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Preface

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (sophomores, seniors and graduate students). Familiarity with a
computer language is required; knowledge of basic engineering subjects is useful, but
not essential.

The text attempts to place emphasis on numerical methods, not programming.
Most engineers are not programmers, but problem solvers. They want to know what
methods can be applied to a given problem, what are their strengths and pitfalls and
how to implement them. Engineers are not expected to write computer code for basic
tasks from scratch; they are more likely to utilize functions and subroutines that have
been already written and tested. Thus programming by engineers is largely confined
to assembling existing pieces of code into a coherent package that solves the problem
at hand.

The “piece” of code is usually a function that implements a specific task. For the
user the details of the code are unimportant. What matters is the interface (what goes
in and what comes out) and an understanding of the method on which the algorithm
is based. Since no numerical algorithm is infallible, the importance of understanding
the underlying method cannot be overemphasized; it is, in fact, the rationale behind
learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples
that follow individual topics fall into two categories: hand computations that illustrate
the inner workings of the method, and small programs that show how the computer
code is utilized in solving a problem. Problems that require programming are marked
with �.

The material consists of the usual topics covered in an engineering course on
numerical methods: solution of equations, interpolation and data fitting, numerical
differentiation and integration, solution of ordinary differential equations and eigen-
value problems. The choice of methods within each topic is tilted toward relevance
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viii Preface

to engineering problems. For example, there is an extensive discussion of symmetric,
sparsely populated coefficient matrices in the solution of simultaneous equations.
In the same vein, the solution of eigenvalue problems concentrates on methods that
efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This dis-
qualified several well-known historical methods that have been overtaken by more
recent developments. For example, the secant method for finding roots of equations
was omitted as having no advantages over Brent’s method. For the same reason, the
multistep methods used to solve differential equations (e.g., Milne and Adams meth-
ods) were left out in favor of the adaptive Runge–Kutta and Bulirsch–Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that this
topic is best treated by finite element or boundary element methods, which are outside
the scope of this book. The finite difference model, which is commonly introduced
in numerical methods texts, is just too impractical in handling multidimensional
boundary value problems.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (*).

The programs listed in this book were tested with MATLAB® 6.5.0 and under
Windows® XP. The source code can be downloaded from the book’s website at

www.cambridge.org/0521852889

The author wishes to express his gratitude to the anonymous reviewers and
Professor Andrew Pytel for their suggestions for improving the manuscript. Credit
is also due to the authors of Numerical Recipes (Cambridge University Press) whose
presentation of numerical methods was inspirational in writing this book.



1 Introduction to MATLAB

1.1 General Information

Quick Overview

This chapter is not intended to be a comprehensive manual of MATLAB
R©

. Our sole
aim is to provide sufficient information to give you a good start. If you are familiar
with another computer language, and we assume that you are, it is not difficult to pick
up the rest as you go.

MATLAB is a high-level computer language for scientific computing and data vi-
sualization built around an interactive programming environment. It is becoming the
premiere platform for scientific computing at educational institutions and research
establishments. The great advantage of an interactive system is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the principles
behind the program and less on programming itself. Since there is no need to com-
pile, link and execute after each correction, MATLAB programs can be developed in
much shorter time than equivalent FORTRAN or C programs. On the negative side,
MATLAB does not produce stand-alone applications—the programs can be run only
on computers that have MATLAB installed.

MATLAB has other advantages over mainstream languages that contribute to
rapid program development:

� MATLAB contains a large number of functions that access proven numerical li-
braries, such as LINPACK and EISPACK. This means that many common tasks (e.g.,
solution of simultaneous equations) can be accomplished with a single function
call.

� There is extensive graphics support that allows the results of computations to be
plotted with a few statements.

� All numerical objects are treated as double-precision arrays. Thus there is no need
to declare data types and carry out type conversions.
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The syntax of MATLAB resembles that of FORTRAN. To get an idea of the similari-
ties, let us compare the codes written in the two languages for solution of simultaneous
equations Ax = b by Gauss elimination. Here is the subroutine in FORTRAN 90:

subroutine gauss(A,b,n)

use prec_mod

implicit none

real(DP), dimension(:,:), intent(in out) :: A

real(DP), dimension(:), intent(in out) :: b

integer, intent(in) :: n

real(DP) :: lambda

integer :: i,k

! --------------Elimination phase--------------

do k = 1,n-1

do i = k+1,n

if(A(i,k) /= 0) then

lambda = A(i,k)/A(k,k)

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n)

b(i) = b(i) - lambda*b(k)

end if

end do

end do

! ------------Back substitution phase----------

do k = n,1,-1

b(k) = (b(k) - sum(A(k,k+1:n)*b(k+1:n)))/A(k,k)

end do

return

end subroutine gauss

The statement use prec mod tells the compiler to load the module prec mod

(not shown here), which defines the word length DP for floating-point numbers. Also
note the use of array sections, such as a(k,k+1:n), a feature that was not available
in previous versions of FORTRAN.

The equivalent MATLAB function is (MATLAB does not have subroutines):

function b = gauss(A,b)

n = length(b);

%-----------------Elimination phase-------------

for k = 1:n-1

for i = k+1:n
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if A(i,k) ˜= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

b(i)= b(i) - lambda*b(k);

end

end

end

%--------------Back substitution phase-----------

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

Simultaneous equations can also be solved in MATLAB with the simple command
A\b (see below).

MATLAB can be operated in the interactive mode through its command window,
where each command is executed immediately upon its entry. In this mode MATLAB
acts like an electronic calculator. Here is an example of an interactive session for the
solution of simultaneous equations:

>> A = [2 1 0; -1 2 2; 0 1 4]; % Input 3 x 3 matrix

>> b = [1; 2; 3]; % Input column vector

>> soln = A\b % Solve A*x = b by left division

soln =

0.2500

0.5000

0.6250

The symbol >> is MATLAB’s prompt for input. The percent sign (%) marks the
beginning of a comment. A semicolon (;) has two functions: it suppresses printout
of intermediate results and separates the rows of a matrix. Without a terminating
semicolon, the result of a command would be displayed. For example, omission of
the last semicolon in the line defining the matrix A would result in

>> A = [2 1 0; -1 2 2; 0 1 4]

A =

2 1 0

-1 2 2

0 1 4
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Functions and programs can be created with the MATLAB editor/debugger and
saved with the .m extension (MATLAB calls them M-files). The file name of a saved
function should be identical to the name of the function. For example, if the function
for Gauss elimination listed above is saved as gauss.m, it can be called just like any
MATLAB function:

>> A = [2 1 0; -1 2 2; 0 1 4];

>> b = [1; 2; 3];

>> soln = gauss(A,b)

soln =

0.2500

0.5000

0.6250

1.2 Data Types and Variables

Data Types

The most commonly used MATLAB data types, or classes, are double, char and
logical, all of which are considered by MATLAB as arrays. Numerical objects
belong to the class double, which represents double-precision arrays; a scalar is
treated as a 1 × 1 array. The elements of a char type array are strings (sequences
of characters), whereas a logical type array element may contain only 1 (true) or 0
(false).

Another important class is function handle, which is unique to MATLAB. It
contains information required to find and execute a function. The name of a function
handle consists of the character @, followed by the name of the function; e.g., @sin.
Function handles are used as input arguments in function calls. For example, suppose
that we have a MATLAB function plot(func,x1,x2) that plots any user-specified
function func from x1 to x2. The function call to plot sin x from 0 to π would be
plot(@sin,0,pi).

There are other data types, but we seldom come across them in this text. Additional
classes can be defined by the user. The class of an object can be displayed with the
class command. For example,

>> x = 1 + 3i % Complex number

>> class(x)

ans =

double
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Variables

Variable names, which must start with a letter, are case sensitive. Hence xstart and
xStart represent two different variables. The length of the name is unlimited, but
only the first N characters are significant. To find N for your installation of MATLAB,
use the command namelengthmax:

>> namelengthmax

ans =

63

Variables that are defined within a MATLAB function are local in their scope.
They are not available to other parts of the program and do not remain in memory
after exiting the function (this applies to most programming languages). However,
variables can be shared between a function and the calling program if they are declared
global. For example, by placing the statement global X Y in a function as well as
the calling program, the variables X and Y are shared between the two program units.
The recommended practice is to use capital letters for global variables.

MATLAB contains several built-in constants and special variables, most important
of which are

ans Default name for results

eps Smallest number for which 1 + eps > 1

inf Infinity

NaN Not a number

i or j
√−1

pi π

realmin Smallest usable positive number

realmax Largest usable positive number

Here are a few of examples:

>> warning off % Suppresses print of warning messages

>> 5/0

ans =

Inf

>> 0/0
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ans =

NaN

>> 5*NaN % Most operations with NaN result in NaN

ans =

NaN

>> NaN == NaN % Different NaN’s are not equal!

ans =

0

>> eps

ans =

2.2204e-016

Arrays

Arrays can be created in several ways. One of them is to type the elements of the array
between brackets. The elements in each row must be separated by blanks or commas.
Here is an example of generating a 3 × 3 matrix:

>> A = [ 2 -1 0

-1 2 -1

0 -1 1]

A =

2 -1 0

-1 2 -1

0 -1 1

The elements can also be typed on a single line, separating the rows with semi-
colons:

>> A = [2 -1 0; -1 2 -1; 0 -1 1]

A =

2 -1 0

-1 2 -1

0 -1 1

Unlike most computer languages, MATLAB differentiates between row and col-
umn vectors (this peculiarity is a frequent source of programming and input errors).
For example,
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>> b = [1 2 3] % Row vector

b =

1 2 3

>> b = [1; 2; 3] % Column vector

b =

1

2

3

>> b = [1 2 3]’ % Transpose of row vector

b =

1

2

3

The single quote (’) is the transpose operator in MATLAB; thus b’ is the transpose
of b.

The elements of a matrix, such as

A =

⎡
⎢⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦

can be accessed with the statement A(i,j), where i and j are the row and column

numbers, respectively. A section of an array can be extracted by the use of colon
notation. Here is an illustration:

>> A = [8 1 6; 3 5 7; 4 9 2]

A =

8 1 6

3 5 7

4 9 2

>> A(2,3) % Element in row 2, column 3

ans =

7

>> A(:,2) % Second column
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ans =

1

5

9

>> A(2:3,2:3) % The 2 x 2 submatrix in lower right corner

ans =

5 7

9 2

Array elements can also be accessed with a single index. Thus A(i) extracts the
ith element of A, counting the elements down the columns. For example, A(7) and
A(1,3) would extract the same element from a 3 × 3 matrix.

Cells

A cell array is a sequence of arbitrary objects. Cell arrays can be created by enclosing
their contents between braces {}. For example, a cell array c consisting of three cells
can be created by

>> c = {[1 2 3], ’one two three’, 6 + 7i}

c =

[1x3 double] ’one two three’ [6.0000+ 7.0000i]

As seen above, the contents of some cells are not printed in order to save space.
If all contents are to be displayed, use the celldisp command:

>> celldisp(c)

c{1} =

1 2 3

c{2} =

one two three

c{3} =

6.0000 + 7.0000i

Braces are also used to extract the contents of the cells:

>> c{1} % First cell

ans =

1 2 3
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>> c{1}(2) % Second element of first cell

ans =

2

>> c{2} % Second cell

ans =

one two three

Strings

A string is a sequence of characters; it is treated by MATLAB as a character array. Strings
are created by enclosing the characters between single quotes. They are concatenated
with the function strcat, whereas a colon operator (:) is used to extract a portion of
the string. For example,

>> s1 = ’Press return to exit’; % Create a string

>> s2 = ’ the program’; % Create another string

>> s3 = strcat(s1,s2) % Concatenate s1 and s2

s3 =

Press return to exit the program

>> s4 = s1(1:12) % Extract chars. 1-12 of s1

s4 =

Press return

1.3 Operators

Arithmetic Operators

MATLAB supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

ˆ Exponentiation

When applied to matrices, they perform the familiar matrix operations, as illus-
trated below.

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A + B % Matrix addition
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ans =

8 10 12

4 6 8

>> A*B’ % Matrix multiplication

ans =

50 8

122 17

>> A*B % Matrix multiplication fails

??? Error using ==> * % due to incompatible dimensions

Inner matrix dimensions must agree.

There are two division operators in MATLAB:

/ Right division

\ Left division

If a and b are scalars, the right division a/b results in a divided by b, whereas the left
division is equivalent to b/a. In the case where A and B are matrices, A/B returns the
solution of X*A = B and A\B yields the solution of A*X = B.

Often we need to apply the *, / and ˆ operations to matrices in an element-by-
element fashion. This can be done by preceding the operator with a period (.) as
follows:

.* Element-wise multiplication

./ Element-wise division

.ˆ Element-wise exponentiation

For example, the computation Ci j = Ai j Bi j can be accomplished with

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> C = A.*B

C =

7 16 27

0 5 12
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Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators
are

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

˜= Not equal to

The comparison operators always act element-wise on matrices; hence they result in
a matrix of logical type. For example,

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A > B

ans =

0 0 0

1 1 1

Logical Operators

The logical operators in MATLAB are

& AND

| OR

˜ NOT

They are used to build compound relational expressions, an example of which is
shown below.

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> (A > B) | (B > 5)

ans =

1 1 1

1 1 1
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1.4 Flow Control

Conditionals

if, else, elseif
The if construct

if condition
block

end

executes the block of statements if the condition is true. If the condition is false,
the block skipped. The if conditional can be followed by any number of elseif
constructs:

if condition
block

elseif condition
block

...
end

which work in the same manner. The else clause

...
else

block
end

can be used to define the block of statements which are to be executed if none of
the if-elseif clauses are true. The function signum below illustrates the use of the
conditionals.

function sgn = signum(a)

if a > 0

sgn = 1;

elseif a < 0

sgn = -1;

else
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sgn = 0;

end

>> signum (-1.5)

ans =

-1

switch
The switch construct is

switch expression
case value1

block
case value2

block
...

otherwise

block
end

Here the expression is evaluated and the control is passed to thecase that matches the
value. For instance, if the value of expression is equal to value2, the block of statements
following case value2 is executed. If the value of expression does not match any
of the case values, the control passes to the optional otherwise block. Here is an
example:

function y = trig(func,x)

switch func

case ’sin’

y = sin(x);

case ’cos’

y = cos(x);

case ’tan’

y = tan(x);

otherwise

error(’No such function defined’)

end

>> trig(’tan’,pi/3)

ans =

1.7321
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Loops

while
The while construct

while condition:
block

end

executes a block of statements if the condition is true. After execution of the block,
condition is evaluated again. If it is still true, the block is executed again. This process
is continued until the condition becomes false.

The following example computes the number of years it takes for a $1000 principal
to grow to $10,000 at 6% annual interest.

>> p = 1000; years = 0;

>> while p < 10000

years = years + 1;

p = p*(1 + 0.06);

end

>> years

years =

40

for
The for loop requires a target and a sequence over which the target loops. The form
of the construct is

for target = sequence
block

end

For example, to compute cos x from x = 0 to π/2 at increments of π/10 we could
use

>> for n = 0:5 % n loops over the sequence 0 1 2 3 4 5

y(n+1) = cos(n*pi/10);

end

>> y

y =

1.0000 0.9511 0.8090 0.5878 0.3090 0.0000
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Loops should be avoided whenever possible in favor of vectorized expressions,
which execute much faster. A vectorized solution to the last computation would be

>> n = 0:5;

>> y = cos(n*pi/10)

y =

1.0000 0.9511 0.8090 0.5878 0.3090 0.0000

break
Any loop can be terminated by the break statement. Upon encountering a break

statement, the control is passed to the first statement outside the loop. In the fol-
lowing example the function buildvec constructs a row vector of arbitrary length
by prompting for its elements. The process is terminated when an empty element is
encountered.

function x = buildvec

for i = 1:1000

elem = input(’==> ’); % Prompts for input of element

if isempty(elem) % Check for empty element

break

end

x(i) = elem;

end

>> x = buildvec

==> 3

==> 5

==> 7

==> 2

==>

x =

3 5 7 2

continue
When the continue statement is encountered in a loop, the control is passed to
the next iteration without executing the statements in the current iteration. As an
illustration, consider the following function that strips all the blanks from the strings1:

function s2 = strip(s1)

s2 = ’’; % Create an empty string

for i = 1:length(s1)
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if s1(i) == ’ ’

continue

else

s2 = strcat(s2,s1(i)); % Concatenation

end

end

>> s2 = strip(’This is too bad’)

s2 =

Thisistoobad

return
A function normally returns to the calling program when it runs out of statements.
However, the function can be forced to exit with the return command. In the ex-
ample below, the function solve uses the Newton–Raphson method to find the zero
of f (x) = sin x − 0.5x. The input x (guess of the solution) is refined in successive
iterations using the formula x ← x + �x, where �x = − f (x)/ f ′(x), until the change
�x becomes sufficiently small. The procedure is then terminated with the return

statement. The for loop assures that the number of iterations does not exceed 30,
which should be more than enough for convergence.

function x = solve(x)

for numIter = 1:30

dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5); % -f(x)/f’(x)

x = x + dx;

if abs(dx) < 1.0e-6 % Check for convergence

return

end

end

error(’Too many iterations’)

>> x = solve(2)

x =

1.8955

error
Execution of a program can be terminated and a message displayed with the error
function

error(’message’)

For example, the following program lines determine the dimensions of a matrix and
aborts the program if the dimensions are not equal.
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[m,n] = size(A); % m = no. of rows; n = no. of cols.

if m ˜= n

error(’Matrix must be square’)

end

1.5 Functions

Function Definition

The body of a function must be preceded by the function definition line

function [output args] = function name(input arguments)

The input and output arguments must be separated by commas. The number of
arguments may be zero. If there is only one output argument, the enclosing brackets
may be omitted.

To make the function accessible to other programs units, it must be saved under
the file name function name.m. This file may contain other functions, called subfunc-
tions. The subfunctions can be called only by the primary function function name or
other subfunctions in the file; they are not accessible to other program units.

Calling Functions

A function may be called with fewer arguments than appear in the function defini-
tion. The number of input and output arguments used in the function call can be
determined by the functions nargin and nargout, respectively. The following exam-
ple shows a modified version of the function solve that involves two input and two
output arguments. The error toleranceepsilon is an optional input that may be used
to override the default value 1.0e-6. The output argument numIter, which contains
the number of iterations, may also be omitted from the function call.

function [x,numIter] = solve(x,epsilon)

if nargin == 1 % Specify default value if

epsilon = 1.0e-6; % second input argument is

end % omitted in function call

for numIter = 1:100

dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

x = x + dx;

if abs(dx) < epsilon % Converged; return to

return % calling program

end
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end

error(’Too many iterations’)

>> x = solve(2) % numIter not printed

x =

1.8955

>> [x,numIter] = solve(2) % numIter is printed

x =

1.8955

numIter =

4

>> format long

>> x = solve(2,1.0e-12) % Solving with extra precision

x =

1.89549426703398

>>

Evaluating Functions

Let us consider a slightly different version of the function solve shown below. The
expression for dx, namely �x = − f (x)/ f ′(x), is now coded in the function myfunc,
so that solve contains a call to myfunc. This will work fine, provided that myfunc is
stored under the file name myfunc.m so that MATLAB can find it.

function [x,numIter] = solve(x,epsilon)

if nargin == 1; epsilon = 1.0e-6; end

for numIter = 1:30

dx = myfunc(x);

x = x + dx;

if abs(dx) < epsilon; return; end

end

error(’Too many iterations’)

function y = myfunc(x)

y = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

>> x = solve(2)

x =

1.8955
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In the above version of solve the function returning dx is stuck with the name
myfunc. Ifmyfunc is replaced with another function name,solvewill not work unless
the corresponding change is made in its code. In general, it is not a good idea to alter
computer code that has been tested and debugged; all data should be communicated
to a function through its arguments. MATLAB makes this possible by passing the
function handle of myfunc to solve as an argument, as illustrated below.

function [x,numIter] = solve(func,x,epsilon)

if nargin == 2; epsilon = 1.0e-6; end

for numIter = 1:30

dx = feval(func,x); % feval is a MATLAB function for

x = x + dx; % evaluating a passed function

if abs(dx) < epsilon; return; end

end

error(’Too many iterations’)

>> x = solve(@myfunc,2) % @myfunc is the function handle

x =

1.8955

The call solve(@myfunc,2)creates a function handle to myfunc and passes it
to solve as an argument. Hence the variable func in solve contains the handle
to myfunc. A function passed to another function by its handle is evaluated by the
MATLAB function

feval(function handle, arguments)

It is now possible to use solve to find a zero of any f (x) by coding the function
�x = − f (x)/ f ′(x) and passing its handle to solve.

In-Line Functions

If the function is not overly complicated, it can also be represented as an inline
object:

f unction name = inline(’expression ’,’var1 ’,’var2 ’,. . . )

where expression specifies the function and var1, var2, . . . are the names of the inde-
pendent variables. Here is an example:

>> myfunc = inline (’xˆ2 + yˆ2’,’x’,’y’);

>> myfunc (3,5)

ans =

34
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The advantage of an in-line function is that it can be embedded in the body of
the code; it does not have to reside in an M-file.

1.6 Input/Output

Reading Input

The MATLAB function for receiving user input is

value = input(’prompt’)

It displays a prompt and then waits for input. If the input is an expression, it is evalu-
ated and returned in value. The following two samples illustrate the use of input:

>> a = input(’Enter expression: ’)

Enter expression: tan(0.15)

a =

0.1511

>> s = input(’Enter string: ’)

Enter string: ’Black sheep’

s =

Black sheep

Printing Output

As mentioned before, the result of a statement is printed if the statement does not end
with a semicolon. This is the easiest way of displaying results in MATLAB. Normally
MATLAB displays numerical results with about five digits, but this can be changed
with the format command:

format long switches to 16-digit display

format short switches to 5-digit display

To print formatted output, use the fprintf function:

fprintf(’format’, list)

where format contains formatting specifications and list is the list of items to be
printed, separated by commas. Typically used formatting specifications are
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%w.df Floating point notation

%w.de Exponential notation

\n Newline character

where w is the width of the field and d is the number of digits after the decimal point.
Line break is forced by the newline character. The following example prints a formatted
table of sin x vs. x at intervals of 0.2:

>> x = 0:0.2:1;

>> for i = 1:length(x)

fprintf(’%4.1f %11.6f\n’,x(i),sin(x(i)))

end

0.0 0.000000

0.2 0.198669

0.4 0.389418

0.6 0.564642

0.8 0.717356

1.0 0.841471

1.7 Array Manipulation

Creating Arrays

We learned before that an array can be created by typing its elements between brackets:

>> x = [0 0.25 0.5 0.75 1]

x =

0 0.2500 0.5000 0.7500 1.0000

Colon Operator
Arrays with equally spaced elements can also be constructed with the colon operator.

x = first elem:increment:last elem

For example,

>> x = 0:0.25:1

x =

0 0.2500 0.5000 0.7500 1.0000
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linspace
Another means of creating an array with equally spaced elements is the linspace

function. The statement

x = linspace(xfirst,xlast,n)

creates an array of n elements starting with xfirst and ending with xlast. Here is an
illustration:

>> x = linspace(0,1,5)

x =

0 0.2500 0.5000 0.7500 1.0000

logspace
The function logspace is the logarithmic counterpart of linspace. The call

x = logspace(zfirst,zlast,n)

creates n logarithmically spaced elements starting with x = 10z f irst and ending with
x = 10z last. Here is an example:

>> x = logspace(0,1,5)

x =

1.0000 1.7783 3.1623 5.6234 10.0000

zeros
The function call

X = zeros(m,n)

returns a matrix of m rows and n columns that is filled with zeroes. When the fun-
ction is called with a single argument, e.g., zeros(n), a n × n matrix is created.

ones

X = ones(m,n)

The function ones works in the manner as zeros, but fills the matrix with ones.

rand

X = rand(m,n)

This function returns a matrix filled with random numbers between 0 and 1.
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eye
The function eye

X = eye(n)

creates an n × n identity matrix.

Array Functions

There are numerous array functions in MATLAB that perform matrix operations and
other useful tasks. Here are a few basic functions:

length
The length n (number of elements) of a vector x can be determined with the function
length:

n = length(x)

size
If the function size is called with a single input argument:

[m,n] = size(X)

it determines the number of rows m and number of columns n in the matrix X . If
called with two input arguments:

m = size(X,dim)

it returns the length of X in the specified dimension (dim = 1 yields the number of
rows, and dim = 2 gives the number of columns).

reshape
The reshape function is used to rearrange the elements of a matrix. The call

Y = reshape(X,m,n)

returns a m×n matrix the elements of which are taken from matrix X in the column-
wise order. The total number of elements in X must be equal to m× n. Here is an
example:
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>> a = 1:2:11

a =

1 3 5 7 9 11

>> A = reshape(a,2,3)

A =

1 5 9

3 7 11

dot

a = dot(x,y)

This function returns the dot product of two vectors x and y which must be of the
same length.

prod

a = prod(x)

For a vector x, prod(x) returns the product of its elements. If x is a matrix, then a is a
row vector containing the products over each column. For example,

>> a = [1 2 3 4 5 6];

>> A = reshape(a,2,3)

A =

1 3 5

2 4 6

>> prod(a)

ans =

720

>> prod(A)

ans =

2 12 30

sum

a = sum(x)

This function is similar to prod, except that it returns the sum of the elements.
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cross

c = cross(a,b)

The function cross computes the cross product: c = a × b, where vectors a and b
must be of length 3.

1.8 Writing and Running Programs

MATLAB has two windows available for typing program lines: the command window
and the editor/debugger. The command window is always in the interactive mode, so
that any statement entered into the window is immediately processed. The interactive
mode is a good way to experiment with the language and try out programming ideas.

MATLAB opens the editor window when a new M-file is created, or an existing file
is opened. The editor window is used to type and save programs (called script files in
MATLAB) and functions. One could also use a text editor to enter program lines, but
the MATLAB editor has MATLAB-specific features, such as color coding and automatic
indentation, that make work easier. Before a program or function can be executed, it
must be saved as a MATLAB M-file (recall that these files have the .m extension). A
program can be run by invoking the run command from the editor’s debug menu.

When a function is called for the first time during a program run, it is compiled
into P-code (pseudo-code) to speed up execution in subsequent calls to the function.
One can also create the P-code of a function and save it on disk by issuing the command

pcode function name

MATLAB will then load the P-code (which has the .p extension) into the memory
rather than the text file.

The variables created during a MATLAB session are saved in the MATLAB
workspace until they are cleared. Listing of the saved variables can be displayed by the
command who. If greater detail about the variables is required, type whos. Variables
can be cleared from the workspace with the command

clear a b . . .

which clears the variables a, b, . . . . If the list of variables is omitted, all variables are
cleared.
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Assistance on any MATLAB function is available by typing

help function name

in the command window.

1.9 Plotting

MATLAB has extensive plotting capabilities. Here we illustrate some basic commands
for two-dimensional plots. The example below plots sin x and cos x on the same plot.

>> x = 0:0.2:pi; % Create x-array

>> y = sin(x); % Create y-array

>> plot(x,y,’k:o’) % Plot x-y points with specified color

% and symbol (’k’ = black, ’o’ = circles)

>> hold on % Allow overwriting of current plot

>> z = cos(x); % Create z-array

>> plot(x,z,’k:x’) % Plot x-z points (’x’ = crosses)

>> grid on % Display coordinate grid

>> xlabel(’x’) % Display label for x-axis

>> ylabel(’y’) % Display label for y-axis

>> gtext(’sin x’) % Create mouse-movable text

>> gtext(’cos x’)
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A function stored in a M-file can be plotted with a single command, as shown
below.

function y = testfunc(x) % Stored function

y = (x.ˆ3).*sin(x) - 1./x;

>> fplot(@testfunc,[1 20]) % Plot from x = 1 to 20

>> grid on

The plots appearing in this book from here on were not produced by MATLAB.
We used the copy/paste operation to transfer the numerical data to a spreadsheet
and then let the spreadsheet create the plot. This resulted in plots more suited for
publication.



2 Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns.
It is by far the longest and arguably the most important topic in the book. There
is a good reason for this—it is almost impossible to carry out numerical analysis
of any sort without encountering simultaneous equations. Moreover, equation sets
arising from physical problems are often very large, consuming a lot of computa-
tional resources. It usually possible to reduce the storage requirements and the run
time by exploiting special properties of the coefficient matrix, such as sparseness
(most elements of a sparse matrix are zero). Hence there are many algorithms ded-
icated to the solution of large sets of equations, each one being tailored to a partic-
ular form of the coefficient matrix (symmetric, banded, sparse, etc.). A well-known
collection of these routines is LAPACK – Linear Algebra PACKage, originally written in
Fortran771.

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

1 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

28
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A11x1 + A12x2 + · · · + A1nxn = b1

A21x1 + A22x2 + · · · + A2nxn = b2

A31x1 + A32x2 + · · · + A3nxn = b3 (2.1)

...

An1x1 + An2x2 + · · · + Annxn = bn

where the coefficients Ai j and the constants bj are known, and xi represent the un-
knowns. In matrix notation the equations are written as⎡

⎢⎢⎢⎢⎣
A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1

b2

...
bn

⎤
⎥⎥⎥⎥⎦ (2.2)

or, simply

Ax = b (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix, obtained by adjoining the constant vector b to
the coefficient matrix A in the following fashion:

[
A b

]
=

⎡
⎢⎢⎢⎢⎣

A11 A12 · · · A1n b1

A21 A22 · · · A2n b2

...
...

. . .
...

...
An1 An2 · · · Ann bn

⎤
⎥⎥⎥⎥⎦ (2.4)

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular, i.e., if |A| �= 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x + y = 3 4x + 2y = 6

Since the second equation can be obtained by multiplying the first equation by two,
any combination of x and y that satisfies the first equation is also a solution of the
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second equation. The number of such combinations is infinite. On the other hand,
the equations

2x + y = 3 4x + 2y = 0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot satisfy
the other one.

Ill-Conditioning

An obvious question is: what happens when the coefficient matrix is almost singular;
i.e., if |A| is very small? In order to determine whether the determinant of the coefficient
matrix is “small,” we need a reference against which the determinant can be measured.
This reference is called the norm of the matrix, denoted by ‖A‖. We can then say that
the determinant is small if

|A| << ‖A‖

Several norms of a matrix have been defined in existing literature, such as

‖A‖ =
√√√√ n∑

i=1

n∑
j=1

A2
i j ‖A‖ = max

1≤i≤n

n∑
j=1

∣∣Ai j

∣∣ (2.5a)

A formal measure of conditioning is the matrix condition number, defined as

cond(A) = ‖A‖ ∥∥A−1
∥∥ (2.5b)

If this number is close to unity, the matrix is well-conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the matrix
norm. Unfortunately, the condition number is expensive to compute for large matri-
ces. In most cases it is sufficient to gauge conditioning by comparing the determinant
with the magnitudes of the elements in the matrix.

If the equations are ill-conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, consider the equations

2x + y = 3 2x + 1.001y = 0

that have the solution x = 1501.5, y = −3000. Since |A| = 2(1.001) − 2(1) = 0.002 is
much smaller than the coefficients, the equations are ill-conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = −1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution.
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Numerical solutions of ill-conditioned equations are not to be trusted. The reason
is that the inevitable roundoff errors during the solution process are equivalent to in-
troducing small changes into the coefficient matrix. This in turn introduces large errors
into the solution, the magnitude of which depends on the severity of ill-conditioning.
In suspect cases the determinant of the coefficient matrix should be computed so that
the degree of ill-conditioning can be estimated. This can be done during or after the
solution with only a small computational effort.

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical ananum
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the lower triangular portion of the coefficient matrix anyway, its contents are
irrelevant.

Back substitution phase After Gauss elimination the augmented coefficient ma-
trix has the form

[
A b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 · · · A1n b1

0 A22 A23 · · · A2n b2

0 0 A33 · · · A3n b3

...
...

...
...

...
0 0 0 · · · Ann bn

⎤
⎥⎥⎥⎥⎥⎥⎦

The last equation, Annxn = bn, is solved first, yielding

xn = bn/Ann (2.9)

Consider now the stage of back substitution where xn, xn−1, . . . , xk+1 have been
already been computed (in that order), and we are about to determine xk from the kth
equation

Akkxk + Ak,k+1xk+1 + · · · + Aknxn = bk

The solution is

xk =
(

bk −
n∑

j=k+1

Ak j xj

)
1

Akk
, k = n − 1, n − 2, . . . , 1 (2.10)

The corresponding algorithm for back substitution is:

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

� gauss

The functiongauss combines the elimination and the back substitution phases. Dur-
ing back substitution b is overwritten by the solution vector x, so that b contains the
solution upon exit.

function [x,det] = gauss(A,b)

% Solves A*x = b by Gauss elimination and computes det(A).

% USAGE: [x,det] = gauss(A,b)

if size(b,2) > 1; b = b’; end % b must be column vector

n = length(b);
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for k = 1:n-1 % Elimination phase

for i= k+1:n

if A(i,k) ˜= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

b(i)= b(i) - lambda*b(k);

end

end

end

if nargout == 2; det = prod(diag(A)); end

for k = n:-1:1 % Back substitution phase

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

x = b;

Multiple Sets of Equations

As mentioned before, it is frequently necessary to solve the equations Ax = b for
several constant vectors. Let there be m such constant vectors, denoted by
b1, b2, . . . , bm and let the corresponding solution vectors be x1, x2, . . . , xm. We denote
multiple sets of equations by AX = B, where

X =
[

x1 x2 · · · xm

]
B =

[
b1 b2 · · · bm

]

are n × m matrices whose columns consist of solution vectors and constant vectors,
respectively.

An economical way to handle such equations during the elimination phase is
to include all m constant vectors in the augmented coefficient matrix, so that they
are transformed simultaneously with the coefficient matrix. The solutions are then
obtained by back substitution in the usual manner, one vector at a time. It would quite
easy to make the corresponding changes in gauss. However, the LU decomposition
method, described in the next article, is more versatile in handling multiple constant
vectors.

EXAMPLE 2.3
Use Gauss elimination to solve the equations AX = B, where

A =

⎡
⎢⎣ 6 −4 1

−4 6 −4
1 −4 6

⎤
⎥⎦ B =

⎡
⎢⎣−14 22

36 −18
6 7

⎤
⎥⎦
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Solution The augmented coefficient matrix is⎡
⎢⎣ 6 −4 1 −14 22

−4 6 −4 36 −18
1 −4 6 6 7

⎤
⎥⎦

The elimination phase consists of the following two passes:

row 2 ← row 2 + (2/3) × row 1

row 3 ← row 3 − (1/6) × row 1

⎡
⎢⎣6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 −10/3 35/6 25/3 10/3

⎤
⎥⎦

and

row 3 ← row 3 + row 2

⎡
⎢⎣6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 0 5/2 35 0

⎤
⎥⎦

In the solution phase, we first compute x1 by back substitution:

X31 = 35
5/2

= 14

X21 = 80/3 + (10/3)X31

10/3
= 80/3 + (10/3)14

10/3
= 22

X11 = −14 + 4X21 − X31

6
= −14 + 4(22) − 14

6
= 10

Thus the first solution vector is

x1 =
[

X11 X21 X31

]T
=
[

10 22 14
]T

The second solution vector is computed next, also using back substitution:

X32 = 0

X22 = −10/3 + (10/3)X32

10/3
= −10/3 + 0

10/3
= −1

X12 = 22 + 4X22 − X32

6
= 22 + 4(−1) − 0

6
= 3

Therefore,

x2 =
[

X12 X22 X32

]T
=
[

3 −1 0
]T
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EXAMPLE 2.4
An n × n Vandermode matrix A is defined by

Ai j = vn− j
i , i = 1, 2, . . . , n, j = 1, 2, . . . , n

where v is a vector. In MATLAB a Vandermode matrix can be generated by the com-
mand vander(v). Use the function gauss to compute the solution of Ax = b, where
A is the 6 × 6 Vandermode matrix generated from the vector

v =
[

1.0 1.2 1.4 1.6 1.8 2.0
]T

and

b =
[

0 1 0 1 0 1
]T

Also evaluate the accuracy of the solution (Vandermode matrices tend to be ill-
conditioned).

Solution We used the program shown below. After constructing A and b, the output
format was changed to long so that the solution would be printed to 14 decimal
places. Here are the results:

% Example 2.4 (Gauss elimination)

A = vander(1:0.2:2);

b = [0 1 0 1 0 1]’;

format long

[x,det] = gauss(A,b)

x =

1.0e+004 *

0.04166666666701

-0.31250000000246

0.92500000000697

-1.35000000000972

0.97093333334002

-0.27510000000181

det =

-1.132462079991823e-006

As the determinant is quite small relative to the elements of A (you may want to
print A to verify this), we expect detectable roundoff error. Inspection of x leads us to
suspect that the exact solution is

x =
[

1250/3 −3125 9250 −13500 29128/3 −2751
]T

in which case the numerical solution would be accurate to 9 decimal places.
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Another way to gauge the accuracy of the solution is to compute Ax and compare
the result to b:

>> A*x

ans =

-0.00000000000091

0.99999999999909

-0.00000000000819

0.99999999998272

-0.00000000005366

0.99999999994998

The result seems to confirm our previous conclusion.

2.3 LU Decomposition Methods

Introduction

It is possible to show that any square matrix A can be expressed as a product of a lower
triangular matrix L and an upper triangular matrix U:

A = LU (2.11)

The process of computing L and U for a given A is known as LU decomposition or
LU factorization. LU decomposition is not unique (the combinations of L and U for
a prescribed A are endless), unless certain constraints are placed on L or U. These
constraints distinguish one type of decomposition from another. Three commonly
used decompositions are listed in Table 2.2.

Name Constraints

Doolittle’s decomposition Lii = 1, i = 1, 2, . . . , n

Crout’s decomposition Uii = 1, i = 1, 2, . . . , n

Choleski’s decomposition L = UT

Table 2.2

After decomposing A, it is easy to solve the equations Ax = b, as pointed out in
Art. 2.1. We first rewrite the equations as LUx = b. Upon using the notation Ux = y,
the equations become

Ly = b
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which can be solved for y by forward substitution. Then

Ux = y

will yield x by the back substitution process.
The advantage of LU decomposition over the Gauss elimination method is that

once A is decomposed, we can solve Ax = b for as many constant vectors b as we
please. The cost of each additional solution is relatively small, since the forward and
back substitution operations are much less time consuming than the decomposition
process.

Doolittle’s Decomposition Method

Decomposition phase Doolittle’s decomposition is closely related to Gauss elim-
ination. In order to illustrate the relationship, consider a 3 × 3 matrix A and assume
that there exist triangular matrices

L =

⎡
⎢⎣ 1 0 0

L21 1 0
L31 L32 1

⎤
⎥⎦ U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

such that A = LU. After completing the multiplication on the right hand side, we get

A =

⎡
⎢⎣U11 U12 U13

U11 L21 U12 L21 + U22 U13 L21 + U23

U11 L31 U12 L31 + U22 L32 U13 L31 + U23 L32 + U33

⎤
⎥⎦ (2.12)

Let us now apply Gauss elimination to Eq. (2.12). The first pass of the elimina-
tion procedure consists of choosing the first row as the pivot row and applying the
elementary operations

row 2 ← row 2 − L21 × row 1 (eliminates A21)

row 3 ← row 3 − L31 × row 1 (eliminates A31)

The result is

A′ =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 U22 L32 U23 L32 + U33

⎤
⎥⎦

In the next pass we take the second row as the pivot row, and utilize the operation

row 3 ← row 3 − L32 × row 2 (eliminates A32)
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ending up with

A′′ = U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

The foregoing illustration reveals two important features of Doolittle’s decompo-
sition:

� The matrix U is identical to the upper triangular matrix that results from Gauss
elimination.

� The off-diagonal elements of L are the pivot equation multipliers used during
Gauss elimination; that is, Li j is the multiplier that eliminated Ai j .

It is usual practice to store the multipliers in the lower triangular portion of the
coefficient matrix, replacing the coefficients as they are eliminated (Li j replacing Ai j ).
The diagonal elements of L do not have to be stored, since it is understood that each
of them is unity. The final form of the coefficient matrix would thus be the following
mixture of L and U:

[L \ U] =

⎡
⎢⎣U11 U12 U13

L21 U22 U23

L31 L32 U33

⎤
⎥⎦ (2.13)

The algorithm for Doolittle’s decomposition is thus identical to the Gauss elim-
ination procedure in gauss, except that each multiplier λ is now stored in the lower
triangular portion of A.

� LUdec

In this version of LU decomposition the original A is destroyed and replaced by its
decomposed form [L\U].

function A = LUdec(A)

% LU decomposition of matrix A; returns A = [L\U].

% USAGE: A = LUdec(A)

n = size(A,1);

for k = 1:n-1

for i = k+1:n

if A(i,k) ˜= 0.0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);
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A(i,k) = lambda;

end

end

end

Solution phase Consider now the procedure for solving Ly = b by forward substi-
tution. The scalar form of the equations is (recall that Lii = 1)

y1 = b1

L21 y1 + y2 = b2

...

Lk1 y1 + Lk2 y2 + · · · + Lk,k−1 yk−1 + yk = bk

...

Solving the kth equation for yk yields

yk = bk −
k−1∑
j=1

Lkj y j , k = 2, 3, . . . , n (2.14)

Letting y overwrite b, we obtain the forward substitution algorithm:

for k = 2:n

y(k)= b(k) - A(k,1:k-1)*y(1:k-1);

end

The back substitution phase for solving Ux = y is identical to that used in the
Gauss elimination method.

� LUsol

This function carries out the solution phase (forward and back substitutions). It is
assumed that the original coefficient matrix has been decomposed, so that the input
is A = [L\U].The contents of b are replaced by y during forward substitution. Similarly,
back substitution overwrites y with the solution x.

function x = LUsol(A,b)

% Solves L*U*b = x, where A contains both L and U;

% that is, A has the form [L\U].

% USAGE: x = LUsol(A,b)
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if size(b,2) > 1; b = b’; end

n = length(b);

for k = 2:n

b(k) = b(k) - A(k,1:k-1)*b(1:k-1);

end

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

x = b;

Choleski’s Decomposition

Choleski’s decomposition A = LLT has two limitations:

� Since the matrix product LLT is symmetric, Choleski’s decomposition requires A
to be symmetric.

� The decomposition process involves taking square roots of certain combinations
of the elements of A. It can be shown that square roots of negative numbers can
be avoided only if A is positive definite.

Although the number of long operations in all the decomposition methods is
about the same, Choleski’s decomposition is not a particularly popular means of
solving simultaneous equations, mainly due to the restrictions listed above. We study
it here because it is invaluable in certain other applications (e.g., in the transformation
of eigenvalue problems).

Let us start by looking at Choleski’s decomposition

A = LLT (2.15)

of a 3 × 3 matrix:⎡
⎢⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ =

⎡
⎢⎣ L11 0 0

L21 L22 0
L31 L32 L33

⎤
⎥⎦
⎡
⎢⎣ L11 L21 L31

0 L22 L32

0 0 L33

⎤
⎥⎦

After completing the matrix multiplication on the right hand side, we get⎡
⎢⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ =

⎡
⎢⎣ L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

⎤
⎥⎦ (2.16)

Note that the right-hand-side matrix is symmetric, as pointed out before. Equating the
matrices A and LLT element-by-element, we obtain six equations (due to symmetry
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only lower or upper triangular elements have to be considered) in the six unknown
components of L. By solving these equations in a certain order, it is possible to have
only one unknown in each equation.

Consider the lower triangular portion of each matrix in Eq. (2.16) (the upper
triangular portion would do as well). By equating the elements in the first column,
starting with the first row and proceeding downward, we can compute L11, L21, and
L31 in that order:

A11 = L2
11 L11 =

√
A11

A21 = L11 L21 L21 = A21/L11

A31 = L11 L31 L31 = A31/L11

The second column, starting with second row, yields L22 and L32:

A22 = L2
21 + L2

22 L22 =
√

A22 − L2
21

A32 = L21 L31 + L22 L32 L32 = (A32 − L21 L31)/L22

Finally the third column, third row gives us L33:

A33 = L2
31 + L2

32 + L2
33 L33 =

√
A33 − L2

31 − L2
32

We can now extrapolate the results for an n × n matrix. We observe that a typical
element in the lower triangular portion of LLT is of the form

(LLT )i j = Li1 L j1 + Li2 L j2 + · · · + Li j L j j =
j∑

k=1

LikL jk, i ≥ j

Equating this term to the corresponding element of A yields

Ai j =
j∑

k=1

LikL jk, i = j, j + 1, . . . , n, j = 1, 2, . . . , n (2.17)

The range of indices shown limits the elements to the lower triangular part. For the
first column ( j = 1), we obtain from Eq. (2.17)

L11 =
√

A11 Li1 = Ai1/L11, i = 2, 3, . . . , n (2.18)

Proceeding to other columns, we observe that the unknown in Eq. (2.17) is Li j (the
other elements of L appearing in the equation have already been computed). Taking
the term containing Li j outside the summation in Eq. (2.17), we obtain

Ai j =
j−1∑
k=1

LikL jk + Li j L j j
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If i = j (a diagonal term) , the solution is

L j j =
√√√√A j j −

j−1∑
k=1

L2
jk, j = 2, 3, . . . , n (2.19)

For a nondiagonal term we get

Li j =
(

Ai j −
j−1∑
k=1

LikL jk

)
/L j j , j = 2, 3, . . . , n − 1, i = j + 1, j + 2, . . . , n (2.20)

� choleski

Note that in Eqs. (2.19) and (2.20) Ai j appears only in the formula for Li j . Therefore,
once Li j has been computed, Ai j is no longer needed. This makes it possible to write
the elements of L over the lower triangular portion of A as they are computed. The
elements above the principal diagonal of A will remain untouched. At the conclusion
of decomposition L is extracted with the MATLAB commandtril(A). If a negative L2

j j

is encountered during decomposition, an error message is printed and the program
is terminated.

function L = choleski(A)

% Computes L in Choleski’s decomposition A = LL’.

% USAGE: L = choleski(A)

n = size(A,1);

for j = 1:n

temp = A(j,j) - dot(A(j,1:j-1),A(j,1:j-1));

if temp < 0.0

error(’Matrix is not positive definite’)

end

A(j,j) = sqrt(temp);

for i = j+1:n

A(i,j)=(A(i,j) - dot(A(i,1:j-1),A(j,1:j-1)))/A(j,j);

end

end

L = tril(A)

We could also write the algorithm for forward and back substitutions that are
necessary in the solution of Ax = b. But since Choleski’s decomposition has no ad-
vantages over Doolittle’s decomposition in the solution of simultaneous equations,
we will skip that part.
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EXAMPLE 2.5
Use Doolittle’s decomposition method to solve the equations Ax = b, where

A =

⎡
⎢⎣1 4 1

1 6 −1
2 −1 2

⎤
⎥⎦ b =

⎡
⎢⎣ 7

13
5

⎤
⎥⎦

Solution We first decompose A by Gauss elimination. The first pass consists of the
elementary operations

row 2 ← row 2 − 1 × row 1 (eliminates A21)

row 3 ← row 3 − 2 × row 1 (eliminates A31)

Storing the multipliers L21 = 1 and L31 = 2 in place of the eliminated terms, we obtain

A′ =

⎡
⎢⎣1 4 1

1 2 −2
2 −9 0

⎤
⎥⎦

The second pass of Gauss elimination uses the operation

row 3 ← row 3 − (−4.5) × row 2 (eliminates A32)

Storing the multiplier L32 = −4.5 in place of A32, we get

A′′ = [L\U] =

⎡
⎢⎣1 4 1

1 2 −2
2 −4.5 −9

⎤
⎥⎦

The decomposition is now complete, with

L =

⎡
⎢⎣1 0 0

1 1 0
2 −4.5 1

⎤
⎥⎦ U =

⎡
⎢⎣1 4 1

0 2 −2
0 0 −9

⎤
⎥⎦

Solution of Ly = b by forward substitution comes next. The augmented coeffi-
cient form of the equations is

[
L b

]
=

⎡
⎢⎣1 0 0 7

1 1 0 13
2 −4.5 1 5

⎤
⎥⎦

The solution is

y1 = 7

y2 = 13 − y1 = 13 − 7 = 6

y3 = 5 − 2y1 + 4.5y2 = 5 − 2(7) + 4.5(6) = 18
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Finally, the equations Ux = y, or

[
U y

]
=

⎡
⎢⎣1 4 1 7

0 2 −2 6
0 0 −9 18

⎤
⎥⎦

are solved by back substitution. This yields

x3 = 18
−9

= −2

x2 = 6 + 2x3

2
= 6 + 2(−2)

2
= 1

x1 = 7 − 4x2 − x3 = 7 − 4(1) − (−2) = 5

EXAMPLE 2.6
Compute Choleski’s decomposition of the matrix

A =

⎡
⎢⎣ 4 −2 2

−2 2 −4
2 −4 11

⎤
⎥⎦

Solution First we note that A is symmetric. Therefore, Choleski’s decomposition is
applicable, provided that the matrix is also positive definite. An a priori test for posi-
tive definiteness is not needed, since the decomposition algorithm contains its own
test: if the square root of a negative number is encountered, the matrix is not positive
definite and the decomposition fails.

