
B A S I C S  O F

and Beyond
MATLAB

®

c© 2000 by CRC Press LLC



CHAPMAN & HALL/CRC

Andrew Knight

B A S I C S  O F

and Beyond
MATLAB

®

Boca Raton   London   New York   Washington, D.C.



Library of Congress Cataloging-in-Publication Data

Knight, Andrew (Andrew James), 1961—
Basics of MATLAB and beyond / Andrew Knight.

p. cm.
Includes index. (alk. paper)
ISBNO-8493-2039-9
1. Engitteering mathematics-Data prccessing. 2. MATLAB. I. Title.

TA345.K63 1999
620´.001´5 118-dc2 1 99-31210

CIP
J

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have hen made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microtihning, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Plorida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit tbe CRC Press Web site at www.crcpress.com

© 2000 by CRC Press LLC

No claim to original U.S. Government works
International Standard Bcok Number 0-8493-2039-9

Library of Congress Card Number 99-31210
Printed in the United States of America 3 4 5 6 1 8 9 0

Printed on acid-free paper
MATLAB is a registered trademark of The MathWorks, Inc.

http://www.crcpress.com


Preface

This book arose from notes written for matlab©R training courses run
within the Australian Defence Science and Technology Organisation.
The book is in two parts. Each part was originally a two-day course,
designed assuming that students were seated at a computer with matlab
running.

Part 1 is an introductory course suitable for those with no experience
at all with matlab. It is written in a self contained way; if you go
through the notes, all the new commands and ideas are explained as
they are introduced.

Part 2 is a more advanced course suitable for those who are already
familiar with the basics of matlab. It covers a variety of topics, some
of which you may not be interested in; if so, you should be able to skip
that section without detriment to other sections.

You can get the m-files that accompany this book from the “Down-
load” section of the CRC Press web site (www.crcpress.com). The files
are available in zip or gzipped tar format, and can be extracted using
WinZip on a PC, or by using gunzip and tar on unix. You will need to
put them in a directory where matlab will be able to find them. You
can either use the cd command to move matlab’s working directory to
the directory you extract the files to, or add that directory to matlab’s
search path. (You can display matlab’s current working directory by

matlab is a registered trademark
of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760-1500 USA

Tel: 508-647-7000
Fax: 508-647-7107

E-mail: info@mathworks.com
Web: www.mathworks.com

c© 2000 by CRC Press LLC

http://www.mathworks.com
http://www.crcpress.com


typing pwd (print working directory) in the command window.) On a
PC or Macintosh, you can add directories to matlab’s path by clicking
on the path browser button at the top of the matlab command window
(it is the button with two folders on it to the left of the question mark
button). In the path browser, select the menu “Path→Add to path”,
then select the directory containing the extracted files using the browse
button (on PCs it is the one with three dots on it), then check the “add
to back” option before pressing “OK”. Then click “File→Save Path”
before you exit the path browser. If you are using another platform you
can use the path command from within matlab (type help path for
instructions). You can install this path each time you start matlab
by putting an appropriate path command in a file called startup.m in a
directory called matlab situated immediately below your home directory.

Many of the graphical examples in this book assume that the figure
window is empty. To ensure an empty figure window issue the command:

clf

which stands for “clear figure”. If you find that the figure window is
obscured by your command window, try shrinking both windows. Or
you can type:

shg

(show graphic) to bring the graphics window to the front. The compan-
ion software implements an even shorter abbreviation; type

s

to bring the graphics window to the front
If, on a PC or Macintosh, the figure window is at the front of the

screen, or if it has the current focus, just start typing and matlab will
switch to the command window and accept your typing.

Words appearing in this book in typewriter font, for example, type,
represent matlab commands that you can type in, or output produced
by matlab.

Andrew Knight

c© 2000 by CRC Press LLC



About the Author

The author completed a Ph.D. in plasma physics at the Flinders Uni-
versity of South Australia in the days before matlab. Consequently, he
knows how much time can be saved when you don’t have to write your
own matrix inversion or polynomial evaluation routines in fortran.
His first exposure to matlab was at the Centre for Plasma Physics
Research at the Swiss Federal Institute of Technology (Ecole Poly-
technique Fédérale) in Lausanne, Switzerland, where he continued his
research in plasma physics. On his return to Australia to take up a posi-
tion with the Maritime Operations Division of the Defence Science and
Technology Organisation, he was given responsibility for research in the
flow noise problem of towed sonar arrays. His current research interests
include sonar signal processing and information displays. He has been
largely responsible for the growth in the use of matlab in his division,
and has conducted training courses in matlab.

c© 2000 by CRC Press LLC



Contents

I Basics of MATLAB

1 First Steps in MATLAB
1.1 Starting MATLAB
1.2 First Steps
1.3 Matrices
1.4 Variables
1.5 The Colon Operator
1.6 Linspace
1.7 Plotting Vectors

2 Typing into MATLAB
2.1 Command Line Editing
2.2 Smart Recall
2.3 Long Lines
2.4 Copying and Pasting

3 Matrices
3.1 Typing Matrices
3.2 Concatenating Matrices
3.3 Useful Matrix Generators
3.4 Subscripting
3.5 End as a subscript
3.6 Deleting Rows or Columns
3.7 Matrix Arithmetic
3.8 Transpose

4 Basic Graphics
4.1 Plotting Many Lines
4.2 Adding Plots
4.3 Plotting Matrices
4.4 Clearing the Figure Window
4.5 Subplots

c© 2000 by CRC Press LLC



4.6 Three-Dimensional Plots
4.7 Axes
4.8 Labels

5 More Matrix Algebra

6 Basic Data Analysis

7 Graphics of Functions of Two Variables
7.1 Basic Plots
7.2 Colour Maps
7.3 Colour Bar
7.4 Good and Bad Colour Maps
7.5 Extracting Logical Domains
7.6 Nonrectangular Surface Domains

8 M-Files
8.1 Scripts
8.2 Functions
8.3 Flow Control
8.4 Comparing Strings

9 Data Files
9.1 MATLAB Format
9.2 ASCII Format
9.3 Other Formats

10 Directories

11 Startup

12 Using MATLAB on Different Platforms

13 Log Scales

14 Curve Fitting—Matrix Division

15 Missing Data

16 Polar Plots

17 Fourier Transform

18 Power Spectrum

19 Sounds in MATLAB

c© 2000 by CRC Press LLC



20 Time-Frequency Analysis

21 Line Animation

22 SPTool

23 Handle Graphics
23.1 Custom Plotting Functions
23.2 Set and Get
23.3 Graphical Object Hierarchy

24 Demos

II Beyond the Basics

25 Sparse Arrays
25.1 Example: Airfoil
25.2 Example: Communication Network

26 Text Strings
26.1 String Matrices
26.2 Comparing Strings
26.3 String Manipulations
26.4 Converting Numbers to Strings
26.5 Using Strings as Commands

27 Cell Arrays

28 Structures
28.1 Example: Meteorological Database
28.2 Example: Capturing the List of Variables

29 Multidimensional Arrays
29.1 Generating Multidimensional Grids
29.2 Operations with Multidimensional Arrays
29.3 RGB Images
29.4 Example: Sonar
29.5 Multidimensional Cell Arrays
29.6 Multidimensional Structures

30 Saving and Loading Data
30.1 MATLAB Format
30.2 Other Formats

c© 2000 by CRC Press LLC



31 Handle Graphics
31.1 Get and Set
31.2 Default Object Properties
31.3 Current Objects

32 Axes Effects
32.1 The Axis Command
32.2 Tick Marks and Labels
32.3 Subplots
32.4 Double Axes
32.5 Axes Labels

33 Text in Graphics
33.1 Symbols and Greek Letters
33.2 Symbols in Tick Labels
33.3 Global Object Placement

34 Graphical User Interfaces
34.1 Callbacks
34.2 UIControls
34.3 Exclusive Radio Buttons
34.4 Variables in GUIs
34.5 The Tag Property
34.6 UIMenus
34.7 Fast Drawing
34.8 Guide
34.9 Other Aids

35 Printing Graphics
35.1 Print Size: Orient
35.2 Print Size: WYSIWYG
35.3 Including Figures in Other Applications

36 Irregular Grids
36.1 Interpolation over a Rectangular Grid
36.2 Triangular Gridding

37 Three-dimensional Modelling
37.1 Patches
37.2 Light Objects

38 MATLAB Programming
38.1 Vectorising Code
38.2 M-File Subfunctions
38.3 Debugging
38.4 Profiler

c© 2000 by CRC Press LLC



39 Answers to Exercises (Part I)

40 Answers to Exercises (Part II)

c© 2000 by CRC Press LLC



Basics of MATLAB

1 First Steps in MATLAB

1.1 Starting MATLAB

matlab is a software package that lets you do mathematics and compu-
tation, analyse data, develop algorithms, do simulation and modelling,
and produce graphical displays and graphical user interfaces.

To run matlab on a PC double-click on the matlab icon. To run
matlab on a unix system, type matlab at the prompt.

You get matlab to do things for you by typing in commands. mat-
lab prompts you with two greater-than signs (>>) when it is ready to
accept a command from you.

To end a matlab session type quit or exit at the matlab prompt.
You can type help at the matlab prompt, or pull down the Help

menu on a PC.
When starting matlab you should see a message:

To get started, type one of these commands: helpwin,
helpdesk, or demo

>>

The various forms of help available are

helpwin Opens a matlab help GUI
helpdesk Opens a hypertext help browser
demo Starts the matlab demonstration

The complete documentation for matlab can be accessed from the
hypertext helpdesk. For example, clicking the link Full Documentation

c© 2000 by CRC Press LLC



Set → Getting Started with MATLAB will download a portable docu-
ment format (PDF) version of the Getting Started with MATLAB man-
ual.

You can learn how to use any matlab command by typing help
followed by the name of the command, for example, help sin.

You can also use the lookfor command, which searches the help
entries for all matlab commands for a particular word. For example, if
you want to know which matlab functions to use for spectral analysis,
you could type lookfor spectrum. matlab responds with the names
of the commands that have the searched word in the first line of the help
entry. You can search the entire help entry for all matlab commands
by typing lookfor -all keyword .

1.2 First Steps

To get matlab to work out 1 + 1, type the following at the prompt:

1+1

matlab responds with

ans =
2

The answer to the typed command is given the name ans. In fact ans
is now a variable that you can use again. For example you can type

ans*ans

to check that 2× 2 = 4:

ans*ans
ans =

4

matlab has updated the value of ans to be 4.
The spacing of operators in formulas does not matter. The following

formulas both give the same answer:

1+3 * 2-1 / 2*4
1 + 3 * 2 - 1 / 2 * 4

The order of operations is made clearer to readers of your matlab code
if you type carefully:

1 + 3*2 - (1/2)*4

c© 2000 by CRC Press LLC



1.3 Matrices

The basic object that matlab deals with is a matrix. A matrix is an
array of numbers. For example the following are matrices:


 12 3 9
−1200 0 1e6

0.1 pi 1/3


 ,

(
1 2 3 4 5

)
,




i
−i

i
−i


 , 42.

The size of a matrix is the number of rows by the number of columns.
The first matrix is a 3×3 matrix. The (2,3)-element is one million—1e6
stands for 1 × 106—and the (3,2)-element is pi = π = 3.14159 . . . .
The second matrix is a row-vector, the third matrix is a column-vector
containing the number i, which is a pre-defined matlab variable equal
to the square root of −1. The last matrix is a 1× 1 matrix, also called
a scalar.

1.4 Variables

Variables in matlab are named objects that are assigned using the
equals sign = . They are limited to 31 characters and can contain
upper and lowercase letters, any number of ‘_’ characters, and numer-
als. They may not start with a numeral. matlab is case sensitive: A
and a are different variables. The following are valid matlab variable
assignments:

a = 1
speed = 1500
BeamFormerOutput_Type1 = v*Q*v’
name = ’John Smith’

These are invalid assignments:

2for1 = ’yes’
first one = 1

To assign a variable without getting an echo from matlab end the
assignment with a semi-colon ;. Try typing the following:

a = 2
b = 3;
c = a+b;
d = c/2;
d
who
whos
clear
who

c© 2000 by CRC Press LLC



1.5 The Colon Operator

To generate a vector of equally-spaced elements matlab provides the
colon operator. Try the following commands:

1:5
0:2:10
0:.1:2*pi

The syntax x:y means roughly “generate the ordered set of numbers
from x to y with increment 1 between them.” The syntax x:d:y means
roughly “generate the ordered set of numbers from x to y with increment
d between them.”

1.6 Linspace

To generate a vector of evenly spaced points between two end points,
you can use the function linspace(start,stop,npoints ):

>> x = linspace(0,1,10)
x =
Columns 1 through 7

0 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667
Columns 8 through 10
0.7778 0.8889 1.0000

generates 10 evenly spaced points from 0 to 1. Typing linspace(start,
stop ) will generate a vector of 100 points.

1.7 Plotting Vectors

Whereas other computer languages, such as Fortran, work on numbers
one at a time, an advantage of matlab is that it handles the matrix as
a single unit. Let us consider an example that shows why this is useful.
Imagine you want to plot the function y = sinx for x between 0 and 2π.
A Fortran code to do this might look like this:

DIMENSION X(100),Y(100)
PI = 4*ATAN(1)
DO 100 I = 1,100

X(I) = 2*PI*I/100
Y(I) = SIN(X(I))

100 CONTINUE
PLOT(X,Y)

Here we assume that we have access to a Fortran plotting package
in which PLOT(X,Y) makes sense. In matlab we can get our plot by
typing:

c© 2000 by CRC Press LLC



x = 0:.1:2*pi;
y = sin(x);
plot(x,y)

The first line uses the colon operator to generate a vector x of numbers
running between 0 and 2π with increment 0.1. The second line calculates
the sine of this array of numbers, and calls the result y. The third line
produces a plot of y against x. Go ahead and produce the plot. You
should get a separate window displaying this plot. We have done in three
lines of matlab what it took us seven lines to do using the Fortran
program above.

2 Typing into MATLAB

2.1 Command Line Editing

If you make a mistake when entering a matlab command, you do not
have to type the whole line again. The arrow keys can be used to save
much typing:

↑ ctrl-p Recall previous line
↓ ctrl-n Recall next line
← ctrl-b Move back one character
→ ctrl-f Move forward one character
ctrl-→ ctrl-r Move right one word
ctrl-← ctrl-l Move left one word
home ctrl-a Move to beginning of line
end ctrl-e Move to end of line
esc ctrl-u Clear line
del ctrl-d Delete character at cursor
backspace ctrl-h Delete character before cursor

ctrl-k Delete (kill) to end of line

If you finish editing in the middle of a line, you do not have to put the
cursor at the end of the line before pressing the return key; you can press
return when the cursor is anywhere on the command line.

2.2 Smart Recall

Repeated use of the ↑ key recalls earlier commands. If you type the
first few characters of a previous command and then press the ↑ key

c© 2000 by CRC Press LLC



matlab will recall the last command that began with those characters.
Subsequent use of ↑ will recall earlier commands that began with those
characters.

2.3 Long Lines

If you want to type a matlab command that is too long to fit on one
line, you can continue on to the next by ending with a space followed by
three full stops. For example, to type an expression with long variable
names:

Final_Answer = BigMatrix(row_indices,column_indices) + ...
Another_vector*SomethingElse;

Or to define a long text string:

Mission = [’DSTO’’s objective is to give advice that’ ...
’is professional, impartial and informed on the’ ...
’application of science and technology that is best’ ...
’suited to Australia’’s defence and security needs.’];

2.4 Copying and Pasting

Your windowing system’s copy and paste facility can be used to enter
text into the matlab command line. For example all of matlab’s built-
in commands have some helpful text that can by accessed by typing help
followed by the name of the command. Try typing help contour into
matlab and you will see a description of how to create a contour plot.
At the end of the help message is an example. You can use the mouse
to select the example text and paste it into the command line. Try it
now and you should see a contour plot appear in the figure window.

3 Matrices

3.1 Typing Matrices

To type a matrix into matlab you must

• begin with a square bracket [

• separate elements in a row with commas or spaces

• use a semicolon ; to separate rows

• end the matrix with another square bracket ].

For example type:

c© 2000 by CRC Press LLC



a = [1 2 3;4 5 6;7 8 9]

matlab responds with

a =
1 2 3
4 5 6
7 8 9

3.2 Concatenating Matrices

Matrices can be made up of submatrices: Try this:

>> b = [a 10*a;-a [1 0 0;0 1 0;0 0 1]]
b =

1 2 3 10 20 30
4 5 6 40 50 60
7 8 9 70 80 90
-1 -2 -3 1 0 0
-4 -5 -6 0 1 0
-7 -8 -9 0 0 1

The repmat function can be used to replicate a matrix:

>> a = [1 2; 3 4]
a =

1 2
3 4

>> repmat(a,2,3)
ans =

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

3.3 Useful Matrix Generators

matlab provides four easy ways to generate certain simple matrices.
These are

zeros a matrix filled with zeros
ones a matrix filled with ones
rand a matrix with uniformly distributed random elements
randn a matrix with normally distributed random elements
eye identity matrix

To tell matlab how big these matrices should be you give the functions
the number of rows and columns. For example:

c© 2000 by CRC Press LLC



>> a = zeros(2,3)
a =

0 0 0
0 0 0

>> b = ones(2,2)/2
b =

0.5000 0.5000
0.5000 0.5000

>> u = rand(1,5)
u =

0.9218 0.7382 0.1763 0.4057 0.9355

>> n = randn(5,5)
n =

-0.4326 1.1909 -0.1867 0.1139 0.2944
-1.6656 1.1892 0.7258 1.0668 -1.3362
0.1253 -0.0376 -0.5883 0.0593 0.7143
0.2877 0.3273 2.1832 -0.0956 1.6236
-1.1465 0.1746 -0.1364 -0.8323 -0.6918

>> eye(3)
ans =

1 0 0
0 1 0
0 0 1

3.4 Subscripting

Individual elements in a matrix are denoted by a row index and a column
index. To pick out the third element of the vector u type:

>> u(3)
ans =

0.1763

You can use the vector [1 2 3] as an index to u. To pick the first three
elements of u type

>> u([1 2 3])
ans =

0.9218 0.7382 0.1763

Remembering what the colon operator does, you can abbreviate this to

c© 2000 by CRC Press LLC



>> u(1:3)
ans =

0.9218 0.7382 0.1763

You can also use a variable as a subscript:

>> i = 1:3;
>> u(i)
ans =

0.9218 0.7382 0.1763

Two dimensional matrices are indexed the same way, only you have
to provide two indices:

>> a = [1 2 3;4 5 6;7 8 9]
a =

1 2 3
4 5 6
7 8 9

>> a(3,2)
ans =

8
>> a(2:3,3)
ans =

6
9

>> a(2,:)
ans =

4 5 6
>> a(:,3)
ans =

3
6
9

The last two examples use the colon symbol as an index, which matlab
interprets as the entire row or column.

If a matrix is addressed using a single index, matlab counts the
index down successive columns:

>> a(4)
ans =

2
>> a(8)
ans =

6

Exercise 1 Do you understand the following result? (Answer on
page 183.)

c© 2000 by CRC Press LLC



>> [a a(a)]

ans =

1 2 3 1 4 7

4 5 6 2 5 8

7 8 9 3 6 9

The colon symbol can be used as a single index to a matrix. Continuing
the previous example, if you type

a(:)

matlab interprets this as the columns of the a-matrix successively
strung out in a single long column:

>> a(:)
ans =

1
4
7
2
5
8
3
6
9

3.5 End as a subscript

To access the last element of a matrix along a given dimension, use end
as a subscript (matlab version 5 or later). This allows you to go to the
final element without knowing in advance how big the matrix is. For
example:

>> q = 4:10
q =

4 5 6 7 8 9 10
>> q(end)
ans =

10
>> q(end-4:end)
ans =

6 7 8 9 10
>> q(end-2:end)
ans =

8 9 10

This technique works for two-dimensional matrices as well:

c© 2000 by CRC Press LLC



>> q = [spiral(3) [10;20;30]]
q =

7 8 9 10
6 1 2 20
5 4 3 30

>> q(end,end)
ans =

30

>> q(2,end-1:end)
ans =

2 20

>> q(end-2:end,end-1:end)
ans =

9 10
2 20
3 30

>> q(end-1,:)
ans =

6 1 2 20

3.6 Deleting Rows or Columns

To get rid of a row or column set it equal to the empty matrix [].

>> a = [1 2 3;4 5 6;7 8 9]
a =

1 2 3
4 5 6
7 8 9

>> a(:,2) = []
a =

1 3
4 6
7 9

3.7 Matrix Arithmetic

Matrices can be added and subtracted (they must be the same size).

>> b = 10*a
b =

10 30
40 60
70 90

c© 2000 by CRC Press LLC



>> a + b
ans =

11 33
44 66
77 99

3.8 Transpose

To convert rows into columns use the transpose symbol ’:

>> a’
ans =

1 4 7
3 6 9

>> b = [[1 2 3]’ [4 5 6]’]
b =

1 4
2 5
3 6

Be careful when taking the transpose of complex matrices. The transpose
operator takes the complex conjugate transpose. If z is the matrix:

(
1 0− i
0 + 2i 1 + i

)

then z’ is: (
1 0− 2i
0 + i 1− i

)
.

To take the transpose without conjugating the complex elements, use
the .’ operator. In this case z.’ is:

(
1 0 + 2i
0− i 1 + i

)
.

4 Basic Graphics

The bread-and-butter of matlab graphics is the plot command. Earlier
we produced a plot of the sine function:

x = 0:.1:2*pi;
y = sin(x);
plot(x,y)

c© 2000 by CRC Press LLC



In this case we used plot to plot one vector against another. The
elements of the vectors were plotted in order and joined by straight line
segments. There are many options for changing the appearance of a plot.
For example:

plot(x,y,’r-.’)

will join the points using a red dash-dotted line. Other colours you can
use are: ’c’, ’m’, ’y’, ’r’, ’g’, ’b’, ’w’, ’k’, which correspond to
cyan, magenta, yellow, red, green, blue, white, and black. Possible line
styles are: solid ’-’, dashed ’--’, dotted ’:’, and dash-dotted ’-.’.
To plot the points themselves with symbols you can use: dots ’.’, circles
’o’, plus signs ’+’, crosses ’x’, or stars ’*’, and many others (type
help plot for a list). For example:

plot(x,y,’bx’)

plots the points using blue crosses without joining them with lines, and

plot(x,y,’b:x’)

plots the points using blue crosses and joins them with a blue dotted
line. Colours, symbols and lines can be combined, for example, ’r.-’,
’rx-’ or ’rx:’.

4.1 Plotting Many Lines

To plot more than one line you can specify more than one set of x and
y vectors in the plot command:

plot(x,y,x,2*y)

On the screen Matlab distinguishes the lines by drawing them in differ-
ent colours. If you need to print in black and white, you can differentiate
the lines by plotting one of them with a dashed line:

plot(x,y,x,2*y,’--’)

c© 2000 by CRC Press LLC



4.2 Adding Plots

When you issue a plot command matlab clears the axes and produces
a new plot. To add to an existing plot, type hold on. For example try
this:

plot(x,y)
hold on
plot(5*x,5*y)

matlab re-scales the axes to fit the new data. The old plot appears
smaller. Once you have typed hold on, all subsequent plots will be
added to the current axes:

plot(x,x)

Companion M-Files Feature 1 If you decide you want to re-
move the last thing you plotted on a plot with hold on in force,
you can type:

undo

to get back to where you were before.

To switch off the hold behaviour, type hold off. Typing hold by itself
toggles the hold state of the current plot.

c© 2000 by CRC Press LLC



4.3 Plotting Matrices

If one of the arguments to the plot command is a matrix, matlab will
use the columns of the matrix to plot a set of lines, one line per column:

>> q = [1 1 1;2 3 4;3 5 7;4 7 10]
q =

1 1 1
2 3 4
3 5 7
4 7 10

>> plot(q)
>> grid

matlab plots the columns of the matrix q against the row index. You
can also supply an x variable:

>> x = [0 1 3 6]
x =

0 1 3 6
>> plot(x,q)
>> grid

Here the x values are not uniformly spaced, but they are the same for
each column of q. You can also plot a matrix of x values against a vector
of y values (be careful: the y values are in the vector x):

plot(q,x)
grid

If both the x and y arguments are matrices, matlab will plot the suc-
cessive columns on the same plot:

c© 2000 by CRC Press LLC



>> x = [[1 2 3 4]’ [2 3 4 5]’ [3 4 5 6]’]
x =

1 2 3
2 3 4
3 4 5
4 5 6

>> plot(x,q)
>> grid

4.4 Clearing the Figure Window

You can clear the plot window by typing clf, which stands for ‘clear
figure’. To get rid of a figure window entirely, type close. To get rid
of all the figure windows, type close all. New figure windows can be
created by typing figure.

4.5 Subplots

To plot more than one set of axes in the same window, use the subplot
command. You can type

subplot(m,n,p)

to break up the plotting window into m plots in the vertical direction
and n plots in the horizontal direction, choosing the pth plot for drawing
into. The subplots are counted as you read text: left to right along the
top row, then left to right along the second row, and so on. Here is an
example (do not forget to use the ↑ key to save typing):

t = 0:.1:2*pi;
subplot(2,2,1)
plot(cos(t),sin(t))
subplot(2,2,2)
plot(cos(t),sin(2*t))
subplot(2,2,3)
plot(cos(t),sin(3*t))
subplot(2,2,4)
plot(cos(t),sin(4*t))

If you want to clear one of the plots in a subplot without affecting
the others you can use the cla (clear axes) command. Continuing the
previous example:

c© 2000 by CRC Press LLC



subplot(2,2,2)
cla

As long as your subplots are based on an array of 9 × 9 little plots or
less, you can use a simplified syntax. For example, subplot(221) or
subplot 221 are equivalent to subplot(2,2,1). You can mix different
subplot arrays on the same figure, as long as the plots do not overlap:

subplot 221
plot(1:10)
subplot 222
plot(0,’*’)
subplot 212
plot([1 0 1 0])

4.6 Three-Dimensional Plots

The plot3 command is the 3-d equivalent of plot:

t = 0:.1:2*pi;
plot3(cos(3*t),sin(3*t),t)

The three dimensional spiral can be better visualised by changing the
orientation of the axes. You can invoke a mouse-based 3-d axis mover
by typing:

rotate3d

If you click the mouse button down on the plot and drag, you can move
the axes and view the plot from any angle. Release the mouse button to
redraw the data. Type rotate3d again to turn off this behaviour.

c© 2000 by CRC Press LLC



4.7 Axes

So far we have allowed matlab to choose the axes for our plots. You
can change the axes in many ways:

axis([xmin xmax ymin ymax ]) sets the axes’ minimum and
maximum values

axis square makes the axes the same length
axis equal makes the axes the same scale
axis tight sets the axes limits to the range of the data
axis auto allows matlab to choose axes limits
axis off removes the axes leaving only the plotted data
axis on puts the axes back again
grid on draws dotted grid lines
grid off removes grid lines
grid toggles the grid
box∗ toggles the box
zeroaxes∗ draws the x-axis at y = 0 and vice-versa

The functions marked with an asterisk ∗ are nonstandard features, imple-
mented in this book’s companion m-files.1

4.8 Labels

You can put labels, titles, and text on a plot by using the commands:

xlabel(’text ’)
ylabel(’text ’)
zlabel(’text ’)
title(’text ’)
text(x,y,’text ’) places text at position x,y
gtext(’text ’) use mouse to place text

To put mathematics in labels you can use matlab’s backslash nota-
tion (familiar to users of the TEX typesetting system):

t = 0:.1:2*pi;
y1 = cos(t);
y2 = sin(t);
plot(t,y1,t,y2)
xlabel(’0 \leq \theta < 2\pi’)
ylabel(’sin \theta, cos \theta’)
text(1,cos(1),’ cosine’)
text(3,sin(3),’ sine’)
box

1matlab version 5.3 implements its own version of the box command.

c© 2000 by CRC Press LLC



Companion M-Files Feature 2 To label many curves on a
plot it is better to put the text close to the curves themselves rather
than in a separate legend off to one side. Legends force the eye
to make many jumps between the plot and the legend to sort out
which line is which. Although matlab comes equipped with a
legend function, I prefer to use the companion m-file curlabel,
which is good especially for labelling plots which are close together:

t = 0:.1:2*pi;

plot(t,sin(t),t,sin(1.05*t))

curlabel(’frequency = 1’)

curlabel(’frequency = 1.05’)

axis([0 max(t) -1 1])

zeroaxes

You must use the mouse to specify the start and end points of the
pointer lines. The echo from the function can be pasted into an
m-file for future use.

5 More Matrix Algebra

You can multiply two matrices together using the * operator:

>> a = [1 2;3 4]
a =

1 2
3 4

>> b = [1 0 1 0;0 1 1 0]
b =

1 0 1 0
0 1 1 0

>> a*b
ans =

1 2 3 0
3 4 7 0

>> u = [1 2 0 1]
u =

1 2 0 1
>> v = [1 1 2 2]’

c© 2000 by CRC Press LLC



v =
1
1
2
2

>> v*u
ans =

1 2 0 1
1 2 0 1
2 4 0 2
2 4 0 2

>> u*v
ans =

5

The matrix inverse can be found with the inv command:

>> a = pascal(3)
a =

1 1 1
1 2 3
1 3 6

>> inv(a)
ans =

3 -3 1
-3 5 -2
1 -2 1

>> a*inv(a)
ans =

1 0 0
0 1 0
0 0 1

To multiply the elements of two matrices use the .* operator:

>> a = [1 2;3 4]
a =

1 2
3 4

>> b = [2 3;0 1]
b =

2 3
0 1

>> a.*b
ans =

2 6
0 4

c© 2000 by CRC Press LLC



To raise the elements of a matrix to a power use the .^ operator:

>> a = pascal(3)
a =

1 1 1
1 2 3
1 3 6

>> a.^2
ans =

1 1 1
1 4 9
1 9 36

6 Basic Data Analysis

The following functions can be used to perform data analysis functions:

max maximum
min minimum
find find indices of nonzero elements
mean average or mean
median median
std standard deviation
sort sort in ascending order
sortrows sort rows in ascending order
sum sum of elements
prod product of elements
diff difference between elements
trapz trapezoidal integration
cumsum cumulative sum
cumprod cumulative product
cumtrapz cumulative trapezoidal integration

As we have seen with the plot command, matlab usually prefers to
work with matrix columns, rather than rows. This is true for many of
matlab’s functions, which work on columns when given matrix argu-
ments. For example:

>> a = magic(3)
a =

8 1 6
3 5 7
4 9 2

>> m = max(a)
m =

8 9 7

c© 2000 by CRC Press LLC



max returns a vector containing the maximum value of each column.
When given a vector, max returns the maximum value:

>> max(m)
ans =

9

To find the index corresponding to the maximum value, supply two out-
put arguments to max:

>> [v,ind] = max(m)
v =

9
ind =

2

The first argument is the maximum value and the second is the index of
the maximum value. Another example is

>> x = 0:.01:2;
>> y = humps(x);
>> plot(x,y)
>> [v,ind] = max(y)
v =

96.5000
ind =

31
>> hold on
>> plot(x(ind),y(ind),’ro’)
>> x(ind)
ans =

0.3000
>> y(ind)
ans =

96.5000

The find function is often used with relational and logical operators:

Relational operators == equal to
~= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

c© 2000 by CRC Press LLC



Logical operators & AND
| OR
~ NOT
xor EXCLUSIVE OR
any True if any element is non-zero
all True if all elements are non-zero

We continue the previous example and use find to plot the part of
the peaks function that lies between y = 20 and y = 40:

clf
ind = find(20<=y & y<=40);
plot(x,y,x(ind),y(ind),’o’)
grid

When used with one output argument, find assumes that the input is
a vector. When the input is a matrix find first strings out the elements
as a single column vector and returns the corresponding indices. As an
example we consider the spiral matrix:

>> s = spiral(3)
s =

7 8 9
6 1 2
5 4 3

We find the elements of s less than 6:

>> s<6
ans =

0 0 0
0 1 1
1 1 1

>> find(s<6)
ans =

3
5
6
8
9

The result of find is a vector of indices of s counted down the first col-
umn, then the second, and then the third. The following example shows
how the results of the find command can be used to extract elements
from a matrix that satisfy a logical test:

c© 2000 by CRC Press LLC



>> s = 100*spiral(3)
s =

700 800 900
600 100 200
500 400 300

>> ind = find(s>400)
ind =

1
2
3
4
7

>> s(ind)
ans =

700
600
500
800
900

>> s(s>400)
ans =

700
600
500
800
900

After introducing graphics of functions of two variables in the next sec-
tion, we will see how the find command can be used to do the three-
dimensional equivalent of the plot shown on page 23, where the domain
of a curve satisfying a logical test was extracted.

