
Contents

1 Engineering Problem Solving 1

1.1 Problem-Solving Process . 1

1.2 Problem Solving Example . 4

1.3 Computing Software . 8

1.4 Computing Terminology . 12

2 Matlab Technical Computing Environment 14

2.1 Workspace, Windows, and Help . 14

2.2 Scalar Mathematics . 15

2.3 Basic Mathematical Functions . 24

2.4 Computational Limitations . 26

2.5 Display Options . 29

2.6 Accuracy and Precision . 33

3 Files and File Management 37

3.1 File Management Definitions and Commands . 37

3.2 Saving and Restoring Matlab Information . 39

3.3 Script M-Files . 43

3.4 Errors and Debugging . 47

3.5 Matlab Search Path, Path Management, and Startup 49

i

4 Trigonometry and Complex Numbers 51

4.1 Trigonometry . 51

4.2 Complex Numbers . 57

4.3 Two-Dimensional Plotting . 72

5 Arrays and Array Operations 81

5.1 Vector Arrays . 81

5.2 Matrix Arrays . 88

5.3 Array Plotting Capabilities . 93

6 Mathematical Functions and Applications 101

6.1 Signal Representation, Processing, and Plotting . 101

6.2 Polynomials . 111

6.3 Partial Fraction Expansion . 120

6.4 Functions of Two Variables . 125

6.5 User-Defined Functions . 129

6.6 Plotting Functions . 133

7 Data Analysis 135

7.1 Maximum and Minimum . 136

7.2 Sums and Products . 140

7.3 Statistical Analysis . 143

7.4 Random Number Generation . 148

8 Selection Programming 155

8.1 Relational and Logical Operators . 155

8.2 Flow Control . 161

8.3 Loops . 165

8.4 Selection Statements in User-Defined Functions . 169

8.5 Update Processes . 171

ii

8.6 Applied Problem Solving: Speech Signal Analysis . 175

9 Vectors, Matrices and Linear Algebra 180

9.1 Vectors . 181

9.2 Matrices . 187

9.3 Solutions to Systems of Linear Equations . 196

9.4 Applied Problem Solving: Robot Motion . 202

10 Curve Fitting and Interpolation 207

10.1 Minimum Mean-Square Error Curve Fitting . 207

10.2 Applied Problem Solving: Hydraulic Engineering . 213

10.3 Interpolation . 215

10.4 Applied Problem Solving: Human Hearing . 219

11 Integration and Differentiation 223

11.1 Numerical Integration . 223

11.2 Numerical Differentiation . 230

12 Strings, Time, Base Conversion and Bit Operations 239

12.1 Character Strings . 239

12.2 Time Computations . 244

12.3 Base Conversions and Bit Operations . 247

13 Symbolic Processing 250

13.1 Symbolic Expressions and Algebra . 250

13.2 Manipulating Trigonometric Expressions . 257

13.3 Evaluating and Plotting Symbolic Expressions . 258

13.4 Solving Algebraic and Transcendental Equations . 259

13.5 Calculus . 262

13.6 Linear Algebra . 266

iii

Section 1

Engineering Problem Solving

Engineering often involves applying a consistent, structured approach to the solving of problems.

A general problem-solving approach and method can be defined, although variations will be required
for specific problems.

Problems must be approached methodically, applying an algorithm, or step-by-step procedure by
which one arrives at a solution.

1.1 Problem-Solving Process

The problem-solving process for a computational problem can be outlined as follows:

1. Define the problem.

2. Create a mathematical model.

3. Develop a computational method for solving the problem.

4. Implement the computational method.

5. Test and assess the solution.

The boundaries between these steps can be blurred and for specific problems one or two of the
steps may be more important than others. Nonetheless, having this approach and strategy in mind
will help to focus our efforts as we solve problems

1. Problem Definition:

The first steps in problem solving include:

• Recognize and define the problem precisely by exploring it thoroughly (may be the most
difficult step).

1

• Determine what question is to be answered and what output or results are to be produced.

• Determine what theoretical and experimental knowledge can be applied.

• Determine what input information or data is available

Many academic problems that you will be asked to solve have this step completed by the instructor.
For example, if your instructor ask you to solve a quadratic algebraic equation and provides you
with all of the coefficients, the problem has been completely defined before it is given to you and
little doubt remains about what the problem is.

If the problem is not well defined, considerable effort must be expended at the beginning in studying
the problem, eliminating the things that are unimportant, and focusing on the root problem. Effort
at this step pays great dividends by eliminating or reducing false trials, thereby shortening the time
taken to complete later steps.

After defining the problem:

• Collect all data and information about the problem.

• Verify the accuracy of this data and information.

• Determine what information you must find: intermediate results or data may need to be
found before the required answer or results can be found.

2. Mathematical Model:

To create a mathematical model of the problem to be solved:

• Determine what fundamental principles are applicable.

• Draw sketches or block diagrams to better understand the problem.

• Define necessary variables and assign notation.

• Reduce the problem as originally stated into one expressed in purely mathematical terms.

• Apply mathematical expertise to extract the essentials from the underlying physical descrip-
tion of the problem.

• Simplify the problem only enough to allow the required information and results to be obtained.

• Identify and justify the assumptions and constraints inherent in this model.

3. Computational Method:

A computational method for solving the problem is to be developed, based on the mathematical
model.

• Derive a set of equations that allow the calculation of the desired parameters and variables.

2

• Develop an algorithm, or step-by-step method of evaluating the equations involved in the
solution.

• Describe the algorithm in mathematical terms and then implement as a computer program.

• Carefully review the proposed solution, with thought given to alternative approaches.

4. Implementation of Computational Method:

Once a computational method has been identified, the next step is to carry out the method with a
computer, whether human or silicon.

Some things to consider in this implementation:

• Assess the computational power needed, as an acceptable implementation may be hand cal-
culation with a pocket calculator.

• If a computer program is required, a variety of programming languages, each with different
properties, are available.

• A variety of computers, ranging from the most basic home computers to the fastest parallel
supercomputers, are available.

• The ability to choose the proper combination of programming language and computer, and
use them to create and execute a correct and efficient implementation of the method, requires
both knowledge and experience. In your engineering degree program, you will be exposed
to several programming languages and computers, providing you with some exposure to this
issue.

The mathematical algorithm developed in the previous step must be translated into a computational
algorithm and then implemented as a computer program.

The steps in the algorithm should first be outlined and then decomposed into smaller steps that
can be translated into programming commands.

One of the strengths of Matlab is that its commands match very closely to the steps that are
used to solve engineering problems; thus the process of determining the steps to solve the problem
also determines the Matlab commands. Furthermore, Matlab includes an extensive toolbox of
numerical analysis algorithms, so the programming effort often involves implementing the mathe-
matical model, characterizing the input data, and applying the available numerical algorithms.

5. Test and Assess the Solution:

The final step is to test and assess the solution. In many aspects, assessment is the most open-ended
and difficult of the five steps involved in solving computational problems.

The numerical solution must be checked carefully:

• A simple version of the problem should be hand checked.

3

• The program should be executed on obtained or computed test data for which the answer or
solution is either known or which can be obtained by independent means, such as hand or
calculator computation.

• Intermediate values should be compared with expected results and estimated variations.
When values deviate from expected results more than was estimated, the source of the devi-
ation should be determined and the program modified as needed.

• A “reality check” should be performed on the solution to determine if it makes sense.

• The assumptions made in creating the mathematical model of the problem should be checked
against the solution.

1.2 Problem Solving Example

As an example of the problem solving process, consider the following problem:

A small object is launched into flight from the ground at a speed of 50 miles/hour at
30 degrees above the horizontal over level ground. Determine the time of flight and the
distance traveled when the ball returns to the ground.

1. Problem Definition:

As stated above, this problem is well defined. The following items could be considered in
further defining the problem.

• Additional information needed:

– Properties of the object and the flight medium could affect the flight trajectory.
For example, if the object is light in weight, has a relatively large surface area, and
travels in air, the air resistance would affect its flight. If the air were moving (by
wind, for example), the flight of the object would also be affected. If this information
is not available, it will be necessary to assume that the medium has no affect on the
trajectory of flight.

– Acceleration of gravity also affects the flight. If no further information is available,
it would be reasonable to assume that the gravitational acceleration at the surface
of the Earth would apply.

– The accuracy of the initial speed and angle of the object is needed to determine
the necessary accuracy of the quantities to be computed. The problem is one for
which we have some physical insight, as it could represent the throwing of a base-
ball, although it is thrown from the ground instead of shoulder level. From this
interpretation, the initial speed and angle seem reasonable.

– Unit conversions needed:
1 mile = 5280 feet
1 hour = 60 minutes = 3600 seconds
360 degrees = 2π radians

4

• Output or results to be produced: It is clear from the problem statement that the
results to be produced are the time of flight and the distance traveled. The units for
these quantities haven’t been specified, but from our knowledge of throwing a baseball,
computing time in seconds and distance in feet would be reasonable.

• Theoretical and experimental knowledge to be applied: The theory to be applied is that
of ballistic motion in two dimensions.

• Input information or data: This includes the object initial velocity of 50 miles per hour
at an angle 30 degree above horizontal.

2. Mathematical Model:

To pose this problem in terms of a mathematical model, we first need to define the notation:

• Time: t (s), with t = 0 when the object is launched.
• Initial velocity magnitude: v = 50 miles/hour.
• Initial angle: θ = 30◦.
• Horizontal position of ball: x(t) (ft).
• Vertical position of ball: y(t) (ft).
• Acceleration of gravity: g = 32.2 ft/s2, directed in negative y direction.

The key step in developing a mathematical model is to divide the trajectory into its horizontal
and vertical components. The initial velocity can be divided in this way, as shown in Figure
1.1. From basic trigonometry, we know that

vh = v cos θ

vv = v sin θ

Figure 1.1: Initial velocity (v) divided into horizonal (vh) and vertical (vv) components.

Given the horizontal and vertical components of the initial velocity, the horizontal and vertical
positions can be determined as functions of time. Since there is no external force acting to
retard the horizontal motion, the object will move at a constant speed of vh in the horizontal
direction

x(t) = vt cos θ

In the vertical direction, the object motion is retarded by gravity and its position is

y(t) = vt sin θ − 1
2
gt2

5

3. Computational Method:

Using the model developed above, expressions for the desired results can be obtained. The
object will hit the ground when its vertical position is zero

y(t) = vt sin θ − 1
2
gt2 = 0

which can be solved to yield two values of time

t = 0,
2v sin θ

g

The second of the two solutions indicates that the object will return to the ground at the
time

tg =
2v sin θ

g

The horizontal position (distance of travel) at this time is

x(tg) = vtg cos θ

4. Computational Implementation:

The equations defined in the computational method can be readily implemented using Mat-
lab. The commands used in the following solution will be discussed in detail later in the
course, but observe that the Matlab steps match closely to the solution steps from the
computational method.

% Flight trajectory computation
%
% Initial values
g = 32.2; % gravity, ft/s^2
v = 50 * 5280/3600; % launch velocity, ft/s
theta = 30 * pi/180; % launch angle, radians

% Compute and display results
disp(’time of flight (s):’) % label for time of flight
tg = 2 * v * sin(theta)/g % time to return to ground, s
disp(’distance traveled (ft):’) % label for distance
xg = v * cos(theta) * tg % distance traveled

% Compute and plot flight trajectory
t = linspace(0,tg,256);
x = v * cos(theta) * t;
y = v * sin(theta) * t - g/2 * t.^2;
plot(x,y), axis equal, axis([0 150 0 30]), grid, ...

xlabel(’Distance (ft)’), ylabel(’Height (ft)’), title(’Flight Trajectory’)

Comments:

6

• Words following percent signs (%) are comments to help in reading the Matlab state-
ments.

• A word on the left of an equals sign is known as a variable name and it will be assigned
to the value or values on the right of the equals sign. Commands having this form are
known as assignment statements.

• If a Matlab command assigns or computes a value, it will display the value on the
screen if the statement does not end with a semicolon (;). Thus, the values of v, g, and
theta will not be displayed. The values of tg and xg will be computed and displayed,
because the statements that computes these values does not end with a semicolon.

• The three dots (...) at the end of a line mean that the statement continues on the next
line.

• More than one statement can be entered on the same line if the statements are separated
by commas.

• The statement t = linspace(0,tg,256); creates a vector of length 256.

• The expression t.^2 squares each element in t, making another vector.

• In addition to the required results, the flight trajectory has also been computed and
plotted. This will be used below in assessing the solution.

• The plot statement generates the plot of height against distance, complete with a title
and labels on the x and y axes.

5. Testing and Assessing the Solution:

This problem is sufficiently simple that the results can be computed by hand with the use
of a calculator. There is no need to generate test data to check the results. One could even
question the need to use the power of Matlab to solve this problem, since it is readily solved
using a calculator. Of course, our objective here is to demonstrate the application of Matlab
to a problem with which you are familiar.

Executing the statements above provides the following displayed results:

time of flight (s):
tg =

2.2774
distance traveled (ft):
xg =

144.6364

Computing these quantities with a calculator can be shown to produce the same results.

The flight trajectory plot that is generated is shown in Figure 1.2. This demonstrates another
strength of Matlab, as it has taken care of the details of the plot generation, including axis
scaling, label placement, etc. This result can be used to assess the solution. Our physical
intuition tell us that this result appears to be correct, as we know that we could throw a
baseball moderately hard and have it travel a distance of nearly 150 feet and that maximum
height of about 20 feet also seems reasonable. The shape of the trajectory also fits our
observations.

7

0 50 100 150
0

10

20

30

Distance (ft)

H
ei

gh
t (

ft)

Flight Trajectory

Figure 1.2: Matlab generated plot of flight trajectory

1.2.1 Programming Style

Programs that are not documented internally, while they may do what is request, can be difficult
to understand when read a few months later, in order to correct or update them. Thus, it is
extremely important to develop the art of writing programs that are well structured, with all of
the logic clearly described. This is known as programming style. Elements of good programming
style include:

• Use comments liberally, both at the beginning of a script, to describe briefly what it does and
any special methods that may have been used, and also throughout the script to introduce
different logical sections.

• Describe each variable briefly in a comment when it is initialized.

• Separate sections of code with blank lines.

• Indent multiple line structures to make them stand out as a logical unit.

• Use spaces in expressions to make them more readable (for example, on either side of operators
and equal signs).

1.3 Computing Software

Before discussing Matlab in more detail, a brief discussion on computing software is useful.

Computer software contains the instructions or commands that the computer is to execute. Cate-
gories include:

• System software

• Languages

• Tools

System Software

Computer system software provides:

8

• An interface between the user and the hardware

• An environment for developing, selecting, and executing software.

The operating system is the most important part of the systems software, managing the computer
resources, including:

• The individual user sessions on multiuser computer systems.

• The division of CPU time across various tasks.

• The random access memory, or RAM, where both instructions and data are stored.

• The secondary storage systems, such as disk drives, CD-ROM drives, tape drives, or any
other device in which information is stored in binary form on some medium. Information in
secondary storage is organized into units called files.

When a computer is turned on, it loads the operating system into RAM (usually from secondary
storage) before a user can execute a program.

The system software may also include one or more command shells:

• Programs that direct the interaction with users. In most cases, when a you type a command,
you are interfacing with the shell.

• Early shells provided a “text” only interface, but modern computers (particularly personal
computers) have graphical user interfaces (GUIs) that allow users to express what they want
to do by using a pointing device and selecting among choices displayed on the screen.

System software also includes:

• Language compilers

• Text editors

• Utilities for file management

• Utilities for printing

Computer Languages

Computer languages are used to develop programs to be executed. The can be described in terms
of levels.

Machine language:

• Lowest-level language

• Binary-encoded instructions that are directly executed by the hardware.

9

• Language is closely tied to the hardware design.

• Machine specific: machine language for one computer is different from that of a computer
having a different hardware design.

Assembly language:

• Also unique to a specific computer design.

• Commands or instructions are written in text statements instead of numbers.

• Assembly language programming requires good knowledge of the specific computer hardware.
This is a tedious process, but it results in programs that are very fast, because they take
advantage of the specific computer hardware.

• System software called an assembler translates the assembly language program to a machine
language program for execution on the hardware.

High-level languages:

• Have English-like command syntax.

• Include languages such as Basic, Fortran, COBOL, Pascal, Ada, C, C++, and Java.

• Supported on many computer designs and knowledge of the specific hardware is not as critical
in writing a program.

• System software called a compiler translates the program into machine language.

Compilation Process:

• Original program is called the source program

• Translated machine language program is called the object program.

• Errors detected by the compiler (called compile errors or syntax errors) must be corrected
and compilation performed again.

• The process of compiling, correcting errors (or debugging) must often be repeated several
times before the program compiles without compile errors.

Execution Process:

• To prepare the object program for execution, system software is applied to link other
machine language statements to the object program and then load the program into memory.

• The program is executed and new errors, called execution errors, run-time errors or logic
errors (also called bugs) may be identified.

10

• These program errors are caused when the programmer errs in determining the correct steps
to be taken in the problem solution, such as an attempt to divide by zero.

• These errors must be corrected in the source program, which must again be compiled and
link-loaded for execution.

• The process of program compilation, linking, and execution is shown in Figure 1.3.

Figure 1.3: High-level language program development

Even when a program executes without an error message, the results must be checked carefully to
be sure that they are correct. The computer performs the steps precisely as specified in the source;
if the wrong steps are specified, the computer will execute these wrong (but syntactically correct)
steps and produce a result that is incorrect.

Matlab Mathematical Computation Tool

Matlab and other mathematical computation tools are computer programs that combine compu-
tation and visualization power that make them particularly useful tools for engineers. Matlab
is both a computer programming language and a software environment for using that language
effectively.

The name Matlab stands for Matrix laboratory, because the system was designed to make matrix
computations particularly easy. Don’t worry if don’t know what a matrix is, as this will be explained
later. The Matlab environment allows the user to manage variables, import and export data,
perform calculations, generate plots, and develop and manage files for use with Matlab.

The Matlab environment is an interactive environment:

• Single-line commands can be entered and executed, the results displayed and observed, and
then a second command can be executed that interacts with results from the first command
that remain in memory. This means that you can type commands at the Matlab prompt
and get answers immediately, which is very useful for simple problems.

• Matlab is a executable program, developed in a high-level language, which interprets user
commands.

• Portions of the Matlab program execute in response to the user input, results are displayed,
and the program waits for additional user input.

11

• When a command is entered that doesn’t meet the command rules, an error message is
displayed. The corrected command can then be entered.

• Use of this environment doesn’t require the compile-link/load-execution process described
above for high-level languages.

While this interactive, line-by-line execution of Matlab commands is convenient for simple com-
putational tasks, a process of preparation and execution of programs called scripts is employed
for more complicated computational tasks:

• A script is list of Matlab commands, prepared with a text editor.

• Matlab executes a script by reading a command from the script file, executing it, and then
repeating the process on the next command in the script file.

• Errors in the syntax of a command are detected when Matlab attempts to execute the
command. A syntax error message is displayed and execution of the script is halted.

• When syntax errors are encountered, the user must edit the script file to correct the error
and then direct Matlab to execute the script again.

• The script may execute without syntax errors, but produce incorrect results when a logic
error has been made in writing the script, which also requires that the script be editted and
execution re-initiated.

• Script preparation and debugging is thus similar to the compile-link/load-execution process
required for in the development of programs in a high-level language.

1.4 Computing Terminology

Definitions of computing terms:

Command: A user-written statement in a computer language that provides instructions to the
computer.

Variable: The name given to a quantity that can assume a value,.

Default: The action taken or value chosen if none has been specified.

Toggle: To change the value of a variable that can have one of two states or values. For example,
if a variable may be “on” or “off” and the current value is “on,” to toggle would change the value
to “off.”

Arguments: The values provided as inputs to a command.

Returns: The results provided by the computer in response to a command.

Execute: To run a program or carry out the instructions specified in a command.

Display: Provide a listing of text information on the computer monitor or screen.

12

Echo: To display commands or other input typed by the user.

Print: To output information on a computer printer (often confused with “display” in the text-
book).

13

Section 2

Matlab Technical Computing
Environment

Matlab provides a technical computing environment designed to support the implementation of
computational tasks.

Briefly, Matlab is an interactive computing environment that enables numerical com-
putation and data visualization.

Matlab has hundreds of built-in functions and can be used to solve problems ranging from the
very simple to the sophisticated and complex. Whether you want to do some simple numerical
or statistical calculations, some complex statistics, solve simultaneous equations, make a graph, or
run and entire simulation program, Matlab can be an effective tool.

Matlab has proven to be extraordinarily versatile and capable in its ability to help solve problems
in applied math, physics, chemistry, engineering, finance – almost any application area that deals
with complex numerical calculations.

2.1 Workspace, Windows, and Help

Running Matlab

• Unix: From a terminal window, type matlab, followed by the Enter key

• Win95: double-click on the Matlab icon or select Matlab from Start/Programs

Display Windows

• Command window
Enter commands and data, display results
Prompt >> or EDU>>

14

• Graphics (Figure) window
Display plots and graphs
Created in response to graphics commands

• M-file editor/debugger window
Create and edit scripts of commands called M-files

When you begin Matlab, the command window will be the active window. As commands are
executed, appropriate windows will automatically appear; you can activate a window by clicking
the mouse in it.

Getting Help

• help – On-line help, display text at command line
help, by itself, lists all help topics
help topic provides help for the specified topic
help command provides help for the specified command
help help provides information on use of the help command

• helpwin – On-line help, separate window for navigation.

• helpdesk – Comprehensive hypertext documentation and troubleshooting

• demo – Run demonstrations

• intro – Interactive introduction to Matlab

Interrupting and Terminating Matlab

• Ctrl-C (pressing the Ctrl and c keys simultaneously): Interrupts (aborts) processing, but does
not terminate Matlab. You may want to interrupt Matlab if you mistakenly command it
to display thousands of results and you wish to stop the time-consuming display.

• quit: Terminates Matlab

• exit: Terminates Matlab

• Select Exit under File menu: Terminates Matlab (MS Windows)

2.2 Scalar Mathematics

Scalar mathematics involves operations on single-valued variables. Matlab provides support for
scalar mathematics similar to that provided by a calculator.

For more information, type help ops.

The most basic Matlab command is the mathematical expression, which has the following prop-
erties:

15

• Mathematical construct that has a value or set of values.

• Constructed from numbers, operators, and variables.

• Value of an expression found by typing the expression and pressing Enter

2.2.1 Numbers

Matlab represents numbers in two form, fixed point and floating point.

Fixed point: Decimal form, with an optional decimal point. For example:

2.6349 -381 0.00023

Floating point: Scientific notation, representing m × 10e

For example: 2.6349× 105 is represented as 2.6349e5

It is called floating point because the decimal point is allowed to move. The number has two parts:

• mantissa m: fixed point number (signed or unsigned), with an optional decimal point (2.6349
in the example above)

• exponent e: an integer exponent (signed or unsigned) (5 in the example).

• Mantissa and exponent must be separated by the letter e (or E).

Scientific notation is used when the numbers are very small or very large. For example, it is easier
to represent 0.000000001 as 1e-9.

2.2.2 Operators

The evaluation of expressions is achieved with arithmetic operators, shown in the table below.
Operators operate on operands (a and b in the table).

Operation Algebraic form Matlab Example
Addition a + b a + b 5+3
Subtraction a − b a - b 23-12
Multiplication a × b a * b 3.14*0.85
Right division a ÷ b a / b 56/8
Left division b ÷ a a \ b 8\56
Exponentiation ab a ^ b 5^2

Examples of expressions constructed from numbers and operators, processed by Matlab:

>> 3 + 4

16

ans =
7

>> 3 - 3
ans =

0
>> 4/5
ans =

0.8000

Prompt >> is supplied by Matlab, indicates beginning of the command.

ans = following the completion of the command with the Enter key marks the beginning of the
answer.

Operations may be chained together. For example:

>> 3 + 5 + 2
ans =

10
>> 4*22 + 6*48 + 2*82
ans =

540
>> 4 * 4 * 4
ans =

64

Instead of repeating the multiplication, the Matlab exponentiation or power operator can be used
to write the last expression above as

>> 4^3
ans =

64

Left division may seem strange: divide the right operand by the left operand. For scalar operands
the expressions 56/8 and 8\56 produce the same numerical result.

>> 56/8
ans =

7
>> 8\56
ans =

7

We will later learn that matrix left division has an entirely different meaning.

Syntax

17

Matlab cannot make sense out of just any command; commands must be written using the correct
syntax (rules for forming commands). Compare the interaction above with

>> 4 + 6 +
??? 4 + 6 +

|
Missing operator, comma, or semi-colon.

Here, Matlab is indicating that we have made a syntax error, which is comparable to a misspelled
word or a grammatical mistake in English. Instead of answering our question, Matlab tells us
that we’ve made a mistake and tries its best to tell us what the error is.

Precedence of operations (order of evaluation)

Since several operations can be combined in one expression, there are rules about the order in which
these operations are performed:

1. Parentheses, innermost first

2. Exponentiation (^), left to right

3. Multiplication (*) and division (/ or \) with equal precedence, left to right

4. Addition (+) and subtraction (−) with equal precedence, left to right

When operators in an expression have the same precedence the operations are carried out from left
to right. Thus 3 / 4 * 5 is evaluated as (3 / 4) * 5 and not as 3 / (4 * 5) .

2.2.3 Variables and Assignment Statements

Variable names can be assigned to represent numerical values in Matlab. The rules for these
variable names are:

• Must start with a letter

• May consist only of the letters a-z, digits 0-9, and the underscore character (_)

• May be as long as you would like, but Matlab only recognizes the first 31 characters

• Is case sensitive: items, Items, itEms, and ITEMS are all different variable names.

Assignment statement: Matlab command of the form:

• variable = number

• variable = expression

18

When a command of this form is executed, the expression is evaluated, producing a number that
is assigned to the variable. The variable name and its value are displayed.

If a variable name is not specified, Matlab will assign the result to the default variable, ans, as
shown in previous examples.

Example 2.1 Expressions with variables

>> screws = 32
screws =

32
>> bolts = 18
bolts =

18
>> rivets = 40;
>> items = screws + bolts + rivets
items =

90
>> cost = screws * 0.12 + bolts * 0.18 + rivets * 0.08
cost =

10.2800

• Variables: screws, bolts, rivets, items, cost

• Results displayed and stored by variable name

• Semicolon at the end of a line (as in the line >> rivets=40;) tells Matlab to evaluate the
line but not to display the results

Matlab workspace: Variables created in the Command window are said to reside in the Matlab
workspace or Base workspace. The workspace retains the values of these variables, allowing them
to be used in subsequent expressions.

Thus, for the example above, we are able to compute the average cost per item by the following:

>> average_cost = cost/items
average_cost =

0.1142

Because average cost is two words and Matlab variable names must be one word, an underscore
was used to create the single Matlab variable average_cost.

If an expression contains variables, the value of the expression can be computed only if the values
of the variables have been previously computed and still reside in the workspace. To compute the
value of y = x + 5, you must first supply a value of x:

19

>> x=2
x =

2
>> y=x+5
y =

7

If you have not supplied a value for x, Matlab will return a syntax error:

>> y=x+5
??? Undefined function or variable ’x’.

Precedence of operations involving variables

Consider the computation of the area of a trapezoid whose parallel sides are of length b1 and b2

and whose height is h:

A =
(b1 + b2)h

2

Matlab statement:

area = 0.5*(base_1 + base_2)*height;

Deleting the parentheses:

area = 0.5*base_1 + base_2*height;

This would compute

A =
b1

2
+ b2h

The incorrect result would be computed, but there would be no error messages, as the command
has been written in correct Matlab syntax.

Style: writing arithmetic expressions

• Use parentheses often
Consider the equation to convert from temperature in Fahrenheit (TF) to temperature in
Celsius (TC):

TC =
5
9
(TF − 32)

This is computed correctly by the Matlab command:

TC = 5/9*(TF-32)

20

Matlab would first compute TF-32, replacing it with a value. Then 5/9 would be computed
and this value would multiply the previously computed value of TF-32.

Easier to understand:

TC = (5/9)*(TF-32)

• Use multiple statements
Consider the equation:

H(s) =
s2 + 4s + 13

s3 − 2s2 + 4s + 5

Matlab commands:

numerator = s^2 + 4*s + 13;
denominator = s^3 - 2*s^2 + 4*s + 5;
H = numerator/denominator;

Special variables:

ans: default variable name
pi: ratio of circle circumference to its diameter, π = 3.1415926...
eps: smallest amount by which two numbers can differ
inf or Inf : infinity, e.g. 1/0
nan or NaN : not-a-number, e.g. 0/0
date: current date in a character string format, such as 19-Mar-1998.
flops: count of floating-point operations.

Commands involving variables:

who: lists the names of defined variables
whos: lists the names and sizes of defined variables
clear: clears all variables, resets default values of special variables
clear var: clears variable var
clc: clears the command window, homes the cursor (moves the prompt to the top line), but does
not affect variables.
clf: clears the current figure and thus clears the graph window.
more on: enables paging of the output in the command window.
more off: disables paging of the output in the command window.
When more is enabled and output is being paged, advance to the next line of output by pressing
Enter ; get the next page of output by pressing the spacebar. Press q to exit out of displaying
the current item.

Example 2.2 Listing and clearing variables

>> who
Your variables are:

21

average_cost cost rivets
bolts items screws
>> whos

Name Size Bytes Class

average_cost 1x1 8 double array
bolts 1x1 8 double array
cost 1x1 8 double array
items 1x1 8 double array
rivets 1x1 8 double array
screws 1x1 8 double array

Grand total is 6 elements using 48 bytes

Each variable occupies 8 bytes of storage. These variables each have a size 1x1 because they are
scalars, as opposed to vectors or matrices.

Redefining variables

A variable may be redefined simply by executing a new assignment statement involving the variable.
Note that previously issued commands involving the redefined variable won’t be automatically
reevaluated.

Example 2.3 Variable redefinition

>> screws = 32;
>> bolts = 18;
>> rivets = 40;
>> items = screws + bolts + rivets
items =

90
>> screws = 36
screws =

36
>> items
items =

90

After computing items, screws was changed to 36, overwriting its previous value of 32. Note
that the value of items has not changed. Unlike a spreadsheet, Matlab does not recalculate the
number of items based on the new value of screws. When Matlab performs a calculation, it does
so using the values it knows at the time the requested command is evaluated. In this example, to
recalculate items, the items assignment statement must be re-issued:

22

>> items = screws + bolts + rivets
items =

94

Command reuse and editing

Commands can be reused and editted using the following operations:

• Press the up arrow cursor key (↑) to scrolls backward through previous commands. Press
Enter to execute the selected command.

• The down arrow cursor key (↓) scrolls forward through commands

• The left (←) and right arrow (→) cursor keys move within a command at the Matlab
prompt, allowing the command to be edited.

• The mouse can also be used to reposition the command cursor, by positioning the mouse
cursor and pressing the left mouse button.

• Other standard editing keys, such as delete Del , backspace BkSp , home Home , and end

End , perform their commonly assigned tasks.

• Once a scrolled or edited command is acceptable, pressing Enter with the cursor anywhere
in the command tells Matlab to process it.

• Escape key Esc erases the current command at the prompt.

Windows copy and paste operations:

• Copy: Highlight a command to be copied by placing the mouse cursor at the beginning of
the text to be highlighted, press the left mouse button, and drag the mouse cursor through
the text, releasing the mouse button when you reach the end of the text to be copied. The
selected, or highlighted, text will appear as white text on black background instead of the
reverse. In Unix, the highlighted text is automatically copied (stored internally). In MS
Windows, the highlighted text is copied by pulling down the Edit menu and selecting Copy
(or typing Ctrl+C).

• Paste: To paste the copied text in Unix, move the mouse cursor to the desired location, press
the middle mouse button, and the text will be pasted into the window. In MS Windows,
reposition the cursor, pull down the Edit menu and select Paste (or type Ctrl+V).

Punctuation and Comments

• Semicolon (;) at the end of a command suppresses the display of the result

23

• Commas and semicolons can be used to place multiple commands on one line, with commas
producing display of results, semicolons supressing

• Percent sign (%) begins a comment, with all text up to the next line ignored by Matlab

• Three periods (. . .) at the end of a command indicates that the command continues on the
next line. A continuation cannot be given in the middle of a variable name.

Example 2.4 Use of punctuation

>> screws = 36
screws =

36
>> items
items =

90
>> items = screws + bolts + rivets
items =

94
>> screws=32, bolts=18; rivets=40; % multiple commands
screws =

32
>> items = screws + bolts + rivets;
>> cost = screws*0.12 + bolts*0.18 + rivets*0.08;
>> average_cost = cost/... % command continuation
items
average_cost =

0.1142

2.3 Basic Mathematical Functions

Matlab supports many mathematical functions, most of which are used in the same way you write
them mathematically.

Elementary math functions (enter help elfun for a more complete list):

abs(x) Absolute value |x|
sign(x) Sign, returns −1 if x < 0, 0 if x = 0, 1 if x > 0
exp(x) Exponential ex

log(x) Natural logarithm lnx
log10(x) Common (base 10) logarithm log10 x
sqrt(x) Square root

√
x

rem(x,y) Remainder of x/y. For example, rem(100,21) is 16. Also
called the modulus function.

24

Information about these functions is displayed by the command help function. For example:

>> help sqrt

SQRT Square root.
SQRT(X) is the square root of the elements of X. Complex
results are produced if X is not positive.

See also SQRTM.

Example 2.5 Use of math functions

x =
√
2
2

y =
1√
2π

e−x2/2

z = 20 log10 y

>> x = sqrt(2)/2
x =

0.7071
>> y = exp(-(x^2)/2)/sqrt(2*pi)
y =

0.3107
>> z = 20*log10(y)
z =

-10.1533

Example 2.6 Solving for quadratic roots

Problem: Solve for s: 2s2 + 10s + 12 = 0

Analysis: Derive and apply the quadratic equation by first expressing the quadratic polynomial in
parametric form

as2 + bs + c = 0

Assuming a �= 0, rewrite the equation as

s2 +
b

a
s +

c

a
= 0

25

To solve, “complete the square” in s

(
s +

b

2a

)2

−
(

b

2a

)2

+
c

a
= 0

Rewrite to leave only the term involving s on the left hand side

(
s +

b

2a

)2

=
(
1
2a

)2 (
b2 − 4ac

)

Take the square root of each side to find the solutions

s1,2 = − b

2a
± 1

2a

√
b2 − 4ac

There are two solutions, so it is necessary to rewrite the equation in a different form to develop the
Matlab commands.

x = − b

2a

y =
√

b2 − 4ac

2a
s1 = x + y

s2 = x − y

Matlab session:

>> a=2;
>> b=10;
>> c=12;
>> x = -b/(2*a);
>> y = sqrt(b^2-4*a*c)/(2*a);
>> s1 = x+y
s1 =

-2
>> s2 = x-y
s2 =

-3

2.4 Computational Limitations

To understand the computational limitations of Matlab and other computer software, it is neces-
sary to consider the methods for representing numbers in digital computers.

26

Fixed-Point Numbers

All computer instructions and data are represented and stored in binary (base 2) form. In the
representation of fixed-point numbers, the value of each digit in the number depends on its position
relative to the fixed decimal point. For example the integer value 53 in base 10 is represented by
the binary or base 2 value 00110101, denoted by

5310 = 001101012

In base 10, this means

5310 = 5× 101 + 3× 100

Similarly,

001101012 = 0× 27 + 0× 26 + 1× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 3210 + 1610 + 410 + 110

Thus, each bit position represents an increasing power of 2, beginning with 20 on the right.

Floating-Point Numbers

To represent non-integer numbers, a number representation known as floating-point must be
defined. Floating-point numbers are used on computers to approximate a subset of the real numbers.
While there are many possible floating-point number systems, all such systems consist of zero, a
set of positive numbers, and the corresponding set of negative numbers.

The set of base 10 floating-point numbers consists of every number that can be written in the form
±m × 10e, where

• m (the mantissa) is in the range 0 ≤ m < 10 and contains p digits (p is called the precision).

• e (the exponent) is an integer that lies between emin (the minimum exponent) and emax (the
maximum exponent).

Our definition is for base 10 floating-point numbers, since you either are, or will become, accustomed
to base 10. However, computers use base 2 numbers of the form ±m × 2e. In Matlab, when you
enter a number in base 10, it is converted to base 2. Similarly, a base 2 result will converted to
base 10 before being displayed. The essential properties of base 10 and base 2 number systems are
the same, so our discussion of floating-point numbers will focus on base 10 represntations.

To represent a real number x with a floating-point number, we first round x to the closest real
number y that has a p-digit mantissa. There are then two possibilities:

• If y is a member of the set of floating-point numbers, we say that x is represented by y in the
floating-point number system. The absolute difference |x − y| is called the roundoff error.

27

• If y is not a member of the set of floating-point numbers, we say that x is not representable in
the floating-point number system. This can happen if x is too large, which is called overflow
error; or if the absolute value of x is too small, which is called an underflow error.

In Matlab, numbers are typically represented in a floating-point representation conforming to a
standard established by the Institute of Electrical and Electronics Engineers (IEEE) in 1985. In
the IEEE double-precision standard used by Matlab, there are 53 bits in the mantissa and 11
bits in the exponent, for a total of 64 bits to represent a scalar number. This provides a range of
values extending from 10−308 to 10308. A single-precision representation is usually considered to be
a 32-bit representation, but this is not supported by Matlab.

Two Matlab functions, realmax and realmin, display the largest and the smallest numbers,
respectively, that can be represented:

>> realmax
ans =

1.7977e+308
>> realmin
ans =

2.2251e-308

If two numbers differ by one in the least-significant of the p digits of the mantissa, this difference
is given by the value of the special variable eps:

>> eps
ans =

2.2204e-016

Note that e means exponent, not the base of the natural logarithms, so that ans above represents
2.2204× 10−16.

For an example of exponent overflow, consider

>> x = 2.5e200;
>> y = 1.0e200;
>> z = x*y
z =

Inf

The result for z should have been 2.5e400, but since this overflowed the exponent, the result was
displayed as infinity, represented by the special variable Inf.

For an example of exponent underflow, consider

>> x = 2.5e-200;
>> y = 1.0e-200;

28

>> z = x*y
z =

0

Here z should have been 2.5e-400, but due to exponent underflow, the result is displayed as 0.

Due to the finite accuracy of the representation of numbers in a computer, errors can be made
in computations. For example, we know that 1 − 5 × 0.2 = 0; however, Matlab produces the
following:

>> 1 -0.2 -0.2 -0.2 -0.2 -0.2
ans =

5.5511e-017

The result is a very small number, but it is not exactly zero. The reason is that the binary number
corresponding to 0.2 is

0.001100110011001100 . . .

This representation requires an infinite number of digits. The consequence is that the computer
works with an approximate value of 0.2. Subtracting the approximate value of 0.2 from 1 five times
does not yield exactly 0.

2.5 Display Options

There are several ways to display the value of a variable. The simplest way is to enter the name of
the variable. The name of the variable will be repeated, and the value of the variable will be printed
starting with the next line. There are several commands that can be used to display variables with
more control over the form of the display.

Number Display Options

Matlab follows several rules in displaying numerical results.

• Integers: Displayed as integers, as long as they contain 9 digits or less. For 10 digits or
more, they are displayed in scientific notation, described below. For example:

>> x = 5
x =

5

• Short fixed point: The default is to display as a decimal number with four digits to the
right of the decimal point, and up to three digits to the left of the decimal point, if this is
possible. This is known as the short format. For example:

29

>> 610./12.
ans =

50.8333

• Short floating point: When the result has more than three digits to the left of the decimal
point, it is displayed in scientific notation (called the short e format). Scientific notation
expresses a value as a number between 1 and 10 multiplied by a power of 10. An example of
the short e format, which shows four digits to the right of the decimal point:

>> 61000./12.
ans =

5.0833e+003

In this format, 5.08333 is called the mantissa, e means exponent, which has the value +003.
Written in the more common scientific notation, the result is 5.0833× 103.

The default behavior can be changed by specifying a different numerical format within the Prefer-
ences menu item in the File menu, or by typing a FORMAT command at the command prompt.
The table below indicates the affect of changing the display format for the variable ratio, computed
as:

>> ratio = 610./12
ratio =

50.8333

Matlab Command ratio Comments
format short 50.8333 4 decimal digits
format long 50.83333333333334 14 decimal digits
format short e 5.0833e+001 4 decimal digits plus exponent
format long e 5.083333333333334e+001 14 decimal digits plus exponent
format short g 50.8333 better of format short or format

short e (default), switching for ans
> 1000

format long g 5.083333333333334e+001 better of format long or format long e
format bank 50.83 2 decimal digits
format + + positive, negative, or zero

The bank format is a fixed format for dollars and cents. The + format displays the symbols +, −,
and blank for positive, negative, and zero results, respectively.

Note:

• The display formats do not change the internal representation of a number; only the display
changes.

• The internal representation is rounded when the display is shortened.

30

For example:

>> format long
>> 5.78/57.13
ans =

0.10117276387187
>> format short
>> ans
ans =

0.1012

Thus, the short result is displayed as 0.1012 instead of 0.1011, which would have been the result if
the long display had been truncated to four decimal digits.

format compact suppresses many of the line feeds that appear between displays and allows more
lines of information to be seen together on the screen. For example:

>> temp = 78

temp =

78
>> format compact
>> temp=78
temp =

78

In the examples shown in these notes, it is be asseumed that this command has been executed.
The command format loose can be used to return to the less compact display mode.

Displaying Values and Text

There are three ways to display values and text in Matlab, to be described in this section:

1. By entering the variable name at the Matlab prompt, without a semicolon.

2. By use of the command disp.

3. By use of the command fprintf.

• From the prompt:

As demonstrated in previous examples, by entering a variable name, an assignment statement,
or an expression at the Matlab prompt, without a semicolon, the result will be displayed,
proceeded by the variable name (or by ans if only an expression was entered). For example:

31

>> temp = 78
temp =

78

• disp:

There are two general forms of the command disp that are useful in displaying results and
annotating them with units or other information:

1. disp(variable): Displays value of variable without displaying the variable name.

2. disp(string): Displays string by stripping off the single quotes and echoing the charac-
ters between the quotes.

String: A group of keyboard characters enclosed in single quote marks (’). The quote marks
indicate that the enclosed characters are to represent ASCII text.

>> temp=78;
>> disp(temp); disp(’degrees F’)

78
degrees F

Note that the two disp commands were entered on the same line so that they would be
executed together.

• fprintf

One of the weaknesses of Matlab is its lack of good facilities for formatting output for display
or printing. A function providing some of the needed capability is fprintf. This function
is similar to the function of the same name in the ANSI C language, so if you are familiar
with C, you will be familiar with this command. The fprintf function provides more control
over the display than is provided with disp. In addition to providing the display of variable
values and text, it can be used to control the format to be used in the display, including the
specification to skip to a new line. The general form of this command is:

fprintf(’format string’, list of variables)

The format string contains the text to be displayed (in the form of a character string enclosed
in single quotes) and it may also contain format specifiers to control how the variables listed
are embedded in the format string. The format specifiers include:

w.d%f Display as fixed point or decimal notation (defaults to short), with a width
of w characters (including the decimal point and possible minus sign, with
d decimal places. Spaces are filled in from the left if necessary. Set d to 0
if you don’t want any decimal places, for example %5.0f. Include leading
zeros if you want leading zeroes in the display, for example %06.0f.

w.d%e Display using scientific notation (defaults to short e), with a width of w
characters (including the decimal point, a possible minus sign, and five for
the exponent), with d digits in the mantissa after the decimal point. The
mantissa is always adjusted to be less than 1.

w.d%g Display using the shorter of tt short or short e format, with width w and
d decimal places.

