" � !"

• Cylindrical Components: You can directly specify cylindrical components in a local cylindrical coordinate
system:
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(1–244)= + +� � � � � � ������ 	
��
� 
 ��
� �
��
�

‸ ‸ ‸

and the solver automatically transforms the cylindrical velocity components into the global Cartesian
coordinate system.

• Counter-rotating Wall and Rotating Wall: A counter-rotating wall can be specified for walls in rotating
frames. In this case, the wall is stationary in the absolute frame; in the relative frame, it moves with a
velocity:

(1–245)= −� ������

where � is the radial vector from the domain axis of rotation to the wall and � is the domain an-
gular velocity.

A rotating wall can be specified in both stationary and rotating frames. This option is useful to use
in stationary domains when you would like to create a spinning wall. In this case, you enter a local
rotation axis for the wall boundary and the wall velocity:

(1–246)=� ������

The solver automatically transforms the specified wall velocity into Cartesian components. This option
could be used to duplicate the counter rotating wall option in rotating frames by explicitly setting the
angular velocity equal to minus one times the domain angular velocity.

1.9.6.2. Turbulence

The treatment of wall boundary conditions for turbulent flow is the same as for laminar flow, except
for No Slip. For details, see Modeling Flow Near the Wall (p. 139).

1.9.6.3. Heat Transfer

1.9.6.3.1. Adiabatic

The Adiabatic Wall boundary condition allows no heat transfer across the Wall boundary:

(1–247)=�
�

1.9.6.3.2. Fixed Temperature

Static Temperature is specified at the wall boundary:

(1–248)=  !"#"$% !&'(

1.9.6.3.3. Heat Flux

Heat flux at the wall boundary is specified:
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(1–249)=� �
� ����

1.9.6.3.4. Heat Transfer Coefficient

Heat flux at the wall boundary is calculated using:

(1–250)= −� � � �
	 
 � �	

where 
� is a specified heat transfer coefficient,�� is the specified boundary temperature, (that is,

outside the fluid domain) and ��� is the temperature at the internal near-wall boundary element center

node. For details, see Heat Transfer in the CFX-Solver Modeling Guide.

1.9.6.4. Additional Variables

The options for specifying Additional Variable quantities at wall boundaries are analogous to those for
heat transfer.

1.9.7. Symmetry Plane

The symmetry plane boundary condition imposes constraints that ‘mirror’ the flow on either side of it.

For example, the normal velocity component at the symmetry plane boundary is set to zero:

(1–251)=��

and the scalar variable gradients normal to the boundary are also set to zero:

(1–252)
∂
∂

=
�

�

1.10. Automatic Time Scale Calculation

This section describes the way in which a timestep is calculated when using the Auto Timescale
or Auto Timescale  with a Maximum Timescale  option for setting the timestep used during the
calculation of a solution. For details, see Timestep Selection in the CFX-Solver Modeling Guide.

1.10.1. Fluid Time Scale Estimate

The following length scales are calculated by ANSYS CFX:
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(1–253)

=

=

=

� �

� � � �

� �

� � �

���

	
�

�
 �


�

where �  is the domain volume (over all domains), ��, �� and �� are the �, � and � extents of the domain

(over all domains) and ��� is the area of an ‘open’ boundary (that is, inlets, outlets or openings).

Further length scales are then calculated depending on the Length Scale Option parameter, which
can be Conservative , Aggressive  or Specified Length Scale :

(1–254)=








�

� �

� �

�

��� !

"# !$%

"# !$%

&�!'

The velocity scales used to calculate a timestep are:

(1–255)

=
=

=
−

(

(

)

)

)

* *

+
,

-. -.

/012 /012

3
-.4567 -.458/

/012

where 9:; is the arithmetic average of the velocity on a boundary,<=>?@ is the arithmetic average of

the nodal velocities, A
BCDEFG

 and H
IJKLMN

 are the maximum and minimum pressure values on an ‘open’

boundary and O
PQRS

 is the arithmetic average nodal density.

For compressible flows, a Mach number for the simulation is calculated as:

(1–256)

=

=





∂
∂






−

T
U V W X X X

Y

Y
Z

[

\]^ _`ab c

d

where e  is the arithmetic averaged speed of sound over all nodes.

For buoyant flows using the full buoyancy model:

(1–257)= fg

and for the Boussinesq model:
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(1–258)= −�� � � ���� ���

where 	 is the thermal expansivity and 
��
 and ���� are the maximum and minimum domain temper-

atures (over all domains).

The final fluid time scale used is calculated as:

(1–259)=� � � � � �� � �� ��� �

where:

=












�
�

���    

!�

"

�

�
#

$%&'(

)% *+,( -

$%&'(

.*/

0

with the dynamic viscosity µ, the total mass m and the total mass flow into the system 123.

For very small geometries, where the Reynolds number may be very small, including the diffusion scale
in the automatic timescale calculation can lead to very small timesteps, which can unnecessarily slow
down convergence. For such cases it may be better to use a physical timescale based on advection
scales instead.

(1–260)= =4
5

6
4

7
8

9:;<=
>?@

If >A , then

(1–261)=B C

D D D E
F

G

HI

HI JKLM N

1.10.2. Solid Time Scale Estimate

The solid time scale estimate will, in general, be much larger than the fluid time scale.

The length scale used to calculate a solid time scale,OPQRST, is calculated in the same manner as for

fluid time scales. The default value is taken as the cube root of the volume of the solid domain.

A volume averaged diffusion is calculated as:

(1–262)=U V

W X Y

where each quantity is volume averaged over the solid. The solid time scale is finally calculated as:
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(1–263)=� �
�

�

�����
	

where 
  is the specified solid timescale factor, which has a default value of 1.

When a rotating motion is enabled in a solid domain, the advective time scale is then computed as

� where � is the angular velocity. The solid timestep is taken as the minimum between the diffusive

and this new advective ( 
) timescale.

The value of the computed timestep size is recorded in the .out  file.

1.11. Mesh Adaption

Mesh adaption in ANSYS CFX is the process in which, once or more during a run, the mesh is selectively
refined in areas that depend on the adaption criteria specified. This means that as the solution is calcu-
lated, the mesh can automatically be refined in locations where solution variables are changing most
rapidly, in order to resolve the features of the flow in these regions.

More information on the mesh adaption process and controls is available in Mesh Adaption in the CFX-

Pre User's Guide.

Within the mesh adaption step itself, three processes take place:

1. Adaption criteria are calculated for each mesh element.

2. The appropriate number of nodes are added to the existing mesh according to the adaption criteria
calculated.

3. The solution already calculated on the older mesh is linearly interpolated onto the new mesh.

This section describes the details of exactly which elements are refined and how the refinement takes
place.

1.11.1. Adaption Criteria

This section describes how the adaption criteria are calculated for each mesh edge.

• If the adaption criteria method is Solution Variation, then the adaption criteria, ��, for a given mesh

edge � of length �� is calculated as:

(1–264)∑=�

�

� �
�

�

��

� ��

where �
�
 is the �

��
 adaption variable (such as density, pressure, and so on), �

 
 is the global

range of the variable !
"
 over all the nodes (excluding those on wall boundary conditions for turbu-

lent flow), #
$%

 is the difference between &
'
 at one end of the edge and the other end, and ()

*

is a scalar for adaption variable + to scale all the ,- to take values between 0 and 1.
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• If the adaption criteria method is Variation * Edge Length , then the adaption criteria �� for a

given mesh edge � of length �� is calculated as:

(1–265)∑=�

� �

� �
	




	 
	

� 
�

where: 

�
 is the global range of the �

��
 adaption variable �

�
 over all the nodes (excluding those

on wall boundary conditions for turbulent flow), �
��

 is the difference between �
�
 at one end of

the edge and the other end, and ��
�
 is a length chosen to scale all the �� to take values between

0 and 1.

• If you select more than one solution variable, then the adaption criteria are calculated for each variable
at each edge, and the sum over all adaption variables is used.

• If you specify the adaption criteria to be an expression, then the expression is evaluated at each node,
and the calculation of the adaption criteria follows as if this were another solution variable.

The edges that have the largest adaption criteria are marked for refinement, providing that this would
not result in mesh edges that were shorter than the Minimum Edge Length, if this was specified.

1.11.2. Mesh Refinement Implementation in ANSYS CFX

There are two general methods for performing mesh adaption. Incremental adaption takes an existing
mesh and modifies it to meet the adaption criteria. The alternative is remeshing, in which the whole
geometry is remeshed at every adaption step according to the adaption criteria. In ANSYS CFX, incre-
mental adaption is used because this is much faster; however, this imposes the limitation that the res-
ulting mesh quality is limited by the quality of the initial mesh.

The particular implementation of incremental adaption that is adopted in ANSYS CFX is known as
hierarchical refinement or h-refinement. Each adaption step consists of a structured refinement of
an existing mesh. A sequence of refinements form a set of hierarchical levels.

In each mesh adaption step, each mesh edge that is marked for adaption (see the previous section)
has an extra node placed half-way along it. The mesh elements that share this edge are then divided
to use the new node, subject to the following:

• Neighboring elements must only differ by one refinement level. Hence, one mesh element cannot be
divided twice if its neighbor has not been divided at all.

• Where possible, regular refinement of an element takes place. Regular refinement means that all the
edges of an element are divided into two, and the element split accordingly. To make this possible,
extra nodes may be added.

• No “hanging” nodes are allowed. This means that if an extra node is added to an edge, all the mesh
elements that share that edge must be refined.

• Only certain types of elements are allowed in the refined mesh: tetrahedron, prism, pyramid and hexa-
hedron.

75
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Mesh Adaption



1.11.2.1. Adaption in Inflated Regions of the Mesh

In regions where inflation has taken place (so that there are prisms and some pyramid elements near
wall boundary conditions), the mesh adaption avoids refining these elements in the direction perpen-
dicular to the wall. Only edges on the interface between the inflated elements and the rest of the tet-
rahedral mesh are allowed to be marked for adaption. When the refinement of these edges takes place,
the refinement propagates through the layers of prismatic elements to the wall boundary condition itself.

1.11.2.2. Adaption to the Original Geometry

Mesh adaption in ANSYS CFX does not have the capability of refining the surface mesh back to the
original geometry. This means that nodes that are added to the surface of the problem are added onto
the edges of the existing mesh rather than to the surfaces of the original geometry. An illustration of
these two alternatives is shown below. Note that only the option shown on the left is available in ANSYS
CFX.
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Note

Support for adaption of the mesh to the original surface geometry is expected in future re-
leases.

1.11.3. Mesh Adaption Limitations

Mesh Adaption in ANSYS CFX 14.0 is subject to the following limitations:

• Mesh adaptation is limited to allocate 2^31-1 words of 4 byte integer stack space; this limits the max-
imum problem size for mesh adaptation to approximately 80 million elements (structured) and 200
million elements (unstructured).

• Mesh adaption cannot be used in multi-domain simulations or in cases with external solver coupling.
Mesh adaption also cannot be used for transient, mesh-motion, radiative-tracking, or particle-transport
cases.

• The mesh may not be coarsened such that original mesh elements are combined. Mesh elements that
have been refined in earlier adaption steps may be coarsened, back to their original mesh elements,
but not beyond.

• You must specify how much adaption takes place by specifying the maximum number of nodes in the
final mesh. You cannot specify that mesh adaption should take place until the mesh stops changing or
until a particular solution criterion is satisfied.

• The method used is not well-suited to meshes with many high-aspect ratio elements, because it can
only refine elements in an isotropic manner.

• The method cannot improve the quality of the existing mesh.

1.11.3.1. Mesh Adaption Tips

• More than one adaption step applied to a surface mesh with no underlying geometry can lead to con-
vergence problems with transonic problems.

• If you set Mesh Adaption Criteria Method to Solution Variation  without specifying Minimum

Edge Length, then you may over-refine in regions where there are discontinuities. If you want to adapt
meshes containing geometrically small features, you can exploit the adaption capability without limitation
by not setting any minimum edge length.
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• If you set Mesh Adaption Criteria Method to Variation * Edge Length , then you will not over-
refine discontinuities. This method places an emphasis on adapting long edges with large variations of
solution variable in preference to short edges with large variations of solution variable. This method
will also refine long edges with a small variation of solution variable.

• Adaption criteria values for each node will be computed as the average value of all edges connected
to the node, and these values will be stored in the results file for visualization purposes.

• If you find that the mesh adaption appears to have missed a discontinuity in a solution by refining the
mesh in front of or behind the discontinuity, then your solution was not sufficiently converged before
mesh adaption took place. As a solution containing a discontinuity develops, the location of such a
discontinuity may move. If the solution is not sufficiently converged before mesh adaption takes place,
then the mesh will be refined at the location of the discontinuity, which will move as convergence
continues. A lower Target Residual can be set on the Mesh Adaption/Advanced Parameters tab to
correct this problem.

1.12. Flow in Porous Media

Flow in porous media in ANSYS CFX can be calculated using either:

• A fluid domain together with a model for momentum loss. The effects of porosity are accounted for
only through this loss term; all other terms in the governing equations are not changed. As a result,
this formulation can be called the “superficial velocity formulation”. For information on the momentum
loss models available with this formulation, see Momentum Sources (p. 54).

• A porous domain that involves one or more fluids and an optional solid. Porosity modifies all terms in
the governing equations as well as the loss term. As a result, this formulation can be called the “true
velocity formulation” or the “full porous model”. This method supports solid models (for example, for
modeling thermal conductivity of the solid), and models for the interaction between the fluid and solid
parts of the domain.

1.12.1. Full Porous Model

The full porous model is at once both a generalization of the Navier-Stokes equations and of Darcy's
law commonly used for flows in porous regions. It can be used to model flows where the geometry is
too complex to resolve with a grid. The model retains both advection and diffusion terms and can
therefore be used for flows in rod or tube bundles where such effects are important.

In deriving the continuum equations, it is assumed that ‘infinitesimal’ control volumes and surfaces are
large relative to the interstitial spacing of the porous medium, but small relative to the scales that you
want to resolve. Thus, given control cells and control surfaces are assumed to contain both solid and
fluid regions.

The volume porosity � at a point is the ratio of the volume ′�  available to flow in an infinitesimal

control cell surrounding the point, and the physical volume �  of the cell. Hence:

(1–266)′ =� � �

It is assumed that the vector area available to flow, ′� , through an infinitesimal planar control surface

of vector area � is given by:
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(1–267)′ = ⋅� � �

where: =� �
��

 is a symmetric second rank tensor, called the area porosity tensor. Recall that the

dot product of a symmetric rank two tensor with a vector is the vector ⋅ =� � � 	

 
�

�. ANSYS CFX

presently allows only � to be isotropic; that is, =
 �
�� ��

.

The general scalar advection-diffusion equation in a porous medium becomes:

(1–268)
∂
∂

+ ∇ ⋅ − ∇ ⋅ ∇ =� � �
�
� � � � � � � ��

In addition to the usual production and dissipation terms, the source term � will contain transfer terms
from the fluid to the solid parts of the porous medium.

In particular, the equations for conservation of mass and momentum are:

(1–269)
∂
∂

+ ∇ ⋅ =� �
�
� � �

and:

⊗∂
∂

+ ∇ ⋅ − ∇ 


⋅ 


∇ + ∇ − ∇ 





�  � �  � � �
!
" # # $ %

&

'

(1–270)= − ∇() ) *+

where , is the true velocity, -
.
 is the effective viscosity - either the laminar viscosity or a turbulent

quantity, and /0  is a momentum source, which could be written as − ⋅1 2 (where =3 4
56

 and

represents a resistance to flow in the porous medium). This is in general a symmetric positive definite
second rank tensor, in order to account for possible anisotropies in the resistance.

In the limit of large resistance, a large adverse pressure gradient must be set up to balance the resistance.
In that limit, the two terms on the right-hand side of Equation 1–270 (p. 79) are both large and of op-
posite sign, and the convective and diffusive terms on the left-hand side are negligible. Hence, Equa-

tion 1–270 (p. 79) reduces to:

= − ⋅ ∇−
7 8 9

:

Hence, in the limit of large resistance, you obtain an anisotropic version of Darcy's law, with permeab-
ility proportional to the inverse of the resistance tensor. However, unlike Darcy's law, you are working

with the actual fluid velocity components ; , which are discontinuous at discontinuity in porosity, rather

than the continuous averaged superficial velocity, = ⋅< = >
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1.12.1.1. Heat Transfer Through the Fluid Only

Heat transfer can be modeled with an equation of similar form:

(1–271)
∂
∂

+ ∇ ⋅ − ∇ ⋅ ∇ =� � �
�
� � � � � � � ��

	

where 
� is an effective thermal diffusivity and �



 contains a heat source or sink to or from the porous

medium.

1.12.1.2. Additional Variable Transfer Through the Fluid Only

For the fluid phases:

(1–272)
∂
∂

+ ∇ ⋅ − ∇ ⋅ ∇ =� � �
���

�
� � � � ��

�

where �� is an effective diffusivity.

1.12.1.3. Heat Transfer Through the Fluid and Solid

The current porous solid heat transfer formulation allows a finite temperature difference between the
fluid phases and the solid phase. It is a non-thermal equilibrium model, therefore there are separate
energy equations for each phase within the domain (N fluid phases plus one solid phase). In addition,
it makes no assumption on the solid material properties.

For the fluid phases:

(1–273)
∂
∂

+ ∇ ⋅ − ∇ ⋅ ∇ = +� � �
���

�
�  !  �" #$ %

&

'(

For the solid phase:

(1–274)
∂

∂
+ ∇ ⋅ − ∇ ⋅ ∇ = +) * )

+ , - .

/
, - . . + 0 1

23 3 3 3
3 3 3 3 3 3 3 3 34

where = −5 5
6

, and the interfacial heat transfer between the fluid and the solid,7
89

, is determined

using an overall heat transfer coefficient model using:

(1–275)= − = −: : ;< = =
>? ?> >? ? >

@ is the overall heat transfer coefficient between the fluid and the solid.

ABC is the interfacial area density between the fluids and the solid. For multiphase flows, this concept

can be split into a fluid-independent interfacial area density and a contact area fraction between the
fluid and the solid:
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(1–276)=� �
�

�
���

where �� represents the contact area fraction of fluid � with the solid. For single-phase flows, =�	 .

1.12.1.4. Additional Variable Transfer Through the Fluid and Solid

For the fluid phases:

(1–277)
∂
∂

+ ∇ ⋅ − ∇ ⋅ ∇ = +
 � 

�
�

�

 � � � � ��

�
��

For the solid phase:

(1–278)
∂

∂
+ ∇ ⋅ − ∇ ⋅ ∇ = +� � �

� � �

�
� � � � �

�   
     !

where = −" "
#

, and the interfacial transfer between the fluid and the solid, $
%&

, is determined using

an overall transfer coefficient model using:

(1–279)= − = −' ' () * *+, ,+ - , +

. is the overall additional variable transfer coefficient between the fluid and the solid.

/01 is described in Heat Transfer Through the Fluid and Solid (p. 80).

1.12.1.5. Time-varying Porosity

For calculations without any heat or Additional Variable transfer through the solid, it is possible to use
a porosity that varies with time. For calculations that do include heat or Additional Variable transfer
through the solid, this is inadvisable because the term proportional to the rate of change of porosity
is omitted from the equations within the solid.

1.12.2. Porous Momentum Loss Models

The momentum loss models available for porous domains are identical to the loss models available
with the superficial velocity formulation. In particular, two options are available:

• Isotropic Loss Model (p. 54)

• Directional Loss Model (p. 55)

Note that, in these models, the velocity may refer to either true velocity or superficial velocity. Changing
from one to the other leads to different coefficients. For fluid domains, the solver assumes that the
coefficients multiply the superficial velocity, while for porous domains, you may choose either true or
superficial velocity.
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1.13. Wall and Boundary Distance Formulation

Wall and boundary distances are used in various functions that control the transition between near-wall
and freestream turbulence models, and in the mesh deformation model. These distances are derived
using the same formulation, which is described here.

The following topics are discussed:

• 1D Illustration of Concept (p. 82)

• Concept Generalized to 3D (p. 83)

1.13.1. 1D Illustration of Concept

Consider the 1D case of a horizontal surface, with the y direction normal to the surface:

Consider the following Poisson equation for a variable �:

(1–280)= −� �

��

�

�

with a boundary condition of =�  at the wall.

Integrate once:

(1–281)= − +��

��
� 	


Integrate again:

(1–282)= − + +� � 
 � 
� �
�

Because =�  at =� , you can deduce that =�� . You also know from Equation 1–280 (p. 82) that:
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(1–283)= +�
��

��
��

Substituting into Equation 1–282 (p. 82) for �� and ��, you are left with a quadratic equation for 	 in

terms of 
 and �� �
 :

(1–284)= +� �
��

��
�

�

Rearranging this gives:

(1–285)+ + =� � �� �
�

where =� , =�
��

��
, and = −� �

Solving this quadratic and choosing the positive root gives:

(1–286)= − +








 +�

� 

��

� 

��
 

!

1.13.2. Concept Generalized to 3D

Equation 1–280 (p. 82) becomes a diffusion-only transport equation with a uniform source term of unity:

(1–287)∇ = −"
#

Dirichlet conditions of =$  are applied on boundaries of interest (such as walls), and Neumann (or

zero flux) conditions are applied on other boundaries. Equation 1–286 (p. 83) is then evaluated, replacing

%& %'  with ∇ ( ()* )+ is always positive) and , is interpreted as the distance to the nearest

boundary where =-  was set. This gives the following expression for desired distance:

(1–288)= − ∇ + ∇ +. . .
/

Because 0 is always positive, the wall distance is also always positive.

1.14. Wall Condensation Theory

The wall condensation model may be used to model condensation of a condensable component of a
variable composition mixture, such as steam and air. Condensation may occur on walls or fluid solid
boundaries that are sufficiently cold to permit condensation onto a thin liquid film. It assumes that the
primary resistance to heat transfer is caused by the boundary gradient of concentration of the condens-
able component, and that the liquid film is sufficiently thin that its contribution to heat transfer resistance
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is negligible. Condensation is modeled as a boundary mass sink of the condensable component, effect-
ively removing the condensed mass of the condensable from the fluid domain. Flow in the liquid film
is not modeled.

This chapter describes the following:
1.14.1.Wall Condensation Model
1.14.2. Condensation Heat Transfer (CHT)
1.14.3. Specification of Secondary Fluxes

1.14.1. Wall Condensation Model

A laminar boundary layer model (Equation 1–298 in the CFX-Solver Theory Guide) is employed for laminar
flow. A turbulent boundary layer model (Equation 1–304 in the CFX-Solver Theory Guide) is employed
for turbulent flow. This makes use of the turbulent wall functions.

Although you see the Wall Condensation Model as a wall boundary condition for component mass
fractions, the internal solver implementation extends the boundary source machinery rather than the
boundary condition machinery. Wall condensation mass sinks are implemented as internally coded
boundary sources which use the same infrastructure as user-defined boundary sources. The implement-
ation is consistent with that of a user boundary mass source with:

(1–289)Sink Option = Specified Mass Fractions and Local Temperature

and with values of outgoing mass fractions to be assigned as follows:

(1–290)

Unique Condensable Component Mass Fraction = 1

Non-Condensable Component Mass Fractions = 0

The following topics are discussed:
1.14.1.1. Laminar Boundary Layer Model
1.14.1.2.Turbulent Boundary Layer Model

1.14.1.1. Laminar Boundary Layer Model

In a laminar boundary layer, the molar fluxes ��, �� of a non-condensable component � and a condens-

able component � of a binary gaseous mixture through a plane parallel to, and at a distance � from,

a wall, are given by:

(1–291)= − ∂
∂

=� � � 	 

�

�
� 
 � �� 


�

(1–292)= − ∂
∂

� � � � �
�

�
� � � �� �

�

��� is the binary diffusion coefficient, �� is the molar convective flux of the mixture, �� is the molar

density of the mixture and ��,  ! are the molar fractions of the non-condensable and condensable

components, respectively.
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Adding Equation 1–291 (p. 84) and Equation 1–292 (p. 84), using + =� �� � , gives =� �� �. Hence,

substituting into (Equation 1–292 (p. 84)) and rearranging gives:

(1–293)= −
−

∂
∂

� �
�

	

	



� ��




�

�

Hence, integrating from the wall ( =� ) to the edge of the boundary layer ( =� �) gives:

∫ =





−
−




� �� � �

� �

�

�

� �� �
�

��

Finally, assuming ��= constant in the boundary layer gives:

(1–294)=





−
−




�

 !

"

# "

#
$

%$ & $

$

It is convenient to express this result in terms of mass concentrations '
(

, )
*

, +
,

, and mass fluxes -.,

/0, 12. Component mass concentrations are related to component molar concentrations and molecular

weights 34,56 as follows:

(1–295)= =7 8 9 7 8 9: : ; ; ;<

Also, mixture concentrations are related to component concentrations as follows:

(1–296)= + = += = = > > >
? @ @ AB C

From Equation 1–295 (p. 85) and Equation 1–296 (p. 85), we define a mixture molecular weight relating
mixture mass and molar concentrations as follows:

(1–297)= ⇒ = +
+

D E F E
E F E F

F F
G G G

H H I I

H I
J

Finally, we can substitute Equation 1–297 (p. 85) into Equation 1–294 (p. 85) to express the condensable
component mass flux as follows:

(1–298)= =





−
−




K L M N

O P

O
Q Q Q Q

Q

Q

where the mass transfer coefficient for laminar flow,RS, is given by:
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(1–299)=�
�

�

� �

�
�

�

�

�� �

The condensable component molar fraction at the interface is determined by assuming that the vapor
is in thermal equilibrium with the liquid film at the interface, and hence its partial pressure is equal to
its saturation pressure at the interface temperature. In reality, the vapor at the edge of the boundary
layer may be a supersaturated wet vapor, or mist. Only the dry part of the vapor will form the concen-
tration gradient which drives the condensation mass flux. Hence, only the molar fraction of dry vapor
must be used to determine the mass flux. This is achieved by clipping the molar fraction at the edge
of the boundary layer as follows:

(1–300)=� 	 � 	 � 	
 
 
��


where ����� denotes the saturated molar fraction.

It is assumed that the liquid droplets suspended in the vapor are not transported to the interface, but
merely act as a reservoir for the production of dry vapor to counter the depletion of the boundary layer
by condensation.

1.14.1.2. Turbulent Boundary Layer Model

For turbulent flows, the concentration boundary layer is modeled using turbulent wall functions. Con-
sequently, we use discrete versions of Equation 1–291 (p. 84), Equation 1–292 (p. 84) employing turbulent
wall functions to model the mass fluxes in the turbulent boundary layer. Thus:

(1–301)= − − =� � � � � ��� � �� � �� ��

(1–302)= − −� � � � � ���  �� ! "# "�

Here, w subscripts refer to wall quantities, P subscripts refer to near wall mesh points, and $%  is the

wall multiplier determined by the form of the turbulent wall function ( =& ' ( )* + ,-  for laminar flow).

Performing the same manipulations as in the previous section, we obtain:

(1–303)= − −
−

. /
0 0

0
12 3

14 15

15

As the multi-component flow model solves for mass fractions rather than molar fractions, it is more
convenient to work with mass fluxes and mass fractions rather than molar fluxes and mole fractions.
This gives the following formula for the condensation mass flux:

(1–304)= − −
−

6 7
8 8

8
9: ;

9< 9:

9:

Note that the turbulent wall function array is only defined at no-slip walls. It is not defined at free slip
walls, specified stress walls, and non-overlap boundary conditions. Hence, for CFX Release 14, wall
condensation is disallowed on these types of walls in the case of turbulent flows.
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1.14.2. Condensation Heat Transfer (CHT)

At a fluid-solid boundary, the latent heat released by condensation to the liquid film is assumed to be
absorbed by the solid phase at the interface. This gives a heat source to the solid side:

(1–305)= −� � ���

where � is the latent heat of vaporization.

At an isothermal wall boundary, the wall is assumed to constitute an infinite reservoir on which the
effect of the condensation heat source is negligible, hence it is maintained at its constant temperature.

1.14.3. Specification of Secondary Fluxes

Strictly speaking, it is necessary for you to specify only secondary fluxes for incoming boundary mass
sources. For this model of wall condensation, the corresponding boundary mass sources are outgoing.
The solver implementation of the wall condensation model exploits the boundary mass source machinery.
All secondary fluxes are computed using the local solution values of variables, with the single exception
of component mass sources to the mass fraction equations. Consequently, for this model, all secondary
source information is automatically included.

It is possible in principal to define other boundary mass sources in addition to the condensation sinks,
provided that they are consistent with the internal options used for the wall condensation term. However,
in the current implementation, additional mass sources on wall condensation boundaries are disallowed.
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Chapter 2: Turbulence and Wall Function Theory

This chapter describes:
2.1.Turbulence Models
2.2. Eddy Viscosity Turbulence Models
2.3. Reynolds Stress Turbulence Models
2.4. ANSYS CFX Transition Model Formulation
2.5. Large Eddy Simulation Theory
2.6. Detached Eddy Simulation Theory
2.7. Scale-Adaptive Simulation Theory
2.8. Modeling Flow Near the Wall

2.1. Turbulence Models

Turbulence consists of fluctuations in the flow field in time and space. It is a complex process, mainly
because it is three dimensional, unsteady and consists of many scales. It can have a significant effect
on the characteristics of the flow. Turbulence occurs when the inertia forces in the fluid become signi-
ficant compared to viscous forces, and is characterized by a high Reynolds Number.

In principle, the Navier-Stokes equations describe both laminar and turbulent flows without the need
for additional information. However, turbulent flows at realistic Reynolds numbers span a large range
of turbulent length and time scales, and would generally involve length scales much smaller than the
smallest finite volume mesh, which can be practically used in a numerical analysis. The Direct Numerical
Simulation (DNS) of these flows would require computing power which is many orders of magnitude
higher than available in the foreseeable future.

To enable the effects of turbulence to be predicted, a large amount of CFD research has concentrated
on methods which make use of turbulence models. Turbulence models have been specifically developed
to account for the effects of turbulence without recourse to a prohibitively fine mesh and direct numer-
ical simulation. Most turbulence models are statistical turbulence model, as described below. The two
exceptions to this in ANSYS CFX are the Large Eddy Simulation model and the Detached Eddy Simulation
model.

• Large Eddy Simulation Theory (p. 126)

• Detached Eddy Simulation Theory (p. 132)

2.1.1. Statistical Turbulence Models and the Closure Problem

When looking at time scales much larger than the time scales of turbulent fluctuations, turbulent flow
could be said to exhibit average characteristics, with an additional time-varying, fluctuating component.
For example, a velocity component may be divided into an average component, and a time varying
component.

In general, turbulence models seek to modify the original unsteady Navier-Stokes equations by the in-
troduction of averaged and fluctuating quantities to produce the Reynolds Averaged Navier-Stokes
(RANS) equations. These equations represent the mean flow quantities only, while modeling turbulence
effects without a need for the resolution of the turbulent fluctuations. All scales of the turbulence field
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are being modeled. Turbulence models based on the RANS equations are known as Statistical Turbulence
Models due to the statistical averaging procedure employed to obtain the equations.

Simulation of the RANS equations greatly reduces the computational effort compared to a Direct Nu-
merical Simulation and is generally adopted for practical engineering calculations. However, the averaging
procedure introduces additional unknown terms containing products of the fluctuating quantities, which
act like additional stresses in the fluid. These terms, called ‘turbulent’ or ‘Reynolds’ stresses, are difficult
to determine directly and so become further unknowns.

The Reynolds (turbulent) stresses need to be modeled by additional equations of known quantities in
order to achieve “closure.” Closure implies that there is a sufficient number of equations for all the un-
knowns, including the Reynolds-Stress tensor resulting from the averaging procedure. The equations
used to close the system define the type of turbulence model.

2.1.1.1. Reynolds Averaged Navier-Stokes (RANS) Equations

As described above, turbulence models seek to solve a modified set of transport equations by introducing

averaged and fluctuating components. For example, a velocity �� may be divided into an average

component, � �, and a time varying component, � �.

(2–1)= +� � �� � �

The averaged component is given by:

(2–2)∫=
+

	



	 �
�




 


�

�

where � is a time scale that is large relative to the turbulent fluctuations, but small relative to the
time scale to which the equations are solved. For compressible flows, the averaging is actually weighted
by density (Favre-averaging), but for simplicity, the following presentation assumes that density fluctu-
ations are negligible.

For transient flows, the equations are ensemble-averaged. This allows the averaged equations to be
solved for transient simulations as well. The resulting equations are sometimes called URANS (Unsteady
Reynolds Averaged Navier-Stokes equations).

Substituting the averaged quantities into the original transport equations results in the Reynolds averaged
equations given below. For details, see Transport Equations (p. 25). In the following equations, the bar
is dropped for averaged quantities, except for products of fluctuating quantities.

(2–3)
∂
∂

+ ∂
∂

=�

� �
��

�
�

(2–4)
∂

∂
+ ∂

∂
= − ∂

∂
+ ∂

∂
− +��

� �
�� �

�

� �
� �� � �

�

�
� �

� �
�� � � �

where   is the molecular stress tensor (including both normal and shear components of the stress).
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The continuity equation has not been altered but the momentum and scalar transport equations contain
turbulent flux terms additional to the molecular diffusive fluxes. These are the Reynolds stresses, �� �� � .

These terms arise from the nonlinear convective term in the un-averaged equations. They reflect the
fact that convective transport due to turbulent velocity fluctuations will act to enhance mixing over
and above that caused by thermal fluctuations at the molecular level. At high Reynolds numbers, tur-
bulent velocity fluctuations occur over a length scale much larger than the mean free path of thermal
fluctuations, so that the turbulent fluxes are much larger than the molecular fluxes.

The Reynolds averaged energy equation is:

(2–5)

∂
∂

− ∂
∂

+ ∂
∂

= ∂
∂






∂
∂

−



 + ∂

∂

 − 

 +

��

�

�

� �
�	 �

�



�

�
�� �

�
	 
 �� � �

���

�
� ���

� �
�

�
� �� � � �

This equation contains an additional turbulence flux term, �� ��  compared with the instantaneous

equation. For details on this, see Equation 1–86 (p. 26). The 
 − 


∂

∂
� � �� �

�
� �� � �

�
 term in the

equation is the viscous work term that can be included by enabling Viscous Work  in CFX-Pre.

The mean Total Enthalpy is given by:

(2–6)= + +  ! ! "#$# % %

Note that the Total Enthalpy contains a contribution from the turbulent kinetic energy, k, given by:

(2–7)=& ' (
)

Similarly, the Additional Variable * may be divided into an average component,+ , and a time varying
component,,. After dropping the bar for averaged quantities, except for products of fluctuating

quantities, the Additional Variable equation becomes

(2–8)
∂
∂

+ ∂
∂

= ∂
∂






∂
∂

−



 +-.

/ 0
-1 .

0
2

.

0
-3 4 5

6
6

6 6
6 7

where 89 :;  is the Reynolds flux.

Turbulence models close the Reynolds averaged equations by providing models for the computation
of the Reynolds stresses and Reynolds fluxes. CFX models can be broadly divided into two classes: eddy
viscosity models and Reynolds stress models.
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2.2. Eddy Viscosity Turbulence Models

One proposal suggests that turbulence consists of small eddies which are continuously forming and
dissipating, and in which the Reynolds stresses are assumed to be proportional to mean velocity
gradients. This defines an “eddy viscosity model”.

The eddy viscosity hypothesis assumes that the Reynolds stresses can be related to the mean velocity
gradients and eddy (turbulent) viscosity by the gradient diffusion hypothesis, in a manner analogous
to the relationship between the stress and strain tensors in laminar Newtonian flow:

(2–9)− =





∂
∂

+
∂
∂




 −




 + ∂

∂



�� � �

�

�

�

�
� �� �

�

�
� � 	

�

�

�

�
�� 	







where �
�
 is the eddy viscosity or turbulent viscosity, which must be modeled.

Analogous to the eddy viscosity hypothesis is the eddy diffusivity hypothesis, which states that the
Reynolds fluxes of a scalar are linearly related to the mean scalar gradient:

(2–10)− = ∂
∂


� � �
�

�
� �

�

where �� is the eddy diffusivity, and this has to be prescribed. The eddy diffusivity can be written as:

(2–11)=�
�

��
�

�

�

where ��� is the turbulent Prandtl number. Eddy diffusivities are then prescribed using the turbulent

Prandtl number.

The above equations can express turbulent fluctuations in terms of functions of the mean variables

only if the turbulent viscosity, �
 
, is known. Both the !-" and #-$ two-equation turbulence models use

this variable.

Subject to these hypotheses, the Reynolds averaged momentum and scalar transport equations become:

(2–12)
∂

∂
+ ∂

∂
= − ∂ ′

∂
+ ∂

∂










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∂
∂

+
∂
∂




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



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+%&

' (
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)
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+
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.//

,

-

-

,
0

where 12  is the sum of the body forces, and 3
455

 is the Effective Viscosity defined by:

(2–13)= +6 6 6
788 9

and ′:  is a modified pressure, defined by:
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(2–14)′ = + + ∂
∂

� � �� �
�

�
���

�

�

The last term in Equation 2–14 (p. 93),

∂
∂

	

��

�




�

�

�

�

involves the divergence of velocity. It is neglected in ANSYS CFX, although this assumption is strictly
correct only for incompressible fluids.

The treatment of the second term in the right-hand side of Equation 2–14 (p. 93) depends on the expert
parameter pressure value option , which can take the following values:

DescriptionOption

When � is required (for example, to calculate material properties), it is derived

from ′�  using Equation 2–14 (p. 93).

1

When � is required (for example, to calculate material properties), it is approx-

imated as being equal to ′� .

2

This is the
default. Option 2 is an approximation which may be numerically better-behaved than

option 1.

′�  is not computed using the term � �. However, this term is incorpor-

ated directly in the momentum equation.

3

This option is mathematically equivalent to option 1, but may differ numerically.

The Reynolds averaged energy equation becomes:

(2–15)

∂
∂

− ∂
∂

+ ∂
∂

= ∂
∂






∂
∂

+ ∂
∂




 + ∂

∂

 − 

 +

��

�

�

� �
�� �

�
�

�

�

 �

� �
� ! �" " #

$%$

&
& $%$

& &

$

$ & &
' '& ' & (

Note that although the transformation of the molecular diffusion term may be inexact if enthalpy depends
on variables other than temperature, the turbulent diffusion term is correct, subject to the eddy diffus-
ivity hypothesis. Moreover, as turbulent diffusion is usually much larger than molecular diffusion, small
errors in the latter can be ignored.

Similarly, the Reynolds averaged transport equation for Additional Variables (non-reacting scalars) be-
comes:
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(2–16)
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∂
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Eddy viscosity models are distinguished by the manner in which they prescribe the eddy viscosity and
eddy diffusivity.

2.2.1. The Zero Equation Model in ANSYS CFX

Very simple eddy viscosity models compute a global value for �


 from the mean velocity and a geometric

length scale using an empirical formula. Because no additional transport equations are solved, these
models are termed ‘zero equation.’

The zero equation model in ANSYS CFX uses an algebraic equation to calculate the viscous contribution
from turbulent eddies. A constant turbulent eddy viscosity is calculated for the entire flow domain.

The turbulence viscosity is modeled as the product of a turbulent velocity scale,��, and a turbulence

length scale, ��, as proposed by Prandtl and Kolmogorov,

(2–17)=� � � � �
�� � �

where �
�

 is a proportionality constant. The velocity scale is taken to be the maximum velocity in the

fluid domain. The length scale is derived using the formula:

(2–18)=








� �

��

�
 

where !" is the fluid domain volume. This model has little physical foundation and is not recommended.

2.2.2. Two Equation Turbulence Models

Two-equation turbulence models are very widely used, as they offer a good compromise between nu-
merical effort and computational accuracy. Two-equation models are much more sophisticated than
the zero equation models. Both the velocity and length scale are solved using separate transport
equations (hence the term ‘two-equation’).

The #-$ and %-& two-equation models use the gradient diffusion hypothesis to relate the Reynolds
stresses to the mean velocity gradients and the turbulent viscosity. The turbulent viscosity is modeled
as the product of a turbulent velocity and turbulent length scale.

In two-equation models, the turbulence velocity scale is computed from the turbulent kinetic energy,
which is provided from the solution of its transport equation. The turbulent length scale is estimated
from two properties of the turbulence field, usually the turbulent kinetic energy and its dissipation rate.
The dissipation rate of the turbulent kinetic energy is provided from the solution of its transport equation.
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2.2.2.1. The k-epsilon Model in ANSYS CFX

k is the turbulence kinetic energy and is defined as the variance of the fluctuations in velocity. It has

dimensions of (L2 T-2); for example, m2/s2. � is the turbulence eddy dissipation (the rate at which the

velocity fluctuations dissipate), and has dimensions of � per unit time (L2 T-3); for example, m2/s3.

The �-� model introduces two new variables into the system of equations. The continuity equation is
then:

(2–19)
∂
∂

+ ∂
∂

=�

� �
��

�
�

and the momentum equation becomes:

(2–20)
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∂
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where ��  is the sum of body forces, �
���

 is the effective viscosity accounting for turbulence, and ′�  is

the modified pressure as defined in Equation 2–14 (p. 93).

The �-� model, like the zero equation model, is based on the eddy viscosity concept, so that:

(2–21)= +� � �
���  

where !
"
 is the turbulence viscosity. The #-$ model assumes that the turbulence viscosity is linked to

the turbulence kinetic energy and dissipation via the relation:

(2–22)=% & '
(

)
*+

,

where -. is a constant. For details, see List of Symbols (p. 2).

The values of / and 0 come directly from the differential transport equations for the turbulence kinetic
energy and turbulence dissipation rate:
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(2–23)
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where �� ,!"#,$% and &' are constants. For details, see List of Symbols (p. 2).

()* and +,- represent the influence of the buoyancy forces, which are described below. ./ is the tur-

bulence production due to viscous forces, which is modeled using:

(2–25)=

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For incompressible flow, ∂ ∂; <= =  is small and the second term on the right side of Equa-

tion 2–25 (p. 96) does not contribute significantly to the production. For compressible flow,

∂ ∂> ?@ @  is only large in regions with high velocity divergence, such as at shocks.

The term A
B
 in Equation 2–25 (p. 96) is based on the “frozen stress” assumption [54]. This prevents

the values of C and D becoming too large through shocks, a situation that becomes progressively worse
as the mesh is refined at shocks. The parameter Compressible Production (accessible on the Advanced

Control part of the Turbulence section in CFX-Pre (see Turbulence in the CFX-Pre User's Guide)) can be
used to set the value of the factor in front of E

F
, the default value is 3, as shown. A value of 1 will

provide the same treatment as CFX-4.

In order to avoid the build-up of turbulent kinetic energy in stagnation regions, two production limiters
are available. For details, see Production Limiters (p. 103).

2.2.2.2. Buoyancy Turbulence

If the full buoyancy model is being used, the buoyancy production term GHI is modeled as:

(2–26)= − ∂
∂

J
K

LM
N

L

O
PQ

R

S
T

T

and if the Boussinesq buoyancy model is being used, it is:

(2–27)= ∂
∂

U
V

WX
WYZ

[

\
]^

_

`
a

a

This buoyancy production term is included in the b equation if the Buoyancy Turbulence option in
CFX-Pre is set to Production , or Production and Dissipation . It is also included in the c
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equation if the option is set to Production and Dissipation . ��� is assumed to be proportional

to ��� and must be positive, therefore it is modeled as:

(2–28)= ⋅� � ��	 
	�

If the directional option is enabled, then �
� is modified by a factor accounting for the angle � between

velocity and gravity vectors:

(2–29)= ⋅ ⋅� � � ��� ���

Default model constants are given by:

Turbulence Schmidt Number ��:

• �� = 0.9 for Boussinesq buoyancy

• �� = 1 for full buoyancy model

Dissipation Coefficient, C3 = 1

Directional Dissipation = Off

For omega based turbulence models, the buoyancy turbulence terms for the � equation are derived

from ��  and !"# according to the transformation = ′$ % & '.

2.2.2.3. The RNG k-epsilon Model in ANSYS CFX

The RNG −( ) model is based on renormalization group analysis of the Navier-Stokes equations. The
transport equations for turbulence generation and dissipation are the same as those for the standard

−* + model, but the model constants differ, and the constant ,-. is replaced by the function /01234.

The transport equation for turbulence dissipation becomes:

(2–30)

∂
∂

+ ∂
∂

= ∂
∂










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




∂
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





+ 


− + 
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:

;
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A BCD E A BCD A BCD AFG H G

where:

(2–31)= −I JK LM NOP

and:
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(2–32)

=
−

+

=

�

�

�

�

�

�

����

	
�

�	
�




For details, see List of Symbols (p. 2).

2.2.2.4. The k-omega Model in ANSYS CFX

One of the advantages of the �-� formulation is the near wall treatment for low-Reynolds number
computations. The model does not involve the complex nonlinear damping functions required for the

�-� model and is therefore more accurate and more robust. A low-Reynolds �-� model would typically

require a near wall resolution of <+
� , while a low-Reynolds number �-� model would require at

least <+
� . In industrial flows, even <+

�  cannot be guaranteed in most applications and for this

reason, a new near wall treatment was developed for the �-� models. It allows for smooth shift from
a low-Reynolds number form to a wall function formulation.

The �-� models assumes that the turbulence viscosity is linked to the turbulence kinetic energy and
turbulent frequency via the relation:

(2–33)=� �
�

 
!

2.2.2.4.1. The Wilcox k-omega Model

The starting point of the present formulation is the "-# model developed by Wilcox [11]. It solves two

transport equations, one for the turbulent kinetic energy, $, and one for the turbulent frequency,%.
The stress tensor is computed from the eddy-viscosity concept.

&-equation:

(2–34)
∂

∂
+ ∂

∂
= ∂

∂




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


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
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

∂
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


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+ − ′ +'(
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*
,

,
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(

*
. / '(0 .

1
1

1
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3 1
3 34

5-equation:
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(2–35)
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∂
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 �
� 
�

�

In addition to the independent variables, the density, �, and the velocity vector,�, are treated as known

quantities from the Navier-Stokes method. �� is the production rate of turbulence, which is calculated

as in the �-� model Equation 2–25 (p. 96).

The model constants are given by:

(2–36)′ =�

(2–37)=�

(2–38)=�

(2–39)=��

(2–40)=��

The unknown Reynolds stress tensor, �� � ! , is calculated from:

(2–41)− =





∂
∂

+
∂
∂




 −




 + ∂
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


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) * +
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*
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)
)* +

,

,

In order to avoid the build-up of turbulent kinetic energy in stagnation regions, two production limiters
are available. For details, see Production Limiters (p. 103).

The buoyancy production term is included in the --equation if the Buoyancy Turbulence option in
CFX-Pre is set to Production or Production and Dissipation. The formulation is the same is given in
Equation 2–26 (p. 96) and Equation 2–27 (p. 96).

The buoyancy turbulence terms for the .-equation are derived from /01 and 234 according to the

transformation 567.

The additional buoyancy term in the 8-equation reads:

(2–42)= + −9
:

;
< = 9 9>? @? @?A

Here the first term on the right hand side, which comes from the B-equation, is included only if the
Buoyancy Turbulence option is set to Production and Dissipation. The second term, originating from

the C-equation, is included with both Production and Production and Dissipation options.

99
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Eddy Viscosity Turbulence Models



If the directional option is enabled, then the first term on the right hand side is modified according to
Equation 2–29 (p. 97):

(2–43)= + ⋅ −�
�

�
� � � � ��� �� ��	

2.2.2.5. The Baseline (BSL) k-Omega Model

The main problem with the Wilcox model is its well known strong sensitivity to freestream conditions
(Menter [12]). Depending on the value specified for 
 at the inlet, a significant variation in the results
of the model can be obtained. This is undesirable and in order to solve the problem, a blending between

the �-� model near the surface and the 
-� model in the outer region was developed by Menter [9]. It

consists of a transformation of the �-� model to a �-� formulation and a subsequent addition of the

corresponding equations. The Wilcox model is thereby multiplied by a blending function �� and the

transformed �-� model by a function −��. �� is equal to one near the surface and decreases to a value

of zero outside the boundary layer (that is, a function of the wall distance). For details, see Wall and

Boundary Distance Formulation (p. 82). At the boundary layer edge and outside the boundary layer, the

standard �-� model is therefore recovered.

Wilcox model:

(2–44)
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(2–45)
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Transformed −< = model:

(2–46)
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Now the equations of the Wilcox model are multiplied by function \], the transformed ^-_ equations

by a function − à and the corresponding b- and c- equations are added to give the BSL model. In-

cluding buoyancy effects the BSL model reads:
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(2–48)
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The coefficient # in the buoyancy production term $%& in Equation 2–42 (p. 99) and Equation 2–43 (p. 100)

is also replaced by the new coefficient '(.

The coefficients of the new model are a linear combination of the corresponding coefficients of the
underlying models:

(2–50)= + −) * ) * )+ , , , -

All coefficients are listed again for completeness:
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(2–51)′ =�

(2–52)=��

(2–53)=�
�

(2–54)=���

(2–55)=�	


(2–56)=��

(2–57)=

�

(2–58)=���

(2–59)=���

2.2.2.6. The Shear Stress Transport (SST)

The �-� based SST model accounts for the transport of the turbulent shear stress and gives highly ac-
curate predictions of the onset and the amount of flow separation under adverse pressure gradients.

The BSL model combines the advantages of the Wilcox and the �-� model, but still fails to properly
predict the onset and amount of flow separation from smooth surfaces. The reasons for this deficiency
are given in detail in Menter [9]. The main reason is that both models do not account for the transport
of the turbulent shear stress. This results in an overprediction of the eddy-viscosity. The proper transport
behavior can be obtained by a limiter to the formulation of the eddy-viscosity:

(2–60)=�
� �

� � ��
�

 

 !

where

(2–61)=" # $% &

Again '( is a blending function similar to )*, which restricts the limiter to the wall boundary layer, as

the underlying assumptions are not correct for free shear flows. + is an invariant measure of the strain
rate.
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2.2.2.6.1. Blending Functions

The blending functions are critical to the success of the method. Their formulation is based on the dis-
tance to the nearest surface and on the flow variables.

(2–62)=� ���
�

�
�

with:
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where � is the distance to the nearest wall, � is the kinematic viscosity and:
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2.2.2.6.2. The Wall Scale Equation

During the solution of a simulation using the SST or BSL model, you will see a plot in the CFX-Solver
Manager for Wall Scale. These models require the distance of a node to the nearest wall for performing

the blending between 7-8 and 9-:. Detailed information on the wall scale equation is available in Wall

and Boundary Distance Formulation (p. 82).

2.2.2.7. Production Limiters

A disadvantage of standard two-equation turbulence models is the excessive generation of turbulence

energy, ;<, in the vicinity of stagnation points. In order to avoid the build-up of turbulent kinetic energy

in stagnation regions, a formulation of limiters for the production term in the turbulence equations is
available.

The formulation follows Menter [9] and reads:
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(2–67)=� � � � �� � ���

The coefficient �	
� is called Clip Factor  and has a value of 10 for � based models. This limiter

does not affect the shear layer performance of the model, but has consistently avoided the stagnation
point build-up in aerodynamic simulations.

Using the standard Boussinesq-approximation for the Reynolds stress tensor, the production term 
�
can be expressed for incompressible flow as:

(2–68)
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where � denotes the magnitude of the strain rate and ��� the strain rate tensor.

Kato and Launder [128] noticed that the very high levels of the shear strain rate � in stagnation regions
are responsible for the excessive levels of the turbulence kinetic energy. Because the deformation near

a stagnation point is nearly irrotational, that is the vorticity rate � is very small, they proposed the fol-
lowing replacement of the production term:

(2–69)
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where ) denotes the magnitude of the vorticity rate and *+, the vorticity tensor. In a simple shear flow,

- and . are equal. Therefore, formulation recovers in such flows, as seen in the first parts of Equa-

tion 2–68 (p. 104) and Equation 2–69 (p. 104).

The production limiters described above are available for the two ε based turbulence models and for
the (k,/)-, BSL- and SST-turbulence models. They are available in the Advanced Control settings of the
Turbulence Model section in CFX-Pre. For details, see Turbulence: Option in the CFX-Pre User's Guide.
The allowed options of the production limiter are Clip Factor  and Kato Launder .

2.2.2.8. Curvature Correction for Two-Equation Models

One weakness of the eddy-viscosity models is that these models are insensitive to streamline curvature
and system rotation. Based on the work of Spalart and Shur [191] a modification of the production term
has been derived which allows to sensitize the standard two-equation models to these effects [192].
The empirical function suggested by Spalart and Shur [191] to account for these effects is defined by
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(2–70)= +
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� 	

It is used as a multiplier of the production term and has been limited in ANSYS CFX in the following
way:

(2–71)→ ⋅� � 
� � �

where

= 
 + − 

� � �
� ����� �

and

=� �
� ��������

The original function is limited in the range from 0.0 corresponding, for example, to a strong convex
curvature (stabilized flow, no turbulence production) up to 1.25 (for example, strong concave curvature,
enhanced turbulence production). The lower limit is introduced for numerical stability reasons, whereas
the upper limit is needed to avoid overgeneration of the eddy viscosity in flows with a destabilizing
curvature/rotation. The specific limiter 1.25 provided a good compromise for different test cases which
have been considered with the SST model (for example, flow through a U-turn, flow in hydro cyclone,

and flow over a NACA 0012 wing tip vortex [192]). The scaling coefficient � !"#$ has been introduced

to allow the user to influence the effect of the curvature correction if needed for a specific flow. The
default value of this scaling coefficient is 1.0 and can be changed on the Fluid Models tab of the Domain

details view in CFX-Pre.

Assuming that all the variables and their derivatives are defined with respect to the reference frame of

the calculation, which is rotating with a rate %
&'(

, the arguments )  and * of the function +
,-./.0-1

are defined in the following way:

(2–72)=2
3

4

(2–73)= 
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C

where the first term in brackets is equivalent to the 2nd velocity gradient (in this case the Lagrangian
derivative of the strain rate tensor) and the 2nd term in the brackets is a measure of the system rotation.
The strain rate and vorticity tensor are defined, respectively, using Einstein summation convention as
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(2–74)=





∂
∂

+
∂
∂




�

�

�

�

�
��

�

�

�

�

(2–75)=





∂
∂

−
∂
∂




 +�

�

�

�

�
� �	


	







	
�
	 �

�
�

where
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�
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and, where

��

��

��

are the components of the Lagrangian derivative of the strain rate tensor.

Finally, based on the performed tests, the empirical constants  !", #$% and &'( involved in Equa-

tion 2–70 (p. 105) are set equal to 1.0, 2.0, and 1.0, respectively.

This curvature correction is available for ) and *-based eddy-viscosity turbulence models ( −+ ,,

RNG −- ., /-0, BSL, SST) as well as the DES-SST and SAS-SST turbulence models.

2.2.3. The Eddy Viscosity Transport Model

A very simple one-equation model has been developed by Menter [32] [33]. It is derived directly from

the −1 2 model and is therefore named the −3 4
56

 model:

(2–76)
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where 
∼
H is the kinematic eddy viscosity,

∼
IJ is the turbulent kinematic eddy viscosity and K is a model

constant.

The model contains a destruction term, which accounts for the structure of turbulence and is based on
the von Karman length scale:
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(2–77)
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where S is the shear strain rate tensor. The eddy viscosity is computed from:

(2–78)= ∼
� 	 

� �

In order to prevent a singularity of the formulation as the von Karman length scale goes to zero, the
destruction term is reformulated as follows:

(2–79)
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The coefficients are:

ValueCoefficient

0.144c1

1.86c2

7.0c3

13.5A
+

0.41-

1.0.

By default, the model is solved in combination with the scalable wall function. For details, see Scalable

Wall Functions (p. 140).

2.2.3.1. Low Reynolds Number Formulation

Low Reynolds formulation of the model is obtained by including damping functions. Near wall damping
functions have been developed to allow integration to the surface:
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(2–81)

= +
+

= −
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


− 



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


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� �

�
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�

�

�

�

where D2 is required to compute the eddy-viscosity which goes into the momentum equations:

(2–82)= ∼
� 	 
 �
� �


The low Reynolds formulation of the −� �
��

 model requires a near wall mesh resolution of <+
� .

2.3. Reynolds Stress Turbulence Models

These models are based on transport equations for all components of the Reynolds stress tensor and
the dissipation rate. These models do not use the eddy viscosity hypothesis, but solve an equation for
the transport of Reynolds stresses in the fluid. The Reynolds stress model transport equations are solved
for the individual stress components.

Algebraic Reynolds stress models solve algebraic equations for the Reynolds stresses, whereas differential
Reynolds stress models solve differential transport equations individually for each Reynolds stress
component.

The exact production term and the inherent modeling of stress anisotropies theoretically make Reynolds
Stress models more suited to complex flows; however, practice shows that they are often not superior
to two-equation models.

The Reynolds averaged momentum equations for the mean velocity are:

(2–83)
∂

∂
+ ∂

∂
− ∂

∂












∂
∂

+
∂
∂












= − ∂ ″
∂

− ∂
∂

+��

� �
�� �

�
�

�

�

�

�

�

� �
�� � �

�

�
� �

�

�

�

�

� � �
� � � �

where ″�  is a modified pressure, � ! is the sum of body forces and the fluctuating Reynolds stress

contribution is "# #$ % . Unlike eddy viscosity models, the modified pressure has no turbulence contribution

and is related to the static (thermodynamic) pressure by:

(2–84)″ = + ∂
∂

& & '
(

)

*

*

In the differential stress model, +, ,- .  is made to satisfy a transport equation. A separate transport

equation must be solved for each of the six Reynolds stress components of /0 01 2 . The differential

equation Reynolds stress transport is:
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(2–85)
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∂
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�
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�

�
 �
 �
 �
 ��

where ��� and ��� ��  are shear and buoyancy turbulence production terms of the Reynolds stresses re-

spectively,��� is the pressure-strain tensor, and C is a constant.

Buoyancy turbulence terms �� !"  also take the buoyancy contribution in the pressure strain term into

account and are controlled in the same way as for the −# $ and −% & model. See the discussion
below Equation 2–27 (p. 96).

2.3.1. The Reynolds Stress Model

The standard Reynolds Stress model in ANSYS CFX is based on the '-equation. The CFX-Solver solves
the following equations for the transport of the Reynolds stresses:

(2–86)

∂
∂

+ ∂
∂

− ∂
∂










 +






∂
∂







= − + +

() )

* +
, () )

+
- . (

/

0

) )

+
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6
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6
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9

:

where ;
<=

 is the pressure-strain correlation, and >?@, the exact production term, is given by:

(2–87)= −
∂
∂

− ∂
∂

A BC C
D

E
BC C

D

E
FG F H

G

H
G H

F

H

The production due to buoyancy is

(2–88)= − 


− 


I J K J J LMN O MN OPQ MN RR MNS

where the second term represents the buoyancy contribution from the pressure-strain term (Launder

[196]), and TUV is given by

(2–89)= +W X Y X YZ[ Z [ [ Z

If the Boussinesq buoyancy model is used, then \] is modeled as
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(2–90)= ∂
∂

�
�

�
�

�

�
�

�

� �

where 	 is the thermal expansion coefficient. Otherwise the term is modeled as (full buoyancy model

based on density differences)

(2–91)= − ∂
∂



�

�


�

�
�

�

� �

As the turbulence dissipation appears in the individual stress equations, an equation for � is still required.
This now has the form:

(2–92)
∂

∂
+ ∂

∂
= − + + ∂

∂

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


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�

 

� �
! " !

#$

In these equations, the anisotropic diffusion coefficients of the original models have been replaced by
an isotropic formulation, which increases the robustness of the Reynolds stress model.

The Reynolds Stress model is also available with anisotropic diffusion coefficients. In this case, the CFX-
Solver solves the following equations for the transport of the Reynolds stresses:

(2–93)

∂
∂

+ ∂
∂

− ∂
∂









+ 


∂
∂






= − + +

%& &

' (
) %& &

(
* + %,

-

.
& &

& &

(

/ * %. 0 /

1 2

3
3 1 2

3
34 5 3 4

1 2

4

12 12 12 12 67

where 8
9:

 is the pressure-strain correlation, and ;<=, the exact production term, is given by Equa-

tion 2–87 (p. 109).

In this case the production due to buoyancy is for the Boussinesq approximation modeled as:

(2–94)= ∂
∂

> ? @A
B

CD
E E

F

G
H I

J
H K

K

Otherwise the term is modeled as (full buoyancy model based on density differences):

(2–95)= − ∂
∂

L M
N

OP
Q Q

R

S
T U

V
T W

W

The equation for X is:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.110

Chapter 2:Turbulence and Wall Function Theory



(2–96)
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� � �

The model constants are listed below for each model.

2.3.1.1. Pressure-Strain Terms

One of the most important terms in Reynolds stress models is the pressure-strain correlation,�
��
. It acts

to drive turbulence towards an isotropic state by redistributing the Reynolds stresses.

The pressure strain term can be split into two parts:

(2–97)= +� � ��� �� ���� ��

where ����� is the ‘slow’ term, also known as the return-to-isotropy term, and  !"#$ is called the ‘rapid’

term.

There are three varieties of the standard Reynolds stress models based on the %-equation available.
These are known as LRR-IP, LRR-QI and SSG. The LRR-IP and LRR-QI models were developed by Launder,
Reece and Rodi [4]. In both models, the pressure-strain correlation is linear. “IP” stands for Isotropization
of Production and is the simplest of the 3 models. The two terms read:

(2–98)= − 


− 


& ' (
)

*
+ + , *-. - . -./0 0

(2–99)= − 


− 


1 2 3 3456 56 5678 8

The values of the two coefficients are =9:  and =;< .= is given by >??.

“QI” stands for Quasi-Isotropic and differs from the IP model in the formulation of the rapid term:

(2–100)

= − + 


− 


− − 
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L

where MNO is given by:
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(2–101)= − ∂
∂

− ∂
∂
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�
� �

�

�

The SSG model was developed by Speziale, Sarkar and Gatski [5] and uses a quadratic relation for the
pressure-strain correlation.