7 Graphics of Functions of Two Variables

7.1 Basic Plots

A matlab surface is defined by the z coordinates associated with a set
of (x, y) coordinates. For example, suppose we have the set of (x, y)
coordinates:

(x, y) =




1, 1 2, 1 3, 1 4, 1
1, 2 2, 2 3, 2 4, 2
1, 3 2, 3 3, 3 4, 3
1, 4 2, 4 3, 4 4, 4


 .

The points can be plotted as (x, y) pairs:

c© 2000 by CRC Press LLC



The (x, y) pairs can be split into two matrices:

x =




1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


 ; y =




1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4


 .

The matrix x varies along its columns and y varies down its rows. We
define the surface z:

z =
√

x2 + y2;

which is the distance of each (x, y) point from the origin (0, 0). To
calculate z in matlab for the x and y matrices given above, we begin
by using the meshgrid function, which generates the required x and y
matrices:

>> [x,y] = meshgrid(1:4)
x =

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

y =
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Now we simply convert our distance equation to matlab notation; z =√
x2 + y2 becomes:

>> z = sqrt(x.^2 + y.^2)
z =

1.4142 2.2361 3.1623 4.1231
2.2361 2.8284 3.6056 4.4721
3.1623 3.6056 4.2426 5.0000
4.1231 4.4721 5.0000 5.6569

c© 2000 by CRC Press LLC



We can plot the surface z as a function of x and y:

mesh(x,y,z)

We can expand the domain of the calculation by increasing the input
to meshgrid. Be careful to end the lines with a semicolon to avoid being
swamped with numbers:

[x,y] = meshgrid(-10:10);
z = sqrt(x.^2 + y.^2);
mesh(x,y,z)

The surface is an inverted cone, with its apex at (0, 0, 0).

Companion M-Files Feature 3 A clearer plot can be produced
using a polar grid, instead of a rectilinear grid. We can use the
companion function polarmesh to produce such a plot. First we
define a polar grid of points:

[r,th] = meshgrid(0:.5:10,0:pi/20:2*pi);

Then display the surface defined by z = r:

polarmesh(r,th,r)

A more interesting surface is

z = 3(1− x)2e−x2−(y+1)2 − 10( 1
5x− x3 − y5)e−x2−y2 · · ·

− 1
3e−(x+1)2−y2

.

In matlab notation you could type:

c© 2000 by CRC Press LLC



z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

but you do not have to type this because it is already defined by the
function peaks. Before plotting we define the data and set the colour
map to gray:

[x,y,z] = peaks;
colormap(gray)

The following plots show 10 different ways to view this data.

c© 2000 by CRC Press LLC



The contour function plots the contours using the current colour map’s
colours (see next section). Adding the specifier ’k’ to the end of the
argument list draws the contours in black. The spanplot function is
nonstandard and is included in the companion software.

You should experiment with these plots. Try typing help for each of
these plot commands. Explore the various ways of shading a surface, try
using different colour maps (see next section) or viewing angles (help
view), or try modifying the surface and replotting. Remember that
rotate3d can be used to switch on a click-and-drag three-dimensional
view changer: click down on the plot and drag it to alter the viewing
angle; release the mouse to redraw the plot. (If rotate3d is already
switched on, typing rotate3d again will switch it off.)

7.2 Colour Maps

matlab uses a matrix called a colour map to apply colour to surfaces and
images. The idea is that different colours will be used to draw various
parts of the plot depending on the colour map. The colour map is a list
of triplets corresponding to the intensities of the red, green, and blue
video components, which add up to yield other colours. The intensities
must be between zero and one. Some example colours are shown in this
table.

c© 2000 by CRC Press LLC



Red Green Blue Colour
0 0 0 Black
1 1 1 White
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow
1 0 1 Magenta
0 1 1 Cyan
.5 .5 .5 Gray
.5 0 0 Dark red
1 .62 .4 Dark orange

.49 1 .83 Aquamarine

.95 .9 .8 Parchment

Yellow, for example, consists of the combination of the full intensities
of red and green, with no blue, while gray is the combination of 50%
intensities of red, green, and blue.

You can create your own colour maps or use any of matlab’s many
predefined colour maps:

hsv hot gray bone copper pink
white flag lines colorcube jet prism
cool autumn spring winter summer

Two nonstandard colour maps that are supplied in the companion soft-
ware include redblue and myjet. The first consists of red blending to
blue through shades of gray. The second consists of a modification of
the jet colour map that has white at the top instead of dark red.

These functions all take an optional parameter that specifies the num-
ber of rows (colours) in the colour map matrix. For example, typing
gray(8) creates an 8× 3 matrix of various levels of gray:

>> gray(8)
ans =

0 0 0
0.1429 0.1429 0.1429
0.2857 0.2857 0.2857
0.4286 0.4286 0.4286
0.5714 0.5714 0.5714
0.7143 0.7143 0.7143
0.8571 0.8571 0.8571
1.0000 1.0000 1.0000

To tell matlab to use a colour map, type it as an input to the colormap
function:

c© 2000 by CRC Press LLC



m = gray(8);
colormap(m)
imagesc(1:1000)

Most of matlab’s surface viewing functions use the colour map to apply
colour to the surface depending on the z-value. The imagesc function
produces a coloured image of the matrix argument, colouring each ele-
ment depending on its value. The smallest element will take the colour
specified in the first row of the colour map, the largest element will take
the colour specified in the last row of the colour map, and all the elements
in between will take linearly interpolated colours.

To get a plot of the levels of red, green, and blue in the current colour
map use rgbplot:

colormap(summer)
rgbplot(colormap)

On the screen the lines corresponding to the red, green, and blue compo-
nents of the colour map are coloured red, green, and blue, respectively.

7.3 Colour Bar

To display the current colour map use the colorbar function:

z = peaks;
colormap(gray(8))
imagesc(z)
colorbar

7.4 Good and Bad Colour Maps

Much research has been done on human perception of colours and, in par-
ticular, how different viewers interpret coloured images as value-scales.

c© 2000 by CRC Press LLC



The conclusion is that most viewers find it very difficult to interpret
these sorts of images; the cognitive switch from, for example, royg-
biv to amplitude is very slow and nonintuitive. A way out of this is
to use a palette of slightly varying, nonsaturated colours. These sorts
of colours have been used to create high-quality geographic maps for
many years. Most of matlab’s colour maps consist of highly saturated
colours (including the default colour map, which is jet(64)). It is bet-
ter to forgo these sorts of colour maps and stick with the calmer ones
such as gray, bone, or summer. The gray colour map has the added
advantage that printed versions will reproduce easily, for example, on a
photocopier.2 The companion m-files include some other colour maps:
redblue, myjet, yellow, green, red, and blue.

To distinguish adjacent patches of subtly different colours, the eye
can be helped by enclosing the patches with a thin dark edge. The
contourf function, therefore, is an excellent way of displaying this sort
of data.3

7.5 Extracting Logical Domains

Let us look again at the peaks function:

[x,y,z] = peaks;
surfl(x,y,z)
axis tight
colormap(gray(64))

Suppose we want to extract the part of this surface for which the z values
lie between 2 and 4. We use exactly the same technique as was given
on page 23. The find command is used first to find the indices of the z
values that satisfy the logical test:

>> ind = find(2<=z & z<=4);
>> size(ind)
ans =

234 1

There are 234 elements in z that satisfy our condition. We can plot these
elements over the surface as follows:

2Edward R. Tufte, Visual Explanations (Graphics Press, Cheshire Connecticut,
1997), pp. 76–77.

3Edward R. Tufte, Envisioning Information (Graphics Press, Cheshire Connecti-
cut, 1990), pp. 88ff.

c© 2000 by CRC Press LLC



hold on
plot3(x(ind),y(ind),z(ind),’.’)

The x, y domain of the extracted points can be shown clearly with an
overhead view:

view(2)
xyz
shading flat

The associated z values can be shown with a side view:

view(90,0)
grid

7.6 Nonrectangular Surface Domains

The polarmesh function given on page 26 showed a conical function
defined over a circular domain of x and y points. Let us now look a
bit more generally at how to define such nonrectangular domains for
surfaces.

The standard matlab functions, including graphics functions, tend
to like working with rectangular matrices: each row must have the same
number of columns. For surfaces, this requirement applies to the x, y
and z matrices that specify the surface. Let us demonstrate by way of
an example. First we generate a rectangular domain of x and y points,
with x going from −1 to 1, and y going from 0 to 2:

>> [x,y] = meshgrid(-1:1,1:3)

c© 2000 by CRC Press LLC



x =
-1 0 1
-1 0 1
-1 0 1

y =
1 1 1
2 2 2
3 3 3

This set of points defines a rectangular domain because the rows of x
are identical and the columns of y are identical. We can make a plot of
the points (as we did on page 25):

clf
plot(x,y,’.’)

Now let us change the y matrix a bit:

>> y = [[1; 2; 3] [1; 1.5; 2] [0; .2; .4]]
y =

1.0000 1.0000 0
2.0000 1.5000 0.2000
3.0000 2.0000 0.4000

The plot of this data looks like a bent triangle:

plot(x,y,’.’)

To define a surface over this domain we simply have to supply the z
values. We can start by simply defining a constant z:

c© 2000 by CRC Press LLC



>> z = 5*ones(3,3)
z =

5 5 5
5 5 5
5 5 5

>> surf(x,y,z)

But, of course, the z values need not be constant:

>> z = [[4; 5; 6] [4.5; 5; 5.5] [4.9; 5; 5.1]]
z =

4.0 4.5 4.9
5.0 5.0 5.0
6.0 5.5 5.1

>> surf(x,y,z)

Other graphics functions can also handle nonrectangular grids. Here is
an example using the contour function:

cs = contour(x,y,z,’k’);
clabel(cs)
i = [1 4 7 9 6 3 1];
hold on
plt(x(i),y(i),’:’)

The contour levels are labelled using the clabel command, and the
region defined by the x and y points is outlined by the dotted line. The
contours that the labels refer to are marked by small plus signs ‘+’. The
outline around the bent domain is drawn using the x and y matrices
indexed using the vector i. The vector i extracts the appropriate points
from the x and y matrices using the columnar indexing described in sec-
tion 3.4 on page 9. The other surface graphics functions—mesh, surfl,
surfc, and contourf—can handle such nonrectangular grids equally
well. The image and imagesc functions assume equally spaced rect-
angular grids and cannot handle anything else. (The pcolor function
draws a surface and sets the view point to directly overhead, so it is not
discussed separately.)

Let us now do another example of a surface defined over a non-
rectangular grid. We want to define a set of points that cover the semi-

−1

0

1

0

1

2

3
4

4.5

5

5.5

6

−1

0

1

0

1

2

3
4

4.5

5

5.5

6

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

4.2
4.4

4.6

4.8
5

5.2

5.4

5.6

5.8

c© 2000 by CRC Press LLC



annular region as shown in the diagram
at right. To define such a set of points
we use a polar grid based on radial and
angular coordinates r and θ. We use the
following limits on these coordinates:

.3 ≤ r ≤ 1
π/4 ≤ θ ≤ 5π/4

These are set up in matlab as follows:

rv = linspace(.3,1,50);
thv = linspace(pi/4,5*pi/4,50);
[r,th] = meshgrid(rv,thv);

where the calls to linspace produce vectors of 50 points covering the
intervals. The x and y points are defined by the following trigonometric
relations:

x = r.*cos(th);
y = r.*sin(th);

Now our semi-annular region is defined. To prove it, let us plot the
points:

plot(x,y,’.’)

Again, we can define any z matrix we like. Just for fun, we use the peaks
function of the right size and add a linear ramp:

z = peaks(50) + 10*x;
surf(x,y,z)

As we did in the previous example, we check that the contour function
works (omitting the labels this time, and upping the number of contours
drawn to 30):

c© 2000 by CRC Press LLC



contour(x,y,z,30);

You may have noticed that the semi-annular region does not appear
as a circular segment in our plots. That is because the axes are not
square. To get square axes you can use the axis square command as
described on pages 18 and 120.

In this section we have looked at surfaces having domains that could
be defined in terms of rectangular x and y data matrices. Domains
that cannot be defined with such matrics are discussed in section 36 on
page 157. For example all x values may not have the same number of y
values, or the x, y points could be scattered about in an irregular way.

8 M-Files

Until now we have driven matlab by typing in commands directly. This
is fine for simple tasks, but for more complex ones we can store the typed
input into a file and tell matlab to get its input from the file. Such files
must have the extension “.m”. They are called m-files. If an m-file
contains matlab statements just as you would type them into matlab,
they are called scripts. M-files can also accept input and produce output,
in which case they are called functions.

8.1 Scripts

Using your text editor create a file called mfile1.m containing the fol-
lowing lines:

z = peaks;
zplot = z;

% Do the peaks:

clf
subplot(221)
ind = find(z<0);
zplot(ind) = zeros(size(ind));
mesh(zplot)
axis tight

c© 2000 by CRC Press LLC



% Do the valleys:

subplot(222)
ind = find(z>0);
zplot = z;
zplot(ind) = zeros(size(ind));
mesh(zplot)
axis tight

Now try this in the matlab window:

mfile1

matlab has executed the instructions in mfile1.m just as if you had
typed them in. The lines beginning with the percent sign % are ignored
by matlab so they can be used to put comments in your code. Blank
lines can be used to improve readability.

Any variables created by a script m-file are available in the command
window after the m-file completes running:

>> clear
>> whos
>> mfile1
>> whos
Name Size Bytes Class
ind 1544x1 12352 double array
z 49x49 19208 double array
zplot 49x49 19208 double array

Grand total is 6346 elements using 50768 bytes

These variables are said to exist in the matlab workspace. Scripts can
also operate on variables that already exist in the workspace.

You can type the name of a script file within another script file. For
example you could create another file called mfile2 that contains the
text line mfile1; the contents of mfile1 will then be executed at that
point within mfile2.

8.2 Functions

Functions are m-files that can be used to extend the matlab language.
Functions can accept input arguments and produce output arguments.
Many of matlab’s own commands are implemented as m-files; try typ-
ing type mean to see how matlab calculates the mean. Functions use

c© 2000 by CRC Press LLC



variables that are local to themselves and do not appear in the main
workspace. This is an example of a function:

function x = quadratic(a,b,c)

% QUADRATIC Find roots of a quadratic equation.
%
% X = QUADRATIC(A,B,C) returns the two roots of the
% quadratic equation
%
% y = A*x^2 + B*x + C.
%
% The roots are contained in X = [X1 X2].

% A. Knight, July 1997
delta = 4*a*c;
denom = 2*a;
rootdisc = sqrt(b.^2 - delta); % Root of the discriminant
x1 = (-b + rootdisc)./denom;
x2 = (-b - rootdisc)./denom;
x = [x1 x2];

Function m-files must start with the word function, followed by
the output variable(s), an equals sign, the name of the function, and
the input variable(s). Functions do not have to have input or output
arguments. If there is more than one input or output argument, they
must be separated by commas. If there are one or more input arguments,
they must be enclosed in brackets, and if there are two or more output
arguments, they must be enclosed in square brackets. The following
illustrate these points (they are all valid function definition lines):

function [xx,yy,zz] = sphere(n)
function fancyplot
function a = lists(x,y,z,t)

Function names must follow the same rules as variable names. The file
name is the function name with “.m” appended. If the file name and
the function name are different, matlab uses the file name and ignores
the function name. You should use the same name for both the function
and the file to avoid confusion.

Following the function definition line you should put comment lines
that explain how to use the function. These comment lines are printed in
the command window when you type help followed by the m-file name
at the prompt:

>> help quadratic
QUADRATIC Find roots of a quadratic equation.

c© 2000 by CRC Press LLC



X = QUADRATIC(A,B,C) returns the two roots of the
quadratic equation

y = A*x^2 + B*x + C.
The roots are contained in X = [X1 X2].

matlab only echoes the comment lines that are contiguous; the first non-
comment line, in this case the blank line before the signature, tells mat-
lab that the help comments have ended. The first line of the help com-
ments is searched and, if successful, displayed when you type a lookfor
command.

Comment lines can appear anywhere in the body of an m-file. Com-
ments can be put at the end of a line of code:

rootdisc = sqrt(b.^2 - delta); % Root of the discriminant

Blank lines can appear anywhere in the body of an m-file. Apart from
ending the help comment lines in a function, blank lines are ignored.

8.3 Flow Control

matlab has four kinds of statements you can use to control the flow
through your code:

if, else and elseif execute statements based on a logical test
switch, case and otherwise execute groups of statements based on

a logical test
while and end execute statements an indefinite number of times,

based on a logical test
for and end execute statements a fixed number of times

If, Else, Elseif

The basic form of an if statement is:

if test

statements

end

The test is an expression that is either 1 (true) or 0 (false). The
statements between the if and end statements are executed if the
test is true. If the test is false the statements will be ignored and
execution will resume at the line after the end statement. The test

expression can be a vector or matrix, in which case all the elements
must be equal to 1 for the statements to be executed. Further tests
can be made using the elseif and else statements.

Exercise 2 Write a function m-file that takes a vector input and
returns 1 if all of the elements are positive, −1 if they are all neg-
ative, and zero for all other cases. Hint: Type help all. (Answer
on page 183.)

c© 2000 by CRC Press LLC



Switch

The basic form of a switch statement is:

switch test

case result1

statements

case result2

statements

.

.

.
otherwise

statements

end

The respective statements are executed if the value of test is equal
to the respective result s. If none of the cases are true, the otherwise
statements are done. Only the first matching case is carried out. If
you want the same statements to be done for different cases, you can
enclose the several result s in curly brackets:

switch x
case 1
disp(’x is 1’)

case {2,3,4}
disp(’x is 2, 3 or 4’)

case 5
disp(’x is 5’)

otherwise
disp(’x is not 1, 2, 3, 4 or 5’)

end

While

The basic form of a while loop is

while test

statements

end

The statements are executed repeatedly while the value of test is
equal to 1. For example, to find the first integer n for which 1+2+· · ·+n
is is greater than 1000:

n = 1;
while sum(1:n)<=1000
n = n+1;

end

c© 2000 by CRC Press LLC



A quick way to ‘comment out’ a slab of code in an m-file is to enclose
it between a while 0 and end statements. The enclosed code will never
be executed.

For

The basic form of a for loop is:

for index = start:increment:stop

statements

end

You can omit the increment, in which case an increment of 1 is assumed.
The increment can be positive or negative. During the first pass through
the loop the index will have the value start . The index will be
increased by increment during each successive pass until the index

exceeds the value stop . The following example produces views of the
peaks function from many angles:

clf
colormap(gray)
plotnum = 1;
z = peaks(20);
for az = 0:10:350
subplot(6,6,plotnum)
surfl(z),shading flat
view(az,30)
axis tight
axis off
plotnum = plotnum + 1;

end

The index of a for loop can be a vector or a matrix. If it is a vector
the loop will be done as many times as the number of elements in the
vector, with the index taking successive values of the vector in each pass.
If the index is a matrix, the loop will be done as many times as there
are columns in the matrix, with the index taking successive columns of
the matrix in each pass. For example:

>> q = pascal(3)
q =

1 1 1
1 2 3
1 3 6

>> for i = q,i,end
i =

1
1
1

c© 2000 by CRC Press LLC



i =
1
2
3

i =
1
3
6

Vectorised Code

matlab is a matrix language, and many of its algorithms are optimised
for matrices. matlab code can often be accelerated by replacing for
and while loops with operations on matrices. In the following example,
we calculate the factorial of the numbers from 1 to 500 using a for
loop. Create a script m-file called factorialloop.m that contains the
following code:

for number = 1:500
fact = 1;
for i = 2:number
fact = fact*i;

end
y(number) = fact;

end

We can time how long this program takes to run by using the stopwatch
functions tic and toc:

>> tic;factorialloop;toc
elapsed_time =

4.6332

which is the time in seconds. The same calculation can be done in much
less time by replacing the internal for loop by the prod function. Create
an m-file called factorialvect.m:

for number = 1:500
y(number) = prod(1:number);

end

This version takes about a tenth of the time:

>> clear
>> tic;factorialvect;toc
elapsed_time =

0.4331

c© 2000 by CRC Press LLC



Further increases in speed can be achieved by pre-allocating the output
matrix y. If we have an m-file called factorialpre.m:

y = zeros (1,500);
for number = 1:500

y(number) = prod(1:number);
end

the execution time is about 10% faster:4

>> clear
>> tic;factorialpre;toc
elapsed_time =

0.3752

More on vectorising code is given in Part II (see page 175).

8.4 Comparing Strings

The tests in flow control statements often involve strings (arrays of char-
acters). For example you may want to ask the user of an m-file a ques-
tion which has a “yes” or “no” response, and adjust the flow accordingly.
Although matlab has sophisticated menu utilities, the following is often
sufficient to get a user input:

input(’Do you want to continue (y or n) ? ’,’s’);

The ’s’ at the end tells matlab to expect a string response, rather
than a numerical response. The following matlab code tests for a ‘y’
response:

if strcmp(lower(ans(1)),’y’)
go_ahead

else
return

end

The strcmp function compares strings, lower converts to lower-case
characters and ans(1) selects the first letter of the response. Type
help strcmp for more information. The return command returns to
the invoking function or to the matlab prompt.

9 Data Files

Many techniques are available to read data into matlab and to save data
from matlab. The load and save functions can load or save matlab
format binary or plain ASCII files, and low-level input-output routines
can be used for other formats.

4See matlab’s gamma function if you are interested in computing factorials.

c© 2000 by CRC Press LLC



9.1 MATLAB Format

To save all the variables in the workspace onto disk use the save com-
mand. Typing save keepfile will save the workspace variables to a
disk file called keepfile.mat, a binary file whose format is described in
the matlab documentation. This data can be loaded into matlab by
typing load keepfile.

To save or load only certain variables, specify them after the filename.
For example, load keepfile x will load only the variable x from the
saved file. The wild-card character * can be used to save or load variables
according to a pattern. For example, load keepfile *_test loads only
the variables that end with _test.

When the filename or the variable names are stored in strings, you
can use the functional forms of these commands, for example:

save keepfile is the same as save(’keepfile’)
save keepfile x . . . save(’keepfile’,’x’)
load keepfile . . . A = ’keepfile’

load(A)

Exercise 3 The file clown.mat contains an image of a clown.
What colour is his hair? (Answer on page 183.)

9.2 ASCII Format

A file containing a list or table of numbers in ASCII format can be loaded
into matlab. The variable containing the data is given the same name
as the file name without the extension. For example, if a file nums.dat
contained ASCII data, load nums.dat would load the data into a vari-
able called nums. If the ASCII file contained a table of numbers, the
variable would be a matrix the same size as the table.

Other functions are available to read various forms of delimiter-
separated text files:

csvread Read a comma separated value file
csvwrite Write a comma separated value file
dlmread Read ASCII delimited file
dlmwrite Write ASCII delimited file

9.3 Other Formats

matlab’s low-level input/output routines can be used to access more
unusual data formats. They are listed here for reference:

c© 2000 by CRC Press LLC



File Opening and Closing: fclose fopen
Unformatted I/O: fread fwrite
Formatted I/O: fgetl fprintf

fgets fscanf
File Positioning: feof fseek

ferror ftell
frewind

String Conversion: sprintf sscanf

10 Directories

When you type a string of characters, say asdf at the matlab prompt
and press return, matlab goes through the following sequence to try to
make sense of what you typed:

1. Look for a variable called asdf;

2. Look for a built in matlab function called asdf;

3. Look in the current directory for an m-file called asdf.m;

4. Look in the directories specified by the matlab search path for an
m-file called asdf.m.

The following commands are useful for working with different directories
in matlab:

cd Change to another directory
pwd Display (print) current working directory
dir Display contents of current working directory
what Display matlab-relevant files

in current working directory
which Display directory containing specified function
type Display file in the matlab window
path Display or change the search path
addpath Add directory to the search path
rmpath Remove directory from the search path

If the directory name contains a blank space, enclose it in single quotes:

dir ’my documents’

(On PCs or Macintoshes you can use the Path Browser GUI to manipu-
late the path. Select ’File’→’Set Path’ or click the Path Browser button
on the tool bar.)

c© 2000 by CRC Press LLC



11 Startup

Each time you start matlab it looks for a script m-file called startup.m
and, if it finds it, does it. Thus, you can use startup.m to do things like
set the search path, set command and figure window preferences (e.g.,
set all your figures to have a black background), etc.

On PCs you should put the startup.m file in the directory called
C:\MATLAB\toolbox\local. On UNIX workstations you should put
your startup file in a directory called matlab immediately below your
home directory: ~/matlab.

12 Using MATLAB on Different Platforms

A matlab format binary (.mat) file that is saved on one platform (say,
a PC or a Macintosh) can be transferred to a different platform (say, a
Unix or VMS box) and loaded into matlab running on that platform.
The mat-file contains information about the platform that saved the
data. matlab checks to see if the file was saved on a different platform,
and performs any necessary conversions automatically.

matlab m-files are ordinary ASCII text, and are immediately trans-
portable between platforms. Different platforms may use different char-
acters to terminate lines of text (with CR and LF characters), but mat-
lab handles them all. However, the text editor you use must be able to
handle the end-of-line characters correctly.

The program you use to transfer m-files or mat-files, for example,
FTP or mail, must do so without corrupting the data. For FTP, for
example, mat-files must be transmitted in binary mode and m-files must
be transmitted in ASCII mode.

13 Log Scales

When dealing with data that varies over several orders of magnitude
a plain linear plot sometimes fails to display the variation in the data.
For example, consider the census estimates5 of Australia’s European
population at various times. If this data is contained in the file
population.dat, we can load and plot it as follows:

5Australian Bureau of Statistics Web Page, http://www.statistics.gov.au, and
Australians: A Historical Library, Australians: Historical Statistics, Fairfax, Syme
& Weldon Associates, 235 Jones Street, Broadway, New South Wales 2007,
Australia, 1987, pp. 25,26.

c© 2000 by CRC Press LLC



load population.dat
year = population(:,1);
P = population(:,2);
plot(year,P,’:o’)
box;grid

The European population prior to 1850 was very low and we are unable
to see the fine detail. Detail is revealed when we use a logarithmic y-
scale:

semilogy(year,P,’:o’)
box;grid

The following functions implement logarithmic axes:

loglog Both axes logarithmic
semilogx logarithmic x-axis
semilogy logarithmic y-axis

14 Curve Fitting—Matrix Division

We continue with the example of Australian population data given in
the previous section. Let us see how well a polynomial fits this data. We
assume the data can be modelled by a parabola:

p = c0 + c1x + c2x
2

where x is the year, c0, c1, and c2 are coefficients to be found, and p is
the population. We write down this equation substituting our measured
data:

p1 = c0 + c1x1 + c2x
2
1

p2 = c0 + c1x2 + c2x
2
2

...
pN = c0 + c1xN + c2x

2
N

c© 2000 by CRC Press LLC



Where pi is the population for year xi, and i = 1, 2, . . . N . We can write
this series of equations as a matrix equation:




p1

p2

...
pN


 =




1 x1 x2
1

1 x2 x2
2

...
1 xN x2

N





 c0

c1

c2


 .

Or, defining matrices,

P = X ·C .

In matlab the X matrix is calculated as follows:

>> X = [ones(size(year)) year year.^2]
X =

1 1788 3196944
1 1790 3204100
.
.
.
1 1993 3972049
1 1994 3976036
1 1995 3980025

The backslash operator solves the equation for the coefficient matrix C:

>> C = X\P
C =

1.0e+09 *
2.0067
-0.0022
0.0000

The third coefficient is not really zero; it is simply too small (compared
to 2.0× 109) to show in the default output format. We can change this
by typing:

>> format long e
>> C
C =

2.006702229622023e+09
-2.201930087288049e+06
6.039665477603122e+02

The backslash operator does its best to solve a system of linear equations
using Gaussian elimination or least-squares algorithms, depending on
whether the system is exact, or over- or under-determined. We can

c© 2000 by CRC Press LLC



display the resulting fit to the data by calculating the parabola. We
use matrix multiplication to calculate the polynomial over a fine set of
points separated by half a year:

year_fine = (year(1):0.5:year(length(year)))’;
Pfine = [ones(size(year_fine)) year_fine year_fine.^2]*C;

plot(year,P,’o’,...
year_fine,Pfine)

This technique can be used to fit any function that is linear in its
parameters. (matlab provides the functions polyfit and polyval as
easy interfaces to the functionality that we have just illustrated using
matrix multiplication and division.)

Exercise 4 Use this technique to fit an exponential curve to the
population data. Hint: Take logs. (Answer on page 183.)

15 Missing Data

Real-world measurements are often taken at regular intervals; for exam-
ple, the position of a comet in the sky measured each night, or the depth
of the sea along a line at 1 metre increments. Environmental effects or
equipment failure (a cloudy night or a failed depth meter) sometimes
result in a set of data that has missing values. In matlab these can be
represented by NaN, which stands for “not-a-number”. NaN is also given
by matlab as the result of undefined calculations such as 0/0. matlab
handles NaNs by setting the result of any calculation that involves NaNs
to NaN. Let us look at an example:

y = [1:4 NaN 6:14 NaN 16:20];
plot(y,’o’)
grid;box

In everyday language we would say that the fifth and the fifteenth values
of the y-vector are missing. matlab’s graphics functions usually handle

c© 2000 by CRC Press LLC



NaNs by leaving them off the plot. For example, if we allow plot to try
to join the points with a straight line, the values on either side of the
NaNs terminate the line:

plot(y)
grid;box

If we calculate the difference between y-values, the results involving NaNs
are themselves NaN:

>> diff(y)
ans =
Columns 1 through 12

1 1 1 NaN NaN 1 1 1 1 1 1 1
Columns 13 through 19

1 NaN NaN 1 1 1 1

If we calculate the cumulative sum of y, everything from the first NaN
onwards is NaN:

>> cumsum(y)
ans =
Columns 1 through 12

1 3 6 10 NaN NaN NaN ... NaN
Columns 13 through 20
NaN NaN NaN NaN NaN NaN NaN NaN

matlab’s surface plotting functions handle NaNs in a similar way:

z = peaks;
z(5:35,18:22) = NaN;
subplot(221)
plot(z’)
subplot(222)
colormap(gray(64))
imagesc(z)
axis xy
subplot(223)
surfl(z)
shading flat
subplot(224)
contourf(z)

c© 2000 by CRC Press LLC



16 Polar Plots

When displaying information which varies as a function of angle, it is
often beneficial to use a polar diagram in which conventional (x, y) values
are interpreted as angle and radius. Compare the following two displays.
First the conventional (x, y) plot:

clf
t = linspace(-pi,pi,201);
g = sinc(2.8*sin(t));
plot(t*180/pi,g)
zeroaxes

(The command zeroaxes is part of the companion software to this
book.) Then the polar diagram indicating the directional variation in
the quantity g:

clf
polar(t,g)

Plots such as these are sometimes displayed in decibel units:

gdb = 10*log10(abs(g));
plot(t*180/pi,gdb)
zeroaxes

But the polar diagram in this case gives rubbish because it is interpreting
the negative decibel values as negative radii:

c© 2000 by CRC Press LLC



clf
polar(t,gdb)

In this case you must use a modified version of polar that interprets
a zero radius as a 0 dB value which should go at the outer limit of the
plot. Negative decibel values should appear at smaller radii. I have
implemented these ideas in the m-file negpolar (see companion soft-
ware):

negpolar(t,gdb)

The negpolar function also omits the solid outer circle which, like the
box drawn around matlab’s default plot output, unnecessarily frames
the plot and can obscure the data that you are trying to display. A faint
dotted grid is enough to put the plotted points in context. I will say
more about this in the section on Handle Graphics later (see page 65).