\n Newline (skip to beginning of next line)

32

The w.d width specifiers are optional. If they are left out, default values are used.

Examples:

>> fprintf(’The temperature is %f degrees F \n’, temp)
The temperature is 78.000000 degrees F

>> fprintf(’The temperature is %4.1f degrees F \n’, temp)
The temperature is 78.0 degrees F

It should be noted that fprintf only displays the real part of a complex number, which is
an important data type to be discussed later in the course.

2.6 Accuracy and Precision

Physical measurements cannot be assumed to be exact. Errors are likely to be present regardless of
the precautions used when making the measurement. Quantities determined by analytical means
are not always exact either. Often assumptions are made to arrive at an analytical expression that
is then used to calculate a numerical value. The use of significant digits provides a method of
expressing results and measurements that conveys how “good” these numbers are.

Significant Digits

A significant digit is defined as:

Any digit used in writing a number, except:

• Zeros used only for location of the decimal point

• Zeros that do not have any nonzero digit on their left.

Numbers larger than 10 that are not written in scientific notation can cause difficulties in interpre-
tation when zeros are present. For example, 2000 could contain one, two, three, or four significant
digits. If the number is written in scientific notation as 2.000 × 103, then clearly four significant
digits are intended. Table 2.1 gives several examples.

When reading instruments, such as a measuring tape, thermometer, or fuel gauge, the last digit
will normally be an estimate. That is, the instrument is read by estimating between the smallest
graduations on the scale to get the final digit. It is standard practice to count the doubtful digit
as significant.

In performing arithmetic operations, it is important to not lose the significance of the measurements,
or, conversely, to imply precision that does not exist. The following are rules for determining the
number of significant digits that should be reported following computations.

Multiplication and division: The product or quotient should contain the same number of
significant digits as are contained in the number with the fewest significant digits.

33

Quantity Signficant Digits
4782 4
600 1, 2, or 3

6.0× 102 2
6.00× 102 3

31.72 4
30.02 4
46.0 3
0.02 1
0.020 2
600.00 5

Table 2.1: Significant digits

Examples:

• (2.43)(17.675) = 42.95025 =⇒ 43.0

• (2.279h)(60 min/h) = 148.74 min =⇒ 148.7 min
The conversion factor is exact (a definition).

• (4.00× 102kg)(2.2046lbm/kg) = 881.84lbm =⇒ 882.lbm
The conversion factor is not exact, but it should not dictate the precision of the result if this
can be avoided. A conversion factor should be used that has one or two more significant
figures than will be reported in the result.

• 589.62/1.246 = 473.21027 =⇒ 473.2

Addition and subtraction: The result should show significant digits only as far to the right as
is seen in the least precise number in the calculation.

Examples:

• 1725.463 + 189.2 + 16.73 = 1931.393 =⇒ 1931.4

• 897.0− 0.0922 = 896.9078 =⇒ 896.9

Combined operations: While it would be good practice to convert the result of each operation
to the proper number of signficant digits before applying another operation, it is normal practice
to perform the entire calculation and then report a reasonable number of significant figures.

Rounding: In rounding a value to the proper number of significant figures, increase the last digit
retained by 1 if the first figure dropped is 5 or greater. For example, consider the rounding performed
by Matlab in displaying results in short format:

>> 2/9, 2.222222222222/4, 2/3, -2/3

34

ans =
0.2222

ans =
0.5556

ans =
0.6667

ans =
-0.6667

Accuracy, Precision, and Errors

Accuracy is a measure of the nearness of a value to the correct or true value.

Precision refers to the repeatability of a measurement, this how close successive measurements
are to each other.

Errors: All measurements will have some degree of error. Identifiable and correctable errors are
called systematic. Accidental or other nonidentifiable errors are called random.

Systematic Errors: Some errors will always have the same sign (+ or −) and are said to be
systematic. Consider measure the distance between two points with a 25m steel tape. First, if the
tape is not exactly 25.000m long, compared with the standard at the U.S. Bureau of Standards,
there will be a systematic error. However, this error could be removed by applying a correction.
A second source of error can be due to the temperature at the time of use and at the time when
the tape was compared with the standard. A mathematical correction can be applied if this
temperature is measured and the coefficient of thermal expansion of the tape is known. Another
source of systematic is due to the difference in the tension applied to the tape while in use and
the tension employed during standardization. Knowing the weight of the tape, the tension applied,
and the length of the suspended tape, a correction can be calculated.

Random Errors: Even if all of the systematic errors have been eliminated, a measurement will
still not be exact, due to random errors. For example, in reading a thermometer, the reading
must be estimated when the indicator falls between graduations. Furthermore, variations in the
ambient air temperature could cause the measurement to fluctuate. These errors can thus ssproduce
measurements that are either too large or too small.

Repeated measurements of the same quantity will vary due to random error. However, it is impos-
sible to predict the magnitude and sign of the accidental error present in any one measurement.
Repeating measurements and averaging the results will reduce random error in the average. How-
ever, repeating measurements will not reduce the systematic error in the average result.

Roundoff Errors: Rounding off a number to n decimal places, following the rule described in
the preceding section, produces an error whose absolute value is not larger than 0.5 × 10−n. For
example, assuming that the Matlab value of π is correct, the error associated with rounding to 4
decimal places is:

>> E = pi - 3.1416
E =

35

-7.3464e-006

This error is indeed smaller than the bound shown above. We have used the definition:

error = true value - calculated value

This is also called the absolute error, although the qualifier absolute may be used to indicate
the absolute value of the error defined above.

The error can be compare to the true value by calculating the relative error

relative error = error/(true value)

For our example:

>> E/pi
ans =
-2.3384e-006

This relative error can also be expressed in per cent:

>> 100*E/pi
ans =
-2.3384e-004

36

Section 3

Files and File Management

In using Matlab, you will read and write several types of files, or collections of computer data. In
this section, you will learn

• File management definitions and commands
• Saving and restoring information
• Script M-files
• Errors and debugging
• Search path, path management, and startup

3.1 File Management Definitions and Commands

To describe file management, several concepts and definitions are introduced, then a few Unix
commands are concisely described, followed by a description of Matlab commands in greater
detail.

File: A collection of computer data, either ASCII text or binary, that is stored on an external
memory device, such as a disk or tape drive. The format of the file, or the order, size, and location
of the data items stored in the file, is determined by the program that writes the file on the external
memory device.

File System: The combination of hardware and software that allows files to be stored (written),
retrieved (read), and managed.

Structure of file system: The file system in Unix and MS Windows has a tree structure, with
the base called the root, dividing sequentially into branches, called directories or folders. Files can
be thought of as leaves along the branches.

File types: For our purposes, there are two types of files: binary and text (also called ASCII
text or plain text). Binary files contain both the machine instructions of executable programs and

37

data stored in machine-readable form. Text files contain keyboard characters represented by one
byte (8 bits) per character. Text, but not binary, files can be created and modified with text editors
and printed on printers. Binary files can only be read an operated upon by programs designed to
handle the internal formats of these files.

File management: The process, implemented with a set of user commands, to manage the files in
a file system. This involves defining the tree structure by creating or deleting directories and man-
aging files by creating, moving, renaming, or removing them and listing their names and attributes.
In a Unix terminal window, a MS-DOS window, or aMatlab Command window, file management
is by typed commands (called command-line driven). In MS-Windows, file management is handled
by a graphical user interface (GUI).

Directory: Branch of a file tree, containing files and subdirectories; also called a folder.

Root directory: Base of file system, denoted by “/” in Unix and “C:\” in MS-DOS and MS
Windows.

Present working directory: The branch of the file system in which you are currently located.
Also called “current directory.” You have direct access to the files in this directory. Using “change
directory” commands, you can move to another directory.

Home directory: When you log into your Unix account, your present working directory, is called
your “home directory.”

User files: The user is given permission to manage all files in directories (branches) said to be
below the home directory.

Path: Sequence of directories (branches) leading to a specific directory or file.

Path separator: Character used to separate the directories (folders) in the path – “/” in Unix,
“\” in MS-DOS and MS Windows.

Absolute path: A path beginning at the file system root, such as “/home/ford/teach/e6/” – also
called the “full path.”

Relative path: A path beginning at the present working directory. For example, if the present
working directory is /home/ford/, then teach/e6 is the relative path to the directory e6.

Unix File Management

The following are the basic Unix commands for file management. For more detailed information,
type man command. Most of these operations can be done from Matlab, so it won’t be necessary
to learn them in great detail.

pwd: Print working directory – displays the full path of the present working directory.

cd path: Change to directory given by path, which can be either a relative or an absolute path.

ls: Display a list of the names of the directories and files in the present working directory.

38

ls -l: Display a list of names and associated access permissions, owner, size, and modification
date of the directories and files in the present working directory.

mkdir dir: Create the directory named dir in the present working directory.

rm file: Delete file from current directory.

more file: Display the contents of file (text file only), one screen at a time (press spacebar to display
the next screen, q to quit).

cp file1 file2: Make of copy of file1 named file2.

mv file1 file2: Change the name of file1 to file2.

lp file: Prints file (which must be a text file) on the user’s default printer.

Matlab File Management

Matlab provides a group of commands to manage user files that are similar to those of Unix. For
more information, type help iofun.

pwd: Print working directory – displays the full path of the present working directory.

cd path: Change to directory (folder) given by path, which can be either a relative or absolute path.

dir or ls: Display the names of the directories (folders) and files in the present working directory.

what: Display the names of the M-files and MAT-files in the current directory.

delete file: Delete file from current directory

type file: Display contents of file (text file only, such as an M-file).

3.2 Saving and Restoring Matlab Information

It is good engineering practice to keep records of calculations. These records can be used for several
purposes, including:

• To revise the calculations at a later time.
• To prepare a report on the project.

Matlab provides several methods for saving information from a workspace session. Saving the
session output with the diary command and saving and loading the variables with the save and
load command are described in this section.

39

3.2.1 Diary Command

The diary commands allows you to record all of the input and displayed output from a Matlab
interactive workspace session. The commands include:

• diary file: Saves all text from the Matlab session, except for the prompts (>>), as text in
file, written to the present working directory. If file is not specified, the information is written
to the file named diary.

• diary off: Suspends diary operation.

• diary on: Turns diary operation back on.

• diary: Toggles diary state

Example 3.1 Use of diary command

Consider again the example involving roots of the quadratic equation.

Problem: solve for s: s2 + 5s+ 6 = 0

s =
−b ±√

b2 − 4ac

2a

Matlab session:

>> diary roots
>> a=1;
>> b=5;
>> c=6;
>> x = -b/(2*a);
>> y = sqrt(b^2-4*a*c)/(2*a);
>> s1 = x+y
s1 =

-2
>> s2 = x-y
s2 =

-3

The file roots is written in your current working directory. It can be displayed by the Matlab
command type roots. It can also be displayed in a Unix terminal window by the command more
roots or printed with the command lp roots.

a=1;
b=5;

40

c=6;
x = -b/(2*a);
y = sqrt(b^2-4*a*c)/(2*a);
s1 = x+y
s1 =

-2
s2 = x-y
s2 =

-3
diary off

Note that this is nearly the same as the display in the command window, with the exception that
the Matlab prompt (>>) is not included.

3.2.2 Saving and Retrieving Matlab Variables

There will be occasions when you want to save yourMatlab variables so that you can later retrieve
them to continue your work. In this case, you must save the information in the Matlab binary
format, so that the full precision of the variables is retained. Files in this Matlab binary format
are known as MAT-files and they have an extension of mat.

Storing and Loading Workspace Values

save Stores workspace values (variable names, sizes, and values), in the
binary file matlab.mat in the present working directory

save data Stores all workspace values in the file data.mat
save data 1 x y Stores only the variables x and y in the file data_1.mat
load data 1 Loads the values of the workspace values previously stored in the file

data_1.mat

Exporting and Importing Data

There are also situations in which you wish to exportMatlab data to be operated upon with other
programs, or to import data created by other programs. This must be done with text files written
with save or read with load.

To write a text file data1.dat in the current working directory containing values of Matlab
variables in long e format:

save data1.dat -ascii

Note that the individual variables will not be identified with labels or separated in any way. Thus,
if you have defined variables a and b in the Matlab workspace, the command above will output
first the values in a, then the values in b, with nothing separating them. Thus, it is often desirable
to write text files containing the values of only a single variable, such as:

41

save data2.dat a -ascii

This command causes each row of the array a (more on arrays later) to be written to a separate
line in the data file. Array elements on a line are separated by spaces. The separating character
can be made a tab with the command:

save data2.dat a -ascii -tab

The .mat extension is not added to an ASCII text file. However, it is recommended that ASCII
text file names include the extension .dat so that it is easy to distinguish them from MAT-files
and M-files (to be described in the next section).

For an example of importing text data, suppose that a text file named data3.dat contains a set
of values that represent the time and corresponding distance of a runner from the starting line in
a race. Each time and its corresponding distance value are on a separate line of the data file. The
values on a line must be separated by one or more spaces. Consider a data file named data3.dat
containing the following:

0.0 0.0
0.1 3.5
0.2 6.8

The load command followed by the filename will read the information into an array with the same
name as the base name of the data file (extension removed). For example, the command

load data3.dat

reads the data in the file data3.dat and stores it in the Matlab array variable named data3,
having two columns and three rows.

Matlab can also import data from and export data to two common formats that are used in
spreadsheet and database program formats. The more common of these file formats is the comma
separated values or .csv format. This is an ASCII text file, with values on each line separated by
commas, as the name implies. The second format is the spreadsheet .wk1 format, often used as an
interchange format for different spreadsheet programs. TheMatlab import and export commands
for these formats are:

A = csvread(’file’) Reads a comma separated value formatted file file. The result is
returned in A. The file can only contain numeric values.

csvwrite(’file’,A) Writes matrix A into file as comma separated values.
A = wk1read(’file’) Reads all the data from a WK1 spreadsheet file named file into

matrix A.
wk1write(’file’,A) Writes matrix A into a WK1 spreadsheet file with the name file.

’.wk1’ is appended to the filename if no extension is given.

Use the help facility for information on options for these commands.

42

3.3 Script M-Files

For simple problems, entering commands at theMatlab prompt in the Command window is simple
and efficient. However, when the number of commands increases, or you want to change the value of
one or more variables, reevaluate a number of commands, typing at the Matlab becomes tedious.
You will find that for most uses of Matlab, you will want to prepare a script, which is a sequence
of commands written to a file. Then, by simply typing the script file name at a Matlab prompt,
each command in the script file is executed as if it were entered at the prompt.

For more information, type help script.

Script File: Group of Matlab commands placed in a text file with a text editor. Matlab can
open and execute the commands exactly as if they were entered at the Matlab prompt. The term
“script” indicates that Matlab reads from the “script” found in the file. Also called “M-files,” as
the filenames must end with the extension ‘.m’, e.g. example1.m.

M-files are text files and may be created and modified with any text editor. You need to know
how to open, edit, and save a file with the text editor you are using. On a PC or Macintosh, an
M-file editor may be brought up by choosingNew from the File menu in theMatlab Command
window and selecting M-file.

The script M-file is executed by choosingRun Script... from the File menu on a PC or Macintosh,
or simply typing the name of the script file at the prompt in the Matlab command window.

Example 3.2 Quadratic root finding script

Create the file named qroots.m in your present working directory using a text editor:

% qroots: Quadratic root finding script
format compact;
a=1
b=5
c=6
x = -b/(2*a);
y = sqrt(b^2-4*a*c)/(2*a);
s1 = x+y
s2 = x-y

To execute the script M-file, simply type the name of the script file qroots at the Matlab prompt:

>> qroots
a =

1
b =

5
c =

43

6
s1 =

-2
s2 =

-3

Comments:

• % qroots: % allows a comment to be added

• format compact: Suppresses the extra lines in the output display

• a=1, b=5, c=6: Sets values of a, b, c, will display result

• x & y: Semicolon at end of command means these intermediate values won’t be displayed

• s1, s2: Compute and display roots

Search rules for qroots command:

1. Display current Matlab variable qroots if defined

2. Execute built-in Matlab command qroots if it exists

3. Execute qroots.m if it can be found in the Matlab search path (described below)

Commands within the M-file have access to all variables in theMatlab workspace and all variables
created by the M-file become part of the workspace.

Commands themselves are not normally displayed as they are evaluated. Placing the echo on
command in the M-file will cause commands to be displayed. The command echo off (the default)
turns off command display and echo by itself toggles the command echo state.

You could repeatedly edit qroots.m, change the values of a, b, and c, save the file, then have
Matlab execute the revised script to compute a new pair of roots.

Matlab functions useful in M-files:

Command Description
disp(ans) Display results without identifying variable names
echo [on|off] Control Command window echoing of script commands
input(’prompt’) Prompt user with text in quotes, accept input until “Enter” is typed
keyboard Give control to keyboard temporarily. Type Return to return control

to the executing script M-file.
pause Pause until user presses any keyboard key
pause(n) Pause for n seconds
waitforbuttonpress Pause until user presses mouse button or keyboard key

44

The input command is used for user input of data in a script and it is used in the form of an
assignment statement. For example:

a = input(’Enter quadratic coefficient a: ’);

When this command is executed, the text string Enter quadratic coefficient a: is displayed
as a user prompt in the command window. The user then types in data value, which is assigned to
the variable a. Because this input command ends with a semicolon, the entered value of a is not
displayed when the command is completed.

Example 3.3 Revised quadratic roots script

Change script for computing quadratic roots by:

1. Prompting for input of coefficients a, b, and c;

2. Format the display of the computed roots s1 and s2;

Script rqroots.m:

% rqroots: Revised quadratic root finding script

format compact;

% prompt for coefficient input

a = input(’Enter quadratic coefficient a: ’);
b = input(’Enter quadratic coefficient b: ’);
c = input(’Enter quadratic coefficient c: ’);
disp(’’)

% compute intermediate values x & y

x = -b/(2*a);
y = sqrt(b^2-4*a*c)/(2*a);

% compute and display roots

s1 = x+y;
disp(’Value of first quadratic root: ’),disp(s1);
s2 = x-y;
disp(’Value of second quadratic root: ’),disp(s2);

Two examples of the results from this script:

45

>> rqroots
Enter quadratic coefficient a: 1
Enter quadratic coefficient b: 5
Enter quadratic coefficient c: 6
Value of first quadratic root:

-2
Value of second quadratic root:

-3
>> rqroots
Enter quadratic coefficient a: 1
Enter quadratic coefficient b: 4
Enter quadratic coefficient c: 8
Value of first quadratic root:

-2.0000+ 2.0000i
Value of second quadratic root:

-2.0000- 2.0000i

M-file Commands

Command Description
edit test Open test.m for editing using the built-inMatlab text editor, same

as Open... in File menu

Effective Use of Script Files

The following are some suggestions on the effective use of Matlab scripts:

1. The name of a script file must follow the Matlab convention for naming variables; that is,
the name must begin with a letter and may include digits and the underscore character.

2. Do not give a script file the same name as a variable it computes, because Matlab will not
be able to execute that script file more than once unless the variable is cleared. Recall that
typing a variable name at the command prompt causes Matlab to display the value of that
variable. If there is no variable by that name, then Matlab searches for a script file having
that name. For example, if the variable rqroot was created in a script file having the name
rqroot.m, then after the script is executed the first time, the variable rqroot exists in the
Matlab workspace. If the script file is modified and an attempt is made to run it a second
time, Matlab will display the value of rqroot and will not execute the script file.

3. Do not give a script file the same name as aMatlab command or function. You can check to
see whether a function already exists by using the the which command. For example, to see
whether rqroot already exists, type which rqroot. If it doesn’t exist, Matlab will display
rqroot not found. If it does exist, Matlab will display the full path to the function. For
more details as to the existence of a variable, script, or function having the name rqroot,
type exist(’rqroot’). This command returns one of the following values:

46

0 if rqroot does not exist
1 if rqroot is a variable in the workspace
2 if rqroot is an M-file or a file of unknown type in the Matlab search path
3 if rqroot is a MEX-file in the Matlab search path
4 if rqroot is a MDL-file in the Matlab search path
5 if rqroot is a built-in Matlab function
6 if rqroot is a P-file in the Matlab search path
7 if rqroot is a directory

4. As in interactive mode, all variables created by a script file are defined as variables in the
workspace. After script execution, you can type who or whos to display information about
the names, data types and sizes of these variables.

5. You can use the type command to display an M-file without opening it with a text editor.
For example, to view the file rqroot.m, the command is type rqroot.

3.4 Errors and Debugging

You will find that you will seldom get your scripts to run correctly the first time. However, you
shouldn’t despair, as this is also the case for experienced programmers. You will need to learn to
identify and correct the errors, known in computer jargon as bugs.

Syntax Errors

The most common type of error is the syntax error, a typing error in a Matlab command (for
example, srqt instead of sqrt. These errors are said to be fatal, as they cause Matlab to stop
execution and display an error message. Unfortunately, since the Matlab command interpreter
can easily be confused by these errors, the displayed error message may not be very helpful. It is
your job as a programmer to make sense of the message and correct your script, a process known
as debugging.

Some examples of syntax errors and associated messages include:

• Missing parenthesis

>> 4*(2+5
??? 4*(2+5

|
A closing right parenthesis is missing.
Check for a missing ")" or a missing operator.

This message is helpful, as it even points out the location of the error.

• Missing operator

>> 4(2+5)

47

??? 4(
|

Missing operator, comma, or semi-colon.

In this error, an operator such as * was left out after 4.

• Misspelled variable name

>> 2x = 4*(2+5)
??? 2

|
Missing operator, comma, or semi-colon.

Here, if you intended the variable name to be x2 instead of 2x, the error message is misleading.
You are at least shown the location of the error, allowing you to identify the error.

There are a large number of possible syntax errors, many of which you will discover in writing
scripts for this course. With experience you will gradually become more adept at understanding
and correcting your mistakes.

Run-time and Logic Errors

After correcting syntax errors, your script will execute, but it still may not produce the results you
desire.

Run-time Errors: These errors occur when your script is run on a particular set of data. They
typically occur when the result of some operation leads to NaN (not a number), Inf (infinity), or
an empty array (to be covered later in the course).

Logic Errors: These are errors in your programming logic, when your script executes properly,
but does not produce the intended result. When this occurs, you need to re-think the development
and implementation of your problem-solving algorithm.

The following are suggestions to help with the debugging of Matlab scripts or M-files:

• Execute the script on a simple version of the problem, using test data for which the results
are known, to determine which displayed results are incorrect.

• Remove semicolons from selected commands in the script so that intermediate results are
displayed.

• Add statements that display variables of interest within the script.
• Place the keyboard command at selected places in the script to give temporary control to the
keyboard. By doing so, the workspace can be interrogated and values changed as necessary.
Resume script execution by issuing a return command at the keyboard prompt.

Later in the course, theMatlab debugging functions will be introduced to provide additional tools
for correcting these errors.

48

Programming Style

As discussed previously, good programming style requires that comments be included liberally in
a script file. Furthermore, the first comment line (known as the H1 line) before any executable
statement is the line that is searched by the lookfor command. This command aids the user in
finding a suitable Matlab command:

lookfor xyz Looks for the string xyz in the first comment line (the H1 line) in all
M-files found on matlabpath. For all files in which a match occurs,
lookfor displays the H1 line.

lookfor xyz -all Searches the entire first comment block of each M-file.

For example:

>> lookfor roots
rqroots.m: % rqroots: Revised quadratic root finding script
POLY Convert roots to polynomial.
ROOTS Find polynomial roots.

Thus, the first line of a Matlab script should be a comment containing the script name and
key words describing its function. The next several lines (to be searched with the -all option of
lookfor) should contain comments giving the author’s name, the date the script was created, and
a detailed description of the script.

3.5 Matlab Search Path, Path Management, and Startup

Matlab search path: Ordered list of directories thatMatlab searches to find script and function
M-files stored on disk. Commands to manage this search path:

matlabpath: Display search path.

addpath dir: Add directory dir to beginning of matlabpath. If you create a directory to store your
script and function M-files, you will want to add this directory to the search path.

rmpath dir: Remove directory dir from the matlabpath.

path(p1,p2): Changes the path to the concatenation of the two path strings p1 and p2. Thus
path(path,p) appends a new directory to the current path and path(p,path) prepends a new
path. If p1 or p2 are already on the path, they are not added. For example, the following statements
add another directory to Matlab’s search path:

• Unix: path(path,’/home/ford/matlabm’)
• DOS: path(path,’TOOLS\GOODSTUFF’)

editpath: Edit matlabpath using Matlab editor, same as Set Path in File menu.

49

which test: Display the directory path to test.m. Used to tell you which M-file script will be
executed when you enter the command test.

Matlab at Startup

Two files are executed at startup: matlabrc.m and startup.m

matlabrc.m: Comes with Matlab, shouldn’t be modified. Sets default Figure window size and
placement, as well as a number of other default features.

startup.m: An optional M-file to be created by the user, typically containing commands that add
personal default features. It is common to put addpath or path commands in startup.m to append
additional directories to the Matlab search path. Since startup.m is a standard script M-file,
then there are no restrictions as to what commands can be placed in it. For example, you might
want to include the command format compact in startup.m so that the compact results display
format becomes the default.

50

Section 4

Trigonometry and Complex Numbers

In this section, we will consider in greater detail two scalar mathematics tools that are important
to engineers: trigonometry and complex numbers. We will find that these two topics are closely
related.

4.1 Trigonometry

Definitions

In quadrant I:

sinα =
y

r
, α = arcsin

(
y

r

)
= sin−1

(
y

r

)

cosα =
x

r
, α = arccos

(
x

r

)
= cos−1

(
x

r

)

tanα =
y

x
, α = arctan

(
y

x

)
= tan−1

(
y

x

)

r =
√
x2 + y2

51

sin(alpha) Sine of alpha
cos(alpha) Cosine of alpha
tan(alpha) Tangent of alpha
asin(z) Arcsine or inverse sine of z, where z must be between −1 and 1. Returns an

angle between −π/2 and π/2 (quadrants I and IV).
acos(z) Arccosine or inverse cosine of z, where z must be between −1 and 1. Returns

an angle between 0 and π (quadrants I and II).
atan(z) Arctangent or inverse tangent of z. Returns an angle between −π/2 and π/2

(quadrants I and IV).
atan2(y,x) Four quadrant arctangent or inverse tangent, where x and y are the coordi-

nates in the plane shown in the figure above. Returns an angle between −π
and π (all quadrants), depending on the signs of x and y.

Example:

>> z = sqrt(2)/2
z =

0.7071
>> alpha = asin(z)
alpha =

0.7854
>> alpha_deg = alpha*180/pi
alpha_deg =

45.0000

Where sqrt() is square root and asin() is inverse sine or arcsine. Note that Matlab only works
in radians, so the result alpha returned by asin is in radians. Using the property that 2π radians
equals 360 degrees, a statement has been written to compute alpha_deg, the angle in degrees.

Note that care must be taken in computing an angle from an inverse trigonometric function. The
functions asin and atan will yield angles only in quadrants I and IV: I for a positive argument
and IV for a negative argument. The function acos yields angles only in quadrants I and II: I for
a positive argument and II for a negative argument. The function atan2 is best used to compute
angles, as the lengths of both the x and y sides of the triangle are used in the calculation. Consider
a case for quadrant II, with x = −1, y = 1:

>> x=-1;
>> y=1;
>> r=sqrt(x^2+y^2)
r =

1.4142
>> theta_1=(180/pi)*asin(y/r)
theta_1 =

45
>> theta_2=(180/pi)*atan(y/x)
theta_2 =

-45

52

>> theta_3=(180/pi)*atan2(y,x)
theta_3 =

135

Observe that only theta_3 is the proper result, in quadrant II.

Example 4.1 Estimating the height of a building

Problem: Consider the problem of estimating the height of a building, as illustrated in Fig. 4.1.
If the observer is a distance D from the building, the angle from the observer to the top of the
building is θ, and the height of the observer is h, what is the building height?

Figure 4.1: Estimating Building Height

Solution: Draw a simple diagram as shown in Fig. 4.1. The building height B is

B = h+H

where H is the length of the triangle side opposite the observer, which can be found from the
triangle relationship

tan θ =
H

D

Therefore, the building height is

B = h+D · tan θ

If h= 2 meters, D= 50 meters, and θ is 60 degrees, the Matlab solution is

>> h=2;
>> theta=60;
>> D=50;
>> B = h+D*tan(theta*pi/180)
B =

88.6025

53

Solution of Triangles

Law of sines:
a

sinα
=

b

sinβ
=

c

sin γ

Law of cosines: a2 = b2 + c2 − 2bc cosα

Law of tangents:
a− b

a+ b
=

tan 1
2(α− β)

tan 1
2(α+ β)

Included angles: α+ β + γ = π radians = 180◦

Example 4.2 Use of triangle relations

In Figure 4.2, measurements of distances and angles around a lake have been indicated. The
problem is to use these measurements to calculate the distance DE across the lake.

Figure 4.2: Distance and angle measurements near a lake

The solution is to sequentially apply the various triangle relations to determine the distances CF ,
CD, and EF , which can then be used to determine the specified distance DE.

First, determine the length of the sides of triangle ACF, beginning with the right triangle relation-
ship on the bottom right:

sin 30◦ =
245
AC

54

Solving this equation for AC:

AC =
245

sin 30◦

From the included angles in triangle ACD:

D = 180◦ − 30◦ − 45◦

Applying the law of sines to triangle ACD:

CD

sin 30◦
=

AC

sinD

Solving for CD:

CD = AC
sin 30◦

sinD

From the construction of angle A in triangle ACF:

A = 180◦ − 30◦ − 45◦

Triangles ACF and ACD are similar (have the same angles), which means that the lengths of
corresponding sides are proportional:

AC

CF
=

CD

AC

Solving for CF :

CF =
(AC)2

CD

From the similar triangle, angle F must be the same as angle CAD, so F = 30◦.

Applying the Law of sines to triangle ACF:

AF

sin 45◦
=

AC

sinF

Solving for AF :

AF = AC
sin 45◦

sinF

55

From the included angles in triangle AEF:

E = 180◦ − 15◦ − F

Applying the Law of sines to triangle AEF:

EF

sin 15◦
=

AF

sinE

Solving for EF :

EF = AF
sin 15◦

sinE

Finally, the distance DE across the lake is:

DE = CF − CD − EF

A Matlab script to compute DE, with angles in degrees and distances in feet:

% Lake distance problem
%
AC = 245/sin(30*pi/180)
D = 180-30-45
CD = AC*sin(30*pi/180)/sin(D*pi/180)
CF = AC^2/CD
F = 30
AF = AC*sin(45*pi/180)/sin(F*pi/180)
E = 180-15-F
EF = AF*sin(15*pi/180)/sin(E*pi/180)
DE = CF - CD - EF

The displayed results from Matlab:

AC =
490.0000

D =
105

CD =
253.6427

CF =
946.6073

F =
30

56

AF =
692.9646

E =
135

EF =
253.6427

DE =
439.3220

The final step in the solution to this problem is to carefully consider the results to determine if
they make sense. This is done visually by comparing the computed lengths with those of Fig. 4.2.

4.1.1 Hyperbolic Functions

The hyperbolic functions are functions of the natural exponential function ex, where e is the base
of the natural logarithms, which is approximately e = 2.71828182845904. The inverse hyperbolic
functions are functions of the natural logarithm function, lnx.

The curve y = coshx is called a catenary (from the Latin word meaning “chain”). A chain or rope,
suspended from its ends, forms a curve that is part of a catenary.

Matlab includes several hyperbolic functions, as described briefly in the table below.

sinh(x) Hyperbolic sine of x; 1
2(e

x − e−x)
cosh(x) Hyperbolic cosine of x; 1

2(e
x + e−x)

tanh(x) Hyperbolic tangent of x; sinh(x)
cosh(x)

asinh(x) Inverse hyperbolic sine of x; ln(x+
√
x2 + 1)

acosh(x) Inverse hyperbolic cosine of x; ln(x+
√
x2 − 1) for x ≥ 1

atanh(x) Inverse hyperbolic tangent of x; 1
2 ln

(
1+x
1−x

)
for |x| ≤ 1.

4.2 Complex Numbers

Complex numbers find widespread applications in many fields. They are used throughout mathe-
matics, applied science, and engineering to represent the harmonic nature of vibrating systems and
oscillating fields.

A powerful feature of Matlab is that it does not require any special handling for complex numbers.
In this section, we develop the algebra and geometry of complex numbers and describe how they
are represented and handled by Matlab.

57

4.2.1 Definitions and Geometry

Imaginary number: The most fundamental new concept in the study of complex numbers is the
“imaginary number” j. This imaginary number is defined to be the square root of −1:

j =
√−1

j2 = −1

You may be more familiar with the imaginary number being denoted by i, which is the common
notation in mathematics. However, in engineering, an electrical current is denoted by i, so j is used
for the imaginary number.

Rectangular Representation: A complex number z consists of the “real part” x and the “imag-
inary part” y and is expressed as

z = x+ jy

where

x = Re[z]; y = Im[z]

This form of representation for complex numbers is called the rectangular or cartesian form since
z can be represented in rectangular coordinates by the point (x, y) in a plane having a horizontal
axis being the “real axis” and the vertical axis being the “imaginary axis,” as shown in Figure 4.3.
This plane is called the “complex plane.”

Figure 4.3: The complex number z in the complex plane

In Matlab, i and j are variable names that default to the imaginary number. You have to be
careful with their use, however, as they can be overridden and used as general variables. You can
insure that j is the imaginary number by explicitly computing it as the square root of −1:

58

>> j = sqrt(-1)
j =

0+ 1.0000i

The result is displayed in rectangular form, with i used as the imaginary number.

A general complex number can be formed in three ways:

>> z = 1 + j*2
z =

1.0000+ 2.0000i
>> z = 1 + 2j
z =

1.0000+ 2.0000i
>> z = complex(1,2)
z =

1.0000 + 2.0000i

In the first method above, the imaginary number j explicitly multiplies the real number (imaginary
part) 2. In the second method, the imaginary number j is used as notation to produce an imaginary
part of 2. Note however, that j cannot precede the imaginary part:

>> z = 1 + j2
??? Undefined function or variable ’j2’.

The error message indicates that Matlab interprets j2 as a variable that has not been defined
and thus does not have a value.

In Matlab, the function real(z) returns the real part and imag(z) returns the imaginary part:

>> z = 3 + 4j
z =

3.0000+ 4.0000i
>> x = real(z)
x =

3
>> y = imag(z)
y =

4

We call z = x + jy the Cartesian or rectangular representation of z, with real component x and
imaginary component y. We say that the Cartesian pair (x, y) codes the complex number z.

Polar Representation: Defining the radius r and the angle θ of the complex number z shown in
Figure 4.3, z can be represented in polar form and written as

z = r cos θ + jr sin θ

59

or, in shortened notation

z = r � θ

where

Math definition Matlab

Magnitude: |z| = r =
√
x2 + y2 abs(z)

Argument or angle: θ = tan−1
(
y

x

)
= sin−1

(
y

r

)
= cos−1

(
x

r

)
angle(z)

For example:

>> z = 3 + 4j;
>> r = abs(z)
r =

5
>> theta = angle(z)
theta =

0.9273

Recall that angles in Matlab are given in radians. To compute the angle in degrees, the result in
radians must be multiplied by (360/2π) or (180/π):

>> theta = (180/pi)*angle(z)
theta =

53.1301

Principal value of the complex argument: The angle θ is defined only for nonzero complex
numbers and is determined only up to integer multiples of 2π, since adding 2π radians rotates the
complex number one revolution around the axis and leaves it in the same location. The value of θ
that lies in the interval −π < θ ≤ π is called the principal value of the argument of z, and is the
value computed by angle(z) in Matlab.

Example 4.3 Principal value of complex argument

For the complex number z = 1 + j
√
3

r =
√
12 + (

√
3)2 = 2 and θ = � z = tan−1

√
3 =

π

3
+ 2nπ

The principal value of θ is π/3 and therefore

z = 2(cosπ/3 + j sinπ/3)

Confirming with Matlab:

60

>> z = 1 + j*sqrt(3)
z =

1.0000+ 1.7321i
>> theta = angle(z)
theta =

1.0472
>> pi/3
ans =

1.0472
>> r = abs(z)
r =

2.0000
>> z1 = r*(cos(theta) + j*sin(theta))
z1 =

1.0000+ 1.7321i
>> theta2 = theta +2*pi
theta2 =

7.3304
>> z2 = r*(cos(theta2) + j*sin(theta2))
z2 =

1.0000 + 1.7321i

Polar to rectangular conversion: To obtain the rectangular representation from the polar
representation, apply the trigonometric relationships between the radius and angle and the real
and imaginary parts:

x = r cos θ

y = r sin θ

For example:

>> r = 5; theta = 0.9273;
>> z = r*cos(theta) + j*r*sin(theta)
z =

3.0000+ 4.0000i

The complex number z can be written as

z = x+ jy

= r cos θ + jr sin θ
= r(cos θ + j sin θ)

61

Exponential Representation: The base of the natural logarithms, e = 2.71828182845904, is
used to develop the exponential representation for complex numbers, through the Euler (sounds
like oiler) formula

ejθ = cos θ + j sin θ

From this identity, two additional formulas can be derived:

cos θ =
1
2

(
ejθ + e−jθ

)

sin θ =
1
2j

(
ejθ − e−jθ

)

These formulas are derived and discussed in greater detail in a calculus course. Our purpose here
is to use them to represent the complex number z in the exponential form

z = rejθ = r cos θ + jr sin θ
= r(cos θ + j sin θ)

Note that this has the same functional form as the polar representation for z. While it appears to
differ from the polar representation only in notation at this point, we will continue to expand on the
properties of the exponential representation to show that the differences are more than symbolic.
The graphical representation shown in Figure 4.3 still applies.

Magnitude of z: |z| = r

Angle or phase of z: θ = � z

Exponential representation of z:

z = |z|ej � z = rejθ

Confirming with Matlab:

>> z = 3 + 4j
z =

3.0000+ 4.0000i
>> r = abs(z)
r =

5
>> theta = angle(z)
theta =

0.9273
>> z = r * exp(j*theta)
z =

3.0000+ 4.0000i

62

Consider the special case for which the magnitude |z| = r = 1

z = ejθ

For this case, z lies on on a circle of radius 1 centered on the origin of the complex plane, at angle
θ, as shown in Figure 4.4.

Figure 4.4: Complex number z = ejθ in the complex plane

There are several values of θ for which you should know the value of ejθ, as shown in Figure 4.4.

θ = 0: ej0 = cos 0 + j sin 0 = 1 + j0 = 1
θ = π/2: ejπ/2 = cosπ/2 + j sinπ/2 = 0 + j1 = j
θ = π: ejπ = cosπ + j sinπ = −1 + j0 = −1
θ = 2π: ej2π = cos 2π + j sin 2π = 1 + j0 = 1
θ = −π/2: ej(−π/2) = cos(−π/2) + j sin(−π/2) = 0− j1 = −j

Using the function exp(x), these values can be confirmed in Matlab:

>> z = exp(j*0)
z =

1
>> z = exp(j*pi/2)
z =

0.0000+ 1.0000i
>> z = exp(j*pi)
z =

-1.0000+ 0.0000i
>> z = exp(j*2*pi)
z =

1.0000- 0.0000i
>> z = exp(-j*pi/2)
z =

0.0000- 1.0000i

Summary: Complex Number Representations

63

We can summarize the representations of the complex number z as follows:

z = x+ jy = r � θ = rejθ = |z|ej � z

4.2.2 Algebra of Complex Numbers

The algebraic operations of addition, subtraction, multiplication, and division can be defined for
complex numbers in much the same way as they are defined for real numbers. Also, additional
algebraic operations can be defined for complex numbers that have no meaning for real numbers.
The complex operations have simple geometric interpretations.

Addition and Subtraction: The complex numbers z1 and z2 are added (or subtracted) by
separately adding (or subtracting) the real and imaginary parts:

z1 + z2 = (x1 + jy1) + (x2 + jy2)
= (x1 + x2) + j(y1 + y2)

z1 − z2 = (x1 + jy1)− (x2 + jy2)
= (x1 − x2) + j(y1 − y2)

As shown in Figure 4.5, the geometric interpretation of complex addition is the “parallelogram
rule,” where z1 + z2 lies on the node of a parallelogram formed from z1 and z2. For complex
subtraction, −z2 is represented in the complex plane by reversing its direction and then adding to
z1 using the parallelogram rule, as shown in Figure 4.5. If z is given in polar or complex exponential

Figure 4.5: Addition and subtraction of complex numbers

form, it must be converted to rectangular form to perform the addition.

In Matlab, complex addition is performed in the same way as it is performed for real numbers:

>> z1 = 1 + 2j

64

z1 =
1.0000+ 2.0000i

>> z2 = 4 + 3j
z2 =

4.0000+ 3.0000i
>> z3 = z1 + z2
z3 =

5.0000+ 5.0000i

Multiplication: The product of z1 and z2 is found using the “first-outer-inner-last (FOIL)”
method from polynomial multiplication, applying the identity j2 = −1, and writing the result
in rectangular form:

z1z2 = (x1 + jy1)(x2 + jy2)
= x1x2 + jx1y2 + jx2y1 + j2y1y2

= (x1x2 − y1y2) + j(x1y2 + x2y1)

Multiplication is better understood if the complex exponential representations are used:

z1z2 = r1e
jθ1r2e

jθ2

= r1r2e
j(θ1+θ2)

Here, we have used the mathematical property that exponents jθ1 and jθ2 of common base e add.
We say from the above that the magnitudes multiply and the angles add.

|z1z2| = r1r2

� (z1z2) = θ1 + θ2

In Matlab, complex multiplication is performed in the same way as it is performed for real
numbers. In the example below, magnitudes and angles have been computed to allow you to
confirm that magnitudes multiply and angles add:

>> z1 = 1 +0.5j; z2 = 2 + 1.5j;
>> z4 = z1 * z2
z4 =

1.2500+ 2.5000i
>> magz1 = abs(z1)
magz1 =

1.1180
>> magz2 = abs(z2)
magz2 =

2.5000

65

>> magz4 = abs(z4)
magz4 =

2.7951
>> mag_test = magz1 * magz2
mag_test =

2.7951
>> angz1 = angle(z1)
angz1 =

0.4636
>> angz2 = angle(z2)
angz2 =

0.6435
>> angz4 = angle(z4)
angz4 =

1.1071
>> ang_test = angz1 + angz2
ang_test =

1.1071

Rotation: There is a special case of complex multiplication that is important to understand.
When z1 = r1e

jθ1 and z2 = ejθ2 (i.e., the magnitude of z2 is 1), then the product of z1 and z2 is

z1z2 = r1e
jθ1ejθ2

= r1e
j(θ1+θ2)

As shown in Figure 4.6, z1z2 is just a rotation of z1 through the angle θ2 . A particular case of

Figure 4.6: Rotation of complex numbers

rotation results from the multiplication by j. Recalling that ejπ/2 = j, the product jz1 becomes:

jz1 = r1e
j(θ1+π/2)

Thus, multiplying by j results in a rotation by π/2 or 90◦, producing a result that is perpendicular
to z1 in the complex plane.