In order to compare the pressure-strain correlations for the three models, a general form can be derived

based on the anisotropy tensor �	
 and the mean strain rate tensor and vorticity tensor, ��
 and ���

respectively. The general form reads:

(2–102)= − 


+ 


− 

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(2–103)

= − + −

+ 


+ − 


+ +

 ! "# ! $%& ! $%& # #

! $% # & # & # & ' ! $% # ( # (

) * +) * +) * +) ,- ,-

* +. ). ). +. ./ ./ +) * +. ). ). +.

0 12 3 2 4

5 6

where
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(2–106)=
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This general form can be used to model linear and quadratic correlations by using appropriate values
for the constants. The constants are listed in the table below for each model.

GHIJKLMNOPQRSTUVWXMod-

el

1.91.450.180.221.100.1152LRR-IP

1.91.450.180.221.100.1152LRR-QI

1.831.450.180.221.360.1SSG

YZ[\]^_`abcdefghijklmMod-

el

0.60.60.00.80.00.01.8LRR-IP
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���������	
��
�������Mod-

el

0.6550.8730.00.80.00.01.8LRR-QI

0.20.6250.650.80.9-1.051.7SSG

Selection of the appropriate model is carried out on the Fluid Models panel of the Domains form in
CFX-Pre. The following options correspond to the types of models listed above:

• Reynolds Stress Model - LRR-IP

• SSG Reynolds Stress Model - SSG

• QI Reynolds Stress Model - LRR-IQ

The coefficients of the pressure strain term can be specified in CFX-Pre in the general form for the LRR-
QI and SSG models. The LRR-IP model has been added for completeness in the table above. In CFX-Pre
the pressure strain coefficients of the LRR-IP are asked in the form as given in Equation 2–98 (p. 111) and
Equation 2–99 (p. 111). For the Boussinesq buoyancy model the default value of �� is 0.9 for LRR-IP and

LRR-QI and 2/3 for SSG. In the full buoyancy model based on density differences the default value of
�� is 1.0 or all models.

2.3.2. Omega-Based Reynolds Stress Models

CFX provides two Reynolds Stress-� models: the Omega Reynolds Stress and Baseline (BSL) Reynolds

Stress models. The two models relate to each other in the same way as the two equation −� � and
BSL models. For details, see The Baseline (BSL) k-Omega Model (p. 100).

The Reynolds Stress-� turbulence model, or SMC-� model, is a Reynolds Stress model based on the
�-equation. The advantage of the �-equation is that it allows for a more accurate near wall treatment
with an automatic switch from a wall function to a low-Reynolds number formulation based on the grid
spacing.

The modeled equations for the Reynolds stresses can be written as follows:

(2–107)

∂
∂

+ ∂
∂

= − ′ + + + ∂
∂









 +






∂
∂






 ! !

" #
$  ! !

% &  '() * %
#

+
+

,

! !

#

- .

/
/ - .

-. -. -. -. 0
/

1

/

- .

/
2

The production due to buoyancy is modeled in the same way as given in the Equation 2–90 (p. 110) and
Equation 2–91 (p. 110). The default value of 34 is 0.9 for the Boussinesq buoyancy model and 1.0 in the

full buoyancy model based on density differences.

2.3.2.1. The Omega Reynolds Stress Model

The Omega Reynolds Stress Model uses the following equation for 5:
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(2–108)
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The following coefficients apply:

(2–109)
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2.3.2.2. The BSL Reynolds Stress Model

The coefficients � and � of the �-equation, as well as both the turbulent Prandtl numbers ∗�  and �,

are blended between values from the two sets of constants, corresponding to the �-based model
constants and the �-based model constants transformed to an �-formulation:

(2–110)
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• Set 1 (SMC-5 zone):

(2–111)

=
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The value of @ here corresponds to the −A B model. For details, see The Wilcox k-omega Mod-

el (p. 98). The von Karman constant C has a commonly used value of 0.41.

• Set 2 (SMC-D zone):
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(2–112)
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The blending of coefficients is done by smooth linear interpolation with the same weight function F as
the one used in a cross-diffusion term of the 
-equation (Equation 2–110 (p. 114)):

(2–113)= ⋅ + −� � � � �

 � �

where =� �
 with:
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2.3.2.3. Pressure-Strain Correlation

The constitutive relation for the pressure-strain correlation is given by:

(2–116)

= ′ 
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The production tensor of Reynolds stresses is given by:

(2–117)= −
∂
∂

− ∂
∂

== >? ?
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A
= =BC B D
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D
C D
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D
DD

The tensor Dij, participating in the pressure-strain model Equation 2–116 (p. 115), differs from the produc-

tion tensor in the dot-product indices:
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(2–118)= − ∂
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The turbulent viscosity in the diffusion terms of the balance equations (Equation 2–107 (p. 113) and

Equation 2–108 (p. 114)) is calculated in the same way as in the Wilcox −� 	 model. For details, see The

Wilcox k-omega Model (p. 98).

(2–119)=
 �
�



�

The coefficients for the model are:

′ =�

= +� ��

= −� ��

= −� ��

=��

=��

2.3.2.4. Wall Boundary Condition

The − � model is used in combination with the automatic wall treatment developed for the −� �

based models ( − !, BSL and SST). The formulation has been recalibrated to ensure a constant wall
shear stress and heat transfer coefficient under variable near wall resolution.

2.3.3. Rotating Frame of Reference for Reynolds Stress Models

One of the advantages of Reynolds stress transport models, when compared to −" # and −$ % models,
is their ability to simulate the additional anisotropy of the Reynolds stresses due to the Coriolis forces
appearing in the rotating frame of reference.

The necessary additional source terms to account for the Coriolis forces have been implemented into
ANSYS CFX for use with any of the available Reynolds stress transport models. These terms are described
in a book by Wilcox [30], and in more detail in a paper by Launder, Tselepidakis and Younis [31].

If the flow equations are written in the frame of the coordinate system, which rotates relative to the

steady inertial frame with a rate &
'()

 then one new source term Gij has to be added directly to the

right hand side of the transport equation for *+ +, - , Equation 2–107 (p. 113):
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(2–120)= ⋅ ⋅ +� � � � � � ��� �
�	


�� ��� �� ���

where �
�� is a Levi-Chivita factor, equal to 1 if its indices {i,j,k} form an even permutation of {1,2,3},

equal to -1 for an odd permutation of {1,2,3}, and equal to 0 if any two indices are equal.

Besides the absolute velocity gradient tensor, participating in the production tensor Equation 2–117 (p. 115)
and in the model equation for the pressure-strain correlation Equation 2–116 (p. 115), is written in the
rotating frame as a sum of the strain rate tensor Sij:
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and the vorticity tensor ���, which has an additional term due to system rotation:

(2–122)=
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This representation of the velocity gradient results in an apparent additional source term Gij Equa-

tion 2–120 (p. 117), coming from the production term (−
"#

). That is why in reference [31] the Coriolis

source term Gij differs from Equation 2–120 (p. 117) by an additional factor of 2.

2.3.4. Explicit Algebraic Reynolds Stress Model

Explicit Algebraic Reynolds Stress Models (EARSM) represent an extension of the standard two-equation
models. They are derived from the Reynolds stress transport equations and give a nonlinear relation
between the Reynolds stresses and the mean strain-rate and vorticity tensors. Due to the higher order
terms, many flow phenomena are included in the model without the need to solve transport equations.

The EARSM allow an extension of the current ( −$ % and BSL) turbulence models to capture the following
flow effects:

• Secondary flows

• Flows with streamline curvature and system rotation.

The implementation is based on the explicit algebraic Reynolds stress model of Wallin and Johansson
[188]. Differences from the original formulation by Wallin and Johansson are explained in the following

text. The current EARSM formulation can be used in CFX together with either the BSL −& ' or −( )

model. It is recommended that the current EARSM formulation be used with the BSL model (BSL EARSM).

With EARSM, the Reynolds stresses are computed from the anisotropy tensor according to its definition
(see Equation 2–104 (p. 112)):

= 


+ 
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* * + , -. / ./ ./
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where the anisotropy tensor ��� is searched as a solution of the following implicit algebraic matrix

equation:

(2–123)= − + − − 


− − 


= +� � � �� � � � � �	
 � � 


The coefficients �� in this matrix equation depend on the ��-coefficients of the pressure-strain term in

the underlying Reynolds stress transport model. Their values are selected here as ��=1.245, ��=0,

��=1.8, ��=2.25.

The values of ��, ��, and �� are the same as those used in the original model by Wallin and Johansson

[188 ]. As for the value of  !, it is increased from 1.2 to 1.245 in the course of calibrating EARSM for its

use together with the BSL −" # model.

$%& and '() denote the non-dimensional strain-rate and vorticity tensors, respectively. They are defined

as:

(2–124)=





∂
∂

+
∂
∂




* +

,

-

,

-
./

.

/

/

.

(2–125)=





∂
∂

−
∂
∂




0 1

2

3

2

3
45

4

5

5

4

where the time-scale 6 is given by:

(2–126)= = =7 8 9 : ; :< <

In order to arrive at an explicit solution of the Equation 2–123 (p. 118), the anisotropy tensor is expressed
as a polynomial based on the strain rate and the vorticity tensors as follows:

(2–127)

= + 


− 


+ 


− 


+ 


+ − − 


= > ? > @ @ AA B > ? @ @ ?

> ? @ @ @ @ ? ACB AA ?

DE DE DF FE G DE DF FE DF FE

DF FH HE DF FH HE DE G DE

I J K

L

The M-coefficients are evaluated to:

= −N O P
Q

= − ⋅ ⋅ ⋅ −R ST U V U SSWX

Y

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.118

Chapter 2:Turbulence and Wall Function Theory



= −� �
�

= − ⋅ ⋅ −� � � � ����

	

where the denominator Q is:

= −
 � �� 
�
�

�

The invariants, which appear in the formulation of the anisotropy tensor and the coefficients, are defined
by:

=�� � �� �� ��

=�� � �� �� ��

=�� � � ��  ! !�

The model representation of the anisotropy tensor Equation 2–127 (p. 118) and its coefficients "
#
 follows

the original model by Wallin and Johansson [188] with two differences. First, the fourth order tensor

polynomial contribution (the −$
%

& &
 term) is neglected in Equation 2–127 (p. 118). Second,

the tensor basis is slightly changed for convenience according to Apsley and Leschziner [219]. Although
the tensor basis is changed, the model remains algebraically equivalent to the original model of Wallin
and Johansson. The latter change results in correspondingly changed expressions for the coefficients

'
(
.

In three-dimensional flows, the equation to be solved for the function )  is of sixth order and no explicit

solution can be derived, whereas in two-dimensional mean flows the function *  can be derived from

a cubic equation, an analytic solution of which is recommended by Wallin and Johansson [188] also for
three-dimensional cases:

(2–128)=














+ + + 


− 


− ≥

+ −












 −















<
+

, - - - - - - -

, - -
-

- -
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.
1

./2

.
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3 4 5 4 5 4 5 5

3 5
4

5

5

where

=



 + −




 ⋅6

7 7 7
88 88 79 :;

<
=

; >
<

= −



 + +




? ?
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AA AAB CD E

D F
D
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F
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A diffusion correction, suggested by Wallin and Johansson [188], is also implemented in CFX as an option.

This correction consists in the replacement of �� in the above written formulas for � , �� and ��,

through ′��:

′ = + ⋅ +	 	 	 
 � ��
���
��

�� � � �

where �
��

�
 is the equilibrium value of �

�
, that is a value of �

�
 achieved under the source term equilib-

rium ��= :

= −
−

= +! "
#

# $$

# " "
%&

%&

%&
'

%&

( ) * + ,

For the parameter -./00 , which scales the degree of the diffusion correction, Wallin and Johansson

suggest a value of 2.2. In the current CFX implementation, it is set by default to zero, but this can be
overridden.

In the original model by Wallin and Johansson [188], the diffusion terms in the transport equations for

1 and 2 (or 3) were calculated using the effective eddy viscosity, = = ⋅4 5 6 7 5 5 6 8
9

:;;
<
:;;

<
:;;

<
=

,

of EARSM, where = −> ?@
ABB

C
. The EARSM model, implemented in CFX, uses the standard eddy vis-

cosity = =D E F G F H
I J

K
 for the diffusion terms. This model change helps to avoid the problems with

the asymptotic behavior at the boundary layer edge, which were reported by Hellsten [190].

For the underlying −L M or BSL −N O model, the standard coefficients are used.

2.3.4.1. Streamline Curvature and System Rotation

In order to account for effects of streamline curvature, the non-dimensional vorticity tensor is extended
in the following way ([189], [190]):

(2–129)=





∂
∂

+
∂
∂




 − ⋅P Q

R

S

R

S
T

Q

U
PVW

V

W

W

V
XYZ[\ VW

YY

]

where the contribution of the curvature correction based on the work of Wallin and Johansson [189]
and Spalart and Shur [191] is given in the following way:

(2–130)= − −
^ _ `ab

cc
abd d

e e

where

=
′−

f
g g h

ii
j
k k lm mn lnj

k

and
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′ = + +�
��

��
� � � � �

��
��� �� ��� �� �

	
�

In this formulation �
�� represents the Levi-Chivita factor, which is equal to 0 if two or more indices are

equal, 1 if the indices {i,j,k} form an even permutation of {1,2,3} and –1 if they form an odd permutation.

��
���

 are the components of the coordinate system rotation vector. The coefficient �� has to be calib-

rated. The scaling coefficient ������ has been introduced similar to the ‘Curvature Correction of Two-

Equation Models’ in order to allow the user to influence the effect of the curvature correction term

�
�

�
 !
""

#

if needed for a specific flow. The default value of this coefficient is 1.

In a rotational frame of reference, where the coordinate system rotates relative to a steady inertial frame,
the vorticity tensor reads:

(2–131)=





∂
∂

+
∂
∂




 +$

%

&

%

&
' $()

(

)

)

(
()* *

+,-

Because the anisotropy tensor is computed in terms of nondimensional strain-rate and vorticity tensors,
the nondimensional form of this term becomes:

(2–132)=





∂
∂

+
∂
∂




 +. /

0

1

0

1
/2 .34

3

4

4

3
345 5

678

It should be noted that there are significant robustness issues with the streamline curvature model
described in Equation 2–130 (p. 120). This is because one has the second velocity derivative (that is, the
gradient of the strain rate) divided by the first velocity derivative (that is, the strain rate). Consequently,
numerical noise in the second velocity derivative is amplified when the strain rate is small (for example,
in the free stream outside of a shear layer). Because the curvature corrected Reynolds stresses enter
directly in the momentum equation, this can create a feedback loop that results in increasing spikes in
the Reynolds stresses which are unphysical and can even cause the solver to diverge. The solution to
this problem turned out to be to compute two sets of Reynolds stresses with the EARSM, those with
and without the curvature term in Equation 2–129 (p. 120). The Reynolds stresses without the curvature
term are used in the momentum equations, while the Reynolds stresses with the curvature term are

used in the assembly of the production term in the 9 and : (or ;) equations. Consequently, the change
in turbulence production due to curvature is still captured, however the feedback loop that caused the
spikes in the Reynolds stresses is avoided because the curvature term does not enter directly into the
momentum equations. There is probably some loss in accuracy due to this treatment. However this is

preferable to a model, which is not robust and cannot be used in industrial applications. The <= constant

in Equation 2–129 (p. 120). has been calibrated to a value of -0.4.

2.4. ANSYS CFX Transition Model Formulation

The full transition model is based on two transport equations, one for the intermittency and one for
the transition onset criteria in terms of momentum thickness Reynolds number. It is called ‘Gamma
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Theta Model’ and is the recommended transition model for general-purpose applications. It uses a new
empirical correlation (Langtry and Menter) which has been developed to cover standard bypass transition
as well as flows in low free-stream turbulence environments. This built-in correlation has been extensively
validated together with the SST turbulence model ([101], [102], [103]) for a wide range of transitional
flows. The transition model can also be used with the BSL or SAS-SST turbulence models as well.

It should be noted that a few changes have been made to this model compared to original version
(that is, the CFX-5.7 formulation, [101],[102]) in order to improve the transition predictions. These include:

1. An improved transition onset correlation that results in improved predictions for both natural and
bypass transition.

2. A modification to the separation induced transition modification that prevents it from causing early
transition near the separation point.

3. Some adjustments of the model coefficients in order to better account for flow history effects on the
transition onset location.

You should use the new formulation [103], although the original version of the transition model (that
is, the CFX-5.7 formulation) can be recovered by specifying the optional parameter “Transition
Model Revision = 0 ” in the CCL in the following way:

      FLUID MODELS: 
        …
        TURBULENCE MODEL:
          Option = SST
          TRANSITIONAL TURBULENCE:
            Option = Gamma Theta Model
            Transition Model Revision = 0
            TRANSITION ONSET CORRELATION:
              Option = Langtry Menter
            END
          END
        END 
        …
      END

The transport equation for the intermittency, �, reads:

(2–133)
∂

∂
+

∂
∂

= − + − + ∂
∂




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


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∂
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

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� � �

�
� � � �

�
�

�

	

�
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� � � �




�

� 


 
 � �

The transition sources are defined as follows:

(2–134)= =� � � � � � � � ��
�

� �� ������ ����� � �
 !

where " is the strain rate magnitude. #$%&'()  is an empirical correlation that controls the length of the

transition region. The destruction/relaminarization sources are defined as follows:

(2–135)= =* + , - . / 0 + * .1 1 1 1 12 3 4567 2 2 2

where 8 is the magnitude of vorticity rate. The transition onset is controlled by the following functions:
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(2–136)= =��
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(2–137)

=
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(2–138)
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(
)

*

+

,-./ is the critical Reynolds number where the intermittency first starts to increase in the boundary

layer. This occurs upstream of the transition Reynolds number,
∼
0123, and the difference between the

two must be obtained from an empirical correlation. Both the 456789: and ;<=> correlations are functions

of 
∼
?@AB.

The constants for the intermittency equation are:

(2–139)
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The modification for separation-induced transition is:

(2–140)
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The model constants in Equation 2–140 (p. 123) have been adjusted from those of Menter et al. [101] in
order to improve the predictions of separated flow transition. The main difference is that the constant

that controls the relation between `ab and cdef was changed from 2.193, its value for a Blasius
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boundary layer, to 3.235, the value at a separation point where the shape factor is 3.5 (see, for example
Figure 2 in Menter et al. [101]). The boundary condition for � at a wall is zero normal flux while for an

inlet � is equal to 1.0.

The transport equation for the transition momentum thickness Reynolds number,
∼
����, reads:

(2–141)
∂

∂
+

∂
∂
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∂
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The source term is defined as follows:

(2–142)= − − =
∼

� �
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(2–144)= = = ⋅
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+
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/ 0
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0
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(2–145)= =
− 
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The model constants for the 
∼
LMNO equation are:

(2–146)= =P QRS RS

The boundary condition for 
∼
TUVW at a wall is zero flux. The boundary condition for 

∼
XYZ[ at an inlet

should be calculated from the empirical correlation based on the inlet turbulence intensity.

The model contains three empirical correlations. \]^_ is the transition onset as observed in experiments.

This has been modified from Menter et al. [101] in order to improve the predictions for natural transition.

It is used in Equation 2–142 (p. 124). `abcdef  is the length of the transition zone and goes into Equa-

tion 2–134 (p. 122). ghij is the point where the model is activated in order to match both klmn and

opqrstu ; it goes into Equation 2–137 (p. 123). At present, these empirical correlations are proprietary and

are not given in this manual.

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.124

Chapter 2:Turbulence and Wall Function Theory



(2–147)= = =
∼ ∼

�� � �� � � � �� �� � ���� �� �	 ��
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The first empirical correlation is a function of the local turbulence intensity,� �, and the Thwaites

pressure gradient coefficient � � defined as:

(2–148)=
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�

where �� �� is the acceleration in the streamwise direction.

The transition model interacts with the SST turbulence model, as follows:

(2–149)
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where HI and JK are the original production and destruction terms for the SST model and LM NOPQ  is

the original SST blending function. Note that the production term in the R-equation is not modified.
The rationale behind the above model formulation is given in detail in Menter et al. [101].

In order to capture the laminar and transitional boundary layers correctly, the grid must have a 
+
S  of

approximately one. If the 
+
T  is too large (that is, > 5) then the transition onset location moves upstream

with increasing 
+
U . You should use the High Resolution discretization scheme (which is a bounded

second-order upwind biased discretization) for the mean flow, turbulence and transition equations.

Note

The default production limiter for the turbulence equations is the ‘Kato-Launder’ formulation
when the transition model is used.

As outlined in CFX Transition Model in the CFX-Solver Modeling Guide, two reduced variants of the
transition model are available beside the two-equation Gamma Theta transition model. A zero equation
model, where the user can prescribe the intermittency directly as a CEL expression Specified Intermit-

tency, and a one equation model, which solves only the intermittency equation using a user specified
value of the transition onset Reynolds number Gamma Model.
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2.4.1. Transition and Rough Walls

If the two-equation transition model is used together with rough walls, then an equivalent sand-grain
roughness height must be specified at the wall and in addition the option Roughness Correlation

must be selected on the Fluid Models tab of the Domain details view. Further information on the
rough wall modifications can be found in Treatment of Rough Walls (p. 144).

2.5. Large Eddy Simulation Theory

This section outlines the theoretical details of the LES model in ANSYS CFX. Additional information on
setting up an LES simulation is available, as well as modeling advice. For details, see The Large Eddy
Simulation Model (LES) in the CFX-Solver Modeling Guide.

The rationale behind the large-eddy simulation technique is a separation between large and small scales.
The governing equations for LES are obtained by filtering the time-dependent Navier-Stokes equations
in the physical space. The filtering process effectively filters out the eddies whose scales are smaller
than the filter width or grid spacing used in the computations. The resulting equations thus govern the
dynamics of the large eddies.

A filtered variable is denoted in the following by an overbar and is defined by

(2–152)∫=� �� � �� ��� � � �

�

where � is the fluid domain, and � is the filter function that determines the scale of the resolved eddies.

The unresolved part of a quantity � is defined by

(2–153)′ = −	 	 	

It should be noted that the filtered fluctuations are not zero:

(2–154)′ ≠


The discretization of the spatial domain into finite control volumes implicitly provides the filtering op-
eration:

∫= ∈� �� �� ��
 
 � �
�
�

�

where �  is the control volume. The filter function ′� � �  implied here is then
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(2–155)
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Filtering the Navier-Stokes equations leads to additional unknown quantities. In the following the theory
will be outlined for the incompressible equations. The filtered incompressible momentum equation can
be written in the following way:

(2–156)
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where 
�� denotes the subgrid-scale stress. It includes the effect of the small scales and is defined by

(2–157)= −� � � � ��� � � � �

The large scale turbulent flow is solved directly and the influence of the small scales is taken into account
by appropriate subgrid-scale (SGS) models. In ANSYS CFX an eddy viscosity approach is used which

relates the subgrid-scale stresses ��� to the large-scale strain rate tensor � �� in the following way:

(2–158)− 
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Unlike in RANS modelling, where the eddy viscosity %&'& represents all turbulent scales, the subgrid-

scale viscosity only represents the small scales.

It should be noted that the isotropic part of ( )) is not modeled, but added to the filtered static pressure.

Three models are available to provide the subgrid-scale (SGS) viscosity *+,+. You should use the wall-

adapted local eddy-viscosity model by Nicoud and Ducros [200](LES WALE model) as a first choice. This
is an algebraic model like the Smagorinsky model, but overcomes some known deficiencies of the
Smagorinsky model: the WALE model produces almost no eddy-viscosity in wall-bounded laminar flows
and is therefore capable to reproduce the laminar to turbulent transition. Furthermore, the WALE

model has been designed to return the correct wall-asymptotic 
+

-
.

-variation of the SGS viscosity and

needs no damping functions.

In addition to the WALE model, the Smagorinsky model [34] and the Dynamic Smagorinsky-Lilly model
(Germano et al. [198], Lilly [199]) are available. The Dynamic Smagorinsky-Lilly model is based on the
Germano-identity and uses information contained in the resolved turbulent velocity field to evaluate
the model coefficient, in order to overcome the deficiencies of the Smagorinsky model. The model
coefficient is no longer a constant value and adjusts automatically to the flow type. However this
method needs explicit (secondary) filtering and is therefore more time consuming than an algebraic
model.
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2.5.1. Subgrid-Scale Models

2.5.1.1. Smagorinsky Model

The Smagorinsky model [34] is an algebraic model for the SGS viscosity vSGS. Based on dimensional

analysis, the SGS viscosity can be expressed as:

(2–159)∝� � ���� ���

where l is the length scale of the unresolved motion (usually the grid size = ���
) and qSGS is

the velocity of the unresolved motion.

Based on an analogy to the Prandtl mixing length model, the velocity scale is related to the gradients
of the filtered velocity:

(2–160)= =� 	 	 	 	

�
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���

This yields the Smagorinsky model [34] for the subgrid-scale (SGS) viscosity:

(2–161)=� � ���� �
�

with CS the Smagorinsky constant. The value of the Smagorinsky constant for isotropic turbulence with

inertial range spectrum:

(2–162)= −
� � � � ��

��� ���

is:

(2–163)=








 = 

!  
"

#

$%&

For practical calculations, the value of CS is changed depending on the type of flow and mesh resolution.

Its value is found to vary between a value of 0.065 (channel flows) and 0.25. Often a value of 0.1 is used
and has been found to yield the best results for a wide range of flows. This is also the default value of
CS.

The coefficient CS is, therefore, not a universal constant and this is the most serious shortcoming of this

model. Furthermore, damping functions are needed close to walls.

2.5.1.1.1. Wall Damping

Close to walls, the turbulent viscosity can be damped using a combination of a mixing length minimum

function, and a viscosity damping function '
(

:
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(2–164)=� � � � � ���� ��	 
 � �� ��




with:

(2–165)= ⋅� � ���� ����

CS and � are constants which you can set; their default values are 0.1 and 0.4 respectively.

By default, the damping function �
�

 is 1.0. A Van Driest and a Piomelli like damping can be specified

by the user. For the Van Driest case, the damping function is:

(2–166)= − − ∼
� � �
�

with A = 25. For the Piomelli case it is:

(2–167)= − 
 − 


∼

� �  
!

"

with A = 25. The normalized wall distance:

(2–168)= ⋅∼ ∼
#$ $ %

is defined as a function of the calculated wall distance &, kinematic viscosity ', and local velocity scale
∼
(.

The Van Driest or Piomelli wall damping can be switched on when the LES turbulence model is selected.
The damping factor A is defaulted to 25.0.

2.5.1.2. WALE Model

The wall-adapted local eddy-viscosity model (Nicoud and Ducros [200]) is formulated locally and uses
the following equation to compute the eddy-viscosity:

(2–169)=
+

) *

+ +

+ + + +

,-, .

/0
1
/0
1

/0 /0 /0
1
/0
1

2

342

542 546

where 789
:

 denotes the traceless symmetric part of the square of the velocity gradient tensor:
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(2–170)= + −� � � � ���
�

�� �� �� ��

� � �

and where =� � �
	
 	� �


�
, = ∂ ∂
 � �

�� � � and ��� is the Kronecker symbol. The tensor ���
�

 can be re-

written in terms of the strain-rate and vorticity tensors in the following way:

(2–171)= + − −� � � � � � � � � ���
�

�� �� �� �� ��  !  !  !  !

where the vorticity tensor " #$ is given by:

(2–172)=





∂
∂

−
∂
∂




%

&

'

&

'
()

(

)

)

(

The main advantages of the WALE model are the capability to reproduce the laminar to turbulent

transition and the design of the model to return the correct wall-asymptotic 
+

*
+

-variation of the SGS

viscosity. It offers therefore the same advantages as the Dynamic Smagorinsky-Lilly model, and at the

same time does not require an explicit (secondary) filtering. The constant ,- has been calibrated using

freely decaying isotropic homogeneous turbulence: the default value is 0.5 and is available in CFX-Pre.

2.5.1.3. Dynamic Smagorinsky-Lilly Model

Germano et al. [198] and subsequently Lilly [199]introduced a method for evaluating subgrid scale
model coefficients using information contained in the resolved turbulent velocity field, in order to
overcome the deficiencies of the Smagorinsky model. The model coefficient is no longer a constant
value and adjusts automatically to the flow type. The basic idea behind the model is an algebraic
identity, which relates subgrid scale stresses at two different filter widths. The filtering on the smaller
filter width is given implicitly by the grid size, whereas the filtering on the larger filter width requires
the use of an explicit filtering procedure. Because it is required that the filter works on unstructured
grids, a volume-weighted averaging of the variables from neighboring element centers to the corres-
ponding vertex is used.

The so-called Germano identity reads:

(2–173)= −. / 012 12 12

where 345 represents the subgrid-scale (SGS) stress at scale  and 678 the SGS stress at scale { }:
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(2–174)= −� � � � ��� � � � �

(2–175)= −� � � � ��� � � � �

and {…} denotes secondary filtering of a quantity with > . The stress formulated by turbulent

motions of scale intermediate between  and { } reads:

(2–176)= −� 	 	 	 	
� 
 � 
 �

Although the Germano procedure can be applied with any SGS model, the Smagorinsky model has
been used to compute the SGS stresses at the different filtering levels:

(2–177)− = − =�



� � � � � ���
��

�� � �� �� � ��
����

(2–178)− = − =�
�

� � � � � ���
��

��  �� ��  ��
!"#!$

Using the Germano identity one obtains:

(2–179)= − = −% %
&

% ' ( ' ()*
+

)*
)*

,, - )*
./0.

- )*
010

The resulting system of Equation 2–179 (p. 131) is over-determined and the coefficient 23 appears inside

the secondary filter operation. In order to solve this system of equations, the error 456 associated with

the Smagorinsky model is defined in the following way:

(2–180)= − +7 8 9 : 9 :;< ;<
=

> ;<
?@A?

> ;<
ABA

Lilly [199] applied a least square approach to minimize the error. The coefficient CD is taken out of the

filtering procedure. This leads to

(2–181)=E
F G

G G
H

IJ
K

IJ

IJ IJ

(2–182)= −L M MNO NO
PQRP

NO
RSR

Using the coefficient TU, the eddy viscosity is obtained by:
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(2–183)=� � ���� � ��
�

The model coefficient 	
 obtained using the dynamic Smagorinsky-Lilly model varies in time and space

over a fairly wide range. To avoid numerical instability, a relaxation of �� in time is applied and an upper

and lower limit on the coefficient is imposed in the following way:

1. Lower bound in order to avoid negative viscosity:

(2–184)= =
 
 
 
� � � �
��� ���

2. Upper bound:

(2–185)=� � �� � �
���

3. Relaxation in time:

(2–186)= + − =−
� �� � � ��

�

�
�

�

� �

Freely decaying isotropic homogeneous turbulence has again been used to calibrate ��
�� 

. The value

of !"
#$%

 should be in the range of 0.04 to 0.09. The default value is 0.04 and can be specified in CFX-

Pre.

2.6. Detached Eddy Simulation Theory

This section outlines the theoretical details of the DES model in ANSYS CFX. Details on setting up a DES
simulation and modeling advice are available. For details, see The Detached Eddy Simulation Model
(DES) in the CFX-Solver Modeling Guide.

Experience has shown that the use of LES in boundary layer flows at high Re numbers is prohibitively
expensive [57] and therefore not useful for many industrial flow simulations. On the other hand, turbulent
structures can be resolved in massively separated regions, where the large turbulent scales are of the
same dimension as the geometrical structure generating them (airfoil flaps, buildings, blunt trailing
edges on turbine blades). DES is an attempt to combine elements of RANS and LES formulations in order
to arrive at a hybrid formulation, where RANS is used inside attached and mildly separated boundary
layers. Additionally, LES is applied in massively separated regions. While this approach offers many ad-
vantages, it is clearly not without problems, as the model has to identify the different regions automat-
ically. DES models require a detailed understanding of the method and the grid generation requirements
and should not be used as “black-box.” You are advised to read the ANSYS CFX technical report [55]
on the subject, which explains all details on grid generation requirements, zonal formulation and
boundary conditions.

The ANSYS CFX version of the DES model is based on the SST formulation. The advantage of this com-
bination is that the accurate prediction of turbulent boundary layers up to separation and in mildly
separated regions carries over from the SST model. In addition, the SST model supports the formulation
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of a zonal DES formulation [56], which is less sensitive to grid resolution restrictions than the standard
DES formulation, as proposed by Strelets [58]. Refer to the ANSYS CFX technical report [55] for details.

2.6.1. SST-DES Formulation Strelets et al.

The idea behind the DES model of Strelets [58] is to switch from the SST-RANS model to an LES model
in regions where the turbulent length, Lt, predicted by the RANS model is larger than the local grid

spacing. In this case, the length scale used in the computation of the dissipation rate in the equation

for the turbulent kinetic energy is replaced by the local grid spacing, .

(2–187)
= = → <

= =

∗

∗
� � � � � � � � � �

� � �

� �

� �

�
	

�
	 
�� 
��

The practical reason for choosing the maximum edge length in the DES formulation is that the model
should return the RANS formulation in attached boundary layers. The maximum edge length is therefore
the safest estimate to ensure that demand.

The DES modification of Strelets can be formulated as a multiplier to the destruction term in the k-
equation:

(2–188)= → ⋅ =










∗ ∗

 
 � �

�

�

�
��� ���

���

with CDES equal to 0.61, as the limiter should only be active in the −� � model region. The numerical

formulation is also switched between an upwind biased and a central difference scheme in the RANS
and DES regions respectively.

2.6.2. Zonal SST-DES Formulation in ANSYS CFX

The main practical problem with the DES formulation (both for the Spalart Allmaras and the standard
SST-DES model) is that there is no mechanism for preventing the limiter from becoming active in the
attached portion of the boundary layer. This will happen in regions where the local surface grid spacing

is less than the boundary layer thickness < � ��  with c of the order of one. In this case the flow can

separate as a result of the grid spacing (grid-induced separation), which is undesirable. In order to reduce
this risk, ANSYS CFX offers a zonal formulation of the DES formulation, based on the blending functions
of the SST model [56]. The blending functions are functions of the wall distance. For details, see Wall

and Boundary Distance Formulation (p. 82).

(2–189)=



 −




 =−�

�

�
� � �

�
��� ��� !" #$%

 !"
& '

In case FSST is set to 0, the Strelets model is recovered. The default option is =( ())* +, which offers the

highest level of protection against grid-induced separation, but might also be less responsive in LES
regions. For details, refer to the ANSYS CFX technical report [55].
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2.6.3. Discretization of the Advection Terms

Following Strelets [58], the zonal DES model switches from a second-order upwind scheme in the RANS
region to a central difference scheme in the LES region. The finite volume method approximates the

advection term in the transport equation for a generic variable � as:

(2–190)∑∇ ⋅ ≈� � �
�

� �
��

�� ��
�	

where 
�� is the control volume value, the index 
� denotes the integration points on the control

volume faces, ��� and �
��

 are the mass flow and the transported variable value estimated at the integ-

ration point ��. The value of �
��

 is obtained by interpolating from the surrounding grid nodes according

to the selected discretization scheme. Blending between the upwind-biased scheme and the central

scheme is achieved by combining the corresponding interpolation values �
�� ��

 and �
 ! "#

 using the

blending function $:

(2–191)= ⋅ + − ⋅% & % & %
'( '( ) '( *+ +

A specific form of the blending function , is taken from Strelets [58] with only minor changes:

(2–192)= ⋅- - ./01
234

(2–193)

= ⋅



 −




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(2–194)
= ⋅





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+ −
M N

O O P

Q R
ST

UV

WX
Y Y

with Z[\ being the maximum neighboring grid edge, and the same constant values as in Strelets

[58]:
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(2–195)= = = =� � ���� �� �� ��

Note

For the SST-DES model, the blending function 	 is additionally limited in order to prevent
the grid-induced separation:

(2–196)= ⋅ ⋅−
 
 �� � �� �

� ��


where F1 and F2 are the first and second SST blending function �� and �� ([129]), respectively. BF1 and

BF2 are blend factors and are used in order to select one of the two blending functions. The default
and the recommendation is to use the second SST blending function F2, therefore the corresponding
default values are BF1 = 0 and BF2 = 1.

A limiter based on the Courant-number has been developed in order to avoid oscillations due to the
central difference scheme, which can occur for medium and high Courant-numbers (this limiter is not
given in the original formulation of Strelets [58]). The blending function � is limited in the following
way:

(2–197)=





 −
















� �

���

���

���
���

� !"#$

The default values of %&'
()*

 and  are 5.0 and 1.0, respectively.

2.6.4. Boundary Conditions

For LES simulations, unsteady fluctuations have to be specified in most cases at the inlet boundaries.
This greatly complicates the use of LES in industrial flows, as the details of these fluctuations are generally
not known. In DES simulations, it is in most cases possible to specify the same boundary conditions as
for the SST model. This is particularly true if the default setting of the zonal model are used ([55]).

2.7. Scale-Adaptive Simulation Theory

The Scale-Adaptive Simulation (SAS) is an improved URANS formulation, which allows the resolution of
the turbulent spectrum in unstable flow conditions. The SAS concept is based on the introduction of
the von Karman length-scale into the turbulence scale equation. The information provided by the von
Karman length-scale allows SAS models to dynamically adjust to resolved structures in a URANS simu-
lation, which results in a LES-like behavior in unsteady regions of the flowfield. At the same time, the
model provides standard RANS capabilities in stable flow regions.

In recent years the turbulent length-scale equation has been revisited by Menter and Egorov [130]. It
was shown that the exact transport equation for the turbulent length-scale, as derived by Rotta [134],

does actually introduce the second derivative of the velocity field and thereby +,- into the turbulent

scale equation. In Menter and Egorov [130], a two-equation turbulence model was presented using a

−. /0 formulation, which can be operated in RANS and SAS mode. While the further development of

this model is still ongoing, it was considered desirable to investigate if the SAS term in the −1 23
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model could be transformed to existing two-equation models. The target two-equation model is the
SST model and this leads to the formulation of the SST-SAS model.

The original version of the SST-SAS model (Menter and Egorov [131]) has undergone certain evolution
and the latest model version has been presented in Egorov and Menter [197]. One model change is the

use of the quadratic length scale ratio � ���
�

 in the Equation 2–200 (p. 136) below, rather than the

linear form of the original model version. The use of the quadratic length scale ratio is more consistent
with the derivation of the model and no major differences to the original model version are expected.
Another new model aspect is the explicitly calibrated high wave number damping to satisfy the require-
ment for an SAS model that a proper damping of the resolved turbulence at the high wave number
end of the spectrum (resolution limit of the grid) must be provided. In the following the latest model
version of the SST-SAS model (Egorov and Menter [197]) will be discussed, which is also the default
version in ANSYS CFX.

The governing equations of the SST-SAS model differ from those of the SST RANS model [129] by the

additional SAS source term �
���

 in the transport equation for the turbulence eddy frequency �:
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where +,- is the ./ value for the −0 1 regime of the SST model.

The additional source term 2
343

 reads for the latest model version Egorov and Menter [197]:
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This SAS source term originates from a term

∫″ ⋅ ′ ′ +
− ∞

∞

G H I J K J H LHM M M

in Rotta’s transport equation for the correlation-based length scale, see Menter and Egorov [130]. Because
the integral is zero in homogeneous turbulence, it should in general be proportional to a measure related

to inhomogeneity. The second velocity derivative ″N  was selected as this measure to ensure that the
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integral alone is modeled to zero at a constant shear rate, thus leading to ″�
�

 and ultimately to

� ���
�

 in the SAS source term (Equation 2–200 (p. 136)).

This model version (Egorov and Menter [197], Model Version=2007  ) is used as default. In order to
recover the original model formulation (Menter and Egorov [131]), the parameter Model Version
must be set to 2005  directly in the CCL:

    FLUID MODELS:
      ...
      TURBULENCE MODEL:
        Model Version = 2005
        Option = SAS SST
      END
      ...
    END

The model parameters in the SAS source term Equation 2–200 (p. 136) are

= = =� � �	


Here � is the length scale of the modeled turbulence

(2–201)= ⋅� 
 � ��
���

and the von Karman length scale ��� given by

(2–202)=
′′

�
��

�
��

is a three-dimensional generalization of the classic boundary layer definition

= ′ ′′� ��  �  !"
#$

The first velocity derivative ′% &  is represented in '() by *, which is a scalar invariant of the strain

rate tensor +,-:

(2–203)= =






∂
∂

+
∂
∂







. . . .
/

0

/

0
12 12 12

1

2

2

1

Note, that the same 3 also directly participates in 4
565

 (Equation 2–200 (p. 136)) and in the turbulence

production term =7 8 9: ;
.

The second velocity derivative ′′< =  is generalized to 3-D using the magnitude of the velocity

Laplacian:
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(2–204)∑′′ =
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As a result,� and ��	 are both equal to (
�) in the logarithmic part of the boundary layer, where �=0.41

is the von Karman constant.

Beside the use of the quadratic length scale ratio 
 
�� , the latest model version provides for the

direct control of the high wave number damping. Two formulations are available:

1. The first formulation is the default and is realized by a lower constraint on the ��� value in the following

way:

(2–205)=
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This limiter is proportional to the grid cell size , which is calculated as the cubic root of the

control volume size &'( . The purpose of this limiter is to control damping of the finest resolved

turbulent fluctuations. The structure of the limiter is derived from analyzing the equilibrium eddy
viscosity of the SST-SAS model. Assuming the source term equilibrium (balance between production
and destruction of the kinetic energy of turbulence) in both transport equations, one can derive

the following relation between the equilibrium eddy viscosity )
*

+,
,-./ and 0:

(2–206)= ⋅ − ⋅ ⋅1 2 3 4 5 67 8 9
:

;<
= >?

This formula has a similar structure as the subgrid scale eddy viscosity in the LES model by
Smagorinsky:

= ⋅ ⋅ ⋅@ A B C
D

EFG
G

Therefore it is natural to adopt the Smagorinsky LES model as a reference, when formulating the

high wave number damping limiter for the SST-SAS model. The limiter, imposed on the HIJ value,

must prevent the SAS eddy viscosity from decreasing below the LES subgrid-scale eddy viscosity:

(2–207)≥K K
L

MN

L

OPQ

Substitution of R
S

TU
 and V

W

XYZ
 in condition above (Equation 2–207 (p. 138)) results in the [\]

limiter value used in Equation 2–205 (p. 138). Similar to LES, the high wave number damping is a
cumulative effect of the numerical dissipation and the SGS eddy viscosity. The model parameter

_̂  has been calibrated using decaying isotropic turbulence. The default value of à  is 0.11 which

provides nearly the same energy spectrum as the Smagorinsky LES model.

2. The second formulation limits the eddy viscosity directly:
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(2–208)=� � �
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�
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The LES-WALE model is used for the calculation of the LES eddy viscosity �
�

�	

 because this

model is suitable for transitional flows and does not need wall damping functions. This limiter
can be turned on by setting the expert parameter limit sas eddy viscosity = t . The
limiter (Equation 2–205 (p. 138) is then automatically turned off. The default value for the WALE
model coefficient is 0.5 and can be specified by the expert parameter limit sas eddy vis-
cosity coef=0.5 .

Similar to the DES formulation, the SAS model also benefits from a switch in the numerical treatment
between the steady and the unsteady regions. In DES, this is achieved by a blending function as proposed
by Strelets [58], which allows the use of a second order upwind scheme with the CFX-Solver in RANS
regions and a second order central scheme in unsteady regions. The blending functions are based on
several parameters, including the grid spacing and the ratio of vorticity and strain rate, as explained
below.

2.7.1. Discretization of the Advection Terms

The discretization of the advection is the same as that for the SST-DES model, beside the fact that no
RANS-shielding is performed for the SAS-SST model. For details, see Discretization of the Advection

Terms (p. 134).

2.8. Modeling Flow Near the Wall

This section presents the mathematical details of how flow near to a no-slip wall is modeled in ANSYS
CFX. An introduction to near-wall flow, modeling details and guidelines on using wall functions are
presented. For details, see Modeling Flow Near the Wall in the CFX-Solver Modeling Guide.

2.8.1. Mathematical Formulation

The wall-function approach in ANSYS CFX is an extension of the method of Launder and Spalding [13].
In the log-law region, the near wall tangential velocity is related to the wall-shear-stress, ��, by means

of a logarithmic relation.

In the wall-function approach, the viscosity affected sublayer region is bridged by employing empirical
formulas to provide near-wall boundary conditions for the mean flow and turbulence transport equations.
These formulas connect the wall conditions (for example, the wall-shear-stress) to the dependent variables
at the near-wall mesh node which is presumed to lie in the fully-turbulent region of the boundary layer.

The logarithmic relation for the near wall velocity is given by:

(2–209)= = ++ +



�


 �
� �

�

�

where:

139
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Modeling Flow Near the Wall



(2–210)=+
�

� � �

�

�

(2–211)=








�

�

�
�

	


�

u
+ is the near wall velocity, � is the friction velocity, Ut is the known velocity tangent to the wall at a

distance of 
 from the wall, y
+ is the dimensionless distance from the wall, �� is the wall shear stress,

� is the von Karman constant and C is a log-layer constant depending on wall roughness (natural log-
arithms are used).

A definition of � in the different wall formulations is available in Solver Yplus and Yplus (p. 142).

2.8.1.1. Scalable Wall Functions

Equation 2–209 (p. 139) has the problem that it becomes singular at separation points where the near
wall velocity, Ut, approaches zero. In the logarithmic region, an alternative velocity scale, u* can be used

instead of � �:

(2–212)=∗
� � ��

��� ��

This scale has the useful property that it does not go to zero if Ut goes to zero. Based on this definition,

the following explicit equation for � � can be obtained:

(2–213)
=

+∗�
�

�  
!

"

#

$

The absolute value of the wall shear stress %&, is then obtained from:

(2–214)= ∗
' ( ) )* +

where:

(2–215)=∗ ∗
, - . , /

and u
* is as defined earlier.

One of the major drawbacks of the wall-function approach is that the predictions depend on the location
of the point nearest to the wall and are sensitive to the near-wall meshing; refining the mesh does not
necessarily give a unique solution of increasing accuracy (Grotjans and Menter [10]). The problem of
inconsistencies in the wall-function, in the case of fine meshes, can be overcome with the use of the
Scalable Wall Function formulation developed by ANSYS CFX. It can be applied on arbitrarily fine
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meshes and allows you to perform a consistent mesh refinement independent of the Reynolds number
of the application.

The basic idea behind the scalable wall-function approach is to limit the y
* value used in the logarithmic

formulation by a lower value of =∼ ∗ ∗
� �  where 11.06 is the value of y

* at the intersection

between the logarithmic and the linear near wall profile. The computed ∼ ∗
�  is therefore not allowed to

fall below this limit. Therefore, all mesh points are outside the viscous sublayer and all fine mesh incon-
sistencies are avoided.

The boundary condition for the dissipation rate, �, is then given by the following relation which is valid
in the logarithmic region:

(2–216)=�
��

� �

�

	



�
�
�

�


It is important to note the following points:

• To fully resolve the boundary layer, you should put at least 10 nodes into the boundary layer.

• Do not use Standard Wall Functions unless required for backwards compatibility.

• The upper limit for y
+ is a function of the device Reynolds number. For example, a large ship may have

a Reynolds number of 109 and y
+ can safely go to values much greater than 1000. For lower Reynolds

numbers (for example, a small pump), the entire boundary layer might only extend to around y
+ = 300.

In this case, a fine near wall spacing is required to ensure a sufficient number of nodes in the boundary
layer.

If the results deviate greatly from these ranges, the mesh at the designated Wall boundaries will require
modification, unless wall shear stress and heat transfer are not important in the simulation.

In most turbulent flows the turbulence kinetic energy is not completely zero and the definition for �
given in Equation 2–212 (p. 140) will give proper results for most cases. In flows with low free stream
turbulence intensity, however, the turbulence kinetic energy can be very small and lead to vanishing

�  and therefore also to vanishing wall shear stress, If this situation happens, a lower limiter can be

applied to �  by setting the expert parameter ‘ ustar limiter = t ’ . �  will then be calculated
using the following relation:

(2–217)= ⋅� � � ���� � �� �
���

The coefficient used in this relation can be changed by setting the expert parameter ‘ ustar limiter
coef ‘ . The default value of this parameter is 0.01.
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2.8.1.2. Solver Yplus and Yplus

In the solver output, there are two arrays for the near wall 
+
�  spacing. The definition for the Yplus

variable that appears in the post processor is given by the standard definition of 
+
�  generally used in

CFD:

(2–218)=
⋅+

�
� � �

�

�

where � is the distance between the first and second grid points off the wall.

In addition, a second variable, Solver Yplus, is available which contains the 
+
	  used in the logarithmic

profile by the solver. It depends on the type of wall treatment used, which can be one of three different
treatments in ANSYS CFX. They are based on different distance definitions and velocity scales. This has
partly historic reasons, but is mainly motivated by the desire to achieve an optimum performance in
terms of accuracy and robustness:

• Standard wall function (based on =
 � )

• Scalable wall function (based on =� 
 )

• Automatic wall treatment (based on =� �)

The scalable wall function y
+ is defined as:

(2–219)= =+ ∗ ∗
∗

� � �
� �

�

and is therefore based on 1/4 of the near wall grid spacing.

Note that both the scalable wall function and the automatic wall treatment can be run on arbitrarily
fine meshes.

2.8.1.3. Automatic Near-Wall Treatment for Omega-Based Models

While the wall-functions presented above allow for a consistent mesh refinement, they are based on

physical assumptions which are problematic, especially in flows at lower Reynolds numbers (Re<10
5),

as the sublayer portion of the boundary layer is neglected in the mass and momentum balance. For
flows at low Reynolds numbers, this can cause an error in the displacement thickness of up to 25%. It
is therefore desirable to offer a formulation which will automatically switch from wall-functions to a

low-Re near wall formulation as the mesh is refined. The −� � model of Wilcox has the advantage that
an analytical expression is known for � in the viscous sublayer, which can be exploited to achieve this
goal. The main idea behind the present formulation is to blend the wall value for � between the logar-
ithmic and the near wall formulation.

The automatic wall treatment allows a consistent y
+ insensitive mesh refinement from coarse grids,

which do not resolve the viscous sublayer, to fine grids placing mesh points inside the viscous sublayer.
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Note that for highly accurate simulations, like heat transfer predictions, a fine grid with y
+ around 1 is

recommended.

The flux for the k-equation is artificially kept to be zero and the flux in the momentum equation is
computed from the velocity profile. The equations are as follows:

Flux for the momentum equation, FU:

(2–220)= − ∗
� � � �� �

with:

(2–221)=








 +�

�

�

�

	

 �

�




�
�

(2–222)= +� � �� �
���

�

� ���
�

�

where

=�
�

�

�

�
�
� !

and

=
++"

#

$ % &
'
()*

Flux for the k-equation:

(2–223)=+,

In the --equation, an algebraic expression is specified instead of an added flux. It is a blend between
the analytical expression for . in the logarithmic region:

(2–224)= =
∗ ∗

+/
0

1 2 3 1 2 4

0

3
5

6 6

and the corresponding expression in the sublayer:
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(2–225)=�
�

� �
�

with � being the distance between the first and the second mesh point. In order to achieve a smooth

blending and to avoid cyclic convergence behavior, the following formulation is selected:

(2–226)= +








� �

�

�
� �

	

�

While in the wall-function formulation, the first point is treated as being outside the edge of the viscous
sublayer; in the low-Re mode, the location of the first mesh point is virtually moved down through the
viscous sublayer as the mesh is refined. Note that the physical location of the first mesh point is always

at the wall (y = 0). However, the first mesh point is treated as if it were y  away from the wall. The
error in the wall-function formulation results from this virtual shift, which amounts to a reduction in
displacement thickness. Also, at very low Reynolds numbers this shift becomes visible when the solution
is compared with a laminar calculation, because the shift is not needed in the laminar near wall treatment.
This error is always present in the wall-function model. The shift is based on the distance between the

first and the second mesh point y = y2 - y1 with y being the wall normal distance.

2.8.1.4. Treatment of Rough Walls

The near wall treatment which has been discussed above (Scalable Wall Functions, Automatic Wall
Treatment) is appropriate when walls can be considered as hydraulically smooth. Surface roughness
can have a significant effect on flows of engineering interest. Surface roughness typically leads to an
increase in turbulence production near the wall. This in turn can result in significant increases in the
wall shear stress and the wall heat transfer coefficients. For the accurate prediction of near wall flows,
particularly with heat transfer, the proper modelling of surface roughness effects is essential for a good
agreement with experimental data.

Wall roughness increases the wall shear stress and breaks up the viscous sublayer in turbulent flows.
The figure below (Figure 2.1 (p. 145)) shows the downward shift in the logarithmic velocity profile:

(2–227)= + −+ +



�
� 
 


where B=5.2. The shift � is a function of the dimensionless roughness height,
+

� , defined as

=+
� �� �� .
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Figure 2.1  Downward Shift of the Logarithmic Velocity Profile

For sand-grain roughness, the downward shift can be expressed as:

(2–228)= + +
�

�
��

It has been shown that a technical roughness, which has peaks and valleys of different shape and size,
can be described by an equivalent sand-grain roughness ([113], [77]). The corresponding picture is a

wall with a layer of closely packed spheres, which have an average roughness height �� (see Figure

2.2 (p. 145)):

Figure 2.2  Equivalent Sand-Grain Roughness

Guidance to determine the appropriate equivalent sand-grain roughness height can be obtained from
White [14], Schlichting [77] and Coleman et al. [193].

Depending on the dimensionless sand-grain roughness 
+

�� , three roughness regimes can be distin-

guished:
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• hydraulically smooth wall : ≤ ≤+
��

• transitional-roughness regime: ≤ ≤+
��

• fully rough flow: ≥+
��

The viscous sublayer is fully established near hydraulically smooth walls. In the transitional roughness
regime the roughness elements are slightly thicker than the viscous sublayer and start to disturb it, so
that in fully rough flows the sublayer is destroyed and viscous effects become negligible.

From the picture of the sand-grain roughness (note that Figure 2.2 (p. 145) shows a two-dimensional cut
of a three-dimensional arrangement), it can be assumed that the roughness has a blockage effect, which
is about 50% of its height. The idea is to place the wall physically at 50% height of the roughness ele-
ments:

(2–229)=� � ��

This gives about the correct displacement caused by the surface roughness.

2.8.1.4.1. Rough Wall Treatment for Turbulence Models Based on the Dissipation Equation

The Scalable Wall Function approach neglects the viscous sublayer and limits the value used in the

logarithmic formulation by a lower value of =+
	 	  (Equation 2–219 (p. 142)). This

limiter must be combined with the formulation Equation 2–229 (p. 146) for the rough wall treatment and
reads:

(2–230)=+ +

 
 ��

2.8.1.4.2. Automatic Rough Wall Treatment for Turbulence Models Based on the Omega

Equation

The automatic wall treatment works well for smooth walls and has been extended for rough walls.

However, any calibration of the model coefficients has to be performed for both 
+


  and 
+

��  and is

therefore more complex than for smooth walls. As outlined above, the viscous sublayer gets more and

more disturbed with increasing values of 
+

��  until it is destroyed in fully rough flows. Therefore, a

blending between the viscous sublayer and the logarithmic region is not physical for large values of
+

�� . This fact supports the idea of placing the wall physically at 50% height of the roughness elements.

Due to this shift, the viscous sublayer formulation has only an influence for small values of 
+

��  in the

automatic near wall treatment for rough walls. The blending between the viscous sublayer formulation
and the wall function is described in detail in the report Lechner and Menter [194].

Because the automatic wall treatment works together with the transition model, it is the default rough
wall treatment. This default Automatic setting for the Wall Function option can be set on the Fluid

Models tab of the Domain details view in CFX-Pre. The CFX-Solver checks internally if a roughness
height has been specified for a wall and then uses the proper wall treatment: when a roughness height
exists, then the automatic rough wall treatment is used, otherwise the automatic smooth wall treatment.
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2.8.1.4.3. Transition and Rough Walls

If the two-equation transition model (Gamma Theta Model) is used together with rough walls, then the
option Roughness Correlation must be turned on in CFX-Pre on the Fluid Models tab in order to take
the roughness effects into account in the transition model. Setting the sand-grain roughness height at
a wall alone is not sufficient. The roughness correlation requires the geometric roughness height as
input parameter because it turned out that for the transition process from laminar to turbulent flow,
the geometric roughness height is more important than the equivalent sand-grain roughness height.
The correlation is defined as

(2–231)= ⋅�� � ��� ���	
 ���

where the function �  depends on the geometric roughness height 
. This function is proprietary and

therefore not given in this documentation. �� �������  is then used in the correlations for ������� and

�� in Equation 2–147 (p. 125) instead of the � !" which represents the transition momentum thickness

Reynolds number (for details, see ANSYS CFX Transition Model Formulation (p. 121)). In other words the
roughness effect is taken into account by using a modified transition momentum thickness Reynolds

number in the correlations for #$%&'() and *+.

Consequently the shift in Equation 2–229 (p. 146) was redefined as the minimum of either the geometric

roughness height , or the sand grain roughness height -. as follows:

(2–232)= ⋅/ / 0 01

2.8.1.4.4. Wall Function Approach for Omega-Based Turbulence Models

The fact that the viscous sublayer is lost very quickly with increasing 
+

23  suggests to neglect the viscous

sublayer in the formulation of a near wall treatment for rough walls and leads to a second rough wall
treatment for 4-based turbulence models. It should only be used if the user knows that the influence

of the viscous sublayer can be neglected (
+

56  > 70) and if the flow is fully turbulent. It can only be

enabled by extracting the CCL and changing the Wall Function from Automatic  to Scalable .

Then scalable wall functions are used both for smooth and rough walls for the 7-based turbulence

models. The idea is comparable to the scalable wall function approach for the −8 9 model, where the
first grid point is shifted to the edge of the viscous sublayer and only the relations of the logarithmic
region are used to derive the boundary conditions. In order to avoid a negative logarithm in the logar-
ithmic law of the wall, a lower value of 11.06 is defined in the following manner:

(2–233)=+ +
: : ;<

where == >? = @.

It should be noted that this value is smaller than the lower limit in the scalable wall functions of the

−A B model because for rough walls, the log layer extends to smaller values of 
+

C . Because the scalable

wall function approach neglects the viscous sublayer, the diffusion coefficients in the Navier-Stokes and
turbulence transport equations must no longer be computed as the sum of the laminar and turbulent
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viscosity. Instead the maximum value of the both is used. In the momentum equation for example the
effective viscosity will be computed as

(2–234)=� � �
��� �

Note that the logarithmic layer formulation is only correct if the molecular viscosity is not included in
the equations. This is ensured by the above formulation.

2.8.1.5. Heat Flux in the Near-Wall Region

Heat flux at the wall can be modeled using the scalable wall function approach or the automatic wall
treatment. Using similar assumptions as those above, the non-dimensional near-wall temperature profile
follows a universal profile through the viscous sublayer and the logarithmic region. The non-dimensional

temperature, T
+, is defined as:

(2–235)=
−+

∗

�

� � � � �

�

	 
 �




where Tw is the temperature at the wall, Tf the near-wall fluid temperature, cp the fluid heat capacity

and qw the heat flux at the wall. The above equation can be rearranged to get a simple form for the

wall heat flux model:

(2–236)= −
∗

+�

 � �

�
� �

�

�
� �

Turbulent fluid flow and heat transfer problems without conjugate heat transfer objects require the
specification of the wall heat flux, qw, or the wall temperature, Tw. The energy balance for each

boundary control volume is completed by multiplying the wall heat flux by the surface area and adding
to the corresponding boundary control volume energy equation. If the wall temperature is specified,
the wall heat flux is computed from the equation above, multiplied by the surface area and added to
the boundary energy control volume equation.

2.8.1.5.1. Scalable Wall Functions

For scalable wall functions, the non-dimensional temperature profile follows the log-law relationship:

(2–237)= ++ ∗
� � �

where 
∗

�  is defined in Equation 2–219 (p. 142) and � is computed from Equation 2–239 (p. 149).

2.8.1.5.2. Automatic Wall Treatment

For the automatic wall function, the thermal boundary layer is modeled using the thermal law-of-the-
wall function of B.A. Kader [15]. Then, the non-dimensional temperature distribution is modeled by
blending the viscous sublayer and the logarithmic law of the wall. This can be modeled as:
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(2–238)= + 
 + 


+ ∗ − ∗ −

� �� � � � � �
� �� � � 	
 �

where:

(2–239)= − +� �
 �

���

(2–240)=
+

∗

∗�
�� �

�� �

�

�

Pr is the fluid Prandtl number, given by:

(2–241)=��
� �

�

�

where � is the fluid thermal conductivity.

2.8.1.5.3. Effect of Rough Walls

It can be shown for a flat plate with heat transfer that the wall heat flux is under-predicted if the logar-
ithmic law of the wall for the temperature is used in the form which has been derived for smooth walls.

Based on the idea that for = =�� ��  the velocity and temperature logarithmic laws of the wall

are the same for smooth walls, the logarithmic law of the wall for the temperature has been extended
in a similar way as the one for the velocity to account for the wall roughness effect. But instead of the

roughness height Reynolds number 
+

!" , the formulation is based on 
+

#$%& due to the influence of

the Prandtl number which has already been accounted for in the smooth wall formulation. A calibration
constant has been introduced because the Kader logarithmic law of the wall is not strictly identical with

the velocity log law for = ='( '() . It should also be noted that roughness elements introduce

pressure-drag on the sides of the elements, which is not present in the thermal formulation. The coef-
ficient by which the thermal layer has to be shifted is therefore expected to be smaller than one. The
shift has been introduced in the rough wall treatment of both * and +-based turbulence models. The
modification of the logarithmic law of the wall for the temperature reads:

(2–242)= ⋅ + − −+
, - ./0123

456

where

= + +
7 8 9:; <

The coefficient = has been calibrated using the experimental data of Pimenta et al. [195] for a flat plate
with heat transfer. The experiment was performed with air as fluid and it has been shown, that a value

of 0.2 is a good choice in this case (Lechner and Menter [194]). Therefore the default value of > is 0.2.
This coefficient is called Energy Calibration Coefficient and can be changed in the CCL if necessary
in the following way:

149
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Modeling Flow Near the Wall



     FLUID MODELS:
       ...
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
         Energy Calibration Coefficient = 0.2
       END
       ...
     END

If the wall function approach for �-based turbulence models is used, two additional points have to be
considered.

