>
>

Fluid Dynamics Structural Mechanics Electromagnetics Systems and Multiphysics

ANSYS TurboGrid Reference Guide

ANSYS

ANSYS, Inc. Release 14.0
Southpointe November 2011
275 Technology Drive

Canonsburg, PA 15317 ANSYS, Inc. is
ansysinfo@ansys.com certified to1SO
http://www.ansys.com 9001:2008.

(T) 724-746-3304
(F) 724-514-9494

Copyright and Trademark Information
© 2011 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any
and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or
trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used
by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service
and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC,, ITS SUBSIDIARIES, OR LICENSORS. The software products

and documentation are furnished by ANSYS, Inc,, its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products

and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.

ANSYS, Inc.is certified to 1ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software
and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

T.ANSYS TUrBOGHA LAUNCREY ... e s s e e e s e s e e e s e e e e e e e e e e e e s 1
1.1.The ANSYS TurboGrid LaunCher INTEIface nen 1
L I T TV I 2 - T PP PP UPPUPPPPR 1
TR R 1 = 1Y 1= o PPN 1
11T 1T SAVE AS ittt e e ettt e e e e et ettt e e e e e e e e e e bbb e e e e e et e ettt eeeeeataaatbb e eaaaeaens 2

L I 0 B0 O U 1 PP PTPPRPRR PR PPPPPUIR: 2

I I I o 11 0 1/ =T o T PPN 2

T 20 QdRAN e, 2
TLTT.2.20FING ettt ettt e e e e e ettt e e e e e e ettt e e e e e e e e anbbteeeeeeeeenaan 2

LI I B T @ o) o] o -SSP PP PPPP PRSP 2

T 02300 GUIESEYIE ettt e ettt e e e e e e s sbaaeeeeeeeens 2

1.1.1.2.3.2. Application Font and Text Window Fontcccccii, 2

I I O T G G 1Y =T 11 PP PP P PPSRPUPPPUPPPRt 2
IS T8 R W o Yo T T X0 L 2

1.1.1.3.2. Other ANSYS CFX APPlications ...ccceeeeeeeieeeieeeeeeeeeeececeeeeeeeeceeeeeeeeeeeeee e 2

I I I Y o Vo 1T =T o T 3
11041 INSTAAtION i 3

LI I I 0 L | PP 3

I I e T3V (=1 PP PP PPPPPPPPPPPPPPPPPRE 3

L I 3 - T -1 o] [3

1A PAtCNES oo 3

1105 TOOIS MENU ., 3
1.1.1.5.1. ANSYS Client Licensing ULilityccueeieiiiiiiiiiiiiiee ettt 3

I 30 o Y'Y 4 = o Vo N TR 3

I TEE T8 o 1 | PRt 4

T 100, USEE IMIBINU ..ttt ettt ettt e e ettt e e e etae s s eetaae s e eaasaa s eaasaasseansnasseessnnssenssnnnsenesnnneens 4

I I I o =Y o T 1Y 1= o T PPN 4

112 TOO Bar e, 4
1.1.3.WOrking Dir€CtOry SEIECTONeeiiiiiiiiei ittt ettt e e e e s ettt e e e e e s eabeaeeeas 4
114, OULPUL WINGOW ..uvviviiiiiiiiiiiiitiiiutittitttuutsteeseeeeeseresereseseeeseseeeeesseeae.erere.e.e........—...........—....—.—.—.—. 4

1.2. Customizing the ANSYS TUrDOGHIA LAUNCRETueiiieieceiececececececececee e s 4
1.2, 1. CCL STIUCTUIE ittt ettt e e e e e et ettt rs e e e e e eeeebtaa e e eeeeeaeatsassaeesaeesssssssnnnsesseaseessennnnnees 5
T2 GROUP ettt e e e e e ettt e e e e e e s e sttt e e e e e eessabbbbteeeeeeeseaanbbeaeeas 5

T.2.T.2. APPLICATION L.ttt ettt ettt e e e e e e ettt et e e e e e s e bbbt teeeeesesaasabbaaeeeeeessnaanes 5
1.2.1.2.1. Including Environment Variablesccccooiiiiiiiiiiiiiiiiiciciccccccccce e 7
T.2.T.3.DIVIDER ..ttt ettt e e e e ettt e e e e e s ettt et e e e e e e e s bbbbteeeeeeeeeaanes 7

1.2.2. Example: Adding the Windows CalCUlatorccoeeeieeeiiieieieceieiecececececececes e s s 8

2. ATIMI TOPOIOQY ..ottt ettt ettt et e e e e e sttt et e e e e e eeaabbbteeeeeeessaaasbbataeeeeseasassbbbaeaaeeessnnnes 9
3.CFXCommMand LaNQUAGEcooooiiiiiiiii 15
78 I (o o T [¥ Tl 4T o PSP PPPPPPPPRt 15
32 Q0L SYNTAX ceeeeeieeeieieieeee ettt e e e e e e e e e e e et e aaaaaaaaaaaaaaaaaaans 15
3.2.1.BaSiC TEIMINOIOQY cceeiiiiiiiiiiiiteee e ettt e e e e ettt e e e e e ettt et e e e e e e s saabbbteeeeeeeseaaabbeaeeeeeesanns 15
3.2.1.1.The Data HIerarchyeeiiiiiiiiitee ettt ettt e e e e ebbae e 16
3.2.2.5IMPle SYNtaX DELAIIS c.ceeieeiiiiiieeee ettt e e e e e ettt e e e e e e et aaeeeeeens 16
3.2.2.1.€AS8 SENSITIVITY ceeeeeieiiieiei e 16

3.2.2.2. CCLNames Definitionccooeviiiiiiice 17

I T [T [=T | 7 14T o PSP PPPPPPPPRE 17
3.2.2.4.End of Line ComMMENT CRalaCeruuuuuiiiiiiiiiiieieieie s nnnnnn 17

3.2.2.5. ContinUAtioN CharaCteruuuuiiiuiiiiieiiririrerirerereerrreerrrerererererr——.——r.... 17
3.2.2.6.NaMEd ObjJECLS .oiiiiiiiiiiieii e, 17

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information .
of ANSYS, Inc. and its subsidiaries and affiliates. m

ANSYS TurboGrid Reference Guide

Ry 10T | (1 (o] A W O] o] =T el & T 17

3.2.2.8. PAramMELEIS ...uueeeeeeiiiiiiiieeeeeeettitiiieseeeeeettatsaaeseeeeertarssaasesseeeeseeessannssssseeseenssnnnnnsseeererernns 17

I 11 &SRO PP PP PPPPPPPPPPPPPR 18
3.2.2.10. Parameter VAlUBSuuuuuuiiii s snnns 18

I 0 TR 13 o [P P PP PPPPPPPPPPPPPPPRE 18

3.2.2.10.2. SHNG LIST oeiiieeeeeeiiiiiiiiie ettt e e ee et tttiee s s e e e e reenraasseeeeesaensannassssseesannrsnnnnnnns 18

322003 INTEGET i e e e e e e e e e e 18
3.2.2.10.4.INTEQGET LIST ceeviiiiiieeeeeeeiiiiiiiiee e eeeetttiiies e e e e e ereertaaaseseeeeeennsrannssseeeesseensnnsnsseseesnenes 19

I T 1= | PP PP PP PPOPPPPPPPPPRE 19

3.2.2.T0.6. REAI LIST ..t nnnnn 19
3.2.2.70.7.L0GICAI ciiiiiiiiiiii i 19

3.2.2.10.8. LOGICAI LISt ceiiiiiiiiiiiiiiiiiiiiii e 19

R I B B LYt T o T @ T T - T] SRR 19
3.3.0bject Creation and DeletioNccoviiiiiiiiiii 20
3.4. ANSYS CFX EXPression LANGUAGEueeeeiereiiiiiiiieeeeeeettitiiiieseeeeeteeenaaniesssseeseemmsnnsssssseesserssnnnssssssssenes 20
3.4.1. CEL Functions, Constants and System Variablesccccccviviiiiiiiii, 21
I I DO =TI T To -1 0 I V] oot o1 LSS 21

34,12, CEL CONSTANTS ..uuureeeieiiiiiiiiieeeeeeeritiiiiiieeeeeeerettreunaesseseesesessnnnssssseesesnssmsnsnsssessssnsssnnnnsssssanns 21

4. ComMMANA ACLIONSooiiiiiiiiiiiceiceee e e ettt e e e e e e sttt eeeeee s e s s snasareeeeeesasssnsssaeeeeeesesssssnssnnneeesssansnns 23
0 TR 12 o o [T o o T 23
4.1.1.Command ACtioNS EXAMIPIEuiiiiiieeiciee e et e e e e e e e e et e e e e e e e e serarrnaeeeeeaaaees 23
4.2. File Operations from the Command Editor Dialog BOXcceeevierieiiiiiiieiiie e eeeerveeeee e 24
N BT AV) 1 (I 1 1= 24
4.2.1.1.savestate Command EXamMPIEScovviiiiiiieiieeeeiiiccie e e e e e e e e e e e e ar s 25
4.2.2.REAA STALE FIlES 1o iiiiiiiiiiiiiiii e 25
4.2.2.1.readstate Command EXamMPIESovviiiiiiieiieeeeiiiiiee et e e e e e e e e e e e e e 27
4.2.3.5ave TOPOIOGY FIles .cceiiiiiiiiiii 28
4.2.3.1.savetopology Command EXamPleccceiiiiiiiiiiiiiiiiiiiiiiceececeeeeeeeeeeese e 28
4.2.4.5aV8 MESH FIlES ciiiiiiiiiiiiiii 28
4.2.4.1. savemesh Command EXamMPIEScouvuuuiiiiiiieeeeiccee e e e e e e e e ea s 29
4.2.5.5aVE Blade FIlES ..ciiiiiiiiiiiiii 29
4.2.5.1.saveblade Command EXamPIecooiiiiiiiiiie it e e e e e e et e e e e e e ar e aaaaas 29
4.2.6.Create SESSION FIlES ..o 29
4.2.6.1.ses5ion ComMMaANd EXAMPIEScooeeeiiiiiiiie e e e e e 30
4.2.7.REAA SESSION FlES .. s e e e s e s e e e e s s e e e s e s e s e s e s e s e s e sesesesesssenasssenes 31
4.2.7.1. readsession Command EXamMPIESovvuuiiieiiiiiiiiiciee e e e e e a e 32

R M @ (=YY (=N o 1 (e [ele] o) VAN 32
4.2.9. EXPOIt GEROMELIY ..oiiiiiiiiiiiieeeeeeettiiiiieaeeeeeertttttiuaeeeeeretrennasssseeeesreessannssseseesssesssnnsnssssesssessnnnnns 32
4.2.9.1. tetin Command EXamMPIEcoviiieiieie i e e e e e et e e e e e e e e et e e e e e eeraaaas 32
4.3.Quantitative Calculations in the Command Editor Dialog BOXccevverriiiirirreiiieiieeerereeeeeeeeeeeeeeeeeeeee 33
v/ 00 I LU Tt 4 [0 W@ 1 Fal U] F- o o 33
4.3.1.1. EXPression SPECIfiCatioNccceeeieieieieieeeeececc e e e e e e e e e e ee e e e e e e e e e e e e e 34

4.3.1.2. AXiS SPECITICATION ...uuteeiiiiiieieiec e nnnnnnannnnn 34
4.3.1.3.Quantitative FUNCTION LiSTirriiiiiiiiiiiiiee ettt eeeeereiisee e e eeereerree s e e e eereensaanannnss 34

T I N - 1 <= PP UPPP PP PPPPPRRPPPN 34

4.3.1.3.2. @rEAAVE ..eveuieeeeeeeetttiiiee e e e e e ettt e e e e e e et et e e e e e e e et e bb e e et et aatb b e e eeeataanraeeeeas 35
4.3.1.3.3.@rCAINT ...ttt e e e et ettt e e e e e e e ett bt seeeeetaarbaaeeeeeenanes 35

e TR0 T 1V N 35

T e ST (o] U | AU PPPPRN 35

e TR IS T T =1 o T | d LR PP PP PPPPPPPPPPPRE 35
4.3.1.3.7.06NGTAAVE ..o 35

e R C Tt < 0 =T To |] 13| SO P PP PP PRPPPOPRPPPRPRRE 36

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

ANSYS TurboGrid Reference Guide

e R T T o 0 1=)4 Y- 1 PP PP PPPPPPPPPPPRE 36

4.3.1.3.10. MINVAL e e e e e e et e e e e e e e nrara e e e e e e e e s nnaranaaeeeeeennnnes 36

e T 0 0 I O o o] oY PSPPRR 36

e T 0 0y 1 U [o PSRRI 36

T R G TR 1 T o1 11 T T 36

4.3.1.3.T4. VOIUMEAVEovvviiiiiiiiiriteteteteteteeeseeereseseeeeeeeeeteesteesseeateteeteseseteatteraaeraeererrrarerernrnnns 36
4.3.1.3.15.VOIUMEINT oo 36