Substituting the given matrix for A in Eq. (2.16), we obtain⎡
⎢⎣ 4 −2 2

−2 2 −4
2 −4 11

⎤
⎥⎦ =

⎡
⎢⎣ L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

⎤
⎥⎦

Equating the elements in the lower (or upper) triangular portions yields

L11 =
√

4 = 2

L21 = −2/L11 = −2/2 = −1

L31 = 2/L11 = 2/2 = 1

L22 =
√

2 − L2
21 =

√
2 − 12 = 1

L32 = −4 − L21 L31

L22
= −4 − (−1)(1)

1
= −3

L33 =
√

11 − L2
31 − L2

32 =
√

11 − (1)2 − (−3)2 = 1



51 2.3 LU Decomposition Methods

Therefore,

L =

⎡
⎢⎣ 2 0 0

−1 1 0
1 −3 1

⎤
⎥⎦

The result can easily be verified by performing the multiplication LLT .

EXAMPLE 2.7
Solve AX = B with Doolittle’s decomposition and compute |A|, where

A =

⎡
⎢⎣ 3 −1 4

−2 0 5
7 2 −2

⎤
⎥⎦ B =

⎡
⎢⎣6 −4

3 2
7 −5

⎤
⎥⎦

Solution In the program below the coefficient matrix A is first decomposed by calling
LUdec. Then LUsol is used to compute the solution one vector at a time.

% Example 2.7 (Doolittle’s decomposition)

A = [3 -1 4; -2 0 5; 7 2 -2];

B = [6 -4; 3 2; 7 -5];

A = LUdec(A);

det = prod(diag(A))

for i = 1:size(B,2)

X(:,i) = LUsol(A,B(:,i));

end

X

Here are the results:

>> det =

-77

X =

1.0000 -1.0000

1.0000 1.0000

1.0000 0.0000

EXAMPLE 2.8
Test the function choleski by decomposing

A =

⎡
⎢⎢⎢⎣

1.44 −0.36 5.52 0.00
−0.36 10.33 −7.78 0.00

5.52 −7.78 28.40 9.00
0.00 0.00 9.00 61.00

⎤
⎥⎥⎥⎦
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Solution
% Example 2.8 (Choleski decomposition)

A = [1.44 -0.36 5.52 0.00;

-0.36 10.33 -7.78 0.00;

5.52 -7.78 28.40 9.00;

0.00 0.00 9.00 61.00];

L = choleski(A)

Check = L*L’ % Verify the result

>> L =

1.2000 0 0 0

-0.3000 3.2000 0 0

4.6000 -2.0000 1.8000 0

0 0 5.0000 6.0000

Check =

1.4400 -0.3600 5.5200 0

-0.3600 10.3300 -7.7800 0

5.5200 -7.7800 28.4000 9.0000

0 0 9.0000 61.0000

PROBLEM SET 2.1

1. By evaluating the determinant, classify the following matrices as singular, ill-
conditioned or well-conditioned.

(a) A =

⎡
⎢⎣1 2 3

2 3 4
3 4 5

⎤
⎥⎦ (b) A =

⎡
⎢⎣ 2.11 −0.80 1.72

−1.84 3.03 1.29
−1.57 5.25 4.30

⎤
⎥⎦

(c) A =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎥⎦ (d) A =

⎡
⎢⎣4 3 −1

7 −2 3
5 −18 13

⎤
⎥⎦

2. Given the LU decomposition A = LU, determine A and |A| .

(a) L =

⎡
⎢⎣1 0 0

1 1 0
1 5/3 1

⎤
⎥⎦ U =

⎡
⎢⎣1 2 4

0 3 21
0 0 0

⎤
⎥⎦

(b) L =

⎡
⎢⎣ 2 0 0

−1 1 0
1 −3 1

⎤
⎥⎦ U =

⎡
⎢⎣2 −1 1

0 1 −3
0 0 1

⎤
⎥⎦
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3. Utilize the results of LU decomposition

A = LU =

⎡
⎢⎣ 1 0 0

3/2 1 0
1/2 11/13 1

⎤
⎥⎦
⎡
⎢⎣2 −3 −1

0 13/2 −7/2
0 0 32/13

⎤
⎥⎦

to solve Ax = b, where bT =
[

1 −1 2
]
.

4. Use Gauss elimination to solve the equations Ax = b, where

A =

⎡
⎢⎣2 −3 −1

3 2 −5
2 4 −1

⎤
⎥⎦ b =

⎡
⎢⎣ 3

−9
−5

⎤
⎥⎦

5. Solve the equations AX = B by Gauss elimination, where

A =

⎡
⎢⎢⎢⎣

2 0 −1 0
0 1 2 0

−1 2 0 1
0 0 1 −2

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎦

6. Solve the equations Ax = b by Gauss elimination, where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 2 1 2
0 1 0 2 −1
1 2 0 −2 0
0 0 0 −1 1
0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎢⎣

1
1

−4
−2
−1

⎤
⎥⎥⎥⎥⎥⎦

Hint: reorder the equations before solving.

7. Find L and U so that

A = LU =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

using (a) Doolittle’s decomposition; (b) Choleski’s decomposition.

8. Use Doolittle’s decomposition method to solve Ax = b, where

A =

⎡
⎢⎣ −3 6 −4

9 −8 24
−12 24 −26

⎤
⎥⎦ b =

⎡
⎢⎣ −3

65
−42

⎤
⎥⎦

9. Solve the equations Ax = b by Doolittle’s decomposition method, where

A =

⎡
⎢⎣ 2.34 −4.10 1.78

−1.98 3.47 −2.22
2.36 −15.17 6.18

⎤
⎥⎦ b =

⎡
⎢⎣ 0.02

−0.73
−6.63

⎤
⎥⎦



54 Systems of Linear Algebraic Equations

10. Solve the equations AX = B by Doolittle’s decomposition method, where

A =

⎡
⎢⎣ 4 −3 6

8 −3 10
−4 12 −10

⎤
⎥⎦ B =

⎡
⎢⎣1 0

0 1
0 0

⎤
⎥⎦

11. Solve the equations Ax = b by Choleski’s decomposition method, where

A =

⎡
⎢⎣1 1 1

1 2 2
1 2 3

⎤
⎥⎦ b =

⎡
⎢⎣ 1

3/2
3

⎤
⎥⎦

12. Solve the equations ⎡
⎢⎣ 4 −2 −3

12 4 −10
−16 28 18

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1.1

0
−2.3

⎤
⎥⎦

by Doolittle’s decomposition method.

13. Determine L that results from Choleski’s decomposition of the diagonal matrix

A =

⎡
⎢⎢⎢⎢⎣

α1 0 0 · · ·
0 α2 0 · · ·
0 0 α3 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦

14. � Modify the function gauss so that it will work with mconstant vectors. Test the
program by solving AX = B, where

A =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦ B =

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

15. � A well-known example of an ill-conditioned matrix is the Hilbert matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

Write a program that specializes in solving the equations Ax = b by Doolittle’s
decomposition method, where A is the Hilbert matrix of arbitrary size n × n, and

bi =
n∑

j=1

Ai j
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The program should have no input apart from n. By running the program, de-
termine the largest n for which the solution is within 6 significant figures of the
exact solution

x =
[

1 1 1 · · ·
]T

(the results depend on the software and the hardware used).

16. � Write a function for the solution phase of Choleski’s decomposition method.
Test the function by solving the equations Ax = b, where

A =

⎡
⎢⎣ 4 −2 2

−2 2 −4
2 −4 11

⎤
⎥⎦ b =

⎡
⎢⎣ 6

−10
27

⎤
⎥⎦

Use the function choleski for the decomposition phase.

17. � Determine the coefficients of the polynomial y = a0 + a1x + a2x2 + a3x3 that
passes through the points (0, 10), (1, 35), (3, 31) and (4, 2).

18. � Determine the 4th degree polynomial y(x) that passes through the points
(0, −1), (1, 1), (3, 3), (5, 2) and (6, −2).

19. � Find the 4th degree polynomial y(x) that passes through the points (0, 1),
(0.75, −0.25) and (1, 1), and has zero curvature at (0, 1) and (1, 1).

20. � Solve the equations Ax = b, where

A =

⎡
⎢⎢⎢⎣

3.50 2.77 −0.76 1.80
−1.80 2.68 3.44 −0.09

0.27 5.07 6.90 1.61
1.71 5.45 2.68 1.71

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

7.31
4.23

13.85
11.55

⎤
⎥⎥⎥⎦

By computing |A| and Ax comment on the accuracy of the solution.

2.4 Symmetric and Banded Coefficient Matrices

Introduction

Engineering problems often lead to coefficient matrices that are sparsely populated,
meaning that most elements of the matrix are zero. If all the nonzero terms are clus-
tered about the leading diagonal, then the matrix is said to be banded. An example of
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a banded matrix is

A =

⎡
⎢⎢⎢⎢⎢⎣

X X 0 0 0
X X X 0 0
0 X X X 0
0 0 X X X
0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎦

where X’s denote the nonzero elements that form the populated band (some of these
elements may be zero). All the elements lying outside the band are zero. The matrix
shown above has a bandwidth of three, since there are at most three nonzero elements
in each row (or column). Such a matrix is called tridiagonal.

If a banded matrix is decomposed in the form A = LU, both L and U will retain
the banded structure of A. For example, if we decomposed the matrix shown above,
we would get

L =

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 0 0
X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎦ U =

⎡
⎢⎢⎢⎢⎢⎣

X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X
0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎦

The banded structure of a coefficient matrix can be exploited to save storage and
computation time. If the coefficient matrix is also symmetric, further economies are
possible. In this article we show how the methods of solution discussed previously
can be adapted for banded and symmetric coefficient matrices.

Tridiagonal Coefficient Matrix

Consider the solution of Ax = b by Doolittle’s decomposition, where A is the n × n
tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 0 0 · · · 0
c1 d2 e2 0 · · · 0
0 c2 d3 e3 · · · 0
0 0 c3 d4 · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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As the notation implies, we are storing the nonzero elements of A in the vectors

c =

⎡
⎢⎢⎢⎢⎣

c1

c2

...
cn−1

⎤
⎥⎥⎥⎥⎦ d =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1

d2

...
dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎢⎢⎣

e1

e2

...
en−1

⎤
⎥⎥⎥⎥⎦

The resulting saving of storage can be significant. For example, a 100 × 100 tridiag-
onal matrix, containing 10,000 elements, can be stored in only 99 + 100 + 99 = 298
locations, which represents a compression ratio of about 33:1.

We now apply LU decomposition to the coefficient matrix. We reduce row k by
getting rid of ck−1 with the elementary operation

row k ← row k − (ck−1/dk−1) × row (k − 1), k = 2, 3, . . . , n

The corresponding change in dk is

dk ← dk − (ck−1/dk−1)ek−1 (2.21)

whereas ek is not affected. In order to finish up with Doolittle’s decomposition of the
form [L\U], we store the multiplier λ = ck−1/dk−1 in the location previously occupied
by ck−1:

ck−1 ← ck−1/dk−1 (2.22)

Thus the decomposition algorithm is

for k = 2:n

lambda = c(k-1)/d(k-1);

d(k) = d(k) - lambda*e(k-1);

c(k-1) = lambda;

end

Next we look at the solution phase, i.e., the solution of the Ly = b, followed by
Ux = y. The equations Ly = b can be portrayed by the augmented coefficient matrix

[
L b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 b1

c1 1 0 0 · · · 0 b2

0 c2 1 0 · · · 0 b3

0 0 c3 1 . . . 0 b4

...
...

...
... · · · ...

...
0 0 · · · 0 cn−1 1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Note that the original contents of c were destroyed and replaced by the multipliers
during the decomposition. The solution algorithm for y by forward substitution is

y(1) = b(1)

for k = 2:n

y(k) = b(k) - c(k-1)*y(k-1);

end

The augmented coefficient matrix representing Ux = y is

[
U y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 0 · · · 0 0 y1

0 d2 e2 · · · 0 0 y2

0 0 d3 · · · 0 0 y3

...
...

...
...

...
...

0 0 0 · · · dn−1 en−1 yn−1

0 0 0 · · · 0 dn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note again that the contents of d were altered from the original values during the
decomposition phase (but e was unchanged). The solution for x is obtained by back
substitution using the algorithm

x(n) = y(n)/d(n);

for k = n-1:-1:1

x(k) = (y(k) - e(k)*x(k+1))/d(k);

end

� LUdec3

The function LUdec3 contains the code for the decomposition phase. The original
vectors c and d are destroyed and replaced by the vectors of the decomposed matrix.

function [c,d,e] = LUdec3(c,d,e)

% LU decomposition of tridiagonal matrix A = [c\d\e].

% USAGE: [c,d,e] = LUdec3(c,d,e)

n = length(d);

for k = 2:n

lambda = c(k-1)/d(k-1);

d(k) = d(k) - lambda*e(k-1);

c(k-1) = lambda;

end
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� LUsol3

This is the function for the solution phase. The vector y overwrites the constant vector
b during the forward substitution. Similarly, the solution vector x replaces y in the
back substitution process.

function x = LUsol3(c,d,e,b)

% Solves A*x = b where A = [c\d\e] is the LU

% decomposition of the original tridiagonal A.

% USAGE: x = LUsol3(c,d,e,b)

n = length(d);

for k = 2:n % Forward substitution

b(k) = b(k) - c(k-1)*b(k-1);

end

b(n) = b(n)/d(n); % Back substitution

for k = n-1:-1:1

b(k) = (b(k) -e(k)*b(k+1))/d(k);

end

x = b;

Symmetric Coefficient Matrices

More often than not, coefficient matrices that arise in engineering problems are
symmetric as well as banded. Therefore, it is worthwhile to discover special prop-
erties of such matrices, and learn how to utilize them in the construction of efficient
algorithms.

If the matrix A is symmetric, then the LU decomposition can be presented in the
form

A = LU = LDLT (2.23)

where D is a diagonal matrix. An example is Choleski’s decomposition A = LLT that
was discussed in the previous article (in this case D = I). For Doolittle’s decomposition
we have

U = DLT =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 0 0 · · · 0
0 D2 0 · · · 0
0 0 D3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 L21 L31 · · · Ln1

0 1 L32 · · · Ln2

0 0 1 · · · Ln3

...
...

...
. . .

...
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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which gives

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 D1 L21 D1 L31 · · · D1 Ln1

0 D2 D2 L32 · · · D2 Ln2

0 0 D3 · · · D3 L3n

...
...

...
. . .

...
0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.24)

We see that during decomposition of a symmetric matrix only U has to be stored, since
D and L can be easily recovered from U. Thus Gauss elimination, which results in an
upper triangular matrix of the form shown in Eq. (2.24), is sufficient to decompose a
symmetric matrix.

There is an alternative storage scheme that can be employed during LU decom-
position. The idea is to arrive at the matrix

U∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 L21 L31 · · · Ln1

0 D2 L32 · · · Ln2

0 0 D3 · · · Ln3

...
...

...
. . .

...
0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.25)

Here U can be recovered from Ui j = Di L ji . It turns out that this scheme leads to a
computationally more efficient solution phase; therefore, we adopt it for symmetric,
banded matrices.

Symmetric, Pentadiagonal Coefficient Matrix

We encounter pentadiagonal (bandwidth = 5) coefficient matrices in the solution of
fourth-order, ordinary differential equations by finite differences. Often these matrices
are symmetric, in which case an n × n matrix has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 f1 0 0 0 · · · 0
e1 d2 e2 f2 0 0 · · · 0
f1 e2 d3 e3 f3 0 · · · 0
0 f2 e3 d4 e4 f4 · · · 0
...

...
...

...
...

...
. . .

...
0 · · · 0 fn−4 en−3 dn−2 en−2 fn−2

0 · · · 0 0 fn−3 en−2 dn−1 en−1

0 · · · 0 0 0 fn−2 en−1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)
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As in the case of tridiagonal matrices, we store the nonzero elements in the three
vectors

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...
dn−2

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

...
en−2

en−1

⎤
⎥⎥⎥⎥⎥⎥⎦

f =

⎡
⎢⎢⎢⎢⎣

f1

f2

...
fn−2

⎤
⎥⎥⎥⎥⎦

Let us now look at the solution of the equations Ax = b by Doolittle’s decomposi-
tion. The first step is to transform A to upper triangular form by Gauss elimination. If
elimination has progressed to the stage where the kth row has become the pivot row,
we have the following situation:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...
...

· · · 0 dk ek fk 0 0 0 · · ·
· · · 0 ek dk+1 ek+1 fk+1 0 0 · · ·
· · · 0 fk ek+1 dk+2 ek+2 fk+2 0 · · ·
· · · 0 0 fk+1 ek+2 dk+3 ek+3 fk+3 · · ·

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←

The elements ek and fk below the pivot row are eliminated by the operations

row (k + 1) ← row (k + 1) − (ek/dk) × row k

row (k + 2) ← row (k + 2) − ( fk/dk) × row k

The only terms (other than those being eliminated) that are changed by the above
operations are

dk+1 ← dk+1 − (ek/dk)ek

ek+1 ← ek+1 − (ek/dk) fk (2.27a)

dk+2 ← dk+2 − ( fk/dk) fk

Storage of the multipliers in the upper triangular portion of the matrix results in

ek ← ek/dk fk ← fk/dk (2.27b)
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At the conclusion of the elimination phase the matrix has the form (do not confuse d,
e and f with the original contents of A)

U∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 f1 0 · · · 0
0 d2 e2 f2 · · · 0
0 0 d3 e3 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 dn−1 en−1

0 0 · · · 0 0 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next comes the solution phase. The equations Ly = b have the augmented coef-
ficient matrix

[
L b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 b1

e1 1 0 0 · · · 0 b2

f1 e2 1 0 · · · 0 b3

0 f2 e3 1 · · · 0 b4

...
...

...
...

. . .
...

...
0 0 0 fn−2 en−1 1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution by forward substitution yields

y1 = b1

y2 = b2 − e1 y1 (2.28)

...

yk = bk − fk−2 yk−2 − ek−1 yk−1, k = 3, 4, . . . , n

The equations to be solved by back substitution, namely Ux = y, have the augmented
coefficient matrix

[
U y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 d1e1 d1 f1 0 · · · 0 y1

0 d2 d2e2 d2 f2 · · · 0 y2

0 0 d3 d3e3 · · · 0 y3

...
...

...
...

. . .
...

...
0 0 · · · 0 dn−1 dn−1en−1 yn−1

0 0 · · · 0 0 dn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the solution of which is obtained by back substitution:

xn = yn/dn

xn−1 = yn−1/dn−1 − en−1xn

xk = yk/dk − ekxk+1 − fkxk+2, k = n − 2, n − 3, . . . , 1 (2.29)
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� LUdec5

The function LUdec3 decomposes a symmetric, pentadiagonal matrix A stored in the
form A = [f \e\d\e\f ]. The original vectors d, e and f are destroyed and replaced by
the vectors of the decomposed matrix.

function [d,e,f] = LUdec5(d,e,f)

% LU decomposition of pentadiagonal matrix A = [f\e\d\e\f].

% USAGE: [d,e,f] = LUdec5(d,e,f)

n = length(d);

for k = 1:n-2

lambda = e(k)/d(k);

d(k+1) = d(k+1) - lambda*e(k);

e(k+1) = e(k+1) - lambda*f(k);

e(k) = lambda;

lambda = f(k)/d(k);

d(k+2) = d(k+2) - lambda*f(k);

f(k) = lambda;

end

lambda = e(n-1)/d(n-1);

d(n) = d(n) - lambda*e(n-1);

e(n-1) = lambda;

� LUsol5

LUsol5 is the function for the solution phase. As in LUsol3, the vector y over-
writes the constant vector b during forward substitution and x replaces y during back
substitution.

function x = LUsol5(d,e,f,b)

% Solves A*x = b where A = [f\e\d\e\f] is the LU

% decomposition of the original pentadiagonal A.

% USAGE: x = LUsol5(d,e,f,b)

n = length(d);

b(2) = b(2) - e(1)*b(1); % Forward substitution

for k = 3:n

b(k) = b(k) - e(k-1)*b(k-1) - f(k-2)*b(k-2);

end
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b(n) = b(n)/d(n); % Back substitution

b(n-1) = b(n-1)/d(n-1) - e(n-1)*b(n);

for k = n-2:-1:1

b(k) = b(k)/d(k) - e(k)*b(k+1) - f(k)*b(k+2);

end

x = b;

EXAMPLE 2.9
As a result of Gauss elimination, a symmetric matrix A was transformed to the upper
triangular form

U =

⎡
⎢⎢⎢⎣

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

⎤
⎥⎥⎥⎦

Determine the original matrix A.

Solution First we find L in the decomposition A = LU. Dividing each row of U by its
diagonal element yields

LT =

⎡
⎢⎢⎢⎣

1 −1/2 1/4 0
0 1 −1/2 1/3
0 0 1 −1/2
0 0 0 1

⎤
⎥⎥⎥⎦

Therefore, A = LU becomes

A =

⎡
⎢⎢⎢⎣

1 0 0 0
−1/2 1 0 0

1/4 −1/2 1 0
0 1/3 −1/2 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

4 −2 1 0
−2 4 −2 1

1 −2 4 −2
0 1 −2 4

⎤
⎥⎥⎥⎦

EXAMPLE 2.10
Determine L and D that result from Doolittle’s decomposition A = LDLT of the sym-
metric matrix

A =

⎡
⎢⎣ 3 −3 3

−3 5 1
3 1 10

⎤
⎥⎦
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Solution We use Gauss elimination, storing the multipliers in the upper triangular
portion of A. At the completion of elimination, the matrix will have the form of U∗ in
Eq. (2.25).

The terms to be eliminated in the first pass are A21 and A31 using the elementary
operations

row 2 ← row 2 − (−1) × row 1

row 3 ← row 3 − (1) × row 1

Storing the multipliers (−1 and 1) in the locations occupied by A12 and A13, we get

A′ =

⎡
⎢⎣3 −1 1

0 2 4
0 4 7

⎤
⎥⎦

The second pass is the operation

row 3 ← row 3 − 2 × row 2

which yields after overwriting A23 with the multiplier 2

A′′ = [
0\D\LT ] =

⎡
⎢⎣3 −1 1

0 2 2
0 0 −1

⎤
⎥⎦

Hence

L =

⎡
⎢⎣ 1 0 0

−1 1 0
1 2 1

⎤
⎥⎦ D =

⎡
⎢⎣3 0 0

0 2 0
0 0 −1

⎤
⎥⎦

EXAMPLE 2.11
Solve Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0 0 · · ·
−4 6 −4 1 0 · · ·

1 −4 6 −4 1 · · ·
. . .

. . .
. . .

. . .

· · · 0 1 −4 6 −4
· · · 0 0 1 −4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
x9

x10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
0
0
...

0
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution As the coefficient matrix is symmetric and pentadiagonal, we utilize the
functions LUdec5 and LUsol5:

% Example 2.11 (Solution of pentadiagonal eqs.)

n = 10;
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d = 6*ones(n,1); d(n) = 7;

e = -4*ones(n-1,1);

f = ones(n-2,1);

b = zeros(n,1); b(1) = 3; b(n) = 4;

[d,e,f] = LUdec5(d,e,f);

x = LUsol5(d,e,f,b)

The output from the program is

>> x =

2.3872

4.1955

5.4586

6.2105

6.4850

6.3158

5.7368

4.7820

3.4850

1.8797

2.5 Pivoting

Introduction

Sometimes the order in which the equations are presented to the solution algorithm
has a significant effect on the results. For example, consider the equations

2x1 − x2 = 1

−x1 + 2x2 − x3 = 0

−x2 + x3 = 0

The corresponding augmented coefficient matrix is

[
A b

]
=

⎡
⎢⎣ 2 −1 0 1

−1 2 −1 0
0 −1 1 0

⎤
⎥⎦ (a)

Equations (a) are in the “right order” in the sense that we would have no trouble
obtaining the correct solution x1 = x2 = x3 = 1 by Gauss elimination or LU decom-
position. Now suppose that we exchange the first and third equations, so that the
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augmented coefficient matrix becomes

[
A b

]
=

⎡
⎢⎣ 0 −1 1 0

−1 2 −1 0
2 −1 0 1

⎤
⎥⎦ (b)

Since we did not change the equations (only their order was altered), the solution is still
x1 = x2 = x3 = 1. However, Gauss elimination fails immediately due to the presence
of the zero pivot element (the element A11).

The above example demonstrates that it is sometimes essential to reorder the
equations during the elimination phase. The reordering, or row pivoting, is also re-
quired if the pivot element is not zero, but very small in comparison to other elements
in the pivot row, as demonstrated by the following set of equations:

[
A b

]
=

⎡
⎢⎣ ε −1 1 0

−1 2 −1 0
2 −1 0 1

⎤
⎥⎦ (c)

These equations are the same as Eqs. (b), except that the small number ε replaces the
zero element A11 in Eq. (b). Therefore, if we let ε → 0, the solutions of Eqs. (b) and (c)
should become identical. After the first phase of Gauss elimination, the augmented
coefficient matrix becomes

[
A′ b′

]
=

⎡
⎢⎣ ε −1 1 0

0 2 − 1/ε −1 + 1/ε 0
0 −1 + 2/ε −2/ε 1

⎤
⎥⎦ (d)

Because the computer works with a fixed word length, all numbers are rounded off
to a finite number of significant figures. If ε is very small, then 1/ε is huge, and an
element such as 2 − 1/ε is rounded to −1/ε. Therefore, for sufficiently small ε, the
Eqs. (d) are actually stored as

[
A′ b′

]
=

⎡
⎢⎣ε −1 1 0

0 −1/ε 1/ε 0
0 2/ε −2/ε 1

⎤
⎥⎦

Because the second and third equations obviously contradict each other, the solution
process fails again. This problem would not arise if the first and second, or the first
and the third, equations were interchanged in Eqs. (c) before the elimination.

The last example illustrates the extreme case where ε was so small that roundoff
errors resulted in total failure of the solution. If we were to make ε somewhat bigger
so that the solution would not “bomb” any more, the roundoff errors might still be
large enough to render the solution unreliable. Again, this difficulty could be avoided
by pivoting.
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Diagonal Dominance

An n × n matrix A is said to be diagonally dominant if each diagonal element is larger
than the sum of the other elements in the same row (we are talking here about absolute
values). Thus diagonal dominance requires that

|Aii | >

n∑
j=1
j �=i

∣∣Ai j

∣∣ (i = 1, 2, . . . , n) (2.30)

For example, the matrix ⎡
⎢⎣−2 4 −1

1 −1 3
4 −2 1

⎤
⎥⎦

is not diagonally dominant, but if we rearrange the rows in the following manner⎡
⎢⎣ 4 −2 1

−2 4 −1
1 −1 3

⎤
⎥⎦

then we have diagonal dominance.
It can be shown that if the coefficient matrix A of the equations Ax = b is diagonally

dominant, then the solution does not benefit from pivoting; that is, the equations are
already arranged in the optimal order. It follows that the strategy of pivoting should be
to reorder the equations so that the coefficient matrix is as close to diagonal dominance
as possible. This is the principle behind scaled row pivoting, discussed next.

Gauss Elimination with Scaled Row Pivoting

Consider the solution of Ax = b by Gauss elimination with row pivoting. Recall that
pivoting aims at improving diagonal dominance of the coefficient matrix, i.e., making
the pivot element as large as possible in comparison to other elements in the pivot
row. The comparison is made easier if we establish an array s, with the elements

si = max
j

∣∣Ai j

∣∣ , i = 1, 2, . . . , n (2.31)

Thus si , called the scale factor of row i, contains the absolute value of the largest
element in the ith row of A. The vector s can be obtained with the following algorithm:

for i = 1:n

s(i) = max (abs(A(i,1:n)))

end
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The relative size of any element Ai j (i.e., relative to the largest element in the ith
row) is defined as the ratio

ri j =
∣∣Ai j

∣∣
si

(2.32)

Suppose that the elimination phase has reached the stage where the kth row has
become the pivot row. The augmented coefficient matrix at this point is shown below.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 · · · A1n b1

0 A22 A23 A24 · · · A2n b2

0 0 A33 A34 · · · A3n b3

...
...

...
... · · · ...

...

0 · · · 0 Akk · · · Akn bk

... · · · ...
... · · · ...

...
0 · · · 0 Ank · · · Ann bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←

We don’t automatically accept Akk as the pivot element, but look in the kth column
below Akk for a “better” pivot. The best choice is the element Apk that has the largest
relative size; that is, we choose p such that

rpk = max
j≥k

r jk

If we find such an element, then we interchange the rows k and p, and proceed with
the elimination pass as usual. Note that the corresponding row interchange must also
be carried out in the scale factor array s. The algorithm that does all this is

for k = 1:n-1

% Find element with largest relative size

% and the corresponding row number p

[Amax,p] = max(abs(A(k:n,k))./s(k:n));

p = p + k - 1;

% If this element is very small, matrix is singular

if Amax < eps

error(’Matrix is singular’)

end

% Interchange rows k and p if needed

if p ˜= k

b = swapRows(b,k,p);

s = swapRows(s,k,p);

A = swapRows(A,k,p);

end
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% Elimination pass

...

end

� swapRows

The function swapRows interchanges rows i and j of a matrix or vector v:

function v = swapRows(v,i,j)

% Swap rows i and j of vector or matrix v.

% USAGE: v = swapRows(v,i,j)

temp = v(i,:);

v(i,:) = v(j,:);

v(j,:) = temp;

� gaussPiv

The function gaussPiv performs Gauss elimination with row pivoting. Apart from
row swapping, the elimination and solution phases are identical to those of function
gauss in Art. 2.2.

function x = gaussPiv(A,b)

% Solves A*x = b by Gauss elimination with row pivoting.

% USAGE: x = gaussPiv(A,b)

if size(b,2) > 1; b = b’; end

n = length(b); s = zeros(n,1);

%----------Set up scale factor array----------

for i = 1:n; s(i) = max(abs(A(i,1:n))); end

%---------Exchange rows if necessary----------

for k = 1:n-1

[Amax,p] = max(abs(A(k:n,k))./s(k:n));

p = p + k - 1;

if Amax < eps; error(’Matrix is singular’); end

if p ˜= k

b = swapRows(b,k,p);

s = swapRows(s,k,p);

A = swapRows(A,k,p);

end
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%--------------Elimination pass---------------

for i = k+1:n

if A(i,k) ˜= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

b(i) = b(i) - lambda*b(k);

end

end

end

%------------Back substitution phase----------

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

x = b;

� LUdecPiv

The Gauss elimination algorithm can be changed to Doolittle’s decomposition with
minor changes. The most important of these is keeping a record of the row inter-
changes during the decomposition phase. In LUdecPiv this record is kept in the
permutation array perm, initially set to [1, 2, . . . , n]T . Whenever two rows are inter-
changed, the corresponding interchange is also carried out in perm. Thus perm shows
how the original rows were permuted. This information is then passed to the function
LUsolPiv, which rearranges the elements of the constant vector in the same order
before carrying out forward and back substitutions.

function [A,perm] = LUdecPiv(A)

% LU decomposition of matrix A; returns A = [L\U]

% and the row permutation vector ’perm’.

% USAGE: [A,perm] = LUdecPiv(A)

n = size(A,1); s = zeros(n,1);

perm = (1:n)’;

%----------Set up scale factor array----------

for i = 1:n; s(i) = max(abs(A(i,1:n))); end

%---------Exchange rows if necessary----------

for k = 1:n-1

[Amax,p] = max(abs(A(k:n,k))./s(k:n));

p = p + k - 1;

if Amax < eps

error(’Matrix is singular’)

end
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if p ˜= k

s = swapRows(s,k,p);

A = swapRows(A,k,p);

perm = swapRows(perm,k,p);

end

%--------------Elimination pass---------------

for i = k+1:n

if A(i,k) ˜= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

A(i,k) = lambda;

end

end

end

� LUsolPiv

function x = LUsolPiv(A,b,perm)

% Solves L*U*b = x, where A contains row-wise

% permutation of L and U in the form A = [L\U].

% Vector ’perm’ holds the row permutation data.

% USAGE: x = LUsolPiv(A,b,perm)

%----------Rearrange b, store it in x--------

if size(b) > 1; b = b’; end

n = size(A,1);

x = b;

for i = 1:n; x(i) = b(perm(i)); end

%--------Forward and back substitution--------

for k = 2:n

x(k) = x(k) - A(k,1:k-1)*x(1:k-1);

end

for k = n:-1:1

x(k) = (x(k) - A(k,k+1:n)*x(k+1:n))/A(k,k);

end

When to Pivot

Pivoting has a couple of drawbacks. One of these is the increased cost of computation;
the other is the destruction of the symmetry and banded structure of the coefficient
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matrix. The latter is of particular concern in engineering computing, where the co-
efficient matrices are frequently banded and symmetric, a property that is utilized
in the solution, as seen in the previous article. Fortunately, these matrices are often
diagonally dominant as well, so that they would not benefit from pivoting anyway.

There are no infallible rules for determining when pivoting should be used. Expe-
rience indicates that pivoting is likely to be counterproductive if the coefficient matrix
is banded. Positive definite and, to a lesser degree, symmetric matrices also seldom
gain from pivoting. And we should not forget that pivoting is not the only means of
controlling roundoff errors—there is also double precision arithmetic.

It should be strongly emphasized that the above rules of thumb are only meant
for equations that stem from real engineering problems. It is not difficult to concoct
“textbook” examples that do not conform to these rules.

EXAMPLE 2.12
Employ Gauss elimination with scaled row pivoting to solve the equations Ax = b,
where

A =

⎡
⎢⎣ 2 −2 6

−2 4 3
−1 8 4

⎤
⎥⎦ b =

⎡
⎢⎣ 16

0
−1

⎤
⎥⎦

Solution The augmented coefficient matrix and the scale factor array are

[
A b

]
=

⎡
⎢⎣ 2 −2 6 16

−2 4 3 0
−1 8 4 −1

⎤
⎥⎦ s =

⎡
⎢⎣6

4
8

⎤
⎥⎦

Note that s contains the absolute value of the largest element in each row of A. At this
stage, all the elements in the first column of A are potential pivots. To determine the
best pivot element, we calculate the relative sizes of the elements in the first column:

⎡
⎢⎣ r11

r21

r31

⎤
⎥⎦ =

⎡
⎢⎣ |A11| /s1

|A21| /s2

|A31| /s3

⎤
⎥⎦ =

⎡
⎢⎣1/3

1/2
1/8

⎤
⎥⎦

Since r21 is the biggest element, we conclude that A21 makes the best pivot element.
Therefore, we exchange rows 1 and 2 of the augmented coefficient matrix and the
scale factor array, obtaining

[
A b

]
=

⎡
⎢⎣−2 4 3 0

2 −2 6 16
−1 8 4 −1

⎤
⎥⎦ ←

s =

⎡
⎢⎣4

6
8

⎤
⎥⎦
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Now the first pass of Gauss elimination is carried out (the arrow points to the pivot
row), yielding

[
A′ b′

]
=

⎡
⎢⎣−2 4 3 0

0 2 9 16
0 6 5/2 −1

⎤
⎥⎦ s =

⎡
⎢⎣4

6
8

⎤
⎥⎦

The potential pivot elements for the next elimination pass are A22 and A32. We
determine the “winner” from

⎡
⎢⎣ ∗

r22

r32

⎤
⎥⎦ =

⎡
⎢⎣ ∗

|A22| /s2

|A32| /s3

⎤
⎥⎦ =

⎡
⎢⎣ ∗

1/3
3/4

⎤
⎥⎦

Note that r12 is irrelevant, since row 1 already acted as the pivot row. Therefore, it is
excluded from further consideration. As r32 is larger than r22, the third row is the better
pivot row. After interchanging rows 2 and 3, we have

[
A′ b′

]
=

⎡
⎢⎣−2 4 3 0

0 6 5/2 −1
0 2 9 16

⎤
⎥⎦ ← s =

⎡
⎢⎣4

8
6

⎤
⎥⎦

The second elimination pass now yields

[
A′′ b′′

]
=
[

U c
]

=

⎡
⎢⎣−2 4 3 0

0 6 5/2 −1
0 0 49/6 49/3

⎤
⎥⎦

This completes the elimination phase. It should be noted that U is the matrix that
would result in the LU decomposition of the following row-wise permutation of A (the
ordering of rows is the same as achieved by pivoting):

⎡
⎢⎣−2 4 3

−1 8 4
2 −2 6

⎤
⎥⎦

Since the solution of Ux = c by back substitution is not affected by pivoting, we skip
the detailed computation. The result is xT =

[
1 −1 2

]
.

Alternate Solution It it not necessary to physically exchange equations during piv-
oting. We could accomplish Gauss elimination just as well by keeping the equations
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in place. The elimination would then proceed as follows (for the sake of brevity, we
skip repeating the details of choosing the pivot equation):

[
A b

]
=

⎡
⎢⎣ 2 −2 6 16

−2 4 3 0
−1 8 4 −1

⎤
⎥⎦ ←

[
A′ b′

]
=

⎡
⎢⎣ 0 2 9 16

−2 4 3 0
0 6 5/2 −1

⎤
⎥⎦

←

[
A′′ b′′

]
=

⎡
⎢⎣ 0 0 49/6 49/3

−2 4 3 0
0 6 5/2 −1

⎤
⎥⎦

But now the back substitution phase is a little more involved, since the order in which
the equations must be solved has become scrambled. In hand computations this is
not a problem, because we can determine the order by inspection. Unfortunately,
“by inspection” does not work on a computer. To overcome this difficulty, we have
to maintain an integer array p that keeps track of the row permutations during the
elimination phase. The contents of p indicate the order in which the pivot rows were
chosen. In this example, we would have at the end of Gauss elimination

p =

⎡
⎢⎣2

3
1

⎤
⎥⎦

showing that row 2 was the pivot row in the first elimination pass, followed by row 3 in
the second pass. The equations are solved by back substitution in the reverse order:
equation 1 is solved first for x3, then equation 3 is solved for x2, and finally equation
2 yields x1.

By dispensing with swapping of equations, the scheme outlined above would
probably result in a faster (and more complex) algorithm than gaussPiv, but the
number of equations would have to be quite large before the difference becomes
noticeable.

PROBLEM SET 2.2

1. Solve the equations Ax = b by utilizing Doolittle’s decomposition, where

A =

⎡
⎢⎣ 3 −3 3

−3 5 1
3 1 5

⎤
⎥⎦ b =

⎡
⎢⎣ 9

−7
12

⎤
⎥⎦
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2. Use Doolittle’s decomposition to solve Ax = b, where

A =

⎡
⎢⎣ 4 8 20

8 13 16
20 16 −91

⎤
⎥⎦ b =

⎡
⎢⎣ 24

18
−119

⎤
⎥⎦

3. Determine L and D that result from Doolittle’s decomposition of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

2 −2 0 0 0
−2 5 −6 0 0

0 −6 16 12 0
0 0 12 39 −6
0 0 0 −6 14

⎤
⎥⎥⎥⎥⎥⎦

4. Solve the tridiagonal equations Ax = b by Doolittle’s decomposition method,
where

A =

⎡
⎢⎢⎢⎢⎢⎣

6 2 0 0 0
−1 7 2 0 0

0 −2 8 2 0
0 0 3 7 −2
0 0 0 3 5

⎤
⎥⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎢⎣

2
−3

4
−3

1

⎤
⎥⎥⎥⎥⎥⎦

5. Use Gauss elimination with scaled row pivoting to solve

⎡
⎢⎣ 4 −2 1

−2 1 −1
−2 3 6

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 2

−1
0

⎤
⎥⎦

6. Solve Ax = b by Gauss elimination with scaled row pivoting, where

A =

⎡
⎢⎣ 2.34 −4.10 1.78

−1.98 3.47 −2.22
2.36 −15.17 6.81

⎤
⎥⎦ b =

⎡
⎢⎣ 0.02

−0.73
−6.63

⎤
⎥⎦

7. Solve the equations

⎡
⎢⎢⎢⎣

2 −1 0 0
0 0 −1 1
0 −1 2 −1

−1 2 −1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎦

by Gauss elimination with scaled row pivoting.
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8. � Solve the equations⎡
⎢⎢⎢⎣

0 2 5 −1
2 1 3 0

−2 −1 3 1
3 3 −1 2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−3
3

−2
5

⎤
⎥⎥⎥⎦

9. � Solve the symmetric, tridiagonal equations

4x1 − x2 = 9

−xi−1 + 4xi − xi+1 = 5, i = 2, . . . , n − 1

−xn−1 + 4xn = 5

with n = 10.

10. � Solve the equations Ax = b, where

A =

⎡
⎢⎢⎢⎣

1.3174 2.7250 2.7250 1.7181
0.4002 0.8278 1.2272 2.5322
0.8218 1.5608 0.3629 2.9210
1.9664 2.0011 0.6532 1.9945

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

8.4855
4.9874
5.6665
6.6152

⎤
⎥⎥⎥⎦

11. � Solve the equations⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 −2 −1 2 3 1 −4 7
5 11 3 10 −3 3 3 −4
7 12 1 5 3 −12 2 3
8 7 −2 1 3 2 2 4
2 −15 −1 1 4 −1 8 3
4 2 9 1 12 −1 4 1

−1 4 −7 −1 1 1 −1 −3
−1 3 4 1 3 −4 7 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
12
−5

3
−25
−26

9
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12. � The system shown in Fig. (a) consists of n linear springs that support n masses.
The spring stiffnesses are denoted by ki , the weights of the masses are Wi , and
xi are the displacements of the masses (measured from the positions where the
springs are undeformed). The so-called displacement formulation is obtained by
writing the equilibrium equation of each mass and substituting Fi = ki(xi+1 − xi)
for the spring forces. The result is the symmetric, tridiagonal set of equations

(k1 + k2)x1 − k2x2 = W1

−ki xi−1 + (ki + ki+1)xi − ki+1xi+1 = Wi , i = 2, 3, . . . , n − 1

−knxn−1 + knxn = Wn
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Write a program that solves these equations for given values of n, k and W. Run
the program with n = 5 and

k1 = k2 = k3 = 10 N/mm k4 = k5 = 5 N/mm
W1 = W3 = W5 = 100 N W2 = W4 = 50 N

x1

k

x

k

x

k

k

2

nW

2
3

n

1

W

W

n

1

2

W1

k1

x1x

W2

k2

k3

x2

x
W

k

k

3

4

5

3
(a) (b)

13. � The displacement formulation for the mass–spring system shown in Fig. (b)
results in the following equilibrium equations of the masses:⎡

⎢⎣k1 + k2 + k3 + k5 −k3 −k5

−k3 k3 + k4 −k4

−k5 −k4 k4 + k5

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣W1

W2

W3

⎤
⎥⎦

where ki are the spring stiffnesses, Wi represent the weights of the masses, and
xi are the displacements of the masses from the undeformed configuration of
the system. Write a program that solves these equations, given k and W. Use the
program to find the displacements if

k1 = k3 = k4 = k k2 = k5 = 2k
W1 = W3 = 2W W2 = W

14. �

45 kN

1.8 m

2.4 m u1

u2

u3 u5

u4

The displacement formulation for a plane truss is similar to that of a mass–
spring system. The differences are: (1) the stiffnesses of the members are
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ki = (E A/L)i , where E is the modulus of elasticity, A represents the cross-
sectional area and L is the length of the member; (2) there are two com-
ponents of displacement at each joint. For the statically indeterminate truss
shown the displacement formulation yields the symmetric equations Ku = p,
where

K =

⎡
⎢⎢⎢⎢⎢⎣

27.58 7.004 −7.004 0.0000 0.0000
7.004 29.57 −5.253 0.0000 −24.32

−7.004 −5.253 29.57 0.0000 0.0000
0.0000 0.0000 0.0000 27.58 −7.004
0.0000 −24.32 0.0000 −7.004 29.57

⎤
⎥⎥⎥⎥⎥⎦ MN/m

p =
[

0 0 0 0 −45
]

T kN

Determine the displacements ui of the joints.

15. �

P P

P

P

P

P

1 2

3

4

5

6

P P2

P3

P4

P5

P6

18 kN 12 kN

45o 45o

1

In the force formulation of a truss, the unknowns are the member forces Pi . For
the statically determinate truss shown, the equilibrium equations of the joints
are:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1/
√

2 0 0 0
0 0 1/

√
2 1 0 0

0 −1 0 0 −1/
√

2 0
0 0 0 0 1/

√
2 0

0 0 0 0 1/
√

2 1
0 0 0 −1 −1/

√
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

P6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
18

0
12

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the units of Pi are kN. (a) Solve the equations as they are with a computer
program. (b) Rearrange the rows and columns so as to obtain a lower triangular
coefficient matrix, and then solve the equations by back substitution using a
calculator.
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16. �

P

PP

P

1

2
3

4

P1 P1 P1

P2

P2 P2P3 P3

P3

P4

P5P5 Load = 1

The force formulation of the symmetric truss shown results in the joint equilib-
rium equations

⎡
⎢⎢⎢⎢⎢⎣

c 1 0 0 0
0 s 0 0 1
0 0 2s 0 0
0 −c c 1 0
0 s s 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦

where s = sin θ, c = cos θ and Pi are the unknown forces. Write a program that
computes the forces, given the angle θ . Run the program with θ = 53◦.

17. �

i1
i2

i3

20 Ω

10 Ω

R

220 V

0 V

15
 Ω

5 
Ω

5 Ω

The electrical network shown can be viewed as consisting of three loops. Apply-
ing Kirhoff’s law (

∑
voltage drops = ∑

voltage sources) to each loop yields the
following equations for the loop currents i1, i2 and i3:

5i1 + 15(i1 − i3) = 220 V

R(i2 − i3) + 5i2 + 10i2 = 0

20i3 + R(i3 − i2) + 15(i3 − i1) = 0

Compute the three loop currents for R = 5, 10 and 20 �.
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18. �

50 Ω 30 Ω

15
 Ω

15
 Ω

20 Ω

30 Ω

10
 Ω

5 
Ω

10
 Ω

25 Ω

2

1

3

4

-120 V +120 V

Determine the loop currents i1 to i4 in the electrical network shown.

19. � Consider the n simultaneous equations Ax = b, where

Ai j = (i + j)2 bi =
n−1∑
j=0

Ai j , i = 0, 1, . . . , n − 1, j = 0, 1, . . . , n − 1

The solution is x =
[

1 1 · · · 1
]T

. Write a program that solves these equations
for any given n (pivoting is recommended). Run the program with n = 2, 3 and 4,
and comment on the results.

∗2.6 Matrix Inversion

Computing the inverse of a matrix and solving simultaneous equations are related
tasks. The most economical way to invert an n ×n matrix A is to solve the equations

AX = I (2.33)

where I is the n × n identity matrix. The solution X, also of size n × n, will be the
inverse of A. The proof is simple: after we premultiply both sides of Eq. (2.33) by A−1

we have A−1AX = A−1I, which reduces to X = A−1.
Inversion of large matrices should be avoided whenever possible due its high cost.

As seen from Eq. (2.33), inversion of A is equivalent to solving Axi = bi , i = 1, 2, . . . , n,
where bi is the ith column of I. If LU decomposition is employed in the solution, the
solution phase (forward and back substitution) must be repeated n times, once for
each bi . Since the cost of computation is proportional to n3 for the decomposition
phase and n2 for each vector of the solution phase, the cost of inversion is considerably
more expensive than the solution of Ax = b (single constant vector b).
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Matrix inversion has another serious drawback—a banded matrix loses its struc-
ture during inversion. In other words, if A is banded or otherwise sparse, then A−1 is
fully populated. However, the inverse of a triangular matrix remains triangular.