1. Similar to Equation 2–233 (p. 147) a lower limit for ⋅ � , which appears in the equation of 
+

� , has

been introduced. A value of 11.06 was chosen as lower limit:

(2–243)⋅ = ⋅� �

2. Because the scalable wall function approach neglects the viscous sublayer, the following relation is

automatically used to compute the effective conductivity � ��� :

(2–244)=� � ��		 


2.8.1.5.4. Treatment of Compressibility Effects

With increasing Mach number (Ma > 3), the accuracy of the wall-functions approach degrades, which
can result in substantial errors in predicted shear stress, wall heat transfer and wall temperature for
supersonic flows.

It has been found that the incompressible law-of-the-wall is also applicable to compressible flows if the
velocity profile is transformed using a so-called "Van Driest transformation" [16]. The logarithmic velocity
profile is given by:

(2–245)=








 +

∗
�

� 


� �

�
�

�

����

where =� � �� � �

��
, =+
� � � � ! , " = 0.41 and C = 5.2. The subscript w refers to wall conditions,

and the subscript “comp” refers to a velocity defined by the following equation (transformation):

(2–246)∫=#
$

$
%#&'()

*

Near a solid wall, the integrated near-wall momentum equation reduces to:
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(2–247)=� ��

while the energy equation reduces to:

(2–248)= +� � � �
� �

Expressions for shear stress and heat flux applicable to the boundary layer region are:

(2–249)= ∂
∂

� �
�

	



and

(2–250)= −















∂
∂




�

� 
 �

�

� �

�

If Equation 2–247 (p. 151), Equation 2–249 (p. 151) and Equation 2–250 (p. 151) are substituted into Equa-

tion 2–248 (p. 151) and integrated, the resulting equation is:

(2–251)= − −� �
�� � �

� �

�� �

�
�

� �

� �

�

�

which provides a relationship between the temperature and velocity profiles. Using the perfect gas law,
and the fact that the pressure is constant across a boundary layer, Equation 2–251 (p. 151) replaces the
density ratio found in Equation 2–246 (p. 150). Performing the integration yields the following equation
for the “compressible” velocity:

(2–252)= 





+ 


− 








� �
� �

�

�

�
 !"#

where:

(2–253)=$ % &
' '

(2–254)=( ) * +,- . /

(2–255)= +0 1 2

The above derivation provides most of the equations necessary for the implementation of wall-functions
which are applicable to compressible flows. These wall-functions are primarily implemented in two
locations in ANSYS CFX: hydrodynamics and energy. First, consider the implementation in the hydro-
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dynamics section. The equation for the wall-shear-stress is obtained after a slight rearrangement of
Equation 2–245 (p. 150):

(2–256)
=

+

∗

∗
�

�

�

�

�
�

�

� �

	



��
�

This is similar to the low speed wall-function, except that Ucomp now replaces U. The Van Driest trans-

formation given by Equation 2–252 (p. 151), must now be performed on the near wall velocity. In the
implementation, Equation 2–252 (p. 151) is re-written in the following form:

(2–257)=






















+ 


 −


















∗

∗

∗

∗��
��

�

�

� ��

�

�

��

�
����
��

��

where:

(2–258)

=

=

=

=

=



 +






=

=
=

= + +

� �  

�

!"
#

" $

%
&

" $

#

' %
()

$

$
!"

# " $ !"

�

()

$

$
() %

()
!"

*

+
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./

1234 1234

./

This completes the wall-function modifications for the hydrodynamics.

The relationship between wall heat transfer, near wall velocity and near wall temperature is given by
Equation 2–251 (p. 151) (and also in rearranged form after Equation 2–257 (p. 152): the equation for Tw / T).

A dimensionless variable,
+

5 , can be defined as:
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(2–259)=+
∗� ��
�

�
�

and hence:

(2–260)= =



 − −






+
∗

∗
� ��

	




� � 




� �

�� 	

�
�

�

�

�
�

�

From Equation 2–260 (p. 153) it is clear that knowing 
+
� , the near wall velocity, the near wall temperature

and the wall heat transfer, the wall temperature can be calculated (if instead the wall temperature is
known, then the wall heat transfer is calculated). Before proceeding, it is instructive to consider the
equation that is used in ANSYS CFX for low Mach number heat transfer. The equation is subsequently
modified for use at higher Mach numbers. This unmodified equation is given by:

(2–261)= ++ + − + −
� �� � � �� � �

�
�

�
�

��

where:

(2–262)=+ +
� ��

(2–263)= ++ +
�

 !
" #

$

(2–264)= +
% & '( )

*

(2–265)=+ , -.

It can be seen that this equation blends between the linear and logarithmic near wall regions, and
hence is more general than just using the logarithmic profile that is implied by Equation 2–259 (p. 153).
Equation 2–261 (p. 153) has been extended for use in the compressible flow regime by interpreting the
linear and logarithmic velocity profiles given above as “compressible” or Van Driest transformed velocities:

(2–266)=+ +
/ 01234 5

(2–267)= ++ +
6

78
9 :

;
<=>?

This change is consistent with Equation 2–245 (p. 150). The “untransformed” velocities required by
Equation 2–261 (p. 153) can be obtained by applying the inverse Van Driest velocity transformation to
these “compressible” velocities. The inverse transformation is given by:
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(2–268)= − −+ + +
�

�
� � � � ����� ����

where:

(2–269)= ∗
� � 	

(2–270)= ∗

 � �

and A and B are defined following Equation 2–252 (p. 151) above. The reverse transformed velocities
obtained from Equation 2–268 (p. 154) are substituted into Equation 2–261 (p. 153) to obtain the value of

+

 . Either the wall heat transfer or the wall temperature can then be obtained from Equation 2–260 (p. 153).

The Van Driest transformation described above is used when the High Speed (compressible)
Wall Heat Transfer Model  is selected in CFX-Pre. This option is available only in combination
with the Total Energy heat-transfer model.

2.8.1.6. Additional Variables in the Near Wall Region

The treatment of additional scalar variables in the near wall region is similar to that for heat flux.
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Chapter 3: GGI and MFR Theory

This chapter provides an overview of the numerical methods used for GGI (general grid interface) in
CFX.

A control surface approach is used to perform the connection across a GGI attachment or periodic
condition. A physically based intersection algorithm is employed to provide the complete freedom to
change the grid topology and physical distribution across the interface.

A general intersection algorithm permits connections to be successfully made, even when the resultant
surfaces on either side of an interface do not physically “fit” together to form a well defined physical
connection. In addition, an automatic surface trimming function is performed by the GGI algorithm, to
account for mismatched surface extent. This means that a GGI attachment or periodic condition can
be successfully defined where the surface on one side of the interface is larger (in extent) than the
surface on the other side of the interface. The interface is constructed between the overlapping regions
of the two sides of the interface.

Multiple Frames of Reference (MFR) allows the analysis of situations involving domains that are rotating
relative to one another. For CFX, this feature focuses on the investigation of rotor/stator interaction for
rotating machinery. Because MFR is based on the GGI technology, the most appropriate meshing style
may be used for each component in the analysis.

When using a Reynolds stress turbulence model (see Reynolds Stress Model in the CFX-Solver Manager

User's Guide) the contribution of the Reynolds stresses to the momentum equations at GGI interfaces
is approximated by an eddy viscosity approach. This approximation influences only the discretization
of the control volumes along the interface and is expected to be justifiable compared to the other ap-
proximations at the interface.

This chapter describes:
3.1. Interface Characteristics
3.2. Numerics

3.1. Interface Characteristics

The numerical algorithms employed, as well as the control surface treatment of the numerical fluxes
across the interface, are designed and implemented in such a way as to provide for maximum robustness
and accuracy. The treatment of the interface fluxes is fully implicit and fully conservative in mass, mo-
mentum, energy, scalars, etc. This means that the multigrid solver can be applied directly, without any
penalty in terms of robustness or convergence rate, to problems involving GGI conditions. Each of the
different types of GGI interfaces have the following attributes:

1. Strict conservation is maintained across the interface, for all fluxes of all equations (after accounting
for changes in pitch).

2. The interface treatment is fully implicit, so that the presence of an interface does not adversely affect
overall solution convergence.
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3. The interface is applicable to incompressible, subsonic, transonic and supersonic flow conditions, and
all model options within CFX (for example, turbulence models, multiphase models, mixture models,
CHT, reaction, etc.).

4. The interface accounts internally for pitch change by scaling up or down (as required) the local flows
as they cross the interface, for the case of frame change interfaces.

5. Any number of GGI connection conditions are possible within a computational domain.

The surface fluxes along each side of the interface are discretized in terms of nodal dependent variables,
and in terms of control surface equations and control surface variables.

3.2. Numerics

If the case is transient rotor-stator, then the current relative position of each side of a sliding interface
is first computed at the start of each timestep. Each frame change model then proceeds by discretizing
the surface fluxes along each side of the interface in terms of nodal dependent variables, and in terms
of control surface equations and control surface variables. Each interface surface flow is discretized using
the standard flux discretization approach, but employs both the nodal dependent variables on the
local side of the interface and control surface variables on the interface region. Balance equations
within the interface region are generated for the interface variables from the flux contributions from
both sides of the interface. These equations are called control surface equations (different from control
volume equations) because they enforce a balance of surface flows over a given surface area.

In detail, the GGI connection condition is implemented as follows:

1. Define regions within the interface where the fluxes must balance: control surfaces. Within each control
surface, identify new dependent variables. These are called interface variables. For a Stage interface,
the balance is across the entire interface in the direction of rotation, with as many control surfaces
perpendicular to the direction of rotation as the grid permits. For all other interfaces, the control surface
balance is at the resolution of the interface grid.

2. Evaluate the fluxes at each interface location, by visiting all control volumes with surfaces exposed to
the interface. Evaluate the surface flows using the `standard' approach taken for all interior flux evalu-
ations for advection, diffusion, pressure in momentum, and mass flows. Use a combination of nodal
dependent variables and the interface variables in these evaluations. For example consider advection;
if the flow is into the interface control volume, the advected quantity is equated to the interface variable.
If the flow is out of the interface control volume, the advected quantity is equated to the local nodal
control volume variable. Below is a summary of all common flux discretizations at the interface:

• Advection: Mass out is connected to the upstream (nodal) values, and mass in is connected to
upstream (control surface) values.

• Diffusion: A diffusion gradient is estimated using the regular shape function based gradient coef-
ficients, but all dependence of the gradient estimate on nodes on the interface are changed to a
dependence on interface variables.

• Pressure in momentum: Evaluated using local nodal and control surface pressures and shape
function interpolations.

• Local pressure gradient in mass redistribution: This gradient is estimated using the regular shape
function based gradient coefficients, but all dependence of the gradient estimate on nodal pressure
on the interface is in terms of the interface pressure variable.

3. When a face is in contact with more than one control surface balance equation, discretize the fluxes
at each integration point location in terms of generic interface unknowns, evaluate the flux N times
(where N is the number of control surfaces in contact with the face), each time using a different control
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surface variable and applying a weighting factor to the flow based on an `exposed fraction' basis. Each
partial flow is accumulated in the control volume equation and in the relevant control surface equation.

4. Include each surface flow evaluation in two places: once in the interface control volume equation, and
once in the adjacent control surface equation. Once all interface surfaces have been visited, the resulting
equation set is as follows:

• All interface control volume equations are complete. Each equation has coefficients to the usual
neighboring nodal variables, as well as to interface variables.

• All control surface equations are now complete. Each equation has coefficients to local interface
variables as well as to nodal variables.

5. Solve the linear equation set to yield values of all nodal variables (from the control volume equations)
and all interface variables (from the control surface equations).
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Chapter 4: Transient Blade Row Modeling Theory

Using conventional methods for modeling transient rotor-stator applications, it is often the case that
prohibitive computing resources are required to obtain detailed accurate simulations.

Figure 4.1 (p. 159) illustrates how conventional periodicity is inadequate when trying to use one passage
to model a simulation that has a non-unity pitch ratio.

Figure 4.1  One passage periodicity cannot be applied

Figure 4.2 (p. 159) shows the workaround needed in using conventional programs to correctly capture
the effect of non-unity pitch ratio. Simply put, copies need to be made on either side of the interface
such that the resulting or effective pitch ratio resulting from the larger problem is unity. This can be
very costly and might require the simulation of the entire wheel in turbo-machinery applications if the
number of blades on one of the sides is a prime number.

Figure 4.2  Workaround using standard periodicity

Figure 4.3 (p. 160) illustrates the common principle used in two of the Transient Blade Row methods:
Time Transformation Method (p. 160) and Fourier Transformation Method (p. 162). Each of these methods
applies in its own way what we have called here “phase shifted periodic boundary conditions”. The
basic principle is that the pitch-wise boundaries R1/R2 and S2/S2 are periodic to each other at different
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instances in time. For example the relative position of R1 and S1 at �� is reproduced between sides R2

and S2 at an earlier time −� ��  where �  is defined by −� � �� 	 �. Here 
� and �
 are the

rotor and stator pitches, respectively, and �� is the velocity of the rotor.

Figure 4.3  Phase Shifted Periodic Boundary Conditions

4.1. Time Transformation Method

The Time Transformation method handles the problem of unequal pitch described above by transforming

the time coordinates of each rotor and stator passages. Let the �, �, and � coordinate axis represent
the radial, tangential (pitchwise) and axial directions of the problem described in Figure 4.3 (p. 160).

Mathematically, the condition of enforcing the flow spatial periodic boundary conditions on both rotor
and stator passages, respectively, is given by:

(4–1)= + −� � � � � � � � � � �� � �� �

(4–2)= + −� � � �  � � � ! �  " " "# $

Alternatively, we can apply the following set of space-time transformations [217] to the problem above
as:

(4–3)′ =% %

(4–4)′ =& &

(4–5)′ =' '

(4–6)′ = −( ( ) *+,-

where =. / 0123 123.
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The transformed set of equations now has regular spatial periodic boundary conditions as:

(4–7)′ ′ ′ ′ = ′ ′ + ′ ′� � � � � � � � � � �� � �� �

(4–8)′ ′ ′ ′ = ′ ′ + ′ ′	 
 � � 
 	 
 � � � 
� � �� �

And the periodicity is maintained at any instant in time in the computational domain.

There are two important implications of working with the transformed system above instead of the
conventional system:

• The equations that are solved are in the computational ( ′� , ′� , ′� , ′� ) transformed space-time domain

and need to be transformed back to physical (�,�, �, �) domain before post-processing.

• The rotor and stator passages are marching at different time step sizes.

One way of understanding the difference in time step size stated in the second point is:

a) Each passage experiences a different period, i.e., the stator period is:

(4–9)=� � �� � �

whereas the rotor period is:

(4–10)=�  !" # "

b) The period in each passage must be discretized using an identical number of timesteps $. We can

therefore write the rotor and stator periods as:

(4–11)=% & '( (

(4–12)=) * +, ,

where - . and /0 represent the time step size for the rotor and stator, respectively.

c) Combining the two definitions of rotor and stator periods in a) and b) we have the time step sizes
in the rotor and stator related by their pitch ratio as:

(4–13)=1

1

2

2

3

4

4

3

The simulation time step size set for the run is used in the stator passage(s) 56  and ANSYS CFX

computes the respective rotor passage time step size 78  based on the rotor-stator interface pitch

ratio as described above.
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When the solution is transformed back to physical time, the elapsed simulation time is considered the
stator simulation time.

The flow interaction across the rotor-stator interfaces is handled by the pitch scaling machinery already
present in the Profile Transformation method.

Another way of seeing the difference in time step sizes is to look at the time vs. pitchwise direction
plot for both stator and rotor domains. In Figure 4.4 (p. 162) the rotor domain periodic boundaries are
plotted with reference to the stator domain. One can notice that, even though the rotor pitch is smaller
than the stator pitch in physical space, their boundaries match in the inclined computational space

after time +� � . Furthermore, if we look at the time step size of stator and rotor, we see that they
are different and related by the rotor-stator pitch ratio.

Figure 4.4  Rotor and stator periodic boundaries in space-time

For modeling information, see Transient Blade Row Modeling in the CFX-Solver Modeling Guide.

4.2. Fourier Transformation Method

The Fourier Transformation method applies the phase shifted boundary conditions illustrated in Figure

4.3 (p. 160) in a more direct method than in the Time Transformation method.

It basically consists of attempting to directly "impose" a phase shift between the R1,R2 boundaries and
the S1,S2 boundaries for the primitive variables of the problem. A direct method of applying the phase
shift boundary method was proposed by Erdos [215] but his method requires storage of the signal for
a compete period on all the R1/R2 S1/S2 boundaries including the interface shared by the rotor and
stator sections. The Frequency Transformation method makes use of temporal Fourier series decompos-
ition Equation 4–14 (p. 163) to avoid storing the signal on the S1/S2 and R1/R2 boundaries. This method
was initially introduced by He [218].
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(4–14)∑=
= −

−

� � �

� �

�

�

���� � 	

ɵ

In this method the signal is decomposed into harmonics of the fundamental frequency 
 �  of

each passage. For example in typical TRS problems this fundamental frequency is the inverse of the

blade passing period �
��, where:

(4–15)=�
�

�
���

The Fourier Transformation method in ANSYS CFX is implemented using a double passage method. The
data is collected at the (implicit) interface (R2,S2) between the two passages, Figure 4.5 (p. 163). While
performance is case dependent, the double passage approach converges in fewer cycles than a single
passage method, owing to the superior quality of the data update (Fourier data is collected at fully
implicit flow variables, far from the actual periodic boundaries). The double passage Fourier Transform-
ation approach converges very rapidly to a quasi-periodic state, requiring as few as 3-4 cycles in some
cases.

Figure 4.5  Double Passage Method

In Figure 4.5 (p. 163), the time shift is:

= −
��

� �

�

� �

������

The signal  !
"#

 on S1 is equal to the signal on S2 phase shifted by

+

= + ≈ +$ % $ % &' $ % &'
( ( () * *

µ

The signal + ,
-.

 on S3 is equal to the signal on S2 phase shifted by
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−

:

= − ≈ −� � � � �� � � ��
� � �� � �

µ

Where � �
	

ɵ  is the reconstructed signal at S2 using the accumulated Fourier coefficients on that

same boundary.

For modeling information, see Transient Blade Row Modeling in the CFX-Solver Modeling Guide.
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Chapter 5: Multiphase Flow Theory

This chapter discusses:
5.1. Multiphase Notation
5.2.The Homogeneous and Inhomogeneous Models
5.3. Hydrodynamic Equations
5.4. Multicomponent Multiphase Flow
5.5. Interphase Momentum Transfer Models
5.6. Solid Particle Collision Models
5.7. Interphase Heat Transfer
5.8. Multiple Size Group (MUSIG) Model
5.9.The Algebraic Slip Model
5.10.Turbulence Modeling in Multiphase Flow
5.11. Additional Variables in Multiphase Flow
5.12. Sources in Multiphase Flow
5.13. Interphase Mass Transfer
5.14. Free Surface Flow

Two distinct multiphase flow models are available in CFX, an Eulerian-Eulerian multiphase model and
a Lagrangian Particle Tracking multiphase model. This section describes Eulerian-Eulerian multiphase
flow theory. For information about modeling Eulerian-Eulerian multiphase flow in ANSYS CFX, see
"Multiphase Flow Modeling". Lagrangian Particle Tracking theory and modeling are described in Particle

Transport Theory (p. 239) and "Particle Transport Modeling", respectively.

You should be familiar with the mathematical implementation of single-phase flow before reading this
section. For details, see Basic Solver Capability Theory (p. 1).

5.1. Multiphase Notation

In addition to the notation given here, review the list of symbols. For details, see List of Symbols (p. 2).

Different phases of fluids are denoted using lowercase Greek letters �, �, �, etc. In general, a quantity

subscribed with �, �, �, etc., refers to the value of the quantity for that particular phase. For example,

the volume fraction of � is denoted ��. Thus, the volume 	
 occupied by phase � in a small volume �

around a point of volume fraction 
� is given by:

(5–1)=� � �� �

The total number of phases is ��. The volume fraction of each phase is denoted ��, where = �.

It is important to distinguish between the material density and the effective density of a fluid �. The
material density, �

�
, is the density of the fluid if it is the only phase present, that is, the mass of � per

unit volume of �. The effective density is then defined as:

165
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.



(5–2)=∼
� � �
� � �

This is the actual mass per unit volume of phase �, given that phase � only occupies a fraction of the
volume, that is, the mass of � per unit volume of the bulk fluid.

The mixture density is given by:

(5–3)∑=� � �
� 	 	 	

5.1.1. Multiphase Total Pressure

The total pressure in a multiphase simulation is defined as:

(5–4)∑= + 
� � � 

�

� � ���� ����

�

This definition is used for both incompressible and compressible flows, whereas single phase flows treat
total pressure differently depending on the simulation. For details, see Total Pressure (p. 16).

5.2. The Homogeneous and Inhomogeneous Models

Two different sub-models are available for Eulerian-Eulerian multiphase flow: the homogeneous model
and the inter-fluid transfer (inhomogeneous) model.

5.2.1. The Inhomogeneous Model

5.2.1.1. Interfacial Area Density

Interfacial transfer of momentum, heat and mass is directly dependent on the contact surface area
between the two phases. This is characterized by the interfacial area per unit volume between phase

� and phase �, known as the interfacial area density, �� �. Note that it has dimensions of inverse length.

Interfacial transfer can be modeled using either the particle or mixture models. These essentially provide
different algebraic prescriptions for the interfacial area density.

5.2.1.1.1. The Particle Model

The Particle model for interfacial transfer between two phases assumes that one of the phases is con-

tinuous (phase �) and the other is dispersed (phase �). The surface area per unit volume is then calculated

by assuming that phase � is present as spherical particles of Mean Diameter ��. Using this model, the

interphase contact area is:

(5–5)=�
�

 
! "

"

"

This simple model is modified for robustness purposes in two ways:
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• �� is clipped to a minimum volume fraction to ensure the area density does not go exactly to zero.

• For large �� (that is, when the assumption of � being dispersed is invalid), the area density is decreased

to reflect the fact that it should lead to zero as �� tends to 1.

With these modifications, the area density for the particle model is implemented as

(5–6)=�
�

	

 �

�

�

where

(5–7)=










<






−
−




 >

�

� � � �

�

�
� � � �





 







��� ���

���
��� ��� ���

By default, ���� and ���� take values of 0.8 and 10-7, respectively. In some cases, it may be appropriate

to use a different value for ����; for example, increasing it to 10-3 provides a very crude nucleation

model for boiling a subcooled liquid. � !" is controlled by the parameter Minimum Volume Fraction

for Area Density .

For non-drag forces, the solver uses a slightly different formulation of area density called the Unclipped

Interfacial Area Density. In this formulation, the area density is permitted to go to zero, that is, =#$%&

in Equation 5–7 (p. 167). In addition, the area density is reduced more aggressively as the dispersed phase
volume fraction becomes large:

(5–8)=' ( '
) * ) *
+,-./0012

where:

=





−
−




′

3
4

4

5

5

6

=7

=










≤
− < ≤′8

8 8

8 89

9 9

9 9

Non-dimensional interphase transfer coefficients may be correlated in terms of the particle Reynolds

number and the fluid Prandtl number. These are defined using the particle mean diameter, and the
continuous phase properties, as follows:
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(5–9)=
−� �� �

�
� �

� � � �

�

(5–10)=
� �

�
	 


	 � 	

	

where �



,��� and � � are the viscosity, specific heat capacity and thermal conductivity of the continuous

phase �.

5.2.1.1.2. The Mixture Model

This is a very simple model which treats both phases �, � symmetrically. The surface area per unit

volume is calculated from

(5–11)=�
� �

�
� �

� �

� �

where �� � is an interfacial length scale, which you must specify.

By way of example, suppose you have oil-water flow in which you may have either water droplets in

continuous oil, or oil droplets in continuous water, in the limits →�� , → !  respectively. Then, a

simple model for interfacial area density that has the correct behavior in these two limits is given by:

(5–12)=
+

⇒ =
+

"
# #

# $ # $
$

# $ # $

% &
% &

% & & %
% &

% & & %

Non-dimensional interphase transfer coefficients may be correlated in terms of the mixture Reynolds

number and Prandtl number defined as follows:

(5–13)=
−' '( )

*
+ ,

+ , , + + ,

+ ,

(5–14)=
-.

/0
/0

/0

where 1
2 3

, 4
5 6

,789: and ; < = are the density, viscosity, specific heat capacity and thermal conduct-

ivity of the mixture respectively, defined by:
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(5–15)

= +
= +

� � � � �

� � � � �

� � � � � �

� � � � � �

5.2.1.1.3. The Free Surface Model

The free surface model attempts to resolve the interface between the fluids. If there are just two phases
in the simulation, the following equation is used for interfacial area density:

(5–16)= ∇� �� � �

When more than two phases are present, this is generalized as follows:

(5–17)=
∇ ∇

∇ + ∇
	


 



 

� �

� �

� �

5.2.2. The Homogeneous Model

In homogeneous multiphase flow, a common flow field is shared by all fluids, as well as other relevant
fields such as temperature and turbulence. This allows some simplifications to be made to the multifluid
model resulting in the homogeneous model.

For a given transport process, the homogeneous model assumes that the transported quantities (with
the exception of volume fraction) for that process are the same for all phases, that is,

(5–18)= ≤ ≤
 
 � �
� �

Because transported quantities are shared in homogeneous multiphase flow, it is sufficient to solve for
the shared fields using bulk transport equations rather than solving individual phasic transport equations.

The bulk transport equations can be derived by summing the individual phasic transport equations
(Equation 5–202 (p. 212)) over all phases to give a single transport equation for �:

(5–19)
∂
∂

+ ∇ − ∇ =�
�

� � � � � � �

where:
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(5–20)

∑

∑

∑

=

=

=

=

=

=

� �

� � �

�
� �

� � �

�

�

� �

�

�

� � �

�

�

� �

�

�

�

�

�

�

The homogeneous model does not need to be applied consistently to all equations. For example, the
velocity field may be modeled as inhomogeneous, but coupled with a homogeneous turbulence model.
Alternatively, a homogeneous velocity field may be coupled with inhomogeneous temperature fields.
Homogeneous Additional Variables are also available in CFX.

5.3. Hydrodynamic Equations

The following is a summary of the equations of momentum and mass transfer for inhomogeneous and
homogeneous multiphase flow in CFX. The equivalent for single-phase flow is also available. For details,
see Transport Equations (p. 25).

5.3.1. Inhomogeneous Hydrodynamic Equations

The inhomogeneous hydrodynamic equations are as follows:

• Momentum Equations (p. 170)

• Continuity Equations (p. 171)

• Volume Conservation Equation (p. 171)

• Pressure Constraint (p. 172)

5.3.1.1. Momentum Equations

(5–21)

⊗

∑

∂
∂

+ ∇

= − ∇ + ∇ ∇ + ∇

+ − + +
=

+ +

� � �

� �

� � 	 


�
� 
 � 


� � � �

� �

� � � � � � �

� � � � � �
�

�

�

� � � � � � � � �
�

�

• �� � describes momentum sources due to external body forces, and user defined momentum sources.

For details, see Sources (p. 54).

• �� describes the interfacial forces acting on phase � due to the presence of other phases. Additional

information for the models available for interfacial forces is available in Interphase Momentum Transfer

Models (p. 173).

• The term:
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(5–22)−+ +
� �� �� � � � � �

represents momentum transfer induced by interphase mass transfer. For details, see Interphase

Mass Transfer (p. 216).

• The above momentum equations are valid for fluid phases only. For dispersed solid phases, additional
terms are present representing additional stresses due to particle collisions.

5.3.1.2. Continuity Equations

(5–23)∑∂
∂

+ ∇ = +
=

� �
�
� � � � 	
 
 
 
 
 � � 





�


 

�

�

• �� � � describes user specified mass sources. For details, see Sources (p. 54).

• �� � is the mass flow rate per unit volume from phase � to phase �. This term only occurs if interphase

mass transfer takes place. For details, see Interphase Mass Transfer (p. 216).

5.3.1.3. Volume Conservation Equation

This is simply the constraint that the volume fractions sum to unity:

(5–24)∑ =
=
�

�

�

�
�

�

This equation may also be combined with the phasic continuity equations to obtain a transported
volume conservation equation. Take Equation 5–23 (p. 171), divide by phasic density, and sum over all
phases. This yields:

(5–25)∑ ∑ ∑


∂
∂

+ ∇ 


=







+





=

�  
! "

# ! # !
!

$
%

%

% % % % %
%

%

& ' %
(

)

% (
*

+

Interpreting this equation is simpler if you consider the special case of incompressible phases with no
sources, in which it simplifies to:

(5–26)∑ ∇ =,-
.

. .

which requires the volume flows to have zero divergence. Equation 5–25 (p. 171) is the volume continuity
equation solved by the CFX-Solver.
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5.3.1.4. Pressure Constraint

The complete set of hydrodynamic equations represent +��  equations in the �� unknowns ��,

��,�	, 
�, �



. You need −��  more equations to close the system. These are given by constraints on

the pressure, namely that all phases share the same pressure field:

(5–27)= =� � ���

5.3.2. Homogeneous Hydrodynamic Equations

5.3.2.1. Momentum Equations

The homogeneous model for momentum transport assumes:

(5–28)= ≤ ≤� � � �� �

and is given by Equation 5–23 (p. 171) and the momentum equation:

(5–29)⊗∂
∂

+ ∇ − ∇ + ∇ = − ∇� � � � � �
�
� � � �

�
 

where:

(5–30)

∑

∑

=

=

=

=

! " !

# " #

$

%

$ $

$

%

$ $

&

&

'

'

The following points should be noted:

• The interphase transfer terms have all canceled out.

• This is essentially a single phase transport equation, with variable density and viscosity.

5.3.2.2. Continuity Equations

The homogeneous continuity equation is the same as for full multiphase, Equation 5–23 (p. 171), except

that ( is not phase specific.

5.3.2.3. Volume Conservation Equations

The homogeneous volume conservation equation is the same as for full multiphase, Equation 5–24 (p. 171),

except that ) is not phase specific.
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5.3.2.4. Pressure Constraint

The pressure constraint given above for full multiphase flow is also used for homogeneous multiphase
flow.

5.4. Multicomponent Multiphase Flow

In multiphase multicomponent flows, transport equations for the mass fractions of components �� �

are assumed to take a similar form those used for single-phase multicomponent flow:

(5–31)
∂
∂

+ ∇ − ∇ =�
�

� � � � � � � � � 	
 
 � 
 
 
 
 � 
 
 � 
 � 
 �


You should note that the molecular diffusion coefficients are given by � 

� ��, where ��� is the Kin-

ematic Diffusivity.

Source terms in multicomponent multiphase flow behave the same as multicomponent mass sources,
but on a per fluid basis. For details, see Sources (p. 54).

5.5. Interphase Momentum Transfer Models

The theory described in this section only applies to inhomogeneous multiphase flow. When using the
homogeneous model, momentum transfer between phases is assumed to be very large.

Interphase momentum transfer, ���, occurs due to interfacial forces acting on each phase �, due to

interaction with another phase �. The total force on phase � due to interaction with other phases is

denoted ��, and is given by:

(5–32)∑=
≠

� ��
� �

� �

Note that interfacial forces between two phases are equal and opposite, so the net interfacial forces
sum to zero:

(5–33)∑= − ⇒ =� � ��  �
�

�

The total interfacial force acting between two phases may arise from several independent physical effects:

(5–34)= + + + + + +! ! ! ! ! ! !"# " #
$

" #
%

" #
%&'

" #
()

" #
*$

+

The forces indicated above respectively represent the interphase drag force, lift force, wall lubrication
force, virtual mass force, turbulence dispersion force and solids pressure force (for dense solid particle
phases only).

CFX provides a wide range of physical models for these forces. These models are described in the fol-
lowing places:
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• Interphase Drag (p. 174)

• Lift Force (p. 181)

• Wall Lubrication Force (p. 185)

• Virtual Mass Force (p. 184)

• Interphase Turbulent Dispersion Force (p. 187)

• Solid Particle Collision Models (p. 188)

For more information, see Multiphase Flow with Turbulence Dispersion Force in the CFX Reference Guide.

5.5.1. Interphase Drag

The following general form is used to model interphase drag force acting on phase � due to phase �:

(5–35)= −� � ��� � �
�

� �
� 	

Note that =
� �  and =� �
 � � 
. Hence, the sum over all phases of all interphase transfer terms is

zero.

In this section, you will learn how the coefficients �
� �
�� �  may be computed from a knowledge of dimen-

sionless drag coefficients. The range of models available for drag coefficients is also described.

The total drag force is most conveniently expressed in terms of the dimensionless drag coefficient:

(5–36)
=

−
�

�

� � � �

�

� � �
�

�

�

where   is the fluid density, −! !" #  is the relative speed,$ is the magnitude of the drag force

and % is the projected area of the body in the direction of flow. The continuous phase is denoted by

& and the dispersed phase is denoted by '.

5.5.2. Interphase Drag for the Particle Model

For spherical particles, the coefficients (
) *
+, -  may be derived analytically. The area of a single particle

projected in the flow direction, ./, and the volume of a single particle 01 are given by:

(5–37)

=

=

2
3 4

5
3 4

6

6

7

8

where 9 is the mean diameter. The number of particles per unit volume, :;, is given by:
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(5–38)= =�
�

�

�

� �
�

�

�

�
�

The drag exerted by a single particle on the continuous phase is:

(5–39)= − −� 	 	 	 	
 � �
 � � 
 � � � �

Hence, the total drag per unit volume on the continuous phase is:

(5–40)= = − −� � � � � ��
�

�
� �� � � �

�
� � � � � �

Comparing with the Momentum Equations (p. 170) for phase �, where the drag force per unit volume is:

(5–41)= −� � �� !  !
"

!  
# $

you get:

(5–42)= −% %&
'

(
) *

+ ,
- .

, + , +
/ 0

which can be written as:

(5–43)= −1 12
3

4 5
6 7
8 9

6 7 6 7 6
: ;

This is the form implemented in CFX.

The following section describes drag correlations specific to dispersed multiphase flow.

5.5.2.1. Sparsely Distributed Solid Particles

At low particle Reynolds numbers (the viscous regime), the drag coefficient for flow past spherical
particles may be computed analytically. The result is Stokes’ law:

(5–44)=<= ≪

For particle Reynolds numbers, such as Equation 5–9 (p. 168), that are sufficiently large for inertial effects
to dominate viscous effects (the inertial or Newton’s regime), the drag coefficient becomes independent
of Reynolds number:
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(5–45)= ≤ ≤ −� ��
�

In the transitional region between the viscous and inertial regimes, < <  for spherical
particles, both viscous and inertial effects are important. Hence, the drag coefficient is a complex function
of Reynolds number, which must be determined from experiment.

This has been done in detail for spherical particles. Several empirical correlations are available. The
one available in CFX is due to Schiller and Naumann (1933) [6]. It can be written as follows:

5.5.2.1.1. Schiller Naumann Drag Model

(5–46)= +��
���	


CFX modifies this to ensure the correct limiting behavior in the inertial regime by taking:

(5–47)= 


+ 


��

����

5.5.2.2. Densely Distributed Solid Particles

5.5.2.2.1. Densely Distributed Solid Particles: Wen Yu Drag Model

(5–48)
= 

 ′
+ ′ 



′ =

−
� �

�

� �

�

���� �����

Note that this has the same functional form as the Schiller Naumann correlation, with a modified particle
Reynolds number, and a power law correction, both functions of the continuous phase volume fraction
��.

You may also change the Volume Fraction Correction Exponent from its default value of -1.65, if you
want.

Note

Although the Wen Yu drag law implemented in ANSYS CFX follows the implementation by
Gidaspow [18] and its subsequent wide use, this implementation of the drag law is, in fact,
quite different from that given in the original Wen and Yu paper [181].
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5.5.2.2.2. Densely Distributed Solid Particles: Gidaspow Drag Model

(5–49)

= >

=
−

+
− −

<
� �

� � �

�
� �

� �

� �

�
�

� � �

	 

� � �

� �

� � � �

�
�


 �
�

�

This uses the Wen Yu correlation for low solid volume fractions <�� , and switches to Ergun’s law

for flow in a porous medium for larger solid volume fractions.

Note that this is discontinuous at the cross-over volume fraction. In order to avoid subsequent numer-
ical difficulties, CFX modifies the original Gidaspow model by linearly interpolating between the Wen

Yu and Ergun correlations over the range < <�� .

You may also change the Volume Fraction Correction Exponent of the Wen Yu part of the correlation
from its default value of -1.65, if you want.

5.5.2.3. Sparsely Distributed Fluid Particles (Drops and Bubbles)

At sufficiently small particle Reynolds numbers (the viscous regime), fluid particles behave in the same
manner as solid spherical particles. Hence, the drag coefficient is well approximated by the Schiller-
Naumann correlation described above.

At larger particle Reynolds numbers, the inertial or distorted particle regime, surface tension effects
become important. The fluid particles become, at first, approximately ellipsoidal in shape, and finally,
spherical cap shaped.

In the spherical cap regime, the drag coefficient is well approximated by:

(5–50)=��

Several correlations are available for the distorted particle regime. CFX uses the Ishii Zuber [19] and
Grace [35] correlations.

5.5.2.3.1. Sparsely Distributed Fluid Particles: Ishii-Zuber Drag Model

In the distorted particle regime, the drag coefficient is approximately constant, independent of Reynolds
number, but dependent on particle shape through the dimensionless group known as the Eotvos
number, which measures the ratio between gravitational and surface tension forces:

(5–51)=��
� � �

�

�
�

Here, � is the density difference between the phases,   is the gravitational acceleration, and ! is the

surface tension coefficient.

The Ishii-Zuber correlation gives:
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(5–52)=� ���
���

In this case, CFX automatically takes into account the spherical particle and spherical cap limits by setting:

(5–53)
=

=
� � �

� � �

� � �

� � �

The Ishii Zuber Model also automatically takes into account dense fluid particle effects. For details, see
Densely Distributed Fluid Particles (p. 179).

5.5.2.3.2. Sparsely Distributed Fluid Particles: Grace Drag Model

The Grace drag model is formulated for flow past a single bubble. Here the drag coefficient in the dis-
torted particle regime is given by:

(5–54)=	

 �

�






�

� �
�

where the terminal velocity ��  is given by:

(5–55)= −−
�

�

� �
� ��

�

�

�

��� !

where:

(5–56)= ="
# $ %

% &

'

(

) *

and:

(5–57)=






< ≤
>

+
, ,

, ,

-./0/

-.112

(5–58)=










−
−

3 45 6
7

7

89:;<=

>?@

9:;<

= − −
A
BCD

E E
 is the molecular viscosity of water at 25°C and 1 bar.

In this case, CFX automatically takes into account the spherical particle and spherical cap limits by setting:
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(5–59)
=

=
� � �

� � �

� � �

� � �

5.5.2.4. Densely Distributed Fluid Particles

5.5.2.4.1. Densely Distributed Fluid Particles: Ishii-Zuber Drag Model

The Ishii Zuber [19] drag laws automatically take into account dense particle effects. This is done in
different ways for different flow regimes.

In the viscous regime, where fluid particles may be assumed to be approximately spherical, the Schiller
Naumann correlation is modified using a mixture Reynolds number based on a mixture viscosity.

5.5.2.4.2. Densely Distributed Fluid Particles: Dense Spherical Particle Regime (Ishii Zuber)

(5–60)

= +

=
−

=



 −


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=
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 � 
 �

	

	




�

�	


 �

� 


� 


�����

��� ��

Here, ��� is the user defined Maximum Packing value. This is defaulted to unity for a dispersed fluid

phase.

In the distorted particle regime, the Ishii Zuber modification takes the form of a multiplying factor to
the single particle drag coefficient.
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5.5.2.4.3. Densely Distributed Fluid Particles: Dense Distorted Particle Regime (Ishii Zuber)

(5–61)
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=

=
+

= −

∞

∞

� � � �
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5.5.2.4.4. Densely Distributed Fluid Particles: Dense Spherical Cap Regime (Ishii Zuber)

(5–62)

= −

=

∞

∞

� � �

�

� � �

�

�

The Ishii Zuber correlation, as implemented in CFX, automatically selects flow regime as follows:

5.5.2.4.5. Densely Distributed Fluid Particles: Automatic Regime Selection (Ishii Zuber)

(5–63)
= ≥
= <

� � � �

� � � � �

� � � �

� � � � �

5.5.2.4.6. Densely Distributed Fluid Particles: Grace Drag Model

The Grace [35] drag model is formulated for flow past a single bubble. For details, see Sparsely Distributed

Fluid Particles (Drops and Bubbles) (p. 177).

For high bubble volume fractions, it may be modified using a simple power law correction:

(5–64)= ∞� � �� �
�

�

Here, ∞��  is the single bubble Grace drag coefficient. Advice on setting the exponent value for the

power law correction is available in Densely Distributed Fluid Particles: Grace Drag Model in the CFX-

Solver Modeling Guide.

5.5.3. Interphase Drag for the Mixture Model

In the mixture model, a non-dimensional drag coefficient �� is defined as follows:
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(5–65)= − −� � � � �� � �� � � � � � � � � � �

where �	 
 is the total drag exerted by phase � on phase � per unit volume.

The mixture density 

� �

 is given by:

(5–66)= +� � � � �
� � � � � �

and the interfacial area per unit volume �� � is given by:

(5–67)=�
� �

�
� �

� �

� �

where �� � is a user-specified mixture length scale.

5.5.4. Interphase Drag for the Free Surface Model

In the free surface model, interphase drag is calculated in the same way as for the mixture model (see
Interphase Drag for the Mixture Model (p. 180)), except that the interfacial area density is given by:

(5–68)= ∇�  ! " !

When more than two phases are present, this is generalized as follows:

(5–69)=
∇ ∇

∇ + ∇
#

$ $

$ $
% &

% &

% &

[The Free Surface Model (p. 169)]

5.5.5. Lift Force

The lift force acts perpendicular to the direction of relative motion of the two phases.

CFX contains a model for the shear-induced lift force acting on a dispersed phase in the presence of a
rotational continuous phase. This is given by:

(5–70)
= − = − ×
=

' ' ( ( )

) (

* + ,-
.

/
.

/ - . / - -

- -

where 01 is a non-dimensional lift coefficient. In a rotating frame of reference with rotation vector 2,

the lift force is given by:
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(5–71)
= − = − × +

=

∗ ∗ ∗

∗ ∗
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� �

� � ��
�

	
�

	 � � 	 � �

� �

Currently, ANSYS CFX has the following built-in lift models:

• The Saffman Mei Lift Force Model (p. 182)

• The Legendre and Magnaudet Lift Force Model (p. 183)

• The Tomiyama Lift Force Model (p. 183)

5.5.5.1. The Saffman Mei Lift Force Model

This model is applicable mainly to the lift force on spherical solid particles, though it could be applied
to liquid drops that are not significantly distorted. It is a generalization of the older Saffman model,
which was applicable to a lower range of particle Reynolds numbers than the Saffman Mei model.

The lift coefficient is correlated in terms of both particle Reynolds number and vorticity Reynolds
numbers:

(5–72)=
−

= = ∇ ×

 




� �




� � �



���

� � � �

�

� � �

�

� �

�

Saffman (1965, 1968) [86][170] correlated the lift force for low Reynolds number flow past a spherical
particle as follows:

(5–73)= − =
∇ ×

′ − × ∇ × +� �
�

� � �
�

�

�
� � �� �

�

� �
� � � � � �

where ′ = ! , and ≤ ≤ ≤"# . By inspection, Saffman’s lift coefficient is related to the

one adopted in ANSYS CFX as follows:

(5–74)= ′$
%

$

&
' '

Saffman’s correlation was generalized by Mei and Klausner (1994) [87] to a higher range of particle
Reynolds numbers, as follows:

(5–75)′ =









⋅ <

⋅ ⋅ < <
(

)

*

+

,

- -

-

./0

-

where =1 2 3 , and = − ⋅ +−
4 5 6 578

9:; <=9>? 9:;@ .
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5.5.5.2. The Legendre and Magnaudet Lift Force Model

This model, as developed by Legendre & Magnaudet (1998) [171], is applicable mainly to the lift force
of small diameter spherical fluid particles, though it could be applied to non-distorted liquid drops and
bubbles. In contrast to the lift force model of Saffman-Mei for rigid solid particles, it accounts for the
momentum transfer between the flow around the particle and the inner recirculation flow inside the
fluid particle as caused by the fluid friction/stresses at the fluid interface. Therefore the predicted lift
force coefficients are about a factor of 2-5 smaller than for rigid solid particles.

The range of validity given by Legendre & Magnaudet (1998) is as follows:

(5–76)≤ ≤ = ≤�� ��

The lift force coefficient is then predicted by:

(5–77)= +� � �� ����	 
� ���
��
�

� �

where

= ′
−

�
�

��� ��� �� �

���

�

(5–78)=
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

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= ∞

+ −
+

+

,
-.,

∞ =/

5.5.5.3. The Tomiyama Lift Force Model

This is a model applicable to the lift force on larger-scale deformable bubbles in the ellipsoidal and
spherical cap regimes. Like the Grace and Ishii-Zuber models for drag force, it depends on Eotvos
number. Hence, it requires specification of the surface tension between the dispersed and continuous
phases. Its main important feature is prediction of the cross-over point in bubble size at which particle
distortion causes a reversal of the sign of the lift force to take place. The lift coefficient is given by
(Tomiyama 1998) [172]:
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(5–79)=
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where:

′ = ′ − ′ − ′ +�
� �

′��  is a modified Eotvos number, based on the long axis, 	
, of the deformable bubble:

′ =
−� � � 


�

� � �
�

= +� �� �
�����

���

=
−� � � �

 

! " #
$

The correlation has been slightly modified from Tomiyama’s original form, following Frank et al. (2004)

[173], whereby the value of %& for ′ >  has been changed to −  to ensure a continuous de-

pendence on modified Eotvos number. Also, some publications omit the exponent of Eotvos number

in the formula for '(. The formula adopted here is taken from Wellek et al.[174].

5.5.6. Virtual Mass Force

The virtual mass force is proportional to relative phasic accelerations as follows:

(5–80)= − = 


− 


) )
* *
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. /
0
12

3
12

3 0 12
3 3 0 0

In a rotating frame of reference with rotation vector 4, the virtual mass force in terms of 
∗

5  is modified
by Coriolis theorem, and is given by:

(5–81)= − =



 − + × −






∗ ∗ ∗ ∗
∗ ∗

6 6
7 7

7 78 9 :
;

;<

;

;<
=>

?@
A
?@

A > ?@
A A > >

A >

The non-dimensional virtual mass coefficient =BCD  for inviscid flow around an isolated sphere. In

general,EFG  depends on shape and particle concentration HIJ  may be specified by the user as a

constant or a CEL expression.
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5.5.7. Wall Lubrication Force

Under certain circumstances, for example, bubbly upflow in a vertical pipe, the dispersed phase is ob-
served to concentrate in a region close to the wall, but not immediately adjacent to the wall. This effect
may be modeled by the wall lubrication force, which tends to push the dispersed phase away from the
wall.

Currently, ANSYS CFX has the following wall lubrication force models:

• The Antal Wall Lubrication Force Model (p. 185)

• The Tomiyama Wall Lubrication Force Model (p. 186)

• The Frank Wall Lubrication Force Model (p. 186)

5.5.7.1. The Antal Wall Lubrication Force Model

The Antal model, given by Antal et al. (1991) [88], computes the wall lubrication force as:

(5–82)= − −� � � �� � ���� �� � � 	 �



where

• = 



+ 



�
�




�

���
��

�

��

�

The non-dimensional coefficients are defaulted to = −���  and =��� . You can change

these values.

• ��  is the gas volume fraction.

• �
�

 is the liquid density.

• �  is the unit normal pointing away from the wall.

• −! !" # is the relative velocity difference between phases, in the plane of the nearby wall surface (that

is, orthogonal to $%).

• &' is the dispersed phase mean diameter.

• (
)

 is the distance to the nearest wall.

Note that this force is only active in a thin layer adjacent to the wall; it is only active up to a cut-off
distance of:

≤ −* + + ,
- ./ .0 1

where =2 3
4 5 with default values of 678 and 9:;.

Hence, this force will only be activated on a sufficiently fine mesh, and grid convergence can be expected
only on extremely fine meshes.
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5.5.7.2. The Tomiyama Wall Lubrication Force Model

Tomiyama (1998) [172] modified the wall lubrication force formulation of Antal, based on the results
of experiments with the flow of air bubbles in glycerin in a pipe. The modification is as follows:

(5–83)= 
















−
−








� � ��
�

�
� �

�� �
�

�
�

	 	

Here,
 is the pipe diameter. Hence, although the model was found to be superior to Antal's [88] (Frank

et al. 2004 [173]), it is restricted to flows in pipe geometries. As is the case for the Tomiyama lift force

correlation, the coefficient � �
�  is dependent on the Eotvos number, and hence on the surface

tension between the two phases. Frank et al (2004) modified this correlation slightly to ensure continuous
dependence of the wall lubrication coefficient on Eotvos number:

(5–84)=










<
≤ ≤

− < ≤
<

− +
� ��

��

� ��

�� ��

��

��

�

����� �����

5.5.7.3. The Frank Wall Lubrication Force Model

Frank et al. ([177], [173]) generalized the Tomiyama model to produce the Frank Wall Lubrication Force
model, which has no dependence on pipe diameter, and is given by:

(5–85)= ⋅














⋅
−

⋅

























−� �
�

�

�

�  

�

�  

!"#$$ %
%&

%

'

(

() *

(

() *

Note:

• + ,-.  preserves the same dependence on Eotvos number as the Tomiyama model.

• The cut-off coefficient,/01, determines the distance relative to the particle diameter over which the

force is active. =234  gives the same range as the Antal model with default constants.

• The damping coefficient,567, determines the relative magnitude of the force. =89:  gives the

same behavior as the Antal model with default constants. However, Frank et al. found that such high
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damping of the wall lubrication force was not able to sufficiently counterbalance the Tomiyama lift
force in the near wall region.

• The power-law constant, �, makes the force fall off with a variable potential law relationship:

∼� �
�

�� �
. It is recommended that � be in the range: 1.5 to 2.

• In extensive validation exercises by Frank et al. [177], the following model constants were determined
in order to produce the best possible agreement with experimental data for vertical bubbly flow in

pipes: =��	 , =
�� , =
 .

5.5.8. Interphase Turbulent Dispersion Force

The topics in this section include:

• Favre Averaged Drag Model (p. 187)

• Lopez de Bertodano Model (p. 187)

5.5.8.1. Favre Averaged Drag Model

CFX implements a model for turbulent dispersion force, based on the Favre average of the interphase
drag force [90].

(5–86)= − =





∇ − ∇ 


� � � �

�

�

�

�

�

�
�
��

�
��

�� ��
��

��

�

�

�

�

Here,��� is the momentum transfer coefficient for the interphase drag force. Hence, the model clearly

depends on the details of the drag correlation used ��� is the turbulent Schmidt number for continuous

phase volume fraction, currently taken to be .

��  is a user-modifiable CEL multiplier. Its default value is unity.

5.5.8.2. Lopez de Bertodano Model

The model of Lopez de Bertodano (1991) [20] was one of the first models for the turbulent dispersion
force:

(5–87)= − = − ∇! ! " # $ %&
'(

)
'(

'( & & &

Unfortunately, it is not possible to recommend universal values of *+, for this model.-./ values of

0.1 to 0.5 have been used successfully for bubbly flow with bubble diameters of order a few millimeters.
However, values up to 500 have been required for other situations. See Lopez de Bertodano  [21] and
Moraga et al. [91].
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This model is included in CFX for historical back compatibility with CFX. However, the more universal

Favre Averaged Drag model is recommended for all situations where an appropriate value of ��� is

unknown.

5.6. Solid Particle Collision Models

This section presents the theoretical background of the solid particle collision models implemented in
CFX.

The following topic(s) will be discussed:

• Solids Stress Tensor (p. 188)

• Solids Pressure (p. 189)

• Solids Bulk Viscosity (p. 190)

• Solids Shear Viscosity (p. 190)

• Granular Temperature (p. 191)

5.6.1. Solids Stress Tensor

Additional stresses due to inter-particle collisions are modeled using a collisional solids stress tensor in
the solid phase momentum equation only:

(5–88)= − +





∂
∂

+
∂
∂

− ∂
∂




 + ∂

∂
� � � �

�

�

�

�

�

�
� 	

�

�
�
�� 
 �� 


�

�

�

�






�� 







��

Here, �� denotes solids pressure, �
�
 denotes solids shear viscosity, and �

�
 denotes solids bulk viscosity.

There are two important classes of models for these quantities:

5.6.1.1. Empirical Constitutive Equations

There exist wide classes of models where the constitutive elements of the solids stress are specified
using empirical constitutive relations. See, for example, (Enwald et al. [97]). In many of these, the solids
pressure, shear and bulk viscosities are simple functions of the solid phase volume fraction.

5.6.1.2. Kinetic Theory Models for the Solids Stress Tensor

These are a class of models, based on the kinetic theory of gases, generalized to take into account in-
elastic particle collisions. In these models, the constitutive elements of the solids stress are functions
of the solid phase granular temperature, defined to be proportional to the mean square of fluctuating
solid phase velocity due to inter-particle collisions:

(5–89)= ′� �� �
�

In the most general kinetic theory models, the granular temperature is determined from a transport
equation. However, in many circumstances, it is possible to ignore the transport terms, and determine
granular temperature from the resulting algebraic equation.
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5.6.2. Solids Pressure

5.6.2.1. Empirical Constitutive Equations

The most popular constitutive equations for solids pressure are due to (Gidaspow [18]). These actually
specify the solids pressure gradient, rather than solids pressure directly:

(5–90)= ⇒ ∇ = ∇� � � � � � �� � � � � �

(5–91)= −
� � � ��

� 	 	



� ��

Where 
 ��  is the Elasticity Modulus, �� is the Reference Elasticity Modulus, � is the Compaction

Modulus, and ��� is the Maximum Packing Parameter.

The Gidaspow model is implemented with an option for specifying the Reference Elasticity Modulus

and Compaction Modulus. There is also an option to specify the Elasticity Modulus � ��  directly.

There is also an option to specify the solids pressure directly. This permits more general constitutive
relations than those where the solids pressure is a function of volume fraction only.

5.6.2.2. Kinetic Theory Models for Solids Pressure

The kinetic theory model for solids pressure is similar to the equation of state for ideal gases, modified
to take account of inelastic collisions, and maximum solid packing.

(5–92)= + +� � � � � � �� � � � � 

Here, ! denotes the coefficient of restitution for solid-solid collisions, and " #$%
 denotes the radial

distribution function. Popular models for the radial distribution function are given by:

Gidaspow (1994) [18]:

(5–93)= −
−

& ' ' '( ( ()
*+,

*

-

Lun and Savage (1986) [100]:

(5–94)= − −
. / / /0 0 01

2345

6
78

Note that the radial distribution function tends to infinity as →9 9: :;. The singularity is removed in CFX

by setting:

(5–95)= + − + − + − ≥< = > > = = > = = > = = = =? ? @ ? @ ? @ @A A B C
C

D
D

where = −E EF GH  and:
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(5–96)

=

= ×

= ×

= ×

�

�

�

�
��

�

�
�

�
�

�

5.6.3. Solids Bulk Viscosity

5.6.3.1. Constitutive Equation Models

Most simple constitutive equation models ignore the solids bulk viscosity. However, it is possible for
the user to specify a model for this, using a CEL expression, if required. Note that any solids volume
fraction dependence must be included in the CEL expression.

5.6.3.2. Kinetic Theory Models for Solids Bulk Viscosity

There is general agreement on the correct kinetic theory form for the solids bulk viscosity (Lun et al.
1984 [99]).

(5–97)= +	 
 � � 
 �
�

�
� � � �

�

�

5.6.4. Solids Shear Viscosity

5.6.4.1. Constitutive Equation Models

The simplest constitutive equation model for solids shear viscosity was presented by Miller and Gidaspow
(1992) [106]. They successfully modeled gas-solid flow in a riser using a solids shear viscosity linearly
proportional to the solids phase volume fraction.

(5–98)= ×� �
� �

Note that their constant of proportionality is dimensional, and is likely to require modification for different
fluid-solid material properties.

More complex models for solids shear stress allow the shear stress to become very large in the limit of
maximum packing. A wide range of such models is discussed in the review article by Enwald et al [97].

It is possible for the user to implement any of these models, using a CEL expression for the solids shear
viscosity. Note that any solids volume fraction dependence must be included in the CEL expression.

5.6.4.2. Kinetic Theory Models for Solids Shear Viscosity

Typically, the shear viscosity is expressed as a sum of at least two contributions: the kinetic and colli-
sional contributions:
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(5–99)= +� � �
� � ��� � ���� �

There is wide agreement on the correct form of the collisional contribution. As in the kinetic theory of
gases, it is proportional to the square root of the granular temperature:

(5–100)= +	 
 � � 
 �
�

�
� ��� � � ��

�

�

However, there are many proposals in the literature for the correct form of the kinetic contribution. For
example:

Gidaspow (1994) [18]:

(5–101)=
+




+ + 


�
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� �
� � �  

! "#$
! %
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'

(

Lun and Savage (1986) [100]:

(5–102)=



 +




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Here, = +: ;
<

=
.

Kinetic contributions are omitted from ANSYS CFX.

5.6.5. Granular Temperature

ANSYS CFX is restricted to models where the granular temperature >? is determined algebraically.

5.6.5.1. Algebraic Equilibrium Model

@A may be specified directly by the user, or from the assumption of local equilibrium in a transport

equation model. The latter is based on:

(5–103)= ⇒ ∂
∂

=B
C

D
EF GH

G

H
F

where IJ KL denotes the solids shear stress tensor Equation 5–88 (p. 188), and:
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(5–104)= −
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Expand the production term:

(5–105)
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∂
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∂
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(5–106)⇒ = − + +� � � � � �� � �
  

where:

(5–107)= − = ∂
∂

=

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
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
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,

,

In order to determine -. from Equation 5–103 (p. 191), it is useful to take into account the dependence

of solids pressure and shear bulk viscosities on /0. You have:

(5–108)∝ ∝1 2 3 4 25 5 5 5 5
678

so you may write:

(5–109)= =9 9 : ; ; :< < < < < <
=>? =>? @AB

(5–110)= =C C D E E DF F F F F F
GHI JKL GHI JKL

Hence, substituting into Equation 5–106 (p. 192), you may express the production term in terms of
granular temperature as follows:

(5–111)
= + −

= −

M N O P Q R N Q

S Q T Q

U U U U U

V U V U

WXY WXY Z[\ WXY

Z[\

] ]

where:

(5–112)= + ≥ =^ _ ` a b c d `e f f e f
ghi ghi ghij j

Similarly, the dissipation term Equation 5–104 (p. 192) may be simplified as follows:
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(5–113)= −� � � �� � � �
���

where:

(5–114)

= ≥

=

= − ≥

�
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�

Equating Equation 5–111 (p. 192) and Equation 5–113 (p. 193), and dividing by ��
���

 gives a quadratic

equation for ��:

(5–115)+ − − =� �   � �! " # ! " #
$%&

Note that '( is strictly positive if, and only if, the coefficient of restitution is strictly less than unity. In

this case, in view of the fact that ≥)* , Equation 5–115 (p. 193) has a unique positive solution:

(5–116)=
− + − +

+
, , , , - -

-
.

/ 0 / 0 / 0

/

123
4

The Algebraic Equilibrium model has the flaw that unphysically large granular temperatures can be
generated in regions of low solid particle volume fraction. To circumvent this, specify an upper bound
for the granular temperature. The square of the mean velocity scale is a reasonable estimate for this.

5.6.5.2. Zero Equation Model

The Zero Equation Model implements the simpler algebraic model of Ding and Gidaspow [98].

(5–117)=
−

5
6

7 89 9
: :

5.7. Interphase Heat Transfer

In the multiphase model, there are separate enthalpy and temperature fields for each phase.

5.7.1. Phasic Equations

The multiphase version of the total energy equation generalizes Equation 1–86 (p. 26):
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(5–118)
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The multiphase version of the thermal energy equation for static enthalpy (incompressible and low
speed compressible flows only) generalizes Equation 1–93 (p. 27):

(5–119)

∂
∂

+ ∇

= ∇ + ∇ + +

+ −=
+ +

�

�

�
� � � � � �

� � � � � � �
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      !  

"

#
 " "$ "%  $&

'

where:

• (),*+, , -, denote the static enthalpy, the temperature, and the thermal conductivity of phase ..

• /0 represents the internal energy of phase 1, although the variable is still called Static Enthalpy in CFD-

Post.

• 234 describes external heat sources. For details, see Sources (p. 54).

• 5
6

 denotes interphase heat transfer to phase 7 across interfaces with other phases. For details, see In-

homogeneous Interphase Heat Transfer Models (p. 194).

• The term

(5–120)−+ +
8 9 8 9: ; ;< ;= :<

represents heat transfer induced by interphase mass transfer. For details, see Interphase Mass

Transfer (p. 216).