N @)1 o1 G @eT0 11 -1 o T I 37
4.4.7.DeletiNg ODJECTS cooeviiiiiiiiiiiee e 37
RV LAV o To I I @ =T o PSP PP PP PPPPPPPPPPPN 37
4.4.3.Creating @ MESh ..o 37

S POWEE SYNTAXoiiiiiiiiiiiiie ittt e ettt eee e e e e eretttaai e e eeeeeaerastaassssseesessestanssssseerennessnnnnssssereenessnnnnnnens 39
Lo T8 I [0Yd CeTe [¥ Tt AT o HPS PP PP PPPPPPPPPPPPPRt 39
5.2. EXamPIes Of POWET SYNTAX veveiiieieiiiiiiiieieeeieiciitteee e e e e seettateeeeeeseesnenraaeeeeesesssnnsssneasasssessssnnssnneeeeens 40
5.2.1.Example T:USiNG @ fOr LOOPuuuvriiiiieiieieeiiiiieeee e e eesitrttee e e e e e eeeenreeeeeeesessnnnnneaeeeeesensnnnnnnenes 40

5.2.2. Example 2: Creating a Simple SUDIOUTINGccooviiiiiiiiii 40

5.3. Predefined Power Syntax SUDIOUTINESouuiiiiiieiciiiiiieiee e e eeciirree e e e e e eseearreeee e e e e ssnnernnneeeeeesenanns 41
5.3.7. @Valuate(EXPIreSSION) ...cceeeiiiiiiieieeeeeeeti e e e e e e e eeett i eeeeeeeeeeeassaaaaaseeessasssnnnaasaeeesasssssnnnnseesesseees 41

5.3.2. getValue(Object Name, Parameter Nam@)uerererereseiererirssssenssssnnnnnnnnnnnssnnsssnssssssnnsnsnsnnnes 41

LT T T o o)1 o e - PP PPRPRPRPRPRPRS 41

LT J] T 1V AT U o 1 PP P PRSP PP PPPPPPPPPPPPRS 41

LT TR T [0 1A T] PP PPPPPPPPPPPPRS 41

5.3.6. VEIDOSEON() .euueiiiieiteeeeee ittt e e ettt e e e e e sttt e e e e e s bbbt e e e e e e e e bbbttt eeeeeesennbreaeeeeeeeens 42

6.LIiNe INtErface MOdEcooiiiiiiiiiiiiee ettt e e ettt e e e st e e e s bb e e s et e e e e b e e e e nannes 43
L3 I [oY CoTe [¥ Tt Ao o HPS PP PPPPPPPPPPPPPPPRt 43
6.2. LiN€ INTEIfACE MOTE ..ttt et e e st e s sttt e e s s bt e e e ssabbeeessaraeeeaans 44
6.2.1. Lists Of COMMANGSeeeeiiiiieiiiiiieeee e e eerctteeee e e e e eeetereeeeeeeeessanaraeeeeeeeeessnsnsranaeaessessnsnssnnnees 45

6.2.2. VIEWET HOTKEYSeveiiiiiiiiiiiiiiiiiiiititit ittt sttt bbbttt bbb bsbensbnbnnnnes 45

I R @1 [T [- | (o] G PP P PP PRPRPRPRPRS 45

6.2.4. GETSTATE COMMANG ...uiiiiiiiiiiiiiiiiiiteeeeueeeaeaeaeaaeraeee e e seaeeeaeaeesseesesesaessssesssssssssssssssssssssssssssnnnes 45

6.2.5. Repeating CCL COMMANASuuuiiiiiiiiieieiiiesssssesssssssssssessss s ssssss s s ssssssssssssssssssssssssssssnsnsssnnnns 45

6.2.6. Executing @ Shell CommMaNndcoooeeeeeiiiiieiecccccceeceeececcceceeeee e s e s e s e s e s e s e s e s e s e e e e 45

6.2.7. QUITTING 1eeeiriiiiiereeeieiitiiiiie e e eetttitire e e e eeetttttsaaaesseeeeeeeersansesseeesesnssnssassssesresssssnnsnssseesesnsssnnnnnss 45

T -] 110 o [T URSPPRt 45

6.3. BAtCN MO ... nnnnn 46
6.3.1.Example: Generating a Similar Mesh from Different Curve Filescceevevevevciiieeeereeeeercnnen, 46

7. MeEShING REFEIEINCEooeeiiiieeeeeee ettt e e e e et ee e e e e e e s s ertaeeeeeeesesasnssnaeeaeeesessssssssnneeeeeseansnns 49
[0 Te 1= TSP UPPPU U OOPPPPPPP 51

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. v

Vi

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 1: ANSYS TurboGrid Launcher

This chapter describes the ANSYS TurboGrid Launcher in detail:
1.1.The ANSYS TurboGrid Launcher Interface
1.2.Customizing the ANSYS TurboGrid Launcher

1.1.The ANSYS TurboGrid Launcher Interface

The layout of the ANSYS TurboGrid Launcher is shown below:

Figure 1.1 ANSYS TurboGrid Launcher

E ANSYS TurboGrid-12.1 Launcher [on FAST... [M[=] E3
MenuBar —sFle Edit CFX Show Tools User Help

Working Directory
AN Selector
Tool Bar hﬂ;‘:"

TurbaGrid 12,1

Explore Working
JJ'-.-'-.-'Drking Direckary ICI.I'WDFHI'I';I_DWEC'IDW ﬂ :;1 @4‘— Directory

(Windows Only)

Chtpant

— e
Window

[~
7

The ANSYS TurboGrid Launcher consists of a menu bar, a tool bar for launching applications, a working
directory selector, and an output window where messages are displayed. On Windows platforms, an
icon to start Windows Explorer in the working directory appears next to the directory selector.

The following sections describe parts of the launcher:
1.1.1.Menu Bar
1.1.2.Tool Bar
1.1.3.Working Directory Selector
1.1.4.Output Window

1.1.1. Menu Bar

The ANSYS TurboGrid Launcher menus are described briefly in the following table, and in more detail
following the table.

1.1.1.1. File Menu

Saves the contents of the text output window and to close the ANSYS TurboGrid Launcher.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 1
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 1: ANSYS TurboGrid Launcher

1.1.1.1.1.Save As
Saves the contents of the output window to a file.
1.1.1.1.2. Quit

Shuts down the ANSYS TurboGrid Launcher. Any programs already launched will continue to run.
1.1.1.2. Edit Menu

Clears the text output window, finds text in the text output window and sets options for the ANSYS
TurboGrid Launcher.

1.1.1.2.1.Clear

Clears the output window.

1.1.1.2.2.Find

Displays a dialog box where you can search the text in the output window.
1.1.1.2.3. Options

Presents the Options dialog box, which allows you to change the appearance of the ANSYS TurboGrid
Launcher.

1.1.1.2.3.1. GUI Style

You can choose any one of several GUI styles; each style is available on all platforms. For example,
choosing Windows will change the look and feel of the GUI to resemble that of a Windows application.
You can select from Windows, Motif, CDE (Solaris), Plastique, and Cleanlooks styles. Once you have se-
lected a style, click Apply to test.

1.1.1.2.3.2. Application Font and Text Window Font

The button to the right of Application Font sets the font used anywhere outside the text output window.
The button to the right of Text Window Font applies only to the text output window. Clicking either
of these buttons will open the Select Font dialog box.

1.1.1.3. CFX Menu

1.1.1.3.1.TurboGrid 14.0

Runs ANSYS TurboGrid, with the working directory as specified in Working Directory Selector (p. 4).
1.1.1.3.2. Other ANSYS CFX Applications

The ANSYS TurboGrid Launcher will search for installed ANSYS CFX applications (for example, CFX-Pre,

CFD-Post) and provide a menu entry to launch each application. If an application is not found, you can
add it; for details, see Customizing the ANSYS TurboGrid Launcher (p. 4).

2 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

The ANSYS TurboGrid Launcher Interface

1.1.1.4. Show Menu

1.1.1.4.1.Installation
Displays information about the version of ANSYS TurboGrid that you are running.
1 .1 .1 .4.2. AII

Displays all of the available information, including information about your system, installation and
variables.

1.1.1.4.3.System

Displays information about the ANSYS TurboGrid installation and the system on which it is being run.

1.1.1.4.4.Variables
Displays the values of all the environment variables that are used in ANSYS TurboGrid.

1.1.1.4.5.Patches

Displays the output from the command cfx5info -patches .This provides information on patches
that have been installed after the initial installation of ANSYS TurboGrid.

1.1.1.5. Tools Menu

Enables you to access license-management tools and a command line for running other ANSYS CFX
utilities.

1.1.1.5.1. ANSYS Client Licensing Utility
Enables you to configure connections to ANSYS License Managers.
1.1.1.5.2. Command Line

Starts a command window from which you can run any of the ANSYS TurboGrid commands via the
command line interface. The command line will be set up to run the correct version of ANSYS TurboGrid
and the commands will be run in the current working directory.

If you do not use the Tools > Command Line command to open a command window, then you will
have to either type the full path of the executable in each command, or explicitly set your operating
system path to include the <CFXROOT>/bin directory.

You may want to start ANSYS TurboGrid from the command line rather than by clicking the appropriate
button on the ANSYS TurboGrid Launcher for the following reasons:

* ANSYS TurboGrid contains some utilities (for example, a parameter editor) that can be run only from
the command line.

* You may want to specify certain command line arguments when starting up a component so that it
starts up in a particular configuration.

+ If you are having problems with a component, you may be able to get a more detailed error message
by starting the component from the command line than you would get if you started the component

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 3

Chapter 1: ANSYS TurboGrid Launcher

from the launcher. If you start a component from the command line, any error messages produced are
written to the command line window.

1.1.1.5.3. Edit File

Opens a browser to edit the text file of your choice in a platform-native text editor. Which text editor
is called is controlled by the settings in <CFXROOT>/etc/launcher/shared.ccl

1.1.1.6. User Menu

The User menu is provided as an example. You can add your own applications to this menu, or create
new menus. For details, see Customizing the ANSYS TurboGrid Launcher (p. 4).

1.1.1.7.Help Menu

The Help menu enables you to view tutorials, user guides, and reference manuals online. For related
information, see Accessing Help in the TurboGrid Introduction.

1.1.2.Tool Bar

The toolbar contains shortcuts to the main components of ANSYS CFX, for example ANSYS TurboGrid,
CFX-Pre, CFX-Solver Manager and CFD-Post. Pressing any of the buttons will start up the component
in the specified working directory. The equivalent menu entries for launching the components also
show a keyboard shortcut that can be used to launch the component.

1.1.3.Working Directory Selector

While running ANSYS TurboGrid, all the files that are created will be stored in the working directory.
To change the working directory, you can do any of the following:

+ Type the directory name into the box and press Enter.
+ Click on the down-arrow icon (=] next to the directory name. This displays a list of recently used dir-
ectories.

+ Click Browse | to browse to the directory that you want.

1.1.4. Output Window

The output window is used to display information from commands in the Show menu. You can right-
click in the output window to show a shortcut menu with the following options:

+ Find: Displays a dialog box where you can enter text to search for in the output.
+ Select All: Selects all the text.

+ Copy Selection: Copies the selected text.

+ Save As: Saves the output to a file.

+ Clear: Clears the output window.

1.2. Customizing the ANSYS TurboGrid Launcher

Many parts of the ANSYS TurboGrid Launcher are driven by CCL commands contained in configuration
files. Some parts of the launcher are not editable (such as the File, Edit and Help menus), but others

4 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Customizing the ANSYS TurboGrid Launcher

parts allow you to edit existing actions and create new ones (for example, launching your own application
from the User menu). The following sections outline the steps required to configure the launcher. The
configuration files are located in the <CFXROOT>/etc/launcher/ directory (where <CFXROOT>s

the path to your installation of ANSYS TurboGrid). You can open these files in any text editor, but you
should not edit any of the configuration files provided by ANSYS TurboGrid, other than the User.ccl
configuration file.