EXAMPLE 2.13
Write a function that inverts a matrix using LU decomposition with pivoting. Test the
function by inverting

A =

⎡
⎢⎣ 0.6 −0.4 1.0

−0.3 0.2 0.5
0.6 −1.0 0.5

⎤
⎥⎦

Solution The function matInv listed below inverts any martix A.

function Ainv = matInv(A)

% Inverts martix A with LU decomposition.

% USAGE: Ainv = matInv(A)

n = size(A,1);

Ainv = eye(n); % Store RHS vectors in Ainv.

[A,perm] = LUdecPiv(A); % Decompose A.

% Solve for each RHS vector and store results in Ainv

% replacing the corresponding RHS vector.

for i = 1:n

Ainv(:,i) = LUsolPiv(A,Ainv(:,i),perm);

end

The following test program computes the inverse of the given matrix and checks
whether AA−1 = I:

% Example 2.13 (Matrix inversion)

A = [0.6 -0.4 1.0

-0.3 0.2 0.5

0.6 -1.0 0.5];

Ainv = matInv(A)

check = A*Ainv

Here are the results:

>> Ainv =

1.6667 -2.2222 -1.1111

1.2500 -0.8333 -1.6667

0.5000 1.0000 0



83 2.6 Matrix Inversion

check =

1.0000 -0.0000 -0.0000

0 1.0000 0.0000

0 -0.0000 1.0000

EXAMPLE 2.14
Invert the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution Since the matrix is tridiagonal, we solve AX = I using the functions LUdec3
and LUsol3 (LU decomposition for tridiagonal matrices):

% Example 2.14 (Matrix inversion)

n = 6;

d = ones(n,1)*2;

e = -ones(n-1,1);

c = e;

d(n) = 5;

[c,d,e] = LUdec3(c,d,e);

for i = 1:n

b = zeros(n,1);

b(i) = 1;

Ainv(:,i) = LUsol3(c,d,e,b);

end

Ainv

The result is

>> Ainv =

0.8400 0.6800 0.5200 0.3600 0.2000 0.0400

0.6800 1.3600 1.0400 0.7200 0.4000 0.0800

0.5200 1.0400 1.5600 1.0800 0.6000 0.1200

0.3600 0.7200 1.0800 1.4400 0.8000 0.1600

0.2000 0.4000 0.6000 0.8000 1.0000 0.2000

0.0400 0.0800 0.1200 0.1600 0.2000 0.2400

Note that although A is tridiagonal, A−1 is fully populated.
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∗2.7 Iterative Methods

Introduction

So far, we have discussed only direct methods of solution. The common characteristic
of these methods is that they compute the solution with a finite number of operations.
Moreover, if the computer were capable of infinite precision (no roundoff errors), the
solution would be exact.

Iterative, or indirect methods, start with an initial guess of the solution x and
then repeatedly improve the solution until the change in x becomes negligible. Since
the required number of iterations can be very large, the indirect methods are, in
general, slower than their direct counterparts. However, iterative methods do have
the following advantages that make them attractive for certain problems:

1. It is feasible to store only the nonzero elements of the coefficient matrix. This
makes it possible to deal with very large matrices that are sparse, but not neces-
sarily banded. In many problems, there is no need to store the coefficient matrix
at all.

2. Iterative procedures are self-correcting, meaning that roundoff errors (or even
arithmetic mistakes) in one iterative cycle are corrected in subsequent cycles.

A serious drawback of iterative methods is that they do not always converge to the
solution. It can be shown that convergence is guaranteed only if the coefficient matrix
is diagonally dominant. The initial guess for x plays no role in determining whether
convergence takes place—if the procedure converges for one starting vector, it would
do so for any starting vector. The initial guess affects only the number of iterations
that are required for convergence.

Gauss–Seidel Method

The equations Ax = b are in scalar notation

n∑
j=1

Ai j xj = bi , i = 1, 2, . . . , n

Extracting the term containing xi from the summation sign yields

Aii xi +
n∑

j=1
j �=i

Ai j xj = bi , i = 1, 2, . . . , n
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Solving for xi , we get

xi = 1
Aii

⎛
⎜⎝bi −

n∑
j=1
j �=i

Ai j xj

⎞
⎟⎠ , i = 1, 2, . . . , n

The last equation suggests the following iterative scheme

xi ← 1
Aii

⎛
⎜⎝bi −

n∑
j=1
j �=i

Ai j xj

⎞
⎟⎠ , i = 1, 2, . . . , n (2.34)

We start by choosing the starting vector x. If a good guess for the solution is not
available, x can be chosen randomly. Equation (2.34) is then used to recompute each
element of x, always using the latest available values of xj . This completes one iteration
cycle. The procedure is repeated until the changes in x between successive iteration
cycles become sufficiently small.

Convergence of the Gauss–Seidel method can be improved by a technique known
as relaxation. The idea is to take the new value of xi as a weighted average of its previous
value and the value predicted by Eq. (2.34). The corresponding iterative formula is

xi ← ω

Aii

⎛
⎜⎝bi −

n∑
j=1
j �=i

Ai j xj

⎞
⎟⎠+ (1 − ω)xi , i = 1, 2, . . . , n (2.35)

where the weight ω is called the relaxation factor. It can be seen that if ω = 1,
no relaxation takes place, since Eqs. (2.34) and (2.35) produce the same result. If
ω < 1, Eq. (2.35) represents interpolation between the old xi and the value given by
Eq. (2.34). This is called underrelaxation. In cases where ω > 1, we have extrapolation,
or overrelaxation.

There is no practical method of determining the optimal value of ω beforehand;
however, a good estimate can be computed during run time. Let �x(k) = ∣∣x(k−1) − x(k)

∣∣
be the magnitude of the change in x during the kth iteration (carried out without
relaxation; i.e., with ω = 1). If k is sufficiently large (say k ≥ 5), it can be shown2 that
an approximation of the optimal value of ω is

ωopt ≈ 2

1 +
√

1 − (
�x(k+p)/�x(k)

)1/p
(2.36)

where p is a positive integer.

2 See, for example, Terrence J. Akai, Applied Numerical Methods for Engineers, John Wiley & Sons
(1994), p. 100.
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The essential elements of a Gauss–Seidel algorithm with relaxation are:

1. Carry out k iterations with ω = 1 (k =10 is reasonable). After the kth iteration
record �x(k).

2. Perform an additional p iterations ( p ≥ 1) and record �x(k+p) after the last
iteration.

3. Perform all subsequent iterations with ω = ωopt, where ωopt is computed from
Eq. (2.36).

� gaussSeidel

The function gaussSeidel is an implementation of the Gauss–Seidel method with
relaxation. It automatically computes ωopt from Eq. (2.36) using k =10 and p =1.
The user must provide the function iterEqs that computes the improved x from the
iterative formulas in Eq. (2.35)—see Example 2.17.

function [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)

% Solves Ax = b by Gauss-Seidel method with relaxation.

% USAGE: [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)

% INPUT:

% func = handle of function that returns improved x using

% the iterative formulas in Eq. (2.35).

% x = starting solution vector

% maxIter = allowable number of iterations (default is 500)

% epsilon = error tolerance (default is 1.0e-9)

% OUTPUT:

% x = solution vector

% numIter = number of iterations carried out

% omega = computed relaxation factor

if nargin < 4; epsilon = 1.0e-9; end

if nargin < 3; maxIter = 500; end

k = 10; p = 1; omega = 1;

for numIter = 1:maxIter

xOld = x;

x = feval(func,x,omega);

dx = sqrt(dot(x - xOld,x - xOld));

if dx < epsilon; return; end

if numIter == k; dx1 = dx; end
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if numIter == k + p

omega = 2/(1 + sqrt(1 - (dx/dx1)ˆ(1/p)));

end

end

error(’Too many iterations’)

Conjugate Gradient Method

Consider the problem of finding the vector x that minimizes the scalar function

f (x) = 1
2

xT Ax − bT x (2.37)

where the matrix A is symmetric and positive definite. Because f (x) is minimized when
its gradient ∇ f = Ax − b is zero, we see that minimization is equivalent to solving

Ax = b (2.38)

Gradient methods accomplish the minimization by iteration, starting with an
initial vector x0. Each iterative cycle k computes a refined solution

xk+1 = xk + αksk (2.39)

The step length αk is chosen so that xk+1 minimizes f (xk+1) in the search direction sk.
That is, xk+1 must satisfy Eq. (2.38):

A(xk + αksk) = b (a)

Introducing the residual

rk = b − Axk (2.40)

Eq. (a) becomes αAsk = rk. Premultiplying both sides by sT
k and solving for αk, we

obtain

αk = sT
k rk

sT
k Ask

(2.41)

We are still left with the problem of determining the search direction sk. Intuition
tells us to choose sk = −∇ f = rk, since this is the direction of the largest negative
change in f (x). The resulting procedure is known as the method of steepest descent.
It is not a popular algorithm due to slow convergence. The more efficient conjugate
gradient method uses the search direction

sk+1 = rk+1 + βksk (2.42)

The constant βk is chosen so that the two successive search directions are conjugate
(noninterfering) to each other, meaning sT

k+1Ask = 0. Substituting for sk+1 from
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Eq. (2.42), we get
(
rT

k+1 + βksT
k

)
Ask = 0, which yields

βk = −rT
k+1Ask

sT
k Ask

(2.43)

Here is the outline of the conjugate gradient algorithm:

� Choose x0 (any vector will do, but one close to solution results in fewer iterations)
� r0 ← b − Ax0
� s0 ← r0 (lacking a previous search direction, choose the direction of steepest

descent)
� do with k = 0, 1, 2, . . .

αk ← sT
k rk

sT
k Ask

xk+1 ← xk + αksk

rk+1 ← b − Axk+1

if |rk+1| ≤ ε exit loop (convergence criterion; ε is the error tolerance)

βk ← −rT
k+1Ask

sT
k Ask

sk+1 ← rk+1 + βksk

� end do

It can be shown that the residual vectors r1, r2, r3, . . . produced by the algorithm
are mutually orthogonal; i.e., ri · r j = 0, i �= j. Now suppose that we have carried out
enough iterations to have computed the whole set of n residual vectors. The residual
resulting from the next iteration must be a null vector (rn+1 = 0), indicating that the
solution has been obtained. It thus appears that the conjugate gradient algorithm
is not an iterative method at all, since it reaches the exact solution after n compu-
tational cycles. In practice, however, convergence is usually achieved in less than n
iterations.

The conjugate gradient method is not competitive with direct methods in the
solution of small sets of equations. Its strength lies in the handling of large, sparse
systems (where most elements of A are zero). It is important to note that A enters the
algorithm only through its multiplication by a vector; i.e., in the form Av, where v is
a vector (either xk+1 or sk). If A is sparse, it is possible to write an efficient subroutine
for the multiplication and pass it on to the conjugate gradient algorithm.

� conjGrad

The function conjGrad shown below implements the conjugate gradient algorithm.
The maximum allowable number of iterations is set to n. Note that conjGrad calls
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the function Av(v)which returns the product Av. This function must be supplied by
the user (see Example 2.18). We must also supply the starting vector x and the constant
(right-hand-side) vector b.

function [x,numIter] = conjGrad(func,x,b,epsilon)

% Solves Ax = b by conjugate gradient method.

% USAGE: [x,numIter] = conjGrad(func,x,b,epsilon)

% INPUT:

% func = handle of function that returns the vector A*v

% x = starting solution vector

% b = constant vector in A*x = b

% epsilon = error tolerance (default = 1.0e-9)

% OUTPUT:

% x = solution vector

% numIter = number of iterations carried out

if nargin == 3; epsilon = 1.0e-9; end

n = length(b);

r = b - feval(func,x); s = r;

for numIter = 1:n

u = feval(func,s);

alpha = dot(s,r)/dot(s,u);

x = x + alpha*s;

r = b - feval(func,x);

if sqrt(dot(r,r)) < epsilon

return

else

beta = -dot(r,u)/dot(s,u);

s = r + beta*s;

end

end

error(’Too many iterations’)

EXAMPLE 2.15
Solve the equations

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

by the Gauss–Seidel method without relaxation.
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Solution With the given data, the iteration formulas in Eq. (2.34) become

x1 = 1
4

(12 + x2 − x3)

x2 = 1
4

(−1 + x1 + 2x3)

x3 = 1
4

(5 − x1 + 2x2)

Choosing the starting values x1 = x2 = x3 = 0, we have for the first iteration

x1 = 1
4

(12 + 0 − 0) = 3

x2 = 1
4

[−1 + 3 + 2(0)] = 0.5

x3 = 1
4

[5 − 3 + 2(0.5)] = 0.75

The second iteration yields

x1 = 1
4

(12 + 0.5 − 0.75) = 2.9375

x2 = 1
4

[−1 + 2.9375 + 2(0.75)] = 0.859 38

x3 = 1
4

[5 − 2.9375 + 2(0.85938)] = 0 .945 31

and the third iteration results in

x1 = 1
4

(12 + 0.85938 − 0 .94531) = 2.978 52

x2 = 1
4

[−1 + 2.97852 + 2(0 .94531)] = 0.967 29

x3 = 1
4

[5 − 2.97852 + 2(0.96729)] = 0.989 02

After five more iterations the results would agree with the exact solution x1 = 3,
x2 = x3 = 1 within five decimal places.

EXAMPLE 2.16
Solve the equations in Example 2.15 by the conjugate gradient method.

Solution The conjugate gradient method should converge after three iterations.
Choosing again for the starting vector

x0 =
[

0 0 0
]T
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the computations outlined in the text proceed as follows:

r0 = b − Ax0 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣0

0
0

⎤
⎥⎦ =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

s0 = r0 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

As0 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 54

−26
34

⎤
⎥⎦

α0 = sT
0 r0

sT
0 As0

= 122 + (−1)2 + 52

12(54) + (−1)(−26) + 5(34)
= 0.201 42

x1 = x0 + α0s0 =

⎡
⎢⎣0

0
0

⎤
⎥⎦+ 0.201 42

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 2.41 704

−0. 201 42
1.007 10

⎤
⎥⎦

r1 = b − Ax1 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 2.417 04

−0. 201 42
1.007 10

⎤
⎥⎦ =

⎡
⎢⎣ 1.123 32

4.236 92
−1.848 28

⎤
⎥⎦

β0 = − rT
1 As0

sT
0 As0

= −1.123 32(54) + 4.236 92(−26) − 1.848 28(34)
12(54) + (−1)(−26) + 5(34)

= 0.133 107

s1 = r1 + β0s0 =

⎡
⎢⎣ 1.123 32

4.236 92
−1.848 28

⎤
⎥⎦+ 0.133 107

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 2.720 76

4.103 80
−1.182 68

⎤
⎥⎦

As1 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 2.720 76

4.103 80
−1.182 68

⎤
⎥⎦ =

⎡
⎢⎣ 5.596 56

16.059 80
−10.217 60

⎤
⎥⎦

α1 = sT
1 r1

sT
1 As1

= 2.720 76(1.123 32) + 4.103 80(4.236 92) + (−1.182 68)(−1.848 28)
2.720 76(5.596 56) + 4.103 80(16.059 80) + (−1.182 68)(−10.217 60)

= 0.24276
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x2 = x1 + α1s1 =

⎡
⎢⎣ 2.417 04

−0. 201 42
1.007 10

⎤
⎥⎦+ 0.24276

⎡
⎢⎣ 2. 720 76

4. 103 80
−1. 182 68

⎤
⎥⎦ =

⎡
⎢⎣ 3.07753

0.79482
0.71999

⎤
⎥⎦

r2 = b − Ax2 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 3.07753

0.79482
0.71999

⎤
⎥⎦ =

⎡
⎢⎣−0.23529

0.33823
0.63215

⎤
⎥⎦

β1 = − rT
2 As1

sT
1 As1

= − (−0.23529)(5.59656) + 0.33823(16.05980) + 0.63215(−10.21760)
2.72076(5.59656) + 4.10380(16.05980) + (−1.18268)(−10.21760)

= 0.0251452

s2 = r2 + β1s1 =

⎡
⎢⎣−0.23529

0.33823
0.63215

⎤
⎥⎦+ 0.0251452

⎡
⎢⎣ 2.72076

4.10380
−1.18268

⎤
⎥⎦ =

⎡
⎢⎣−0.166876

0.441421
0.602411

⎤
⎥⎦

As2 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣−0.166876

0.441421
0.602411

⎤
⎥⎦ =

⎡
⎢⎣−0.506514

0.727738
1.359930

⎤
⎥⎦

α2 = rT
2 s2

sT
2 As2

= (−0.23529)(−0.166876) + 0.33823(0.441421) + 0.63215(0.602411)
(−0.166876)(−0.506514) + 0.441421(0.727738) + 0.602411(1.359930)

= 0.46480

x3 = x2 + α2s2 =

⎡
⎢⎣ 3.07753

0.79482
0.71999

⎤
⎥⎦+ 0.46480

⎡
⎢⎣−0.166876

0.441421
0.602411

⎤
⎥⎦ =

⎡
⎢⎣2.99997

0.99999
0.99999

⎤
⎥⎦

The solution x3 is correct to almost five decimal places. The small discrepancy is
caused by roundoff errors in the computations.

EXAMPLE 2.17
Write a computer program to solve the following n simultaneous equations3 by
the Gauss–Seidel method with relaxation (the program should work with any

3 Equations of this form are called cyclic tridiagonal. They occur in the finite difference formulation
of second-order differential equations with periodic boundary conditions.
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value of n):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 . . . 0 0 0 1
−1 2 −1 0 . . . 0 0 0 0

0 −1 2 −1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 2 −1 0
0 0 0 0 . . . 0 −1 2 −1
1 0 0 0 . . . 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−2

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Run the program with n = 20. The exact solution can be shown to be xi = −n/4 + i/2,
i = 1, 2, . . . , n.

Solution In this case the iterative formulas in Eq. (2.35) are

x1 = ω(x2 − xn)/2 + (1 − ω)x1

xi = ω(xi−1 + xi+1)/2 + (1 − ω)xi , i = 2, 3, . . . , n − 1 (a)

xn = ω(1 − x1 + xn−1)/2 + (1 − ω)xn

which are evaluated by the following function:

function x = fex2_17(x,omega)

% Iteration formula Eq. (2.35) for Example 2.17.

n = length(x);

x(1) = omega*(x(2) - x(n))/2 + (1-omega)*x(1);

for i = 2:n-1

x(i) = omega*(x(i-1) + x(i+1))/2 + (1-omega)*x(i);

end

x(n) = omega *(1 - x(1) + x(n-1))/2 + (1-omega)*x(n);

The solution can be obtained with a single command (note that x = 0 is the
starting vector):

>> [x,numIter,omega] = gaussSeidel(@fex2_17,zeros(20,1))

resulting in

x =

-4.5000

-4.0000

-3.5000

-3.0000
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-2.5000

-2.0000

-1.5000

-1.0000

-0.5000

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

numIter =

259

omega =

1.7055

The convergence is very slow, because the coefficient matrix lacks diagonal
dominance—substituting the elements of A in Eq. (2.30) produces an equality rather
than the desired inequality. If we were to change each diagonal term of the coefficient
matrix from 2 to 4, A would be diagonally dominant and the solution would converge
in only 22 iterations.

EXAMPLE 2.18
Solve Example 2.17 with the conjugate gradient method, also using n = 20.

Solution For the given A, the components of the vector Av are

(Av)1 = 2v1 − v2 + vn

(Av)i = −vi−1 + 2vi − vi+1, i = 2, 3, . . . , n − 1

(Av)n = −vn−1 + 2vn + v1

which are evaluated by the following function:

function Av = fex2_18(v)

% Computes the product A*v in Example 2.18
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n = length(v);

Av = zeros(n,1);

Av(1) = 2*v(1) - v(2) + v(n);

Av(2:n-1) = -v(1:n-2) + 2*v(2:n-1) - v(3:n);

Av(n) = -v(n-1) + 2*v(n) + v(1);

The program shown below utilizes the function conjGrad. The solution vector x
is initialized to zero in the program, which also sets up the constant vector b.

% Example 2.18 (Conjugate gradient method)

n = 20;

x = zeros(n,1);

b = zeros(n,1); b(n) = 1;

[x,numIter] = conjGrad(@fex2_18,x,b)

Running the program results in

x =

-4.5000

-4.0000

-3.5000

-3.0000

-2.5000

-2.0000

-1.5000

-1.0000

-0.5000

0

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

numIter =

10



96 Systems of Linear Algebraic Equations

PROBLEM SET 2.3

1. Let

A =

⎡
⎢⎣ 3 −1 2

0 1 3
−2 2 −4

⎤
⎥⎦ B =

⎡
⎢⎣ 0 1 3

3 −1 2
−2 2 −4

⎤
⎥⎦

(note that B is obtained by interchanging the first two rows of A). Knowing that

A−1 =

⎡
⎢⎣ 0.5 0 0.25

0.3 0.4 0.45
−0.1 0.2 −0.15

⎤
⎥⎦

determine B−1.

2. Invert the triangular matrices

A =

⎡
⎢⎣2 4 3

0 6 5
0 0 2

⎤
⎥⎦ B =

⎡
⎢⎣2 0 0

3 4 0
4 5 6

⎤
⎥⎦

3. Invert the triangular matrix

A =

⎡
⎢⎢⎢⎣

1 1/2 1/4 1/8
0 1 1/3 1/9
0 0 1 1/4
0 0 0 1

⎤
⎥⎥⎥⎦

4. Invert the following matrices:

(a) A =

⎡
⎢⎣1 2 4

1 3 9
1 4 16

⎤
⎥⎦ (b) B =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

5. Invert the matrix

A =

⎡
⎢⎣ 4 −2 1

−2 1 −1
1 −2 4

⎤
⎥⎦

6. � Invert the following matrices with any method:

A =

⎡
⎢⎢⎢⎣

5 −3 −1 0
−2 1 1 1

3 −5 1 2
0 8 −4 −3

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 4

⎤
⎥⎥⎥⎦
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7. � Invert the matrix with any method;

A =

⎡
⎢⎢⎢⎢⎢⎣

1 3 −9 6 4
2 −1 6 7 1
3 2 −3 15 5
8 −1 1 4 2

11 1 −2 18 7

⎤
⎥⎥⎥⎥⎥⎦

and comment on the reliability of the result.

8. � The joint displacements u of the plane truss in Prob. 14, Problem Set 2.2 are
related to the applied joint forces p by

Ku = p (a)

where

K =

⎡
⎢⎢⎢⎢⎢⎣

27.580 7.004 −7.004 0.000 0.000
7.004 29.570 −5.253 0.000 −24.320

−7.004 −5.253 29.570 0.000 0.000
0.000 0.000 0.000 27.580 −7.004
0.000 −24.320 0.000 −7.004 29.570

⎤
⎥⎥⎥⎥⎥⎦ MN/m

is called the stiffness matrix of the truss. If Eq. (a) is inverted by multiplying each
side by K−1, we obtain u = K−1p, where K−1 is known as the flexibility matrix. The
physical meaning of the elements of the flexibility matrix is: K −1

i j = displacements
ui (i = 1, 2, . . . 5) produced by the unit load pj = 1. Compute (a) the flexibility
matrix of the truss; (b) the displacements of the joints due to the load p5 = −45 kN
(the load shown in Problem 14, Problem Set 2.2).

9. � Invert the matrices

A =

⎡
⎢⎢⎢⎣

3 −7 45 21
12 11 10 17

6 25 −80 −24
17 55 −9 7

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 1 1 1
1 2 2 2
2 3 4 4
4 5 6 7

⎤
⎥⎥⎥⎦

10. � Write a program for inverting a n × n lower triangular matrix. The inversion
procedure should contain only forward substitution. Test the program by invert-
ing the matrix

A =

⎡
⎢⎢⎢⎣

36 0 0 0
18 36 0 0

9 12 36 0
5 4 9 36

⎤
⎥⎥⎥⎦

Let the program also check the result by computing and printing AA−1.
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11. Use the Gauss–Seidel method to solve

⎡
⎢⎣−2 5 9

7 1 1
−3 7 −1

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1

6
−26

⎤
⎥⎦

12. Solve the following equations with the Gauss–Seidel method:

⎡
⎢⎢⎢⎣

12 −2 3 1
−2 15 6 −3

1 6 20 −4
0 −3 2 9

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

20
0

⎤
⎥⎥⎥⎦

13. Use the Gauss–Seidel method with relaxation to solve Ax = b, where

A =

⎡
⎢⎢⎢⎣

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 3

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

15
10
10
10

⎤
⎥⎥⎥⎦

Take xi = bi/Aii as the starting vector and use ω = 1.1 for the relaxation factor.

14. Solve the equations

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣1

1
1

⎤
⎥⎦

by the conjugate gradient method. Start with x = 0.

15. Use the conjugate gradient method to solve

⎡
⎢⎣ 3 0 −1

0 4 −2
−1 −2 5

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 4

10
−10

⎤
⎥⎦

starting with x = 0.

16. � Solve the simultaneous equations Ax = b and Bx = b by the Gauss–Seidel
method with relaxation, where

b =
[

10 −8 10 10 −8 10
]T
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 1 0 0 0
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
0 0 0 1 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 1 0 0 1
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
1 0 0 1 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that A is not diagonally dominant, but that does not necessarily preclude
convergence.

17. � Modify the program in Example 2.17 (Gauss–Seidel method) so that it will solve
the following equations:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 0 · · · 0 0 0 1
−1 4 −1 0 · · · 0 0 0 0

0 −1 4 −1 · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · −1 4 −1 0
0 0 0 0 · · · 0 −1 4 −1
1 0 0 0 · · · 0 0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−2

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0

100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Run the program with n = 20 and compare the number of iterations with Example
2.17.

18. � Modify the program in Example 2.18 to solve the equations in Prob. 17 by the
conjugate gradient method. Run the program with n = 20.

19. �

T = 0

T = 200

T = 100T = 0

0

0

0 0

1 2 3

4 5 6

7 8 9
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The edges of the square plate are kept at the temperatures shown. Assuming
steady-state heat conduction, the differential equation governing the temperature
T in the interior is

∂2T
∂x2

+ ∂2T
∂y 2

= 0

If this equation is approximated by finite differences using the mesh shown,
we obtain the following algebraic equations for temperatures at the mesh
points:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

T8

T9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

100
0
0

100
200
200
300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solve these equations with the conjugate gradient method.

MATLAB Functions

x = A\b returns the solutionxof Ax = b, obtained by Gauss elimination. If the equa-
tions are overdetermined (A has more rows than columns), the least-squares
solution is computed.

[L,U] = lu(A) Doolittle’s decomposition A = LU. On return, U is an upper trian-
gular matrix and L contains a row-wise permutation of the lower triangular
matrix.

[M,U,P] = lu(A) returns the sameUas above, but nowM is a lower triangular matrix
and P is the permutation matrix so that M = P*L. Note that here P*A = M*U.

L = chol(A) Choleski’s decomposition A = LLT .

B = inv(A) returns B as the inverse of A (the method used is not specified).

n = norm(A,1) returns the norm n = max j
∑

i |Ai j | (largest sum of elements in a
column of A).

c = cond(A) returns the condition number of the matrix A.
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MATLAB does not cater to banded matrices explicitly. However, banded matrices
can be treated as a sparse matrices for which MATLAB provides extensive support. A
banded matrix in sparse form can be created by the following command:

A = spdiags(B,d,n,n) creates a n × n sparse matrix from the columns of matrix
B by placing the columns along the diagonals specified by d. The columns of B
may be longer than the diagonals they represent. A diagonal in the upper part
of A takes its elements from lower part of a column of B, while a lower diagonal
uses the upper part of B.

Here is an example of creating the 5 × 5 tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎦

>> c = ones(5,1);

>> A = spdiags([-c 2*c -c],[-1 0 1],5,5)

A =

(1,1) 2

(2,1) -1

(1,2) -1

(2,2) 2

(3,2) -1

(2,3) -1

(3,3) 2

(4,3) -1

(3,4) -1

(4,4) 2

(5,4) -1

(4,5) -1

(5,5) 2

If the matrix is declared sparse, MATLAB stores only the nonzero elements of the
matrix together with information locating the position of each element in the matrix.
The printout of a sparse matrix displays the values of these elements and their indices
(row and column numbers) in parentheses.

Almost all matrix functions, including the ones listed above, also work on sparse
matrices. For example, [L,U] = lu(A) would return L and U in sparse matrix
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representation if A is a sparse matrix. There are many sparse matrix functions in
MATLAB; here are just a few of them:

A = full(S) converts the sparse matrix S into a full matrix A.

S = sparse(A) converts the full matrix A into a sparse matrix S.

x = lsqr(A,b) conjugate gradient method for solving Ax = b.

spy(S) draws a map of the nonzero elements of S.



3 Interpolation and Curve Fitting

Given the n data points (xi, yi), i = 1, 2, . . . , n, estimate y(x).

3.1 Introduction

Discrete data sets, or tables of the form

x1 x2 x3 · · · xn

y1 y2 y3 · · · yn

are commonly involved in technical calculations. The source of the data may be ex-
perimental observations or numerical computations. There is a distinction between
interpolation and curve fitting. In interpolation we construct a curve through the data
points. In doing so, we make the implicit assumption that the data points are accurate
and distinct. Curve fitting is applied to data that contain scatter (noise), usually due to
measurement errors. Here we want to find a smooth curve that approximates the data
in some sense. Thus the curve does not have to hit the data points. This difference
between interpolation and curve fitting is illustrated in Fig. 3.1.

3.2 Polynomial Interpolation

Lagrange’s Method

The simplest form of an interpolant is a polynomial. It is always possible to construct a
unique polynomial Pn−1(x) of degree n − 1 that passes through n distinct data points.
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x

y

Data points

Interpolation

Curve fitting

Figure 3.1. Interpolation and curve fitting of data.

One means of obtaining this polynomial is the formula of Lagrange

Pn−1(x) =
n∑

i=1

yi�i(x) (3.1a)

where

�i(x) = x − x1

xi − x1
· x − x2

xi − x2
· · · x − xi−1

xi − xi−1
· x − xi+1

xi − xi+1
· · · x − xn

xi − xn

=
n∏

j=1
j �=i

x − xj

xi − xj
, i = 1, 2, . . . , n (3.1b)

are called the cardinal functions.
For example, if n = 2, the interpolant is the straight line P1(x) = y1�1(x) + y2�2(x),

where

�1(x) = x − x2

x1 − x2
�2(x) = x − x1

x2 − x1

With n = 3, interpolation is parabolic: P2(x) = y1�1(x) + y2�2(x) + y3�3(x), where now

�1(x) = (x − x2)(x − x3)
(x1 − x2)(x1 − x3)

�2(x) = (x − x1)(x − x3)
(x2 − x1)(x2 − x3)

�3(x) = (x − x1)(x − x2)
(x3 − x1)(x3 − x2)

The cardinal functions are polynomials of degree n − 1 and have the property

�i(xj ) =
{

0 if i �= j
1 if i = j

}
= δi j (3.2)

where δi j is the Kronecker delta. This property is illustrated in Fig. 3.2 for three-point
interpolation (n = 3) with x1 = 0, x2 = 2 and x3 = 3.
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x
0.00 0.50 1.00 1.50 2.00 2.50 3.00

-0.50

0.00

0.50

1.00

l1

l2

l3

Figure 3.2. Example of quadratic cardinal functions.

To prove that the interpolating polynomial passes through the data points, we
substitute x = xj into Eq. (3.1a) and then utilize Eq. (3.2). The result is

Pn−1(xj ) =
n∑

i=1

yi�i(xj ) =
n∑

i=1

yiδi j = y j

It can be shown that the error in polynomial interpolation is

f (x) − Pn−1(x) = (x − x1)(x − x2) . . . (x − xn)
n!

f (n)(ξ ) (3.3)

where ξ lies somewhere in the interval (x1, xn); its value is otherwise unknown. It is
instructive to note that the farther a data point is from x, the more it contributes to
the error at x.

Newton’s Method

Evaluation of polynomial
Although Lagrange’s method is conceptually simple, it does not lend itself to an effi-
cient algorithm. A better computational procedure is obtained with Newton’s method,
where the interpolating polynomial is written in the form

Pn−1(x) = a1 + (x − x1)a2 + (x − x1)(x − x2)a3 + · · · + (x − x1)(x − x2) · · · (x − xn−1)an

This polynomial lends itself to an efficient evaluation procedure. Consider, for
example, four data points (n = 4). Here the interpolating polynomial is

P3(x) = a1 + (x − x1)a2 + (x − x1)(x − x2)a3 + (x − x1)(x − x2)(x − x3)a4

= a1 + (x − x1) {a2 + (x − x2) [a3 + (x − x3)a4]}
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which can be evaluated backward with the following recurrence relations:

P0(x) = a4

P1(x) = a3 + (x − x3)P0(x)

P2(x) = a2 + (x − x2)P1(x)

P3(x) = a1 + (x − x1)P2(x)

For arbitrary n we have

P0(x) = an Pk(x) = an−k + (x − xn−k)Pk−1(x), k = 1, 2, . . . , n − 1 (3.4)

� newtonPoly

Denoting the x-coordinate array of the data points by xData, and the number of data
points by n, we have the following algorithm for computing Pn−1(x):

function p = newtonPoly(a,xData,x)

% Returns value of Newton’s polynomial at x.

% USAGE: p = newtonPoly(a,xData,x)

% a = coefficient array of the polynomial;

% must be computed first by newtonCoeff.

% xData = x-coordinates of data points.

n = length(xData);

p = a(n);

for k = 1:n-1;

p = a(n-k) + (x - xData(n-k))*p;

end

Computation of coefficients
The coefficients of Pn−1(x) are determined by forcing the polynomial to pass through
each data point: yi = Pn−1(xi), i = 1, 2, . . . , n. This yields the simultaneous equations

y1 = a1

y2 = a1 + (x2 − x1)a2

y3 = a1 + (x3 − x1)a2 + (x3 − x1)(x3 − x2)a3 (a)

...

yn = a1 + (xn − x1)a1 + · · · + (xn − x1)(xn − x2) · · · (xn − xn−1)an
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Introducing the divided differences

∇yi = yi − y1

xi − x1
, i = 2, 3, . . . , n

∇2 yi = ∇yi − ∇y2

xi − x2
, i = 3, 4, . . . , n

∇3 yi = ∇2 yi − ∇2 y3

xi − x3
, i = 4, 5, . . . n (3.5)

...

∇nyn = ∇n−1 yn − ∇n−1 yn−1

xn − xn−1

the solution of Eqs. (a) is

a1 = y1 a2 = ∇y2 a3 = ∇2 y3 · · · an = ∇nyn (3.6)

If the coefficients are computed by hand, it is convenient to work with the format in
Table 3.1 (shown for n = 5).

x1 y1

x2 y2 ∇y2

x3 y3 ∇y3 ∇2 y3

x4 y4 ∇y4 ∇2 y4 ∇3 y4

x5 y5 ∇y5 ∇2 y5 ∇3 y5 ∇4 y5

Table 3.1

The diagonal terms (y1, ∇y2, ∇2 y3, ∇3 y4 and ∇4 y5) in the table are the coefficients
of the polynomial. If the data points are listed in a different order, the entries in the table
will change, but the resultant polynomial will be the same—recall that a polynomial
of degree n − 1 interpolating n distinct data points is unique.

� newtonCoeff

Machine computations are best carried out within a one-dimensional array a employ-
ing the following algorithm:

function a = newtonCoeff(xData,yData)

% Returns coefficients of Newton’s polynomial.
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% USAGE: a = newtonCoeff(xData,yData)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

n = length(xData);

a = yData;

for k = 2:n

a(k:n) = (a(k:n) - a(k-1))./(xData(k:n) - xData(k-1));

end

Initially, a contains the y-values of the data, so that it is identical to the second
column in Table 3.1. Each pass through the for-loop generates the entries in the next
column, which overwrite the corresponding elements of a. Therefore, a ends up con-
taining the diagonal terms of Table 3.1; i.e., the coefficients of the polynomial.

Neville’s Method

Newton’s method of interpolation involves two steps: computation of the coefficients,
followed by evaluation of the polynomial. This works well if the interpolation is carried
out repeatedly at different values of x using the same polynomial. If only one point is
to be interpolated, a method that computes the interpolant in a single step, such as
Neville’s algorithm, is a better choice.

Let Pk[xi, xi+1, . . . , xi+k] denote the polynomial of degree k that passes through
the k + 1 data points (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k). For a single data point, we
have

P0[xi] = yi (3.7)

The interpolant based on two data points is

P1[xi, xi+1] = (x − xi+1)P0[xi] + (xi − x)P0[xi+1]
xi − xi+1

It is easily verified that P1[xi, xi+1] passes through the two data points; that is,
P1[xi, xi+1] = yi when x = xi, and P1[xi, xi+1] = yi+1 when x = xi+1.

The three-point interpolant is

P2[xi, xi+1, xi+2] = (x − xi+2)P1[xi, xi+1] + (xi − x)P1[xi+1, xi+2]
xi − xi+2

To show that this interpolant does intersect the data points, we first substitute x = xi ,
obtaining

P2[xi, xi+1, xi+2] = P1[xi, xi+1] = yi
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Similarly, x = xi+2 yields

P2[xi, xi+1, xi+2] = P1[xi+1, xi+2] = yi+2

Finally, when x = xi+1 we have

P1[xi, xi+1] = P1[xi+1, xi+2] = yi+1

so that

P2[xi, xi+1, xi+2] = (xi+1 − xi+2)yi+1 + (xi − xi+1)yi+1

xi − xi+2
= yi+1

Having established the pattern, we can now deduce the general recursive
formula:

Pk[xi, xi+1, . . . , xi+k] (3.8)

= (x − xi+k)Pk−1[xi,xi+1, . . . , xi+k−1] + (xi − x)Pk−1[xi+1,xi+2, . . . , xi+k]
xi − xi+k

Given the value of x, the computations can be carried out in the following tabular
format (shown for four data points):

k = 0 k = 1 k = 2 k = 3

x1 P0[x1] = y1 P1[x1, x2] P2[x1, x2, x3] P3[x1, x2, x3, x4]

x2 P0[x2] = y2 P1[x2, x3] P2[x2,x3, x4]

x3 P0[x3] = y3 P1[x3, x4]

x4 P0[x4] = y4

Table 3.2

� neville

This algorithm works with the one-dimensional array y, which initially contains the
y-values of the data (the second column in Table 3.2). Each pass through the for-
loop computes the terms in next column of the table, which overwrite the previous
elements of y. At the end of the procedure, y contains the diagonal terms of the table.
The value of the interpolant (evaluated at x) that passes through all the data points is
y1, the first element of y.

function yInterp = neville(xData,yData,x)

% Neville’s polynomial interpolation;

% returns the value of the interpolant at x.



110 Interpolation and Curve Fitting

% USAGE: yInterp = neville(xData,yData,x)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

n = length(xData);

y = yData;

for k = 1:n-1

y(1:n-k) = ((x - xData(k+1:n)).*y(1:n-k)...

+ (xData(1:n-k) - x).*y(2:n-k+1))...

./(xData(1:n-k) - xData(k+1:n));

end

yInterp = y(1);

Limitations of Polynomial Interpolation

Polynomial interpolation should be carried out with the fewest feasible number of
data points. Linear interpolation, using the nearest two points, is often sufficient if
the data points are closely spaced. Three to six nearest-neighbor points produce good
results in most cases. An interpolant intersecting more than six points must be viewed
with suspicion. The reason is that the data points that are far from the point of interest
do not contribute to the accuracy of the interpolant. In fact, they can be detrimental.

The danger of using too many points is illustrated in Fig. 3.3. There are 11 equally
spaced data points represented by the circles. The solid line is the interpolant, a poly-
nomial of degree ten, that intersects all the points. As seen in the figure, a polynomial
of such a high degree has a tendency to oscillate excessively between the data points.
A much smoother result would be obtained by using a cubic interpolant spanning
four nearest-neighbor points.

x

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

y

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.3. Polynomial interpolant displaying oscillations.
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Polynomial extrapolation (interpolating outside the range of data points) is dan-
gerous. As an example, consider Fig. 3.4. There are six data points, shown as circles. The
fifth-degree interpolating polynomial is represented by the solid line. The interpolant
looks fine within the range of data points, but drastically departs from the obvious
trend when x > 12. Extrapolating y at x = 14, for example, would be absurd in this case.

x
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

y

-100

0

100

200

300

400

Figure 3.4. Extrapolation may not follow the trend of data.

If extrapolation cannot be avoided, the following two measures can be useful:

� Plot the data and visually verify that the extrapolated value makes sense.
� Use a low-order polynomial based on nearest-neighbor data points. A linear or

quadratic interpolant, for example, would yield a reasonable estimate of y(14) for
the data in Fig. 3.4.

� Work with a plot of log x vs. log y, which is usually much smoother than the x–y
curve, and thus safer to extrapolate. Frequently this plot is almost a straight line.
This is illustrated in Fig. 3.5, which represents the logarithmic plot of the data in
Fig. 3.4.

x
1 10

y

10

100

Figure 3.5. Logarithmic plot of the data in Fig. 3.4.
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EXAMPLE 3.1
Given the data points

x 0 2 3

y 7 11 28

use Lagrange’s method to determine y at x = 1.

Solution

�1 = (x − x2)(x − x3)
(x1 − x2)(x1 − x3)

= (1 − 2)(1 − 3)
(0 − 2)(0 − 3)

= 1
3

�2 = (x − x1)(x − x3)
(x2 − x1)(x2 − x3)

= (1 − 0)(1 − 3)
(2 − 0)(2 − 3)

= 1

�3 = (x − x1)(x − x2)
(x3 − x1)(x3 − x2)

= (1 − 0)(1 − 2)
(3 − 0)(3 − 2)

= −1
3

y = y1�1 + y2�2 + y3�3 = 7
3

+ 11 − 28
3

= 4

EXAMPLE 3.2
The data points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Determine the degree of this polynomial by constructing the
divided difference table, similar to Table 3.1.

Solution

i xi yi ∇yi ∇2 yi ∇3 yi ∇4 yi ∇5 yi

1 −2 −1

2 1 2 1

3 4 59 10 3

4 −1 4 5 −2 1

5 3 24 5 2 1 0

6 −4 −53 26 −5 1 0 0
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Here are a few sample calculations used in arriving at the figures in the table:

∇y3 = y3 − y1

x3 − x1
= 59 − (−1)

4 − (−2)
= 10

∇2 y3 = ∇y3 − ∇y2

x3 − x2
= 10 − 1

4 − 1
= 3

∇3 y6 = ∇2 y6 − ∇2 y3

x6 − x3
= −5 − 3

−4 − 4
= 1

From the table we see that the last nonzero coefficient (last nonzero diagonal term)
of Newton’s polynomial is ∇3 y3, which is the coefficient of the cubic term. Hence the
polynomial is a cubic.

EXAMPLE 3.3
Given the data points

x 4.0 3.9 3.8 3.7

y −0.06604 −0.02724 0.01282 0.05383

determine the root of y(x) = 0 by Neville’s method.

Solution This is an example of inverse interpolation, where the roles of x and y are
interchanged. Instead of computing y at a given x, we are finding x that corresponds
to a given y (in this case, y = 0). Employing the format of Table 3.2 (with x and y
interchanged, of course), we obtain

i yi P0[ ] = xi P1[ , ] P2[ , , ] P3[ , , , ]

1 −0.06604 4.0 3.8298 3.8316 3.8317

2 −0.02724 3.9 3.8320 3.8318

3 0.01282 3.8 3.8313

4 0.05383 3.7

The following are a couple of sample computations used in the table:

P1[y1, y2] = (y − y2)P0[y1] + (y1 − y)P0[y2]
y1 − y2

= (0 + 0.02724)(4.0) + (−0.06604 − 0)(3.9)
−0.06604 + 0.02724

= 3.8298

P2[y2, y3, y4] = (y − y4)P1[y2, y3] + (y2 − y)P1[y3, y4]
y2 − y4

= (0 − 0.05383)(3.8320) + (−0.02724 − 0)(3.8313)
−0.02724 − 0.05383

= 3.8318
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All the P’s in the table are estimates of the root resulting from different orders
of interpolation involving different data points. For example, P1[y1, y2] is the root
obtained from linear interpolation based on the first two points, and P2[y2, y3, y4] is
the result from quadratic interpolation using the last three points. The root obtained
from cubic interpolation over all four data points is x = P3[y1, y2, y3, y4] = 3.8317.

EXAMPLE 3.4
The data points in the table lie on the plot of f (x) = 4.8 cos πx/20. Interpolate this
data by Newton’s method at x = 0, 0.5, 1.0, . . . , 8.0 and compare the results with the
“exact” values given by y = f (x).

x 0.15 2.30 3.15 4.85 6.25 7.95

y 4.79867 4.49013 4.2243 3.47313 2.66674 1.51909

Solution

% Example 3.4 (Newton’s interpolation)

xData = [0.15; 2.3; 3.15; 4.85; 6.25; 7.95];

yData = [4.79867; 4.49013; 4.22430; 3.47313;...

2.66674; 1.51909];

a = newtonCoeff(xData,yData);

’ x yInterp yExact’

for x = 0: 0.5: 8

y = newtonPoly(a,xData,x);

yExact = 4.8*cos(pi*x/20);

fprintf(’%10.5f’,x,y,yExact)

fprintf(’\n’)

end

The results are:

ans =

x yInterp yExact

0.00000 4.80003 4.80000

0.50000 4.78518 4.78520

1.00000 4.74088 4.74090

1.50000 4.66736 4.66738

2.00000 4.56507 4.56507

2.50000 4.43462 4.43462

3.00000 4.27683 4.27683

3.50000 4.09267 4.09267
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4.00000 3.88327 3.88328

4.50000 3.64994 3.64995

5.00000 3.39411 3.39411

5.50000 3.11735 3.11735

6.00000 2.82137 2.82137

6.50000 2.50799 2.50799

7.00000 2.17915 2.17915

7.50000 1.83687 1.83688

8.00000 1.48329 1.48328

3.3 Interpolation with Cubic Spline

If there are more than a few data points, a cubic spline is hard to beat as a global
interpolant. It is considerably “stiffer” than a polynomial in the sense that it has less
tendency to oscillate between data points.

Elastic strip

Pins (data points)

x

y Figure 3.6. Mechanical model of natural cubic spline.

The mechanical model of a cubic spline is shown in Fig. 3.6. It is a thin, elastic strip
that is attached with pins to the data points. Because the strip is unloaded between the
pins, each segment of the spline curve is a cubic polynomial—recall from beam the-
ory that the differential equation for the displacement of a beam is d4 y/dx 4 = q/(E I ),
so that y(x) is a cubic since the load q vanishes. At the pins, the slope and bending
moment (and hence the second derivative) are continuous. There is no bending mo-
ment at the two end pins; hence the second derivative of the spline is zero at the end
points. Since these end conditions occur naturally in the beam model, the resulting
curve is known as the natural cubic spline. The pins, i.e., the data points, are called
the knots of the spline.

y y y y

y

y
y
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Figure 3.7. Cubic spline.

Figure 3.7 shows a cubic spline that spans n knots. We use the notation fi,i+1(x)
for the cubic polynomial that spans the segment between knots i and i + 1. Note
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that the spline is a piecewise cubic curve, put together from the n − 1 cubics
f1,2(x), f2,3(x), . . . , fn−1,n(x), all of which have different coefficients.

If we denote the second derivative of the spline at knot i by ki , continuity of second
derivatives requires that

f ′′
i−1,i(xi) = f ′′

i,i+1(xi) = ki (a)

At this stage, each k is unknown, except for

k1 = kn = 0 (3.9)

The starting point for computing the coefficients of fi,i+1(x) is the expression for
f ′′
i,i+1(x), which we know to be linear. Using Lagrange’s two-point interpolation, we

can write

f ′′
i,i+1(x) = ki�i(x) + ki+1�i+1(x)

where

�i(x) = x − xi+1

xi − xi+1
�i+1(x) = x − xi

xi+1 − xi

Therefore,

f ′′
i,i+1(x) = ki(x − xi+1) − ki+1(x − xi)

xi − xi+1
(b)

Integrating twice with respect to x, we obtain

fi,i+1(x) = ki(x − xi+1)3 − ki+1(x − xi)3

6(xi − xi+1)
+ A(x − xi+1) − B(x − xi) (c)

where A and B are constants of integration. The last two terms in Eq. (c) would usually
be written as C x + D. By letting C = A − B and D = −Axi+1 + Bxi , we end up with
the terms in Eq. (c), which are more convenient to use in the computations that
follow.