5.7.2. Inhomogeneous Interphase Heat Transfer Models

Interphase heat transfer occurs due to thermal non-equilibrium across phase interfaces. The total heat

per unit volume transferred to phase > due to interaction with other phases is denoted ?
@

, and is given

by:

(5–121)∑=
≠

A A
B

C B
B C

where:
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(5–122)∑= − ⇒ =� � �
� � � � � �

5.7.2.1. Overall Heat Transfer Coefficients

Heat transfer across a phase boundary is usually described in terms of an overall heat transfer coefficient

�� �, which is the amount of heat energy crossing a unit area per unit time per unit temperature differ-

ence between the phases. Thus, the rate of heat transfer, �
� �

, per unit time across a phase boundary

of interfacial area per unit volume 	
 �, from phase � to phase 
, is:

(5–123)= −� � � � �
� � � � � � � �

This may be written in a form analogous to momentum transfer:

(5–124)= −� � � �
� � � �

�
� �

� �

where the volumetric heat transfer coefficient, �
� �

� ! , is modeled using the correlations described below.

5.7.2.2. Particle Model Correlations

For particle model, the volumetric heat transfer coefficient is modeled as:

(5–125)=" # $
% &

'
% & % &

( )

Hence, the interfacial area per unit volume and the heat transfer coefficient *+ , are required.

More information on interfacial area density calculation is available.

It is often convenient to express the heat transfer coefficient in terms of a dimensionless Nusselt number:

(5–126)=-
.

/

In the particle model, the thermal conductivity scale 0 is taken to be the thermal conductivity of the

continuous phase, and the length scale 1 is taken to be the mean diameter of the dispersed phase:

(5–127)=2
3

4
5 6

5 5 6

6

For laminar forced convection around a spherical particle, theoretical analysis shows that = . For
a particle in a moving incompressible Newtonian fluid, the Nusselt number is a function of the particle

Reynolds number  and the surrounding fluid Prandtl number = 7 8 9
: ;: :.
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Additional information on models in ANSYS CFX is available in Particle Model Correlations for Overall
Heat Transfer Coefficient in the CFX-Solver Modeling Guide. Some additional details for the Interface Flux
model are provided below.

• Interface Flux

The heat flux coefficients for both fluids and the interfacial heat flux value, F12, from Fluid 1 to

Fluid 2 (Fluid 1 is the fluid to appear on the left of the Fluid Pairs list) are specified.F12 is the rate

of heat transfer per unit time per unit interfacial area from phase 1 to phase 2. Hence, the heat
transferred to fluid 2 from fluid 1 per unit volume is given by:

(5–128)= − =� � � �
�� �� �� ��

��� may be given as a constant or an expression.

Typically, �	
 will be a function of the fluid 1 and fluid 2 temperature fields, and possibly other

variables. In this case, the user may accelerate convergence of the coupled solver by also specifying
optional fluid 1 and fluid 2 heat flux coefficients.

(5–129)≈ ∂
∂

≥ ≈ ∂
∂

≥�
�



�

�




�� ��
�

�
�

�

The solver takes the absolute value of these flux coefficients to ensure that they are positive. This
is required for numerical stability. The partial derivatives need not be computed exactly; it is sufficient
for the specified coefficients to simply approximate the partial derivatives. Specification of heat
flux coefficients only affects the convergence rate to the solution of the coupled heat transfer
equations, it does not affect the accuracy of the converged solution.

For example, the simple model using a heat transfer coefficient multiplied by a bulk temperature
difference my be recovered using:

= − = − = =� � � � � � � ��� �� � � � �

5.7.2.3. Mixture Model Correlations

When using the mixture model, the Nusselt number is defined in terms of a mixture conductivity scale
and the mixture length scale:

(5–130)= = +�
�

�
� � � � �� �

� � � �

� �
� � � � � �

For details, see Mixture Model Correlations for Overall Heat Transfer Coefficient in the CFX-Solver Mod-

eling Guide.

5.7.2.4. The Two Resistance Model

There are special situations where the use of an overall heat transfer coefficient is not sufficient to
model the interphase heat transfer process. A more general class of models considers separate heat
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transfer processes either side of the phase interface. This is achieved by using two heat transfer coeffi-
cients defined on each side of the phase interface.

Defining the sensible heat flux to phase � from the interface as:

(5–131)= −� � � �
� � � �

and the sensible heat flux to phase � from the interface as:

(5–132)= −� � 	 	

 
 � 


where �
 and �� are the phase � and phase � heat transfer coefficients respectively.�� is interfacial

temperature, and it is assumed to be the same for both phases.

The fluid-specific Nusselt number is defined as:

(5–133)=
� �

�
�

� � �

�

where � � is the thermal conductivity of fluid �, and �� � is the interfacial length scale (the mean particle

diameter for the Particle Model, and the mixture length scale for the Mixture Model).

In the absence of interphase mass transfer, you must have overall heat balance + =� �
 !

. This condition

determines the interfacial temperature:

(5–134)=
+
+

"
# " # "

# #
$

% % & &

% &

It also determines the interphase heat fluxes in terns of an overall heat transfer coefficient:

(5–135)= − = − = +' ' ( ) )
( ( (

* + * + + *
* + * +

Hence, in the absence of interphase mass transfer, the two resistance model is somewhat superfluous,
as it may be implemented using a user-specified overall heat transfer coefficient.

It is possible to specify a zero resistance condition on one side of the phase interface. This is equivalent

to an infinite fluid specific heat transfer coefficient →∞,- . Its effect is to force the interfacial temper-

ature to be the same as the phase temperature, =. ./ 0.

Modeling advice is available in Two Resistance Model for Fluid Specific Heat Transfer Coefficients in the
CFX-Solver Modeling Guide.
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5.7.3. Homogeneous Heat Transfer in Multiphase Flow

For all transport processes other than heat transfer, the shared field is the same as the transported
quantity in the equation. However, in the case of heat transfer, it is temperature which is shared but
enthalpy which is transported. Hence, CFX does not solve a bulk enthalpy equation, but rather solves
a separate enthalpy equation for each fluid with a large interphase heat transfer term which forces the
temperature fields to be the same.

The equations solved are identical to the phasic equations for full multiphase described above. For
homogeneous heat transfer model, the interphase heat transfer coefficient is not modeled by any of
the correlations used in full multiphase. Instead it is chosen to be large relative to the other transported
processes in the equation, thereby ensuring the phasic temperatures are the same.

5.8. Multiple Size Group (MUSIG) Model

The MUSIG (Multiple Size Group) model has been developed to handle polydispersed multiphase flows.
By polydispersed, it means that the dispersed phase has a large variation in size. One of the attributes
of polydispersed multiphase flow is that the different sizes of the dispersed phases interact with each
other through the mechanisms of breakup and coalescence. Population balance is a well-established
method for calculating the size distribution of a polydispersed phase, including breakup and coalescence
effects. MUSIG provides a framework in which the population balance method can be incorporated into
three-dimensional CFD calculations.

5.8.1. Model Derivation

5.8.1.1. Population Balance Equation

The starting point for the MUSIG model is the population balance equation. Let � � �  represent the

number density of particles of mass � at time �. Then the population balance equation is:

(5–136)
∂
∂

+ ∂
∂

= − + −
�
� � �

�
	 � � � � � 
 � 
 �

�
�


 
 � �

where ��,��, ��, and �� respectively represent the birth rate due to breakup of larger particles, the

death rate due to breakup into smaller particles, the birth rate due to coalescence of smaller particles,
and the death rate due to coalescence with other particles. These rates may further be expressed as:
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(5–137)∫=
∞

� � � � � � � ���
�

(5–138)∫=	 
 � � 
 � � ���

�

�

(5–139)∫= − −� � � � � � � � � � � � ���

�

�

(5–140)∫=
∞

� � �  ! � " � "  # $
%

where & ' (  represents the specific breakup rate (the rate at which particles of mass ) break into

particles of mass * and −+ ,) and - . /  represents the specific coalescence rate (the rate at

which particles of mass 0 coalesce with particles of mass 1 to form particles of mass +2 3.

5.8.1.2. Size Fraction Equations

The next step of the MUSIG model is to discretize Equation 5–136 (p. 198) into size groups, or bins. Let

45 represent the number density of size group 6:

(5–141)∫=
−

+

7 8 9 : 8 ;:<
=

=

>

>

? @A

? @A

Also define the mass and volume fraction of size group B to be CD and EF, respectively, and recognize

that =G H I JK K K K. Now integrate Equation 5–136 (p. 198) over the bin size dimension and multiply by

LM to give:

(5–142)
∂

∂
+ ∂

∂
=N O P

P Q
R P O P S

T T
T T

T

T T

or:

(5–143)
∂

∂
+ ∂

∂
=

U V

W X
U V Y Z

[ [

[ [ [ [
[

[

Defining the size fraction =\ ] ]
^ ^ _, this equation may also be written as:
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(5–144)
∂
∂

+ ∂
∂

=
�

� � �
�

� � � � �
� � � � � � �

�

� �

which is the size fraction equation used by the MUSIG model. A further simplification is to assume that

all size groups share the same density 	



 and velocity � �


 yielding the homogeneous MUSIG model:

(5–145)
∂
∂

+ ∂
∂

=
�

� � �
�

� � � � �
� � � � � � �

�

� �

5.8.1.3. Source Terms

The contribution of the birth rate due to breakup of larger particles to the source term in Equa-

tion 5–145 (p. 200) is:

(5–146)

∫
∑

∑

=

=

=










>

>

−

+

� � � ��

� � � � �

� � � � � �

�  
!

!

�

 
"  

"  "

# #
"  

"  "

$

$

% &'

% &'

Similarly, the contribution of the death rate due to breakup into smaller particles is:

(5–147)∑=










<
( ) * + , - -./ 0 0 /

1
/ 1

2

Note that the total source due to breakup is zero when summed over all size groups:

(5–148)∑ − =3 4
5

65 65

For the discretized coalescence sources, you must define the coalescence mass matrix 7 89: as the

fraction of mass due to coalescence between groups ; at < which goes into group =:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.200

Chapter 5: Multiphase Flow Theory



(5–149)=


















+ −
−

< + <

− +
−

< + <

−

−
−

+

+
+�

� � �

� �
� � � �

� � �

� �
� � � ����

� � �

� �
� � � �

� � �

� �
� � � �

�

�
�

�

�
�

The contribution of the birth rate due to coalescence of smaller particles to the source term in Equa-

tion 5–145 (p. 200) is:

(5–150)

∫

∑ ∑

∑ ∑

=

=










=





+ 




≤ ≤

≤ ≤

−

+

� � � ��

� 	 � � 
 � �

� 
 	 � � 
 � �
� �

� �

�� �
�

�

�

�
� �� �

� � ��� � �

� �
� �� �

� � ��� � �

� �

� �

�

�

�

� ��

� ��

Similarly, the contribution of the death rate due to coalescence into larger groups is:

(5–151)∑=








� � � � � � � �

�
 ! " "

#
! # ! #

#

$

Note that this formulation for the coalescence source terms guarantees that the total source to coales-
cence is zero when summed over all size groups:

(5–152)∑ − =% &
'

(' ('

This follows from the requirement that =) * * ) * *+ , - +  together with the following

property of the mass matrix for all . /:

(5–153)∑ =0
1

231

5.8.2. Size Group Discretization

We now consider how the size distribution is discretized into a predefined set of size groups. Note that
the group sizes are represented by mass rather than diameter or volume, because this leads to simpler
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equations for variable-density fluids. For setup convenience, however, the size group discretization is
controlled by user-defined diameters; these diameters are converted to masses using the fluid density
(for constant density fluids) or a user-specified reference density (for variable density fluids). The diameter
and mass of a particular group are related by:

(5–154)=� �
��

�

�

There are three built-in recipes for creating size groups from a user-defined minimum and maximum
diameter: equal mass, equal diameter, and geometric.

5.8.2.1. Equal Mass Discretization

In this case, the minimum and maximum mass are calculated from the minimum and maximum diameter

using Equation 5–154 (p. 202). The mass of group � is calculated using:

(5–155)= + 


− 


� � � �	 
��

(5–156)= −




 


�

��� ���

5.8.2.2. Equal diameter discretization

In this case, the diameter of group � is calculated from:

(5–157)= + 


− 


� � � �� ���

(5–158)= −
�

� �

�

��� � !

and the group mass is calculated from Equation 5–154 (p. 202).

5.8.2.3. Geometric Mass Discretization

In this case, a geometrical progression for mass as follows:

(5–159)= + −
−" "

" "

# $ #%&'
%() %&'

5.8.2.4. Comparison

The following table compares diameters for the three discretization options for a polydispersed fluid

having =* +,-  and =. /01 .
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The equal mass distribution is weighted towards the largest bubbles the most, the geometric distribution
toward the smallest bubbles, and the equal diameter distribution is in between.

Geometric

Mass

Equal Dia-

meter

Equal

Mass

Group

22.5505851

28.41508432

35.825010003

45.135011184

56.845012165

71.555013006

90.165013757

11475014428

14385015039

180950156010

2271050161311

2861150166312

3601250171013

4541350175414

5721450179615

7211550183716

9081650187517

11441750191218

14421850194819

18171950198320

5.8.3. Breakup Models

Breakup kernels are often expressed as a function of the breakup fraction:

(5–160)=�
�

�
��

�

�

CFX-Solver supports two breakup models.

5.8.3.1. Luo and Svendsen Model

Luo and Svendsen [61] developed a theoretical model for the breakup of drops and bubbles in turbulent
suspensions. The model is based on the theory of isotropic turbulence and probability. The breakup
kernel is modeled as:
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(5–161)∫= −










+ −
� � � � � �

�

�

�

�

� ��	 
� 	 
 �



	 �

�

�

��� �

����

�

���

where:

(5–162)=




+ − − 


�

� � �

� � � � �

 !  !

" " #

$%&
$%&

$%& '%& ((%&

) is the dimensionless size of eddies in the inertial subrange of isotropic turbulence. The lower limit of

the integration is given by:

(5–163)=*
+
, -
.

/

where

(5–164)=








0

1
2

3
3
4

567

In addition, 89 is a calibration coefficient, =: , ;< is the continuous-phase eddy dissipation rate, => is

the continuous-phase kinematic viscosity, and ? is the surface tension coefficient.

5.8.3.2. User-Defined Models

A custom model for the breakup kernel @ A AB C  may also be provided. The model may be a CEL

expression or User Routine and may be a function of the diameter and/or mass of groups D and E as

well as any fluid variable.

5.8.4. Coalescence Models

CFX-Solver supports two coalescence models.

5.8.4.1. Prince and Blanch Model

The model of Prince and Blanch [62] assumes that the coalescence of two bubbles occurs in three steps.
First, the bubbles collide trapping a small amount of liquid between them. This liquid film then drains
until the liquid film separating the bubbles reaches a critical thickness. The film them ruptures and the
bubbles join together.

The coalescence kernel is therefore modeled by a collision rate of two bubbles and a collision efficiency
relating to the time required for coalescence:
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(5–165)= + +� � � � � � �� � ��
�

��
�

��
�

��

The collision efficiency is modeled by comparing the time required for coalescence 	
� with the actual

contact time during the collision �
�:

(5–166)= −
� �

��

� ���� ��

(5–167)=






















�

� �

�

�

�
��

� ��

 

!
"#$

%

(5–168)=&
'

(
)*

)*

+

,-.

/-.

where 01 is the initial film thickness, 23  is the critical film thickness when rupture occurs, and 456 is the

equivalent radius:

(5–169)=









 +












−

7
7 7

89
8 9

:

The turbulent contributions to collision frequency are modeled as:

(5–170)= +; < = > >?@
A

BA ?@ C? C@
D D

EFD

where the cross-sectional area of the colliding particles is defined by:

(5–171)= +G
H

I IJK J K

L

the turbulent velocity is given by:

(5–172)=M N OPQ R Q
STU STU

and VW X  is a calibration factor. The buoyancy contribution to collision frequency is modeled as:
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(5–173)= −� � � � ���
�

� � �� �� ��

where:

(5–174)= +	



� �

 ���

� �
�

and ��� is a calibration factor.

The shear contribution to collision frequency is currently neglected.

5.8.4.2. User-Defined Models

A custom model for the coalescence rate kernel � � �� �  may also be provided. The model may

be a CEL expression or User Routine involving the diameter and/or mass of groups � and � as well as

any fluid variable. Note that the model must give symmetric coalescence rates

( =� � � � � �� � � � ).

5.9. The Algebraic Slip Model

Models for algebraic slip were first introduced by Ishii [59] Manninen and Taivassalo [60], provide a
more general formulation which forms the basis for the implementation in CFX.

5.9.1. Phasic Equations

A starting point is to review the equations for multiphase flow. The continuity equation for phase � is:

(5–175)
∂

∂
+

∂

∂
=

�  

!

�  "

#

$ $ $ $ $
%

%

and the momentum equation is:

(5–176)
∂

∂
+

∂

∂
= − ∂

∂
+

∂

∂
+ +

& ' (

)

& ' ( (

*
'

+

*

' ,

*
' & - .

/ / /
0

/ / /
1

/
0

1 / 0

/ /
10

1 / /

0
/
0

where 23
4
 represents momentum transfer with other phases.

5.9.2. Bulk Equations

A bulk continuity equation is derived by summing Equation 5–175 (p. 206) over all phases:
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(5–177)
∂
∂

+
∂

∂
=

�

�

� �

�

� � �
�

�

and a bulk momentum equation by summing Equation 5–176 (p. 206) over all phases:

(5–178)
∂

∂
+

∂

∂
= − ∂

∂
+

∂ +

∂
+

� �

�

� � �

	




	

� �

	
� �


 

�


 

�



�

� �



��

�
��

� 


�

where:

(5–179)

∑
∑

∑
∑

=

=

=

= − −

� � �

� � � � �

� � �

� � � � � �

� �
� �

� �
�

�
� � �

�

�
�
� �

�
��

�
� � �

�
�
�

�
�

5.9.3. Drift and Slip Relations

You now define the slip velocity to be the phasic velocity relative to the continuous phase:

(5–180)= −� � �� �
�

�
�

�
�

and the drift velocity as:

(5–181)= −� � � !
"

!
"

#
"

The slip and drift velocities are related by:

(5–182)∑= −$ $ % $& '
(

) '
(

'
' ) '

(

With these relationships, the phasic continuity equation may be written in terms of mass fraction and
drift velocity as:
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(5–183)
∂

∂
+ ∂

∂
+ =

� �

� �
� � � �

� �

� � � �
�

� �
�

5.9.4. Derivation of the Algebraic Slip Equation

The phasic and bulk momentum equations are first transformed to nonconservative form by combining
with the phasic and bulk continuity equations. The phasic momentum equation then becomes:

(5–184)
∂
∂

+ ∂
∂

= − ∂
∂

+
∂

∂
+ +	 


�

�
	 
 �

�






�





 �




 	 � �

� �
�
�

� � �
� �

�

� � �

� �
��

� � �

�
�
�

and the bulk momentum equation becomes:

(5–185)
∂
∂

+ ∂
∂

= − ∂
∂

+
∂ +

∂
+�

�

�
� �

�

�

�

�

� �

�
� �

�
�
�

� �
� �

�

� �

�
��

�
��

� �

�

Equation 5–184 (p. 208) and Equation 5–185 (p. 208) are combined to eliminate the pressure gradient term,
yielding:

(5–186)

=
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


∂
∂

+ − ∂
∂




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+
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∂
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∂
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Several assumptions are now made:

1. The dispersed phase is assumed to instantaneously reach its terminal velocity, so the transient term
on the drift velocity is neglected.

2. The approximation is made that:

(5–187)
∂
∂

≈ ∂
∂

,
,

-
,

,

-
.
/ .

0

/ 1
/ 1

0

/

3. The viscous stresses and apparent diffusion stresses are neglected.

With these approximations, Equation 5–186 (p. 208) simplifies to:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.208

Chapter 5: Multiphase Flow Theory



(5–188)= −
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

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−
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In addition, it is assumed that the interphase momentum transfer is due only to drag and that the
particles are spherical:

(5–189)= −�
� 


�
� � ��

� � �

�
�

�� ��
�

which leads to the following closed relationship for the slip velocity:

(5–190)= − −
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
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%
 

Note that, for rotating reference frames, the apparent accelerations are automatically included by taking
the derivative of the absolute frame velocity rather than relative frame velocity on the right-hand-side.

The effect of &
'
() in the bulk momentum equation is neglected in the current implementation.

5.9.5. Turbulence Effects

In Eulerian-Eulerian  multiphase, the averaging process used ensures that turbulence effects do
not affect the continuity equation; instead, they appear as an apparent turbulent dispersion force in
the momentum equation.

In the ASM formulation outlined here, turbulent dispersion forces are not considered in the derivation
of slip velocity. Instead, turbulent dispersion is modeled using the same turbulence model as for mul-
ticomponent flows:

(5–191)″ ″ = ∂
∂

* + ,
-

./

+

0
1 1 1

2 3

3

1
2

5.9.6. Energy Equation

For multicomponent fluids, the energy equation has an additional term corresponding to enthalpy
transport by species velocities. For standard transported components, this velocity is modeled using
Fick’s law. For ASM components, this term uses the drift velocity.

The following term is therefore added to the right-hand side of Equation 2–5 (p. 91):
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(5–192)∑− ∂
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5.9.7. Wall Deposition

If desired, the dispersed phase which accumulates on a boundary may be removed from the calculation.
A sink for the ASM mass fraction is defined accordingly. The implicit assumption is that this mass is re-
placed by an equal mass of the ballast (constraint) component. The energy equation also removes the
enthalpy of the ASM species and adds the enthalpy of the ballast species.

5.10. Turbulence Modeling in Multiphase Flow

This section describes the extension of the single-phase turbulence models to multiphase simulations.
Documentation that describes the theory of single-phase turbulence models should be read before
continuing with this section. For details, see Turbulence Models (p. 89).

5.10.1. Phase-Dependent Turbulence Models

Phase dependent turbulence models can be used in conjunction with the inhomogeneous model
(particle and mixture models) only.

5.10.1.1. The Eddy Viscosity Hypothesis

The eddy viscosity hypothesis is assumed to hold for each turbulent phase. Diffusion of momentum in
phase � is governed by an effective viscosity:

(5–193)= +� � �

��� 
 �


5.10.1.2. Algebraic Models

5.10.1.2.1. Zero Equation Model

The default zero-equation model uses a formula based on geometric length scale and the mean solution
velocity. It is correlated for single-phase turbulent pipe flow. The turbulence viscosity is modeled as the

product of a turbulent velocity scale,���, and a turbulence length scale, ���, as proposed by Prandtl

and Kolmogorov:

(5–194)=� � � � �
�� � � �� ��

where �
 

 is a proportionality constant. The velocity scale is calculated to be the maximum velocity in

phase !. If you specify a value for the velocity scale, it will be used for all phases. The length scale is
derived using the formula:
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(5–195)=�
�

��
�
���

where �	 is the fluid domain volume.

5.10.1.2.2. Dispersed Phase Zero Equation Model

(5–196)= ⇒ =




�
�







�

�
��

��
��

�

�

��

The parameter � is a turbulent Prandtl number relating the dispersed phase kinematic eddy viscosity
��� to the continuous phase kinematic eddy viscosity ���.

In situations where the particle relaxation time is short compared to turbulence dissipation time scales,

you may safely use the default value =� . If the particle relaxation time is long compared to turbulence

dissipation time scales, it may be better to use a value of >� . This is highly model dependent. Several
models are available in the literature.

5.10.1.3. Two-Equation Models

For the �-� model, the turbulent viscosity is modeled as:

(5–197)=








� � �

�

 
!" # "

"

"

$

The transport equations for % and & in a turbulent phase are assumed to take a similar form to the
single-phase transport equations:

(5–198)
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(5–199)
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Definitions of the terms are available. For details, see The k-epsilon Model in ANSYS CFX (p. 95).

The additional terms E
F G
HI J  and K

L M
NO P  represent interphase transfer for Q and R respectively. These are

omitted in CFX, though they may be added as user sources.
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Other two equation turbulence models are treated in a similar way.

5.10.1.4. Reynolds Stress Models

The multiphase versions of Reynolds stress models are equivalent to the single phase version, with all
flux and volumetric source terms multiplied by volume fractions. Single phase version information is
available. For details, see Reynolds Stress Turbulence Models (p. 108).

By default, no additional exchange terms are added, though they may be added as user sources.

5.10.2. Turbulence Enhancement

Sato [22] successfully modeled Particle Induced Turbulence this for bubbly flow using an enhanced
continuous phase eddy viscosity:

(5–200)= +� � �
�� �� ��

where �
��

 is the usual Shear Induced Eddy Viscosity, and �
	


 is an additional Particle Induced Eddy

Viscosity:

(5–201)= −� �� 
 � � �
�� �� � � � � �

The variable ��� has a value of 0.6.

5.10.3. Homogeneous Turbulence for Multiphase Flow

In homogeneous multiphase flow, bulk turbulence equations are solved which are the same as the
single phase equations, except that the mixture density and the mixture viscosity are used. Single phase
turbulence model information is available in Turbulence Models (p. 89).

For inhomogeneous multiphase flow, it is possible to solve a single turbulence field in a similar way to
homogeneous flow. For details, see Homogeneous Turbulence in Inhomogeneous Flow in the CFX-

Solver Modeling Guide.

5.11. Additional Variables in Multiphase Flow

When � exists in phase �, the corresponding field variable is denoted ��. If it obeys a transport equation,

it is given by:

(5–202)

∂
∂

+ ∇ − ∇








 +




 ∇






= +

�
�

�  ! �  ! �  "
#

$%
!

$ &

' ' ' ' ' ' ' ' ' '
( ) '

) '
'

'
*

'
*

+ ,

+ , + ,

Note:

• -
.

 is the conserved quantity per unit mass of phase /.
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• �� is the conserved quantity per unit volume of phase �, where =� � �� � �

• ��
	
 �

 is the Kinematic Diffusivity for the scalar in phase �. This may be set for each Additional Variable

and each phase separately.

• 
�
�� �

 is the external volumetric source term in phase �, with units of conserved quantity per unit

volume per unit time.

• ��
�� �

 represents the total source to �
�

 due to interphase transfer across interfaces with other phases.

• Although the turbulent Schmidt number, ����, is shown to apply to phase � only, it currently cannot

be specified on a phase-specific basis in CFX.

As in single phase, Diffusive Transport and Poisson equations are also available for multiphase Additional
Variables). For details, see Additional Variables (p. 51). Diffusive transport equations exclude the advection
term, turbulent diffusion term, and contributions due to interphase mass transfer from Equa-

tion 5–202 (p. 212). Poisson equations exclude these terms as well as the transient term.

5.11.1. Additional Variable Interphase Transfer Models

It is possible for an Additional Variable �  to be coupled to a different Additional Variable !" across a

phase interface between fluids # and $.

The total source to %& per unit volume due to interaction with other phases is given by:

(5–203)∑=
≠

' '(
)

* (
( *
)+ , + ,

where:

(5–204)∑= − ⇒ =- - -
. /
0

/.
0

.
.
01 2 1 2 1 2

The simplest models for interphase transfer between 34 and 56 take the driving force to be proportional

to the difference in bulk Additional Variable values across the phase interface:

(5–205)= −7 8 9 :
; <
=

; <
>

< ;
? @ ? @

(5–206)= −A B C D
E F
G

E F
G

F E
H I H I

The first of these is used if the Additional Variable is defined per unit mass. The latter is used if the
Additional Variable is defined per unit volume.

The coefficients J
K L
MN O  are defined by analogy with heat transfer. For details, see Inhomogeneous In-

terphase Heat Transfer Models (p. 194).
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Transfer of an Additional Variable across a phase boundary is described by an additional variable

transfer coefficient �� �. It is the amount of �� crossing a unit area per unit time per unit difference

in �� across the phase boundary. Thus:

(5–207)= −� � 	 
 �
� 

�

� 
 � 
 
 �
� �

(5–208)= −� � � � �
� �
�

� � � � � �
� �

So, you have:

(5–209)=� � �
� �
 

� � � �
! "

It is often convenient to express the Additional Variable transfer coefficient in terms of a dimensionless

Sherwood number , analogous to the Nusselt number in heat transfer.

(5–210)=# $

%

The diffusivity scale &  is the kinematic diffusivity ' for a volumetric variable, and the dynamic diffusivity

( ) for a specific variable.

5.11.1.1. Particle Model Correlations

In the particle model, the diffusivity scale *  is that of the continuous phase, and the length scale + is
the mean diameter of the dispersed phase:

(5–211)=,
-

.
/ 0

/ / 0

0

For laminar forced convection around a spherical particle, theoretical analysis shows that = . For a
particle in a moving incompressible Newtonian fluid, the Sherwood number is a function of the particle

Reynolds number  and the Additional Variable Prandtl number = 1 2 3
4 4

.

Details on the models available in CFX for Additional Variable transfer are available. For details, see
Particle Model Correlations in the CFX-Solver Modeling Guide. Some additional details for the Interface
Flux model are provided below.

• Interface Flux

The user specifies directly the interfacial flux 567 from Additional Variable 89 in fluid 1 to Additional

Variable :; in fluid 2 of a specified fluid pair. This is the rate of Additional Variable transfer per unit

time per unit interfacial area from phase 1 to phase 2. Hence, the amount of Additional Variable
transferred to fluid 2 from fluid 1 per unit volume is given by:
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(5–212)= − =� � � ��� �� �� ��

��� may be given as a constant or an expression.

Typically, �	
 will be a function of the fluid 1 and fluid 2 Additional Variable fields, and possibly

other variables. In this case, the user may accelerate convergence of the coupled solver by also
specifying optional fluid 1 and fluid 2 Additional Variable flux coefficients.

(5–213)
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∂
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∂
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�

�
�

�

�

�

�

The solver takes the absolute value of these flux coefficients to ensure that they are positive. This
is required for numerical stability. The partial derivatives need not be computed exactly; it is sufficient
for the specified coefficients to simply approximate the partial derivatives. Specification of Additional
Variable flux coefficients affects only the convergence rate to the solution of the coupled transfer
equations; it does not affect the accuracy of the converged solution.

For example, the simple model using a transfer coefficient multiplied by bulk specific Additional
Variable differences may be recovered using:

(5–214)= − = − = =� � � � � � � ��� �� � � � �

5.11.1.2. Mixture Model Correlations

If you are using the mixture model, the Sherwood number is defined in terms of a mixture diffusivity
scale and the mixture length scale:

(5–215)= = +�
�

�
�  �  �! "

! " ! "

! "
! " ! ! " "

5.11.2. Homogeneous Additional Variables in Multiphase Flow

Homogeneous Additional Variables are assumed to have the same values for all phases, that is,

(5–216)= ≤ ≤# # $ %& '

and are described by the following bulk transport equation:
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(5–217)
∂
∂

+ ∇ − ∇ =�
�

� � � � � � �

where:

(5–218)∑ ∑ ∑= = =
= = =

� �� � �
�

� � 	 � 	




�


 




�


 
 




�


 

� � �


 
 


Homogeneous diffusive transport equations exclude the advection term from Equation 5–217 (p. 216),
while homogeneous Poisson equations exclude the advection and transient terms.

Homogeneous Additional Variables are available for both homogeneous and inhomogeneous flow.
However, in most cases, the homogeneous assumption is inappropriate for volumetric Additional Vari-
ables. For this reason, only specific Additional Variables are permitted to be homogeneous in ANSYS
CFX.

5.12. Sources in Multiphase Flow

The following topics will be discussed:

• Fluid-specific Sources (p. 216)

• Bulk Sources (p. 216)

5.12.1. Fluid-specific Sources

Fluid-specific sources are very similar to those in single phase, except that they are implemented on a
phase basis. For details, see Sources (p. 54). You may need to multiply a multiphase source by the
volume fraction. For details, see Sources in Multiphase Flow in the CFX-Solver Modeling Guide.

5.12.2. Bulk Sources

Sources in multiphase flow often have the property that they scale with volume fraction, that is, as the
volume fraction source goes to 0, the source also goes to 0. Bulk sources satisfy this property. They are
applied at a fluid-independent level, and are therefore automatically added to the equations of all fluids
for which they are relevant.

5.13. Interphase Mass Transfer

Interphase mass transfer occurs when mass is carried from one phase into another. It is applicable to
both the inhomogeneous and homogeneous multiphase models. For details, see Interphase Mass
Transfer in the CFX-Solver Modeling Guide.

Mass transfer is represented by sources in the phasic continuity equations:

(5–219)
∂
∂

+ ∇ = +� �
�

� � � � �� � � � � � �

• �� describes user specified mass sources. For details, see Sources (p. 54).
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• �� is the mass source per unit volume into phase � due to interphase mass transfer. This is expressed

as follows:

(5–220)∑=
=

� ��
�

�

� �
�

�

• 	
 � is the mass flow rate per unit volume from phase � to phase 
. You must have:

(5–221)∑= − ⇒ =
=

� � �� � � �
�

�

�
�

�

As it is important to keep track of the direction of mass transfer processes, it is convenient to express

�� � as follows:

(5–222)= −+ +
� � �� � � � � �

• The term: >+
�� �  represents the positive mass flow rate per unit volume from phase � to phase �.

For mass transfer processes across a phase interphase, it is useful to express the volumetric mass sources
in terms of mass fluxes:

(5–223)=�  !" # " # " #

• $% & is the mass flow rate per unit interfacial area from phase ' to phase (, and )* + is the interfacial

area density between the phases.

As interfacial area is commonly proportional to volume fraction, this permits automatic linearization of
mass transfer terms relative to volume fraction.

By default, ,- . is the clipped area density, which does not go to zero as volume fraction goes to zero.

Using a clipped area density is sometimes useful because it serves as a crude nucleation model for
some kinds of mass transfer. The droplet condensation model has an explicit nucleation model and
therefore does not use the clipped area density. In some other cases, using the clipped area density
can prevent obtaining a mass-conserving solution. If so, using the unclipped area density may give
better results. This is possible by setting the expert parameter ipmt area density clip = f .

5.13.1. Secondary Fluxes

The mass source terms affecting the continuity equations, /0 1 are referred to as primary mass sources.

Clearly, if mass transfer occurs between phases, then this also induces additional sources and sinks
between all other transport equations. These are referred to as secondary sources, or secondary fluxes,
due to mass transfer.
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The default form of the secondary source terms for a transported variable �
�

 is:

(5–224)∑= −
=

+ +
� � � � ���

�

�

� � � � � �
	




That is, mass transfer from a phase � into a phase � carries the bulk conserved quantity 

�

 into phase

�. This is referred to as an upwind formulation, as the upwinded value is carried out of the outgoing
phase, and into the incoming phase.

This default formulation is modified in certain circumstances, in order to take account of discontinuities
in the transported variable at the phase interface, for example, enthalpy in the case of phase change.
For details, see The Thermal Phase Change Model (p. 222).

5.13.2. User Defined Interphase Mass Transfer

For advanced applications, it is possible to specify directly the interphase mass transfer sources.

If the interphase mass flux �� � between any pair of phases is specified, the volumetric mass source

is computed internally by multiplying by interfacial area density:

(5–225)=� � �� � � � � �

• Alternatively, you may directly specify the volumetric mass source, or interphase mass flow, �� �.

In both cases, all transport equations are automatically assigned default secondary sources of the up-
winded form:

(5–226)= −+ +
� � � � ��� �    � �

This default form of secondary sources may be overridden in CCL.

5.13.3. General Species Mass Transfer

Consider the interphase mass transfer of a component A which is present in two phases ! and ". There

are several different but related variables for measuring the concentration of component A in a mixture
that contains it.

(5–227)

=
=
=
=

# $

% $

& $

' $

()

( )
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( )

These are related at follows:
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(5–228)
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=
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� �

�

� �
� �

�

5.13.3.1. Equilibrium Models

Consider two phases �, �, which contain a component A, and consider the situation where the component

A is in dynamic equilibrium between the phases. Typically, the concentrations of A in each phase are
not the same. However, there is a well defined equilibrium curve relating the two concentrations at
equilibrium. This is often, though not always, expressed in terms of mole fractions:

(5–229)=	 
 	�� �


For binary mixtures, the equilibrium curve depends on temperature and pressure. For multicomponent
mixtures, it also depends on mixture composition. The equilibrium curve is in general monotonic and
nonlinear. Nevertheless, it is convenient to quasi-linearize the equilibrium relationship as follows:

(5–230)= =� � � ��� � � �
�

�� � � �
�

Other useful forms of the equilibrium relationship are:

(5–231)

= =

= =

= =
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� � � �
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The various equilibrium ratios are related as follows:

(5–232)
= = =� �

�

�
�

 

 
�
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& "
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5.13.3.1.1. Raoult’s Law

In gas-liquid systems, equilibrium relationships are most conveniently expressed in terms of the partial
pressure of the solute in the gas phase.

It is well known that, for a pure liquid A in contact with a gas containing its vapor, dynamic equilibrium
occurs when the partial pressure of the vapor A is equal to its saturated vapor pressure at the same
temperature.
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Raoult’s law generalizes this statement for the case of an ideal liquid mixture in contact with a gas. It

states that the partial pressure �� � of solute gas A is equal to the product of its saturated vapor pressure

�� ��� at the same temperature, and its mole fraction in the liquid solution �	.

(5–233)=
 
 �� 
 � � ����

If the gas phase is ideal, then Dalton’s law of partial pressures gives:

(5–234)=� � �� � � � �

and Raoult’s law in terms of a mole fraction equilibrium ratio:

(5–235)=� � �� � � � ����

5.13.3.1.2. Henry’s Law

In the case of a gaseous material A dissolved in a non-ideal liquid phase, Raoult’s law needs to be
generalized. Henry’s law states that a linear relationship exists between the mole fraction of A dissolved
in the liquid and the partial pressure of A in the gas phase. This is:

(5–236)=� �  ! "
#
! $

%
&
 is Henry’s constant for the component A in the liquid '. It has units of pressure, and is known em-

pirically for a wide range of material pairs, especially for common gases dissolved in water. It is strongly
dependent on temperature.

Henry’s law may also be combined with Dalton’s law in order to express it in terms of a mole fraction
equilibrium ratio:

(5–237)= =( ) ( )
*

+
,-

.
, /

. , /
.

-

Unfortunately, there is no common convention on the definition of Henry’s constant. Another definition
in common use relates the partial pressure in the gas to the molar concentration in the liquid:

(5–238)=0 1 23 4
5
3 6

The two definitions of Henry’s constant are related by:
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(5–239)=� � � �
�
� �

�
� �

5.13.3.2. Two Resistance Model with Negligible Mass Transfer

Due to the presence of discontinuities in concentration at phase equilibrium, it is, in general, not possible
to model multicomponent mass transfer using a single overall mass transfer coefficient. Instead, it is
necessary to consider a generalization of the Two Resistance Model previously discussed for heat
transfer. For details, see The Two Resistance Model (p. 196).

Consider a species A dissolved in two immiscible phases � and �. The basic assumption is that there is

no resistance to mass transfer at the phase interface, and hence the equilibrium conditions prevail at
the phase interface.

Also, it is assumed in this section that the total mass transfer due to species transfer is sufficiently small
that primary mass sources to the phasic continuity equations are neglected. Hence, secondary mass
fluxes to the species mass transfer equations are also ignored.

You model the component mass transfer using mass transfer coefficients 	

�
, �

�
, defined on either side

of the phase interface. These are usually defined so that driving forces are defined in terms of molar
concentration differences. Thus, the molar flux of A to phase � from the interface is:

(5–240)= −� � � �� � �
�
� � � � �

and the molar flux of A to phase � from the interface is:

(5–241)= −� � � �� � �
�
� � � � �

Multiplying through by the molar mass of A, this determines the mass fluxes as follows:

Mass flux of A to phase � from the interface:

= − ! " "#$ $
%

# $ & # $
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Mass flux of A to phase � from the interface:

(5–242)= −� � � �� � �
�

� � � � �

In order to eliminate the unknown interface values, Equation 5–241 (p. 221) and Equation 5–242 (p. 222)
must be supplemented by the equilibrium relation between �

	 

 and �

� 

. This is most conveniently

expressed using the molar concentration equilibrium ratio:

(5–243)= ⇒ =� � � � � �� � �
�

� � � � � �

�

� � �

The mass balance condition:

(5–244)+ =� ��� � �

may now be combined with the quasi-linearized equilibrium relationship Equation 5–243 (p. 222) to de-
termine the interface mass concentrations:

(5–245)= =
+

+
�

�
�

� � � �

� � �

� � �
 � ! �

�
 

� � !
 

� !
 

�
 

!
 

These may be used to eliminate the interface values in Equation 5–241 (p. 221) and Equation 5–242 (p. 222)
in order to express the interfacial mass fluxes in terms of the phasic mass concentrations:

(5–246)= − = − = +" " # $ % %
# #

$

#
& ' & ( ' (

) )

& ( & '
' (
)

'
)

)

(
)

5.13.4. The Thermal Phase Change Model

This model describes phase change induced by interphase heat transfer; it may be used to simulate
boiling and condensation, or melting and solidification. For example, it may be used to model condens-
ation of saturated vapor bubbles in sub-cooled liquid, or evaporation of saturated bubbles in superheated
liquid.

This section discusses the theory. For modeling information, see Thermal Phase Change Model.

It is essential to consider the heat transfer processes on each side of the phase interface. Hence, the
Two Resistance model for interphase heat transfer must be used in conjunction with the Thermal Phase
Change model. For details, see The Two Resistance Model (p. 196).

Recall that, in this case, the sensible heat flux to phase * from the interface is:

(5–247)= −+ , - -
. . / .

and the sensible heat flux to phase 0 from the interface is:
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(5–248)= −� � � �
� � � �

• �� and �� are the phase 	 and phase 
 heat transfer coefficients respectively.

• The interfacial temperature is determined from considerations of thermodynamic equilibrium. Ignoring

effects of surface tension on pressure, assume =� �� 
��, the saturation temperature.

Note that this is in contrast to the case where there is no mass transfer. In that case, the interfacial

temperature is determined from the sensible heat balance + =� �
� �

.

In the case of interphase mass transfer, the interphase mass transfer is determined from the total heat
balance, as follows.

Total heat flux to phase � from the interface:

(5–249)= +� � � �
� � � � � �

Total heat flux to phase � from the interface:

(5–250)= −� � � �
  !   "

• #$ % denotes mass flux into phase & from phase '.

• () * and +, - represent interfacial values of enthalpy carried into and out of the phases due to phase

change, see below for details.

The total heat balance + =. .
/ 0

 now determines the interphase mass flux:

(5–251)=
+

−
1

2 2

3 3
4 5

4 5 5 4

5 6 4 6

The secondary heat flux term must be modified in order to take account of the discontinuity in static
enthalpy due to latent heat between the two phases. This is achieved using a modification of the upwind
formulation Equation 5–226 (p. 218), due to Prakash [53]. In this formulation, the bulk fluid enthalpy is
carried out of the outgoing phase, as in the default upwind formulation. However, the saturation enthalpy
is carried into the incoming phase. Thus:

(5–252)
> ⇒ = =

< ⇒ = =

7 8 8 8 8

7 8 8 8 8

9 : 9 ; 9 : ; :

9 : 9 ; 9 : ; :

<=>

<=>

This leads to a formulation which is stable both physically and numerically. It implies that the denom-
inator of Equation 5–251 (p. 223) is non-zero, being greater than or equal to the latent heat:

= −? @ @A BCDE CDE.
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5.13.4.1. Wall Boiling Model

Wall boiling starts when the wall temperature achieves a temperature which is sufficiently large to ini-
tiate the activation of wall nucleation sites. This activation temperature is typically a few degrees above
the saturation temperature. However, at this stage, the average temperature of the liquid in the vicinity
of the heated wall is still well below the saturation temperature, hence in the sub-cooled boiling regime.

Evaporation starts in the microscopic cavities and crevices, which are always present on the solid surface.
Liquid becomes supersaturated locally in these nucleation sites, leading to the growth of vapor bubbles
at the sites. The bubbles become detached from the sites when they are sufficiently large that external
forces (inertial, gravitational, or turbulent) exceed the surface tension forces that keep them attached
to the wall. As the bubbles depart from the wall, they are displaced by superheated liquid in the vicinity
of the nucleation sites, after which the nucleation site is free to create another bubble. In regions of
the wall not affected by bubble growth, the wall heat transfer to the liquid may be described by single
phase convective heat transfer.

It is clear that detailed physics of bubble growth is very complex, and occurs on very small length scales
in the vicinity of the wall. It is unrealistic to model the detailed physics in a phase-averaged Eulerian
multiphase model. It is also unrealistic to resolve the small length scales with ultra-fine meshes. The
model described here is a so-called mechanistic model, which aims to model the important physical
sub-processes using engineering correlations. The model is a sub-grid scale model, in the sense that
the complex physics is assumed to take place in a vicinity very close to the wall which is smaller than
the mesh resolution at the wall.

The first and most well-known model of this kind was formulated by Kurul and Podowski (1991) [159],
from the Rensselaer Polytechnic Institute. It is known as the RPI model. In this model, a number of the
sub-models of the overall mechanistic model were taken from correlations originally developed for ex-
ploitation in one-dimensional thermo-hydraulic simulation methods. This model was implemented in
CFX-4, with the near-wall distance taking the place of the centerline wall distance in the one-dimensional
models. Unfortunately, this lead to results that were strongly mesh-dependent.

In the implementation in CFX-5.7.1, Egorov et al. formulated modifications of the one-dimensional cor-
relations with the aim of restoring mesh independence to the results. This modification of the original
RPI model is described here.

The following topics are discussed in this section:

• Partitioning of the Wall Heat Flux (p. 224)

• Sub-models for the Wall Boiling Model (p. 226)

For more information about the wall boiling model and its usage, see Wall Boiling Model in the CFX-

Solver Modeling Guide.

5.13.4.1.1. Partitioning of the Wall Heat Flux

A fundamental feature of the mechanistic model of wall nucleation is the algorithm for deciding how
the wall heat flux is to be partitioned amongst the separated physical processes of evaporation and
sensible heating of the liquid phase. In regions of the wall not influenced by nucleation sites, it is suffi-
cient to consider the wall heat flux as contributing solely to single-phase liquid convective heat transfer.
However, in the vicinity of the nucleation sites, some of the heat contributes to vapor production, and
the remainder to super heating of the liquid phase as it displaces the rising bubbles. This latter process
is known as quenching.

Hence, the mechanistic heat partitioning model has the following general structure:
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= +� � �
� � �

where �
�
 is consumed for heating the sub-cooled liquid, and �

�
 is the evaporation heat flux.�

	
 is further

assumed to be partitioned into two sub-processes:

= +
 
 

� � 


where �
�

 is the heat flux corresponding to convective heat transfer, and �
�

 is the heat flux correspond-

ing to quenching. Hence, in total, there is a three-way partition:

= + +� � � �
� � � �

In this model, vapor is assumed to be saturated everywhere, and no part of the wall heat flux is arranged
for superheating of the vapor phase.

The heat partitioning model considers the whole wall surface as being separated into two fractions:

• Fraction �� is influenced by the vapor bubbles, formed on the wall.

• Fraction �� is the rest of the wall surface, with = −� �� �.

The wall area fraction �� represents the part of the wall surface that does not 'feel' the presence of the

vapor phase. The wall heat flux for this part of the surface is modeled in a similar way as for the single-
phase flow of pure liquid, by using the turbulent wall function procedure in the case of the turbulent

flow. This part of  
!
, called the convective heat flux "

#
, can be correlated for turbulent flow as:

= −$ % & ' '
( ( ) *+

where ,-  is the temperature of the solid wall,./ is the temperature of the liquid at the wall, and 01 is

the turbulent heat transfer coefficient, which depends on the velocity field and on the near-wall grid

cell size. Kurul and Podowski (1991) [159] modeled 23 using a one-dimensional Stanton number correl-

ation. Egorov and Menter (2004) [163] modeled 45 using the turbulent wall function.

The wall area fraction 67 represents the remaining part of the wall surface, which exchanges heat with

both phases. The already mentioned heat flux 8
9
 comes from this part of the surface and is consumed

for evaporation of the initially sub-cooled liquid:

(5–253)= −: ; < <
= >?@AB C

where D is the evaporation mass transfer rate per unit wall area, and EFGHIJ and KL are the specific en-

thalpies of the saturated vapor and sub-cooled liquid, respectively.

A part of the heat flux to the liquid, coming from the wall area fraction MN, is transported between the

bubble departure and the next bubble formation at the same nucleation site. This additional mechanism
of heating the liquid phase is called quenching, and is modeled as:

= −O P Q R R
S S T UV
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The area fraction values �� and �� play an important role in the heat-partitioning model. They are related

to the nucleation site density per unit wall area � and to the influence area of a single bubble forming
at the wall nucleation site. The latter value is modeled by introducing the bubble departure diameter

value �� , which can generally serve as a length scale of the wall boiling mechanism. The RPI model

assumes that the diameter of the bubble influence zone is twice as large as �� , therefore the non-di-

mensional area fraction of the bubble influence is:

(5–254)= ⋅	 
 � �

�

�

Here the implicitly assumed factor of 2 for the diameter of the bubble influence can be user-specified.

It should be noted that, for the evaporation rate � and corresponding heat flux �
�
 (Equa-

tion 5–253 (p. 225)), the upper limit of Equation 5–254 (p. 226) for bubble influence area fraction does not

apply. Instead of using a factor of �� as defined by Equation 5–254 (p. 226), the � value is directly

modeled as being proportional to the nucleation site density �.

5.13.4.1.2. Sub-models for the Wall Boiling Model

As mentioned in the previous section, the two most important parameters governing the heat partitioning

model are the nucleation site density � and the bubble departure diameter ��. In the RPI wall-boiling

model they are correlated to the wall superheat = −� � ���� ��  ��! and to the near-wall liquid sub-

cooling = −" " "#$% #&' ()*, respectively.

The following topics will be discussed:

• Wall Nucleation Site Density (p. 226)

• Bubble Departure Diameter (p. 227)

• Bubble Detachment Frequency (p. 227)

• Bubble Waiting Time (p. 228)

• Area Influence Factors (p. 228)

• Convective Heat Transfer (p. 228)

• Quenching Heat Transfer (p. 228)

• Evaporation Rate (p. 229)

5.13.4.1.2.1. Wall Nucleation Site Density

The model for wall nucleation site density adopted in the RPI model is that of Lemmert and Chawla
(1977) [164]:





 = = =−

+ , , - . , /
01

234

Note that the wall superheat in the above equation cannot be negative. Its negative value means that
the wall temperature drops below the saturation temperature, where there is no boiling and the heat
partitioning model is not used.
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This model was implemented in CFX-4 with parameter =� , giving an overall correction factor of

. Egorov and Menter (2004) [163], conjecturing that this was a deliberate alteration by the RPI group,
related to the corresponding factor in the bubble waiting time model. Egorov and Menter also reformu-
lated the correlation as follows:

=� � � �
�

��� ��	 ���

where = × + 





−

��


�
 and =���� . This formulation avoids fractional

powers of physical dimensions, hence is more amenable to the use of different unit systems.

Alternative correlations have been proposed for nucleation site density by Kocamustafaogullari and
Ishii (1983) [160].

5.13.4.1.2.2. Bubble Departure Diameter

Kurul and Podowski (1991) [159] adopted the correlation for bubble departure diameter due to Tolub-
inski and Kostanchuk (1970) [165]:

(5–255)=



 ⋅




 −









� �

�

�
�� ���

���

���
���

The parameters of the model are dimensional ( =� !" , =#$%& ,

='()* ) and are chosen to fit pressurized water data. Hence the model is clearly not universal.

Negative liquid sub-cooling is possible here, where it means onset of the bulk boiling. Limiting the

bubble departure diameter applies to this situation and prevents +, from growing too high.

Note that the model is strongly dependent on a liquid temperature scale. In the original experimental
data, this was taken as the pipe center-line temperature. CFX-4 used the cell-center value in near wall
cells, but this proved to give mesh-dependent results. Egorov and Menter restored mesh independence

by using the logarithmic form of the wall function to estimate the liquid temperature,-., at a fixed value

of =+
/ . ANSYS CFX uses this method, with a user-modifiable value of 

+
0 .

5.13.4.1.2.3. Bubble Detachment Frequency

The computation of the evaporation rate 1 requires an additional model parameter, namely the frequency
of the bubble detachment from the nucleation site. The model adopted by Kurul and Podowski is that
due to Cole (1960) [166]:

=
−

2

3 4 4

5 6 4

7 8

9 : 7

Note that, due to its dependence on gravity, this correlation is taken from pool boiling. It is simply es-
timated as the bubble rise velocity divided by the bubble departure diameter. The drag coefficient

factor ;< was taken to be unity by Ceumern-Lindenstjerna (1977) [169].
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5.13.4.1.2.4. Bubble Waiting Time

Kurul and Podowski (1991) [159] employed the model of Tolubinski and Kostanchuk (1970) [165]. This
fixes the waiting time between departures of consecutive bubbles at 80% of the bubble detachment
period:

(5–256)=�
�

�

The numerator in this equation is adjustable in ANSYS CFX.

5.13.4.1.2.5. Area Influence Factors

Recall from Partitioning of the Wall Heat Flux (p. 224) that Kurul and Podowski assumed a diameter of

influence of a nucleating bubble equal to twice the bubble departure diameter ��. Encoding this as a

user-modifiable parameter �� (default value = 2), the area fraction of the bubble influence is given by:

=



 ⋅




�

�	 

�

�
�


�

�

The area fraction �� subjected to single phase liquid convective heat transfer is limited from below by

a small value, so its actual form is:

= −−
� �

�
� �

5.13.4.1.2.6. Convective Heat Transfer

As discussed in Partitioning of the Wall Heat Flux (p. 224), single phase convective heat transfer to the liquid
phase is modeled using the turbulent wall function (Egorov and Menter 2004 [163]).

= −� � � � �
� � � ��

This replaces the mesh dependent Stanton Number correlation originally employed by Kurul and
Podowski (1991) [159].

5.13.4.1.2.7. Quenching Heat Transfer

As discussed in Partitioning of the Wall Heat Flux (p. 224), quenching heat transfer to the liquid phase in
the area of influence of the vapor phase is modeled using a quenching heat transfer coefficient:

= −� � �   
! ! " #$

In order to close the model, the quenching heat transfer coefficient %&, participating in the quenching

heat flux to liquid, must be defined. This value depends on the waiting time between the bubble de-
parture and the next bubble formation.

With this value, the quenching heat transfer coefficient is correlated as:
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=� � �
�

��
� �

�

�

where =	 
 � �
� � � �
 is the liquid temperature conductivity coefficient. (Mikic and Rohsenow 1969

[167], Del Valle and Kenning 1985 [168]).

As for the case of bubble departure diameter, Egorov and Menter (2004) [163] used the logarithmic

form of the wall function to estimate the liquid temperature �� at a fixed 
+

�  value of 250.

5.13.4.1.2.8. Evaporation Rate

Knowing the bubble departure frequency, as well as the bubble size and the nucleation site density,
one can obtain the evaporation rate as a product of the bubble mass, the detachment frequency and
the site density:

=�
��

� ��
�
�

�

This was the form adopted by Kurul and Podowski (1991) [159].

Egorov and Menter expressed the evaporation rate in terms the non-limited area fraction 
′

�� :

= ⋅′
�

��  
!"

"
"
#
"

(unlike $%,
′

&'  can exceed 1). In this case, the evaporation rate obtains the form:

= ⋅′
( ) * + ,- . /

In the final form of the evaporation rate, the area fraction factor 
′

01  is limited by:

(5–257)= ⋅ =′ ′ ′
2 3 3 4 5 6 37 789:; < = 789:;

The last limiting procedure is not used if the bubble departure diameter is below > . In this case

the non-limited form Equation 5–257 (p. 229) is used. The estimated value of  for 
′

?@ABCD is the upper

limit for the nucleation sites area fraction, taking into account the effect of overlapping neighboring
sites, operating out of phase. The functional form of this parameter is given in terms of the departure
frequency and waiting time:

=
− ⋅

′
E

F G
HIJKL

M

which gives  with the correlation Equation 5–256 (p. 228) for NO .

229
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Interphase Mass Transfer



5.13.4.1.3. Determination of the Wall Heat Flux Partition

The wall heat flux partition discussed in Partitioning of the Wall Heat Flux (p. 224), together with the
user’s choice of submodels described in Sub-models for the Wall Boiling Model (p. 226), gives the total

heat flux as a complex nonlinear function of the wall superheat = −� � �� ������

= + +� 	 � 	 � 	 � 	

 � � 
��� ��� ��� ���

In the case of an isothermal wall, the three components of the heat flux are computed explicitly as
functions of the given wall superheat. However, in the case of a wall with specified total heat flux, or

specified wall heat transfer coefficient and outside temperature, the above equation determines ����

implicitly as a function of the total heat supplied to the wall. In this case, ���� is computed by solving

the nonlinear equation =� � �
����� �  !"  using the binary chop method. The resulting value of

#$%& is subsequently used to determine the three individual components of the wall heat partition.

Important

If you want to use the User Specified option for any of the sub-models described in Sub-

models for the Wall Boiling Model (p. 226), and if you want any of these to be functions of the
wall superheat, then it is important to use the correct name for this variable. As the wall
boiling model is described as a phase-pair model, this variable is a phase-pair based variable
named Tsuperheat. For example:

'()* = water | steam.Tsuperheat

It is not appropriate to use a phase-specific temperature field at the wall, such as water.Tem-

perature, to determine +,-. as this variable does not participate in the binary chop algorithm

to determine the wall superheat.

5.13.5. Cavitation Model

The tendency for a flow to cavitate is characterized by the cavitation number, defined as:

(5–258)
=

−
/

0 0

1 2
3

4
5

6

7

where 8 is a reference pressure for the flow (for example, inlet pressure), 9
:

 is the vapor pressure for

the liquid, and the denominator represents the dynamic pressure. Clearly, the tendency for a flow to
cavitate increases as the cavitation number is decreased.

Cavitation is treated separately from thermal phase change, as the cavitation process is typically too
rapid for the assumption of thermal equilibrium at the interface to be correct. In the simplest cavitation
models, mass transfer is driven by purely mechanical effects, namely liquid-vapor pressure differences,
rather than thermal effects. Current research is directed towards models which take both effects into
account.
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In CFX, the Rayleigh Plesset model is implemented in the multiphase framework as an interphase mass
transfer model. User defined models can also be implemented.

For cavitating flow, the homogeneous multiphase model is typically used.

5.13.5.1. The Rayleigh Plesset Model

The Rayleigh-Plesset equation provides the basis for the rate equation controlling vapor generation
and condensation. The Rayleigh-Plesset equation describing the growth of a gas bubble in a liquid is
given by:

(5–259)+ 





+ =
−

�
� �

��

��

��

�

� �

� �

�
�

� �

� �

�

�

	

	

	

where 
� represents the bubble radius, �



 is the pressure in the bubble (assumed to be the vapor

pressure at the liquid temperature), � is the pressure in the liquid surrounding the bubble, �
�

 is the liquid

density, and � is the surface tension coefficient between the liquid and vapor. Note that this is derived
from a mechanical balance, assuming no thermal barriers to bubble growth. Neglecting the second
order terms (which is appropriate for low oscillation frequencies) and the surface tension, this equation
reduces to:

(5–260)=
−��

��

� �

�

� �

�

The rate of change of bubble volume follows as:

(5–261)= 





=
−��

��

�

��
� � � �

� �

 

!
! !

"

#

$ %

and the rate of change of bubble mass is:

(5–262)= =
−&'

&(
)

&*

&(
+ , )

- -

)

.
/

.
. /

0

1

2

If there are 34 bubbles per unit volume, the volume fraction 56 may be expressed as:

(5–263)= =7 8 9 : ; 9< = = = =
>

and the total interphase mass transfer rate per unit volume is:
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(5–264)= =
−

� �
��

��

� �

�

� �

�
�	 



 	 	




�

�

This expression has been derived assuming bubble growth (vaporization). It can be generalized to include
condensation as follows:

(5–265)=
−

−� 


� �

�

� �

�
� ���

� �

�

�

�
�

where � is an empirical factor which may differ for condensation and vaporization, designed to account
for the fact that they may occur at different rates (condensation is usually much slower than vaporization).

For modeling purposes the bubble radius �� will be replaced by the nucleation site radius ����.

Despite the fact that Equation 5–265 (p. 232) has been generalized for vaporization and condensation,
it requires further modification in the case of vaporization.

Vaporization is initiated at nucleation sites (most commonly non-condensible gases). As the vapor
volume fraction increases, the nucleation site density must decrease accordingly, because there is less

liquid. For vaporization, �� in Equation 5–265 (p. 232) is replaced by −� � !" #  to give:

(5–266)=
− −

−$ %

& & '

(

) )

'
) )*+

,-. + +

,-.

/

*
/

where 0123 is the volume fraction of the nucleation sites. Equation 5–265 (p. 232) is maintained in the

case of condensation.

To obtain an interphase mass transfer rate, further assumptions regarding the bubble concentration
and radius are required. The Rayleigh-Plesset cavitation model implemented in CFX uses the following
defaults for the model parameters:

• =4 5678

• = −9:;<

• ==>?@

• =ABCDE

For an illustration and a validation of the Rayleigh-Plesset cavitation model see Bakir et al. [148]

5.13.5.2. User Defined Cavitation Models

Additional information on creating a user defined model is available. For details, see User Defined
Cavitation Models in the CFX-Solver Modeling Guide.
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When using a user defined cavitation model, the CFX-Solver will perform generic linearizations for the
volume fraction and volume continuity equations to help stability and convergence. The saturation
pressure is used by the CFX-Solver in linearizing the cavitation rate against pressure.

5.13.6. The Droplet Condensation Model

The Droplet Condensation Model is useful for situations where a dry (or near-saturation) two-phase
flow undergoes rapid pressure reduction leading to nucleation and subsequent droplet condensation.
It is also useful to model additional condensation when droplets are already present in significant
quantities. Typical applications include low-pressure steam turbines, in which context this model is also
referred to as the Nonequilibrium Steam (NES) model. Such flows are typically transonic. The droplet
phase can enter through the inlet or appear through various nucleation mechanisms, including homo-
geneous (volumetric) and heterogeneous (surface) nucleation. Presently, only one homogeneous nucle-
ation model is available for selection based on Classical theory. Heterogeneous and alternate homogen-
eous nucleation models can be supplied using the available user defined option.