For example:

66

>> z1 = 3 + 4j;
>> z2 = z1 * exp(j*pi/2)
z2 =

-4.0000+ 3.0000i
>> z3 = j * z1
z3 =

-4.0000+ 3.0000i
>> theta1 = (180/pi) * angle(z1)
theta1 =

53.1301
>> theta2 = (180/pi) * angle(z2)
theta2 =

143.1301
>> theta_diff = theta2 - theta1
theta_diff =

90

Complex Conjugate. For every complex number z = x+jy = rejθ there is the complex conjugate

z∗ = x− jy

Plotting z∗ in the complex plane, by replacing y with −y , as shown in Figure 4.7, we see that the
angle or phase of z∗ is −θ. Thus,

Figure 4.7: Complex conjugate

z∗ = x− jy = re−jθ

The mathematical procedure for finding a complex conjugate is to “replace j with −j ,” changing
the sign of the imaginary part of the complex number.

For example:

67

>> z = 3 + 4j
z =

3.0000+ 4.0000i
>> zconj = conj(z)
zconj =

3.0000- 4.0000i
>> theta = angle(z)
theta =

0.9273
>> r = abs(z)
r =

5
>> zconj1 = r * exp(-j*theta)
zconj1 =

3.0000- 4.0000i

Magnitude Squared: The product of z and its complex conjugate is

z∗z = (x− jy)(x+ jy) = x2 + jxy − jxy − j2y2 = x2 + y2 = r2 = |z|2

or,

|z|2 = z∗z

and we see that the magnitude squared |z|2 is the product of z and its complex conjugate z∗ .

For example:

>> z = 3 + 4j;
>> zz = conj(z) * z
zz =

25
>> zmsq = abs(z)^2
zmsq =

25

Division: This operation is defined as the inverse operation of multiplication. The quotient z1/z2

is obtained in rectangular form by multiplying both the numerator and denominator of the quotient
by the conjugate of z2:

z1

z2
=

x1 + jy1

x2 + jy2

=
(x1 + jy1)(x2 − jy2)
(x2 + jy2)(x2 − jy2)

=
(x1 + jy1)(x2 − jy2)

x2
2 + y2

2

68

=
x1x2 + y1y2

x2
2 + y2

2

+ j
x2y1 − x1y2

x2
2 + y2

2

Division is more easily performed in exponential form

z1

z2
=

r1e
jθ1

r2ejθ2

=
r1e

jθ1e−jθ2

r2ejθ2e−jθ2

=
r1

r2
ej(θ1−θ2)

Thus, the magnitude of the quotient is the quotient of the magnitudes and the angle of the quotient
is the difference of the angle of the numerator and the angle of the denominator:

∣∣∣∣z1

z2

∣∣∣∣ = r1

r2

�
(
z1

z2

)
= θ1 − θ2

For example:

>> z2 = 2 + 1.5j
z2 =

2.0000+ 1.5000i
>> z4 = 1.25 + 2.5j
z4 =

1.2500+ 2.5000i
>> z1 = z4/z2
z1 =

1.0000+ 0.5000i
>> magz2 = abs(z2)
magz2 =

2.5000
>> magz4 = abs(z4)
magz4 =

2.7951
>> magz1 = abs(z1)
magz1 =

1.1180
>> magtest = magz4/magz2
magtest =

1.1180
>> argz2 = angle(z2)
argz2 =

69

0.6435
>> argz4 = angle(z4)
argz4 =

1.1071
>> argz1 = angle(z1)
argz1 =

0.4636
>> ang_test = argz4 - argz2
ang_test =

0.4636

Algebraic Rules

The algebraic rules you have learned for real variables and numbers apply to complex variables and
numbers.

Commutativity: Addition and multiplication can be done in either order without changing the
result.

z1 + z2 = z2 + z1

z1z2 = z2z1

Associativity: Sums and products of three or more variables can be performed in sequential
groups of two without changing the result.

(z1 + z2) + z3 = z1 + (z2 + z3)

(z1z2)z3 = z1(z2z3)

Distributivity: Multiplication can be distributed across a sum without changing the result.

z1(z2 + z3) = z1z2 + z1z3

Matlab Functions for Complex Numbers

To summarize, the following are the Matlab functions for complex numbers:

abs(z) Complex magnitude |z| (absolute value for real z)
angle(z) Phase angle or argument of z
conj(z) Complex conjugate z∗

imag(z) Complex imaginary part Im(z)
real(z) Complex real part Re(z)

70

4.2.3 Roots of a Quadratic Polynomial

In a previous example, we found that the roots of the quadratic polynomial

as2 + bs+ c = 0

are given by:

s1,2 = − b

2a
± 1
2a

√
b2 − 4ac

For the values of the coefficients considered in that example, the resulting roots were real. However,
for other values of the coefficients, the roots can be complex. Having now reviewed complex
numbers, we can investigate the problem of quadratic roots in more detail. There are three different
cases for the solution, dependent on the value of the discriminant of the quadratic equation:

d = b2 − 4ac

• Overdamped (d > 0): Both roots are real and are given by

s1,2 = − b

2a
± 1
2a

√
b2 − 4ac

The roots are located symmetrically about the point −b/2a. When b = 0, they are located
symmetrically about 0 at the points ±(1/2a)√−4ac (in this case, −4ac > 0).

• Critically Damped (d = 0): The two roots are real and equal (we say they are repeated):

s1,2 = − b

2a

• Underdamped (d < 0): The square root in the quadratic equation produces an imaginary
number, so the roots are complex

s1,2 = − b

2a
± 1
2a

√
−(4ac− b2)

= − b

2a
± j

1
2a

√
4ac− b2

Note that in this case, the roots s1 and s2 are complex conjugates:

s2 = s∗1

The roots are purely imaginary when b = 0

s1,2 = ±j

√
c

a

In Matlab, it is not necessary to determine which of the three cases applies to a given
problem, as the square root function will appropriately return real or imaginary values as
needed.

71

Example:

>> a=1; b=4; c=8;
>> x = -b/(2*a);
>> y = sqrt(b^2-4*a*c)/(2*a);
>> s1 = x + y
s1 =

-2.0000+ 2.0000i
>> s2 = x - y
s2 =

-2.0000- 2.0000i

4.3 Two-Dimensional Plotting

One of the major advantages of Matlab are its capabilities for displaying its results in the form of
two-dimensional and three-dimensional graphics, providing what has come to be known as scientific
visualization. In this section, Matlab capabilities are explained for producing two-dimensional
plots in the context of the display of complex variables in the complex plane. In later sections,
these two-dimensional graphics will be extended to other variables, in the context of the presentation
of those variable types. For more information, type help graph2d.

Example: Plotting Complex Variables

The plot command can be used to plot complex variables in the complex plane. For example:

>> z = 1 + 0.5j;
>> plot(z,’.’)

This creates a graphics window, called a Figure window, named by default “Figure No. 1,” which
becomes the active (top) window. The plot produced is shown in Figure 4.8, with z plotted as a
point (due to the command ’.’) in the complex plane, with the real value (1.0) on the horizontal (x)
axis and the imaginary value (0.5) on the vertical (y) axis. The axes have been scaled automatically,
with a range of 0.0 to 2.0 on the horizontal axis and a range of -0.5 to 1.5 on the vertical axis.
Numerical scales and tick marks have been added automatically.

This plot was exceedingly easy to produce, but it has many deficiencies that we can improve upon.
Here are some improvements to consider:

• Control the scaling of the axes

• Produce a plot that is square instead of rectangular, having the same scale on both axes

• Include several complex variables on a single plot

72

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

Figure 4.8: Simple plot of a complex number

• Label the axes

• Title the plot

• Label the plotted complex variables

The commands to implement each of these improvements will be introduced and discussed. The
resulting plot produced by each command won’t be given, so you might try each of them in Matlab
as you read this. Finally, when all of the commands have been discussed, a Matlab example session
using them will be given and the results will be displayed.

4.3.1 2D Plotting Commands

For more information, type help graph2d.

Colors and Markers

Color and markers can be specified by giving plot an additional argument following the complex
variable name. This optional additional argument is a character string (enclosed in single quotes)
consisting of characters from the following table:

73

Symbol Color Symbol Marker
y yellow . •
m magenta o ◦
c cyan x ×
r red + +
g green * ∗
b blue s ✷

w white d ✸

k black v �
^
<
> !
p "
h hexagram

Examples:

plot(z1,’b.’) % plot variable z1 as a blue point
plot(z2,’go’) % plot variable z2 as a green circle
plot(z3,’r*’) % plot variable z3 as a red asterisk

Customizing Plot Axes

The axis command provides control over the scaling and appearance of both the horizontal and
vertical axes of a plot. This command has many features, so only the most useful will be discussed
here. For more complete information, refer to on-line help. The primary features are given in the
following table

Command Description
axis([xmin xmax ymin ymax]) Define minimum and maximum values of the axes
axis square Produce a square plot instead of rectangular
axis equal Equal scaling factors for both axes
axis normal Turn off axis square, equal
axis(auto) Return the axis to automatic defaults
axis off Turn off axis background, labeling, grid, box, and tick

marks. Leave the title and any labels placed by the
text and gtext commands

axis on Turn on axis background, labeling, tick marks, and,
if they are enabled, box and grid

Adding New Curves

Using the hold command to add lines to an existing plot:

74

Command Description
hold on Retain existing axes, add new curves to current axes when new plot com-

mands are issued. If the new data does not fit within the current axes limits,
the axes are rescaled (for automatic scaling only)

hold off Releases the current figure window for new plots
ihold Logical command that returns 1 (True) if hold is on and 0 (False) if hold is

off

Plot Grids, Axes Box, and Labels

There are several commands to control the appearance of the plot. These include:

Command Description
grid on Adds dashed grid lines at the tick marks
grid off Removes grid lines (default)
grid Toggles grid status (off to on, or on to off)
box on Adds axes box, consisting of boundary lines and tick marks on top

and right of plot
box off Removes axes box (default)
box Toggles box status
title(’text’) Labels top of plot with text in quotes
xlabel(’text’) Labels horizontal (x) axis with text in quotes
ylabel(’text’) Labels vertical (y) axis with text in quotes
text(x,y,’text’) Adds text in quotes to location (x,y) on the current axes, where (x,y)

is in units from the current plot
gtext(’text’) Place text in quotes with mouse: displays the plot window, puts up

a cross-hair to be positioned with the mouse, and write the text onto
the plot at the selected position when the left mouse button or any
keyboard key is pressed

Printing Figures and Saving Figure Files

Plots can be printed using a figure window menu bar selection or with Matlab commands from
the Command window.

To print a plot using commands from the menu bar, make the Figure window the active window
by clicking it with the mouse. Then select the Print menu item from the File menu. Using the
parameters set in the Print Setup or Page Setup menu item, the current plot is sent to the
printer.

Matlab has its own printing commands that can be executed from the Command window. To
print a Figure window, click it with the mouse or use the figure(n) command, where n is the
figure number, to make it active, and then execute the print command:

>> print % prints the current plot to the system printer

75

The orient command changes the print orientation mode, as follows:

Command Description
orient portrait Prints vertically in middle of page (default)
orient landscape Prints horizontally, stretches to fill the page
orient tall Prints vertically, stretches to fill the page
orient Displays the current orientation

Options to the print command provide for writing the plot to a file in many different formats. For
example, to write the plot as a PostScript format file in the current directory:

print -deps file

where file is the name of the file to be written, usually having the file name extension .ps to remind
you that it is a PostScript file.

To view the contents of a PostScript file, type the following in a UNIX command window:

gv file

where file is the name of the PostScript file (including the .ps extension).

To print a PostScript file, type the following in a UNIX command window:

lp file

Refer to on-line help for the print command for further information on other file formats and
options.

4.3.2 Complex Plot Examples

Consider three examples to summarize the concepts of complex numbers, algebra, and geometry,
plus the handling of complex numbers and plots by Matlab.

Rectangular Form Plot

The Matlab commands for a rectangular form plot:

z1 = 1.5 + 0.5j;
z2 = 0.5 + 1.5j;
z3 = z1 + z2;
z4 = z1 * z2;
z5 = conj(z1);
z6 = j * z2;
z7 = z2/z1;
axis([-3 3 -3 3]);
axis square;
grid on;

76

hold on;
plot(z1,’b.’);
plot(z2,’go’);
plot(z3,’rx’);
plot(z4,’m*’);
plot(z5,’c+’);
plot(z6,’kd’);
plot(z7,’kp’);
text(real(z1)+0.1,imag(z1),’z1’);
text(real(z2)+0.1,imag(z2),’z2’);
text(real(z3)+0.1,imag(z3),’z1+z2’);
text(real(z4)+0.1,imag(z4),’z1*z2’);
text(real(z5)+0.1,imag(z5),’z1*’);
text(real(z6)+0.1,imag(z6),’j*z2’);
text(real(z7)+0.1,imag(z7),’z2/z1’);
xlabel(’Real Part’);
ylabel(’Imaginary Part’);
title(’Complex Numbers’);

The plot that results is shown in Figure 4.9.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

z1

z2

z1+z2

z1*z2

z1*

j*z2

z2/z1

Real Part

Im
ag

in
ar

y
P

ar
t

Complex Numbers

Figure 4.9: Complex number plot

Vector Form Plot

Complex numbers can also be represented graphically as arrows, with the base at the origin of the
complex plane and the arrow head at the location of the complex number. This represents the

77

complex number as a vector, which will be defined and described in greater detail later in the
course.

Matlab supports the plotting of complex numbers as vectors through the compass command.
Consider the following example, in which two complex numbers z1 and z2 are added to form z3 and
the three complex numbers are plotted using compass.

z1 = 1.5 + 0.5j;
z2 = 0.5 + 1.5j;
z3 = z1 + z2;
axis([-3 3 -3 3]);
axis square;
grid on;
hold on;
plot(z1,’b.’);
plot(z2,’go’);
plot(z3,’rx’);
compass(z1);
compass(z2);
compass(z3);
text(real(z1)+0.1,imag(z1),’z1’);
text(real(z2)+0.1,imag(z2),’z2’);
text(real(z3)+0.1,imag(z3)+0.1,’z1+z2’);
xlabel(’Real Part’);
ylabel(’Imaginary Part’);
title(’Compass Plot’);

The plot that results, shown in Figure 4.10, clearly shows the parallelogram property of the sum
of two complex numbers.

Polar Form Plot

The magnitudes and angles of complex numbers can also be plotted in polar coordinates using the
polar command. Consider the following example, in which two complex numbers z1 and z2 are
multiplied to form z3 and the three complex numbers are plotted using polar.

z1 = sqrt(3) + j;
z2 = 1.5*(1 + j*sqrt(3));
z3 = z1 * z2;
r1 = abs(z1);
phi1 = angle(z1);
r2 = abs(z2);
phi2 = angle(z2);
r3 = abs(z3);
phi3 = angle(z3);

78

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Real Part

Im
ag

in
ar

y
P

ar
t z1

z2

z1+z2

Compass Plot

Figure 4.10: Compass plot of complex number addition

polar(phi3,r3,’*’);
hold on
text(real(z1)+0.1,imag(z1),’z1’)
polar(phi2,r2,’+’)
text(real(z2)+0.1,imag(z2),’z2’)
polar(phi1,r1,’o’)
text(real(z3)+0.1,imag(z3)-0.2,’z1*z2’)

The plot that results, shown in Figure 4.11, clearly shows that the magnitudes multiply and the
angles add under complex multiplication. Note that while Matlab usually uses radian units for
angles, degrees are used in this plot.

79

 2

 4

 6

30

210

60

240

90

270

120

300

150

330

180 0

z1

z2

z1*z2

Figure 4.11: Polar plot of complex number multiplication

80

Section 5

Arrays and Array Operations

Scalars: Variables that represent single numbers, as considered to this point. Note that complex
numbers are scalars, even though they have two components, the real part and the imaginary part.

Arrays: Variables that represent more than one number. Each number is called an element of the
array. Rather than than performing the same operation on one number at a time, array operations
allow operating on multiple numbers at once.

Row and Column Arrays: A row of numbers (called a row vector) or a column of numbers
(called a column vector).

Two-Dimensional Arrays: A two-dimensional table of numbers, called a matrix.

Array Indexing or Addressing: Indicates the location of an element in the array.

5.1 Vector Arrays

First consider one-dimensional arrays: row vectors and column vectors.

Consider computing y = sin(x) for 0 ≤ x ≤ π. It is impossible to compute y values for all values
of x, since there are an infinite number of values, so we will choose a finite number of x values.
Consider computing

y = sin(x), where x = 0, 0.1π, 0.2π, . . . , π

You can form a list, or array of the values of x, and then using a calculator you can compute the
corresponding values of y, forming a second array y. These can be written down as:

x 0 0.1 π 0.2 π 0.3 π 0.4 π 0.5 π 0.6 π 0.7 π 0.8 π 0.9 π π

y 0 .31 .59 .81 .95 1.0 .95 .81 .59 .31 0

x and y are ordered lists of numbers, i.e., the first value or element of y is associated with the first

81

value or element of x.

Elements can be denoted by subscripts, e.g. x1 is the first element in x, y5 is the fifth element in
y. The subscript is the index, address, or location of the element in the array.

Vector Creation by Explicit List

A vector in Matlab can be created by an explicit list, starting with a left bracket, entering the
values separated by spaces (or commas) and closing the vector with a right bracket.

>> x=[0 .1*pi .2*pi .3*pi .4*pi .5*pi .6*pi .7*pi .8*pi .9*pi pi]
x =

Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

Matlab functions can be applied to vectors to compute a resulting vector:

>> y=sin(x)
y =

Columns 1 through 7
0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511

Columns 8 through 11
0.8090 0.5878 0.3090 0.0000

The two vectors produced above are row vectors, each containing one row and 11 columns. They
are each also known as a one-by-eleven array, a 1 × 11 array, or a row vector of length 11.

Vector Addressing

A vector element is addressed in Matlab with an integer index (also called a subscript) enclosed
in parentheses. For example, to access the third element of x and the fifth element of y:

>> x(3)
ans =

0.6283
>> y(5)
ans =

0.9511

Colon notation: Addresses a block of elements

The format for colon notation is:

82

(start:increment:end)

where start is the starting index, increment is the amount to add to each successive index, and
end is the ending index, where start, increment, and end must be integers. The increment can
be negative, but negative indices are not allowed to be generated. If the increment is to be 1, a
shortened form of the notation may be used:

(start:end)

• 1:5 means “start with 1 and count up to 5.”

>> x(1:5)
ans =

0 0.3142 0.6283 0.9425 1.2566

• 7:end means “start with 7 and count up to the end of the vector.”

>> x(7:end)
ans =

1.8850 2.1991 2.5133 2.8274 3.1416

• 3:-1:1 means “start with 3 and count down to 1.”

>> y(3:-1:1)
ans =

0.5878 0.3090 0

Thus, a negative index can be used, but the indices generated must all be positive integers.

• 2:2:7 means “start with 2, count up by 2, and stop at 7.”

>> x(2:2:7)
ans =

0.3142 0.9425 1.5708

• 3:1 means “start with 3, count up by 1, and stop at 1.” This clearly doesn’t make sense, so
Matlab generates the error message:

>> x(3:1)
ans =

Empty matrix: 1-by-0

A vector can be used to access elements of an vector in a desired order. To access elements 8, 2, 9,
and 1 of y in order:

>> y([8 2 9 1])
ans =

0.8090 0.3090 0.5878 0

83

Vector Creation Alternatives

Explicit lists are often cumbersome ways to enter vector values.

Alternatives:

• Combining: A vector can also be defined using another vector that has already been defined.
For example:

>> B = [1.5, 3.1];
>> S = [3.0 B]
S =

3.0000 1.5000 3.1000

• Changing: Values can be changed by referencing a specific address. For example,

>> S(2) = -1.0;
>> S
S =

3.0000 -1.0000 3.1000

changes the second value in the vector S from 1.5 to −1.0.

• Extending: Additional values can be added using a reference to a specific address. For
example, the following command:

>> S(4) = 5.5;
>> S
S =

3.0000 -1.0000 3.1000 5.5000

extends the length of vector S from 3 to 4.

Applying the following command

>> S(7) = 8.5;
>> S
S =

3.0000 -1.0000 3.1000 5.5000 0 0 8.5000

extends the length of S to 7, and the values of S(5) and S(6) are automatically set to zero
because no values were given for them.

• Colon notation: A generalized version of the colon notation used to index array elements
can be used to generate array elements. The format for this notation is:

(start:increment:end)

where start, increment, and end can now be floating point numbers and there is no restric-
tion that the values generated must be positive.

Thus, to create x in the example above:

84

>> x=(0:0.1:1)*pi
x =

Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

As in addressing, (0:5) creates a vector that starts at 0, increments by 1 (implied), and ends
at 5.

>> x = 0:5
x =

0 1 2 3 4 5

A particular choice of start and increment values may not lead to the generation of a last
value equal to end. The last value generated must be less than or equal to end. For example:

>> x = 0:2:9
x =

0 2 4 6 8

In this case, the next value to be generated would be 10, but this is not included in the output
since it would be greater than 9, the value of end.

• linspace: This function generates a vector of uniformly incremented values, but instead of
specifying the increment, the number of values desired is specified. This function has the
form:

linspace(start,end,number)

The increment is computed internally, having the value:

increment =
end− start

number− 1

For example:

>> x=linspace(0,pi,11)
x =

Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

In this example:

increment =
π

11 − 1
= 0.1π

• logspace: This function generates logarithmically spaced values and has the form

85

logspace(start_exponent,end_exponent,number)

To create a vector starting at 100 = 1, ending at 102 = 100 and having 11 values:

>> logspace(0,2,11)
ans =

Columns 1 through 7
1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489

Columns 8 through 11
25.1189 39.8107 63.0957 100.0000

Vector Length

To determine the length of a vector array:

length(x): Returns the length of vector x.

Example:

>> x = [0 1 2 3 4 5]
x =

0 1 2 3 4 5
>> length(x)
ans =

6

Summary of Vector Addressing, Creation, and Length

Command Description
x=[2 2*pi sqrt(2) 2-3j] Create row vector x containing elements specified
x=start:end Create row vector x starting with start, counting by

one, ending at or before end
x=start:increment:end create row vector x starting with start, counting by

increment, ending at or before end
linspace(start,end,number) Create row vector x starting with start, ending at

end, having number elements
logspace(start_exp,end_exp,number) Create row vector x starting with 10^(start_exp),

ending at 10^(end_exp), having number elements
length(x) Returns the length of vector x.

Vector Orientation

In the preceding examples, vectors contained one row and multiple columns and were therefore
called row vectors.

86

A column vector, having one column and multiple rows, can be created by specifying it element by
element, separating element values with semicolons:

>> c = [1;2;3;4;5]
c =

1
2
3
4
5

Thus, separating elements by spaces or commas specifies elements in different columns, whereas
separating elements by semicolons specifies elements in different rows.

The transpose operator (’) is used to transpose a row vector into a column vector

>> a = 1:5
a =

1 2 3 4 5
>> b = a’
b =

1
2
3
4
5

For a complex vector, the transpose operator (’) produces the complex conjugate transpose (i.e.
the sign on the imaginary part is changed as part of the transpose operation). The dot-transpose
operator (.’) transposes the vector but does not conjugate it. The two transpose operators are
identical for real data.

>> a = [1+j 2-3j -3+4j]
a =

1.0000+ 1.0000i 2.0000- 3.0000i -3.0000+ 4.0000i
>> b = a’
b =

1.0000- 1.0000i
2.0000+ 3.0000i
-3.0000- 4.0000i

>> c = a.’
c =

1.0000+ 1.0000i
2.0000- 3.0000i
-3.0000+ 4.0000i

Vectors containing zeros and ones

87

lindy_g
transpose

lindy_g
(’)

Two special functions in Matlab can be used to generate new vectors containing all zeros or all
ones.

zeros(m,1) Returns an m-element column vector of zeros
zeros(1,n) Returns an n-element row vector of zeros
ones(m,1) Returns an m-element column vector of ones
ones(1,n) Returns an n-element row vector of ones

Examples:

>> x = zeros(3,1)
x =

0
0
0

>> y = ones(1,3)
y =

1 1 1

5.2 Matrix Arrays

A matrix array is two-dimensional, having both multiple rows and multiple columns. Creation of
two-dimensional arrays follows that of row and column vectors:

• Begin with [, end with]

• Spaces or commas are used to separate elements in a row.

• A semicolon or Enter is used to separate rows.

>> f = [1 2 3; 4 5 6]
f =

1 2 3
4 5 6

>> g = f’
g =

1 4
2 5
3 6

>> h = [1 2 3
4 5 6
7 8 9]
h =

1 2 3
4 5 6
7 8 9

88

>> k = [1 2;3 4 5]
??? Number of elements in each row must be the same.

Here f is an array having 2 rows and 3 columns, called a 2 by 3 matrix. Applying the transpose
operator to f produces g, a 3 by 2 matrix. Array h is 3 by 3, created using Enter to start new
rows. The incorrect attempt to construct k shows that all rows must contain the same number of
columns.

The transpose operator can be used to generate tables from vectors. For example, generate two
vectors, x and y, then display the values such that x(1) and y(1) are on the same line, and so on,
as follows:

>> x = 0:4;
>> y = 5:5:25;
>> A = [x’ y’]
A =

0 5
1 10
2 15
3 20
4 25

Note that the matrix A has been created from the vectors x and y.

Matrix Addressing

To refer to the element in row 2 and column 3 of matrix f:

>> f(2,3)
ans =

6

Thus, the first number in parentheses addresses the row and the second number (following a comma)
addresses the column.

Colon in place of a row or column reference represents the entire row or column. To create a
column vector from the first column of the array h above:

>> h_1 = h(:,1)
h_1 =

1
4
7

Submatrix creation: To create a submatrix using the colon operator, consider:

89

>> c = [1,0,0; 1,1,0; 1,-1,0; 0,0,2]
c =

1 0 0
1 1 0
1 -1 0
0 0 2

>> c_1 = c(:,2:3)
c_1 =

0 0
1 0

-1 0
0 2

>> c_2 = c(3:4,1:2)
c_2 =

1 -1
0 0

Thus, c_1 contains all rows and columns 2 and 3 of c and c_2 contains rows 3 and 4 of columns 1
and 2 of c.

Matrix size

To determine the size of a matrix array:

Command Description
s = size(A) For an m × n matrix A, returns the two-element row vector s = [m, n]

containing the number of rows and columns in the matrix.
[r,c] = size(A) Returns two scalars r and c containing the number of rows and columns

in A, respectively.
r = size(A,1) Returns the number of rows in A in the variable r.
c = size(A,2) Returns the number of columns in A in the variable c.
n=length(A) Returns the larger of the number of rows or columns in A in the variable

n.
whos Lists variables in the current workspace, together with information about

their size, bytes, class, etc. (Long form of who.

Examples:

>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

>> s = size(A)
s =

2 3
>> [r,c] = size(A)
r =

2
c =

90

3
>> r = size(A,1)
r =

2
>> c = size(A,2)
c =

3
>> length(A)
ans =

3
>> whos

Name Size Bytes Class

A 2x3 48 double array
ans 1x1 8 double array
c 1x1 8 double array
r 1x1 8 double array
s 1x2 16 double array

Grand total is 11 elements using 88 bytes

Matrices containing zeros and ones

Two special functions in Matlab can be used to generate new matrices containing all zeros or all
ones.

zeros(n) Returns an n × n array of zeros.
zeros(m,n) Returns an m × n array of zeros.
zeros(size(A)) Returns an array the same size as A containing all zeros.
ones(n) Returns an n × n array of ones.
ones(m,n) Returns an m × n array of ones.
ones(size(A) Returns an array the same size as A containing all ones.

Examples of the use of zeros:

>> A = zeros(3)
A =

0 0 0
0 0 0
0 0 0

>> B = zeros(3,2)
B =

0 0
0 0
0 0

>> C =[1 2 3; 4 2 5]
C =

1 2 3

91

4 2 5
>> D = zeros(size(C))
D =

0 0 0
0 0 0

5.2.1 Array Operations

Scalar-Array Mathematics

Addition, subtraction, multiplication, and division of an array by a scalar simply apply the opera-
tion to all elements of the array.

>> f = [1 2 3; 4 5 6]
f =

1 2 3
4 5 6

>> g = 2*f -1
g =

1 3 5
7 9 11

Element-by-Element Array-Array Mathematics

When two arrays have the same dimensions, addition, subtraction, multiplication, and division ap-
ply on an element-by-element basis. The notation for some operations is somewhat unconventional.

Operation Algebraic Form Matlab

Addition a + b a + b
Subtraction a − b a - b
Multiplication a × b a.*b
Division a ÷ b a./b
Exponentiation ab a.^b

Examples:

>> A = [2 5 6];
>> B = [2 3 5];
>> C = A.*B
C =

4 15 30
>> D = A./B
D =

1.0000 1.6667 1.2000
>> E = A.^B
E =

4 125 7776

92

>> F = 3.0.^A
F =

9 243 729

Array-array mathematics on other than an element-by-element basis will be discussed later.

5.3 Array Plotting Capabilities

The plot command introduced previously can be used to produce an xy plot of vector x against
vector y, as linear plots with the x and y axes divided into equally spaced intervals. Other plots
use a logarithmic scale (base 10) when a variable ranges over many orders of magnitude because
the wide range of values can be graphed without compressing the smaller values.

plot(x,y) Generates a linear plot of the values of x (horizontal axis) and y (vertical
axis).

semilogx(x,y) Generates a plot of the values of x and y using a logarithmic scale for x
and a linear scale for y.

semilogy(x,y) Generates a plot of the values of x and y using a linear scale for x and a
logarithmic scale for y.

loglog(x,y) Generates a plot of the values of x and y using logarithmic scales for
both x and y.

Note that the logarithm of a negative value or of zero does not exist and if the data contains
negative or zero values, a warning message will be printed by Matlab informing you that these
data points have been omitted from the data plotted. Examples are shown in Figure 5.4 below.

Plot Linestyles

An optional argument to the various plot commands above controls the linestyle. This argument is
a character string consisting of one of the characters shown below. This character can be combined
with the previously described characters that control colors and markers.

Symbol Linestyle
− solid line
: dotted line
−. dash-dot line
−− dashed line

Example 5.1 Vertical motion under gravity

An object is thrown vertically upward with an initial speed v, under acceleration of gravity g.
Neglecting air resistance, determine and plot the height of the object as a function of time, from
time zero when the object is thrown until it returns to the ground.

93

The height of the object at time t is

h(t) = vt − 1
2
gt2

The object returns to the ground at time tg, when

h(tg) = vtg − 1
2
gt2g = 0

or

tg =
2v

g

If the initial velocity v is 60 m/s, the following script will compute and plot the vertical height as
a function of the time of flight.

% Vertical motion under gravity

% Define input values
g = 9.8; % acceleration of gravity (m/s^2)
v = 60; % initial speed (m/s)

% Calculate times
t_g = 2*v/g; % time (s) to return to ground
t = linspace(0,t_g,256); % 256 element time vector (s)

% Calculate values for h(t)
h = v * t - g/2 * t.^2; % height (m)

% Plot h(t)
plot(t, h, ’:’), title(’Vertical mtion under gravity’), ...

xlabel(’time (s)’), ylabel(’Height (m)’), grid

The resulting plot is shown in Figure 5.1. Note that the option ’:’ in the plot command produces
a dotted line in the plot.

Multiple Curves

Multiple curves can be plotted on the same graph by using multiple arguments in a plot command,
as in plot(x,y,w,z), where the variables x, y, w and z are vectors. The curve of y versus x will
be plotted, and then the curve corresponding to z versus w will be plotted on the same graph.

94

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200
Vertical mtion under gravity

time (s)

H
ei

gh
t (

m
)

Figure 5.1: Height-time graph of vertical motion under gravity

Another way to generate multiple curves on one plot is to use a single matrix with multiple columns
as the second argument of the plot command. Thus, the command plot(x,F), where x is a vector
and F is a matrix, will produce a graph in which each column of F is a curve plotted against x.

To distinguish between plots on the graph, the legend command is used. This command has the
form:

legend(’string1’,’string2’,’string3’,...)

It places a box on the plot, with the curve type for first curve labeled with the text string ’string1’,
the second curved labeled with the text string ’string2’, and so on. The position of the curve
can be controlled by adding a final integer position argument pos to the legend command. Values
of pos and the corresponding positions are:

0 = Automatic “best” placement (least conflict with data)
1 = Upper right-hand corner (default)
2 = Upper left-hand corner
3 = Lower left-hand corner
4 = Lower right-hand corner
-1 = To the right of the plot

Example 5.2 Multiple plot of polynomial curves

Consider plotting the two polynomial functions:

f1 = x2 − 3x + 2

95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

0

10

20

30

40

50

60
Multiple Function Plot

x

f1
f2

Figure 5.2: Plot with two polynomial curves

f2 = 2x2 + x − 3

% Generate plots of polynomials
%
x = 0:0.1:5;
f(:,1) = x’.^2 -3*x’ + 2;
f(:,2) = 2*x’.^2 +x’ - 3;
plot(x,f),title(’Multiple Function Plot’),...
xlabel(’x’), grid, legend(’f1’,’f2’)

The resulting plot is shown in Figure 5.2 (the line colors differ, allowing the curves to be distin-
guished from one another).

To plot two curves with separate y-axis scaling and labeling, the plotyy function can be used. This
command is apparently not well developed, as it does not accept line style options and the legend
command causes one of the curves to disappear.

Example 5.3 Multiple plot of polynomial curves with separate y axes

Again consider plotting the two polynomial functions from the previous example, but with separate
y axes.

96

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12
Multiple Axis Plot

x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

0

10

20

30

40

50

60

Figure 5.3: Plot with two polynomial curves, separate y axes

>> x = 0:0.1:5;
>> f1 = x’.^2 -3*x’ +2;
>> f2 = 2*x’.^2 +x’ -3;
>> plotyy(x,f1,x,f2),title(’Multiple Axis Plot’),...
xlabel(’x’),grid

The resulting plot is shown in Figure 5.3 (the line colors differ, allowing the curves to be distin-
guished from one another). The y axis for function f1 is on the left and the y axis for function f2

is on the right.

Multiple Figures

As has been described, when the first plot command is issued in a Matlab session, a new window
named “Figure No. 1” is created, containing the plot. A subsequent plot command will draw a new
graph in this same window. The figure command allows the creation of multiple plot windows,
allowing the display of multiple graphs. The command:

figure(n)

where n is a positive integer, will create a window named “Figure No. n.” Subsequent plot
commands will draw graphs in this window, known as the active window.

To reuse a Figure window for a new plot, it must be made the active or current figure. Clicking on
the figure off choice with the mouse makes it the active current figure. The command figure(n)

97

makes the corresponding figure active or current. Only the active window is responsive to axis,
hold, xlabel, ylabel, title, and grid commands.

Figure windows can be deleted by closing them with a mouse, using the conventional method for the
windowing system in use on your computer. The current window can be closed with the command:

>> close

The figure n window can be closed with the command:

>> close(n)

All figure windows are closed with the command:

>> close(all)

To erase the contents of a figure window without closing it, use the command:

>> clf

To erase the contents and also reset all properties, such as hold, to their default states:

>> clf reset

Subplots

The subplot command allows you to split the graph window into subwindows. The possible
splits are two subwindows (top and bottom or left and right) or four subwindows (two on top, two
on the bottom).

subplot(m,n,p): m by n grid of windows, with p specifying the current plot as the pth window.

Example 5.4 Subplots of a polynomial function

Consider plotting the polynomial

y = 5x2

in subplots of different plot types.

% Generate subplots of a polynomial
%

98

x = 0:0.5:50;
y = 5*x.^2;
subplot(2,2,1),plot(x,y),...

title(’Polynomial - linear/linear (plot)’),...
ylabel(’y’),grid,...

subplot(2,2,2),semilogx(x,y),...
title(’Polynomial - log/linear (semilogx)’),...
ylabel(’y’),grid,...

subplot(2,2,3),semilogy(x,y),...
title(’Polynomial - linear/log (semilogy)’),...
xlabel(’x’),ylabel(’y’),grid,...

subplot(2,2,4),loglog(x,y),...
title(’Polynomial - log/log (loglog)’),...
xlabel(’x’),ylabel(’y’),grid

The resulting plot is shown in Figure 5.4.

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000
Polynomial − linear/linear (plot)

y

10
−1

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

12000

14000
Polynomial − log/linear (semilogx)

y

0 10 20 30 40 50
10

0

10
5

Polynomial − linear/log (semilogy)

x

y

10
−1

10
0

10
1

10
2

10
0

10
5

Polynomial − log/log (loglog)

x

y

Figure 5.4: Plot with four polynomial subplots

99

Graphics Window Updates

The graphics or figure window is updated, or rendered, after each graphics command. This can be
a time-consuming task, which can be avoided by entering all of the graphics command for a given
figure window on the same line. This has been done in the example above, where all of the graphics
commands have effectively been placed on the same line, by separating commands with commas
and using . . . to continue commands on the next line.

100

Section 6

Mathematical Functions and
Applications

Outline

• Signals
• Polynomials
• Partial fraction expansion
• Functions of two variables
• User-defined functions
• Plotting functions

6.1 Signal Representation, Processing, and Plotting

As we have seen, one application of a one-dimensional array in Matlab is to represent a function
by its uniformly spaced samples. One example of such a function is a signal, which represents a
physical quantity such as voltage or force as a function of time, denoted mathematically as x(t).
The value of x is known generically as the signal amplitude.

Sinusoidal Signal

A sinusoidal signal is a periodic signal, which satisfies the condition

x(t) = x(t+ nT), n = 1, 2, 3, . . .

where T is a positive constant known as the period. The smallest non-zero value of T for which
this condition holds is the fundamental period T0. Thus, the amplitude of the signal repeats
every T0.

101

Consider the signal

x(t) = A cos(ωt+ θ)

with signal parameters:

• A is the amplitude, which characterizes the peak-to-peak swing of 2A, with units of the
physical quantity being represented, such as volts.

• t is the independent time variable, with units of seconds (s).
• ω is the angular frequency, with units of radians per second (rad/s), which defines the fun-
damental period T0 = 2π/ω between successive positive or negative peaks.

• θ is the initial phase angle with respect to the time origin, with units of radians, which defines
the time shift τ = −θ/ω when the signal reaches its first peak.

With τ so defined, the signal x(t) may also be written as

x(t) = A cosω(t− τ)

When τ is positive, it is a “time delay,” that describes the time (greater than zero) when the first
peak is reached. When τ is negative, it is a “time advance” that describes the time (less than zero)
when the last peak was achieved. This sinusoidal signal is shown in Figure 6.1.

Figure 6.1: Sinusoidal signal A cos(ωt+ θ) with −π/2 < θ < 0.

Consider computing and plotting the following cosine signal

x(t) = 2 cos 2πt

Identifying the parameters:

102

• Amplitude A = 2
• Frequency ω = 2π. The fundamental period T0 = 2π/ω = 2π/2π = 1s.

• Phase θ = 0.

A time-shifted version of this signal, having the same amplitude and frequency is

y(t) = 2 cos[2π(t− 0.125)]

where the time shift τ = 0.125s and the corresponding phase is θ = 2π(−0.125) = −π/4.
A third signal is the related sine signal having the same amplitude and frequency

z(t) = 2 sin 2πt

Preparing a script to compute and plot x(t), y(t), and z(t) over two periods, from t = −1s to
t = 1s:

% sinusoidal representation and plotting
%
t = linspace(-1,1,101);
x = 2*cos(2*pi*t);
y = 2*cos(2*pi*(t-0.125));
z = 2*sin(2*pi*t);
plot(t,x,t,y,t,z),...

axis([-1,1,-3,3]),...
title(’Sinusoidal Signals’),...
ylabel(’Amplitude’),...
xlabel(’Time (s)’),...
text(-0.13,1.75,’x’),...
text(-0.07,1.25,’y’),...
text(0.01,0.80,’z’),grid

Thus, linspace has been used to compute the time row vector t having 101 samples or elements
with values from −1 to 1. The three signals are computed as row vectors and plotted, with axis
control, labels and annotation. The resulting plot is shown in Figure 6.2. Observe that x(t) reaches
its peak value of 2 at time t = 0, which we can verify as being correct since we know cos 0 = 1. The
signal y(t) is x(t) delayed by τ = 0.125s. The signal z(t) is 0 for t = 0, since sin 0 = 0. It reaches
its first peak at t = T0/4 = 0.25s, as sin(2π · 0.25) = sin(π/2) = 1.

Phasor Representation of a Sinusoidal Signal

An important and very useful representation of a sinusoidal signal is as a function of a complex
exponential signal.

103

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
Sinusoidal Signals

A
m

pl
itu

de

Time (s)

x

y

z

Figure 6.2: Sinusoidal signals

Recall

ejθ = cos θ + j sin θ

Thus,

cos θ = Re
[
ejθ

]

As a result, the signal

x(t) = A cos(ωt+ φ)

can be represented as the real part of the complex exponential

x(t) = Re
[
Aej(ωt+φ)

]

= Re
[
Aejφejωt

]

We call Aejφejωt the complex representation of x(t) and write

x(t) ←→ Aejφejωt

meaning that the signal x(t) may be reconstructed by taking the real part of Aejφejωt. In this
representation, we call Aejφ the phasor or complex amplitude representation of x(t) and write

x(t) ←→ Aejφ

104

meaning that the signal x(t) may be reconstructed from Aejφ by multiplying by ejωt and taking
the real part.

The phasor representation of the sinusoid x(t) = A cos(ωt+φ) is shown in the complex plane in Fig-
ure 6.3. At t = 0, the complex representation produces the phasor Aejφ, where φ is approximately

Figure 6.3: Rotating phasor

−π/10. If time t increases to time t1, then the complex representation produces

Aejφejωt1

From our discussion of complex numbers, we know that ejωt1 rotates the phasor Aejφ through an
angle ωt1. Therefore, as we increase t from 0, we rotate the phasor from Aejφ, producing the circular
trajectory around the circle of radius A shown in Figure 6.3. When t = 2π/ω, then ejωt = ejπ = 1.
Therefore, every 2π/ω seconds, the phasor revisits any given position on the circle. The quantity
Aejφejωt is called a rotating phasor whose rotation rate is the frequency ω:

d

dt
ωt = ω

The rotation rate is also the frequency of the sinusoidal signal x(t) = A cos(ωt+ φ).

The real part of the complex, or rotating phasor, representation Aejφejωt is the desired signal
x(t) = A cos(ωt+ φ). This real part is read off of the rotating phasor diagram as shown in Figure
6.4.

Consider computing and plotting the phasor

x(t) = ejωt

where ω = 2000π rad/s and t ranges from −2× 10−3 s to 2× 10−3 s, in steps of 0.02× 10−3 s. Also
to be plotted are y(t) = Re[x(t)] and z(t) = Im[x(t)]. The script file is

105

Figure 6.4: Reading a real signal from a complex, rotating phasor

% Phasor computation and plot
%
t = (-2e-03:0.02e-03:2e-03);
x = exp(j*2000*pi*t);
y = real(x);
z = imag(x);
subplot(2,1,1),plot(x,’:’),...

axis square,...
title(’exp(jwt)’),...
xlabel(’Real’),...
ylabel(’Imaginary’),...

subplot(2,1,2),plot(t,y,’-’,t,z,’:’),...
title(’Re[exp(jwt)] and Im[exp(jwt)] vs t w=1000*2*pi’),...
xlabel(’Time (s)’),grid on,...
legend(’Re[exp(j \omega t)]’,’Im[exp(j \omega t)]’,-1)

and the resulting plot is shown in Figure 6.5, where y(t) is plotted with a solid line and z(t) is
plotted with a dotted line.