Imposing the condition fi,i+1(xi) = yi , we get from Eq. (c)

ki(xi − xi+1)3

6(xi − xi+1)
+ A(xi − xi+1) = yi

Therefore,

A = yi

xi − xi+1
− ki

6
(xi − xi+1) (d)

Similarly, fi,i+1(xi+1) = yi+1 yields

B = yi+1

xi − xi+1
− ki+1

6
(xi − xi+1) (e)
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Substituting Eqs. (d) and (e) into Eq. (c) results in

fi,i+1(x) = ki

6

[
(x − xi+1)3

xi − xi+1
− (x − xi+1)(xi − xi+1)

]

− ki+1

6

[
(x − xi)3

xi − xi+1
− (x − xi)(xi − xi+1)

]
(3.10)

+ yi(x − xi+1) − yi+1(x − xi)
xi − xi+1

The second derivatives ki of the spline at the interior knots are obtained from
the slope continuity conditions f ′

i−1,i(xi) = f ′
i,i+1(xi), where i = 2, 3, . . . , n − 1. After a

little algebra, this results in the simultaneous equations

ki−1(xi−1 − xi) + 2ki(xi−1 − xi+1) + ki+1(xi − xi+1)

= 6
(

yi−1 − yi

xi−1 − xi
− yi − yi+1

xi − xi+1

)
, i = 2, 3, . . . , n − 1 (3.11)

Because Eqs. (3.11) have a tridiagonal coefficient matrix, they can be solved econom-
ically with functions LUdec3 and LUsol3 described in Art. 2.4.

If the data points are evenly spaced at intervals h, then xi−1 − xi = xi − xi+1 = −h,
and the Eqs. (3.11) simplify to

ki−1 + 4ki + ki+1 = 6
h2

(yi−1 − 2yi + yi+1), i = 2, 3, . . . , n − 1 (3.12)

� splineCurv

The first stage of cubic spline interpolation is to set up Eqs. (3.11) and solve them
for the unknown k’s (recall that k1 = kn = 0). This task is carried out by the function
splineCurv:

function k = splineCurv(xData,yData)

% Returns curvatures of a cubic spline at the knots.

% USAGE: k = splineCurv(xData,yData)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

n = length(xData);

c = zeros(n-1,1); d = ones(n,1);

e = zeros(n-1,1); k = zeros(n,1);

c(1:n-2) = xData(1:n-2) - xData(2:n-1);

d(2:n-1) = 2*(xData(1:n-2) - xData(3:n));

e(2:n-1) = xData(2:n-1) - xData(3:n);

k(2:n-1) = 6*(yData(1:n-2) - yData(2:n-1))...

./(xData(1:n-2) - xData(2:n-1))...
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- 6*(yData(2:n-1) - yData(3:n))...

./(xData(2:n-1) - xData(3:n));

[c,d,e] = LUdec3(c,d,e);

k = LUsol3(c,d,e,k);

� splineEval

The function splineEval computes the interpolant at x from Eq. (3.10). The sub-
function findSeg finds the segment of the spline that contains x by the method
of bisection. It returns the segment number; that is, the value of the subscript i in
Eq. (3.10).

function y = splineEval(xData,yData,k,x)

% Returns value of cubic spline interpolant at x.

% USAGE: y = splineEval(xData,yData,k,x)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

% k = curvatures of spline at the knots;

% returned by function splineCurv.

i = findSeg(xData,x);

h = xData(i) - xData(i+1);

y = ((x - xData(i+1))ˆ3/h - (x - xData(i+1))*h)*k(i)/6.0...

- ((x - xData(i))ˆ3/h - (x - xData(i))*h)*k(i+1)/6.0...

+ yData(i)*(x - xData(i+1))/h...

- yData(i+1)*(x - xData(i))/h;

function i = findSeg(xData,x)

% Returns index of segment containing x.

iLeft = 1; iRight = length(xData);

while 1

if(iRight - iLeft) <= 1

i = iLeft; return

end

i = fix((iLeft + iRight)/2);

if x < xData(i)

iRight = i;

else

iLeft = i;

end

end



119 3.3 Interpolation with Cubic Spline

EXAMPLE 3.5
Use natural cubic spline to determine y at x = 1.5. The data points are

x 1 2 3 4 5

y 0 1 0 1 0

Solution The five knots are equally spaced at h = 1. Recalling that the second deriva-
tive of a natural spline is zero at the first and last knot, we have k1 = k5 = 0. The second
derivatives at the other knots are obtained from Eq. (3.12). Using i = 2, 3, 4 we get the
simultaneous equations

0 + 4k2 + k3 = 6 [0 − 2(1) + 0] = −12

k2 + 4k3 + k4 = 6 [1 − 2(0) + 1] = 12

k3 + 4k4 + 0 = 6 [0 − 2(1) + 0] = −12

The solution is k2 = k4 = −30/7, k3 = 36/7.
The point x = 1.5 lies in the segment between knots 1 and 2. The corresponding

interpolant is obtained from Eq. (3.10) by setting i = 1. With xi − xi+1 = −h = −1, we
obtain

f1,2(x) = −k1

6

[
(x − x2)3 − (x − x2)

]+ k2

6

[
(x − x1)3 − (x − x1)

]
− [y1(x − x2) − y2(x − x1)]

Therefore,

y(1.5) = f1,2(1.5) = 0 + 1
6

(
−30

7

) [
(1.5 − 1)3 − (1.5 − 1)

]− [0 − 1(1.5 − 1)] = 0.7679

The plot of the interpolant, which in this case is made up of four cubic segments, is
shown in the figure.
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EXAMPLE 3.6
Sometimes it is preferable to replace one or both of the end conditions of the cu-
bic spline with something other than the natural conditions. Use the end condition
f ′

1,2(0) = 0 (zero slope), rather than f ′′
1,2(0) = 0 (zero curvature), to determine the cubic

spline interpolant at x = 2.6 based on the data points

x 0 1 2 3

y 1 1 0.5 0

Solution We must first modify Eqs. (3.12) to account for the new end condition. Setting
i = 1 in Eq. (3.10) and differentiating, we get

f ′
1,2(x) = k1

6

[
3

(x − x2)2

x1 − x2
− (x1 − x2)

]
− k2

6

[
3

(x − x1)2

x1 − x2
− (x1 − x2)

]
+ y1 − y2

x1 − x2

Thus the end condition f ′
1,2(x1) = 0 yields

k1

3
(x1 − x2) + k2

6
(x1 − x2) + y1 − y2

x1 − x2
= 0

or

2k1 + k2 = −6
y1 − y2

(x1 − x2)2

From the given data we see that y1 = y2 = 1, so that the last equation becomes

2k1 + k2 = 0 (a)

The other equations in Eq. (3.12) are unchanged. Noting that k4 = 0 and h = 1, we
have

k1 + 4k2 + k3 = 6 [1 − 2(1) + 0.5] = −3 (b)

k2 + 4k3 = 6 [1 − 2(0.5) + 0] = 0 (c)

The solution of Eqs. (a)–(c) is k1 = 0.4615, k2 = −0.9231, k3 = 0.2308.
The interpolant can now be evaluated from Eq. (3.10). Substituting i = 3 and

xi − xi+1 = −1, we obtain

f3,4(x) = k3

6

[−(x − x4)3 + (x − x4)
]− k4

6

[−(x − x3)3 + (x − x3)
]

−y3(x − x4) + y4(x − x3)

Therefore,

y(2.6) = f3,4(2.6) = 0.2308
6

[−(−0.4)3 + (−0.4)
]+ 0 − 0.5(−0.4) + 0 = 0.1871
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EXAMPLE 3.7
Write a program that interpolates between given data points with the natural cubic
spline. The program must be able to evaluate the interpolant for more than one value
of x. As a test, use data points specified in Example 3.4 and compute the interpolant
at x = 1.5 and x = 4.5 (due to symmetry, these values should be equal).

Solution The program below prompts for x; it is terminated by pressing the “return”
key.

% Example 3.7 (Cubic spline)

xData = [1; 2; 3; 4; 5];

yData = [0; 1; 0; 1; 0];

k = splineCurv(xData,yData);

while 1

x = input(’x = ’);

if isempty(x)

fprintf(’Done’); break

end

y = splineEval(xData,yData,k,x)

fprintf(’\n’)

end

Running the program produces the following results:

x = 1.5

y =

0.7679

x = 4.5

y =

0.7679

x =

Done

PROBLEM SET 3.1

1. Given the data points

x −1.2 0.3 1.1

y −5.76 −5.61 −3.69

determine y at x = 0 using (a) Neville’s method and (b) Lagrange’s method.
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2. Find the zero of y(x) from the following data:

x 0 0.5 1 1.5 2 2.5 3

y 1.8421 2.4694 2.4921 1.9047 0.8509 −0.4112 −1.5727

Use Lagrange’s interpolation over (a) three; and (b) four nearest-neighbor data
points. Hint: after finishing part (a), part (b) can be computed with a relatively
small effort.

3. The function y(x) represented by the data in Prob. 2 has a maximum at x = 0.7679.

Compute this maximum by Neville’s interpolation over four nearest-neighbor
data points.

4. Use Neville’s method to compute y at x = π/4 from the data points

x 0 0.5 1 1.5 2

y −1.00 1.75 4.00 5.75 7.00

5. Given the data

x 0 0.5 1 1.5 2

y −0.7854 0.6529 1.7390 2.2071 1.9425

find y at x = π/4 and at π/2. Use the method that you consider to be most con-
venient.

6. The points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Use the divided difference table of Newton’s method to de-
termine the degree of the polynomial.

7. Use Newton’s method to find the expression for the lowest-order polynomial that
fits the following points:

x −3 2 −1 3 1

y 0 5 −4 12 0
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8. Use Neville’s method to determine the equation of the quadratic that passes
through the points

x −1 1 3

y 17 −7 −15

9. The density of air ρ varies with elevation h in the following manner:

h (km) 0 3 6

ρ (kg/m3) 1.225 0.905 0.652

Express ρ(h) as a quadratic function using Lagrange’s method.

10. Determine the natural cubic spline that passes through the data points

x 0 1 2

y 0 2 1

Note that the interpolant consists of two cubics, one valid in 0 ≤ x ≤ 1, the other
in 1 ≤ x ≤ 2. Verify that these cubics have the same first and second derivatives
at x = 1.

11. Given the data points

x 1 2 3 4 5

y 13 15 12 9 13

determine the natural cubic spline interpolant at x = 3.4.

12. Compute the zero of the function y(x) from the following data:

x 0.2 0.4 0.6 0.8 1.0

y 1.150 0.855 0.377 −0.266 −1.049

Use inverse interpolation with the natural cubic spline. Hint: reorder the data so
that the values of y are in ascending order.

13. Solve Example 3.6 with a cubic spline that has constant second derivatives within
its first and last segments (the end segments are parabolic). The end conditions
for this spline are k1 = k2 and kn−1 = kn.
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14. � Write a computer program for interpolation by Neville’s method. The program
must be able to compute the interpolant at several user-specified values of x. Test
the program by determining y at x = 1.1, 1.2 and 1.3 from the following data:

x −2.0 −0.1 −1.5 0.5

y 2.2796 1.0025 1.6467 1.0635

x −0.6 2.2 1.0 1.8

y 1.0920 2.6291 1.2661 1.9896

(Answer: y = 1.3262, 1.3938, 1.4693)

15. � The specific heat cp of aluminum depends on temperature T as follows:4

T (◦C) −250 −200 −100 0 100 300

cp (kJ/kg·K) 0.0163 0.318 0.699 0.870 0.941 1.04

Determine cp at T = 200◦C and 400◦C.

16. � Find y at x = 0.46 from the data

x 0 0.0204 0.1055 0.241 0.582 0.712 0.981

y 0.385 1.04 1.79 2.63 4.39 4.99 5.27

17. � The table shows the drag coefficient cD of a sphere as a function of Reynolds
number Re.5 Use natural cubic spline to find cD at Re = 5, 50, 500 and 5000. Hint:
use log–log scale.

Re 0.2 2 20 200 2000 20 000

cD 103 13.9 2.72 0.800 0.401 0.433

18. � Solve Prob. 17 using a polynomial interpolant intersecting four nearest-
neighbor data points.

19. � The kinematic viscosity µk of water varies with temperature T in the following
manner:

4 Source: Black, Z.B., and Hartley, J.G., Thermodynamics, Harper & Row, 1985.
5 Source: Kreith, F., Principles of Heat Transfer, Harper & Row, 1973.
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T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

Interpolate µk at T = 10◦, 30◦, 60◦ and 90◦C.

20. � The table shows how the relative density ρ of air varies with altitude h. Deter-
mine the relative density of air at 10.5 km.

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

3.4 Least-Squares Fit

Overview

If the data are obtained from experiments, they typically contain a significant amount
of random noise due to measurement errors. The task of curve fitting is to find a
smooth curve that fits the data points “on the average.” This curve should have a
simple form (e.g. a low-order polynomial), so as to not reproduce the noise.

Let

f (x) = f (x; a1, a2, . . . , am)

be the function that is to be fitted to the n data points (xi, yi), i = 1, 2, . . . , n. The
notation implies that we have a function of x that contains the parameters aj ,
j = 1, 2, . . . , m, where m < n. The form of f (x) is determined beforehand, usually
from the theory associated with the experiment from which the data is obtained. The
only means of adjusting the fit is the parameters. For example, if the data represent the
displacements yi of an overdamped mass–spring system at time ti , the theory suggests
the choice f (t) = a1te−a 2t. Thus curve fitting consists of two steps: choosing the form
of f (x), followed by computation of the parameters that produce the best fit to the
data.

This brings us to the question: what is meant by “best” fit? If the noise is confined
to the y-coordinate, the most commonly used measure is the least-squares fit, which
minimizes the function

S(a1, a2, . . . , am) =
n∑

i=1

[yi − f (xi)]2 (3.13)

with respect to each aj . Therefore, the optimal values of the parameters are given by
the solution of the equations

∂S
∂ak

= 0, k = 1, 2, . . . , m (3.14)
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The terms ri = yi − f (xi) in Eq. (3.13) are called residuals; they represent the dis-
crepancy between the data points and the fitting function at xi . The function S to be
minimized is thus the sum of the squares of the residuals. Equations (3.14) are gener-
ally nonlinear in aj and may thus be difficult to solve. If the fitting function is chosen
as a linear combination of specified functions f j (x):

f (x) = a1 f1(x) + a2 f2(x) + · · · + am fm(x)

then Eqs. (3.14) are linear. A typical example is a polynomial where f1(x) = 1, f2(x) = x,
f3(x) = x2, etc.

The spread of the data about the fitting curve is quantified by the standard devi-
ation, defined as

σ =
√

S
n − m

(3.15)

Note that if n = m, we have interpolation, not curve fitting. In that case, both the
numerator and the denominator in Eq. (3.15) are zero, so that σ is meaningless, as it
should be.

Fitting a Straight Line

Fitting a straight line

f (x) = a + bx (3.16)

to data is also known as linear regression. In this case the function to be minimized is

S(a, b) =
n∑

i=1

(yi − a − bxi)2

Equations (3.14) now become

∂S
∂a

=
n∑

i=1

−2(yi − a − bxi) = 2

(
−

n∑
i=1

yi + na + b
n∑

i=1

xi

)
= 0

∂S
∂b

=
n∑

i=1

−2(yi − a − bxi)xi = 2

(
−

n∑
i=1

xi yi + a
n∑

i=1

xi + b
n∑

i=1

x2
i

)
= 0

Dividing both equations by 2n and rearranging terms, we get

a + x̄b = ȳ ax̄ +
(

1
n

n∑
i=1

x2
i

)
b = 1

n

n∑
i=1

xi yi

where

x̄ = 1
n

n∑
i=1

xi ȳ = 1
n

n∑
i=1

yi (3.17)
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are the mean values of the x and y data. The solution for the parameters is

a = ȳ
∑

x2
i − x̄

∑
xi yi∑

x2
i − nx̄2

b =
∑

xi yi − nx̄y∑
x2

i − nx̄2
(3.18)

These expressions are susceptible to roundoff errors (the two terms in each numerator
as well as in each denominator can be roughly equal). It is better to compute the
parameters from

b =
∑

yi(xi − x̄)∑
xi(xi − x̄)

a = ȳ − x̄b (3.19)

which are equivalent to Eqs. (3.18), but much less affected by rounding off.

Fitting Linear Forms

Consider the least-squares fit of the linear form

f (x) = a1 f1(x) + a2 f2(x) + · · · + am fm(x) =
m∑

j=1

aj f j (x) (3.20)

where each f j (x) is a predetermined function of x, called a basis function. Substitution
into Eq. (3.13) yields

S =
n∑

i=1

[
yi −

m∑
j=1

aj f j (xi)

]2

(a)

Thus Eqs. (3.14) are

∂S
∂ak

= −2

{
n∑

i=1

[
yi −

m∑
j=1

aj f j (xi)

]
fk(xi)

}
= 0, k = 1, 2, . . . , m

Dropping the constant (−2) and interchanging the order of summation, we get

m∑
j=1

[
n∑

i=1

f j (xi) fk(xi)

]
aj =

n∑
i=1

fk(xi)yi , k = 1, 2, . . . , m

In matrix notation these equations are

Aa = b (3.21a)

where

Akj =
n∑

i=1

f j (xi) fk(xi) bk =
n∑

i=1

fk(xi)yi (3.21b)

Equations (3.21a), known as the normal equations of the least-squares fit, can be
solved with any of the methods discussed in Chapter 2. Note that the coefficient
matrix is symmetric, i.e., Akj = A jk.
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Polynomial Fit

A commonly used linear form is a polynomial. If the degree of the polynomial is m − 1,
we have f (x) = ∑m

j=1 aj x j−1. Here the basis functions are

f j (x) = x j−1, j = 1, 2, . . . , m (3.22)

so that Eqs. (3.21b) become

Akj =
n∑

i=1

x j+k−2
i bk =

n∑
i=1

xk−1
i yi

or

A =

⎡
⎢⎢⎢⎢⎣

n
∑

xi
∑

x2
i . . .

∑
xm

i∑
xi

∑
x2

i

∑
x3

i . . .
∑

xm+1
i

...
...

...
. . .

...∑
xm−1

i

∑
xm

i

∑
xm+1

i . . .
∑

x2m−2
i

⎤
⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎣

∑
yi∑
xi yi

...∑
xm−1

i yi

⎤
⎥⎥⎥⎥⎦ (3.23)

where
∑

stands for
∑n

i=1. The normal equations become progressively ill-conditioned
with increasing m. Fortunately, this is of little practical consequence, because only
low-order polynomials are useful in curve fitting. Polynomials of high order are not
recommended, because they tend to reproduce the noise inherent in the data.

� polynFit

The function polynFit computes the coefficients of a polynomial of degree m− 1 to
fit n data points in the least-squares sense. To facilitate computations, the terms n,∑

xi ,
∑

x2
i , . . . ,

∑
x2m−2

i that make up the coefficient matrix A in Eq. (3.23) are first
stored in the vector s and then inserted into A. The normal equations are solved for
the coefficient vector coeff by Gauss elimination with pivoting. Since the elements
of coeff emerging from the solution are not arranged in the usual order (the coeffi-
cient of the highest power of x first), the coeff array is “flipped” upside-down before
returning to the calling program.

function coeff = polynFit(xData,yData,m)

% Returns the coefficients of the polynomial

% a(1)*xˆ(m-1) + a(2)*xˆ(m-2) + ... + a(m)

% that fits the data points in the least squares sense.

% USAGE: coeff = polynFit(xData,yData,m)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.



129 3.4 Least-Squares Fit

A = zeros(m); b = zeros(m,1); s = zeros(2*m-1,1);

for i = 1:length(xData)

temp = yData(i);

for j = 1:m

b(j) = b(j) + temp;

temp = temp*xData(i);

end

temp = 1;

for j = 1:2*m-1

s(j) = s(j) + temp;

temp = temp*xData(i);

end

end

for i = 1:m

for j = 1:m

A(i,j) = s(i+j-1);

end

end

% Rearrange coefficients so that coefficient

% of xˆ(m-1) is first

coeff = flipdim(gaussPiv(A,b),1);

� stdDev

After the coefficients of the fitting polynomial have been obtained, the standard de-
viation σ can be computed with the function stdDev. The polynomial evaluation in
stdDev is carried out by the subfunctionpolyEvalwhich is described in Art. 4.7—see
Eq. (4.10).

function sigma = stdDev(coeff,xData,yData)

% Returns the standard deviation between data

% points and the polynomial

% a(1)*xˆ(m-1) + a(2)*xˆ(m-2) + ... + a(m)

% USAGE: sigma = stdDev(coeff,xData,yData)

% coeff = coefficients of the polynomial.

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

m = length(coeff); n = length(xData);



130 Interpolation and Curve Fitting

sigma = 0;

for i =1:n

y = polyEval(coeff,xData(i));

sigma = sigma + (yData(i) - y)ˆ2;

end

sigma =sqrt(sigma/(n - m));

function y = polyEval(coeff,x)

% Returns the value of the polynomial at x.

m = length(coeff);

y = coeff(1);

for j = 1:m-1

y = y*x + coeff(j+1);

end

Weighting of Data

There are occasions when confidence in the accuracy of data varies from point to point.
For example, the instrument taking the measurements may be more sensitive in a
certain range of data. Sometimes the data represent the results of several experiments,
each carried out under different circumstances. Under these conditions we may want
to assign a confidence factor, or weight, to each data point and minimize the sum of
the squares of the weighted residuals ri = Wi [yi − f (xi)], where Wi are the weights.
Hence the function to be minimized is

S(a1, a2, . . . , am) =
n∑

i=1

W 2
i [yi − f (xi)]2 (3.24)

This procedure forces the fitting function f (x) closer to the data points that have
higher weights.

Weighted linear regression
If the fitting function is the straight line f (x) = a + bx, Eq. (3.24) becomes

S(a, b) =
n∑

i=1

W 2
i (yi − a − bxi)2 (3.25)

The conditions for minimizing S are

∂S
∂a

= −2
n∑

i=1

W 2
i (yi − a − bxi) = 0
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∂S
∂b

= −2
n∑

i=1

W 2
i (yi − a − bxi)xi = 0

or

a
n∑

i=1

W 2
i + b

n∑
i=1

W 2
i xi =

n∑
i=1

W 2
i yi (3.26a)

a
n∑

i=1

W 2
i xi + b

n∑
i=1

W 2
i x2

i =
n∑

i=1

W 2
i xi yi (3.26b)

Dividing Eq. (3.26a) by
∑

W 2
i and introducing the weighted averages

x̂ =
∑

W 2
i xi∑

W 2
i

ŷ =
∑

W 2
i yi∑

W 2
i

(3.27)

we obtain

a = ŷ − bx̂ (3.28a)

Substituting Eq. (3.28a) into Eq. (3.26b) and solving for b yields after some algebra

b =
∑n

i=1 W 2
i yi(xi − x̂)∑n

i=1 W 2
i xi(xi − x̂)

(3.28b)

Note that Eqs. (3.28) are similar to Eqs. (3.19) for unweighted data.

Fitting exponential functions
A special application of weighted linear regression arises in fitting exponential func-
tions to data. Consider as an example the fitting function

f (x) = aebx

Normally, the least-squares fit would lead to equations that are nonlinear in a and b.
But if we fit ln y rather than y, the problem is transformed to linear regression: fit the
function

F (x) = ln f (x) = ln a + bx

to the data points (xi, ln yi), i = 1, 2, . . . , n. This simplification comes at a price: least-
squares fit to the logarithm of the data is not the same as least-squares fit to the original
data. The residuals of the logarithmic fit are

Ri = ln yi − F (xi) = ln yi − ln a − bxi (3.29a)

whereas the residuals used in fitting the original data are

ri = yi − f (xi) = yi − aebxi (3.29b)
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This discrepancy can be largely eliminated by weighting the logarithmic fit. We
note from Eq. (3.29b) that ln(ri − yi) = ln(ae bxi ) = ln a + bxi , so that Eq. (3.29a) can
be written as

Ri = ln yi − ln(ri − yi) = ln
(

1 − ri

yi

)

If the residuals ri are sufficiently small (ri << yi), we can use the approximation ln(1 −
ri/yi) ≈ ri/yi , so that

Ri ≈ ri/yi

We can now see that by minimizing
∑

R2
i , we inadvertently introduced the weights

1/yi . This effect can be negated if we apply the weights yi when fitting F (x) to
(ln yi, xi); that is, by minimizing

S =
n∑

i=1

y2
i R2

i (3.30)

Other examples that also benefit from the weights Wi = yi are given in Table 3.3.

f (x) F (x) Data to be fitted by F (x)

axebx ln [ f (x)/x] = ln a + bx
[
xi, ln(yi/xi)

]
axb ln f (x) = ln a + b ln(x)

(
ln xi, ln yi

)
Table 3.3

EXAMPLE 3.8
Fit a straight line to the data shown and compute the standard deviation.

x 0.0 1.0 2.0 2.5 3.0

y 2.9 3.7 4.1 4.4 5.0

Solution The averages of the data are

x̄ = 1
5

∑
xi = 0.0 + 1.0 + 2.0 + 2.5 + 3.0

5
= 1.7

ȳ = 1
5

∑
yi = 2.9 + 3.7 + 4.1 + 4.4 + 5.0

5
= 4. 02
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The intercept a and slope b of the interpolant can now be determined from Eq. (3.19):

b =
∑

yi(xi − x̄)∑
xi(xi − x̄)

= 2.9(−1.7) + 3.7(−0.7) + 4.1(0.3) + 4.4(0.8) + 5.0(1.3)
0.0(−1.7) + 1.0(−0.7) + 2.0(0.3) + 2.5(0.8) + 3.0(1.3)

= 3. 73
5. 8

= 0. 6431

a = ȳ − x̄b = 4.02 − 1.7(0.6431) = 2.927

Therefore, the regression line is f (x) = 2.927 + 0.6431x, which is shown in the figure
together with the data points.

x
0.00 0.50 1.00 1.50 2.00 2.50 3.00

y

2.50

3.00

3.50

4.00

4.50

5.00

We start the evaluation of the standard deviation by computing the residuals:

y 2.900 3.700 4.100 4.400 5.000

f (x) 2.927 3.570 4.213 4.535 4.856

y − f (x) −0.027 0.130 −0.113 −0.135 0.144

The sum of the squares of the residuals is

S =
∑

[yi − f (xi)]2

= (−0.027)2 + (0.130)2 + (−0.113)2 + (−0.135)2 + (0.144)2 = 0.06936

so that the standard deviation in Eq. (3.15) becomes

σ =
√

S
n − m

=
√

0.06936
5 − 2

= 0.1520
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EXAMPLE 3.9
Determine the parameters a and b so that f (x) = aebx fits the following data in the
least-squares sense.

x 1.2 2.8 4.3 5.4 6.8 7.9

y 7.5 16.1 38.9 67.0 146.6 266.2

Use two different methods: (1) fit ln yi ; and (2) fit ln yi with weights Wi = yi . Compute
the standard deviation in each case.

Solution of Part (1) The problem is to fit the function ln(aebx) = ln a + bx to the data

x 1.2 2.8 4.3 5.4 6.8 7.9

z = ln y 2.015 2.779 3.661 4.205 4.988 5.584

We are now dealing with linear regression, where the parameters to be found are
A = ln a and b. Following the steps in Example 3.8, we get (skipping some of the
arithmetic details)

x̄ = 1
6

∑
xi = 4. 733 z̄ = 1

6

∑
zi = 3. 872

b =
∑

zi(xi − x̄)∑
xi(xi − x̄)

= 16.716
31.153

= 0. 5366 A = z̄ − x̄b = 1. 3323

Therefore, a = eA = 3. 790 and the fitting function becomes f (x) = 3.790e0.5366. The
plots of f (x) and the data points are shown in the figure.

x
1 2 3 4 5 6 7 8

y

0

50

100

150

200

250

300

Here is the computation of standard deviation:

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 7.21 17.02 38.07 68.69 145.60 262.72

y − f (x) 0.29 −0.92 0.83 −1.69 1.00 3.48
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S =
∑

[yi − f (xi)]2 = 17.59

σ =
√

S
6 − 2

= 2.10

As pointed out before, this is an approximate solution of the stated problem, since
we did not fit yi , but ln yi . Judging by the plot, the fit seems to be good.

Solution of Part (2) We again fit ln(aebx) = ln a + bx to z = ln y, but this time the
weights Wi = yi are used. From Eqs. (3.27) the weighted averages of the data are (recall
that we fit z = ln y)

x̂ =
∑

y 2
i xi∑
y 2

i

= 737.5 × 103

98.67 × 103
= 7.474

ẑ =
∑

y 2
i zi∑
y 2

i

= 528.2 × 103

98.67 × 103
= 5.353

and Eqs. (3.28) yield for the parameters

b =
∑

y 2
i zi(xi − x̂)∑

y 2
i xi(xi − x̂)

= 35.39 × 103

65.05 × 103
= 0.5440

ln a = ẑ − bx̂ = 5.353 − 0.5440(7.474) = 1. 287

Therefore,

a = eln a = e1.287 = 3. 622

so that the fitting function is f (x) = 3.622e0.5440x. As expected, this result is somewhat
different from that obtained in Part (1).

The computations of the residuals and standard deviation are as follows:

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 6.96 16.61 37.56 68.33 146.33 266.20

y − f (x) 0.54 −0.51 1.34 −1.33 0.267 0.00

S =
∑

[yi − f (xi)]2 = 4.186

σ =
√

S
6 − 2

= 1.023

Observe that the residuals and standard deviation are smaller than in Part (1), indi-
cating a better fit, as expected.
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It can be shown that fitting yi directly (which involves the solution of a transcen-
dental equation) results in f (x) = 3.614e0.5442x. The corresponding standard deviation
is σ = 1.022, which is very close to the result in Part (2).

EXAMPLE 3.10
Write a program that fits a polynomial of arbitrary degree k to the data points shown
below. Use the program to determine k that best fits this data in the least-squares
sense.

x −0.04 0.93 1.95 2.90 3.83 5.00

y −8.66 −6.44 −4.36 −3.27 −0.88 0.87

x 5.98 7.05 8.21 9.08 10.09

y 3.31 4.63 6.19 7.40 8.85

Solution The following program prompts for k. Execution is terminated by pressing
“return.”

% Example 3.10 (Polynomial curve fitting)

xData = [-0.04,0.93,1.95,2.90,3.83,5.0,...

5.98,7.05,8.21,9.08,10.09]’;

yData = [-8.66,-6.44,-4.36,-3.27,-0.88,0.87,...

3.31,4.63,6.19,7.4,8.85]’;

format short e

while 1

k = input(’degree of polynomial = ’);

if isempty(k) % Loop is terminated

fprintf(’Done’) % by pressing ’’return’’

break

end

coeff = polynFit(xData,yData,k+1)

sigma = stdDev(coeff,xData,yData)

fprintf(’\n’)

end

The results are:

Degree of polynomial = 1

coeff =

1.7286e+000

-7.9453e+000
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sigma =

5.1128e-001

degree of polynomial = 2

coeff =

-4.1971e-002

2.1512e+000

-8.5701e+000

sigma =

3.1099e-001

degree of polynomial = 3

coeff =

-2.9852e-003

2.8845e-003

1.9810e+000

-8.4660e+000

sigma =

3.1948e-001

degree of polynomial =

Done

Because the quadratic f (x) = −0.041971x2 + 2.1512x − 8.5701 produces the
smallest standard deviation, it can be considered as the “best” fit to the data. But be
warned—the standard deviation is not an infallible measure of the goodness-of-fit. It is
always a good idea to plot the data points and f (x) before final determination is made.
The plot of our data indicates that the quadratic (solid line) is indeed a reasonable
choice for the fitting function.

x

-2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

y

-10.0

-5.0

0.0

5.0

10.0
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PROBLEM SET 3.2

Instructions Plot the data points and the fitting function whenever appropriate.
1. Show that the straight line obtained by least-squares fit of unweighted data always

passes through the point (x̄, ȳ).

2. Use linear regression to find the line that fits the data

x −1.0 −0.5 0 0.5 1.0

y −1.00 −0.55 0.00 0.45 1.00

and determine the standard deviation.

3. Three tensile tests were carried out on an aluminum bar. In each test the strain
was measured at the same values of stress. The results were

Stress (MPa) 34.5 69.0 103.5 138.0

Strain (Test 1) 0.46 0.95 1.48 1.93

Strain (Test 2) 0.34 1.02 1.51 2.09

Strain (Test 3) 0.73 1.10 1.62 2.12

where the units of strain are mm/m. Use linear regression to estimate the modulus
of elasticity of the bar (modulus of elasticity = stress/strain).

4. Solve Prob. 3 assuming that the third test was performed on an inferior machine,
so that its results carry only half the weight of the other two tests.

5. � Fit a straight line to the following data and compute the standard deviation.

x 0 0.5 1 1.5 2 2.5

y 3.076 2.810 2.588 2.297 1.981 1.912

x 3 3.5 4 4.5 5

y 1.653 1.478 1.399 1.018 0.794

6. �The table displays the mass M and average fuel consumptionφ of motor vehicles
manufactured by Ford and Honda in 1999. Fit a straight line φ = a + bM to the
data and compute the standard deviation.
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Model M (kg) φ (km/liter)

Contour 1310 10.2

Crown Victoria 1810 8.1

Escort 1175 11.9

Expedition 2360 5.5

Explorer 1960 6.8

F-150 2020 6.8

Ranger 1755 7.7

Taurus 1595 8.9

Accord 1470 9.8

CR-V 1430 10.2

Civic 1110 13.2

Passport 1785 7.7

7. � The relative density ρ of air was measured at various altitudes h. The results
were:

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

Use a quadratic least-squares fit to determine the relative air density at h = 10.5
km. (This problem was solved by interpolation in Prob. 20, Problem Set 3.1.)

8. � Kinematic viscosity µk of water varies with temperature T as shown in the
table. Determine the cubic that best fits the data, and use it to compute µk at
T = 10◦, 30◦, 60◦, and 90◦C. (This problem was solved in Prob. 19, Problem Set 3.1
by interpolation.)

T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

9. � Fit a straight line and a quadratic to the data

x 1.0 2.5 3.5 4.0 1.1 1.8 2.2 3.7

y 6.008 15.722 27.130 33.772 5.257 9.549 11.098 28.828

Which is a better fit?
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10. � The table displays thermal efficiencies of some early steam engines.6 Determine
the polynomial that provides the best fit to the data and use it to predict the thermal
efficiency in the year 2000.

Year Efficiency (%) Type

1718 0.5 Newcomen

1767 0.8 Smeaton

1774 1.4 Smeaton

1775 2.7 Watt

1792 4.5 Watt

1816 7.5 Woolf compound

1828 12.0 Improved Cornish

1834 17.0 Improved Cornish

1878 17.2 Corliss compound

1906 23.0 Triple expansion

11. The table shows the variation of the relative thermal conductivity k of sodium
with temperature T . Find the quadratic that fits the data in the least-squares
sense.

T (◦C) 79 190 357 524 690

k 1.00 0.932 0.839 0.759 0.693

12. Let f (x) = axb be the least-squares fit of the data (xi, yi), i = 1, 2, . . . , n, and let
F (x) = ln a + b ln x be the least-squares fit of (ln xi, ln yi)—see Table 3.3. Prove
that Ri ≈ ri/yi , where the residuals are ri = yi − f (xi) and Ri = ln yi − F (xi). As-
sume that ri << yi .

13. Determine a and b for which f (x) = a sin(πx/2) + b cos(πx/2) fits the following
data in the least-squares sense.

x −0.5 −0.19 0.02 0.20 0.35 0.50

y −3.558 −2.874 −1.995 −1.040 −0.068 0.677

6 Source: Singer, C., Holmyard, E.J., Hall, A.R., and Williams, T.H., A History of Technology, Oxford
University Press, 1958.
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14. Determine a and b so that f (x) = axb fits the following data in the least-squares
sense.

x 0.5 1.0 1.5 2.0 2.5

y 0.49 1.60 3.36 6.44 10.16

15. Fit the function f (x) = axebx to the data and compute the standard deviation.

x 0.5 1.0 1.5 2.0 2.5

y 0.541 0.398 0.232 0.106 0.052

16. � The intensity of radiation of a radioactive substance was measured at half-year
intervals. The results were:

t (years) 0 0.5 1 1.5 2 2.5

γ 1.000 0.994 0.990 0.985 0.979 0.977

t (years) 3 3.5 4 4.5 5 5.5

γ 0.972 0.969 0.967 0.960 0.956 0.952

where γ is the relative intensity of radiation. Knowing that radioactivity decays
exponentially with time: γ (t) = ae−bt, estimate the radioactive half-life of the
substance.

MATLAB Functions

y = interp1(xData,xData,x,method) returns the value of the interpolant y at
point x according to the method specified: method = ’linear’ uses linear
interpolation between adjacent data points (this is the default); method =

’spline’ carries out cubic spline interpolation. If x is an array, y is computed
for all elements of x.

a = polyfit(xData,yData,m) returns the coefficientsaof a polynomial of degree
m that fits the data points in the least-squares sense.

y = polyval(a,x) evaluates a polynomial defined by its coefficients a at point x.
If x is an array, y is computed for all elements of x.

s = std(x) returns the standard deviation of the elements of arrayx. Ifx is a matrix,
s is computed for each column of x.

xbar = mean(x) computes the mean value of the elements of x. If x is a matrix,
xbar is computed for each column of x.
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Linear forms can be fitted to data by setting up the overdetermined equations in
Eq. (3.22)

Fa = y

and solving them with the command a = F\y (recall that for overdetermined equa-
tions the backslash operator returns the least-squares solution). Here is an illustration
how to fit

f (x) = a1 + a2ex + a3xe−x

to the data in Example 3.9:

xData = [1.2; 2.8; 4.3; 5.4; 6.8; 7.0];

yData = [7.5; 16.1; 38.9; 67.0; 146.6; 266.2];

F = ones(length(xData),3);

F(:,2) = exp(xData(:));

F(:,3) = xData(:).*exp(-xData(:));

a = F\yData



4 Roots of Equations

Find the solutions of f (x) = 0, where the function f is given

4.1 Introduction

A common problem encountered in engineering analysis is this: given a function f (x),
determine the values of x for which f (x) = 0. The solutions (values of x) are known as
the roots of the equation f (x) = 0, or the zeroes of the function f (x).

Before proceeding further, it might be helpful to review the concept of a function.
The equation

y = f (x)

contains three elements: an input value x, an output value y and the rule f for comput-
ing y. The function is said to be given if the rule f is specified. In numerical computing
the rule is invariably a computer algorithm. It may be a function statement, such as

f (x) = cosh(x) cos(x) − 1

or a complex procedure containing hundreds or thousands of lines of code. As long
as the algorithm produces an output y for each input x, it qualifies as a function.

The roots of equations may be real or complex. The complex roots are seldom
computed, since they rarely have physical significance. An exception is the polynomial
equation

a1xn + a2xn−1 + · · · + anx + an+1 = 0

where the complex roots may be meaningful (as in the analysis of damped vibrations,
for example). For the time being, we will concentrate on finding the real roots of
equations. Complex zeroes of polynomials are treated near the end of this chapter.

143
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In general, an equation may have any number of (real) roots, or no roots at all.
For example,

sin x − x = 0

has a single root, namely x = 0, whereas

tan x − x = 0

has an infinite number of roots (x = 0, ±4.493, ±7.725, . . .).
All methods of finding roots are iterative procedures that require a starting point,

i.e., an estimate of the root. This estimate can be crucial; a bad starting value may
fail to converge, or it may converge to the “wrong” root (a root different from the one
sought). There is no universal recipe for estimating the value of a root. If the equation is
associated with a physical problem, then the context of the problem (physical insight)
might suggest the approximate location of the root. Otherwise, the function must be
plotted, or a systematic numerical search for the roots can be carried out. One such
search method is described in the next article.

It is highly advisable to go a step further and bracket the root (determine its lower
and upper bounds) before passing the problem to a root-finding algorithm. Prior
bracketing is, in fact, mandatory in the methods described in this chapter.

4.2 Incremental Search Method

The approximate locations of the roots are best determined by plotting the function.
Often a very rough plot, based on a few points, is sufficient to give us reasonable starting
values. Another useful tool for detecting and bracketing roots is the incremental search
method. It can also be adapted for computing roots, but the effort would not be
worthwhile, since other methods described in this chapter are more efficient for that.

The basic idea behind the incremental search method is simple: if f (x1) and
f (x2) have opposite signs, then there is at least one root in the interval (x1, x2). If the
interval is small enough, it is likely to contain a single root. Thus the zeroes of f (x) can
be detected by evaluating the function at intervals �x and looking for change in sign.

There are several potential problems with the incremental search method:

� It is possible to miss two closely spaced roots if the search increment �x is larger
than the spacing of the roots.

� A double root (two roots that coincide) will not be detected.
� Certain singularities of f (x) can be mistaken for roots. For example, f (x) = tan x

changes sign at x = ± 1
2 nπ, n = 1, 3, 5, . . . , as shown in Fig. 4.1. However, these

locations are not true zeroes, since the function does not cross the x-axis.
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x
0 1 2 3 4 5 6

-10.0

-5.0

0.0

5.0

10.0

Figure 4.1. Plot of tan x.

� rootsearch

The function rootsearch looks for a zero of the function f (x) in the interval (a,b).
The search starts at a and proceeds in steps dx toward b. Once a zero is detected,
rootsearch returns its bounds (x1,x2) to the calling program. If a root was not
detected, x1 = x2 = NaN is returned (in MATLAB NaN stands for “not a number”).
After the first root (the root closest to a) has been bracketed, rootsearch can be
called again with a replaced by x2 in order to find the next root. This can be repeated
as long as rootsearch detects a root.

function [x1,x2] = rootsearch(func,a,b,dx)

% Incremental search for a root of f(x).

% USAGE: [x1,x2] = rootsearch(func,a,d,dx)

% INPUT:

% func = handle of function that returns f(x).

% a,b = limits of search.

% dx = search increment.

% OUTPUT:

% x1,x2 = bounds on the smallest root in (a,b);

% set to NaN if no root was detected

x1 = a; f1 = feval(func,x1);

x2 = a + dx; f2 = feval(func,x2);

while f1*f2 > 0.0

if x1 >= b

x1 = NaN; x2 = NaN; return

end

x1 = x2; f1 = f2;

x2 = x1 + dx; f2 = feval(func,x2);

end
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EXAMPLE 4.1
Use incremental search with �x = 0.2 to bracket the smallest positive zero of
f (x) = x3 − 10x2 + 5.

Solution We evaluate f (x) at intervals �x = 0.2, staring at x = 0, until the function
changes its sign (value of the function is of no interest to us; only its sign is relevant).
This procedure yields the following results:

x f (x)

0.0 5.000

0.2 4.608

0.4 3.464

0.6 1.616

0.8 −0.888

From the sign change of the function we conclude that the smallest positive zero lies
between x = 0.6 and x = 0.8.

4.3 Method of Bisection

After a root of f (x) = 0 has been bracketed in the interval (x1, x2), several methods can
be used to close in on it. The method of bisection accomplishes this by successively
halving the interval until it becomes sufficiently small. This technique is also known
as the interval halving method. Bisection is not the fastest method available for com-
puting roots, but it is the most reliable. Once a root has been bracketed, bisection will
always close in on it.

The method of bisection uses the same principle as incremental search: if there is
a root in the interval (x1, x2), then f (x1) · f (x2) < 0. In order to halve the interval, we
compute f (x3), where x3 = 1

2 (x1 + x2) is the midpoint of the interval. If f (x2) · f (x3) <

0, then the root must be in (x2, x3) and we record this by replacing the original bound
x1 by x3. Otherwise, the root lies in (x1, x3), in which case x2 is replaced by x3. In either
case, the new interval (x1, x2) is half the size of the original interval. The bisection is
repeated until the interval has been reduced to a small value ε, so that

|x2 − x1| ≤ ε

It is easy to compute the number of bisections required to reach a prescribed
ε. The original interval �x is reduced to �x/2 after one bisection, �x/22 after
two bisections and after n bisections it is �x/2n. Setting �x/2n = ε and solving
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for n, we get

n = ln (|�x| /ε)
ln 2

(4.1)

� bisect

This function uses the method of bisection to compute the root of f (x) = 0 that is
known to lie in the interval (x1,x2). The number of bisections n required to reduce
the interval to tol is computed from Eq. (4.1). The input argument filter controls
the filtering of suspected singularities. By setting filter = 1, we force the routine
to check whether the magnitude of f (x) decreases with each interval halving. If it does
not, the “root” may not be a root at all, but a singularity, in which case root = NaN is
returned. Since this feature is not always desirable, the default value is filter = 0.

function root = bisect(func,x1,x2,filter,tol)

% Finds a bracketed zero of f(x) by bisection.

% USAGE: root = bisect(func,x1,x2,filter,tol)

% INPUT:

% func = handle of function that returns f(x).

% x1,x2 = limits on interval containing the root.

% filter = singularity filter: 0 = off (default), 1 = on.

% tol = error tolerance (default is 1.0e4*eps).

% OUTPUT:

% root = zero of f(x), or NaN if singularity suspected.

if nargin < 5; tol = 1.0e4*eps; end

if nargin < 4; filter = 0; end

f1 = feval(func,x1);

if f1 == 0.0; root = x1; return; end

f2 = feval(func,x2);

if f2 == 0.0; root = x2; return; end

if f1*f2 > 0;

error(’Root is not bracketed in (x1,x2)’)

end

n = ceil(log(abs(x2 - x1)/tol)/log(2.0));

for i = 1:n

x3 = 0.5*(x1 + x2);

f3 = feval(func,x3);

if(filter == 1) & (abs(f3) > abs(f1))...

& (abs(f3) > abs(f2))
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root = NaN; return

end

if f3 == 0.0

root = x3; return

end

if f2*f3 < 0.0

x1 = x3; f1 = f3;

else

x2 = x3; f2 = f3;

end

end

root=(x1 + x2)/2;

EXAMPLE 4.2
Use bisection to find the root of f (x) = x3 − 10x2 + 5 = 0 that lies in the interval
(0.6, 0.8).

Solution The best way to implement the method is to use the table shown below. Note
that the interval to be bisected is determined by the sign of f (x), not its magnitude.

x f (x) Interval

0.6 1.616 −
0.8 −0.888 (0.6, 0.8)

(0.6 + 0.8)/2 = 0.7 0.443 (0.7, 0.8)

(0.8 + 0.7)/2 = 0.75 −0. 203 (0.7, 0.75)

(0.7 + 0.75)/2 = 0.725 0.125 (0.725, 0.75)

(0.75 + 0.725)/2 = 0.7375 −0.038 (0.725, 0.7375)

(0.725 + 0.7375)/2 = 0.73125 0.044 (0.7375, 0.73125)

(0.7375 + 0.73125)/2 = 0.73438 0.003 (0.7375, 0.73438)

(0.7375 + 0.73438)/2 = 0.73594 −0.017 (0.73438, 0.73594)

(0.73438 + 0.73594)/2 = 0.73516 −0.007 (0.73438, 0.73516)

(0.73438 + 0.73516)/2 = 0.73477 −0.002 (0.73438, 0.73477)

(0.73438 + 0.73477)/2 = 0.73458 0.000 −

The final result x = 0.7346 is correct within four decimal places.
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EXAMPLE 4.3
Find all the zeroes of f (x) = x − tan x in the interval (0, 20) by the method of bisection.
Utilize the functions rootsearch and bisect.

Solution Note that tan x is singular and changes sign at x = π/2, 3π/2, . . . . To prevent
bisect from mistaking these point for roots, we setfilter = 1. The closeness of roots
to the singularities is another potential problem that can be alleviated by using small
�x in rootsearch. Choosing �x = 0.01, we arrive at the following program:

% Example 4.3 (root finding with bisection)

a = 0.0; b = 20.0; dx = 0.01;

nroots = 0;

while 1

[x1,x2] = rootsearch(@fex4_3,a,b,dx);

if isnan(x1)

break

else

a = x2;

x = bisect(@fex4_3,x1,x2,1);

if ˜isnan(x)

nroots = nroots + 1;

root(nroots) = x;

end

end

end

root

Recall that in MATLAB the symbol @ before a function name creates a handle for
the function. Thus the input argument @fex4 3 in rootsearch is a handle for the
function fex4 3 listed below.

function y = fex4_3(x)

% Function used in Example4.3

y = x - tan(x);

Running the program resulted in the output

>> root =

0 4.4934 7.7253 10.9041 14.0662 17.2208
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4.4 Brent’s Method

Brent’s method7 combines bisection and quadratic interpolation into an efficient
root-finding algorithm. In most problems the method is much faster than bisection
alone, but it can become sluggish if the function is not smooth. It is the recommended
method of root finding if the derivative of the function is difficult or impossible to
compute.

x
xx

x1

23

3

Old interval
New

interval

f (x)

x
x1 x3

x2

x

Old interval
New

interval

x

f (x)

(b) Case of x > x3(a) Case of x < x

Figure 4.2. Inverse quadratic iteration.