1.2.1.CCL Structure

The configuration files contain CCL objects that control the appearance and behavior of menus and
buttons that appear in the ANSYS TurboGrid Launcher. There are three types of CCL objects: GROUP
APPLICATION and DIVIDER objects. The fact that there are multiple configuration files is not important;
applications in one file can refer to groups in other files.

An example of how to add a menu item for the Windows calculator to the launcher is given in Example:
Adding the Windows Calculator (p. 8).

1.2.1.1. GROUP

GROUPRDbjects represent menus and toolbar groups in the ANSYS TurboGrid Launcher. Each new GROUP
creates a new menu and toolbar. Nothing will appear in the menu or toolbar until you add APPLICA-
TION or DIVIDER objects to the group. An example of a GROUPRbject is given below:

GROUP: CFX
Position = 200
Menu Name = &CFX
Show In Toolbar = Yes
Show In Menu = Yes
Enabled = Yes

END

« The group name is set after the colon. In this case, it is “CFX This is the name that APPLICATION
and DIVIDER objects will refer to when you want to add them to this group. This name should be
different to all other GROURDbjects.

« Position refers to the position of the menu relative to others. The value should be an integer between
1 and 1000. Groups with a higher Position value, relative to other groups, will have their menu appear
further to the right in the menu bar. Referring to Figure 1.1 (p. 1), CFXhas a lower position value than
the ANSY Sgroup. The File and Edit menus are always the first two menus and the Help menu is always
the last menu.

« The title of the menu is set under Menu Name (this menu has the title CFX). The optional ampersand
is placed before the letter that you wish to act as a menu accelerator (for example, Alt+C displays the
CFX menu). You must be careful not to use an existing menu accelerator.

* The creation of the menu or toolbar can be toggled by setting the Show in Menu and Show in
Toolbar options to Yes or No respectively. For example, you may want to create a menu item but
not an associated toolbar icon.

+ Enabled sets whether the menu/toolbar is available for selection or is greyed out. Set the option to
No to grey it out.

1.2.1.2. APPLICATION

APPLICATION objects create entries in the menus and toolbars that will launch an application or run
a process. Two examples are given below with an explanation for each parameter. The first example

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 5

Chapter 1: ANSYS TurboGrid Launcher

creates a menu entry in the Tools menu that opens a command line window. The second example
creates a menu entry and toolbar button to start CFX-Solver Manager.

APPLICATION: Command Line 1
Position = 300
Group = Tools
Tool Tip = Start a window in which CFX commands can be run
Menu Item Name = Command Line
Command = <windir>\system32\cmd.exe
Arguments = /c start
Show In Toolbar = No
Show In Menu = Yes
Enabled = Yes
OS List = winnt
END
APPLICATION: CFXSM
Position = 300
Group = CFX
Tool Tip = Launches ANSYS CFX-Solver Manager
Menu Item Name = CFX-&Solver Manager
Command = cfx5solve
Show In Toolbar = Yes
Show In Menu = Yes
Enabled = Yes
Toolbar Name = ANSYS CFX-Solver Manager
Icon = LaunchSolvelcon.xpm
Shortcut = CTRL+S
END

« The application name is set after the colon, in the first example it is “Command Line 1 " This name
should be different to all other APPLICATION objects.

+ Position :sets the relative position of the menu entry. The value should be an integer between 1 and
1000. The higher the value, relative to other applications that have the same group, the further down
the menu or the further to the right in a toolbar the entry will appear. If you do not specify a position,
the object assumes a high position value (so it will appear at the bottom of a menu or at the right of
a group of buttons).

« Group: sets the GROURDbject to which this application belongs. The value must correspond to the
name that appears after “"GROUPin an existing GROURDbject. The menu and/or toolbar entry will not
be created if you do not specify a valid group name. The GROURDbject does not have to be in the
same configuration file.

« Tool Tip :displays a message when the mouse pointer is held over a toolbar button. In the ‘Command
Line 1" example above, the Tool Tip entry is not used since a toolbar button is not created. This
parameter is optional.

+ Menu Item Name :sets the name of the entry that will appear in the menu. If you do not specify a
name, the name is set to the name of the APPLICATION: object. The optional ampersand is placed
before the letter that you want to have act as a menu accelerator (for example, alt-c then s will start
CFX-Solver Manager. Alt-c selects the CFX menu and “s” selects the entry from the menu). You must
be careful not to use an existing menu accelerator.

+ Commandcontains the command to run the application. The path can be absolute (that is, use a forward
slash to begin the path on Linux, or a drive letter on Windows). If an absolute path is not specified, a
relative path from <CFXROOT>/bin/ is assumed. If no command is specified, the menu item/toolbar
button will not appear in the ANSYS TurboGrid Launcher. The path and command are checked when
the launcher is started. If the path or command does not exist, the menu item/toolbar button will not
appear in the launcher. You may find it useful to include environment variables in a command path;
for details, see Including Environment Variables (p. 7).

+ Arguments :specifies any arguments that need to be passed to the application. The arguments are
appended to the value you entered for CommandYou do not need to include this parameter as there

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
6 of ANSYS, Inc.and its subsidiaries and affiliates.

Customizing the ANSYS TurboGrid Launcher

are no arguments to pass. You may find it useful to include environment variables in the arguments;
for details, see Including Environment Variables (p. 7).

Distinct arguments are space-separated. If you need to pass an argument that contains spaces (for
example, a Windows file path) you should include that argument in double quotes, for example:

Arguments = “ C:\Documents and Settings\User " arg2 arg3

« Show In Toolbar :determines if a toolbar button is created for the application. This optional para-
meter has a default value of Yes.

« Show In Menu :determines if a menu entry is created for the application. This optional parameter
has a default value of Yes.

+ Enabled :allows you to grey out the menu entry and toolbar button. Set this parameter to No to grey
out the application. This optional parameter has a default value of Yes.

+ OS List is an optional parameter that allows you to set which operating system the application is
suitable for. If OS List is not supplied, the launcher will attempt to create the menu item and toolbar
button on all platforms.

For example, the command to open a command line window varies depending on the operating
system. In the ‘Command Line 1’ example above, the application only applies to Windows platforms.
To complete the OS coverage, the launcher configuration files contain more ‘Command Line’ ap-
plications that apply to different operating systems.

OS List can contain the following values: winnt (Windows, including Windows XP), linux-
ia64 (64-bit Linux).

« Toolbar Name :sets the name that appears on the toolbar button. This parameter is optional (since
you may only want to show an icon).

« lIcon :specifies the icon to use on the toolbar button and in the menu item. The path can be absolute
(that is, use a forward slash to begin the path on Linux, or a drive letter on Windows). If an absolute
path is not specified, a relative path from <CFXROQOT>/etc/icons is assumed. The following file
formats are supported for icon image files: Portable Network Graphics (png), Pixel Maps (ppm xpm)
and Bitmaps (bmp). Other icons used in the launcher are 32 pixels wide and 30 pixels high. This para-
meter is optional. If it is not included, an icon will not appear.

« Shortcut :specifies the keyboard shortcut that can be pressed to launch the application. You must
be careful not to use a keyboard shortcut that is used by any other APPLICATION object.

1.2.1.2.1.Including Environment Variables

In can be useful to use environment variables in the values for some parameters. You can specify an
environment variable value in any parameter by including its name between the < > symbols. In the
‘Command Line 1" example above, <windir> is used in the Commandparameter so that the command
would work on different versions of Windows. <windir> is replaced with the value held by the windir
environment variable. The Commandand Argument parameters are the only parameters that are likely
to benefit from using environment variables. Environment variables included in the Arguments para-
meter are expanded before they are passed to the application.

1.2.1.3. DIVIDER

DIVIDER objects create a divider in a menu and/or toolbar (see the Tools menu for an example). An
example of the CCL for DIVIDER objects is shown below.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 7
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 1: ANSYS TurboGrid Launcher

DIVIDER: Tools Divider 1
Position = 250
Group = Tools
OS List = winnt, linux-ia64
END

The Position , Group and OS List
For details, see APPLICATION (p. 5).

parameters are the same as those used in APPLICATION objects.

1.2.2. Example: Adding the Windows Calculator

The following CCL is the minimum required to add the Windows calculator to the ANSYS TurboGrid

Launcher:

GROUP: Windows Apps
Menu Name = Windows
END
APPLICATION: Calc
Group = Windows Apps
Command = <windir>\system32\calc.exe
Toolbar Name = Calc
END

Although the parameter Toolbar Name is not strictly required, you would end up with a blank toolbar

button if it were not set.

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

Chapter 2: ATM Topology

This section contains pictures of the topology pieces within ATM. Note that all the pictures run from

the low periodic at the bottom to the high periodic at the top. LERoundedSymmetricStar (LEs2by4.tgt)
is the mirror image of TERoundedSymmetricStar (TEs2by4.tgt) (reflected along the vertical axis).
Similarly, TECutoffBlock1by4 (TE1lby4.tgt), TECutoffHerringboneLow (TEHerringLow.tgt)
TECutoffHerringboneHigh (TEHerringHigh.tgt) and TEDoubleHerring (TEHerringDouble.tgt)
are the mirror images of their leading edge versions.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 9

Chapter 2: ATM Topology

Figure 2.1 LERoundedSymmetricStar LEs2by4. t gt)

10 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

Figure 2.2 PassageBlock1by4 (ri d1by4.t gt)

g g

11 4 12
i}

5 7

g 10
4

5]

7 3

5 6

0 0 1

Figure 2.3 TECutoffBlock1by4 (TE1by4. t gt)

=]

1 10
o 6
g
0 9
O
0 4 g5

Release 714.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

11

Chapter 2: ATM Topology

Figure 2.4 TECutoffHerringboneHigh (TEHer ri ngHi gh. t gt)

13

) 14

12 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

Figure 2.5 TECutoffHerringboneLow (TEHer ri ngLow. t gt)

Release 714.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

13

Chapter 2: ATM Topology

Figure 2.6 TEDoubleHerring (TEHer ri ngDoubl e. t gt)

14 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

Chapter 3: CFX Command Language

« Introduction (p. 15)

+ CCL Syntax (p.15)

« Object Creation and Deletion (p. 20)

* ANSYS CFX Expression Language (p. 20)

3.1.Introduction

The CFX Command Language (CCL) is the internal communication and command language of ANSYS
TurboGrid. It is a simple language that can be used to create objects or perform actions in the Post-
processor. All CCL statements can be classified into one of three categories.

1. Object and parameter definitions: CCL object and parameter definitions can be used to create or delete
objects. For details, see Object Creation and Deletion (p. 20). A list of all objects and parameters that
can be used in ANSYS TurboGrid is available in the CCL details chapter in the reference guide.

2. Actions: CCL actions are commands that perform a specific task (for example, reading a session file).
For details, see Command Actions (p. 23).

3. Power Syntax: Using the Perl programming language, CCL supports programming through Power
Syntax with loops, logic and custom macros (subroutines). With Power Syntax, Perl commands can be
embedded into CCL to achieve powerful quantitative results. For details, see Power Syntax (p. 39).

State and session files contain object definitions in CCL. In addition, session files can contain CCL action
commands. The CCL written to these files can be viewed and modified in a text editor. You can also
use a text editor to create your own session and state files to read into ANSYS TurboGrid.

Advanced users can interact with ANSYS TurboGrid directly through CCL by entering it in the Command
Editor dialog box or by running ANSYS TurboGrid in line interface mode. See Command Editor Command
in the TurboGrid User's Guide and Line Interface Mode (p. 43) for details.

3.2.CCL Syntax

The topic(s) in this section include:

* Basic Terminology (p. 15)
+ Simple Syntax Details (p. 16)

3.2.1.Basic Terminology

The following is an example of a CCL object defining an isosurface.

USER DEFINED:

ISOSURFACE: Isol

Variable = Minimum Face Angle
Value = 10 [degree]

Color =1,0,0

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 1
of ANSYS, Inc.and its subsidiaries and affiliates. 5

Chapter 3: CFX Command Language

Transparency = 0.5
END
END

+ ISOSURFACEand USER DEFINEDare object types

+ Isol is an object name

« Variable = Minimum Face Angle is a parameter
« Variable is a parameter name

+ Minimum Face Angle is a parameter value

+ If the object type ISOSURFACEdoes not need a name it is called a singleton object. Only one object
of a given singleton type can exist.