The Droplet Condensation Model differs from the Thermal Phase Change model (see The Thermal Phase

Change Model (p. 222)) in that the droplet diameter is calculated as part of the model rather than as a
user input. This leads to improved accuracy. In order to do this a transport equation for droplet number
must also be solved, which has as its source term nucleation contributions. This model differs from the
Equilibrium Phase Change model (see Equilibrium Phase Change Model in the CFX-Solver Modeling

Guide) in that it does not assume the flow to instantaneously reach equilibrium conditions, and therefore
implicitly includes losses due to thermodynamic irreversibility.

In the following discussion, we consider a homogeneous multiphase system, in which the droplets move
with the same velocity as the continuous phase. However, the model has been generalized to inhomo-
geneous systems as well.

The system of equations involves one continuous phase and any number of dispersed (condensed)
phases. The condensed phases travel at the speed of the continuous phase. Any combination of con-
densed phases can exist in the solution so that for the continuous phase, mass conservation becomes:

(5–267)∑∂
∂

+ ∂
∂

= − +
=

∗� �

� �
� � � � � � �

�	

 


�

 � 


� �

 
 


where the mass sources are summed over the �� condensed phases. The condensed phases can change
size by condensation or evaporation.

For a condensed phase, � mass conservation is:

(5–268)
∂

∂
+ ∂

∂
= + ∗� �

� �
� � � � � � �

� �

� �
�

� � � �

where each dispersed phase has a corresponding number equation of the form:
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(5–269)
∂

∂
+ ∂

∂
=

� �

� �
� � � � � �

� �

� � �
�

�
	




and �� is the nucleation model with units defined as the number of droplets generated per unit time

per unit volume of vapor and 
∗


  is the nucleated droplet mass based on the critical radius 
∗

� . Note
that the droplets are transported with the mixture velocity because no slip is assumed between the
phases. The usual constraint applies for the volume fractions where:

(5–270)∑+ =
=

� �

��

��
� �

In addition, global continuity and momentum equations are also solved as described in Homogeneous

Hydrodynamic Equations (p. 172). The continuous phase energy equation, in total enthalpy form, is

(5–271)
∂

∂
+ ∂

∂
= − ∂

∂
+ ∂

∂





∂
∂




 +

� � �

� �
� � � � �

�

� �
� �

�

�
�

� � �

 
� �  � �

 
! �

 
"

where a similar energy transport equation can be applied for the dispersed phases, either in the context
of small or large droplets as will be discussed subsequently. The Droplet Condensation model can be
used for both small and large droplets. However, small and large droplets use different models for heat
transfer and phase change. For large droplets, the heat transfer and phase change models described
by the Thermal Phase Change model should be used. For small droplets (less than 1 #$) the Small

Droplet heat transfer model is appropriate; it sets the droplet temperature to

(5–272)= −
∗

% % & %
'

'
( ) )*

(

(

where +, refers to the saturation temperature, -./ refers to the supercooling level in gas phase, 01 is

the droplet radius, and 
∗

23  is the critical radius at formation of the dispersed phase.

For small droplets, the interphase heat and mass transfer models are also modified to include the influ-

ence of the Knudsen (45) number on the Nusselt number. The 67 dependence is required because
droplet sizes vary significantly from the initial nucleated radius (in a non-continuum regime) in the
range of angstroms. The droplet growth rate is:

(5–273)=
+






−
−





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which is subsequently used to compute the interphase mass transfer rate in conjunction with an inter-
facial area density to be described later in this section.

The source of droplets into the domain is based on a nucleation model, which for classical nucleation
models has the form of:
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(5–274)=



 −






∗
� �

�

� ��

where � is a constant determined by the particular nucleation model,
∗

�  is the Gibbs free energy

change at the critical radius conditions, � is Boltzmann's constant, and 	
 is the supercooled vapor

temperature. To compute the Gibbs free energy change a property database must be used that evaluates
supercooled state properties. This requires an equation of state for the vapor phase amenable to extra-
polation into regions within the saturation zone. The IAPWS and Redlich Kwong equations of state
satisfy this requirement. A user defined nucleation model can also be applied, allowing for different
homogeneous or heterogeneous nucleation models to be employed.

The interaction between the phases by mass transfer depends on calculating the droplet diameter,
which, if a monodispersed distribution is assumed for droplets with a common origin, can be determined

from the droplet number, ��. The relevant equation is then:

(5–275)=











�

� �
�

�

�

�
�

with an interfacial area density defined as:

(5–276)=�
�

�
�

�

�

The interfacial mass transfer term can then be computed with the known droplet growth rate and the
interfacial area density:

(5–277)=� � �
��

��
� � �

�

which can be used to obtain the heat transfer term:

(5–278)= − +� �  ! "# $ % $ $

where &' is an upwinded total enthalpy, its value either for the continuous or dispersed phase depending

on the direction of interphase mass transfer. In addition,(
)

 is the heat transfer (per unit area) between

the dispersed and continuous phase based on:

(5–279)=
+

−*
+

, - ./
0 0

1
2

1
1 3

Since the droplets in condensing systems are generally quite small (less than 1 4 5), it is assumed that

the droplet temperature is uniform (a zero resistance model between the droplet surface and its internal
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temperature). This implies that almost all of the heat transfer either comes from the continuous phase
during evaporation or goes into it during condensation.

The Nusselt (��) number underlying Equation 5–273 (p. 234) and Equation 5–279 (p. 235) is corrected to

account for droplet sizes that span a wide Knudsen number (��) range (from free-molecular to con-
tinuum). The Nusselt number applied is:

(5–280)=
+

��
� ��

where 	 is an empirical factor set to 3.18.

5.14. Free Surface Flow

This section describes free surface flow theory, which is the most common application of homogeneous
multiphase flow.

5.14.1. Implementation

The implementation of free surface flow in CFX is essentially the same as multiphase (homogeneous
or inhomogeneous) along with some special discretization options to keep the interface sharp. These
include:

• A compressive differencing scheme for the advection of volume fractions in the volume fraction equations.

• A compressive transient scheme for the volume fraction equations (if the problem is transient).

• Special treatment of the pressure gradient and gravity terms to ensure that the flow remain well behaved
at the interface.

5.14.2. Surface Tension

The surface tension model used in CFX is based on the Continuum Surface Force model of Brackbill et
al. [27]. This models the surface tension force as a volume force concentrated at the interface, rather
than a surface force. Consider the free surface interface shown in the figure below:

Figure 5.1  Free Surface Interface
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Define a Primary Fluid � (the liquid phase) and a Secondary Fluid � (usually a gas phase). The surface

tension force given by the Continuum Surface Force model is:

(5–281)=� � �� � � � � �

where:

(5–282)= − + ∇� �	 
 	
� � � � � � � � 


(5–283)= ∇� �� � � �

where � is the surface tension coefficient, �� � is the interface normal vector pointing from the primary

fluid to the secondary fluid (calculated from the gradient of a smoothed volume fraction), ∇ �  is the

gradient operator on the interface and � is the surface curvature defined by:

(5–284)= ∇ ��� � � �

The two terms summed on the right hand side of Equation 5–282 (p. 237) reflect the normal and tangential
components of the surface tension force respectively. The normal component arises from the interface
curvature and the tangential component from variations in the surface tension coefficient (the Marangoni
effect).

The �� � term is often called the interface delta function; it is zero away from the interface, thereby

ensuring that the surface tension force is active only near to the interface.

When the interface between the two fluids intersects a wall, it is possible to account for wall adhesion

by specifying the contact angle,�, which the interface makes with the wall through the primary fluid.
The interface normal vector used for the calculations of both curvature and the surface tension force
must satisfy the wall contact angle.

237
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Free Surface Flow



Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.238



Chapter 6: Particle Transport Theory

Particle transport modeling is a type of multiphase model, where particulates are tracked through the
flow in a Lagrangian way, rather than being modeled as an extra Eulerian phase. The full particulate
phase is modeled by just a sample of individual particles. The tracking is carried out by forming a set
of ordinary differential equations in time for each particle, consisting of equations for position, velocity,
temperature, and masses of species. These equations are then integrated using a simple integration
method to calculate the behavior of the particles as they traverse the flow domain.

This chapter describes:
6.1. Lagrangian Tracking Implementation
6.2. Momentum Transfer
6.3. Heat and Mass Transfer
6.4. Basic Erosion Models
6.5. Spray Breakup Models
6.6. Particle Collision Model
6.7. Particle-Wall Interaction
6.8. Quasi Static Wall Film Model

The following section describes the methodology used to track the particles.

6.1. Lagrangian Tracking Implementation

Within the particle transport model, the total flow of the particle phase is modeled by tracking a small
number of particles through the continuum fluid. The particles could be solid particles, drops or bubbles.

The application of Lagrangian tracking in CFX involves the integration of particle paths through the
discretized domain. Individual particles are tracked from their injection point until they escape the domain
or some integration limit criterion is met. Each particle is injected, in turn, to obtain an average of all
particle tracks and to generate source terms to the fluid mass, momentum and energy equations. Because
each particle is tracked from its injection point to final destination, the tracking procedure is applicable
to steady state flow analysis.

The following sections describe the methodology used to track the particles.
6.1.1. Calculation of Particle Variables
6.1.2. Interphase Transfer Through Source Terms

6.1.1. Calculation of Particle Variables

The particle displacement is calculated using forward Euler integration of the particle velocity over

timestep,��.

As =� �� ��� �, the particle displacement is given as:
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(6–1)= +� � � ���
�

�
�

�
�

where the superscripts o and n refer to old and new values respectively, and ��
	
 is the initial particle

velocity. In forward integration, the particle velocity calculated at the start of the timestep is assumed
to prevail over the entire step. At the end of the timestep, the new particle velocity is calculated using
the analytical solution to the particle momentum equation:

(6–2)=



��




�
�

�
���

���� is the sum of all forces acting on a particle. This equation is an example of the generic transport

equation:

(6–3)=
−

+
��

��

� �

�
�

� � �

where � is a generic transported variable, subscript �  indicates the value of the variable in the surround-

ing fluid, �  is a linearization coefficient and � is a general nonlinear source. The analytical solution of
the generic transport equation above can be written as:

(6–4)= + − 


− 


+ 


 − 


− 





    !"#

$%

&
&' !"#

$%

&
( ) ( )

*

The fluid properties are taken from the start of the timestep.

In the calculation of forces and values for + and ,, many fluid variables, such as density, viscosity and
velocity are needed at the position of the particle. These variables are always obtained accurately by
calculating the element in which the particle is traveling, calculating the computational position within
the element, and using the underlying shape functions of the discretization algorithm to interpolate
from the vertices to the particle position.

6.1.2. Interphase Transfer Through Source Terms

Just as the fluid affects the particle behavior through forces and, for example, convective heat transfer,
there is a counteracting influence of the particle on the fluid. This effect is termed as coupling between
phases. If the fluid is allowed to influence trajectories but particles do not affect the fluid, then the in-
teraction is termed one-way coupling. If the particles also affect the fluid behavior, then the interaction
is termed two-way coupling.

The flow prediction of the two phases in one-way coupled systems is relatively straightforward. The
fluid flow field may be calculated irrespective of the particle trajectories. One-way coupling may be an
acceptable approximation in flows with low dispersed phase loadings where particles have a negligible
influence on the fluid flow.

Two-way coupling requires that the particle source terms are included in the fluid momentum equations.
The momentum sources could be due to turbulent dispersion forces or drag. The particle source terms
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are generated for each particle as they are tracked through the flow. Particle sources are applied in the
control volume that the particle is in during the timestep.

The particle sources to the fluid momentum equations are obtained by solving transport equations for
the sources. The generic equation for particle sources is:

(6–5)= +��

��
� � �

�
� � �

Where � 	
 �
 are the contributions from the particles that are linear in the solution variable and �


contains all other contributions, including when appropriate a mass transfer term − �� �� �� �
.

This equation has the same form as the general particle transport and is solved in the same way as
outlined above.

The source, S, to be added to the continuous phase is then multiplied by the number flow rate for that
particle, which is the mass flow rate divided by the mass of the particle.

In CFX, the particle source terms are recalculated each time particles are injected. The source terms are
then retained in memory in order that they may be applied each time the fluid coefficients are calculated.
Thus, the particle sources may be applied even though particles have not been injected in the current
flow calculation.

6.2. Momentum Transfer

Consider a discrete particle traveling in a continuous fluid medium. The forces acting on the particle
that affect the particle acceleration are due to the difference in velocity between the particle and fluid,
as well as to the displacement of the fluid by the particle. The equation of motion for such a particle
was derived by Basset, Boussinesq and Oseen for a rotating reference frame:

(6–6)= + + + + +�
� � � � � ��

�

��
�

�
�� � � �� ��

which has the following forces on the right hand side:

• � : drag force acting on the particle.

• !": buoyancy force due to gravity.

• #$: forces due to domain rotation (centripetal and Coriolis forces).

• %&': virtual (or added) mass force. This is the force to accelerate the virtual mass of the fluid in the

volume occupied by the particle. This term is important when the displaced fluid mass exceeds the
particle mass, such as in the motion of bubbles.

• (): pressure gradient force. This is the force applied on the particle due to the pressure gradient in the

fluid surrounding the particle caused by fluid acceleration. It is only significant when the fluid density
is comparable to or greater than the particle density.

• *+,: Basset force or history term which accounts for the deviation in flow pattern from a steady state.

This term is not implemented in CFX.
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The left hand side of Equation 6–6 (p. 241) can be modified due to the special form of the virtual mass
term (see Virtual or Added Mass Force (p. 244)) which leads to the following form of the particle velocity:

(6–7)
=

+
+ + ′ + +�

� � � � �
�

�� � � �

�

�
� �

�
�

�

	 
 �� 

��

Only a part of the virtual mass term, ′���, remains on the right hand side. The particle and fluid mass

values are given by:

(6–8)= =�
�
� � �

�
� �� � � � � �

� �

with the particle diameter �� as well as the fluid and particle densities �
�

 and �
�

. The ratio of the ori-

ginal particle mass and the effective particle mass (due to the virtual mass term correction) is stored in

(6–9)
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Using +,-, Equation 6–7 (p. 242) can be written as

(6–10)= + + ′ + +.
/ / / / /

0

01

2

3 3

4

4
4

4

56
7 8 56 9

Each term on the right hand side of Equation 6–10 (p. 242) can potentially be linearized with respect to

the particle velocity variable :;, leading to the following equation for each term:

(6–11)= +< = >? @ABC

The following sections show the contribution of all terms to the right hand side values D and the lin-

earization coefficient EFGH.

6.2.1. Drag Force on Particles

The aerodynamic drag force on a particle is proportional to the slip velocity,IJ, between the particle

and the fluid velocity:
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(6–12)= = − −� � � � � � �� � � � � � � �� � � � � � � � � � �

where 	
 is the drag coefficient and �� is the effective particle cross section. The drag coefficient,


�, is introduced to account for experimental results on the viscous drag of a solid sphere. The coefficient

is calculated in the same way as for Eulerian-Eulerian multiphase flow.

Using the new variable = �� � � �� � � � , this leads to the following contribution to the right

hand side and linearization coefficient of Equation 6–7 (p. 242):

(6–13)
=

+
=� � �

�

� �

�

�
�

�
�

�
�

�

�
 !

�
"#

(6–14)
= −

+
= −$
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12

The particle momentum source due to drag is calculated from the following equation:

(6–15)= − = −3
4 5 5

6

67
8 9 :; ; < < = =

The source, >, added to the continuous phase is then multiplied with the number rate for that particle.

6.2.2. Buoyancy Force on Particles

The buoyancy force is the force on a particle immersed in a fluid. The buoyant force is equal to the
weight of the displaced fluid and is given by

(6–16)= − =



 −




 = −? @ @ @A A A

B

B

C
D B BE E

E

E EF G
G H

G

where I is the gravity vector.

This leads to the following contribution to the right hand side of Equation 6–7 (p. 242):

(6–17)=
−

+
=
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The buoyancy force has no contribution to the particle momentum source into the continuous phase.
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6.2.3. Rotation Force

In a rotating frame of reference, the rotation term is an intrinsic part of the acceleration and is the sum
of Coriolis and centripetal forces:

(6–18)= − × − × ×� � � � � ��� � ��

As described elsewhere (see Pressure Gradient Force (p. 245) and Virtual or Added Mass Force (p. 244)), the
implemented rotation term also contains contributions from the pressure gradient and the virtual mass
force due to the domain rotation which leads to the following final contribution of the rotation term
to the right hand side of Equation 6–7 (p. 242).

(6–19)

= − × − × ×
− − − × − × ×

− − × − × ×

� � 	 � � 


� 	 � � 


� 	 � � 


�

�
�

�


 











�� �

��
�

�

Using the substitutions:

= − ×
= − ×

= − × ×

� � �

� � �

� � � �

�

�

�����

����� �

����

Equation 6–19 (p. 244) can be written as:

(6–20)= + − +� � � �  !"#$% !"#$& !'()

where

• =*  if neither pressure gradient nor virtual mass force is taken into account

• =+ ,-. if only virtual mass force is taken into account

• = −/ 0 0
12

 if only pressure gradient force is taken into account

• = −3 4 5 5
678 9

 if pressure gradient and virtual mass forces are taken into account

The rotation force has no contribution to the particle momentum source into the continuous phase.

6.2.4. Virtual or Added Mass Force

This force is caused by the fact that the particle has to accelerate some of the surrounding fluid, leading
to an additional drag of the following form:
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(6–21)= 


− 


�
� ��

�
�

��

�

��

�
��

��
	

	

If the virtual mass force is included, the coefficient 
�� is normally set to 1. However, when the virtual

mass force is not included, then 
�� effectively has the value zero, and ��� is equal to 1. The second

part of the right hand side contains the particle velocity deviation, hence, it can be brought to the left
hand side of the particle momentum equation (see Equation 6–7 (p. 242)), leading to a modified effective
mass. Considering only steady state flows, the remaining term can be written as

(6–22)′ = ∇ −� � � �
�

���
��

� � � �

leading to the following contribution to the right hand side of Equation 6–7 (p. 242):

(6–23)= − ∇ −� � � ����    

with

(6–24)= − × − × ×! " # " " $%& &

necessary if the particles are solved in a rotating system. The '( term is shifted to the rotation term

(see Equation 6–19 (p. 244)), therefore, the implemented virtual mass term reduces to

(6–25)= − ∇) * *+,- . .

The particle momentum source due to the virtual mass force is computed from:

(6–26)= −/
0

1

12
34

6.2.5. Pressure Gradient Force

The pressure gradient force results from the local fluid pressure gradient around the particle and is
defined as:

(6–27)= − ∇5
6

7
89

:

:

This force is only important if large fluids pressure gradients exist and if the particle density is smaller
than or similar to the fluid density. Neglecting diffusive and source terms in the steady state momentum
equation, the pressure gradient can be replaced by the velocity gradient. Assuming a constant fluids
density, the pressure gradient force can be written as
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(6–28)= ∇ − = ∇ −� � � � � � �� �
�

�
� �

�

� � � �
�

� � �

leading to the following contribution to the right hand side of Equation 6–7 (p. 242):

(6–29)= ∇ −� � � �	





�

�

�

� � �

with

(6–30)= − × − × ×� � � � � ��� �

necessary if the particles are solved in a rotating system. The �� term is shifted to the rotation term

(see Equation 6–19 (p. 244)), therefore, the implemented pressure gradient term reduces to

(6–31)= ∇� � ��
�

�
�

��
�

� �

The particle momentum source due to the pressure gradient force is computed from:

(6–32)= −�
 

!

!"
#

6.2.6. Turbulence in Particle Tracking

The calculation of the instantaneous fluid velocity, $%  in Equation 6–6 (p. 241), depends on the flow regime

and the type of particle tracking desired (mean or with turbulent dispersion). In laminar flows or in
flows where mean particle tracking is calculated, &'  is equal to the mean local fluid velocity, () , sur-

rounding the particle. The path of a particle is deterministic (that is, there is a unique path for a particle
injected at a given location in the flow).

In turbulent tracking, the instantaneous fluid velocity is decomposed into mean, *+ , and fluctuating,

′,- , components. Now particle trajectories are not deterministic and two identical particles, injected

from a single point, at different times, may follow separate trajectories due to the random nature of
the instantaneous fluid velocity. It is the fluctuating component of the fluid velocity which causes the
dispersion of particles in a turbulent flow.

The model of turbulent dispersion of particles that is used, which is due to Gosman and Ioannides [147],
assumes that a particle is always within a single turbulent eddy. Each eddy has a characteristic fluctuating

velocity, ′./ , lifetime, 01, and length, le. When a particle enters the eddy, the fluctuating velocity for that

eddy is added to the local mean fluid velocity to obtain the instantaneous fluid velocity used in Equa-

tion 6–19 (p. 244). The turbulent fluid velocity, ′23 , is assumed to prevail as long as the particle/eddy in-

teraction time is less than the eddy lifetime and the displacement of the particle relative to the eddy
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is less than the eddy length. If either of these conditions is exceeded, the particle is assumed to be

entering a new eddy with new characteristic ′�� , ��, and le.

The turbulent velocity, eddy and length and lifetime are calculated based on the local turbulence
properties of the flow:

(6–33)

′ =

=

� � �

�
� �

	




�
�


��

��� ���

(6–34)=� � �� �
���

where k and � are the local turbulent kinetic energy and dissipation, respectively, and �� is a turbulence

constant. The factor ��
 !"

 was chosen to relate the characteristic length scale to the eddy dissipation

length [39]. The variable #  is a normally distributed random number which accounts for the randomness
of turbulence about a mean value. Because of this randomness, each component of the fluctuating

velocity ′ ′ ′$ % &  may have a different value in each eddy.

6.2.7. Turbulent Dispersion

If turbulent particle dispersion is enabled, you will need to track a much larger number of particles
(usually an order of magnitude higher) because a stochastic method is used. This will greatly increase
computational time; therefore, this is most often performed as a post-process where there is only one
particle iteration.

If turbulent dispersion is used in an iterative situation, it may not be possible to achieve complete
convergence because of the stochastic nature of the sources to the continuous phase, although the
random number generator used in determining the eddies is reset on each particle iteration.

6.3. Heat and Mass Transfer

The following topics will be discussed:

• Heat Transfer (p. 248)

• Simple Mass Transfer (p. 249)

• Liquid Evaporation Model (p. 250)

• Oil Evaporation/Combustion (p. 254)

• Reactions (p. 254)

• Coal Combustion (p. 258)

• Hydrocarbon Fuel Analysis Model (p. 261)
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6.3.1. Heat Transfer

The rate of change of temperature is governed by three physical processes: convective heat transfer,
latent heat transfer associated with mass transfer, and radiative heat transfer.

The convective heat transfer �
�

 is given by:

(6–35)= −� � � � � �
� � 	

where 
 is the thermal conductivity of the fluid, �� and 
� are the temperatures of the fluid and of the

particle, and  is the Nusselt number given by:

(6–36)= + 





�
�

�

����

�
�

where �� is the specific heat of the fluid, and � and � are the fluid dynamic viscosity and thermal

conductivity respectively.

For cases including multiphase reactions, the convective heat transfer has a blowing correction based
on the rate of mass transfer from the particle:

(6–37)=
−

−

−� � �
�

�
� �

 

 

where !  is given by

(6–38)=" #
$ % &

'

()

(*

and 
+,

+-
 is the total mass transfer rate of the particle. This modification can be omitted by using the

expert parameter setting: pt heat transfer blowing correction = f .

The heat transfer associated with mass transfer .
/

 is given by the relation:

(6–39)∑=0
12

13
4

5
6

where the sum is taken over all components of the particle for which heat transfer is taking place. The

latent heat of vaporization 7  is temperature dependent, and is obtained directly from the MATERIALS
information for the liquid in the particle and its vapor.
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The radiative heat transfer,�
�

, for a particle with diameter ��, uniform temperature ��, and emissivity

��, is given by:

(6–40)= −� 	 
 � � 
 � �
� � � �

� � �

where � is the Radiation Intensity on the particle surface at the location of the particle, � is the Refractive
Index of the fluid, and � is the Stefan-Boltzmann constant. An equivalent amount of heat can be removed
from the radiation field.

The rate of change of temperature for the particle is then obtained from:

(6–41)∑ = + +� �
��

��
� � �� � � �  

where the sum in this equation is taken over all components of the particle including those not affected
by mass transfer.

The energy source to the continuous fluid is obtained from:

(6–42)= −!"

!#
$
%

6.3.2. Simple Mass Transfer

Each component of mass being transferred between the continuous and particle phases satisfies the
equation:

(6–43)= − ⋅ −&'

&(
) & * + , - -

.
/ 0 0 / . 0 .1 1

In this equation, 23 is the mass of the constituent in the particle,45 67  is the mass fraction of component

8 in the particle,9: ;<  is the mass fraction of component = in the surrounding fluid, > is the equilibrium

mass fraction ratio, ? @
A A  is the dynamic diffusivity of the mass fraction in the continuum, and  is

the Sherwood number given by:

(6–44)= +










B

C D

EFG

H
I

If no value is set for the equilibrium mass fraction J, a value of 1 is used.

The simple model assumes that the mass transfer is driven only by concentration differences. While this
may be appropriate in some situations, such as solids having a small moisture content, it does not ad-
equately account for the vapor pressure dependence on particle temperature, which is imported for
evaporating liquids. In these situations, the liquid evaporation model, presented below, is more appro-
priate.

249
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Heat and Mass Transfer



The mass source to the continuous fluid is obtained from:

(6–45)= −��

��

��

��

�

6.3.3. Liquid Evaporation Model

The liquid evaporation model is a model for particles with heat and mass transfer. The model uses two
mass transfer correlations depending on whether the droplet is above or below the boiling point.

The boiling point is determined through an Antoine equation (vapor pressure equation that describes
the relation between vapor pressure and temperature for pure components, see Antoine Equation in
the CFX-Solver Modeling Guide) that is given by

(6–46)=



 −

+



� � �

�

� 	

��



�����

where �, � and � are user-supplied coefficients. The particle is boiling if the vapor pressure, �
���

, is

greater than the ambient gas pressure, �
����� !

.

When the particle is above the boiling point, the mass transfer is determined by:

(6–47)= −
+"#

"$

% %

&

' ( )

where *  is the latent heat of evaporation of the particle component and where +
,

 and -
.

 are the

convective and radiative heat transfers, respectively.

When the particle is below the boiling point, the mass transfer is given by:

(6–48)=






−
−







/0

/1
2 / 3 4

5

5

6

6

7
7

8

9

:
;

;
<=>

where ?@ is the droplet diameter, AB is the dynamic diffusivity of the component in the continuum

and  is the Sherwood number (see Equation 6–44 (p. 249)).CD and EF are the molecular weights of

the vapor and the mixture in the continuous phase, GH
I

 is the equilibrium vapor mole fraction of the

evaporating component at the droplet surface, and J
K
LMN is the mole fraction of the evaporating com-

ponent in the gas phase.

The mass source to the continuous fluid is obtained from:
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(6–49)= −��

��

��

��

�

6.3.3.1. Extension of the Liquid Evaporation Model

The Liquid Evaporation model described in the previous section is limited to being applied to a single
component of a particle. Under the following assumptions, the Liquid Evaporation model can be extended
to multi-component evaporation:

1. Particle liquids are entirely miscible in all proportions

2. Intermolecular forces between different particle components are of equal strength

These assumptions imply that the liquids in a multi-component particle form an ideal mixture. By
definition an ideal mixture is one which obeys Raoult's law (where the vapor pressure of an ideal mixture
is dependent on the vapor pressure of each chemical component and the mole fraction of the component
present in the mixture).

6.3.3.1.1. Examples of ideal mixtures

There is actually no such thing as an ideal mixture. However, some liquid mixtures get fairly close to
being ideal. These are mixtures of closely similar substances.

Commonly quoted examples include:

• hexane and heptane

• benzene and methylbenzene

The more dissimilar the nature of the substances, the more strongly the solution is expected to deviate
from ideality.

6.3.3.2. Determination of the Total Vapor Pressure of an Ideal Mixture

Based on the assumption of an ideal mixture, the total vapor pressure, �
����	

, can be calculated based

on the assumption of Raoult’s law

(6–50)∑= + + =
 
 
 � 
 �





�


 ������ ����� ����� ����

����

where � �
� � !"#

"$%&
 is the vapor pressure of a pure component ' and ()

*
 is the mole fraction of com-

ponent + in the liquid phase. The vapor pressure of a pure component, ,
-./01

0234
 is determined from an

Antoine equation. This equation has the following form:

(6–51)=



 −

+



5 6 5 7

8

6 9
: ; :

:

; :
<=>?

>@AB

CD=EB

where FG, HI and JK are the Antoine coefficients of binary mixture i.
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Inserting Equation 6–51 (p. 251) into Equation 6–50 (p. 251) allows the calculation of the total vapor
pressure of the mixture as follows:

(6–52)∑=



 −

+



� � � �

�

� ��
�
�

� �
�

� �
	
	�� 
�����

It can be seen that the total vapor pressure is a function of the material properties of the components,
the particle temperature, as well as the instantaneous composition of the evaporating droplet.

A particle is assumed to be boiling if the total vapor pressure, �
�����

, of all evaporating components is

equal to or larger than the ambient gas pressure, �
�������

:

≥� �
� �!" !#$%&'�

If the total vapor pressure is below the ambient gas pressure, the particle is assumed to not boil.

6.3.3.3. Diffusion Regime (Non-Boiling Particles)

The particle evaporates in the diffusion regime if the particle is below the boiling point.

The mass transfer of a single particle component can be derived from the mass conservation equation
and can be written in the following form (see, for example, Abramzon and Sirignano [201] and Sazhin
[202])

(6–53)=






−
−







()

(*
+ ( , -

.

.

/

/

0 1
0 1

2 1

3

4 1
5

1
5

6 6 6

7896

where :; is the droplet diameter, <=> is the dynamic diffusivity of the component ? in the continuum,

 is the Sherwood number, and where @A BC  and DE are the molecular weights of the vapor of com-

ponent F and the mixture in the continuous phase. G H
I
JKLM  is the mole fraction of the vapor of component

N in the continuum, OP Q
R
S  is the equilibrium vapor mole fraction of component T at the droplet surface.

For the calculation of the molar concentration of component U on the particle surface, VW X
Y
Z , again the

assumption of Raoult’s law is applied:

(6–54)= =[

\

\
[

\

\
] ^
_ ^

^
` ^

a
bcda

cefghij

bcda

dklh

cefghij

The total mass flow rate is computed as the sum of the mass flow rates of all evaporating components:
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(6–55)∑ ∑= =






−
−






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��

��

��
� � � �

�
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�
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� � �

����

6.3.3.4. Boiling Particles

A particle is boiling if the total vapor pressure, �
�����

, is greater than or equal to the ambient gas pressure

�
�������

.

When the particle reaches the boiling point, the mass transfer is determined by the convective and ra-
diative heat transfer:

(6–56)∑ 







 = − +

� 

�!
" # #

$

$
$ % &

where '( is the latent heat of evaporation of component ), and where *
+

 and ,
-

 are the convective

and radiative heat transfer, respectively.

In order to determine the evaporation rate of a particular particle component, an additional assumption
is required. It is assumed that the evaporation rate of each component is proportional to the ratio of
the vapor pressure of this component to the total vapor pressure:

(6–57)∑ =./ .0

./ .0

1

1

2

3
3

456 2

78759

:

The component vapor pressure is computed from Raoult’s law:

(6–58)= =
;

;

< ;

;
<

=>? @

ABA>C

@
D

=>? @

?EFG

ABA>C

H @
IJ J
J

Rearranging Equation 6–57 (p. 253):

(6–59)∑=KL

KM
N KL KM

O
P O
Q

R
RS

and substituting it into Equation 6–56 (p. 253) gives the total mass transfer rate:
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(6–60)
∑ ∑= −

+
�� ��

� �

� ��
�

� �

�
	 �



��

Using Equation 6–59 (p. 253) and Equation 6–60 (p. 254) the following equation for the mass transfer of

component � can be derived:

(6–61)∑= − + = −
+
�


�

�

� �

� �
� �

�

� � �
�

�
� �
�

�
� �

� �

�

�

�

with the modified latent heat (averaged with the molar concentration):

(6–62)∑=�

�

� ��

� �
�

�
� �
�

�

 

 

Note that this modified latent heat is only used for the computation of the mass transfer rates in
Equation 6–61 (p. 254).

6.3.4. Oil Evaporation/Combustion

The oil combustion model uses the particle transport model to track evaporating oil droplets, which
are modeled in a very similar way to the liquid evaporation model, and uses the eddy dissipation
model for the combustion of the volatile gases in the gas phase.

• The Eddy Dissipation Model (p. 306)

• Liquid Evaporation Model (p. 250)

6.3.4.1. Light Oil Modification

The light oil modification bases the physical parameters used in the Reynolds number, the Nusselt
number, and the Sherwood number on the gas assumed to be in the boundary layer of the droplet.
This, in turn, depends upon the Antoine equation (that is, if the drop is boiling, the gas in the boundary
layer is all volatiles). In the other extreme, the gas in the boundary layer consists entirely of the local
gas mixture.

6.3.5. Reactions

The only reactions allowed are generic Arrhenius reactions, and some specific char reactions for coal
combustion. The reactions determine the rate of change of species in the particle and the continuous
phase, and the amount of heat released in the two phases.

6.3.5.1. Arrhenius Reactions

For the Arrhenius reactions, all reactants must be in the particle, but products can be in both the particle
and the continuous phase. The rate of reaction is
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∏= ⋅ ⋅ 
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
=
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�
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�




where �� is the mass of reactant �, V is the particle volume, �� is the order of reactant �, and

(6–63)= ⋅ ⋅ −� � � � ��
�

� �

where A has units of

(6–64)∑=− − − −
� � � � � � �

  !
"

# $ % #& #

Note that the Arrhenius expression is evaluated at the particle temperature,'(

The rate of change of mass of a reactant A is then − ∗)* +, , and of a product B is + ∗-. /0 , where

12 is the mass coefficient of that species. The reaction orders 34 and the temperature exponent 5 may

be fractional numbers, and not necessarily integers.

6.3.5.2. Heat Release

For any reaction, the heat release depends upon the reference specific enthalpies of the various reactants
and products, if these are all provided. Alternatively, the heat release of a reaction can be specified
directly and is then given by

(6–65)= − 





6
78

79
:

;<=

where >  refers to the reference material, and ? is the latent heat at the particle temperature.

6.3.5.3. Char Oxidation

6.3.5.3.1. Field

The char reaction is determined by both the rate of diffusion to the surface and the rate of chemical
reaction at the surface. The surface reaction is assumed to be first-order in the oxygen mole fraction.

The rate of diffusion of oxygen per unit area of particle surface is given by kd(Xg-XS), where Xg is the

mole fraction of oxygen in the furnace gases far from the particle boundary layer and XS is the mole

fraction of oxygen at the particle surface. The value of kd is given by:

(6–66)=





+ 


@

A

B

C C

C

D

D
E

FGH

I

I J

FGH

K

L

where:

• rp is the particle radius
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• TP is the particle temperature

• Tg is the far-field gas temperature

• P is the local pressure

• PA is atmospheric pressure

• Dref is the dynamic diffusivity (recommended value is 1.8e-5 [kg m^-1 s^-1])

• Tref is the reference temperature (recommended value is 293 [K])

• � is the exponent with value 0.75

The char oxidation rate per unit area of particle surface is given by kcXS. The chemical rate coefficient

kc is given by:

(6–67)=



 −




� � �

�

�
� � �

� �

�

where:

• The parameters Ac and Tc depend on the type of coal, and are specified as input parameters.

• The default value of n is 0.0.

• For this model, kd and kc are in units of [kg m^-2 s^-1],

• Recommended values for Ac and Tc are 497 [kg m^-2 s^-1] and 8540 K [80].

By equating the diffusion rate and the chemical reaction rate to eliminate XS, the overall char reaction

rate of a particle is given by:

(6–68)= +− − −��

�	

 
 � �


�

�

�
� � � �

�

� �
�

�

and is controlled by the smaller of the rates kd and kc.

6.3.5.3.2. Gibb

The oxidation mechanism of carbon can be characterized by the parameter � so that oxides are produced

according to the equation:

(6–69)+ → − + −� � �� �

The value of � is assumed to depend on the particle temperature TP:
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(6–70)
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�

where the constants are given by Gibb as AS = 2500 and TS = 6240 K.

By solving the oxygen diffusion equation analytically, the following equation is obtained for the rate
of decrease in the char mass mc:

(6–71)= −
−

+ +− − −��

��

� 	

	

 
 
 �

� �

�

�
�


�
�

� �
�

� �

The far field oxygen concentration ρ∞ is taken to be the time-averaged value obtained from the gas

phase calculation, and ρc is the density of the char. Physically, k1 is the rate of external diffusion, k2 is

the surface reaction rate, and k3 represents the rate of internal diffusion and surface reaction. These are

defined as follows:

(6–72)=�
�

� �
��

where D is the external diffusion coefficient of oxygen in the surrounding gas. The coefficient is calculated
in the same way as for the Field model, except in this model, kinematic diffusivity is used instead of
dynamic diffusivity:

(6–73)=





+ 


�

�

�

� �

�

��� � �

��� !"#$

%

where:

• Dref is the dynamic diffusivity (recommended value is 1.8e-5 [kg m^-1 s^-1])

• Tref is the reference temperature (recommended value is 293 [K])

• & is the exponent with value 0.75.

(6–74)= −' (
'

)

*
+

where kc is the carbon oxidation rate, defined by the modified Arrhenius equation
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(6–75)=



 −




� � �

�

�
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�

�

The default values of the model constants are Ac = 14 [m s^-1 K^-1] and Tc = 21580 K. Further:

(6–76)= −� � � � � ��	



where:

(6–77)=








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� � �

�

�

���

The pore diffusivity, Dp, is computed from external diffusivity, D, according to:

(6–78)= ×� ��

Note that the units of k1, k2 and k3 for this model are s-1, and the units for kc in Equation 6–75 (p. 258)

differ from those in Equation 6–67 (p. 256) in the Field model. "effic" is the so-called "internal diffusion
efficiency" and describes the effective internal diffusion coefficient of oxygen within the particle pores.
It is a user-accessible CCL parameter.

6.3.5.4. Radiative Preheating

The stability of a pulverized coal flame depends on the feedback of heat from the flame zone to the
raw coal as it emerges from the burner. In general, this preheating is supplied by a combination of
convective heating by recirculating product gases, as well as by the absorption of radiation. CFX calculates
the radiative heating using Equation 6–40 (p. 249).

The value of the particle emissivity �� is expected to change as pyrolysis proceeds (that is, it varies de-

pending upon the mass fractions of coal and char). The present model assumes a linear variation in ��

from the raw coal value ��(coal) to the value for char ��(char). That is:

(6–79)= − + !  !  " # " # "

where fv is the fractional yield of volatiles. Typical values for $% are 1 for coal and 0.6 for char.

6.3.5.5. Coal Combustion

6.3.5.5.1. Coal Combustion - Gas Phase

Coal combustion is calculated by combining a particle transport calculation of the coal particles with
an eddy dissipation calculation for the combustion of the volatile gases in the gas phase. Two separate
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gases are given off by the particles, the volatiles and the char products that come from the burning of
carbon within the particle.

Gas phase combustion is modeled by means of regular single phase reactions. A transport equation is
solved in the fluid for each material given off by the particles. The ‘volatiles’ may be either a pure sub-
stance, a fixed composition mixture, or several independent materials.

6.3.5.5.2. Coal Decomposition

Pulverized coal particles are treated in CFX as non-interacting spheres with internal reactions, heat
transfer and full coupling of mass, momentum and energy with the gaseous phase. The combustion of
a coal particle is a two stage process: the devolatilization of the raw coal particle followed by the oxid-
ation of the residual char to leave incombustible ash. The devolatilization is usually modeled as a single
step or a two step process. The char oxidation is modeled either as a global reaction, or using an ana-
lytical solution for the diffusion and reaction of oxygen within the pores of the char particle.

The devolatilization and char oxidation processes can occur on time scales of order milliseconds which
are several orders of magnitude less than the typical residence time of the particle in the furnace. Large
variations in time scales can result in numerically stiff equations, which can cause accuracy problems
with explicit integration algorithms. The CFX implementation of the particle transport model bases its
timestep on the reaction rate to ensure that the solution has the required accuracy.

6.3.5.5.3. Devolatilization

Devolatilization can be modeled by one or more reaction steps using the generic Arrhenius multiphase
reactions capability, although normally the process is represented by one or two reaction steps. The
simpler model is the single reaction model of Badzioch and Hawksley [78]. If, at time t, the coal particle
consists of mass fractions CO of raw (that is, unreacted) coal, Cch of residual char, and CA of ash, then

the rate of conversion of the raw coal is:

(6–80)= −��

��
� �

�
� �

and the rate of production of volatiles in the gas phase is given by:

(6–81)=��

��
	 
 �� 


where Y is the actual yield of volatiles (that is, the proximate yield multiplied by a factor to correct for
the enhancement of yield due to rapid heating), so that the rate of char formation is:

(6–82)= −��

��
� � �

��
� �

The rate constant kV is expressed in Arrhenius form as:
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(6–83)=



 −


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� �
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where TP is the temperature of coal particles (assumed uniform), R is the gas constant, and AV and EV

are constants determined experimentally for the particular coal.

Often the volatiles yield of a particular type of coal is known only from laboratory proximate analysis,
where the heating rate is low and the volatiles escaping from the coal may undergo secondary reactions
including cracking and carbon deposition on solid surfaces. It has been found experimentally that
volatiles released from pulverized coal particles widely dispersed in a gas and heated quickly to typical
furnace temperatures can produce a yield greater by as much as a factor of two than the proximate
value. If the single reaction model is used, it is difficult to know which data to use because the coal
particles experience a wide range of temperatures as they disperse in the furnace.

Bituminous coals generally have a volatiles yield that depends strongly on temperature and heating
rates. In such cases, it is important to take account of this dependence, for example by using a multiple
reaction model of devolatilization. As an alternative to the single reaction model, it is better to use the
model of Ubhayakar et al. [79] in which two reactions with different rate parameters and volatiles yields
compete to pyrolyse the raw coal. The first reaction dominates at lower particle temperatures and has
a lower yield Y1 than the yield Y2 of the second reaction, which dominates at higher temperatures. As

a result, the final yield of volatiles will depend on the temperature history of the particle, will increase
with temperature, and will lie somewhere between Y1 and Y2. In this model, the mass fraction of com-

bustible material (the raw coal) is specified as the mass fraction of volatiles because all this material
could be converted to volatiles.

Again it is assumed that a coal particle consists of mass fraction CO of raw coal, Cch of residual char

after devolatilization has occurred, and CA of ash. The rate constants k1 and k2 of the two reactions

determine the rate of conversion of the raw coal:

(6–84)= − +��

�	

 
 �

�
�� 


the rate of volatiles production is given by:

(6–85)= +��

��
� � � � ��� � � �

and so the rate of char formation is:

(6–86)= − + −��

��
� � � � �

��
�� �   

The initial value of CO is equal to (1-CA). The value of Y1, and parameters A1 and E1 which define k1 in

the Arrhenius equation, analogous to Equation 6–83 (p. 260), are obtained from proximate analysis of
the coal. Y2, A2 and E2 are obtained from high temperature pyrolysis. Note that the yields are defined

on a dry ash-free (DAF) basis.
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Typically, the coal particle will swell due to the gas release during the devolatilization phase. The
model assumes that the particle diameter changes in proportion to the volatiles released and the frac-
tional increase in the mean diameter of the coal particle after complete devolatilization must be specified
as input to the model. The particle diameter change due to swelling is calculated using the following
relation:

(6–87)=�

��
� � �

�

�
� � �

���

���
	



	

where:

• �� is the current particle diameter

• 
� is the swelling coefficient

• � ���  is the particle diameter at the start of devolatilization

• ����  is the rate of change of mass of the reference material

• ���� �� is the mass of the reference material at the start of the devolatilization

When the swelling coefficient is equal to 0.0, the particle diameter stays constant during devolatilization.

6.3.6. Hydrocarbon Fuel Analysis Model

The ‘Hydrocarbon Fuel Analysis’ model enables you to define all the properties of a solid or liquid hy-
drocarbon fuel in a user-friendly way. The solver uses the provided information to derive the parameters
of related objects, such as the initial particle mass fractions, material properties of the volatiles released,
and stoichiometric or mass coefficients of reactions.

The primary input data corresponds 1-to-1 to what, typically, is available from standard analysis of the
solid or liquid fuel:

• Heating value (higher or lower heating value)

• Proximate analysis (mass fractions of ash, moisture, fixed carbon, and volatiles)

– As Received: 1 = ash + moisture + fixed carbon + volatiles

– Dry Ash Free: 1 = fixed carbon + volatiles

• Ultimate analysis (mass fractions of carbon, hydrogen, oxygen, nitrogen, sulfur, and chlorine)

– As Received: 1 = ash + moisture + carbon + hydrogen + oxygen + nitrogen + sulfur + chlorine

– Dry Ash Free: 1 = carbon + hydrogen + oxygen + nitrogen + sulfur + chlorine.

Some additional input data is required by the solver, for which the default values should be appropriate
in many cases:

• Volatiles yield enhancement: Ratio of actual yield under rapid heating to that determined at a slow
heating rate in the proximate analysis.

• Average molar mass of volatiles released. Three options are available:

– Automatic : Computes average molar mass from volatiles elementary composition, assuming a
mixture of CH4, CO, H2 and H2O
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– Value : Use value specified in fuel analysis

– Use Material Definition : Use value defined in volatiles fuel material.

• Reference conditions for heating value (temperature and pressure)

• Moisture latent heat in case of higher heating value specified:

– Automatic : Standard value (2.4423 [MJ/kg])

– Value : User value for given temperature and pressure.

The above data are used to derive the following quantities:

• Initial mass fractions for particle (ash, char and raw combustible).

Note that initial char mass fraction will typically be zero, as char is produced from raw combustible
during pyrolysis.

• Fuel volatiles material properties:

– Average molar mass

– Specific reference enthalpy (heating value)

– Carbon, hydrogen and oxygen content.

• Stoichiometric coefficients for gas phase reactions:

– Fuel volatiles oxidation

– NO reburn by fuel.

• Mass coefficients for multiphase reactions:

– Devolatilization (decomposition of raw combustible into char and volatiles)

– Char oxidation.

These calculations are performed using a model fuel determined by the fuel analysis data. The model
fuel has all chlorine removed but accounts for the oxygen needed to oxidize sulfur to SO2. Nitrogen is

included into the model fuel if the multiphase reactions are setup to release HCN to the gas phase,
otherwise, the fuel nitrogen is removed.

The total amount of material released to the gas phase during devolatilization is the actual volatiles
yield plus the moisture. Carbon, hydrogen and oxygen content of the volatiles are computed from ulti-
mate analysis, which in turn defines the stoichiometric coefficients in the gas phase reactions involving
the volatiles material. When the fuel nitrogen model is enabled, corrections are made in order to account
for the carbon and hydrogen released as HCN.

6.4. Basic Erosion Models

The following topics will be discussed:

• Model of Finnie (p. 263)

• Model of Tabakoff and Grant (p. 263)

• Overall Erosion Rate and Erosion Output (p. 266)
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6.4.1. Model of Finnie

The wear of a wall due to the erosive effect of particle impacts is a complex function of particle impact,
particle and wall properties. For nearly all metals, erosion is found to vary with impact angle and velocity
according to the relationship [63]:

(6–88)=� � � � ��
�

where � is a dimensionless mass,�	 is the particle impact velocity and 
 �  is a dimensionless

function of the impact angle. The impact angle is the angle in radians between the approaching particle
track and the wall. The value of the exponent, �, is generally in the range 2.3 to 2.5 for metals.

Finnie’s model of erosive wear [64] relates the rate of wear to the rate of kinetic energy of impact of

particles on the surface, using =
 :

(6–89)=� � � � ��
�

where:

(6–90)

= >

= − ≤

�

�

�

�

6.4.1.1. Implementation in CFX

In CFX, the need to adjust the dimension of � to obtain a non-dimensional erosion factor is overcome
by specifying:

(6–91)=








�

�

�
� �

�

�

�

where �  is equal to 
!

"

#  and defaults to 1 [m/s] in CFX. Typical values for steel are 590 m/s.

6.4.2. Model of Tabakoff and Grant

In the erosion model of Tabakoff and Grant, the erosion rate $ is determined from the following relation:

(6–92)= 
 − 

 +% & ' ( ) ( * ' )+ , +-
. .

/
0

where:
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(6–93)=






+
















� � � � �
�

�
���

�

�

(6–94)= −	 
 � �
 ��

(6–95)=� � � � ��� ��
�

(6–96)=






≤
>

��
�

�

Here � is the dimensionless mass (mass of eroded wall material divided by the mass of particle).�� is

the particle impact velocity. � is the impact angle in radians between the approaching particle track

and the wall, �
 
 being the angle of maximum erosion. !" to #$, %&' and (

)
 are model constants and

depend on the particle/wall material combination.

6.4.2.1. Implementation in CFX

The model constants in the original formulation of Tabakoff and Grant are only valid for particle velo-
cities specified in feet per second [ft/s]. The Tabakoff formulation is modified in CFX as outlined below:

(6–97)=








 − +*+ ,

-

-
. / , -

0
1 02
3

4

5

5

where:
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(6–98)=






+

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












� � � � �
�

�
���

�

�

(6–99)= −	





��




�

(6–100)=








� �

�

�
���

�

�

�

(6–101)=






≤
>

��
�

�

Note

In CFX, the erosive wear is calculated as grams of eroded material per gram of colliding
particles (not milligrams of eroded material per gram of colliding particles, as may be found
in literature).

6.4.2.1.1. Mapping of CFX to Original Tabakoff Constants

To make the model more general, the model is rewritten so that all model constants have a dimension
of velocity. The following list shows the link between the constants of the original model and those in
CFX:

6.4.2.1.2. Constants

CFX-Pre VariableDimensionsValue

K12 Constant(dimensionless)���

(dimensionless)��

Reference Velocity
1

[Velocity]��

Reference Velocity
2

[Velocity] !

Reference Velocity
3

[Velocity]"#

Angle of Maximum
Erosion

[deg]$
%

where:
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(6–102)=� �� �

(6–103)=� �� �
�

(6–104)=� 	
 �

6.4.3. Overall Erosion Rate and Erosion Output

The erosion of a wall due to a particle is computed from the following relation:

(6–105)= ∗ ∗� 
 ��

as an individual representative particle represents many actual particles. Here ��  is the mass of the

particle and �  is its number rate. The overall erosion of the wall is then the sum over all particles. This
gives an erosion rate in kg/s, and an erosion rate density variable in the res file and post-processor in

kg/s/m2. Note that this erosion rate is only a qualitative guide to erosion, unless precise values for the
model constants are known.

6.5. Spray Breakup Models

Spray processes play an important role in many technical systems and industrial applications. Examples
are spray painting or fuel injection systems.

The following sections give an overview about the spray breakup models that are implemented in ANSYS
CFX 14.0:

6.5.1. Primary Breakup/Atomization Models
6.5.2. Secondary Breakup Models
6.5.3. Dynamic Drag Models

6.5.1. Primary Breakup/Atomization Models

The main task of primary breakup (or atomizer) models is to determine starting conditions for the
droplets that leave the injection nozzle. These conditions are:

• Initial particle radius

• Initial particle velocity components

• Initial spray angle

The radius, velocity, and spray angle parameters are influenced by the internal nozzle flow (cavitation
and turbulence induced disturbances), as well as by the instabilities on the liquid-gas interface.

The following primary breakup models are available in CFX:

• Blob Method (p. 267)

• Enhanced Blob Method (p. 267)

• LISA Model (p. 269)
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• Turbulence Induced Atomization (p. 273)

For the Blob, Enhanced Blob, and the LISA model, the initial injection spray angle must be specified
explicitly, while for the Turbulence Induced Atomization model, the spray angle is computed within the
model.

A large variety of approaches of different complexities are documented in literature. For a comprehensive
model overview, see Baumgarten et al. [120].

6.5.1.1. Blob Method

This is one of the simplest and most popular approaches to define the injection conditions of droplets.
In this approach, it is assumed that a detailed description of the atomization and breakup processes
within the primary breakup zone of the spray is not required. Spherical droplets with uniform size,

=� �� ������, are injected that are subject to aerodynamic induced secondary breakup.

Assuming non-cavitating flow inside the nozzle, it is possible to compute the droplet injection velocity
by conservation of mass:

(6–106)=� �
	 �


 �
� 
�
���

������

������ �

�

� ������ is the nozzle cross-section and ����� ! the mass flow rate injected through the nozzle.

The spray angle is either known or can be determined from empirical correlations. The blob method
does not require any special settings and it is the default injection approach in CFX.

Figure 6.1  Blob Method

6.5.1.2. Enhanced Blob Method

Kuensberg et al. [110] have suggested an enhanced version of the blob-method. Similar to the blob-
method, it is assumed that the atomization processes need not be resolved in detail. Contrary to the
standard blob-method, this method enables you to calculate an effective injection velocity and an ef-
fective injection particle diameter taking into account the reduction of the nozzle cross section due to
cavitation.

During the injection process, the model determines if the flow inside the nozzle is cavitating or not and
dynamically changes the injection particle diameter and the particle injection velocity. The decision,
whether the flow is cavitating or not, is based on the value of the static pressure at the vena contracta,

"#$%&, that is compared to the vapor pressure, '()*+, .
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(6–107)= −� � �
�

� �
�

���� ����
	




with:

(6–108)=� �
� �


�
����

����

�� is the coefficient of contraction that depends on nozzle geometry factor, such as nozzle length versus

nozzle diameter or the nozzle entrance sharpness [114].

If ����� is higher than the vapor pressure, ����� , the flow remains in the liquid phase and the injection

velocity is set equal to !"#$% .

(6–109)=& '
( '

) *
+

,-./
/0112-

The initial droplet diameter is equal to the nozzle diameter, 3 456678.

However, if 9:;<= is lower than >?@ABC , it is assumed that the flow inside the nozzle is cavitating and

the new effective injection velocity,DEFF , and injection diameter, GHII , are computed from a momentum

balance from the vena contracta to the nozzle exit (2):

(6–110)= − +J K
L

M K
N N J KOPP

QRSSTU
VWXRY VUQWZ

and:

(6–111)=[ \
] \

^
_``

_``

with:
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(6–112)=� � � � � ���� ��� �

Figure 6.2  Enhanced-blob Method

6.5.1.2.1. Input Parameters for the Enhanced Blob Method

The following information is required for the enhanced blob method:

• Contraction coefficient due to cavitation inside the injection nozzle.

• Injection total pressure of the liquid - This information is required to compute the static pressure of the
liquid at the vena contracta.

• Injection total temperature of the liquid - This information is required to compute the static temperature
of the liquid at the vena contracta, which is required to determine the fluid vapor pressure from an
Antoine equation (homogeneous binary mixture).

• Vapor pressure of the particle fluid

Two options are available to compute the material vapor pressure: Automatic  and Particle
Material Vapor Pressure .

– To specify the material vapor pressure directly, use the Particle Material Vapor Pressure
option.

– To have CFX compute the particle material vapor pressure from a homogeneous binary mixture, use
the Automatic  option.

• Normal distance of the pressure probe from the injection center - The fluid pressure at this position
(marked as position 2 in Figure 6.2 (p. 269)) will be used to determine the acceleration of the liquid from
the vena contract to the injection nozzle outlet.

6.5.1.3. LISA Model

The LISA (Linearized Instability Sheet Atomization) model is able to simulate the effects of primary
breakup in pressure-swirl atomizers as described in this section and presented in detail by Senecal et
al. [126].

In direct-injection spark ignition engines, pressure swirl atomizers are often used in order to establish
hollow cone sprays. These sprays are typically characterized by high atomization efficiencies. With
pressure swirl injectors, the fuel is set into a rotational motion and the resulting centrifugal forces lead
to a formation of a thin liquid film along the injector walls, surrounding an air core at the center of the
injector. Outside the injection nozzle, the tangential motion of the fuel is transformed into a radial
component and a liquid sheet is formed. This sheet is subject to aerodynamic instabilities that cause it
to break up into ligaments.
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Figure 6.3  Pressure Swirl Atomizer

Within the LISA model, the injection process is divided into two stages:

• Film Formation (p. 270)

• Sheet Breakup and Atomization (p. 271)

6.5.1.3.1. Film Formation

Due to the centrifugal motion of the liquid inside the injector, a liquid film along the injector walls is

formed. The film thickness, ��, at the injector exit can be expressed by the following relation:

(6–113)= −� � � � � � �
� 	 	 	

where 
 is the mass flow rate through the injector, �
�

 is the particle density, and 
� is the injector exit

diameter. The quantity � is the axial velocity component of the film at the injector exit and depends
on internal details of the injector. In CFX, � is calculated using the approach of Han et al. [127]. It is

assumed that the total velocity,� , is related to the injector pressure by the following relation:

(6–114)=� �
�

�
�

�

where � is the pressure difference across the injector and �� is the discharge coefficient, which is

computed from:

(6–115)=












�
�

� � �  

�

!
"

"
#

$
%

Assuming that & is known, the total injection velocity can be computed from Equation 6–114 (p. 270).

The axial film velocity component, ', is then derived from:
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(6–116)=� � �

where � is the spray angle, which is assumed to be known. At this point, the thickness, ��, and axial

velocity component of the liquid film are known at the injector exit. Note that the computed film

thickness, ��, will be equal to half the injector nozzle diameter if the discharge coefficient, �	, is larger

than 0.7. The tangential component of velocity ( =
 � �) is assumed to be equal to the radial velocity
component of the liquid sheet downstream of the nozzle exit. The axial component of velocity is assumed
to remain constant.

6.5.1.3.2. Sheet Breakup and Atomization

After the liquid film has left the injector nozzle, it is subject to aerodynamic instabilities that cause it
to break up into ligaments. The theoretical development of the model is given in detail by Senecal et
al. [126] and is only briefly repeated here.

The model assumes that a two-dimensional, viscous, incompressible liquid sheet of thickness 
 moves

with velocity �  through a quiescent, inviscid, incompressible gas medium. A spectrum of infinitesimal
disturbances is imposed on the initially steady motion, and is given in terms of the wave amplitude, �,

as:

(6–117)= +
� � �

� � � � �

�

where �
�
 is the initial wave amplitude, =� � � is the wave number, = +� � � ��   is the complex

growth rate, ! is the streamwise film coordinate, and " is the time. The most unstable disturbance, #,
has the largest value of $% and is assumed to be responsible for sheet breakup.

As derived by Senecal et al. [126], & can be computed by finding the maximum of the following equation:

(6–118)

= −
+

+
− − + 


 − 




+

' ( ( )

( ) *
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here =6 7 7
89

, that is, the ratio of local gas density :
;

 to particle densities <
=

, and > is the surface

tension coefficient. Once ? is known, the breakup length, @, and the breakup time, A, are given by:
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(6–119)=

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
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(6–120)=
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where �
�

 is the critical wave amplitude at breakup and 
 

� �

 is an empirical sheet constant with

a default value of 12.

The unknown diameter, ��, of the ligaments at the breakup point is obtained from a mass balance. For

wavelengths that are long compared to the sheet thickness ( <� ; here the Weber Number,

�, is based on half the film thickness and the gas density), �� is given by:

(6–121)=�
� �

�

�

�
�

using the long wave ligament factor, �
�
, of 8.0 (default) and �  is the wave number corresponding to

the maximum growth rate, !.

For wavelengths that are short compared to the sheet thickness, "# is given by:

(6–122)=$
% &

'

(

(
)

In this case, the short wave ligament factor, *
+
, of 16.0 (default) is used and ,- is given by:

(6–123)=.

/ 0

1
2

3

4

The most probable droplet diameter that is formed from the ligaments is determined from:

(6–124)= +5 56
789

:

using the droplet diameter size factor of 1.88 (default) and  is the particle Ohnesorge number that
is defined as:
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(6–125)= �

�

where � is the Weber Number based on half the film thickness and the gas density. � is the

Reynolds Number based on the slip velocity.

6.5.1.3.3. User Input Data for the LISA Model

Some of the settings for the simulation of primary breakup using the LISA model are:

• Injection pressure difference, �

• Nozzle geometry (outer nozzle diameter ��, injection half cone angle �)

• Normal distance of the density probe from the injection center:

The LISA model requires knowledge of downstream density. The solver finds this density by probing
the flow-field at a user-defined distance downstream of the injection location. This distance is a
user input given via Density Probe Normal Distance  option in CFX-Pre.

• Swirl Definition

To add swirl to the flow of particles that stream from the injection region, select the Swirl Definition

check box and then specify a non-dimensional value to impart a tangential velocity. The value that
you specify is multiplied by the magnitude of the axial velocity (the axial velocity being directed
normal to the injector inlet area, with a magnitude that satisfies mass continuity) in order to establish
the (single) value for tangential velocity, to be applied over the entire injector inlet area. The direction
of swirl depends on whether you specify a positive or negative value; the positive swirl direction
is established by using the right-hand rule and the injector axis.

• Particle mass flow rate, �

For a complete list of required and optional settings for the LISA model and primary breakup models in
general, see Settings for Particle Primary Breakup in the CFX-Pre User's Guide.

6.5.1.4. Turbulence Induced Atomization

This atomization model is based on the modification of the Huh and Gosman model as suggested by
Chryssakis (see [155, 156]). It accounts for turbulence induced atomization and can also be used to
predict the initial spray angle. The model assumes that turbulent fluctuations within the injected liquid
produce initial surface perturbations, which grow exponentially by the aerodynamic induced Kelvin-
Helmholtz mechanism and finally form new droplets. The initial turbulent fluctuations at the nozzle exit
are estimated from simple overall mass, momentum and energy balances. Droplets are injected with

an initial diameter equal to the nozzle diameter,�	
���
. It is assumed that unstable Kelvin-Helmholtz

waves grow on their surfaces, which finally break up the droplet. The effects of turbulence are introduced

by assuming, that the atomization length scale,��, is proportional to the turbulence length scale and

that the atomization time scale, ��, can be written as a linear combination of the turbulence time scale

(from nozzle flow) and the wave growth time scale (external aerodynamic forces). At breakup, child
droplets also inherit a velocity component normal to their parents’ velocity direction. This is different
to the model suggested by Chryssakis, where child droplets did not get this velocity component.