Brent’s method assumes that a root of f (x) = 0 has been initially bracketed in
the interval (x1, x2). The root-finding process starts with a bisection step that halves
the interval to either (x1, x3) or (x3, x2), where x3 = (x1 + x2)/2, as shown in Figs. 4.2(a)
and (b). In the course of bisection we had to compute f1 = f (x1), f2 = f (x2) and
f3 = f (x3), so that we now know three points on the f (x) curve (the open circles in
the figure). These points allow us to carry out the next iteration of the root by inverse
quadratic interpolation (viewing x as a quadratic function of f ). If the result x of the
interpolation falls inside the latest bracket (as is the case in Figs. 4.2), we accept the
result. Otherwise, another round of bisection is applied.

x
x

x1

2

3

f (x ) f (x )

x
x1 x3

x2
x

(a) (b)
Figure 4.3. Relabeling points after an iteration.

The next step is to relabel x as x3 and rename the limits of the new interval
x1 and x2 (x1 < x3 < x2), as indicated in Figs. 4.3. We have now recovered the orig-
inal sequencing of points in Figs. 4.2, but the interval (x1, x2) containing the root

7 Brent, R. P., Algorithms for Minimization without Derivatives, Prentice-Hall, 1973.
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has been reduced. This completes the first iteration cycle. In the next cycle an-
other inverse quadratic interpolation is attempted and the process is repeated un-
til the convergence criterion |x − x3| < ε is satisfied, where ε is a prescribed error
tolerance.

The inverse quadratic interpolation is carried out with Lagrange’s three-point
interpolant described in Art. 3.2. Interchanging the roles of x and f , we have

x( f ) = ( f − f2)( f − f3)
( f1 − f2)( f1 − f3)

x1 + ( f − f1)( f − f3)
( f2 − f1)( f2 − f3)

x2 + ( f − f1)( f − f2)
( f3 − f1)( f3 − f2)

x3

Setting f = 0 and simplifying, we obtain for the estimate of the root

x = x(0) = − f2 f3x1( f2 − f3) + f3 f1x2( f3 − f1) + f1 f2x3( f1 − f2)
( f1 − f2)( f2 − f3)( f3 − f1)

The change in the root is

�x = x − x3 = f3
x3( f1 − f2)( f2 − f3 + f1) + f2x1( f2 − f3) + f1x2( f3 − f1)

( f2 − f1)( f3 − f1)( f2 − f3)
(4.2)

� brent

The function brent listed below is a simplified version of the algorithm proposed by
Brent. It omits some of Brent’s safeguards against slow convergence; it also uses a less
sophisticated convergence criterion.

function root = brent(func,a,b,tol)

% Finds a root of f(x) = 0 by combining quadratic

% interpolation with bisection (Brent’s method).

% USAGE: root = brent(func,a,b,tol)

% INPUT:

% func = handle of function that returns f(x).

% a,b = limits of the interval containing the root.

% tol = error tolerance (default is 1.0e6*eps).

% OUTPUT:

% root = zero of f(x) (root = NaN if failed to converge).

if nargin < 4; tol = 1.0e6*eps; end

% First step is bisection

x1 = a; f1 = feval(func,x1);

if f1 == 0; root = x1; return; end

x2 = b; f2 = feval(func,x2);

if f2 == 0; root = x2; return; end
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if f1*f2 > 0.0

error(’Root is not bracketed in (a,b)’)

end

x3 = 0.5*(a + b);

% Beginning of iterative loop.

for i = 1:30

f3 = feval(func,x3);

if abs(f3) < tol

root = x3; return

end

% Tighten brackets (a,b) on the root.

if f1*f3 < 0.0; b = x3;

else; a = x3;

end

if (b - a) < tol*max(abs(b),1.0)

root = 0.5*(a + b); return

end

% Try quadratic interpolation.

denom = (f2 - f1)*(f3 - f1)*(f2 - f3);

numer = x3*(f1 - f2)*(f2 - f3 + f1)...

+ f2*x1*(f2 - f3) + f1*x2*(f3 - f1);

% If division by zero, push x out of bracket

% to force bisection.

if denom == 0; dx = b - a;

else; dx = f3*numer/denom;

end

x = x3 + dx;

% If interpolation goes out of bracket, use bisection.

if (b - x)*(x - a) < 0.0

dx = 0.5*(b - a); x = a + dx;

end

% Let x3 <-- x & choose new x1, x2 so that x1 < x3 < x2.

if x < x3

x2 = x3; f2 = f3;

else

x1 = x3; f1 = f3;

end

x3 = x;

end

root = NaN;
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EXAMPLE 4.4
Determine the root of f (x) = x3 − 10x2 + 5 = 0 that lies in (0.6, 0.8) with Brent’s
method.

Solution

Bisection The starting points are

x1 = 0.6 f1 = 0.63 − 10(0.6)2 + 5 = 1.616

x2 = 0.8 f2 = 0.83 − 10(0.8)2 + 5 = −0.888

Bisection yields the point

x3 = 0.7 f3 = 0.73 − 10(0.7)2 + 5 = 0.443

By inspecting the signs of f we conclude that the new brackets on the root are (x3, x2) =
(0.7, 0.8).

First interpolation cycle Substituting the above values of x and f into the numer-
ator of the quotient in Eq. (4.2), we get

num = x3( f1 − f2)( f2 − f3 + f1) + f2x1( f2 − f3) + f1x2( f3 − f1)

= 0.7(1.616 + 0.888)(−0.888 − 0.443 + 1.616)

−0.888(0.6)(−0.888 − 0.443) + 1.616(0.8)(0.443 − 1.616)

= −0.307 75

and the denominator becomes

den = ( f2 − f1)( f3 − f1)( f2 − f3)

= (−0.888 − 1.616)(0.443 − 1.616)(−0.888 − 0.443) = −3.9094

Therefore,

�x = f3
num
den

= 0.443
(−0.307 75)
(−3.9094)

= 0.034 87

and

x = x3 + �x = 0.7 + 0.034 87 = 0.734 87

Since the result is within the established brackets, we accept it.

Relabel points As x > x3, the points are relabeled as illustrated in Figs. 4.2(b) and
4.3(b):

x1 ← x3 = 0.7

f1 ← f3 = 0.443
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x3 ← x = 0.734 87

f3 = 0.734 873 − 10(0.734 87)2 + 5 = −0.00348

The new brackets on the root are (x1, x3) = (0.7, 0.734 87).

Second interpolation cycle Applying the interpolation in Eq. (4.2) again, we obtain
(skipping the arithmetical details)

�x = −0.000 27
x = x3 + �x = 0.734 87 − 0.000 27 = 0.734 60

Again x falls within the latest brackets, so the result is acceptable. At this stage, x is
correct to five decimal places.

EXAMPLE 4.5
Compute the zero of

f (x) = x |cos x| − 1

that lies in the interval (0, 4) with Brent’s method.

Solution

x

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

f(x)

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

The plot of f (x) shows that this is a rather nasty function within the specified interval,
containing a slope discontinuity and two local maxima. The sensible approach is
to avoid the potentially troublesome regions of the function by bracketing the root
as tightly as possible from a visual inspection of the plot. In this case, the interval
(a, b) = (2.0, 2.2) would be a good starting point for Brent’s algorithm.
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Is Brent’s method robust enough to handle the problem with the original brackets
(0, 4)? Well, here is the MATLAB command and its output:

>> brent(@fex4_5,0.0,4.0)

ans =

2.0739

The result was obtained after six iterations. The function defining f (x) is

function y = fex4_5(x)

% Function used in Example 4.5

y = x*abs(cos(x)) - 1.0;

4.5 Newton–Raphson Method

The Newton–Raphson algorithm is the best-known method of finding roots for a
good reason: it is simple and fast. The only drawback of the method is that it uses
the derivative f ′(x) of the function as well as the function f (x) itself. Therefore, the
Newton–Raphson method is usable only in problems where f ′(x) can be readily com-
puted.

The Newton–Raphson formula can be derived from the Taylor series expansion
of f (x) about x:

f (xi+1) = f (xi) + f ′(xi)(xi+1 − xi) + O(xi+1 − xi)2 (a)

If xi+1 is a root of f (x) = 0, Eq. (a) becomes

0 = f (xi) + f ′(xi) (xi+1 − xi) + O(xi+1 − xi)2 (b)

Assuming that xi is a close to xi+1, we can drop the last term in Eq. (b) and solve for
xi+1. The result is the Newton–Raphson formula

xi+1 = xi − f (xi)
f ′(xi)

(4.3)

If x denotes the true value of the root, the error in xi is Ei = x − xi . It can be shown
that if xi+1 is computed from Eq. (4.3), the corresponding error is

Ei+1 = − f ′′(xi)
2 f ′(xi)

E 2
i

indicating that the Newton–Raphson method converges quadratically (the error is the
square of the error in the previous step). As a consequence, the number of significant
figures is roughly doubled in every iteration, provided that xi is close to the root.



156 Roots of Equations

Tangent line

f (xi)

i ixx +1
x

f (x)

Figure 4.4. Graphical interpretation of the Newton–Raphson
formula.

A graphical depiction of the Newton–Raphson formula is shown in Fig. 4.4. The for-
mula approximates f (x) by the straight line that is tangent to the curve at xi . Thus xi+1

is at the intersection of the x-axis and the tangent line.
The algorithm for the Newton–Raphson method is simple: it repeatedly applies

Eq. (4.3), starting with an initial value x0, until the convergence criterion

|xi+1 − x1| < ε

is reached, ε being the error tolerance. Only the latest value of x has to be stored. Here
is the algorithm:

1. Let x be a guess for the root of f (x) = 0.
2. Compute �x = − f (x)/ f ′(x).
3. Let x ← x + �x and repeat steps 2-3 until |�x| < ε.

x x

f (x) f (x)

0

xxx
x0 21

(a) (b)

Figure 4.5. Examples where the Newton–Raphson method
diverges.

Although the Newton–Raphson method converges fast near the root, its global
convergence characteristics are poor. The reason is that the tangent line is not al-
ways an acceptable approximation of the function, as illustrated in the two examples
in Fig. 4.5. But the method can be made nearly fail-safe by combining it with bisection,
as in Brent’s method.

� newtonRaphson

The following safe version of the Newton–Raphson method assumes that the root
to be computed is initially bracketed in (a,b). The midpoint of the bracket is used
as the initial guess of the root. The brackets are updated after each iteration. If a
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Newton–Raphson iteration does not stay within the brackets, it is disregarded and
replaced with bisection. Since newtonRaphson uses the function f(x) as well as its
derivative, function routines for both (denoted byfunc anddfunc in the listing) must
be provided by the user.

function root = newtonRaphson(func,dfunc,a,b,tol)

% Newton-Raphson method combined with bisection for

% finding a root of f(x) = 0.

% USAGE: root = newtonRaphson(func,dfunc,a,b,tol)

% INPUT:

% func = handle of function that returns f(x).

% dfunc = handle of function that returns f’(x).

% a,b = brackets (limits) of the root.

% tol = error tolerance (default is 1.0e6*eps).

% OUTPUT:

% root = zero of f(x) (root = NaN if no convergence).

if nargin < 5; tol = 1.0e6*eps; end

fa = feval(func,a); fb = feval(func,b);

if fa == 0; root = a; return; end

if fb == 0; root = b; return; end

if fa*fb > 0.0

error(’Root is not bracketed in (a,b)’)

end

x = (a + b)/2.0;

for i = 1:30

fx = feval(func,x);

if abs(fx) < tol; root = x; return; end

% Tighten brackets on the root

if fa*fx < 0.0; b = x;

else; a = x;

end

% Try Newton--Raphson step

dfx = feval(dfunc,x);

if abs(dfx) == 0; dx = b - a;

else; dx = -fx/dfx;

end

x = x + dx;

% If x not in bracket, use bisection

if (b - x)*(x - a) < 0.0
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dx = (b - a)/2.0;

x = a + dx;

end

% Check for convergence

if abs(dx) < tol*max(b,1.0)

root = x; return

end

end

root = NaN

EXAMPLE 4.6
A root of f (x) = x3 − 10x2 + 5 = 0 lies close to x = 0.7. Compute this root with the
Newton–Raphson method.

Solution The derivative of the function is f ′(x) = 3x2 − 20x, so that the Newton–
Raphson formula in Eq. (4.3) is

x ← x − f (x)
f ′(x)

= x − x3 − 10x2 + 5
3x2 − 20x

= 2x3 − 10x2 − 5
x (3x − 20)

It takes only two iterations to reach five decimal place accuracy:

x ← 2(0.7)3 − 10(0.7)2 − 5
0.7 [3(0.7) − 20]

= 0.735 36

x ← 2(0.735 36)3 − 10(0.735 36)2 − 5
0.735 36 [3(0.735 36) − 20]

= 0.734 60

EXAMPLE 4.7
Find the smallest positive zero of

f (x) = x4 − 6.4x3 + 6.45x2 + 20.538x − 31.752

Solution

x
0 1 2 3 4 5

f (x)

-40

-20

0

20

40

60
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Inspecting the plot of the function, we suspect that the smallest positive zero is a
double root near x = 2. Bisection and Brent’s method would not work here, since they
depend on the function changing its sign at the root. The same argument applies to
the function newtonRaphson. But there no reason why the unrefined version of the
Newton–Raphson method should not succeed. We used the following program, which
prints the number of iterations in addition to the root:

function [root,numIter] = newton_simple(func,dfunc,x,tol)

% Simple version of Newton-Raphson method used in Example 4.7.

if nargin < 5; tol = 1.0e6*eps; end

for i = 1:30

dx = -feval(func,x)/feval(dfunc,x);

x = x + dx;

if abs(dx) < tol

root = x; numIter = i; return

end

end

root = NaN

The two functions called by the program are

function y = fex4_7(x)

% Function used in Example 4.7.

y = xˆ4 - 6.4*xˆ3 + 6.45*xˆ2 + 20.538*x - 31.752;

function y = dfex4_7(x)

% Function used in Example 4.7.

y = 4.0*xˆ3 - 19.2*xˆ2 + 12.9*x + 20.538;

Here are the results:

>> [root,numIter] = newton_simple(@fex4_7,@dfex4_7,2.0)

root =

2.1000

numIter =

27

It can be shown that near a multiple root the convergence of the Newton–Raphson
method is linear, rather than quadratic, which explains the large number of iterations.
Convergence to a multiple root can be speeded up by replacing the Newton–Raphson
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formula in Eq. (4.3) with

xi+1 = xi − m
f (xi)
f ′(xi)

where m is the multiplicity of the root (m = 2 in this problem). After making the
change in the above program, we obtained the result in 5 iterations.

4.6 Systems of Equations

Introduction

Up to this point, we confined our attention to solving the single equation f (x) = 0.

Let us now consider the n-dimensional version of the same problem, namely

f(x) = 0

or, using scalar notation

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0 (4.4)

...

fn(x1, x2, . . . , xn) = 0

The solution of n simultaneous, nonlinear equations is a much more formidable task
than finding the root of a single equation. The trouble is the lack of a reliable method for
bracketing the solution vector x. Therefore, we cannot provide the solution algorithm
with a guaranteed good starting value of x, unless such a value is suggested by the
physics of the problem.

The simplest and the most effective means of computing x is the Newton–
Raphson method. It works well with simultaneous equations, provided that it is sup-
plied with a good starting point. There are other methods that have better global con-
vergence characteristics, but all of them are variants of the Newton–Raphson method.

Newton–Raphson Method

In order to derive the Newton–Raphson method for a system of equations, we start
with the Taylor series expansion of fi(x) about the point x:

fi(x + �x) = fi(x) +
n∑

j=1

∂ fi

∂xj
�xj + O(�x2) (4.5a)
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Dropping terms of order �x2, we can write Eq. (4.5a) as

f(x + �x) = f(x) + J(x) �x (4.5b)

where J(x) is the Jacobian matrix (of size n × n) made up of the partial derivatives

J i j = ∂ fi

∂xj
(4.6)

Note that Eq. (4.5b) is a linear approximation (vector �x being the variable) of the
vector-valued function f in the vicinity of point x.

Let us now assume that x is the current approximation of the solution of f(x) = 0,
and let x + �x be the improved solution. To find the correction�x, we set f(x + �x) = 0
in Eq. (4.5b). The result is a set of linear equations for �x :

J(x)�x = −f(x) (4.7)

The following steps constitute the Newton–Raphson method for simultaneous,
nonlinear equations:

1. Estimate the solution vector x.
2. Evaluate f(x).
3. Compute the Jacobian matrix J(x) from Eq. (4.6).
4. Set up the simultaneous equations in Eq. (4.7) and solve for �x.
5. Let x ← x + �x and repeat steps 2–5.

The above process is continued until |�x| < ε, where ε is the error tolerance. As
in the one-dimensional case, success of the Newton–Raphson procedure depends
entirely on the initial estimate of x. If a good starting point is used, convergence to the
solution is very rapid. Otherwise, the results are unpredictable.

Because analytical derivation of each ∂ fi/∂xj can be difficult or impractical, it is
preferable to let the computer calculate the partial derivatives from the finite differ-
ence approximation

∂ fi

∂xj
≈ fi(x + e j h) − fi(x)

h
(4.8)

where h is a small increment and e j represents a unit vector in the direction of xj .
This formula can be obtained from Eq. (4.5a) after dropping the terms of order �x2

and setting �x = e j h. By using the finite difference approximation, we also avoid the
tedium of typing the expressions for ∂ fi/∂xj into the computer code.

� newtonRaphson2

This function is an implementation of the Newton–Raphson method. The nested func-
tionjacobiancomputes the Jacobian matrix from the finite difference approximation
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in Eq. (4.8). The simultaneous equations in Eq. (4.7) are solved by using the left di-
vision operator of MATLAB. The function subroutine func that returns the array f(x)
must be supplied by the user.

function root = newtonRaphson2(func,x,tol)

% Newton-Raphson method of finding a root of simultaneous

% equations fi(x1,x2,...,xn) = 0, i = 1,2,...,n.

% USAGE: root = newtonRaphson2(func,x,tol)

% INPUT:

% func = handle of function that returns[f1,f2,...,fn].

% x = starting solution vector [x1,x2,...,xn].

% tol = error tolerance (default is 1.0e4*eps).

% OUTPUT:

% root = solution vector.

if nargin == 2; tol = 1.0e4*eps; end

if size(x,1) == 1; x = x’; end % x must be column vector

for i = 1:30

[jac,f0] = jacobian(func,x);

if sqrt(dot(f0,f0)/length(x)) < tol

root = x; return

end

dx = jac\(-f0);

x = x + dx;

if sqrt(dot(dx,dx)/length(x)) < tol*max(abs(x),1.0)

root = x; return

end

end

error(’Too many iterations’)

function [jac,f0] = jacobian(func,x)

% Returns the Jacobian matrix and f(x).

h = 1.0e-4;

n = length(x);

jac = zeros(n);

f0 = feval(func,x);

for i =1:n

temp = x(i);

x(i) = temp + h;

f1 = feval(func,x);
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x(i) = temp;

jac(:,i) = (f1 - f0)/h;

end

Note that the Jacobian matrix J(x) is recomputed in each iterative loop. Since each
calculation of J(x) involves n + 1 evaluations of f(x) (n is the number of equations),
the expense of computation can be high depending on n and the complexity of f(x).
It is often possible to save computer time by neglecting the changes in the Jacobian
matrix between iterations, thus computing J(x) only once. This will work provided
that the initial x is sufficiently close to the solution.

EXAMPLE 4.8
Determine the points of intersection between the circle x2 + y 2 = 3 and the hyper-
bola xy = 1.

Solution The equations to be solved are

f1(x, y) = x2 + y 2 − 3 = 0 (a)

f2(x, y) = xy − 1 = 0 (b)

The Jacobian matrix is

J(x, y) =
[

∂ f1/∂x ∂ f1/∂y
∂ f2/∂x ∂ f2/∂y

]
=
[

2x 2y
y x

]

Thus the linear equations J(x)�x = −f(x) associated with the Newton–Raphson
method are [

2x 2y
y x

][
�x
�y

]
=
[

−x2 − y 2 + 3
−xy + 1

]
(c)

By plotting the circle and the hyperbola, we see that there are four points of
intersection. It is sufficient, however, to find only one of these points, as the others can
be deduced from symmetry. From the plot we also get a rough estimate of the coordi-
nates of an intersection point: x = 0.5, y = 1.5, which we use as the starting values.

x

y

3

1 2

1

2

-1-2

-1

-2

The computations then proceed as follows.
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First iteration Substituting x = 0.5, y = 1.5 in Eq. (c), we get[
1.0 3.0
1.5 0.5

][
�x
�y

]
=
[

0.50
0.25

]

the solution of which is �x = �y = 0.125. Therefore, the improved coordinates of the
intersection point are

x = 0.5 + 0.125 = 0.625 y = 1.5 + 0.125 = 1.625

Second iteration Repeating the procedure using the latest values of x and y, we
obtain [

1.250 3.250
1.625 0.625

][
�x
�y

]
=
[

−0.031250
−0.015625

]

which yields �x = �y = −0.00694. Thus

x = 0.625 − 0.006 94 = 0.618 06 y = 1.625 − 0.006 94 = 1.618 06

Third iteration Substitution of the latest x and y into Eq. (c) yields[
1.236 12 3.23612
1.618 06 0.61806

][
�x
�y

]
=
[

−0.000 116
−0.000 058

]

The solution is �x = �y = −0.00003, so that

x = 0.618 06 − 0.000 03 = 0.618 03

y = 1.618 06 − 0.000 03 = 1.618 03

Subsequent iterations would not change the results within five significant figures.
Therefore, the coordinates of the four intersection points are

±(0.618 03, 1.618 03) and ± (1.618 03, 0.618 03)

Alternate solution If there are only a few equations, it may be possible to eliminate
all but one of the unknowns. Then we would be left with a single equation which
can be solved by the methods described in Arts. 4.2–4.5. In this problem, we obtain
from Eq. (b)

y = 1
x

which upon substitution into Eq. (a) yields x2 + 1/x2 − 3 = 0, or

x4 − 3x2 + 1 = 0

The solutions of this biquadratic equation: x = ±0.618 03 and ±1.618 03 agree with
the results obtained by the Newton–Raphson method.
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EXAMPLE 4.9
Find a solution of

sin x + y 2 + ln z − 7 = 0

3x + 2y − z3 + 1 = 0

x + y + z − 5 = 0

using newtonRaphson2. Start with the point (1, 1, 1).

Solution Letting x = x1, y = x2 and z = x3, the code defining the function array f(x) is

function y = fex4_9(x)

% Function used in Example 4.9

y = [sin(x(1)) + x(2)ˆ2 + log(x(3)) - 7; ...

3*x(1) + 2ˆx(2) - x(3)ˆ3 + 1; ...

x(1) + x(2) + x(3) - 5];

The solution can now be obtained with the single command

>> newtonRaphson2(@fex4_9,[1;1;1])

which results in

ans =

0.5991

2.3959

2.0050

Hence the solution is x = 0.5991, y = 2.3959 and z = 2.0050.

PROBLEM SET 4.1

1. Use the Newton–Raphson method and a four-function calculator (+ − ×÷ oper-
ations only) to compute 3

√
75 with four significant figure accuracy.

2. Find the smallest positive (real) root of x3 − 3.23x2 − 5.54x + 9.84 = 0 by the
method of bisection.

3. The smallest positive, nonzero root of cosh x cos x − 1 = 0 lies in the interval (4, 5).
Compute this root by Brent’s method.

4. Solve Prob. 3 by the Newton–Raphson method.

5. A root of the equation tan x − tanh x = 0 lies in (7.0, 7.4). Find this root with three
decimal place accuracy by the method of bisection.

6. Determine the two roots of sin x + 3 cos x − 2 = 0 that lie in the interval (−2, 2).
Use the Newton–Raphson method.
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7. A popular method of hand computation is the secant formula where the improved
estimate of the root (xi+1) is obtained by linear interpolation based two previous
estimates (xi and xi−1):

xi+1 = xi − xi − xi−1

f (xi) − f (xi−1)
f (xi)

Solve Prob. 6 using the secant formula.

8. Draw a plot of f (x) = cosh x cos x − 1 in the range 4 ≤ x ≤ 8. (a) Verify from the
plot that the smallest positive, nonzero root of f (x) = 0 lies in the interval (4, 5).
(b) Show graphically that the Newton–Raphson formula would not converge to
this root if it is started with x = 4.

9. The equation x3 − 1.2x2 − 8.19x + 13.23 = 0 has a double root close to x = 2. De-
termine this root with the Newton–Raphson method within four decimal places.

10. � Write a program that computes all the roots of f (x) = 0 in a given interval with
Brent’s method. Utilize the functions rootsearch and brent. You may use the
program in Example 4.3 as a model. Test the program by finding the roots of
x sin x + 3 cos x − x = 0 in (−6, 6).

11. � Solve Prob. 10 with the Newton–Raphson method.

12. � Determine all real roots of x4 + 0.9x3 − 2.3x2 + 3.6x − 25.2 = 0.

13. � Compute all positive real roots of x4 + 2x3 − 7x2 + 3 = 0.

14. � Find all positive, nonzero roots of sin x − 0.1x = 0.

15. � The natural frequencies of a uniform cantilever beam are related to the roots
βi of the frequency equation f (β) = cosh β cos β + 1 = 0, where

β4
i = (2π fi)2 mL3

E I

fi = ith natural frequency (cps)

m = mass of the beam

L = length of the beam

E = modulus of elasticity

I = moment of inertia of the cross section

Determine the lowest two frequencies of a steel beam 0.9 m long, with a rectan-
gular cross section 25 mm wide and 2.5 mm in. high. The mass density of steel is
7850 kg/m3 and E = 200 GPa.
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16. �
L
2

Length =s O

L
2

A steel cable of length s is suspended as shown in the figure. The maximum tensile
stress in the cable, which occurs at the supports, is

σ max = σ 0 cosh β

where

β = γ L
2σ 0

σ 0 = tensile stress in the cable at O

γ = weight of the cable per unit volume

L = horizontal span of the cable

The length to span ratio of the cable is related to β by

s
L

= 1
β

sinh β

Find σ max if γ = 77 × 103 N/m3 (steel), L = 1000 m and s = 1100 m.

17. �

P
ec

L

P

The aluminum W310 × 202 (wide flange) column is subjected to an eccentric axial
load P as shown. The maximum compressive stress in the column is given by the
so-called secant formula:

σ max = σ̄

[
1 + ec

r2
sec

(
L
2r

√
σ̄

E

)]

where

σ̄ = P/A = average stress

A = 25 800 mm2 = cross-sectional area of the column

e = 85 mm = eccentricity of the load

c = 170 mm = half-depth of the column

r = 142 mm = radius of gyration of the cross section
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L = 7100 mm = length of the column

E = 71 × 109 Pa = modulus of elasticity

Determine the maximum load P that the column can carry if the maximum stress
is not to exceed 120 × 106 Pa.

18. �

hQ

H

ho

Bernoulli’s equation for fluid flow in an open channel with a small bump is

Q2

2gb2h2
0

+ h0 = Q2

2gb2h2
+ h + H

where

Q = 1.2 m3/s = volume rate of flow

g = 9.81 m/s2 = gravitational acceleration

b = 1.8 m = width of channel

h0 = 0.6 m = upstream water level

H = 0.075 m = height of bump

h = water level above the bump

Determine h.

19. � The speed v of a Saturn V rocket in vertical flight near the surface of earth can
be approximated by

v = u ln
M0

M0 − ṁt
− gt

where

u = 2510 m/s = velocity of exhaust relative to the rocket
M0 = 2.8 × 106 kg = mass of rocket at liftoff

ṁ = 13.3 × 103 kg/s = rate of fuel consumption
g = 9.81 m/s2 = gravitational acceleration
t = time measured from liftoff

Determine the time when the rocket reaches the speed of sound (335 m/s).
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20. �

Isothermal
expansion

Volume reduced
by cooling

Heating at
constant volume

P

VV V

P

P

T

T

T
1

1

1

2

2

2
2

The figure shows the thermodynamic cycle of an engine. The efficiency of this
engine for monatomic gas is

η = ln(T2/T1) − (1 − T1/T2)
ln(T2/T1) + (1 − T1/T2)/(γ − 1)

where T is the absolute temperature and γ = 5/3. Find T2/T1 that results in 30%
efficiency (η = 0.3).

21. � Gibb’s free energy of one mole of hydrogen at temperature T is

G = −RT ln
[
(T/T0)5/2] J

where R = 8.314 41 J/K is the gas constant and T0 = 4.444 18 K. Determine the
temperature at which G = −105 J.

22. � The chemical equilibrium equation in the production of methanol from CO
and H2 is8

ξ (3 − 2ξ )2

(1 − ξ )3
= 249.2

where ξ is the equilibrium extent of the reaction. Determine ξ .

23. � Determine the coordinates of the two points where the circles (x − 2)2 + y 2 = 4
and x2 + (y − 3)2 = 4 intersect. Start by estimating the locations of the points from
a sketch of the circles, and then use the Newton–Raphson method to compute
the coordinates.

24. � The equations

sin x + 3 cos x − 2 = 0
cos x − sin y + 0.2 = 0

have a solution in the vicinity of the point (1, 1).Use the Newton–Raphson method
to refine the solution.

8 From Alberty, R.A., Physical Chemistry, 7th ed., Wiley, 1987.
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25. � Use any method to find all real solutions in 0 < x < 1.5 of the simultaneous
equations

tan x − y = 1
cos x − 3 sin y = 0

26. � The equation of a circle is

(x − a)2 + (y − b)2 = R2

where R is the radius and (a, b) are the coordinates of the center. If the coordinates
of three points on the circle are

x 8.21 0.34 5.96

y 0.00 6.62 −1.12

determine R, a and b.

27. �

O

R

The trajectory of a satellite orbiting the earth is

R = C
1 + e sin(θ + α)

where (R, θ) are the polar coordinates of the satellite, and C , e and α are constants
(e is known as the eccentricity of the orbit). If the satellite was observed at the
following three positions

θ −30◦ 0◦ 30◦

R (km) 6870 6728 6615

determine the smallest R of the trajectory and the corresponding value of θ .

28. �

300 m

61 m

45
y

xO

v

A projectile is launched at O with the velocity v at the angle θ to the horizontal.
The parametric equation of the trajectory is

x = (v cos θ)t

y = −1
2

gt2 + (v sin θ)t
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where t is the time measured from the instant of launch, and g = 9.81 m/s2 rep-
resents the gravitational acceleration. If the projectile is to hit the target at the 45◦

angle shown in the figure, determine v, θ and the time of flight.

29. �

200 mm

15
0 

m
m

180 mm

20
0 

m
m

1

2

3

y

x

The three angles shown in the figure of the four-bar linkage are related by

150 cos θ1 + 180 cos θ2 − 200 cos θ3 = 200
150 sin θ1 + 180 sin θ2 − 200 sin θ3 = 0

Determine θ1 and θ2 when θ3 = 75◦. Note that there are two solutions.

∗4.7 Zeroes of Polynomials

Introduction

A polynomial of degree n has the form

Pn(x) = a1xn + a2xn−1 + · · · + anx + an+1 (4.9)

where the coefficients ai may be real or complex. We will concentrate on polynomi-
als with real coefficients, but the algorithms presented in this article also work with
complex coefficients.

The polynomial equation Pn(x) = 0 has exactly n roots, which may be real or
complex. If the coefficients are real, the complex roots always occur in conjugate pairs
(xr + ixi, xr − ixi), where xr and xi are the real and imaginary parts, respectively. For
real coefficients, the number of real roots can be estimated from the rule of Descartes:

� The number of positive, real roots equals the number of sign changes in the
expression for Pn(x), or less by an even number.

� The number of negative, real roots is equal to the number of sign changes in
Pn(−x), or less by an even number.

As an example, consider P3(x) = x3 − 2x2 − 8x + 27. Since the sign changes
twice, P3(x) = 0 has either two or zero positive real roots. On the other hand,
P3(−x) = −x3 − 2x2 + 8x + 27 contains a single sign change; hence P3(x) possesses
one negative real zero.
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The real zeroes of polynomials with real coefficients can always be computed by
one of the methods already described. But if complex roots are to be computed, it is
best to use a method that specializes in polynomials. Here we present a method due to
Laguerre, which is reliable and simple to implement. Before proceeding to Laguerre’s
method, we must first develop two numerical tools that are needed in any method
capable of determining the zeroes of a polynomial. The first of these is an efficient
algorithm for evaluating a polynomial and its derivatives. The second algorithm we
need is for the deflation of a polynomial, i.e., for dividing the Pn(x) by x − r , where r is
a root of Pn(x) = 0.

Evaluation of Polynomials

It is tempting to evaluate the polynomial in Eq. (4.9) from left to right by the following
algorithm (we assume that the coefficients are stored in the array a):

p = 0.0

for i = 1:n+1

p = p + a(i)*xˆ(n-i+1)

end

Since xk is evaluated as x × x × · · · × x (k − 1 multiplications), we deduce that the
number of multiplications in this algorithm is

1 + 2 + 3 + · · · + n − 1 = 1
2

n(n − 1)

If n is large, the number of multiplications can be reduced considerably if we evaluate
the polynomial from right to left. For an example, take

P4(x) = a1x4 + a2x3 + a3x2 + a4x + a5

which can be rewritten as

P4(x) = a5 + x {a4 + x [a3 + x (a2 + xa1)]}

We now see that an efficient computational sequence for evaluating the poly-
nomial is

P0(x) = a1

P1(x) = a2 + xP0(x)

P2(x) = a3 + xP1(x)

P3(x) = a4 + xP2(x)

P4(x) = a5 + xP3(x)
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For a polynomial of degree n, the procedure can be summarized as

P0(x) = a1

Pi(x) = an+i + xPi−1(x), i = 1, 2, . . . , n (4.10)

leading to the algorithm

p = a(1);

for i = 1:n

p = p*x + a(i+1)

end

The last algorithm involves only n multiplications, making it more efficient for
n > 3. But computational economy is not the prime reason why this algorithm should
be used. Because the result of each multiplication is rounded off, the procedure with
the least number of multiplications invariably accumulates the smallest roundoff
error.

Some root-finding algorithms, including Laguerre’s method, also require eval-
uation of the first and second derivatives of Pn(x). From Eq. (4.10) we obtain by
differentiation

P ′
0 (x) = 0 P ′

i (x) = Pi−1(x) + xP ′
i−1(x), i = 1, 2, . . . , n (4.11a)

P ′′
0 (x) = 0 P ′′

i (x) = 2P ′
i−1(x) + xP ′′

i−1(x), i = 1, 2, . . . , n (4.11b)

� evalPoly

Here is the function that evaluates a polynomial and its derivatives:

function [p,dp,ddp] = evalpoly(a,x)

% Evaluates the polynomial

% p = a(1)*xˆn + a(2)*xˆ(n-1) + ... + a(n+1)

% and its first two derivatives dp and ddp.

% USAGE: [p,dp,ddp] = evalpoly(a,x)

n = length(a) - 1;

p = a(1); dp = 0.0; ddp = 0.0;

for i = 1:n

ddp = ddp*x + 2.0*dp;

dp = dp*x + p;

p = p*x + a(i+1);

end
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Deflation of Polynomials

After a root r of Pn(x) = 0 has been computed, it is desirable to factor the polynomial
as follows:

Pn(x) = (x − r)Pn−1(x) (4.12)

This procedure, known as deflation or synthetic division, involves nothing more than
computing the coefficients of Pn−1(x). Since the remaining zeros of Pn(x) are also the
zeros of Pn−1(x), the root-finding procedure can now be applied to Pn−1(x) rather than
Pn(x). Deflation thus makes it progressively easier to find successive roots, because
the degree of the polynomial is reduced every time a root is found. Moreover, by
eliminating the roots that have already been found, the chances of computing the
same root more than once are eliminated.

If we let

Pn−1(x) = b1xn−1 + b2xn−2 + · · · + bn−1x + bn

then Eq. (4.12) becomes

a1xn + a2xn−1 + · · · + anx + an+1

= (x − r)(b1xn−1 + b2xn−2 + · · · + bn−1x + bn)

Equating the coefficients of like powers of x, we obtain

b1 = a1 b2 = a2 + rb1 · · · bn = an + rbn−1 (4.13)

which leads to Horner’s deflation algorithm:

b(1) = a(1);

for i = 2:n

b(i) = a(i) + r*b(i-1);

end

Laguerre’s Method

Laguerre’s formulas are not easily derived for a general polynomial Pn(x). However, the
derivation is greatly simplified if we consider the special case where the polynomial
has a zero at x = r and (n − 1) zeros at x = q. If the zeros were known, this polynomial
can be written as

Pn(x) = (x − r)(x − q)n−1 (a)

Our problem is now this: given the polynomial in Eq. (a) in the form

Pn(x) = a1xn + a2xn−1 + · · · + anx + an+1
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determine r (note that q is also unknown). It turns out that the result, which is ex-
act for the special case considered here, works well as an iterative formula with any
polynomial.

Differentiating Eq. (a) with respect to x, we get

P ′
n(x) = (x − q)n−1 + (n − 1)(x − r)(x − q)n−2

= Pn(x)
(

1
x − r

+ n − 1
x − q

)

Thus

P ′
n(x)

Pn(x)
= 1

x − r
+ n − 1

x − q
(b)

which upon differentiation yields

P ′′
n (x)

Pn(x)
−
[

P ′
n(x)

Pn(x)

]2

= − 1
(x − r)2

− n − 1
(x − q)2

(c)

It is convenient to introduce the notation

G(x) = P ′
n(x)

Pn(x)
H(x) = G2(x) − P ′′

n (x)
Pn(x)

(4.14)

so that Eqs. (b) and (c) become

G(x) = 1
x − r

+ n − 1
x − q

(4.15a)

H(x) = 1
(x − r)2

+ n − 1
(x − q)2

(4.15b)

If we solve Eq. (4.15a) for x − q and substitute the result into Eq. (4.15b), we obtain a
quadratic equation for x − r. The solution of this equation is the Laguerre’s formula

x − r = n

G(x) ±
√

(n − 1)
[
nH(x) − G2(x)

] (4.16)

The procedure for finding a zero of a general polynomial by Laguerre’s formula is:

1. Let x be a guess for the root of Pn(x) = 0 (any value will do).
2. Evaluate Pn(x), P ′

n(x) and P ′′
n (x) using the procedure outlined in Eqs. (4.10)

and (4.11).
3. Compute G(x) and H(x) from Eqs. (4.14).
4. Determine the improved root r from Eq. (4.16) choosing the sign that results in the

larger magnitude of the denominator (this can be shown to improve convergence).
5. Let x ← r and repeat steps 2–5 until |Pn(x)| < ε or |x − r | < ε, where ε is the error

tolerance.
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One nice property of Laguerre’s method is that converges to a root, with very few
exceptions, from any starting value of x.

� polyRoots

The function polyRoots in this module computes all the roots of Pn(x) = 0,
where the polynomial Pn(x) defined by its coefficient array a = [a1, a2, a3, . . . , an+1].
After the first root is computed by the subfunction laguerre, the polynomial is de-
flated using deflPoly and the next zero computed by applying laguerre to the
deflated polynomial. This process is repeated until all n roots have been found.
If a computed root has a very small imaginary part, it is very likely that it rep-
resents roundoff error. Therefore, polyRoots replaces a tiny imaginary part by
zero.

function root = polyroots(a,tol)

% Returns all the roots of the polynomial

% a(1)*xˆn + a(2)*xˆ(n-1) + ... + a(n+1).

% USAGE: root = polyroots(a,tol).

% tol = error tolerance (default is 1.0e4*eps).

if nargin == 1; tol = 1.0e-6; end

n = length(a) - 1;

root = zeros(n,1);

for i = 1:n

x = laguerre(a,tol);

if abs(imag(x)) < tol; x = real(x); end

root(i) = x;

a = deflpoly(a,x);

end

function x = laguerre(a,tol)

% Returns a root of the polynomial

% a(1)*xˆn + a(2)*xˆ(n-1) + ... + a(n+1).

x = randn; % Start with random number

n = length(a) - 1;

for i = 1:30

[p,dp,ddp] = evalpoly(a,x);

if abs(p) < tol; return; end

g = dp/p; h = g*g - ddp/p;

f = sqrt((n - 1)*(n*h - g*g));
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if abs(g + f) >= abs(g - f); dx = n/(g + f);

else; dx = n/(g - f); end

x = x - dx;

if abs(dx) < tol; return; end

end

error(’Too many iterations in laguerre’)

function b = deflpoly(a,r)

% Horner’s deflation:

% a(1)*xˆn + a(2)*xˆ(n-1) + ... + a(n+1)

% = (x - r)[b(1)*xˆ(n-1) + b(2)*xˆ(n-2) + ...+ b(n)].

n = length(a) - 1;

b = zeros(n,1);

b(1) = a(1);

for i = 2:n; b(i) = a(i) + r*b(i-1); end

Since the roots are computed with finite accuracy, each deflation introduces small
errors in the coefficients of the deflated polynomial. The accumulated roundoff error
increases with the degree of the polynomial and can become severe if the polynomial is
ill-conditioned (small changes in the coefficients produce large changes in the roots).
Hence the results should be viewed with caution when dealing with polynomials of
high degree.

The errors caused by deflation can be reduced by recomputing each root using
the original, undeflated polynomial. The roots obtained previously in conjunction
with deflation are employed as the starting values.

EXAMPLE 4.10
A zero of the polynomial P4(x) = 3x4 − 10x3 − 48x2 − 2x + 12 is x = 6. Deflate the
polynomial with Horner’s algorithm, i.e., find P3(x) so that (x − 6)P3(x) = P4(x).

Solution With r = 6 and n = 4, Eqs. (4.13) become

b1 = a1 = 3

b2 = a2 + 6b1 = −10 + 6(3) = 8

b3 = a3 + 6b2 = −48 + 6(8) = 0

b4 = a4 + 6b3 = −2 + 6(0) = −2

Therefore,

P3(x) = 3x3 + 8x2 − 2
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EXAMPLE 4.11
A root of the equation P3(x) = x3 − 4.0x2 − 4.48x + 26.1 is approximately x = 3 − i.
Find a more accurate value of this root by one application of Laguerre’s iterative
formula.

Solution Use the given estimate of the root as the starting value. Thus

x = 3 − i x2 = 8 − 6i x3 = 18 − 26i

Substituting these values in P3(x) and its derivatives, we get

P3(x) = x3 − 4.0x2 − 4.48x + 26.1
= (18 − 26i) − 4.0(8 − 6i) − 4.48(3 − i) + 26.1 = −1.34 + 2.48i

P ′
3(x) = 3.0x2 − 8.0x − 4.48

= 3.0(8 − 6i) − 8.0(3 − i) − 4.48 = −4.48 − 10.0i

P ′′
3 (x) = 6.0x − 8.0 = 6.0(3 − i) − 8.0 = 10.0 − 6.0i

Equations (4.14) then yield

G(x) = P ′
3(x)

P3(x)
= −4.48 − 10.0i

−1.34 + 2.48i
= −2.36557 + 3.08462i

H(x) = G2(x) − P ′′
3 (x)

P3(x)
= (−2.36557 + 3.08462i)2 − 10.0 − 6.0i

−1.34 + 2.48i

= 0.35995 − 12.48452i

The term under the square root sign of the denominator in Eq. (4.16) becomes

F (x) =
√

(n − 1)
[
n H(x) − G2(x)

]
=
√

2
[
3(0.35995 − 12.48452i) − (−2.36557 + 3.08462i)2

]
= √

5.67822 − 45.71946i = 5.08670 − 4.49402i

Now we must find which sign in Eq. (4.16) produces the larger magnitude of the
denominator:

|G(x) + F (x)| = |(−2.36557 + 3.08462i) + (5.08670 − 4.49402i)|
= |2.72113 − 1.40940i| = 3.06448

|G(x) − F (x)| = |(−2.36557 + 3.08462i) − (5.08670 − 4.49402i)|
= |−7.45227 + 7.57864i| = 10.62884

Using the minus sign, we obtain from Eq. (4.16) the following improved approxi-
mation for the root

r = x − n
G(x) − F (x)

= (3 − i) − 3
−7.45227 + 7.57864i

= 3.19790 − 0.79875i
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Thanks to the good starting value, this approximation is already quite close to the
exact value r = 3.20 − 0.80i.

EXAMPLE 4.12
Use polyRoots to compute all the roots of x4 − 5x3 − 9x2 + 155x − 250 = 0.

Solution The command

>> polyroots([1 -5 -9 155 -250])

results in

ans =

2.0000

4.0000 - 3.0000i

4.0000 + 3.0000i

-5.0000

There are two real roots (x = 2 and −5) and a pair of complex conjugate roots
(x = 4 ± 3i).

PROBLEM SET 4.2

Problems 1–5 A zero x = r of Pn(x) is given. Verify that r is indeed a zero, and then
deflate the polynomial, i.e., find Pn−1(x) so that Pn(x) = (x − r)Pn−1(x).

1. P3(x) = 3x3 + 7x2 − 36x + 20, r = −5.

2. P4(x) = x4 − 3x2 + 3x − 1, r = 1.

3. P5(x) = x5 − 30x4 + 361x3 − 2178x2 + 6588x − 7992, r = 6.

4. P4(x) = x4 − 5x3 − 2x2 − 20x − 24, r = 2i.

5. P3(x) = 3x3 − 19x2 + 45x − 13, r = 3 − 2i.

Problems 6–9 A zero x = r of Pn(x) is given. Determine all the other zeroes of Pn(x)
by using a calculator. You should need no tools other than deflation and the quadratic
formula.

6. P3(x) = x3 + 1.8x2 − 9.01x − 13.398, r = −3.3.

7. P3(x) = x3 − 6.64x2 + 16.84x − 8.32, r = 0.64.

8. P3(x) = 2x3 − 13x2 + 32x − 13, r = 3 − 2i.

9. P4(x) = x4 − 3x3 + 10x2 − 6x − 20, r = 1 + 3i.

Problems 10–16 Find all the zeroes of the given Pn(x).
10. �P4(x) = x4 + 2.1x3 − 2.52x2 + 2.1x − 3.52.

11. �P5(x) = x5 − 156x4 − 5x3 + 780x2 + 4x − 624.
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12. �P6(x) = x6 + 4x5 − 8x4 − 34x3 + 57x2 + 130x − 150.

13. �P7(x) = 8x7 + 28x6 + 34x5 − 13x4 − 124x3 + 19x2 + 220x − 100.

14. �P8(x) = x8 − 7x7 + 7x6 + 25x5 + 24x4 − 98x3 − 472x2 + 440x + 800.

15. �P4(x) = x4 + (5 + i)x3 − (8 − 5i)x2 + (30 − 14i)x − 84.

16. �

k

m

m

c

x

x

1

2

k

The two blocks of mass m each are connected by springs and a dashpot. The
stiffness of each spring is k, and c is the coefficient of damping of the dashpot.
When the system is displaced and released, the displacement of each block during
the ensuing motion has the form

xk(t) = Akeωr t cos(ωi t + φk), k = 1, 2

where Ak and φk are constants, and ω = ωr ± iωi are the roots of

ω4 + 2
c
m

ω3 + 3
k
m

ω2 + c
m

k
m

ω +
(

k
m

)2

= 0

Determine the two possible combinations of ωr and ωi if c/m = 12 s−1 and k/m =
1500 s−2.

MATL AB Functions

x = fzero(@func,x0) returns the zero of the function func closest to x0.
x = fzero(@func,[a b]) can be used when the root has been bracketed in (a,b).