17 Fourier Transform

A theorem of mathematics says, roughly, that any function can be repre-
sented as a sum of sinusoids of different amplitudes and frequencies. The
Fourier transform is the mathematical technique of finding the ampli-
tudes and frequencies of those sinusoids. The Discrete Fourier Transform
(DFT) is an algorithm that calculates the Fourier transform for numer-
ical data. The Fast Fourier Transform is an efficient implementation of
the DFT. The following functions are available in matlab to do Fourier
transforms and related operations:

c© 2000 by CRC Press LLC



fft One-dimensional fast Fourier transform
fft2 Two-dimensional fast Fourier transform
fftn N -dimensional fast Fourier transform
fftshift Move zeroth lag to centre of transform
ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn inverse N -dimensional fast Fourier transform
abs Absolute value (complex magnitude)
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
nextpow2 Next power of two
unwrap Correct phase angles

The FFT of the column vector

y = [2 0 1 0 2 1 1 0]’;

is

>> Y = fft(y)
Y =

7.0000
-0.7071+ 0.7071i
2.0000- 1.0000i
0.7071+ 0.7071i
5.0000
0.7071- 0.7071i
2.0000+ 1.0000i
-0.7071- 0.7071i

The first value of Y is the sum of the elements of y, and is the amplitude
of the “zero-frequency”, or constant, component of the Fourier series.
Terms 2 to 4 are the (complex) amplitudes of the positive frequency
Fourier components. Term 5 is the amplitude of the component at the
Nyquist frequency, which is half the sampling frequency. The last three
terms are the negative frequency components, which, for real signals, are
complex conjugates of the positive frequency components.

The fftshift function rearranges a Fourier transform so that the
negative and positive frequencies lie either side of the zero frequency.

Companion M-Files Feature 4 The function fftfreq gives
you a two-sided frequency vector for use with fft and fftshift.
For example, the frequency vector corresponding to an 8-point
FFT assuming a Nyquist frequency of 0.5 is

>> fftfreq(.5,8)’

ans =

c© 2000 by CRC Press LLC



-0.5000

-0.3750

-0.2500

-0.1250

0

0.1250

0.2500

0.3750

We combine fftshift and fftfreq to plot the two-sided FFT:

plot(fftfreq(.5,8),fftshift(abs(Y)))
axis([-.5 .5 0 7])
zeroaxes

Let us do a slightly more realistic example. We simulate some data
recorded at a sampling frequency of 1 kHz, corresponding to a time step
dt = 1/1000 of a second. The Nyquist frequency is, therefore, 500 Hz.
Suppose there is a 100 Hz sinusoid contaminated by noise. We simulate
the data, calculate the FFT, and plot the results as follows:

dt = 1/1000;
t = dt:dt:200*dt;
sine = sin(2*pi*100*t);
y = sine + randn(size(t));
Y = fft(y);
f = fftfreq(500,length(Y));

clf
subplot(211)
stairs(t,y)
hold on
stairs(t,sine-4)
box
xlabel(’Time (seconds)’)

subplot(212)
stairs(f,fftshift(abs(Y)))
box
xlabel(’Frequency (Hz)’)

c© 2000 by CRC Press LLC



The top trace in the top plot is the noisy data, and the bottom trace is
the original pure sinusoid. The lower plot clearly shows the frequency at
100 Hz.

Two GUI-based FFT demos can be accessed by typing demo at the
prompt. Select the “Signal Processing” option, then choose the “Discrete
Fourier Transform” or the “Continuous Fourier Transform”.

Exercise 5 Extend the ideas in the previous example to two
dimensions, as would be the case, for example, if you made mea-
surements in space and time, rather than time alone. Gener-
ate a two-dimensional sinusoid and explore its FFT. (Answer on
page 185.)

18 Power Spectrum

The power spectrum (or power spectral density, or PSD) is a measure
of the power contained within frequency intervals. The problem is that
we only have a finite set of samples of the true signal so we can never
have perfect knowledge about its power spectrum. A common way to
estimate a PSD is to use the square of the FFT of the samples. The
square of the FFT is called the periodogram. The workhorse of mat-
lab’s periodogram-based spectral estimation is the spectrum function
(in the Signal Processing Toolbox). We illustrate using data similar to
the previous example of a noisy sinusoid, but we take more samples. A
PSD estimate can be found by typing:

dt = 1/1000;
t = dt:dt:8192*dt;
sine = sin(2*pi*100*t);
y = sine + randn(size(t));
clf
spectrum(y)

The frequency scale is normalised to the Nyquist frequency. The middle
line is the PSD estimate and the two dashed lines are the 95% con-
fidence intervals. Typing help spectrum reveals that there are many
parameters that you can adjust when calculating the power spectrum.
matlab’s spectrum function uses the Welch method of PSD estimation,6

which divides a long signal into a number of smaller blocks, calculates
6See Alan V. Oppenheim and Ronald W. Schafer, Digital Signal Processing,

Prentice-Hall, 1975, p. 553. An excellent general treatment of PSD estimation is
also given in William Press, Brian Flannery, Saul Teukolsky and William Vetterling,
Numerical Recipes, Cambridge University Press, 1989.

c© 2000 by CRC Press LLC



the periodograms of the blocks, and averages the periodograms at each
frequency. This is a technique commonly used to reduce the variance
of the PSD. For example, we can compare the variance of the above
estimate to that of a single periodogram by telling spectrum to use a
block length equal to the length of the signal:

spectrum(y,8192)

You can also specify windows to reduce spectral leakage, sampling fre-
quencies to get correct frequency scales and overlapping blocks. If you
are interested in PSD estimation, the Signal Processing toolbox contains
other methods of PSD estimation including Welch’s method, MUSIC,
maximum entropy and multitaper. matlab also provides a graphical
user interface for spectral estimation as part of its interactive signal pro-
cessing environment sptool. The System Identification toolbox also con-
tains algorithms for PSD estimation (type iddemo and choose option 5
for a demonstration).

19 Sounds in MATLAB

matlab can send data to your computer’s speaker, allowing you to visu-
ally manipulate your data, and listen to it at the same time. A digitised
recording of an interesting sound is contained in the mat-file chirp.mat.
Load this data, do a plot, and listen to the sound by typing:

load chirp
plot(y)
sound(y)

The volume of the sound can be controlled from within matlab using
the soundsc function and supplying an upper and lower limit. Or if
you wish, you can use your computer’s system software to control the
volume. On UNIX the volume of the sound can be controlled with the

c© 2000 by CRC Press LLC



audiotool. On a PC the volume can be controlled from the “properties”
panel of the sound recorder.

You can invoke a sound demo GUI by typing xpsound. This GUI
includes these bird chirps plus a few other sounds, three different display
types, a volume slider, and a play button.

20 Time-Frequency Analysis

Signals, such as the sound data of the previous section, often consist of
time series data with a time-varying frequency content. The specgram
function allows you to analyse this kind of time-frequency data. As
an example we generate a frequency modulated carrier and analyse its
frequency variation with time. The modulate and vco function can be
used to produce signals with many different modulation types.7 We
begin with a linear frequency sweep from 0 to 500 Hz sampled at 1 kHz.
First, you must prepare a frequency control vector, which is normalised
between −1 and 1, where −1 corresponds to the minimum frequency and
1 corresponds to the maximum frequency. Here we use a linear frequency
control and 8192 points:

x = linspace(-1,1,8192);

Now use the vco function (in the Signal Processing Toolbox) to convert
this to a frequency modulated signal:

Fs = 1000;
y = vco(x,[0 500],Fs);

The input vector [0 500] says that our frequency sweep will go from
0 Hz to 500 Hz and the sampling frequency is Fs = 1000 Hz. The first
thousand points of this signal reveal the steady increase in frequency:

7In fact what we are doing here could also be done with the m-file chirp.m (not
to be confused with the data file chirp.mat).

c© 2000 by CRC Press LLC



plot(y(1:1000))
axis([0 1000 -5 5])
zeroaxes

The frequency content of this signal as a function of time can be calcu-
lated using the specgram function. This function uses the Short Time
Fourier Transform (STFT) technique. The STFT chops up the signal
into a series of short segments and calculates the FFT of each segment.
Each FFT becomes the estimate of the frequency content at that time.
For our example we can get a quick display by typing:

clf
specgram(y)
colormap(flipud(gray/2+.5))
colorbar

The linear increase in frequency with time is clearly displayed, although
here we have not told specgram what the sampling frequency is, so it
has plotted a normalised frequency scale. If we include the sampling
frequency as an input, we get the true frequencies. If you type help
specgram you will see that the inputs are such that the sampling fre-
quency comes third in the list, after the signal itself and the FFT size.
Here we do not want to bother about specifying the FFT size, so we can
just specify the empty matrix for that input and specgram will use its
default value of NFFT = 256:8

specgram(y,[],Fs)
colormap(flipud(gray/2+.5))
colorbar

The frequency now goes from zero to 500 Hz.
8Many of matlab’s functions behave this way: specifying the empty matrix will

tell the function that you want to use its default value for that input.

c© 2000 by CRC Press LLC



Exercise 6 Try a more complicated modulation function; for
example, a sinusoidal rather than a linear frequency variation.
Try plotting the results as a surface instead of an image. (Answer
on page 186.)

21 Line Animation

matlab’s comet function can be used to produce an animation on the
screen of a trajectory through either two-space or three-space. For exam-
ple, we use some recorded aircraft GPS data in the file gps.mat.

>> clear
>> load gps
>> whos
Name Size Bytes Class
t 500x1 4000 double array
x 500x1 4000 double array
y 500x1 4000 double array
z 500x1 4000 double array

Grand total is 2000 elements using 16000 bytes

A simple 3-d plot is difficult to interpret:

>> plot3(x,y,z)

The floating thread has too few visual clues for the eye to interpret, and
the altitude variation further clutters the display. A two-dimensional
plot tells us that the aircraft was doing turns (but not how high it was):

plot(x,y)
axis equal
box

This is an improvement, but we still do not know where the aircraft
started, where it finished, and how it went in between. We can see an
animation of the trajectory by typing:

cc© 2000 by CRC Press LLC



comet(x,y)

(You can get a three-dimensional version by using comet3.) You can see
it on your screen. But we have just illustrated a disadvantage of such
a display: you have to be there. I cannot communicate to you what
it looks like on paper. For that you need to resort to, say, an array of
two-dimensional plots strung out along the third time dimension. This
gets us into the subject of plot arrays, which is discussed in Section 32.3
on page 123.

22 SPTool

SPTool (in the Signal Processing Toolbox) is a graphical user interface
to many of matlab’s signal processing functions. The idea is to import
signals from the matlab workspace into the SPTool environment where
they can be manipulated in a great variety of ways. As an example, load
some data into your workspace by typing:

load mtlb

We will use SPTool to look at this time-series data and calculate various
power spectra. Invoke SPTool by typing:

sptool

Choose the File→Import menu item to open the import panel, which
allows you to control the variables that sptool can “see”:

c© 2000 by CRC Press LLC



Click on the variable mtlb and the arrow button (-->) to get mtlb to
appear in the Data box (or just type mtlb there). Do the same to make
Fs appear in the Sampling box. Then press OK. A signal called sig1
appears in the Signals box in the main SPTool panel. Clicking on the
View button at the bottom of the Signals box opens the signal browser
panel:

Here you have a plot of the time series with two “rulers”. The rulers can
be used to pick values out of the data, as well as to calculate intervals
and slopes. The data in the Rulers box at the right of the display
shows this information. At the bottom is a “panner”. If you click on the
Zoom In-X button a couple of times, the top plot shows an expanded
portion of the data, and the panner at the bottom shows the location of
the top box within the entire signal.

c© 2000 by CRC Press LLC



By clicking within the panner box and dragging, you can change the
location of the zoomed window. You can listen to this time series by
selecting Options→Play.

To calculate the power spectrum of this signal, go back to the main
SPTool panel and click the Create button at the bottom of the Spectra
box. Doing this will open the Spectrum Viewer:

Choose a method with the parameters you like to get a plot of a spectral
estimate:

c© 2000 by CRC Press LLC



You can design and apply filters to data in a similar way.

23 Handle Graphics

So far in this book, we have only used matlab’s high-level plotting
function (plot, surf, etc.). High-level plotting functions produce simple
graphs and automate the many mundane decisions you might make in
producing a plot, such as the position of the plot, the colour of the axes,
the font size, the line thickness, and so on. matlab’s system of Handle
Graphics allows you to control a great many of these “mundane” aspects
of plotting, to produce plots that are optimised for communicating the
data at hand. The idea behind Handle Graphics is that every object in
the figure window (axes, lines, text, surfaces, etc.) has a set of properties.
These properties can be examined using the get command and set to new
values using the set command. Every object in the figure window also
has a unique identifier (a number) called a handle. The object’s handle
tells get and set what object you are interested in. As an introductory
example, consider the plot shown on page 58 of the frequency modulated
sinusoid:

c© 2000 by CRC Press LLC



x = linspace(-1,1,8192);
Fs = 1000;
y = vco(x,[0 500],Fs);
plot(y(1:1000))
axis([0 1000 -5 5])
zeroaxes

We used the axis command to set the y-axis limits to [-5 5] instead
of the default limits, in this case, of [-1 1]

clf
plot(y(1:1000))

which makes the variation in frequency slightly less apparent, and is
just too grandiose. The eye can pick up very subtle variations in line
straightness, but here the variation is so huge that the lines become
parallel and begin to produce the optical illusion of vibration. Also,
lines that are very nearly vertical or horizontal begin to be affected by
the finite resolution of dot printers. Using Handle Graphics we can
achieve a more elegant result by reducing the height of the y-axis. We
do this by setting the position property of the current axes:

set(gca,’Position’,[.1 .5 .8 .1],’box’,’off’)

The gca input is itself a function, which returns the handle to the current
set of axes. We are saying that we want to set the position of the current
axes to be equal to the vector [.1 .1 .8 .1]. The position vector has
the form [left, bottom, width, height ], in units normalised to the
figure window; (0, 0) is the bottom left and (1, 1) is the top right. But
perhaps we should shrink it even further, and dispense with the ever-
present axes:

set(gca,’Position’,[.1 .5 .8 .01],’visible’,’off’)

c© 2000 by CRC Press LLC



23.1 Custom Plotting Functions

Handle Graphics can be used to write your own graphics m-files that are
fine-tuned to your requirements. For example, the box around the graph
produced by the default plot command can obscure the data:

clf
t = linspace(0,10);
y = 1 - exp(-t);
plot(t,y)

To avoid this problem (which I have found occurs frequently), I use my
own personal version of the plot command, called plt, which omits the
box:

plt(t,y)

The m-file for plt (see companion software) simply passes all the input
parameters directly to the plot command and then sets the ’box’ prop-
erty of the current plot to ’off’.

23.2 Set and Get

Typing

get(H)

where H is an object handle, displays all of the property names associated
with the object. Typing

set(H)

displays all of the possible values that can be taken by every property
associated with the object. Typing

set(H,’Property ’)

displays all of the possible values for the Property associated with the
object.

c© 2000 by CRC Press LLC



23.3 Graphical Object Hierarchy

matlab graphical objects are arranged according to the hierarchy shown
here.

The object immediately above another is called a parent, and the objects
below are called children. In general, children inherit their handle graph-
ics properties from their parent. For example the position of a line on a
plot depends on the position of the axes that it goes in, which, in turn,
depends on the position of the figure window.

The Root object is the computer screen. There can only be one Root
object. You can see the properties of the Root object and the allowable
options by typing set(0) (the handle of the Root is always equal to
zero).

The Uicontrol, Uimenu, and Uicontextmenu objects are graphical
user interface elements that are discussed in Part II of this book (see
page 133).

A parent can have any number of children. For example the Root
can have many Figures, a Figure can have many Axes, and a set of Axes
can have many Lines, Surfaces, and so on. If a parent has many children,
one of them is designated the current one. For example the current set
of axes is the one that will be updated the next time you do a line
command. You can make an object current by clicking on it with the
mouse. For example, I clicked on the fourth line from the bottom before
setting its linewidth property to 5 (the default linewidth is 0.5):

plot([1:10]’*[1:10])
set(gco,’linewidth’,5)

The following functions return the handles of current objects:

gcf Get Current Figure
gca Get Current Axes
gco Get Current Object

c© 2000 by CRC Press LLC



The handle of a Figure is the number (1, 2, etc.) that normally
appears in the Figure’s title bar (supplied by the windowing system).

All of the graphical objects, except the Root object, have low-level
creation functions in which you can specify their properties. For exam-
ple, here is how to create a set of axes with the x-axis tick marks labelled
by months of the year:

lbls = [’Jan|Feb|Mar|April|May|June|’...
’July|Aug|Sept|Oct|Nov|Dec’];

clf
axes(’position’,[.1 .5 .8 .1],’xlim’,[1 12],...

’xtick’,1:12,’xticklabel’,lbls)

The general format of object creation functions is

handle = function (’propertyname ’,’propertyvalue ’)

The output of the function is the handle of the object. This handle
can then be used in subsequent calls to get and set to modify the
properties of the object. The propertyname s are displayed by mat-
lab with capitalisation to make them easier to read; for example, the
VerticalAlignment text property or the YAxisLocation axes property.
When you are typing property names, you do not need to use the full
name or any capitalisation; you need only use enough letters of the prop-
erty name to uniquely specify it, and matlab does not care what capi-
talisation you use. Nevertheless, when writing m-files, it is a good idea
to use the full property name because abbreviated names may no longer
be unique if extra properties are added in future releases of matlab.

Example: Line Width

The default way to plot a matrix is to draw one line for each column of
the matrix, with the lines differentiated by colour. Suppose instead that
we want to differentiate the lines by their thicknesses. One way to do it
is as follows. First generate the data and plot it:

y = [1:10]’*[1:10];
clf
plot(y)

c© 2000 by CRC Press LLC



Now we need to get the handles of all the lines. We could have said h =
plot(y) to get them, but for now we use the get function:

h = get(gca,’children’)

The gca function returns the handle of the current axes, and
get(gca,’children’) returns the handles of all the current axes’ chil-
dren (the lines on the plot). Now we want to change the thicknesses of
the lines. We set up a vector of line widths with as many elements as
there are lines:

widths = linspace(.1,10,length(h));

The widths of the lines will vary from a minimum of 0.1 to a maximum
of 10. We use a for-loop to change the width of each of the lines:

for i = 1:10
set(h(i),’linewidth’,widths(i));

end

24 Demos

The matlab demos are well worth browsing. You can learn about a
subject (often reading references are given), as well as learning about
matlab’s capabilities. Of interest to sonar and radar signal processors is
matlab’s Higher Order Spectral Analysis toolbox containing, for exam-
ple, functions for direction of arrival estimation (beamforming plus other
methods), time-frequency distributions, and harmonic estimation. Type
help hosa for a list of functions in the Higher Order Spectral Analysis
toolbox. Browsing the demos or doing a keyword search may save you
from writing your own matlab code and re-inventing the wheel. Type
demo to get the panel:

c© 2000 by CRC Press LLC



c© 2000 by CRC Press LLC



Beyond the Basics

Prelude

This part of the book assumes that you already have some competency
with matlab. You may have been using it for a while and you find you
want to do more with it. Perhaps you have seen what other people do
and are wondering how it is done. Well, read on.

This part of the book follows an introductory course in matlab
(Part I) that covered the basics: matrices, typing shortcuts, basic graph-
ics, basic algebra and data analysis, basics of m-files and data files, and
a few simple applications, such as curve fitting, FFTs, and sound. Basic
handle graphics were introduced using set and get.

We begin by looking at sparse matrices and strings, go on to deal
with some of the data types that are new to matlab version 5: cell
arrays, multidimensional arrays and structures, then deal with a variety
of topics that you will probably have to deal with at some stage if you are
a frequent user of matlab. The book can be worked through from start
to finish, but if you are not interested in a particular topic, you can skip
over it without affecting your understanding of later topics. Exercises
are given throughout the book, and answers to most of them are given
at the end. We start by introducing some new variable types that go
beyond the functionality of a rectangular matrix.

25 Sparse Arrays

In some applications, matrices have only a few non-zero elements. Such
matrices might arise, for example, when analysing communication net-
works or when performing finite element modelling. matlab provides
sparse arrays for dealing with such cases. Sparse arrays take up much
less storage space and calculation time than full arrays.

c© 2000 by CRC Press LLC



25.1 Example: Airfoil

Suppose we are doing some finite element modelling of the airflow over
an aeroplane wing. In finite element modelling you set up a calculation
grid whose points are more densely spaced where the solution has high
gradients. A suitable set of points is contained in the file airfoil:

load airfoil
clf
plot(x,y,’.’)

There are 4253 points distributed around the main wing and the two
flaps. In carrying out the calculation, we need to define the network of
interrelationships among the points; that is, which group of points will
be influenced by each point on the grid. We restrict the influence of
a given point to the points nearby. This information is stored in the
vectors i and j, included in the loaded data. Suppose all the points are
numbered 1, 2, . . . , 4253. The i and j vectors describe the links between
point i and point j. For example, if we look at the first five elements:

>> [i(1:5) j(1:5)]’
ans =

1 2 3 5 4
2 3 10 10 11

The interpretation is that point 1 is connected to point 2, point 2 is
connected to point 3, points 3 and 5 are connected to point 10, and so
on. We create a sparse adjacency matrix, A, by using i and j as inputs
to the sparse function:

A = sparse(i,j,1);
spy(A)

The spy function plots a sparse matrix with a dot at the positions of
all the non-zero entries, which number 12,289 here (the length of the i
and j vectors). The concentration of non-zero elements near the diagonal
reflects the local nature of the interaction (given a reasonable numbering
scheme). To plot the geometry of the interactions we can use the gplot
function:

c© 2000 by CRC Press LLC



clf
gplot(A,[x y])
axis off

(Try zooming in on this plot by typing zoom and dragging the mouse.)
The adjacency matrix here (A) is a 4251×4253 sparse matrix with 12,289
non-zero elements, occupying 164 kB of storage. A full matrix of this
size would require 145 MB.

(From now on in this book, the clf command will be omitted from
the examples; you will need to supply your own clfs where appropriate.)

25.2 Example: Communication Network

Suppose we have a communications network of nodes connected by wires
that we want to represent using sparse matrices. Let us suppose the
nodes are 10 equispaced points around the circumference of a circle.

dt = 2*pi/10;
t = dt:dt:10*dt;
x = cos(t)’;
y = sin(t)’;
plt(x,y)
axis equal off
for i = 1:10
text(x(i),y(i),int2str(i))

end

We want the communications channels to go between each node and its
two second-nearest neighbours, as well as to its diametrically opposite
node. For example, node 1 should connect to nodes 3, 6, and 9; node 2
should connect to nodes 4, 7, and 10; and so on. The function spdiags
is used on the following to put the elements of e along the second, fifth,
and eighth diagonals of the (sparse) matrix A. If you look at the help for
spdiags, you should be able to follow how these statements define the
connection matrix we want. First we define the connection matrix:

e = ones(10,1);
A = spdiags(e,2,10,10) + ...

spdiags(e,5,10,10) + ...
spdiags(e,8,10,10);

A = A + A’;

Now do the plot:

c© 2000 by CRC Press LLC



subplot(221)
spy(A)
subplot(222)
gplot(A,[x y])
axis equal off
for i = 1:10
text(x(i),y(i),int2str(i))

end

The plots show the sparse node-connection matrix on the left and the
physical connection on the right.

Exercise 7 Repeat this communications example for the case of
100 nodes around the circle. Then try changing the connection
matrix. (Answer on page 187.)

26 Text Strings

A string is an array of characters. For example, these are strings:
’hello’, ’John Smith’, and ’12’. The last one is a string, not the
number 12, because it is surrounded by quotes. matlab represents char-
acters as their ascii values. You can convert between ascii values and
the characters they represent using the double and char commands:

>> alph = ’ABCDE’
alph =
ABCDE

>> num = double(alph)
num =

65 66 67 68 69

>> char(num)
ans =
ABCDE

>> char(num+5)
ans =
FGHIJ

The double command converts its argument to double precision values,
the default matlab format.

To get a quote character in a string use two quotes in succession:

>> str = ’you’’re the one’

c© 2000 by CRC Press LLC



str =
you’re the one
>> str = ’’’you’’re the one’’’
str =
’you’re the one’

Exercise 8 Create a table of integers from 0 to 255 and their
equivalent ascii values. Printing which ascii “character” rings
the system bell? (Answer on page 187.)

26.1 String Matrices

To create a matrix of strings, use the semicolon to separate the lines:

>> m = [alph ; char(num+5) ; ’KLMNO’]
m =
ABCDE
FGHIJ
KLMNO

You cannot create a matrix of strings having different lengths:

>> z = [alph ; ’b’]
??? All rows in the bracketed expression must have the
same number of columns.

(You should use cell arrays—discussed later—if you really want to create
a “matrix” like this.) To simulate the effect, though, you can pad with
zeros:

>> z = [’abcd’ ; ’b ’]
z =
abcd
b

The second line has three blank spaces to the right of the “b”. A conve-
nient way to do this is to use the char function, which does the padding
for you:

>> z = char(’These’,’lines are’,’of varying lengths.’)
z =
These
lines are
of varying lengths.

c© 2000 by CRC Press LLC



26.2 Comparing Strings

The = = test is not a good idea with strings because it compares the
ascii values of the strings, which must have the same length; if the
strings are not the same length, you get an error. The strcmp command
avoids this difficulty:

>> c1 = ’blond’;
>> c2 = ’brown’;
>> c3 = ’blonde’;
>> c1 = = c2
ans =

1 0 1 0 0
>> c2 = = c3
??? Array dimensions must match for binary array op.

>> strcmp(c2,c3)
ans =

0

26.3 String Manipulations

Typing help strfun displays the full set of commands for working with
strings. A common example is to identify words within a string by
searching for whitespace (blank characters, tabs, etc.):

>> str = ’I go now’;
>> isspace(str)
ans =

0 1 0 0 1 0 0 0

You can also search for letters:

>> isletter(str)
ans =

1 0 1 1 0 1 1 1

To find where a shorter string occurs within a longer one, use the
findstr command:

>> pos = findstr(str,’go’)
pos =

3
>> pos = findstr(str,’o’)
pos =

4 7

To replace one string with another, use the strrep command:

c© 2000 by CRC Press LLC



>> strrep(str,’go’,’am’)
ans =
I am now

The replacement text need not be the same length as the text it is
replacing:

>> strrep(str,’go’,’eat snails’)
ans =
I eat snails now

And the text to be replaced can occur more than once:

>> strrep(str,’o’,’e’)
ans =
I ge new

To delete characters from a string, replace them with an empty string
’’ or []:

>> strrep(str,’o’,’’)
ans =
I g nw

26.4 Converting Numbers to Strings

The functions num2str and int2str are useful for general purpose con-
version of numbers to strings. The latter is for integers:

>> for i = 1:3
disp([’Doing loop number ’ int2str(i) ’ of 3’])
end
Doing loop number 1 of 3
Doing loop number 2 of 3
Doing loop number 3 of 3

And num2str is for everything else:

>> for i = 1:3
disp([’Case ’ int2str(i) ’, sin = ’ num2str(sqrt(i))])
end
Case 1, sin = 1
Case 2, sin = 1.4142
Case 3, sin = 1.7321

The inputs can be vectors or matrices:

c© 2000 by CRC Press LLC



>> v = sin((1:3)*pi/6)
v =

0.5000 0.8660 1.0000
>> num2str(v)
ans =
0.5 0.86603 1
>> q = reshape(1:9,3,3)
q =

1 4 7
2 5 8
3 6 9

>> int2str(q)
ans =
1 4 7
2 5 8
3 6 9
>> size(ans)
ans =

3 7

You can tell num2str how many digits to display by giving it a second
parameter:

>> num2str(pi,2)
ans =
3.1
>> num2str(pi,15)
ans =
3.14159265358979

The second parameter of num2str can also specify the format by means
of C language conversions. These involve the percent character, width
and precision fields, and conversion characters: d, f, e, etc. (see table
below). The basic idea is to use a string of characters beginning with %
to control the formatting. For example, to output five decimal places in
a field of 12 characters with exponential notation, use:

>> num2str(pi,’%12.5e’)
ans =
3.14159e+00

>> num2str(-pi,’%12.5e’)
ans =
-3.14159e+00

>> num2str(pi*1e100,’%12.5e’)

c© 2000 by CRC Press LLC



ans =
3.14159e+100

Some additional text can be mixed with the numerical conversion, for
example:

>> num2str(pi,’Pi has a value of %12.5e, or thereabouts.’)
ans =
Pi has a value of 3.14159e+00, or thereabouts.

The online help9 entry for the sprintf command gives a full description
of how to use the various formatting options. (The sprintf command
is the matlab version of the C language command of the same name.)
The following table is taken from the online help.

%c Single character
%d Decimal notation (signed)
%e Exponential notation (using a lowercase e as in 3.1415e+00)
%E Exponential notation (using an uppercase E as in 3.1415E+00)
%f Fixed-point notation
%g The more compact of %e or %f. Insignificant zeros do not print.
%G Same as %g, but using an uppercase E
%o Octal notation (unsigned)
%s String of characters
%u Decimal notation (unsigned)
%x Hexadecimal notation (using lowercase letters a-f)
%X Hexadecimal notation (using uppercase letters A-F)

To further control the formatting, other characters can be inserted
into the conversion specifier between the % and the conversion character:

Character What it does
A minus sign (-) Left-justifies the converted argument in its

field.
A plus sign (+) Always prints a sign character (+ or −).
Zero (0) Pads with zeros rather than spaces.
Digits (field width) Specifies the minimum number of digits to be

printed.
Digits (precision) Specifies the number of digits to be printed to

the right of the decimal point.

9Type helpdesk at the command line to get hypertext help.

c© 2000 by CRC Press LLC



Examples:
sprintf(’%0.5g’,(1+sqrt(5))/2) 1.618
sprintf(’%0.5g’,1/eps) 4.5036e+15
sprintf(’%10.3f’,-pi) -3.142
sprintf(’%10.3f’,-pi*1000000) -3141592.654
sprintf(’%10.3f’,-pi/1000000) -0.000
sprintf(’%d’,round(pi)) 3
sprintf(’%s’,’hello’) hello
sprintf(’The array is %dx%d.’,2,3) The array is 2x3.
sprintf(’\n’) Line termination char-

acter on all platforms

These functions are “vectorised”, meaning that if you input a non-
scalar, then all the elements will be converted:

>> str = num2str(rand(3,3),6)
str =
0.502813 0.304617 0.682223
0.709471 0.189654 0.302764
0.428892 0.193431 0.541674
>> size(str)
ans =

3 32

Exercise 9 Explore the operation of the following m-file that
breaks a sentence up into a list of words.

function all_words = words(input_string)

remainder = input_string;

all_words = ’’;

while any(remainder)

[chopped,remainder] = strtok(remainder);

all_words = strvcat(all_words,chopped);

end

Why do you think strvcat is used instead of char? (Answer on
page 188.)