Harmonic Motion

A periodic motion that can be described by a sinusoidal function of time is called harmonic
motion. A mechanism that produces such motion is a scotch yoke, shown in Figure 6.6. This
mechanism is used in machines known as shakers, for testing the behavior of equipment subject to
vibrations. The driving element is a rotating disk with a pin mounted a distance A from the center.
The pin can slide in the slot of the element marked x-yoke. The motion of the x-yoke is restricted
by a guided rod attached to it, so that this yoke can move only horizontally. A similar slotted
element, marked y-yoke, is assembled above the x-yoke. The motion of the y-yoke is restricted by
a guided rod that allows only vertical displacements.

106

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
exp(jwt)

Real
Im

ag
in

ar
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

−1

−0.5

0

0.5

1
Re[exp(jwt)] and Im[exp(jwt)] vs t w=1000*2*pi

Time (s)

Re[exp(j ω t)]
Im[exp(j ω t)]

Figure 6.5: The signals ejωt, Re
[
ejωt

]
, and Im

[
ejωt

]

Figure 6.6: Scotch yoke mechanism

107

The motion is described mathematically by first assuming that at time t = 0 the position of the
pin relative to the x axis is defined by the angle φ. The x-coordinate of the point P1 is

x(0) = A cos(φ)

and the y-coordinate of the point P2 is

y(0) = A sin(φ)

If the angular speed of the disk is ω radians per second, then the x-coordinate of the point P1 at
time t is

x(t) = A cos(ωt+ φ)

and the y-coordinate of the point P2 is

y(t) = A sin(ωt+ φ)

Using the phasor representation for this motion, we can define

z(t) = Aejωt+φ

and we observe that x(t) is the real part and y(t) is the imaginary part of z(t). The point z can be
considered to be the end of a vector with origin at the coordinate origin and magnitude A. This
vector rotates with angular velocity ω, starting from angle φ.

If y(t) is the displacement of the harmonic motion, the velocity is

v(t) =
dy

dt
= ωA cos(ωt+ φ) = ωA sin(ωt+ φ+ π/2)

and the acceleration is

a(t) =
d2y(t)
dt2

= −ω2A sin(ωt+ φ) = ω2A sin(ωt+ φ+ π)

We conclude that the velocity of the harmonic motion can be represented by a rotating vector
leading the displacement by the phase π/2, and the acceleration can be represented by another
rotating vector, leading the displacement by the phase angle π.

Phasor Properties

Positive and Negative Frequencies

108

An alternative phasor representation for the signal

x(t) = A cos(ωt+ φ)

is obtained by using the Euler identity

cos θ =
1
2

(
ejθ + e−jθ

)

which yields

x(t) =
A

2

[
ej(ωt+φ) + e−j(ωt+φ)

]

=
A

2
ejφejωt +

A

2
e−jφe−jωt

In this equation, the term A
2 e

jφejωt is a rotating phasor that begins at the phasor value A
2 e

jφ

and rotates counterclockwise with frequency ω. The term A
2 e

−jφe−jωt is a rotating phasor that
begins at the (complex conjugate) phasor value A

2 e
−jφ (for t = 0) and rotates clockwise with

(negative) frequency ω. The physically meaningful frequency for a cosine is ω, a positive quantity.
A negative frequency is not physically meaningful, but just means that the direction of rotation for
the rotating phasor is clockwise, not counterclockwise, in the complex exponential representation
of the real sinusoid. Thus, the concept of negative frequency is just an artifact of the two-phasor
representation. In the one-phasor representation, when we take the “real part,” the artifact does
not arise. You are likely to encounter both the one-phasor and two-phasor representations, so you
should be familiar with both.

Adding Phasors

The sum of two signals with common frequencies but different amplitudes and phases is

A1 cos(ωt+ φ1) +A2 cos(ωt+ φ2).

The rotating phasor representation for this sum is

(
A1e

jφ1 +A2e
jφ2

)
ejωt

The new phasor is

A1e
jφ1 +A2e

jφ2

and the corresponding real signal is

x(t) = Re
[(
A1e

jφ1 +A2e
jφ2

)
ejωt

]

The new phasor is shown in Figure 6.7, where the parallelogram rule for adding complex numbers
applies.

109

Figure 6.7: Adding phasors

Beating Between Tones

If you have heard two slightly mistuned musical instruments playing pure tones whose frequencies
were close but not equal, you have sensed a beating phenomenon in which you perceive a single
pure tone whose amplitude slowly varies periodically. The single perceived tone can be shown to
have a frequency that is the average of the two mismatched frequencies, amplitude modulated by a
tone whose “beat” frequency is half the difference between the two mismatched frequencies. This
effect is shown in Figure 6.8.

To understand this phenomenon, begin with two pure tones whose frequencies are ω0 + ωb and
ω0 − ωb (for example, ω0 = 2π × 1400 rad/s and ωb = 2π × 100 rad/s). The average frequency is
ω0 and the difference frequency is 2ωb. You hear the sum of the two tones:

x(t) = A1 cos [(ω0 + ωb)t+ φ1] +A2 cos [(ω0 − ωb)t+ φ2]

Assume that the amplitudes are equal, with A = A1 = A2. The phases may be written as

φ1 = φ+ ψ and φ2 = φ− ψ

with

φ =
1
2
(φ1 + φ2) and ψ =

1
2
(φ1 − φ2)

Representing x(t) as a complex phasor

x(t) = A Re
{
ej[(ω0+ωb)t+φ+ψ] + ej[(ω0−ωb)t+φ−ψ]

}

= A Re
{
ej(ω0t+φ)

[
ej(ωbt+ψ) + e−j(ωbt+ψ)

]}

= 2A Re
{
ej(ω0t+φ) cos(ωbt+ ψ)

}
= 2A cos(ω0t+ φ) cos(ωbt+ ψ)

110

This is an amplitude modulated waveform, in which a low frequency signal with beat frequency
ωb modulates a high frequency signal with carrier frequency ω0 rad/s. Over short periods of time,
the modulating signal cos(ωbt + ψ) remains relatively constant while the carrier term cos(ω0 + φ)
produces many cycles of its pure tone. Thus, we perceive the pure tone at the carrier frequency
ω0, having an amplitude that varies sinusoidally at the beat frequency ωb.

The following is the script to simulate beating tones in which ω0 = 2π×1400 rad/s and ωb = 2π×100
rad/s, resulting in the plot shown in Figure 6.8.

% beating sinusoidal tones
%
t = linspace(-1e-2,1e-2,1001);
x = cos(2*pi*1500*t) + cos(2*pi*1300*t);
m = 2*cos(2*pi*100*t);
plot(t,m,’b:’,t,-m,’b:’,t,x,’k’),...

axis([-0.01 0.01 -2.4 2.4]),...
title(’Beating between tones’),...
xlabel(’Time (s)’),...
ylabel(’Amplitude’)

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Beating between tones

Time (s)

A
m

pl
itu

de

Figure 6.8: Beating between tones

6.2 Polynomials

A polynomial is a function of a single variable that can be expressed in the general form

A(s) = a1s
N + a2s

N−1 + a3s
N−2 + · · ·+ aNs+ aN+1

111

where the variable is s and the polynomial coefficients are the N +1 constants a1, a2, . . . , aN+1.
The polynomial is of degree N, the largest value used as an exponent. The general form of a degree
3 (cubic) polynomial is

A(s) = a1s
3 + a2s

2 + a3s+ a4

and a specific example of a cubic polynomial is

A(s) = s3 + 4s3 − 7s− 10

Note that the notation used here is nonstandard, as the coefficient of term sk is usually denoted as
ak. However, the nonstandard notation is more compatible with the indexing of arrays inMatlab,
as will be explained below.

For information on Matlab functions supporting polynomial computations, type help polyfun.

Polynomial Evaluation

There are several ways to evaluate a polynomial for a set of values. Consider the cubic polynomial:

A(s) = s3 + 4s2 − 7s− 10

• Scalar s: use scalar operations

A = s^3 + 4*s^2 - 7*s - 10;

• Vector or matrix s: use array or element-by-element operations:

A = s.^3 + 4*s.^2 - 7*s - 10;

The size of the vector or matrix A will be the same as that of s.

• Using polyval(a,s): Evaluates a polynomial with coefficients in vector a for the values in
s. The result is a matrix the same size as s. Element a(1) corresponds to coefficient a1.

Consider evaluating and plotting A(s) over the interval [-1,3]:

s = linspace(-1,3,201);
a = [1 4 -7 -10];
A = polyval(a,s);
plot(s,A),...

title(’Polynomial Function A(s) = s^3 + 4s^2 -7s -10’),...
xlabel(’s’),...
ylabel(’A(s)’)

The resulting plot is shown in Figure 6.9.

112

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

30

35
Polynomial Function A(s) = s3 + 4s2 −7s −10

s

A
(s

)

Figure 6.9: Plot of polynomial function A(s)

Polynomial Operations

By characterizing polynomial A(s) by coefficients ak stored in vector a and polynomial B(s) by
coefficients bk stored in vector b, algebraic operations can be performed on the two polynomials.

• Addition: The coefficients of the sum of two polynomials is the sum of the coefficients of
the two polynomials. The vectors containing the coefficients must be of the same length. For
example, to add

A(s) = s4 − 3s3 − s+ 2

B(s) = 4s3 − 2s2 + 5s− 16

C(s) = A(s) +B(s)
= s4 + (4− 3)s3 − 2s2 + (5− 2)s+ (2− 16)
= s4 + s3 − 2s2 + 4s− 14

The script to perform this addition:

>> a = [1 -3 0 -1 2];
>> b = [0 4 -2 5 -16];
>> c = a + b
c =

1 1 -2 4 -14

113

Thus,

C(s) = s4 + s3 − 2s2 + 4s− 14

• Scalar multiple: The coefficient vector of the scalar multiple of a polynomial is simply the
scalar times the coefficient vector of the polynomial. To specify

C(s) = 3A(s)

for A(s) above, the following commands are used:

>> a = [1 -3 0 -1 2];
>> c = 3*a
c =

3 -9 0 -3 6

Thus

C(s) = 3s4 − 9s3 − 3s+ 6

• Multiplication: Apply the function conv(a,b), which returns the coefficient vector for the
polynomial resulting from the product of polynomials represented by the coefficients in a and
b. The vectors a and b don’t have to be of the same length. The resulting vector has length
equal to the sum of the lengths of a and b minus one.

Consider the following polynomial product, evaluated by hand using the “first-outer-inner-
last” (FOIL) method:

F (s) = (s+ 2)(s+ 3) = s2 + 3s+ 2s+ 6 = s2 + 5s+ 6

Using a Matlab script

>> a = [1 2];
>> b = [1 3];
>> c = conv(a,b)
c =

1 5 6

Now consider multiplying polynomials A(s) and B(s) above:

C(s) = A(s)B(s) = (s4 − 3s3 − s+ 2)(4s3 − 2s2 + 5s− 16)

Recall from your algebra class that evaluation by hand is a tedious process. Using aMatlab
script:

>> a = [1 -3 0 -1 2];
>> b = [4 -2 5 -16];
>> c = conv(a,b)
c =

4 -14 11 -35 58 -9 26 -32

114

Thus,

C(s) = 4s7 − 14s6 + 11s5 − 35s4 + 58s3 − 9s2 + 26s− 32

• Division: You may have learned the “long division” method for evaluating the division of
two polynomials. This method won’t be reviewed here, except to remind you that two results
are determined: the quotient and the remainder. The result, expressed mathematically, is

N(s)
D(s)

= Q(s) +
R(s)
D(s)

where N(s) is the numerator polynomial, D(s) is the denominator polynomial, Q(s) is the
quotient polynomial, and R(s) is the remainder polynomial.

The Matlab function to perform polynomial division:
[q,r] = deconv(n,d) Returns quotient polynomial coefficients q and remainder

polynomial coefficients r from numerator coefficients n and
denominator coefficients d.

Consider the evaluation of polynomial division in which the numerator is C(s) and the de-
nominator is A(s), both from the multiplication example above. The result for the quotient
should then be B(s) above and the remainder should be all zeroes.

>> c = [4 -14 11 -35 58 -9 26 -32];
>> a = [1 -3 0 -1 2];
>> [q r] = deconv(c,a)
q =

4 -2 5 -16
r =

0 0 0 0 0 0 0 0

Now consider the following:

H(s) =
N(s)
D(s)

=
s3 + 5s2 + 11s+ 13

s2 + 2s+ 4

In Matlab:

>> n = [1 5 11 13];
>> d = [1 2 4];
>> [q r] = deconv(n,d)
q =

1 3
r =

0 0 1 1

Placing the result in mathematical form:

H(s) = Q(s) +
R(s)
D(s)

= s+ 3 +
s+ 1

s2 + 2s+ 4

115

• Derivatives: You should be familiar with the rule for differentiating a polynomial term

d

ds
asn = nasn−1

Applying this rule to the polynomial

P (s) = s3 + 4s2 − 7s− 10

produces the derivative

d

ds
P (s) = 3s2 + 8s− 7

Matlab provides function polyder for polynomial differentiation.

polyder(p) Returns the coefficients of the derivative of the polynomial
whose coefficients are the elements of vector p.

polyder(a,b) Returns the coefficients of the derivative of the product poly-
nomial A(s) ∗B(s).

[n,d] = polyder(b,a) Returns the derivative of the polynomial ratio B(s)/A(s),
represented as N(s)/D(s).

Confirming the example above using the first form of polyder:

>> p = [1 4 -7 -10];
>> d = polyder(p)
d =

3 8 -7

The second form of polyder returns the coefficients of the derivative of a product of two
polynomials. This is equivalent to multiplying the two polynomials with conv and then
differentiating using the first form of polyder. Consider applying the second form of polyder
to the second example of polynomial multiplication above. The result can be confirmed by
differentiating C(s) above by hand.

>> a = [1 -3 0 -1 2];
>> b = [4 -2 5 -16];
>> dc = polyder(a,b)
dc =

28 -84 55 -140 174 -18 26

The derivative of a polynomial ratio is more difficult to evaluate by hand. Using the derivative
notation

f ′ =
df

ds
,

recall the quotient rule for differentiation

(
f

g

)′
=
gf ′ − fg′
g2

116

Thus, for the polynomial ratio

H(s) =
s+ 2
s+ 3

the derivative is

dH(s)
ds

=
(s+ 3)− (s+ 2)

(s+ 3)2
=

1
(s+ 3)2

=
1

s2 + 6s+ 9

Applying the third form of polyder

>> b = [1 2];
>> a = [1 3];
>> [q,d] = polyder(b,a)
q =

1
d =

1 6 9

Note that the denominator polynomial d in the result is in expanded, rather than factored
form.

Roots of Polynomials

In many engineering problems, there is a need to find the roots of a polynomial P (s), which are
the values of s for which P (s) = 0. When P (s) is of degree N , then there are exactly N roots,
which may be repeated roots or complex roots. If the polynomial coefficients (a1, a2, . . .) are
real, then any complex roots will always occur in complex conjugate pairs.

For degree one (linear) or two (quadratic), the roots are easily determined. The quadratic equation
can be used for degree two, as described earlier. For polynomials of degree 3 and higher, numerical
techniques are required to find the roots. The Matlab function for finding the roots:

roots(a) Returns as a vector the roots of the polynomial represented
by the coefficient vector a.

Consider the denominator polynomial from the example above

D(s) = (s+ 3)2 = s2 + 6s+ 9

>> d = [1 6 9];
>> roots(d)
ans =

-3
-3

117

This confirms that there are two roots at −3 in the denominator.
Consider the cubic polynomial

P (s) = s3 − 2s2 − 3s+ 10

The commands to compute and display the roots:

>> p = [1,-2,-3,10];
>> r = roots(p)
r =

2.0000+ 1.0000i
2.0000- 1.0000i
-2.0000

Note that there are 3 roots for the degree 3 polynomial, with a complex conjugate pair of roots
and a real root. To verify that these values are roots, evaluate the polynomial at the roots:

>> P= polyval(p,r)
P =

1.0e-013 *
-0.0355+ 0.1377i
-0.0355- 0.1377i
0.0711

While P (r) is not exactly zero, due to the limitations on numerical accuracy, for each root it is of
the order of 10−14.

The roots can be used to express the polynomial in factored form. For example:

P (s) = s3 − 2s2 − 3s+ 10 = (s− r1)(s− r2)(s− r3) = (s− 2− j)(s− 2 + j)(s+ 2)

The coefficients of the polynomial can be determined from the roots using the poly function:

poly(r) Returns as a row vector the coefficients of the polynomial
whose roots are contained in the vector r.

For example:

>> a = poly(r)
a =

1.0000 -2.0000 -3.0000 10.0000

Example 6.1 Finding the depth of a well using roots of a polynomial

118

Consider the problem of finding the depth of a well by dropping a stone and measuring the time
t to hear a splash. This time is composed of the time t1 of free fall from release to reaching the
water and the time t2 that the sound takes to travel from the water surface to the ear of the person
dropping the stone. Let g denote the acceleration of gravity, d the well depth (approximately equal
to the distance between the hand or the ear of the person and the water surface), and c the speed
of sound in air. The depth d, the distance traveled by the stone during time t1 is

d =
g

2
· t21

or

t1 =
√
2d/g

The same distance traveled by the sound during t2 is

d = c · t2

or

t2 = d/c

The total time is

t = t1 + t2 =
√
2d/g + d/c

Squaring the equation above and rearranging the terms

d2 − 2(tc+ c2/g)d+ c2t2 = 0

The depth d is the solution (roots) of the quadratic polynomial equation above. If the measured
time t was 2.5s and the speed of sound c in air at atmospheric pressure and 20◦ Celsius is 343m/s,
the following Matlab script can be used to calculate the depth d.

% Well depth problem
%
% Define input values
t = 2.5; % time to hear splash (s)
g = 9.81; % acceleration of gravity (m/s^2)
c = 343; % speed of sound in air (m/s)

% Calculate polynomial coefficients
a(1) = 1;
a(2) = -2*(t*c + c^2/g);

119

a(3) = (c*t)^2;

% Find roots corresponding to depth
depth = roots(a)

The displayed results from this script:

depth =
1.0e+004 *
2.5672
0.0029

As is the case in many problems involving roots of a quadratic equation, one of the solutions is not
physically reasonable. In this problem, the first root gives an impossibly large well depth, while
the second root gives a reasonable depth. Investigating this solution with Matlab:

>> d = depth(2)
d =

28.6425
>> t1 = sqrt(2*d/g)
t1 =

2.4165
>> t2 = d/c
t2 =

0.0835
>> t = t1 + t2
t =

2.5000

Thus, the depth is 28.6m, confirming the time of 2.5s.

6.3 Partial Fraction Expansion

A rational function is a ratio of polynomials having the form

H(s) =
B(s)
A(s)

=
b1s

m + b2sm−1 + · · ·+ bms+ bm+1

a1sn + a2sn−1 + · · ·+ ans+ an+1

For m < n, H(s) is known as a proper rational function and for m ≥ n, it is known as an
improper rational function. Denoting the roots of the denominator by r1, r2, . . . rn, A(s) can
be written in factored form as

A(s) = a1(s− r1)(s− r2) · · · (s− rn)

120

and H(s) can be written as

H(s) =
B(s)

a1(s− r1)(s− r2) · · · (s− rn)

Partial fraction expansion is a technique to express H(s) as a sum of terms.

Expansion of Proper Rational Functions

For a proper rational function (m < n), there are three different cases of partial fraction expansion
that must be considered:

1. Distinct (nonrepeated) real roots.

2. Distinct complex roots.

3. Repeated roots.

Distinct Real Roots

When the roots r1, r2, . . . , rn are distinct and real, then by partial fraction expansion H(s) can
be expressed as

H(s) =
c1

s− r1 +
c2

s− r2 + · · ·+ cn
s− rn

where the constants ci are called the residues, which can be computed using the residue command:

[c,r] = residue(b,a) finds the residues c and roots r of a partial fraction expansion of the
ratio of two polynomials B(s)/A(s). Vectors b and a specify the coefficients of the numerator and
denominator polynomials in descending powers of s. The residues are returned in the column vector
c and the roots in column vector r.

Example:

H(s) =
s+ 2

s3 + 4s2 + 3s

>> b = [1 2];
>> a = [1 4 3 0];
>> [c,r] = residue(b,a)
c =

-0.1667
-0.5000
0.6667

121

r =
-3
-1
0

H(s) = − 0.1667
s− (−3) −

0.5000
s− (−1) +

0.6667
s− 0

= − 1/6
s+ 3

− 1/2
s+ 1

+
2/3
s

Distinct Complex Roots

Partial fraction expansion applies as well to distinct complex roots. Note that if root r1 is complex,
then the complex conjugate r∗1 is also a root. It can also be shown that the residue c2 corresponding
to the root r2 is equal to the conjugate c∗1 of the residue corresponding to the root r1.

Example:

H(s) =
s2 − 2s+ 1

s3 + 3s2 + 4s+ 2

>> b = [1 -2 1];
>> a = [1 3 4 2];
>> [c,r] = residue(b,a)
c =

-1.5000+ 2.0000i
-1.5000- 2.0000i
4.0000

r =
-1.0000+ 1.0000i
-1.0000- 1.0000i
-1.0000

H(s) =
−1.5 + j2
s+ 1− j +

−1.5− j2
s+ 1 + j

+
4

s+ 1

Repeated Roots

Again consider the general case where m < n and

H(s) =
B(s)
A(s)

122

Suppose that root r1 of A(s) is repeated p times and the other n−p roots (denoted rp+1, rp+2, . . . , rn)
are distinct. Then H(s) has the partial fraction expansion

H(s) =
c1

s− r1 +
c2

(s− r1)2 + · · ·+ cp
(s− r1)p +

cp+1

s− rp+1
+ · · ·+ cn

s− rn

Example:

H(s) =
5s− 1

s3 − 3s− 2

>> b = [5 -1];
>> a = [1 0 -3 -2];
>> [c,r] = residue(b,a)
c =

1.0000
-1.0000
2.0000

r =
2.0000
-1.0000
-1.0000

H(s) =
1

s− 2 − 1
s+ 1

+
2

(s+ 1)2

Expansion of Improper Rational Functions

Again consider the rational function

H(s) =
B(s)
A(s)

with the degree of B(s) greater than or equal to the degree of A(s) (m ≥ n). By polynomial
division, H(s) can be written in the form

H(s) = Q(s) +
R(s)
A(s)

where the quotient Q(s) is a polynomial in s with degree m − n, and the remainder R(s) is a
polynomial in s with degree strictly less than n. Thus, R(s)/A(s) is a proper rational function that
can be expanded using partial fraction expansion.

The expansion of an improper rational function in Matlab is computed with a variation of the
residue function:

123

[c,r,q] = residue(b,a) finds the residues, roots and quotient of a partial fraction expansion of
the ratio of two polynomials B(s)/A(s). The coefficients of the quotient Q(s) are returned in the row
vector q. The number of roots is n = length(a)-1 = length(c) = length(r). The quotient co-
efficient vector is empty if length(b) < length(a), otherwise length(q) = length(b)-length(a)+1.

Example:

H(s) =
s3 + 2s− 4
s2 + 4s− 2

>> b = [1 0 2 -4];
>> a = [1 4 -2];
>> [c,r,q] = residue(b,a)
c =

20.6145
-0.6145

r =
-4.4495
0.4495

q =
1 -4

H(s) = s− 4 + 20.6145
s+ 4.4495

− 0.6145
s− 0.4495

Recovering the Rational Function

The coefficients of the rational function can be recovered from the residues, the roots, and the
coefficients of the quotient term using yet another form of the residue function.

[b,a] = residue(c,r,q), with three input arguments and two output arguments, converts the
partial fraction expansion back to the polynomials with coefficients in b and a.

Consider the continuation of the example above.

>> [b,a] = residue(c,r,q)
b =

1.0000 0 2.0000 -4.0000
a =

1 4 -2

H(s) =
s2 + 2s− 4
s2 + 4s− 2

124

6.4 Functions of Two Variables

To evaluate a function of two variables f(x, y), first define a two-dimensional grid in the xy
plane, then evaluate the function at the grid points to determine points on the three-dimensional
surface. This is shown in Figure 6.10, where the surface values z = f(x, y) are plotted above the
grid of xy values.

Figure 6.10: Function of two variables plotted in three dimensions

A two-dimensional grid in the xy plane is defined in Matlab by two vectors, one containing the
x-coordinates at all the points in the grid, and the other containing the y-coordinates. For example,
to define a grid in x varying from −2 to 2 in increments of 1 and a grid in y varying from −1 to 2
in increments of 1, using colon notation:

>> x = -2:2
x =

-2 -1 0 1 2
>> y = -1:2
y =

-1 0 1 2

The meshgrid function generates two matrices that define the underlying grid for a two-dimensional
function.

[X,Y] = meshgrid(x,y) Transforms the domain specified by vectors x and y into ar-
rays X and Y that can be used for the evaluation of functions
of two variables and 3-D surface plots. The rows of the out-
put array X are copies of the vector x and the columns of the
output array Y are copies of the vector y. If x has length n
and y has length m, then X and Y are m× n arrays.

[X,Y] = meshgrid(x) Abbreviation for [X,Y] = meshgrid(x,x)

For example:

>> [X,Y] = meshgrid(x,y)

125

X =
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

Y =
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

After the underlying grid matrices have been defined, the corresponding function values can be
computed. For example, for the following function

f(x, y) = ye−(x2+y2)

the function values would be computed as

Z = Y.* exp(-(X.^2 + Y.^2));

The operations are element-by-element, so the value Z(1,1) is computed from X(1,1) and Y(1,1),
and so on. Note that Z must be computed from X and Y and not from x and y, a common error.

Three-dimensional plots

Among several ways to plot a three-dimensional (3D) surface in Matlab, a mesh plot and a
surface plot will be described, followed by a description of a contour plot. For further information
on 3D plots, type help graph3d.

mesh(x_pts,y_pts,Z) Generates an open mesh plot of the surface defined by matrix
Z. The arguments x_pts and y_pts can be vectors defining
the ranges of the values of the x- and y-coordinates, or they
can be matrices defining the underlying grid of x- and y-
coordinates.

surf(x_pts,y_pts,Z) Generates a shaded mesh plot of the surface defined by matrix
Z. The arguments x_pts and y_pts can be vectors defining
the ranges of the values of the x- and y-coordinates, or they
can be matrices defining the underlying grid of x- and y-
coordinates.

For example, to plot the function f(x, y) in the example above, the following commands are executed

% Mesh and surface plots of a function of two variables
%
x = -2:0.1:2;
y = -1:0.1:2;

126

[X Y] = meshgrid(x,y);
Z = Y.*exp(-(X.^2 + Y.^2));
subplot(2,1,1),mesh(X,Y,Z),...

title(’Mesh Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’),...

subplot(2,1,2),surf(X,Y,Z),...
title(’Surface Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’)

Note that the xy grid has been made finer by incrementing both x and y by 0.1. Also note that
the arguments X and Y could have been replaced by x and y in both the mesh and surf commands.
The resulting plots are shown in Figure 6.11. Note that you need to know something about the

−2
−1

0
1

2

−1
0

1
2

−0.5

0

0.5

x

Mesh Plot

y

z

−2
−1

0
1

2

−1
0

1
2

−0.5

0

0.5

x

Surface Plot

y

z

Figure 6.11: Mesh and surface plots of a function of two variables

properties of the two-dimensional function f(x, y) to know what range of values on x and y that
you want it to be plotted.

A contour plot is an elevation or topographic map consisting of curves representing equal eleva-
tions or values of z, called contours of constant elevation.

127

contour(x,y,Z) Generates a contour plot of the surface defined by the matrix
Z. The arguments x and y are vectors defining the ranges of
values of the x- and y-coordinates. The number of contour
lines and their values are chosen automatically.

contour(x,y,Z,v) Generates a contour plot of the surface defined by the matrix
Z. The arguments x and y are vectors defining the ranges of
values of the x- and y-coordinates. The vector v defines the
values to use for the contour lines.

meshc(x_pts,y_pts,Z) Generates an open mesh plot of the surface defined by the
matrix Z. The arguments x_pts and y_pts can be vectors
defining the ranges of values of the x- and y-coordinates or
they can be matrices defining the underlying grid of x- and
y-coordinates. In addition, a contour plot is generated below
the mesh plot.

The commands to produce the contour plot shown in Figure 6.12 from the function f(x, y) consid-
ered in the examples above:

contour(x,y,Z),...
title(’Contour Plot’),xlabel(’x’),...
ylabel(’y’),grid

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2
Contour Plot

x

y

Figure 6.12: Contour plot of a function of two variables

The commands to produce the mesh/contour plot shown in Figure 6.13 from the function f(x, y)
considered in the examples above:

meshc(X,Y,Z),...

128

title(’Mesh/Contour Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’)

−2

−1

0

1

2

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

x

Mesh/Contour Plot

y

z

Figure 6.13: Mesh/contour plot of a function of two variables

6.5 User-Defined Functions

For more information, type help function in Matlab.

If you find that you are often building a function from severalMatlab commands, you can develop
a user-defined function that can can be used in a same way as the built-in Matlab functions.

A user-defined function is similar to a script file in that it is a text file having a .m extension and
it is thus called a function M-file. Their variables are local, meaning that their values are available
only within the function. They are the building blocks of larger scripts, facilitating a modular
approach to the development of scripts.

For example, consider writing a function to compute the sine of an angle, with the angle in degrees
rather than radians. The user-defined function is the following:

function y = sind(x)
% SIND Sine in degrees
% SIND(X) is the sine of the elements of X, in degrees
y = sin(x*pi/180);

This function is written to a file named sind.m. Matlab programs and scripts can refer to this
function in the same way that they refer to functions such as sqrt and abs. An example of the use
of this to simplify a command in the script written for Example 4.2 is:

129

>> AC = 245/sind(30)
AC =

490.0000

The rules for writing an M-file function are the following:

1. Function definition line: The first line of a function has the following syntax:

function [output variables] = function_name(input variables);

Thus, it must contain the word function, followed by the output variables, an equal sign,
and the name of the function. The input variables, called arguments, of the function follow
the function name and are enclosed in parentheses. This line distinguishes the function file
from a script file. The definition line for the example above is:

function y = sind(x)

The output variable is y, the function name is sind, and the input argument is x.

2. Function call: A user-defined function is called by the name of the M-file in which it is
defined, not by the name given the function in the first line of the file. Thus, if the function
script above were renamed dsin.m, but the script itself were unchanged, then it would have
to be called by the name dsin, as follows:

>> y = dsin(30)
y =

0.5000

An attempt to call it by the function name sind results in an error message:

>> y = sind(30)
??? Undefined function or variable ’sind’.

To avoid confusion, use the same name for the function and the M-file.

3. Comments: The first few lines should be comments, as they will be displayed if help
is requested for the function name. The first comment line is referenced by the lookfor
command. Each comment line must start with a percent character (%). For the example
above:

>> help sind

SIND Sine in degrees
SIND(X) is the sine of the elements of X, in degrees

4. Information returned: The only information returned from the function is contained in
the output variables (also called output arguments). A statement must always be included
that assigns a value to the output variables specified in the function definition line. These
output variables will be arrays. Thus, while we thought of the function sind as operating on
a scalar and returning a scalar, it can also operate on an array and return an array:

130

>> lengths = 100*sind([30 60 90; 120 150 180])
lengths =

50.0000 86.6025 100.0000
86.6025 50.0000 0.0000

Note that output variables are optional. This allows a function to be written to perform an
operation such as toggling diary, but not to return any information.

5. Communication: A function communicates with the Matlab workspace only through the
variables passed to it and through the output variables it creates. Intermediate variables
within the function do not appear in, or interact with, the Matlab workspace. Thus, each
function has its own workspace separate from the Matlab workspace. Variables in the
function M-file that are not output are input variables are said to be local to the function.

6. Multiple outputs: To return more than one output variable, they must be listed in a vector,
separated by commas, as in the following example that will return three variables:

function [distance, velocity, accel] = position(x)

Since the function is returning multiple arguments, it must be used as follows:

>> [d v a] = position(A)

7. Multiple inputs: When there are multiple input arguments, they must be separated by
commas. For example:

function c = hypot(a,b)

8. Semicolons: The use of semicolons (;) at the end of commands in a function script have the
same purpose that they serve an any other Matlab command, suppressing display of the
results of the command. In most cases, it is not desirable to display the results of commands
internal to a function.

Many of the commands available in Matlab are written as function M-files. You can find the
locations of these files using the which command. For example:

>> which linspace
/usr/pkg/matlab52/toolbox/matlab/elmat/linspace.m

You could display this M-file using the type command and take ideas from the function script for
use in writing your own function scripts.

Application: Minimizing a Function of One Variable

To find the minimum of a function of a single variable:

131

x = fminbnd(’F’,x1,x2) Returns a value of x that is the local minimizer of F(x) in the interval
[x1, x2], where F is a string containing the name of the function.

[x,fval] = fminbnd(...) Also returns the value of the objective function, fval, computed in
F, at x.

For example:

>> fminbnd(’cos’,0,4)
ans =

3.1416

To use this command to find the minimum of more complicated functions, it is convenient to define
the function in a function M-file. For example, consider the polynomial function

y = 0.025x5 − 0.0625x4 − 0.333x3 + x2

Defining the function file fp5.m:

function y = fp5(x)
% FP5, fifth degree polynomial function
y = 0.025*x.^5 - 0.0625*x.^4 - 0.333*x.^3 + x.^2

Observe in Figure 6.5 that this function has two minima in the interval −1 ≤ x ≤ 4. The minimum
near x = 3 is called a relative or local minimum because it forms a valley whose lowest point is
higher than the minimum at x = 0. The minimum at x = 0 is the true minimum and is also called
the global minimum. Searching for the minimum over the interval −1 ≤ x ≤ 4:

>> xmin = fminbnd(’fp5’,-1,4)
xmin =

2.0438e-006

The resulting value for xmin is essentially 0, the true minimum point. Searching for the minimum
over the interval 0.1 ≤ x ≤ 2.5:

>> xmin = fminbnd(’fp5’,0.1,2.5)
xmin =

0.1001

This misses the true minimum point, as it is not included in the specified interval. Also, fminbnd
can give incorrect answers. If the interval is 1 ≤ x ≤ 4:

>> xmin = fminbnd(’fp5’,1,4)
xmin =

2.8236

132

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Figure 6.14: Plot of the function y = 0.025x5 − 0.0625x4 − 0.333x3 + x2

The result corresponds to the “valley” shown in the plot, but which is not the minimum point on
this interval, which is at the boundary x = 1. The fminbnd function first looks for a minimum
point corresponding to a zero slope; if it finds one, it stops. If it does not find one, it looks at
the function values at the boundaries of the specified interval for x. In this example, a zero-slope
minimum was found, so the true minimum at the boundary was missed.

6.6 Plotting Functions

As described previously, a function such as a polynomial can be evaluated and then plotted with
the plot command. This can also be done in one step with the fplot command.

fplot(fun,lims) plots the function specified by the string fun between the x-axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits.
funmust be the name of an M-file function or a string with variable x, such as sin(x), diric(x,10)
or [sin(x),cos(x)]. The function fun(x) must return a row vector for each element of vector x.

Consider the plotting the following function, known as the sinc or sampling function:

sinc(x) =
sin(πx)
πx

This is a function available in Matlab, which can be plotted with the command:

fplot(’sinc’,[-10 10]),ylabel(’sinc(x)’),xlabel(’x’)

This generates the plot shown in Figure 6.15

133

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

si
nc

(x
)

x

Figure 6.15: Sinc signal

134

Section 7

Data Analysis

Outline

• Maximum and minimum

• Sums and products

• Statistical analysis

• Random number generation

The purpose of data analysis is to determine some properties and characteristics of the data, which
may contain measurement errors or other random influences.

For the examples to be considered in this section, generate, save, and plot the two data vectors,
data1 and data2 as shown below. The commands used to generate this data will be explained
later. The two data vectors, data_1 and data_2 are plotted in Figure 7.1.

data1 = 2*rand(1,500) + 2;
data2 = randn(1,500)+3;
save data
subplot(2,1,1),plot(data1),...

axis([0 500 0 6]),...
title(’Random Numbers - data1’),...

subplot(2,1,2),plot(data2),...
title(’Random Numbers - data2’),...
xlabel(’Index, k’)

Other data analysis functions available in Matlab are described with the command help datafun.

135

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
Random Numbers − data1

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
Random Numbers − data2

Index, k

Figure 7.1: Random sequences

7.1 Maximum and Minimum

max(x) Returns largest value in vector x, or the row vector of largest elements
of each column in matrix x

[y,k] = max(x) Returns maximum values y and corresponding indices k of the first
maximum value from each column of x.

max(x,y) Returns a matrix the same size as x and y, with each element being
the maximum value from the corresponding positions in x and y.

min(x) Returns smallest value in vector x, or the row vector of smallest
elements of each column in matrix x

[y,k] = min(x) Returns minimum values y and corresponding indices k of first min-
imum value from each column of x.

min(x,y) Returns a matrix the same size as x and y, with each element being
the minimum value from the corresponding positions in x and y.

Determining the maximum and minimum of a vector:

>> v = [3 -2 4 -1 5 0];
>> max(v)
ans =

5
>> [vmin, kmin] = min(v)
vmin =

136

-2
kmin =

2

The maximum value is found to be 5, the minimum value −2, and the index of the minimum value
is 2. Thus, vmin = v(kmin) = v(2) = -2.

For the random data vectors data1 and data2:

>> max(data1)
ans =

3.9985
>> min(data1)
ans =

2.0005
>> [max2,kmax2] = max(data2)
max2 =

5.7316
kmax2 =

256
>> [min2,kmin2] = min(data2)
min2 =

0.3558
kmin2 =

268

These results can be approximately confirmed from Figure 7.1.

For a matrix, the min and max functions return a row vector of the minimum or maximum elements
of each column of the matrix.

>> B = [-1 1 7 0; -3 5 5 8; 1 4 4 -8]
B =

-1 1 7 0
-3 5 5 8
1 4 4 -8

>> min(B)
ans =

-3 1 4 -8
>> max(B)
ans =

1 5 7 8

Example 7.1 Minimum cost tank design

A cylindrical tank with a hemispherical top, as shown in Figure 7.2, is to be constructed that will
hold 5.00 × 105L when filled. Determine the tank radius R and height H to minimize the tank

137

cost if the cylindrical portion costs $300/m2 of surface area and the hemispherical portion costs
$400/m2.

Figure 7.2: Tank configuration

Mathematical model:

Cylinder volume: Vc = πR2H
Hemisphere volume: Vh = 2

3πR3

Cylinder surface area: Ac = 2πRH
Hemisphere surface area: Ah = 2πR2

Assumptions:

Tank contains no dead air space.
Concrete slab with hermetic seal is provided for the base.
Cost of the base does not change appreciably with tank dimensions.

Computational method:

Express total volume in meters cubed (note: 1m3 = 1000L) as a function of height and radius

Vtank = Vc + Vh

For Vtank = 5× 105L = 500m3:

500 = πR2H +
2
3
πR3

Solving for H:

H =
500
πR2

− 2R
3

Express cost in dollars as a function of height and radius

C = 300Ac + 400Ah = 300(2πRH) + 400(2πR2)

138

Method: compute H and then C for a range of values of R, then find the minimum value of C and
the corresponding values of R and H.

To determine the range of R to investigate, make an approximation by assuming that H = R.
Then from the tank volume:

Vtank = 500 = πR3 +
2
3
πR3 =

5
3
πR3

Solving for R:

R =
(
300
π

) 1
3

From Matlab:

>> Rest = (300/pi)^(1/3)
Rest =

4.5708

We will investigate R in the range 3.0 to 7.0 meters.

Computational implementation:

Matlab script to determine the minimum cost design:

% Tank design problem
%
% Compute H & C as functions of R
R = 3:0.001:7.0; % Generate trial radius values R
H = 500./(pi*R.^2) - 2*R/3; % Height H
C = 300*2*pi*R.*H + 400*2*pi*R.^2; % Cost

% Plot cost vs radius
plot(R,C),title(’Tank Design’),...

xlabel(’Radius R, m’),...
ylabel(’Cost C, Dollars’),grid

% Compute and display minimum cost, corresponding H & R
[Cmin kmin] = min(C);
disp(’Minimum cost (dollars):’)
disp(Cmin)
disp(’Radius R for minimum cost (m):’)
disp(R(kmin))
disp(’Height H for minimum cost (m):’)
disp(H(kmin))

139

Running the script:

Minimum cost (dollars):
9.1394e+004

Radius R for minimum cost (m):
4.9240

Height H for minimum cost (m):
3.2816

Note that the radius corresponding to minimum cost (Rmin = 4.9240 is close to the approximate
value, Rest = 4.5708 that we computed to assist in the selection of a range of R to investigate.
The plot of cost C versus radius R is shown in Figure 7.3.

3 3.5 4 4.5 5 5.5 6 6.5 7
0.9

0.95

1

1.05

1.1

1.15
x 10

5 Tank Design

Radius R, m

C
os

t C
, D

ol
la

rs

Figure 7.3: Tank design problem: cost versus radius

7.2 Sums and Products

If x is a vector with N elements denoted x(n), n = 1, 2, . . . , N , then:

• The sum y is the scalar

y =
N∑

n=1

x(n) = x(1) + x(2) + · · ·+ x(N)

140

• The product y is the scalar

y =
N∏

n=1

x(n) = x(1) · x(2) · · ·x(N)

• The cumulative sum y is the vector having elements y(k), k = 1, 2, . . . , N

y(k) =
k∑

n=1

x(n) = x(1) + x(2) + · · ·+ x(k)

• The cumulative product y is the vector having elements y(k), k = 1, 2, . . . , N

y(k) =
k∏

n=1

x(n) = x(1) · x(2) · · ·x(k)

IfX is a matrix with M rows and N columns with elements denoted x(m, n), m = 1, 2, . . . , M, n =
1, 2, . . . , N , then

• The column sum y is the vector having elements y(n), n = 1, 2, . . . , N

y(n) =
M∑

m=1

x(m, n) = x(1, n) + x(2, n) + · · ·+ x(M, n)

• The column product y is the vector having elements y(n), n = 1, 2, . . . , N

y(n) =
M∏

m=1

x(m, n) = x(1, n) · x(2, n) · · ·x(M, n)

• The cumulative column sum Y is the matrix with M rows and N columns with elements
denoted y(k, n), k = 1, 2, . . . , M, n = 1, 2, . . . , N

y(k, n) =
k∑

m=1

x(m, n) = x(1, n) + x(2, n) + · · ·+ x(k, n)

• The cumulative column product Y is the matrix with M rows and N columns with
elements denoted y(k, n), k = 1, 2, . . . , M, n = 1, 2, . . . , N

y(k, n) =
k∏

m=1

x(m, n) = x(1, n) · x(2, n) · · ·x(k, n)

The Matlab functions implementing these mathematical functions are the following.

141

sum(x) Returns the sum of the elements in vector x, or the row vector of the sum
of elements of each column in matrix x

prod(x) Returns the product of the elements in vector x, or the row vector of the
product of elements of each column in matrix x

cumsum(x) Returns a vector the same size as x containing the cumulative sum of the
elements in vector x, or a matrix the same size as x containing cumulative
sums of values from the columns of x.

cumprod(x) Returns a vector the same size as x containing the cumulative product of the
elements in vector x, or a matrix the same size as x containing cumulative
products of values from the columns of x.