The initial spray angle is computed from the following relation:
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(6–126)=�

�

�
�

���

�
�

The model does not take effects of cavitation into account, but assumes that the turbulence at the
nozzle exit completely represents the influence of the nozzle characteristics on the atomization process.

6.5.1.4.1. User Input Data for Turbulence Induced Atomization

For the simulation of primary breakup using turbulence induced atomization, the following input data
is needed:

• Particle mass flow rate, �

Injection pressure difference, 	

• Normal distance of the density probe from the injection center

• Nozzle length/diameter ratio - This is required for the calculation of the average turbulence kinetic energy
and dissipation rates.

• Nozzle discharge coefficient - This is the ratio of mass flow through nozzle to theoretically possible mass
flow and can be specified optionally.

6.5.1.5. Usage and Restrictions for Primary Breakup Models

Primary breakup models are used to determine starting conditions for the droplets that leave the injection
nozzle. To accomplish this task, the models use averaged nozzle outlet quantities, such as liquid velocity,
turbulent kinetic energy, location and distribution of liquid and gas zones, as input for the calculation
of initial droplet diameters, breakup times and droplet injection velocities. Because all detailed inform-
ation is replaced by quasi 1D data, the following restrictions will apply:

• Primary breakup model support will only be available for particle injection regions and not for boundary
condition.

• On particle injection regions, primary breakup will only be available for cone type injection, and only
if the nozzle cross sectional area is larger than 0.

6.5.2. Secondary Breakup Models

The following sections give an overview about the currently available secondary breakup models in
CFX. Further information about the breakup models can be found in the provided references.

6.5.2.1. Breakup Regimes

The breakup of a liquid jet into droplets is caused by a combination of different mechanisms: turbulence
within the liquid phase, implosion of cavitation bubbles and external aerodynamic forces acting on the
liquid jet. Depending on the injection parameters such as the relative velocity between liquid and gas,
the liquid and gas densities and the liquid viscosity and surface tension the contribution of each of the
above mechanisms to the spray breakup varies.

Breakup regimes are typically classified in terms of the dimensionless numbers: Weber Number ( )

and Ohnesorge number ( ), as given by:
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(6–127)=
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�

� ����	



(6–128)
= �

� 
 �
� �

where the subscript � refers to the droplet (particle) and the subscript � refers to the surrounding fluid.
Sometimes, the Weber number is defined using the particle radius, ��.

If a droplet is exposed to a gas flow, significant deformation starts at a Weber number of unity. Above
a certain value of the Weber number, the droplet deformation leads to breakup. Typically, the following
breakup regimes are observed [117]:

 < 12• Vibrational breakup:

12 <  <
50

• Bag breakup:

50 <  <
100

• Bag-and-stamen breakup:

100 <  <
350

• Sheet stripping:

350 < • Catastrophic breakup:

6.5.2.2. Numerical Approach to Breakup Modeling

For the numerical simulation of droplet breakup, a so-called statistical breakup approached is used in
CFX. In this framework, it is assumed that if a droplet breaks up into child droplets, the particle diameter
is decreased accordingly to the predictions of the used breakup model. The particle number rate is

adjusted so that the total particle mass remains constant (mass of parent droplet = � mass of child
droplets). Using this assumption, it is not required to generate and track new droplets after breakup,
but to continue to track a single representative particle.

6.5.2.3. Reitz and Diwakar Breakup Model

This model ([115]) distinguishes between two breakup regimes: bag breakup and stripping breakup.
Breakup occurs if a critical particle Weber number has been exceeded. Independent of the breakup re-
gime, it is assumed that during breakup the following relation describes the reduction of the particle
radius:

(6–129)= − −��

��

� �

�

� �

��

����� 

!" is the droplet radius prior to breakup, # $%&'() is the new radius for the stable droplet and *+, is the

characteristic breakup time. Values for - ./0123 and t are calculated from the equations given in the fol-

lowing section:
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6.5.2.3.1. Bag Breakup

(  > ����):

(6–130)=� �
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and

(6–131)=�
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�

6.5.2.3.2. Stripping Breakup
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The model constants @A,BC, DEFG and HIJ of the Reitz & Diwakar breakup model are accessible via

CCL. The standard values of the constants are given in Table 6.1: Reitz and Diwakar breakup model constants

and their default values  (p. 276).

Table 6.1  Reitz and Diwakar breakup model constants and their default values

CCL NameValueCon-

stant

Time Factor for Bag BreakupKLM

Time Factor for Stripping20NO

Critical Weber Number for Bag6.0PQRS

Weber Number Factor for Strip-
ping

0.5TUV

6.5.2.4. Schmehl Breakup Model [112]

In the Schmehl model, the droplet deformation and breakup times are based on experimental findings
of Hsiang et al. [109] and Pilch et al. [117]. It can be shown that irrespective of the breakup regime, the
time to deform a particle from a sphere into a disk shape is approximately constant, and is given by:
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(6–134)= ∗ ∗
� ��

with the characteristic time 
∗
�  given as:

(6–135)=∗
�

�

�

�

�

� �

�	
��

The second phase of breakup, which is characterized by further distortion of the droplet to its final
destruction, is modeled by the following correlations:

(6–136)=
















− ≤ <

− ≤ <

− ≤ <

− ≤ <
≤

∗

−

−





��

����

����

����

����

Note that the last two breakup regimes are an extension to the originally proposed model by Schmehl
and are based on experimental findings given by [117].

For large Ohnesorge numbers > , the following correlation is used:

(6–137)= +∗
�

�

�� ����

6.5.2.4.1. Breakup Process for Schmehl Breakup Model

The breakup process used by the Schmehl breakup model can be summarized as follows:

• Breakup can only occur if the droplet Weber number, , is larger than the critical Weber number,

����, where:

(6–138)= +� !"
#$%

• Depending on the Weber number regime at the beginning of the breakup process, the following
droplet breakup scenarios are possible:

– Bag Breakup Regime - This is characterized by:

+ < < +&'( &')

→ In this regime, the breakup occurs in the second half of the *+ to ,-. time frame.

A random breakup time is computed.
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Child droplet sizes and normal velocity of children after breakup are computed.

If the particle life time exceeds the breakup time, then breakup occurs.

– Multimode Regime - This is characterized by + < < +��� ���
.

→ In this regime, the breakup occurs in the second half of the �� to ��� time frame.

A random breakup time is computed.

Child droplet sizes and normal velocity of children after breakup are computed.

If the particle life time exceeds the breakup time, then breakup occurs.

– Shear Breakup Regime - This is characterized by + <	
�
.

→ In this regime, the breakup can occur any time between �
 and ��� time frame.

A random breakup time is computed.

Child droplet sizes and normal velocity of children after breakup are computed.

If the particle life time exceeds the breakup time, then breakup occurs.

Droplet size after breakup for the Bag Breakup and Multimode regimes is computed from the following
relation:

(6–139)= −
� �� ������

��� ����

with:

(6–140)
=

+
���� �� 

In the Shear Breakup regime, the child droplet size, ! "#$%&' , is computed as:

(6–141)=
−

(
( (

( (
)*+

,

,
-./

-.

-.

where 01 is the maximum stable diameter computed from the critical Weber number, 2345,

with:

(6–142)=6
7

8 9
:

:;<=

> ?@AB
C

Except for the Shear Breakup regime, all child droplets inherit their parent's velocity and an additional

velocity component,DE , which is given by:
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(6–143)=
−

−
�

� �

� �
�

�

�� �

�	
� �

with ∼
 
����� � at =� ���, and �� being the droplet diameter before breakup.

The velocity component ��  is assumed to be in a plane normal to the parent droplet velocity direction.

Its circumferential orientation within this plane cannot be specified and is chosen randomly. The total
child droplet velocity is then determined from:

(6–144)= +� � �� � ��� ! �"#$

ur ur ur

6.5.2.5. Taylor Analogy Breakup (TAB) Model [116]

O'Rourke and Amsden proposed the so-called TAB model that is based on the Taylor analogy. Within
the Taylor analogy, it is assumed that the droplet distortion can be described as a one-dimensional,
forced, damped, harmonic oscillation similar to the one of a spring-mass system. In the TAB model, the

droplet deformation is expressed by the dimensionless deformation =% & ' , where ( describes

the deviation of the droplet equator from its underformed position (see Figure 6.4 (p. 281)). Assuming
that the droplet viscosity acts as a damping force and the surface tension as a restoring force, it is
possible to write the equation of deformation motion as:

(6–145)= + =)

*

+ ,
)

-

+ ,
)

+ .

+ ,

/

0 0

1

1

2345
6

7 8 9

Integration of this equation leads to the following time-dependent particle distortion equation:

(6–146)= +






− +



 +

− 


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



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B

B BC

with:
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(6–147)=�
� �

� �

�

�

�
�

�

(6–148)= −	

 �

� 
 �� �

�
�

�
�

(6–149)= �

� �
�

�

� �

�
�
 and �

�
 are the initial values of distortion and distortion rate of change. For the TAB model, �

�
 and

 
!
 are typically taken as zero.

During particle tracking, Equation 6–107 (p. 268) is solved for the dimensionless particle distortion.
Breakup only occurs if the particle distortion y exceeds unity, which means that the deviation of the
particle equator from its equilibrium position has become larger than half the droplet radius.

The Sauter mean radius of the child droplets after breakup is calculated from the following expression:

(6–150)=






+ + 


− 








"

"
#

$ "

%
&

#'(')*+,-

'(./012

' '(')*+,-
3

4

5

that is based on the conservation of surface energy and energy bound in the distortion and oscillation
of the parent droplet and surface energy and kinetic energy of the child droplets.

The TAB model has been used to determine the normal velocity of the child droplets after breakup. At

the time of breakup, the equator of the parent droplet moves at a velocity of =6 7 7 8 9: ; <  in a

direction normal to the parent droplet path. This velocity is taken as the normal velocity component

of the child droplets and the spray angle = can be determined from:

(6–151)=> ?

?

@

ABCD

After breakup of the parent droplet, the deformation parameters of the child droplet are set to

= =E E .

The following user accessible model constants are available for the TAB breakup model.

Table 6.2  TAB Breakup Model Constants and their Default Values

CCL NameValueCon-

stant

Critical Amplitude Coefficient0.5FG
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Damping Coefficient5.0��

External Force Coefficient1/3��

Restoring Force Coefficient8.0��

New Droplet Velocity Factor1.0��

Energy Ratio Factor10/3�

Figure 6.4  Particle distortion for the TAB model

6.5.2.6. ETAB [106]

The enhanced TAB model uses the same droplet deformation mechanism as the standard TAB model,
but uses a different relation for the description of the breakup process. It is assumed that the rate of

child droplet generation, 	
 � 	� , is proportional to the number of child droplets:

(6–152)=�

�

� 
 � � 
��

The constant ���, depends on the breakup regime and is given as:

(6–153)=






≤
>

�
�

�
��

�

�

�

�

with � being the Weber number that divides the bag breakup regime from the stripping breakup

regime. � is set to default value of 80. Assuming a uniform droplet size distribution, the following

ratio of child to parent droplet radii can be derived:
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(6–154)= −�

�
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�

�

� �����	


���
���

��

After breakup of the parent droplet, the deformation parameters of the child droplet are set to

= =� � . The child droplets inherit a velocity component normal to the path of the parent

droplet with a value:

(6–155)=� � ��

where A is a constant that is determined from an energy balance consideration:

(6–156)=
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with:

(6–157)
=-

. /

0 1
2 2

3

456789:

;

and <= being the parent droplet drag coefficient at breakup.

It has been observed that the TAB model often predicts a ratio of child to parent droplet that is too

small. This is mainly caused by the assumption, that the initial deformation parameters >  and

?  are zero upon injection, which may lead to far too short breakup times. The largely underestim-

ated breakup times in turn lead to an underprediction of global spray parameters such as the penetration
depth, as well as of local parameters such as the cross-sectional droplet size distribution. To overcome

this limitation Tanner [107] proposed to set the initial value of the rate of droplet deformation, @ ,

to the largest negative root of Equation 6–107 (p. 268):

(6–158)=



 − −




A BC

B

BC
DE

DE
F

while keeping the initial value of the droplet deformation, =G . HIJ is determined from the fol-

lowing equation:

(6–159)=K L
M

M

N

O
PQ

R

S

R

R

TU

TU

with C = 5.5

The effect of setting V  to a negative number is to delay the first breakup of the large initial droplets

and to extend their life span, which results in a more accurate simulation of the jet breakup.
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In addition to the TAB model constants, the following user accessible model constants are available for
the ETAB breakup model:

Table 6.3  ETAB Breakup Model Constants and Their Default Values

CCL NameValueCon-

stant

ETAB Bag Breakup Factor2/9��

Stripping Breakup Factor2/9��

Critical Weber Number for Stripping
Breakup

80�

6.5.2.7. Cascade Atomization and Breakup Model (CAB)

A further development of the ETAB model, is the so-called Cascade Atomization and Breakup Model
(CAB). Identical to the ETAB model, the following equation is used to determine the child droplet size
after breakup:

(6–160)= −�

�
�

�

�

� 	
��
��


������

��

the main difference being the definition of the breakup constant ���:

(6–161)=
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where

(6–162)=
− 
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and

(6–163)=2 2 3 456
789

: ;

The model constants <=,>?  and @A have the same values as given for the TAB model. For details see

Table 6.2: TAB Breakup Model Constants and their Default Values (p. 280).
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In addition to the TAB model constants, the following user accessible model constants are available for
the CAB breakup model:

Table 6.4  CAB Breakup Model Constants and Their Default Values

CCL NameValueCon-

stant

CAB Bag Breakup Factor0.05��

Critical Weber Number for Stripping
Breakup

80�

Critical Weber Number for Catastrophic
Breakup

350��

6.5.3. Dynamic Drag Models

Many particle drag models assume that the droplet remains spherical throughout the domain. However,
this is not always the case and the particle shape may be distorted significantly. In the extreme case,
the particle shape will approach that of a disk. The drag coefficient is highly dependent on the particle
shape and it is therefore desirable to modify the standard drag laws to account for the effects of droplet
distortion.

In CFX, the following models are implemented that modify the drag coefficient depending on the
particle distortion:

6.5.3.1. Liu [108]

The drag coefficient is assumed to vary linearly between that of a sphere and that of a disk:

(6–164)= +� � �� ��	
��
�� �����
�

(6–165)< <�

y is a measure of the particle distortion. If the droplet is not distorted =� , then the drag coefficient

of a sphere will be obtained. If the particle is maximally distorted =� , then the drag coefficient of a

disk will be obtained. This drag model is only available for the TAB, ETAB and CAB breakup models.

Note

The Liu drag coefficient modification is activated by default for the TAB, ETAB, and CAB
breakup models.

6.5.3.2. Schmehl [105]

The droplet deformation due to external aerodynamic forces leads to a change in the drag coefficient
of the droplet that is assumed to vary between the two limiting geometries, a sphere and a disk. The
drag coefficient of the droplet is given as:
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(6–166)= + −� � � � �� � ���� � ����	�
��
���� 
 


with:

(6–167)= + +−
���������

�����

(6–168)= +�
 

!"#$%&

and:

(6–169)= −' (
)

The droplet aspect ratio, *, and the particle distortion, +, are related as follows:

(6–170)=, -
.

here / is 1 for a sphere and 0 for the distorted particle (disc).

This drag model is available for the Schmehl breakup model only. It is activated by default.

6.6. Particle Collision Model

The following topics will be discussed:
6.6.1. Introduction to the Particle Collision Model
6.6.2. Implementation of a Stochastic Particle-Particle Collision Model in ANSYS CFX
6.6.3. Range of Applicability of Particle-Particle Collision Model
6.6.4. Limitations of Particle-Particle Collision Model in ANSYS CFX

6.6.1. Introduction to the Particle Collision Model

Highly loaded gas-particle flows are commonly simulated by the two-fluid model where interactions
between particles are computed using the Kinetic Theory of Dense Gases. In classical Euler-Lagrange
modeling, the equations of motion of individual particles are solved without considering collisions
between particles because the presence of other particles is not taken into account.

The particle-particle collision model (PPCM) in ANSYS CFX takes inter-particle collisions and their effects
on the particle and gas phase into consideration. The model implemented into ANSYS CFX is the
stochastic particle-particle collision model by Oesterlé & Petitjean [151] that has been extended by
Frank, Th. [149], Hussmann, B. et al. [150] and Sommerfeld [152].

6.6.1.1. Background Information

Standard Lagrange simulations are constrained to dilute gas-particle flows because particles are treated
as being independent of their neighbors. Activating the particle collision model facilitates the application
of the Lagrange model to dense gas-solid flows with a high mass-loading while the particle volume
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fraction is still low. Hence, dense multiphase flows in which contact forces between particles prepon-
derate over aerodynamic forces exerted by the fluid, such as in fluidized beds or hoppers, are excluded.
This is because the model is limited to binary collisions which dominate, if the average distance between
two particles is much greater than their diameters.

Both the Euler-Euler multiphase model and the “classical” Euler-Lagrange model can approximate dense
gas-solid flows only roughly. The LPTM-PPCM (p. 285) model implemented in ANSYS CFX expands the
Euler-Lagrange model by a stochastic inter-particle collision model by allowing the so-called four-way

coupling. Hereby, the mutual influence of gas and particles is accounted for as well as the mutual inter-
action of (spherical) particles by means of binary collisions.

6.6.2. Implementation of a Stochastic Particle-Particle Collision Model in ANSYS

CFX

The main idea behind the stochastic collision model is the creation of a virtual collision partner, which
is done by using local size and velocity distributions of the droplet phase. Hence, the virtual droplet is
a representative of the local droplet population. This approach avoids the need to know the locations
of neighboring droplets and the time consuming search for collision partners in order to decide
whether a collision takes place or not. Only the droplet size- and velocity-distribution functions must
be stored for each computational element, see Sommerfeld, M. (1996) [152]. The following illustration
shows a virtual collision partner, Particle P2, whose position is determined using the following consid-
erations:

• Stochastic determination

• Probability equally distributed over cross section

Figure 6.5  Position of the Virtual Collision Partner

6.6.2.1. Implementation Theory

For the calculation of the instantaneous velocity of the virtual collision partner, a partial correlation of
the turbulent fluctuation velocities between the real and the virtual particle is taken into account, as
proposed by Sommerfeld, M. (2001) [154]. The correlation is a function of the turbulent Stokes number

���, which is the ratio of the aerodynamic relaxation time and a characteristic eddy lifetime, the latter

provided by the turbulence model. Small particles being able to follow the gas flow easily have Stokes
numbers below unity; the Stokes numbers of large inertial particles exceed unity.

Sommerfeld’s correlation function,
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(6–171)= −� � �
���

which was adapted to LES-data of a homogeneous isotropic turbulence field by Lavieville, J., E. Deutsch,
and O. Simonin (1995) [153], is used to determine the fluctuating velocity of the virtual collision partner
as given below:

(6–172)′ = ′ + −� � � � � �	 
 	 � 	 
�
 �
 

�

where the index 1 stands for the real particle and index 2 for the virtual particle, index � represents the

three coordinate directions and the prime indicates a fluctuating part of the velocity. �� ��  is the �-th

component of the mean fluctuation velocity in the control volume. � is a Gaussian random number

with zero mean and a standard deviation of unity. It represents the uncorrelated part of the fluctuation
velocity of the virtual particle. Its instantaneous velocity is the sum of the fluctuating part described
above and the local mean value. The collision frequency is then determined in analogy to the Kinetic
Theory of Gases [151], by the following equation:

(6–173)= + −�
�

� � � � �
� � � �� �

�
 �
ur ur

where ! "
ur

and # $
ur

 represent the instantaneous velocities of the real particle 1 and its collision partner

2. The diameter of the latter is sampled from a Gaussian distribution around the local average value.
The collision probability is a simple function of the collision frequency and the Lagrangian time step
and is calculated as follows:

(6–174)= − −% & '( (

The time step can be altered in the collision subroutine to ensure accuracy and stability of the calculation

by limiting it to <)* +
,
. This allows for at most one binary collision per time step, as derived by

Sommerfeld, M. [152].

A uniformly distributed random number,- , is then generated and compared to the collision probability

./. If >0 12 , the inter-particle collision is calculated deterministically. For <3 45 , no collision occurs

and the velocity components of the real particle remain unchanged. In case of a collision, the location
of the virtual particle is determined in a stochastic way. The calculation of the position of the collision
partner relative to the real particle is done in a local coordinate system. The position is sampled randomly
from a uniform distribution on the collision cylinder cross section and a distance of the center point
according to the sum of the two particle radii. Subsequently, the position of the virtual particle is
transformed back to the global system. A more detailed description is given by Frank, Th. (2002) [149].

At this stage, information on location, size and velocity of the virtual collision partner is known. The
next step is to determine the change in the velocity components caused by the collision. To identify
the post-collision velocities, the momentum transferred between the particles has to be determined.
For this purpose, it is again suitable to use a local coordinate system, different to the one mentioned

above and fixed to the real particle. To identify the post-collision velocities, the momentum 6
ur

 transferred
between the particles has to be determined. Here a distinction is made between a sliding and a non-

sliding collision, if particle rotation is accounted for which affects the tangential components of 7
ur

.
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During a non-sliding collision, the relative movement at the point of contact ceases; whereas during a
sliding collision, relative motion of the contact surfaces is maintained under the influence of sliding
friction.

6.6.2.1.1. Particle Collision Coefficients Used for Particle-Particle Collision Model

Besides the coefficient of restitution � considering the losses normal to the plane of contact, the coeffi-
cients of sliding and static friction have to be supplied for the particle material, if particle rotation is
taken into account. Hence, in the case of rotating particles, a decision between the two collision modes
is made based on the coefficient of static friction. The respective components of the transferred mo-
mentum are determined and the post-collision velocity components are calculated in the local coordinate
system. Finally these values are transformed back to the global coordinate system and passed to the
Lagrangian solver. Because the computational particles (parcel) represent a number of real particles, it
is assumed that all the real particles inside the parcel collide with the same number of virtual particles.

The parameters used for the particle collision model are outlined below:

Sommerfeld Collision Model

• Coefficient of Restitution : Enter a numerical quantity or CEL based expression to specify
the value of coefficient of restitution for inter-particle collisions. A value of ‘1.0’ means a fully elastic
collision, while a value of ‘0.0’ would result in an inelastic collision.

• Static Friction Coefficient  and Kinetic Friction Coefficient : Enter a numer-
ical quantity or CEL based expression to specify values of coefficients of friction for inter-particle
collisions.

See Implementation Theory in the CFX-Solver Theory Guide for more information on setting up
Coefficient of Restitution , Static Friction Coefficient , and Kinetic
Friction Coefficient .

User Defined

This option is available only if you have created a particle user routine to set up the model. Specify the
name of Particle User Routine and select input arguments and type of particle variables returned to
the user routine from the Arguments and Variable List drop-down list, respectively. See Particle User
Routines in the CFX-Pre User's Guide for information on setting up a particle user routine.

The friction coefficient values are dependent on particle material and should be obtained from experi-
mental investigations. As another example, a suitable (static and kinetic) friction coefficient for the col-
lision of steel particles can be assumed to be equal to 0.15, while a value of about 0.4 is mentioned in
literature for glass particles. Furthermore, these values are dependent on the surface roughness of the
particle material and the degree of sphericity of the particle material in the flow and are therefore
subject to uncertainty.

6.6.2.1.2. Particle Variables Used for Particle-Particle Collision Model

The calculation of particle collisions with the Sommerfeld collision model  uses instantaneous
and averaged fluid and particle quantities as well as the following additional quantities:

• Particle number density

• Turbulent Stokes number

• Standard deviation of particle diameter and particle velocity

• Size of the integration time step of the Lagrange particle solver (User Fortran only)
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6.6.2.1.2.1. Particle Number Density

The particle number density, ��, describes the number of particles per unit volume and is calculated

as follows:

(6–175)
∑=�

� �

���
�

	


In this expression, the sum is taken over all particles and all time-steps taken in the control volume of

each vertex. Here �� is the particle integration time-step and 
  is the number rate for the particle.

�����  is the volume of the control volume associated with the vertex.

6.6.2.1.2.2. Turbulent Stokes Number

The turbulent Stoke number, �, is used for the calculation of the fluctuating velocity of the collision

partner of a droplet. The turbulent Stokes number is defined as the ratio of the aerodynamic relaxation
time, ��, and a characteristic eddy lifetime, ��.

(6–176)= �
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(6–177)=�
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and

(6–178)=%
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'
(

6.6.2.1.2.3. Standard Deviation of Particle Quantities

For the calculation of the collision partner, instantaneous, mean and the standard deviation of particle
quantities are required. The standard deviations of the following variables are calculated and are available
for solver internal use, as well as for Particle User Fortran and post-processing.

• Particle Velocity

• Particle Temperature

• Particle Diameter

• Particle Number Rate

The standard deviation of a particle variable,), is calculated within the “vertex variable” machinery and

uses the following definition:
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(6–179)= −� � �
���

� �

For information on vertex and RMS particle variables, see Particle Field Variables in the CFX Reference

Guide.

6.6.2.1.2.4. Integration Time Step Size (User Fortran Only)

The particle integration time-step is passed to the collision model routine that is provided by the user.
The time-step size is required to calculate the collision frequency for that particular integration.

Note

The particle integration time-step can be accessed by the user but it can not be changed.
The only exception is made for the particle collision model when using Particle User Fortran.
In this case, the solver allows users to overwrite the Particle Integration Timestep
variable. This extension is required, as the integration time-step computed from the particle
tracker is typically 2 to 4 orders of magnitude larger than the one computed (and usually
needed) by the collision model routine. This ensures an accurate calculation of the droplet
collision in regions with high particle concentration. For details, see Implementation of a

Stochastic Particle-Particle Collision Model in ANSYS CFX (p. 286).

Dimen-

sion

MeaningName

[Time]Size of the current integration time-stepParticle Integration Timestep

[ ]Turbulent Particle Stokes numberParticle Turbulent Stokes Number

[1/Length^3]Particle number densityParticle Number Density

[1/Time]Standard deviation of the particle number
rate

RMS Particle Number Rate

[Velo-
city]

Standard deviation of particle velocityRMS Velocity

[Length]Standard deviation of particle diameterRMS Mean Particle Diameter

6.6.3. Range of Applicability of Particle-Particle Collision Model

The aim of the LPTM-PPCM (p. 285) is to raise one of the restrictions for a Lagrangian particle tracking
model, namely to extend the range of applicability to higher concentrations of the dispersed particulate
phase. A fluid particle flow can either be characterized by the ratio of the mean time between particle-
particle collisions and the particle relaxation time:

(6–180)=�
�

�
� �	
 �

� 





�

��
� �

� �

�

�
�

or by the inter-particle spacing defined as the ratio of the distance between two particles in the flow
and the particle diameter:
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(6–181)=�

�

�

�� �

�

A fluid-particle flow is particle-particle collision dominated, if the ratio <�
�

�
�

, which means that the

time between adjacent particle-particle collisions is too small in order to allow the particle to get accel-
erated by aerodynamic forces to its normal slip velocity with the carrier fluid until the next particle-
particle collision occurs. This fairly well corresponds to an inter-particle spacing of less than 10 and the
fluid-particle flow is called a dense flow.

In the case of dense fluid-particle flow, it is necessary to additionally account for the direct particle-to-
particle momentum transfer. The PPCM model, in accordance with Oesterlé & Petitjean and Sommerfeld,
accounts for this inter-particle momentum transfer by making the assumption that only binary particle
collisions occur in the intermediate regime between dilute fluid-particle flows and flow regimes in
packed and fluidized beds. For the latter conditions it is not sufficient to assume binary particle collisions
and therefore the PPCM model is not applicable to flow regimes, where multiple particles collide at the
same time or stay in direct frictional contact.

Also see Requirements for the Applicability of Particle-Particle Collision Model in the CFX-Solver Modeling

Guide.

6.6.4. Limitations of Particle-Particle Collision Model in ANSYS CFX

General model limitations and underlying assumptions are mentioned in Range of Applicability of Particle-

Particle Collision Model (p. 290) and in [149], [150] and [152]. When using the particle-particle collision
model in ANSYS CFX, the following limitations apply:

• Particle collisions only take place between particles of the same type.

• Particle collisions are currently only supported for fully coupled particles.

• Collisions are taken into account in transient simulations only after the second time step, because the
PPCM relies on volume-averaged particle properties, which are available only after the completed first
time step. Thus, averaged particle properties used in the PPCM for the generation of the virtual collision

partner in binary particle collisions lag behind by one time step. With →	 , the model converges to
the correct particle property representation for the virtual collision partner in the PPCM, but for large
integration time steps the particle phase information seen by the tracked particle in the PPCM might
be inaccurate.

Also see Requirements for the Applicability of Particle-Particle Collision Model in the CFX-Solver Modeling

Guide.

6.7. Particle-Wall Interaction

The following topics will be discussed:
6.7.1. Introduction to Particle-Wall Interaction
6.7.2.The Elsaesser Particle-Wall Interaction Model
6.7.3. Stick-to-Wall Model
6.7.4.The Sommerfeld-Frank Rough Wall Model (Particle Rough Wall Model)
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6.7.1. Introduction to Particle-Wall Interaction

Particle-wall interaction involves complex physics and not all aspects are well understood. Dimensional
analysis shows that droplet-wall interaction depends on the wall temperature, wall material and
roughness, impact angle and impact velocity, the existence of a wall film, and various other parameters.

ANSYS CFX uses advanced particle-wall interaction and quasi-static wall film models to address some
of the shortcomings found in ANSYS CFX 11.0 and previous releases (see the background information).
The following advanced particle-wall interaction models are available in ANSYS CFX:

• Elsaesser particle-wall interaction model - This model accounts for all of the above listed influencing
factors during the particle droplet reflection.

• Stick-to-wall model - This model enforces all particles that hit a wall to become part of the wall film.

For details on the implementation of quasi-static wall film in ANSYS CFX, see Quasi Static Wall Film

Model (p. 298).

6.7.1.1. Background Information

In ANSYS CFX 11.0 and all previous releases, a very simplistic approach is used to describe the process
of particles colliding with walls: It is assumed that during the collision process, particles exchange mo-
mentum only with the wall. During such collisions, the momentum loss is controlled by constant or
time-dependent coefficients of restitution.

In the case of a fully inelastic collision, the particle is collected at a wall; however, the corresponding
particle mass or energy is no longer available for the simulation. It is also not possible to explicitly account
for the effects of wall roughness or wall temperature during the particle-wall interaction.

6.7.2. The Elsaesser Particle-Wall Interaction Model

The Elsaesser model is used to describe the outcome of a drop impact on a wall. The model distinguishes
between three impact regimes, which are characterized by their wall temperature and the existence of
a wall film.

This model is implemented in ANSYS CFX as per Elsässer [175], however, with one exception that the

double droplet reflection used in the original formulation of Elsässer is neglected.1

This section uses the following notation for the remaining part of the model description:

• Incident parcel is designated with index “0”; whereas, “1” and consecutive integers are used for the re-
flected parcels.

• Angles are always defined with respect to the wall tangent.

• The wall can be dry or wetted with the restriction that the wall film fluid is identical to the particle fluid.

6.7.2.1. Classification of Impact Regimes

The impact regime classification is based on the work of Bai and Gosman [176], who defined two limiting
temperature to distinguish between the following three temperature regimes:

• Cold wall with wall film (cold-wetting)

1The governing equations used in the formulation of Elsaesser particle-wall interaction model in ANSYS CFX differ in some coefficient
values from those presented in Elsässer [175].
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• Hot wall with wall film (hot-wetting)

• Hot wall without wall film (hot-nonwetting)

The limiting temperatures are called pure adhesion temperature, TPA, and pure rebound temperature,

TPR. The pure adhesion and the pure rebound temperatures are functions of the wall and particle ma-

terial combination. Further dependencies (such as particle velocity, surface roughness, drop size and
initial temperature) probably play an important role for dynamic impact but are neglected (usually done
in most models), as the influences are not well known. Only the material properties and the ambient
pressure are thus considered. The correlations used by Elsässer [175] to compute rebound and adhesion
temperatures are strictly valid only for a typical internal combustion engine application, which involve
the interaction of gasoline droplet on a wall material composed of aluminum.

Figure 6.6  Particle-wall interaction as a function of the incoming particle Weber number

(We) and the wall temperature (TWall)

6.7.2.1.1. Cold Wall with Wall Film (TWall < TPA)

In this temperature regime, also known as cold-wetting, the following three impingement options are
modeled (see Figure 6.7 (p. 294)):

• If the incoming particle Weber number (WeP) is below a critical Weber number (Wecrit) and a wall film

exists, then the impinging droplet is reflected.

• If the incoming particle Weber number is above a critical Weber number, then the incoming particle
sticks to the wall and forms a wall film (in the particle solver, this means that the particle type is changed
from regular particle to wall particle).

• If the incoming Weber number is increased further, then splashing occurs. In this case, part of the in-
coming droplet sticks to the wall and only part of it is reflected back into the gas phase. In the current
release of ANSYS CFX, mass removal from the wall film is neglected.
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Figure 6.7  Particle-wall interactions for cold-wet walls

6.7.2.1.2. Hot Wall with Wall Film (TPA < TWall < TRA)

In this temperature regime, also known as hot-wetting, the following impingement options are modeled
(see Figure 6.8 (p. 295)):

• If the incoming particle Weber number is below a critical Weber number and a wall film exists, then
the impinging droplet is reflected.

• If the incoming particle Weber number is above a critical Weber number and a wall film exists already,
then the incoming particle sticks to the wall and its mass is transferred to the wall film.

• If the incoming particle Weber number is above a critical Weber number, then boiling and splashing
are possible and are allowed to occur independently of each other. Also, a part of the impinging droplet
is transferred into the wall film.

• If the incoming Weber number is increased further, then splashing occurs. In this case, part of the in-
coming droplet sticks to the wall and only part of it is reflected back into the gas phase. The mass re-
moval from the wall film is neglected.
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Figure 6.8  Particle-wall interactions for hot wall with wall film

6.7.2.1.3. Hot Wall Without Wall Film (TWall > TRa)

In this temperature regime, also known as hot-nonwetting, no wall film can exist and the following
impingement options are modeled (see Figure 6.9 (p. 295)):

• If the incoming particle Weber number is below a critical Weber number, then the impinging droplet
is reflected from the wall.

• If the incoming particle Weber number is above a critical Weber number, then part of the incoming
droplet is reflected from the wall. The other part of the droplet disintegrates and forms child droplets
that are also reflected off the wall.

• If the incoming Weber number is increased further, then pure breakup occurs (that is, the incoming
droplets complete disintegrates and form child droplets that reflect from the wall).

Figure 6.9  Particle-wall interaction for hot walls without wall film
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6.7.2.2. Wall Roughness

Mean roughness values in internal combustion engine applications are of the same order as the drop
diameter. Therefore, a numerical consideration of the roughness cannot be neglected.

The Elsaesser model assumes an idealized 2D roughness profile in the impact plane of the drop. It is

presented as neighboring isosceles triangles with angle � and a height of ��.

If a wall film exists, an effective film thickness, ���, between roughness elements is calculated from:

(6–182)=� � ��	 
 �

��  is the local film thickness. A non-dimensional roughness height, 
, is computed as:

(6–183)=�
�

�

�

�

with �� being the droplet diameter.

The virtual roughness angle, �, is determined based on ��� and � as follows:

= °�≤�  and >� ���  

= − ° + ° − °! " "
#< ≤$  or ≤% &'( )

= °*>+  and ≤, -./ 0

Particle with a non-dimensional size of larger than =12  are unaffected by wall roughness, while

for smaller droplets the reflection is computed based on the virtual roughness angle, 3.

Note that contrary to the originally proposed model of Elsässer [175], multiple reflections within one
roughness element are not considered.
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Figure 6.10  Treatment of rough walls

6.7.2.3. Range of Applicability, Input Data and Restrictions

The Elsaesser particle-wall interaction model is mainly targeted towards the application in internal
combustion engines, because most of the correlations used in the model are strictly only valid for gas-
oline type of fuels and assume that the wall material is aluminum. The model uses over 50 different
model constants internally.

To run a simulation using the Elsaesser wall interaction model, the following input is required:

• Wall material density

• Wall material heat capacity

• Wall material thermal conductivity

The particle solver automatically uses any roughness information you provided to simulate the droplet
reflection.

The Elsaesser model uses the child droplet generation capability of ANSYS CFX. This feature is turned on
automatically, if the Elsaesser (or any other) advanced particle-wall interaction model is selected. Particles
that have hit the wall and have been changed into wall particles are reported separately in the particle
fate section. The wall film is represented by wall particles and it is assumed that this film does not move
due to external forces. The wall film can exchange mass and energy with its surrounding, but no mo-
mentum.

6.7.3. Stick-to-Wall Model

The model enforces all particles that hit a wall to become part of the wall film, regardless of their impact
velocity or impact angle. Also, particles that are collected on a wall are able to interact with their sur-
roundings by exchanging mass and energy (for example, during the droplet evaporation).

6.7.4. The Sommerfeld-Frank Rough Wall Model (Particle Rough Wall Model)

The majority of industrially important disperse multiphase-flows are confined flows, such as flows in
cyclone separators or in pneumatic conveying pipe systems. The motion of large particles, which is

297
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Particle-Wall Interaction



dominated by inertia, is strongly influenced by the confinement. Studies of the wall-collision process
have shown that irregularities due to wall-roughness and deviation of particle shape from a sphere play
important roles [208], [209], [210].

To account for the influence of wall roughness on the particle-wall collision, the irregular bouncing
model of Frank [211] is used. This model is based on the virtual wall model that was proposed by
Sommerfeld [212].

Figure 6.11  Particle-Wall Interaction at a rough wall. Definition of ∆γ and characteristic

roughness element length scales

In this model, it is assumed that the reflection of a particle at a rough wall can be modeled as the re-
flection of the particle at a virtual wall that is inclined with an angle of �

�
 relative to the real wall. The

inclination angle �
�

 is a function of the wall roughness scale and the particle diameter.

In the model of Frank [4] the inclination angle, �
�

, is sampled from a Gaussian distribution with a mean

value of 0° and a standard deviation of �. The standard deviation depends on the particle diameter

�� and the roughness parameters. It is estimated as:

(6–184)=
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where:

• �� is the mean cycle of roughness (the average distance between peaks of wall material)

• �� is the mean roughness height

• ��� is the standard deviation of the roughness height

6.8. Quasi Static Wall Film Model

In ANSYS CFX, a so called quasi static wall film model is implemented that neglects the wall film
movement due to external forces, such as shear stress, gravity, pressure forces, etc. In this model, wall
particles interact only with their surroundings via mass transfer (evaporation) or heat transfer (wall
conduction, convection).
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The following topics will be discussed:
6.8.1. Assumptions
6.8.2. Determination of Flooded Regime
6.8.3. Energy Transfer to and from the Wall Film
6.8.4. Mass Transfer to and from the Wall Film
6.8.5.Wall Film Thickness
6.8.6.Wall Film in Moving Mesh Applications
6.8.7. User Control for Heat and Mass Transfer Terms of Wall Particles

6.8.1. Assumptions

The following main assumptions apply to the wall-film model:

• The wall film thickness is thin and the wall film does not alter the geometry.

• The existence of a wall film has no influence on the turbulence generation in the wall boundary layer.

• Film particles are in direct contact to the wall and heat transfer from wall to film takes place by conduc-
tion.

• Film particles originating from different particle types do not mix (that is, fuel droplets that hit oil-
covered walls do not interact with each other). In ANSYS CFX, the particle solver checks that only one
particle type can form a wall film on a domain boundary.

• In the non-flooded regime wall particles keep their spherical shape.

• The simulation is assumed to be turbulent.

• The wall film model can be used only in transient simulations.

• The wall film model cannot be used together with dispersed Eulerian particles.

6.8.2. Determination of Flooded Regime

By default, it is assumed that a wall face is covered by a wall film (flooded) as soon as the first wall
particle is created on that particular face.

6.8.3. Energy Transfer to and from the Wall Film

The total heat transfer to a single wall film droplet is found from the following energy balance:

(6–185)= + + +��
��

��
� � � �� ��	
 ��	� ��
� �



6.8.3.1. Conductive Heat Transfer

�
����

 is the heat conducted from the wall, as given by:

(6–186)= −� � � � �
���� � � �

where =�  !  is the conductive heat transfer coefficient and "# is the wall area covered by the

particle. This term is always included in the energy equation for wall particles.
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6.8.3.1.1. Non-flooded Regime

In the non-flooded regime,  is assumed to be equal to the drop diameter. The wall contact area is

computed from =� ��� �
�

.

6.8.3.1.2. Flooded Regime

In the flooded regime,  is set equal to the wall film thickness, �� . The wall contact area is computed

from =� �	
 �� � 
 , with ���� being the volume of the particle and ��  the wall film thickness that was

computed at the previous time step.

6.8.3.2. Convective Heat Transfer

The heat transferred from the gas to the film, �
����

, is given by:

(6–187)= −� � � � �
��� ! " #

where $% is the area covered by a wall particle, &' is the conservative gas temperature at the particle

position, and ( is the film heat transfer coefficient.

This term is always included in the energy equation for wall particles.

6.8.3.2.1. Non-flooded Regime

For the non-flooded regime, )* and + are computed as:

(6–188)
=

=
, -.

/ 012 .

3 3

4 5

6

The Nusselt number used for the calculation of 7 is computed using the Ranz-Marshall correlation for
a sphere:

(6–189)= +89 :;<=
>?@

6.8.3.2.2. Flooded Regime

In the flooded regime, A is set equal to the transfer coefficient for energy computed by the flow solver.

Note

The energy transfer coefficient is only available for turbulent flows. A physics check is added
to the tracker setup phase to make sure that you set the flow type to turbulent.
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6.8.3.3. Calculation of the Average Wall Film Temperature

The average wall film temperature (that is, the temperature of all wall particles associated to a boundary
vertex) is computed by using the particle vertex machinery, by adding up contributions of wall particles

(particles that already exist and new particles that turn into wall particles). This is done as a post-pro-
cessing step after all particles have been tracked.

6.8.3.4. Evaporation from Film

�
����

 accounts for the energy that is removed from the wall film particle, as it evaporates into the

surrounding medium:

(6–190)=� � �
�	
� �

�  is the latent heat of vaporization, 
� is the rate of evaporation.

6.8.3.4.1. Non-flooded Regime (Non-boiling)

The mass transfer rate for a single droplet is computed using the Liquid Evaporation Model. For particles
below the boiling point, the following relation is used:

(6–191)=

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The transfer coefficient, ��, is defined as:

(6–192)=� ��� � � ! ! "

The Sherwood number is calculated using the Ranz-Marshall correlation for a sphere as:

= +#$ % &' '
()*

6.8.3.4.2. Flooded Regime (Non-boiling)

The mass transfer rate of a particle component, +, into the coupled Euler phase can be determined by

considering species mass balances on control surfaces on either side of the phase interface:

(6–193)= +, - , ./ 0 / /

12  is the mass fraction of the particle component at the film surface, and 34 is the surface diffusive

mass flux.

The surface mass flux can be expressed in terms of a mass transfer coefficient, 5, as:
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(6–194)= −� � � �� �

�  is the mass fraction of the volatile particle component as obtained from the flow field solution. The

transfer coefficient, �, is set equal to the transfer coefficient for scalars as computed by the flow solver.

Inserting Equation 6–194 (p. 302) into Equation 6–193 (p. 301) and solving for ��, gives:

(6–195)= −
−

	 

� �

�
�







6.8.3.4.3. Flooded and Non-flooded Regime (Boiling Particles)

For particles above the boiling point this relation is used:

(6–196)=
− + +

�
� � �

�
�

���� ���� ���

where �
����

 and �
� !"

 is given by Equation 6–186 (p. 299) and Equation 6–187 (p. 300) respectively.

#
$%&

 is computed in the same way as for regular particles.

6.8.4. Mass Transfer to and from the Wall Film

Mass transfer due to evaporation is computed from Equation 6–191 (p. 301), Equation 6–195 (p. 302) or
Equation 6–196 (p. 302) depending on the regime (viz., flooded or non-flooded) and the state of the
particle (viz., boiling or non-boiling). Mass transfer from impinging droplets is computed by simply
adding the droplet mass to the film mass on a particular wall face.

6.8.5. Wall Film Thickness

The wall film thickness on a given (control volume) wall face is computed from the volume fraction,

'(), of all wall particles in a control volume, times the ‘control volume’ volume,*+,-., divided by the

local control volume face area, /0 123 :

(6–197)=4
5 678

9
:

;< =>

< =>?

The generalization to control volume sectors or element faces is straightforward.

6.8.6. Wall Film in Moving Mesh Applications

Even though the wall film is assumed to be not moving due to external forces, there may be situations,
where the wall film is either moving with the wall (for example, piston top) or moving relative to the
grid (for example, cylinder wall). The second situation occurs due to the moving mesh approach used
for simulations with changing geometries.
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Both situations are handled with the current approach without user interference. The distinction
whether wall particles move with a wall or move relative to the underlying mesh is based on the value
of the so called Wall Velocity, which is given as:

For the moving wall:

Velocity of mesh (Vmesh) = Velocity of wall (Vwall) = Velocity of wall-particle (Vwall-particle)

For the stationary wall:

Velocity of mesh (Vmesh) ≠  0, Velocity of wall (Vwall) = Velocity of wall-particle (Vwall-particle) =  0

6.8.6.1. Wall Film Moving with Mesh

The situation is identical to the case, where wall particles are located at a non-moving wall.

When a particle has hit a wall face, the topological data of the impact is known and is stored in the
particle database. Because the particle does not move, there is no need to update this data during the
simulation.

6.8.6.2. Wall Film Moving Relative to Underlying Mesh

This case requires the update of the wall particle topology data during the simulation, as wall particles
may cross elements due to the specified mesh movement. The relocalization of wall particles is currently
done after all particles have been tracked. Due to performance reasons the update is not done while
tracking wall particles. Relocalizing wall particles at the end of a fluid time step therefore puts an upper
limit onto the maximum allowed fluid time step, because for accurate simulations wall particle should
not cross more than one element per fluid time step. If a too large time step is used, wall particles will
put their heat and mass sources into the last known element.

6.8.7. User Control for Heat and Mass Transfer Terms of Wall Particles

In ANSYS CFX, the coupling of heat and mass transfer terms of wall particles into the coupled Eulerian
phase can be controlled, similar to the coupling control for regular particles. However, it is not possible
to control the coupling on a term-by-term basis, but the coupling is applicable on the global equation
level. This means that if the particle energy equation is run in a fully coupled mode, then this will not
only apply to regular particles, but also to wall bounded particles (and the wall film they represent).
Likewise, if the coupling of the energy equation is set to one-way coupled, then this also applies to the
wall particles of that particular particle type. The coupling control for wall particles is essentially
identical to what is currently done for regular particles. The same applies to the particle mass transfer
equation.
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Chapter 7: Combustion Theory

This chapter covers the implementation of the combustion models in the CFX-Solver and extends the
ideas covered in Multicomponent Flow (p. 44). You should be familiar with the multicomponent flow
chapter before reading this section.

This chapter describes:
7.1.Transport Equations
7.2. Chemical Reaction Rate
7.3. Fluid Time Scale for Extinction Model
7.4.The Eddy Dissipation Model
7.5.The Finite Rate Chemistry Model
7.6.The Combined Eddy Dissipation/Finite Rate Chemistry Model
7.7. Combustion Source Term Linearization
7.8.The Flamelet Model
7.9. Burning Velocity Model (Premixed or Partially Premixed)
7.10. Burning Velocity Model (BVM)
7.11. Laminar Burning Velocity
7.12.Turbulent Burning Velocity
7.13. Extended Coherent Flame Model (ECFM)
7.14. Residual Material Model
7.15. Spark Ignition Model
7.16. Autoignition Model
7.17. Phasic Combustion
7.18. NO Formation Model
7.19. Chemistry Post-Processing
7.20. Soot Model

The following sections outline the basis of the implementation of combustion modeling in CFX. First,
the transport equations for energy and the components are revisited, then the chemical reaction rate
computation is described, and finally, the computation of the rate of progress of a chemical reaction
is explained in the context of the Eddy Dissipation and Finite Rate Chemistry Models. Extinction is
modeled by setting the reaction rate locally to zero.

7.1. Transport Equations

Combustion models in CFX use the same algorithm used for Multicomponent Fluid with the addition
of a source/sink term due to chemical reactions. The equation of transport for component I with mass
fraction, YI is then:

(7–1)
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where the source term SI is due to the chemical reaction rate involving component I.
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7.2. Chemical Reaction Rate

In general, chemical reactions can be described in terms of K elementary reactions involving NC com-

ponents that can be written as:

(7–2)∑ ∑








′ ⇔ ″






= … = …

� � � �

� � � �

�

��
� � � �

�

��
� � � � � �

	 	

where 
��  is the stoichiometric coefficient for component 
 in the elementary reaction �. The stoichiomet-

ric coefficients for reactants are denoted by a single dash, ′� �� , and those for products by a double

dash, ″� �� .

The rate of production/consumption, �� , for component � can be computed as the sum of the rate of

progress for all the elementary reactions in which component � participates:

(7–3)∑= ″ − ′
=

� � � � �� �
�

�

�� �� �
 

where !" is the elementary reaction rate of progress for reaction #, which in CFX can be calculated

using the Eddy Dissipation Model or/and the Finite Rate Chemistry Model.$%  is the molar mass of

component &.

7.3. Fluid Time Scale for Extinction Model

When the model for flame extinction at high turbulence is activated, local extinction occurs when
. <' '( ).

While *+ is directly specified, the turbulence time scale is computed from the CFD solution fields. One

possibility is to apply the Kolmogorov time scale:

(7–4)=,
-

.
/012030405

An alternative is to use the mixing time scale:

(7–5)=6
7

8
9:;:<=

7.4. The Eddy Dissipation Model

The eddy dissipation model is based on the concept that chemical reaction is fast relative to the
transport processes in the flow. When reactants mix at the molecular level, they instantaneously form
products. The model assumes that the reaction rate may be related directly to the time required to mix
reactants at the molecular level. In turbulent flows, this mixing time is dominated by the eddy properties
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and, therefore, the rate is proportional to a mixing time defined by the turbulent kinetic energy, k, and

dissipation, �.

(7–6)∝ �

�

This concept of reaction control is applicable in many industrial combustion problems where reaction
rates are fast compared to reactant mixing rates.

In the Eddy Dissipation model, the rate of progress of elementary reaction k, is determined by the
smallest of the two following expressions:

7.4.1. Reactants Limiter

(7–7)=



 ′




� �

�

�

�

�
	

	


where [ I ] is the molar concentration of component I and I only includes the reactant components.

7.4.2. Products Limiter

(7–8)
∑
∑

=




 ″







� � 

�

�

� �

� �
�

� �

� �� �

where P loops over all product components in the elementary reaction k.

The products limiter is disabled when the model coefficient B is set to a negative value. For both single
step and multi-step reaction schemes, it is turned off by default, (set to -1), but may be turned on by
explicitly setting the model coefficient B to a positive value (although this is not recommended for
multistep reaction schemes).

7.4.3. Maximum Flame Temperature Limiter

Optionally, a maximum flame temperature may be applied for the Eddy Dissipation model. The reaction
rate is smoothly blended to zero when the specified upper temperature limit is approached. This is
implemented by an additional bound added to the minimum condition in the EDM reaction rate:

(7–9)=� �
�

�
�� ��� ����

where:
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(7–10)= −� � � �
��

�
���

�

	

��


���  may be interpreted as a virtual concentration, which vanishes if the temperature is equal to the

maximum flame temperature.�� is the specific heat capacity of the fluid mixture at constant pressure

and �� is the reaction heat release per mole.

7.5. The Finite Rate Chemistry Model

The Finite Rate Chemistry model, as implemented in CFX, assumes that the rate of progress of elementary
reaction k can be reversible only if a backward reaction is defined. Therefore, the rate of progress Rk, is

computed as:

(7–11)∏ ∏=







−





= …

′

= …

″
� � � � �� �

� � �

�

�
�
� � �

�

�

� � � �

 

!"

 

!"

where [ I ] is the molar concentration of component I and Fk and Bk are the forward and backward rate

constants respectively.

r represent the reaction order of component I in the elementary reaction k. This reaction order is equal
to the stoichiometric coefficient for elementary reactions, but it can be different for certain global reac-
tions.

The only built-in formula for the forward and backward rate constants assumes an Arrhenius temperature
dependence as:

(7–12)= 


− 


# $ %
&

' %
( (

) (*

(7–13)= 


− 


+ , -
.

/ -
0 0

1 02

where:

• Ak is pre-exponential factor

• 3
4

 is the temperature exponent (dimensionless)

• Ek is the activation energy

• T is the absolute temperature

56 can also be specified directly without using relations.

Separate sets of coefficients 78, 9
:

 and ;< are applied to forward and backward rates.
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7.5.1. Third Body Terms

In cases that a third body is needed for the reaction to occur, the rate of progress described earlier is
scaled by:

(7–14)∑
=

� �

�

�

�� �
�

where ��� is the relative participation of component Ii in reaction k.

For those components that have a high probability to participate in the reaction, the coefficient 	
� is

higher than those that rarely participate or do not participate at all ( =�
� ). If the third body term is

present in a reaction, CFX assumes the default efficiency for all components (Option = Default ). Effi-
ciency factors can be specified for individual species by setting Option to Efficiency Factor
List  and listing the components as well as their efficiency factors in the Materials List  and Ef-
ficiency Factor List  parameters, respectively. If the Efficiency Factor List  option is
effective, the default still applies to those components that are not listed.

7.6. The Combined Eddy Dissipation/Finite Rate Chemistry Model

The effective reaction rate, for the combined model, is computed to be the minimum of the Finite
Chemistry Rate and the Eddy Dissipation rate.

The Theory documentation for this model is the same as for others:

• The Eddy Dissipation Model (p. 306)

• The Finite Rate Chemistry Model (p. 308)

7.7. Combustion Source Term Linearization

The combustion source terms may have a dominant influence on the solution of the scalar and energy
equations. Thus, it is important to treat the combustion source terms carefully in order to obtain robust
convergence of the fluid flow.

A property of multicomponent fluids is that the mass fraction of any given component is bounded
between 0 and 1. Combustion tends to drive reactant concentrations towards the lower limit and
product concentrations toward the upper limit. If the timestep is large, the combustion sources may
cause scalars to exceed these bounds. Thus, the sources may need to be moderated to maintain phys-
ically realistic mass fractions.

The combustion sources in CFX have been linearized to prevent the formation of negative mass fractions.
Consider the solution of component I with the source term, R, which is calculated from Equa-

tion 7–15 (p. 309) in each control volume. To prevent the mass fraction of I from exceeding the bounds
of 0 to 1, the source term is calculated according to:

(7–15)= 


− 


+ 




+
−




 −∗ ∗ ∗

� �

�
�

� �

�
�

� � � �

where =∗
� � �  and where − ∗∗ = −� � �
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and � is a small number (set to 10-6). The combustion reaction rate should approach 0 whenever any
of the reactant or product mass fractions approach 0. If the source is positive (for products), then the
first term on the right hand side of Equation 7–15 (p. 309) is zero and the source is:

(7–16)= ≥ −� � ��

otherwise:

(7–17)= −
�

�

�
�

Thus as →  . →

If the source is negative (reactants), then the second term on the right hand side of Equation 7–15 (p. 309)
is zero and the source is:

(7–18)= ≥	 
 ��

otherwise:

(7–19)= 
 �

�

�

Thus as →  . →

This treatment of combustion sources allows larger timesteps to be used in calculating a steady state
solution than would be possible without the linearization.

7.8. The Flamelet Model

The Flamelet concept [37] for non premixed combustion describes the interaction of chemistry with
turbulence in the limit of fast reactions (large Damköhler number). The combustion is assumed to occur
in thin sheets with inner structure called Flamelets. The turbulent flame itself is treated as an ensemble
of laminar Flamelets which are embedded into the flow field.

The Flamelet model is a non equilibrium version of the classical “Burke-Schumann” limit. It adds new
details to the simulation of combustion processes compared to other common combustion models for
the price of the solution of only two scalar equations in the case of turbulent flow. An arbitrary number
of intermediates may be specified as long as their laminar chemistry is known.

The main advantage of the Flamelet model is that even though detailed information of molecular
transport processes and elementary kinetic reactions are included, the numerical resolution of small
length and time scales is not necessary. This avoids the well-known problems of solving highly nonlinear
kinetics in fluctuating flow fields and makes the method very robust. Only two scalar equations have
to be solved independent of the number of chemical species involved in the simulation. Information
of laminar model flames are pre-calculated and stored in a library to reduce computational time. On
the other hand, the model is still restricted by assumptions like fast chemistry or the neglecting of dif-
ferent Lewis numbers of the chemical species.
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The coupling of laminar chemistry with the fluctuating turbulent flow field is done by a statistical
method. The PDF used can in principle be calculated at every point in the flow field by solving a PDF
transport equation as shown by Pope and many others. The most often mentioned advantage of this
method is that the nonlinear chemical source term needs no modeling. Even though the method avoids
some modeling which is necessary if using moment closure, it still requires modeling of some of the
most important terms, in particular, the fluctuating pressure gradient term and the molecular diffusion
term. If combustion occurs in thin layers as assumed here, the molecular diffusion term is closely coupled
to the reaction term and the problem of modeling the chemical source term is then shifted towards
modeling the diffusion term.

However, there is no source term in the mixture fraction equation, which is the principal transport
equation in the Flamelet model. Therefore, a presumed beta-PDF, which is a commonly accepted choice,
is used here. Additionally, this avoids the extremely large computational efforts of calculating the PDF
in 3D with a Monte Carlo method.

The following list outlines the assumptions made to derive the Flamelet model:

• Fast Chemistry

• Unity Lewis numbers for all species, =���

• Combustion is in the Flamelet Regime

• Two feed system, that is, fluid composition at boundaries must be pure “fuel,” pure “oxidizer” or a linear
blend of them.

• Diffusion flames. For premixed or partially premixed combustion, the Flamelet model can be combined
with a model for reaction progress. For details, see Burning Velocity Model (Premixed or Partially Pre-

mixed) (p. 316).

Fluid properties, including temperature and density, are computed from the mean composition of the
fluid in the same way as for other combustion models, such as the Eddy Dissipation model.

The Flamelet model as implemented in CFX can be applied for non-adiabatic configurations. The only
limitation is that changes in the composition of the fluid due to different temperature and pressure
levels are not accounted for. However, the effect of heat loss and pressure on density and temperature
is taken into account. For heat losses occurring in many combustion devices, the influence of heat losses
on composition is sufficiently small to be neglected.

In a large number of industrial combustion devices, pure non-premixed combustion is less present than
premixed or partly premixed combustion. In CFX, a model for premixed and partially premixed combus-
tion is available, which involves the Flamelet model as a sub-model. For details, see Burning Velocity

Model (Premixed or Partially Premixed) (p. 316).

7.8.1. Laminar Flamelet Model for Non Premixed Combustion

A diffusion flame is characterized by the diffusion of reactants into the flame front. While convective
and diffusive time scales are of the same order of magnitude, the chemical time scales are much smaller
for typical combustion processes of interest. Several approaches to treat chemical reactions have been
developed and tested during the last decades.

The assumption of local chemical equilibrium has often been used in modeling the fast chemistry regime.
For hydrocarbon flames, however, the assumption of local chemical equilibrium results in an over-pre-
diction of intermediates like CO and H2. This suggests that non equilibrium effects are important in

modeling these flames. Further essential non equilibrium effects are flame extinction, lift-off and blow-
out.
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Another well known approach is the flame sheet model of Burke and Schuman often characterized as
'mixed is burned'. Here, only the mixture of the reactants is calculated and the chemistry is treated as
infinite fast and complete when mixing is complete. Therefore, combustion occurs in an infinitely thin
sheet at the surface of stoichiometric mixture. Again non equilibrium effects are not taken into account,
which are important if the strongly varying time scales of the turbulent flow fields approach those of
the chemical reactions.

Linan [42] was the first who incorporated non equilibrium effects in diffusion flames. He analyzed the
inner structure of the thin laminar flame sheet, referred to here as a Flamelet using an asymptotic de-
scription with a large Damköhler number as the expansion parameter. The Damköhler number is the
ratio of flow to chemical time scales:

(7–20)=�
�

�
�

�

�

Linan’s method is similar to Prandtl's boundary layer theory. The inner layer of the thin reaction sheet
with well defined structure is called “Flamelet” from now on. A more simple description of flamelets is
possible by using the mixture fraction, which is the sum of all elementary mass fractions:

(7–21)∑=
=

�
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�
�	
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�

which have its origin in a system consisting of fuel inlet (labeled 1) and oxidizer inlet (labeled 2). Here


� is the mass fraction of species i, � � the mass fraction of a chemical element � (such as C or H), �

the molecular mass, and ��� the number of elements � in the molecule �

(7–22)= = −�
�

�

�

�

����
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� !"!#�$
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Assuming equal diffusivities and heat capacities for all chemical components a conservation equation
for the mixture fraction Z can be derived by summing all species conservation equations, and the
chemical source terms therefore cancel exactly. The mixture fraction is not influenced by chemical reac-
tions because it deals with elements rather than molecules, and elements are not affected by chemistry.

(7–23)
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The isosurface =, ,-. determines the location of stoichiometric mixture. To be able to describe the

location of the flamelets anywhere in the flow field, a new coordinate system is introduced here. One
of its coordinates is locally perpendicular to the surface of stoichiometric mixture.