26.5 Using Strings as Commands

The eval Function

The eval function takes a string input and executes it as a matlab
command. For example:

>> str = ’v = 1:5’
str =
v = 1:5

c© 2000 by CRC Press LLC



>> eval(str)
v =

1 2 3 4 5

The eval(str) statement acts just as if we had typed v = 1:5 at the
command line. To suppress the output we need to add a semicolon
character to the end of the string:

>> str = ’v = 1:5;’
str =
v = 1:5;
>> eval(str)

The eval command now produces no output, while still defining the
variable v. To take another example, let us suppose we want to define a
set of vectors vi = 1, 2, . . . i for i = 1, 2 . . . 10. At the command line we
could type:

v1 = 1;
v2 = 1:2;
v3 = 1:3;

and so on. The eval command provides a neat solution:

>> clear
>> for i = 1:10

str = [’v’ int2str(i) ’ = 1:i;’];
eval(str)

end

This has generated the variables v1, . . . , v10, with the appropriate ele-
ments:

>> whos
Name Size Bytes Class
i 1x1 8 double array
str 1x10 20 char array
v1 1x1 8 double array
v10 1x10 80 double array
v2 1x2 16 double array
v3 1x3 24 double array
v4 1x4 32 double array
v5 1x5 40 double array
v6 1x6 48 double array
v7 1x7 56 double array
v8 1x8 64 double array
v9 1x9 72 double array

Grand total is 66 elements using 468 bytes

c© 2000 by CRC Press LLC



>> v6
v6 =

1 2 3 4 5 6

The feval Function

The feval command is like eval, except that it is used for evaluating
named functions. An example would be:

str = ’sin’;
t = linspace(0,2*pi);
q = feval(str,t);
plt(t,q)

If str is a string containing the name of a function, then y =
feval(str,x) evaluates that function for the input argument x.
Another example defines data for plotting by looping over the trigono-
metric functions sin, cos, and tan contained within a single matrix of
characters (the command zeroaxes is part of the companion software
to this book):

str = [’sin’;’cos’;’tan’];
for i = 1:3

q(i,:) = feval(str(i,:),t);
end
clf
plt(t,q)
axis([0 2*pi -6 6])
zeroaxes

Inline Objects

Inline objects allow you to store a function as a string and use it much
as you would write it symbolically. This, for example, is how to define
the parabola f(x) = (x + 1)(x− 1):

>> f = inline(’(x + 1).*(x - 1)’)
f =

Inline function:
f(x) = (x + 1).*(x - 1)

We can now evaluate f(3) by typing:

>> f(3)
ans =

8

c© 2000 by CRC Press LLC



Inline objects, like every other matlab construction, is vectorised:

>> f(0:4)
ans =

-1 0 3 8 15

They can be used in place of other variables:

x = linspace(-4,4);
clf
plt(x,f(x))
hold on
plt(x,f(x-2),’--’)
zeroaxes

Exercise 10 Create a function called funplot that takes the
name of a function and a range of x-values and produces a plot
over that range. For example, the following input should produce
this plot:

funplot(’sin’,[0 pi])

The function should work whether you type funplot(’sin’,[0

pi]) or funplot(’sin(x)’,[0 pi]). Hint: What are the ascii
values of ( and )? (Answer on page 188.)

27 Cell Arrays

Cell arrays are arrays of different things. The “things” can be scalars,
vectors, matrices, strings (of different length), structures (see section on
structures), or other cell arrays. For example, when we looked at string
matrices we saw that we had to pad the rows with blanks to make them
all the same length. Using a cell array, we can create a “ragged-right
matrix”:

t = {’O sacred receptacle of my joys,’;
’Sweet cell of virtue and nobility,’;
’How many sons of mine hast thou in store,’;
’That thou wilt never render to me more!’}

The curly brackets { and } denote cells. The cell we created above is a
4× 1 cell array:

c© 2000 by CRC Press LLC



>> whos
Name Size Bytes Class
t 4x1 658 cell array

Grand total is 149 elements using 658 bytes
>> t(1)
ans =

’O sacred receptacle of my joys,’
>> t{1}
ans =
O sacred receptacle of my joys,
>> t{1}(1)
ans =
O
>> t{1}(1:8)
ans =
O sacred

Let us add another element to the cell array by putting a 3 × 3 matrix
in the first row of the second column:

>> t{1,2} = spiral(3)
t =

[1x31 char] [3x3 double]
[1x34 char] []
[1x41 char] []
[1x39 char] []

matlab has filled the rest of the cells in column 2 with empty cells. We
used the curly brackets t{1,2} to refer to that particular cell. If we had
used ordinary round brackets, we would have produced an error:

>> t(1,2) = spiral(3)
??? Conversion to cell from double is not possible.

This is because there is a difference between indexing cells and indexing
their contents. For example, to extract the word “virtue” from the second
line of the quotation in the first column, we need to access the cell {2,1},
then get characters 15 to 20 from that cell’s contents:

>> t{2,1}(15:20)
ans =
virtue

When assigning a cell you can use the curly brackets on either the left or
right hand side of the equals sign, but you must put them somewhere, to
tell matlab that you want this to be a cell. Otherwise, matlab thinks
you are defining a mathematical matrix and gives you an error to the
effect that the things on each side of the equal sign have different sizes.
For example, we can type:

c© 2000 by CRC Press LLC



>> a(1,1) = {[1 2 3]}
a =

[1x3 double]

or

>> clear a
>> a{1,1} = [1 2 3]
a =

[1x3 double]

but not

>> clear a
>> a(1,1) = [1 2 3]
??? In an assignment A(matrix,matrix) = B, the number of
columns in B and the number of elements in the A column
index matrix must be the same.

Cell arrays can contain other cell arrays. For example:

>> t = {’Fred Flintstone’ {[1 2 3] , spiral(3)}}
t =

’Fred Flintstone’ {1x2 cell}

matlab’s default display of a cell array is in summary form, as in
the above examples. You can display the details using celldisp:

>> celldisp(t)
t{1} =
Fred Flintstone
t{2}{1} =

1 2 3
t{2}{2} =

7 8 9
6 1 2
5 4 3

Or, you can get a graphical summary using cellplot:

cellplot(t)

The left-hand box is the first cell, containing the string ’Fred
Flintstone’. The right-hand box is the second cell containing a 1×2 cell
array whose cells contain the vector [1 2 3] and the matrix spiral(3),
respectively.

c© 2000 by CRC Press LLC



To index nested cell arrays, use as many sets of curly brackets { and
} as needed to get you to the level of nesting required, then use round
brackets ( and ) to access their contents. For example:

>> tt = {t {’Barney Rubble’ {[-1 1] , ’Bedrock’}}}
tt =

{1x2 cell}
{1x2 cell}

>> cellplot(tt)

>> tt{2}
ans =

’Barney Rubble’ {1x2 cell}
>> tt{2}{2}
ans =

[1x2 double] ’Bedrock’
>> tt{2}{2}{1}
ans =

-1 1
>> tt{2}{2}{2}
ans =
Bedrock
>> tt{2}{2}{1}{2}
??? Cell contents reference from a non-cell array object.

>> tt{2}{2}{1}(2)
ans =

1

Exercise 11 Do you know where the word “stuck” has come
from in the following example (answer on page 189):

c© 2000 by CRC Press LLC



>> t = {’help’ spiral(3) ; eye(2) ’I’’m stuck’};

>> tt = {t t ;t’ fliplr(t)};

>> tt{2,2}{2,1}(5:9)

ans =

stuck

28 Structures

Structures are arrays whose names have dot-separated parts. They can
be used to store information of different kinds together in a hierarchical
structure. Let us do a simple example:

>> staff.name = ’John Smith’
staff =

name: ’John Smith’
>> staff.age = 43
staff =

name: ’John Smith’
age: 43

>> staff.favourites = [1 42 37]
staff =

name: ’John Smith’
age: 43

favourites: [1 42 37]

We have created a structure called staff which is of size 1× 1:

>> whos
Name Size Bytes Class
staff 1x1 424 struct array

The staff structure has three fields: name, age, and favourites:

>> staff
staff =

name: ’John Smith’
age: 43

favourites: [1 42 37]

To add another staff member’s data to this structure, add subscripts to
define a second element:

staff(2).name = ’Jane Smythe’;
staff(2).age = 30;
staff(2).favourites = [pi eps realmax realmin NaN Inf];

The sizes of the fields do not have to be the same for each element of the
structure. For example, Jane Smythe’s favourite vector contains more
elements than John Smith’s.

c© 2000 by CRC Press LLC



28.1 Example: Meteorological Database

In this example we create a structure using the struct function. We
create a meteorological observation database as follows:

meteo = struct(’Site’,{’Adelaide’,’Sydney’},...
’Time’,{2.3 4},...
’Temperature’,{24 19},...
’Pressure’,{1023 1015})

This structure consists of temperature and pressure measurements at
two different times at Sydney and Adelaide. The Adelaide data was
taken at 2:30:

>> meteo(1)
ans =

Site: ’Adelaide’
Time: 2.3000

Temperature: 24
Pressure: 1023

and the Sydney data was taken at 4:00:

>> meteo(2)
ans =

Site: ’Sydney’
Time: 4

Temperature: 19
Pressure: 1015

Let us suppose we have some new Sydney data taken at 8:00 and 11:00.
We add this as follows:

>> meteo(2).Time(2:3) = [8 11];
>> meteo(2).Temperature(2:3) = [16.5 15.3]
meteo =
1x2 struct array with fields:

Site
Time
Temperature
Pressure

>> meteo(2).Temperature
ans =

19.0000 16.5000 15.3000

The pressure meter broke so we do not have new pressure data for these
two new times. We could leave the pressure field with one entry, but
it might be better to indicate the absence of data more explicitly with
NaNs:

c© 2000 by CRC Press LLC



>> meteo(2).Pressure(2:3) = [NaN NaN];
>> meteo(2).Pressure
ans =

1015 NaN NaN

Suppose now that we have discovered that all our pressure readings were
wrong; we need to delete the pressure field altogether from the structure:

>> meteo = rmfield(meteo,’Pressure’)
meteo =
1x2 struct array with fields:

Site
Time
Temperature

Now we want to add humidity measurements at the two sites. Suppose
Adelaide’s humidity was 69% and Sydney’s was 86%, 80%, and 76% at
the three different times:

[meteo.humidity] = deal(69,[86 80 76]);
>> meteo(1)
ans =

Site: ’Adelaide’
Time: 2.3000

Temperature: 24
humidity: 69

>> meteo(2)
ans =

Site: ’Sydney’
Time: [4 8 11]

Temperature: [19 16.5000 15.3000]
humidity: [86 80 76]

(The deal command copies a list of inputs to a list of outputs.)
To do operations on field elements, just treat them as any other

matlab array:

>> meteo(2).Temperature
ans =

19.0000 16.5000 15.3000
>> mean(meteo(2).Temperature)
ans =

16.9333

The temperature measurements at both sites in the structure are
accessed by typing:

c© 2000 by CRC Press LLC



>> meteo.Temperature
ans =

24
ans =

19.0000 16.5000 15.3000

We can capture this output in a cell array as follows:

>> q = {meteo.Temperature}
q =

[24] [1x3 double]

Or, we can string them together in a single array by enclosing the
meteo.Temperature expression in square brackets:

>> q = [meteo.Temperature]
q =

24.0000 19.0000 16.5000 15.3000

In this way you can operate on all elements of a field at once. For
example, to calculate the mean of all the temperature measurements:

>> mean([meteo.Temperature])
ans =

18.7000

28.2 Example: Capturing the List of Variables

Typing whos gives you a list of the variables present in the workspace,
along with their size, the number of bytes they occupy, and their class.
For example, create the following variables:

clear
a = 1;
name = ’Jane Smythe’;
vect = [1 2 3];
acell = {1 2 ; ’big’ ’little’};
meteo = struct(’Site’,{’Adelaide’,’Sydney’});

The whos command produces the following list:

>> whos
Name Size Bytes Class
a 1x1 8 double array
acell 2x2 402 cell array
meteo 1x2 244 struct array
name 1x11 22 char array
vect 1x3 24 double array

Grand total is 58 elements using 1396 bytes

c© 2000 by CRC Press LLC



We can capture this list by giving whos an output variable:

>> varlist = whos
varlist =
5x1 struct array with fields:

name
size
bytes
class

The average size of the variables is

>> mean([varlist.bytes])
ans =
140

A cell array of variable names can be generated by:

>> names = {varlist.name}
names =

’a’ ’acell’ ’meteo’ ’name’ ’vect’

Similar structures are generated by giving output arguments to what
and dir.

29 Multidimensional Arrays

Multidimensional matrices are natural extensions of the normal two-
dimensional matrices for cases where the data represent more than two
dimensions. Examples are

• Medical tomography, where three-dimensional volumetric data are
built up from a series of two-dimensional images;

• Temperature measurements taken at a three-dimensional grid in a
room;

• Temperature measurements taken at a three-dimensional grid in
a room and at a sequence of times, leading to a four-dimensional
data set;

• Red, green and blue components of a two-dimensional image, an
M ×N × 3 matrix; and

• Acoustic measurements of sound spectra as a function of frequency,
direction of arrival, and time (sonar).

Let us get the hang of things by generating a 3× 3× 3 matrix:

c© 2000 by CRC Press LLC



>> a = [1 2 3;4 5 6;7 8 9]
a =

1 2 3
4 5 6
7 8 9

>> a(:,:,2) = a*2
a(:,:,1) =

1 2 3
4 5 6
7 8 9

a(:,:,2) =
2 4 6
8 10 12
14 16 18

>> a(:,:,3) = eye(3)
a(:,:,1) =

1 2 3
4 5 6
7 8 9

a(:,:,2) =
2 4 6
8 10 12
14 16 18

a(:,:,3) =
1 0 0
0 1 0
0 0 1

Multidimensional arrays must be full N -rectangles; that is, they must
have the same number of elements in parallel dimensions: all rows must
have the same number of columns, all “pages” must have the same num-
ber of rows and columns, etc.

If you assign a single value to a matrix, matlab expands the defini-
tion as you would expect:

>> a(:,:,3) = 3
a(:,:,1) =

1 2 3
4 5 6
7 8 9

a(:,:,2) =
2 4 6
8 10 12
14 16 18

c© 2000 by CRC Press LLC



a(:,:,3) =
3 3 3
3 3 3
3 3 3

Indexing for multidimensional arrays works in the same way as two-
dimensional arrays;

>> a(2,:,1)
ans =

4 5 6
>> a(2,:,2)
ans =

8 10 12
>> a(2,:,:)
ans(:,:,1) =

4 5 6
ans(:,:,2) =

8 10 12
ans(:,:,3) =

3 3 3

Data can be removed from multidimensional arrays by using the empty
matrix:

>> a(:,:,2) = []
a(:,:,1) =

1 2 3
4 5 6
7 8 9

a(:,:,2) =
3 3 3
3 3 3
3 3 3

Elements can be columnarly extracted from multidimensional arrays in
the same way as they are from two-dimensional arrays:

>> a(:)’
ans =
Columns 1 through 12

1 4 7 2 5 8 3 6 9 3 3 3
Columns 13 through 18

3 3 3 3 3 3

29.1 Generating Multidimensional Grids

The function meshgrid can be used to create matrices representing
evenly-spaced grids of points.

c© 2000 by CRC Press LLC



>> [x,y] = meshgrid(1:5,1:3)
x =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

y =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

>> clf
>> plt(x,y,’o’)
>> axis([0.9 5 0.9 3])

Such matrices can be used, for example, as variables in functions of x
and y:

[x,y] = meshgrid(linspace(0,5),linspace(-10,10));
r = sqrt(x.^2 + y.^2);
contour(x,y,r)
axis equal
axis([-10 10 -10 10])

(More detail on the axis command can be found on page 119.) The
meshgrid function can be used to produce three-dimensional grids,
returning three-dimensional arrays that can be used in an analogous
manner. To go to more than three dimensions, you can use the function
ndgrid. The following example of a three-dimensional volume visualisa-
tion is taken from the help entry for ndgrid:

[x1,x2,x3] = ndgrid(-2:.2:2, -2:.25:2, -2:.16:2);
z = x2 .* exp(-x1.^2 - x2.^2 - x3.^2);

slice(x2,x1,x3,z,[-1.2 .8],[], -.2)
view(-24,28)

Exercise 12 What is the difference between the outputs of
meshgrid and ndgrid when generating grid matrices of less than
four dimensions? Why this difference? (Answer on page 189.)

c© 2000 by CRC Press LLC



29.2 Operations with Multidimensional Arrays

Many matrix operators work with multidimensional arrays. For example,
the columnar sum of our 3× 3× 2 matrix, a, is

>> a
a(:,:,1) =

1 2 3
4 5 6
7 8 9

a(:,:,2) =
3 3 3
3 3 3
3 3 3

>> sum(a)
ans(:,:,1) =

12 15 18
ans(:,:,2) =

9 9 9

If you look carefully, you will see that the result of the sum is a 1×3×2
matrix:

>> size(sum(a))
ans =

1 3 2

This is not the same as a 3 × 2 matrix. If you want the result to be
a 3 × 2 matrix, you can use the squeeze function, which gets rid of
singleton dimensions:

>> squeeze(sum(a))
ans =

12 9
15 9
18 9

matlab does not do an automatic squeeze whenever the result has sin-
gleton dimensions because there are times when you need the singleton
dimension to add more data.

If you want to sum over other dimensions than the rows, you give a
second parameter to the sum function specifying the dimension you want
to sum over. For example, to sum over columns:

>> sum(a,2)
ans(:,:,1) =

6
15
24

c© 2000 by CRC Press LLC



ans(:,:,2) =
9
9
9

And to sum over “pages”:

>> sum(a,3)
ans =

4 5 6
7 8 9
10 11 12

Note that sum(a) is equal to sum(a,1). The sum over “pages” gives a
3× 3 matrix, which is the same as a 3× 3× 1 matrix.

The sum function and other functions that operate on vectors, like
mean, diff, max, and so on, work as you might expect them to for multi-
dimensional arrays. By default they usually operate on the first non-
singleton dimension of the array. Many functions that operate on two-
dimensional matrices do not have such straightforward multidimensional
extensions. For example, if we try to take the transpose of our matrix:

>> a’
??? Error using = = > ’
Transpose on ND array is not defined.

The transpose operation (exchanging rows and columns) makes no sense
here because it is insufficiently specified. (If you want to rearrange a
multidimensional array’s dimensional ordering, use the permute func-
tion; in our example, try permute(a,[2 1 3])). Another example is
the eigenvalue operator eig, which has no mathematical meaning for
multidimensional arrays. In fact, none of the functions that appear if
you type help matfun has a reasonable meaning for multidimensional
matrices. Nor do the matrix operators *, ^, \ or /.

29.3 RGB Images

Introduction to RGB Images

RGB images in matlab are M×N×3 matrices consisting of red, green,
and blue intensity maps. When such a three-dimensional matrix is used
as an input to the image command, matlab adds the red, green, and
blue intensities to give the right colours on the screen. To illustrate the
idea, our first example reproduces three overlapped discs of red, green,
and blue light to give yellow, cyan, magenta, and white overlaps. We
generate matrices of (x, y) points covering the plane from −2 to 2:

[x,y] = meshgrid(linspace(-2,2,200));

c© 2000 by CRC Press LLC



We define a red disc by setting all the pixels that are within a circle to
one; all the other pixels are zero. The circle is defined by the equation:

(x− x0)2 + (y − y0)2 = R2 ,

where (x0, y0) is the centre of the circle, and R is the radius. We set the
centre of the red disc to (−0.4,−0.4) and the radius to 1.0:

R = 1.0;
r = zeros(size(x));
rind = find((x + 0.4).^2 + (y + 0.4).^2 < R^2);
r(rind) = 1;

The green and blue discs are defined in the same way, just shifting the
centre of the circle in each case:

g = zeros(size(x));
gind = find((x - 0.4).^2 + (y + 0.4).^2 < R^2);
g(gind) = 1;
b = zeros(size(x));
bind = find(x.^2 + (y - 0.4).^2 < R^2);
b(bind) = 1;

Now we concatenate the matrices r, g, and b into one 200 × 200 × 3
matrix called rgb:

rgb = cat(3,r,g,b);

We use rgb as an input to imagesc, which interprets the intensities in
the range 0.0 to 1.0:

imagesc(rgb)
axis equal off

On your screen you can see these as overlapped discs of coloured light.

Exercise 13 Redefine the red, green, and blue discs so that
instead of a circular disc of light at uniform maximum intensity,
the intensity increases within each circle from zero at the centre
to one at the edge; outside the circles the intensity should be zero.
Create the new overlapped image. (Answer on page 189.)

c© 2000 by CRC Press LLC



An Application of RGB Images

To see how RGB images can be used, we look at how an image can be
filtered. An image of the Cat’s Eye Nebula, which is stored on disk as a
JPEG image, can be read into matlab using the imread command:

>> q = imread(’ngc6543a.jpg’);
>> size(q)
ans =

650 600 3

The result is a 650×600×3 matrix, where the “pages” represent respec-
tive red, green, and blue intensities. We can display the image by typing:

image(q)
axis image off

(See page 120 for a description of axis image.) On your screen this
appears as a colour image. Suppose we want to filter out the red com-
ponent. We do this by setting the first “page”, the red component of
the image, equal to zero. First we take a copy of the original so we can
later plot the two images side by side:

q_original = q;
q(:,:,1) = 0;
subplot(221)
image(q_original)
axis image off
subplot(222)
image(q)
axis image off

29.4 Example: Sonar

Let us look at some sonar data consisting of sound spectral power levels
measured as a function of frequency, direction of arrival, and time. Load
this data from the file sonar.mat:

>> load sonar

c© 2000 by CRC Press LLC



>> whos
Name Size Bytes Class
data 128x103x9 949248 double array
f 1x103 824 double array
t 1x9 72 double array
th 1x128 1024 double array

The data consists of spectra measured at 103 frequencies, 128 arrival
angles, and 9 time steps. Let us plot the fifth time sample:

colormap(flipud(gray))
imagesc(f,th,data(:,:,5))
axis xy
colorbar
xlabel(’Frequency, Hz’)
ylabel(’Arrival angle, degrees’)

Darker colours correspond to higher intensities. You can see two strong
sources at an angle of zero degrees and at frequencies of 85 and 170 Hz.
The fact that 170 = 2 × 85 might lead us to suspect that the 170 Hz
source is just the first harmonic of the 85 Hz source. Let us look at all of
the time samples together. This time we’ll cut off the lower intensities
by setting the minimum colour to correspond to an intensity of 5 (this
is the call to caxis in the following code). We also turn off the y-axis
tick labels for all but the first plot, and we make the tick marks point
outwards:10

for i = 1:9
subplot(3,9,i), imagesc(f,th,data(:,:,i)), axis xy
set(gca,’tickdir’,’out’)
if i == 1
ylabel(’Arrival angle, degrees’)
xlabel(’Frequency, Hz’)

end
if i>1, set(gca,’yticklabel’,[]), end
caxis([5 Inf]), title([’i_t = ’ num2str(t(i))])

end

10See Handle Graphics Sections 23 and 31 (pages 63 and 107).

c© 2000 by CRC Press LLC



You can see that over the 8 time steps, the arrival direction of the sound
has changed from −45 degrees to 30 degrees, and the two sources always
come from the same direction, strengthening our notion that the two are
in fact harmonics of the same source. Let us look at the time-frequency
and time-angle distributions of this data. The above output of the whos
command shows that the row index of data corresponds to the different
angles, so if we calculate the mean over the rows we will be left with a
time-frequency distribution:

>> time_freq = mean(data);
>> size(time_freq)
ans =

1 103 9

We are left with a 1 × 103 × 9 matrix of averages over the 128 arrival
angles. To plot the results we have to squeeze this to a two-dimensional
103× 9 matrix:

time_freq = squeeze(mean(data));
imagesc(t,f,time_freq)
axis xy
xlabel(’Time, s’)
ylabel(’Frequency, Hz’)

The frequency varies slightly with time. By averaging the rows of the
data matrix we can get a similar plot of the variation of arrival angle
with time:

time_angle = squeeze(mean(data,2));
imagesc(t,th,time_angle)
axis xy
xlabel(’Time, s’)
ylabel(’Arrival angle, degrees’)

29.5 Multidimensional Cell Arrays

Multidimensional cell arrays are just like ordinary multidimensional
arrays, except that the cells can contain not only numbers, but vectors,

c© 2000 by CRC Press LLC



matrices, strings, structures, or other cell arrays. For example, to create
a 2× 2× 2 cell array we can type:

a = {[1 2] ’hello’; 3 [5;6]};
b = {spiral(3) eye(2) ; ’good’ ’bad’};
c = cat(3,a,b);

The cat function concatenates arrays a and b along dimension number 3.
To visualize this array we can use celldisp and cellplot as we did
before. For example:

cellplot(c)

The contents of the cells are only indicated for the front “page” of the
multidimensional cell array. To see other pages you can include sub-
scripts into the cell array:

cellplot(c(:,:,2))

To access cells use curly bracket indexing and to access cell contents use
round bracket indexing:

>> c{1,2,2}
ans =

1 0
0 1

>> c{1,2,2}(1,:)
ans =

1 0

29.6 Multidimensional Structures

Multidimensional structures have dot-separated field names, but they
are accessed using an arbitrary number of subscripts. For example,

>> staff(2,1,2).name = ’Joe Bloggs’
staff =
2x1x2 struct array with fields:

c© 2000 by CRC Press LLC



name
>> staff(2,1,2).name(5:9)
ans =
Blogg

30 Saving and Loading Data

30.1 MATLAB Format

matlab’s internal standard for saving and loading data is the mat-file.
The save command saves all the variables in the workspace to a disk file
called matlab.mat:

>> a = 1;
>> b = 1:10;
>> str = ’hello’;
>> save
Saving to: matlab.mat

To save in a file with a different name, type:

save saved_data

To save only some of the variables, add their names:

save saved_data a b

Mat-files are binary files whose format is described fully in the mat-
lab documentation. Such a file is fully portable to matlab running on
another kind of computer. Information about the kind of computer that
matlab was running on when it saved the data is stored along with the
data. When matlab reads in a mat-file, it checks the type of computer
that the data were saved on and automatically performs any required
manipulations (byte swapping, for example).

To load data from mat-files use the load command:

>> clear
>> a = 1;
>> b = 1:10;
>> str = ’hello’;
>> save saved_data
>> clear
>> whos
>> load saved_data

c© 2000 by CRC Press LLC



>> whos
Name Size Bytes Class
a 1x1 8 double array
b 1x10 80 double array
str 1x5 10 char array

Grand total is 16 elements using 98 bytes

>> a
a =

1
>> b
b =

1 2 3 4 5 6 7 8 9 10
>> str
str =
hello

To save the data as readable text use the -ascii switch:

save saved_data_text -ascii

In this case the ‘.mat’ extension is not appended to the file name. The
ascii format is best kept for simple cases where your data is in the form
of a matrix (or vector or scalar). For example, in this case we have saved
the variables a, b, and c in a file that has the following contents:

1.0000000e+00
1.0000000e+00 2.0000000e+00 3.0000000e+00 ...
1.0400000e+02 1.0100000e+02 1.0800000e+02 ...

The first line is the variable a, the second line is the variable
b = [1 2 ... 10], and the third line is the string str = ’hello’ con-
verted to its corresponding ascii values:

>> double(str)
ans =

104 101 108 108 111

If you try to load this data using the load command you will get an error
message because the lines have different numbers of values. To load an
ascii file like this, you’ll have to write your own loading function using
the functions getl etc. described in the next section. If you save an
ascii matrix, however, you can load it in again without difficulty:

>> clear
>> q = spiral(3)

c© 2000 by CRC Press LLC



q =
7 8 9
6 1 2
5 4 3

>> save saved_data_text -ascii
>> clear
>> load saved_data_text
>> whos
Name Size Bytes Class
saved_data_text 3x3 72 double array

Grand total is 9 elements using 72 bytes

>> saved_data_text
saved_data_text =

7 8 9
6 1 2
5 4 3

The data is loaded as a variable with the same name as the file name
(no information about variable names are stored in the file).

30.2 Other Formats

You may be presented with some data written by another piece of soft-
ware that you want to load into matlab. In this case you have the
following options:

1. You can write a translation program in another language (C or
fortran for example) that reads in the data and then writes it to
another file that can be read into matlab—that is, a mat-file.

2. You can write a matlab-callable program (mex-file) that reads
in the data and returns appropriate variables in the matlab
workspace. This is a good option if you already have code to read
in the data.

3. You can use one of the functions for reading in standard file formats
for images, sounds, spreadsheets,11 and so on. These are:

dlmread Read ascii data file.
wk1read Read spreadsheet (WK1) file.
imread Read image from graphics file (JPEG, TIFF, etc.).

11For Lotus123 spreadsheets you can use the functions wk1read and wk1write. If
you use Microsoft Excel, the MathWorks’ Excel Link product allows direct commu-
nication between Excel and matlab. For example, Excel can be used as a front-end
for matlab; you can call matlab functions or graphics routines directly from Excel,
or you can access your Excel spreadsheet data directly from matlab.

cc© 2000 by CRC Press LLC



auread Read SUN (‘.au’) sound file.
wavread Read Microsoft WAVE (‘.wav’) sound file.
readsnd Read SND resources and files (Macintosh only).

4. You can write an m-file to read the data, using fopen, fread, and
associated functions.

In this section we consider item (4). The functions available are

Category Function Description
Open/close fopen Open file

fclose Close file

Binary I/O fread Read binary data from file
fwrite Write binary data to file

Formatted I/O fscanf Read formatted data from file
fprintf Write formatted data to file
fgetl Read line from file, discard newline

character
fgets Read line from file, keep newline

character

String Conversion sprintf Write formatted data to string
sscanf Read string under format control

File Positioning ferror Inquire file I/O error status
feof Test for end-of-file
fseek Set file position indicator
ftell Get file position indicator
frewind Rewind file

Temporary Files tempdir Get temporary directory name
tempname Get temporary file name

Following is an example of how some of these functions are used.

Example: fscanf

Suppose we have some data in a file formatted as follows:

10/06 11:18:00 -34.855 151.3057 216.4 70.91 -61.23 0.29
10/06 11:18:01 -34.85554 151.30649 214.8 71.38 -60.8 -0.88
10/06 11:18:02 -34.85609 151.30727 212.7 71.86 -60.64 -1.64
10/06 11:18:03 -34.85664 151.30807 210.8 72.4 -60.35 -1.67
10/06 11:18:04 -34.85717 151.30887 209.7 72.83 -60.06 -1.33

The data consists of a date string with a slash separator, a time string
with colon separators, and then six numbers separated by white space.
The function fscanf is used for reading formatted ascii data such as
this from a file. Suppose this file is called asc.dat. First, we must open
this file for reading using the fopen command:

c© 2000 by CRC Press LLC



fid = fopen(’asc.dat’);

The fopen command returns a file identifier, fid, which is an integer
that must be used as the first argument of any subsequent file-reading
or file-writing function that uses the file asc.dat. If the file cannot be
opened (for example, if it does not exist or exists in a directory that
cannot be found by matlab), then a value fid = -1 is returned. Once
the file is opened the data can be read using the following command:

>> a = fscanf(fid,’%d/%d %d:%d:%d %g%g%g%g%g%g’);
>> size(a)
ans =

55 1

The fscanf command has read in all the data up to the end of the file.
In the file are 11 numbers per line (2 numbers in the date, plus 3 in the
time, plus 6 other numbers), and there are 5 lines, for a total of 55 data
values; these have been read into a column-vector called a. The format
string ‘%d/%d %d:%d:%d %g%g%g%g%g%g’ means “look for two decimal
numbers separated by slashes, skip some whitespace, then look for three
decimal numbers separated by colons, skip some more whitespace, then
look for six general format floating point numbers” (see the section on
string conversion on page 79). fscanf reads in such numbers until the
end of the file, or you can put in a parameter to read in a certain number
of values. We only now need to reshape the vector a to a matrix having
11 columns

N = length(a)/11;
a = reshape(a,11,N)’;

The date and time values are in the first five columns:

>> a(:,1:5)
ans =

10 6 11 18 0
10 6 11 18 1
10 6 11 18 2
10 6 11 18 3
10 6 11 18 4

And the remaining values are

>> a(:,6:11)
ans =
-34.8550 151.3057 216.4000 70.9100 -61.2300 0.2900
-34.8555 151.3065 214.8000 71.3800 -60.8000 -0.8800
-34.8561 151.3073 212.7000 71.8600 -60.6400 -1.6400
-34.8566 151.3081 210.8000 72.4000 -60.3500 -1.6700
-34.8572 151.3089 209.7000 72.8300 -60.0600 -1.3300

c© 2000 by CRC Press LLC



31 Handle Graphics

Handle Graphics is matlab’s system of creating and manipulating com-
puter graphics. The system is “object oriented”, meaning that it is based
around a hierarchy of objects that represent various graphical elements.
These elements all have a certain state, or “appearance”, defined by a list
of handle properties, and they can be changed by a number of different
methods. The properties of objects can be set at creation or they can
be modified afterwards. The complete set of graphical objects is shown
in this diagram.