Example 7.2 Summation

The following is a summation identity

N∑
n=1

n =
N(N + 1)

2

This identity can be checked with Matlab, for example, for N = 8:

>> N = 8;
>> n =1:8;
>> S = sum(n)
S =

36
>> N*(N+1)/2
ans =

36

Example 7.3 Factorial

The factorial of n is expressed and defined as

n! = n · (n − 1) · (n − 2) · · · 1

This can be computed as prod(1:n), as in the following examples:

>> nfact = prod(1:4)
nfact =

24
>> nfact = prod(1:70)
nfact =

1.1979e+100

142

7.3 Statistical Analysis

Many engineering measurements have an element of randomness. Statistics is a branch of applied
mathematics involving the analysis, interpretation, and presentation of data including some degree
of randomness or uncertainty. In descriptive statistics, the important features or properties of a set
of data are summarized or described.

Continuous random variable: A variable vector x, whose elements can have any of a continuum
of values for each measurement, or observation.

Population: all possible measurements of a random variable

Sample: finite number of measurements. Assume that N measurements have been made of a
random variable, denoted as the vector x, with elements x(n), n = 1, . . . , N .

Frequency distribution of a random variable: indicates the relative frequency with which specific
values of this random variable occur in the population.

Histogram: frequency distribution of sample data, indicating the frequency with which sample
values fall within ranges of values, called bins.

• Range of values: xmin ≤ x ≤ xmax

• Number of bins: m

• Bin width: ∆x =
xmax − xmin

m

• Histogram value in bin k: N(k), the number of samples with value xmin + (k − 1)∆x ≤ x ≤
xmin + k∆x. This is also known as the absolute frequency.

The Matlab commands for generating and plotting a histogram are;

143

Command Description
N = hist(x) Returns the row vector histogram N of the values in x using 10

bins. If x is matrix, returns a histogram matrix N operating
on the columns of x.

N = hist(x,m) Returns the row vector histogram N of the values in x using
m bins.

N = hist(x,xc) Returns the row vector histogram N of the values in x using
bin centers specified by xc.

N = histc(x,edges) Counts the number of values in vector x that fall between the
elements in the edges vector (which must contain monoton-
ically non-decreasing values). N is a length(edges) vector
containing these counts. N(k) will count the value x(i) if
edges(k) >= x(i) > edges(k+1). The last bin will count
any values of x that match edges(end). Values outside the
values in edges are not counted. Use -inf and inf in edges
to include all non-NaN values.

[N,xc] = hist(...) Also returns the position of the bin centers in xc.
hist (...) Without output arguments produces a histogram bar plot of

the results.

For example, the following commands produce the 25-bin histograms shown in Figure 7.4, operating
on the random data vectors data1 and data2.

% Histogram plots
%
subplot(2,1,1),hist(data1,25),...

title(’Histogram of data1’),...
xlabel(’x’),...
ylabel(’N’),...

subplot(2,1,2),hist(data2,25),...
title(’Histogram of data2’),...
xlabel(’x’),...
ylabel(’N’)

Note the differences in the nature of the two distributions. Random data data1 is called a uniform
distribution, as it has roughly equal, or uniform, frequency in all bins. Random data data2 has
a bell-shaped distribution, called a Gaussian distribution or Normal distribution.

Relative frequency histogram: The histogram value in bin k is normalized by the total number,
N , of data samples: N(k)/N .

The hist function is limited in its ability to produce relative frequency histograms. It is better to
generate such plots with the bar function, defined as follows:

144

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

5

10

15

20

25

30

35
Histogram of data1

x

N

0 1 2 3 4 5 6
0

10

20

30

40

50

60
Histogram of data2

x

N

Figure 7.4: Absolute frequency histograms

bar(X,Y) Draws the columns of the M-by-N matrix Y as M groups of N vertical
bars. The vector X must be monotonically increasing or decreasing.

bar(Y) Uses the default value of X=1:M.
bar(x,y For vector inputs, length(y) bars are drawn, with each bar centered

on a value of x.
bar(X,Y,width) Specifies the width of the bars. Values of width ¿ 1 produce over-

lapped bars. The default value is width=0.8

For example, the following commands produce relative histogram plots shown in Figure 7.5 for the
random data vectors data1 and data2.

% Relative frequency histogram plots
%
n1 = length(data1);
[freq1,x1] = hist(data1,25);
rfreq1 = freq1/n1;
n2 = length(data2);
[freq2,x2] = hist(data2,25);
rfreq2 = freq2/n2;

subplot(2,1,1),bar(x1,rfreq1),...
title(’Relative histogram of data1’), grid,...
xlabel(’x’), ylabel(’relative frequency’),...

subplot(2,1,2),bar(x2,rfreq2),...
title(’Relative histogram of data2’), grid,...
xlabel(’x’), ylabel(’relative frequency’)

145

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Relative histogram of data1

x

re
la

tiv
e

fr
eq

ue
nc

y

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12
Relative histogram of data2

x

re
la

tiv
e

fr
eq

ue
nc

y

Figure 7.5: Relative frequency histograms

Measures of central tendency

The mean and median describe the middle, or center, of the range of the random variable.

The sample mean of vector x having N elements is x̄

x̄ =
1
N

N∑
n=1

x(m)

The population mean µ (mu) is the value of x̄ for an infinite number of measurements, denoted
by

µ = lim
N→∞

x̄

where the right hand side is read as “the limit of x bar as N approaches infinity.”

Median: Middle value of a set of random samples, sorted by value (rank ordered). If there is an
even number of samples, then the median is the average of the two middle sample values.

Command Description
mean(x) Returns the sample mean of the elements of the vector x. Returns a row

vector of the sample means of the columns of matrix x.
median(x) Returns the median of the elements of the vector x. Returns a row vector

of the medians of the columns of matrix x.
sort(x) Returns a vector with the values of vector x in ascending order. Returns a

matrix with each column of matrix x in ascending order.

146

For example:

>> mean(data1)
ans =

2.9940
>> sum(data1)/length(data1)
ans =

2.9940
>> mean(data2)
ans =

2.9768
>> median(data1)
ans =

3.0285
>> median(data2)
ans =

3.0574

These results can be confirmed by observing the plots of the data in Figure 7.1, in which the data
values can be seen to be centered on 3.0. For the two data sets considered, the values of the mean
and median are very close. This is not necessarily the case for other data sets. Also note that the
results above show that mean(data1) = sum(data1)/length(data1).

Measures of variation

Measures of variation: indicate the degree of deviation of random samples from the measure of
central tendency.

Referring again to the plots of our random data sets data1 and data2 in Figure 7.1, observe that
data2 has greater variation from the mean.

The sample standard deviation of vector x having N elements is

s =

[
1

N − 1

N∑
n=1

(x(n)− x̄)2
] 1

2

The sample variance s2 is the square of the standard deviation.

std(x) Returns the sample standard deviation of the elements of the vector x. Re-
turns a row vector of the sample standard deviations of the columns of matrix
x.

For example:

>> std(data1)

147

ans =
0.5989

>> std(data2)
ans =

0.9408

Thus, the variation of data2 is greater than that of data1, as we concluded from observation of
the plotted data values.

7.4 Random Number Generation

Many engineering problems require the use of random numbers in the development of a solution.
In some cases, the random numbers are used to develop a simulation of a complex problem. The
simulation can be tested over and over to analyze the results, with each test representing a repetition
of the experiment. Random numbers also used to represent noise sequences, such as those heard
on a radio.

Uniform Random Numbers

Random numbers are characterized by their frequency distributions. Uniform random numbers
have a constant or uniform distribution over their range between minimum and maximum values.

The rand function in Matlab generates uniform random numbers distributed over the interval [0,1].
A state vector is used to generate a random sequence of values. A given state vector always generates
the same random sequence. Thus, the sequences are known more formally as pseudorandom
sequences. This generator can generate all the floating point numbers in the closed interval [2−53,
1− 2−53]. Theoretically, it can generate over 21492 values before repeating itself.

Command Description
rand(n) Returns an n×n matrix x of random numbers distributed

uniformly in the interval [0,1].
rand(m,n) Returns an m×n matrix x of random numbers distributed

uniformly in the interval [0,1].
rand Returns a scalar whose value changes each time it is refer-

enced. rand(size(A)) is the same size as A.
s = rand(’state’) Returns a 35-element vector s containing the current state of

the uniform generator.
rand(’state’,s) Resets the state to s.
rand(’state’,0) Resets the generator to its initial state.
rand(’state’,J) Resets the generator to its J-th state for integer J.
rand(’state’,sum(100*clock)) Resets the generator to a different state each time.

The following commands generate and display two sets of ten random numbers uniformly distributed
between 0 and 1; the difference between the two sets is caused by the different states.

rand(’state’,0)

148

set1 = rand(10,1);
rand(’state’,123)
set2 = rand(10,1);
[set1 set2]

The results displayed by these commands are the following, where the first column gives values of
set1 and the second column gives values of set2:

0.9501 0.0697
0.2311 0.2332
0.6068 0.7374
0.4860 0.7585
0.8913 0.6368
0.7621 0.6129
0.4565 0.3081
0.0185 0.2856
0.8214 0.0781
0.4447 0.9532

Note that as desired, the two sequences are different.

To generate sequences having values in the interval [xmin, xmax], first generate a random number r
in the interval [0, 1], multiply by (xmax−xmin), producing a number in the interval [0, (xmax−xmin],
then add xmin. To generate a row vector of 500 elements, the command needed is

x = (xmax - xmin)*rand(1,500) + xmin

The sequence data1, plotted in Figure 7.1, was generated with the command:

data1 = 2*rand(1,500) + 2;

Thus, xmax − xmin = 2 and xmin = 2, so xmax = 4 and the range of the data sequence is (2,4),
which can be confirmed from Figure 7.1.

Example 7.4 Flipping a coin

When a fair coin is flipped, the probability of getting heads or tails is 0.5 (50%). If we want to
represent tails by 0 and heads by 1, we can first generate a uniform random number in the range
[0,2). The probability of a result in the range [0,1) is 0.5 (50%), which can be mapped to 0 by
truncation of this result. Similarly, the probability of a result in the range [1,2) is 0.5 (50%), which
can be mapped to 1 by truncation. The trunction function in Matlab is floor.

A script to simulate an experiment to flip a coin 50 times and display the results is the following:

149

% Coin flipping simulation
%
% Coin flip:
n = 50; % number of flips
coin = floor(2*rand(1,n)) % vector of n flips: 0: tails, 1:heads

% Histogram computation and display:
xc = [0 1]; % histogram centers
y = hist(coin,xc); % absolute frequency
bar(xc,y), ylabel(’frequency’),...

xlabel(’0: tails, 1: heads’),...
title(’Absolute Frequency Histogram for 50 Coin Flips’)

The output displayed by the script:

coin =
Columns 1 through 12

1 1 0 0 1 0 1 1 1 0 1 1
Columns 13 through 24

1 0 0 0 0 1 1 0 1 0 1 1
Columns 25 through 36

0 1 1 1 0 0 0 0 0 0 1 0
Columns 37 through 48

0 1 0 1 0 1 1 0 1 1 0 0
Columns 49 through 50

0 0

The histogram plot is shown in Figure 7.6. Note that in this trial, there were 26 tails and 24 heads,
close to the expected result. Since this is a random process, repeated trials will give different
results.

Example 7.5 Rolling dice

When a fair die (singular of dice) is rolled, the number uppermost is equally likely to be any integer
from 1 to 6. The following statement will generate a vector of 10 random numbers in the range 1-6:

die = floor(6 * rand(1,10) + 1)

The following are the results of two such simulations:

2 3 4 5 2 1 3 3 1 4
5 2 2 5 5 6 3 6 3 5

150

0 1
0

5

10

15

20

25

30

fr
eq

ue
nc

y

0: tails, 1: heads

Absolute Frequency Histogram for 50 Coin Flips

Figure 7.6: Histogram of 50 Coin Flips

Gaussian Random Numbers

A random distribution that is an appropriate model for data sets from many engineering problems
is the Gaussian or Normal distribution. This is the distribution having a bell shape, with a high
relative frequency at the mean, decreasing away from the mean, but extending indefinitely in both
directions. The Gaussian distribution is specified by two parameters: (1) the population mean µ,
and (2) the population standard deviation σ, with the distribution function given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

This distribution is plotted in Figure 7.7, where it is observed to be symmetrical about the mean,
dropping off rapidly away from the mean. The distribution can be normalized by performing a
change of scale that converts the units of measurement into standard units

z =
x − µ

σ

as shown in Figure 7.7. It can be shown that approximately 68% of the values will fall within one
standard deviation of the mean (−1 < z < 1), 95% will fall within two standard deviations of the
mean (−2 < z < 2), and 99% will fall within three standard deviations of the mean (−3 < z < 3).

The Matlab functions for generating Gaussian random numbers are:

151

Figure 7.7: Normalized Gaussian distribution

Command Description
randn(n) Returns an n×n matrix x of Gaussian random numbers with

a mean of 0 and a standard deviation of 1.
randn(m,n) Returns an m×n matrix x of Gaussian random numbers with

a mean of 0 and a standard deviation of 1.
randn Returns a scalar whose value changes each time it is refer-

enced. rand(size(A)) is the same size as A.
s = randn(’state’) Returns a 2-element vector s containing the current state of

the uniform generator.
randn(’state’,s) Resets the state to s.
randn(’state’,0) Resets the generator to its initial state.
randn(’state’,J) Resets the generator to its J-th state for integer J.
randn(’state’,sum(100*clock)) Resets the generator to a different state each time.

To generate a row vector x of 500 Gaussian random variables with mean m and standard deviation
s:

x = m + s*randn(1,500);

The sequence data2, plotted in Figure 7.1, was generated with the command:

data2 = rand(1,500) + 3;

Thus, m = 3 and s = 1. The mean value can be confirmed from the plot in Figure 7.1 and the mean
value computed in Section 7.3. The standard deviation can be confirmed by the value computed
in Section 7.3. The computed values are not identical to the desired values because the computed
values are due to a finite number of random samples. The computed and desired values become
closer as the number of samples increases.

Example 7.6 Noisy signal simulation

Many sensors, which convert physical quantities into electrical signals, produce measurement errors,
resulting in what is known as noisy signals. Additive Gaussian random numbers are often an
accurate model of the errors. The signal model is

x = s + n

152

where s is the noise-free signal of interest, n is the Gaussian measurement error, and x is the noisy
signal. A measure of the signal quality is the signal to noise ratio (SNR), defined by

SNR = 10 log10

σ2
s

σ2
n

= 20 log10

σs

σn

where σs is the standard deviation of the signal and σn is the standard deviation of the noise.

Consider simulating a noisy signal consisting of a sine wave with additive Gaussian measurement
noise. The variance of a sine wave can be shown to be

σ2
s =

A

2

where A is the sinusoidal amplitude. For A = 1 and Gaussian noise standard deviation σn = 0.1,
the SNR is

SNR = 10 log10

0.5
0.12

= 10 log10 50 = 17.0

The following script simulates this noisy signal. In the next section, methods to reduce the affect
of the noise will be considered.

% Noisy signal generation and analysis
t = linspace(0,10,512); % time base
s = sin(2*pi/5*t); % signal
n = 0.1*randn(size(t)); % noise
x = s + n; % noisy signal
disp(’Signal to Noise Ratio (SNR), dB’)
SNR = 20*log10(std(s)/std(n)) % signal to noise ratio, dB
plot(t,x), xlabel(’Time (s)’),...

ylabel(’Signal amplitude’),...
title(’Noisy signal’)

The computed SNR is

Signal to Noise Ratio (SNR), dB
SNR =

16.9456

This is very close to the value computed above. The reason for the difference is the finite number
of samples used to estimate the noise standard deviation. The resulting noise signal is shown in
Figure 7.8.

153

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

Time (s)

S
ig

na
l a

m
pl

itu
de

Noisy signal

Figure 7.8: Simulated noisy sinusoidal signal

154

Section 7

Data Analysis

Outline

• Maximum and minimum

• Sums and products

• Statistical analysis

• Random number generation

The purpose of data analysis is to determine some properties and characteristics of the data, which
may contain measurement errors or other random influences.

For the examples to be considered in this section, generate, save, and plot the two data vectors,
data1 and data2 as shown below. The commands used to generate this data will be explained
later. The two data vectors, data_1 and data_2 are plotted in Figure 7.1.

data1 = 2*rand(1,500) + 2;
data2 = randn(1,500)+3;
save data
subplot(2,1,1),plot(data1),...

axis([0 500 0 6]),...
title(’Random Numbers - data1’),...

subplot(2,1,2),plot(data2),...
title(’Random Numbers - data2’),...
xlabel(’Index, k’)

Other data analysis functions available in Matlab are described with the command help datafun.

135

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
Random Numbers − data1

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
Random Numbers − data2

Index, k

Figure 7.1: Random sequences

7.1 Maximum and Minimum

max(x) Returns largest value in vector x, or the row vector of largest elements
of each column in matrix x

[y,k] = max(x) Returns maximum values y and corresponding indices k of the first
maximum value from each column of x.

max(x,y) Returns a matrix the same size as x and y, with each element being
the maximum value from the corresponding positions in x and y.

min(x) Returns smallest value in vector x, or the row vector of smallest
elements of each column in matrix x

[y,k] = min(x) Returns minimum values y and corresponding indices k of first min-
imum value from each column of x.

min(x,y) Returns a matrix the same size as x and y, with each element being
the minimum value from the corresponding positions in x and y.

Determining the maximum and minimum of a vector:

>> v = [3 -2 4 -1 5 0];
>> max(v)
ans =

5
>> [vmin, kmin] = min(v)
vmin =

136

-2
kmin =

2

The maximum value is found to be 5, the minimum value −2, and the index of the minimum value
is 2. Thus, vmin = v(kmin) = v(2) = -2.

For the random data vectors data1 and data2:

>> max(data1)
ans =

3.9985
>> min(data1)
ans =

2.0005
>> [max2,kmax2] = max(data2)
max2 =

5.7316
kmax2 =

256
>> [min2,kmin2] = min(data2)
min2 =

0.3558
kmin2 =

268

These results can be approximately confirmed from Figure 7.1.

For a matrix, the min and max functions return a row vector of the minimum or maximum elements
of each column of the matrix.

>> B = [-1 1 7 0; -3 5 5 8; 1 4 4 -8]
B =

-1 1 7 0
-3 5 5 8
1 4 4 -8

>> min(B)
ans =

-3 1 4 -8
>> max(B)
ans =

1 5 7 8

Example 7.1 Minimum cost tank design

A cylindrical tank with a hemispherical top, as shown in Figure 7.2, is to be constructed that will
hold 5.00 × 105L when filled. Determine the tank radius R and height H to minimize the tank

137

cost if the cylindrical portion costs $300/m2 of surface area and the hemispherical portion costs
$400/m2.

Figure 7.2: Tank configuration

Mathematical model:

Cylinder volume: Vc = πR2H
Hemisphere volume: Vh = 2

3πR3

Cylinder surface area: Ac = 2πRH
Hemisphere surface area: Ah = 2πR2

Assumptions:

Tank contains no dead air space.
Concrete slab with hermetic seal is provided for the base.
Cost of the base does not change appreciably with tank dimensions.

Computational method:

Express total volume in meters cubed (note: 1m3 = 1000L) as a function of height and radius

Vtank = Vc + Vh

For Vtank = 5× 105L = 500m3:

500 = πR2H +
2
3
πR3

Solving for H:

H =
500
πR2

− 2R
3

Express cost in dollars as a function of height and radius

C = 300Ac + 400Ah = 300(2πRH) + 400(2πR2)

138

Method: compute H and then C for a range of values of R, then find the minimum value of C and
the corresponding values of R and H.

To determine the range of R to investigate, make an approximation by assuming that H = R.
Then from the tank volume:

Vtank = 500 = πR3 +
2
3
πR3 =

5
3
πR3

Solving for R:

R =
(
300
π

) 1
3

From Matlab:

>> Rest = (300/pi)^(1/3)
Rest =

4.5708

We will investigate R in the range 3.0 to 7.0 meters.

Computational implementation:

Matlab script to determine the minimum cost design:

% Tank design problem
%
% Compute H & C as functions of R
R = 3:0.001:7.0; % Generate trial radius values R
H = 500./(pi*R.^2) - 2*R/3; % Height H
C = 300*2*pi*R.*H + 400*2*pi*R.^2; % Cost

% Plot cost vs radius
plot(R,C),title(’Tank Design’),...

xlabel(’Radius R, m’),...
ylabel(’Cost C, Dollars’),grid

% Compute and display minimum cost, corresponding H & R
[Cmin kmin] = min(C);
disp(’Minimum cost (dollars):’)
disp(Cmin)
disp(’Radius R for minimum cost (m):’)
disp(R(kmin))
disp(’Height H for minimum cost (m):’)
disp(H(kmin))

139

Running the script:

Minimum cost (dollars):
9.1394e+004

Radius R for minimum cost (m):
4.9240

Height H for minimum cost (m):
3.2816

Note that the radius corresponding to minimum cost (Rmin = 4.9240 is close to the approximate
value, Rest = 4.5708 that we computed to assist in the selection of a range of R to investigate.
The plot of cost C versus radius R is shown in Figure 7.3.

3 3.5 4 4.5 5 5.5 6 6.5 7
0.9

0.95

1

1.05

1.1

1.15
x 10

5 Tank Design

Radius R, m

C
os

t C
, D

ol
la

rs

Figure 7.3: Tank design problem: cost versus radius

7.2 Sums and Products

If x is a vector with N elements denoted x(n), n = 1, 2, . . . , N , then:

• The sum y is the scalar

y =
N∑

n=1

x(n) = x(1) + x(2) + · · ·+ x(N)

140

• The product y is the scalar

y =
N∏

n=1

x(n) = x(1) · x(2) · · ·x(N)

• The cumulative sum y is the vector having elements y(k), k = 1, 2, . . . , N

y(k) =
k∑

n=1

x(n) = x(1) + x(2) + · · ·+ x(k)

• The cumulative product y is the vector having elements y(k), k = 1, 2, . . . , N

y(k) =
k∏

n=1

x(n) = x(1) · x(2) · · ·x(k)

IfX is a matrix with M rows and N columns with elements denoted x(m, n), m = 1, 2, . . . , M, n =
1, 2, . . . , N , then

• The column sum y is the vector having elements y(n), n = 1, 2, . . . , N

y(n) =
M∑

m=1

x(m, n) = x(1, n) + x(2, n) + · · ·+ x(M, n)

• The column product y is the vector having elements y(n), n = 1, 2, . . . , N

y(n) =
M∏

m=1

x(m, n) = x(1, n) · x(2, n) · · ·x(M, n)

• The cumulative column sum Y is the matrix with M rows and N columns with elements
denoted y(k, n), k = 1, 2, . . . , M, n = 1, 2, . . . , N

y(k, n) =
k∑

m=1

x(m, n) = x(1, n) + x(2, n) + · · ·+ x(k, n)

• The cumulative column product Y is the matrix with M rows and N columns with
elements denoted y(k, n), k = 1, 2, . . . , M, n = 1, 2, . . . , N

y(k, n) =
k∏

m=1

x(m, n) = x(1, n) · x(2, n) · · ·x(k, n)

The Matlab functions implementing these mathematical functions are the following.

141

sum(x) Returns the sum of the elements in vector x, or the row vector of the sum
of elements of each column in matrix x

prod(x) Returns the product of the elements in vector x, or the row vector of the
product of elements of each column in matrix x

cumsum(x) Returns a vector the same size as x containing the cumulative sum of the
elements in vector x, or a matrix the same size as x containing cumulative
sums of values from the columns of x.

cumprod(x) Returns a vector the same size as x containing the cumulative product of the
elements in vector x, or a matrix the same size as x containing cumulative
products of values from the columns of x.

Example 7.2 Summation

The following is a summation identity

N∑
n=1

n =
N(N + 1)

2

This identity can be checked with Matlab, for example, for N = 8:

>> N = 8;
>> n =1:8;
>> S = sum(n)
S =

36
>> N*(N+1)/2
ans =

36

Example 7.3 Factorial

The factorial of n is expressed and defined as

n! = n · (n − 1) · (n − 2) · · · 1

This can be computed as prod(1:n), as in the following examples:

>> nfact = prod(1:4)
nfact =

24
>> nfact = prod(1:70)
nfact =

1.1979e+100

142

7.3 Statistical Analysis

Many engineering measurements have an element of randomness. Statistics is a branch of applied
mathematics involving the analysis, interpretation, and presentation of data including some degree
of randomness or uncertainty. In descriptive statistics, the important features or properties of a set
of data are summarized or described.

Continuous random variable: A variable vector x, whose elements can have any of a continuum
of values for each measurement, or observation.

Population: all possible measurements of a random variable

Sample: finite number of measurements. Assume that N measurements have been made of a
random variable, denoted as the vector x, with elements x(n), n = 1, . . . , N .

Frequency distribution of a random variable: indicates the relative frequency with which specific
values of this random variable occur in the population.

Histogram: frequency distribution of sample data, indicating the frequency with which sample
values fall within ranges of values, called bins.

• Range of values: xmin ≤ x ≤ xmax

• Number of bins: m

• Bin width: ∆x =
xmax − xmin

m

• Histogram value in bin k: N(k), the number of samples with value xmin + (k − 1)∆x ≤ x ≤
xmin + k∆x. This is also known as the absolute frequency.

The Matlab commands for generating and plotting a histogram are;

143

Command Description
N = hist(x) Returns the row vector histogram N of the values in x using 10

bins. If x is matrix, returns a histogram matrix N operating
on the columns of x.

N = hist(x,m) Returns the row vector histogram N of the values in x using
m bins.

N = hist(x,xc) Returns the row vector histogram N of the values in x using
bin centers specified by xc.

N = histc(x,edges) Counts the number of values in vector x that fall between the
elements in the edges vector (which must contain monoton-
ically non-decreasing values). N is a length(edges) vector
containing these counts. N(k) will count the value x(i) if
edges(k) >= x(i) > edges(k+1). The last bin will count
any values of x that match edges(end). Values outside the
values in edges are not counted. Use -inf and inf in edges
to include all non-NaN values.

[N,xc] = hist(...) Also returns the position of the bin centers in xc.
hist (...) Without output arguments produces a histogram bar plot of

the results.

For example, the following commands produce the 25-bin histograms shown in Figure 7.4, operating
on the random data vectors data1 and data2.

% Histogram plots
%
subplot(2,1,1),hist(data1,25),...

title(’Histogram of data1’),...
xlabel(’x’),...
ylabel(’N’),...

subplot(2,1,2),hist(data2,25),...
title(’Histogram of data2’),...
xlabel(’x’),...
ylabel(’N’)

Note the differences in the nature of the two distributions. Random data data1 is called a uniform
distribution, as it has roughly equal, or uniform, frequency in all bins. Random data data2 has
a bell-shaped distribution, called a Gaussian distribution or Normal distribution.

Relative frequency histogram: The histogram value in bin k is normalized by the total number,
N , of data samples: N(k)/N .

The hist function is limited in its ability to produce relative frequency histograms. It is better to
generate such plots with the bar function, defined as follows:

144

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

5

10

15

20

25

30

35
Histogram of data1

x

N

0 1 2 3 4 5 6
0

10

20

30

40

50

60
Histogram of data2

x

N

Figure 7.4: Absolute frequency histograms

bar(X,Y) Draws the columns of the M-by-N matrix Y as M groups of N vertical
bars. The vector X must be monotonically increasing or decreasing.

bar(Y) Uses the default value of X=1:M.
bar(x,y For vector inputs, length(y) bars are drawn, with each bar centered

on a value of x.
bar(X,Y,width) Specifies the width of the bars. Values of width ¿ 1 produce over-

lapped bars. The default value is width=0.8

For example, the following commands produce relative histogram plots shown in Figure 7.5 for the
random data vectors data1 and data2.

% Relative frequency histogram plots
%
n1 = length(data1);
[freq1,x1] = hist(data1,25);
rfreq1 = freq1/n1;
n2 = length(data2);
[freq2,x2] = hist(data2,25);
rfreq2 = freq2/n2;

subplot(2,1,1),bar(x1,rfreq1),...
title(’Relative histogram of data1’), grid,...
xlabel(’x’), ylabel(’relative frequency’),...

subplot(2,1,2),bar(x2,rfreq2),...
title(’Relative histogram of data2’), grid,...
xlabel(’x’), ylabel(’relative frequency’)

145

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Relative histogram of data1

x

re
la

tiv
e

fr
eq

ue
nc

y

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12
Relative histogram of data2

x

re
la

tiv
e

fr
eq

ue
nc

y

Figure 7.5: Relative frequency histograms

Measures of central tendency

The mean and median describe the middle, or center, of the range of the random variable.

The sample mean of vector x having N elements is x̄

x̄ =
1
N

N∑
n=1

x(m)

The population mean µ (mu) is the value of x̄ for an infinite number of measurements, denoted
by

µ = lim
N→∞

x̄

where the right hand side is read as “the limit of x bar as N approaches infinity.”

Median: Middle value of a set of random samples, sorted by value (rank ordered). If there is an
even number of samples, then the median is the average of the two middle sample values.

Command Description
mean(x) Returns the sample mean of the elements of the vector x. Returns a row

vector of the sample means of the columns of matrix x.
median(x) Returns the median of the elements of the vector x. Returns a row vector

of the medians of the columns of matrix x.
sort(x) Returns a vector with the values of vector x in ascending order. Returns a

matrix with each column of matrix x in ascending order.

146

For example:

>> mean(data1)
ans =

2.9940
>> sum(data1)/length(data1)
ans =

2.9940
>> mean(data2)
ans =

2.9768
>> median(data1)
ans =

3.0285
>> median(data2)
ans =

3.0574

These results can be confirmed by observing the plots of the data in Figure 7.1, in which the data
values can be seen to be centered on 3.0. For the two data sets considered, the values of the mean
and median are very close. This is not necessarily the case for other data sets. Also note that the
results above show that mean(data1) = sum(data1)/length(data1).

Measures of variation

Measures of variation: indicate the degree of deviation of random samples from the measure of
central tendency.

Referring again to the plots of our random data sets data1 and data2 in Figure 7.1, observe that
data2 has greater variation from the mean.

The sample standard deviation of vector x having N elements is

s =

[
1

N − 1

N∑
n=1

(x(n)− x̄)2
] 1

2

The sample variance s2 is the square of the standard deviation.

std(x) Returns the sample standard deviation of the elements of the vector x. Re-
turns a row vector of the sample standard deviations of the columns of matrix
x.

For example:

>> std(data1)

147

ans =
0.5989

>> std(data2)
ans =

0.9408

Thus, the variation of data2 is greater than that of data1, as we concluded from observation of
the plotted data values.

7.4 Random Number Generation

Many engineering problems require the use of random numbers in the development of a solution.
In some cases, the random numbers are used to develop a simulation of a complex problem. The
simulation can be tested over and over to analyze the results, with each test representing a repetition
of the experiment. Random numbers also used to represent noise sequences, such as those heard
on a radio.

Uniform Random Numbers

Random numbers are characterized by their frequency distributions. Uniform random numbers
have a constant or uniform distribution over their range between minimum and maximum values.

The rand function in Matlab generates uniform random numbers distributed over the interval [0,1].
A state vector is used to generate a random sequence of values. A given state vector always generates
the same random sequence. Thus, the sequences are known more formally as pseudorandom
sequences. This generator can generate all the floating point numbers in the closed interval [2−53,
1− 2−53]. Theoretically, it can generate over 21492 values before repeating itself.

Command Description
rand(n) Returns an n×n matrix x of random numbers distributed

uniformly in the interval [0,1].
rand(m,n) Returns an m×n matrix x of random numbers distributed

uniformly in the interval [0,1].
rand Returns a scalar whose value changes each time it is refer-

enced. rand(size(A)) is the same size as A.
s = rand(’state’) Returns a 35-element vector s containing the current state of

the uniform generator.
rand(’state’,s) Resets the state to s.
rand(’state’,0) Resets the generator to its initial state.
rand(’state’,J) Resets the generator to its J-th state for integer J.
rand(’state’,sum(100*clock)) Resets the generator to a different state each time.

The following commands generate and display two sets of ten random numbers uniformly distributed
between 0 and 1; the difference between the two sets is caused by the different states.

rand(’state’,0)

148

set1 = rand(10,1);
rand(’state’,123)
set2 = rand(10,1);
[set1 set2]

The results displayed by these commands are the following, where the first column gives values of
set1 and the second column gives values of set2:

0.9501 0.0697
0.2311 0.2332
0.6068 0.7374
0.4860 0.7585
0.8913 0.6368
0.7621 0.6129
0.4565 0.3081
0.0185 0.2856
0.8214 0.0781
0.4447 0.9532

Note that as desired, the two sequences are different.

To generate sequences having values in the interval [xmin, xmax], first generate a random number r
in the interval [0, 1], multiply by (xmax−xmin), producing a number in the interval [0, (xmax−xmin],
then add xmin. To generate a row vector of 500 elements, the command needed is

x = (xmax - xmin)*rand(1,500) + xmin

The sequence data1, plotted in Figure 7.1, was generated with the command:

data1 = 2*rand(1,500) + 2;

Thus, xmax − xmin = 2 and xmin = 2, so xmax = 4 and the range of the data sequence is (2,4),
which can be confirmed from Figure 7.1.

Example 7.4 Flipping a coin

When a fair coin is flipped, the probability of getting heads or tails is 0.5 (50%). If we want to
represent tails by 0 and heads by 1, we can first generate a uniform random number in the range
[0,2). The probability of a result in the range [0,1) is 0.5 (50%), which can be mapped to 0 by
truncation of this result. Similarly, the probability of a result in the range [1,2) is 0.5 (50%), which
can be mapped to 1 by truncation. The trunction function in Matlab is floor.

A script to simulate an experiment to flip a coin 50 times and display the results is the following:

149

% Coin flipping simulation
%
% Coin flip:
n = 50; % number of flips
coin = floor(2*rand(1,n)) % vector of n flips: 0: tails, 1:heads

% Histogram computation and display:
xc = [0 1]; % histogram centers
y = hist(coin,xc); % absolute frequency
bar(xc,y), ylabel(’frequency’),...

xlabel(’0: tails, 1: heads’),...
title(’Absolute Frequency Histogram for 50 Coin Flips’)

The output displayed by the script:

coin =
Columns 1 through 12

1 1 0 0 1 0 1 1 1 0 1 1
Columns 13 through 24

1 0 0 0 0 1 1 0 1 0 1 1
Columns 25 through 36

0 1 1 1 0 0 0 0 0 0 1 0
Columns 37 through 48

0 1 0 1 0 1 1 0 1 1 0 0
Columns 49 through 50

0 0

The histogram plot is shown in Figure 7.6. Note that in this trial, there were 26 tails and 24 heads,
close to the expected result. Since this is a random process, repeated trials will give different
results.

Example 7.5 Rolling dice

When a fair die (singular of dice) is rolled, the number uppermost is equally likely to be any integer
from 1 to 6. The following statement will generate a vector of 10 random numbers in the range 1-6:

die = floor(6 * rand(1,10) + 1)

The following are the results of two such simulations:

2 3 4 5 2 1 3 3 1 4
5 2 2 5 5 6 3 6 3 5

150

0 1
0

5

10

15

20

25

30

fr
eq

ue
nc

y

0: tails, 1: heads

Absolute Frequency Histogram for 50 Coin Flips

Figure 7.6: Histogram of 50 Coin Flips

Gaussian Random Numbers

A random distribution that is an appropriate model for data sets from many engineering problems
is the Gaussian or Normal distribution. This is the distribution having a bell shape, with a high
relative frequency at the mean, decreasing away from the mean, but extending indefinitely in both
directions. The Gaussian distribution is specified by two parameters: (1) the population mean µ,
and (2) the population standard deviation σ, with the distribution function given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

This distribution is plotted in Figure 7.7, where it is observed to be symmetrical about the mean,
dropping off rapidly away from the mean. The distribution can be normalized by performing a
change of scale that converts the units of measurement into standard units

z =
x − µ

σ

as shown in Figure 7.7. It can be shown that approximately 68% of the values will fall within one
standard deviation of the mean (−1 < z < 1), 95% will fall within two standard deviations of the
mean (−2 < z < 2), and 99% will fall within three standard deviations of the mean (−3 < z < 3).

The Matlab functions for generating Gaussian random numbers are:

151

Figure 7.7: Normalized Gaussian distribution

Command Description
randn(n) Returns an n×n matrix x of Gaussian random numbers with

a mean of 0 and a standard deviation of 1.
randn(m,n) Returns an m×n matrix x of Gaussian random numbers with

a mean of 0 and a standard deviation of 1.
randn Returns a scalar whose value changes each time it is refer-

enced. rand(size(A)) is the same size as A.
s = randn(’state’) Returns a 2-element vector s containing the current state of

the uniform generator.
randn(’state’,s) Resets the state to s.
randn(’state’,0) Resets the generator to its initial state.
randn(’state’,J) Resets the generator to its J-th state for integer J.
randn(’state’,sum(100*clock)) Resets the generator to a different state each time.

To generate a row vector x of 500 Gaussian random variables with mean m and standard deviation
s:

x = m + s*randn(1,500);

The sequence data2, plotted in Figure 7.1, was generated with the command:

data2 = rand(1,500) + 3;

Thus, m = 3 and s = 1. The mean value can be confirmed from the plot in Figure 7.1 and the mean
value computed in Section 7.3. The standard deviation can be confirmed by the value computed
in Section 7.3. The computed values are not identical to the desired values because the computed
values are due to a finite number of random samples. The computed and desired values become
closer as the number of samples increases.

Example 7.6 Noisy signal simulation

Many sensors, which convert physical quantities into electrical signals, produce measurement errors,
resulting in what is known as noisy signals. Additive Gaussian random numbers are often an
accurate model of the errors. The signal model is

x = s + n

152

where s is the noise-free signal of interest, n is the Gaussian measurement error, and x is the noisy
signal. A measure of the signal quality is the signal to noise ratio (SNR), defined by

SNR = 10 log10

σ2
s

σ2
n

= 20 log10

σs

σn

where σs is the standard deviation of the signal and σn is the standard deviation of the noise.

Consider simulating a noisy signal consisting of a sine wave with additive Gaussian measurement
noise. The variance of a sine wave can be shown to be

σ2
s =

A

2

where A is the sinusoidal amplitude. For A = 1 and Gaussian noise standard deviation σn = 0.1,
the SNR is

SNR = 10 log10

0.5
0.12

= 10 log10 50 = 17.0

The following script simulates this noisy signal. In the next section, methods to reduce the affect
of the noise will be considered.

% Noisy signal generation and analysis
t = linspace(0,10,512); % time base
s = sin(2*pi/5*t); % signal
n = 0.1*randn(size(t)); % noise
x = s + n; % noisy signal
disp(’Signal to Noise Ratio (SNR), dB’)
SNR = 20*log10(std(s)/std(n)) % signal to noise ratio, dB
plot(t,x), xlabel(’Time (s)’),...

ylabel(’Signal amplitude’),...
title(’Noisy signal’)

The computed SNR is

Signal to Noise Ratio (SNR), dB
SNR =

16.9456

This is very close to the value computed above. The reason for the difference is the finite number
of samples used to estimate the noise standard deviation. The resulting noise signal is shown in
Figure 7.8.

153

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

Time (s)

S
ig

na
l a

m
pl

itu
de

Noisy signal

Figure 7.8: Simulated noisy sinusoidal signal

154

Section 8

Selection Programming

A selection statement allows a question to be asked or a condition to be tested to determine which
steps are to be performed next. The question or condition is defined using relational and logical
operators, which will be described prior to introducing the selection statements.

Outline

• Relational and logical operators

• Control flow

• Loops

• Selection statements in user-defined functions

• Update processes

• Applied problem solving: speech signal analysis

8.1 Relational and Logical Operators

For relational and logical expressions:

Inputs: True is any nonzero number
False is 0 (zero)

Outputs: True is 1 (one)
False is 0 (zero)

An output array variable assigned to a relational or logical expression is identified as logical. That
is, the result contains numerical values 1 and 0, that can be used in mathematical statements, but
also allow logical array addressing.

155

Relational Operators

For more information: help ops.

Relational
Operator Description
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
∼= not equal

Relational operators can be used to compare two arrays of the same size or to compare an array
to a scalar. In the second case, the scalar is compared with all elements of the array and the result
has the same size as the array.

Examples:

>> A=1:9, B=8-A
A =

1 2 3 4 5 6 7 8 9
B =

7 6 5 4 3 2 1 0 -1
>> tf1 = A <=4
tf1 =

1 1 1 1 0 0 0 0 0
>> tf2 = A > B
tf2 =

0 0 0 0 1 1 1 1 1
>> tf3 = (A==B)
tf3 =

0 0 0 1 0 0 0 0 0
>> tf4 = B-(A>2)
tf4 =

7 6 4 3 2 1 0 -1 -2

• tf1 finds elements of A that are less than or equal to 4. Ones appear in the result where A≤ 4
and zeroes appear where A> 4.

• tf2 finds elements of A that are greater than those in B.

• tf3 finds elements of A that are equal to those in B. Note that = and == mean two different
things: == compares two variables and returns ones where they are equal and zeros where
they are not; =, on the other hand, is used to assign the output of an operation to a variable.

• tf4 finds where A>2 and subtracts the resulting vector from B. This shows that since the
output of logical operations are numerical arrays of ones and zeros, they can be used in
mathematical operations.

156

Note that = and == mean two different things: == compares two variables and returns ones where
they are equal and zeros where they are not; on the other hand, = is used to assign the output of
an operation to a variable.

Example 8.1 Avoiding division by zero

Consider the following:

>> x=(-3:3)/3
x =

-1.0000 -0.6667 -0.3333 0 0.3333 0.6667 1.0000
>> sin(x)./x

Warning: Divide by zero.
ans =

0.8415 0.9276 0.9816 NaN 0.9816 0.9276 0.8415

Computing the function sin(x)/x gives a warning because the fourth element in x is zero. Since
sin(0)/0 is undefined, the result for that element in the result is NaN (meaning Not a Number). The
following will replace the zero in x with the special number eps, which is approximately 2.2×10−16,
resolving the divide-by-zero problem.

>> x = x + (x==0)*eps
x =

-1.0000 -0.6667 -0.3333 0.0000 0.3333 0.6667 1.0000
>> sin(x)./x
ans =

0.8415 0.9276 0.9816 1.0000 0.9816 0.9276 0.8415

Logical Operators

Logical operators provide a way to combine or negate relational expressions.

Logical
Operator Description

& and
| or
∼ not

A fourth logical operator is implemented as a function:

xor(A,B) Exclusive or: Returns ones where either A or B is True (nonzero);
returns False (zero) where both A and B are False (zero) or both are
True (nonzero).

157

Definitions of the logical operators, with 0 representing False and 1 representing True:

A B ∼A A | B A&B xor(A,B)
0 0 1 0 0 0
0 1 1 1 0 1
1 0 0 1 0 1
1 1 0 1 1 0

The precedence from highest to lowest is relational operators, followed by logical operators ∼, &,
and |. Parentheses can be used to change the precedence and should be used liberally to clarify the
operations.

Examples:

>> A=1:9
A =

1 2 3 4 5 6 7 8 9
>> tf1 = A>4
tf1 =

0 0 0 0 1 1 1 1 1
>> tf2 = ~(A>4)
tf2 =

1 1 1 1 0 0 0 0 0
>> tf3 = (A>2)&(A<6)
tf3 =

0 0 1 1 1 0 0 0 0
>> tf4 = xor((A>2),(A<6))
tf4 =

1 1 0 0 0 1 1 1 1

• tf1 finds where A is greater than 4.

• tf2 negates tf1, finding where A is not greater than 4.

• tf3 finds where A is greater than 2 and less than 6.

• tf4 find where the exclusive or of (A>2) and (A<6), which is observed to be the same as the
logical inverse of tf3.