3.2.1.1. The Data Hierarchy

Data is entered via parameters. These are grouped into objects that are stored in a tree structure. Objects
may be at the ‘Top Level, or within other objects. Objects inside other objects are said to be 'nested..

OBJECT1: outer object name
OBJECT2: inner object name
namel = value

name2 = value

END

Objects and parameters may be placed in any order, provided that the information is set prior to being
used further down the file. If data is set in one place and modified in another the latter definition
overrides the first.

3.2.2.Simple Syntax Details

The following applies to any line that is not a Power Syntax (or action) line. (That is, any line that does
not start witha! or>))

3.2.2.1. Case Sensitivity
Everything in the file is sensitive to case.

Case sensitivity is not ideal for users typing in many long parameter names, but it is essential for
bringing the ANSYS CFX Expression Language (CEL) into CCL. This is because some names used to
define CCL objects (such as Machine Data) are used to construct corresponding CEL names.

For simplicity and consistency, we recommend the following convention is used in the standard code
and its documentation:

+ singletons and object types use upper case only

+ parameter names, and pre-defined object names, are mixed case. We try to follow these conventions:

- Major words start with an upper case letter, while minor words such as prepositions and conjunctions
are left in lower case (“Number of Blade Blocks’ for example).

u_n
r

- Case is preserved for familiar names (for variables “k” or “r’; or for the abbreviation “RNG/ for ex-

ample).

+ user object names conventions are left to you to choose.

1 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
6 of ANSYS, Inc.and its subsidiaries and affiliates.

CCL Syntax

3.2.2.2. CCL Names Definition

Names of singletons, types of objects, names of objects, and names of parameters all follow the same
rules:

* In simple syntax, a CCL name must be at least one character. This first character must be alphabetic;
there may be any number of subsequent characters and these can be alphabetic, numeric, space or
tab.

+ The effect of spaces in CCL names is:
- Spaces appearing before or after a name are not considered to be part of the name.
- Single spaces appearing inside a name are significant.

— Multiple spaces and tabs appearing inside a name are treated as a single space.

3.2.2.3. Indentation

Nothing in the file is sensitive to indentation. The indentation is used, however, when displaying contents
of the file for easier reading.

3.2.2.4. End of Line Comment Character

The # character is used for commenting. Any text to the right of this character is treated as a comment.
Any characters may be used within comments.

3.2.2.5. Continuation Character

If a line ends with the character \ the following line is linked to the existing line. There is no restriction
on the number of continuation lines.

3.2.2.6. Named Objects

A named object consists of an object type at the start of a line, followed by a : followed by an object
name. Subsequent lines may define parameters and child objects associated with this object. The object
definition is terminated by the string “END” on a line by itself.

Object names must be unique within the given scope, and the name must not contain an underscore.

3.2.2.7.Singleton Objects

A singleton object consists of an object type at the start of a line, followed by a : . Subsequent lines
may define parameters and child objects associated with this object. The object definition is terminated
by the string “END” on a line by itself.

The difference between a singleton object and a named object is that (after the data has been processed),
a singleton can appear just once as the child of a parent object, whereas there may be several instances
of a named object of the same type defined with different names.

3.2.2.8. Parameters

A parameter consists of a parameter name at the start of a line, followed by an =, followed by a para-
meter value. A parameter may belong to many different object types. For example Transparency

= 0.6 may belong to a hub geometry object and Transparency = 0.0 may belong to a volume
mesh analysis object. Both refer to the same definition of transparency in the rules file.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 17
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 3: CFX Command Language

3.2.2.9. Lists

Lists are used within the context of parameter values and are comma separated.

3.2.2.10. Parameter values

All parameter values are initially handled as data of type string, and should first of all conform to the
following definition of permitted string values:

3.2.2.10.1.String

Any characters can be used in a parameter value.

String values or other parameter type values are normally unquoted. If any quotes are present, they are
considered part of the value. Leading and trailing spaces are ignored. Internal spaces in parameter values
are preserved as given, although a given application is free to subsequently assume a space condensation
rule when using the data.

The characters $ and # have a special meaning. A string beginning with $ is evaluated as a Power
Syntax variable, even if it occurs within a simple syntax statement. This is useful for performing more
complex Power Syntax variable manipulation, and then using the result as part of a parameter or object
definition. The appearance of # anywhere in the CCL file denotes the start of a comment.

The characters such as [,],{ and } are special only if used in conjunction with $. Following a $, such
characters terminate the preceding Perl variable name.

Other characters that might be special elsewhere in Power Syntax are escaped automatically when they
appear in parameter values. For example, @%and & are escaped automatically.

Parameter values can contain commas, but if the string is processed as a list or part of a list then the
commas may be interpreted as separators (see below under list data types).

Some examples of valid parameter values using special characters in Power Syntax are:

Estimated cost = \$500

Title = Run\#1

Sys Command = "echo 'Starting up Stress solver’ ; fred.exe &"
Temporary = $myArray[4]

Option = $myHash{"foo"}

Fuel = C${numberCatoms}H${numberHatoms}

Parameter values for data types other than string additionally conform to one of the following definitions.

3.2.2.10.2. String List

A list of string items separated by commas. Items in a string list should NOT contain a comma unless
contained between parentheses. One exception can be made if the string list to be is interpreted as a
Real List (see below). Otherwise each item in the string list follows the same rules as string data. Example
usage:

names = one, two, three, four

3.2.2.10.3.Integer

Sequence of digits containing no spaces or commas. If a real is specified when an integer is needed
the real is rounded to the nearest integer. Example usage:

18

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

CCL Syntax

b =32
3.2.2.10.4.Integer List

List of integers, comma separated. Example usage:

numbers = 52, 65001, 2
3.2.2.10.5.Real

A single precision real number that may be specified in integer, floating point or scientific format, fol-
lowed optionally by a dimension. Units use the same syntax as CEL.

Expressions can include commas inside function call argument lists. Example usage:

a=12.24
a=1.224E01
a=12.24 [m s"-1]

A real may also be specified as an Expression such as:

a=myvel*2+b
a = max(b,2.0)

3.2.2.10.6.Real List

List of reals, comma separated. Note that all items in the list must have the same dimensions. Those
items that are expressions can include commas inside function call argument lists, and the enclosed
commas are ignored when the list is parsed into individual items. Example usage:

a=1.0 [m/s], 2.0 [m/s], 3.0 [m/s], 2.0*myvel, 4.0 [cm/s]
3.2.2.10.7. Logical

Several forms are acceptable: YESor TRUEor 1 or ONare all equivalent; NOor FALSE or O or OFFare
all equivalent; initial letter variants Y, T, N, F are accepted (Ois not accepted for Or/Off); all case variants
are accepted. The preferred form, recommended for GUI output files and for user documentation is,
Yes/No. Logical strings are also case insensitive (YeS/ nO). Example usage:

answer =1

3.2.2.10.8. Logical List

List of Logicals, comma separated. Example usage:
answers = oN, YES, 0, fALse, truE

3.2.2.11. Escape Character

The \ character is used as an escape character so characters like $ or # can be used in strings, for ex-
ample.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 1
of ANSYS, Inc.and its subsidiaries and affiliates. 9

Chapter 3: CFX Command Language

3.3.0bject Creation and Deletion

You can create objects in ANSYS TurboGrid by entering the CCL definition of the object into the Com-
mand Editor dialog box, or by reading the object definition from a session or state file. The object is
created and any associated graphics shown in the viewer. For a list of valid CCL objects, see the CCL
details chapter in the reference guide.

You can modify an existing object by entering the object definition with the modified parameter settings
into the Command Editor dialog box. Only those parameters that are to be changed need to be entered.
All other parameters remain unchanged.

There may be a significant degree of interaction between objects in ANSYS TurboGrid. For example, a
contour plot may depend on the location of an underlying plane, or an isosurface may depend on the
definition of a CEL expression. If changes to one object affect other objects, the other objects are updated
automatically.

To delete an object, type >delete <ObjectPath> .If you delete an object that is used by other
objects, warnings result, but the object is deleted.

An object at the top level can be deleted by specifying its name. To delete a nested object you must
enter the path of the object you want to delete. An object’s path has the syntax:

/parentObjType:parentObjName/.../objType:objName

Singletons must be specified in paths as

/ISINGLETON:SINGLETON

For example, to delete an isosurface you have created called Isosurface 1, enter

/USER DEFINED:USER DEFINED/ISOSURFACE:Isosurface 1

3.4. ANSYS CFX Expression Language

The ANSYS CFX Expression Language (CEL) is integrated into ANSYS TurboGrid. You can use an expression
defined with CEL in place of any number in ANSYS TurboGrid. Within ANSYS TurboGrid you can:

+ Create new expressions.

+ Set any numeric parameter in an ANSYS TurboGrid object based on an expression (and the object updates
if the expression result changes).

+ Create user-defined variables from expressions.

+ Directly use the quantitative functions in an expression.

+ Specify units as part of an expression.
All expressions are defined in the EXPRESSIONS singleton object. Each expression is a simple
name = expression statement within that object. New expressions are added by defining new

parameters within the EXPRESSIONS object (the EXPRESSIONS object is special, in that it does not have
a pre-defined list of valid parameters).

2 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
0 of ANSYS, Inc.and its subsidiaries and affiliates.

ANSYS CFX Expression Language

Important

Since Power Syntax uses Perl mathematical operators, you should exercise caution when

combining CEL with Power Syntax expressions. For example, in CEL,22 is represented as
272, but in Perl, would be written 2**2 . If you are unsure about the validity of an operator
in Perl, consult a Perl reference guide.

3.4.1.CEL Functions, Constants and System Variables

3.4.1.1. CEL Standard Functions

The following is a list of standard functions that are available in ANSYS TurboGrid.

Note

[1 denotes a dimensionless quantity. [a] denotes any dimensions of first operand.

Result

Function

Operands

[]

sin

[radian])

[]

Cos

[radian])

[]

tan

[radian])

[radian]

asin

[radian]

acos

[radian]

atan

[radian]

atan2

[]

exp

[]

loge

[]

log10

]
]
LD
]
]
]

[a]

abs

[an0.5]

sqrt

[]

step

[a]

min

(al,[al)

[a]

max

(
(
(
([1
(
(
(
(
(
(
(
(
(
(
(

[a] [a])

3.4.1.2. CEL Constants

The following predefined constants can be used within CEL expressions.

Constant Units Description

e <none> Constant: 2.7182817

g m sA-2 Acceleration due to
gravity: 9.806

pi <none> Constant: 3.1415927

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

21

Chapter 3: CFX Command Language

Constant Units Description
R J molA-1 KA-1 Universal Gas Constant:
8.31447
22 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

Chapter 4: Command Actions

« Introduction (p. 23)
« File Operations from the Command Editor Dialog Box (p. 24)
* Quantitative Calculations in the Command Editor Dialog Box (p. 33)

« Other Commands (p. 37)

4.1.Introduction

The Command Editor dialog box in ANSYS TurboGrid can be used to edit or create graphics objects,
perform some typical user actions (reading or creating session and state files, for example) and enter
Power Syntax. This section describes the typical user actions you can perform from the Command Ed-
itor dialog box.

For an introduction to the Command Editor dialog box see Command Editor Command in the TurboGrid
User's Guide.

For details on editing and creating graphics objects using the CFX Command Language in the Command
Editor dialog box see CFX Command Language (p. 15).

Power Syntax commands are preceded by the ! symbol. For details on using Power Syntax in the
Command Editor dialog box see Power Syntax (p. 39).

Action statements cause ANSYS TurboGrid to undertake a specific task, usually related to the input and
output of data from the system. All actions typed into the Command Editor dialog box must be pro-
ceeded with the > symbol. Actions in session files must also be preceded by the > symbol.

When running ANSYS TurboGrid in line interface mode, the TG>command prompt is shown in a DOS
window or UNIX shell. All the actions described in this section, along with some additional commands,
can be typed at the command prompt. You do not have to precede commands with the > symbol when
running in line interface mode. For information about using line interface mode, see Line Interface

Mode (p. 43).

Many actions require additional information to perform their task (the name of a file to load or the type
of hardcopy file to create, for example). By default, these actions get the necessary information from a
specific associated CCL singleton object. For convenience, some actions accept a few arguments that
can be used to optionally override the commonly changed object settings. If multiple arguments for

an action are specified, they must be separated by a comma.