Graphical objects lower down in the hierarchy inherit many of their
properties from those higher up. Objects that are immediately below
another in the hierarchy are said to be that object’s children; the object
immediately above another is said to be that object’s parent.

Rich graphics contain many of these elements, with the design
enhancing the overall utility of the display. For example, this diagram
shows some common Handle Graphics objects. The frame around the

c© 2000 by CRC Press LLC



display and the enclosed area is the Figure object; that is, the window on
the screen in which the graphics are displayed. Many Figure objects can
exist at the same time, and the Figure’s handle is the number shown in
the window’s title bar (usually it is an integer, 1, 2, . . . ). Above Figure
objects in the hierarchy is the Root object, which is the entire com-
puter screen. Only one of these can exist, and its handle is the number
zero. In this Figure are four Axes objects (one is invisible): two are
three-dimensional and two are two-dimensional. The top left-hand Axes
object contains two Text objects (‘Focus’ and ‘y = x2’), and two Line
objects (the parabola and the single point marked by an ‘x’). These two
Line objects look different because they have different “LineStyle” and
“MarkerStyle” properties; more on this later.

31.1 Get and Set

The commands get and set are used to find out about the state of
graphics elements (get) and to change those elements’ properties (set).
For example, we will create a simple plot, and use get and set to change
some of the plot’s properties. The plot is simply:

t = linspace(0,10,50);
plot(t,sin(t))

Suppose we want to plot the points themselves as well as the line joining
them. We could create a new plot by typing plot(t,sin(t),’-o’), but
we can do the same thing by first getting the handle of the Line object
and setting its Marker property, which is initially ’none’, to o:

h = get(gca,’children’);
set(h,’Marker’,’o’)

The command gca that appears here as an argument to the get com-
mand is the Get Current Axes command: it returns the handle of the
current Axes object, where “current” means the last Axes that were
plotted to or clicked on with the mouse. We could have combined the
two commands and eliminated the need to actually assign a value for
the current Axes’ handle:

set(get(gca,’children’),’Marker’,’o’)

In this case there is only one “child” of the current axes; if there were
more, then a vector of handles would be returned and each would have
its Marker property changed to ’o’.

c© 2000 by CRC Press LLC



There are usually a great many properties associated with a given
graphical object. For example the x- and y-axis limits are given by two
separate properties, xlim and ylim. Continuing with the example above:

>> get(gca,’xlim’)
ans =

0 10
>> get(gca,’ylim’)
ans =

-1 1

The locations of the x-axis tick marks are another property:

>> get(gca,’xtick’)
ans =

0 2 4 6 8 10

The width of the line used to draw the axes is

>> get(gca,’linewidth’)
ans =

0.5

(Your line width might be different.) There are many more. To get
a complete list of the properties of a graphical object, leave out the
property argument in a call to get. For example, the properties of the
Axes object are

>> get(gca)
AmbientLightColor = [1 1 1]
Box = on
CameraPosition = [3.5 0 17.3205]
CameraPositionMode = auto
CameraTarget = [3.5 0 0]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
(and so on)

And the properties of a Line object are (carrying on from the sine-wave
example above):

>> get(h)
Color = [1 0 0]
EraseMode = normal
LineStyle = -
LineWidth = [0.1]
Marker = o
MarkerSize = [6]

c© 2000 by CRC Press LLC



MarkerEdgeColor = auto
(and so on)

In the example above we used get to get the handle of the line after
we created it. If you know that you will want to modify an object’s
properties, you can assign its handle at creation time by using an output
variable. Our example then becomes:

h = plot(t,sin(t));
set(h,’Marker’,’o’)

This technique works for all of the plotting commands, surf, semilogx,
image, and so on.

Another way to set object properties is to call a creation function
with a list of property/value pairs at the end of the argument list. Each
kind of graphical object (except the Root object) can be created by
typing a command with the same name as the object. For example, let
us create a set of axes suitable for plotting range–depth data:

axes(’Position’,[.1 .5 .8 .08],’TickDir’,’out’,...
’YDir’,’reverse’,’xax’,’top’)

This call to the axes function has specified the position property so that
we get a short, wide set of axes; the direction of the tick marks so that
they stick out of the box instead of into it; the direction of the y-axis
is reversed, and the location of the x-axis is on top. The capitalisation
of the property names is not important. The name of a property need
not be spelled out in full: you can abbreviate it to the shortest unique
name. In the above call to axes, for example, the xax property is the
XAxisLocation.

If you are unsure of the allowed values for a property, you can get a
list of them by typing set without actually setting a value. For example,
suppose you know there is an Axes property called XAxisLocation but
you do not know whether to type ’above’, ’top’, or ’up’ to get the
x-axis drawn at the top. The solution is to type:

>> set(gca,’XAxisLocation’)
[ top | {bottom} ]

The allowed values for the XAxisLocation property are top and bottom.
Curly brackets are put around the default setting. If you type set

c© 2000 by CRC Press LLC



without specifying a property you get a list of all the allowed values
for every available property:

>> set(gca)
AmbientLightColor
Box: [ on | {off} ]
CameraPosition
CameraPositionMode: [ {auto} | manual ]
CameraTarget
CameraTargetMode: [ {auto} | manual ]
(and so on)

The properties for which you can choose values from among a short
list of alternatives will be shown. Other properties (for example, the
CameraPosition property above) can take on any numerical value, so a
list of alternatives is not shown. To get the format of such a property
(is the CameraPosition a scalar or a vector?) you can get its current
value:

>> get(gca,’CameraPosition’)
ans =

0.5000 0.5000 9.1603

Some properties are common to all objects. For example, all objects
have a “Type” property that specifies what kind of object it is (“Axes”,
“Figure”, “Patch” and so on), a “Parent” property (sometimes empty),
a “Visible” property that determines whether you can see it or not,
and a “Color” property (fairly obvious). Other properties are unique
to a particular kind of object. For example, only line objects have a
“LineWidth” property, and only “Figure” objects have an “InvertHard-
Copy” property.

Let us now consolidate these ideas with a few examples.

Example: Undo

When building a plot from the command line, it is good to have an
“oops” function that gets rid of the last thing you plotted. Let us start
by plotting a labelled parabola defined by f(x) = x2.

x = -1:.01:1;
f = inline(’x.^2’);
clf
plt(x,f(x))

We use the text command to label the parabola.

c© 2000 by CRC Press LLC



text(-.7,f(-.7),’f(X)’)

But we have made a mistake: the “x” should be lower case. We try to
correct it by issuing another text command with a lower case “x”:

text(-.7,f(-.7),’f(x)’)

But this has printed over the top of the previous label, making a mess.
Without starting again, we can use the delete function to delete the
text objects, once we know their handles. We can get a list of the handles
of the line and the text objects by getting all the children of the current
axes:

>> h = get(gca,’children’)
h =

19.0001
18.0001
11.0005

The variable h is a three-element column vector (the actual values are
not important). These are the handles corresponding to the Line object
(parabola) and the two Text objects. But which of them is the Line
object and which are the Text objects? We can get the object types
corresponding to these handles by typing:

>> types = get(h,’type’)
types =

’text’
’text’
’line’

(The variable types is returned as a cell array.) A parent’s children
are always listed in reverse age order: the most recently drawn object
appears first—youngest first, oldest last. This tells us that the first two
elements of the vector h correspond to the text objects ‘f(X)’ and ‘f(x)’,
in that order, and the third element corresponds to the parabolic line.
We can delete the two text objects by typing:

c© 2000 by CRC Press LLC



delete(h(1:2))

We can now issue the correct text command:

text(-.7,f(-.7),’f(x)’)

Let us write an m-file to do this automatically. We’ll call it oops. When
we call oops without any argument, it should delete the last object
drawn in the current axes. When called with an integer argument, n,
oops should delete the last n objects drawn in the current axes. The
following m-file is a possible solution. (The function nargin returns the
number of arguments with which a function was called.)

function oops(N)

% OOPS Delete the last object plotted on the axes.
% Repeating "oops" erases farther back in time.
% OOPS does not work for title and labels; to
% erase these, use "title(’’)" or "xlabel(’’)"
if nargin = = 0 N = 1; end
h = get(gca,’children’);
delete(h(1:N));

Let us see if oops works:

clf
plt(x,f(x))
hold on
plt(x,f(x/2))

Now we do an oops to get rid of the shallow parabola,

oops

Now plot the shallow one again with a different line style:

c© 2000 by CRC Press LLC



plt(x,f(x/2),’--’)

Let us try calling oops to delete more than one object. (We use a string
cell array in the following call to text to label the two curves at once.)

x = -1:.01:1;
f = inline(’x.^2’);
clf
plt(x,f(x),x,sqrt(f(x)))
xt = [-.5 -.5];
yt = [f(-.5) sqrt(f(-.5))];
text(xt,yt,{’ |x|’ ’ x^2’})

Now get rid of the misplaced labels and try again:

oops(2)
text(xt,yt,{’ x^2’ ’ |x|’})

Example: Figure Positioning

In this example we suppose that we want to set up some windows for
an application that will have two graphics displays and a graphical user
interface. We want the two output displays to occupy the bottom half
of the screen and the GUI should occupy the top left-hand corner. We
use get and set to control the position of our figures. Let us create a
figure and get its “position” property:

figure
get(gcf,’position’)
ans =

291 445 560 420

But what do these numbers mean? To find out we need to get the units
of measurement of this position:

>> get(gcf,’units’)
ans =
pixels

Hmm . . . . What are the available units of measurement?

c© 2000 by CRC Press LLC



>> set(gcf,’units’)
[ inches | centimeters | normalized | points | pixels ]

We want to set the units to be normalized: the extremities of the screen
will correspond to zero and one.

>> set(gcf,’units’,’norm’)
>> get(gcf,’units’)
ans =
normalized

The position of the figure in these new normalized units is

>> get(gcf,’position’)
ans =

0.2517 0.4933 0.4861 0.4667

This position vector is of the form [left bottom width height]. To
create the two figures we first set the position property of this figure to
occupy the lower left corner of the screen:

set(gcf,’pos’,[0 0 .5 .5])

We create the other figure and set its position property at the same time:

figure(’units’,’norm’,’pos’,[.5 0 .5 .5])

Exercise 14 If you look carefully at the two figures you have cre-
ated in this example, you might notice that the borders of the win-
dows overlap. The reason is that the figure’s position property
only applies to the area contained within the figure and not to the
borders supplied by the computer’s windowing system. Assume
that these borders are 5 pixels wide on the left, right and bottom
edges and 10 pixels wide on the top edge. Write some code to cre-
ate three figures occupying exactly the bottom-left, bottom-right,
and top-right quarters of the screen, with no gap between them or
overlap. (The command close all might come in handy when
experimenting with figure creation.) (Answer on page 190.)

c© 2000 by CRC Press LLC



Example: findobj

The findobj command is used to search through the graphical hierarchy
for objects that satisfy particular property values. For example, generate
a sphere, a cylinder, and a cone:

subplot(131)
sphere
axis equal
ax = axis;
subplot(132)
cylinder
axis equal
axis(ax)
subplot(133)
cylinder([1 0])
axis equal
axis(ax)

The three shapes are represented by three surface objects within three
axes objects. To get the surface handles by getting the children of the
three axes you would need to type three calls to get; one for each of the
axes:

axes_handles = get(gcf,’children’);
surf_handle(1) = get(axes_handles(1),’children’);
surf_handle(2) = get(axes_handles(2),’children’);
surf_handle(3) = get(axes_handles(3),’children’);

But an easier way to get the surface handles is to use the findobj
command. Here we use it to find all the objects in the current figure
whose type property has the value surface:

surf_handle = findobj(gcf,’type’,’surface’);

We can now work with the vector of surface handles to alter all the
surfaces at once. Let us make them transparent:

set(surf_handle,’FaceColor’,’none’)

c© 2000 by CRC Press LLC



31.2 Default Object Properties

Every graphical object has a set of default property values, so that you
are not obliged to spend time thinking about every detail of every graph-
ical object you draw. For example, when you type plot(1:10) you do
not necessarily want to think about how thick the line should be, where
the tick marks should go, how long the tick marks should be, what colour
the axes should be, what matlab should do when you click on the line,
etc.

When matlab creates a graphical object it searches through the
successive ancestors (parent, grandparent, etc.) until it either finds a
default value defined by the user or a factory-set value. For example,
you could define your own default line width for a figure, in which case
all new lines drawn in any axes in that figure would have the new line
width. Or you could set a default line width in an axes object: such a
default would affect lines drawn in that set of axes, but lines drawn in
another set of axes would have their widths set by a search through their
own, different set of ancestors.

To get a list of factory-defined settings, issue the command
get(0,’factory’). You cannot change the factory settings, but you
can change the default settings. To get a single factory-defined set-
ting, use the get command, giving it the property name starting with
factory, followed by the name of the graphical object (figure, axes,
etc.), followed by the name of the property. For example, the factory
paper type used for printing figures is

>> get(0,’factoryfigurepapertype’)
ans =
usletter

Factory settings are not necessarily those that will be used; they may be
over-ridden by setting a default value. Default values may be changed
for your matlab installation in either the matlabrc.m file or in your
personal startup.m file.

To get a list of default settings, issue the command get(Handle,
’Default’), where Handle is the handle of the object you are interested
in. Setting a default value at the Root level (Handle = 0) will affect all
objects of that type.

To set a default value you use the set command, giving it the handle
of the object whose children (grandchildren, etc.) you want affected. You
create a default property name by creating a three-part string:

1. Start with the word Default;

2. Add the name of the object you want affected (for example, Line,
Surface, Text);

c© 2000 by CRC Press LLC



3. Add the property you want to set for this type of object (for exam-
ple, LineWidth, FaceColor, FontSize).

We fix ideas with an example.
Suppose we do not like the default figure settings that produce plots

in a white Axes box on a gray Figure background. Instead you want
transparent Axes plotted on a parchment-coloured background. You
also want to increase the size of the font used to label the axes. To
set these preferences for every graphic you draw, change these default
properties:

set(0,’DefaultFigureColor’,[0.95 0.9 0.8]) % parchment
set(0,’DefaultAxesColor’,’none’)
set(0,’DefaultAxesFontSize’,12)

(Capitalization is not essential.) The Axes font size setting affects all
text associated with Axes objects: tick labels, axis labels and titles, but
not Text objects or text on uicontrols. If you want to change these as
well, you could issue the commands:

set(0,’DefaultUIControlFontSize’,12)
set(0,’DefaultTextFontSize’,12)

These sorts of commands often go in your startup.m file, where they
are executed each time matlab starts.

31.3 Current Objects

In matlab graphics there are alway three “current” objects: the current
Figure, the current Axes, and the current Object. The current Figure or
Axes objects are the ones that the next gaphical object will be drawn in.
The current Object is the last one drawn or clicked on with the mouse.
Figures or axes can also be made current by clicking on them with the
mouse. We have already used the functions that return the handle of the
current Axes object (gca) and the current Figure object (gcf). There
is also a gco command that returns the handle of the current Object.
These three commands are essentially abbreviations of:

gcf: get(0,’CurrentFigure’)
gca: get(gcf,’CurrentAxes’)
gco: get(gcf,’CurrentObject’)

Exercise 15 Can you explain the difference between the follow-
ing two methods of getting the current figure handle after doing a
close all? (Answer on page 191.)

>> close all

>> get(0,’currentfigure’)

c© 2000 by CRC Press LLC



ans =

[]

>> gcf

ans =

1

Exercise 16 The m-file objects.m creates a graphic with
assorted objects on it. Run objects and try clicking on the objects
to make them current. Investigate what happens when you do
get(gco,’type’), or delete(gco). (Answer on page 191.)

32 Axes Effects

32.1 The Axis Command

Axes objects have many properties you can modify to alter details such
as tick mark labels, positioning of axes, direction of tick marks, and so
on. These can be changed using the get and set commands. You can
also change the way axes behave using the axis command, which is an
easy way to set some axis and related commands to achieve frequently
sought effects. Let us look first at the axis command. These are the
available options (adapted from the help entry):

axis([xmin xmax ymin ymax]) sets scaling for the x- and y-axes on
the current plot.

axis([xmin xmax ymin ymax zmin zmax]) sets the scaling for the x-,
y-, and z-axes on the current 3-D plot.

v = axis returns a row vector containing the scaling for the current
plot. If the current view is two-dimensional, v has four components;
if it is three-dimensional, v has six components.

axis auto returns the axis scaling to its default, automatic mode where,
for each dimension, “nice” limits are chosen based on the extents
of all line, surface, patch, and image children.

axis manual freezes the scaling at the current limits, so that if hold is
turned on, subsequent plots will use the same limits.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that the
axis fills the position rectangle. This option only has an effect if
PlotBoxAspectRatioMode or DataAspectRatioMode are manual.

axis ij puts matlab into its “matrix” axes mode. The coordinate
system origin is at the upper left corner. The i axis is vertical and

c© 2000 by CRC Press LLC



is numbered from top to bottom. The j axis is horizontal and is
numbered from left to right.

axis xy puts matlab into its default “Cartesian” axes mode. The coor-
dinate system origin is at the lower left corner. The x axis is hor-
izontal and is numbered from left to right. The y axis is vertical
and is numbered from bottom to top.

axis equal sets the aspect ratio so that equal tick mark increments on
the x-, y-, and z-axis are equal in size. This makes sphere(25)
look like a sphere, instead of an ellipsoid.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axis box a square.

axis normal restores the current axis box to full size and removes any
restrictions on the scaling of the units. This undoes the effects of
axis square and axis equal.

axis off turns off all axis labeling (including the title), tick marks, and
background.

axis on turns axis labeling, tick marks and background back on.

axis vis3d prevents matlab from stretching the Axes to fit the size
of the Figure window or otherwise altering the proportions of the
objects as you change the 3-D viewing angle.

Let us look at some quick examples. Create sine and cosine compo-
nents and plot a circle:

t = linspace(0,2*pi);
x = cos(t);y = sin(t);
plot(x,y)

The default behaviour here is such that the data are stretched to fill the
rectangular Axes position. To make it look like a circle use:

axis equal

To get the top half of the circle:

axis([-1 1 0 1])

c© 2000 by CRC Press LLC



Some new data now:

t = linspace(0,1);
x = humps(t);
y = humps(t.^2)/2;
plot(x,y)

The Axes limits have been set to the next round number in the series of
tick marks. To change the scale so that the data fill the whole plot:

axis tight

To zoom in on the loop:

axis([10 25 5 12])

To zoom back out again:12

axis auto

Now let us look at some image data:

clf
load clown
image(X)
colormap(map)

The y-axis here increases from top to bottom: the ij axis mode is the
default for images. To get the y-axis increasing from bottom to top:

axis xy

To go back again:
12Or you can use the zoom function, which initiates a mouse-based zoomer.

0 50 100
0

20

40

60

20 40 60 80

10

20

30

40

10 15 20 25

6

8

10

12

0 50 100
0

20

40

60

100 200 300

50

100

150

200

100 200 300

50

100

150

200

c© 2000 by CRC Press LLC



axis ij

Usually images like this do not need the axes:

axis off

A three-dimensional example now:

clf
sphere
colormap(fitrange(gray,.5,1))
view(5,5)
axis equal

matlab has drawn a biggish sphere because the near perpendicular view-
point allows the axes to fit within the default plotting area. If we change
the viewpoint:

view(45,45)

the sphere is drawn smaller because the axes are more oblique to the
plane. Now go back to the first viewpoint, switch on the vis3d axis
behaviour, and then return to the second viewpoint:

view(5,5)
axis vis3d
view(45,45)

The sphere is kept a constant size (cf. plot before last, above), which
forces the axes to extend beyond the plotting area (and, in this case,
beyond the Figure area too). You should turn on axis vis3d whenever
you are viewing three-dimensional objects from different angles. In such
situations the axes are usually superfluous anyway, so why not get rid
of them?

axis off

c© 2000 by CRC Press LLC



The axis command works by changing various properties of Axes
objects. If you look inside the axis, function (type axis) you will
see many set commands used to change Axes properties. As we said
before, the axis command gives you an easy way to change frequently
used Axes features. Some Axes properties are not part of the axis
command’s functionality; you must change them yourself. For example,
when drawing physical objects rather than mathematical abstractions,
realism is improved by allowing perspective distortion. Compare these
two views of a ship seen from about wharf height:13

clf
subplot(221);
ship
axis off
pos = [11 2.3 .55];
set(gca,’CameraPosition’,pos)
subplot(223);
ship
set(gca,’CameraPosition’,pos,...
’Projection’,’Perspective’)
axis off

Here ship is an m-file on disk that draws the patches representing the
ship.

As another example, here is what you might see if you were an ant
crawling along a doughnut (the command torus is part of the companion
software to this book):

clf
[x,y,z] = torus(.5,90,1);
surfl(x,y,z,[150,50],[0 1 0 0])
colormap(fitrange(gray,0.5,1))
axis equal
axis off
axis vis3d
pos = [[1 1]*1.1 .7];
set(gca,’CameraPosition’,pos)
set(gca,’CameraTarget’,[0 .8 .4])
set(gca,’Projection’,’Perspective’)

Exercise 17 When you have driven past a vineyard or an
orchard, have you ever noticed the many directions in which the
plants seem to line up? Create an evenly spaced grid of points,
and see if you can get matlab to display the same kind of effect.
(Answer on page 191.)

13The working of ship.m is explained in Section 37 on three-dimensional modelling,
see page 160.

c© 2000 by CRC Press LLC



32.2 Tick Marks and Labels

matlab’s default behaviour regarding tick marks is to put a reasonable
number of ticks at evenly spaced, round number increments that at least
span the data. You can change the tick marks using the various tickmark
properties:

XTick = [1 2 3 4 5] TickLength = [0.01 0.025]
XTickLabel [’a|b|c|d|e’] TickDir = in
XTickLabelMode = manual TickDirMode = auto
XTickMode = manual

The properties in the first column have equivalents for the y and z axes;
the properties in the second column affect the ticks on all axes.

The TickLength property must be set to a two-element vector;
the first element is the length of tickmarks used for two-dimensional
plots and the second element is the length of tickmarks used for three-
dimensional plots. The units are normalised to the length of the longest
axis:
subplot(221)
plt(1:10)
subplot(222)
plt(1:10)
set(gca,’ticklength’,[.06 .1])

It is more common to want to change to location and labels of the
tickmarks. Here are some tickmarks tied to the data:
x = sort(rand(1,5));
plt(x)
set(gca,’ytick’,x)
axis tight
grid

Here is a plot of a sine curve with critical points as tick marks:

t = linspace(0,360);
y = sin(t*pi/180);
xt = unique([0:45:360 30:30:360]);
yt = unique(sin(xt*pi/180));
plt(t,y)
axis([0 360 -1 1])
set(gca,’xtick’,xt,’ytick’,yt,’GridLineStyle’,’-’)
grid

c© 2000 by CRC Press LLC



The tick labels can be either numbers or strings. You have a choice of
the following formats:

set(gca,’XTickLabel’,{’1’;’10’;’100’}
set(gca,’XTickLabel’,’1|10|100’)
set(gca,’XTickLabel’,[1;10;100])
set(gca,’XTickLabel’,0:2)
set(gca,’XTickLabel’,[’1 ’;’10 ’;’100’])

In the second format, the modulus signs “|” separate the tick labels. In
the fifth format you cannot replace the semicolons by commas; if you do
you will be specifying a single tick label equal to the string ‘1 10 100’,
which will be used to label all the tick marks. In another example, here
is how to get months of the year on an x axis:14

y = [0 3 1 6 5 9];area(y)
str = ’Jan|Feb|Mar|April|May|June’;
set(gca,’xtick’,1:6,...
’xticklabel’,str,...
’xgrid’,’on’,’layer’,’top’)

If you specify fewer tick mark labels than there are tick marks, the labels
are recycled:

plt(1:10)
set(gca,’ytick’,1:10,...

’yticklabel’,’a|b|c’)

If you want only some tick marks labeled, include blanks (or nothing)
between the modulus signs in the ticklabel setting:

plt(1:4)
set(gca,’xtick’,1:.2:4,...
’xticklabel’,’1|||||2|||||3|||||4’)

It can sometimes be a good idea to turn off the tick mark labels com-
pletely. For example, when stacking plots that cover the same range of
x values:

14The datetick function can also be used in conjunction with the date handling
utility datenum.

Jan Feb Mar April May June
0

2

4

6

8

10

0 5 10

a
b
c
a
b
c
a
b
c
a

1 2 3 4
1

2

3

4

c© 2000 by CRC Press LLC



clf
axes(’pos’,[.2 .1 .7 .4])
x = linspace(0,2);
plt(x,humps(x))
axis tight
zeroaxes
axes(’pos’,[.2 .5 .7 .4])
plt(x,cumsum(humps(x)))
set(gca,’xticklabel’,’’)
axis tight

32.3 Subplots

Multivariate data can be displayed by plotting arrays of subplots. For
example, a column of x–y plots can represent y plotted as a function of
x and z. A sequence of such columns can represent another variable,
so that you can see y plotted as a function of x, z, and t. matlab’s
subplot command is an easy way of generating arrays of plots, but you
have no control over the precise positioning; the gap between the plots,
for example, is not controllable. The m-file pickbox (see companion
software) is designed for such cases. You give pickbox the number of
rows and columns you want in your array of plots, and pick out the
number of the plot you want (in the same way as for subplot). You can
also specify the amount of x and y space between the plots as well as the
amount of white space around the entire plot array. This space can be
used for row and column labels. In the following example we generate
samples of the function

B(x, y, t) = (1− e−(2x)2−y2
)/t

over a three-dimensional grid of x, y, and t. We display the samples by
drawing repeated plots of B as a function of x and arraying them over
a matrix of rows and columns indexed by y, and t, respectively:15

xv = -1:.1:1;

yv = -1:.2:1;

tv = 1:5;

[x,y,t] = ndgrid(xv, yv, tv);

B = (1 - exp(-(2*x).^2 - y.^2))./t;

Nx = length(xv);

Ny = length(yv);

Nt = length(tv);

clf

count = 0;

top = max(max(max(B)));

15The code is given in the companion m-file plotbxyt.

c© 2000 by CRC Press LLC



for yi = 1:Ny

for ti = 1:Nt

count = count + 1;

pos = pickbox(Ny,Nt,count,0,0,.2);

ax = axes(’pos’,pos,...

’ylim’,[0 top],...

’nextplot’,’add’,...

’visible’,’off’);

plt(xv,B(:,yi,ti),’.’) % Data

plt([-1 -1 1],[1 0 0],’k:’) % Dotted frame

if count~ = 51

set(gca,’xticklabel’,’’,...

’yticklabel’,’’)

end

if count = = 51

axis on

xlabel(’x’)

ylabel(’B’)

end

if count<6

text(0,1.2,[’Time = ’ ...

num2str(tv(ti)) ’ s’],...

’HorizontalAlignment’,’center’)

end

if rem(count-1,5) = = 0

text(-3,0.5,[’y = ’ ...

num2str(yv(yi))])

end

end

end

For these kinds of plot arrays it is essential to keep the axes’ scales
fixed for all the plots. The axes’ scales are fixed by setting the YLim

c© 2000 by CRC Press LLC



property to [0 top] in the call to the axes command (the x scales are
the same here). The if statement containing the test count<6 ensures
that only the plots in the top row—plot numbers 1, 2, . . . , 5—produce
the text (created using text commands) on the top row of plots, which
indicate the time values for each column. The if statement containing
the test rem(count-1,5) = = 0 ensures that only the plots in the left
column—plot numbers 1, 6, 11, . . . , 51—produce the text indicating the
y values for each row.

32.4 Double Axes

To plot more than one set of axes on the same plotting area you can use
the plotyy function, which puts separate axes on the left and right of
the plot:

f = inline(’exp(-x.^2)’);
g = inline(’1 - exp(-x)’);
x = linspace(0,1);
plotyy(x,f(x),x,g(x))

The left hand y axis refers to the function f and the right hand y axis
refers to the function g.

Another double-axis technique is to draw axes with two sets of units.
The trick here is to create a second set of axes that is very thin:

subplot(211)
x = linspace(0,1);
plt(x,humps(x))
xlabel(’Range, km’)
p = get(gca,’position’);
axes(’pos’,[p(1) .45 p(3) .01],...
’xlim’,[0 1]/1.609)
xlabel(’Range, miles’)

32.5 Axes Labels

The various axis-label commands act as expected:

plot(1:3)
xlabel(’x axis’)
ylabel(’y axis’)
title(’Title’)

c© 2000 by CRC Press LLC



These commands change special Text objects that are associated with
the Axes object:

>> yl = get(gca,’ylabel’);
>> get(yl,’String’)
ans =
y axis
>> set(yl,’Rotation’,0)
>> pos = get(yl,’pos’);
>> set(yl,’pos’,[0.35 3])

To be friendly to the viewers of your graphs, you should always place
your y labels horizontally. Multi-line labels can be done easily using cell
arrays:

>> str = {’The answer is below:’;
[’It is ’ num2str(pi)]}
str =

’The answer is below:’
’It is 3.1416’

>> title(str)

33 Text in Graphics

The commands xlabel, ylabel, zlabel, and title are used to put text
in special places around the plot. A general way to place text is to use
text commands:

x = 0:.01:2;
plt(x,humps(x))
axis tight
[ym,i] = max(humps(x));
str = [’Maximum value: ’ ...

num2str(ym)];
text(x(i),ym,str)

The first two inputs to text define the x and y coordinates of the text’s
reference point. (The gtext command allows you to define the reference
point with the mouse.) You can give a third, z-value, to the text com-
mand to place text on three-dimensional plots. Issuing text commands
creates Text objects, which have a great many properties (type get(h),
where h is the handle of a Text object). Often you want to change the
way the text is aligned to its reference point. By default, text is hori-
zontally aligned such that the left-hand edge is near the reference point,
and vertically aligned such that the middle of the text is near the refer-
ence point. The following diagrams show the effect of changing a Text

c© 2000 by CRC Press LLC



object’s HorizontalAlignment and VerticalAlignment properties to
the indicated values:

HorizontalAlignment

VerticalAlignment

These text objects all have the reference point at (0.5,0.5), indicated by
the cross on each little plot.