Example 8.2 Generating discontinuous signals

The logical operators allow the generation of arrays representing signals with discontinuities or
signals that are composed os segments of other signals. The basic idea is to multiply those values
in a array that are to be retained with ones, and multiply all other values with zeros.

Consider the discontinuous signal:

x(t) =

{
sin(t) sin(t) > 0
0 sin(t) < 0

158

The following script computes and plots this signal over the range t = [0,10] s.

t = linspace(0,10,100); % create x vector
x = sin(t); % compute sine vector
x = x.*(x>0); % set negative values of sin(t) to zero
%
% Plot x and label
plot(t,x),xlabel(’Time (s)’),ylabel(’Amplitude’),...

title(’Discontinuous signal’), axis([0 10 -0.1 1.1])

The plot that is generated is shown in Figure 8.1.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

pl
itu

de

Discontinuous signal

Figure 8.1: Plot of a discontinuous signal

Relational and Logical Functions

Matlab provides several useful relational and local functions that operate on scalars, vectors, and
matrices. The following is a partial list of these functions.

159

Function Description
any(x) Returns a scalar that is 1 (true) if any element in the vector x is

nonzero; otherwise, the scalar is 0 (false). Returns a row vector
containing a 1 (true) in each element for which any element of the
corresponding column of matrix x is nonzero, and a 0 (false) other-
wise.

all(x) Returns a scalar that is 1 (true) if all elements in the vector x are
nonzero; otherwise, the scalar is 0 (false). Returns a row vector
containing a 1 (true) in each element for which all elements of the
corresponding column of matrix x are nonzero, and a 0 (false) oth-
erwise.

find(x) Returns a vector containing the indices of the nonzero elements of
a vector x. Returns a vector containing the indices of the nonzero
elements of x(:), which is a single-column vector formed from the
columns of matrix x.

isnan(x) Returns an array with ones where the elements of x are NaN and zeros
where they are not.

isfinite(x) Returns an array with ones where the elements of x are finite and
zeros where they are not. For example, isfinite([pi NaN Inf
-Inf]) is [1 0 0 0].

isinf(x) Returns an array with ones where the elements of x are +Inf or -Inf
and zeros where they are not.

isempty(x) Returns 1 if x is an empty array and 0 otherwise.

Example 8.3 Height and speed of a projectile

The height and speed of a projectile (such as a thrown ball) launched with a speed of v0 at an angle
θ to the horizontal are given by

h(t) = v0t sin θ − 0.5gt2

v(t) =
√

v2
0 − 2v0gt sin θ + g2t2

where g is the acceleration due to gravity. The projectile will strike the ground when h(t) = 0, which
gives the time to return to the ground, tg = 2(v0/g) sin θ. For θ = 40◦, v0 = 20 m/s, and g = 9.81
m/s2, determine the times when the height is no less than 6m and the speed is simultaneously no
greater than 16 m/s.

This problem can be solved by using the find command to determine the times at which the logical
expression (h >= 6 & (v <= 16) is ture.

% Set the values for initial speed, gravity, and angle
v0 = 20; g = 9.81; theta = 40*pi/180;
% Compute the time to return to the ground
t_g = 2*v0*sin(theta)/g;

160

% Compute the arrays containing time, height, and speed.
t = [0:t_g/200:t_g];
h = v0*t*sin(theta) - 0.5*g*t.^2;
v = sqrt(v0^2 - 2*v0*g*sin(theta)*t + g^2*t.^2);
% Determine when the height is no less than 6,
% and the speed is no greater than 16.
u = find(h>6 & v <= 16);
% Compute the corresponding times
t_1 = t(u(1))
t_2 = t(u(end))

The beginning of the time interval, t1 is the value of t indexed by the first element of u and the
end of the time interval, t2 is the value of t indexed by the last element of u.

The results are:

t_1 =
0.8518

t_2 =
1.7691

This problem could have been solved by plotting h(t) and v(t), but the accuracy of the results
would be limited by our ability to pick points off the graph. In addition, the graphical approach is
more time-consuming.

8.2 Flow Control

Selection statements that test the results of relational or logical functions or operators are the
decision-making structures that allow the flow of command execution to be controlled.

For more information: help lang.

Simple if Statement

The general form of a simple if statement is:

if logical expression
commands

end

If the logical expression is true, the commands between the if statement and the end statement
are executed. If the logical expression is false, the flow of execution jumps immediately to the end
statement without executing the statements between the if statement and the end statement.

161

To help in reading and understanding an if structure, it is good style to indent the statements
within the structure.

Example:

if d < 50
count = count + 1;
disp(d);

end

Assuming that d is a scalar, then if d is less than 50, count is incremented by 1 and the value
of d is displayed; otherwise, these two statements are skipped. If d is not a scalar, then count is
incremented by 1 and d is displayed only if every element of d is less than 50.

Nested if Statements

if statements may be nested, as shown in the following example:

if d < 50
count = count + 1;
disp(d);
if b > d

b = 0;
end

end

Assuming first that b and d are scalars, then if d<50, count is incremented by 1 and d is displayed.
In addition, if b>d, then b is set to 0. If d is not less than 50, we skip immediately to the second
end statement.

else and elseif Clauses

else clause: allows one set of statements to be executed if a logical expression is true and a different
set if the logical expression is false.

For example, if variable interval is less than one, set the value of xinc to interval/10; otherwise,
set the value of xinc to 0.1.

if interval < 1
xinc = interval/10;

else
xinc = 0.1;

end

162

When several levels of if-else statements are nested, it may be difficult to determine which logical
expressions must be true (or false) to execute each set of statement. In these cases, the elseif
clause is often used to clarify the program logic, as shown in the example below.

if temperature > 100
disp(’Too hot - equipment malfunctioning.’)

elseif temperature > 90
disp(’Normal operating range.’)

elseif temperature > 50
disp(’Below desired operating range.’)

else
disp(’Too cold - turn off equipment.’)

end

In this example, temperature between 90 and 100 are in the normal operating range; temperatures
outside this range generate an appropriate message.

Example 8.4 Testing variable type

The if command can be used to write a function M-file to take a single input argument and then
report, in text, whether that argument is scalar, vector, or matrix. No argument is returned.

function testvar(x)
% Display text indicating whether x is a
% scalar, vector, or matrix
[m,n] = size(x);
if m==n & m==1

disp(’ Argument is a scalar’)
elseif m==1 | n==1

disp(’ Argument is a vector’)
else

disp(’ Argument is a matrix’)
end

A test of this function:

>> a=2; b=[2 3]; c=[4 5; 6 7];
>> testvar(a)

Argument is a scalar
>> testvar(b)

Argument is a vector
>> testvar(c)

Argument is a matrix

163

Switch Selection Structure

The switch selection structure provides an alternative to using the if, elseif, and else com-
mands. Anything programmed using if structures can also be programmed using switch struc-
tures. The advantage of the switch structure is that in some situations, it yields code that is more
readable.

The syntax is

switch expression
case test expression 1
commands

case {test expression 2, test expression 3}
commands

·
·
·
otherwise
commands

end

The expression result is compared in turn to the result of each case test expression. If they are
equal, then the commands following the case command are executed and processing continues
with the command following the end statement. If expression is a character string, then a string
comparison is made with the case test expression. Multiple test expressions can be listed, comma
separated, enclosed in braces {}. Only the first matching case is executed, If no match occurs, the
statements following the otherwise statement are executed. However, the otherwise statement
is optional. If it is absent, execution continues with the command following the end statement if
no match exists. Each case test expression statement must be on a single line.

Consider an example that was previously implemented with an if, else structure:

switch interval < 1
case 1

xinc = interval/10;
case 0

xinc = 0.1;
end

For this example, the resulting code is no more readable than in the previous implementation.

An example using string comparisons:

x = 6.1;
units = ’ft’;
% convert x to meters
switch units

case {’inch’,’in’}

164

y = x*0.0254;
case{’feet’,’ft’}

y = x*0.3048;
case{’meter’,’m’}

y = x;
case{’centimeter’,’cm’}

y = x/100;
case{’millimeter’,’mm’}

y = x/1000;
otherwise

disp([’Unknown units: ’ units])
y = NaN;

end

Executing this example gives a final value of y = 1.8593.

8.3 Loops

A loop is a structure that allows a group of commands to be repeated.

for Loop

A for loop repeats a group of commands a fixed, predetermined number of times. A for loop has
the following structure:

for variable=expression
commands

end

The commands between the for and end statements are executed once for every column in the
expression, beginning with the first column and stepping through to the last column. At each step,
known as an iteration, the appropriate column of the expression is assigned to the variable. Thus,
on step n, column n of the expression is assigned to the variable, which then can be operated on
by one of the commands in the loop.

Rules for writing and using a for loop include:

1. If the expression results in an empty matrix, the loop will not be executed. Control will pass
directly to the statement following the end statement.

2. If the result of the expression is a scalar, the loop will be executed once, with the variable
equal to the value of the scalar.

3. If the result of the expression is a vector, then each time through the loop, the variable will
contain the next value in the vector.

165

4. A for loop cannot be terminated by reassigning the loop variable within the loop.

5. Upon completion of a for loop, the variable contains the last value used.

6. The colon operator can be used to define the expression using the following format
for index = initial:increment:limit

Example 8.5 Use of a for statement in a function

Consider writing a user-defined function that searches a matrix input argument for the element
with the largest value and returns the indices of that element.

function [r,c] = indmax(x)
% INDMAX returns the row and column indices of
% the maximum-valued element in x
[m n] = size(x);
xmax = x(1,1);
r=1; c=1;
for k=1:m

for l=1:n
if x(k,l)> xmax

xmax = x(k,l);
r=k;
c=l;

end
end

end

Testing this function:

>> A=3; B=[2 4 3]; C=[3 2; 6 1];
>> [r c]=indmax(A)
r =

1
c =

1
>> [r c]=indmax(B)
r =

1
c =

2
>> [r c]=indmax(C)
r =

2
c =

1

166

Avoiding Loops

In general, loops should be avoided in Matlab, as they can significantly increase the execution time
of a program. Matlab has the capability to increase the size of vectors and matrices dynamically,
as can be required by a for loop. For example, a vector can be of length N at the Nth iteration
of a loop, and at iteration N + 1, Matlab can increase the length of the vector from N to N + 1.
However, this dynamic storage allocation is not accomplished efficiently in terms of computation
time.

For example, consider the following script for generating a sine wave:

% sinusoid of length 5000
for t=1:5000

y(t) = sin(2*pi*t/10);
end

This results in a scalar t, with final value 5000, and a vector y, a sine wave with 10 samples per
cycle, with 5000 elements. Each time the command inside the for loop is executed, the size of the
variable y must be increased by one. The execution time on a certain PC is 7.91 seconds.

Then consider a second script:

% sinusoid of length 10000
for t=1:10000

y(t) = sin(2*pi*t/10);
end

Clearing the Matlab workspace and running this script to produce vector y having 10000 elements
requires an execution time on the same PC of 28.56 seconds, nearly four times the execution time
of the first script. Forcing Matlab to allocate memory for y each time through the loop takes
time, causing the execution time to grow geometrically with the vector length.

To maximize speed, arrays should be preallocated before a for loop is executed. To eliminate the
need to increase the length of y each time through the loop, the script could be rewritten as:

% sinusoid of length 10000 with vector preallocation
y = zeros(1,10000);
for t=1:10000

y = sin(2*pi*t/10);
end

In this case, y was arbitrarily defined to be a vector of length 10000, with values recomputed in
the loop. The computation time in this case was 2.03 seconds.

Execution time can be decreased even further by “vectorizing” the algorithm, applying an operation
to an entire vector instead of a single element at a time. Applying this approach to our example of
sinusoid generation:

167

% better method of sinusoid generation
t = 1:10000;
y = sin(2*pi*t/10);

This script produces the vector t with 10,000 elements and then the vector y with 10,000 elements,
which is the as same y from the second script above. However, again using the same PC, this script
executes in 0.06 second, as opposed to 16.04 seconds for the second for loop script, or 1.92 seconds
with a for loop and vector preallocation.

while Loop

A while loop repeats a group of commands as long as a specified condition is true. A while loop
has the following structure:

while expression
commands

end

If all elements in expression are true, the commands between the while and end statements are
executed. The expression is reevaluated and if all elements are still true, the commands are executed
again. If any element in the expression is false, control skips to the statement following the end
statement. The variables modified within the loop should include the variables in the expression,
or the value of the expression will never change. If the expression is always true (or is a value that
is nonzero), the loop becomes an infinite loop.

Example 8.6 Computing the special value eps

Consider the following example of one way to compute the special Matlab value eps, which is the
smallest number that can be added to 1 such that the result is greater than 1 using finite precision:

num = 0;
EPS = 1;
while (1+EPS)>1

EPS=EPS/2;
num = num + 1;

end
num = num - 1
EPS = 2*EPS

Uppercase EPS was used so that the Matlab value eps was not overwritten. EPS starts at 1 and
is continually divided in two, as long as (1+EPS)>1 is True (nonzero). EPS eventually gets so small
that adding EPS to 1 is no longer greater than 1. The loop then terminates, and EPS is multiplied
by 2 because the last division by 2 made it too small by a factor of two. The results:

num =

168

52
EPS =

2.2204e-016

While Loops and Break

The while loop allows the execution of a set of commands an indefinite number of times. The
break command is used to terminate the execution of the loop.

Example 8.7 Use of a while loop to evaluate quadratic polynomials

Consider writing a script to ask the user to input the scalar values for a, b, c, and x and then
returns the value of ax2+ bx+ c. The program repeats this process until the user enters zero values
for all four variables.

% Script to compute ax^2 +bx + c
disp(’Quadratic ax^2+bx+c evaluated’)
disp(’for user input a, b, c, and x’)
a=1; b=1; c=1; x=0;
while a~=0 | b~=0 | c~=0 | x~=0

disp(’Enter a=b=c=x=0 to terminate’)
a = input(’Enter value of a: ’);
b = input(’Enter value of b: ’);
c = input(’Enter value of c: ’);
x = input(’Enter value of x: ’);
if a==0 & b==0 & c==0 & x==0

break
end
quadratic = a*x^2 + b*x + c;
disp(’Quadratic result:’)
disp(quadratic)

end

Note that this script will display multiple quadratic expression values if arrays are entered for a,
b, c, or x. Consider modifying the script to check each input and breaking if any input is not a
scalar.

8.4 Selection Statements in User-Defined Functions

1. User-defined functions must appropriately handle any input data and produce output vari-
ables of the proper dimensions and values. This often requires the use of selection statements

169

to determine the dimensions and values of the input.

2. The function error displays a character string in the Command window, aborts function
execution, and returns control to the keyboard. This function is useful for flagging improper
command usage, as in the following portion of a function:

if length(val)>1
error(’val must be a scalar.’)

end

3. The functions nargin and nargout can be used in functions to determine the number of input
arguments and the number of output arguments used to call the function. This provides
information for handling cases when the function is to use a variable number of arguments.
For example, if a default value of 1 is to be returned for the output variable err if the function
call includes no input arguments, the function can include the following:

if nargin==0
err=1;

end

If the function is written to use a fixed number of input or output arguments, but the wrong
number has been supplied in the use of the funciton, Matlab provides the needed error
handling, without the need for the nargin and nargout functions.

4. Function M-files terminate execution and return when they reach the end of the M-file, or
alternatively, when the command return is encountered.

Example 8.8 Step signal

The step signal is zero for negative time, “stepping up” to one for positive time

u(t) =

{
0 t < 0
1 t ≥ 0

A user-defined function to implement the step signal:

function u = step(t)
% STEP unit step function
% u = step(t)
% u = 0 for t<0
% u = 1 for t>=0
u = zeros(size(t));
u(find(t>=0))=1;

The output array u is first set to an array of zeros with the same dimensions at that of the input
argument t. Then the elements of u corresponding to values of t greater than or equal to 0 are set
to 1, with the use of the find function.

170

8.5 Update Processes

Many problems in science and engineering involve modelling a process where the main variable is
updated over a period of time. In many situations, the updated value is a function of the current
value. A comprehensive study of update processes is beyond the scope of this class, but a simple
example can be considered.

A can of soda at temperature 25◦ C is placed in a refrigerator, where the ambient temperature F
is 10◦ C. We want to determine how the temperature of the soda changes over a period of time. A
standard way of approaching this type of problem is to subdivide the time interval into a number
of small steps, each of duration ∆t. If Ti is the temperature at the beginning of step i, the following
model can be used to determine Ti+1:

Ti+1 = Ti +K∆t(F − Ti)

where K is the conduction coefficient, a parameter that depends on the insulating properties of the
can and the thermal properties of the soda. Assume that units are chosen so that time is in minutes
and that an interval ∆t = 1 minute provides sufficient accuracy. A script to compute, display, and
plot this update process for K = 0.05:

% Define input values
K = 0.05; % Conduction coefficient
F = 10; % Refrigerator temperature (degrees C)

% Define vector variables
t = 0:100; % Time variable (min)
T = zeros(1,101); % Preallocate temperature vector
T(1) = 25; % Initial soda temperature (degrees C)

% Update to compute T
for i = 1:100; % Time in minutes

T(i+1) = T(i) + K * (F - T(i)); % Compute T
end

% Display results every 10 minutes, plot every minute
disp([t(1:10:101)’ T(1:10:101)’])
plot(t,T),grid,xlabel(’Time (min)’),ylabel(’Temperature (degrees C)’),...

title(’Cooling curve’)

The statement T = zeros(1,101) preallocates a vector for the temperature of the soda. The
script would work without this statement, but it would be much slower, as T would have to be
redimensioned during each repeat of the for loop, in order to make space for a new element each
time.

The for loop computes the values for T(2),...,T(101), ensuring that temperature T(i) corre-
sponds to t(i).

171

The displayed output of the script is:

0 25.0000
10.0000 18.9811
20.0000 15.3773
30.0000 13.2196
40.0000 11.9277
50.0000 11.1542
60.0000 10.6910
70.0000 10.4138
80.0000 10.2477
90.0000 10.1483
100.0000 10.0888

The resulting graph is shown in Figure 8.2. Note that the initial slope of the temperature is steep
and that temperature of the soda changes rapidly. As the difference between the soda temperature
and the refrigerator temperature becomes smaller, that change in soda temperature slows.

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

Time (min)

T
em

pe
ra

tu
re

 (
de

gr
ee

s
C

)

Cooling curve

Figure 8.2: Soda cooling curve

Exact Solution

This cooling problem has an exact mathematical solution, which is determined by expressing the
update relationship as a differential equation and then solving the resulting differential equation.
The result is

T (t) = F + (T0 − F)e−Kt

172

where T0 is the initial temperature. This is a decaying exponential, which you an confirm as having
the same properties as the cooling curve shown in Figure 8.2.

8.5.1 Signal Filtering

Related to update processes are methods for filtering signals to reduce noise components. As
described in Example 7.6, the noise is often modeled as a random measurement error. The noise
can be reduced by averaging several successive signal samples. Denoting a noisy input signal sample
by x(k) and a filtered output signal sample by y(k), a 3-point moving average filter is represented
by

y(k) =
1
3
[x(k) + x(k − 1) + x(k − 2)]

The output signal sample at index k is the average of the input signal samples at index k and the
two previous indices.

To test this filtering method, consider the following script in which a noisy signal is simulated and
filtered by a moving average.

% Noisy signal generation and filtering
t = linspace(0,10,512); % time base
s = sin(2*pi/5*t); % signal
n = 0.1*randn(size(t)); % noise, std dev 0.1
x = s + n; % signal + noise
disp(’Input Signal to Noise Ratio (SNR), dB’)
SNRin = 20*log10(std(s)/std(n)) % input SNR, dB
y = zeros(size(t)); % initialize output signal

% filtering computation
y(1) = x(1);
y(2) = (x(2)+x(1))/2;
for k = 3:length(t);

y(k) = (x(k)+x(k-1)+x(k-2))/3;
end

% analysis of filtered signal

disp(’Output Signal to Noise Ratio (SNR), dB’)
SNRout = 20*log10(std(s)/std(y-s)) % output SNR, dB

% plot signals
subplot(2,1,1),plot(t,x), xlabel(’Time (s)’),...

ylabel(’Signal amplitude’),...
title(’Input signal’)

subplot(2,1,2),plot(t,y), xlabel(’Time (s)’),...

173

ylabel(’Signal amplitude’),...
title(’Output signal’)

Note that in computing the first two filtered signal samples, two previous input signal samples are
not available, so shortened averages are required. Signal quality is measured by signal to noise ratio
(SNR), where the noise remaining in the filtered signal is the difference between the filtered signal
and the original noise-free signal.

The improvement in the signal is apparent in Figure 8.3. The displayed output below shows that
the SNR has been improved by about 4.3 dB.

Input Signal to Noise Ratio (SNR), dB
SNRin =

17.5063
Output Signal to Noise Ratio (SNR), dB
SNRout =

21.8317

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

S
ig

na
l a

m
pl

itu
de

Input signal

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

S
ig

na
l a

m
pl

itu
de

Output signal

Figure 8.3: 3-point moving average signal filtering

If more input signal samples were averaged, the noise would be further reduced. However, this
would also lead to distortion of the original signal. Thus, filtering functions must be designed to
compromise between noise reduction and signal distortion.

More effective filtering functions and better implementations of filtering in Matlab are available,
but these are beyond the scope of this presentation, which is intended as a short introduction to
filtering.

174

8.6 Applied Problem Solving: Speech Signal Analysis

Consider the design of a system to recognize the spoken words for the ten digits: “zero,” “one,”
“two,” . . ., “nine.” A first step in the design is to analyze data sequences collected with a microphone
to see if there are some statistical measurements that would allow recognition of the digits.

The statistical measurements should include the mean, variance, average magnitude, average power
and number of zero crossings. If the data sequence is x(n), n = 1, . . . , N , these measurements are
defined as follows:

mean = µ =
1
N

N∑
n=1

x(n)

standard deviation = σ =

[
1
N

N∑
n=1

(x(n)− µ)2
] 1

2

average magnitude =
1
N

N∑
n=1

|x(n)|

average power =
1
N

N∑
n=1

(x(n))2

The number of zero crossings is the number of times that x(k) and x(k + 1) differ in sign, or the
number of times that x(k) · x(k + 1) < 0.

Matlab functions for reading and writing Microsoft wave (“.wav”) sound files include:

Function Description
x = wavread(wavefile) Reads a wave sound file specified by the string

wavefile, returning the sampled data in x. The
“.wav” extension is appended if no extension is given.
Amplitude values are in the range [-1,+1].

[x,fs,bits]=wavread(wavefile) Returns the sample rate (fs) in Hertz and the number
of bits per sample (bits) used to encode the data in
the file.

wavwrite(x,wavefile) Writes a wave sound file specified by the string
wavfile. The data should be arranged with one chan-
nel per column. Amplitude values outside the range
[-1,+1] are clipped prior to writing.

wavwrite(x,fs,wavefile) Specifies the sample rate fs of the data in Hertz.

The following is a script (“digit.m”) to prompt the user to specify the name of a wave file to be read
and then to compute and display the statistics and to plot the sound sequence and a histogram
of the sequence. To compute the number of zero crossings, a vector prod is generated whose first

175

element is x(1)*x(2), whose second element is x(2)*x(3), and so on, with the last value equal
to the product of the next-to-the-last element and the last element. The find function is used
to determine the locations of prod that are negative, and length is used to count the number of
these negative products. The histogram has 51 bins between −1.0 and 1.0, with the bin centers
computed using linspace.

% Script to read a wave sound file named "digit.wav"
% and to compute several speech statistics
%
file = input(’Enter name of wave file as a string: ’);
[x,fs,bits] = wavread(file);
n = length(x);
%
fprintf(’\n’)
fprintf(’Digit Statistics \n\n’)
fprintf(’samples: %.0f \n’,n)
fprintf(’sampling frequency: %.1f \n’,fs)
fprintf(’bits per sample: %.0f \n’,bits)
fprintf(’mean: %.4f \n’,mean(x))
fprintf(’standard deviation: %.4f \n’, std(x))
fprintf(’average magnitude: %.4f \n’, mean(abs(x)))
fprintf(’average power: %.4f \n’, mean(x.^2))
prod = x(1:n-1).*x(2:n);
crossings = length(find(prod<0));
fprintf(’zero crossings: %.0f \n’, crossings)
subplot(2,1,1),plot(x),...

axis([1 n -1.0 1.0]),...
title(’Data sequence of spoken digit’),...
xlabel(’Index’), grid,...

subplot(2,1,2),hist(x,linspace(-1,1,51)),...
axis([-0.6,0.6,0,5000]),...
title(’Histogram of data sequence’),...
xlabel(’Sound amplitude’),...
ylabel(’Number of samples’),grid

For a hand example to be used to test the script to be developed for this problem, consider the
sequence:

[0.25 0.82 −0.11 −0.02 0.15]

Using a calculator, we compute the following:

mean = µ =
1
5
(0.25 + 0.82− 0.11− 0.02 + 0.15) = 0.218

standard deviation = σ =
[
1
5

(
(0.25− µ)2 + (0.82− µ)2 + (−0.11− µ)2

176

+ (−0.02− µ)2 + (0.15− µ)2
)] 1

2 = 0.365

average magnitude =
1
5
(|0.25|+ |0.82|+ | − 0.11|+ | − 0.02|+ |0.15|) = 0.270

average power =
1
5

(
0.252 + 0.822 + (−0.11)2 + (−0.02)2 + 0.152

)
= 0.154

number of zero crossings = 2

The Matlab commands to compute and write a wave file test.wav containing the test sequence:

>> x = [0.25 0.82 -0.11 -0.02 0.15]
>> wavwrite(x,’test.wav’)

Executing the script digit.m on the test data:

>> digit
Enter name of wave file as a string: ’test.wav’

Digit Statistics

samples: 5
sampling frequency: 8000.0
bits per sample: 16
mean: 0.2180
standard deviation: 0.3648
average magnitude: 0.2700
average power: 0.1540
zero crossings: 2

Observe that the results from the script agree with the hand-calculated values, giving us some
confidence in the script.

Executing the script on a wave file zero.wav created using the “Sound Recorder” program on a
PC to record the spoken word “zero” as a wave file:

>> digit
Enter name of wave file as a string: ’zero.wav’

Digit Statistics

samples: 13493
sampling frequency: 11025.0

177

bits per sample: 8
mean: -0.0155
standard deviation: 0.1000
average magnitude: 0.0690
average power: 0.0102
zero crossings: 271

The resulting plots are shown in Figure 8.4.

2000 4000 6000 8000 10000 12000
−1

−0.5

0

0.5

1
Data sequence of spoken digit

Index

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000
Histogram of data sequence

Sound amplitude

N
um

be
r

of
 s

am
pl

es

Figure 8.4: Data sequence and histogram for the spoken word ‘zero’

Observe that the characteristics of the change with time (index), as different sounds are being made
to produce the word. An effective word recognition algorithm must capture this change in sounds,
but the design of such an algorithm is beyond the material covered in this course. Note that the
histogram has the appearance of a Gaussian or bell-shaped curve, with a mean near zero and a
standard deviation of about 0.35, while the data sequence looks much different than the Gaussian
random data sequence shown in Figure 7.1.

You can experiment with the PC Sound Recorder program to record wave files for other spoken
digits and then process them with digit. In recording these files, you will need to make sure that
the number of data samples in the recorded file is less than 16,384 if you are using the Student
Version of Matlab. This requires using the “Telephone Quality” recording option and you may
need to delete the silent sections at the beginning and end of the record.

You can also create wave files using Matlab and then listen to the signals in these files using PC
Sound Recorder. For example, to compute and write a wave file containing 16000 samples in 2
seconds of an 800Hz sinusoid:

>> t = linspace(0,2,16000);

178

>> y = cos(2*pi*800*t);
>> wavwrite(y,’cosine.wav’)

179

Section 9

Vectors, Matrices and Linear Algebra

A matrix is a two-dimensional array, as introduced in Section 7.2, where matrix addressing and
methods of array creation were described. In Section 7.3, scalar-array mathematics and element-by-
element array mathematics were described. In this chapter, we present a set of matrix operations
and functions that apply to the matrix as a unit, as opposed to individual elements in the matrix.

Review of Matrix Definitions

1. Scalar: A matrix with one row and one column.

A = [3.5]

2. Vector: A matrix with one row (a row vector) or one column, (a column vector).

B1 = [1.5 3.1] B2 =

[
2.5
3.1

]

3. Matrix: An example of a matrix with four rows and three columns:

C =

−1 0 0
1 1 0
1 −1 0
0 0 −2

The elements in a matrix are denoted by cij , where i is the row index and j is the column
index. For example c43 refers to the element in row 4 and column 3, and thus, c43 = −2 in
the example above. If needed to avoid misinterpretation, the indexes can be separated by a
comma, as in ci,j and c4,3. In Matlab, subscripts are indicated by parentheses, as in C(4,3).

180

9.1 Vectors

We usually think of vectors as column vectors, written as

x =

x1

x2
...

xn

To indicate that x is a vector of n real numbers, we write

x ∈ Rn

Geometrically, Rn is n-dimensional space, and the notation x ∈ Rn means that x is a point in that
space, specified by the n coordinates x1, x2, . . . xn. Figure 9.1 shows a vector in R3, drawn as an
arrow from the origin to the point x.

Figure 9.1: A vector in R3

Vector Addition

Vectors with the same number of elements can be added and subtracted in a very natural way:

x+ y =

x1 + y1

x2 + y2

x3 + y3
...

xn + yn

, x− y =

x1 − y1

x2 − y2

x3 − y3
...

xn − yn

181

Inner or Dot Product

The inner product (x,y), also referred to as the dot product x · y, is a scalar sum of products

(x,y) = x · y = x1y1 + x2y2 + x3y3 + · · ·+ xnyn

For example, for

x =

 4

−1
3

 , y =

 −2

5
2

 ,

the inner product is

(x,y) = 4 · (−2) + (−1) · 5 + 3 · 2 = −7

Properties:

1. (x,y) = (y,x)

2. (ax,y) = a(x,y) = (x, ay)

3. (x,y + z) = (x,y) + (x, z)

In Matlab, the inner product is computed with the dot function:

dot(x,y) Returns the scalar dot product of the vectors x and y, which must be of the
same length.

dot(A,B) Returns a row vector of the dot products for the corresponding columns of
matrices A and B.

Example:

>> x = [4 -1 3]’
x =

4
-1
3

>> y = [-2 5 2]’
y =

-2
5
2

>> d = dot(x,y)
d =

-7

182

Euclidean Norm

The length of a vector is called the norm of the vector. From Euclidean geometry, the distance
between two points is the square root of the sum of the squares of the distances in each dimension.
Thus, the notation and definition of the Euclidean norm is

||x|| =
√

x2
1 + x2

2 + · · ·+ x2
n

Note that the norm can be defined in terms of the inner product:

||x|| =
√
(x,x)

For example, the norm of x above is

||x|| =
√
42 + (−1)2 + 32 = 5.1

In Matlab, norm(x) returns the Euclidean norm of row vector or column vector x.

For example, for x and y as defined above:

>> nx = norm(x)
nx =

5.0990
>> ny = norm(y)
ny =

5.7446

Triangle Inequality

This inequality, also called the Cauchy-Bernoulli-Schwarz (CBS) inequality, states that the absolute
value of the inner product of vectors x and y is less than or equal to the norm of x times the norm
of y, with equality if and only if y = αx

|(x,y)| ≤ ||x|| ||y||

Confirming this using the examples above:

>> abs(dot(x,y))
ans =

7
>> norm(x)*norm(y)
ans =

29.2916

183

To confirm the equality condition, define z = 5x

>> z = 5*x
z =

20
-5
15

>> abs(dot(x,z))
ans =

130
>> norm(x)*norm(z)
ans =

130

Unit Vectors

The unit vector ux is a vector of length one pointing in the same direction as x

ux =
1

||x||x

>> ux = x/norm(x)
ux =

0.7845
-0.1961
0.5883

>> norm(ux)
ans =

1

Angle Between Vectors

The angle θ between two vectors x and y is

cos θ =
(x,y)

||x|| ||y||

>> theta = acos(dot(x,y)/(norm(x)*norm(y)))
theta =

1.8121
>> thetad = (180/pi)*theta
thetad =

103.8261

184

Orthogonality

When the angle between two vectors is π/2 (90◦), the vectors are said to be orthogonal. From
the equation for the angle between two vectors

(x,y) = 0 ⇐⇒ x and y are orthogonal

Projection

The projection of vector x onto y is found by dropping a perpendicular from the head of x onto
the line representing y, as shown in Figure 9.2. The point where the perpendicular intersects y
(or an extension of y) is the projection of x onto y, or the component of x in the direction of y.
Denoting the projection vector by z

z =
(x,y)
(y,y)

y =
(x,y)
||y||2 y

Figure 9.2: Projection of x onto y

>> z = (dot(x,y)/norm(y)^2)*y
z =

0.4242
-1.0606
-0.4242

Example 9.1 Ship course

Figure 9.1 shows a ship sailing on bearing 315◦ (NW) with a speed of 20 knots. The local current
due to the tide is 2 knots in the direction 67.5◦ (ENE). The ship also drifts at 0.5 knots under wind
in the direction 180◦.

The following script is written to do the following:

• Represent the ship velocity as a vector S, the current velocity as a vector C, and the wind-drift
velocity as a vector W. Calculate the true-velocity vector T (velocity over the ocean bottom).
North represents the first component and East the second component of the vectors.

185

Figure 9.3: Ship course components

• Calculate the true ship speed, that is, the ship speed over the ocean bottom.

• Calculate the true ship course, that is, the direction of sailing over the ocean bottom, measured
in degrees clockwise from north.

disp(’Ship velocity vector:’)
S = 20*[cos(315*pi/180) sin(315*pi/180)] % ship vector
disp(’Current velocity vector:’)
C = 2*[cos(67.5*pi/180) sin(67.5*pi/180)] % current vector
disp(’Wind drift velocity vector:’)
W = 0.5*[-1 0] % wind vector
disp(’True velocity vector:’)
T = S + C + W
disp(’Ship speed (knots):’)
speed = norm(T)
course = atan2(T(2),T(1))*180/pi; % ship course, degrees
if course < 0

course = 360 + course; % correct course if negative
end
disp(’Ship course (degrees)’)
course

The function atan2 was used to compute the course heading, as it provides a four-quadrant result.
However, it produces results in the range −π to π, which have to be converted to degrees in the
range 0 to 360.

The displayed results:

Ship velocity vector:
S =

14.1421 -14.1421
Current velocity vector:

186

C =
0.7654 1.8478

Wind drift velocity vector:
W =

-0.5000 0
True velocity vector:
T =

14.4075 -12.2944
Ship speed (knots):
speed =

18.9401
Ship course (degrees)
course =

319.5248

9.2 Matrices

A matrix is denoted by a boldfaced capital letter having elements in the corresponding lower-case
letter having double subscripts for the row and column. An m × n (read m by n) matrix, having
m rows and n columns

A =

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

...
am1 am2 am3 . . . amn

Scalar element aij is located in row i and column j. A square matrix has the same number of
row and columns (m = n). The main diagonal of a matrix consists of the elements aii (the two
subscripts are equal). The main diagonal runs diagonally down and away from the top left corner
of the matrix, but it does not end in the lower right corner unless the matrix is square.

Transpose

The transpose of matrix A is another matrix B such that the element in row j and column i is
bji = aij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The notation for transpose is B = AT = A′. In Matlab,
transpose is denoted by A’. A more intuitive way of describing the transpose operation is to say
that it flips the matrix about its main diagonal so that rows become columns and columns become
rows. For example:

>> A = [2 1; 5 4; 7 9]

187

A =
2 1
5 4
7 9

>> B = A’
B =

2 5 7
1 4 9

Identity Matrix

An identity matrix is a matrix with ones on the main diagonal and zeros elsewhere. The following
is an identity matrix with four rows and four columns

I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

To generate an identity matrix in Matlab:

eye(n) Returns an n × n identity matrix.
eye(m,n) Returns an m × nmatrix with ones on the main diagonal and zeros elsewhere.
eye(size(a)) Returns a matrix with ones on the main diagonal and zeros elsewhere that

is the same size as A.

>> I = eye(3)
I =

1 0 0
0 1 0
0 0 1

The variable name i should not be used for an identity matrix in Matlab, because i will not
represent

√−1 in statements that follow.

Matrix Addition and Scalar Multiplication

Two matrices of the same dimensions may be added or subtracted in the same way as vectors, by
adding or subtracting the corresponding elements. The equation C = A±B means that for each
i and j, cij = aij ± bij .

188

Scalar multiplication of a matrix multiplies each element of the matrix by the scalar:

αA =

αa11 αa12 αa13 . . . αa1n

αa21 αa22 αa23 . . . αa2n

αa31 αa32 αa33 . . . αa3n
...

...
...

...
αam1 αam2 αam3 . . . αamn

Matrix Multiplication

Thematrix multiplication of m×n matrix A and n×p matrix B yields m×p matrix C, denoted
by

C = AB (9.1)

Element cij is the inner product of row i of A and column j of B

cij =
n∑

k=1

aikbkj (9.2)

To better understand this operation, represent a matrix as a collection of vectors. For example,
each row of A can be represented as being a vector

A =

− aT
1 −

− aT
2 −
...

− aT
m −

 =

[a11 a12 · · · a1n]
[a21 a22 · · · a2n]

...
[am1 am2 · · · amn]

 (9.3)

Alternatively, each column of B can be represented as a vector

B =

 | | |
b1 b2 · · · bp

| | |

 =

b11

b21
...

bn1

b12

b22
...

bn2

 · · ·

b1p

b2p
...

bnp

 (9.4)

Matrix-matrix multiplication can now be defined in terms of inner products of these vectors. An
n-element column vector x is an n× 1 matrix, whose transpose xT is a 1× n matrix, or n-element
row vector

x =

x1

x2
...

xn

 ; xT =

[
x1 x2 · · · xn

]

189

Consider the matrix multiplication xTy, where x and y are n-element column vectors

xTy =
[

x1 x2 · · · xn

]

y1

y2
...

yn

Applying equation (9.1), let A = xT , and B = y, with m = p = 1, and the result from equation
(9.2) is the scalar

xTy =
n∑

k=1

xkyk = x1y1 + x2y2 + · · ·+ xnyn

Observe that this is the inner product of x and y

xTy = (x,y)

Applying this result to equation (9.1) and using representation of matrices A and B as the collec-
tions of vectors defined in equations (9.3) and (9.4)

cij = aT
i bj = (ai,bj)

Thus,

C = AB =

aT

1 b1 aT
1 b2 · · · aT

1 bp

aT
2 b1 aT

2 b2 · · · aT
2 bp

...
...

...
aT

mb1 aT
mb2 · · · aT

mbp

For example, consider the following matrices

A =

[
2 5 1
0 3 −1

]
B =

 1 0 2

−1 4 −2
5 2 1

where m × n = 2× 3 and n × p = 3× 3. Computing elements of C:

c11 =
[
2 5 1

]
 1

−1
5

 = 2 · 1 + 5 · (−1) + 1 · 5 = 2

c23 =
[
0 3 −1

]
 2

−2
1

 = 0 · 2 + 3 · (−2)− 1 · 1 = −7

190

Similarly, the rest of the elements can be computed to yield

C = AB =

[
2 22 −5

−8 10 −7

]

To determine if a matrix product exists and if so, the size of the resulting matrix, write the matrix
sizes side-by-side

(m × n) · (n × p) = (m × p)

The two center sizes (columns of A and rows of B) must be equal for the product to exist. For the
example above

(2× 3) · (3× 3) = (2× 3)

Thus AB exists and is of size 2 × 3. If we wanted to compute BA, we again write the sizes
side-by-side

(3× 3) · (2× 3)

The two inner numbers are not the same, so BA does not exist. Note that this implies that matrix
multiplication does not commute

AB = BA

In Matlab matrix multiplication is denoted by an asterisk.

>> A = [2,5,1; 0,3,-1]
A =

2 5 1
0 3 -1

>> B = [1,0,2; -1,4,-2; 5,2,1]
B =

1 0 2
-1 4 -2
5 2 1

>> C = A*B
C =

2 22 -5
-8 10 -7

>> C = B*A
??? Error using ==> *
Inner matrix dimensions must agree.

191

Another matrix multiplication involving two vectors is the outer product, which is the product
of a row vector and a column vector. If x and y are n-element column vectors, then the product
xyT is a n × 1 matrix multiplying an 1× n matrix, yielding an n × n result

xyT =

x1

x2
...

xn

[
y1 y2 · · · yn

]
=

x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn
...

...
...

xmy1 xmy2 · · · xmyn

In the outer product, the inner products that define its elements are between the one-dimensional
row vectors of x and the one-dimensional column vectors of yT .

If I is an n × n identity matrix and A is an n × n matrix, then

IA = AI = A

Confirming

>> A = [1 2 3;4 5 6;7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> I = eye(3)
I =

1 0 0
0 1 0
0 0 1

>> I*A
ans =

1 2 3
4 5 6
7 8 9

>> A*I
ans =

1 2 3
4 5 6
7 8 9

Matrix Inverse

Two scalars are called inverses when their product is 1, such as 5 and 0.2. Two square matrices are
inverses of one another if their product is the identity matrix

AB = I ⇐⇒ B = A−1

192

Multiplying the first form by B from the left

B(AB) = BI = B

Multiplying in a different order

(BA)B = B

We can then conclude

BA = I

Thus, while matrix multiplication is not commutative in general, this is a special case where it is
commutative. If A and B are inverses of each other, then

AB = BA = I

The inverse for an ill-conditioned or singular matrix does not exist. The rank of a matrix is
the number of independent equations represented by the rows of the of the matrix. If the rank of
a matrix is equal to the number of its rows, the matrix is nonsingular and its inverse exists.

Matlab functions for matrix rank and inverse:

rank(A) Returns the rank of the matrix A, which is the number of independent rows
of A.

inv(A) Returns the inverse of the matrix A, which must be square and have a rank
equal to the number of rows. If the inverse does not exist, an error message
is printed.

Matrix inverse can also be computed using the expression A^(-1).

Example:

>> A = [2,1; 4,3]
A =

2 1
4 3

>> rank(A)
ans =

2
>> B = inv(A)
B =

1.5000 -0.5000
-2.0000 1.0000

>> C = A*B
C =

193

1 0
0 1

>> D = A^(-1)
D =

1.5000 -0.5000
-2.0000 1.0000

The following commands determine the size and rank of a matrix A and then either compute the
inverse of A or print a message indicating that the matrix inverse does not exist:

[nr,nc] = size(A);
if nr ~= nc

disp(’Inverse does not exist, matrix is not square’)
elseif rank(A) ~= nr

disp(’Inverse does not exist, rank not equal to number of rows’)
else

disp(’Matrix inverse:’)
disp(inv(A))

end

As shown in this example, it is good programming practice to avoid performing computations
that would generate Matlab error messages by including error checks that provide more specific
messages.

Matrix Powers

If A is a matrix, then A.^2 is the expression that squares each element in the matrix. Thus,

A.^2 =

a2
11 a2

12 . . . a2
1n

a2
21 a2

22 . . . a2
2n

...
...

...
a2

m1 a2
m2 . . . a2

mn

To square the matrix, that is, to compute A*A, the expression A^2 can be used. Then A^4 is
equivalent to A*A*A*A. To perform a matrix multiplication between two matrices, the number of
rows in the first matrix must be the same as the number of columns in the second matrix; therefore,
to raise a matrix to a power, the matrix must be square.