The transformation is shown for the temperature equation as an example. The 3 terms at the right hand
side represent chemical reactions, radiation and the transient pressure gradient, respectively. The last
is important for combustion involving fast changing pressure such as in closed burning chambers of a
piston engine.
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After applying the following transformation rules:
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and using the assumption of a constant Lewis number:

(7–28)=��
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� �  !

you obtain the temperature equation in the form:
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Because the Flamelet is assumed to be thin, only gradients normal to the surface of stoichiometric
mixture are large, and all terms without a second derivative in respect to the mixture fraction Z can be
neglected. When this is done formally by introducing a stretched coordinate, it turns out that the re-
maining equation is essentially one dimensional. The same arguments apply for all other equations as
well:

(7–30)∑∂
∂

− ∂
∂

= + + ∂
∂=

7

8

9 7

: ; <
= >

?

< <

@

8

AB

C D

E

D D
F

C CG

H

H

Non equilibrium effects - the influence of the outer flow field on the inner reaction zone - are described
by the scalar dissipation rate I

JK
 at stoichiometric mixture.

313
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

The Flamelet Model



(7–31)= ∇� � �
�� �� ��

�

It represents a reciprocal residence time which is increased by stretch effects of the flow field and reduced
by diffusion. At a critical value of =� �

�
 the flame shows a threshold behavior and extinguishes. The

stretch in physical space leads to a reaction zone which is so thin that the production of heat cannot
balance the heat loss caused by conduction. The temperature drops to unburnt values and the reactions
freeze. `Freeze' means they are at lower temperatures and are much slower than the fluid time scales.

The important conclusion of this derivation is that flamelet structures in the presence of fast chemistry
can be described by one dimensional model flames. This will be used to model reacting turbulent flow
fields.

7.8.2. Coupling of Laminar Flamelet with the Turbulent Flow Field

In the turbulent flow field, the Favre averaged (tilde superscript) mixture fraction equation is solved:

(7–32)
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The Favre averaging is extensively explained in the theory documentation of CFX. Statistical information
on the mixture fraction is obtained from the variance of Z.

(7–33)
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The structure of this equation is similar to the mixture fraction equation itself except for last two terms
on the right hand side. The first source term is the production and the second source term models the
dissipation of the variance. Here, � stands for the scalar dissipation rate and is modeled in turbulent

flow using the empirical relation:

(7–34)= ″∼
∼
∼ !
"

#
$%

&

It includes the effects of strain as well as mixture fraction fluctuations. The standard set of model coef-

ficients in CFX is ='( , =″) *
+  and =,-

The mean composition of the fluid is computed as a function of mean mixture fraction, mixture fraction
variance and scalar dissipation rate by look-up in a flamelet library:
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The integration over the probability density function (PDF) � is not carried out during the CFD calculation,
but is part of the generation process for the Flamelet library. For details, see Flamelet Libraries (p. 315).
The CFD solver looks up the preintegrated values from the library.

In principle, many types of PDF could be applied, but the most commonly agreed choice is the Beta-

PDF. The shape of 
 is presumed to be that of a beta function (�-function):
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The Beta-PDF is used for the Flamelet libraries shipped with CFX, and for libraries created with CFX-RIF.
For details, see CFX-RIF in the CFX-Solver Modeling Guide.

Note that for the table look-up, the solver is actually using � instead of �
 !

,i.e., the local value of the

scalar dissipation rate is applied instead of the value at stoichiometric mixture fraction. This is exact
only for stoichiometric mixture or for vanishing variance of mixture fraction (perfectly premixed case).
However, many radicals of interest, for example, OH radicals, have significant concentrations only at
stoichiometry and in its surrounding, which makes this approximation acceptable. In principle, "

#$
 could

be derived from the solution fields, but this would introduce errors, too, because it would require either
additional modeling or averaging over the computational domain.

7.8.3. Flamelet Libraries

A flamelet library provides the mean species mass fractions as functions of mean mixture fraction,
variance of mixture fraction and scalar dissipation rate:

(7–38)= 


″ 
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∼ ∼ ∼ ∼ ∼
% % & &' ' ()

*

A separate Flamelet library is required for each fuel and each combination of fuel/oxidizer inlet temper-
atures and pressure level. The libraries shipped with CFX are listed in Table 7.1: Flamelet libraries included

with CFX (p. 316). The files reside in the subdirectory: <CFXROOT>/etc/reactions-extra/flame-
let/
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where <CFXROOT> is the location of your CFX installation.

Table 7.1  Flamelet libraries included with CFX

Pres-

sure
���������	Fuel/Ox-

idizer

Library file name

1
[bar]

298
[K]

298
[K]

hydro-
gen/air

H2_Air_Tf300K_Tox300K_p1bar.fll

1
[bar]

300
[K]

300
[K]

Meth-
ane/air

CH4_Air_Tf298K_Tox298K_p1bar.fll

If more libraries are needed, these can be created with CFX-RIF. For details, see CFX-RIF in the CFX-

Solver Modeling Guide.

Note

The flamelet libraries shipped with ANSYS CFX are provided to illustrate the flamelet model
and the partially premixed model capabilities. Flamelet libraries calculated using CFX-RIF
may consider a larger number of components and a more detailed reaction mechanism. As
a result, the calculated mixture composition based on flamelet libraries calculated using CFX-
RIF may be more accurate.

7.9. Burning Velocity Model (Premixed or Partially Premixed)

The model for premixed or partially premixed combustion can be split into two independent parts:

• Model for the progress of the global reaction: Burning Velocity Model (BVM), also called Turbulent Flame
Closure (TFC)

• Model for the composition of the reacted and non-reacted fractions of the fluid: Laminar Flamelet with
PDF

The mass fractions in the non-reacted fraction of the fluid,
�� 
����, are obtained by linear blending of

fuel and oxidizer compositions. The species mass fractions in the burned fraction of the fluid,���������,

are computed by applying the Flamelet model.

7.9.1. Reaction Progress

A single progress variable, �, is used to describe the progress of the global reaction:

(7–39)+ →

The composition of the fluid is determined by blending the compositions of the non-reacted state (fresh

gases) and the reacted state (burned gases), where =�  corresponds to fresh materials and =� cor-
responds to fully reacted materials.

In turbulent flow, a bimodal distribution of � is assumed. At any given time and position in space the
fluid is considered to be either fresh materials or fully reacted. This assumption is justified if the chem-
ical reaction is fast compared to the integral turbulent time scales of the flow.
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Then, the averaged reaction progress variable,
∼
�, is the probability for the instantaneous state of the

fluid being reacted. The mean species composition of the fluid is computed according to:

(7–40)= − +
∼ ∼ ∼ ∼ ∼
� � � � �� � �� ����	 �
����


For example, if =∼
� , then the fluid at the given position will be fully reacted during 60% of time

and non-reacted and non-reacted during the remaining 40% of time.

The reaction progress variable is computed by solving a transport equation:

(7–41)
∂

∂
+

∂
∂

= ∂
∂










 +






∂
∂







+
∼ ∼ ∼ ∼

� �

�

� � �

� �
� �

�

�

�

�
�

�

� �

�

� �
�

The default value of the turbulent Schmidt number �� for the reaction progress variable is =�� .

In the limits of pure fuel and pure oxidizer, the reaction progress is not well defined because burnt and
unburnt conditions correspond to the same physical state:

(7–42)= = =
∼ ∼ ∼ ∼
 !  !"#$%&'() "#*&(+,

(7–43)= = =
∼ ∼ ∼ ∼
- . - ./0123456 /073589

This poses the issue of which boundary value to specify for 
∼
: when the mixture is either pure fuel or

pure oxidizer. Even though different values for 
∼
; correspond to the same mixture composition, it is still

important to impose the proper value on the boundary, because it controls the combustion regime in
the domain after mixing has occurred:

• =∼
<  corresponds with premixed combustion

• =∼
=  corresponds with non-premixed combustion (diffusion flame)

In most cases, =∼
>  is appropriate for fuel inlets (in fact, if =∼

?  for fuel the Flamelet model could be

used and not solve for 
∼
@ at all). For oxidizer inlets, the appropriate boundary value depends on the

mixing process in the domain:

• =∼
A  for oxidizer premixing with fuel (e.g., primary air)

• =∼
B  for oxidizer mixing with products (e.g., secondary air)

However, which case applies may not be known prior to the simulation. In case of a flow split, it may
even be that both cases occur for the same oxidizer inlet. In this situation, the artificial distinction

between “burnt air” ( =∼
C ) and “fresh air” ( =∼

D ) may cause unphysical behavior such as even fuel

being generated by mixing of products with fresh air. For example, mixing “fresh air” ( =∼
E , =

∼
F )

with products ( =∼
G , =

∼
H HIJ) would result in a mixture that is only partially burnt ( =∼

K L, = ⋅
∼
M N MOP).

The reaction progress of the resulting mixture equals the fraction of products <Q , equivalent to fuel
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being re-established. This is unphysical. The correct behavior would be obtained by mixing products

with “burnt air” ( =∼
� , =

∼
� ).

7.9.2. Weighted Reaction Progress

In order to overcome the boundary value issue for reaction progress on oxidizer inlets, the weighted

reaction progress, �, is introduced:

(7–44)= ⋅ −
∼ ∼ ∼
� � �

Because =
∼
�  for pure oxidizer, the weighted reaction progress is well defined to be =

∼
� . Linear

combination of the transport equations for 
∼
� and 

∼
	 yields the following transport equation for the

weighted reaction progress:

(7–45)

∂
∂

+
∂

∂

= ∂
∂










 +






∂
∂







+



 +











∂
∂

⋅ ∂
∂




 −

∼ ∼ ∼

∼ ∼ ∼ ∼


 �

�


 
 �

�

�

 �

�

�

�

�

 �

�

�

�

�

�

�
� �

�

�

�

�

� �

�

� � �
�

The turbulent Schmidt number for the weighted reaction progress by default is =�� . Because of

the formal derivation of the transport equation, its solution will be equivalent to solving for reaction
progress directly. In other words, introducing the weighted reaction progress overcomes the boundary
value issue for reaction progress without changing the model. Reaction progress can be restored from
mixture fraction and the weighted reaction progress according to

(7–46)= −∼ ∼ ∼ ∼
� � � �

The recipe for 
∼
� is ill-posed for =

∼
� . Therefore, numerical treatment is implemented in the limit of

pure oxidizer to smoothly blend both the reaction progress and its gradient to zero:

→ →∼ ∂
∂

∼

 
!

" #
 as →

∼
$

Default for ANSYS CFX 14.0 is to solve for weighted reaction progress. Expert control (CCL) is available
for reverting to the standard reaction progress equation:

FLUID MODELS:
  Option = Burning Velocity Model
  REACTION PROGRESS VARIABLE:
    Option = Reaction Progress
    # default: Weighted Reaction Progress
  END
END
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7.10. Burning Velocity Model (BVM)

The burning velocity model (BVM), also known as turbulent flame closure (TFC), is used to close the
combustion source term for reaction progress.

(7–47)= − ∂
∂






∂
∂






∼
� �

�
� �

�

�
� �

� �

(7–48)= ∇ ∼
� 	 � 
� � 


Where �
�

 is the density of the unburnt mixture. Note that the molecular diffusion term for the reaction

progress is removed from the transport equation. The diffusive exchange of species and energy, which

makes the flame proceed in space, is already accounted for by the source term �� . However, turbulent

transport is a convective process and is modeled using the Eddy Diffusivity approximation.

The model is completed with a closure for the turbulent burning velocity �� . Accordingly, this type of

model is called Turbulent Burning Velocity Model (BVM). The concept has two significant advantages
compared to models based on molecular reaction rates:

1. In a given configuration, ��  typically varies by only 1 order of magnitude. In contrast, molecular reaction

rates occurring in combustion of hydro-carbonates typically vary in the computational domain by
several orders of magnitude.

2. ��  can be measured directly in experiments, i.e., data is available for the quantity that is modeled.

Further, the burning velocity directly determines target quantities of a simulation, such as flame position.
Thus, it is easier to derive and fine-tune accurate models for the burning velocity model than to do so
for approaches based on molecular reaction rates.

7.10.1. Equivalence Ratio, Stoichiometric Mixture Fraction

Referring to the unburnt mixture, the equivalence ratio � describes the ratio of fuel relative to the

amount of fuel that potentially could be burnt with the available oxidizer. For stoichiometric mixture,

the equivalence ratio is defined to be =� , i.e., the amount of fuel and oxidizer match such that they

could be burnt with neither fuel nor oxidizer left behind. >�  indicates fuel-rich mixtures (excess fuel),

and <�  indicates fuel-lean mixtures (excess oxidizer). The limits are =�  for pure oxidizer and = ∞�

(infinite) for pure fuel.

When the stoichiometric mixture fraction ��  is known, the local equivalence ratio can be computed

from mixture fraction ! according to

(7–49)=
−

⋅ −
"

#

#

#

#

$%

$%

The stoichiometric mixture fraction &'( depends on the fuel and the oxygen content in the oxidizer and

is a property of the flamelet library.
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• Value

This option enables you to specify directly the stoichiometric mixture fraction used for calculating
the equivalence ratio.

• Reactants

For this option, the reactants and their stoichiometric coefficients for a representative global reaction
are specified. For example, for a single component fuel,

(7–50)+ →� �� �� �

or for the generic form,

(7–51)∑ →� �
�

� �

The stoichiometric mixture fraction is computed using the reactants stoichiometric coefficients and
the corresponding species mass fractions in the fuel and oxidizer streams, respectively. The species
mass fractions in the fuel and in the oxidizer are obtained from the flamelet library.

• Automatic

This option derives the stoichiometric mixture fraction from the flamelet library requiring no addi-
tional information. The numerical procedure is described below.

Figure 1 shows the qualitative behavior of mass fractions for fuel and oxygen plotted over mixture
fraction (hydrogen/air in the example).

Figure 7.1  Oxygen Mass Fraction Over Mixture Fraction

One can observe that the oxygen concentration is approximately linear below and above the stoichiomet-
ric mixture fraction: linear decay on the lean side and constantly zero on the fuel side. Obviously, the
curvature of the curve is close to zero except near the sharp bend at stoichiometric mixture fraction.
This observation is generalized to establish the following procedure
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The stoichiometric mixture fraction approximated by the point of maximum curvature for oxygen mass

fraction, or ��, is

(7–52)≈
∂

∂
=







∂
∂







≤ ≤� �
� �

�

� �

�

� �
�

�
�� 	 
 �

�

�

�

�

 


This is a heuristic approach and only provides an approximation. It is recommended to check for
plausibility of the calculated value, which is reported to the solver output file. For details, see CFX-
Solver Output File (Combustion Runs) in the CFX-Solver Manager User's Guide.

7.11. Laminar Burning Velocity

The laminar burning velocity, ��, is a property of the combustible mixture. It is defined as the speed

of the flame front relative to the fluid on the unburnt side of the flame. The burning velocity relative

to the burnt fluid will be higher by a factor equal to the expansion ratio, = ⋅� � � �
��

�����
� �

.

Physically, the laminar burning velocity depends on the fuel, the equivalence ratio, the temperature of
the unburnt mixture (preheating) and on pressure. Depending on the configuration in the simulation,
it may be possible sometimes to neglect preheat and pressure dependencies. However, for partially
premixed combustion, it is very important to account for the dependency on equivalence ratio. Specific-
ally, the flammability limits have to be obeyed.

7.11.1. Value

User-defined laminar burning velocity, ��. It is recommended to account for dependency on fuel/oxidizer

ratio by making the expression depend on equivalence ratio or mixture fraction. Properties of the unburnt
mixture (temperature, density, specific heat capacity, thermal conductivity) may be used in the expression
in order to account for preheating or mixture dependency.

7.11.2. Equivalence Ratio Correlation

The equivalence ratio correlation follows the approach by Metghalchi and Keck [124], expressing the
laminar burning velocity as a base value at reference conditions, ����, multiplied by correction factors

for preheat and pressure dependencies:

(7–53)= ⋅








 ⋅









� �

 

 

!

!

" #

$ $
% &

'() '()

The exponents for preheat dependency and for pressure dependency are quadratic polynomials in
equivalence ratio:
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(7–54)= + +� � � � � �� � �
�

(7–55)= + +� � � � � �	 
 �
�

When all three coefficients are set to zero, then the preheat dependency or the pressure dependency
is disabled. For reference burning velocity, the following options are available:

• Fifth Order Polynomial (p. 322)

• Quadratic Decay (p. 322)

• Beta Function (p. 322)

All three options specify the flammability limits for fuel-lean and for fuel-rich mixtures, �

�����

 and �
������

.

The burning velocity is set to zero if the local equivalence ratio is out of these bounds.

7.11.2.1. Fifth Order Polynomial

The laminar burning velocity may be specified as a polynomial up to fifth order:

(7–56)= + + + + +� � � � � � � � � � � � ��
�

� � �
�

 
 

!
!

"
"

This polynomial is evaluated on a specified fit range, ≤ ≤# # #
$%&'( $%&')

. Outside this range, the burning

velocity is modeled to linearly decay to zero at the flammability limit.

7.11.2.2. Quadratic Decay

For quadratic decay the maximum laminar burning velocity at reference conditions, *+,-
.

, and the cor-

responding equivalence ratio, /
012

, are given. For smaller or larger equivalence ratio the burning velocity

is modeled to decrease according to a quadratic decay coefficient, 345678:

(7–57)= − −9 9 : ; ;<
=

=
>?@

ABC?D >?@

E

This quadratic function is evaluated on a specified fit range, ≤ ≤F F F
GHIJK GHIJL

. Outside this range, the

burning velocity is modeled to linearly decay to zero at the flammability limit.

7.11.2.3. Beta Function

The beta function correlation sets the maximum laminar burning velocity, MN
OPQ

, and the corresponding

equivalence ratio, R
STU

. A beta function is used to model the velocity decay to zero at the fuel-lean or

fuel-rich flammability limit:

= ⋅






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where = ⋅
−

−
�

� �

� �

��� ������

������ ������

 and = ⋅
−

−
	


 



 


��
��� �
�

��
��� ��
���

.

7.11.2.4. Residual Material Dependency

In order to account for the residual material, an optional correction factor is multiplied to the laminar
burning velocity:

(7–58)= ⋅








 ⋅









 ⋅ −� �

�

�

�

�
� �� �

�

� �

���
�

� ! � !

where "#$% denotes the molar fraction (volume fraction) of the residual material and & is a coefficient

function of the equivalence ratio:

(7–59)= + +' ( ( ) ( )* + ,
,

In combination with the residual material model, the values of-, . and / are calculated using the

equivalence ratio 0
12345

 conditioned to the ‘fresh’ mixture without residual material.

The residual material dependency in the laminar burning velocity correlation is optional. The default
residual material dependency coefficient 6 is constant zero, that is, no residual material dependency.

7.11.2.5. Metghalchi and Keck

The correlation by Metghalchi and Keck is based on the equivalence ratio correlation with quadratic
decay described above. Predefined sets of coefficients are provided for several hydrocarbon fuels. The
fuel type is characterized by the number of carbon atoms in the fuel molecule, here called the fuel
carbon index. Table 7.2: Fuel Dependent Coefficients for Metghalchi and Keck Laminar Burning Velocity

Correlation (p. 323) lists the coefficients for methane, propane and iso-octane (gasoline), respectively.

Table 7.2  Fuel Dependent Coefficients for Metghalchi and Keck Laminar Burning Velocity

Correlation

7
89:;<=

>
?@ABC@

D
EFGHIJKLM

[m/s]

NO
PQR

[m/s]

FuelCar-

bon

In-

dex

1.680.5331.061.3870.35Meth-
ane

1

2.500.5361.081.3870.342Pro-
pane

3

3.800.6011.130.8470.263Iso-
octane

8
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For fuels with other carbon indices the coefficients are obtained by linear interpolation of the provided
values. Fit range, preheat dependency and pressure dependency are modeled independent of the fuel
(Table 7.3: Common Coefficients for Metghalchi and Keck Laminar Burning Velocity Correlation (p. 324)).

Table 7.3  Common Coefficients for Metghalchi and Keck Laminar Burning Velocity

Correlation

������
���	
��


����
�
�����

00.22-0.380-0.82.981.40.7

7.12. Turbulent Burning Velocity

For turbulent flow, the effective or turbulent burning velocity �� will differ from the laminar burning

velocity, ��. Typically turbulence will increase the burning velocity, because wrinkling of the flame front

results in an increased effective flame surface. At very high turbulence, the opposite effect may occur,
leading to a decrease in the effective burning velocity because of local extinction. A model is required
to describe the turbulent burning velocity as a function of laminar burning velocity and turbulence
quantities.

The burning velocity is defined relative to the unburnt fluid. Relative to the burnt fluid, it will be higher

by a factor equal to the fluid expansion ratio, = ⋅� � � ��
� !"#

�  �
.

7.12.1. Value

This option can be used to implement user models for turbulent burning velocity. Typically, this will
include expressions using laminar burning velocity and turbulence quantities.

7.12.2. Zimont Correlation

The closure developed by Zimont et al. [38] [40] [41] is used for the turbulent burning velocity:

(7–60)= ′ −
$ % & ' $ ( )* + , -

./0 1/2 1/0 1/0

The leading factor, 3, is a modeling coefficient that has the universal value =4  (default), with the

exception of H2/Air flames where =5  is recommended [41].

The stretching factor,6, accounts for reduction of the flame velocity due to large strain rate (large
dissipation rate of the turbulent kinetic energy). This effect is modeled in terms of the probability for
turbulence eddy dissipation, 7, being larger than a critical value 89:. For >; ;<=, flamelet extinction

takes place, while for <> >?@, the stretching effect is ignored completely. Assuming a lognormal distri-

bution for A, the stretching factor is given by:

(7–61)= 


− 


+ 





∼
B

C
D D

C

EF

where  denotes the complimentary error function and =G H I JKLMN
 is the standard deviation

of the distribution of O, with P
QRS

 being an empirical model coefficient (default =T
UVW

).
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� � is the thermal conductivity of the unburned mixture. The turbulent flame speed closure model is

completed with the following models for integral velocity fluctuations level:

(7–62)′ =� �

integral turbulent length scale:

(7–63)=� � ��
�	


and Kolmogorov length scale.

(7–64)=� � 

��� ���

The critical dissipation rate, ���, is computed from a specified critical velocity gradient, �
��

, and the

kinematic viscosity of the fluid, �, according to:

(7–65)=� � �
����
 

For steady laminar flow the critical velocity gradient for quenching, !
"#

, can be obtained numerically.

However, for turbulent flows, the critical value must be larger than in laminar cases because the smallest
turbulent eddies, which are responsible for the largest strain rates, do not persist long enough to quench
a flame front locally. Furthermore, different model problems may result in significant variation of the
critical values obtained. For these reasons, the quenching critical velocity gradient has to be tuned for
industrial simulations. In fact, it is the only significant parameter for tuning the model.

Theory or numerical modeling can suggest a range of physically plausible values of .$
%&

. For example,

the inverse of the chemical time scale of the reaction, '(), scaled by a factor in the range 0.1 to 1.0 is

a reasonable starting point. For gas turbine combustion chambers (burning a lean methane/air mixture)
values in the range:

= 





−
* +
,-

.
to 





−
/

0

depending on the configuration, have been used successfully [40] [41] It should be noted that these
recommended values are for atmospheric temperature and pressure.

Table 7.4  Default Model Coefficients for the Zimont Turbulent Burning Velocity Correlation

Default

Value

Paramet-

er

0.51

0.282
345

10000 
−
6

78
9:
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7.12.3. Peters Correlation

The Peters correlation for turbulent burning velocity was originally developed for the G-equation com-
bustion model (N. Peters [37]). For CFX, it was adopted to be used with the burning velocity model.

(7–66)= +� � �� � �

where = − + 





+ ′
� � � �

�

�

�

�

	 �


 �
�

�


 
 � 

, ′ =� �

�

�
, =�

� �

��

�
�

�

�
, and =� � ��

�
 .

Turbulence effects are modeled as a function of the ratio between the integral turbulence length scale,

!, and the laminar flame thickness, "#.

(7–67)= ′
$ %

&

'
(

)

(7–68)= =*
+

,

- .

/ ,
0

1

2
3

3 1

The diffusion coefficient for the flame is computed from molecular properties of the unburnt mixture
indicated by the subscript u. The default values for the model constants are listed in Table 7.5: Default

Model Coefficients for Peters Turbulent Burning Velocity Correlation (p. 326).

Table 7.5  Default Model Coefficients for Peters Turbulent Burning Velocity Correlation

Default

Value

Coeffi-

cient

0.3745

0.7867

2.089

1.0:;

7.12.4. Mueller Correlation

The correlation by Mueller et al. follows an approach similar to the Peters correlation. It accounts for
variation of the average laminar burning velocity due to turbulent fluctuations of mixture fraction and
accounts for extinction under high scalar dissipation rates. However, the Mueller correlation uses a dif-
ferent correlation for turbulence dependency:

= ⋅ + ⋅



 −




< < = >

?

?
@ A B

C

, = +′ ′
D E E

F

G

F

G
H I J

KLMN KLMN
, ′ =O P
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R
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Where =� � ����� � ��  is the laminar burning velocity at stoichiometric mixture fraction (equivalence

ratio =� ). The laminar burning velocity is integrated over a presumed PDF accounting for fluctuations

of mixture fraction.

(7–69)∫= ⋅� � 	 � 	 
	�
�




�

The presumed PDF for mixture fraction is described in Coupling of Laminar Flamelet with the Turbulent

Flow Field (p. 314). Table 7.6: Default Model Coefficients for Mueller Turbulent Burning Velocity Correla-

tion (p. 327) lists the default values for the model coefficients.

Table 7.6  Default Model Coefficients for Mueller Turbulent Burning Velocity Correlation

Default

Value

Coeffi-

cient

1.5��

0.8��

1.0 [1/s]�
�

1.0�

7.13. Extended Coherent Flame Model (ECFM)

The Extended Coherent Flame Model (ECFM) shares the framework for premixed or partially premixed
combustion with the Burning Velocity Model (BVM). Transport equations are solved for mean mixture
fraction (Equation 7–32 (p. 314)), variance of mixture fraction (Equation 7–33 (p. 314)) and for either reaction
progress (Equation 7–41 (p. 317)) or weighted reaction progress (Equation 7–45 (p. 318)).

In order to describe the intensity and the location of the reaction zone the flame surface density �  is
introduced, which is defined as the area of flame surface per unit volume. The physical units are that
of an inverse length (for example, [1/m]). The reaction source in Equation 7–41 (p. 317)or Equa-

tion 7–45 (p. 318) is defined in terms of flame surface density as:

(7–70)=� � � ��
�
�

The flame surface density is calculated by solving a transport equation:

(7–71)
∂
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∂
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The source terms and their physical meanings are as follows:

• Flame surface production by turbulent stretch

327
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Extended Coherent Flame Model (ECFM)



(7–72)=� ����

• Flame surface production by mean flow dilatation

(7–73)=
∂
∂

�
�

�

�

�
	

• Thermal expansion and curvature

(7–74)= −



�

�

�





�

�

� ��

• Destruction due to consumption

(7–75)=
−

� ��
�

�
�

�

where the typical (default) values for � and � are 1.6 and 1.0, respectively.

Note that the �� production term and the destruction term are formulated in terms of the volumetric

reaction progress � , in contrast to the specific reaction progress � (Favre-average):

(7–76)
= ⋅

⋅ + −
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!
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# $
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The flame surface density ' is a volumetric quantity, i.e. flame surface area per unit volume. In order

to be able to use the generic machinery for solving transport the specific flame surface density, (, is
introduced as an auxiliary variable:

(7–77)=) *+

which can be rewritten as

(7–78)=,
-

.

The specific flame surface density is the flame surface area per unit mass. Rewriting Equation 7–71 (p. 327)in

terms of / leads to:
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(7–79)
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The volumetric transport Equation 7–71 (p. 327) and the specific transport Equation 7–79 (p. 329) are
equivalent. The specific form has the advantage that it has the same structure as other transport
equations, which are also in specific form, and therefore Equation 7–79 (p. 329) may be solved using the

same discretization schemes and numerical algorithms. The flame surface density � becomes a dependent
variable and is calculated according to Equation 7–77 (p. 328).

7.13.1. Turbulent Flame Stretch

The turbulent flame stretch accounts for the increase of flame surface area due to stretching and
wrinkling of the flame front under turbulence. For the Extended Coherent Flame Model this effect is
described by the Intermittent Turbulent Net Flame Stretch (ITNFS) model proposed by Meneveau and
Poinsot [186]:
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where ��
 
 is the laminar flame speed, !"

#
 is the laminar flame thickness, ′ =$ %&'()*  is the mean tur-

bulent velocity fluctuation and =+ , -.
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 is the integral length scale of turbulence, and,
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7.13.2. Laminar Flame Thickness

The thickness of the laminar flame has to be provided in order to close the ITNFS model. For ideal gases
Blint’s correlation is a reasonable approximation:
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Where 
� is the Thickness Multiplier with a default value of 2.0, � is the Temperature Exponent with

a default value of 0.7 and � is the ‘diffusive’ flame thickness, which is scaled by a correction factor ac-
counting for the thermal expansion ratio in order to obtain the effective laminar flame thickness. Addi-
tional information on laminar flame thickness calculation can be found in the literature, for example in
[187].

7.13.3. Wall Quenching Model

Quenching of the flame at walls is modeled by a simple wall flux model [182]. The model assumes that

the boundary layer for the flame surface density � is thin such that the flame is unaffected by the wall
until it contacts it. When a flamelet is touching the wall it will be quenched, resulting in a destruction
of flame surface density at the wall.

The probability of a flamelet touching the wall is proportional to the fluctuation of the velocity compon-

ent normal to the wall, ′� , multiplied by a factor  in order to account for a 50% chance for the
fluctuation being directed towards the wall. This picture leads to a wall transfer coefficient equal to

′� , or the equivalent wall flux for flame surface density:

(7–82)= −
′

�
�
�� ���� ���

where ��� is the flame surface density at the internal near-wall boundary element center node. The

sign of the flux is defined to be positive for flux in, and negative for flux going out.

7.14. Residual Material Model

The standard mixture fraction/reaction progress model assumes a two-stream mixing process of fuel
and oxidizer. The residual material model extends this framework by mixing with a third stream, the
residual or ballast material. The global mixing and reaction scheme is:

(7–83)+ + → +

The residual material does not participate in the combustion directly, but it does interact with the
mixture and the propagation of the flame. The most significant effects are:

• Lower peak temperature (dilution)

• Slow down in laminar burning velocity

• Different mixture composition in chemical equilibrium because of lower temperature level and chemical
interaction of residual with products

For the dependency of the laminar burning velocity on the residual material concentration see also
section Equivalence Ratio Correlation (p. 321).
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7.14.1. Exhaust Gas Recirculation

In principle the residual material could have an arbitrary composition. The Exhaust Gas model in ANSYS
CFX restricts the residual material to be products originating from the same fuel and oxidizer as for the
combustion. Restricting the residual material to exhaust gas offers two advantages:

1. The interaction of the residual material with the products can be modeled using a single-mixture
fraction chemistry library (that is, the same flamelet libraries can be used as without residual material).

2. Transformation of newly generated products into residual for simulation of subsequent engine cycles.

For many practical applications it is appropriate to assume that the residuals are recirculated exhaust
gas. Exhaust gas recirculation (EGR) may be either externally by guiding the exhaust gas through a duct
or pipe into the fresh mixture, or internally by recirculation or incomplete load exchange.

It is still necessary to distinct between products and residuals, because a fresh mixture containing residual
material behaves differently than a partially-reacted mixture in the flamefront. The residual material will
be less reactive, due to lower temperature and lower radical concentrations, such that no flame develops
when merely mixing residuals with fuel and oxidizer.

7.14.2. Principal Variables and Transport Equation

The mixture is described as a three-stream system of fuel, oxidizer and residual material. The correspond-

ing mass fractions neglecting any reaction sources (as for mixture fraction) are fuel tracer,��� , oxidizer

tracer,����, and residual tracer or EGR tracer, � . The tracer variables obey the following obvious con-

straints, here written for the turbulent means (the same relations apply for the laminar/instantaneous
quantities):

(7–84)+ + =�	 �	 �	
 �� 
��

where

≤ ≤�� �� ��� �� ���

The fuel tracer and mixture fraction are very closely related quantities. The difference is that the fuel
tracer refers to the mass of fresh fuel, while the mixture fraction does additionally include a contribution
from the residual materials. The fuel tracer is equal to mixture fraction if, and only if, the residual mass
fraction is zero.

Without loss of generality the residual material is defined to be stoichiometric,

=� �
��� ��

which establishes the following relation between the overall mixture fraction and the tracer variables:
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(7–85)= + ⋅� �� �� �� ��� ��

(7–86)= −
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Using Equation 7–84 (p. 331) and Equation 7–85 (p. 332) it is sufficient to solve for two of the four variables

�,��� ,���� and �����. In addition to the mixture fraction equation discussed in section The Flamelet

Model (p. 310), a transport equation is solved for the Favre-averaged fuel tracer:

(7–87)
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The equation is identical to that for the mean mixture fraction, except for boundary and initial conditions.

When the residual material model is applied in combination with the weighted reaction progress
model (for details, see Weighted Reaction Progress (p. 318)), the reaction progress is calculated based on
the fuel tracer instead of mixture fraction. The relation between weighted reaction progress and reaction
progress (Equation 7–44 (p. 318) and Equation 7–46 (p. 318)) then becomes the following:

(7–88)= −+ ,- . ,-/ /

where

= ⋅ −0 12 34

7.14.3. Mixture Composition

The residual material corresponds to stoichiometric products and its composition can be obtained by
lookup in the Flamelet library for stoichiometric conditions. The species mass fractions in the fresh
mixture with residual material are computed from mixture fraction and fuel tracer as follows:

(7–89)= − ⋅ + ⋅ 


″ = = 


5 67 5 8 67 5 8 8 9: ;<=>? @AB : ;<=>? @AB : >CD
EFG HIJEKIKL M

where N
OPQRS

 is the mixture fraction conditional to the combustible fraction of the mixture, that is, the

mixture without the residual material, see Equation 7–94 (p. 333).

The mass fraction in the total mixture is calculated by blending the fresh and burned fractions in the
same way as without the residual material model:
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(7–90)= − ⋅ + ⋅ 
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The species mass fractions for the flamelet solution,� �

��������
, and for inert mixing,��

���
, are provided

by the flamelet library.

7.14.4. Reinitialization for Subsequent Engine Cycles

When running an Internal Combustion Engine simulation with multiple subsequent cycles, the combustion
products will become the residual material in the following cycle. Therefore, the ‘new’ products must
be transformed into residual material. This is achieved by reinitializing fuel tracer and reaction progress
at specified times:

(7–91)= ⋅
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and

(7–92)=,
-./

In case of the weighted reaction progress model, the second assignment is equivalent to:

(7–93)=0 1
234

In the expression for the new fuel tracer after reinitialization,567
89:

, the first term accounts for the excess

fuel in the burnt fraction of the mixture, and the second term accounts for the fuel in the fresh fraction.

Note that in the limit of zero scalar dissipation rate, =; , the reinitialization leaves the component

mass fractions effectively unchanged.

7.14.5. Equivalence Ratio and Conditional Fresh/Residual Mixtures

The Equivalence Ratio  variable in the results file and in CEL is conditioned to the ‘fresh’ mixture.
It is calculated for the fuel and oxidizer with the residual material removed from the mixture:

(7–94)=
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(7–95)= − ⋅
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Without loss of generality the residual material is assumed to be stoichiometric. Mixture fraction and
equivalence ratio conditional to the residual fraction are by definition
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and

=�
�	
��

, respectively. Fuel-rich or fuel-lean residual material can be modeled as a combination of stoichiometric
residuals with either excess fuel or excess oxidizer in the fresh mixture. For the purpose of specifying
boundary conditions or initial values, the primitive variables can be calculated from the generalized
conditional mixture fractions, allowing

≠
 

����� ��

according to:
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where % &'()* denotes the mass fraction of non-stoichiometric residual material, and

+
,-./0

and

1
23456

are the conditional mixture fractions for the fresh and the residual mixture. Note that

=7 89:;<=> ?@A

if, and only if,

=B B
CDEFG EH

. Conditional equivalence ratios can be transformed into conditional mixture fractions and vice versa
according to:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.334

Chapter 7: Combustion Theory



(7–98)=
⋅

⋅ + −
�

� �

� � �
�����

�� �����

�� ����� ��

(7–99)=
⋅

⋅ + −
�

� 	

� 	 �

��
�

�� 
��
�

�� 
��
� ��

(7–100)= − ⋅
−

�
�

�

�

�
�����

��

��

�����

�����

(7–101)= − ⋅
−

�
�

�

�

�
�����

��

��

�����

�����

7.15. Spark Ignition Model

The purpose of the spark ignition is two-fold: First, it is required in order to provide the appropriate
conditions to start the combustion at time and location of the spark. Second, the initial size of the spark
volume may be too small to be resolved by the mesh. Therefore, a model is needed in order to describe
the initial growth of the spark kernel

The current model assumes that the burnt region around the spark initially grows as a ball. During this
phase the radius of the spark kernel,  !, is computed solving a zero-dimensional initial value problem

(IVP). The radius at ignition, "#$%#&', is defined by the initial spark volume,()*)+),-:

(7–102)= ⋅.
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The spark kernel radius is mapped onto the three-dimensional flow field by averaging the reaction
progress over the so-called phantom region. The phantom region is a ball of radius equal to the transition

radius, KLMNOP, and center equal to the spark center, Q RSTUV
ur

. While solving for the kernel radius, the re-

action progress variable is algebraically set:

= 
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The initial value problem is solved until the kernel radius reaches the transition radius, stuvwx, specified

by the user. At this point, the IVP solver is stopped and transition to the principal combustion model
is made (i.e., switch to the burning velocity model).

335
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Spark Ignition Model



The growth rate for the kernel radius is the turbulent burning velocity with a modification accounting
for high curvature while the kernel is small:
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The IVP solver uses quantities averaged over the phantom region for laminar and turbulent burning

velocities, �� and ��, turbulence quantities, � and �, and densities of the burnt and the fresh mixture,

�
�

 and �
�

.

7.16. Autoignition Model

A flammable mixture residing at sufficiently high temperature will ignite without further interaction
after some temporal delay. This phenomenon is called ‘autoignition’ or ‘selfignition’. The underlying
process is fuel reforming and buildup of intermediate species and radicals. In the initial stage of com-
bustion this is accompanied by only a small fraction of the total heat release (‘low’ temperature com-
bustion). When the radicals and intermediates have reached critical concentrations, the chemistry
transitions to the ‘high’ temperature regime with significant heat release.

The time expiring until the transition to the high temperature regime occurs, the ignition delay time,
is determined by detailed chemistry with dozens of species and hundreds of reactions involved. For
CFD it is impractical to calculate this process in all details. Instead, the progress of fuel reforming and

radical buildup is correlated with the elapsed fraction of the delay time, �. A transport equation is
solved in order to account for variations of the ignition delay time:

(7–104)
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The production term , -./0 is disabled when no fuel is available, such that there is no further growth

behind the flame front. The elapsed fraction of ignition delay time, 1, may also be interpreted as a
normalized radical concentration.

Autoignition is modeled to occur when the scalar exceeds a threshold, ≥2 . In other words, reaction
occurs if, and only if, the delay time has expired. This leads to a distinction in two kinds of autoignition
models: ‘Ignition Delay’ and ‘Knock’.

The physical information about ignition delay is provided by the ignition delay time, 3456, which is the

primary input parameter to the model.

7.16.1. Ignition Delay Model

The ignition delay model is applicable when the principal combustion models would burn too early
otherwise. It is available for combustion models for non-premixed combustion:
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• Eddy Dissipation (EDM)

• Laminar Flamelet with PDF

The ignition delay model suppresses the reaction locally until the delay time has expired. Prior to that
the reaction rate is set to zero (Eddy Dissipation) or the reaction progress is set to ‘fresh’ material
(Flamelet).

7.16.2. Knock Model

The knock model is applicable when the principal combustion model would not ignite otherwise. This
is the case for combustion models for premixed or partially-premixed combustion:

• Burning Velocity Model (BVM)

• Extended Coherent Flame Model (ECFM)

When autoignition (knock) occurs, a source term is added for reaction progress (BVM) or for flame surface
density (ECFM), respectively. The magnitude of the source is defined by the Knock Reaction Rate, which
by default is a first order Arrhenius reaction. For the BVM the following source is added locally to the
reaction progress equation:

(7–105)= − ⋅ ⋅ − ⋅ −� � � � � �� � �� 	
��	 � 	
��	
 


where −� �  denotes a step function that is zero for <�  and one for >� , ������ is the Pre

Exponential Factor with a default value of ⋅ −
�

� �
 and �� �����  is the Activation Energy with

a default value of 15078 J/mol.

In order to improve the numerical robustness of the model, the knock reaction rate is limited to consume
only a certain fraction ! of the available fuel per timestep. The specified fraction is obeyed accurately
when using the first order time discretization scheme, and it is approximate for the second order scheme.

The default limit is =" , that is no more than 60% of the fuel locally available may burnt by knock
per timestep.

For the ECFM, the flame surface density is locally pulled towards a value equivalent to the knock reaction
rate by adding a corresponding ‘Dirichlet’ source term:

(7–106)= ⋅ − ⋅ −# $ % % & '( )*+,) )*+,)-

where

=. / 0 123452 5 23452 6 78

and, where 9 is a large coefficient (for example,
:

).

7.16.3. Ignition Delay Time

The ignition delay time, ;<=>, is a function of local conditions, namely the fuel, pressure and temperature.

The user may either specify a custom correlation by CEL or chose from the built-in empirical correlations.
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7.16.3.1. Douaud and Eyzat

The ignition delay time of gasoline can be modeled using the empirical correlation by Douaud and
Eyzat [183]:
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where the octane number, �� , is a user input parameter for the model. The correlation has been cal-

ibrated for the octane number range ≤ ≤�� .

7.16.3.2. Hardenberg and Hase

The ignition delay time of Diesel fuel can be modeled using the empirical correlation by Hardenberg
and Hase [185]:

(7–108)
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The user input parameters are the mean piston speed, 012, the engine velocity in rounds per minute,

345, and the cetane number of the fuel, 67 . The apparent activation energy, 89, has been calibrated

for cetane number in the range ≤ ≤:; .

7.17. Phasic Combustion

For multiphase simulations, phasic combustion describes combustion within each individual phase. The
combustion models are solved in exactly the same way as for a single phase simulation.

• The Eddy Dissipation Model (p. 306)

• The Finite Rate Chemistry Model (p. 308)

• The Combined Eddy Dissipation/Finite Rate Chemistry Model (p. 309)

• The Flamelet Model (p. 310)

• Burning Velocity Model (Premixed or Partially Premixed) (p. 316)

7.18. NO Formation Model

The NO formation model is fully integrated into the CFX reaction and combustion module. This provides
complete control to the NO model by means of common interface (REACTION object) on one hand;
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on the other hand the generic reaction system profits from the extensions implemented for the NO
model (Arrhenius with Temperature PDF reaction rates, variable pre-exponential factor for Arrhenius
rates).

7.18.1. Formation Mechanisms

The formation of NOx is a complicated process involving several different mechanisms which are termed:

• Thermal NO

• Prompt NO

• Fuel Nitrogen

• N2O

• Reburn (destruction of NO)

Reactions for the first three formation paths (thermal, prompt and fuel) and for NO reburn are predefined
in the REACTIONS database. It is possible to add reactions for other mechanisms, or modify the provided
mechanisms, using the Reaction details view in CFX-Pre (or manually in the CCL commands file).

7.18.1.1. Thermal NO

The thermal NO mechanism is a predominant source of NOx in gas flames at temperatures above 1800
K. The NO is formed from the combination of free radical O and N species, which are in abundance at
high temperatures. The two-step mechanism, referred to as the Zeldovich mechanism, is thought to
dominate the process:

(7–109)+ → +
�

(7–110)+ → +
�

In sub or near stoichiometric conditions, a third reaction may be important:

(7–111)+ → +

When this step is included with the first two, it is referred to as the extended Zeldovich mechanism.

The rates of each of these three reactions (using the subscripts 1,2,3 to describe the three reactions)
are expressed as [43]:
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When multiplied by the concentrations of the reactants, they yield rates in terms of � 

�

,

which can be converted to a volumetric mass source term.

The first step tends to be rate limiting, producing both an NO and N radical species. The N radical is
assumed to be oxidized by reaction Equation 7–110 (p. 339) in the Zeldovich mechanism and also by
reaction Equation 7–111 (p. 339) in the extended Zeldovich mechanism. Either way, these second oxidation
reactions are assumed to be fast and if Reaction Equation 7–109 (p. 339) occurs, then two NO molecules

will be formed. The thermal NO formation in �� � �
�

, �����������, is therefore related to the rate of

reaction Equation 7–109 (p. 339):

(7–115)=    �  ! " #$%&'()*+,- $% '()*+,- .

(7–116)=/ /0123456 7

Here,89: denotes the molecular mass of NO. Thus, if the molar concentrations [O] and [N2] of O rad-

icals and N2 are known, the thermal NO mechanism can be calculated.

When using the Laminar Flamelet model, almost always the O radical concentration can be taken without
further assumptions from the solution because the model predicts it directly. However, when using the
Eddy Dissipation model (EDM) and/or the Finite Rate Chemistry model (FRC), O radical concentrations
usually are not known directly but must be derived from other quantities. Here, the O radical concen-
tration is estimated from the molecular oxygen dissociation,

(7–117)⇔;

(Westenberg, 1975):

(7–118)= 



 ⋅ −− −

<=>? = @ A @ A
BCD ECD BCD BCD BCD

F

By substitution, the effective source term for NO then reads:
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(7–119)= 



� � �������	
���� �� ���	
��


��
��

(7–120)= ⋅ 



 ⋅ ⋅− − −

� � ���� � � �������� !
"# $%& "%& "%& " "%&

'

7.18.1.2. Prompt NO

At temperatures lower than 1800 K, hydrocarbon flames tend to have an NO concentration that is too
high to be explained with the Zeldovich mechanisms. Hydrocarbon radicals can react with molecular
nitrogen to form HCN, which may be oxidized to NO under lean flame conditions.

(7–121)+ → +(

(7–122)+ → +)

The complete mechanism is very complicated. However, De Soete (see also Peters and Weber, 1991)

proposed a single reaction rate to describe the NO source by the Fenimore mechanism, * +,-./01.2

(7–123)=








3 4 5

4

6789:;<9= 67 9:;<9=
>?@

A?@

B B

(7–124)= −C D E EFGHIJGK GHIJGK LGHIJGK

MNO and P  denote molar mass of NO and the mean molar mass of the mixture, respectively. The

Arrhenius coefficients depend on the fuel. (De Soete, 1974) proposed the following values:

Methane fuel

(7–125)

= ⋅  
=  

Q R

S TU

VWXYVZ

[VWXYVZ

\

Acetylene fuel
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(7–126)

= ⋅  
=  

� �

� ��

�����	


�����	

�

7.18.1.3. Fuel Nitrogen

The fuel nitrogen model assumes that nitrogen is present in the fuel by means of HCN. HCN is modeled
to either form or destroy NO depending on the local conditions in the mixture, with HCO acting as an
intermediate species. The mechanism consists of three reaction steps:

1. HCN-NO formation: + → +�

2. HCN-NO destruction: + → + 


3. HCO oxidation: + → +�

�

�

�
� � �

The reaction rates in [mol/s] for the reactions are, respectively:

(7–127)= ⋅ 



 ⋅ ⋅ ⋅ 


 − 










−
� � �

����

���
� �

�� �
�

 

! "

where = 


+ 


# $%

&

'

(7–128)= ⋅ 



 ⋅ ⋅ ⋅ 


 − 










−
( )

* +,-.

/0.
( 1

23 2
4

(7–129)= ⋅ 



 ⋅ ⋅ ⋅ 


 − 










− −
5 6

789:

;<:
5 =

> ?@A >@A
B

C
D

where EFG
 denotes the molar fraction of H and I  denotes the mean molar mass of the mixture.

7.18.1.4. NO Reburn

Under fuel rich conditions, when the amount of oxygen available is not sufficient to oxidize all of the
fuel, the excess fuel may lead to reduction of NO. This process can be described by a global reaction:
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(7–130)+ → + +� � �� �� � �� � �� �

One should keep in mind that this is only a global representation. The physical process actually occurring
is much more complicated. The real process involves many intermediate components appearing during
combustion of the fuel, e.g., CHx radicals, which attack the NO.

The stoichiometric coefficients for fuel, carbon dioxide and water vapor are fuel-dependent. For a given
fuel they can easily be derived from the element balance. For methane, the global NO reburn reaction
is:

(7–131)+ → + +� � � �

The reaction rate will be fuel dependent. For coal volatiles, the reaction rate defaults to:

(7–132)= ⋅ 



 ⋅ ⋅ ⋅ −−

	 

�

� 
������
��

The same reaction rate is applied for the predefined NO reburn reaction for methane.

7.18.1.5. Turbulence Effects

The above reaction rates are applicable to laminar flow, premixed chemistry. In turbulence systems,
fluctuations can have a dominant impact on the NO formation rate. For both the thermal and prompt
NO mechanisms, there is a strong dependence of the rates on the temperature due to their high activ-
ation energy. Thus, temperature fluctuations, particularly positive fluctuations, can dramatically increase
the NO formed in flames. These temperature fluctuations are included in CFX using a statistical approach.

In order to determine the mean rate for NO formation, a presumed probability density function (presumed
PDF) method is used to compute the weighted average of the reaction rate:

(7–133)∫=
−

∼
�

� �
� � � � ��

� � �

�

�

�

This integration is carried out separately for each reaction step. For simplicity, the subscripts (thermal

or prompt) have been omitted. The integration range for temperature, � ��  , is the range of

temperatures occurring. The default for NO reactions is the range [300 K; 2300 K], but this may be
modified by you on a per reaction scope.

The probability density function (PDF) ! is computed from mean temperature,
∼
" , and the variance of

temperature, ″
∼

#
$
. The shape of % is presumed to be that of a beta function (&-function):
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(7–134)
∫
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− −

− −
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� �	 �
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� �

Where:

(7–135)=
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and:

(7–136)= −
−

= −
−

= ″
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∼
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�
� �
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�

�
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�
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For vanishing temperature variance (vanishing temperature fluctuations), the beta function is approaching
to a single Dirac peak (delta-function). In the limit, the integrated reaction rate is the same as for that
for the standard Arrhenius rate. For very large fluctuation, the beta function goes towards a double
Dirac peak, and for small to medium temperature variance the shape of the PDF is similar to that of a
Gaussian distribution.

Arrhenius reaction rates integrated over a PDF for temperature is not limited to NO formation but may
be used for any reaction.

7.18.1.6. Temperature Variance Equation

For the temperature variance, ″
∼

�
�
, that is needed from constructing the probability density function

(PDF) used for the temperature integration, the following transport equation is solved:

(7–137)

∂ ″
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∂
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%

Default values for the model coefficients are =&'()*  and =+,-.. .

The above equation is missing some physical aspects namely the production of temperature fluctuations
due to heat release by chemical reaction. Heat release is fluctuating, too, because of turbulent fluctuations
of the reactants. However, in the current model temperature variance is only needed as input to another
model: The construction of a probability density function with presumed shape. For this purpose, the
above equation provides sufficient accuracy.

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.344

Chapter 7: Combustion Theory



For convenience of setting up a case, the temperature variance equation can be run without specifying
BC or IC data. In the first release, these are not offered by the user interface (CFX-Pre). If absent, zero
fluctuations are assumed at inlets, openings and walls with specified temperature. At walls with specified
heat flux or transfer coefficient, the default BC for temperature variance is zero flux.

7.18.1.7. Model Control

Because the model for NO formation is implemented by means of REACTION objects, you have full
control of all aspects of the model. CFX provides the same flexibility for the NO model as for the generic
combustion and reaction system.

7.18.1.7.1. Adjusting Model Coefficients

It is possible for a user to modify any coefficient of the NO model. Because the NO formation reactions
are defined by means of REACTION objects, they may be edited either in CFX-Pre in the CCL Editor or
in the CCL text file (commands file).

The model parameter that is most likely to need adjusting is the temperature integration range for the
presumed PDF. It is specified by the Lower Temperature  and Upper Temperature  parameters.
These appear in the FORWARD REACTION RATE object when Option is set to Arrhenius with
Temperature PDF . The predefined reaction schemes come with the range set to the interval [300
K, 2300 K]. It is recommended to adjust this to the maximum temperature range occurring. For many
systems, this temperature range is defined by the minimum inlet temperature and the adiabatic flame
temperature.

7.18.1.7.2. User Defined NO Formation Mechanisms

The NO formation model can be extended to a user's specific needs by adding appropriate reactions
for NO, for example, fuel nitrogen or the N2O reaction path. The procedure is the same as for any other

reaction. A user probably may want to chose the Arrhenius with Temperature PDF  option for
reactions rate in order to account for turbulent fluctuations of temperature.

It is also possible to select each NO formation path individually (thermal, prompt, fuel nitrogen, reburn,
or possibly user defined). Simply add only those reactions to the mixture material that you want to ac-
count for.

7.19. Chemistry Post-Processing

The components and reactions that are post-processed are one-way coupled to the main simulation.
This means that there is no effect on mixture properties or heat release. The list of components and
reactions for post-processing are specified by the user.

Post-processing components:

• No contribution to mixture properties (density, static enthalpy)

• No contribution to total mass

Post processing reactions:

• Generate sources for components that are also post-processed

• Generate no source for regular components (i.e., not post-processed ones)

• No heat release
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The above model assumptions are justified if the component mass fractions and reaction turnover are
small relative to the bulk mixture. A typical application is the simulation of pollutants, e.g., NO formation.
The transport equations for post-processing components are solved at the end of the flow analysis after
the solving of the main equations. When the post-processing reactions require a temperature variance
equation (reaction rate option is Arrhenius with Temperature PDF ) and the variance equation
was not solved during the analysis, then temperature variance will be post-processed as well. In this
case, the temperature variance equation will be solved first to convergence or maximum number of it-
erations and is then followed by the post-processing components group.

Note

For steady state cases, chemistry post-processing is not performed at the end of the flow
analysis if the termination of the flow analysis was due to a user-defined solver interrupt
condition. For details, see Interrupt Control in the CFX-Pre User's Guide.

7.20. Soot Model

In the Magnussen soot model (Magnussen and Hjertager [46], it is assumed that soot is formed from a
gaseous fuel in two stages, where the first stage represents formation of radical nuclei, and the second
stage represents soot particle formation from these nuclei. Transport equations are solved for the spe-

cific concentration of radical nuclei, �� [mol/kg], and for the soot mass fraction,
∼
�� [kg/kg]:

(7–138)
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(7–139)
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The modeling procedure can be grouped into three independent parts:

1. Formation of nuclei and soot particles following the models of Tesner et al., [45]

2. Combustion of nuclei and soot particles

3. Magnussen’s Eddy Dissipation Concept (EDC) for modeling the effect of turbulence on mean reaction
rates.

The soot model can be used in either single phase or multiphase flow (MPF) configurations. In multiphase
calculations, however, the soot variables cannot be a separate phase but must be assigned to one of
the fluids.

7.20.1. Soot Formation

Formation of nuclei and soot particles is computed following the empirical models of Tesner et al. [45].
The source terms are formulated in terms of particle number concentrations for nuclei:
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(7–140)= ⋅ ⋅� � � ���� �� �
	

and soot particles:

(7–141)= ⋅

�

�

��� ��

�

�

�

Where = ⋅�
��

 [part/mol] is Avogadro’s number and:

(7–142)=� � � �� ����

�

is the mass of a soot particle  
!""#

 and $ are the density and the mean diameter of the soot particles,

respectively. With the above definitions, the source terms for nuclei 
∼
% &'()*+,-  and soot formation 

∼
. /01123

can be modeled as (Tesner et al. [45]):

(7–143)= + − −
∼
4 5 6 7 8 7 8 89 : : ;<=>?@AB C C

(7–144)= −
∼
D E F G H HI J K LMNNOP

In the nuclei equation, the spontaneous formation of radical nuclei from the fuel, QR, is modeled using

the Arrhenius approach,

(7–145)= −S T U V W X X
Y Z[\]^ _`a a

where b
c
 is the mass fraction of carbon in the fuel material. d  is a linear branching coefficient, e is a

linear termination coefficient, and f
g
 is a coefficient of linear termination or radical nuclei on soot

particles. In the soot equation, h and i are constants. The default values for all of the soot model
parameters are summarized in the following table:

Default value by [mol]Default Value by [part]Para-

meter

jk l
m

no p
qr

sttu

⋅ 





−v⋅ 





−wx

⋅ yz⋅ {|}~

Fuel dependent (methane
12/16, acetylene 24/26)

Fuel dependent (methane
12/16, acetylene 24/26)

�
�

����

−� �
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Default value by [mol]Default Value by [part]Para-

meter

⋅ � � ���
� �⋅ −

� � �	
�
�
 ��

�

⋅ �⋅ ��

⋅ � � ���
�� �⋅ −

� � ��� 
!" #$

Most references list the coefficients using the absolute particle number [part] in the physical dimensions.
However, for numerical, reasons CFX is using [mol] instead. To convert from the [part] system into the

[mol] system, coefficients %
&
 and ' have to be multiplied by Avogadro’s number

= ⋅(
)*

[part/mol], and the coefficient +, needs to be divided by -. All other coefficients

remain unchanged.

7.20.2. Soot Combustion

The mean rates of combustion of nuclei,
∼
. /0123456 , and soot particles,

∼
7 89::;<  are calculated from the

fuel consumption reaction rate,
∼
=>?@A in [kg/m3/s], as:

(7–146)=
∼ ∼

∼

∼B B
C

D
E

F
GHIJKLM NHKJ

NHKJ

(7–147)=
∼ ∼

∼

∼O O
P

P
Q

R
STTUV WXYZ

WXYZ

This is equivalent to posing the same assumptions to nuclei and soot particles combustion that were
made for fuel consumption. For example, when the Eddy Dissipation model is applied for the fuel
consumption reaction, combustion of nuclei and soot particles is assumed to operate at the fast
chemistry limit. No special model for turbulence effects is required for the nuclei and soot combustion
rates as this is already accounted for in the computation of the fuel reaction rate.

7.20.3. Turbulence Effects

The above reaction rates are applicable to laminar flow. In turbulent systems, fluctuations can have a
significant impact on nuclei and soot formation because of the nonlinearity of the respective source
terms. To account for the effect of turbulence on soot formation, the Eddy Dissipation Concept (EDC)
developed by Magnussen [44] is applied.

The Eddy Dissipation Concept (EDC) is a reactor concept that identifies a reactor, where the combustion
of fuel takes place, related to the fine structures in turbulence. This reactor is treated as a homogeneous
reactor exchanging mass and energy with the surrounding fluid. The fraction of mass that is contained
in the fine structures is determined from the turbulence quantities.

Local balance equations are solved to compute the temperature and the concentrations of nuclei and
soot particles in the fine structures and in the surrounding fluid, respectively. The mean source terms
are then computed assuming a bimodal distribution of the fluid between the fine structures and the
surrounding. For a detailed explanation of the Eddy Dissipation Concept, see (Magnussen, 1989).
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The EDC procedure need not be applied to the soot combustion terms, because turbulence is already
accounted for in the computation of the fuel reaction rate. For details, see Soot Combustion (p. 348).

349
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Soot Model



Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.350



Chapter 8: Radiation Theory

This chapter contains a simple summary of the theory of thermal radiation and the algorithms used in
CFX:

• Radiation Transport (p. 351)

• Rosseland Model (p. 356)

• The P1 Model (p. 357)

• Discrete Transfer Model (p. 357)

• Monte Carlo Model (p. 358)

• Spectral Models (p. 359)

Details on modeling radiation in CFX are available in Radiation Modeling in the CFX-Solver Modeling

Guide.

8.1. Radiation Transport

The goal of radiation modeling is to solve the radiation transport equation, obtain the source term, S,
for the energy equation, and the radiative heat flux at walls, among others quantities of interest. You
should restrict yourself to coherent time-independent radiation processes. This is normally a very good
approximation of situations likely to be met in industrial applications because the time scale for radiation
to come into local equilibrium is very short and the temperatures are relatively low.

The spectral radiative transfer equation (RTE) can be written as:

(8–1)

∫=



 − + + + ′ ′ ′ +


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 �
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��

�
�

�

where:

• v = frequency

• r = position vector

• s = direction vector

• s = path length

• Ka = absorption coefficient

• Ks = scattering coefficient

• ��= Blackbody emission intensity
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• ��= Spectral radiation intensity which depends on position (r) and direction (s)

• T = local absolute temperature

• � = solid angle

• � = in-scattering phase function

• S = radiation intensity source term

The RTE is a first order integro-differential equation for Iv in a fixed direction, s. To solve this equation

within a domain, a boundary condition for Iv is required. The following are the boundary conditions

currently supported in CFX:

• Diffusely emitting and reflecting opaque boundaries

(8–2)∫= + ′ ′ ′
′ <

� �
�

� � � �� � 	 � 
 �
�



� ��� � � � �

� �

� �
� �

� �

where ��=spectral emissivity.

• Diffusely emitting and specularly reflecting boundaries

(8–3)
∫= + ′ ′ ′

+
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where:

• -
.

/
=diffuse reflectivity= − 01 *diffuse fraction

• 2
3

4
=specular reflectivity= − 56 *(1-diffuse fraction)

• 7
8

=spectral reflectivity= +9 9
:

;

:

<
= − =>

• ?@=specular direction

• Semi-transparent walls (Monte Carlo only)

Due to the dependence on 3 spatial coordinates, 2 local direction coordinates, s, and frequency, the
formal solution of the radiative transfer equation is very time consuming and usually accomplished by
the use of approximate models for the directional and spectral dependencies. For directional approxim-
ations, CFX includes Rosseland , P-1 , Discrete Transfer  and Monte Carlo . For spectral ap-
proximations, CFX includes: Gray , Multiband  and Weighted Sum of Gray Gases .