33.1 Symbols and Greek Letters

The best way to put symbols and Greek letters in your text is to use
matlab’s implementation of the TEX (or LATEX) syntax. TEX is a
computer typesetting system for producing high-quality mathematical
material. (This book was produced using TEX.) In TEX you produce
symbols and Greek letters by typing a backslash “\” followed by the
name of the letter or symbol:

∆ \Delta ◦ \circ κ \kappa ρ \rho

Γ \Gamma ♣ \clubsuit λ \lambda → \rightarrow

� \Im ∼= \cong ← \leftarrow σ \sigma

Λ \Lambda ∪ \cup ↔ \leftrightarrow ∼ \sim

Ω \Omega δ \delta ≤ \leq ♠ \spadesuit

Φ \Phi ♦ \diamondsuit µ \mu ⊂ \subset

Π \Pi ÷ \div �= \neq ⊆ \subseteq

Ψ \Psi ↓ \downarrow � \ni ⊃ \supset

� \Re ε \epsilon ν \nu ⊇ \supseteq

Σ \Sigma ≡ \equiv ø \o τ \tau

Θ \Theta η \eta ω \omega θ \theta

Υ \Upsilon ∃ \exists ⊕ \oplus ↑ \uparrow

Ξ \Xi ∀ \forall � \oslash υ \upsilon

ℵ \aleph γ \gamma ⊗ \otimes ς \varsigma

α \alpha ≥ \geq ∂ \partial ϑ \vartheta

≈ \approx ♥ \heartsuit φ \phi ℘ \wp

β \beta ∈ \in π \pi ξ \xi

• \bullet ∞ \infty ± \pm ζ \zeta

∩ \cap
∫

\int ∝ \propto

χ \chi ι \iota ψ \psi

Here are some examples:

c© 2000 by CRC Press LLC



x = linspace(0,2);
y = 1./(1-x);
plt(x,y)
text(1,75,...
’ y \rightarrow \pm\infty’)

The TEX syntax of ‘_’ and ‘^’ to produce subscripts and superscripts is
also supported:

t1 = linspace(-5,5);
y = cos(t1.^2);
plt(t1,y)
title(’cos(t_1^2)’)

If the sub- or superscript is more than one character, use curly brackets
to define the scope:

title(’cos(t_{i,j}^{2m + 1})’)

For degree symbols (e.g. 30◦), use \circ. (In TEX you would use \circ
in a superscript, $30^\circ$, but doing that in matlab makes the
degree symbol too high and too small.)

title(’Plot for \alpha = 30\circ’)

33.2 Symbols in Tick Labels

To put TEX symbols in tick mark labels you cannot use the commands of
the xlabel family; they currently do not interpret the TEX syntax. How-
ever, you can replace the default ticklabels with Text objects that contain

cc© 2000 by CRC Press LLC



the required symbols. The m-file ticklabelx does such a replacement.
You might like to look at it in your editor to see how it works. To use
it, you supply a list of tick marks with the TEX symbols included:

x = linspace(0,pi,99);
plt(x,sin(x))
xt = 0:pi/6:pi;
set(gca,’xtick’,xt)
axis tight
tikstr = {’0’,’\pi/6’,’\pi/3’,...
’\pi/2’,’2\pi/3’,’5\pi/6’,’\pi’}
ticklabelx(tikstr)

33.3 Global Object Placement

Complex displays might contain many Axes or other objects and you may
want to place text, lines, or other objects globally without reference to
any particular Axes object in the display. These objects are children of
Axes objects, so they must be placed relative to some Axes object, but
we can use a trick. The trick is to create an invisible axes object that
covers the entire display and place the required objects inside that. For
example, consider the following technique to create a global title to a
series of subplots:

subplot(221),subplot(222)
subplot(223),subplot(224)
axes
str = ’Here are four subplots’;
text(.5,1.05,str,...
’ve’,’bo’,’ho’,’c’)
axis off

Here, the last four inputs to the text command are abbreviations for
the title alignment: ’VerticalAlignment’, ’bottom’, ’Horizontal-
Alignment’, ’center’.

Exercise 18 Why not use title instead of text in the previous
example? (Answer on page 192.)

Another way to put text on a graphic independently of the data plotted
is to use normalized position units. The reference point of the text will
then refer to the area occupied by the axes, independently of the data
plotted. Suppose, for example, that you want to print a parameter on a
plot whose axes scaling might change.

c© 2000 by CRC Press LLC



x = linspace(0,1,200);
y = humps(x);
subplot(221)
plt(x,y)
text(.5,1,’Scale = 1’,...

’units’,’normalized’)
subplot(222)
plt(x/7,y/7)
text(.5,1,’Scale = 1/7’,...

’units’,’normalized’)

Notice that the text commands here use the same positional references,
being x = 0.5 and y = 1 in normalized units.

Another example shows a plot and a zoomed portion:
load clown
subplot(221)
imagesc(X)
colormap(map)
axis image off
hold on
plot([150 230 230 150 150],...

[100 100 60 60 100])
subplot(223)
imagesc(X(60:100,150:230))
axis image off
axes
axis manual
hold on
x = [.195 0 NaN .301 .419];
y = [.793 .348 NaN .793 .348];
plt(x,y)
axis off

The statement axis manual is needed here to freeze the axes limits at
their default values. To produce the x and y data for the zoom-lines,
I used the ginput command to obtain the coordinates with the mouse.
The ginput command gets input from the current axes. So if you want
to add more points to the invisible axis, you must make it visible again,
otherwise your mouse click will be interpreted with reference to the last
plotted (visible) axes.

34 Graphical User Interfaces

A graphical user interface (GUI) is a system of graphical elements that
allow a user to interact with software using mouse operations. There are
three ways to make graphical user interfaces:

c© 2000 by CRC Press LLC



1. Use graphical elements that serve no other purpose than to allow
the user to interact (virtual buttons, switches, knobs, sliders, pop-
up menus, and so on). (See demo for examples of these.)

2. Use graphical elements that perform a dual function: display data
and interaction. For example, a plotted line can both display data
and can alter data when a user clicks on the line and drags it to a
new position. (See sigdemo1 in the signal processing toolbox for
an example.)

3. Use mouse-downs, drags, and mouse-ups anywhere within the Fig-
ure to perform an action. (For example, typing rotate3d whenever
you are displaying a three-dimensional plot allows you to click and
drag to change the viewpoint.)

The first group of GUI elements (buttons, etc.) are the easiest to work
with, so we deal with those first.

There are three GUI-specific graphical objects in matlab: uicontrols,
uimenus, and uicontextmenus.

These are at the same level as Axes objects in matlab’s object hierarchy.
They are children of Figures; they have no children. Their appearance
and behaviour are defined by their property values. We first look at the
different styles of uicontrol. Then we will look at how you can program
a uicontrol to do something by setting its callback property. Finally,
we will go through the various uicontrols in a bit more detail, before
considering uimenus. Uicontextmenus control matlab’s behaviour when
you do a “right-click” (or equivalent menu-getting click on your system)
on a graphical object. They will not be described here, but you can find
a description in the helpdesk entry under Handle Graphics Objects.

If you type uicontrol, you will get matlab’s default uicontrol (we
assign its handle to h for later use):

h = uicontrol;

As usual, get(h) will give you a list of properties for this object. An
important property for uicontrols is the style property. The style of this
object is

>> get(h,’style’)
ans =
pushbutton

c© 2000 by CRC Press LLC



(Try pushing the button.) The available styles are

>> set(h,’style’)
[ {pushbutton} | togglebutton | radiobutton | checkbox
| edit | text | slider | frame | listbox | popupmenu ]

The following table shows the possible uicontrol styles:

(The togglebutton looks like a normal pushbutton but it stays pushed
until you click it again.) The appearance of these uicontrols depends on
the windowing system of your computer, but their behaviour in matlab
from one kind of computer to another is always the same.

34.1 Callbacks

You specify what happens when a uicontrol is activated by setting its
CallBack property. Callbacks are statements that get executed in the
matlab workspace (the command window) when a user interface ele-
ment is activated. As a simple example consider:

uicontrol(’String’,’Do plot’,’CallBack’,’plot(humps)’)

This creates a pushbutton uicontrol (the default)
containing the text “Do plot”. When this
button is pressed with the mouse, the com-
mand plot(humps) is executed in the matlab
workspace. Try it now and you should see a plot
of the humps function appear.

The callback string can be any matlab expression or function call.
The following simple GUI creates three buttons to create a plot of sin(x),
cos(x), and tan(x). The buttons call the matlab function ezplot with
the appropriate trigonometric function as an input. The double quotes
’’ produce a single quote in the callback string (see the section on
strings, page 74).

c© 2000 by CRC Press LLC



uicontrol(’Callback’,’ezplot(’’sin(x)’’)’, ...
’Position’,[508 351 51 26],’String’,’Sine’);

uicontrol(’Callback’,’ezplot(’’cos(x)’’)’, ...
’Position’,[508 322 51 26],’String’,’Cos’);

uicontrol(’Callback’,’ezplot(’’tan(x)’’)’, ...
’Position’,[508 293 51 26],’String’,’Tan’);

This plot shows the Figure as it appears when
you press the ‘Tan’ button. For simple GUIs the
direct definition of callbacks used above is suffi-
cient, but for more complex actions you generally
want to execute an m-file as a callback. You can
execute a separate m-file for each button in your-
GUI, but this leads to a great many separate m-files associated with
a single GUI. A better technique is to use switchyard programming.
In switchyard programming you send all your callbacks to a single m-
file and change the input to the m-file, depending on which button was
pressed. The m-file contains all the code for all the buttons; the appro-
priate code for a given button is selected by a logic test within the m-file.
We adapt the trig-function plotting GUI above to this technique. The
m-file is as follows:

function trigplt(action)

if nargin = = 0 % Create the GUI:

uicontrol(’Callback’,’trigplt Sine’,...

’Position’,[508 351 51 26],’String’,’Sine’);

uicontrol(’Callback’,’trigplt Cosine’,...

’Position’,[508 322 51 26],’String’,’Cos’);

uicontrol(’Callback’,’trigplt Tangent’,...

’Position’,[508 293 51 26],’String’,’Tan’);

else % Perform the action:

x = linspace(0,2*pi);

switch(action)

case ’Sine’

y = sin(x); titstr = ’y = sin(x)’;

case ’Cosine’

y = cos(x); titstr = ’y = cos(x)’;

case ’Tangent’

y = tan(x); titstr = ’y = tan(x)’;

end

plot(x,y)

end

This m-file is given in the companion software file trigplt.m. If you type
trigplt, the m-file will execute the part that creates the GUI, since it
was called with no input arguments (nargin = 0). Pressing the buttons
will calculate the appropriate trig function and produce the plot.

c© 2000 by CRC Press LLC



Callbacks are fastest when they are implemented as function calls;
do not implement your callbacks as script m-files or as an eval of a
string. The reason is that matlab compiles a function the first time it
is encountered, whereas m-files and evals are interpreted line by line.

The button-style uicontrols (pushbuttons, radiobuttons, and check-
boxes) are used by simply clicking on them with the mouse. Others
need more interaction: you must choose an item from a list (listboxes or
popupmenus) or specify a numeric value (sliders) or type in text (edit
boxes). We discuss briefly the operation of each of these different kinds
of uicontrols.

34.2 UIControls

Edit Boxes

Edit boxes are designed to read in a piece of typed text. The text inside
an Edit box is accessed via the box’s String property:

h = uicontrol(’style’,’edit’,’String’,’Hello’);

You can change it using the set command:

set(h,’string’,’Bye’)

or you can click in the box and change it by typing something else. You
can access what has been typed into an edit box by getting its string
property. After typing qwe into the box you can type:

>> get(h,’string’)
ans =
qwe

Numbers typed into edit boxes remain strings until you convert them to
numbers:

>> x = get(h,’string’)
x =
10.3
>> x+1
ans =

50 49 47 52
>> str2num(x) + 1
ans =

11.3000

Text

Good GUIs have instructive text that indicates the function of a uicon-
trol. These can be placed with the text-style uicontrol. In the following
GUI the “Name:”, “Address:”, and “Sex:” labels are three separate
uicontrols of Text style.

c© 2000 by CRC Press LLC



uicontrol(’Pos’,[110 280 60 19],’Style’,’text’,’String’,’Name:’);

uicontrol(’Pos’,[175 280 246 19],’Style’,’edit’);

uicontrol(’Pos’,[110 262 60 19],’Style’,’text’,...

’String’,’Address:’);

uicontrol(’Pos’,[175 262 246 19],’Style’,’edit’);

uicontrol(’Pos’,[110 243 60 19],’Style’,’text’,’String’,’Sex:’);

uicontrol(’Pos’,[175 243 121 19],’Style’,’radiobutton’,...

’String’,’Male’);

uicontrol(’Pos’,[301 243 121 19],’Style’,’radiobutton’,...

’String’,’Female’);

Frame

The frame style uicontrol is not an object that is meant to be interacted
with. It is a decoration. For example, in the GUI in the previous section
the text labels stand apart from the uicontrols they refer to because the
figure color is not the same as the background colour. You can get a
more integrated appearance by adding a frame:

uicontrol(’Position’,[99 231 332 77],’Style’,’frame’);

uicontrol(’Position’,[110 280 60 19],’Style’,’text’,...

’String’,’Name:’);

uicontrol(’Position’,[175 280 246 19],’Style’,’edit’);

uicontrol(’Position’,[110 262 60 19],’Style’,’text’,...

’String’,’Address:’);

uicontrol(’Position’,[175 262 246 19],’Style’,’edit’);

uicontrol(’Position’,[110 243 60 19],’Style’,’text’,...

’String’,’Sex:’);

uicontrol(’Position’,[175 243 121 19],’Style’,’radiobutton’,...

’String’,’Male’);

uicontrol(’Position’,[301 243 121 19],’Style’,’radiobutton’,...

’String’,’Female’);

You must issue the commands to draw the uicontrols over the frame
after you issue the frame command, otherwise the frame will obscure
the uicontrols. Some people like to divide their GUIs into sections using
frames. In this GUI are three frames:

c© 2000 by CRC Press LLC



The two inner frames are labeled by placing text style uicontrols with the
strings Personal Details and Tax Details at appropriate positions.
Too many frames clutter the GUI. It is often better to use space between
groups of controls to divide them into logical groups.

Slider

Sliders are designed to allow input of a value between two limits. You
input a value by clicking on the central bar and dragging it; by clicking
anywhere between the central bar and the end of the slider, resulting
in a big jump; or by clicking on the arrows at the ends of the slider,
resulting in a little jump. Fiddle with the following slider to see how it
behaves:

h = uicontrol(’style’,’slider’);
set(h,’pos’,[50 200 450 40])
set(h,’callback’,’disp(get(h,’’value’’))’)

This slider has its callback property set so as to display the value of the
slider in the command window. The callback is executed when (1) you
release the central bar, (2) you click on the blank area, or (3) you click
on the arrow.

You may want to display the value of a slider in an edit box, or to use
the value typed into an edit box to alter the position of the slider. To
do this you have to get an edit box and a slider to talk to each other to
reveal their properties. The edit box must have a callback that tells the
slider its string property, and the slider must have a callback that tells
the edit box its value property. The following piece of code achieves
this effect:

clf
hsl = uicontrol(’Position’,[200 260 200 20], ...

’Style’,’slider’,’Value’,0.5,...
’CallBack’,...
’set(hed,’’String’’,num2str(get(hsl,’’value’’),2))’);

hed = uicontrol(’BackgroundColor’,[1 1 1], ...
’Position’,[200 240 70 20], ...

c© 2000 by CRC Press LLC



’String’,’0.5’,’Style’,’edit’,...
’CallBack’,...
’set(hsl,’’Value’’,str2num(get(hed,’’String’’)))’);

The value from the edit box is transmitted to the slider when you press
return, tab, click outside the edit box, or move the mouse outside the
GUI’s window. The slider’s callback must convert the slider’s value—
a number—to a string before setting the edit box’s string property. In
principle the converse is not true. That is, the slider’s value property can
be passed directly to the edit box’s string property and the number will
be displayed automatically as a string. But we have included a numerical
conversion using num2str(...,2) to limit the number of decimal places
of the displayed value to 2. (What happens when you type nonnumeric
text into the edit box?)

The default limits of a slider are set to a minimum of zero and a
maximum of one. These can be changed via the slider’s min and max
properties: the slider’s value property is scaled proportionally.

Listbox

Listboxes let you choose from among a scrollable list of alternatives. The
list of alternatives is set by the listbox’s string property. The options
for the format of the string are the same as for the axis tick labels (see
page 122); you can specify the alternatives in any of the following ways:

set(h,’String’,{’Red’;’Green’;’Blue’})
set(h,’String’,’Red|Green|Blue’)
set(h,’String’,[1;10;100])
set(h,’String’,1:3)
set(h,’String’,[’Red ’;’Green’;’Blue ’])

For example, to bring up a list of colour options:

h = uicontrol(’pos’,[168 219 89 116], ...
’Style’,’listbox’, ...
’String’,{’Red’;’Green’;’Blue’});

If the list is too wide or high for the listbox, matlab adds scroll sliders:

c© 2000 by CRC Press LLC



set(h,’string’,{’Red’;’Green’;’Blue’;...
’Pale Goldenrod’;’Orange’;’yellow’})

The item selected within the listbox is accessed via its “value” property.
For example, after selecting a colour from the list you can extract it
using the following commands:

>> str = get(h,’string’);
>> str(get(h,’value’))
ans =

’Pale Goldenrod’

Popup menu

Popup menus are similar to listboxes in that they allow you to choose
from among a list of alternatives, but only one item is shown at a time;
the others become visible only when you press the button. Assuming
your listbox is still present from the previous example, you can convert
it to a popup menu by typing the following:

set(h,’style’,’popup’,...
’pos’,[168 219 145 32])

We changed the size (position) at the same time to make it look more like
a standard button. The user’s choice is accessed by the popup menu’s
“value” property, as for listboxes.

34.3 Exclusive Radio Buttons

Radio buttons can be used to offer a choice of one, and only one, item
from among alternatives. Think of a car radio with buttons for the
different radio channels: when you press one button in, the corresponding
channel only is selected. matlab’s radio buttons do not automatically
behave this way. You may want to allow more than one radio button to
be pressed at a time. But if you do want exclusive radio buttons you
must implement them with appropriate callbacks. One way to do it is
as follows:

c© 2000 by CRC Press LLC



function exradio(action)
if nargin = = 0
clf
uicontrol(’Position’,[200 321 90 25], ...

’String’,’JJJ’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio(1)’)

uicontrol(’Position’,[200 296 90 25], ...
’String’,’ABC-FM’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio(1)’)

uicontrol(’Position’,[200 271 90 25], ...
’String’,’SAFM’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio(1)’)

uicontrol(’Position’,[200 246 90 25], ...
’String’,’5AD’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio(1)’)

else
h = findobj(’style’,’radiobutton’);
ind = find(h~ = gco);
set(h(ind),’value’,0)

end

Calling the function exradio with no arguments draws the GUI and sets
up the callbacks. The callbacks are identical for all the buttons: they
simply call exradio with a single input argument. When any button
is clicked, the else code is executed: it first finds all the radiobuttons
and returns their handles in the vector h. Then a vector, ind, of the
elements of h that are not equal to the Current Object (got by the call
gco) is defined. The radio button that has just been clicked on will
be the Current Object. If a radio button is pushed, its “value” toggles
between zero and one. The set command then sets the “value” property
of all the other radio buttons to zero.

34.4 Variables in GUIs

Globals

Variables in the matlab workspace are not visible to function m-files. If
you use a function m-file to implement a GUI, you often need to access
variables that won’t be visible to the function unless you make them
so. To explain this, consider the example of the exclusive radio buttons
given in the last section. Suppose we want to get rid of the findobj
command in the else section of the code by putting the radio buttons’

c© 2000 by CRC Press LLC



handles into a vector when they are defined. That is, we want to modify
the code as follows:

function exradio2(action)
if nargin = = 0
clf
h1 = uicontrol(’Position’,[200 321 90 25], ...

’String’,’JJJ’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio2(1)’);

:
:
h4 = uicontrol(’Position’,[200 246 90 25], ...

’String’,’5AD’, ...
’Style’,’radiobutton’,...
’CallBack’,’exradio2(1)’);

% Save radio button handles in h for later use.
h = [h1 h2 h3 h4];

else
ind = find(h~ = gco);
set(h(ind),’value’,0);

end

This implementation will not work because function variables are local to
the function and do not persist from one function call to another. When
a radio button is pushed it will issue a callback to exradio2, which will
go to the else section of code where it will crash because the variable
h will not be defined. One way to implement the idea correctly is to
declare the vector h to be global. Global variables are visible to all other
functions that declare them global, and thus they will be visible between
one function call and the next. The correct implementation will be

function exradio2(action)
global h
if nargin = = 0
clf
:
:

You can even access such global variables from the matlab workspace
(the command window) by declaring them global there.

Variables in UserData

A problem with global variables is that they are vulnerable to being
cleared by the user from the workspace. If the user clears the global
variables that a function expects to be present, then the function will

c© 2000 by CRC Press LLC



fail. One place to put variables that need to be visible to functions and
where they cannot be cleared is in graphical objects’ UserData property.
Every graphical object has a UserData property, which can be accessed
with the get and set commands. The UserData property can be used
to store any matlab variable.

34.5 The Tag Property

As we saw above in the radiobutton example, it is useful to have some
means of finding the handle to an object without explicitly saving it as
a variable. The Tag property lets you uniquely name an object. You
can then find the object anywhere in your code by looking for the object
with that name. For example, we could find the handle of the button
called ’JJJ’ using Handle = findobj(’tag’,’JJJ’);. (Of course, you
must set the tag property beforehand.)

34.6 UIMenus

By default, matlab’s Figures come with a menu at the top. The menu
items are File, Windows, and Help.

figure

You can add your own items to this menu or you can delete it and put
your own in its place. To delete the default menu, you need to set the
Figure’s menubar property to ’none’ (set it to ’figure’ to bring it back
again):

set(gcf,’menubar’,’none’)

To add your own menu use the uimenu command. The text that appears
on the menu is set by the menu’s label property; what happens when
you select the menu item is set by the menu’s callback property. Menus
can be children of Figures or of other menus; in the latter case you get
submenus, or “walking” menus. The following example produces a menu
of options to change the colour of the Figure.

f = uimenu(’Label’,’Figure Colour’);
uimenu(f,’Label’,’Default’,...

’Callback’,’set(gcf,’’color’’,’’default’’)’,...
’Accelerator’, ’D’);

c© 2000 by CRC Press LLC



uimenu(f,’Label’,’Black’,...
’Callback’,’set(gcf,’’color’’,’’k’’)’);

uimenu(f,’Label’,’White’,...
’Callback’,’set(gcf,’’color’’,’’w’’)’);

uimenu(f,’Label’,’Gray’,...
’Callback’,’set(gcf,’’color’’,[.5 .5 .5])’);

g = uimenu(f,’Label’,’Other...’,’Separator’,’on’);
uimenu(g,’Label’,’Parchment’,...

’Callback’,’set(gcf,’’color’’,[.95 .9 .8])’);
uimenu(g,’Label’,’Vellum’,...

’Callback’,’set(gcf,’’color’’,[.9 .9 .8])’);
uimenu(g,’Label’,’Cream’,...

’Callback’,’set(gcf,’’color’’,[.95 .9 .75])’);

The uimenu item that sets the Figure
colour to the default has its “accelera-
tor” property set to “D”, meaning that
when control-D is pressed while the cur-
sor is in the Figure window, the callback
will be executed; in this case the Figure
will go to its default colour. The “Other
. . . ” menu item has its “separator” set
to “on”, which draws the line above its
label. A clear figure (clf) command
will clear user-created uimenus like this

one. The command colormenu is worth looking at as another example
of a simple uimenu.

Exercise 19 Generate the following menu:

(Answer on page 192.)

c© 2000 by CRC Press LLC



34.7 Fast Drawing

For fast drawing of graphics (e.g., when animating), consider the follow-
ing extract from the Mathworks’ web site:

Draw movable or changing objects with the EraseMode
property set to xor or background. This prevents re-
rendering the axes when changing these objects. EraseMode
is a property of all objects that are children of axes (line,
text, surface, image, patch).

Set DrawMode (an axes property) to fast. This prevents
matlab from sorting three-dimensional objects, which can
speed things up significantly. The side-effect is that three-
dimensional surface plots will not be drawn properly in this
mode.

Set BackingStore (a figure property) to off. This should
give roughly a factor of two speed-up in normal drawing but
turns off the instantaneous update that normally occurs when
windows are uncovered.

Set NextPlot (a figure property) to new when creating
a GUI. That way when you make plots from the command
window they do not appear in the axes of the GUI’s figure
window.

Wherever possible, recycle figure windows by using the
visible property of figures instead of creating and destroy-
ing them. When done with the window, set visible to
off; when you need the window again, make any changes
to the window and then set visible to on. Creating fig-
ure windows involves much more overhead than setting their
visible property to on.

There is also a property of Figures called doublebuffer. Setting this
property to ’on’ can reduce the flicker when redrawing a figure.

When redrawing a figure from within a loop, matlab will wait until
the final run through the loop before rendering the graphic. If you want
to see intermediate results you need to force matlab to dedraw the
graphic at that point. Use the drawnow command to do this forcing. In
the following example, animation is used to demonstrate the sampling
problem known as aliasing.16

clf
set(gcf,’doublebuffer’,’on’)
h = plot(0,0,’.’);
for i = 1:1000
t = linspace(0,2*pi,i);

16This example due to C. Moler, comp.soft-sys.matlab newsgroup.

c© 2000 by CRC Press LLC



set(h,’xdata’,t,’ydata’,sin(370*t))
drawnow

end

The example should update the data without flicker. If you then set the
doublebuffer property to off, you should see the window flicker as the
new data updates the plot.

34.8 Guide

When writing code to generate GUIs you can very quickly get bogged
down in messy coding. For example, it is tedious to calculate the “posi-
tion” properties of the various elements so that they line up nicely. The
task of generating GUIs is made much easier with the matlab tool
guide. The name guide is short for Graphical User Interface Devel-
opment Environment. Guide is a GUI for drawing GUIs. With it you
select uicontrols, position them with the mouse, align them with the
alignment tool, and set the properties with a graphical property editor.
I used guide to produce most of the GUI examples so far. When you
type guide at the matlab prompt, the current figure shows a grid in
the background, showing that it is now a guide-controlled figure, and
the guide control panel appears. Try typing guide now and you should
see the following control panel on your screen:

The four big buttons at the top of the control panel bring up four other
control panels. The listbox in the middle displays which figures are being

c© 2000 by CRC Press LLC



controlled by guide and which are active (meaning that the uicontrols
are no longer moveable by guide). The buttons at the bottom of the
control panel allow you to select different uicontrols and then draw them
on the figure with the mouse. Clicking on the button with the picture of
a cursor arrow on it allows you to select objects in the controlled figure.

Exercise 20 As with any good GUI, reading about what it does
is not as effective as actually using it. Play with guide now and
see if you can make a spectacular GUI. This one might inspire
you:

The property editor allows you to select an object, then view and
change its properties. If you type the first few unique characters into
the property box and press return, the property name will be auto-
matically completed
and the value will be
shown in the edit box.
You can select more
than one object, in
which case the val-
ues that any partic-
ular property has in
common for all the
selected objects will
be shown; values that
are different will be
indicated by question
marks. For example,
this property editor
has five radio buttons
selected, and their “position” property is being shown. The position
coordinates are the same except for the y position because all the buttons

c© 2000 by CRC Press LLC



are the same size and aligned at the same x position. If you edit this
property, all of the selected items will be affected.

Guide can be used for any matlab Figure, not just one that has
uicontrols or uimenus. For example, you can use guide to move around
a set of axes on a figure.

34.9 Other Aids

A suite of tools to help you program GUIs can be found in the uitools
subdirectory. Type help uitools to get a list of these tools and a short
summary of what they do. For example, the btngroup function can
be used to automatically create a group of buttons in which only one
button is allowed to be down at a time. Another possibility is a “flash”
button that presses in and immediately pops back out again. Button
appearance can also be customised using the btngroup function.

When building a GUI, prototypes can be saved using print -dmfile.
Elements in your GUI that you have produced from the command win-
dow will then be saved in the m-file.

For further information on GUIs, see the manual Building GUIs with
MATLAB.

35 Printing Graphics

When you type print at the matlab prompt, the current figure is
printed on your default printer. The plot is printed so that the aspect
ratio matches that seen on the screen for the default settings, and it is
placed centrally on the page oriented like a portrait: the long dimension
of the page upright:

plot(humps)
print

If your matlab has been installed properly, you should find the plot
centred for the paper size you are using. If it is not, put the following
statement into your startup.m file:

set(0,’DefaultFigurePaperType’,’a4letter’)

or substitute your correct paper size (see below for a list of options).
There are many ways you can control how a graphic is printed. The

following is a list of figure properties that have to do with printing and
their options:

c© 2000 by CRC Press LLC



InvertHardcopy: [ {on} | off ]
PaperUnits: [ {inches} | centimeters

| normalized | points ]
PaperOrientation: [ {portrait} | landscape ]
PaperPosition
PaperPositionMode: [ auto | {manual} ]
PaperType: [ {usletter} | uslegal | a3 | a4letter

| a5 | b4 | tabloid ]

We won’t look at these in detail to start with; instead we’ll look at an
easy way to change these properties to get commonly wanted effects.

35.1 Print Size: Orient

The orient command is an easy way of setting the various figure proper-
ties to get rudimentary control of printed output. There are three kinds
of orientation, each illustrated below.

Tall

plot(humps)
orient tall
print

The tall orientation can be used when you have plots stacked on top
of each other:

for i = 1:40,subplot(10,4,i),end
orient tall
print

Landscape

plot(humps)
orient landscape
print

Portrait

The default orientation is “portrait”, which can be restored using:

plot(humps)
orient portrait
print

c© 2000 by CRC Press LLC



35.2 Print Size: WYSIWYG

By default, the size of the printed figure does not depend on the size
of the figure on the screen. If you stretched the window so that the

figure looked like this on the screen, , the printed page

would still look like this: . This is because the figure is scaled

when printing to occupy a rectangular area whose size and position are
defined by the figure’s paperposition property. The factory default
value for this property is:

>> get(gcf,’paperunits’)
ans =
inches
>> get(gcf,’paperposition’)
ans =

0.25 2.5 8.0 6.0

The paperposition vector, like an axes position vector within a figure,
has the form [left bottom width height]. The left and bottom val-
ues are taken relative to the lower left-hand corner of the page. The figure
window’s border is not considered part of the figure for the purposes of
printing. To make matlab automatically calculate the printed figure’s
position so that it is the same size as the figure window on the screen
(excluding the window border), set the figure’s PaperPositionMode
property to auto:

set(gcf,’paperpositionmode’,’auto’)

Now the figure that looks like this on the screen will look

like this when printed . With the paperpositionmode set to

auto, you must make sure that the figure’s size on the screen is not too
big to fit on the printed page.

35.3 Including Figures in Other Applications

General Comments

The best quality printed figures are produced using PostScript print-
ers. To include a postscript file in another document, you should print
from matlab using one of the Encapsulated PostScript formats (colour,
level 1, or level 2). Use the -deps option when issuing a print command.

cc© 2000 by CRC Press LLC



Another option is to use an image format output such as a bitmap,
JPEG, or TIFF file. These will not give high quality curves (you will see
the pixels), but they are fine for images. Bitmap files can be produced
using the -dbitmap on Microsoft Windows, or by using a screen grab
utility on other platforms (for example, snapshot or xv on the UNIX
machines, or Snapz on the Macintosh).

When incorporating large images into other documents, consider
using bitmaps instead of PostScript files. For large images, bitmap files
are much smaller and may enable you to get around memory problems
when printing large files.

In some cases large z-data images produced using matlab’s image
function are better rendered using the contourf (filled contour) function.
The final graphic will take longer to calculate in matlab, but if you print
it in PostScript, the file will not only be much smaller, but the quality
will be higher because you won’t see the pixelated contour edges.

Finally, consider the viewers of your graphics, and how they will
view them. If your graphics will be included in text that will end up as
a report, article, book, etc., your graphics should be the best you can
make them. Include plenty of rich detail in your graphics, with user-
friendly text put at appropriate places on the display. Simple graphics,
such as line plots, can be shrunk to quite a small size (somewhere between
postage stamp and postcard size) without loss of detail. Such shrinking
will enable you to put more graphics on a text page, or more explanatory
text. Try to put your graphic on the same page (or double page spread)
as the text that discusses it. Your readers won’t be obliged to flip pages
or, worse, search through all the graphics collected as afterthoughts at
the end of the document.

If your graphic forms part of a personal presentation (the dreaded
overhead projector), a different set of considerations apply. Your graph-
ics should be big enough to be seen from the back of the room (is the text
big enough, are the lines thick enough?). You will be there to personally
explain the graphic’s features and significance, but such an explanation
will be transient and linear; your audience won’t be free to look at the
graphic at their own pace, or go back to it later on.

PostScript and Encapsulated PostScript

As mentioned above, the highest quality results will be achieved using
PostScript output, and printed on a PostScript printer. PostScript files
are text files containing page layout commands in Adobe’s PostScript
language. Encapsulated PostScript (EPS) files are best for including
in other documents; they are single page PostScript files that include
information about how big the graphic is. If you print a graphic using
matlab’s plain PostScript option (print -dps file ), the first few lines
of file.ps will look like this:

c© 2000 by CRC Press LLC



%!PS-Adobe-2.0

%%Creator: MATLAB, The Mathworks, Inc.