Determinant

A determinant is a scalar computed from a square matrix. While there are many applications of
determinants, a full explanation is beyond the intent of this presentation. For a 2 × 2 matrix A,
the determinant is

|A| = a11a22 − a12a21

194

Thus, for

A =

[
1 3

−1 5

]

the determinant is

|A| = 1 · 5− 3 · (−1) = 8

For a 3× 3 matrix A, the determinant is

|A| = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

Thus, for

B =

 1 3 0

−1 5 2
1 2 1

the determinant is

|B| = 1(5− 4)− 3(−1− 2) + 0(−1− 5) = 1 + 9 = 10

If the determinant of a matrix is zero, the matrix is said to be singular and its inverse does not
exist.

The Matlab function det(A) computes the determinant of the square matrix A.

Examples:

>> A = [1 3; -1 5]
A =

1 3
-1 5

>> detA = det(A)
detA =

8
>> B = [1 3 0; -1 5 2; 1 2 1]
B =

1 3 0
-1 5 2
1 2 1

>> detB = det(B)
detB =

10

195

9.3 Solutions to Systems of Linear Equations

The following is an example of a system of three linear equations with three unknowns (x1, x2, x3):

3x1 +2x2 −x3 = 10
−x1 +3x2 +2x3 = 5

x1 −x2 −x3 = −1

This system of equations can be rewritten in matrix form as

 3 2 −1

−1 3 2
1 −1 −1

 x1

x2

x3

 =

 10

5
−1

or

Ax = b

where

A =

 3 2 −1

−1 3 2
1 −1 −1

 x =

 x1

x2

x3

 b =

 10

5
−1

The system of equations can also be expressed using row vectors for B and x. For example, the set
of equations above can be written as

xA = b

by defining

x =
[

x1 x2 x3

]
A =

 3 −1 1

2 3 −1
−1 2 −1

 b =

[
1− 5 −1

]

Note that the matrix A in this equation is the transpose of the matrix A in the original matrix
equation.

The system of equations is nonsingular if the matrix A containing the coefficients of the equations
is nonsingular. The rank of A must be equal to the number of rows of A and the determinant |A|
must be nonzero for the system of equations to be nonsingular. To avoid errors, evaluate the rank
of A (using the rank function) to determine that the system is nonsingular before attempting to
compute the solution. Two methods for solving a nonsingular system are given below.

196

Solution by Matrix Inverse

Premultiply the system of equations

Ax = b

by A−1

A−1Ax = A−1b

Because A−1A is equal to the identity matrix I

Ix = A−1b

or

x = A−1b

Example:

>> A = [3 2 -1; -1 3 2; 1 -1 -1]
A =

3 2 -1
-1 3 2
1 -1 -1

>> b = [10; 5; -1]
b =

10
5

-1
>> x = inv(A)*b
x =

-2.0000
5.0000
-6.0000

>> A*x
ans =

10.0000
5.0000
-1.0000

If the system of equations is expressed in the form

xA = b

197

where x and b are row vectors and A is a matrix, the equation can be postmultiplied by A−1 to
yield

xAA−1 = bA−1

Because AA−1 is equal to the identity matrix I,

xI = bA−1

or

x = bA−1

This is computed in Matlab with the command

x = b*inv(A)

Solution by Matrix Division

In Matlab, a system of simultaneous equations can be solved by matrix division. The solution
to the equation

Ax = b

can be computed using left division

x = A\b;

Example:

>> A = [3,2,-1; -1,3,2; 1,-1,-1]
A =

3 2 -1
-1 3 2
1 -1 -1

>> b = [10;5;-1]
b =

10
5

-1
>> x = A\b
x =

198

-2.0000
5.0000
-6.0000

>> check = A*x
check =

10.0000
5.0000
-1.0000

This is the preferred method of solving a system of simultaneous linear equations, as the numerical
method used, known as Gauss elimination, has better performance than the method of matrix
inverse.

If the system of equations is represented by the equation xA = b, where x and b are row vectors,
the solution can be computed using matrix right division, as in x = b/A.

Geometric Interpretations of Linear Equations in Two Unknowns

1. Intersection: The two equations

3x1 − 4x2 = 5
6x1 − 10x2 = 2

can be solved for x2 to yield

x2 = (3x1 − 5)/4
x2 = (6x1 − 2)/10

These equations are plotted in Figure 9.4. The linear equations describe straight lines that
intersect at x1 = 7, x2 = 4, which is the solution of the two equations. Confirming the
solution:

>> A = [3 -4; 6 -10];
>> det(A)
ans =

-6
>> b = [5; 2];
>> x = A\b
x =

7
4

Note that since |A| = 0, a solution exists.

2. One Line: A set of two equations can describe the same line, which can be interpreted to
have an infinite number of intersections and thus, no unique solution. The matrix A in this
case can be shown to be singular.

199

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

6

7

x
1

x 2

x
2
 =(3x

1
 −5)/4

x
2
 =(6x

1
 −2)/10

x
1
=7, x

2
=4

Figure 9.4: The graphs of two equations intersect at the solution

For example the two equations

3x1 − 4x2 = 5
6x1 − 8x2 = 10

can be solved for x2, with each yielding

x2 =
3
4
x1 − 5

4

There is no unique solution because the second equation is simply the first equation multiplied
by two. The graphs of these two equations are identical. All that can be said is that the
solution must satisfy x2 = 3(x1 − 5)/4, which describes an infinite number of solutions.
Confirming this with Matlab:

>> A = [3 -4; 6 -8];
>> det(A)
ans =

0
>> rank(A)
ans =

1

The determinant is 0 and the rank is less that the dimension of the matrix, so the problem is
singular and no unique solution exists.

200

3. Parallel Lines: When the two lines are parallel, there can be no intersection, and thus no
solution exists.

The set of equations

3x1 − 4x2 = 5
6x1 − 8x2 = 3

can be solved for x2, giving

x2 = (3x1 − 5)/4
x2 = (6x1 − 3)/8

Note that slopes of the two lines are both equal to 3/4, so the lines are parallel, as shown in
Figure 9.5. Since they do not intersect, no solution exists. The matrix A is the same as that
in the one-line singular case above, where this matrix was found to be singular.

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

6

7

8

x
1

x 2

x
2
 =(3x

1
 −5)/4

x
2
 =(6x

1
 −3)/8

Figure 9.5: Parallel graphs indicate that no solution exists

An ill-conditioned set of equations is a set that is close to being singular (for example, two equa-
tions whose graphs are close to being parallel). The solution to an ill-conditioned set of equations
depends on the accuracy with which the calculations are made. No computer can represent a
number with infinitely many significant figures, and so a given set of equations can appear to be
singular if the accuracy required to solve them is greater than the number of significant figures used
by the software.

201

9.4 Applied Problem Solving: Robot Motion

Illustrated in Figure 9.6 is a robot arm having two “links” connected by two “joints”: a shoulder,
or base, joint, and an elbow joint. There is a motor at each joint and the joint angles are θ1 and
θ2. The (x1, x2) coordinates of the hand at the end of the arm are given by

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2)

where L1 and L2 are the lengths of the links.

Figure 9.6: Robot arm

The problem is to determine how to control the joint angles by the motors to move the hand from
one position to another. The arm is to start from rest at a known position and move to a desired
position. It must start and stop with zero velocity and acceleration. The following polynomial
expressions are to be used for controlling the motion by generating commands to be sent to the

202

joint motor controllers

θ1(t) = θ1(0) + a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t

θ2(t) = θ2(0) + b1t
5 + b2t

4 + b3t
3 + b4t

2 + b5t

where θ1(0) and θ2(0) are the initial angles at time t = 0 and coefficient vectors a = [a1 a2 a3 a4 a5]
T

and b = [b1 b2 b3 b4 b5]
T are to be determined to provide the desired motion. The choice of the

degree of the polynomials will be explained as the equations of motion are described.

For desired initial coordinates (x1, x2) at time t = 0 and desired final coordinates at time t = tf ,
the required values for angles θ1(0), θ2(0), θ1(tf), and θ2(tf) can be found using trigonometry.

For given values of θ1(0), θ1(tf), and tf , matrix equations are to be set up and solved for coefficient
vector a. Similarly, for given values of θ2(0), θ2(tf), and tf , matrix equations are to be set up and
solved for coefficient vector b. These results are to be used to plot the path of the hand.

The remaining constraints in the arm motion are that the velocity and acceleration of the links
are to be zero at the known starting location and the desired final location. This implies that the
angular velocity and angular acceleration of the two angles are to be zero at time t = 0 and t = tf .
The angular velocity of the first link at time t is the derivative of the angle θ1(t) with respect to
time

θ′1(t) = 5a1t
4 + 4a2t

3 + 3a3t
2 + 2a4t + a5

The velocity at t = 0 is

θ′1(0) = a5 = 0

and thus, coefficient a5 = 0. The angular acceleration is the second derivative of the angle θ1(t)
with respect to time

θ′′1(t) = 20a1t
3 + 12a2t

2 + 6a3t + 2a4

The acceleration at t = 0 is

θ′′1(0) = 2a4 = 0

and thus, coefficient a4 = 0. Writing the three constraints on θ1(t) and its derivatives at time t = tf
in matrix form:

t5f t4f t3f

5t4f 4t3f 3t2f
20t3f 12t2f 6tf

 a1

a2

a3

 =

 θ1(tf)− θ1(0)

0
0

203

Similarly, for θ2(t):

t5f t4f t3f

5t4f 4t3f 3t2f
20t3f 12t2f 6tf

 b1

b2

b3

 =

 θ2(tf)− θ2(0)

0
0

Note that there are three equations and three unknowns for each angle and its two derivatives. This
is the reason for choosing a fifth-degree polynomial to control the motion. The lower degree three
terms (t2, t1, t0) have coefficients with value zero to meet the constraints at t = 0. This leaves
the higher degree three terms (t5, t4, t3) and corresponding three unknown coefficients. Adding
additional higher degree terms would require additional constraint equations to be able to compute
the values of the corresponding coefficients.

Assuming the following initial and final values and link lengths:

tf = 2s
θ1(0) = −19◦

θ2(0) = 44◦

θ1(tf) = 43◦

θ2(tf) = 151◦

L1 = 4 feet
L2 = 3 feet

which correspond to a starting hand location of (6.5, 0) and a destination location of (0, 2), a script
to compute the motion control coefficients and to compute and plot the path of the hand is:

% Robot arm motion script
%
% Initial values, angles in degrees
tf = 2;
theta10 = -19*pi/180;
theta1tf = 43*pi/180;
theta20 = 44*pi/180;
theta2tf = 151*pi/180;
%
% Equations for a coefficients
T = [tf^5 tf^4 tf^3

5*tf^4 4*tf^3 3*tf^2
20*tf^3 12*tf^2 6*tf];

c = [theta1tf-theta10; 0; 0];
disp(’Coefficients for theta1 motion:’)
a = T\c
%
% Equations for b coefficients
d = [theta2tf-theta20; 0; 0];
disp(’Coefficients for theta2 motion:’)

204

b = T\d
%
% Equations of motion
L1 = 4;
L2 = 3;
t = linspace(0,2,401);
tq = [t.^5; t.^4; t.^3];
theta1 = theta10 + a’*tq;
theta2 = theta20 + b’*tq;
x1 = L1*cos(theta1) + L2*cos(theta1 + theta2);
x2 = L1*sin(theta1) + L2*sin(theta1 + theta2);
%
% Plot path of hand
plot(x1,x2),...

xlabel(’x_1’),...
ylabel(’x_2’),...
title(’Path of robot hand’),...
text(4.3,0,’t=0s: (x_1,x_2) = (6.5,0)’),...
text(0.2,2,’t=2s: (x_1,x_2) = (0,2)’)

Executing the script:

>> robot
Coefficients for theta1 motion:
a =

0.2029
-1.0145
1.3526

Coefficients for theta2 motion:
b =

0.3502
-1.7508
2.3344

The plot of the hand motion is shown in Figure 9.7.

205

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x
1

x 2

Path of robot hand

t=0s: (x
1
,x

2
) = (6.5,0)

t=2s: (x
1
,x

2
) = (0,2)

Figure 9.7: Calculated path of robot hand

206

Section 10

Curve Fitting and Interpolation

Curve fitting: Finding a function (curve) y = f(x) that best “fits” a set of measured x values
and corresponding y values.

Interpolating: Estimating the value of yi corresponding to a chosen xi having value between the
measured x values.

10.1 Minimum Mean-Square Error Curve Fitting

The commonly-used measure of “fit” in curve fitting is mean-squared error (MSE).” In mini-
mum mean-squared error (MMSE) curve fitting (also called least-square curve fitting), the param-
eters of a selected function are chosen to minimize the MSE between the curve and the measured
values.

Polynomial regression is a form of MMSE curve fitting in which the selected function is a
polynomial and the parameters to be chosen are the polynomial coefficients.

Linear regression is a form of polynomial regression in which the polynomial is of first degree.
The two parameters of a linear equation, representing a straight line curve, are chosen to minimize
the average of the squared distances between the line and the measured data values.

Linear Regression

To illustrate linear regression, consider the following set of temperature measurements:

Time (s) Temperature (deg F)
0 0
1 20
2 60
3 68
4 77
5 110

207

Observing the plot of these data points shown in Figure 10.1, it can be seen that a good estimate
of a line passing through the points is ŷ = 20x. The script used to generate this plot:

x = 0:5;
y = [0 20 60 68 77 110];
yhat = 20*x
err = yhat-y
MSE = mean(err.^2)
RMSE = sqrt(MSE)
plot(x,y,’o’, x,yhat),title(’Linear Estimate’),...

xlabel(’time, s’),ylabel(’Temperature, degrees F’),...
grid,axis([-1,6,-2,120]), legend(’measured’, ’estimated’,4)

−1 0 1 2 3 4 5 6
0

20

40

60

80

100

120
Linear Estimate

time, s

T
em

pe
ra

tu
re

, d
eg

re
es

 F

measured
estimated

Figure 10.1: A linear estimate

A measure of the quality of the fit of the linear estimate to the data is the mean squared error
(MSE) or the root mean squared error (RMSE)

MSE =
1
N

N∑
k=1

(ŷk − yk)2

RMSE =
√

MSE

where N is the number of measured data values (xk, yk), with estimated values ŷk = 20xk. Note
that the units of MSE are the square of the units of the measured quantity yk. The units of RMSE
are the same as those of the measured quantity.

208

For the plotted data

>> MSE = mean((yhat-y).^2)
MSE =

95.5000
>> RMSE = sqrt(MSE)
RMSE =

9.7724

Note that the absolute values of the errors in the estimates range from zero to 20, so an RMSE
value of about 10 seems reasonable.

The best fit is the line ŷ = a1x + a2 having coefficients a1 and a2 that produce the smallest mean
squared error (MSE). MSE is expressed as

MSE =
1
N

N∑
k=1

(ŷk − yk)2

=
1
N

N∑
k=1

(a1xk + a2 − yk)2

The MSE is minimum when its partial derivatives with respect to each of the coefficients are zero.

∂MSE
∂a1

=
1
N

N∑
k=1

2(a1xk + a2 − yk)xk

=
2
N

N∑
k=1

a1x
2
k + a2xk − xkyk

=
2
N

[(
N∑

k=1

x2
k

)
a1 +

(
N∑

k=1

xk

)
a2 −

(
N∑

k=1

xkyk

)]

= 0

∂MSE
∂a2

=
1
N

N∑
k=1

2(a1xk + a2 − yk)

=
2
N

[(
N∑

k=1

xk

)
a1 + Na2 −

(
N∑

k=1

yk

)]

= 0

Ignoring the constant factors 2/N and writing the two equations above in matrix form with the

209

terms in the unknown coefficients a1 and a2 on the left hand side

N∑
k=1

x2
k

N∑
k=1

xk

N∑
k=1

xk N

[
a1

a2

]
=

N∑
k=1

xkyk

N∑
k=1

yk

This is a pair of linear equations in two unknowns that can be solved using the methods discussed
in the previous section of these notes. The values of a1 and a2 determined in this way represent
the straight line with the minimum mean squared error.

The Matlab command to compute the best linear fit to a set of data is polyfit(x,y,1), which
returns a coefficient vector of the straight line fitting the data. For the data above:

x = 0:5;
y = [0 20 60 68 77 110];
a = polyfit(x,y,1)
yhat = polyval(a,x);
err = yhat - y
MSE = mean(err.^2)
RMSE = sqrt(MSE)
plot(x,y,’o’,x,yhat),title(’Linear Regression’),...

xlabel(’time, s’),ylabel(’Temperature, degrees F’),...
grid,axis([-1,6,-2,120]),legend(’measured’,’estimated’,4)

Running this script:

a =
20.8286 3.7619

err =
3.7619 4.5905 -14.5810 -1.7524 10.0762 -2.0952

MSE =
59.4698

RMSE =
7.7117

Thus, the best linear fit is

ŷ = 20.8286x + 3.7619

and the root mean squared error is 7.71, lower than that of the previous estimate. The resulting
plot is shown in Figure 10.2.

The linear regression curve can also be used to interpolate the measured data to estimate values
of y corresponding to values of x between the measured values. For example:

210

−1 0 1 2 3 4 5 6
0

20

40

60

80

100

120
Linear Regression

time, s

T
em

pe
ra

tu
re

, d
eg

re
es

 F

measured
estimated

Figure 10.2: Linear regression curve fit

>> yi = polyval(a,2.5)
yi =

55.8333

Polynomial Regression

The method discussed above for linear regression can be extended to an n-th degree polynomial
curve fit, using a method known as polynomial regression to find the minimum mean squared error
values of the polynomial coefficients. The n-th degree polynomial in one variable is

f(x) = a1x
n + a2x

n−1 + a3x
n−2 + · · · + anx + an+1

The Matlab command to compute a polynomial regression is

a = polyfit(x,y,n}

This provides an n-th degree least-squares polynomial curve fit to the vectors x and y, which must
be of the same length. It returns a coefficient vector a of length n+1. As the degree increases, the
MSE decreases and the number of points that fall on the curve increases. If a set of n + 1 points
is used to determine the n-th degree polynomial, all n + 1 points will fall on the polynomial curve.
Regression analysis cannot determine a unique solution if the number of points is equal to or less
than the degree of the polynomial model.

Consider a set of 11 data points and find the best 2-nd and 10-th degree polynomial curve fits to
this data, using the following script:

211

x = 0:0.1:1;
y = [-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
a2 = polyfit(x,y,2);
disp(’a2 coefficients:’)
disp(a2’)
a10 = polyfit(x,y,10);
disp(’a10 coefficients:’)
format short e
disp(a10’)
xi = linspace(0,1,101);
yi2 = polyval(a2,xi);
yi10 = polyval(a10,xi);
plot(x,y,’o’,xi,yi2,’--’,xi,yi10),...

xlabel(’x’), ylabel(’y’),...
title(’2nd and 10th Degree Polynomial Curve Fit’),...
legend(’Measured’,’2nd Degree’,’10th Degree’,4)

Executing this script:

a2 coefficients:
-9.8108
20.1293
-0.0317

a10 coefficients:
-4.6436e+005
2.2965e+006

-4.8773e+006
5.8233e+006

-4.2948e+006
2.0211e+006

-6.0322e+005
1.0896e+005

-1.0626e+004
4.3599e+002

-4.4700e-001

The plot produced is shown in Figure 10.3.

Thus, the best quadratic (n = 2) curve fit is

ŷ = −9.8108x2 + 20.1293x − 0.0317

As the polynomial degree increases, the approximation becomes less smooth since higher-order
polynomials can be differentiated more times before then become zero. Note the values of the 10-
th degree polynomial coefficients a10 compared to those of the quadratic fit. Note also the seven
orders of magnitude difference between the smallest (-4.4700e-001) and the largest (5.8233e+006)

212

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

x

y

2nd and 10th Degree Polynomial Curve Fit

Measured

2nd Degree

10th Degree

Figure 10.3: Polynomial Curve Fitting

coefficients and the alternating signs on the coefficients. This example clearly demonstrates the
difficulties with higher-degree polynomials.

10.2 Applied Problem Solving: Hydraulic Engineering

The following application is from Matlab for Engineering Applications by William J. Palm III
(McGraw-Hill, 1999).

Torricelli’s principle of hydraulic resistance states that the volume flow rate f of a liquid through
a restriction, such as an opening or a valve, is proportional to the square root of the pressure drop
p across the restriction

f = c
√

p

where c is a constant. In many applications the weight of liquid in a tank above the valve causes
the pressure drop. In this case, the flow rate is proportional to the square root of the the volume
V in the tank

f = r
√

V

where r is a constant. This expression can be generalized to

f = rV e

213

and an attempt can be made to experimentally verify that e = 0.5.

Consider applying this principle to the flow of coffee out of a coffee pot. To gather some experimental
measurements, place a 15-cup coffee pot under a water faucet and fill to the 15-cup line. With the
outlet valve open, adjust the flow rate through the faucet so that the water level remains constant
at 15 cups, and measure the time for one cup to flow out of the pot. Repeat this measurement
with the pot filled to the levels shown in the following table:

Volume V (cups) Fill time t (s)
15 6
12 7
9 8
6 9

Use this data to verify Torricelli’s principle for the coffee pot and obtain a relation between the
flow rate and the number of cups in the pot.

Torricelli’s principle is a power function and if we apply the base 10 logarithm to both sides, we
obtain

log10 f = e log10 V + log10 r

This equation has the form

y = a1x + a2

where y = log10 f , x = log10 V , a1 = e, and a2 = log10 r. Thus, if we plot log10 f versus log10 V , we
should obtain a straight line. The values for f are obtained from the reciprocals of the given data
for t. That is, f = 1/t cups per second. We can find the power function that fits the data with the
command

a = polyfit(log10(V), log10(f), 1)

The first element a1 of vector a will be e and the second element a2 will be log10 r. We can find r
from r = 10a2 .

The Matlab script is:

% Modeling of hydraulic resistance in a coffee pot
%
% Measured data
vol = [6, 9, 12, 15]; % coffee pot volume (cups)
time = [9, 8, 7, 6]; % time to fill one cup (seconds)
flow = 1./time; % flow rate (cups/seconds)
%
% Fit a straight line to log transformed data
a = polyfit(log10(vol),log10(flow),1);

214

disp(’Exponent e’)
e = a(1)
disp(’Constant r’)
r = 10^a(2)
%
% Plot the data and the fitted curve on loglog and linear plots
x = [6:0.01:40];
y = r*x.^e;
subplot(2,1,1),loglog(x,y,vol,flow,’o’),grid,...

xlabel(’Volume (cups - log scale)’),...
ylabel(’Flow Rate (cups/sec - log scale)’),...
axis([5 15 .1 .3]), legend(’Model’,’Experimental’)

subplot(2,1,2),plot(x,y,vol,flow,’o’),grid,xlabel(’Volume (cups)’),...
ylabel(’Flow Rate (cups/sec)’),axis([5 15 .1 .3]),...
legend(’Model’,’Experimental’)

The displayed output is:

Exponent e
e =

0.4331
Constant r
r =

0.0499

The derived relation is

f = 0.0499V 0.433

Because the exponent is 0.433, not 0.5, our model does not agree exactly with Torricelli’s principle,
but it is close. Note that the plot in Figure 10.4 shows that the data points do not lie exactly on
the fitted straight line. In this application it is difficult to measure the time to fill one cup with an
accuracy greater than an integer second, so this inaccuracy could have caused our result to disagree
with that predicted by Torricelli.

10.3 Interpolation

In interpolation, data points (x(k), y(k)) for k = 1, 2, . . . , N have been acquired, with the x
values in ascending order so that x(k) < x(k + 1). For a chosen value, an estimate is sought for yi

corresponding to a chosen xi value that lies within the data range (x(1) ≤ xi ≤ x(N)). Thus, the
objective is not to fit the entire range of data with a single curve, as the case for curve fitting, but
rather to use the data to estimate a yi value corresponding to xi. The estimate is “local” in the
sense that it is oomputed only from data points having x(k) values near that of xi.

215

10
1

10
−1

Volume (cups − log scale)

F
lo

w
 R

at
e

(c
up

s/
se

c
−

 lo
g

sc
al

e)

Model
Experimental

5 6 7 8 9 10 11 12 13 14 15
0.1

0.15

0.2

0.25

Volume (cups)

F
lo

w
 R

at
e

(c
up

s/
se

c)

Model
Experimental

Figure 10.4: Flow rate and volume for a coffee pot

In linear interpolation, the estimate is based on a straight line connecting neighboring pairs of
data points. In cubic-spline interpolation, the estimate is based on joining neighboring data
points with a cubic (third-degree) polynomial.

Linear Interpolation

The method of linear interpolation is illustrated in Figure 10.5, which shows measured data points
(x(k), y(k)) and (x(k + 1), y(k + 1)) for which the chosen xi lies in the range x(k) ≤ xi ≤ x(k + 1).
The equation of the straight line between these data points is

yi = y(k) + m(xi − x(k))

where m is the slope of the line

m =
y(k + 1) − y(k)
x(k + 1) − x(k)

Substituting this slope into the equation of the line, the estimated or interpolated value is

yi = y(k) +
y(k + 1) − y(k)
x(k + 1) − x(k)

(xi − x(k))

Given a set of data points, it is conceptually straightforward to interpolate for a new point between
two of the given points. However, the interpolation takes several steps, because it is first necessary

216

Figure 10.5: Linear interpolation

to find the two values in the data between which the desired point falls. When these two values are
found, the interpolation equation above can be applied. These steps are performed by the Matlab
interpolation function interp1.

yi = interp1(x,y,xi) Returns vector yi of the length of xi, containing the interpo-
lated y values corresponding to xi using linear interpolation.
The vector x, which must have values in ascending order,
specifies the points at which the data y is given. Vectors x
and y must be of the same length. The values of xi must be
within the range of the x values.

To illustrate use of linear interpolation, consider again the temperature data from the previous
section. The range of x in this data is 0.0 to 5.0, so interpolated values can be found for data in
this range. Computing linearly interpolated values for x = 2.6 and x = 4.9:

>> x = 0:5;
>> y = [0 20 60 68 77 110];
>> yi = interp1(x,y,[2.6 4.9])
yi =

64.8000 106.7000

If the second argument of the interp1 function is a matrix, the function returns a row vector with
the same number of columns, and each value returned will be interpolated from its corresponding

217

column of data. Assume the following data has been acquired:

Time, s Temp 1 Temp 2 Temp 3
0 0 0 0
1 20 25 52
2 60 62 90
3 68 67 91
4 77 82 93
5 110 103 96

Storing this data in a matrix and interpolating at the time 2.6 seconds:

>> x = (0:5)’;
>> y(:,1) = [0,20,60,68,77,110]’;
>> y(:,2) = [0,25,62,67,82,103]’;
>> y(:,3) = [0,52,90,91,93,96]’;
>> temps = interp1(x,y,2.6)
temps =

64.8000 65.0000 90.6000

Cubic-Spline Interpolation

A cubic spline is a third-degree polynomial computed to provide a smooth curve between the two
data points bounding the point for which an interpolated value is to be determine and to provide
a smooth transition from the third-degree polynomial between the previous two points.

The interpolating equation is

yi = a1(xi − x(k))3 + a2(xi − x(k))2 + a3(xi − x(k)) + a4

for which x(k) ≤ xi ≤ x(k + 1). The coefficients a1, a2, a3 and a4 are determined so that the
following three conditions are met:

1. The polynomial must pass through the data points at its end points x(k) and x(k + 1). For
xi = x(k), this requires that yi = y(k), so that a4 = y(k).

2. The slopes (first derivatives) of cubic polynomials in adjacent data intervals must be equal
at their common data point.

3. The curvatures of adjacent polynomials must be equal at their common data point.

The corresponding Matlab function is:

yi = spline(x,y,xi) Returns vector yi of the length of xi, containing the interpolated
y values corresponding to xi using cubic-spline interpolation. The
vector x, which must have values in ascending order, specifies the
points at which the data y is given. Vectors x and y must be of the
same length. The values of xi must be within the range of the x
values.

218

To illustrate, apply cubic-spline interpolation to the temperature data considered above.

>> x = 0:5;
>> y = [0,20,60,68,77,110];
>> temp = spline(x,y,[2.6,4.9])
temp =

67.3013 105.2020

To compute and plot linear and cubic-spline interpolation curves over a range of values, an xi
vector with the desired resolution of the curve can be generated and used as the third parameter
in the interp1 function. For example:

% Comparison of linear and cubic spline interpolation
x = (0:5);
y = [0,20,60,68,77,110];
xi = 0:0.1:5;
ylin = interp1(x,y,xi);
ycub = spline(x,y,xi);
plot(xi,ylin,’:’,xi,ycub,x,y,’o’),...

legend(’Linear’,’Cubic’,’Measured’,4),...
title(’Linear and cubic spline interpolation’),...
xlabel(’x’),...
axis([-1,6,-20,120]),...
grid

The resulting plot is shown in Figure 10.6.

10.4 Applied Problem Solving: Human Hearing

To illustrate one-dimensional interpolation, consider the following example: The threshold of au-
dibility (i.e. the lowest perceptible sound level) of the human ear varies with frequency. Plotting
frequency in Hz on a log scale against sound pressure level in dB, normalized so that 0 dB appears
at 1000 Hz is done with the following script:

f = [20:10:100 200:100:1000 1500 2000:1000:10000]; % frequency in Hz
spl = [76 66 59 54 49 46 43 40 38 22 ... % sound pressure level in dB

14 9 6 3.5 2.5 1.4 0.7 0 -1 -3 ...
-8 -7 -2 2 7 9 11 12];

semilogx(f,spl,’-o’),...
xlabel(’Frequency, Hz’),...
ylabel(’Relative Sound Pressure Level, dB’),...
title(’Threshold of human hearing’),grid on

219

−1 0 1 2 3 4 5 6
−20

0

20

40

60

80

100

120
Linear and cubic spline interpolation

x

Linear

Cubic

Measured

Figure 10.6: Comparison of linear and cubic spline interpolation

10
1

10
2

10
3

10
4

−10

0

10

20

30

40

50

60

70

80

Frequency, Hz

R
el

at
iv

e
S

ou
nd

 P
re

ss
ur

e
Le

ve
l,

dB

Threshold of human hearing

Figure 10.7: Plot of Threshold of Human Hearing

220

The resulting plot is shown in Figure 10.7, where by default, the data points have been connected
with straight lines.

Based on this plot, the human ear is most sensitive to tones around 3 kHz. The function interp1
can be used to estimate the sound pressure level in several different ways at a frequency of 2.5 kHz.

>> slin = interp1(f,spl,2500,’linear’) % linear interpolation
slin =

-5.5000
>> scub = interp1(f,spl,2500,’spline’) % cubic spline interpolation
scub =

-5.6641
>> snn = interp1(f,spl,2500,’nearest’) % nearest neighbor interpolation
snn =

-8

where nearest neighbor is another interpolation method, in which, as implied by its name,
interpolates with the nearest sample in the original data. Note the differences in these results.
The first result returns exactly what is shown in the figure at 2.5 kHz since Matlab linearly
interpolates between data points on plots. Cubic spline interpolation fits a cubic polynomial to
each data interval, so it returns a slightly different result. The poorest interpolation in this case is
the nearest neighbor.

How is an interpolation method to be chosen for a given problem? In many cases, linear inter-
polation is sufficient, which is why it is the default method. While nearest neighbor produced
poor results here, it is often used when speed is important or the data set is large. The most
time-consuming method is spline, but it often produces the most desirable results.

Now use cubic interpolation to investigate the data at a finer interval near the minimum.

fi = linspace(2500,5000);
spli = interp1(f,spl,fi,’cubic’); % interpolate near minumum
k = find(f>=2000 & f<=5000); % find indices near minumum
semilogx(f(k),spl(k),’--o’,fi,spli),... % plot orig & cubic data

legend(’Linear’,’Cubic’),...
xlabel(’Frequency, Hz’),...
ylabel(’Relative Sound Pressure Level, dB’),...
title(’Threshold of human hearing’),grid on

The resulting plot is shown in Figure 10.8. By specifying a finer resolution on the frequency axis
and using cubic convolution, a smoother estimate of the sound pressure level is generated. Note
how the slope of the cubic solution does not change abruptly at the data points.

With the cubic spline interpolation, a better estimate can be made of the frequency of greatest
sensitivity.

>> [splmin,kmin] = min(spli) % minimum and index of minimum

221

10
3

10
4

−9

−8

−7

−6

−5

−4

−3

−2

Frequency, Hz

R
el

at
iv

e
S

ou
nd

 P
re

ss
ur

e
Le

ve
l,

dB

Threshold of human hearing

Linear
Cubic

Figure 10.8: Plot of threshold of human hearing near minimum

splmin =
-8.2683

kmin =
32

>> fmin = fi(kmin) % frequency at minimum
fmin =

3.2828e+003

Thus, by this analysis, the human ear is most sensitive to tones near 3.3 kHz.

222

Section 11

Integration and Differentiation

Integration and differentiation are the key concepts presented in the first two calculus courses
and they are fundamental to solving many engineering and science problems. While many of these
problems can be solved analytically, there are also many problems that require numerical integration
or numerical differentiation techniques.

11.1 Numerical Integration

The integral of a function f(x) for a ≤ x ≤ b can be interpreted as the area under the curve of
f(x) between x = a and x = b, as shown in Figure 11.1. Denoting this area as A, the integral is
written as

A =
∫ b

a
f(x)dx

Definitions:

• Integrand: f(x)

• Lower limit of integration: a

• Upper limit of integration: b

• Variable of integration: x

Numerical integration, called quadrature, involves methods for estimating the value of a definite
integral. In these methods, the function f(x) is estimated or approximated by another function
f̂(x), chosen so that the area under f̂(x) is easy to compute. The better the estimate of f(x) by
f̂(x), the better the estimate of the integral of f(x). Two of the most common numerical integration
techniques estimate f(x) with a set of piecewise linear functions or with a set of piecewise parabolic
functions. If the function is estimated with piecewise linear functions, the area of the trapezoids
that compose the area under the piecewise linear functions is the approximation to the desired

223

Figure 11.1: Integral of f(x) from a to b

integral, and the method is known as the trapezoidal rule. If the function is estimated with
piecewise quadratic functions, the technique is called Simpson’s rule.

Trapezoidal Rule

In the trapezoidal rule for integration, the interval [a, b] is divided into n equal subintervals and
the curve f(x) is approximated by f̂(x) on each subinterval as a straight line connecting the values
of f(x) at the ends of each subinterval. The integral A is the sum of the approximate integrals on
each subinterval. The width of each subinterval is

∆x =
b − a

n

The range of values of x on subinterval i is

[xi, xi+1] = [xi, xi + ∆x] = [a + i∆x, a + (i + 1)∆x], i = 0, . . . , n − 1

The approximation of f(x) on subinterval i is shown in Figure 11.2. The approximating curve f̂(x)
is represented by the dashed line. The approximate area Ai of f(x) over this subinterval is that of
the trapezoid under f̂(x)

Ai ≈ (xi+1 − xi)
f(xi) + f(xi+1)

2
=

∆x

2
(f(xi) + f(xi+1))

The full integral A is then approximated by

AT =
n∑

i=0

∆x

2
(f(xi) + f(xi+1))

=
∆x

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn))

The Matlab function for trapezoidal rule integration is

224

Figure 11.2: Approximation of f(x) from xi to xi+1

z = trapz(x,y) Integral of y with respect to x by the trapezoidal rule. x and y must
be vectors of the same length, or x must be a column vector and y
an array whose first non-singleton dimension is length(x). trapz
operates along this dimension.

z = trapz(x,y,dim) Integrates across dimension dim of y. The length of x must be the
same as size(y,dim)).

To illustrate integration, consider the function humps(x), a demonstration function provided by
Matlab that has strong peaks near x = 0.3 and x = 0.9, shown in Figure 11.3.

−1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

100
Trapezoidal integration of humps(x)

x

hu
m

ps
(x

)

Figure 11.3: Trapezoidal integration of humps(x)

Using computed samples of the humps function, the function trapz approximates the area using
the trapezoidal approximation. For n = 18 subintervals, the integral approximation is given by:

>> x = linspace(-1,2,18)

225

>> y = humps(x);
>> area = trapz(x,y)
area =

25.1406

Based on the figure, this is probably not a very accurate estimate of the area. However, if a finer
discretization is used by increasing the number of subintervals to 401, better accuracy is achieved:

>> x = linspace(-1,2,401);
>> y = humps(x);
>> area = trapz(x,y)
area =

26.3449

This area agrees with the analytic integral to five significant digits.

Another integral of interest is that for which the upper limit is the variable x:

∫ x

a
f(u)du

where the variable of integration has been changed to u to avoid confusion with the upper limit x.
The definite integral from the lower limit of integration, a, to any point x is found by evaluating the
integral at x. Using the trapezoidal rule, tabulated values of the cumulative integral are computed
using the function cumtrapz:

z = cumtrapz(x,y) Computes the cumulative integral of y with respect to x us-
ing trapezoidal integration. x and y must be vectors of the
same length, or x must be a column vector and y an array
whose first non-singleton dimension is length(x). cumtrapz
operates across this dimension.

z = cumtrapz(x,y,dim) Integrates along dimension dim of y. The length of x must
be the same as size(y,dim)).

For example, consider integration of humps(x)

x = linspace(-1,2,201);
y = humps(x);
z = cumtrapz(x,y);

plot(x,y,x,z,’--’),...
title(’Cumulative integral of humps(x)’),...
xlabel(’x’),ylabel(’humps(x) and integral of humps(x)’),...
grid,legend(’humps(x)’,’integral of humps(x)’)

The resulting plot is shown in Figure 11.4.

Example 11.1 Velocity from an accelerometer

226

−1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

100
Cumulative integral of humps(x)

x

hu
m

ps
(x

)
an

d
in

te
gr

al
 o

f h
um

ps
(x

)

humps(x)
integral of humps(x)

Figure 11.4: Cumulative integral of humps(x)

An accelerometer measures acceleration and the resulting measurements can be used to estimate
velocity and displacement. The acceleration is integrated to estimate velocity and the velocity in
turn is integrated to estimate displacement. Suppose a vehicle starts from rest at time t = 0 and
that its measured acceleration is given by the following table:

Time (s) Accel (m/s2)
0 0
1 2
2 4
3 7
4 11
5 17
6 24
7 32
8 41
9 48

10 51

A script to estimate the velocity:

t = [0:10];
a = [0,2,4,7,11,17,24,32,41,48,51];
v = cumtrapz(t,a);
disp([’ time accel velocity’])
disp([t’,a’,v’])

227

The displayed results:

time accel velocity
0 0 0

1.0000 2.0000 1.0000
2.0000 4.0000 4.0000
3.0000 7.0000 9.5000
4.0000 11.0000 18.5000
5.0000 17.0000 32.5000
6.0000 24.0000 53.0000
7.0000 32.0000 81.0000
8.0000 41.0000 117.5000
9.0000 48.0000 162.0000
10.0000 51.0000 211.5000

Simpson’s Rule

If the area under a curve is approximated by areas under quadratic curve, with the interval [a, b]
divided into 2n equal subintervals, then the area can be approximated by Simpson’s rule:

AS =
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(x2n−2) + 4f(x2n−1) + f(x2n))

where the xk values represent the endpoints of the subintervals and where x0 = a, x2n = b, and
∆x = (b − a)/(2n).

If the piecewise components of the approximating function are higher-degree functions, the integra-
tion techniques are referred to as Newton-Cotes integration techniques. The estimate of an integral
improves as more components are used to approximate the area under a curve. An integral ap-
proximation can be made to meet a desired relative error by increasing the number of components
until the error specification is met.

If the function to be integrated contains a singularity (a point at which the function or its
derivatives are infinity or are not defined), a satisfactory result may not be provided by numerical
techniques.

Matlab provides two quadrature functions for performing numerical function integration.

228

quad(’function’,a,b) Returns the approximation of the integral of the function f(x),
whose name is contained in the string ’function’, from a to b to
within a relative error of 0.001 using an adaptive recursive Simpson’s
rule. Function f must return a vector of output values if given a vec-
tor of input values. Inf is returned if an excessive recursion level is
reached, indicating a possibly singular integral.

quad8(’function’,a,b) Returns the approximation of the integral of the function between a
and b using an adaptive Newton-Cotes 8-panel rule. This function
is better than the quad function at handling some functions with
singularities.

For example, consider computing the integral of the humps function again:

>> quad(’humps’,-1,2)
ans =

26.34497558341242
>> quad8(’humps’,-1,2)
ans =

26.34496024631924

Here the quad solution achieves six significant digit accuracy and the quad8 solution achieves eight
significant digit accuracy.

Two-Dimensional Integration

Two-dimensional integration is evaluated using the function dblquad, which approximates the
integral

∫ ymax

ymin

∫ xmax

xmin

f(x, y)dxdy

q = dblquad(’function’,xmin,xmax,ymin,ymax): Returns the evaluation of the double integral
f(x,y) using the quad quadrature function where x is the inner variable ranging from xmin to
xmax, and y is the outer variable ranging from ymin to ymax. The first argument ’function’ is
a string representing the integrand function. This function must be a function of two variables of
the form z =f(x,y). The function must take a vector x and a scalar y and return a vector z that
is the function evaluated at y and each value of x.

To use dblquad, one must first create a function that evaluates f(x, y). Consider, for example, the
function func.m:

function z = func(x,y)
% FUNC(X,Y) computes an example function of two variables
z = sin(x).*cos(y) + 1;

Using the commands listed below, this function can be plotted as shown in Figure 11.5:

229

x = linspace(0,pi,20);
y = linspace(-pi,pi,20);
[xx,yy] = meshgrid(x,y);
zz = func(xx,yy);
mesh(xx,yy,zz),xlabel(’x’),ylabel(’y’)

0
0.5

1
1.5

2
2.5

3
3.5

−4

−2

0

2

4
0

0.5

1

1.5

2

Figure 11.5: Mesh plot of func(x,y)

The integral of this function over limits 0 ≤ x ≤ π, −π ≤ y ≤ π is given by

>> dblquad(’func’,0,pi,-pi,pi)
ans =

19.73921476256606

11.2 Numerical Differentiation

The derivative of a function f(x) is defined as a function f ′(x) that is equal to the rate of change
of f(x) with respect to x

f ′(x) =
df(x)
dx

Differentiation and integration are complementary operations. For example, if

f(x) =
∫

g(x)dx

230

then g(x) is the derivative of f(x) with respect to x. This relationship is written as

g(x) =
df(x)
dx

= f ′(x)

The derivative f ′(x) can be interpreted geometrically as the slope of the function at (x, f(x)), where
the slope of f(x) is the slope of the tangent line to the function at x, as shown in Figure 11.6.

Figure 11.6: Derivative of f(x) at x = a.

Formally, the derivative of f at x is

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)
(x + ∆x) − x

= lim
∆x→0

f(x + ∆x) − f(x)
∆x

Difference Expressions

Numerical differentiation techniques estimate the derivative of a function at a point xk by approx-
imating the slope of the tangent line at xk using values of the function at points near xk. The
approximation of the slope of the tangent line can be done in several ways, as shown in Figure 11.7.

The backward difference approximation of the derivative at xk is the slope of the line between
f(xk−1) and f(xk), as shown in Figure 11.7a

f ′(xk) =
f(xk) − f(xk−1)

xk − xk−1

If the samples of x are uniformly spaced so that xk − xk−1 = ∆x

f ′(xk) =
f(xk) − f(xk−1)

∆x

The forward difference approximation of the derivative at xk is the slope of the line between
f(xk) and f(xk+1), as shown in Figure 11.7b

f ′(xk) =
f(xk+1) − f(xk)

xk+1 − xk

231

For uniform spacing ∆x

f ′(xk) =
f(xk+1) − f(xk)

∆x

Note that the forward difference at xk is the same as the backward difference at xk+1.