4.1.1.Command Actions Example

The >print command saves the viewer image to a file. All the settings for >print are read from the
HARDCOPYsingleton object. However, if you want, you can specify the name of the hardcopy file as
an argument to the >print command. The following CCL example demonstrates both of these altern-
atives.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 2
of ANSYS, Inc.and its subsidiaries and affiliates. 3

Chapter 4: Command Actions

Define settings for saving a picture

HARDCOPY:
Hardcopy Format = jpg

Hardcopy Filename = default.jpg

Image Scale = 70
White Background = Off
END

#Create an output file based on the settings in HARDCOPY

>print

#Create an identical output file with a different filename

>print another_file.jpg

4.2.File Operations from the Command Editor Dialog Box

The File Operations available from the Command Editor dialog box are outlined in the table below
with a summary of the function performed by each option.

Command Description
savestate Save the current state to a file. See Save State Files (p. 24).
readstate Load a state from an existing state file. See Read State Files (p. 25).

savetopology

Save the current topology to a file. See Save Topology Files (p. 28).

savemesh

Save the current mesh to a file. See Save Mesh Files (p. 28).

saveblade

Save the current blade to a file. See Save Blade Files (p. 29).

session start

session stop

Set the name of a new session file and start recording to it. Stop recording
it. See Create Session Files (p. 29).

readsession

Load and execute an existing session file. See Read Session Files (p. 31).

print Save the image shown in the viewer window to a file. See Create Hard-
copy (p. 32).
tetin Save the current geometry to a .tetin file. See Export Geometry (p. 32).

4.2.1.Save State Files

>savestate [mode=<none | overwrite>][filename=<filename>]

State files can be used to quickly load a previous state into ANSYS TurboGrid. State files can be generated
manually using a text editor, or from within ANSYS TurboGrid by saving a state file. The >savestate
command writes the current ANSYS TurboGrid state to a file from the Command Editor dialog box.

>savestate

supports the following options:

+ mode = <none | overwrite>

If mode is none, the executor creates a new state file, and if the specified file exists, an error is

raised. If mode is overwrite

, the executor creates a new state file, and if the file exists, it is deleted

and replaced with the latest state.

- filename = <filename>

Specifies the path and name of the file that the state is written to. If no filename is specified, the
STATEsingleton object is queried for the filename. If the STATEsingleton does not exist, then an
error is raised indicating that a filename must be specified.

24

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

File Operations from the Command Editor Dialog Box

4.2.1.1. savestate Command Examples

The following are example >savestate = commands, and the expected results. If a STATEsingleton
exists, the values of the parameters listed after the >savestate command replace the values stored
in the STATEsingleton object. For this command, the flename command parameter value replaces
the state filename parameter value in the STATEsingleton, and the mode command parameter
value replaces the savestate mode parameter value in the STATEsingleton.

> savestate

This command writes the current state to the filename specified in the STATEsingleton. If the mode

in the STATEsingleton is none, and the filename exists, an error is returned. If the mode in the STATE
singleton is overwrite , and the filename exists, the existing file is deleted, and the state is written

to the file. If the STATEsingleton does not exist, an error is raised indicating that a filename must be
specified.

> savestate mode = none

This command writes the current state to the file specified in the STATEsingleton. If the file already
exists, an error is raised. If the STATEsingleton does not exist, an error is raised indicating that a filename
must be specified.

> savestate mode = overwrite

This command writes the current state to the file specified in the STATEsingleton. If the file already
exists, it is deleted, and the current state is saved in its place. If the STATEsingleton does not exist, an
error is raised indicating that a filename must be specified.

> savestate filename = mystate.tst

This command writes the current state to the mystate.tst file. If the STATEsingleton exists, and
the savestate mode is set to none, and the file already exists, an error is raised. If the savestate
mode is set to overwrite , and the file already exists, the file is deleted, and the current state is saved
in its place. If the STATEsingleton does not exist, then the system assumes a savestate mode of
none, and behaves as described above.

> savestate mode = none, filename = mystate.tst

This command writes the current state to the mystate.tst file. If the file already exists, an error is
raised.

> savestate mode = overwrite, filename = mystate.tst

This command writes the current state to the mystate.tst file. If the file already exists it is deleted,
and the current state is saved in its place.

4.2.2.Read State Files

>readstate [mode=<overwrite | append>][filename=<filename>, load=<true | false>]

The >readstate command loads an ANSYS TurboGrid State from a specified file.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 2
of ANSYS, Inc.and its subsidiaries and affiliates. 5

Chapter 4: Command Actions

If a DATA READERsingleton has been stored in the state file, the load action loads the contents of
the results file. If a state file contains BOUNDAR®bjects, and the state file is appended to the current
state (with no new DATA READERODbject), some boundaries defined may not be valid for the loaded
results. BOUNDARYbjects that are not valid for the currently loaded results file are culled.

>readstate supports the following options:

+ mode = <overwrite | append>

If mode is set to overwrite , the executor deletes all the objects that currently exist in the system,
and loads the objects saved in the state file. Overwrite mode is the default mode if none is explicitly
specified. If mode is set to append , the executor adds the objects saved in the state file to the
objects that already exist in the system. If the mode is set to append and the state file contains
objects that already exist in the system, the following logic is used to determine the final result: If
the system has an equivalent object, that is, name and type, then the object already in the system

is modified with the parameters saved in the state file. If the system has an equivalent object in
name only, then the object that already exists in the system is deleted, and replaced with that in

the state file.

« filename = <filename>

The path to the state file.
+ load = <true | false>
If load is set to true and a DATA READER object is defined in the state file, then the Results file

is loaded when the state file is read. If load is set to false , the results file is not loaded, and the
DATA READER object that currently is in the object Database (if any) is not updated.

The following table describes the options, and the corresponding action taken on the objects and the
DATA READER.

Mode Load What happens to the Objects? What
Selec- Data hap-
tion Selec- pens to
tion the
DATA
READ-
ER?
Over- True All user objects are deleted. The loading of the new It is de-
write results file changes the default objects (boundaries, leted
wireframe, and so on) including deletion of objects and re-
that are no longer relevant to the new results. Default placed.

objects that are not explicitly modified by object
definitions in the state file have all user modifiable
values reset to default values.

Over- False All user objects are deleted. All default objects that If it ex-
write exist in the state file update the same objects in the ists, it
current system state if they exist. Default objects in remains
the state file that do not exist in the current state are un-
not created. All user objects in the state file are cre- changed
ated. regard-
less of
what is
26 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

File Operations from the Command Editor Dialog Box

Mode
Selec-
tion

Load
Data
Selec-
tion

What happens to the Objects?

What
hap-
pens to
the
DATA
READ-
ER?

in the
state
file.

Append

True

No objects are initially deleted. The default objects in
the state file replace the existing default objects. User
objects:

+ are created if they have a unique name.

+ replace existing objects if they have the same name but
different type.

+ update existing objects if they have the same name and
type.

It is
modi-
fied
with
the
new
value
from
the
state
file.

Append

False

No objects are initially deleted. Default objects in the
state file only overwrite those in the system if they
already exist. User objects have the same behavior as
the Append/True option above.

If it ex-
ists, it
remains
un-
changed
regard-
less of
what is
in the
state
file.

4.2.2.1.readstate Command Examples

The following are example >readstate = commands, and the expected results. If a STATEsingleton
exists, the values of the parameters listed after the >readstate = command replace the values stored
in the STATEsingleton object. For this command, the flename command parameter value replaces
the state filename parameter value in the STATEsingleton, and the mode command parameter
value replaces the readstate mode parameter value in the STATEsingleton.

> readstate

This command overwrites or appends to the objects in the system using the objects defined in the file
referenced by the state filename parameter in the STATEsingleton. If the STATEsingleton does
not exist, an error is raised indicating that a filename must be specified.

> readstate filename = mystate.tst

The readstate mode parameter in the STATEsingleton determines if the current objects in the
system are deleted before the objects defined in the mystate.tst file are loaded into the system. If

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 27
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 4: Command Actions

the STATEsingleton does not exist, then the system objects are deleted before loading the new state
information.

> readstate mode = overwrite, filename = mystate.tst

This command deletes all objects currently in the system, opens the mystate.tst file if it exists, and
creates the objects as stored in the state file.

> readstate mode = append, filename = mystate.tst

This command opens the mystate.tst file if it exists, and adds the objects defined in the file to
those already in the system following the rules specified in the above table.

> readstate mode = overwrite

This command overwrites the objects in the system with the objects defined in the file referenced by
the state filename parameter in the STATEsingleton. If the STATEsingleton does not exist, an
error is raised indicating that a filename must be specified.

> readstate mode = append

This command appends to the objects in the system using the objects defined in the file referenced
by the state filename parameter in the STATEsingleton. If the STATEsingleton does not exist,
an error is raised indicating that a filename must be specified.

4.2.3.Save Topology Files

>savetopology [filename=<filename>]

Topology files can be used to easily use a previously defined topology in ANSYS TurboGrid. Topology

files can be generated manually using a text editor, or from within ANSYS TurboGrid by saving a topology
file. The >savetopology = command writes the current ANSYS TurboGrid Topology to a file from the
Command Editor dialog box.

>savetopology requires the following argument:
« filename = <filename> Specifies the path and name of the file that the topology is written to.
4.2.3.1.savetopology Command Example

The following is an example >savetopology = command, and the expected results.

> savetopology filename = mytopology.tgt

This command writes the current topology to the mytopology.tgt file.

4.2.4.Save Mesh Files

>savemesh [filename=<filename>, solver=<cfx5 | tascflow>]]

Mesh files can be used to load a previously created mesh into ANSYS TurboGrid and export a completed
mesh to be used in an ANSYS CFX Solver. The >savemesh command writes the current ANSYS TurboGrid
Mesh to a file from the Command Editor dialog box.

2 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
8 of ANSYS, Inc.and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

>savemesh requires the following arguments:

- filename = <filename>

Specifies the path and name of the file to which the state is written.

« solver = <cfx5 | tascflow>

If solver is cfx5 , the mesh file is saved in the ANSYS CFX mesh format (.gtm). If solver s
tascflow , the mesh file is saved in CFX-TASCflow format, including a .grd and .bcf file.

4.2.4.1. savemesh Command Examples
The following is an example >savemesh command, and the expected results.

> savemesh filename = mymesh.gtm, solver = cfx5

The command above writes the current mesh to mymesh.gtm in ANSYS CFX format.

> savemesh filename = mymesh, solver = tascflow

The command above writes the current Mesh to mymesh.grd and mymesh.bcf in CFX-TASCflow
format.

4.2.5.Save Blade Files

>saveblade [filename=<filename>]

Blade files can be used to save the changes made to the geometry. The >saveblade command writes
the current ANSYS TurboGrid Blade to a file from the Command Editor dialog box.

>saveblade requires the following argument:

+ filename = <filename>
Specifies the path and name of the file to which the blade is written.
4.2.5.1.saveblade Command Example
The following is an example >saveblade command, and the expected results.

> savetopology filename = mytopology.tgt

This command writes the current topology to the mytopology.tgt file.

4.2.6.Create Session Files

First, it is necessary to set the name of the file to which your session commands is to be saved. This
can be done by typing the CCL for the singleton object SESSION

In the command window type

SESSION:
Session Filename = <filename.tse>
END

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 2
of ANSYS, Inc.and its subsidiaries and affiliates. 9

Chapter 4: Command Actions

This sets up the session file to prepare for recording of commands. To begin recording commands, type
the following line into the Command Editor dialog box:

>session start [mode=<none | overwrite | append>, filename=<filename>]

To stop recording commands, type the following line into the Command Editor dialog box:

>session stop

Session files can be used to quickly reproduce all the actions performed in a previous ANSYS TurboGrid
Session. Session files can be generated manually using a text editor, or from within ANSYS TurboGrid

by recording a session. The commands required to write to these files from the Command Editor dialog
box are described below. The >session command handles all Write Session features.

The following options are available to support the functionality:

>session start supports the following options:

+ mode = <none | overwrite | append>

If mode is set to none (the default value), an error is raised if the file already exists. If mode is set
to overwrite , the file is deleted and newly created if it already exists. If mode is set to append ,
the new session is appended to the end of the existing file.

- filename = <filename>

Specifies the filename and path to the session file. If no filename is specified, the SESSION singleton
indicates the filename and the mode to use for overwriting/appending. If no SESSION singleton
exists, an error is raised indicating that a filename must be specified.