%%Title: file.ps

%%DocumentNeededFonts: Helvetica

%%DocumentProcessColors: Cyan Magenta Yellow Black

%%Pages: (atend)

%%BoundingBox: (atend)

%%EndComments

%%BeginProlog

% MathWorks dictionary

/MathWorks 150 dict begin

The file begins with the characters %!PS, which, when sent to a
printer, tells the printer to interpret the rest of the file as PostScript
language commands, and not as text to be printed. Lines beginning
with percent characters “%” are comments and are, except for the first
line, ignored by the printer. Actual PostScript commands begin with
forward slashes “/”. The line here that reads:

%%BoundingBox: (atend)

says that the bounding box is to be found at the end of the file.
If you print the same graphic using matlab’s Encapsulated

PostScript option (print -deps file ), the first few lines of file.eps
will look like this:

%!PS-Adobe-2.0 EPSF-1.2

%%Creator: MATLAB, The Mathworks, Inc.

%%Title: file.eps

%%DocumentNeededFonts: Helvetica

%%DocumentProcessColors: Cyan Magenta Yellow Black

%%Pages: 1

%%BoundingBox: 74 210 549 589

%%EndComments

%%BeginProlog

% MathWorks dictionary

/MathWorks 150 dict begin

The crucial difference is that the bounding box information appears near
the start of the file. The bounding box is of the form xll yll xur yur,
where:
xll is the x coordinate of the lower left corner of the graphic,
yll is the y coordinate of the lower left corner of the graphic,
xur is the x coordinate of the upper right corner of the graphic,

c© 2000 by CRC Press LLC



yur is the y coordinate of the upper right corner of the graphic. The
units are in points (there are 72 points per inch and 2.54 centimetres per
inch). For example a bounding box specification of:

%%BoundingBox: 100 100 172 172

would refer to a graphic occupying a one-inch square that is 100 points
from the bottom left-hand corner of the page.

Software to include Encapsulated PostScript graphics uses the
bounding box to correctly position the graphic on the screen.

LATEX: Version 2e

The inclusion of Encapsulated PostScript files in LATEX2e docu-
ments is fully described in Using EPS Graphics in LATEX2e Docu-
ments, by Keith Reckdahl, available via FTP as epslatex.ps from
ftp://ftp.tex.ac.uk/tex-archive/info/ and from other sites of the
Comprehensive TEX Archive Network (ctan) on the Internet. Reck-
dahl’s article gives a very thorough description of importing EPS graph-
ics, and associated LATEX commands. The standard technique is to
use the graphicx package, which implements the \includegraphics’
command and options. (A description of the graphicx package can be
found in Packages in the “graphics” bundle, by David Carlisle, avail-
able as grfguide.ps or grfguide.tex from ftp://ftp.tex.ac.uk/
tex-archive/macros/latex/packages/graphics/ and from other
ctan sites. The following is a summary of these two articles.

To include a matlab Encapsulated PostScript file (or any other stan-
dard Encapsulated PostScript file) in LATEX2e you can use the com-
mands:

\documentclass{article}
\usepackage{graphicx}
\begin{document}

\includegraphics{Pg-134(2).eps}
\end{document}

The graphic will be included at its natural size. The .eps extension
can be left out of the file specification, and full path names are allowed.
Usually you do not want the graphic to appear at its natural size; you
will want to scale it so that its width is fixed at some value and its height
is scaled proportionally. To do this, use commands such as these:

\includegraphics[width = 4cm]{file} (width is 4 cm)
\includegraphics[width = \textwidth]{file} (width is the same
as the text)
\includegraphics[width = 0.5\textwidth]{file} (width is half
the width of the text)

c© 2000 by CRC Press LLC

ftp://ftp.tex.ac.uk/tex-archive/info/
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/packages/
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/packages/


\includegraphics[width = \textwidth-4cm]{file} (width is 4 cm
less than the width of the text (needs the calc package))

Other optional arguments to the \includegraphics command allow
you to specify the height of the graphic, or the total height (height plus
depth), to scale relative to the graphic’s natural size, to rotate, clip,
trim, and shift the graphic, and to get many other effects. For example,
in this book I put the output and the command(s) that produced it side
by side using two minipage environments:

\begin{flushleft}
\begin{minipage}{30mm}

\begin{verbatim}
plt(1:10)

\end{verbatim}
\end{minipage}
\begin{minipage}{0.2\textwidth}

%\includegraphics[width = \textwidth]{onetoten}
\end{minipage}

\end{flushleft}

to produce:

plt(1:10)

Inside a minipage \textwidth is the width of the minipage which, in
this case, is a fifth of the document’s \textwidth.

LATEX: Version 2.09

To include a matlab figure in a LATEX2.09 document you can use the
epsf package. Print the figure using the -deps option in matlab’s print
command. This will create an Encapsulated PostScript file in the current
directory with the name, say, graphic.eps. Put \usepackage{epsf}
after your \documentclass declaration at the top of your input file.
Figures can then be included using commands such as:

\epsfxsize = 0.3\textwidth]{graphic.eps}

Many LATEX users like to put their graphics in floating figure environ-
ments, with captions and a centred graphic. This is how to do it:

\begin{figure}
\begin{center}
\leavevmode
\epsfxsize = 0.5\textwidth\epsffile{graphic.eps}

c© 2000 by CRC Press LLC



\end{center}
\caption{This is the figure’s caption.}
\label{graph}

\end{figure}

The command \epsfxsize = 0.5\textwidth makes the graphic’s
width equal to half the value of \textwidth. The y size of the graphic
will be scaled proportionally. The epsf function uses the bounding box
comment in the .eps file to determine the size of the graphic.

The final (PostScript) output can be previewed on the screen
using previewing software such as PageView (Sun), Ghostview, or
GNU Ghostscript (multiplatform freeware).

Microsoft Word

Word 7 To include a matlab graphic in Microsoft Word, print an
Encapsulated PostScript file from matlab. Then, from within Word,
create a frame by selecting “Insert”→“Frame” and drag the mouse so
that the frame is as big as you want the graphic. Then insert the Encap-
sulated PostScript file into the frame by choosing “Insert”→“Picture
. . . ”. Select the appropriate file using the dialog box that appears. The
graphic will not be viewable on the screen in the Word document but it
will appear when printed.

Word 97 In Word 97, choose “Insert”→“Picture”→“From File . . . ”
and select the .eps file from the dialog box. Once the picture is inserted
you can resize it by clicking on it and dragging the nodes that appear at
the corners and edges.

Microsoft PowerPoint

In PowerPoint, select “Insert”→“picture . . . ” and select the file you
want to insert. Encapsulated PostScript and bitmap files generally pro-
duce good results. A PostScript figure will not appear on the screen,
except as a box outline, but a bitmap will appear. However, a PostScript
figure will be higher quality when printed. If you want to overlay
explanatory text, arrows, etc. from within PowerPoint, use the bitmap
format.

CorelDraw

CorelDraw is able to import files of many different formats. From the
File menu choose “Import . . . ” and select the file. You may need to
select a file type from the “Files of type” popup menu. The Encapsulated
PostScript format will not appear on the screen, except as a box outline,

cc© 2000 by CRC Press LLC



but it will be high quality when printed. Bitmaps do appear on the
screen, but are lower quality when printed.

Bitmap Import On PCs choose matlab’s -dmeta option when using
the print command to produce a file with the extension .emf. Then
from CorelDraw select “File”→“Import . . . ” to get a file finder dia-
log box. Select the .emf file you created with matlab and choose the
“Windows Metafile (WMF)” option in the “Files of Type” box. Click
the “Import” button and CorelDraw will return you to your document
where you must drag out a rectangle to define the size of the imported
graphic. Once you drag the rectangle, the matlab graphic will appear
in bitmap form.

Vector Graphic Import Another option with CorelDraw is to import
an HPGL file printed using the -dhpgl option from matlab. This is a
format designed for Hewlett-Packard pen plotters, and has the advantage
that the imported image can be edited from within CorelDraw. Follow
the steps as for bitmaps above, but use the “HPGL Plotter File (PLT)”
option in the “Files of Type” box. You have the option here of changing
the pen colours used by CorelDraw’s emulation of an HP pen plotter.
This format works well for graphics that could easily be plotted on a
pen plotter. Line drawings work well but images do not. Surface plots
are initially imported with no hidden line removal, but if you change the
fill colour to white with CorelDraw, hidden lines will be removed. To do
this fill colour change, ungroup the graphic, select the surface, click the
right mouse button, and choose “Properties”, then choose white as the
fill colour. If you have problems importing with this format, try opening
the .hgl file in a text editor and deleting the last line.

36 Irregular Grids

In this section we discuss how to deal with data that is defined over
an irregular grid. In Section 7.6 on page 32 we saw how do handle
nonrectangular grids, but these were still regular in the sense that the
x and y data grids could be defined using rectangular matrices (though
the resulting geometrical domains did not have to be rectangles).

Some irregular three-dimensional data is supplied with matlab in
the data file seamount.mat. Load the data and plot the points:

>> load seamount
>> whos
Name Size ...
caption 1x229 ...

c© 2000 by CRC Press LLC



x 294x1 ...
y 294x1 ...
z 294x1 ...

Grand total is 1111 elements
>> plot3(x,y,z,’.’)
>> axis tight

Here we have 294 measurements of x (latitude), y (longitude), and z
(height above sea level, which is negative). They represent measurements
of a mountain under the sea.17 The data are stored as column vectors
of x, y, and z values. Suppose we want to plot a surface and a contour
map representing this seamount data. If you try to type surf(x,y,z)
or contour(x,y,z) with this data, you will not get any meaningful plot.
Two ways of generating the desired plots are as follows:

1. Interpolate the data over a rectangular grid.

2. Use triangular gridding instead of rectangular gridding.

Let us look at each of these.

36.1 Interpolation over a Rectangular Grid

We continue the example above and define vectors of uniformly spaced
points between the minimum and maximum values of x and y:

xiv = linspace(min(x),max(x),50);
yiv = linspace(min(y),max(y),50);

Each of these vectors has 50 elements. We now use the griddata inter-
polation function to do two things: (1) create matrices of the x and y
grids that correspond to a rectangular grid over the vectors xiv and yiv,
and (2) interpolate the data over this new rectangular grid. In the call
to griddata that follows, we need to transpose the vector yiv because
griddata expects it to be a column vector in this case:

>> [xi,yi,zi] = griddata(x,y,z,xiv,yiv’);
>> whos
Name Size Bytes Class
caption 1x229 458 char array

17The reference can be found by typing the caption variable:
>> caption

caption =

Parker, R. L., Shure, L. & Hildebrand, J., "The application of inverse

theory to seamount magnetism", Reviews of Geophysics vol 25, pp 17-40,

1987. x is latitude (degrees), y is longitude (degrees), z is negative

depth (meters).

c© 2000 by CRC Press LLC



x 294x1 2352 double array
xi 50x50 20000 double array
xiv 1x50 400 double array
y 294x1 2352 double array
yi 50x50 20000 double array
yiv 1x50 400 double array
z 294x1 2352 double array
zi 50x50 20000 double array

Grand total is 8711 elements using 68314 bytes

We now have three new matrix variables xi, yi, and zi that correspond
to the interpolated data. We make a plot of the original data and the
interpolated surface:

plot3(x,y,z,’o’)
hold on
surf(xi,yi,zi)
colormap(autumn)
axis tight

Where the points of the rectangular interpolation grid lie outside the
convex hull defined by the data, the values are interpolated as NaN and
are omitted from the surface plot. There are a variety of ways to do the
interpolation; these are described in the help entry for griddata. We
can use the interpolated data to plot a contour map of the seamount:

contour(xi,yi,zi)

36.2 Triangular Gridding

matlab comes equipped with the following functions for use in defining
triangular grids:

griddata delaunay trimesh dsearch
convhull voronoi trisurf tsearch

The idea is that for any set of points (distinct and with no colinear
subsets) in two dimensions, a set of triangles can be defined such that
(1) no points lie within any triangle’s circumcircle and (2) the set com-
pletely covers the convex hull of the points. This idea is illustrated in this

c© 2000 by CRC Press LLC



diagram. Such a triangular grid can be calculated
for our seamount example of the last section. The
triangles are defined using the delaunay function:

>> tri = delaunay(x,y);
>> tri(563:end,:)
ans =

2 4 7
1 2 6
8 3 11
25 245 59

We have displayed the last few lines of the M × 3 matrix tri, which
defines the triangles by a set of triplets that are indices into the x and y
vectors. For example, the four triangles we have displayed in ans are

1 :
〈(

x(2), y(2)
) (

x(4), y(4)
) (

x(7), y(7)
)〉

2 :
〈(

x(1), y(1)
) (

x(2), y(2)
) (

x(6), y(6)
)〉

3 :
〈(

x(8), y(8)
) (

x(3), y(3)
) (

x(11), y(11)
)〉

4 :
〈(

x(25), y(25)
) (

x(245), y(245)
) (

x(59), y(59)
)〉

We can use this triangulation matrix to plot a surface of the seamount
data; each face of the surface is one of the triangles:

trisurf(tri,x,y,z)
hold on
plot3(x,y,z,’o’)
axis tight

The functions trisurf and trimesh do not create surface objects;
rather, they create patch objects.

37 Three-dimensional Modelling

37.1 Patches

In this section we discuss the representation of real-world objects. Such
objects are built up using their faces (the six faces of a cube, for exam-
ple). In matlab “faces” are patches, and are defined using the patch
command. Patches are blobs of coloured light (or ink) that are defined by
vertex points. The line between the vertices is the patch’s edge and the
enclosed area is the patch’s face. Before talking about three-dimensional
objects we discuss the simpler two-dimensional patch.

c© 2000 by CRC Press LLC



Simple Two-Dimensional Patches

To define a simple patch, specify the x and y coordinates and the face
colour:

x = [0 1 1 0];
y = [0 0 1 1];
patch(x,y,’y’)
axis([-2 2 -2 2])

The colour of the edge is black by default. The patch function automat-
ically closes the edge if the last vertex is not the same as the first vertex.
Patches are usually defined with noncrossing boundaries, but boundaries
can cross if required:

x(4) = 2; y(4) = .5;
clf
patch(x,y,’y’)

(The patch command is a low-level command, which means that it gen-
erates a patch in the current axes without first clearing the axes. That
is the reason for the clf above.)

Between patches whose boundaries cross and those whose boundaries
do not cross are the patches whose boundaries “touch”. These can be
used to create patches with holes:

x = [0 .5 .5 .4 .5 .6 .5 .5 1 .5];
y = [0 0 .1 .2 .3 .2 .1 0 0 1];
clf
h = patch(x,y,’y’);

The tell-tale line between the outer boundary and the hole can be deleted
by making it either invisible or the same colour as the face:

set(h,’edgecolor’,’none’)

(The command set(h,’edgecolor’,’y’) achieves the same effect.)
But it would be nice to leave the edge boundary drawn around the
shading; you just have to plot a line with the right points:

−2 −1 0 1 2
−2

−1

0

1

2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

c© 2000 by CRC Press LLC



xt = x([1 9 10 1]);
yt = y([1 9 10 1]);
xh = x(3:7);
yh = y(3:7);
hold on
plot(xt,yt,’k’,xh,yh,’k’)

Overlapping patches are drawn in order:

x1 = [0 1 1 0];
y1 = [0 0 1 1];
x2 = x1 + .5;
y2 = y1 + .5;
clf
subplot(221)
patch(x1,y1,’y’)
patch(x2,y2,’y’)
subplot(222)
patch(x2,y2,’y’)
patch(x1,y1,’y’)

When patches with holes overlap, the one underneath shows through the
hole:

x = [0 .5 .5 .4 .5 .6 .5 .5 1 .5];
y = [0 0 .1 .2 .3 .2 .1 0 0 1];
x1 = x + .5;
y1 = y + .2;
clf
patch(x1,y1,’r’)
patch(x,y,’y’)

Patches defined by vectors that contain NaNs leave a gap in the edge at
the NaN point and leave the enclosed region unfilled:

t = linspace(0,2*pi,10);
x = cos(t);y = sin(t);
subplot(221)
patch(x,y,’y’)
x(5) = NaN;y(5) = NaN;
subplot(222)
patch(x,y,’y’)

Three-dimensional Patches

Three-dimensional patches are produced by giving the patch command
x, y, and z data. The following generates an inclined triangle:

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5
0

0.5

1

1.5

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

c© 2000 by CRC Press LLC



xt = [0 1 .5];
yt = [0 0 1];
zt = [0 0 1];
clf
patch(xt,yt,zt,’y’)
view(3)
box
xyz

Remember that patch is a low-level graphics function, so we must set
the view to three dimensional by hand.
A plane is defined by three points, but four points need not lie in a
plane. In such a case the patch may look a bit strange, depending on
the viewing angle:

x = [0 1 1 0];
y = [0 0 1 1];
z = [0 0 0 1];
clf
subplot(221)
patch(x,y,z,’y’)
view(-40,10);box;xyz
subplot(222)
patch(x,y,z,’y’)
view(33,30);box;xyz

Three-dimensional patches should be planar. The above case, for exam-
ple, is better done as two patches:

x1 = [0 1 1];y1 = [0 0 1];z1 = [0 0 0];
x2 = [0 1 0];y2 = [0 1 1];z2 = [0 0 1];
clf
subplot(221)
patch(x1,y1,z1,’y’)
patch(x2,y2,z2,’y’)
view(-40,10);box;xyz
subplot(222)
patch(x1,y1,z1,’y’)
patch(x2,y2,z2,’y’)
view(33,30);box;xyz

Complex three-dimensional objects should be built up using non-
intersecting three-dimensional patches. These can be drawn with a single
call to the patch function, in which x, y, and z are matrices. Each col-
umn of the matrix will define a face. For example, consider the triangular
pyramid:

0
0.5

1

0

0.5

1
0

0.5

1

xy

z

0 0.5 1
00.51

0

0.5

1

xy

z

0
0.5

1 0
0.5

10

0.5

1

y
x

z

0 0.5 1
00.51

0

0.5

1

xy

z

0
0.5

1 0
0.5

10

0.5

1

y
x

z

c© 2000 by CRC Press LLC



x = [0 0 .5 0
.5 .5 1 1
1 .5 .5 .5];

y = [0 0 1 0
1 1 0 0
0 .5 .5 .5];

z = [0 0 0 0
0 0 0 0
0 1 1 1];

clf
h = patch(x,y,z,’y’)
view(3);box;xyz

Exercise 21 Define x, y, and z matrices to draw a truncated
square pyramid (answer on page 192):

patch(x,y,z,’y’)

view(3);box;xyz

Using x, y, and z matrices to draw objects results in the same vertex
being listed as many times as the number of faces that share the vertex.
A more compact way of drawing such multifaceted patches is to define
a matrix of vertices and a matrix of faces.

Consider again the above triangular pyramid
and which is shown here with labelled corners.
The vertices are numbered from 1 to 4 and the
faces can be defined by specifying the order of
joining the vertices. For example, the base is
formed by joining the vertices 1, 2, and 3, and
the white front face “A” is formed by joining the vertices 2, 3, and 4.
The vertices and faces can be defined by the following matrices:

Vertices =

x y z


0 0 0
0.5 1 0
1 0 0
0.5 0.5 1



← vertex 1
← vertex 2
← vertex 3
← vertex 4

Faces =




1 2 3
1 2 4
2 3 4
1 3 4



← base

← face A

0
0.5

1

0

0.5

1
0

0.5

1

xy

z

0
0.5

1

0

0.5

1
0

0.5

1

xy

z

0
0.5

1

0

0.5

1

0

0.5

1

1 

  2

x

 4

A

y

 3

z

c© 2000 by CRC Press LLC



The matlab code to draw the triangular pyramid using these matrices
is

vertices_mx = [ 0 0 0
.5 1 0
1 0 0

.5 .5 1];
faces_mx = [1 2 3 % base

1 2 4
2 3 4 % Face ‘A’
1 3 4];

clf
patch(’Vertices’,vertices_mx,...
’faces’,faces_mx,’FaceColor’,’y’)
view(162,44)
box;xyz

When drawing three dimensional objects, beware of intersecting patches.
Each patch is drawn in its entirety, so intersecting patches often look
strange. For example, here are two triangles that intersect along their
symmetry axes:

vert = [0 0 0
1 1 0
1 -1 0
1 0 -1
1 0 1];

fac = [1 2 3
1 4 5];

clf
patch(’vertices’,vert,...
’faces’,fac,’facecolor’,’y’)
view(3),grid,xyz

Explore this graphic by typing rotate3d and moving the viewpoint with
the mouse. You should see that you never get a realistic image. A better
way to create the required display is to generate four nonintersecting
triangles:

vert2 = [0 0 0
1 1 0
1 -1 0
1 0 -1
1 0 1
1 0 0];

0
0.5

1

0

0.5

1

0

0.5

1

xy

z

0
0.5

1

−1

0

1
−1

0

1

xy

z

c© 2000 by CRC Press LLC



fac2 = [1 2 6
1 6 3
1 4 6
1 6 5];

The resulting display is now rendered correctly no matter what the view-
ing angle:

clf
patch(’vertices’,vert2,...
’faces’,fac2,’facecolor’,’y’)
view(3),grid,xyz

Patch Colouring

Simple solid colouring of patches can be specified using the named
colours, as we did for the yellow (’y’) patches of the previous section.
You can also use arbitrary RGB colours. Here is a patch that should be
orange on your display:

xt = [0 1 .5];
yt = [0 0 1];
clf
h = patch(xt,yt,[1 .4 0])

Patches have a number of properties that control how they are coloured.
By using coloured patches, you can make pictures of objects that are
colour-coded to some quantity you want to display. For example, the
stress of a bent bar could be presented as the colour of the bar. Here is a
list of patch colour properties and a description of what they do (taken
from the Using MATLAB Graphics manual).

CData Specify single, per face, or per vertex colours in conjunction with
x, y, and z data.

CDataMapping Specifies whether colour data is scaled or used directly
as indices into the Figure colormap.

FaceVertexCData Specify single, per face, or per vertex colours in con-
junction with faces and vertices data.

EdgeColor Edges can be invisible, a single colour, a flat colour deter-
mined by vertex colours, or interpolated colours determined by
vertex colours.

FaceColor Faces can be invisible, a single colour, a flat colour deter-
mined by vertex colours, or interpolated colours determined by
vertex colours.

0
0.5

1

−1

0

1
−1

0

1

xy

z

0 0.5 1
0

0.5

1

c© 2000 by CRC Press LLC



MarkerEdgeColor The colour of the marker, or the edge colour for filled
markers.

MarkerFaceColor The fill colour for markers that are closed shapes.

The key to patch colouring is to define a colour matrix of the right size
for the type of colouring you want to apply. The following tables illus-
trate the kinds of patch colouring possible with the FaceVertexCDdata
property of patches. The matrices are shown assuming that the patch
has Nf faces and Nv vertices.

Indexed Colours:
One colour One colour

Single colour per face per vertex

C




C1

C2

...
CNf







C1

C2

...
CNv




In the table above, the numbers C are indices into the current colour
map and in the following table R, G, and B represent red, green, and
blue intensity values between 0 and 1:

True (RGB) Colours:
One colour One colour

Single colour per face per vertex

[
R G B

]



R1 G1 B1

R2 G2 B2

...
RNf

GNf
BNf







R1 G1 B1

R2 G2 B2

...
RNv GNv BNv




We now give some examples of colouring effects (for a detailed descrip-
tion of the patch colouring properties see the Using MATLAB Graphics
manual).

Example: Stressed Cable Suppose that you are an engineer working
on a problem involving a cable under stress. You want to display the
shape of the cable and colour the cable according to the stress at each
point along it. We implement the display using a patch. First we
generate some x, y, and z data to define the shape of the cable. For
illustrative purposes let us assume the cable shape is a one-turn helix:

c© 2000 by CRC Press LLC



t = linspace(0,2*pi,20);
x = cos(t);
y = t;
z = sin(t);

We will use the vertex-and-faces method of specifying the patch. The
vertex and face matrices are

v = [x’ y’ z’];
f = 1:20;

We need a colormap of length 20 to colour our 20 data points:

fvc = summer(20);

We generate a patch whose vertices are coloured according to the matrix
fvc:
clf
h = patch(’Vertices’,v,...
’Faces’,f,...
’FaceVertexCdata’,fvc,...
’FaceColor’,’flat’,...
’EdgeColor’,’flat’,...
’Marker’,’o’,...
’MarkerFaceColor’,’flat’);
view(44,18),axis equal,box

The patch looks a bit strange because its edge is a helix and not a planar
shape. The face of this patch is the same colour as the first vertex. If
we wanted the patch to be shaded the same way as its edge, we could
set its facecolor to interp:

set(h,’FaceColor’,’interp’)

But in this case our data is contained within the patch’s edge so we can
set the facecolor to none:

set(h,’FaceColor’,’none’)

c© 2000 by CRC Press LLC



The patch function has automatically joined the first and last points,
which we do not want to do. We can get rid of that line by setting the
final colour of the FaceVertexCData matrix to be NaN:
>> fvc(20,:) = NaN
fvc = 0 0.5000 0.4000

0.0526 0.5263 0.4000
[. . .]
0.8947 0.9474 0.4000
0.9474 0.9737 0.4000

NaN NaN NaN
>> set(h,’facevertexcdata’,fvc)

As for most other instances of plotting NaNs, matlab handles not-a-
number elements by leaving them out. Our final plot of the cable omits
the points:

>> set(h,’marker’,’none’)

Example: Coloured Cylinder Suppose a cylindrical section of pipe
is heated and that it develops a temperature distribution such that the
temperature anywhere on its surface depends on the distance from the
point of heating. We will use a single call to the patch command to
draw the cylinder and display the temperature coded as different colours
on the cylinder’s surface. We define the cylinder by defining the two
rings at its ends. We will use the vertex-and-faces method of spec-
ifying the patch, and num-
ber the vertices according to
the scheme shown in this dia-
gram. The vertices at the
bottom are numbered from 1
to N ; the vertices at the top
are numbered from N + 1 to
2N . The first face will be
formed by joining vertices 1,
N + 1, N + 2 and 2. The
second face will be formed by
joining vertices 2, N+2, N+3
and 3; and so on. The final
face will be formed by joining vertices N , 2N , N + 1 and 1. N is equal
to 20 in the diagram shown here. We start by defining the x, y, and z
coordinates that we need:

c© 2000 by CRC Press LLC



N = 20;
dt = 2*pi/N;
t = 0:dt:(N-1)*dt;
x = [cos(t) cos(t)];
y = [sin(t) sin(t)];
z = [zeros(size(t)) ones(size(t))];

The matrix of vertices is

vert = [x’ y’ z’];

The matrix of faces must be defined so that each row gives, in order, the
indices of the vertices that we want to join. The first face is formed by
joining the vertices 1, N + 1, N + 2 and 2; the second face is formed by
joining the vertices 2, N + 2, N + 3 and 3; and so on. The faces matrix
therefore must have the form:



1 N + 1 N + 2 2
2 N + 2 N + 3 3
...

...
...

...
N − 1 2N − 1 2N N

N 2N N + 1 1




.

The faces matrix can be defined as follows:

faces = [1:N; N+1:2*N; [N+2:2*N N+1]; [2:N 1]]’;

We now have all the data we need to draw the patch:

clf
view(3)
h = patch(’vertices’,vert,...
’faces’,faces,’facecolor’,’y’);
xyz

To colour the patch, we need to specify the temperature at each of the
vertices. We assume a heat source is located at (x, y, z) = (−.5, 0, 0.25),
and that the temperature at any point on the cylinder is inversely pro-
portional to its distance away from the source. The temperature at the
vertices is calculated as follows:

dist = sqrt((x + 0.5).^2 + y.^2 + (z - 0.25).^2);
T = 1./dist;

We can now do the patch colouring:

colormap(hot)
set(h,’facevertexcdata’,T’,...

’facecolor’,’interp’,...
’edgecolor’,’none’);

−1
0

1

−1

0

1
0

0.5

1

xy

z

c© 2000 by CRC Press LLC



The colour of each vertex is indexed by the matrix T’ to the colours in
the hot colour map. (The hot spot is coloured dark in this gray scale
version.) Each face of the patch is coloured in a way that interpolates
between the colours of its vertices.

Exercise 22 Can you see what we have done wrong in the above
example? Hint: the patch colouring does not truly represent the
distance away from the heat source. How would you go about
getting a better representation? (Answer on page 193.)

37.2 Light Objects

To create pictures representing real objects, you can colour them as if
they are lit by one or more lights. The lights can be any colour you
like, and the lit objects can have their reflectance properties adjusted
to simulate different surfaces: mirror-like, or self-coloured and shiny, or
dull. Lighting can be applied to surface or patch objects. Light objects
themselves cannot be seen. For the following examples the pltlight
function plots a dot at the position of each light on the graphic. Let us
create a sphere and see what it looks like when lit:

clf
sphere
axis equal
grid,box,xyz
h = light(’position’,[1 -1 1]);
pltlight

You should see a sphere with rather dull z-coded colouring and a glint
of white light reflecting from about 45◦N latitude. The dot at the top
right hand corner of the plot is the result of the pltlight function, and
represents the light. Let us see the result of using different coloured
lights:

set(h,’color’,[1 0 0])
light(’position’,[-1 1 1],...
’color’,[0 1 0])

light(’position’,[-1 -1 1],...
’color’,[0 0 1])

pltlight

The light from the different coloured sources mix together to give a
multicoloured shading. This graphic is still influenced by the z-coded

c© 2000 by CRC Press LLC



colouring of the sphere itself. To show this more clearly, use the flag
colour map:

colormap(flag)

The flag colouring underlies the colour from the lights. To see the lights
reflecting from a white sphere, set the colour of the surface to white.
You could issue the statement colormap([1 1 1]), but the following
achieves the same result:

h = findobj(’type’,’surface’);
set(h,’facecolor’,’w’)

So far, we have been using the default “flat” method of rendering lit
objects: each facet is a constant colour. But there are other ways. Let
us generate a gray surface to work on:

clf
peaks(20),axis off
h = findobj(’type’,’surface’);
set(h,’FaceColor’,[.5 .5 .5 ],...

’edgecolor’,[.5 .5 .5])

Generate a few lights:

x = [-3 -3 3];
y = [-3 3 -3];
z = [ 8 8 8];

c© 2000 by CRC Press LLC



cols = [1 1 1
1 1 0
0 1 0];

for i = 1:length(x)
light(’pos’,[x(i),y(i),z(i)],...

’color’,cols(i,:))
end
pltlight

This is the flat lighting method. Other ways of rendering light are

lighting gouraud

lighting phong

The default is lighting flat.
Continuing the last example, we illustrate some different material

properties:

material metal

material shiny

c© 2000 by CRC Press LLC



material dull

The default is material default.
The material and lighting commands are simple interfaces for

changing the handle graphics properties that affect lighting. See the
Using MATLAB Graphics manual for more details. For now, we illus-
trate some of the fine tuning effects that you can achieve. Here is the
matlab logo, produced using the membrane function and illuminated:

clf
membrane
h = light(’pos’,[-.5 .5 .1]);
pltlight
axis off

The flat region near the light is a constant colour. That is because, by
default, the light rays are parallel to the line joining the position of the
light and the centre of the plot. To simulate a point source of light at
the position of the light, set the style property of the light to local:

set(h,’style’,’local’)

As another example, the following uses various reflectance properties
of the (slightly roughened) sphere, along with a light off to one side, to
produce a simulated crescent moon (see moon.m in companion software).
First the spherical data points are randomized to produce a slightly
rough sphere:

[x,y,z] = sphere(100);
N = size(x,1);
x = x + randn(N)/1000;
y = y + randn(N)/1000;
z = z + randn(N)/1000;

c© 2000 by CRC Press LLC



To get the following result I used trial and error to get the right values
for the surface reflectance properties:

clf
h = surf(x,y,z);
set(h,’facecolor’,[.5 .5 .5],...