The algorithm used for fzero is Brent’s method.

x = roots(a) returns the zeros of the polynomial Pn(x) = a1xn + · · · + anx + an+1.
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The zeros are obtained by calculating the eigenvalues of the n × n “companion
matrix”

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a2/a1 −a3/a1 · · · −an/a1 −an+1/a1

1 0 · · · 0 0
0 1 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The characteristic equation (see Art. 9.1) of this matrix is

xn + a2

a1
xn−1 + · · · an

a1
x + an+1

a1
= 0

which is equivalent to Pn(x) = 0. Thus the eigenvalues of A are the zeroes of Pn(x). The
eigenvalue method is robust, but considerably slower than Laguerre’s method.



5 Numerical Differentiation

Given the function f (x), compute dn f/dxn at given x

5.1 Introduction

Numerical differentiation deals with the following problem: we are given the function
y = f (x) and wish to obtain one of its derivatives at the point x = xk. The term “given”
means that we either have an algorithm for computing the function, or possess a
set of discrete data points (xi, yi), i = 1, 2, . . . , n. In either case, we have access to a
finite number of (x, y) data pairs from which to compute the derivative. If you suspect
by now that numerical differentiation is related to interpolation, you are right—one
means of finding the derivative is to approximate the function locally by a polynomial
and then differentiate it. An equally effective tool is the Taylor series expansion of
f (x) about the point xk. The latter has the advantage of providing us with information
about the error involved in the approximation.

Numerical differentiation is not a particularly accurate process. It suffers from
a conflict between roundoff errors (due to limited machine precision) and errors
inherent in interpolation. For this reason, a derivative of a function can never be
computed with the same precision as the function itself.

5.2 Finite Difference Approximations

The derivation of the finite difference approximations for the derivatives of f (x) are
based on forward and backward Taylor series expansions of f (x) about x, such as

f (x + h) = f (x) + hf ′(x) + h2

2!
f ′′(x) + h3

3!
f ′′′(x) + h4

4!
f (4)(x) + · · · (a)

182
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f (x − h) = f (x) − hf ′(x) + h2

2!
f ′′(x) − h3

3!
f ′′′(x) + h4

4!
f (4)(x) − · · · (b)

f (x + 2h) = f (x) + 2hf ′(x) + (2h)2

2!
f ′′ (x) + (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) + · · · (c)

f (x − 2h) = f (x) − 2hf ′(x) + (2h)2

2!
f ′′ (x) − (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) − · · · (d)

We also record the sums and differences of the series:

f (x + h) + f (x − h) = 2 f (x) + h2 f ′′(x) + h4

12
f (4)(x) + · · · (e)

f (x + h) − f (x − h) = 2hf ′(x) + h3

3
f ′′′(x) + · · · (f)

f (x + 2h) + f (x − 2h) = 2 f (x) + 4h2 f ′′(x) + 4h4

3
f (4)(x) + · · · (g)

f (x + 2h) − f (x − 2h) = 4hf ′(x) + 8h3

3
f ′′′(x) + · · · (h)

Note that the sums contain only even derivatives, while the differences retain just the
odd derivatives. Equations (a)–(h) can be viewed as simultaneous equations that can
be solved for various derivatives of f (x). The number of equations involved and the
number of terms kept in each equation depend on the order of the derivative and the
desired degree of accuracy.

First Central Difference Approximations

The solution of Eq. (f) for f ′(x) is

f ′(x) = f (x + h) − f (x − h)
2h

− h2

6
f ′′′(x) − · · ·

Keeping only the first term on the right-hand side, we have

f ′(x) = f (x + h) − f (x − h)
2h

+ O(h2) (5.1)

which is called the first central difference approximation for f ′(x). The term O(h2)
reminds us that the truncation error behaves as h2.

From Eq. (e) we obtain

f ′′(x) = f (x + h) − 2 f (x) + f (x − h)
h2

+ h2

12
f (4)(x) + · · ·

or

f ′′(x) = f (x + h) − 2 f (x) + f (x − h)
h2

+ O(h2) (5.2)
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Central difference approximations for other derivatives can be obtained from
Eqs. (a)–(h) in a similar manner. For example, eliminating f ′(x) from Eqs. (f) and (h)
and solving for f ′′′(x) yield

f ′′′(x) = f (x + 2h) − 2 f (x + h) + 2 f (x − h) − f (x − 2h)
2h3

+ O(h2) (5.3)

The approximation

f (4)(x) = f (x + 2h) − 4 f (x + h) + 6 f (x) − 4 f (x − h) + f (x − 2h)
h4

+ O(h2) (5.4)

is available from Eq. (e) and (g) after eliminating f ′′(x). Table 5.1 summarizes the
results.

f (x − 2h) f (x − h) f (x) f (x + h) f (x + 2h)

2hf ′(x) −1 0 1

h2 f ′′(x) 1 −2 1

2h3 f ′′′(x) −1 2 0 −2 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.1. Coefficients of central finite difference approximations
of O(h2)

First Noncentral Finite Difference Approximations

Central finite difference approximations are not always usable. For example, consider
the situation where the function is given at the n discrete points x1, x2, . . . , xn. Since
central differences use values of the function on each side of x, we would be unable to
compute the derivatives at x1 and xn. Clearly, there is a need for finite difference
expressions that require evaluations of the function only on one side of x. These
expressions are called forward and backward finite difference approximations.

Noncentral finite differences can also be obtained from Eqs. (a)–(h). Solving
Eq. (a) for f ′(x) we get

f ′(x) = f (x + h) − f (x)
h

− h
2

f ′′(x) − h2

6
f ′′′(x) − h3

4!
f (4)(x) − · · ·

Keeping only the first term on the right-hand side leads to the first forward difference
approximation

f ′(x) = f (x + h) − f (x)
h

+ O(h) (5.5)

Similarly, Eq. (b) yields the first backward difference approximation

f ′(x) = f (x) − f (x − h)
h

+ O(h) (5.6)
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Note that the truncation error is now O(h), which is not as good as the O(h2) error in
central difference approximations.

We can derive the approximations for higher derivatives in the same manner. For
example, Eqs. (a) and (c) yield

f ′′(x) = f (x + 2h) − 2 f (x + h) + f (x)
h2

+ O(h) (5.7)

The third and fourth derivatives can be derived in a similar fashion. The results are
shown in Tables 5.2a and 5.2b.

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2a. Coefficients of forward finite difference approximations
of O(h)

f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2b. Coefficients of backward finite difference approximations
of O(h)

Second Noncentral Finite Difference Approximations

Finite difference approximations of O(h) are not popular due to reasons that will be
explained shortly. The common practice is to use expressions of O(h2). To obtain
noncentral difference formulas of this order, we have to retain more terms in the
Taylor series. As an illustration, we will derive the expression for f ′(x). We start with
Eqs. (a) and (c), which are

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + h4

24
f (4)(x) + · · ·

f (x + 2h) = f (x) + 2hf ′(x) + 2h2 f ′′ (x) + 4h3

3
f ′′′(x) + 2h4

3
f (4)(x) + · · ·
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We eliminate f ′′(x) by multiplying the first equation by 4 and subtracting it from the
second equation. The result is

f (x + 2h) − 4 f (x + h) = −3 f (x) − 2hf ′(x) + 2h2

3
f ′′′(x) + · · ·

Therefore,

f ′(x) = − f (x + 2h) + 4 f (x + h) − 3 f (x)
2h

+ h2

3
f ′′′(x) + · · ·

or

f ′(x)
− f (x + 2h) + 4 f (x + h) − 3 f (x)

2h
+ O(h2) (5.8)

Equation (5.8) is called the second forward finite difference approximation.
Derivation of finite difference approximations for higher derivatives involve

additional Taylor series. Thus the forward difference approximation for f ′′(x) utilizes
series for f (x + h), f (x + 2h) and f (x + 3h); the approximation for f ′′′(x) involves
Taylor expansions for f (x + h), f (x + 2h), f (x + 3h) and f (x + 4h), etc. As you can see,
the computations for high-order derivatives can become rather tedious. The results
for both the forward and backward finite differences are summarized in Tables 5.3a
and 5.3b.

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h) f (x + 5h)

2hf ′(x) −3 4 −1

h2 f ′′(x) 2 −5 4 −1

2h3 f ′′′(x) −5 18 −24 14 −3

h4 f (4)(x) 3 −14 26 −24 11 −2

Table 5.3a. Coefficients of forward finite difference approximations of O(h2)

f (x − 5h) f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

2hf ′(x) 1 −4 3

h2 f ′′(x) −1 4 −5 2

2h3 f ′′′(x) 3 −14 24 −18 5

h4 f (4)(x) −2 11 −24 26 −14 3

Table 5.3b. Coefficients of backward finite difference approximations of O(h2)
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Errors in Finite Difference Approximations

Observe that in all finite difference expressions the sum of the coefficients is zero.
The effect on the roundoff error can be profound. If h is very small, the values of f (x),
f (x ± h), f (x ± 2h), etc. will be approximately equal. When they are multiplied by the
coefficients in the finite difference formulas and added, several significant figures can
be lost. On the other hand, we cannot make h too large, because then the truncation
error would become excessive. This unfortunate situation has no remedy, but we can
obtain some relief by taking the following precautions:

� Use double-precision arithmetic.
� Employ finite difference formulas that are accurate to at least O(h2).

To illustrate the errors, let us compute the second derivative of f (x) = e−x at x = 1
from the central difference formula, Eq. (5.2). We carry out the calculations with six-
and eight-digit precision, using different values of h. The results, shown in Table 5.4,
should be compared with f ′′(1) = e−1 = 0.367 879 44.

h 6-digit precision 8-digit precision

0.64 0.380 610 0.380 609 11

0.32 0.371 035 0.371 029 39

0.16 0.368 711 0.368 664 84

0.08 0.368 281 0.368 076 56

0.04 0.368 75 0.367 831 25

0.02 0.37 0.3679

0.01 0.38 0.3679

0.005 0.40 0.3676

0.0025 0.48 0.3680

0.00125 1.28 0.3712

Table 5.4. (e−x)′′ at x = 1 from central finite difference
approximation

In the six-digit computations, the optimal value of h is 0.08, yielding a result
accurate to three significant figures. Hence three significant figures are lost due to
a combination of truncation and roundoff errors. Above optimal h, the dominant
error is due to truncation; below it, the roundoff error becomes pronounced. The
best result obtained with the eight-digit computation is accurate to four significant
figures. Because the extra precision decreases the roundoff error, the optimal h is
smaller (about 0.02) than in the six-figure calculations.
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5.3 Richardson Extrapolation

Richardson extrapolation is a simple method for boosting the accuracy of certain
numerical procedures, including finite difference approximations (we will also use it
later in numerical integration).

Suppose that we have an approximate means of computing some quantity G.
Moreover, assume that the result depends on a parameter h. Denoting the approxi-
mation by g(h), we have G = g(h) + E (h), where E(h) represents the error. Richardson
extrapolation can remove the error, provided that it has the form E(h) = chp, c and p
being constants. We start by computing g(h) with some value of h, say h = h1. In that
case we have

G = g(h1) + chp
1 (i)

Then we repeat the calculation with h = h2, so that

G = g(h2) + chp
2 (j)

Eliminating c and solving for G, we obtain from Eqs. (i) and (j)

G = (h1/h2)pg(h2) − g(h1)
(h1/h2)p − 1

(5.9a)

which is the Richardson extrapolation formula. It is common practice to use h2 = h1/2,

in which case Eq. (5.9a) becomes

G = 2pg(h1/2) − g(h1)
2p − 1

(5.9b)

Let us illustrate Richardson extrapolation by applying it to the finite difference
approximation of (e−x)′′ at x = 1. We work with six-digit precision and utilize the
results in Table 5.4. Since the extrapolation works only on the truncation error, we
must confine h to values that produce negligible roundoff. Choosing h1 = 0.64 and
letting g(h) be the approximation of f ′′(1) obtained with h, we get from Table 5.4

g(h1) = 0.380 610 g(h1/2) = 0.371 035

The truncation error in the central difference approximation is E(h) = O(h2) = c1h2 +
c2h4 + c3h6 + · · · . Therefore, we can eliminate the first (dominant) error term if we
substitute p = 2 and h1 = 0.64 in Eq. (5.9b). The result is

G = 22g(0.32) − g(0.64)
22 − 1

= 4(0.371 035) − 0.380 610
3

= 0. 367 84 3

which is an approximation of (e−x)′′ with the error O(h4). Note that it is as accurate as
the best result obtained with eight-digit computations in Table 5.4.
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EXAMPLE 5.1
Given the evenly spaced data points

x 0 0.1 0.2 0.3 0.4

f (x) 0.0000 0.0819 0.1341 0.1646 0.1797

compute f ′(x) and f ′′(x) at x = 0 and 0.2 using finite difference approximations of
O(h2).

Solution From the forward difference formulas in Table 5.3a we get

f ′(0) = −3 f (0) + 4 f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.967

f ′′(0) = 2 f (0) − 5 f (0.1) + 4 f (0.2) − f (0.3)
(0.1)2

= 2(0) − 5(0.0819) + 4(0.1341) − 0.1646
(0.1)2

= −3.77

The central difference approximations in Table 5.1 yield

f ′(0.2) = − f (0.1) + f (0.3)
2(0.1)

= −0.0819 + 0.1646
0.2

= 0.4135

f ′′(0.2) = f (0.1) − 2 f (0.2) + f (0.3)
(0.1)2

= 0.0819 − 2(0.1341) + 0.1646
(0.1)2

= −2.17

EXAMPLE 5.2
Use the data in Example 5.1 to compute f ′(0) as accurately as you can.

Solution One solution is to apply Richardson extrapolation to finite difference ap-
proximations. We start with two forward difference approximations for f ′(0): one
using h = 0.2 and the other one using h = 0.1. Referring to the formulas of O(h2) in
Table 5.3a, we get

g(0.2) = −3 f (0) + 4 f (0.2) − f (0.4)
2(0.2)

= 3(0) + 4(0.1341) − 0.1797
0.4

= 0.8918

g(0.1) = −3 f (0) + 4 f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.9675

where g denotes the finite difference approximation of f ′(0). Recalling that the error
in both approximations is of the form E (h) = c1h2 + c2h4 + c3h6 + · · · , we can use
Richardson extrapolation to eliminate the dominant error term. With p = 2 we obtain
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from Eq. (5.9)

f ′(0) ≈ G = 22g(0.1) − g(0.2)
22 − 1

= 4(0.9675) − 0.8918
3

= 0.9927

which is a finite difference approximation of O(h4)̇.

EXAMPLE 5.3

α

β

A

B

C

D

a

b

c

d

The linkage shown has the dimensions a = 100 mm, b = 120 mm, c = 150 mm
and d = 180 mm. It can be shown by geometry that the relationship between the
angles α and β is

(d − a cos α − b cos β)2 + (a sin α + b sin β)2 − c2 = 0

For a given value of α, we can solve this transcendental equation for β by one of the
root-finding methods in Chapter 4. This was done with α = 0◦, 5◦, 10◦, . . . , 30◦, the
results being

α (deg) 0 5 10 15 20 25 30

β (rad) 1.6595 1.5434 1.4186 1.2925 1.1712 1.0585 0.9561

If link AB rotates with the constant angular velocity of 25 rad/s, use finite difference
approximations of O(h2) to tabulate the angular velocity dβ/dt of link BC against α.

Solution The angular speed of BC is

dβ

dt
= dβ

dα

dα

dt
= 25

dβ

dα
rad/s

where dβ/dα is computed from finite difference approximations using the data in the
table. Forward and backward differences of O(h2) are used at the endpoints, central
differences elsewhere. Note that the increment of α is

h = (
5 deg

) ( π

180
rad/deg

)
= 0.087266 rad

The computations yield

β̇(0◦) = 25
−3β(0◦) + 4β(5◦) − β(10◦)

2h
= 25

−3(1.6595) + 4(1.5434) − 1.4186
2 (0.087266)

= −32.01 rad/s
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β̇(5◦) = 25
β(10◦) − β(0◦)

2h
= 25

1.4186 − 1.6595
2(0.087266)

= −34.51 rad/s

etc.

The complete set of results is

α (deg) 0 5 10 15 20 25 30

β̇ (rad/s) −32.01 −34.51 −35.94 −35.44 −33.52 −30.81 −27.86

5.4 Derivatives by Interpolation

If f (x) is given as a set of discrete data points, interpolation can be a very effective
means of computing its derivatives. The idea is to approximate the derivative of f (x)
by the derivative of the interpolant. This method is particularly useful if the data points
are located at uneven intervals of x, when the finite difference approximations listed
in the last article are not applicable.9

Polynomial Interpolant

The idea here is simple: fit the polynomial of degree n − 1

Pn−1(x) = a1xn−1 + a2xn−2 + · · · + an (a)

through n data points and then evaluate its derivatives at the given x. As pointed out
in Art. 3.2, it is generally advisable to limit the degree of the polynomial to less than
six in order to avoid spurious oscillations of the interpolant. Since these oscillations
are magnified with each differentiation, their effect can be devastating. In view of the
above limitation, the interpolation should usually be a local one, involving no more
than a few nearest-neighbor data points.

For evenly spaced data points, polynomial interpolation and finite difference
approximations produce identical results. In fact, the finite difference formulas are
equivalent to polynomial interpolation.

Several methods of polynomial interpolation were introduced in Art. 3.2. Unfor-
tunately, none of them is suited for the computation of derivatives. The method that
we need is one that determines the coefficients a1, a2, . . . , an of the polynomial in
Eq. (a). There is only one such method discussed in Chapter 3—the least-squares fit.
Although this method is designed mainly for smoothing of data, it will carry out inter-
polation if we use m =n in Eq. (3.22). If the data contains noise, then the least-squares
fit should be used in the smoothing mode, that is, with m <n. After the coefficients of

9 It is possible to derive finite difference approximations for unevenly spaced data, but they would
not be as accurate as the formulas derived in Art. 5.2.



192 Numerical Differentiation

the polynomial have been found, the polynomial and its first two derivatives can be
evaluated efficiently by the function evalpoly listed in Art. 4.7.

Cubic Spline Interpolant

Due to its stiffness, cubic spline is a good global interpolant; moreover, it is easy to
differentiate. The first step is to determine the second derivatives ki of the spline at
the knots by solving Eqs. (3.12). This can be done with the function splineCurv as
explained in Art. 3.3. The first and second derivatives are then computed from

f ′
i,i+1(x) = ki

6

[
3(x − xi+1)2

xi − xi+1
− (xi − xi+1)

]

− ki+1

6

[
3(x − xi)2

xi − xi+1
− (xi − xi+1)

]
+ yi − yi+1

xi − xi+1
(5.10)

f ′′
i,i+1(x) = ki

x − xi+1

xi − xi+1
− ki+1

x − xi

xi − xi+1
(5.11)

which are obtained by differentiation of Eq. (3.10).

EXAMPLE 5.4
Given the data

x 1.5 1.9 2.1 2.4 2.6 3.1

f (x) 1.0628 1.3961 1.5432 1.7349 1.8423 2.0397

compute f ′(2) and f ′′(2) using (1) polynomial interpolation over three nearest-
neighbor points, and (2) natural cubic spline interpolant spanning all the data points.

Solution of Part (1) Let the interpolant passing through the points at x = 1.9, 2.1 and
2.4 be P 2(x) = a1 + a2x + a3x 2. The normal equations, Eqs. (3.23), of the least-squares
fit are ⎡

⎢⎣ n
∑

xi
∑

x2
i∑

xi
∑

x2
i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i

⎤
⎥⎦
⎡
⎢⎣a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣

∑
yi∑

yi xi∑
yi x2

i

⎤
⎥⎦

After substituting the data, we get⎡
⎢⎣ 3 6.4 13.78

6.4 13.78 29.944
13.78 29.944 65.6578

⎤
⎥⎦
⎡
⎢⎣a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣ 4.6742

10.0571
21.8385

⎤
⎥⎦
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which yields a =
[
−0.7714 1.5075 −0.1930

]T
. Thus the interpolant and its deri-

vatives are

P2(x) = −0.1903x 2 + 1.5075x − 0.7714

P ′
2(x) = −0.3860x + 1.5075

P ′′
2 (x) = −0.3860

which gives us

f ′(2) ≈ P ′
2(2) = −0.3860(2) + 1.5075 = 0. 7355

f ′′(2) ≈ P ′′
2 (2) = −0. 3860

Solution of Part (2) We must first determine the second derivatives ki of the spline
at its knots, after which the derivatives of f (x) can be computed from Eqs. (5.10) and
(5.11). The first part can be carried out by the following small program:

% Example 5.4 (Curvatures of cubic spline at the knots)

xData = [1.5; 1.9; 2.1; 2.4; 2.6; 3.1];

yData = [1.0628; 1.3961; 1.5432; 1.7349; 1.8423; 2.0397];

k = splineCurv(xData,yData)

The output of the program, consisting of k1 to k6, is

>> k =

0

-0.4258

-0.3774

-0.3880

-0.5540

0

Since x = 2 lies between knots 2 and 3, we must use Eqs. (5.10) and (5.11) with
i = 2. This yields

f ′(2) ≈ f ′
2,3(2) = k2

6

[
3(x − x3)2

x2 − x3
− (x1 − x3)

]

− k3

6

[
3(x − x2)2

x2 − x3
− (x2 − x3)

]
+ y2 − y3

x2 − x3
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= (−0.4258)
6

[
3(2 − 2.1)2

(−0.2)
− (−0.2)

]

− (−0.3774)
6

[
3(2 − 1.9)2

(−0.2)
− (−0.2)

]
+ 1.3961 − 1.5432

(−0.2)

= 0.7351

f ′′(2) ≈ f ′′
2,3(2) = k2

x − x3

x2 − x3
− k3

x − x2

x2 − x3

= (−0.4258)
2 − 2.1
(−0.2)

− (−0.3774)
2 − 1.9
(−0.2)

= −0. 4016

Note that the solutions for f ′(2) in parts (1) and (2) differ only in the fourth significant
figure, but the values of f ′′(2) are much farther apart. This is not unexpected, consid-
ering the general rule: the higher the order of the derivative, the lower the precision
with which it can be computed. It is impossible to tell which of the two results is
better without knowing the expression for f (x). In this particular problem, the data
points fall on the curve f (x) = x 2e−x/2, so that the “correct” values of the derivatives
are f ′(2) = 0.7358 and f ′′(2) = −0.3679.

EXAMPLE 5.5
Determine f ′(0) and f ′(1) from the following noisy data

x 0 0.2 0.4 0.6

f (x) 1.9934 2.1465 2.2129 2.1790

x 0.8 1.0 1.2 1.4

f (x) 2.0683 1.9448 1.7655 1.5891

Solution We used the program listed in Example 3.10 to find the best polynomial fit
(in the least-squares sense) to the data. The results were:

degree of polynomial = 2

coeff =

-7.0240e-001

6.4704e-001

2.0262e+000

sigma =

3.6097e-002

degree of polynomial = 3

coeff =

4.0521e-001
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-1.5533e+000

1.0928e+000

1.9921e+000

sigma =

8.2604e-003

degree of polynomial = 4

coeff =

-1.5329e-002

4.4813e-001

-1.5906e+000

1.1028e+000

1.9919e+000

sigma =

9.5193e-003

degree of polynomial =

Done

Based on standard deviation, the cubic seems to be the best candidate for the
interpolant. Before accepting the result, we compare the plots of the data points and
the interpolant—see the figure. The fit does appear to be satisfactory.

x

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

f (x)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Approximating f (x) by the interpolant, we have

f (x) ≈ a1x 3 + a2x 2 + a3x + a4

so that

f ′(x) ≈ 3a1x 2 + 2a2x + a3
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Therefore,

f ′(0) ≈ a3 = 1.093

f ′(1) = 3a1 + 2a2 + a3 = 3(0.405) + 2(−1.553) + 1.093 = −0.798

In general, derivatives obtained from noisy data are at best rough approximations.
In this problem, the data represent f (x) = (x + 2)/ cosh x with added random noise.
Thus f ′(x) = [

1 − (x + 2) tanh x
]
/ cosh x, so that the “correct” derivatives are f ′(0) =

1.000 and f ′(1) = −0.833.

PROBLEM SET 5.1

1. Given the values of f (x) at the points x, x − h1 and x + h2, determine the finite
difference approximation for f ′′(x). What is the order of the truncation error?

2. Given the first backward finite difference approximations for f ′(x) and f ′′(x),
derive the first backward finite difference approximation for f ′′′(x) using the op-
eration f ′′′(x) = [

f ′′(x)
]′

.

3. Derive the central difference approximation for f ′′(x) accurate to O(h4) by apply-
ing Richardson extrapolation to the central difference approximation of O(h2).

4. Derive the second forward finite difference approximation for f ′′′(x) from the
Taylor series.

5. Derive the first central difference approximation for f (4)(x) from the Taylor series.

6. Use finite difference approximations of O(h2) to compute f ′(2.36) and f ′′(2.36)
from the data

x 2.36 2.37 2.38 2.39

f (x) 0.85866 0.86289 0.86710 0.87129

7. Estimate f ′(1) and f ′′(1) from the following data:

x 0.97 1.00 1.05

f (x) 0.85040 0.84147 0.82612

8. Given the data

x 0.84 0.92 1.00 1.08 1.16

f (x) 0.431711 0.398519 0.367879 0.339596 0.313486

calculate f ′′(1) as accurately as you can.
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9. Use the data in the table to compute f ′(0.2) as accurately as possible.

x 0 0.1 0.2 0.3 0.4

f (x) 0.000 000 0.078 348 0.138 910 0.192 916 0.244 981

10. Using five significant figures in the computations, determine d(sin x)/dx at x =
0.8 from (a) the first forward difference approximation, and (b) the first central
difference approximation. In each case, use h that gives the most accurate result
(this requires experimentation).

11. � Use polynomial interpolation to compute f ′ and f ′′ at x = 0, using the data

x −2.2 −0.3 0.8 1.9

f (x) 15.180 10.962 1.920 −2.040

12. �

θ

R
2.5R

A

B

Cx

The crank AB of length R = 90 mm is rotating at the constant angular speed of
dθ/dt = 5000 rev/min. The position of the piston C can be shown to vary with the
angle θ as

x = R
(

cos θ +
√

2.52 − sin2 θ

)

Write a program that computes the acceleration of the piston at θ =
0◦, 5◦, 10◦, . . . , 180◦ by numerical differentiation.

13. �

γ

α β

C

v

y

x
a

A B
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The radar stations A and B, separated by the distance a = 500 m, track the plane
C by recording the angles α and β at one-second intervals. If three successive
readings are

t (s) 9 10 11

α 54.80◦ 54.06◦ 53.34◦

β 65.59◦ 64.59◦ 63.62◦

calculate the speed v of the plane and the climb angle γ at t = 10 s. The coordi-
nates of the plane can be shown to be

x = a
tan β

tan β − tan α
y = a

tan α tan β

tan β − tan α

14. �

β

θ
α

B

A

D

C

20

70

190

19
0

60

Dimensions
in mm

Geometric analysis of the linkage shown resulted in the following table relating
the angles θ and β:

θ (deg) 0 30 60 90 120 150

β (deg) 59.96 56.42 44.10 25.72 −0.27 −34.29

Assuming that member AB of the linkage rotates with the constant angular ve-
locity dθ/dt = 1 rad/s, compute dβ/dt in rad/s at the tabulated values of θ . Use
cubic spline interpolation.

MATLAB Functions

d = diff(y) returns the differences d(i) = y(i+1) - y(i). Note that
length(d) = length(y) - 1.
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dn = diff(y,n) returns the nth differences; e.g., d2(i) = d(i+1) - d(i),
d3(i) = d2(i+1) - d2(i), etc. Here length(dn) = length(y) - n.

d = gradient(y,h) returns the finite difference approximation of dy/dx at each
point, where h is the spacing between the points.

d2 = del2(y,h) returns the finite difference approximation of
(
d2 y/dx2

)
/4 at each

point, where h is the spacing between the points.
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Compute
∫ b

a f (x) dx, where f (x) is a given function

6.1 Introduction

Numerical integration, also known as quadrature, is intrinsically a much more accu-
rate procedure than numerical differentiation. Quadrature approximates the definite
integral ∫ b

a
f (x) dx

by the sum

I =
n∑

i=1

Ai f (xi)

where the nodal abscissas xi and weights Ai depend on the particular rule used for the
quadrature. All rules of quadrature are derived from polynomial interpolation of the
integrand. Therefore, they work best if f (x) can be approximated by a polynomial.

Methods of numerical integration can be divided into two groups: Newton–Cotes
formulas and Gaussian quadrature. Newton–Cotes formulas are characterized by
equally spaced abscissas, and include well-known methods such as the trapezoidal
rule and Simpson’s rule. They are most useful if f (x) has already been computed at
equal intervals, or can be computed at low cost. Since Newton–Cotes formulas are
based on local interpolation, they require only a piecewise fit to a polynomial.

In Gaussian quadrature the locations of the abscissas are chosen to yield the best
possible accuracy. Because Gaussian quadrature requires fewer evaluations of the
integrand for a given level of precision, it is popular in cases where f (x) is expensive to

200
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evaluate. Another advantage of Gaussian quadrature is its ability to handle integrable
singularities, enabling us to evaluate expressions such as∫ 1

0

g(x)√
1 − x2

dx

provided that g(x) is a well-behaved function.

6.2 Newton–Cotes Formulas

x1 x2 x3 x4 xnxn -1

h

a b

f (x) Pn-1(x)

x

Figure 6.1. Polynomial approximation of f (x).

Consider the definite integral ∫ b

a
f (x) dx (6.1)

We divide the range of integration (a, b) into n − 1 equal intervals of length h =
(b − a)/(n − 1) each, as shown in Fig. 6.1, and denote the abscissas of the resulting
nodes by x1, x2, . . . , xn. Next we approximate f (x) by a polynomial of degree n − 1 that
intersects all the nodes. Lagrange’s form of this polynomial, Eq. (3.1a), is

Pn−1(x) =
n∑

i=1

f (xi)�i(x)

where �i(x) are the cardinal functions defined in Eq. (3.1b). Therefore, an approxima-
tion to the integral in Eq. (6.1) is

I =
∫ b

a
Pn−1(x)dx =

n∑
i=1

[
f (xi)

∫ b

a
�i(x)dx

]
=

n∑
i=1

Ai f (xi) (6.2a)

where

Ai =
∫ b

a
�i(x)dx, i = 1, 2, . . . , n (6.2b)

Equations (6.2) are the Newton–Cotes formulas. Classical examples of these formu-
las are the trapezoidal rule (n = 2), Simpson’s rule (n = 3) and Simpson’s 3/8 rule
(n = 4). The most important of these is the trapezoidal rule. It can be combined with
Richardson extrapolation into an efficient algorithm known as Romberg integration,
which makes the other classical rules somewhat redundant.
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Trapezoidal Rule

Ef (x)

x  = a x  = b x
h

1

Area= I

2

Figure 6.2. Trapezoidal rule.

If n = 2 , we have �1 = (x − x2)/(x1 − x2) = −(x − b)/h. Therefore,

A1 = − 1
h

∫ b

a
(x − b) dx = 1

2h
(b − a)2 = h

2

Also �2 = (x − x1)/(x2 − x1) = (x − a)/h, so that

A2 = 1
h

∫ b

a
(x − a) dx = 1

2h
(b − a)2 = h

2

Substitution in Eq. (6.2a) yields

I = [ f (a) + f (b)]
h
2

(6.3)

which is known as the trapezoidal rule. It represents the area of the trapezoid in Fig. 6.2.
The error in the trapezoidal rule

E =
∫ b

a
f (x)dx − I

is the area of the region between f (x) and the straight-line interpolant, as indicated
in Fig. 6.2. It can be obtained by integrating the interpolation error in Eq. (4.3):

E = 1
2!

∫ b

a
(x − x1)(x − x2) f ′′(ξ )dx = 1

2
f ′′(ξ )

∫ b

a
(x − a)(x − b)dx

= − 1
12

(b − a)3 f ′′(ξ ) = −h3

12
f ′′(ξ ) (6.4)

Composite Trapezoidal Rule

x1 x2 xi x i+1 xnxn -1

h

a b

f (x )

x

iI
Figure 6.3. Composite trapezoidal rule.
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In practice the trapezoidal rule is applied in a piecewise fashion. Figure 6.3 shows
the region (a, b) divided into n − 1 panels, each of width h. The function f (x) to be
integrated is approximated by a straight line in each panel. From the trapezoidal rule
we obtain for the approximate area of a typical (ith) panel

Ii = [ f (xi) + f (xi+1)]
h
2

Hence total area, representing
∫ b

a f (x) dx, is

I =
n−1∑
i=1

Ii = [ f (x1) + 2 f (x2) + 2 f (x3) + · · · + 2 f (xn−1) + f (xn)]
h
2

(6.5)

which is the composite trapezoidal rule.
The truncation error in the area of a panel is from Eq. (6.4),

Ei = − h3

12
f ′′(ξ i)

where ξ i lies in (xi, xi+1). Hence the truncation error in Eq. (6.5) is

E =
n−1∑
i=1

Ei = −h3

12

n−1∑
i=1

f ′′(ξ i) (a)

But

n−1∑
i=1

f ′′(ξ i) = (n − 1) f̄ ′′

where f̄ ′′ is the arithmetic mean of the second derivatives. If f ′′(x) is continuous, there
must be a point ξ in (a, b) at which f ′′(ξ ) = f̄ ′′, enabling us to write

n−1∑
i=1

f ′′(ξ i) = (n − 1) f ′′(ξ ) = b − a
h

f ′′(ξ )

Therefore, Eq. (a) becomes

E = − (b − a)h2

12
f ′′(ξ ) (6.6)

It would be incorrect to conclude from Eq. (6.6) that E = ch2 (c being a constant),
because f ′′(ξ ) is not entirely independent of h. A deeper analysis of the error10 shows
that if f (x) and its derivatives are finite in (a, b), then

E = c1h2 + c2h4 + c3h6 + · · · (6.7)

10 The analysis requires familiarity with the Euler–Maclaurin summation formula, which is covered
in advanced texts.
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Recursive Trapezoidal Rule

Let Ik be the integral evaluated with the composite trapezoidal rule using 2k−1 panels.
Note that if k is increased by one, the number of panels is doubled. Using the notation

H = b − a

we obtain from Eq. (6.5) the following results for k = 1, 2 and 3.

k = 1 (1 panel):

I1 = [ f (a) + f (b)]
H
2

(6.8)

k = 2 (2 panels):

I2 =
[

f (a) + 2 f
(

a + H
2

)
+ f (b)

]
H
4

= 1
2

I1 + f
(

a + H
2

)
H
2

k = 3 (4 panels):

I3 =
[

f (a) + 2 f
(

a + H
4

)
+ 2 f

(
a + H

2

)
+ 2 f

(
a + 3H

4

)
+ f (b)

]
H
8

= 1
2

I2 +
[

f
(

a + H
4

)
+ f

(
a + 3H

4

)]
H
4

We can now see that for arbitrary k > 1 we have

Ik = 1
2

Ik−1 + H
2k−1

2k−2∑
i=1

f
[

a + (2i − 1)H
2k−1

]
, k = 2, 3, . . . (6.9a)

which is the recursive trapezoidal rule. Observe that the summation contains only
the new nodes that were created when the number of panels was doubled. Therefore,
the computation of the sequence I1, I2, I3, . . . , Ik from Eqs. (6.8) and (6.9) involves the
same amount of algebra as the calculation of Ik directly from Eq. (6.5). The advantage
of using the recursive trapezoidal rule is that it allows us to monitor convergence and
terminate the process when the difference between Ik−1 and Ik becomes sufficiently
small. A form of Eq. (6.9a) that is easier to remember is

I (h) = 1
2

I (2h) + h
∑

f (xnew) (6.9b)

where h = H/(n − 1) is the width of each panel.

� trapezoid

The function trapezoid computes I (h), given I (2h) from Eqs. (6.8) and (6.9). We
can compute

∫ b
a f (x) dx by calling trapezoid repeatedly with k = 1, 2, . . . until the

desired precision is attained.
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function Ih = trapezoid(func,a,b,I2h,k)

% Recursive trapezoidal rule.

% USAGE: Ih = trapezoid(func,a,b,I2h,k)

% func = handle of function being integrated.

% a,b = limits of integration.

% I2h = integral with 2ˆ(k-1) panels.

% Ih = integral with 2ˆk panels.

if k == 1

fa = feval(func,a); fb = feval(func,b);

Ih = (fa + fb)*(b - a)/2.0;

else

n = 2ˆ(k -2 ); % Number of new points

h = (b - a)/n ; % Spacing of new points

x = a + h/2.0; % Coord. of 1st new point

sum = 0.0;

for i = 1:n

fx = feval(func,x);

sum = sum + fx;

x = x + h;

end

Ih = (I2h + h*sum)/2.0;

end

Simpson’s Rules

f (x )

x  = a x  = b x
1 x2

hh

ξ

Parabola

3

Figure 6.4. Simpson’s 1/3 rule.

Simpson’s 1/3 rule can be obtained from Newton–Cotes formulas with n = 3;
that is, by passing a parabolic interpolant through three adjacent nodes, as shown in
Fig. 6.4. The area under the parabola, which represents an approximation of

∫ b
a f (x) dx,

is (see derivation in Example 6.1)

I =
[

f (a) + 4 f
(

a + b
2

)
+ f (b)

]
h
3

(a)
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x1 xi xi +1 xn

h

a b

f(x )

xxi +2

h
Figure 6.5. Composite Simpson’s 1/3 rule.

To obtain the composite Simpson’s 1/3 rule, the integration range (a, b) is divided
into n − 1 panels (n odd) of width h = (b − a)/(n − 1) each, as indicated in Fig. 6.5.
Applying Eq. (a) to two adjacent panels, we have∫ xi+2

xi

f (x) dx ≈ [ f (xi) + 4 f (xi+1) + f (xi+2)]
h
3

(b)

Substituting Eq. (b) into

∫ b

a
f (x)dx =

∫ xn

x1

f (x) dx =
n−2∑

i=1,3,...

[∫ xi+2

xi

f (x)dx
]

yields ∫ b

a
f (x) dx ≈ I = [ f (x1) + 4 f (x2) + 2 f (x3) + 4 f (x4) + · · · (6.10)

· · · + 2 f (xn−2) + 4 f (xn−1) + f (xn)]
h
3

The composite Simpson’s 1/3 rule in Eq. (6.10) is perhaps the best-known method of
numerical integration. Its reputation is somewhat undeserved, since the trapezoidal
rule is more robust, and Romberg integration is more efficient.

The error in the composite Simpson’s rule is

E = (b − a)h4

180
f (4)(ξ ) (6.11)

from which we conclude that Eq. (6.10) is exact if f (x) is a polynomial of degree three
or less.

Simpson’s 1/3 rule requires the number of panels to be even. If this condition is
not satisfied, we can integrate over the first (or last) three panels with Simpson’s 3/8
rule:

I = [ f (x1) + 3 f (x2) + 3 f (x3) + f (x4)]
3h
8

(6.12)

and use Simpson’s 1/3 rule for the remaining panels. The error in Eq. (6.12) is of the
same order as in Eq. (6.10).

EXAMPLE 6.1
Derive Simpson’s 1/3 rule from Newton–Cotes formulas.
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Solution Referring to Fig. 6.4, we see that Simpson’s 1/3 rule uses three nodes located
at x1 = a, x2 = (a + b) /2 and x3 = b. The spacing of the nodes is h = (b − a)/2. The
cardinal functions of Lagrange’s three-point interpolation are (see Art. 3.2)

�1(x) = (x − x2)(x − x3)
(x1 − x2)(x1 − x3)

�2(x) = (x − x1)(x − x3)
(x2 − x1)(x2 − x3)

�3(x) = (x − x1)(x − x2)
(x3 − x1)(x3 − x2)

The integration of these functions is easier if we introduce the variable ξ with origin
at x2. Then the coordinates of the nodes are ξ1 = −h, ξ2 = 0, ξ3 = h and Eq. (6.2b)
becomes Ai = ∫ b

a �i(x)dx = ∫ h
−h �i(ξ )dξ . Therefore,

A1 =
∫ h

−h

(ξ − 0)(ξ − h)
(−h)(−2h)

dξ = 1
2h2

∫ h

−h
(ξ2 − hξ )dξ = h

3

A2 =
∫ h

−h

(ξ + h)(ξ − h)
(h)(−h)

dξ = − 1
h2

∫ h

−h
(ξ2 − h2)dξ = 4h

3

A3 =
∫ h

−h

(ξ + h)(ξ − 0)
(2h)(h)

dξ = 1
2h2

∫ h

−h
(ξ2 + hξ )dξ = h

3

Equation (6.2a) then yields

I =
3∑

i=1

Ai f (xi) =
[

f (a) + 4 f
(

a + b
2

)
+ f (b)

]
h
3

which is Simpson’s 1/3 rule.

EXAMPLE 6.2
Evaluate the bounds on

∫ π

0 sin(x) dx with the composite trapezoidal rule using (1)
eight panels and (2) sixteen panels.

Solution of Part (1) With 8 panels there are 9 nodes spaced at h = π/8. The abscissas
of the nodes are xi = (i − 1)π/8, i = 1, 2, . . . , 9. From Eq. (6.5) we get

I =
[

sin 0 + 2
8∑

i=2

sin
iπ
8

+ sin π

]
π

16
= 1.97423

The error is given by Eq. (6.6):

E = − (b − a)h2

12
f ′′(ξ ) = − (π − 0)(π/8)2

12
(− sin ξ ) = π3

768
sin ξ

where 0 < ξ < π . Since we do not know the value of ξ , we cannot evaluate E , but we
can determine its bounds:

Emin = π3

768
sin(0) = 0 Emax = π3

768
sin

π

2
= 0.040 37
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Therefore, I + Emin <
∫ π

0 sin(x) dx < I + Emax, or

1.974 23 <

∫ π

0
sin(x) dx < 2.014 60

The exact integral is, of course, I = 2.

Solution of Part (2) The new nodes created by the doubling of panels are located at
midpoints of the old panels. Their abscissas are

xj = π

16
+ ( j − 1)

π

8
= (2 j − 1)

π

16
, j = 1, 2, . . . , 8

Using the recursive trapezoidal rule in Eq. (6.9b), we get

I = 1.974 23
2

+ π

16

8∑
j=1

sin
(2 j − 1)π

16
= 1. 993 58

and the bounds on the error become (note that E is quartered when h is halved)
Emin = 0, Emax = 0.040 37/4 = 0.010 09. Hence

1.993 58 <

∫ π

0
sin(x) dx < 2.003 67

EXAMPLE 6.3
Estimate

∫ 2.5
0 f (x) dx from the data

x 0 0.5 1.0 1.5 2.0 2.5

f (x) 1.5000 2.0000 2.0000 1.6364 1.2500 0.9565

Solution We will use Simpson’s rules, since they are more accurate than the trape-
zoidal rule. Because the number of panels is odd, we compute the integral over the
first three panels by Simpson’s 3/8 rule, and use the 1/3 rule for the last two panels:

I = [ f (0) + 3 f (0.5) + 3 f (1.0) + f (1.5)]
3(0.5)

8

+ [ f (1.5) + 4 f (2.0) + f (2.5)]
0.5
3

= 2.8381 + 1.2655 = 4.1036

EXAMPLE 6.4
Use the recursive trapezoidal rule to evaluate

∫ π

0

√
x cos x dx to six decimal places.

How many function evaluations are required to achieve this result?

Solution The program listed below utilizes the function trapezoid. Apart from the
value of the integral, it displays the number of function evaluations used in the
computation.
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% Example 6.4 (Recursive trapezoidal rule)

format long % Display extra precision

I2h = 0;

for k = 1:20

Ih = trapezoid(@fex6_4,0,pi,I2h,k);

if (k > 1 & abs(Ih - I2h) < 1.0e-6)

Integral = Ih

No_of_func_evaluations = 2ˆ(k-1) + 1

return

end

I2h = Ih;

end

error(’Too many iterations’)

The M-file containing the function to be integrated is

function y = fex6_4(x)

% Function used in Example 6.4

y = sqrt(x)*cos(x);

Here is the output:

>> Integral =

-0.89483166485329

No_of_func_evaluations =

32769

Rounding to six decimal places, we have
∫ π

0

√
x cos x dx = −0.894 832

The number of function evaluations is unusually large in this problem. The slow
convergence is the result of the derivatives of f (x) being singular at x = 0. Conse-
quently, the error does not behave as shown in Eq. (6.7): E = c1h2 + c2h4 + · · ·, but is
unpredictable. Difficulties of this nature can often be remedied by a change in vari-
able. In this case, we introduce t = √

x, so that dt = dx/(2
√

x) = dx/(2t), or dx = 2t dt.
Thus

∫ π

0

√
x cos x dx =

∫ √
π

0
2t 2 cos t 2dt

Evaluation of the integral on the right-hand side would require 4097 function
evaluations.



210 Numerical Integration

6.3 Romberg Integration

Romberg integration combines the composite trapezoidal rule with Richardson ex-
trapolation (see Art. 5.3). Let us first introduce the notation

Ri,1 = Ii

where, as before, Ii represents the approximate value of
∫ b

a f (x)dx computed by the
recursive trapezoidal rule using 2i−1 panels. Recall that the error in this approximation
is E = c1h2 + c2h4 + · · ·, where

h = b − a
2i−1

is the width of a panel.
Romberg integration starts with the computation of R1,1 = I1 (one panel) and

R2,1 = I2 (two panels) from the trapezoidal rule. The leading error term c1h2 is then
eliminated by Richardson extrapolation. Using p = 2 (the exponent in the error term)
in Eq. (5.9) and denoting the result by R2,2, we obtain

R2,2 = 22 R2,1 − R1,1

22 − 1
= 4

3
R2,1 − 1

3
R1,1 (a)

It is convenient to store the results in an array of the form[
R1,1

R2,1 R2,2

]

The next step is to calculate R3,1 = I3 (four panels) and repeat Richardson extra-
polation with R2,1 and R3,1, storing the result as R3,2:

R3,2 = 4
3

R3,1 − 1
3

R2,1 (b)

The elements of array R calculated so far are
R1,1

R2,1 R2,2

R3,1 R3,2




Both elements of the second column have an error of the form c2h4, which can also
be eliminated with Richardson extrapolation. Using p = 4 in Eq. (5.9), we get

R3,3 = 24 R3,2 − R2,2

24 − 1
= 16

15
R3,2 − 1

15
R2,2 (c)

This result has an error of O(h6). The array has now expanded to
R1,1

R2,1 R2,2

R3,1 R3,2 R3,3
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8. Evaluate ∫ 1

0

sin x√
x

dx

with Romberg integration. Hint: use transformation of variable to eliminate the
indeterminacy at x = 0.

9. Show that if y = f (x) is approximated by a natural cubic spline with evenly spaced
knots at x1, x2, . . . , xn, the quadrature formula becomes

I = h
2

(y1 + 2y2 + 2y3 + · · · + 2yn−1 + yn)

−h3

24
(k1 + 2k2 + k3 + · · · + 2kn−1 + kn)

where h is the spacing of the knots and k = y ′′. Note that the first part is the
composite trapezoidal rule; the second part may be viewed as a “correction” for
curvature.

10. � Use a computer program to evaluate∫ π/4

0

dx√
sin x

with Romberg integration. Hint: use the transformation sin x = t 2.

11. � The period of a simple pendulum of length L is τ = 4
√

L/g h(θ0), where g is
the gravitational acceleration, θ0 represents the angular amplitude and

h(θ0) =
∫ π/2

0

dθ√
1 − sin2(θ0/2) sin2 θ

Compute h(15◦), h(30◦) and h(45◦), and compare these values with h(0) = π/2 (the
approximation used for small amplitudes).

12. �

a

r

P

q

The figure shows an elastic half-space that carries uniform loading of intensity q
over a circular area of radius a. The vertical displacement of the surface at point
P can be shown to be

w(r) = w0

∫ π/2

0

cos2 θ√
(r/a)2 − sin2 θ

dθ r ≥ a
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where w0 is the displacement at r = a. Use numerical integration to determine
w/w0 at r = 2a.

13. �

b

m

k

x

The mass m is attached to a spring of free length b and stiffness k. The coefficient
of friction between the mass and the horizontal rod is µ. The acceleration of the
mass can be shown to be (you may wish to prove this) ẍ = − f (x), where

f (x) = µg + k
m

(µb + x)
(

1 − b√
b2 + x2

)

If the mass is released from rest at x = b, its speed at x = 0 is given by

v0 =
√

2
∫ b

0
f (x)dx

Compute v0 by numerical integration using the data m = 0.8 kg, b = 0.4 m,
µ = 0.3, k = 80 N/m and g = 9.81 m/s2.