The session stop command terminates the saving of a session, and closes the session file. No options
are accepted with this option.

4.2.6.1.session Command Examples

The following are example >session commands, and the expected results. If a SESSION singleton

exists, the values of the parameters listed after the >session command replace the values stored in

the SESSION singleton object. For this command, the filename parameter value replaces the session
filename parameter value in the SESSIONsingleton, and the mode command parameter value replaces
the write session mode parameter value in the SESSIONsingleton.

> session start, filename = mysession.tse

This action starts a new session in a filename called mysession.tse . If mysession.tse already
exists, the overwrite/append behavior is dependent on that set in the SESSIONsingleton. If no SESSION
singleton exists, and the mysession.tse file also exists, the command fails with an error message

(that is, default mode is none).

> session start, mode = none, flename = mysession.tse

This command starts a new session file in a filename called mysession.tse . If mysession.tse
already exists, the command fails with an error message.

> session start, mode = overwrite, flename = mysession.tse

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
30 of ANSYS, Inc.and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

This command starts a new session. If mysession.tse already exists it is deleted, and replaced with
the new session. If the file does not already exist, it is created.

> session start, mode = append, filename = mysession.tse

This command starts a new session. If mysession.tse already exists, the new session is appended
to the end of the existing file. If the file does not already exist, it is created.

> session start

This command starts a new session, using the mode and filename defined in the SESSIONsingleton.
If the SESSIONsingleton does not exist, an error message is raised indicating that a filename must be
specified.

> session start, mode = overwrite

This command starts a new session with a filename of that specified in the SESSIONsingleton. If the
specified file already exists, it is deleted and a new file is created. If the SESSIONsingleton does not
exist, an error message is raised indicating that a filename must be specified.

> session start, mode = append

This command starts a new session with a filename of that specified in the SESSIONsingleton. If the
specified file already exists, the new session is appended to the end of the existing file. If the SESSION
singleton does not exist, an error message is raised indicating that a filename must be specified.

> session start, mode = none

This command starts a new session with a filename of that specified in the SESSIONsingleton. If the
specified file already exists, the command is terminated with an error message. If the SESSIONsingleton
does not exist, an error message is raised indicating that a filename must be specified.

> session stop

This command terminates the current session in progress, and closes the currently open session file.

4.2.7.Read Session Files

>readsession [filename=<filename>]
The >readsession command performs session file reading and executing.

<readsession supports the following options:

« filename = <filename>

Specifies the filename and path to the session file that should be read and executed. If no filename
is specified, the SESSIONsingleton object indicates the file to use. If no SESSIONsingleton exists,
an error is raised indicating that a filename must be specified.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 31
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 4: Command Actions

4.2.7.1.readsession Command Examples

The following are example >readsession commands, and the expected results. If a SESSIONsingleton
exists, the values of the parameters listed after the >readsession command replace the values stored
in the SESSIONsingleton object. For this command, the flename command parameter value replaces
the session filename parameter value in the SESSIONsingleton.

> readsession

This command reads the session file specified in the SESSIONsingleton, and executes its contents. If
the SESSIONobject does not exist, an error is raised indicating that a filename must be specified.

> readsession filename = mysession.tse

This command reads and executes the contents of the mysession.tse file.

4.2.8.Create Hardcopy

>print [<filename>]

The >print command creates an image file showing the viewer contents. Settings for output format,
quality, and so on, are read from the HARDCOPYingleton object. For an example of the >print
command, see Command Actions Example (p. 23).

The optional argument <filename> can be used to specify the name of the output file to override
that stored in HARDCOPRY

Note

The HARDCOPYingleton object must exist before the >print command is executed.

4.2.9.Export Geometry

The >tetin command exports the current geometry to a Tetin (.tin) file that can be read into ICEM
CFD products.

>tetin requires the following argument:

- filename = <filename>

Specifies the filename and path to which the Tetin file is written.

4.2.9.1. tetin Command Example

The following is an example >tetin command, and the expected results.

> tetin filename = mytetin.tin

This command writes the current geometry to the mytetin.tin file.
> Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
3 of ANSYS, Inc.and its subsidiaries and affiliates.

Quantitative Calculations in the Command Editor Dialog Box

4.3. Quantitative Calculations in the Command Editor Dialog Box

When executing a calculation from the Command Editor dialog box, the result is displayed in the built-
in calculator.

The >calculate ~ command is used to perform function calculations in the Command Editor dialog

box. Typing >calculate alone performs the calculation using the parameters stored in the CALCU-
LATORsingleton object. Typing >calculate <function name> does not work if required arguments
are needed by the function.

4.3.1.Function Calculation

>calculate [<function name>, <arguments>]

A number of useful quantitative functions have been defined within ANSYS TurboGrid. These functions
are specified in the table below. You can follow the links in the Function Name column to see the
syntax used for each function when using them from the Command Editor dialog box. A detailed de-
scription of the calculation performed by each function is not provided here. For details, see Function
in the TurboGrid User's Guide. When using quantitative functions as part of a CEL expression, a different
syntax is required. For details, see CEL Standard Functions (p. 21).

These functions may be accessed from the Command Editor dialog box using the >calculate
command, or via function calls within Power Syntax. Reference documentation on the Power Syntax
functions is provided in Power Syntax (p. 39).

When a function is evaluated, a singleton CALCULATORDbject is created that shows the parameters
and results for the most recent calculation. If the >calculate command is supplied without <func-
tion name> or <arguments> , then the calculation is performed with the settings from the CALCU-
LATORobject (which may be modified like any other object in the Command Editor dialog box). An
error is raised if the CALCULATORbject does not exist.

When evaluated as part of a Power Syntax function, the results of the calculation can be stored in a
Power Syntax variable for further processing. See Examples of Power Syntax (p. 40) for examples of using
calculations within Power Syntax.

Function Operation Arguments
Name
<required>
[<optional>]
area (p. 34) Area projected to axis (no axis <Location>,
specification returns total area) [<AXxis>]
areaAve (p. 35) Area-weighted average <Expression>,
<Location>,
[<Axis>]
arealnt (p. 35) Area-weighted integral <Expression>,
<Location>,
[<Axis>]
ave (p. 35) Arithmetic average <Expression>,
<Location>
count (p. 35) Number of calculation points <Location>
length (p. 35) Length of a curve <Location>

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 33

Chapter 4: Command Actions

Function Operation Arguments
Name
<required>
[<optional>]
lengthAve (p. 35) Length-weighted average <Expression>,
<Location>
length- Length-weighted integration <Expression>,
Int (p. 36) <Location>
maxVal (p. 36) Maximum Value <Expression>,
<Location>
minVal (p. 36) Minimum Value <Expression>,
<Location>
probe (p. 36) Value at a point <Expression>,
<Location>
sum (p. 36) Sum over the calculation points <Expression>,
<Location>
volume (p. 36) Volume of a 3-D location <Location>
volumeAve (p. 36) Volume-weighted average <Expression>,
<Location>
volumelnt (p. 36) Volume-weighted integral <Expression>,
<Location>
Note

The following functions are not available in ANSYS TurboGrid: force, forceNorm, massFlow,
massFlowAve, massFlowInt and torque.

4.3.1.1. Expression Specification

Any variable or valid expression can be used as the <Expression> argument. For example,

areaAve Minimum Face Angle, myPlane is allowed. For a list of variables and valid expressions,
see CEL Functions, Constants and System Variables (p. 21).

4.3.1.2. Axis Specification

Some functions take an axis specification as an argument. The general format for an axis specification
is:

<X|Y|Z>
4.3.1.3. Quantitative Function List
4.3.1.3.1.area

>calculate area, <Location>, [<Axis>]

The specification of an axis is optional. If one is not specified, the value held in the CALCULATORDbject
is used. To calculate the total area of the location, the axis specification should be left blank (You should

4 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
3 of ANSYS, Inc.and its subsidiaries and affiliates.

Quantitative Calculations in the Command Editor Dialog Box

type a comma after the location specification.). See area in the TurboGrid User's Guide for a detailed
function description.

Example: >calculate area, myplane calculates the area of the locator myplane projected onto
a plane normal to the axis specification in the CALCULATORbject.

Example: >calculate area, myplane , calculates the area of the locator myplane . Note that
adding the comma after myplane removes the axis specification.

4.3.1.3.2.areaAve

>calculate areaAve, <Expression>, <Location>, <Axis>

See areaAve in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.3.arealnt

>calculate arealnt, <Expression>, <Location>, [<AXxis>]

Axis is optional. If it is not specified the value held in the CALCULATORDbject is used. To perform the
integration over the total face area, the axis specification should be blank (You should type a comma
after the location name.). See arealnt in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.4.ave

>calculate ave, <Expression>, <Location>

See ave in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.5.count

>calculate count, <Location>

See count in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.6.length

>calculate length, <Location>

Note
When using this function in Power Syntax the leading character should be capitalized to

avoid confusion with the Perl internal command “length’”. See length in the TurboGrid User's
Guide for a function description.

4.3.1.3.7.lengthAve

>calculate lengthAve, <Expression>, <Location>

See lengthAve in the TurboGrid User's Guide for a detailed function description.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 35

Chapter 4: Command Actions

4.3.1.3.8.lengthint

>calculate lengthint, <Expression>, <Location>.

See lengthint in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.9. maxVal

>calculate maxVal, <Expression>, <Location>

See maxVal in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.10. minVal

>calculate minVal, <Expression>, <Location>

See minVal in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.11. probe

>calculate probe, <Expression>, <Location>

See probe in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.12.sum

>calculate sum, <Expression>, <Location>

See sum in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.13.volume

>calculate volume, <Location>

See volume in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.14.volumeAve

>calculate volumeAve, <Expression>, <Location>

See volumeAve in the TurboGrid User's Guide for a detailed function description.

4.3.1.3.15.volumeint

>calculate volumelnt, <Expression>, <Location>

See volumelnt in the TurboGrid User's Guide for a detailed function description.

36 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Other Commands

4.4, Other Commands

4.4.1.Deleting Objects

>delete <objectnamelist>

The >delete command can be used in the Command Editor dialog box to delete objects. The command
must be supplied with a list of object names separated by commas. An error message is displayed if
the list contains any invalid object names, but the deletion of valid objects in the list is still processed.

4.4.2.Viewing a Chart

>chart <objectname>

The >chart command is used to invoke the chart viewer and display the specified CHART object. Chart
objects and Chart Lines are created like other CCL objects.

4.4.3.Creating a Mesh

>mesh

The >mesh command is used in the Command Editor dialog box to create a mesh using the current
Topology and Mesh Data objects.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 37
of ANSYS, Inc.and its subsidiaries and affiliates.

38

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 5: Power Syntax

« Introduction (p. 39)
+ Examples of Power Syntax (p. 40)
* Predefined Power Syntax Subroutines (p. 41)

5.1.Introduction

Programming constructs can be used within CCL for advanced usage. Rather than invent a new language,
CCL takes advantage of the full range of capabilities and resources from an existing programming lan-
guage, Perl. Perl statements can be embedded between lines of simple syntax, providing capabilities

such as loops, logic, and much, much more with any CCL input file.

uyn

Lines of Power Syntax are identified in a CCL file by the “!" character at the beginning of each line.
Between Perl lines, simple syntax lines may refer to Perl variables and lists. Examples of CCL with Power
Syntax can be found in Examples of Power Syntax (p. 40).

A wide range of additional functionality is made available to expert users with the use of Power Syntax
including:

* Loops

+ Logic and control structures

+ Lists and arrays

+ Subroutines with argument handling (useful for defining commonly re-used plots and procedures)

+ Basic I/0 and input processing

« System functions

* much, much more (Object programming, WorldWide Web access, simple embedded GUIs).

Any of the above may be included in a CCL input file or ANSYS TurboGrid Session file.

Important

You should be wary when entering certain expressions, since Power Syntax uses Perl math-

ematical operators. For example, in CEL, 2%s represented as 22, but in Perl, would be
written 2**2 _If you are unsure about the validity of an operator, you should check a Perl
reference guide.

There are many good reference books on Perl. Two examples are “Learning Perl” (ISBN 1-56592-042-2)
and “Programming Perl” (ISBN 1-56592-149-6) from the O'Reilly series.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 39

Chapter 5: Power Syntax

5.2. Examples of Power Syntax

The following are some examples in which the versatility of Power Syntax is demonstrated. They become
steadily more complex in the latter examples.