’edgecol’,’none’)
hl = light(’pos’,[1000,0,0]);
axis equal
axis off
view(-20,0)
set(h,’specularstrength’,0)
set(h,’ambientstrength’,1)
set(h,’diffusestrength’,10)
set(h,’backfacelighting’,’unlit’)

38 MATLAB Programming

38.1 Vectorising Code

I once heard Cleve Moler say, “The for loop gets a bad rap.” One
of the clearest ways to see the truth of this statement will be in this
section on speeding up matlab routines by vectorising code. We will be
eliminating for loops and replacing them with operations on vectors or
matrices. Yet, do not think that you must then eliminate all for loops
from your matlab code. When for loops are used appropriately they
are still very fast, efficient, and convenient. With this proviso, let us
look at an example.

matlab’s diff function takes the difference between successive pairs
of elements in a vector, and writes them to another vector. Suppose you
want to carry out a similar operation, except now you want to compute
the sum of successive pairs instead of the difference. In mathematical
notation, you would write the formula:

bi = ai + ai+1, i = 1, 2, . . . N − 1.

where a is the input vector of length N , and b is the output vector of
pairwise sums. The following piece of matlab code would do the job:

N = length(a);
b = zeros(1,N - 1);
for i = 1:N-1
b(i) = a(i) + a(i + 1);

end

This code, or at least the line inside the for loop, has the advantage
of resembling the mathematical notation quite closely. We measure the

c© 2000 by CRC Press LLC



time taken by this routine to calculate the pairwise sum of a 100,000-
element vector (the code is saved in the m-file forloop1 and we use
etime to measure the execution time):

>>t0 = clock;forloop1;etime(clock,t0)
ans =

5.3545

A little over five seconds. Now we try to do it another way. Here is
a diagram of what we want to do, with the elements we want to sum
written out as indices of the respective vectors:

a

(
1 2 3 4 . . . N − 2 N − 1

)

+ a

(
2 3 4 5 . . . N − 1 N

)

= b

(
1 2 3 4 . . . N − 2 N − 1

)

Writing the operation in this way allows us to see how we can use vectors
of indices to do the summation. The top line of the sum can be written
in matlab notation as a(1:N-1), and the second line can be written
as a(2:N). The pairwise sum vector b therefore can be calculated in
matlab with the following code:

b = a(1:end-1) + a(2:end);

We have used the special index end to refer to the final element of the
vector. This time there is no advantage in pre-allocating the b vector
as we did before the for loop above. With regular use, the vectorised
matlab representation will seem to resemble the mathematical repre-
sentation just as closely as the for loop. The time taken by this code
is

t0 = clock;b = a(1:end-1) + a(2:end);etime(clock,t0)
ans =

2.2400

The vectorised version runs a little more than twice as fast as the
for loop implementation.

Looping over matrix or vector subscripts can often be replaced
by such matrix operations. Appropriate matrices can be generated
using subscripting, as here, or by rearranging the input matrices using
reshape, the transpose operator, or other matrix manipulations. mat-
lab’s columnar operations sum, diff, prod, etc. can then be used to

c© 2000 by CRC Press LLC



do very fast operations on the appropriate matrices. matlab’s suite of
utility matrices can also come in handy when vectorising code (see help
elmat).

We now look at a slightly more complicated example. Suppose you
want to generate a matrix aij with elements:

aij =




j∑
k=i

k j ≥ i

0 otherwise

The 5× 5 version of a is

a =




1 1 + 2 1 + 2 + 3 1 + 2 + 3 + 4 1 + 2 + 3 + 4 + 5
0 2 2 + 3 2 + 3 + 4 2 + 3 + 4 + 5
0 0 3 3 + 4 3 + 4 + 5
0 0 0 4 4 + 5
0 0 0 0 5




=




1 3 6 10 15
0 2 5 9 14
0 0 3 7 12
0 0 0 4 9
0 0 0 0 5




A simple loop implementation of this calculation would resemble the
following:

N = 200;
a = zeros(N,N);
for i = 1:N
for j = 1:N
if j>=i
a(i,j) = sum(i:j);

end
end

end

Let us time this code (call it forloop2):

>>t0 = clock;forloop2;etime(clock,t0)
ans =

2.9241

There are may different ways that we could vectorise this calculation,
depending on our ingenuity. For now, we note that we can generate the

c© 2000 by CRC Press LLC



first row of a by taking the columnar sum of the triangular matrix s:

a(1,:) = sum(s)

= sum




1 1 1 1 1 · · ·
0 2 2 2 2
0 0 3 3 3
0 0 0 4 4
0 0 0 0 5
...

. . .




.

We can generate the second row of a by taking the same columnar sum
but leaving out the first row of s:

a(2,:) = sum(s(2:end,:))

= sum




0 2 2 2 2 · · ·
0 0 3 3 3
0 0 0 4 4
0 0 0 0 5
...

. . .




.

In general, then, we can generate the ith row of a by taking the columnar
sum of s leaving out its first i − 1 rows: a(i,:) = sum(s(i:end,:)).
Our final code will consist of putting this statement inside a for loop
(this will be a good use of a for loop—see the first paragraph in this
section). Before we do that, though, we still need to generate the utility
matrix s; here we can use matrix multiplication. The matrix we want
can be obtained by taking the upper triangular part of the product of a
column vector and a row vector:



1 1 1 1 1 · · ·
0 2 2 2 2
0 0 3 3 3
0 0 0 4 4
0 0 0 0 5
...

. . .




= triu







1
2
3
4
5
...



·
(

1 1 1 1 1 · · ·
)




So here we have the final code to generate the a matrix (for N = 200):

N = 200;
s = triu((1:N)’*ones(1,N));
a = zeros(N,N);
for i = 1:N-1
a(i,:) = sum(s(i:end,:));

end
a(N,:) = s(N,:);

c© 2000 by CRC Press LLC



The last row needs special treatment (see what happens when you let
the loop run to i = N). On my computer this code took 2.1 seconds to
execute, compared to 2.9 seconds for the simple for loop implementation
given on page 177. We have saved nearly one second: not much, but if
you have to repeat the calculation 10,000 times it becomes worthwhile.

38.2 M-File Subfunctions

matlab allows you to put more than one function in a file. If you put
more than one function in a file, the second and subsequent functions are
subfunctions; the first is the main function, or primary function. The
idea is to have a file with the following structure:

function dinner = cook(entree,maincourse,dessert)
% Get matlab to cook a meal.
E = prepare(entree);
M = prepare(maincourse);
D = prepare(dessert);
dinner = [E M D];

function output = prepare(course)
switch iscourse(course)
case ’entree’
output = makeentree;

case ’maincourse’
output = makemaincourse;

case ’dessert’
output = makedessert;

otherwise
disp(’Unknown course: do you really want to eat this?’)

end

In this example prepare is the subfunction of the cook function. When
matlab encounters the call to prepare, it checks to see if there is a
subfunction called prepare in the same file before looking along the
search path for an m-file called prepare. (Actually before looking along
the path, it checks for the existence of a private subdirectory first. See
the helpdesk if this intrigues you.) This means that you can give a
subfunction the same name as an existing matlab function. The main
function will use the subfunction and any other function will use the
other existing function. As is true for single-file functions, subfunctions
cannot “see” variables unless you pass them as arguments or declare
them global. Subfunctions are invisible to help, which sees only the
main function.

c© 2000 by CRC Press LLC



38.3 Debugging

matlab has a suite of debugging commands. A list of them can be
obtained by typing help debug:

dbstop Set breakpoint dbstatus List all breakpoints
dbclear Remove breakpoint dbstep Execute one or more
dbcont Resume execution lines
dbdown Change local dbtype List M-file with

workspace context line numbers
dbup Change local dbmex Enable mex file

workspace context debugging
dbstack List who called whom dbquit Quit debug mode

Other commands that are useful when debugging code are

keyboard Put this command in a function and the function will stop at
that point and return control to the command window, but within
the function’s environment. This means that variables within the
function can be accessed for printing out, plotting, etc. The com-
mand window prompt changes to K>> while the keyboard function
is in effect. You can resume execution of the function by typing
the character sequence r, e, t, u, r, and n at the K>> prompt,

echo Use the echo command to display each line of a script or function
as it is executed.

diary The diary command is used when you want to save a copy of
everything that appears in the command window, both what you
type and what matlab types, in a file.

more The more command stops the screen from scrolling each time it
fills with text. You can advance the screen one page at a time by
pressing the space bar, or one line at a time by pressing the return
key. If you press q when the screen is stopped, the current display
will end at that point.

38.4 Profiler

The profile command measures the time taken to execute each line of
code. Let us use it to examine the performance of the following code to
produce an image of the Mandelbrot set (see companion software):

function mandelbrot
% MANDEL.M Produces a plot of the famous Mandelbrot set.
% see: http://eulero.ing.unibo.it/~strumia/Mand.html
% The generator is z = z^2+z0. Try changing the parameters:
N = 400;

c© 2000 by CRC Press LLC

http://eulero.ing.unibo.it/


xcentre = -0.6;
ycentre = 0;
L = 1.5;
x = linspace(xcentre - L,xcentre + L,N);
y = linspace(ycentre - L,ycentre + L,N);
[X,Y] = meshgrid(x,y);
Z = X + i*Y;
Z0 = Z;
for k = 1:50;
Z = Z.^2 + Z0;

end
ind1 = find(isnan(Z));
ind2 = find(~isnan(Z));
Z(ind1) = 1;
Z(ind2) = 0;
contour(x,y,abs(Z),[.5 .5])
grid;box
axis equal off

You must tell the profile command which function you want to look
at. The format of this command changed between matlab versions 5.2
and 5.3.

Profile in MATLAB 5.2

Initiate the profiler in matlab version 5.2 by typing:

profile mandelbrot

Now go ahead and run the function:

mandelbrot

To see where matlab spent most of its time, type:

>> profile report
Total time in "mandelbrot.m": 30.12 seconds

100% of the total time was spent on lines:
[15 21 12 18 17 19 11 20 22 16 ]

c© 2000 by CRC Press LLC



10: y = linspace(ycentre - L,ycentre + L,N);
0.13s, 0% 11: [X,Y] = meshgrid(x,y);
0.67s, 2% 12: Z = X + i*Y;

13: Z0 = Z;
14: for k = 1:50;

23.02s, 76% 15: Z = Z.^2 + Z0;
0.02s, 0% 16: end
0.36s, 1% 17: ind1 = find(isnan(Z));
0.43s, 1% 18: ind2 = find(~isnan(Z));
0.22s, 1% 19: Z(ind1) = 1;
0.08s, 0% 20: Z(ind2) = 0;
5.15s, 17% 21: contour(x,y,abs(Z),[.5 .5])
0.02s, 0% 22: grid;box

23: axis equal off

Most of the time here is spent iterating the values of Z. You can get
a plot of the time taken by the most time-consuming lines of code by
capturing the output of the profile command and using it to produce a
pareto chart:

>> t = profile
t =

file: [ 1x64 char ]
interval: 0.0100

count: [23x1 double]
state: ’off’

>> pareto(t.count)

Here only the three most time-consuming lines (labelled on the x axis)
are shown, the rest taking too little time to be of concern. The left-hand
scale shows the time taken to do each line, in hundredths of a second.
The line is the cumulative time. If we wanted to speed up this code, we
would do well to concentrate on line 15, and forget trying to speed up
the graphics.

Profile in MATLAB 5.3

The profile command has been significantly expanded in matlab 5.3.
Use profile on to switch on the profiler. A hypertext report is pro-
duced by typing profile report. A graphical display of the profile
results is obtained by typing profile plot.

15 12 21
0

2000

4000

6000

7733

0%  

26% 

52% 

78% 

100%

c© 2000 by CRC Press LLC



39 Answers to Exercises
(Part I, Basics of MATLAB)

Exercise 1 (Page 9)

The first three columns are a copy of the a matrix. The second three
columns are the elements of a indexed by the elements of a. For example,
a(a(3,2)) = a(8) = 6, which yields the marked element >6< of the
answer:

>> [a a(a)]
ans =

1 2 3 1 4 7
4 5 6 2 5 8
7 8 9 3 >6< 9

Exercise 2 (Page 39)

function out = posneg(in)

% Test for all positive (1), or all negative (-1) elements.

if all(in>0)
out = 1;

elseif all(in<0)
out = -1;

else
out = 0;

end

Exercise 3 (Page 44)

The clown’s hair is orange. You can use load clown to load the data
(type clear first to get rid of any superfluous data). Typing whos will
tell you that the workspace contains a matrix X and a variable map. Use
image(X),colormap(map) to view the image.

Exercise 4 (Page 49)

We want to fit the data to an exponential curve:

p = AeBx .

First we take logs to convert to a linear equation:

log p = log A + Bx .

c© 2000 by CRC Press LLC



We change variables:

p′ = C + Bx .

Now we simply do a least-squares fit using this equation; that is, a
straight line. We could use the backslash notation that we used to fit
the parabola but, for variety, let’s use the polyfit function. A straight
line is a polynomial of degree 1. The following code takes the logarithm
of the population data and fits a straight line to it:

>> logp = log(P);
>> c = polyfit(year,logp,1)
c =

0.0430 -68.2191

The vector c contains B and C, in that order. We use the polynomial
evaluation function polyval to calculate the fitted population over a fine
year grid:

>> year_fine = (year(1):0.5:year(length(year)))’;
>> logpfit = polyval(c,year_fine);

And we display the results on linear and logarithmic y-scales:

subplot(221)
plot(year,P,’:o’,year_fine,exp(logpfit))
subplot(222)
semilogy(year,P,’:o’,year_fine,exp(logpfit))

The single straight line cannot fit all the data. The right hand plot
indicates that there were two growth factors, B: one prior to 1870 and
one after. Let’s do another fit using only the data after 1870:

ind = find(year>1870);
logp = log(P(ind));
c = polyfit(year(ind),logp,1);
logpfit = polyval(c,year_fine);
clf subplot(221)
plot(year,P,’:o’,year_fine,exp(logpfit))
subplot(222)
semilogy(year,P,’:o’,year_fine,exp(logpfit))

c© 2000 by CRC Press LLC



If you zoom in on the right hand plot you’ll find that this growth rate is
too fast for the period between 1990 and 1996.

Exercise 5 (Page 55)

The following m-file illustrates how to generate a 2-dimensional sinusoid
and its FFT. Experiment with the relative x and y frequencies and see
the effect on the FFT. Try different functions of x and y. Try adding
some noise. Try plotting the logarithm of P.

t=linspace(-pi,pi,64);
[x,y]=meshgrid(t);
z = sin(3*x + 9*y);
Z = fft2(z);
P = fftshift(abs(Z).^2);
f = fftfreq(0.5, length(t));

clf
colormap([0 0 0])
subplot(221)
mesh(x,y,z)
axis([-pi pi ...

-pi pi ...
-15 15])

view([60 50])
xlabel(’x’)
ylabel(’y’)
title(’Signal’)

subplot(223)
mesh(f,f,P)
axis tight
view([60 50])
xlabel(’x-frequency’)
ylabel(’y-frequency’)
title(’Transform’)

c© 2000 by CRC Press LLC



Exercise 6 (Page 59)

You can generate a sinusoidal frequency variation by specifying a sinusoid
input to the voltage controlled oscillator function vco. Get the results of
specgram by using output arguments and compare a plot of the results
using an image and a surface plot:

Fs = 1000;
t = linspace(0,2*pi,8192);
x = sin(t);
y = vco(x,[0 500],Fs);
[z,freq,time] = specgram(y,[],Fs);
p = 20*log10(abs(z))
subplot(221)
imagesc(time,freq,p)
axis xy
colormap(flipud(gray))
colorbar
xlabel(’Time, sec’)
ylabel(’Frequency, Hz’)

subplot(223)
surfl(time,freq,p)
shading flat
xlabel(’Time, sec’)
ylabel(’Frequency, Hz’)
zlabel(’Power, dB’)

c© 2000 by CRC Press LLC



40 Answers to Exercises
(Part II, Beyond the Basics)

Exercise 7 (Page 74)

To repeat the calculation for the case of 100 nodes, we do the following:

dt = 2*pi/100;
t = dt:dt:100*dt;
x = cos(t)’;y = sin(t)’;
xy = [x y];
e = ones(100,1);
A = spdiags(e,2 ,100,100) + ...

spdiags(e,50,100,100) + ...
spdiags(e,98,100,100);

A = A +
A’;
subplot(221)
spy(A)
subplot(222)
gplot(A,xy)
axis equal off

The next part of the exercise is to change the connection matrix. An
interesting one is the geometrically parallel network:

A = spdiags(e, 25,100,100) + ...
spdiags(e,-75,100,100);

A = fliplr(A);
subplot(221)
spy(A)
subplot(222)
gplot(A,xy)
axis equal off

Exercise 8 (Page 75)

This will produce a list of the ascii characters corresponding to the
integers from zero to 255:

I = (0:255)’;
[int2str(I) blanks(256)’ char(I)]

Some of the output is shown below:

c© 2000 by CRC Press LLC



33 ! 36 $ 39 ’ 42 * 45 - 48 0
34 " 37 % 40 ( 43 + 46 . 49 1
35 # 38 & 41 ) 44 , 47 / 50 2

Typing char(7) rings the bell.

Exercise 9 (Page 80)

The strvcat function is used instead of char because it ignores empty
strings in the input; the char function doesn’t:

>> char(’’,’The’,’’,’quick’)
ans =

The

quick
>> strvcat(’’,’The’,’’,’quick’)
ans =
The
quick

If char were used instead of strvcat, the result would always begin with
a blank line.

Exercise 10 (Page 83)

The problem is to deal with the two cases: (1) where the name of a
function or m-file is given, such as ‘sin’, and (2) where the function itself
is given, such as ‘sin(x)’. The difference here boils down to whether
the string input contains brackets or not (see hint). In other cases the
string input might not contain brackets, but would contain characters
used in defining a function, such as +, -, *, /, or . (as in t.^2). The
ascii values for these characters are all less than 48, so we detect the
presence of a function (rather than a function name) by checking the
input string for ascii values less than 48. If this is the case, we make
the input string into an inline function before passing it to feval:

function funplot(f,lims)

% Simple function plotter.

% Test for characters whose presence would imply that f
% is a function (not a function name):
if any(f<48)
f = inline(f);

end

c© 2000 by CRC Press LLC



x = linspace(lims(1),lims(2));
y = feval(f,x);
clf
plot(x,y)

(This trick is used in the m-file fplot which is a more elaborate version
of our funplot. fplot adapts the plotting grid to the local behaviour
of the function, putting in more points where the gradient is steep.)

Exercise 11 (Page 86)

The “stuck” in question is indicated by the arrow in the following plot:

>> t = {’help’ spiral(3) ; ...
eye(2) ’I’’m stuck’};

>> tt = {t t ;t’ fliplr(t)};
>> tt{2,2}{2,1}(5:9)
ans =
stuck
>> cellplot(tt)

Exercise 12 (Page 94)

The difference between meshgrid and ndgrid for less than four input
arguments is that the first two output arguments are transposed. This
makes it convenient to do x-y plots using the [x,y] outputs of the
meshgrid command. The outputs of the ndgrid command follow the log-
ical ordering of indices in matlab: if [u,v,w] = ndgrid(...) then u’s
elements will vary over its rows, v’s elements will vary over its columns,
and w’s elements will vary over its pages.

Exercise 13 (Page 97)

The distance d of each point from (x0, y0) is given by:

d =
√

(x− x0)2 + (y − y0)2 ,

so we calculate this for the centres of the red, green, and blue regions.
Then we find the points outside the radius and set them equal to zero:

help

I’m stuck

help

I’m stuck

help

I’m stuck

help

I’m stuck

c© 2000 by CRC Press LLC



R = 1; N = 200;
[x,y] = meshgrid(linspace(-2,2,N));
r = sqrt((x + 0.4).^2 + (y + 0.4).^2);
ind = find(r>R);
r(ind) = 0;
g = sqrt((x - 0.4).^2 + (y + 0.4).^2);
ind = find(g>R);
g(ind) = 0;
b = sqrt(x.^2 + (y - 0.4).^2);
ind = find(b>R);
b(ind) = 0;
rgb = cat(3,r,g,b);
imagesc(rgb)
axis equal off

You may find that the image on the screen has been dithered because we
now have a very large number of colours. You might like to investigate
other combinations of red, green, and blue matrices, for example:

r = peaks;
g = r’;
b = fftshift(r);

Mixing linear ramps of colour in different directions is interesting. Be
adventurous!

Exercise 14 (Page 115)

Since we know the dimensions of the borders in pixels, we set the figure’s
units property to pixels. It is then just a matter of taking into acount
the correct number of borders when defining the figures’ positions which,
remember, don’t include the borders. The following code does the job.
We start by getting the size of the screen (the root object, whose handle
is alway zero) in pixels.

set(0,’Units’,’pixels’)
screensize = get(0,’ScreenSize’);
edgethickness = 5;
topthickness = 10;
scr_width = screensize(3);
scr_height = screensize(4);
figwidth = scr_width/2 - 2*edgethickness;
figheight = scr_height/2 - ...

2*(edgethickness + topthickness);
pos1 = [edgethickness,...

edgethickness,...
figwidth,...
figheight];

c© 2000 by CRC Press LLC



pos2 = [scr_width/2 + edgethickness,...
edgethickness,...
figwidth,...
figheight];

pos3 = [scr_width/2 + edgethickness,...
scr_height/2 + edgethickness,...
figwidth,...
figheight];

figure(’Position’,pos1)
figure(’Position’,pos2)
figure(’Position’,pos3)

The width of the window border might be different from these on your
computer. There is no way of obtaining these widths from within mat-
lab. You might have to resort to trial and error to get the window
thicknesses exactly right for your computer.

Exercise 15 (Page 118)

Issue the command type gcf and you will see that if there are no figures,
gcf creates one, whereas get(0,’CurrentFigure’) doesn’t.

Exercise 16 (Page 119)

Did you have fun?

Exercise 17 (Page 123)

The following commands should produce the required display. First we
generate a grid of 100×100 points over the interval [0, 1]:

N = 100;
v = linspace(0,1,N);
[x,y] = meshgrid(v);

We want to draw a vertical line at each of the grid points to represent
the vines of the vineyard or trees of the orchard. We string out the x
and y grid points into two row vectors and use matrix multiplication to
duplicate these. The z values, representing the start and end points, go
from zero to a height of 0.01:

x = [1; 1]*x(:)’;
y = [1; 1]*y(:)’;
z = [zeros(1,N^2); 0.01*ones(1,N^2)];
plot3(x,y,z,’r’)

c© 2000 by CRC Press LLC



(The plot might take a few seconds to render; be patient.) We want
to modify this plot so that a perspective projection is used, and with a
viewpoint as if we were standing near the edge of the vineyard:

set(gca,’proj’,’per’)
axis equal
set(gca,’cameraposition’,[.5 -1 .2])
axis vis3d off
set(gca,’cameraposition’,[.5 -.1 0.03])

Exercise 18 (Page 132)

You should not use title instead of text because the title disappears
when you do axis off.

Exercise 19 (Page 145)

The following code does the job. Items are “grayed out” by setting their
“enable” property to “off”.

uimenu(’Label’,’File’)
uimenu(’Label’,’View’);
E = uimenu(’Label’,’Edit’)
uimenu(’Label’,’Options’)
uimenu(E,’Label’,’Cut’,’Enable’,’off’)
uimenu(E,’Label’,’Copy’,’Enable’,’off’)
uimenu(E,’Label’,’Paste’)
uimenu(E,’Label’,’Rotate’,’Separator’,’on’)
S = uimenu(E,’Label’,’Scale’)
uimenu(S,’Label’,’10%’,...

’Enable’,’off’)
uimenu(S,’Label’,’50%’,...

’Enable’,’off’)
uimenu(S,’Label’,’150%’,...

’Enable’,’off’)
uimenu(S,’Label’,’200%’,...

’Enable’,’off’)
uimenu(S,’Label’,...

’Custom Scaling...’)

Exercise 21 (Page 164)

A truncated pyramid can be produced using the following code:

c© 2000 by CRC Press LLC



x = [0 0 1 1 0 .4
1 1 1 0 0 .4
1 .6 .6 .4 .4 .6
0 .4 .6 .6 .4 .6];

y = [0 1 1 0 0 .4
0 1 0 0 1 .6
1 .6 .4 .4 .6 .6
1 .6 .6 .4 .4 .4];

z = [0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 1];

patch(x,y,z,’y’)
view(3);xyz,box

Exercise 22 (Page 171)

The faces are coloured according to the colours of the vertex. We have
vertices defined for z = 0 and z = 1, but the heat source is located at
z = 0.25. The result should be symmetric about the z = 0.25 plane,
but our result does not have this symmetry. The reason is that we only
have two z values. To produce a better display we simply need to add
vertices at a range of z values. The following code does the job:

N = 100; % Number of points around the circle
M = 30; % Number of circles in the cylinder
dt = 2*pi/N;
t = (0:dt:(N-1)*dt)’;
h = linspace(0,1,M); % vector of heights
xv = cos(t);
yv = sin(t);

% Reproduce the vertices at different heights:
x = repmat(xv,M,1);
y = repmat(yv,M,1);
z = ones(N,1)*h;
z = z(:);
vert = [x y z];

% These are the facets of a single ’layer’:
facets = zeros(N,4);
facets(1:N-1,1) = (1:N-1)’;
facets(1:N-1,2) = ((N+1):(2*N-1))’;
facets(1:N-1,3) = ((N+2):(2*N))’;
facets(1:N-1,4) = (2:N)’;
facets(N,:) = [N 2*N N+1 1];

0
0.5

1

0

0.5

1
0

0.5

1

xy

z

c© 2000 by CRC Press LLC



% Reproduce the layers at the different heights:
faces = zeros((M-1)*N,4);
for i=1:M-1
rows = (1:N) + (i - 1)*N;
faces(rows,:) = facets + (i - 1)*N;

end

%Define heat source and temperature:
xs = -0.5;
ys = 0;
zs = 0.25;
dist = sqrt((x - xs).^2 + (y - ys).^2 + (z - zs).^2);
T = 1./dist;

clf
colormap(hot)
h = patch(’vertices’,vert,’faces’,faces,...

’facevertexcdata’,T,...
’facecolor’,’interp’,...
’linestyle’,’none’);

view(78,36)
axis equal
% Plot the source:
hold on
plot3([xs xs],[ys ys],[0 zs])
plot3(xs,ys,zs,’*’,...

’markerSize’,12)

In the resulting graphic the vertices are shown as points and the source
is shown as the star on the stick.

c© 2000 by CRC Press LLC


	2039_pdf_toc.pdf
	BASICS OF  MATLAB®  and Beyond
	Preface
	About the Author
	Contents


	2039_PDF_Part-I.pdf
	BASICS OF MATLAB and Beyond
	Table of Contents
	Part I: Basics of MATLAB
	1 First Steps in MATLAB
	1.1 Starting MATLAB
	1.2 First Steps
	1.3 Matrices
	1.4 Variables
	1.5 The Colon Operator
	1.6 Linspace
	1.7 Plotting Vectors

	2 Typing into MATLAB
	2.1 Command Line Editing
	2.2 Smart Recall
	2.3 Long Lines
	2.4 Copying and Pasting

	3 Matrices
	3.1 Typing Matrices
	3.2 Concatenating Matrices
	3.3 Useful Matrix Generators
	3.4 Subscripting
	3.5 End as a subscript
	3.6 Deleting Rows or Columns
	3.7 Matrix Arithmetic
	3.8 Transpose

	4 Basic Graphics
	4.1 Plotting Many Lines
	4.2 Adding Plots
	4.3 Plotting Matrices
	4.4 Clearing the Figure Window
	4.5 Subplots
	4.6 Three-Dimensional Plots
	4.7 Axes
	4.8 Labels

	5 More Matrix Algebra
	6 Basic Data Analysis
	7 Graphics of Functions of Two Variables
	7.1 Basic Plots
	7.2 Colour Maps
	7.3 Colour Bar
	7.4 Good and Bad Colour Maps
	7.5 Extracting Logical Domains
	7.6 Nonrectangular Surface Domains

	8 M-Files
	8.1 Scripts
	8.2 Functions
	8.3 Flow Control
	If, Else, Elseif
	Switch
	While
	For
	Vectorised Code

	8.4 Comparing Strings

	9 Data Files
	9.1 MATLAB Format
	9.2 ASCII Format
	9.3 Other Formats

	10 Directories
	11 Startup
	12 Using MATLAB on Different Platforms
	13 Log Scales
	14 Curve Fitting —Matrix Division
	15 Missing Data
	16 Polar Plots
	17 Fourier Transform
	18 Power Spectrum
	19 Sounds in MATLAB
	20 Time-Frequency Analysis
	21 Line Animation
	22 SP Tool
	23 Handle Graphics
	23.1 Custom Plotting Functions
	23.2 Set and Get
	23.3 Graphical Object Hierarchy
	Example: Line Width


	24 Demos



	2039_PDF_Part-II.pdf
	BASICS OF MATLAB® and Beyond
	Table of Contents
	Part II: Beyond the Basics
	Prelude
	25 Sparse Arrays
	25.1 Example: Airfoil
	25.2 Example: Communication Network

	26 Text Strings
	26.1 String Matrices
	26.2 Comparing Strings
	26.3 String Manipulations
	26.4 Converting Numbers to Strings
	26.5 Using Strings as Commands
	The eval Function
	The feval Function
	Inline Objects


	27 Cell Arrays
	28 Structures
	28.1 Example: Meteorological Database
	28.2 Example: Capturing the List of Variables

	29 Multidimensional Arrays
	29.1 Generating Multidimensional Grids
	29.2 Operations with Multidimensional Arrays
	29.3 RGB Images
	Introduction to RGB Images
	An Application of RGB Images

	29.4 Example: Sonar
	29.5 Multidimensional Cell Arrays
	29.6 Multidimensional Structures

	30 Saving and Loading Data
	30.1 MATLAB Format
	30.2 Other Formats

	31 Handle Graphics
	31.1 Get and Set
	Example: Undo
	Example: Figure Positioning
	Example: findobj

	31.2 Default Object Properties
	31.3 Current Objects

	32 Axes Effects
	32.1 The Axis Command
	32.2 Tick Marks and Labels
	32.3 Subplots
	32.4 Double Axes
	32.5 Axes Labels

	33 Text in Graphics
	33.1 Symbols and Greek Letters
	33.2 Symbols in Tick Labels
	33.3 Global Object Placement

	34 Graphical User Interfaces
	34.1 Callbacks
	34.2 UIControls
	Edit Boxes
	Text
	Frame
	Slider
	Listbox
	Popup menu

	34.3 Exclusive Radio Buttons
	34.4 Variables in GUIs
	Globals
	Variables in UserData

	34.5 The Tag Property
	34.6 UIMenus
	34.7 Fast Drawing
	34.8 Guide
	34.9 Other Aids

	35 Printing Graphics
	35.1 Print Size: Orient
	Tall
	Landscape
	Portrait

	35.2 Print Size: WYSIWYG
	35.3 Including Figures in Other Applications
	General Comments
	PostScript and Encapsulated PostScript
	LATEX: Version 2e
	LATEX: Version 2.09
	Microsoft Word
	Microsoft PowerPoint
	CorelDraw


	36 Irregular Grids
	36.1 Interpolation over a Rectangular Grid
	36.2 Triangular Gridding

	37 Three-dimensional Modelling
	37.1 Patches
	Three-dimensional Patches
	Patch Colouring

	37.2 Light Objects

	38 MATLAB Programming
	38.1 Vectorising Code
	38.2 M-File Subfunctions
	38.3 Debugging
	38.4 Profiler
	Profile in MATLAB 5.2
	Profile in MATLAB 5.3


	39 Answers to Exercises (Part I, Basics of MATLAB)
	Exercise 1 (Page 9)
	Exercise 2 (Page 39)
	Exercise 3 (Page 44)
	Exercise 4 (Page 49)
	Exercise 5 (Page 55)
	Exercise 6 (Page 59)

	40 Answers to Exercises (Part II, Beyond the Basics)
	Exercise 7 (Page 74)
	Exercise 8 (Page 75)
	Exercise 9 (Page 80)
	Exercise 10 (Page 83)
	Exercise 11 (Page 86)
	Exercise 12 (Page 94)
	Exercise 13 (Page 97)
	Exercise 14 (Page 115)
	Exercise 15 (Page 118)
	Exercise 16 (Page 119)
	Exercise 17 (Page 123)
	Exercise 18 (Page 132)
	Exercise 19 (Page 145)
	Exercise 21 (Page 164)
	Exercise 22 (Page 171)