14. � Debye’s formula for the heat capacity CV of a solid is CV = 9Nkg(u), where

g(u) = u3
∫ 1/u

0

x4e x

(e x − 1)2
dx

The terms in this equation are

N = number of particles in the solid

k = Boltzmann constant

u = T/�D

T = absolute temperature

�D = Debye temperature

Compute g(u) from u = 0 to 1.0 in intervals of 0.05 and plot the results.

15. � A power spike in an electric circuit results in the current

i(t) = i0e−t/t 0 sin(2t/t0)
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across a resistor. The energy E dissipated by the resistor is

E =
∫ ∞

0
R [i(t)]2 dt

Find E using the data i0 = 100 A, R = 0.5 � and t0 = 0.01 s.

6.4 Gaussian Integration

Gaussian Integration Formulas

We found that Newton–Cotes formulas for approximating
∫ b

a f (x)dx work best if f (x)
is a smooth function, such as a polynomial. This is also true for Gaussian quadrature.
However, Gaussian formulas are also good at estimating integrals of the form

∫ b

a
w(x) f (x)dx (6.15)

where w(x), called the weighting function, can contain singularities, as long as they
are integrable. An example of such an integral is

∫ 1
0 (1 + x2) ln x dx. Sometimes infinite

limits, as in
∫∞

0 e−x sin x dx, can also be accommodated.
Gaussian integration formulas have the same form as Newton–Cotes rules:

I =
n∑

i=1

Ai f (xi) (6.16)

where, as before, I represents the approximation to the integral in Eq. (6.15). The
difference lies in the way that the weights Ai and nodal abscissas xi are determined. In
Newton–Cotes integration the nodes were evenly spaced in (a, b), i.e., their locations
were predetermined. In Gaussian quadrature the nodes and weights are chosen so
that Eq. (6.16) yields the exact integral if f (x) is a polynomial of degree 2n − 1 or less;
that is,

∫ b

a
w(x)Pm(x)dx =

n∑
i=1

Ai Pm(xi), m ≤ 2n − 1 (6.17)

One way of determining the weights and abscissas is to substitute P1(x) = 1, P2(x) =
x, . . . , P2n−1(x) = x2n−1 in Eq. (6.17) and solve the resulting 2n equations

∫ b

a
w(x)x j dx =

n∑
i=1

Ai x j
i , j = 0, 1, . . . , 2n − 1

for the unknowns Ai and xi , i = 1, 2, . . . , n.
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As an illustration, let w(x) = e−x, a = 0, b = ∞ and n = 2. The four equations
determining x1, x2, A1 and A2 are

∫ ∞

0
e−xdx = A1 + A2

∫ ∞

0
e−xx dx = A1x1 + A2x2

∫ ∞

0
e−xx2dx = A1x2

1 + A2x2
2∫ ∞

0
e−xx3dx = A1x3

1 + A2x3
2

After evaluating the integrals, we get

A1 + A2 = 1

A1x1 + A2x2 = 1

A1x2
1 + A2x2

2 = 2

A1x3
1 + A2x3

2 = 6

The solution is

x1 = 2 −
√

2 A1 =
√

2 + 1

2
√

2

x2 = 2 +
√

2 A2 =
√

2 − 1

2
√

2

so that the quadrature formula becomes

∫ ∞

0
e−x f (x)dx ≈

1

2
√

2

[
(
√

2 + 1) f
(

2 −
√

2
)

+ (
√

2 − 1) f
(

2 +
√

2
)]

Due to the nonlinearity of the equations, this approach will not work well for
large n. Practical methods of finding xi and Ai require some knowledge of orthogo-
nal polynomials and their relationship to Gaussian quadrature. There are, however,
several “classical” Gaussian integration formulas for which the abscissas and weights
have been computed with great precision and tabulated. These formulas can used
without knowing the theory behind them, since all one needs for Gaussian integra-
tion are the values of xi and Ai . If you do not intend to venture outside the classical
formulas, you can skip the next two topics.
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∗Orthogonal Polynomials

Orthogonal polynomials are employed in many areas of mathematics and numerical
analysis. They have been studied thoroughly and many of their properties are known.
What follows is a very small compendium of a large topic.

The polynomials ϕn(x), n = 0, 1, 2, . . . (n is the degree of the polynomial) are said
to form an orthogonal set in the interval (a, b) with respect to the weighting function
w(x) if ∫ b

a
w(x)ϕm(x)ϕn(x)dx = 0, m �= n (6.18)

The set is determined, except for a constant factor, by the choice of the weighting func-
tion and the limits of integration. That is, each set of orthogonal polynomials is asso-
ciated with certain w(x), a and b. The constant factor is specified by standardization.
Some of the classical orthogonal polynomials, named after well-known mathemati-
cians, are listed in Table 6.1. The last column in the table shows the standardization
used.

Name Symbol a b w(x)
∫ b

a w(x)
[
ϕn(x)

]2
dx

Legendre pn(x) −1 1 1 2/(2n + 1)
Chebyshev Tn(x) −1 1 (1 − x2)−1/2 π/2 (n > 0)
Laguerre Ln(x) 0 ∞ e−x 1
Hermite Hn(x) −∞ ∞ e−x2 √

π2nn!

Table 6.1

Orthogonal polynomials obey recurrence relations of the form

anϕn+1(x) = (bn + cnx)ϕn(x) − dnϕn−1(x) (6.19)

If the first two polynomials of the set are known, the other members of the set can be
computed from Eq. (6.19). The coefficients in the recurrence formula, together with
ϕ0(x) and ϕ1(x), are given in Table 6.2.

Name ϕ0(x) ϕ1(x) an bn cn dn

Legendre 1 x n + 1 0 2n + 1 n
Chebyshev 1 x 1 0 2 1
Laguerre 1 1 − x n + 1 2n + 1 −1 n
Hermite 1 2x 1 0 2 2

Table 6.2
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The classical orthogonal polynomials are also obtainable from the formulas

pn(x) = (−1)n

2nn!
dn

dxn

[(
1 − x2)n

]
Tn(x) = cos(ncos−1 x), n > 0

Ln(x) = e x

n!
dn

dxn

(
xne−x) (6.20)

Hn(x) = (−1)ne x 2 dn

dxn
(e−x 2

)

and their derivatives can be calculated from

(1 − x2) p′
n(x) = n[−xpn(x) + pn−1(x)]

(1 − x2)T ′
n(x) = n[−xTn(x) + nTn−1(x)]

xL ′
n(x) = n[Ln(x) − Ln−1(x)] (6.21)

H ′
n(x) = 2nHn−1(x)

Other properties of orthogonal polynomials that have relevance to Gaussian in-
tegration are:

� ϕn(x) has n real, distinct zeroes in the interval (a, b).
� The zeroes of ϕn(x) lie between the zeroes of ϕn+1(x).
� Any polynomial Pn(x) of degree n can be expressed in the form

Pn(x) =
n∑

i=0

ciϕi(x) (6.22)

� It follows from Eq. (6.22) and the orthogonality property in Eq. (6.18) that∫ b

a
w(x)Pn(x)ϕn+m(x)dx = 0, m ≥ 0 (6.23)

∗Determination of Nodal Abscissas and Weights

Theorem The nodal abscissas x1, x2, . . . , xn are the zeros of the polynomial ϕn(x) that
belongs to the orthogonal set defined in Eq. (6.18).

Proof We start the proof by letting f (x) = P2n−1(x) be a polynomial of degree 2n − 1.
Since the Gaussian integration with n nodes is exact for this polynomial, we have∫ b

a
w(x)P2n−1(x)dx =

n∑
i=1

Ai P2n−1(xi) (a)

A polynomial of degree 2n − 1 can always written in the form

P2n−1(x) = Qn−1(x) + Rn−1(x)ϕn(x) (b)
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where Qn−1(x), Rn−1(x) and ϕn(x) are polynomials of the degree indicated by the
subscripts.11 Therefore,∫ b

a
w(x)P2n−1(x)dx =

∫ b

a
w(x)Qn−1(x)dx +

∫ b

a
w(x)Rn−1(x)ϕn(x)dx

But according to Eq. (6.23) the second integral on the right hand-side vanishes,
so that ∫ b

a
w(x)P2n−1(x)dx =

∫ b

a
w(x)Qn−1(x)dx (c)

Because a polynomial of degree n − 1 is uniquely defined by n points, it is always
possible to find Ai such that∫ b

a
w(x)Qn−1(x)dx =

n∑
i=1

Ai Qn−1(xi) (d)

In order to arrive at Eq. (a), we must choose for the nodal abscissas xi the roots of
ϕn(x) = 0. According to Eq. (b) we then have

P2n−1(xi) = Qn−1(xi), i = 1, 2, . . . , n (e)

which together with Eqs. (c) and (d) leads to∫ b

a
w(x)P2n−1(x)dx =

∫ b

a
w(x)Qn−1(x)dx =

n∑
i=1

Ai P2n−1(xi)

This completes the proof.
Theorem

Ai =
∫ b

a
w(x)�i(x)dx, i = 1, 2, . . . , n (6.24)

where �i(x) are the Lagrange’s cardinal functions spanning the nodes at
x1, x2, . . . xn. These functions were defined in Eq. (3.2).

Proof Applying Lagrange’s formula, Eq. (3.1a), to Qn−1(x) yields

Qn−1(x) =
n∑

i=1

Qn−1(xi)�i(x)

which upon substitution in Eq. (d) gives us

n∑
i=1

[
Qn−1(xi)

∫ b

a
w(x)�i(x)dx

]
=

n∑
i=1

Ai Qn−1(xi)

or
n∑

i=1

Qn−1(xi)
[

Ai −
∫ b

a
w(x)�i(x)dx

]
= 0

11 It can be shown that Qn−1(x) and Rn−1(x) are unique for given P2n−1(x) and ϕn(x).
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This equation can be satisfied for arbitrary Qn−1 only if

Ai −
∫ b

a
w(x)�i(x)dx = 0, i = 1, 2, . . . , n

which is equivalent to Eq. (6.24).

It is not difficult to compute the zeros xi , i = 1, 2, . . . , n of a polynomial ϕn(x)
belonging to an orthogonal set by one of the methods discussed in Chapter 4. Once
the zeros are known, the weights Ai , i = 1, 2, . . . , n could be found from Eq. (6.24).
However the following formulas (given without proof) are easier to compute

Gauss–Legendre Ai = 2

(1 − x2
i )
[

p ′
n(xi)

]2

Gauss–Laguerre Ai = 1

xi
[

L ′
n(xi)

]2
(6.25)

Gauss–Hermite Ai = 2n+1n!
√

π[
H′

n(xi)
]2

Abscissas and Weights for Gaussian Quadratures

We list here some classical Gaussian integration formulas. The tables of nodal abscis-
sas and weights, covering n = 2 to 6, have been rounded off to six decimal places.
These tables should be adequate for hand computation, but in programming you
may need more precision or a larger number of nodes. In that case you should consult
other references,12 or use a subroutine to compute the abscissas and weights within
the integration program.13

The truncation error in Gaussian quadrature

E =
∫ b

a
w(x) f (x)dx −

n∑
i=1

Ai f (xi)

has the form E = K (n) f (2n)(c), where a < c < b (the value of c is unknown; only its
bounds are given). The expression for K (n) depends on the particular quadrature
being used. If the derivatives of f (x) can be evaluated, the error formulas are useful
is estimating the error bounds.

12 Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, Dover Publications (1965);
A.H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall (1966).

13 Several such subroutines are listed in Numerical Recipes in Fortran 90, W.H. Press et al., Cambridge
University Press (1996).
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Gauss–Legendre quadrature

∫ 1

−1
f (ξ )dξ ≈

n∑
i=1

Ai f (ξi) (6.26)

±ξ i Ai ±ξ i Ai

n = 2 n = 5
0.577 350 1.000 000 0.000 000 0.568 889

n = 3 0.538 469 0.478 629
0.000 000 0.888 889 0.906 180 0.236 927
0.774 597 0.555 556 n = 6

n = 4 0.238 619 0.467 914
0.339 981 0.652 145 0.661 209 0.360 762
0.861 136 0.347 855 0.932 470 0.171 324

Table 6.3

This is the most often used Gaussian integration formula. The nodes are arranged
symmetrically about ξ = 0, and the weights associated with a symmetric pair of nodes
are equal. For example, for n = 2 we have ξ1 = −ξ2 and A1 = A2. The truncation error
in Eq. (6.26) is

E = 22n+1 (n!)4

(2n + 1) [(2n)!]3
f (2n)(c), − 1 < c < 1 (6.27)

To apply Gauss–Legendre quadrature to the integral
∫ b

a f (x)dx, we must first map
the integration range (a, b) into the “standard” range (−1, 1)̇. We can accomplish this
by the transformation

x = b + a
2

+ b − a
2

ξ (6.28)

Now dx = dξ (b − a)/2, and the quadrature becomes

∫ b

a
f (x)dx ≈

b − a
2

n∑
i=1

Ai f (xi) (6.29)

where the abscissas xi must be computed from Eq. (6.28). The truncation error
here is

E = (b − a)2n+1 (n!)4

(2n + 1) [(2n)!]3
f (2n)(c), a < c < b (6.30)
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Gauss–Chebyshev quadrature

∫ 1

−1

(
1 − x2)−1/2

f (x)dx ≈

π

n

n∑
i=1

f (xi) (6.31)

Note that all the weights are equal: Ai = π/n. The abscissas of the nodes, which are
symmetric about x = 0, are given by

xi = cos
(2i − 1)π

2n
(6.32)

The truncation error is

E = 2π

22n(2n)!
f (2n)(c), − 1 < c < 1 (6.33)

Gauss–Laguerre quadrature

∫ ∞

0
e−x f (x)dx ≈

n∑
i=1

Ai f (xi) (6.34)

xi Ai xi Ai

n = 2 n = 5
0.585 786 0.853 554 0.263 560 0.521 756
3.414 214 0.146 447 1.413 403 0.398 667

n = 3 3.596 426 (−1)0.759 424
0.415 775 0.711 093 7.085 810 (−2)0.361 175
2.294 280 0.278 517 12.640 801 (−4)0.233 670
6.289 945 (−1)0.103 892 n = 6

n = 4 0.222 847 0.458 964
0.322 548 0.603 154 1.188 932 0.417 000
1.745 761 0.357 418 2.992 736 0.113 373
4.536 620 (−1)0.388 791 5.775 144 (−1)0.103 992
9.395 071 (−3)0.539 295 9.837 467 (−3)0.261 017

15.982 874 (−6)0.898 548

Table 6.4. Multiply numbers by 10k, where k is given in parentheses

E = (n!)2

(2n)!
f (2n)(c), 0 < c < ∞ (6.35)

Gauss–Hermite quadrature:

∫ ∞

−∞
e−x2

f (x)dx ≈

n∑
i=1

Ai f (xi) (6.36)
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The nodes are placed symmetrically about x = 0, each symmetric pair having the
same weight.

±xi Ai ±xi Ai

n = 2 n = 5
0.707 107 0.886 227 0.000 000 0.945 308

n = 3 0.958 572 0.393 619
0.000 000 1.181 636 2.020 183 (−1) 0.199 532
1.224745 0.295 409 n = 6

n = 4 0.436 077 0.724 629
0.524 648 0.804 914 1.335 849 0.157 067
1.650 680 (−1)0.813 128 2.350 605 (−2)0.453 001

Table 6.5. Multiply numbers by 10k, where k is given in parentheses

E =
√

πn!
22(2n)!

f (2n)(c), 0 < c < ∞ (6.37)

Gauss quadrature with logarithmic singularity

∫ 1

0
f (x) ln(x)dx ≈ −

n∑
i=1

Ai f (xi) (6.38)

xi Ai xi Ai

n = 2 n = 5
0.112 009 0.718 539 (−1)0.291 345 0.297 893
0.602 277 0.281 461 0.173 977 0.349 776

n = 3 0.411 703 0.234 488
(−1)0.638 907 0.513 405 0.677314 (−1)0.989 305

0.368 997 0.391 980 0.894 771 (−1)0.189 116
0.766 880 (−1)0.946 154 n = 6

n = 4 (−1)0.216 344 0.238 764
(−1)0.414 485 0.383 464 0.129 583 0.308 287

0.245 275 0.386 875 0.314 020 0.245 317
0.556 165 0.190 435 0.538 657 0.142 009
0.848 982 (−1)0.392 255 0.756 916 (−1)0.554 546

0.922 669 (−1)0.101 690

Table 6.6. Multiply numbers by 10k, where k is given in parentheses
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E = k(n)
(2n)!

f (2n)(c), 0 < c < 1 (6.39)

where k(2) = 0.00 285, k(3) = 0.000 17, k(4) = 0.000 01.

� gaussNodes

The function gaussNodes computes the nodal abscissas xi and the corresponding
weights Ai used in Gauss–Legendre quadrature.14 It can be shown that the approxi-
mate values of the abscissas are

xi = cos
π(i − 0.25)

n + 0.5

Using these approximations as the starting values, we compute the nodal ab-
scissas by finding the nonnegative zeros of the Legendre polynomial pn(x) with
the Newton–Raphson method (the negative zeros are obtained from symmetry).
Note that gaussNodes calls the subfunction legendre, which returns pn(t) and its
derivative.

function [x,A] = gaussNodes(n,tol)

% Computes nodal abscissas x and weights A of

% Gauss-Legendre n-point quadrature.

% USAGE: [x,A] = gaussNodes(n,epsilon,maxIter)

% tol = error tolerance (default is 1.0e4*eps).

if nargin < 2; tol = 1.0e4*eps; end

A = zeros(n,1); x = zeros(n,1);

nRoots = fix(n + 1)/2; % Number of non-neg. roots

for i = 1:nRoots

t = cos(pi*(i - 0.25)/(n + 0.5)); % Approx. roots

for j = i:30

[p,dp] = legendre(t,n); % Newton’s

dt = -p/dp; t = t + dt; % root finding

if abs(dt) < tol % method

x(i) = t; x(n-i+1) = -t;

A(i) = 2/(1-tˆ2)/dpˆ2; % Eq. (6.25)

A(n-i+1) = A(i);

break

14 This function is an adaptation of a routine in Numerical Recipes in Fortran 90, W.H. Press et al.,
Cambridge University Press (1996).
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end

end

end

function [p,dp] = legendre(t,n)

% Evaluates Legendre polynomial p of degree n

% and its derivative dp at x = t.

p0 = 1.0; p1 = t;

for k = 1:n-1

p = ((2*k + 1)*t*p1 - k*p0)/(k + 1); % Eq. (6.19)

p0 = p1;p1 = p;

end

dp = n *(p0 - t*p1)/(1 - tˆ2); % Eq. (6.21)

� gaussQuad

The function gaussQuad evaluates
∫ b

a f (x) dx with Gauss–Legendre quadrature us-
ing n nodes. The function defining f (x) must be supplied by the user. The nodal
abscissas and the weights are obtained by calling gaussNodes.

function I = gaussQuad(func,a,b,n)

% Gauss-Legendre quadrature.

% USAGE: I = gaussQuad(func,a,b,n)

% INPUT:

% func = handle of function to be integrated.

% a,b = integration limits.

% n = order of integration.

% OUTPUT:

% I = integral

c1 = (b + a)/2; c2 = (b - a)/2; % Mapping constants

[x,A] = gaussNodes(n); % Nodal abscissas & weights

sum = 0;

for i = 1:length(x)

y = feval(func,c1 + c2*x(i)); % Function at node i

sum = sum + A(i)*y;

end

I = c2*sum;

EXAMPLE 6.8
Evaluate

∫ 1
−1(1 − x2)3/2dx as accurately as possible with Gaussian integration.
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Solution As the integrand is smooth and free of singularities, we could use Gauss–
Legendre quadrature. However, the exact integral can obtained with the Gauss–
Chebyshev formula. We write

∫ 1

−1

(
1 − x2)3/2

dx =
∫ 1

−1

(
1 − x2

)2

√
1 − x2

dx

The numerator f (x) = (1 − x2)2 is a polynomial of degree four, so that Gauss–
Chebyshev quadrature is exact with three nodes.

The abscissas of the nodes are obtained from Eq. (6.32). Substituting n = 3, we
get

xi = cos
(2i − 1)π

2(3)
, i = 1, 2, 3

Therefore,

x1 = cos
π

6
=

√
3

2

x2 = cos
π

2
= 0

x2 = cos
5π

6
=

√
3

2

and Eq. (6.31) yields

∫ 1

−1

(
1 − x2)3/2

dx = π

3

3∑
i=1

(
1 − x2

i

)2

= π

3

[(
1 − 3

4

)2

+ (1 − 0)2 +
(

1 − 3
4

)2
]

= 3π

8

EXAMPLE 6.9
Use Gaussian integration to evaluate

∫ 0.5
0 cos πx ln x dx.

Solution We split the integral into two parts:

∫ 0.5

0
cos πx ln x dx =

∫ 1

0
cos πx ln x dx −

∫ 1

0.5
cos πx ln x dx

The first integral on the right-hand side, which contains a logarithmic singularity at
x = 0, can be computed with the special Gaussian quadrature in Eq. (6.38). Choosing
n = 4, we have

∫ 1

0
cos πx ln x dx ≈ −

4∑
i=1

Ai cos πxi
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where xi and Ai are given in Table 6.6. The sum is evaluated in the following table:

xi cos πxi Ai Ai cos πxi

0.041 448 0.991 534 0.383 464 0.380 218
0.245 275 0.717 525 0.386 875 0.277 592
0.556 165 −0.175 533 0.190 435 −0.033 428
0.848 982 −0.889 550 0.039 225 −0.034 892

� = 0.589 490

Thus ∫ 1

0
cos πx ln x dx ≈ −0.589 490

The second integral is free of singularities, so that it can be evaluated with Gauss–
Legendre quadrature. Choosing again n = 4, we have

∫ 1

0.5
cos πx ln x dx ≈ 0.25

4∑
i=1

Ai cos πxi ln xi

where the nodal abscissas are (see Eq. (6.28))

xi = 1 + 0.5
2

+ 1 − 0.5
2

ξ i = 0.75 + 0.25ξ i

Looking up ξ i and Ai in Table 6.3 leads to the following computations:

ξ i xi cos πxi ln xi Ai Ai cos πxi ln xi

−0.861 136 0.534 716 0.068 141 0.347 855 0.023 703
−0.339 981 0.665 005 0.202 133 0.652 145 0.131 820

0.339 981 0.834 995 0.156 638 0.652 145 0.102 151
0.861 136 0.965 284 0.035 123 0.347 855 0.012 218

� = 0.269 892

from which ∫ 1

0.5
cos πx ln x dx ≈ 0.25(0.269 892) = 0.067 473

Therefore,∫ 1

0
cos πx ln x dx ≈ −0. 589 490 − 0.067 473 = −0. 656 96 3

which is correct to six decimal places.
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EXAMPLE 6.10
Evaluate as accurately as possible

F =
∫ ∞

0

x + 3√
x

e−xdx

Solution In its present form, the integral is not suited to any of the Gaussian quadra-
tures listed in this article. But using the transformation

x = t2 dx = 2t dt

we have

F = 2
∫ ∞

0
(t2 + 3)e−t2

dt =
∫ ∞

−∞
(t2 + 3)e−t2

dt

which can be evaluated exactly with Gauss–Hermite formula using only two nodes
(n = 2). Thus

F = A1(t2
1 + 3) + A2(t2

2 + 3)

= 0.886 227
[
(0.707 107)2 + 3

]+ 0.886 227
[
(−0.707 107)2 + 3

]
= 6. 203 59

EXAMPLE 6.11
Determine how many nodes are required to evaluate∫ π

0

(
sin x

x

)2

dx

with Gauss–Legendre quadrature to six decimal places. The exact integral, rounded
to six places, is 1.418 15.

Solution The integrand is a smooth function; hence it is suited for Gauss–Legendre
integration. There is an indeterminacy at x = 0, but this does not bother the quadrature
since the integrand is never evaluated at that point. We used the following program
that computes the quadrature with 2, 3, . . .nodes until the desired accuracy is reached:

% Example 6.11 (Gauss-Legendre quadrature)

a = 0; b = pi; Iexact = 1.41815;

for n = 2:12

I = gaussQuad(@fex6_11,a,b,n);

if abs(I - Iexact) < 0.00001

I

n

break

end

end
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The M-file of the function integrated is

function y = fex6_11(x)

% Function used in Example 6.11

y = (sin(x)/x)ˆ2;

The program produced the following output:

I =

1.41815026780139

n =

5

EXAMPLE 6.12
Evaluate numerically

∫ 3
1.5 f (x) dx, where f (x) is represented by the unevenly spaced

data

x 1.2 1.7 2.0 2.4 2.9 3.3

f (x) −0.362 36 0.128 84 0.416 15 0.737 39 0.970 96 0.987 48

Knowing that the data points lie on the curve f (x) = − cos x, evaluate the accuracy of
the solution.

Solution We approximate f (x) by the polynomial P5(x) that intersects all the data
points, and then evaluate

∫ 3
1.5 f (x)dx ≈

∫ 3
1.5 P5(x)dx with the Gauss–Legendre formula.

Since the polynomial is of degree five, only three nodes (n = 3) are required in the
quadrature.

From Eq. (6.28) and Table 6.3, we obtain for the abscissas of the nodes

x1 = 3 + 1.5
2

+ 3 − 1.5
2

(−0.774597) = 1. 6691

x2 = 3 + 1.5
2

= 2.25

x3 = 3 + 1.5
2

+ 3 − 1.5
2

(0.774597) = 2. 8309

We now compute the values of the interpolant P5(x) at the nodes. This can be done
using the functions newtonPoly or neville listed in Art. 3.2. The results are

P5(x1) = 0.098 08 P5(x2) = 0.628 16 P5(x3) = 0.952 16

Using Gauss–Legendre quadrature

I =
∫ 3

1.5
P5(x)dx = 3 − 1.5

2

3∑
i=1

Ai P5(xi)
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we get

I = 0.75 [0.555 556(0.098 08) + 0.888 889(0.628 16) + 0.555 556(0.952 16)]

= 0.856 37

Comparison with − ∫ 3
1.5 cos x dx = 0. 856 38 shows that the discrepancy is within the

roundoff error.

PROBLEM SET 6.2

1. Evaluate ∫ π

1

ln x
x2 − 2x + 2

dx

with Gauss–Legendre quadrature. Use (a) two nodes and (b) four nodes.

2. Use Gauss–Laguerre quadrature to evaluate
∫∞

0 (1 − x2)3e−x dx.

3. Use Gauss–Chebyshev quadrature with six nodes to evaluate

∫ π/2

0

dx√
sin x

Compare the result with the “exact” value 2.62206. Hint: substitute sin x = t 2.

4. The integral
∫ π

0 sin x dx is evaluated with Gauss–Legendre quadrature using four
nodes. What are the bounds on the truncation error resulting from the quadrature?

5. How many nodes are required in Gauss–Laguerre quadrature to evaluate∫∞
0 e−x sin x dx to six decimal places?

6. Evaluate as accurately as possible

∫ 1

0

2x + 1√
x(1 − x)

dx

Hint: substitute x = (1 + t)/2.

7. Compute
∫ π

0 sin x ln x dx to four decimal places.

8. Calculate the bounds on the truncation error if
∫ π

0 x sin x dx is evaluated with
Gauss–Legendre quadrature using three nodes. What is the actual error?

9. Evaluate
∫ 2

0

(
sinh x/x

)
dx to four decimal places.

10. Evaluate the integral ∫ ∞

0

x dx
ex + 1

to six decimal places. Hint: substitute e x = 1/t.
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11. � The equation of an ellipse is x2/a2 + y 2/b2 = 1. Write a program that computes
the length

S = 2
∫ a

−a

√
1 + (dy/dx)2 dx

of the circumference to four decimal places for given a and b. Test the program
with a = 2 and b = 1.

12. � The error function, which is of importance in statistics, is defined as

erf(x) = 2√
π

∫ x

0
e−t 2

dt

Write a program that uses Gauss–Legendre quadrature to evaluate erf(x) for a
given x to six decimal places. Note that erf(x) = 1.000 000 (correct to 6 decimal
places) when x > 5. Test the program by verifying that erf(1.0) = 0.842 701.

13. �

m

k

L

L

A
B

The sliding weight of mass m is attached to a spring of stiffness k that has an
undeformed length L. When the mass is released from rest at B, the time it takes
to reach A can be shown to be t = C

√
m/k, where

C =
∫ 1

0

[(√
2 − 1

)2
−
(√

1 + z2 − 1
)2
]−1/2

dz

Compute C to six decimal places. Hint: the integrand has a singularity at z = 1
that behaves as (1 − z2)−1/2.

14. �

x

P

y

A

h

b
B
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A uniform beam forms the semiparabolic cantilever arch AB. The vertical dis-
placement of A due to the force P can be shown to be

δA = Pb3

E I
C
(

h
b

)

where E I is the bending rigidity of the beam and

C
(

h
b

)
=
∫ 1

0
z2

√
1 +

(
2h
b

z
)2

dz

Write a program that computes C(h/b) for any given value of h/b to four decimal
places. Use the program to compute C(0.5), C(1.0) and C(2.0).

15. � There is no elegant way to compute I = ∫ π/2
0 ln(sin x) dx. A “brute force” method

that works is to split the integral into several parts: from x = 0 to 0.01, from 0.01
to 0.2 and from x = 0.2 to π/2. In the first part we can use the approximation
sin x ≈ x, which allows us to obtain the integral analytically. The other two parts
can be evaluated with Gauss–Legendre quadrature. Use this method to evaluate
I to six decimal places.

16. �

p (Pa)

620

612

575

530

425
3100

15

35

52

80

112
h (m)

The pressure of wind was measured at various heights on a vertical wall, as shown
on the diagram. Find the height of the pressure center, which is defined as

h̄ =
∫ 112 m

0 h p(h) dh∫ 112 m
0 p(h) dh

Hint: fit a cubic polynomial to the data and then apply Gauss–Legendre
quadrature.

∗6.5 Multiple Integrals

Multiple integrals, such as the area integral
∫ ∫

A f (x, y) dx dy, can also be evaluated
by quadrature. The computations are straightforward if the region of integration has a
simple geometric shape, such as a triangle or a quadrilateral. Due to complications in
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specifying the limits of integration on x and y, quadrature is not a practical means of
evaluating integrals over irregular regions. However, an irregular region A can always
be approximated as an assembly of triangular or quadrilateral subregions A1, A2, . . . ,
called finite elements, as illustrated in Fig. 6.6. The integral over A can then be evaluated
by summing the integrals over the finite elements:∫ ∫

A
f (x, y) dx dy ≈

∑
i

∫ ∫
Ai

f (x, y) dx dy

Volume integrals can computed in a similar manner, using tetrahedra or rectangular
prisms for the finite elements.

Boundary of region A
AI               

Figure 6.6. Finite element model of an irregular
region.

Gauss–Legendre Quadrature over a Quadrilateral Element

ξ

η
1

1
11

0

0 x

y

1
2

3
4

η = 1

η= −1

ξ = 1ξ = −1

(b)(a)

Figure 6.7. Mapping a quadrilateral into the standard rectangle.

Consider the double integral

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη

over the rectangular element shown in Fig. 6.7(a). Evaluating each integral in
turn by Gauss–Legendre quadrature using n nodes in each coordinate direction,
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we obtain

I =
∫ 1

−1

n∑
i=1

Ai f (ξ i, η) dη =
n∑

j=1

A j

[
n∑

i=1

Ai f (ξ i, ηi)

]

or

I =
n∑

i=1

n∑
j=1

Ai A j f (ξ i, η j ) (6.40)

The number of integration points n in each coordinate direction is called the in-
tegration order. Figure 6.7(a) shows the locations of the integration points used in
third-order integration (n = 3). Because the integration limits were the “standard”
limits (−1, 1) of Gauss–Legendre quadrature, the weights and the coordinates of the
integration points are as listed Table 6.3.

In order to apply quadrature to the quadrilateral element in Fig. 6.7(b), we must
first map the quadrilateral into the “standard” rectangle in Fig. 6.7(a). By mapping
we mean a coordinate transformation x = x(ξ, η), y = y(ξ, η) that results in one-to-
one correspondence between points in the quadrilateral and in the rectangle. The
transformation that does the job is

x(ξ, η) =
4∑

k=1

Nk(ξ, η)xk y(ξ, η) =
4∑

k=1

Nk(ξ, η)yk (6.41)

where (xk, yk) are the coordinates of corner k of the quadrilateral and

N1(ξ, η) = 1
4

(1 − ξ )(1 − η)

N2(ξ, η) = 1
4

(1 + ξ )(1 − η) (6.42)

N3(ξ, η) = 1
4

(1 + ξ )(1 + η)

N4(ξ, η) = 1
4

(1 − ξ )(1 + η)

The functions Nk(ξ, η), known as the shape functions, are bilinear (linear in each
coordinate). Consequently, straight lines remain straight upon mapping. In particular,
note that the sides of the quadrilateral are mapped into the lines ξ = ±1 and η = ±1.

Because mapping distorts areas, an infinitesimal area element dA = dx dy of the
quadrilateral is not equal to its counterpart dξ dη of the rectangle. It can be shown
that the relationship between the areas is

dx dy = |J (ξ, η)| dξ dη (6.43)
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where

J (ξ, η) =

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦ (6.44a)

is known as the Jacobian matrix of the mapping. Substituting from Eqs. (6.41)
and (6.42) and differentiating, we find that the components of the Jacobian matrix
are

J11 = 1
4

[−(1 − η)x1 + (1 − η)x2 + (1 + η)x3 − (1 + η)x4]

J12 = 1
4

[−(1 − η)y1 + (1 − η)y2 + (1 + η)y3 − (1 + η)y4] (6.44b)

J21 = 1
4

[−(1 − ξ )x1 − (1 + ξ )x2 + (1 + ξ )x3 + (1 − ξ )x4]

J22 = 1
4

[−(1 − ξ )y1 − (1 + ξ )y2 + (1 + ξ )y3 + (1 − ξ )y4]

We can now write

∫ ∫
A

f (x, y) dx dy =
∫ 1

−1

∫ 1

−1
f [x(ξ, η), y(ξ, η)] |J (ξ, η)| dξ dη (6.45)

Since the right-hand side integral is taken over the “standard” rectangle, it can be
evaluated using Eq. (6.40). Replacing f (ξ, η) in Eq. (6.40) by the integrand in Eq. (6.45),
we get the following formula for Gauss–Legendre quadrature over a quadrilateral
region:

I =
n∑

i=1

n∑
j=1

Ai A j f
[
x(ξ i, η j ), y(ξ i, η j )

] ∣∣J (ξ i, η j )
∣∣ (6.46)

Theξ andηcoordinates of the integration points and the weights can again be obtained
from Table 6.3.

� gaussQuad2

The function gaussQuad2 computes
∫ ∫

A f (x, y) dx dy over a quadrilateral element
with Gauss–Legendre quadrature of integration order n. The quadrilateral is de-
fined by the arrays x and y, which contain the coordinates of the four corners



239 6.5 Multiple Integrals

ordered in a counterclockwise direction around the element. The determinant of
the Jacobian matrix is obtained by calling detJ; mapping is performed by map.
The weights and the values of ξ and η at the integration points are computed by
gaussNodes listed in the previous article (note that ξ and η appear as s and t in
listing).

function I = gaussQuad2(func,x,y,n)

% Gauss-Legendre quadrature over a quadrilateral.

% USAGE: I = gaussQuad2(func,x,y,n)

% INPUT:

% func = handle of function to be integrated.

% x = [x1;x2;x3;x4] = x-coordinates of corners.

% y = [y1;y2;y3;y4] = y-coordinates of corners.

% n = order of integration

% OUTPUT:

% I = integral

[t,A] = gaussNodes(n); I = 0;

for i = 1:n

for j = 1:n

[xNode,yNode] = map(x,y,t(i),t(j));

z = feval(func,xNode,yNode);

detJ = jac(x,y,t(i),t(j));

I = I + A(i)*A(j)*detJ*z;

end

end

function detJ = jac(x,y,s,t)

% Computes determinant of Jacobian matrix.

J = zeros(2);

J(1,1) = - (1 - t)*x(1) + (1 - t)*x(2)...

+ (1 + t)*x(3) - (1 + t)*x(4);

J(1,2) = - (1 - t)*y(1) + (1 - t)*y(2)...

+ (1 + t)*y(3) - (1 + t)*y(4);

J(2,1) = - (1 - s)*x(1) - (1 + s)*x(2)...

+ (1 + s)*x(3) + (1 - s)*x(4);

J(2,2) = - (1 - s)*y(1) - (1 + s)*y(2)...

+ (1 + s)*y(3) + (1 - s)*y(4);

detJ = (J(1,1)*J(2,2) - J(1,2)*J(2,1))/16;
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function [xNode,yNode] = map(x,y,s,t)

% Computes x and y-coordinates of nodes.

N = zeros(4,1);

N(1) = (1 - s)*(1 - t)/4;

N(2) = (1 + s)*(1 - t)/4;

N(3) = (1 + s)*(1 + t)/4;

N(4) = (1 - s)*(1 + t)/4;

xNode = dot(N,x); yNode = dot(N,y);

EXAMPLE 6.13

x

y

1

2
3

4

2 2

3

Evaluate the integral

I =
∫ ∫

A

(
x2 + y

)
dx dy

over the quadrilateral shown.

Solution The corner coordinates of the quadrilateral are

xT =
[

0 2 2 0
]

yT =
[

0 0 3 2
]

The mapping is

x(ξ, η) =
4∑

k=1

Nk(ξ, η)xk

= 0 + (1 + ξ )(1 − η)
4

(2) + (1 + ξ )(1 + η)
4

(2) + 0

= 1 + ξ

y(ξ, η) =
4∑

k=1

Nk(ξ, η)yk

= 0 + 0 + (1 + ξ )(1 + η)
4

(3) + (1 − ξ )(1 + η)
4

(2)

= (5 + ξ )(1 + η)
4
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which yields for the Jacobian matrix

J (ξ, η) =

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1 + η

4

0
5 + ξ

4

⎤
⎥⎥⎦

Thus the area scale factor is

|J (ξ, η)| = 5 + ξ

4

Now we can map the integral from the quadrilateral to the standard rectangle. Refer-
ring to Eq. (6.45), we obtain

I =
∫ 1

−1

∫ 1

−1

[
(1 + ξ )2 + (5 + ξ )(1 + η)

4

]
5 + ξ

4
dξ dη

=
∫ 1

−1

∫ 1

−1

(
45
16

+ 21
8

ξ + 29
16

ξ2 + 1
4
ξ3 + 25

16
η + 5

8
ξη + 1

16
ξ2η

)
dξ dη

Noting that only even powers of ξ and η contribute to the integral, we can simplify the
integral to

I =
∫ 1

−1

∫ 1

−1

(
45
16

+ 29
16

ξ2
)

dξ dη = 41
3

EXAMPLE 6.14
Evaluate the integral ∫ 1

−1

∫ 1

−1
cos

πx
2

cos
π y
2

dx dy

by Gauss–Legendre quadrature of order three.

Solution From the quadrature formula in Eq. (6.40), we have

I =
3∑

i=1

3∑
j=1

Ai A j cos
πxi

2
cos

π y j

2

a

a a

a b

b

b b

y

−1 10

1

−1

0 x

The integration points are shown in the figure; their coordinates and the correspond-
ing weights are listed in Table 6.3. Note that the integrand, the integration points and
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the weights are all symmetric about the coordinate axes. It follows that the points
labeled a contribute equal amounts to I ; the same is true for the points labeled b.
Therefore,

I = 4(0.555 556)2 cos2 π(0.774 597)
2

+ 4(0.555 556)(0.888 889) cos
π(0.774 597)

2
cos

π(0)
2

+ (0.888 889)2 cos2 π(0)
2

= 1.623 391

The exact value of the integral is 16/π2 ≈ 1.621 139.

EXAMPLE 6.15

x

y

1

3
4

2

34

41

1

Utilize gaussQuad2 to evaluate I = ∫ ∫
A f (x, y) dx dy over the quadrilateral shown,

where

f (x, y) = (x − 2)2(y − 2)2

Use enough integration points for an “exact” answer.

Solution The required integration order is determined by the integrand in Eq. (6.45):

I =
∫ 1

−1

∫ 1

−1
f [x(ξ, η), y(ξ, η)] |J (ξ, η)| dξ dη (a)

We note that |J (ξ, η)|, defined in Eqs. (6.44), is biquadratic. Since the specified f (x, y)
is also biquadratic, the integrand in Eq. (a) is a polynomial of degree 4 in both ξ and
η. Thus third-order integration (n = 3) is sufficient for an “exact” result. Here is the
MATLAB command that performs the integration:

>> I = gaussQuad2(@fex6_15,[0;4;4;1],[0;1;4;3],3)

I =

11.3778

>>
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The M-file that returns the function to be integrated is

function z = fex6_15(x,y)

% Function used in Example 6.15.

z = ((x - 2)*(y - 2))ˆ2;

Quadrature over a Triangular Element

1
2

3 4

Figure 6.8. Quadrilateral with two coincident corners.

A triangle may be viewed as a degenerate quadrilateral with two of its corners
occupying the same location, as illustrated in Fig. 6.8. Therefore, the integration for-
mulas over a quadrilateral region can also be used for a triangular element. However,
it is computationally advantageous to use integration formulas specially developed
for triangles, which we present without derivation.15

P
A

A

A 12

1
23

3

x

y

Figure 6.9. Triangular element.

Consider the triangular element in Fig. 6.9. Drawing straight lines from the point
P in the triangle to each of the corners divides the triangle into three parts with areas
A1, A2 and A3. The so-called area coordinates of P are defined as

αi = Ai

A
, i = 1, 2, 3 (6.47)

where A is the area of the element. Since A1 + A2 + A3 = A, the area coordinates are
related by

α1 + α2 + α3 = 1 (6.48)

Note that αi ranges from 0 (when P lies on the side opposite to corner i) to 1 (when P
is at corner i).

15 The triangle formulas are extensively used in the finite method analysis. See, for example, O.C.
Zienkiewicz and R.L Taylor, The Finite Element Method, Vol. 1, 4th ed., McGraw-Hill (1989).
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A convenient formula of computing A from the corner coordinates (xi, yi) is

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ (6.49)

The area coordinates are mapped into the Cartesian coordinates by

x(α1, α2, α3) =
3∑

i=1

αi xi y(α1, α2, α3) =
3∑

i=1

αi yi (6.50)

The integration formula over the element is∫ ∫
A

f [x(α), y(α)] dA = A
∑

k

Wk f [x(αk), y(αk)] (6.51)

where αk represents the area coordinates of the integration point k, and Wk are the
weights. The locations of the integration points are shown in Fig. 6.10, and the corre-
sponding values of αk and Wk are listed in Table 6.7. The quadrature in Eq. (6.51) is
exact if f (x, y) is a polynomial of the degree indicated.

a
a

b

c
b

c
d

a

(a) Linear (b) Quadratic (c) Cubic

Figure 6.10. Integration points of trian-
gular elements.

Degree of f (x, y) Point αk Wk

(a) Linear a 1/3, 1/3, 1/3 1

(b) Quadratic a 1/2, 0 , 1/2 1/3
b 1/2, 1/2, 0 1/3
c 0, 1/2 , 1/2 1/3

(c) Cubic a 1/3, 1/3, 1/3 −27/48
b 1/5, 1/5, 3/5 25/48
c 3/5. 1/5 , 1/5 25/48
d 1/5, 3/5 , 1/5 25/48

Table 6.7

� triangleQuad

The function triangleQuad computes
∫ ∫

A f (x, y) dx dy over a triangular region us-
ing the cubic formula—case (c) in Fig. 6.10. The triangle is defined by its corner co-
ordinate arrays x and y, where the coordinates must be listed in a counterclockwise
direction around the triangle.
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function I = triangleQuad(func,x,y)

% Cubic quadrature over a triangle.

% USAGE: I = triangleQuad(func,x,y)

% INPUT:

% func = handle of function to be integrated.

% x = [x1;x2;x3] x-coordinates of corners.

% y = [y1;y2;y3] y-coordinates of corners.

% OUTPUT:

% I = integral

alpha = [1/3 1/3 1/3; 1/5 1/5 3/5;...

3/5 1/5 1/5; 1/5 3/5 1/5];

W = [-27/48; 25/48; 25/48; 25/48];

xNode = alpha*x; yNode = alpha*y;

A = (x(2)*y(3) - x(3)*y(2)...

- x(1)*y(3) + x(3)*y(1)...

+ x(1)*y(2) - x(2)*y(1))/2;

sum = 0;

for i = 1:4

z = feval(func,xNode(i),yNode(i));

sum = sum + W(i)*z;

end

I = A*sum

EXAMPLE 6.16

3

1

x

y1

3

2

Evaluate I = ∫ ∫
A f (x, y) dx dy over the equilateral triangle shown, where16

f (x, y) = 1
2

(x2 + y2) − 1
6

(x3 − 3xy2) − 2
3

Use the quadrature formulas for (1) a quadrilateral and (2) a triangle.

16 This function is identical to the Prandtl stress function for torsion of a bar with the cross section
shown; the integral is related to the torsional stiffness of the bar. See, for example, S.P. Timoshenko
and J.N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill (1970).
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Solution of Part (1) Let the triangle be formed by collapsing corners 3 and 4 of a
quadrilateral. The corner coordinates of this quadrilateral are x = [−1, −1, 2, 2]T and
y = [

√
3, − √

3, 0, 0]T . To determine the minimum required integration order for an
exact result, we must examine f [x(ξ, η), y(ξ, η)] |J (ξ, η)|, the integrand in Eq. (6.45).
Since |J (ξ, η)| is biquadratic, and f (x, y) is cubic in x, the integrand is a polynomial of
degree 5 in x. Therefore, third-order integration will suffice. The command used for
the computations is similar to the one in Example 6.15:

>> I = gaussQuad2(@fex6_16,[-1;-1;2;2],...

[sqrt(3);-sqrt(3);0;0],3)

I =

-1.5588

The function that returns z = f (x, y) is

function z = fex6_16(x,y)

% Function used in Example 6.16

z = (xˆ2 + yˆ2)/2 - (xˆ3 - 3*x*yˆ2)/6 - 2/3;

Solution of Part (2) The following command executes quadrature over the triangular
element:

>> I = triangleQuad(@fex6_16,[-1; -1; 2],[sqrt(3);-sqrt(3); 0])

I =

-1.5588

Since the integrand is a cubic, this result is also exact.
Note that only four function evaluations were required when using the tri-

angle formulas. In contrast, the function had to be evaluated at nine points in
Part (1).

EXAMPLE 6.17
The corner coordinates of a triangle are (0, 0), (16, 10) and (12, 20). Compute∫ ∫

A

(
x2 − y 2

)
dx dy over this triangle.
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Solution

12 4

10

10

a

b

c

x

y

Because f (x, y) is quadratic, quadrature over the three integration points shown
in Fig. 6.10(b) will be sufficient for an “exact” result. Note that the integration points
lie in the middle of each side; their coordinates are (6, 10), (8, 5) and (14, 15). The area
of the triangle is obtained from Eq. (6.49):

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣∣
1 1 1
0 16 12
0 10 20

∣∣∣∣∣∣∣ = 100

From Eq. (6.51) we get

I = A
c∑

k=a

Wk f (xk, yk)

= 100
[

1
3

f (6, 10) + 1
3

f (8, 5) + 1
3

f (14, 15)
]

= 100
3

[
(62 − 102) + (82 − 52) + (142 − 152)

] = 1800

PROBLEM SET 6.3

1. Use Gauss–Legendre quadrature to compute∫ 1

−1

∫ 1

−1
(1 − x2)(1 − y 2) dx dy

2. Evaluate the following integral with Gauss–Legendre quadrature:∫ 2

y=0

∫ 3

x=0
x2 y 2 dx dy

3. Compute the approximate value of∫ 1

−1

∫ 1

−1
e−(x 2+y 2) dx dy

with Gauss–Legendre quadrature. Use integration order (a) two and (b) three.
(The true value of the integral is 2.230 985.)
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4. Use third-order Gauss–Legendre quadrature to obtain an approximate value of∫ 1

−1

∫ 1

−1
cos

π(x − y)
2

dx dy

(The exact value of the integral is 1.621 139.)
5.

4

4

2
x

y

Map the integral
∫ ∫

A xy dx dy from the quadrilateral region shown to the “stan-
dard” rectangle and then evaluate it analytically.