Figure 11.7: Techniques for approximating f ′(xk).

The quality of both of these derivative approximations depends heavily on two factors: the spacing
of the samples and the scatter in the data due to measurement error. The greater the spacing, the
more difficult it is to estimate the derivative. The approximation improves as the spacing between
the two points decreases.

The central difference is the average of the forward and backward differences. For uniform
spacing

f ′(xk) =
1
2

(
f(xk+1)− f(xk)

∆x
+

f(xk) − f(xk−1)
∆x

)
=

f(xk+1) − f(xk−1)
2∆x

This average tends to cancel out the effects of measurement error.

The second derivative of a function f(x) is the derivative of the first derivative of the function

f ′′(xk) =
df ′(x)

dx

This function can be approximated using slopes of the first derivative. Using backward differences
and assuming uniform spacing ∆x

f ′′(xk) =
f ′(xk) − f ′(xk−1)

∆x

=
1

∆x

[
f(xk) − f(xk−1)

∆x
− f(xk−1) − f(xk−2)

∆x

]

=
f(xk)− 2f(xk−1) + f(xk−2)

(∆x)2

232

diff Function

The diff function computes differences between adjacent values in a vector, generating a new
vector with one less value.

diff(x) For vector x, returns a vector of differences between adjacent values in
x: [x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)], where n is length(x).
For a matrix x, returns the matrix of column differences, [x(2:n,:) -
x(1:n-1,:)].

Example:

>> x = [0,1,2,3,4,5];
>> y = [2,3,1,5,8,10];
>> dx = diff(x)
dx =

1 1 1 1 1
>> dy = diff(y)
dy =

1 -2 4 3 2

An approximate derivative f ′(x) is computed using diff by dividing a change in y = f(x) by a
change in x.

>> df = diff(y)./diff(x)
df =

1 -2 4 3 2

Obviously, in this example, since samples of x are spaced by 1, dy and df are the same.

Note that the values of df are correct for both the forward-difference and the backward-difference
approximation to the derivative, as explained above. The distinction between the two methods of
approximating the derivative is determined by the values of x that correspond to the derivative
dy. Since dy has length one less than that of x, it must be related to a vector xd that is the
vector x truncated by one sample at either the beginning or the end. The backward-difference
approximation of the derivative is related to x truncated at the beginning:

>> xd = x(2:end)
xd =

1 2 3 4 5

The forward-difference approximation of the derivative is related to x truncated at the end:

>> xd = x(1:end-1)
xd =

0 1 2 3 4

233

The backward difference and central difference methods can be compared by considering a sinusoidal
signal that is measured 51 times during one half-period. The measurements are in error by a
Gaussian distributed error with standard deviation of 0.025. Figure 11.2 shows the measured data
and the underlying sine curve. The following script implements the two methods. The results are
shown in Figure 11.2. Clearly the central difference method provides better results in this example.

% Comparison of numerical derivative algorithms
x = [0:pi/50:pi];
n = length(x);
% Sine signal with Gaussian random error
yn = sin(x)+0.025*randn(1,n);
% Derivative of noiseless sine signal
td = cos(x);
% Backward difference estimate noisy sine signal
dynb = diff(yn)./diff(x);
subplot(2,1,1),plot(x(2:n),td(2:n),x(2:n),dynb,’o’),xlabel(’x’),...

ylabel(’Derivative’),axis([0 pi -2 2]),...
legend(’True derivative’,’Backward difference’)

% Central difference
dync = (yn(3:n)-yn(1:n-2))./(x(3:n)-x(1:n-2));
subplot(2,1,2),plot(x(2:n-1),td(2:n-1),x(2:n-1),dync,’o’),xlabel(’x’),...

ylabel(’Derivative’),axis([0 pi -2 2]),...
legend(’True derivative’,’Central difference’)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

y

Figure 11.8: Measurements of a sine signal containing Gaussian distributed random errors

Example 11.2 Numerical differentiation of a polynomial function

234

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

x

D
er

iv
at

iv
e

True derivative
Backward difference

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

x

D
er

iv
at

iv
e

True derivative
Central difference

Figure 11.9: Comparison of backward difference and central difference methods

Determine the linear acceleration of an object whose speed is defined by s(t) = t3 − 2t2 + 2 m/s,
where t is in seconds, over the interval 0 to 5. Determine the specific acceleration at t = 2.5s.

Consider computing the derivative function at three different resolutions to determine the effect of
increasing the resolution. Begin with a time resolution of ∆t = 0.1 second, compute the speed at
each of the time values and compute the acceleration by approximating the derivative of the speed
with respect to time:

>> t = 0:0.1:5;
>> s = t.^3 - 2*t.^2 + 2;
>> ds = diff(s)./diff(t);

To determine the acceleration at t = 2.5s, it is first necessary to find the time index corresponding
to this time. Relating t to find the index k and the time interval ∆t:

t = ∆t · (k − 1)

Thus

k =
t

∆t
+ 1

or

k =
2.5
0.1

+ 1 = 26

235

and

>> ds(26)
ans =

9.3100

Thus, the acceleration is 9.31 meters/second2.

Repeating the computations for ∆t = 0.01 second:

>> t = 0:0.01:5;
>> s = t.^3 - 2*t.^2 + 2;
>> ds = diff(s)./diff(t);

The time index k for t = 2.5s:

k =
2.5
0.01

+ 1 = 251

The computed acceleration:

>> ds(251)
ans =

8.8051

Repeating again for a resolution ∆t = 0.001s, where we are interested in the acceleration at index

k =
2.5

0.001
+ 1 = 2501

>> t = 0:0.001:5;
>> s = t.^3 - 2*t.^2 + 2;
>> ds = diff(s)./diff(t);
>> ds (2501)
ans =

8.7555

Note that the result decreases with each decrease in the time interval. To check the answer,
analytically differentiate s(t) to obtain:

s′(t) = 3t2 − 4t

At t = 2.5s:

s′(2.5) = 3(2.5)2 − 4 · 2.4 = 8.75m/s2

236

Thus, we observe that the approximation is converging to the correct result.

Since the Matlab diff function returns only an approximate derivative, it is necessary to use the
resolution required to achieve the accuracy desired.

Differentiation Error Sensitivity

Differentiation is sensitive to minor changes in the shape of a function, as any small change in the
function can easily create large changes in its slope in the neighborhood of the change.

Because of this inherent sensitivity in differentiation, numerical differentiation is avoided whenever
possible, especially if the data to be differentiated are obtained experimentally. In this case, it is
best to perform a least squares curve fit to the data and then differentiate the resulting polynomial.
For example, reconsider the example from the section on curve fitting (Section 10).

In the script below, the x and y data values determined by assignment statements and a second
degree curve is fit to the data and plotted as the first subplot. The derivative is approximated
from the data and then from the second degree curve fit and these curves are plotted as the second
subplot. Since diff computes the difference between elements of a vector, the resulting vector
contains one less element than the original vector. Thus, to plot the derivative, one element of the
x vector is discarded to form the vector xd. The last element was discarded, so yd is a forward
difference approximation.

% Generate noisy data
x = 0:0.1:1;
y = [-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
% 2nd degree curve fit
a = polyfit(x,y,2);
xi = linspace(0,1,101);
yi = polyval(a,xi);
subplot(2,1,1),plot(x,y,’--o’,xi,yi),...

xlabel(’x’), ylabel(’y’),...
title(’Noisy data and 2nd degree curve fit’),...
legend(’Noisy data’,’2nd Degree Fit’,4)

% Differentiate noise data and fitted curve
yd = diff(y)./diff(x);
ad = polyder(a);
yid = polyval(ad,xi);
xd = x(1:end-1);
subplot(2,1,2),plot(xd,yd,’--o’,xi,yid),...

xlabel(’x’), ylabel(’dy/dx’),...
title(’Derivative approximations’),...
legend(’Noisy data’,’2nd Degree Fit’,3)

The resulting plot is shown in Figure 11.10. Observing the approximation to the derivative shown in

237

dashed lines in the bottom subplot, it is overwhelmingly apparent that approximating the derivative
by finite differences can lead to poor results. Note that the derivative of the second order curve
fit shown in the solid curve in the bottom subplot does not show the large fluctuations of the
approximation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

x

y

Noisy data and 2nd degree curve fit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

x

dy
/d

x

Derivative approximations

Figure 11.10: Curve fitting and derivative approximation

238

Section 12

Strings, Time, Base Conversion and
Bit Operations

12.1 Character Strings

While Matlab is primarily intended for number crunching, there are times when it is desirable to
manipulate text, as is needed in placing labels and titles on plots. In Matlab, text is referred to
as character strings or simply strings.

String Construction

Character strings in Matlab are special numerical arrays of ASCII values that are displayed as
their character string representation. For example:

>> text = ’This is a character string’
text =
This is a character string
>> size(text)
ans =

1 26
>> whos

Name Size Bytes Class

ans 1x2 16 double array
text 1x26 52 char array

Grand total is 28 elements using 68 bytes

239

ASCII Codes

Each character in a string is one element in an array that requires two bytes per character for
storage, using the ASCII code. This differs from the eight bytes per element required for numerical
or double arrays. The ASCII codes for the letters ‘A’ to ‘Z’ are the consecutive integers from 65
to 90, while the codes for ‘a’ to ‘z’ are 97 to 122. The function abs returns the ASCII codes for a
string.

>> text = ’This is a character string’
text =
This is a character string
>> d = abs(text)
d =

Columns 1 through 12
84 104 105 115 32 105 115 32 97 32 99 104

Columns 13 through 24
97 114 97 99 116 101 114 32 115 116 114 105

Columns 25 through 26
110 103

The function char performs the inverse transformation, from ASCII codes to a string:

>> char(d)
ans =
This is a character string

The relationship between strings and their ASCII codes allow you to do the following:

>> alpha = abs(’a’):abs(’z’);
>> disp(char(alpha))
abcdefghijklmnopqrstuvwxyz

Strings are Arrays

Since strings are arrays, they can be manipulated with array manipulation tools:

>> text = ’This is a character string’;
>> u = text(11:19)
u =
character

As with matrices, character strings can have multiple rows, but each row must have an equal
number of columns. Therefore, blanks are explicitly required to make all rows the same length.
For example:

240

>> v = [’Character strings having more than’
’one row must have the same number ’
’of columns - just like matrices ’]

v =
Character strings having more than
one row must have the same number
of columns - just like matrices
>> size(v)
ans =

3 34

Concatenation of Strings

Because strings are arrays, they may be concatenated (joined) with square brackets. For example:

>> today = ’May’;
>> today = [today, ’ 18’]
today =
May 18

String Conversions

char(x) Converts the array x that contains positive integers representing
character codes into a character array (the first 127 codes are ASCII).
The result for any elements of x outside the range from 0 to 65535
is not defined.

int2str(x) Rounds the elements of the matrix x to integers and converts the
result into a string matrix.

num2str(x) Converts the matrix x into a string representation with about 4 digits
and an exponent if required. This is useful for labeling plots with
the title, xlabel, ylabel, and text commands.

str2num(s) Converts the string s, which should be an ASCII character repre-
sentation of a numeric value, to numeric representation. The string
may contain digits, a decimal point, a leading + or - sign, an ’e’
preceeding a power of 10 scale factor, and an ’i’ for a complex unit.

The num2str function can be used to convert numerical results into strings for use in formating
displayed results with disp. For example, consider the following portion of a script:

tg = 2.2774;
xg = 144.6364;
disp([’time of flight: ’ num2str(tg) ’ s’])
disp([’distance traveled : ’ num2str(xg) ’ ft’])

The arguments for each of the disp commands are vectors of strings, with the first element being
a label, the second being a number converted to a string, and the third being the units of the

241

quantity. The label, the numerical results, and the units are displayed on one line, which was not
possible with other forms of the use of disp:

time of flight: 2.2774 s
distance traveled: 144.6364 ft

242

String Functions

blanks(n) Returns a string of n blanks. Used with disp, eg. disp
([’xxx’ blanks(20) ’yyy’]). disp(blanks(n)’) moves
the cursor down n lines.

deblank(s) Removes trailing blanks from string s.
eval(s) Execute the string s as a Matlab expression or statement.
eval(s1,s2) Provides the ability to catch errors. Executes string s1 and

returns if the operation was successful. If the operation gen-
erates an error, string s2 is evaluated before returning. This
can be thought of as eval(’try’,’catch’).

findstr(s1,s2) Find one string within another. Returns the starting indices
of any occurrences of the shorter of the two strings in the
longer.

ischar(s) Returns 1 if s is a character array and 0 otherwise.
isletter(s) Returns 1 for each element of character array s containing

letters of the alphabet and 0 otherwise.
isspace(s) Returns 1 for each element of character s containing white

space characters and 0 otherwise. White space characters
are spaces, newlines, carriage returns, tabs, vertical tabs, and
formfeeds.

lasterr Returns a string containing the last error message issued.
lasterr is usually used in conjunction with the two argument
form of eval: eval(’try’,’catch’). The ’catch’ action can
examine the lasterr string to determine the cause of the
error and take appropriate action.

lower(s) Converts any uppercase characters in string s to the corre-
sponding lowercase character and leaves all other characters
unchanged.

strcat(s1,s2,s3,...) Horizontally concatenates corresponding rows of the charac-
ter arrays s1, s2, s3 etc. The trailing padding is ignored. All
the inputs must have the same number of rows (or any can
be a single string). When the inputs are all character arrays,
the output is also a character array.

strcmp(s1,s2) Returns 1 if strings s1 and s2 are identical and 0 otherwise.
strjust(s) Returns a right justified version of the character array s.
strmatch(str,strs) Searches through the rows of the character array of strings

strs to find strings that begin with string str, returning the
matching row indices.

strncmp(s1,s2,n) Returns 1 if the first n characters of the strings s1 and s2 are
identical and 0 otherwise.

strrep(s1,s2,s3) Replaces all occurrences of the string s2 in string s1 with the
string s3. The new string is returned.

upper(s) Converts any lower case characters in s to the correspond-
ing upper case character and leaves all other characters un-
changed.

243

12.2 Time Computations

Current Date and Time

Three formats are supported for dates:

clock Returns a six element date vector vector containing the current
time and date in decimal form: [year month day hour minute
seconds]. The first five elements are integers. The seconds element
is accurate to several digits beyond the decimal point.

date Returns a string containing the date in dd-mmm-yyyy format.
now Returns the current date and time as a serial date number.

Examples:

>> t = clock
t =

1998 6 10 10 18 59.57
>> date
ans =
10-Jun-1998
>> format long
>> d = now
d =

7.299164376449074e+005

The date number can be converted to a string with the datestr function:

datestr(d,dateform): Converts a data number d (such as that returned by now) into a date
string. The string is formatted according to the format number dateform (see table below). By
default, dateform is 1, 16, or 0 depending on whether d contains dates, times or both.

244

dateform Date format Example
0 ’dd-mmm-yyyy HH:MM:SS’ 01-Mar-1995 15:45:17
2 ’mm/dd/yy’ 03/01/95
3 ’mmm’ Mar
4 ’m’ M
5 ’mm’ 3
6 ’mm/dd’ 03/01
7 ’dd’ 1
8 ’ddd’ Wed
9 ’d’ W
10 ’yyyy’ 1995
11 ’yy’ 95
12 ’mmmyy’ Mar95
13 ’HH:MM:SS’ 15:45:17
14 ’HH:MM:SS PM’ 3:45:17 PM
15 ’HH:MM’ 15:45
16 ’HH:MM PM’ 3:45 PM
17 ’QQ-YY’ Q1-96
18 ’QQ’ Q1

Examples:

>> ds = datestr(d)
ds =
10-Jun-1998 10:30:13
>> datestr(d,14)
ans =
10:30:13 AM

The function datenum is used to compute a date number. It has three forms:

datenum(s): Returns the date number corresponding to the date string s.

datenum(year,month,day): Returns the date number corresponding to the specified year, month,
and day.

datenum(year,month,day,hour minute,second): Returns the date number corresponding to the
specified year, month, day, hour, minute, and second.

Examples:

>> datenum(ds)
ans =

7.299164376504630e+005
>> datenum(1998,6,13)
ans =

729919

245

>> datenum(1998,6,16,10,30,00)
ans =

7.299224375000000e+005

Date Functions

The day of the week may be found from a date string or a date number using weekday, using the
convention that Sunday = 1 and Saturday = 7.

>> [d s] = weekday(’9/9/90’)
d =

1
s =
Sun

A calendar can be generated for a desired month, for display in the Command window or to be
placed in a 6-by-7 array.

>> calendar(’9/9/90’)
Sep 1990

S M Tu W Th F S
0 0 0 0 0 0 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 0 0 0 0 0 0

>> a = calendar(1978,6)
a =

0 0 0 0 1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 0
0 0 0 0 0 0 0

Timing Functions

The functions tic and toc are used to time a sequence of commands. tic starts the timer; toc
stops the timer and displays the elapsed time in seconds.

Example:

tic

246

for t=1:5000
y(t)=sin(2*pi*t/10);

end
toc

Executing:

elapsed_time =
4.5100

cputime returns the amount of central processing unit (CPU) time in seconds since the current
session was started. Computing processing times at various points in a script and taking differences
can be used to determine the CPU time required for segments of the script, possibly locating
portions of the code that could be rewritten to decrease the total computation time.

12.3 Base Conversions and Bit Operations

Base Conversion

Matlab provides functions for converting decimal numbers to other bases in the form of character
strings. These conversion functions include:

dec2bin(d) Returns the binary representation of d as a string. d must be a
non-negative integer smaller than 252.

dec2bin(d,N) Produces a binary representation with at least N bits.
bin2dec(b) Interprets the binary string b and returns the equivalent decimal

number.
dec2hex(d) Returns the hexadecimal representation of decimal integer d as a

string. d must be a non-negative integer smaller than 252.
hex2dec(h) Interprets the hexadecimal string h and returns the equivalent dec-

imal number. If h is a character array, each row is interpreted as a
hexadecimal string.

dec2base(d,b) Returns the representation of d as a string in base b. d must be
a non-negative integer smaller than 252 and b must be an integer
between 2 and 36.

dec2base(d,b,N) Produces a representation with at least N digits.

Examples:

>> a = dec2bin(18) % find binary representation of 18
a =
10010
>> bin2dec(a) % convert a back to decimal
ans =

18

247

>> b = dec2hex(30) % hex representation of 30
b =
1E
>> hex2dec(b) % convert b back to decimal
ans =

30
>> c = dec2base(30,4) % 30 in base 4
c =
132
>> base2dec(c,4) % convert c back to decimal
ans =

30

Bit Operations

Matlab provides functions to implement logical operations on the individual bits of floating-point
integers. The Matlab bitwise functions operate on integers between 0 and bitmax, which is
253 − 1 = 9.0072× 1015:

c = bitand(a,b) Returns the bit-wise AND of the two arguments a and b.
c = bitor(a,b) Returns the bit-wise OR of the two arguments a and b.
c = bitxor(a,b) Returns the bit-wise exclusive OR of the two arguments a and b.
c = bitcmp(a,N) Returns the bit-wise complement of a as an N-bit non-negative inte-

ger.
c = bitset(a,bit,v) Sets the bit at position bit to the value v, where v must be either 0

or 1.
c = bitget(a,bit) Returns the value of the bit at position bit in a. a must contain

non-negative integers and bit must be a number between 1 and the
number of bits in a floating point integer (52 for IEEE machines).

c = bitshift(a,N) Returns the value of a shifted by N bits. If N > 0, this is same as
a multiplication by 2N (left shift). If N < 0, this is the same as a
division by 2^(-N) (right shift).

Examples of the use of these functions are best understood by displaying the results of each oper-
ation by dec2bin:

>> a = 6;
>> b = 10;
>> dec2bin(a,4)
ans =
0110
>> dec2bin(b,4)
ans =
1010
>> dec2bin(bitand(a,b),4)
ans =
0010

248

>> dec2bin(bitor(a,b),4)
ans =
1110
>> dec2bin(bitxor(a,b),4)
ans =
1100
>> dec2bin(bitcmp(a,4),4)
ans =
1001
>> dec2bin(bitset(a,4,1),4)
ans =
1110
>> bitget(a,2)
ans =

1
>> dec2bin(bitshift(a,1))
ans =
1100

249

Section 13

Symbolic Processing

We have focused on the use of Matlab to perform numerical operations, involving numerical data
represented by double precision floating point numbers. We also given some consideration to the
manipulation of text, represented by character strings. In this section, we introduce the use of
Matlab to perform symbolic processing to manipulate mathematical expressions, in much the way
that we do with pencil and paper.

The objective of symbolic processing is to obtain what are known as closed form solutions, ex-
pressions that don’t need to be iterated or updated in order to obtain answers. An understanding
of these solutions often provides better physical and mathematical insight into the problem under
investigation.

For more information, type help symbolic in Matlab. A tutorial demonstration is available with
the command symintro.

The following notes represent a short introduction to the symbolic processing capabilities of Mat-
lab.

13.1 Symbolic Expressions and Algebra

To introduce symbolic processing, first consider the handling of symbolic expressions and the ma-
nipulation of algebra.

Declaring Symbolic Variables and Constants

To enable symbolic processing, the variables and constants involved must first be declared as
symbolic objects.

For example, to create the symbolic variables with names x and y:

>> syms x y

250

If x and y are to be assumed to be real variables, they are created with the command:

>> syms x y real

To declare symbolic constants, the sym function is used. Its argument is a string containing the name
of a special variable, a numeric expression, or a function evaluation. It is used in an assignment
statement which serves as a declaration of a symbolic variable for the assigned variable. Examples
include:

>> pi = sym(’pi’);
>> delta = sym(’1/10’);
>> sqroot2 = sym(’sqrt(2)’);

If the symbolic constant pi is created this way, it replaces the special variable pi in the workspace.
The advantage of using symbolic constants is that they maintain full accuracy until a numeric
evaluation is required.

Symbolic variables and constants are represented by the data type symbolic object. For example, as
displayed by the function whos for the symbolic variables and constants declared in the commands
above:

>> whos
Name Size Bytes Class

delta 1x1 132 sym object
pi 1x1 128 sym object
sqroot2 1x1 138 sym object
x 1x1 126 sym object
y 1x1 126 sym object

Grand total is 20 elements using 650 bytes

Symbolic Expressions

Symbolic variables can be used in expressions and as arguments of functions in much the same way
as numeric variables have been used. The operators + - * / ^ and the built-in functions can
also be used in the same way as they have been used in numeric calculations. For example:

>> syms s t A
>> f = s^2 + 4*s + 5
f =
s^2+4*s+5
>> g = s + 2
g =
s+2

251

>> h = f*g
h =
(s^2+4*s+5)*(s+2)
>> z = exp(-s*t)
z =
exp(-s*t)
>> y = A*exp(-s*t)
y =
A*exp(-s*t)

The symbolic variables s, t, and A are first declared, then used in symbolic expressions to create the
symbolic variables f, g, h, z, and y. The displayed results show that the created variables remain
as symbolic objects, rather than being evaluated numerically. Symbolic processing doesn’t seem
to obey the format compact command, as the displayed output is always double-spaced. These
blank lines have been removed from these notes to conserve paper.

The variable x is the default independent variable, but as can be seen with the expressions above,
other variables can be specified to be the independent variable. It is important to know which
variable is the independent variable in an expression. The command to find the independent
variable is:

findsym(S) Finds the symbolic variables in a symbolic expression or matrix S by re-
turning a string containing all of the symbolic variables appearing in S. The
variables are returned in alphabetical order and are separated by commas.
If no symbolic variables are found, findsym returns the empty string.

Examples based on the declarations and expressions in the examples above are:

>> findsym(f)
ans =
s
>> findsym(z)
ans =
A, s, t

The vector and matrix notation used in Matlab also applies to symbolic variables. For example,
the symbolic matrix B can be created with the commands:

>> n = 3;
>> syms x
>> B = x.^((0:n)’*(0:n))
B =
[1, 1, 1, 1]
[1, x, x^2, x^3]
[1, x^2, x^4, x^6]
[1, x^3, x^6, x^9]

252

Manipulating Polynomial Expressions

In the examples above, symbolic variables were declared and were used in symbolic expressions to
create polynomials. We now wish to manipulate these polynomial expressions algebraically.

The Matlab commands for this purpose include:

expand(S) Expands each element of a symbolic expression S as a product of its
factors. expand is most often used on polynomials, but also expands
trigonometric, exponential and logarithmic functions.

factor(S) Factors each element of the symbolic matrix S.

simplify(S) Simplifies each element of the symbolic matrix S.

[n,d] = numden(S) Returns two symbolic expressions that represent the numerator ex-
pression num and the denominator expression den for the rational
representation of the symbolic expression S.

subs(S,old,new) Symbolic substitution, replacing symbolic variable old with symbolic
variable new in the symbolic expression S.

These commands can be used to implement symbolic polynomial operations that were previously
considered as numeric operations in Section 7.2 of these notes.

• Addition:

>> syms s
>> A = s^4 -3*s^3 -s +2;
>> B = 4*s^3 -2*s^2 +5*s -16;
>> C = A + B
C =
s^4+s^3+4*s-14-2*s^2

Note that the result is correct, although it is not in form the we prefer, as the terms are not
ordered in decreasing powers of s.

• Scalar multiple:

>> syms s
>> A = s^4 -3*s^3 -s +2;
>> C = 3*A
C =
3*s^4-9*s^3-3*s+6

• Multiplication:

>> syms s
>> A = s+2;
>> B = s+3;
>> C = A*B

253

C =
(s+2)*(s+3)
>> C = expand(C)
C =
s^2+5*s+6

• Factoring:

>> syms s
>> D = s^2 + 6*s + 9;
>> D = factor(D)
D =
(s+3)^2
>> P = s^3 - 2*s^2 -3*s + 10;
>> P = factor(P)
P =
(s+2)*(s^2-4*s+5)

• Common denominator: Consider the expression

H(s) = − 1/6
s + 3

− 1/2
s + 1

+
2/3
s

This can be expressed as a ratio of polynomials by finding the common denominator for the
three terms, as follows:

>> syms s
>> H = -(1/6)/(s+3) -(1/2)/(s+1) +(2/3)/s;
>> [N,D] = numden(H)
N =
s+2
D =
(s+3)*(s+1)*s
>> D = expand(D)
D =
s^3+4*s^2+3*s

Thus, H(s) can be expressed in the form

H(s) =
s + 2

s3 + 4s2 + 3s

As a second example, consider

G(s) = s + 4 +
2

s + 4
+

3
s + 2

Manipulating with Matlab:

254

>> syms s
>> G = s+4 + 2/(s+4) + 3/(s+2);
>> [N,D] = numden(G)
N =
s^3+10*s^2+37*s+48

D =
(s+4)*(s+2)
>> D = expand(D)
D =
s^2+6*s+8

Thus, G(s) can also be expressed in the form:

G(s) =
s3 + 10s2 + 37s + 48

s2 + 6s + 8

In this example, G(s) is an improper rational function.

• Cancellation of terms: For a ratio of polynomials, Matlab can be applied to see if any
terms cancel. For example

H(s) =
s3 + 2s2 + 5s + 10

s2 + 5

Applying Matlab:

>> syms s
>> H = (s^3 +2*s^2 +5*s +10)/(s^2 + 5);
>> H = simplify(H)
H =
s+2

Factoring the denominator shows why the cancellation occurs:

>> factor(s^3 +2*s^2 +5*s +10)
ans =
(s+2)*(s^2+5)

Thus,

H(s) = s + 2

• Variable substitution: Consider the ratio of polynomials

H(s) =
s + 3

s2 + 6s + 8

Define a second expression

G(s) = H(s)|s=s+2

Evaluating G(s) with Matlab:

255

>> syms s
>> H = (s+3)/(s^2 +6*s + 8);
>> G = subs(H,s,s+2)
G =
(s+5)/((s+2)^2+6*s+20)
>> G = collect(G)
G =
(s+5)/(s^2+10*s+24)

Thus

G(s) =
s + 5

s2 + 10s + 24

Commands are also provided to convert between the numeric representation of a polynomial as the
vector of its coefficients and the symbolic representation.

sym2poly(P) Converts from a symbolic polynomial P to a row vector containing the poly-
nomial coefficients.

poly2sym(p) Converts from a polynomial coefficient vector p to a symbolic polynomial in
the variable x. poly2sym(p,v) uses the symbolic the variable v.

For example, consider the polynomial

A(s) = s3 + 4s2 − 7s − 10

In Matlab:

>> a = [1 4 -7 -10];
>> A = poly2sym(a,s)
A =
s^3+4*s^2-7*s-10

For the polynomial

B(s) = 4s3 − 2s2 + 5s − 16

>> syms s
>> B = 4*s^3 -2*s^2 +5*s -16;
>> b = sym2poly(B)
b =

4 -2 5 -16

Forms of Expressions

As we have seen in some of the examples above, Matlab does not always arrange expressions in
the form that we would prefer. For example, Matlab expresses results in the form 1/a*b, while
we would prefer b/a. For example:

256

>> syms s
>> H = s^2 +6*s + 8;
>> G = -H/3
G =
-1/3*s^2-2*s-8/3

The result is G = −(1/3)s2 − 2s − 8/3, while we would prefer G = −(s2 + 6s + 8)/3.

13.2 Manipulating Trigonometric Expressions

Trigonometric expressions can also be manipulated symbolically in Matlab, primarily with the
use of the expand function. For example:

>> syms theta phi
>> A = sin(theta + phi)
A =
sin(theta+phi)
>> A = expand(A)
A =
sin(theta)*cos(phi)+cos(theta)*sin(phi)
>> B = cos(2*theta)
B =
cos(2*theta)
>> B = expand(B)
B =
2*cos(theta)^2-1
>> C = 6*((sin(theta))^2 + (cos(theta))^2)
C =
6*sin(theta)^2+6*cos(theta)^2
>> C = expand(C)
C =
6*sin(theta)^2+6*cos(theta)^2

Thus, Matlab was able to apply trigonometric identities to expressions A and B, but it was not
successful with C, as we know

C = 6(sin2(θ) + cos2(θ)) = 6

Matlab can also manipulate expressions involving complex exponential functions. For example:

>> syms theta real
>> A = real(exp(j*theta))
A =
1/2*exp(i*theta)+1/2*exp(-i*theta)

257

>> A = simplify(A)
A =
cos(theta)

13.3 Evaluating and Plotting Symbolic Expressions

In many applications, we eventually want to obtain numerical results or a plot from a symbolic
expression. The function double produces numerical results:

double(S) Converts the symbolic matrix expression S to a matrix of double
precision floating point numbers. S must not contain any symbolic
variables, except possibly eps.

Since the symbolic expression cannot contain any symbolic variables, it is necessary to use subs to
substitute numerical values for the symbolic variables prior to applying double. For example:

>> E = s^3 -14*s^2 +65*s -100;
>> F = subs(E,s,7.1)
F =
13671/1000
>> G = double(F)
G =

13.6710

The symbolic form is F and the numeric quantity is G, as confirmed by the display from whos:

>> whos
Name Size Bytes Class

E 1x1 162 sym object
F 1x1 144 sym object
G 1x1 8 double array
s 1x1 126 sym object

Grand total is 34 elements using 440 bytes

Symbolic expressions can be plotted with the Matlab function ezplot:

ezplot(f) Plots a graph of f(x) where f is a string or a symbolic expression
representing a mathematical expression involving a single symbolic
variable, say x. The default range of the x-axis is [−2π, 2π]

ezplot(f,xmin,xmax) Plots the graph using the specified x-range instead of the default
range.

258

For example consider plotting the polynomial function

A(s) = s3 + 4s2 − 7s − 10

over the range [−1, 3]:

syms s
a = [1 4 -7 -10];
A = poly2sym(a,s)
ezplot(A,-1,3), ylabel(’A(s)’)

The resulting plot is shown in Figure 13.3. Note that the expression plotted is automatically placed
at the top of the plot and that the axis label for the independent variable is automatically placed.
A ylabel command was used to label the dependent variable.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

30

35

s

s^3+4*s^2−7*s−10

A
(s

)

Figure 13.1: Plot of a polynomial function using ezplot

13.4 Solving Algebraic and Transcendental Equations

The symbolic math toolbox can be used to solve algebraic and transcendental equations, as well as
systems of such equations. A transcendental equation is one that contains one or more transcen-
dental functions, such as cos x, ex, or ln x.

The function used in solving these equations is solve. There are several forms of solve, but only
the following forms will be presented in these notes:

259

solve(E1, E2,...,EN)
solve(E1, E2,...,EN, var1, var2,...,varN)

where E1, E2,...,EN are the names of symbolic expressions and var1, var2,..., varN are vari-
ables in the expressions that have been declared to be symbolic. The solutions obtained are the
roots of the expressions; that is, symbolic expressions for the variables under the conditions E1 =
0, E2 = 0, . . . EN = 0.

For one equation and one variable, the resulting output solution is returned as a single symbolic
variable.

For example:

>> syms s
>> E = s+2;
>> s = solve(E)
s =
-2

For N equations, the N solutions are returned as a symbolic vector.

For example:

>> syms s
>> D = s^2 +6*s +9;
>> s = solve(D)
s =
[-3]
[-3]

Thus, the solution is the symbolic representation of the repeated real roots of the quadratic poly-
nomial, providing the same results as those obtained earlier in numeric representation using the
function roots. Complex roots can also be obtained, as shown in the following example:

>> syms s
>> P = s^3 -2*s^2 -3*s + 10;
>> s = solve(P)
s =
[-2]
[2+i]
[2-i]

Similar results can be obtained in the solution of transcendental equations. An example in trigonom-
etry:

>> syms theta x z

260

>> E = z*cos(theta) - x;
>> theta = solve(E,theta)
theta =
acos(x/z)

For an example involving ex, consider the solution to e2x + 4ex = 32:

>> syms x
>> E = exp(2*x) + 4*exp(x) -32;
>> x = solve(E)
x =
[log(-8)]
[log(4)]
>> log(-8)
ans =

2.0794+ 3.1416i
>> log(4)
ans =

1.3863

Note that two solutions are provided, with the numeric results showing that the first solution
log(−8) = 2.0794 + 3.1416i is complex, while the second solution log(4) = 1.3863 is real. The issue
as to whether both of these solutions are meaningful would depend on the application that led to
the original equation.

Equations containing periodic functions can have an infinite number of solutions. In such cases,
solve restricts the search for solutions to the region near 0. For example, to solve the equation
cos(2θ) − sin(θ) = 0:

>> E = cos(2*theta)-sin(theta);
>> solve(E)
ans =
[-1/2*pi]
[1/6*pi]
[5/6*pi]

Example 13.1 Positioning a robot arm

Consider again the application to robot motion that was presented in Section 10.4. The robot arm
has two joints and two links. The (x, y) coordinates of the hand are given by

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2)

261

where θ1 and θ2 are the joint angles and L1 = 4 feet and L2 = 3 feet are the link lengths. A part of
the previous solution that was not determined was the joint angles needed to position the hand at
a given set of coordinates. For the initial hand position of (x, y) = (6.5, 0), the following commands
determine the required angles:

>> syms theta1 theta2
>> E1 = 4*cos(theta1)+3*cos(theta1+theta2)-6.5;
>> E2 = 4*sin(theta1)+3*sin(theta1+theta2);
>> [theta1, theta2] = solve(E1,E2)
theta1 =
[atan(9/197*55^(1/2))]
[atan(-9/197*55^(1/2))]

theta2 =
[-atan(3/23*55^(1/2))]
[-atan(-3/23*55^(1/2))]
>> theta1 = double(theta1*(180/pi))
theta1 =

18.7170
-18.7170

>> theta2 = double(theta2*(180/pi))
theta2 =

-44.0486
44.0486

There are two solutions, given first in symbolic form, then converted into numeric form using
double. The first is θ1 = 18.717◦, θ2 = −44.0486◦, which is the “elbow up” solution. The second
is θ1 = −18.717◦, θ2 = 44.0486◦, the “elbow down” solution.

13.5 Calculus

Symbolic expressions can be differentiated and integrated to obtain closed form results.

Differentiation

The diff function, when applied to a symbolic expression, provides a symbolic derivative.

diff(E) Differentiates a symbolic expression E with respect to its free variable
as determined by findsym.

diff(E,v) Differentiates E with respect to symbolic variable v.

diff(E,n) Differentiates E n times for positive integer n.

diff(S,v,n) Differentiates E n times with respect to symbolic variable v.

262

Examples of derivatives of polynomial functions:

>> syms s n
>> p = s^3 + 4*s^2 -7*s -10;
>> d = diff(p)
d =
3*s^2+8*s-7
>> e = diff(p,2)
e =
6*s+8
>> f = diff(p,3)
f =
6
>> g = s^n;
>> h = diff(g)
h =
s^n*n/s
>> h = simplify(h)
h =
s^(n-1)*n

Examples of derivatives of transcendental functions:

>> syms x
>> f1 = log(x);
>> df1 = diff(f1)
df1 =
1/x
>> f2 = (cos(x))^2;
>> df2 = diff(f2)
df2 =
-2*cos(x)*sin(x)
>> f3 = sin(x^2);
>> df3 = diff(f3)
df3 =
2*cos(x^2)*x
>> df3 = simplify(df3)
df3 =
2*cos(x^2)*x
>> f4 = cos(2*x);
>> df4 = diff(f4)
df4 =
-2*sin(2*x)
>> f5 = exp(-(x^2)/2);
>> df5 = diff(f5)
df5 =
-x*exp(-1/2*x^2)

263

Min-Max Problems

The derivative can be used to find the maximum or minimum of a continuous function, say, f(x),
over an interval a ≤ x ≤ b. A local maximum or local minimum (one that does not occur at one
of the boundaries x = a or x = b) can occur only at a critical point, which is a point where either
df/dx = 0 or df/dx does not exist.

Example 13.2 Minimum cost tank design

Consider again the tank design problem that was solved numerically in Example 7.1. In this
problem, the tank radius is R, the height is H and the tank volume is such that

500 = πR2H +
2
3
πR3

The cost of the tank, a function of surface area, is

C = 300(2πRH) + 400(2πR2)

The problem is to solve for R and H providing the minimum cost tank providing the specified
volume. The symbolic approach is to solve the volume equation for H as a function of R, express
cost C symbolically, then differentiate C with respect to R and solve the resulting equation for R.

>> syms R H
>> V = pi*R^2*H + (2/3)*pi*R^3 -500; % Equation for volume
>> H = solve(V,H) % Solve volume for height H
H =
-2/3*(pi*R^3-750)/pi/R^2
>> C = 300*(2*pi*R*H) + 400*(2*pi*R^2); % Equation for cost
>> dCdR = diff(C,R) % Derivative of cost wrt R
dCdR =
400/R^2*(pi*R^3-750)+400*pi*R
>> Rmins = solve(dCdR,R) % Solve dC/dR for R: Rmin
Rmins =
[5/pi*3^(1/3)*(pi^2)^(1/3)]
[-5/2/pi*3^(1/3)*(pi^2)^(1/3)+5/2*i*3^(5/6)/pi*(pi^2)^(1/3)]
[-5/2/pi*3^(1/3)*(pi^2)^(1/3)-5/2*i*3^(5/6)/pi*(pi^2)^(1/3)]
>> Rmins = double(Rmins)
Rmin =

4.9237
-2.4619+ 4.2641i
-2.4619- 4.2641i

>> Rmin = Rmins(1)
Rmin =

4.9237

264

>> Hmin = double(subs(H,R,Rmin))
Hmin =

3.2825
>> Cmin = double(subs(C,{R,H},{Rmin,Hmin}))
Cmin =

9.1394e+004

Note that there are three symbolic solutions for R to provide minimum cost (Rmins). Converting
these solutions to numeric quantities with double, we see that the second and third solutions are
complex, which are not physically meaningful. Thus, we choose Rmin to be Rmins(1) and we
compute Hmin and Cmin from this value. These symbolic results obtained here are more accurate
than those determined previously in Example 7.1, as there has been no need to consider samples
of R and H at a limited resolution. However, note that the results determined by the two methods
are very close.

Integration

The int function, when applied to a symbolic expression, provides a symbolic integration.

int(E) Indefinite integral of symbolic expression E with respect to its sym-
bolic variable as defined by findsym. If E is a constant, the integral
is with respect to x.

int(E,v) Indefinite integral of E with respect to scalar symbolic variable v.

int(E,a,b) Definite integral of E with respect to its symbolic variable from a to
b, where a and b are each double or symbolic scalars.

int(E,v,a,b) Definite integral of E with respect to v from a to b.

Examples of integrals of polynomials:

>> syms x n a b t
>> int(x^n)
ans =
x^(n+1)/(n+1)
>> int(x^3 +4*x^2 + 7*x + 10)
ans =
1/4*x^4+4/3*x^3+7/2*x^2+10*x
>> int(x,1,t)
ans =
1/2*t^2-1/2
>> int(x^3,a,b)
ans =
1/4*b^4-1/4*a^4

Examples of integrals of transcendental functions:

265

>> syms x
>> int(1/x)
ans =
log(x)
>> int(cos(x))
ans =
sin(x)
>> int(1/(1+x^2))
ans =
atan(x)
>> int(exp(-x^2))
ans =
1/2*pi^(1/2)*erf(x)

The last integral above introduces the error function erf(x) for each element of x, where x is real.
The error function is defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt

13.6 Linear Algebra

Operations on symbolic matrices can be performed in much the same way as with numeric matrices.

The following are examples of matrix inverse, product, and determinant.

>> A = sym([2,1; 4,3])
A =
[2, 1]
[4, 3]
>> Ainv = inv(A)
Ainv =
[3/2, -1/2]
[-2, 1]
>> C = A*Ainv
C =
[1, 0]
[0, 1]
>> B = sym([1 3 0; -1 5 2; 1 2 1])
B =
[1, 3, 0]
[-1, 5, 2]
[1, 2, 1]
>> detB = det(B)
detB =
10

266

Systems of linear equations can also be solved symbolically. Consider the following example that
was previously solved numerically:

>> syms x
>> A = sym([3 2 -1; -1 3 2; 1 -1 -1])
A =
[3, 2, -1]
[-1, 3, 2]
[1, -1, -1]
>> b = sym([10; 5; -1])
b =
[10]
[5]
[-1]
>> x = A\b
x =
[-2]
[5]
[-6]

The results are the same as those obtained numerically. For this problem, there is little advantage to
finding the result symbolically. However, solving a system of equations with respect to a parameter,
the symbolic approach provides an advantage. Consider the following set of equations

2x1 − 3x2 = 3
5x1 + cx2 = 19

To solve for x1 and x2 as functions of the parameter c:

>> syms c
>> A = sym([2 -3; 5 c]);
>> b = sym([3; 19]);
>> x = A\b
x =
[3*(19+c)/(2*c+15)]
[23/(2*c+15)]

267

	Contents
	Section 1 - Engineering Problem Solving
	Section 2 - Matlab Technical Computing Environment
	Section 3 - Files and File Management
	Section 4 - Trigonometry and Complex Numbers
	Section 5 - Arrays and Array Operations
	Section 6 - Mathematical Functions and Applications
	Section 7 - Data Analysis
	Section 8 - Selection Programming
	Section 9 - Vectors, Matrices and Linear Algebra
	Section 10 - Curve Fitting and Interpolation
	Section 11 - Integration and Di.erentiation
	Section 12 - Strings, Time, Base Conversion and
Bit Operations
	Section 13 - Symbolic Processing