8.1.1. Blackbody Emission

The energy spectrum for radiation emitted by a blackbody is represented by:
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where:

• � = refractive index

• � = Planck’s constant

• � = speed of light in vacuum

• �� = Boltzmann’s constant

Writing =� ��  !" , you have:

(8–5)= 



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where 1 = Stefan-Boltzmann constant:

(8–6)≡ 2

3 4

5 6

7 8

The total blackbody emission is simply the integral of 9: over all frequencies:

(8–7)∫= =
∞

; < ; = < >= ? @ <A A
B

C D

Note that the blackbody emission is proportional to the fourth power of the temperature and because
of this strong dependence, radiation is usually unimportant or totally dominant for heat transfer.

The sun, for example, is approximately a blackbody at a temperature of 5700 K. The spectrum peaks in
the yellow part of the visible spectrum.

Combustion temperatures are typically 1000 - 2000 K, with spectrum peaks in the near infra-red range.
Note that the peak of the spectrum as a function of wavelength is at:

(8–8)∼EF G HI

8.1.2. Quantities of Interest

The spectral radiative heat flux, J
K

, passing through a surface at some location r with a unit vector

normal n is:
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(8–9)∫=� � � � � �� � ����

	
�

Integrating the equation of transfer over solid angles, the divergence of the spectral radiative heat flux
is given by:

(8–10)− ∇ = −
 � � 

�

�
� � ��

where Gv is the spectral incident radiation, given by:

(8–11)∫≡� � �� � �

The total radiative flux is obtained by integrating Equation 8–10 (p. 354) over the spectrum:

(8–12)∫ ∫ ∫∇ = = −
∞ ∞ ∞

� � �� � � �� � � ��
�

�

�
 ! !  ! "�

# # #

In the case of pure scattering, =$% . Therefore ∇ =&
'

, as it should because in this case no energy

is lost from the radiation field; clearly this is also true in thermodynamic equilibrium.

8.1.2.1. Optical Thickness

Optical thickness is a dimensionless quantity that represents the ability of a given path length of gas
to attenuate radiation of a given wavelength. Optical thickness is given by:

(8–13)∫= ∗ ∗
( ) * +*

,

-
.

where / is the optical thickness (or opacity) of the layer of thickness 0 and is a function of all the values

of 12 between 0 and 3. A large value of 4 means large absorption of radiation. Note that this definition

of optical thickness is different from that traditionally found in the optics literature where the optical
thickness is a property of the material.

8.1.3. Radiation Through Domain Interfaces

If radiation is included through conducting solids, then usually the difference in refractive indices
between the fluid and solid determines the amount of reflection and refraction that occurs. The prob-
ability of being reflected is given by Fresnels’ equation
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(8–14)=





−
+

+ −
+




�

� �

� �

� �

� �

�
� �

�
� �

�
� �

�
� �

The fraction of the electromagnetic wave that is reflected normally depends on the polarization of the
photon. CFX does not keep track of photon polarizations. Assuming that the photons are randomly
polarized, then it is sufficient to take the average result. The two extreme polarizations are termed
transverse electric (TE) and transverse magnetic (TM), and describe the orientations of the electric and
magnetic vectors relative to the interface.

For the TE mode, the ratio of reflected to incident wave amplitude (EE) is given by:

(8–15)=
−

+
�

� �

� �
�

�

�
�

�

	



	




and for the TM mode the ratio of reflected to incident wave amplitude (�� ) is given by:

(8–16)=
−

+



� �

� �
�

�

�
�

�

�

�
�

�

where � and � are the incident and refracted angles, and �� and �� are the refractive indices of the two

media.

The probability of being reflected is determined by the energy flow at the interface which is proportional
to the square of the wave amplitude. Thus, the average reflection coefficient is given as:

(8–17)+� �� �
� �

and the probability of being transmitted is:

(8–18)− +� ��  
! !

No absorption takes place at the interface, so the probability of transmission plus reflection is always
one. If the photon is transmitted, then the angle of refraction is determined by Snells’ law:

(8–19)="
#

$

$

%

&

CFX performs these calculations at every radiation element boundary, although, in most cases, there is
no change of refractive index.

355
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Radiation Transport



8.2. Rosseland Model

The Rosseland approximation is a simplification of the Radiative Transport Equation (RTE) for the case
of optically thick media. It introduces a new diffusion term into the original energy transport equation
with a strongly temperature-dependent diffusion coefficient.

A good source for the simplification of the Radiation Transport Equation for the optically thick limit can
be seen in Siegel and Howe [23]. The total radiative heat flux in an optically thick, and linearly anisotropic
scattering medium can be written as:

(8–20)∫= −
−

∇
∞

�
� ��

� ��
�

�
	


�

where � is the extinction coefficient (i.e., absorption plus scattering).

When the Rosseland Approximation is introduced into the energy transport equation, the conduction
and radiative heat flux can be combined as:

(8–21)= +
 
 

� �

(8–22)= − + ∇� � ��

(8–23)= −�
� � �

�
�

� �

where � is the thermal conductivity and �� is the “total radiative conductivity.” Equation 8–21 (p. 356) is

called upon to calculate the temperature field in the energy equation.

8.2.1. Wall Treatment

The Rosseland approximation is not valid near walls. Therefore, a special boundary condition must be
specified when heat conduction is comparable to radiation heat transfer. It has been proposed  [24]
that a temperature slip boundary condition should be in this region. From [24] the heat flux at the wall,
�
�  !

 is given by:

(8–24)=
− −

"

# $ $

%
& '

' (

)

* *

where + is the slip co-efficient,,- is the wall temperature and ./ is the gas temperature at the wall.0

is computed as the solution of:
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(8–25)∫=�
� �

��

��

�

where �
�

 is given by:

(8–26)=






− − −
+







	



� �

	 
 � 	

	

	
�

�
��

8.3. The P1 Model

The Differential Approximation or P1 is also a simplification of the Radiation Transport Equation, which
assumes that the radiation intensity is isotropic or direction independent at a given location in space.
The full form of the radiant energy equation and the derivation of the P1 model for radiation are given
in Modest [8]. Only a brief summary will be given here.

The spectral radiative heat flux in the diffusion limit for an emitting, absorbing, and linearly scattering
medium, can be computed as:

(8–27)= −
− −

∇�
� � ��

�
��

�� �� ��
�

The equation for the spectral incident radiation that results from substituting the above terms into the
radiation transport equation:

(8–28)− ∇



 − −

∇



 = −

� � � �
� � � �

 ! "! "!
!  ! #! !

where $ is the linear anisotropy coefficient.

8.3.1. Wall Treatment

Assuming that the radiation intensity arriving at and leaving a wall are directionally independent, the
boundary condition for Equation 8–28 (p. 357) at walls is:

(8–29)⋅ = −
− −

∂
∂

=
−

−+% &
' ' ( '

)

*

+

+
, )

-.
/. 0. 0.

. .

.
1. . 2

where 3 is the unit vector outward normal to the wall,
+

4  is a distance coordinate in the same direction,
and 5 represents the value at the wall.

8.4. Discrete Transfer Model

The implementation of the Discrete Transfer model in CFX assumes that the scattering is isotropic;
therefore, Equation 8–1 (p. 351) can be simplified as:
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(8–30)∫= − + + + ′ ′ +� �
� � � �

� �

��
� � � � � � �

�

�
� �	 


�
�� 
� � � �


�

�
�

�

Assuming that the system is reasonably homogeneous, so that:

(8–31)∼ + ∼ +� � � � � �� � � � � �� � �

�

�

�

the approach is then to solve for the intensity, ��, along rays leaving from the boundaries using the

equation of transfer:

(8–32)= − + + − − +� �� � � � � � � � � �� ��  � !� "#  !� #

where:

$%& = Radiation Intensity leaving the boundary

'( = Mean Radiation Intensity

Then, integrate ) over solid angle at discrete points to get the spectral incident radiation,* and the
radiative heat flux, +

,
 and use the homogeneity assumption to extend the solution to the entire domain.

Non-linearities in the system due to scattering, diffuse reflection, or temperature dependency of radiation
quantities is overcome by iteration.

Because the objective of thermal radiation modeling is to obtain the total volumetric absorption and
emission, additional calculations are still needed. For the Gray spectral model, the calculation is done
once for a unique radiation intensity field. For the Multiband and Weighted Sum of Gray Gases, the
solution must be computed for each spectral band/ gray gas and a final integration to obtain the total
radiation quantities is required. Under the assumption of coherent radiation field, ie., the solution at a
given frequency is independent of that at all other frequencies.

8.5. Monte Carlo Model

The Monte Carlo model assumes that the intensity is proportional to the differential angular flux of

photons and you can think of the radiation field as a photon gas. For this gas,-. is the probability per

unit length that a photon is absorbed at a given frequency. Therefore, the mean radiation intensity, /
is proportional to the distance traveled by a photon in unit volume at 0, in unit time.

Similarly 1
2

3
 is proportional to the rate of incidence of photons on the surface at 4, because volumetric

absorption is proportional to the rate of absorption of photons.

By following a typical selection of photons and tallying, in each volume element, the distance traveled,
you can obtain the mean total intensity.

By following a typical selection of photons and tallying, in each volume element, the distance times
the absorption coefficient, you can obtain the mean total absorbed intensity.

By following a typical selection of photons and tallying, in each volume element, the distance times
the scattering coefficient, you can obtain the mean total scattered intensity.
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By also tallying the number of photons incident on a surface and this number times the emissivity, you
obtain the mean total radiative flux and the mean absorbed flux.

Note that no discretization of the spectrum is required because differential quantities are not usually
important for heat transfer calculations. Providing that the spectral (Multiband or Weighted Sum of
Gray Gases) selection is done properly, the Monte Carlo tallying automatically integrates over the
spectrum.

8.5.1. Monte Carlo Statistics

The Monte Carlo radiation solver computes the standard deviation error based on Poisson statistics.
The user-specified number of histories is divided into several groups. Histories are selected from each
group and their physical interactions (emission, absorption, reflection, and so on) are tracked through
the domain. At the end of the calculation, each group provides values for the quantities of interest,
such as irradiation heat flux or absorbed radiation. The mean value, and standard deviation, of each
quantity of interest are computed from the groups. A normalized standard deviation is computed by
dividing the standard deviation by the mean value.

8.6. Spectral Models

The radiation intensity field is also a function of the spectrum as shown in Equation 8–1 (p. 351). In order
to make the spectral dependence tractable in conjunction with a flow calculation, CFX supports three
different models for the spectral dependency of the radiative transfer equation: Gray, Multiband and
Weighted Sum of Gray Gases.

8.6.1. Gray

The Gray model assumes that all radiation quantities are nearly uniform throughout the spectrum,
consequently the radiation intensity is the same for all frequencies. Then, the dependency of Equa-

tion 8–1 (p. 351) on frequency can be dropped.

This implies that only one radiative transfer equation must be solved and that all total radiation
quantities and their spectral counterpart are the same.

8.6.2. Multiband Model

For this model, the spectrum is sub-divided into �  spectral bands of finite width where radiative
quantities are nearly uniform or can be averaged without losing accuracy. These bands should span
the thermal radiation section of the spectrum. It is assumed that the value at a given spectral band is
represented by the spectral band midpoint value in frequency domain.

CFX assumes that the main spectral variable is frequency because it is independent of the material re-
fractive index and it will facilitate the setup of multidomain problems. Other spectral variables, such
wavelength and wavenumber would be available for vacuum only.

Then, the radiative transfer equation is integrated within is spectral band and a modified RTE is obtained:
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(8–33)

∫

= − + +

+ ′ ′ ′ +
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�
� �

�
�

for � � �� , where the emission within the spectral band is weighted by:

(8–34)∫ ∫ ∫= = −� � � � �� � � � �� � � � ���
�

�

�

�

�

�

��
  !

" " !

After solving one RTE per spectral band, total radiation intensity can be computed as:

(8–35)∑=# $ % & # $ %

'

(
)

*

This immediately suggests that for an + -band model, ,  times as much work is required as for a gray,

--band model. In the case of the Discrete Transfer model, for small .  this turns out not to be true because
the tracking of the rays through the geometry is a major one-off overhead.

This model can be used in conjunction with all available radiation models.

8.6.3. Weighted Sum of Gray Gases

The radiative absorption and emission from a gas can be characterized by the emissivity as a function
of temperature and pL, that is the product of the partial pressure and the path length. In the context
of typical combustion systems, the dominant emitters of radiation are carbon dioxide and water vapor
(although hydrocarbons, CO and SO2 also make a minor contribution). Hottel and Sarofim [48] have

published emissivity charts for CO2 and H2O that have been obtained by a combination of measurement

and extrapolation. These plots show that emissivity is strongly dependent on /0 and also has a weaker

dependence on the gas temperature. This functional dependence can be accurately correlated by as-
suming that the emissivity arises as the result of independent emission from a sufficient number of
gray gases:

(8–36)∑= −
=

−
1 2 34

5

6

45
7 8 9

:

;

<

Because emissivity must be proportional to absorptivity by Kirchoffs’ law, it follows that => must approach

unity as →∞?@ . This imposes a constraint on the gray gas weights or amplitudes:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.360

Chapter 8: Radiation Theory



(8–37)∑ =
=

�

�

�

��
�

�

Also the requirement that �� is a monotonically increasing function of �	 is satisfied if all the 
�� are

positive.

If the number of gray gases, 
�, is large, then ��� may be thought of as the fraction of the energy

spectrum, relative to the blackbody energy, for which the absorption coefficient is approximately ��.

Then, the methodology described for the Multiband model can be used directly.

8.6.3.1. Weighted Sum of Gray Gases Model Parameters

Hadvig [49] has published charts of emissivity of combined CO2-H2O mixtures, for mixtures with different

relative proportions of CO2 and H2O. For the case of natural gas combustion, it can be shown that the

proportions of water vapor and carbon dioxide in the products of combustion is such that partial
pressure ratio, �

� ��
 / �

���
 is approximately equal to 2. Similarly, this ratio is 1 for oils and other fuels

with the empirical formula, (CH2)x. Most other hydrocarbon fuels have combustion products with a

�
� ��

 /  
!"#

 ratio lying between 1 and 2. Starting from the charts of Hottel and Sarofim (1967) [48] for

CO2 and H2O and applying their correction factor for mixtures, Hadvig has evaluated the emissivity of

a gas mixture with $
% &'

 / (
)*+

 = 1 and 2 and presented the results as a function of ,- and ./. Leckner

[50] has also published emissivity data, based on integrating the measured spectral data for CO2 and

H2O, which is in reasonable agreement with the Hottel charts where the charts are based on measured

data.

Taylor and Foster (1974) [51] have integrated the spectral data and constructed a multigray gas repres-
entation:

(8–38)∑= 


− 
=

− +
0 1 2 34

5
45 4

6 7 7 8

9

:

; < = >=? ?

where the @AB are represented as linear functions of CD:

(8–39)= + −
E F F GHI I I HJ

K
L

As well as CO2 and H2O, the model developed by Beer, Foster and Siddall [52] takes into account the

contribution of CO and unburnt hydrocarbons, e.g., methane (CH4) which are also significant emitters

of radiation. These authors generalize the parameterization of the absorption coefficients as follows:

(8–40)+ → + + +M N N M N N N M NO P Q RQ O P Q RQ RQ PRO PRS S S S

where T
UV

 is the partial pressure of CO and W
XY

 is the total partial pressure of all hydrocarbon species.
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The values of � �� , � ��  [K-1],�� [m
-1 atm-1] and �	
� [m

-1 atm-1] are given in Table 8.1: Gray gas emissivity

parameters for a carbon dioxide / water vapor / hydrocarbon mixture. (p. 362), together with a similar cor-

relation for �
 = 3, derived by Beer, Foster and Siddall [52], and suitable defaults for �� = 2 or 1 (single

gray gas) representations.

Table 8.1  Gray gas emissivity parameters for a carbon dioxide / water vapor / hydrocarbon

mixture.

Oils pH2O/pCO2 = 1Gaseous Fuels pH2O/pCO2 = 2iNg

kHCikib2ib1ikHCikib2ib1i

0101010111

3.4108.970.4863.8507.130.43712

02.5-8.970.51401.88-7.130.5632

3.4108.970.4863.8507.130.43713

02.5-3.960.38101.88-0.520.3902

0109-5.010.133068.83-6.611.1733

3.4107.530.40923.8504.740.36414

00.912.580.28400.697.190.2662

09.4-6.540.21107.4-7.410.2523

0130-3.570.0958080-4.520.1184

Note

To satisfy the requirement that the �� factors sum to unity, the �� factors must sum to 1.0

and the �� factors must sum to 0.
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Chapter 9: Electromagnetic Hydrodynamic Theory

Computational Fluid Dynamics is based on the conservation of mass, momentum, energy, and chemical
species. Computational Electromagnetics (CEM) is based on:

• Maxwell's equations and further relations

• Material relations for polarization (permittivity), conductivity, and magnetization (permeability).

The interaction of CEM and CFD is through body forces that result due to interactions between electro-
magnetic fields and fluid motion.

Electromagnetic hydrodynamics is available to enable the modeling of:

• The electric potential for conducting materials (including magnetic induced currents)

• User-defined volumetric, point, and boundary sources

• Resistive heating in energy equations

• Conjugate transfer between fluid and solid domains

• Variable electrical conductivity (via CEL).

9.1. Electromagnetic Models

The solution of electromagnetic hydrodynamic problems at the continuum level requires the solution
of Maxwell’s equations. The fundamental equations are:

(9–1)∇ × = − ∂
∂ �

(9–2)∇ × = + ∂
∂

�
�

(9–3)∇ ⋅ =

(9–4)∇ ⋅ = �
�

The Continuity equation (conservation of electric charge), which is a combination of the equations
above, is:

(9–5)∇ ⋅ =
∂
∂
�

�

�

In the equations above:

363
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.



•  is the magnetic induction

•  is the electric displacement

•  is the electric field

•  is the magnetic field

•  is the current density

• �
�
 is the electric charge density

To close this system of equations, constitutive relationships and a suitable set of boundary conditions
must be included.

9.1.1. Constitutive Relationships

The electric field  and the electric displacement are related through the polarization vector  as:

(9–6)= +�
�

where �
�
 is the permittivity of vacuum. For linear materials (typically diamagnetic or paramagnetic), the

polarization vector can be written as

(9–7)= � �
�	

where 

�
 is the electric susceptibility, which can be a function of the electric field .

A similar relationship is used to relate the magnetic induction  to the magnetic field , and the

magnetization vector .

(9–8)= +�



where �
�
 is the permeability of vacuum. For linear materials, the magnetization vector  can written

as

(9–9)= �
�

where �
�

 is the magnetic susceptibility.

Finally, for the current density  can be written as

(9–10)= + ×�

where � is the electrical conductivity.

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.364

Chapter 9: Electromagnetic Hydrodynamic Theory



9.1.2. Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the interactions between magnetic fields and electrically

conducting fluids. The body (Lorentz) force acts on the fluid when electric current ( ) flows at an angle

to the imposed magnetic field ( ). The resistive heating is measured in Joules.

For a particle:

(9–11)= + ×�
����

where � is the charge on the particle.

For a continuous fluid:

(9–12)= ×
���	

where:

(9–13)= + ×


9.1.3. Electrohydrodynamics (EHD)

Electrohydrodynamics (EHD) is the study of the interactions between magnetic fields and electrically
charged fluids (species, particles). The body (Coulomb) force acts on the charged fluid along the imposed

electric field ( ).

(9–14)= �
�
��

9.1.4. Ferrohydrodynamics (FHD)

Ferrohydrodynamics (FHD) is the study of interactions between magnetic fields and magnetically polar-
izable fluids (that is, ferrofluids). The body (Kelvin) force acts on the fluid magnetic dipoles along to the

magnetic field ( ).

(9–15)= ⋅ ∇�
���� �

9.1.5. Electromagnetic Basics: Potential Formulation in ANSYS CFX

The electric potential (�) for electric field ( ) is:

365
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Electromagnetic Models



(9–16)= − ∇ − ∂
∂

�

�

(9–17)∇ ⋅ = ∇ ⋅ 


− ∇ + × − ∂
∂




=� � � �

�

The magnetic vector potential ( ) for magnetic induction ( ) is:

(9–18)= ∇ ×

(9–19)∇ × = ∇ ×



 ∇ ×




 = − ∇ + × − ∂

∂�

� � � �

�

9.1.6. Boundary Conditions

The boundary conditions are:

• × − =	 


• ⋅ − =�
�
 �

• × − = �� �

• ⋅ − =� �

9.1.7. Transformed Equations

In order to reduce the number of partial differential equations and transform them into something
similar to the general transport equation within the ANSYS CFX solver, a formulation based on the

electric scalar potential �, and the magnetic vector potential  is used. The following vector identities

are used:

(9–20)∇ ⋅ ∇ × =

(9–21)∇ × ∇ =

(9–22)∇ × ∇ × = ∇ ⋅ ∇ + ∇ ∇ ⋅

The electric and magnetic vector potentials are defined as:
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(9–23)= ∇ ×

(9–24)= − ∇ − ∂
∂

�

�

Equation 9–1 (p. 363) and Equation 9–3 (p. 363) are automatically satisfied:

(9–25)∇ × = ∇ × 


− ∇ − ∂
∂




= − ∂ ∇ ×
∂

= − ∂
∂

�

� � �

(9–26)∇ ⋅ ∇ × =

9.1.8. Conductive Media Approximation

Starting with Equation 9–5 (p. 363) and substituting the constitutive equations:

(9–27)

∇ ⋅ = ∇ ⋅ + × =

∇ ⋅ 


 − ∇ − ∂

∂
+ × 


 =

∂
∂

�

� � �

�

�

�

�

�

This can be rearranged as:

(9–28)
∂
∂

− ∇ ⋅ − ∇ = − ∂
∂

+ ×
	




� � �




�



Assuming a quasi-steady model (that is, neglecting transient terms)

(9–29)∇ ⋅ − ∇ = − ×� � �

Similarly for Equation 9–3 (p. 363):

(9–30)∇ × = + × + ∂
∂

�

�

Using the constitutive relation between the Magnetic Induction ( ) and the Magnetic Field ( ), in ad-
dition to the quasi-steady approximation:
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(9–31)∇ ×



 ∇ ×




 = + × ∇ ×

�
�

Using vector identities (Equation 9–22 (p. 366)) assuming uniform magnetic permeability, and enforcing

the Coulomb gauge that ∇ ⋅ = , the transport equation for the magnetic vector potential becomes:

(9–32)∇ ⋅



 ∇




 = + × ∇ ×

�
�

Note that the left-hand side of the transport equation for the magnetic vector potential has only
transport by diffusion, which is balanced by the sources on the right-hand side.

9.2. Fluid Dynamics Model

For reference, the transport equations for the fluid dynamics model expressed in vector notation (in-
cluding electromagnetic sources) are presented below.

Conservation of Mass

(9–33)
∂
∂

+ ∇ ⋅ =�

�
�

Conservation of Linear Momentum

(9–34)⊗∂
∂

+ ∇ ⋅ = − ∇ + ∇ ⋅ + + +�

�
� � �	


�
�
��

where ���� denotes the sources of momentum arising from the electromagnetic forces and is given

by:

(9–35)= + × +����� ���

Conservation of Energy

(9–36)
∂

∂
− ∂

∂
+ ∇ = ∇ ∇ + ∇ + +� � � � �

� �

�

�

�
� �  ! " # $

%&%
%&%

Where:

• '()( is the total enthalpy, related to the static enthalpy * + ,  by:
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(9–37)= + �� ����
�

• The term ∇ � �  represents the work due to viscous stresses and is called the viscous work term.

• The term � �	  represents the work due to external momentum sources and is currently neglected.

• The term 
�  represents the momentum source.

• The term � represents the energy source due to resistive heating and is given by ⋅
.
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Chapter 10: Rigid Body Theory

This chapter contains a summary of the theory of rigid body and the algorithms used in ANSYS CFX:
10.1. Equations of Motion of Rigid Body
10.2. Rigid Body Solution Algorithms

10.1. Equations of Motion of Rigid Body

The equations of motion of a rigid body can be written as:

(10–1)=�

��

(10–2)=�

��

These equations state that for a rigid body undergoing translation and rotation the rate of change of

linear and angular momentum,  and , respectively, of the rigid body is equal to the applied force

and torque,  and , respectively, acting on the body.

10.2. Rigid Body Solution Algorithms

The rigid body solution algorithm uses a linear momentum solver for the translation of the rigid body
and a separate angular momentum solver for the rotation of the rigid body. There are two choices for
the angular momentum solver (a First Order Backward Euler solver and a Simo Wong solver).

The remainder of this section describes:
10.2.1.Translational Equations of Motion
10.2.2. Rotational Equations of Motion

10.2.1. Translational Equations of Motion

The equation of motion for a translating center of mass , Equation 10–1 (p. 371), can be expressed as:

(10–3)=�

where � is the mass and  represents the sum of all forces which include aerodynamic, weight of rigid
body, spring and/or explicit external force.

Expanding the sum of all forces, Equation 10–3 (p. 371) may be written as:
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(10–4)= = + − − +� � ����� ����	
 �� �
�

where ���� is the aerodynamic force,  is the gravity, ������� is the linear spring constant and ��� is

all other external forces acting on the body.

10.2.1.1. Newmark Integration

The linear momentum solver makes use of the Newmark integration scheme. The conventional Newmark
integration scheme [203] can be expressed as:

(10–5)= + + − ++ +� � � � � � � ��       !
"

!

(10–6)= + − ++ +# # $ % # %#& & & & &' '

where ( is time, ) is representative of an entity such as spatial or angular position, and the subscripts

* and ++  represent the known solution at time , and unknown solution at time +- -, respectively.

The Newmark integration depends on two real parameters . and /. These parameters are directly linked

to accuracy and stability of the Newmark time integration scheme.

In typical applications of the Newmark method 0 and 1 are chosen to be ¼ and ½, respectively. This

choice of parameters corresponds to a trapezoidal rule which results in a second order accurate scheme
which is also unconditionally stable in linear analyses. The linear momentum equations are solved using
these parameters.

For fixed values of the external forces, the linear momentum solver advances the solution over time
using the following procedure:

1. Expressing Equation 10–4 (p. 372) as

(10–7)= = + − − ++ +2 2 34 5678 9:46;7 4 <8 =>?@ @

and substituting for +A B into Equation 10–5 (p. 372) where C is replaced by  and rearranging,

+D E is determined from:

(10–8)=
+ + − + + + +

++

F F G

G
H

I

J K
H

I

J K
H

J
H LMNO PQHMRN SO TUK

I

J K
PQHMRN

V
W W

V

X

W

Y

Y

2. From Equation 10–5 (p. 372) where Z is replaced by  and rearranging, +[ \ is determined from:
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(10–9)= − − − −+ +
� � � � �

� � � � �� � �

3. From Equation 10–6 (p. 372) where � is replaced by  and rearranging, +� � is determined from:

(10–10)= + − ++ +� 	 	
 
 
 
� �

where � is time.

Note that iteration of the above procedure is required to account for dependencies of the forces on
the position of the rigid body.

10.2.2. Rotational Equations of Motion

The equation of motion for a rotating rigid body can be rewritten in body-fixed coordinates (about the
center of mass) as:

(10–11)× + =

where the mass moment of inertia matrix, , is defined as:

(10–12)

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫

=













− + − − − − − − −

− − − − + − − − −

− − − − − − − + −














 
 � � �� � � 
 
 �� � � � � ��

� � 
 
 �� � � � � �� 
 
 � � ��

� � � � �� 
 
 � � �� � � 
 
 ��

� � � � � �

� � � � � �

� � � � � �

In the mass moment of inertia matrix shown in Equation 10–12 (p. 373), the center of mass is given by

� � �� � � , and �� is a differential element of mass.

Equation 10–11 (p. 373) represents the spatial coordinate form for the classical Euler’s equation for the
rigid body in body-fixed coordinates.

Also, in Equation 10–11 (p. 373)  is the total moment from all the separate contributions including
spring and other external moments:

(10–13)= − − +����� ��� �� !� "#�

where $%&' is the aerodynamic torque, ()*+,+- is the rotational spring constant and ./0 is all other

external torques acting on the body.

10.2.2.1. First Order Backward Euler

From Equation 10–11 (p. 373) the first order backward Euler algorithm begins with:
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(10–14)= − ×+
−

+� � � ��
�

�

Using the first order backward Euler algorithm, +� � is given by:

(10–15)= ++ + �� � �� �

where +� � is determined from Equation 10–14 (p. 374)

Equation 10–15 (p. 374) can be expressed in terms of , angles in the global frame (see 206), as:

(10–16)=+
−

+	 	







where

(10–17)=








−








� � � �

� �

� � � �

and where 
 and � are Euler Angle Y and Euler Angle X, respectively. For details on Euler Angles see

Rigid Body Motion in the CFX-Solver Modeling Guide.

Integrating in global coordinates using the first order backward Euler algorithm:

(10–18)= ++ +�
� � �� �

where +� �
 is determined from Equation 10–16 (p. 374)

Note that in addition to providing only a first order integration of the rotational momentum the first
order backward Euler method does not exactly conserve total angular momentum and is subject to
potential of encountering Gimbal lock [205].

10.2.2.2. Simo Wong Algorithm

The Simo Wong (ALGO_C1 variant) algorithm is a second order time stepping algorithm that exactly
conserves energy and enforces conservation of total angular momentum. It uses a modified Newmark

integration scheme with constants of the Newmark method given by =� ½ and =�  to realize the

second order accurate integration. A Quaternion representation is employed to avoid the potential of
Gimbal lock and the use of convected incremental body fixed coordinates is adopted to ensure conser-
vation of total angular momentum. For more information, see Simo Wong [204].
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Chapter 11: Discretization and Solution Theory

This chapter describes:
11.1. Numerical Discretization
11.2. Solution Strategy - The Coupled Solver
11.3. Discretization Errors

11.1. Numerical Discretization

Analytical solutions to the Navier-Stokes equations exist for only the simplest of flows under ideal
conditions. To obtain solutions for real flows, a numerical approach must be adopted whereby the
equations are replaced by algebraic approximations that can be solved using a numerical method.

11.1.1. Discretization of the Governing Equations

ANSYS CFX uses an element-based finite volume method, which first involves discretizing the spatial
domain using a mesh. The mesh is used to construct finite volumes, which are used to conserve relevant
quantities such as mass, momentum, and energy. The mesh is three dimensional, but for simplicity we
will illustrate this process for two dimensions.

The figure below shows a typical two-dimensional mesh. All solution variables and fluid properties are
stored at the nodes (mesh vertices). A control volume (the shaded area) is constructed around each
mesh node using the median dual (defined by lines joining the centers of the edges and element centers
surrounding the node).
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Figure 11.1  Control Volume Definition

To illustrate the finite volume methodology, consider the conservation equations for mass, momentum,
and a passive scalar, expressed in Cartesian coordinates:

(11–1)
∂
∂

+ ∂
∂

=
�

�
�

�
�

�
�

(11–2)
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(11–3)
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∂
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�

These equations are integrated over each control volume, and Gauss’ Divergence Theorem is applied
to convert volume integrals involving divergence and gradient operators to surface integrals. If control
volumes do not deform in time, then the time derivatives can be moved outside of the volume integrals
and the integrated equations become:
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where V and s respectively denote volume and surface regions of integration, and dnj are the differential

Cartesian components of the outward normal surface vector. The volume integrals represent source or
accumulation terms, and the surface integrals represent the summation of the fluxes. Note that changes
to these equations need some generalization to account for mesh deformation. For details, see Mesh

Deformation (p. 388).

The next step in the numerical algorithm is to discretize the volume and surface integrals. To illustrate
this step, consider a single element like the one shown below.

Figure 11.2  Mesh Element

Volume integrals are discretized within each element sector and accumulated to the control volume to
which the sector belongs. Surface integrals are discretized at the integration points (ipn) located at the
center of each surface segment within an element and then distributed to the adjacent control volumes.
Because the surface integrals are equal and opposite for control volumes adjacent to the integration
points, the surface integrals are guaranteed to be locally conservative.

After discretizing the volume and surface integrals, the integral equations become:
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where = )* + ,-. / /
-.

, V is the control volume, 0 is the time step, 1 2 is the discrete outward

surface vector, the subscript ip denotes evaluation at an integration point, summations are over all the

integration points of the control volume, and the superscript o refers to the old time level. Note that
the First Order Backward Euler scheme has been assumed in these equations, although a second order
scheme (discussed later) is usually preferable for transient accuracy.

11.1.1.1. Order Accuracy

Many discrete approximations developed for CFD are based on series expansion approximations of
continuous functions (such as the Taylor series). The order accuracy of the approximation is determined
by the exponent on the mesh spacing or time step factor of the largest term in the truncated part of
the series expansion, which is the first term excluded from the approximation. Increasing the order-ac-
curacy of an approximation generally implies that errors are reduced more quickly with mesh or time
step size refinement. Unfortunately, in addition to increasing the computational load, high-order approx-
imations are also generally less robust (that is, less numerically stable) than their low-order counterparts.
ANSYS CFX uses second order accurate approximations as much as possible. The role of error is discussed
further in Discretization Errors (p. 394).

11.1.1.2. Shape Functions

Solution fields and other properties are stored at the mesh nodes. However, to evaluate many of the
terms, the solution field or solution gradients must be approximated at integration points. ANSYS CFX
uses finite-element shape functions (unless otherwise noted) to perform these approximations. Finite-
element shape functions describe the variation of a variable 3 varies within an element as follows:

(11–10)∑=
=

4 5 4

6

7

6 6
8

9:;<

where Ni is the shape function for node i and =
>
 is the value of ? at node i. The summation is over all

nodes of an element. Key properties of shape functions include:
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The shape functions used in ANSYS CFX are linear in terms of parametric coordinates. They are used to
calculate various geometric quantities as well, including ip coordinates and surface area vectors. This
is possible because Equation 11–10 (p. 378) also holds for the coordinates:

(11–13)∑=
=

� 
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�

�

� �
�

����

The tri-linear shape functions for each supported mesh element are given below:

11.1.1.2.1. Hexahedral Element

Figure 11.3  Hexahedral Element

The tri-linear shape functions for the nodes are:
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11.1.1.2.2. Tetrahedral Element

Figure 11.4  Tetrahedral Element

The tri-linear shape functions for the nodes are:

Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.380

Chapter 11: Discretization and Solution Theory



(11–15)

= − − −
=
=
=

� � � � � � �

� � � � �

� � � � �

� � � � �

�

�

�

�

11.1.1.2.3. Wedge Element

Figure 11.5  Wedge Element

The tri-linear shape functions for the nodes are:
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11.1.1.2.4. Pyramid Element

Figure 11.6  Pyramid Element

The tri-linear shape functions for the nodes are:

(11–17)
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11.1.1.3. Control Volume Gradients

In a few situations, gradients are required at nodes. ANSYS CFX uses a form of the Gauss’ divergence
theorem to evaluate these control volume gradients:
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(11–18)∑∇ =�
�
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��

��

ur

where �
ur

 is the outward surface vector at ip.

This formula requires that � be evaluated at integration points using finite-element shape functions.

11.1.1.4. Advection Term

The advection term requires the integration point values of � to be approximated in terms of the nodal

values of �. The advection schemes implemented in ANSYS CFX can be cast in the form:

(11–19)= + ∇ ⋅	 	 
 	 �
�
 �


ur

where �
��

 is the value at the upwind node, and �
ur

 is the vector from the upwind node to the ip. Par-

ticular choices for � and ∇ � yield different schemes as described below.

11.1.1.4.1. 1st Order Upwind Differencing Scheme

A value of =�  yields a first order Upwind Difference Scheme (UDS). This scheme is very robust, but

it will introduce diffusive discretization errors that tend to smear steep spatial gradients as shown below:

11.1.1.4.2. Specified Blend Factor

By choosing a value for � between 0 and 1, and by setting ∇ � equal to the average of the adjacent

nodal gradients, the discretization errors associated with the UDS are reduced. The quantity ∇ ⋅� � �
ur

,

called the Numerical Advection Correction, may be viewed as an anti-diffusive correction applied to

the upwind scheme. The choice =�  is formally second-order-accurate in space, and the resulting

discretization will more accurately reproduce steep spatial gradients than first order UDS. However, it
is unbounded, and may introduce dispersive discretization errors that tend to cause non-physical oscil-
lations in regions of rapid solution variation as shown below.
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11.1.1.4.3. Central Difference Scheme

With the central difference scheme (CDS), � is set to 1 and ∇ � is set to the local element gradient. An

alternative interpretation is that �
��

 is evaluated using the tri-linear shape functions:

(11–20)∑=� � � � 	 �

� �

� 
� 
� 
� �

The resulting scheme is also second-order-accurate, and shares the unbounded and dispersive properties
of the Specified Blend Factor scheme. An additional undesirable attribute is that CDS may suffer from
serious decoupling issues. While use of this scheme is not generally recommended, it has proven both
useful for LES-based turbulence models.

11.1.1.4.4. Bounded Central Difference Scheme

The central differencing scheme described above is an ideal choice in view of its low numerical diffusion.
However, it often leads to unphysical oscillations in the solution fields. In order to avoid these oscillations,
the bounded central difference (BCD) scheme can be used as the advection scheme.

The bounded central difference scheme is essentially based on the normalized variable diagram (NVD)
approach [213] together with the convection boundedness criterion (CBC) [214]. It uses the central dif-
ference scheme wherever possible, but blends to the first-order upwind scheme when the CBC is violated.

The bounded central difference scheme is suitable both for the LES and the SAS or DES turbulence
models. For SAS and DES, the bounded central difference scheme then replaces the numerical blending
between the central differencing scheme and the specified differencing scheme. See Discretization of

the Advection Terms (p. 134) for more details regarding the numerical blending.

11.1.1.4.5. High Resolution Scheme

The High Resolution Scheme uses a special nonlinear recipe for 
 at each node, computed to be as

close to 1 as possible without introducing new extrema. The advective flux is then evaluated using the

values of � and ∇ � from the upwind node. The recipe for � is based on the boundedness principles

used by Barth and Jesperson [28]. This methodology involves first computing a �
���

 and �
���

 at each

node using a stencil involving adjacent nodes (including the node itself ). Next, for each integration

point around the node, the following equation is solved for � to ensure that it does not undershoot

�
���

 or overshoot �
� !

:
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(11–21)= + ∇ ⋅� � � � �
�� ��

ur

The nodal value for � is taken to be the minimum value of all integration point values surrounding the

node. The value of � is also not permitted to exceed 1. This algorithm can be shown to be Total Variation

Diminishing (TVD) when applied to one-dimensional situations.

11.1.1.5. Diffusion Terms

Following the standard finite-element approach, shape functions are used to evaluate spatial derivatives
for all the diffusion terms. For example, for a derivative in the x direction at integration point ip:

(11–22)
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The summation is over all the shape functions for the element. The Cartesian derivatives of the shape
functions can be expressed in terms of their local derivatives via the Jacobian transformation matrix:

(11–23)
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The shape function gradients can be evaluated at the actual location of each integration point (that is,
true tri-linear interpolation), or at the location where each ip surface intersects the element edge (that
is, linear-linear interpolation). The latter formulation improves solution robustness at the expense of
locally reducing the spatial order-accuracy of the discrete approximation.

11.1.1.6. Pressure Gradient Term

The surface integration of the pressure gradient in the momentum equations involves evaluation of
the expression:

(11–24)� ���
��

The value of Pip is evaluated using the shape functions:

(11–25)∑=� � � � � �� 
!

! � � � !

As with the diffusion terms, the shape function used to interpolate " can be evaluated at the actual
location of each integration point (that is, true tri-linear interpolation), or at the location where each ip
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surface intersects the element edge (that is, linear-linear interpolation). By default, linear-linear interpol-
ation is used unless the flow involves buoyancy, in which case tri-linear interpolation is used for improved
accuracy.

11.1.1.7. Mass Flows

The discrete mass flow through a surface of the control volume, denoted by ���, is given by:

(11–26)= �� � ��� 	 	
��

This expression must be discretized carefully to lead to proper pressure-velocity coupling and to accur-
ately handle the effects of compressibility, as discussed below.

11.1.1.7.1. Pressure-Velocity Coupling

ANSYS CFX uses a co-located (non-staggered) grid layout such that the control volumes are identical
for all transport equations. As discussed by Patankar [118], however, naïve co-located methods lead to
a decoupled (checkerboard) pressure field. Rhie and Chow [2] proposed an alternative discretization
for the mass flows to avoid the decoupling, and this discretization was modified by Majumdar [119] to
remove the dependence of the steady-state solution on the time step.

A similar strategy is adopted in ANSYS CFX. By applying a momentum-like equation to each integration
point, the following expression for the advecting (mass-carrying) velocity at each integration point is
obtained:

(11–27)= +






∂
∂

− ∂
∂


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− −
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(11–28)=
−

�
�

� �
��

��

�� ��

(11–29)= −�
�

�
��

� = approximation to the central coefficient of momentum equation, excluding the transient term

(11–30)=�
�

 
!"

The overbars indicate averaging of adjacent vertex values to the integration point, while the o superscript
denotes values at the previous time step.

The naïve discretization, given simply by averaging the adjacent vertex velocities to the integration
point, is augmented by a high-order pressure variation that scales with the mesh spacing. In particular,
when substituted into the continuity equation, the expression
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(11–31)
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� �� � ��

becomes a fourth derivative of pressure that scales with �
�
. This expression represents a spatially

third-order accurate term, and is sometimes also called the pressure-redistribution term. This term is
usually significantly smaller than the average of vertex velocities, especially as the mesh is refined to
reasonable levels.

In some cases, the pressure-redistribution term can produce apparently significant spurious velocity

fields. This may occur when a strong pressure gradient is required to balance a body force, ��, such as

buoyancy or porous drag. In these cases, the Rhie Chow discretization may lead to velocity wiggles at
locations where the body force is discontinuous (for example., at a free surface interface, or at the
boundary of a porous region). The wiggles are greatly reduced or eliminated by redistributing the body
force as follows:

(11–32)
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11.1.1.7.2. Compressibility

Mass flow terms in the mass conservation equation involve a product of the density and the advecting
velocity. For compressible flows, the discretization of this product is made as implicit as possible with
the use of the following Newton-Raphson linearization:

(11–33)≈ + −� � � �� � � � � � � �
� � � � � � �

Here, the superscripts � and � respectively indicate the current and previous iterates. This results in an
active linearization involving both the new density and velocity terms for compressible flows at any

Mach number. The value of �
�

 is linearized in terms of pressure as

(11–34)= + ∂
∂

−� �
�

�
� �

� �

�

� �

11.1.1.8. Transient Term

For control volumes that do not deform in time, the general discrete approximation of the transient

term for the nth time step is:

(11–35)∫∂
∂

≈ −+ −

�
� �  ! !

� � � �

�"

# #$
%

$
%

where values at the start and end of the time step are assigned the superscripts n+½ and n-½, respectively.
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With the First Order Backward Euler scheme, the start and end of time step values are respectively ap-
proximated using the old and current time level solution values. The resulting discretization is:

(11–36)∫∂
∂

=





− 




�
� � �� �

� � � �

��

� �

It is robust, fully implicit, bounded, conservative in time, and does not have a time step size limitation.
This discretization is, however, only first-order accurate in time and will introduce discretization errors
that tend to diffuse steep temporal gradients. This behavior is similar to the numerical diffusion exper-
ienced with the Upwind Difference Scheme for discretizing the advection term.

With the Second Order Backward Euler scheme, the start and end of time step values are respectively
approximated as:

(11–37)= + −−
� � � � � � � �

	 
 
 

�
�

(11–38)= + −+

 � 
 � 
 � 
 �

� ��
�

When these values are substituted into the general discrete approximation, Equation 11–35 (p. 387), the
resulting discretization is:

(11–39)∫∂
∂

≈ 


− + 
�

� � �� �
�

� � � � � �

�

� ��

This scheme is also robust, implicit, conservative in time, and does not have a time step size limitation.
It is second-order accurate in time, but is not bounded and may create some nonphysical solution os-
cillations. For quantities such as volume fractions, where boundedness is important, a modified Second
Order Backward Euler scheme is used instead.

11.1.1.9. Mesh Deformation

The integral conservation equations presented above in Equation 11–4 (p. 377) must be modified when
the control volumes deform in time. These modifications follow from the application of the Leibnitz
Rule:

(11–40)∫ ∫ ∫= ∂
∂

+ �
�

��
� ��

�

�
�� � ��

 !  "
# #

$ %

where &' is the velocity of the control volume boundary.

As before, the differential conservation equations are integrated over a given control volume. At this
juncture, the Leibnitz Rule is applied, and the integral conservation equations become:
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The transient term accounts for the rate of change of storage in the deforming control volume, and
the advection term accounts for the net advective transport across the control volume's moving
boundaries.

Erroneous sources of conserved quantities will result if the Geometric Conservation Law (GCL):

(11–44)∫ ∫= 7
8

89
8: 8;

< = >
? ?

@ A

is not satisfied by the discretized transient and advection terms. The GCL simply states that for each
control volume, the rate of change of volume must exactly balance the net volume swept due to the
motion of its boundaries. The GCL is satisfied by using the same volume recipes for both the control
volume and swept volume calculations, rather than by approximating the swept volumes using the
mesh velocities.

11.1.2. The Coupled System of Equations

The linear set of equations that arise by applying the finite volume method to all elements in the domain
are discrete conservation equations. The system of equations can be written in the form:

(11–45)∑ =B C D

EF
G
EF

G

EF
G

H

where I is the solution, b the right hand side, a the coefficients of the equation, i is the identifying

number of the control volume or node in question, and nb means “neighbor”, but also includes the
central coefficient multiplying the solution at the ith location. The node may have any number of such
neighbors, so that the method is equally applicable to both structured and unstructured meshes. The
set of these, for all control volumes constitutes the whole linear equation system. For a scalar equation

(for example, enthalpy or turbulent kinetic energy), JK
LM

, N
O

PQ
 and bi are each single numbers. For the

coupled, 3D mass-momentum equation set, they are a (4 x 4) matrix or a (4 x 1) vector, which can be
expressed as:
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It is at the equation level that the coupling in question is retained and at no point are any of the rows
of the matrix treated any differently (for example, different solution algorithms for momentum versus
mass). The advantages of such a coupled treatment over a non-coupled or segregated approach are
several: robustness, efficiency, generality, and simplicity. These advantages all combine to make the
coupled solver an extremely powerful feature of any CFD code. The principal drawback is the high
storage needed for all the coefficients.

11.2. Solution Strategy - The Coupled Solver

Segregated solvers employ a solution strategy where the momentum equations are first solved, using
a guessed pressure, and an equation for a pressure correction is obtained. Because of the ‘guess-and-
correct’ nature of the linear system, a large number of iterations are typically required in addition to
the need for judiciously selecting relaxation parameters for the variables.

ANSYS CFX uses a coupled solver, which solves the hydrodynamic equations (for u, v, w, p) as a single
system. This solution approach uses a fully implicit discretization of the equations at any given time
step. For steady state problems, the time-step behaves like an ‘acceleration parameter’, to guide the
approximate solutions in a physically based manner to a steady-state solution. This reduces the number
of iterations required for convergence to a steady state, or to calculate the solution for each time step
in a time-dependent analysis.

11.2.1. General Solution

The flow chart shown below illustrates the general field solution process used in the CFX-Solver.

The solution of each set of field equations shown in the flow chart consists of two numerically intensive
operations. For each time step:
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1. Coefficient Generation: The nonlinear equations are linearized and assembled into the solution matrix.

2. Equation Solution: The linear equations are solved using an Algebraic Multigrid method.

When solving fields in the CFX-Solver, the outer (or time step) iteration is controlled by the physical
time scale or time step for steady and transient analyses, respectively. Only one inner (linearization) it-
eration is performed per outer iteration in steady state analyses, whereas multiple inner iterations are
performed per time step in transient analyses.
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11.2.2. Linear Equation Solution

ANSYS CFX uses a Multigrid (MG) accelerated Incomplete Lower Upper (ILU) factorization technique for
solving the discrete system of linearized equations. It is an iterative solver whereby the exact solution
of the equations is approached during the course of several iterations.

The linearized system of discrete equations described above can be written in the general matrix form:

(11–49)=� � �

where �  is the coefficient matrix, �  the solution vector and �  the right hand side.

The above equation can be solved iteratively by starting with an approximate solution,�
�

, that is to

be improved by a correction, ′� , to yield a better solution,
+

	

 �

, that is,

(11–50)= + ′+
� � �

 
�

where ′�  is a solution of:

(11–51)′ =� � �
�

with �
�

, the residual, obtained from:

(11–52)= −� � � �
� �

Repeated application of this algorithm will yield a solution of the desired accuracy.

By themselves, iterative solvers such as ILU tend to rapidly decrease in performance as the number of
computational mesh elements increases. Performance also tends to rapidly decrease if there are large
element aspect ratios present.

11.2.2.1. Algebraic Multigrid

The convergence behavior of many matrix inversion techniques can be greatly enhanced by the use of
a technique called ‘multigrid’. The multigrid process involves carrying out early iterations on a fine mesh
and later iterations on progressively coarser virtual ones. The results are then transferred back from the
coarsest mesh to the original fine mesh.

From a numerical standpoint, the multigrid approach offers a significant advantage. For a given mesh
size, iterative solvers are efficient only at reducing errors that have a wavelength of the order of the
mesh spacing. So, while shorter wavelength errors disappear quite quickly, errors with longer wavelengths,
of the order of the domain size, can take an extremely long time to disappear. The Multigrid Method
bypasses this problem by using a series of coarse meshes such that longer wavelength errors appear
as shorter wavelength errors relative to the mesh spacing. To prevent the need to mesh the geometry
using a series of different mesh spacings, ANSYS CFX uses Algebraic Multigrid.
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Algebraic Multigrid [25] forms a system of discrete equations for a coarse mesh by summing the fine
mesh equations. This results in virtual coarsening of the mesh spacing during the course of the iterations,
and then re-refining the mesh to obtain an accurate solution. This technique significantly improves the
convergence rates. Algebraic Multigrid is less expensive than other multigrid methods because the
discretization of the nonlinear equations is performed only once for the finest mesh.

ANSYS CFX uses a particular implementation of Algebraic Multigrid called Additive Correction. This ap-
proach is ideally suited to the CFX-Solver implementation because, it takes advantage of the fact that
the discrete equations are representative of the balance of conserved quantities over a control volume.
The coarse mesh equations can be created by merging the original control volumes to create larger
ones as shown below. The diagram shows the merged coarse control volume meshes to be regular,
but in general their shape becomes very irregular. The coarse mesh equations thus impose conservation
requirements over a larger volume and in so doing reduce the error components at longer wavelengths.

393
Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Solution Strategy - The Coupled Solver



11.2.3. Residual Normalization Procedure

As described above, the raw residual, [r], is calculated as the imbalance in the linearized system of discrete
equations. The raw residuals are then normalized for the purpose of solution monitoring and to obtain
a convergence criteria. An overview of the normalization procedure is given below.

For each solution variable,�, the normalized residual is given in general by:

(11–53)  =
 ∼

�

�

� �
�

�

�

where �
�

 is the raw residual control volume imbalance, ap is representative of the control volume

coefficient, and � is a representative range of the variable in the domain. The exact calculation of ap

and 	 is not simple and is not presented here. However, some important notes are:

1. The normalized residuals are independent of the initial guess.

2. ap is the central coefficient of the discretized control volume equation and therefore includes relevant

advection, diffusion, source linearization, and other terms.

3. For steady state simulations, the time step is used only to underrelax the equations and is therefore
excluded from the normalization procedure. This ensures that the normalized residuals are independent
of the time step. The transient term is included in ap for transient simulations.

4. For multiphase, if equations are coupled through an interphase transfer process (such as interphase
drag or heat transfer), the residuals are normalized by the bulk ap.

11.3. Discretization Errors

There are often differences between the exact analytical solution of the modeled differential equations
(see Equation 11–1 (p. 376)), and the fully converged solution of their discrete representations (see
Equation 11–4 (p. 377)). These differences are referred to as discretization errors.

Like the principal variables being solved for, errors in these values are both generated by localized
sources and propagated (that is, amplified, advected, diffused) throughout the solution domain. Localized
sources of error result from the high-order terms that are excluded from the discrete approximations of
terms in the modeled equations. Conversely, error propagation results from the form of the terms that
are included in the discrete approximations. Both error sources and propagation are affected by the
solution and mesh distributions, as discussed in Controlling Error Sources (p. 394) and Controlling Error

Propagation (p. 395).

11.3.1. Controlling Error Sources

Reducing the source of solution error (that is, the magnitude of terms excluded in the discrete approx-
imations) is critical if accurate numerical solutions are desired. The two most effective strategies for
accomplishing this are to increase the order-accuracy of discrete approximations (for example, using
the high resolution rather than the upwind difference advection scheme) and/or to reduce the mesh
spacing in regions of rapid solution variation. The former strategy is discussed above (see Advection

Term (p. 383)), and implications of the latter are now considered.
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Finely spaced isotropic mesh distributions are ideal, but they are often not tractable. A more useful
strategy for reducing sources of solution error is to generate anisotropic meshes with fine spacing in
directions of most rapid solution variation and relatively coarse spacing in other directions. This is ex-
emplified by typical boundary layer meshes that are compressed in the direction of most rapid solution
variation (that is, normal to the wall).

It is important to realize, however, that sources of solution error are also affected by poor geometrical
mesh quality (see Measures of Mesh Quality in the CFX-Solver Modeling Guide). In particular, the error
source contributions due to the discretization of transient/storage, diffusion, source and Rhie-Chow re-
distribution terms increase with mesh anisotropy. This is why, for example, high orthogonality and low
expansion factors are recommended in boundary layer meshes where diffusive transport dominates.

11.3.2. Controlling Error Propagation

Controlling the transport and, more importantly, the amplification of error, is also critical, given that
sources of solution error can often only be reduced and not eliminated. Little can be done to reduce
error transport because error is subject to the same physical processes (such as, advection or diffusion)
as the conserved quantities. Fortunately, the amplification of error is more easily controlled.

Errors are amplified by strong unphysical influences in the discrete form of the modeled equations.
These unphysical influences will lead to convergence difficulties, and in extreme cases, complete diver-
gence. Similar to error sources, error amplification is controlled through the choice of discretization
and/or the mesh distribution.

As highlighted above, (unphysical) negative influences may be introduced into the discretization through
the finite-element shape functions, and these influences may grow as geometrical mesh quality (see
Measures of Mesh Quality in the CFX-Solver Modeling Guide) deteriorates. Tri-linear shape functions, for
example, are more susceptible to negative influences than linear-linear shape functions. Nevertheless,
tri-linear shape functions are used as much as possible due to their improved accuracy, and linear-linear
shape functions are used whenever solution robustness is critical.

Geometrical mesh quality is important regardless of the shape functions used. An excellent example of
this occurs when mesh elements are folded. If the mesh is sufficiently folded, control volumes become
negative and the balance between the transient/storage and flow terms is rendered physically invalid.
The amount of a conserved quantity within a control volume will actually decrease given a net flow
into the control volume.
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large eddy simulation , 126
Dynamic Smagorinsky-Lilly model, 130
Smagorinsky model, 128
WALE model, 129

LES, 126
lift force, 181
linear equation solution, 392
LISA model - primary breakup model, 269

M
mass flow, 386
mass source, 57

multiphase, 173
mass transfer

particle transport, 249
mathematical formulation of turbulence models, 139
mathematical notation, 22
mesh adaption, 74

adapting to the geometry, 76
advice, 77
advice - discontinuities, 78
and inflation, 76
implementation, 75
limitations, 77

mesh length scale
is the maximum edge length, 202

mesh refinement
implementation, 75

MFR, 155
mixture drag model, 180
modelling

flow at the wall - Additional Variables, 154
flow at the wall - heat transfer, 148
flow near the wall, 139

models
particle collision, 285

modified pressure, 8
isentropic compressibility, 7
isothermal compressibility, 7

momentum equation, 25
multifluid model, 170
multiphase flow, 170

momentum sources, 54
Monte Carlo radiation model, 358
multicomponent flow

components - algebraic equation, 46
components - constraint equation, 46
components - transport equation, 44
fluid properties, 47
multiphase, 173

multiphase
free surface, 236

multiphase flow, 165
interphase drag models - Gidaspow drag model,177
interphase drag models - Grace drag model,178,180
interphase drag models - Ishii-Zuber drag model,
177, 179–180
interphase drag models - mixture model, 180
interphase drag models - Schiller-Naumann drag
model, 176
interphase drag models - Wen Yu drag model, 176
lift force, 181
mixture model - interfacial area equation, 168
mixture model - Prandtl number, 168
mixture model - Reynolds number, 168
multicomponent multiphase flow, 173
particle model - interfacial area equation, 166
transport equations

multifluid model, 170
turbulence, 210

N
Navier-Stokes equations, 25
no slip, 69
normalized residual

procedure, 394
NOx model, 338
numerical advection correction scheme, 383
numerical discretization, 375
Nusselt number, 195, 248

O
oil combustion model, 254

light oil modification, 254
order accuracy, 378
outlet (subsonic)

mathematical model, 63
outlet (supersonic)

mathematical model, 67

P
P1 radiation model, 357
particle collision model, 285
particle integration timestep variable, 290
particle number density variable, 290
particle Reynolds number, 167
particle transport

boiling particles, 253
heat transfer, 248
liquid evaporation model, 250
mass transfer, 249
non-boiling particles, 252

particle transport theory, 239
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particle turbulent stokes number variable, 290
particle variables

particle integration Timestep, 290
particle number density, 290
particle turbulent Stokes number, 290
RMS mean particle Diameter, 290
RMS particle number rate, 290
RMS velocity, 290

phasic combustion, 338
Planck's constant, 353
porosity

area, 79
volume, 78

porous regions
area porosity definition, 78
equations, 78
resistance definition, 78
volume porosity definition, 78

PPCM
introduction to particle collision model, 285

Prandtl number
multiphase, 167

pressure gradient, 385
pressure-strain terms

Reynolds stress model, 111
pressure-velocity coupling, 386
primary breakup/atomization models, 266
proximate analysis of coal, 260

Q
quenching heat transfer, 228

R
radiation

discrete transfer model, 357
Monte Carlo model, 358
P1 model, 357
radiative preheating, 258
Rosseland model, 356
Spectral models, 359
theory, 351
through conducting solids, 354

RANS equations, 90
reference pressure, 7
residual material model, 330

equivalence ratio and conditional fresh/refresh mix-
tures, 333
exhaust gas recirculation, 331
mixture composition, 332
principal variables in a transport equation, 331
reinitialization for subsequent engine cycles, 333

resistance, 79

Reynolds Averaged Navier Stokes (RANS) equations,90
Reynolds number

particle, 167
Reynolds stress model, 109
Reynolds stress turbulence model, 108
Rhie and Chow, 386
rigid body

theory, 371
RMS mean particle diameter variable, 290
RMS particle number rate variable, 290
RMS velocity variable, 290
RNG k-epsilon model, 97
Rosseland radiation models, 356
rotating, 70
rotating frame quantities, 18
rough walls, 144

S
scalable wall functions

flow at the wall - heat transfer, 148
scalable wall-functions, 140
scalar

advection-diffusion equation, 79
scalar dynamic diffusivity, 6
Schiller-Naumann drag model, 176
secondary breakup models, 274
shape functions, 378
shear strain rate, 18
shear stress transport (SST) k-omega based model,102
size group discretization, 202
Smagorinsky model, 128
solid domain, 39
solid motion

additional variables, 51
conjugate heat transfer, 39

solver
yplus and yplus, 142

soot model, 346
sources, 54

momentum, 54
spark ignition model, 335
specified shear, 69
specify blend, 383
Spectral radiation models, 359
spray breakup models, 266

blob method, 267
enhanced blob method, 267
LISA model, 269
primary breakup/atomization models, 266
turbulence induced atomization, 273

SST k-omega based model, 102
static pressure, 8
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static temperature, 10
statistical turbulence models, 89
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sources, 54
surface tension

in free surface flows, 236
symbols

list of, 2
symmetry plane

mathematical model, 71

T
Tabakoff and Grant erosion model, 263
thermal radiation

theory, 351
total

enthalpy, 26
total pressure, 16, 166
total temperature, 11
transient, 387
transient blade row

theory, 159
transition model, 121
transport equations, 25
treatment of compressibility effects

flow at the wall - heat transfer, 150
turbulence, 89

closure models, 89
turbulence induced atomization - primary breakup
model, 273
turbulence model

curvature correction, 104
eddy viscosity transport model, 106
explicit algebraic Reynolds Stress model, 117
k-epsilon turbulence model, 95
k-omega turbulence model, 98
large eddy simulation , 126
LES, 126
Reynolds stress, 108
RNG k-epsilon turbulence model, 97
rough walls, 144
transition model, 121
zero equation, 94

turbulence models, 89
turbulent particle dispersion, 247
two equation turbulence models, 94

U
upwind difference scheme (UDS), 383

V
variables

definitions of, 7
vector

operators, 22
volume

fraction, 165
volume porosity, 78
Von Karman constant, 6

W
WALE model, 129
wall

counter-rotating, 70
finite slip, 69
free slip, 69
mathematical model, 69
no slip, 69
rotating, 70
specified shear, 69

wall boiling model
area influence factors, 228
bubble departure diameter, 227
bubble detachment frequency, 227
bubble waiting time, 228
convective heat transfer, 228
evaporation rate, 229
partitioning wall heat flux, 224
quenching, 225
quenching heat transfer, 228
submodels, 226
theory, 224
wall nucleation site density, 226

wall heat flux
partitioning, 224

wall nucleation site density, 226
wall scale, 103
Wen Yu drag model, 176
Wilcox k-omega model, 98

Z
zero equation turbulence model, 94
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