All arguments passed to subroutines should be enclosed in quotations, for example Plane 1 must be
passed as “ Plane 1 ”,and Minimum Face Angle should be entered as “ Minimum Face Angle
Any legal CFX Command Language characters that are illegal in Perl need to be enclosed in quotation
marks.

5.2.1.Example 1: Using a for Loop

This example demonstrates using Power Syntax to wrap a for loop around some CCL Object definitions
to repetitively change the visibility on the outer boundaries.

Make the hub and shroud surfaces gradually transparent in
the specified number of steps.
I$numsteps = 10;
Ifor ($i=0; $i < $numsteps; $i++) {
| $trans = ($i+1)/$numsteps;
GEOMETRY:
HUB:
Visibility = 1
Transparency = $trans
END
END
GEOMETRY:
SHROUD:
Visibility = 1
Transparency = $trans
END
END

3

The first line of Power Syntax defines a scalar variable called humsteps . Scalar variables (i.e., simple
single-valued variables) begin with a “$” symbol in Perl. The next line defines a for loop that increments
the variable i up to numsteps . Next, we determine the fraction we are along in the loop and assign

it to the variable trans .The object definitions then use trans to set their transparency and then repeat.
Note how Perl variables can be directly embedded into the object definitions. The final line of Power
Syntax (!}) closes the for loop.

5.2.2. Example 2: Creating a Simple Subroutine

This example defines a simple subroutine to make two TURBO SURFACBbjects at specified locations.
The subroutine is used in the next example.

Isub makeTurboSurfaces {

USER DEFINED:

TURBO SURFACE:Span Surface
Draw Faces = Off
Draw Lines = On
Variable = Span Normalized

Value = 0.25
Visibility = On
END

TURBO SURFACE:Theta Surface
Draw Faces = Off

Draw Lines = On

Variable = Theta

Value = 300 [degree]

4 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
0 of ANSYS, Inc.and its subsidiaries and affiliates.

Predefined Power Syntax Subroutines

Visibility = On
END
END

3

You can execute this subroutine by typing !'makeTurboSurfaces(); in the Command Editor dialog
box.

5.3.Predefined Power Syntax Subroutines

This section contains subroutines to provide additional Power Syntax functionality in ANSYS TurboGrid.
You can view a list of these subroutines by entering IshowSubs(); in the Command Editor dialog
box. The list is printed to the console window. The list shows all currently loaded subroutines, so it in-
cludes any custom subroutines that you have processed in the Command Editor dialog box.

5.3.1.evaluate(Expression)
real,string evaluate("Expression™)

A utility function that takes an expression and returns the evaluated expression. The returned value is
a list variable in which the first element is the numeric value of the expression, and the second is the
base unit. For example:

l@myexp = evaluate("10 [degree]/3.0");
Iprint "myexp=",$myexp[0],"[",$myexp[1],"]\n";

prints:

myexp=0.0581776648759842[rad]
5.3.2.getValue(Object Name, Parameter Name)

A utility function that takes a name or path of a CCL object and parameter name and returns the value
of the parameter. e.g.

I $bladecount = getValue(/GEOMETRY:GEOMETRY/MACHINE DATA:MACHINE DATA”,"Bladeset Count”);

5.3.3.showPkgs()

void showPkgs()

A content subroutine that prints a list of packages available which may contain other variables or sub-
routines in Power Syntax.

5.3.4.showSubs()

void showSubs("String packageName")

A content subroutine that prints a list of the subroutines available in the specified package. If no
package is specified, ANSYS TurboGrid is used by default, which lists the routines specified here.

5.3.5.showVars()

void showVars("String packageName")

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 41
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 5: Power Syntax

A content subroutine that prints a list of the Power Syntax variables and their current value defined in
the specified package. If no package is specified, ANSYS TurboGrid is used by default.

5.3.6.verboseOn()

Returns 1 or O depending if the Perl variable $verbose is set to 1.

42 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 6: Line Interface Mode

« Introduction (p. 43)
« Line Interface Mode (p. 44)
* Batch Mode (p. 46)

6.1.Introduction

Some user interaction (for example with some advanced features) with ANSYS TurboGrid is through
the CFX command line. This is denoted by the "TG>" command line prompt. At the command line
prompt the user can issue CFX Command Language (CCL) actions, create CCL objects, and issue a few
command-line-specific commands. For further information on creating CCL objects, see the CCL details
chapter in the reference guide.

By default, any entry on the command line is assumed to be a CCL action, and is immediately processed
by ANSYS TurboGrid. The table below provides a complete list of special commands that are accepted
by ANSYS TurboGrid, but are not actually CCL actions. Refer to Command Actions (p. 23) for information
on CCL actions that can be used on the command line.

Action (Abbre- Arguments Behavior
viation)
help (h) none Lists all valid command-line

and CCL actions.

getstate (s) <Object Name> Without an argument, lists all
currently defined objects.

With an argument, shows de-
tails of the definition of the
named object.

enterccl (e) none Enters CCL object definition
mode. Allows the user to type
CCL object definitions. Ctrl+e
processes the object definition,
Ctrl+x aborts.

! <command> Executes a Power Syntax (Perl)
command

% <command> Executes a system command
(Unix Only)

Since a full mesh creation would require a large amount of typing, and because of the flexibility of the
CCL Power Syntayx, it is expected that most input will be via session files. A session file can be specified
at start-up via the -session <filename> option, or on the ANSYS TurboGrid command line using
the readsession command. For further information on the readsession = command, see Read
Session Files (p. 31).

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 4
of ANSYS, Inc.and its subsidiaries and affiliates. 3

Chapter 6: Line Interface Mode

6.2.Line Interface Mode

All of the functionality of ANSYS TurboGrid can be accessed when running in Line Interface mode. This
section contains information on how to perform typical user actions (loading state files, saving pictures,
etc.), defining geometry, creating graphical objects and performing quantitative calculations when
running ANSYS TurboGrid in Line Interface mode.

In Line Interface mode you are typing the CCL commands which would otherwise be issued by the GUI.
A Viewer is provided in a separate window which shows the geometry and the objects that you create
on the command line.

To run in Line Interface mode (<KCFXROOT3should be replaced with the file path to your installation
of ANSYS TurboGrid):

Windows: Execute the command <CFXROOT>\bin\cfxtg -line at the DOS command prompt
(omitting the -line option starts the GUI mode).

You may want to change the size of the MS-DOS window to view the output from commands such as
getstate .This can be done by typing mode con lines=X at the Command Prompt before starting
ANSYS TurboGrid, where X is the number of lines to display in the window. You can choose a large
number of lines if you want to be able to see all the output from a session (a scroll bar is used in the
DOS window).

Note

File paths typed once inside ANSYS TurboGrid should contain a forward slash / and not the
backslash, which is required in MS-DOS.

UNIX: Execute the command <CFXROOT>/bin/cfxtg -line at the command prompt (omitting
the -line option starts the GUI mode).

In ANSYS TurboGrid Line Interface mode, all commands are assumed to be actions, the > symbol required
in the Command Editor dialog box is not needed.

All of the functionality available from the Command Editor dialog box in the GUI is available in Line
Interface mode by typing enterccl or e at the command prompt. When in € mode you can type any
set of valid CCL commands. The commands are not processed until you leave e mode by typing .e .
You can cancel e mode without processing the commands by typing .c . For details, see Command
Editor Command in the TurboGrid User's Guide.

A list of Command Actions and their explanation are described in the Command Actions documentation.
For details, see Introduction (p. 23).

Note

The action commands shown in the Command Actions documentation are preceded by the
> symbol. This symbol should be omitted when typing action commands at the command
prompt.)

You can create objects by typing the CCL definition of the object when in € mode, or by reading the
object definition from a session or state file. See File Operations from the Command Editor Dialog
Box (p. 24) for details.

44 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Line Interface Mode

Line Interface mode differs from the Command Editor dialog box in that Line Interface action commands
are not preceded by the ">" symbol.

All commands that work for the Command Editor dialog box also work in line interface mode,
providing the correct syntax is used.

Some commands specific to line interface mode are listed below.

6.2.1.Lists of Commands

To show a list of valid commands, type help at the command prompt.

To see help for all CCL actions, refer to Command Actions (p. 23).

6.2.2.Viewer Hotkeys

The zoom, rotate, pan and other mouse actions available for manipulating the viewer in the GUI perform
identical functions in the viewer in line interface mode. In addition to this, hotkeys can be used to ma-
nipulate other aspects of the viewer. For a full list of all the hotkeys available click in the viewer to make

it the active window and select the ? icon. To execute a hotkey command, click once in the viewer (or
on the object, as some functions are object-specific) and type the command.

6.2.3. Calculator

When evaluated on the command line, the result of a calculation is printed to standard output.

For a list of valid calculator functions and required parameters, type calculate help at the command
prompt. For details, see Quantitative Calculations in the Command Editor Dialog Box (p. 33).

6.2.4. getstate Command

The list of all currently defined objects can be obtained using the getstate command. To get details
on a specific object, type getstate <ObjectName>

6.2.5.Repeating CCL Commands

If you want to carry out the last CCL command again, type =.

6.2.6. Executing a Shell Command

If you want to carry out a shell command, type %directly before your command. For example, %ls
lists all the files in your current directory.

6.2.7.Quitting

ANSYS TurboGrid can be shut down by typing the quit command at the command prompt.

6.2.8. Example

The following example provides a set of commands that you could type at the TG>command prompt.
The output that is written to the screen when executing these commands is not shown.

TG> getstate /GEOMETRY:GEOMETRY/HUB:HUB
TG>e

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 4
of ANSYS, Inc.and its subsidiaries and affiliates. 5

Chapter 6: Line Interface Mode

GEOMETRY:
HUB:
Visibility = On
Transparency = 0.1
END
END
e
TG> getstate /GEOMETRY:GEOMETRY/HUB:HUB
TG> quit

6.3.Batch Mode

All of the functionality of ANSYS TurboGrid can be accessed when running in batch mode. When running
in batch mode, a viewer window is not provided and you cannot type commands at a command prompt.

Commands are issued via an ANSYS TurboGrid Session file (*.tse), the name of which is specified
when executing the command to start batch mode.

To run in batch mode execute the following command at the command prompt:

Windows <CFXROOT>\bin\cfxtg -batch <file-
name.tse>

UNIX <CFXROOT>/bin/cfxtg -batch <file-
name.tse>

The session file can be created using a text editor, or, more easily, by recording a session file while
running in Line Interface or GUI mode.

The last command of any session file used in batch mode should be >quit .If this is not the case, you
will become locked in batch mode and have to terminate ANSYS TurboGrid manually. If a session file

is recording when you quit from GUI or line interface mode, the >quit command will be automatically
written to your session file before ANSYS TurboGrid quits. Alternatively, you can use a text editor to

add this command to the end of a session file if you want ANSYS TurboGrid to quit after playing the
session file.

Important

When launching ANSYS TurboGrid on a remote UNIX or Linux machine (though X, Exceed,

and so on), the DISPLAY variable must be set to a valid X display before running in batch
mode. The display will typically be your local Windows, Linux, or UNIX machine. The remote
machine must have permission to connect to the display (for example, by use of the xhost
command if the X display is on a UNIX/Linux machine).

6.3.1. Example: Generating a Similar Mesh from Different Curve Files

As mentioned above, the most common approach to generating session files for use in batch processing
is to record sessions carried out interactively. For example, you may record a session file of an entire
session in which you load curves, generate topology, create a mesh and save it to a .gtm file. If you
then edit the session file (using a text editor) replacing the hub, shroud, blade and mesh files with

other filenames, you can then repeat the same actions on different curve files by running the edited
session file.

4 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
6 of ANSYS, Inc.and its subsidiaries and affiliates.

Batch Mode

You may also edit a session file to include a loop written with Power Syntax (Perl script). The session

file could load a state file' before entering the loop so that only the CCL block structure that controls
the parameters that vary needs to be in the loop. To obtain a particular CCL block structure, you may
do one of the following:

1. Write a state file and then use a text editor to select the appropriate CCL block.
2. Write a state file, saving only the CCL blocks that you need.

3. Begin recording a session file. Click Apply on the object editor for the object of interest. Stop recording
the session file. Open the session file in a text editor and extract the appropriate CCL block.

The following is a simplified example of a loop that could be used in a parametric study. It loads 4 dif-
ferent blade files, bladel.curve ,blade2.curve .. etc, and writes 4 corresponding mesh files,
meshl.gtm , mesh2.gtm ... etc.,, while keeping all other settings the same.

I for (1..4)
|

I my $bladefile = "blade".$_.".curve";
I my $meshfile = "mesh".$_.".gtm";
GEOMETRY:GEOMETRY
BLADE:Blade 1
Coordinate Frame Type = Cartesian
Curve Representation = Bspline
Input Angle Units = degree
Input Filename = $bladefile
Input Length Units = m
Show Curve = Off
Show Surface = On
Surface Representation = Bspline
Visibility = On
END
END
> mesh
> savemesh filename=$meshfile, onefile=0On, solver=cfx5

'}

The next example illustrates how a numerical parameter can be modified in a batch loop. It makes use
of a list of values.

I for (20,27.5,35,42.5)
H
|

I my $hubAngle = $_." [degree]";
GEOMETRY:GEOMETRY
INLET:
Hub Angle = $hubAngle
Override Automatic Angles = On
Shroud Angle = 0.0 [degree]
Visibility = Off
GEO POINT:Low Hub Point
Requested ART =-58.09,166.585,54.1607
Visibility = On
END
GEO POINT:Low Shroud Point
Visibility = On
END
END
END

'}

'A state file used in a parametric study should have Topology advanced block # overrides specified to prevent the re-calculation of
topology block numbers so as not to influence the parametric study. This can be accomplished by clicking the Freeze button.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 47
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 6: Line Interface Mode

A hash table may be used to map integers to numbers or text strings. The following example makes
use of a hash table to map from the loop index (an integer) to various real numbers:

I'my %hubAngle=
t(
1 => 20,
12 => 275,
1 3 => 35,

1 4 => 425,
D

I for (1..4)

H{

!

I my $hubAngleVal = $hubAngle{$_}." [degree]";
GEOMETRY:GEOMETRY
INLET:
Hub Angle = $hubAngleVal
Override Automatic Angles = On
Shroud Angle = 0.0 [degree]
Visibility = Off
GEO POINT:Low Hub Point
Requested ART = -58.09,166.585,54.1607
Visibility = On
END
GEO POINT:Low Shroud Point
Visibility = On
END
END
END

'}

A hash table can also control parameters that require string values. An example of a string hash table
follows:

I'my %values =
I

1'1 =>"0n",
12 => "Off",

1 3 => "lastval"
b

I'my $firstval = $values{1},

In this example, firstval will be set to On To use this hash table in a loop, the quantity in {} after
$values could be $_ which represents the loop index.

4 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
8 of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 7: Meshing Reference

ANSYS TurboGrid employs the traditional concept of block-structure (multi-block) mesh generation.
The block-structure approach is simple and efficient, allowing the well-known Transfinite Interpolation
(TFI) for surface and interior mesh generation to be used.

Although it is possible to establish a correspondence between any physical region and any given logically
rectangular block, the grid inside such a block is likely to be unusable as the geometry becomes more
complex. Topology blocks therefore represent contiguous sub-regions of a physical domain. Within

each block, the mesh elements are logically rectangular but the blocks themselves fit together in an
unstructured manner. Each block has its own curvilinear coordinate system and is logically rectangular.
This allows the grid generation and numerical solution on the grid to be constructed to operate in a
logically rectangular computational region.

There are many subsets of TFl, such as Lagrangian and Hermitic: a useful reference for such subjects is
“The Handbook of Grid Generation” (J.F. Thompson et al., 1999, CRC Press). ANSYS TurboGrid employs
an algebraic, semi-isogeometric surface mesh generation procedure.

Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 49

50

Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Index

A

area function, 34
areaAve function, 35
arealnt function, 35
ave function, 35

B
batch mode, 43

C

case sensitivity
in CCL syntax, 16

CCL (CFX Command Language), 15

names definition, 17
syntax, 15
CEL (CFX Expression Language)
constants, 21
functions, 21
functions and constants, 21
CFX

Command Language (CCL), 15

command editor dialog box
action commands, 23
create session file, 29
export data, 32
file operations, 24
function calculation, 33
quantitative calculations, 33
read session file, 31
read state file, 25
save picture from, 32
save state file, 24
Command Language (CCL), 15
command line, 3,15
mode, 43

object creation and deletion, 20

comment character
in syntax, 17
constants, 21
continuation character
in syntax, 17
count function, 35
Create

object using the command line, 20

E

example
file operations from the command editor dialog box
- readsession, 32
file operations from the command editor dialog box
- readstate, 27
file operations from the command editor dialog box
- saveblade, 29
file operations from the command editor dialog box
- savemesh, 29
file operations from the command editor dialog box
- savestate, 25
file operations from the command editor dialog box
- savetopology, 28
file operations from the command editor dialog box
- session, 30
file operations from the command editor dialog box
- tetin, 32
power syntax, 40

export
data using the command editor dialog box, 32

F
file
operations from the command editor dialog box, 24
function
calculation using the command editor dialog box,
33
functions and constants in CEL, 21

L

launcher, 1
adding APPLICATION objects, 5
adding DIVIDER objects, 7
adding GROUP objects, 5
customizing, 4
Show menu, 3
using variables in APPLICATION objects, 7

length function, 35

lengthAve function, 35

lengthint function, 36

line interface mode, 43

M

maxVal function, 36
meshing

reference guide, 49
minVal function, 36

delete (o)
object using the command ling, 20 object
Release 74.0 - © SAS IR Inc. Allrights reserved. - Contains proprietary and confidential information 1
of ANSYS, Inc.and its subsidiaries and affiliates. 5

Index

singleton, 17 lists, 18
name objects, 17
P parameter values, 18
parameters, 17

parameter values s .
simple details, 16

in syntax, 18
parameters singleton objects, 17
in syntax, 17 system information, 3
power syntax, 39
example, 40 T
subroutines, 41 tetin command examples, 32
probe function, 36 Tools menu overview, 3
Q vV
quantitative volume function, 36
calculations using the command editor dialog box, volumeAve function, 36
33 volumelnt function, 36
subroutines, 41
w
R working directory, 4
read
state file using the command editor dialog box, 25
readsession command examples, 32
readstate command examples, 27
running
in batch mode, 43
in line interface mode, 43
S
save
picture from the command editor dialog box, 32
state file using the command editor dialog box, 24
saveblade command examples, 29
savemesh command examples, 29
savestate command examples, 25
savetopology command examples, 28
session
file - create, 29
file - read, 31
session command examples, 30
singleton objects, 17
state
read using the command editor dialog box, 25
save using the command editor dialog box, 24
subroutines
power syntax, 41
sum function, 36
syntax
case sensitivity in CCL, 16
continuation character, 17
end of line comment character, 17
indentation, 17
52 Release 74.0 - © SAS IR, Inc. Allrights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

	ANSYS TurboGrid Reference Guide
	Table of Contents
	Chapter 1: ANSYS TurboGrid Launcher
	1.1. The ANSYS TurboGrid Launcher Interface
	1.1.1. Menu Bar
	1.1.1.1. File Menu
	1.1.1.1.1. Save As
	1.1.1.1.2. Quit

	1.1.1.2. Edit Menu
	1.1.1.2.1. Clear
	1.1.1.2.2. Find
	1.1.1.2.3. Options
	1.1.1.2.3.1. GUI Style
	1.1.1.2.3.2. Application Font and Text Window Font

	1.1.1.3. CFX Menu
	1.1.1.3.1. TurboGrid 14.0
	1.1.1.3.2. Other ANSYS CFX Applications

	1.1.1.4. Show Menu
	1.1.1.4.1. Installation
	1.1.1.4.2. All
	1.1.1.4.3. System
	1.1.1.4.4. Variables
	1.1.1.4.5. Patches

	1.1.1.5. Tools Menu
	1.1.1.5.1. ANSYS Client Licensing Utility
	1.1.1.5.2. Command Line
	1.1.1.5.3. Edit File

	1.1.1.6. User Menu
	1.1.1.7. Help Menu

	1.1.2. Tool Bar
	1.1.3. Working Directory Selector
	1.1.4. Output Window

	1.2. Customizing the ANSYS TurboGrid Launcher
	1.2.1. CCL Structure
	1.2.1.1. GROUP
	1.2.1.2. APPLICATION
	1.2.1.2.1. Including Environment Variables

	1.2.1.3. DIVIDER

	1.2.2. Example: Adding the Windows Calculator

	Chapter 2: ATM Topology
	Chapter 3: CFX Command Language
	3.1. Introduction
	3.2. CCL Syntax
	3.2.1. Basic Terminology
	3.2.1.1. The Data Hierarchy

	3.2.2. Simple Syntax Details
	3.2.2.1. Case Sensitivity
	3.2.2.2. CCL Names Definition
	3.2.2.3. Indentation
	3.2.2.4. End of Line Comment Character
	3.2.2.5. Continuation Character
	3.2.2.6. Named Objects
	3.2.2.7. Singleton Objects
	3.2.2.8. Parameters
	3.2.2.9. Lists
	3.2.2.10. Parameter values
	3.2.2.10.1. String
	3.2.2.10.2. String List
	3.2.2.10.3. Integer
	3.2.2.10.4. Integer List
	3.2.2.10.5. Real
	3.2.2.10.6. Real List
	3.2.2.10.7. Logical
	3.2.2.10.8. Logical List

	3.2.2.11. Escape Character

	3.3. Object Creation and Deletion
	3.4. ANSYS CFX Expression Language
	3.4.1. CEL Functions, Constants and System Variables
	3.4.1.1. CEL Standard Functions
	3.4.1.2. CEL Constants

	Chapter 4: Command Actions
	4.1. Introduction
	4.1.1. Command Actions Example

	4.2. File Operations from the Command Editor Dialog Box
	4.2.1. Save State Files
	4.2.1.1. savestate Command Examples

	4.2.2. Read State Files
	4.2.2.1. readstate Command Examples

	4.2.3. Save Topology Files
	4.2.3.1. savetopology Command Example

	4.2.4. Save Mesh Files
	4.2.4.1. savemesh Command Examples

	4.2.5. Save Blade Files
	4.2.5.1. saveblade Command Example

	4.2.6. Create Session Files
	4.2.6.1. session Command Examples

	4.2.7. Read Session Files
	4.2.7.1. readsession Command Examples

	4.2.8. Create Hardcopy
	4.2.9. Export Geometry
	4.2.9.1. tetin Command Example

	4.3. Quantitative Calculations in the Command Editor Dialog Box
	4.3.1. Function Calculation
	4.3.1.1. Expression Specification
	4.3.1.2. Axis Specification
	4.3.1.3. Quantitative Function List
	4.3.1.3.1. area
	4.3.1.3.2. areaAve
	4.3.1.3.3. areaInt
	4.3.1.3.4. ave
	4.3.1.3.5. count
	4.3.1.3.6. length
	4.3.1.3.7. lengthAve
	4.3.1.3.8. lengthInt
	4.3.1.3.9. maxVal
	4.3.1.3.10. minVal
	4.3.1.3.11. probe
	4.3.1.3.12. sum
	4.3.1.3.13. volume
	4.3.1.3.14. volumeAve
	4.3.1.3.15. volumeInt

	4.4. Other Commands
	4.4.1. Deleting Objects
	4.4.2. Viewing a Chart
	4.4.3. Creating a Mesh

	Chapter 5: Power Syntax
	5.1. Introduction
	5.2. Examples of Power Syntax
	5.2.1. Example 1: Using a for Loop
	5.2.2. Example 2: Creating a Simple Subroutine

	5.3. Predefined Power Syntax Subroutines
	5.3.1. evaluate(Expression)
	5.3.2. getValue(Object Name, Parameter Name)
	5.3.3. showPkgs()
	5.3.4. showSubs()
	5.3.5. showVars()
	5.3.6. verboseOn()

	Chapter 6: Line Interface Mode
	6.1. Introduction
	6.2. Line Interface Mode
	6.2.1. Lists of Commands
	6.2.2. Viewer Hotkeys
	6.2.3. Calculator
	6.2.4. getstate Command
	6.2.5. Repeating CCL Commands
	6.2.6. Executing a Shell Command
	6.2.7. Quitting
	6.2.8. Example

	6.3. Batch Mode
	6.3.1. Example: Generating a Similar Mesh from Different Curve Files

	Chapter 7: Meshing Reference
	Index