6.

4

4

32
x

y

Compute
∫ ∫

A x dx dy over the quadrilateral region shown by first mapping it into
the “standard” rectangle and then integrating analytically.

7.

4

2

3
x

y

Use quadrature to compute
∫ ∫

A x2 dx dy over the triangle shown.

8. Evaluate
∫ ∫

A x3 dx dy over the triangle shown in Prob. 7.
9.

4

x

y

3

Evaluate
∫ ∫

A(3 − x)y dx dy over the region shown.
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10. Evaluate
∫ ∫

A x2 y dx dy over the triangle shown in Prob. 9.

11. �

1 3

x

y

2

13

2

Evaluate
∫ ∫

A xy(2 − x2)(2 − xy) dx dy over the region shown.

12. � Compute
∫ ∫

A xy exp(−x2) dx dy over the region shown in Prob. 11 to four dec-
imal places.

13. �

1

1

x

y

Evaluate
∫ ∫

A(1 − x)(y − x)y dx dy over the triangle shown.

14. � Estimate
∫ ∫

A sin πx dx dy over the region shown in Prob. 13. Use the cubic
integration formula for a triangle. (The exact integral is 1/π .)

15. � Compute
∫ ∫

A sin πx sin π(y − x) dx dy to six decimal places, where A is the
triangular region shown in Prob. 13. Consider the triangle as a degenerate
quadrilateral.

16. �

1

1

1

1

y

x

Write a program to evaluate
∫ ∫

A f (x, y) dx dy over an irregular region that has
been divided into several triangular elements. Use the program to compute∫ ∫

A xy(y − x) dx dy over the region shown.
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MATLAB Functions

I = quad(func,a,b,tol) uses adaptive Simpson’s rule for evaluating I =∫ b
a f (x) dx with an error tolerancetol (default is 1.0e-6). To speed up execution,

vectorize the computation of func by using array operators .*, ./ and .ˆ in the
definition of func. For example, if f (x) = x3 sin x + 1/x, specify the function as

function y = func(x)

y = (x.ˆ3).*sin(x) + 1./x

I = dblquad(func,xMin,xMax,yMin,yMax,tol) uses quad to integrate over a
rectangle:

I =
∫ yMax

yMin

∫ xMax

xMin
f (x, y) dx dy

I = quadl(func,a,b,tol) employs adaptive Lobatto quadrature (this method is
not discussed in this book). It is recommended if very high accuracy is desired
and the integrand is smooth.

There are no functions for Gaussian quadrature.



7 Initial Value Problems

Solve y ′ = F(x, y), y(a) = α

7.1 Introduction

The general form of a first-order differential equation is

y ′ = f (x, y) (7.1a)

where y ′ = dy/dx and f (x, y) is a given function. The solution of this equation contains
an arbitrary constant (the constant of integration). To find this constant, we must know
a point on the solution curve; that is, y must be specified at some value of x, say at
x = a. We write this auxiliary condition as

y(a) = α (7.1b)

An ordinary differential equation of order n

y(n) = f
(
x, y, y ′, . . . , y(n−1)) (7.2)

can always be transformed into n first-order equations. Using the notation

y1 = y y2 = y ′ y3 = y ′′ . . . yn = y(n−1) (7.3)

the equivalent first-order equations are

y ′
1 = y2 y ′

2 = y3 y ′
3 = y4 . . . y ′

n = f (x, y1, y2, . . . , yn) (7.4a)

The solution now requires the knowledge n auxiliary conditions. If these conditions
are specified at the same value of x, the problem is said to be an initial value problem.
Then the auxiliary conditions, called initial conditions, have the form

y1(a) = α1 y2(a) = α2 y3(a) = α3 . . . yn(a) = αn (7.4b)

251
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If yi are specified at different values of x, the problem is called a boundary value
problem.

For example,

y ′′ = −y y(0) = 1 y ′(0) = 0

is an initial value problem since both auxiliary conditions imposed on the solution
are given at x = 0. On the other hand,

y ′′ = −y y(0) = 1 y(π) = 0

is a boundary value problem because the two conditions are specified at different
values of x.

In this chapter we consider only initial value problems. The more difficult bound-
ary value problems are discussed in the next chapter. We also make extensive use of
vector notation, which allows us manipulate sets of first-order equations in a concise
form. For example, Eqs. (7.4) are written as

y ′ = F(x, y) y(a) = α (7.5a)

where

F(x, y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y2

y3

...
yn

f (x, y)

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.5b)

A numerical solution of differential equations is essentially a table of x- and y-values
listed at discrete intervals of x.

7.2 Taylor Series Method

The Taylor series method is conceptually simple and capable of high accuracy. Its
basis is the truncated Taylor series for y about x:

y(x + h) ≈ y(x) + y ′(x)h + 1
2!

y ′′(x)h2 + 1
3!

y ′′′(x)h3 + · · · + 1
n!

y(m)(x)hm (7.6)

Because Eq. (7.6) predicts y at x + h from the information available at x, it is also a
formula for numerical integration. The last term kept in the series determines the
order of integration. For the series in Eq. (7.6) the integration order is m.

The truncation error, due to the terms omitted from the series, is

E = 1
(m+ 1)!

y(m+1)(ξ )hm+1, x < ξ < x + h
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Using the finite difference approximation

y(m+1)(ξ ) ≈ y(m)(x + h) − y(m)(x)
h

we obtain the more usable form

E ≈ hm

(m+ 1)!

[
y(m)(x + h) − y(m)(x)

]
(7.7)

which could be incorporated in the algorithm to monitor the error in each integration
step.

� taylor

The functiontaylor implements the Taylor series method of integration of order four.
It can handle any number of first-order differential equations y ′

i = fi(x, y1, y2, . . . , yn),
i = 1, 2, . . . , n. The user is required to supply the functionderiv that returns the 4 × n
array

d =

⎡
⎢⎢⎢⎣

(y ′)T

(y ′′)T

(y ′′′)T

(y(4))T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y ′
1 y ′

2 · · · y ′
n

y ′′
1 y ′′

2 · · · y ′′
n

y ′′′
1 y ′′′

2 · · · y ′′′
n

y(4)
1 y(4)

2 · · · y(4)
n

⎤
⎥⎥⎥⎦

The function returns the arrays xSol and ySol that contain the values of x and y
at intervals h.

function [xSol,ySol] = taylor(deriv,x,y,xStop,h)

% 4th-order Taylor series method of integration.

% USAGE: [xSol,ySol] = taylor(deriv,x,y,xStop,h)

% INPUT:

% deriv = handle of function that returns the matrix

% d = [dy/dx dˆ2y/dxˆ2 dˆ3y/dxˆ3 dˆ4y/dxˆ4].

% x,y = initial values; y must be a row vector.

% xStop = terminal value of x

% h = increment of x used in integration (h > 0).

% OUTPUT:

% xSol = x-values at which solution is computed.

% ySol = values of y corresponding to the x-values.

if size(y,1) > 1; y = y’; end % y must be row vector

xSol = zeros(2,1); ySol = zeros(2,length(y));

xSol(1) = x; ySol(1,:) = y;
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k = 1;

while x < xStop

h = min(h,xStop - x);

d = feval(deriv,x,y); % Derivatives of [y]

hh = 1;

for j = 1:4 % Build Taylor series

hh = hh*h/j; % hh = hˆj/j!

y = y + d(j,:)*hh;

end

x = x + h; k = k + 1;

xSol(k) = x; ySol(k,:) = y; % Store current soln.

end

� printSol

This function prints the results xSol and ySol in tabular form. The amount of data
is controlled by the printout frequency freq. For example, if freq = 5, every fifth
integration step would be displayed. If freq = 0, only the initial and final values will
be shown.

function printSol(xSol,ySol,freq)

% Prints xSol and ySoln arrays in tabular format.

% USAGE: printSol(xSol,ySol,freq)

% freq = printout frequency (prints every freq-th

% line of xSol and ySol).

[m,n] = size(ySol);

if freq == 0;freq = m; end

head = ’ x’;

for i = 1:n

head = strcat(head,’ y’,num2str(i));

end

fprintf(head); fprintf(’\n’)

for i = 1:freq:m

fprintf(’%14.4e’,xSol(i),ySol(i,:)); fprintf(’\n’)

end

if i ˜= m; fprintf(’%14.4e’,xSol(m),ySol(m,:)); end

EXAMPLE 7.1
Given that

y ′ + 4y = x2 y(0) = 1
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determine y(0.2) with the fourth-order Taylor series method using a single integration
step. Also compute the estimated error from Eq. (7.7) and compare it with the actual
error. The analytical solution of the differential equation is

y = 31
32

e−4x + 1
4

x2 − 1
8

x + 1
32

Solution The Taylor series up to and including the term with h4 is

y(h) = y(0) + y ′(0)h + 1
2!

y ′′(0)h2 + 1
3!

y ′′′(0)h3 + 1
4!

y(4)(0)h4 (a)

Differentiation of the differential equation yields

y ′ = −4y + x2

y ′′ = −4y ′ + 2x = 16y − 4x2 + 2x

y ′′′ = 16y ′ − 8x + 2 = −64y + 16x2 − 8x + 2

y(4) = −64y ′ + 32x − 8 = 256y − 64x2 + 32x − 8

Thus

y ′(0) = −4(1) = −4

y ′′(0) = 16(1) = 16

y ′′′(0) = −64(1) + 2 = −62

y(4)(0) = 256(1) − 8 = 248

With h = 0.2 Eq. (a) becomes

y(0.2) = 1 + (−4)(0.2) + 1
2!

(16)(0.2)2 + 1
3!

(−62)(0.2)3 + 1
4!

(248)(0.2)4

= 0.4539

According to Eq. (7.7) the approximate truncation error is

E = h4

5!

[
y(4)(0.2) − y(4)(0)

]
where

y(4)(0) = 248

y(4)(0.2) = 256(0.4539) − 64(0.2)2 + 32(0.2) − 8 = 112.04

Therefore,

E = (0.2)4

5!
(112.04 − 248) = −0.0018
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The analytical solution yields

y(0.2) = 31
32

e−4(0.2) + 1
4

(0.2)2 − 1
8

(0.2) + 1
32

= 0.4515

so that the actual error is 0.4515 − 0.4539 = −0.0024.

EXAMPLE 7.2
Solve

y ′′ = −0.1y ′ − x y(0) = 0 y ′(0) = 1

from x = 0 to 2 with the Taylor series method of order four using h = 0.25.

Solution With y1 = y and y2 = y ′ the equivalent first-order equations and initial con-
ditions are

y ′ =
[

y ′
1

y ′
2

]
=
[

y2

−0.1y2 − x

]
y(0) =

[
0
1

]

Repeated differentiation of the differential equations yields

y ′′ =
[

y ′
2

−0.1y ′
2 − 1

]
=
[

−0.1y2 − x
0.01y2 + 0.1x − 1

]

y ′′′ =
[

−0.1y ′
2 − 1

0.01y ′
2 + 0.1

]
=
[

0.01y2 + 0.1x − 1
−0.001y2 − 0.01x + 0.1

]

y(4) =
[

0.01y ′
2 + 0.1

−0.001y ′
2 − 0.01

]
=
[

−0.001y2 − 0.01x + 0.1
0.0001y2 + 0.001x − 0.01

]

Thus the derivative array required by taylor is

d =

⎡
⎢⎢⎢⎣

y2 −0.1y2 − x
−0.1y2 − x 0.01y2 + 0.1x − 1

0.01y2 + 0.1x − 1 −0.001y2 − 0.01x + 0.1
−0.001y2 − 0.01x + 0.1 0.0001y2 + 0.001x − 0.01

⎤
⎥⎥⎥⎦

which is computed by

function d = fex7_2(x,y)

% Derivatives used in Example 7.2

d = zeros(4,2);

d(1,1) = y(2);

d(1,2) = -0.1*y(2) - x;

d(2,1) = d(1,2);

d(2,2) = 0.01*y(2) + 0.1*x -1;
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d(3,1) = d(2,2);

d(3,2) = -0.001*y(2) - 0.01*x + 0.1;

d(4,1) = d(3,2);

d(4,2) = 0.0001*y(2) + 0.001*x - 0.01;

Here is the solution:

>> [x,y] = taylor(@fex7_2, 0, [0 1], 2, 0.25);

>> printSol(x,y,1)

x y1 y2

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

The analytical solution of the problem is

y = 100x − 5x2 + 990(e−0.1x − 1)

from which we obtain y(2) = 0.543 45 and y ′(2) = −1.0543, which agree with the nu-
merical solution.

The main drawback of the Taylor series method is that it requires repeated differ-
entiation of the dependent variables. These expressions may become very long and
thus error-prone and tedious to compute. Moreover, there is the extra work of coding
each of the derivatives.

7.3 Runge–Kutta Methods

The aim of Runge–Kutta methods is to eliminate the need for repeated differentiation
of the differential equations. Since no such differentiation is involved in the first-order
Taylor series integration formula

y(x + h) = y(x) + y ′(x)h = y(x) + F(x, y)h (7.8)

it can be considered as the first-order Runge–Kutta method; it is also called Euler’s
method. Due to excessive truncation error, this method is rarely used in practice.
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y' (x)

x
x x + h

Euler's formula

Error

f (x,y )

Figure 7.1. Graphical representation of Euler’s formula.

Let us now take a look at the graphical interpretation of Euler’s formula. For the
sake of simplicity, we assume that there is a single dependent variable y, so that the dif-
ferential equation is y ′ = f (x, y). The change in the solution y between x and x + h is

y(x + h) − y(h) =
∫ x+h

x
y ′ dx =

∫ x+h

x
f (x, y)dx

which is the area of the panel under the y ′(x) plot, shown in Fig. 7.1. Euler’s formula
approximates this area by the area of the cross-hatched rectangle. The area between
the rectangle and the plot represents the truncation error. Clearly, the truncation
error is proportional to the slope of the plot; that is, proportional to y ′′(x).

Second-Order Runge–Kutta Method

To arrive at the second-order method, we assume an integration formula of the form

y(x + h) = y(x) + c0F(x, y)h + c1F
[
x + ph, y + qhF(x, y)

]
h (a)

and attempt to find the parameters c0, c1, p and q by matching Eq. (a) to the Taylor
series

y(x + h) = y(x) + y ′(x)h + 1
2!

y ′′(x)h2 + O(h3)

= y(x) + F(x, y)h + 1
2

F ′(x, y)h2 + O(h3) (b)

Noting that

F ′(x, y) = ∂F
∂x

+
n∑

i=1

∂F
∂yi

y ′
i = ∂F

∂x
+

n∑
i=1

∂F
∂yi

Fi(x, y)

where n is the number of first-order equations, we can write Eq. (b) as

y(x + h) = y(x) + F(x, y)h + 1
2

(
∂F
∂x

+
n∑

i=1

∂F
∂yi

Fi(x, y)

)
h2 + O(h3) (c)

Returning to Eq. (a), we can rewrite the last term by applying a Taylor series in
several variables:

F
[
x + ph, y + qhF(x, y)

] = F(x, y) + ∂F
∂x

ph + qh
n∑

i=1

∂F
∂yi

Fi(x, y) + O(h2)
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so that Eq. (a) becomes

y(x + h) = y(x) + (c0 + c1) F(x, y)h + c1

[
∂F
∂x

ph + qh
n∑

i=1

∂F
∂yi

Fi(x, y)

]
h + O(h3) (d)

Comparing Eqs. (c) and (d), we find that they are identical if

c0 + c1 = 1 c1 p = 1
2

c1q = 1
2

(e)

Because Eqs. (e) represent three equations in four unknown parameters, we can assign
any value to one of the parameters. Some of the popular choices and the names
associated with the resulting formulas are:

c0 = 0 c1 = 1 p = 1/2 q = 1/2 Modified Euler’s method
c0 = 1/2 c1 = 1/2 p = 1 q = 1 Heun’s method
c0 = 1/3 c1 = 2/3 p = 3/4 q = 3/4 Ralston’s method

All these formulas are classified as second-order Runge–Kutta methods, with no for-
mula having a numerical superiority over the others. Choosing the modified Euler’s
method, we substitute the corresponding parameters into Eq. (a) to yield

y(x + h) = y(x) + F
[

x + h
2

, y + h
2

F(x, y)
]

h (f)

This integration formula can be conveniently evaluated by the following sequence of
operations

K1 = hF(x, y)

K2 = hF
(

x + h
2

, y + 1
2

K1

)
(7.9)

y(x + h) = y(x) + K2

Second-order methods are seldom used in computer application. Most program-
mers prefer integration formulas of order four, which achieve a given accuracy with
less computational effort.

y'(x )

x
x x + h

h/2h/2f (x,y )
f (x + h/2, y + K1/2)

Figure 7.2. Graphical representation of modified Euler
formula.

Figure 7.2 displays the graphical interpretation of modified Euler’s formula for a
single differential equation y ′ = f (x, y). The first of Eqs. (7.9) yields an estimate of
y at the midpoint of the panel by Euler’s formula: y(x + h/2) = y(x) + f (x, y)h/2 =
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y(x) + K1/2. The second equation then approximates the area of the panel by the area
K2 of the cross-hatched rectangle. The error here is proportional to the curvature y ′′′

of the plot.

Fourth-Order Runge–Kutta Method

The fourth-order Runge–Kutta method is obtained from the Taylor series along the
same lines as the second-order method. Since the derivation is rather long and not very
instructive, we skip it. The final form of the integration formula again depends on the
choice of the parameters; that is, there is no unique Runge–Kutta fourth-order formula.
The most popular version, which is known simply as the Runge–Kutta method, entails
the following sequence of operations:

K1 = hF(x, y)

K2 = hF
(

x + h
2

, y + K1

2

)

K3 = hF
(

x + h
2

, y + K2

2

)
(7.10)

K4 = hF(x + h, y + K3)

y(x + h) = y(x) + 1
6

(K1 + 2K2 + 2K3 + K4)

The main drawback of this method is that it does not lend itself to an estimate of the
truncation error. Therefore, we must guess the integration step size h, or determine
it by trial and error. In contrast, the so-called adaptive methods can evaluate the
truncation error in each integration step and adjust the value of h accordingly (but at
a higher cost of computation). One such adaptive method is introduced in the next
article.

� runKut4

The function runKut4 implements the Runge–Kutta method of order four. The user
must provide runKut4 with the function dEqs that defines the first-order differential
equations y ′ = F(x, y).

function [xSol,ySol] = runKut4(dEqs,x,y,xStop,h)

% 4th-order Runge--Kutta integration.

% USAGE: [xSol,ySol] = runKut4(dEqs,x,y,xStop,h)

% INPUT:

% dEqs = handle of function that specifies the
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% 1st-order differential equations

% F(x,y) = [dy1/dx dy2/dx dy3/dx ...].

% x,y = initial values; y must be row vector.

% xStop = terminal value of x.

% h = increment of x used in integration.

% OUTPUT:

% xSol = x-values at which solution is computed.

% ySol = values of y corresponding to the x-values.

if size(y,1) > 1 ; y = y’; end % y must be row vector

xSol = zeros(2,1); ySol = zeros(2,length(y));

xSol(1) = x; ySol(1,:) = y;

i = 1;

while x < xStop

i = i + 1;

h = min(h,xStop - x);

K1 = h*feval(dEqs,x,y);

K2 = h*feval(dEqs,x + h/2,y + K1/2);

K3 = h*feval(dEqs,x + h/2,y + K2/2);

K4 = h*feval(dEqs,x+h,y + K3);

y = y + (K1 + 2*K2 + 2*K3 + K4)/6;

x = x + h;

xSol(i) = x; ySol(i,:) = y; % Store current soln.

end

EXAMPLE 7.3
Use the second-order Runge–Kutta method to integrate

y ′ = sin y y(0) = 1

from x = 0 to 0.5 in steps of h = 0.1. Keep four decimal places in the computations.

Solution In this problem we have

f (x, y) = sin y

so that the integration formulas in Eqs. (7.9) are

K1 = hf (x, y) = 0.1 sin y

K2 = hf
(

x + h
2

, y + 1
2

K1

)
= 0.1 sin

(
y + 1

2
K1

)

y(x + h) = y(x) + K2
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Noting that y(0) = 1, we may proceed with the integration as follows:

K1 = 0.1 sin 1.0000 = 0.0841

K2 = 0.1 sin
(

1.0000 + 0.0841
2

)
= 0.0863

y(0.1) = 1.0 + 0.0863 = 1.0863

K1 = 0.1 sin 1.0863 = 0.0885

K2 = 0.1 sin
(

1.0863 + 0.0885
2

)
= 0.0905

y(0.2) = 1.0863 + 0.0905 = 1.1768

and so on. A summary of the computations is shown in the table below.

x y K1 K2

0.0 1.0000 0.0841 0.0863

0.1 1.0863 0.0885 0.0905

0.2 1.1768 0.0923 0.0940

0.3 1.2708 0.0955 0.0968

0.4 1.3676 0.0979 0.0988

0.5 1.4664

The exact solution can be shown to be

x(y) = ln(csc y − cot y) + 0.604582

which yields x(1.4664) = 0.5000. Therefore, up to this point the numerical solution is
accurate to four decimal places. However, it is unlikely that this precision would be
maintained if we were to continue the integration. Since the errors (due to truncation
and roundoff) tend to accumulate, longer integration ranges require better integration
formulas and more significant figures in the computations.

EXAMPLE 7.4
Solve

y ′′ = −0.1y ′ − x y(0) = 0 y ′(0) = 1

from x = 0 to 2 in increments of h = 0.25 with the fourth-order Runge–Kutta method.
(This problem was solved by the Taylor series method in Example 7.2.)
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Solution Letting y1 = y and y 2 = y ′, we write the equivalent first-order equations as

F(x, y) = y ′ =
[

y ′
1

y ′
2

]
=
[

y 2

−0.1y 2 − x

]

which are coded in the following function:

function F = fex7_4(x,y)

% Differential. eqs. used in Example 7.4

F = zeros(1,2);

F(1) = y(2); F(2) = -0.1*y(2) - x;

Comparing the function fex7 4 here with fex7 2 in Example 7.2 we note that it
is much simpler to input the differential equations for the Runge–Kutta method than
for the Taylor series method. Here are the results of integration:

>> [x,y] = runKut4(@fex7_4,0,[0 1],2,0.25);

>> printSol(x,y,1)

x y1 y2

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

These results are the same as obtained by the Taylor series method in Example 7.2.
This was expected, since both methods are of the same order.

EXAMPLE 7.5
Use the fourth-order Runge–Kutta method to integrate

y ′ = 3y − 4e−x y(0) = 1

from x = 0 to 10 in steps of h = 0.1. Compare the result with the analytical solution
y = e−x.
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Solution The function specifying the differential equation is

function F = fex7_5(x,y)

% Differential eq. used in Example 7.5.

F = 3*y - 4*exp(-x);

The solution is (every 20th line was printed):

>> [x,y] = runKut4(@fex7_5,0,1,10,0.1);

>> printSol(x,y,20)

x y1

0.0000e+000 1.0000e+000

2.0000e+000 1.3250e-001

4.0000e+000 -1.1237e+000

6.0000e+000 -4.6056e+002

8.0000e+000 -1.8575e+005

1.0000e+001 -7.4912e+007

It is clear that something went wrong. According to the analytical solution, y
should decrease to zero with increasing x, but the output shows the opposite trend:
after an initial decrease, the magnitude of y increases dramatically. The explanation
is found by taking a closer look at the analytical solution. The general solution of the
given differential equation is

y = Ce3x + e−x

which can be verified by substitution. The initial condition y(0) = 1 yields C = 0, so
that the solution to the problem is indeed y = e−x.

The cause of trouble in the numerical solution is the dormant term Ce3x. Suppose
that the initial condition contains a small error ε, so that we have y(0) = 1 + ε. This
changes the analytical solution to

y = εe3x + e−x

We now see that the term containing the error ε becomes dominant as x is increased.
Since errors inherent in the numerical solution have the same effect as small changes in
initial conditions, we conclude that our numerical solution is the victim of numerical
instability due to sensitivity of the solution to initial conditions. The lesson here is: do
not always trust the results of numerical integration.
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EXAMPLE 7.6

Re r v0

H

A spacecraft is launched at an altitude H = 772 km above sea level with the speed
v0 = 6700 m/s in the direction shown. The differential equations describing the mo-
tion of the spacecraft are

r̈ = r θ̇
2 − G Me

r2
θ̈ = −2ṙ θ̇

r

where r and θ are the polar coordinates of the spacecraft. The constants involved in
the motion are

G = 6.672 × 10−11 m3kg−1s−2 = universal gravitational constant

Me = 5.9742 × 1024 kg = mass of the earth

Re = 6378.14 km = radius of the earth at sea level

(1) Derive the first-order differential equations and the initial conditions of the form
ẏ = F(t, y), y(0) = b. (2) Use the fourth-order Runge–Kutta method to integrate the
equations from the time of launch until the spacecraft hits the earth. Determine θ at
the impact site.

Solution of Part (1) We have

G Me = (
6.672 × 10−11) (5.9742 × 1024) = 3.9860 × 1014 m3s−2

Letting

y =

⎡
⎢⎢⎢⎣

y 1

y 2

y 3

y 4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r
ṙ
θ

θ̇

⎤
⎥⎥⎥⎦

the equivalent first-order equations become

ẏ =

⎡
⎢⎢⎢⎣

ẏ1

ẏ2

ẏ3

ẏ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y 1

y 0 y 2
3 − 3.9860 × 1014/y 2

0

y 3

−2y 1 y 3/y 0

⎤
⎥⎥⎥⎦
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with the initial conditions

r(0) = Re + H = Re = (6378.14 + 772) × 103 = 7. 15014 × 106 m

ṙ(0) = 0

θ(0) = 0

θ̇(0) = v0/r(0) = (6700) /(7.15014 × 106) = 0.937045 × 10−3 rad/s

Therefore,

y(0) =

⎡
⎢⎢⎢⎣

7. 15014 × 106

0
0
0.937045 × 10−3

⎤
⎥⎥⎥⎦

Solution of Part (2) The function that returns the differential equations is

function F = fex7_6(x,y)

% Differential eqs. used in Example 7.6.

F = zeros(1,4);

F(1) = y(2);

F(2) = y(1)*y(4)ˆ2 - 3.9860e14/y(1)ˆ2;

F(3) = y(4);

F(4) = -2*y(2)*y(4)/y(1);

The program used for numerical integration is listed below. Note that the inde-
pendent variable t is denoted by x.

% Example 7.6 (Runge-Kutta integration)

x = 0; y = [7.15014e6 0 0 0.937045e-3];

xStop = 1200; h = 50; freq = 2;

[xSol,ySol] = runKut4(@fex7_6,x,y,xStop,h);

printSol(xSol,ySol,freq)

Here is the output:

>> x y1 y2 y3 y4

0.0000e+000 7.1501e+006 0.0000e+000 0.0000e+000 9.3704e-004

1.0000e+002 7.1426e+006 -1.5173e+002 9.3771e-002 9.3904e-004

2.0000e+002 7.1198e+006 -3.0276e+002 1.8794e-001 9.4504e-004

3.0000e+002 7.0820e+006 -4.5236e+002 2.8292e-001 9.5515e-004
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4.0000e+002 7.0294e+006 -5.9973e+002 3.7911e-001 9.6951e-004

5.0000e+002 6.9622e+006 -7.4393e+002 4.7697e-001 9.8832e-004

6.0000e+002 6.8808e+006 -8.8389e+002 5.7693e-001 1.0118e-003

7.0000e+002 6.7856e+006 -1.0183e+003 6.7950e-001 1.0404e-003

8.0000e+002 6.6773e+006 -1.1456e+003 7.8520e-001 1.0744e-003

9.0000e+002 6.5568e+006 -1.2639e+003 8.9459e-001 1.1143e-003

1.0000e+003 6.4250e+006 -1.3708e+003 1.0083e+000 1.1605e-003

1.1000e+003 6.2831e+006 -1.4634e+003 1.1269e+000 1.2135e-003

1.2000e+003 6.1329e+006 -1.5384e+003 1.2512e+000 1.2737e-003

The spacecraft hits the earth when r equals Re = 6.378 14 × 106 m. This occurs
between t = 1000 and 1100 s. A more accurate value of t can be obtained by polynomial
interpolation. If no great precision is needed, linear interpolation will do. Letting
1000 + �t be the time of impact, we can write

r(1000 + �t) = Re

Expanding r in a two-term Taylor series, we get

r(1000) + ṙ(1000)�t = Re

6.4250 × 106 + (−1.3708 × 103)�t = 6378.14 × 103

from which

�t = 34.184 s

Thus the time of impact is 1034.2 s.
The coordinate θ of the impact site can be estimated in a similar manner. Using

again two terms of the Taylor series, we have

θ(1000 + �t) = θ(1000) + θ̇(1000)�t

= 1.0083 + (
1.1605 × 10−3) (34.184)

= 1.0480 rad = 60.00◦

PROBLEM SET 7.1

1. Given

y ′ + 4y = x2 y(0) = 1

compute y(0.1) using one step of the Taylor series method of order (a) two and
(b) four. Compare the result with the analytical solution

y(x) = 31
32

e−4x + 1
4

x2 − 1
8

x + 1
32
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2. Solve Prob. 1 with one step of the Runge–Kutta method of order (a) two and (b)
four.

3. Integrate

y ′ = sin y y(0) = 1

from x = 0 to 0.5 with the second-order Taylor series method using h = 0.1. Com-
pare the result with Example 7.3.

4. Verify that the problem

y ′ = y1/3 y(0) = 0

has two solutions: y = 0 and y = (2x/3)3/2. Which of the solutions would be re-
produced by numerical integration if the initial condition is set at (a) y = 0 and
(b) y = 10−16? Verify your conclusions by integrating with any numerical method.

5. Convert the following differential equations into first-order equations of the form
y ′ = F(x, y):

(a) ln y ′ + y = sin x
(b) y ′′ y − xy ′ − 2y2 = 0
(c) y(4) − 4y ′′√1 − y2 = 0

(d)
(

y
′′)2 = ∣∣32y ′x − y2

∣∣
6. In the following sets of coupled differential equations t is the independent vari-

able. Convert these equations into first-order equations of the form ẏ = F(t, y):

(a) ÿ = x − 2y ẍ = y − x

(b) ÿ = −y
(

ẏ 2 + ẋ2
)1/4

ẍ = −x
(

ẏ 2 + ẋ
)1/4 − 32

(c) ÿ 2 + t sin y = 4ẋ xẍ + t cos y = 4ẏ

7. � The differential equation for the motion of a simple pendulum is

d2θ

dt2
= − g

L
sin θ

where

θ = angular displacement from the vertical

g = gravitational acceleration

L = length of the pendulum

With the transformation τ = t
√

g/L the equation becomes

d2θ

dτ 2
= − sin θ
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Use numerical integration to determine the period of the pendulum if the ampli-
tude is θ0 = 1 rad. Note that for small amplitudes (sin θ ≈ θ) the period is 2π

√
L/g.

8. � A skydiver of mass m in a vertical free fall experiences an aerodynamic drag
force FD = cD ẏ 2, where y is measured downward from the start of the fall. The
differential equation describing the fall is

ÿ = g − cD

m
ẏ 2

Determine the time of a 500 m fall. Use g = 9.80665 m/s2, cD = 0.2028 kg/m and
m = 80 kg.

9. �

P (t )
m

k

y

The spring–mass system is at rest when the force P(t) is applied, where

P(t) =
{

10t N when t < 2 s
20 N when t ≥ 2 s

The differential equation for the ensuing motion is

ÿ = P(t)
m

− k
m

y

Determine the maximum displacement of the mass. Use m = 2.5 kg and k =
75 N/m.

10. �

y

Water level

The conical float is free to slide on a vertical rod. When the float is disturbed
from its equilibrium position, it undergoes oscillating motion described by the
differential equation

ÿ = g
(
1 − ay 3)
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where a = 16 m−3 (determined by the density and dimensions of the float) and
g = 9.80665 m/s2. If the float is raised to the position y = 0.1 m and released,
determine the period and the amplitude of the oscillations.

11. �
y (t )

L

m

θ

The pendulum is suspended from a sliding collar. The system is at rest when the
oscillating motion y(t) = Y sin ωt is imposed on the collar, starting at t = 0. The
differential equation describing the motion of the pendulum is

θ̈ = − g
L

sin θ + ω2

L
Y cos θ sin ωt

Plot θ vs. t from t = 0 to 10 s and determine the largest θ during this period. Use
g = 9.80665 m/s2, L = 1.0 m, Y = 0.25 m and ω = 2.5 rad/s.

12. �

2 m

r

θ(t )

The system consisting of a sliding mass and a guide rod is at rest with the mass
at r = 0.75 m. At time t = 0 a motor is turned on that imposes the motion θ(t) =
(π/12) cos πt on the rod. The differential equation describing the resulting motion
of the slider is

r̈ =
(

π2

12

)2

r sin2 πt − g sin
( π

12
cos πt

)
Determine the time when the slider reaches the tip of the rod. Use g = 9.80665
m/s2.

13. �

30

v0

m R

y

x



271 7.3 Runge–Kutta Methods

A ball of mass m = 0.25 kg is launched with the velocity v0 = 50 m/s in the direc-
tion shown. If the aerodynamic drag force acting on the ball is FD = CDv3/2, the
differential equations describing the motion are

ẍ = −CD

m
ẋv1/2 ÿ = −CD

m
ẏv1/2 − g

where v =
√

ẋ2 + ẏ 2. Determine the time of flight and the range R. Use CD = 0.03
kg/(m·s)1/2 and g = 9.80665 m/s2.

14. � The differential equation describing the angular position θ of a mechanical
arm is

θ̈ = a(b − θ) − θ θ̇
2

1 + θ2

where a = 100 s−2 and b = 15. If θ(0) = 2π and θ̇(0) = 0, compute θ and θ̇ when
t = 0.5 s.

15. �

r

m

L = undeformed length
k = stiffness

The mass m is suspended from an elastic cord with an extensional stiffness k and
undeformed length L. If the mass is released from rest at θ = 60◦ with the cord
unstretched, find the length r of the cord when the position θ = 0 is reached for
the first time. The differential equations describing the motion are

r̈ = r θ̇
2 + g cos θ − k

m
(r − L)

θ̈ = −2ṙ θ̇ − g sin θ

r

Use g = 9.80665 m/s2, k = 40 N/m, L = 0.5 m and m = 0.25 kg.

16. � Solve Prob. 15 if the pendulum is released from the position θ = 60◦ with the
cord stretched by 0.075 m.

17. �

m
k

y

µ
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Consider the mass–spring system where dry friction is present between the block
and the horizontal surface. The frictional force has a constant magnitude µmg
(µ is the coefficient of friction) and always opposes the motion. The differential
equation for the motion of the block can be expressed as

ÿ = − k
m

y − µg
ẏ

|ẏ|
where y is measured from the position where the spring is unstretched. If the block
is released from rest at y = y 0, verify by numerical integration that the next positive
peak value of y is y 0 − 4µmg/k (this relationship can be derived analytically). Use
k = 3000 N/m, m = 6 kg, µ = 0.5, g = 9.80665 m/s2 and y 0 = 0.1 m.

18. � Integrate the following problems from x = 0 to 20 and plot y vs. x:

(a) y ′′ + 0.5(y2 − 1)y ′ + y = 0 y(0) = 1 y ′(0) = 0
(b) y ′′ = y cos 2x y(0) = 0 y ′(0) = 1

These differential equations arise in nonlinear vibration analysis.

19. � The solution of the problem

y ′′ + 1
x

y ′ + y y(0) = 1 y ′(0) = 0

is the Bessel function J0(x). Use numerical integration to compute J0(5) and com-
pare the result with −0.17760, the value listed in mathematical tables. Hint : to
avoid singularity at x = 0, start the integration at x = 10−12.

20. � Consider the initial value problem

y ′′ = 16.81y y(0) = 1.0 y ′(0) = −4.1

(a) Derive the analytical solution. (b) Do you anticipate difficulties in numerical
solution of this problem? (c) Try numerical integration from x = 0 to 8 to see if
your concerns were justified.

21. �

R R

C

2R
i2

i1

i1
i2

L

E(t )

Kirchoff’s equations for the circuit shown are

L
di1

dt
+ Ri1 + 2R(i1 + i2) = E(t) (a)

q2

C
+ Ri2 + 2R(i2 + i1) = E(t) (b)
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Differentiating Eq. (b) and substituting the charge–current relationship dq2/dt =
i2, we get

di1

dt
= −3Ri1 − 2Ri2 + E(t)

L
(c)

di2

dt
= −2

3
di1

dt
− i2

3RC
+ 1

3R
dE
dt

(d)

We could substitute di1/dt from Eq. (c) into Eq. (d), so that the latter would assume
the usual form di2/dt = f (t, i1, i2), but it is more convenient to leave the equations
as they are. Assuming that the voltage source is turned on at time t = 0, plot the
loop currents i1 and i2 from t = 0 to 0.05 s. Use E(t) = 240 sin(120πt) V, R = 1.0 �,
L = 0.2 × 10−3 H and C = 3.5 × 10−3 F.

22. �
L L

R R

C CE
i1

i2i1

i2

The constant voltage source E of the circuit shown is turned on at t = 0, causing
transient currents i1 and i2 in the two loops that last about 0.05 s. Plot these currents
from t = 0 to 0.05 s, using the following data: E = 9 V, R = 0.25 �, L = 1.2 × 10−3 H
and C = 5 × 10−3 F. Kirchoff’s equations for the two loops are

L
di1

dt
+ Ri1 + q1 − q2

C
= E

L
di2

dt
+ Ri2 + q2 − q1

C
+ q2

C
= 0

Additional two equations are the current–charge relationships

dq1

dt
= i1

di2

dt
= i2

7.4 Stability and Stiffness

Loosely speaking, a method of numerical integration is said to be stable if the effects
of local errors do not accumulate catastrophically; that is, if the global error remains
bounded. If the method is unstable, the global error will increase exponentially, even-
tually causing numerical overflow. Stability has nothing to do with accuracy; in fact,
an inaccurate method can be very stable.
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Stability is determined by three factors: the differential equations, the method of
solution and the value of the increment h. Unfortunately, it is not easy to determine
stability beforehand, unless the differential equation is linear.

Stability of Euler’s Method

As a simple illustration of stability, consider the problem

y ′ = −λy y(0) = β (7.11)

where λ is a positive constant. The exact solution of this problem is

y(x) = βe−λx

Let us now investigate what happens when we attempt to solve Eq. (7.11) numer-
ically with Euler’s formula

y(x + h) = y(x) + hy ′(x) (7.12)

Substituting y ′(x) = −λy(x), we get

y(x + h) = (1 − λh)y(x)

If |1 − λh| > 1, the method is clearly unstable since |y| increases in every integration
step. Thus Euler’s method is stable only if |1 − λh| ≤ 1, or

h ≤ 2/λ (7.13)

The results can be extended to a system of n differential equations of the form

y ′ = −�y (7.14)

where � is a constant matrix with the positive eigenvalues λi , i = 1, 2, . . . , n. It can be
shown that Euler’s implicit method of integration formula is stable only if

h < 2/λmax (7.15)

where λmax is the largest eigenvalue of �.

Stiffness

An initial value problem is called stiff if some terms in the solution vector y(x) vary
much more rapidly with x than others. Stiffness can be easily predicted for the differ-
ential equations y′ = −�y with constant coefficient matrix �. The solution of these
equations is y(x) = ∑

i Ci vi exp(−λi x), where λi are the eigenvalues of � and vi are
the corresponding eigenvectors. It is evident that the problem is stiff if there is a large
disparity in the magnitudes of the positive eigenvalues.
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Numerical integration of stiff equations requires special care. The step size h
needed for stability is determined by the largest eigenvalue λmax, even if the terms
exp(−λmaxx) in the solution decay very rapidly and becomes insignificant as we move
away from the origin.

For example, consider the differential equation17

y ′′ + 1001y ′ + 1000y = 0 (7.16)

Using y 1 = y and y 2 = y ′, the equivalent first-order equations are

y ′ =
[

y 2

−1000y 1 − 1001y 2

]

In this case

� =
[

0 −1
1000 1001

]

The eigenvalues of � are the roots of

|� − λI| =
∣∣∣∣∣ −λ −1

1000 1001 − λ

∣∣∣∣∣ = 0

Expanding the determinant we get

−λ(1001 − λ) + 1000 = 0

which has the solutions λ1 = 1 and λ2 = 1000. These equations are clearly stiff. Ac-
cording to Eq. (7.15) we would need h < 2/λ2 = 0.002 for Euler’s method to be stable.
The Runge–Kutta method would have approximately the same limitation on the step
size.

When the problem is very stiff, the usual methods of solution, such as the Runge–
Kutta formulas, become impractical due to the very small hrequired for stability. These
problems are best solved with methods that are specially designed for stiff equations.
Stiff problem solvers, which are outside the scope of this text, have much better stabil-
ity characteristics; some of them are even unconditionally stable. However, the higher
degree of stability comes at a cost—the general rule is that stability can be improved
only by reducing the order of the method (and thus increasing the truncation error).

EXAMPLE 7.7
(1) Show that the problem

y ′′ = −19
4

y − 10y ′ y(0) = −9 y ′(0) = 0

17 This example is taken from C.E. Pearson, Numerical Methods in Engineering and Science, van
Nostrand and Reinhold (1986).
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is moderately stiff and estimate hmax, the largest value of h for which the Runge–Kutta
method would be stable. (2) Confirm the estimate by computing y(10) with h ≈ hmax/2
and h ≈ 2hmax.

Solution of Part (1) With the notation y = y 1 and y ′ = y 2 the equivalent first-order
differential equations are

y ′ =
⎡
⎣ y 2

−19
4

y 1 − 10y 2

⎤
⎦ = −�

[
y 1

y 2

]

where

� =
⎡
⎣ 0 −1

19
4

10

⎤
⎦

The eigenvalues of � are given by

|� − λI| =
∣∣∣∣∣∣
−λ −1
19
4

10 − λ

∣∣∣∣∣∣ = 0

which yields λ1 = 1/2 and λ2 = 19/2. Because λ2 is quite a bit larger than λ1, the
equations are moderately stiff.

Solution of Part (2) An estimate for the upper limit of the stable range of h can be
obtained from Eq. (7.15):

hmax = 2
λmax

= 2
19/2

= 0.2153

Although this formula is strictly valid for Euler’s method, it is usually not too far off
for higher-order integration formulas.

Here are the results from the Runge–Kutta method with h = 0.1 (by specifying
freq = 0 in printSol, only the initial and final values were printed):

>> x y1 y2

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

y(x) = −19
2

e−x/2 + 1
2

e−19x/2

yielding y(10) = −0.0640 11, which agrees with the value obtained numerically.
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With h = 0.5 we encountered instability, as expected:

>> x y1 y2

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 2.7030e+020 -2.5678e+021

7.5 Adaptive Runge–Kutta Method

Determination of a suitable step size h can be a major headache in numerical inte-
gration. If h is too large, the truncation error may be unacceptable; if h is too small, we
are squandering computational resources. Moreover, a constant step size may not be
appropriate for the entire range of integration. For example, if the solution curve starts
off with rapid changes before becoming smooth (as in a stiff problem), we should use
a small h at the beginning and increase it as we reach the smooth region. This is where
adaptive methods come in. They estimate the truncation error at each integration step
and automatically adjust the step size to keep the error within prescribed limits.

The adaptive Runge–Kutta methods use so-called embedded integration formulas.
These formulas come in pairs: one formula has the integration order m, the other
one is of order m+ 1. The idea is to use both formulas to advance the solution from
x to x + h. Denoting the results by ym(x + h) and ym+1(x + h), we may estimate the
truncation error in the formula of order m as

E(h) = ym+1(x + h) − ym(x + h) (7.17)

What makes the embedded formulas attractive is that they share the points where
F(x, y) is evaluated. This means that once ym(x + h) has been computed, relatively
small additional effort is required to calculate ym+1(x + h).

Here are the Runge–Kutta embedded formulas of orders 5 and 4 that were origi-
nally derived by Fehlberg; hence they are known as Runge–Kutta–Fehlberg formulas:

K1 = hF(x, y)

Ki = hF

(
x + Ai h, y +

i−1∑
j=0

Bi j K j

)
, i = 2, 3, . . . , 6 (7.1)

y5(x + h) = y(x) +
6∑

i=1

Ci Ki (5th-order formula) (7.19a)

y4(x + h) = y(x) +
6∑

i=1

Di Ki (4th-order formula) (7.19b)
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The coefficients appearing in these formulas are not unique. The tables below give the
coefficients proposed by Cash and Karp18 which are claimed to be an improvement
over Fehlberg’s original values.

i Ai Bi j Ci Di

1 − − − − − − 37
378

2825
27 648

2
1
5

1
5

− − − − 0 0

3
3

10
3

40
9

40
− − − 250

621
18 575
48 384

4
3
5

3
10

− 9
10

6
5

− − 125
594

13 525
55 296

5 1 −11
54

5
2

−70
27

35
27

− 0
277

14 336

6
7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 7.1. Cash–Karp coefficients for Runge–Kutta–Fehlberg formulas

The solution is advanced with the fifth-order formula in Eq. (7.19a). The fourth-
order formula is used only implicitly in estimating the truncation error

E(h) = y5(x + h) − y4(x + h) =
6∑

i=1

(Ci − Di)Ki (7.20)

Since Eq. (7.20) actually applies to the fourth-order formula, it tends to overestimate
the error in the fifth-order formula.

Note that E(h) is a vector, its components Ei(h) representing the errors in the
dependent variables yi . This brings up the question: what is the error measure e(h)
that we wish to control? There is no single choice that works well in all problems. If
we want to control the largest component of E(h), the error measure would be

e(h) = max
i

|Ei(h)| (7.21)

18 J.R. Cash and A.H. Carp, ACM Transactions on Mathematical Software 16, 201–222 (1990).



279 7.5 Adaptive Runge–Kutta Method

We could also control some gross measure of the error, such as the root-mean-square
error defined by

Ē(h) =
√√√√1

n

n∑
i=1

E 2
i (h) (7.22)

where n is the number of first-order equations. Then we would use

e(h) = Ē(h) (7.23)

for the error measure. Since the root-mean-square error is easier to handle, we adopt
it for our program.

Error control is achieved by adjusting the increment h so that the per-step error
e is approximately equal to a prescribed tolerance ε. Noting that the truncation error
in the fourth-order formula is O(h5), we conclude that

e(h1)
e(h2)

≈
(

h1

h2

)5

(a)

Let us now suppose that we performed an integration step with h1 that resulted in
the error e(h1). The step size h2 that we should have used can now be obtained from
Eq. (a) by setting e(h2) = ε:

h2 = h1

[
ε

e(h1)

]1/5

(b)

If h2 ≥ h1, we could repeat the integration step with h2, but since the error associated
with h1 was below the tolerance, that would be a waste of a perfectly good result. So
we accept the current step and try h2 in the next step. On the other hand, if h2 < h1,
we must scrap the current step and repeat it with h2. As Eq. (b) is only an approxima-
tion, it is prudent to incorporate a small margin of safety. In our program we use the
formula

h2 = 0.9h1

[
ε

e(h1)

]1/5

(7.24)

Recall that e(h) applies to a single integration step; that is, it is a measure of the local
truncation error. The all-important global truncation error is due to the accumulation
of the local errors. What should ε be set at in order to achieve a global error no greater
than εglobal? Since e(h) is a conservative estimate of the actual error, setting ε = εglobal

will usually be adequate. If the number integration steps is large, it is advisable to
decrease ε accordingly.

Is there any reason to use the nonadaptive methods at all? Usually no; however,
there are special cases where adaptive methods break down. For example, adaptive
methods generally do not work if F(x, y) contains discontinuous functions. Because
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the error behaves erratically at the point of discontinuity, the program can get stuck
in an infinite loop trying to find the appropriate value of h. We would also use a
nonadaptive method if the output is to have evenly spaced values of x.

� runKut5

The adaptive Runge–Kutta method is implemented in the function runKut5 listed
below. The input argument h is the trial value of the increment for the first integration
step.

function [xSol,ySol] = runKut5(dEqs,x,y,xStop,h,eTol)

% 5th-order Runge-Kutta integration.

% USAGE: [xSol,ySol] = runKut5(dEqs,x,y,xStop,h,eTol)

% INPUT:

% dEqs = handle of function that specifyies the

% 1st-order differential equations

% F(x,y) = [dy1/dx dy2/dx dy3/dx ...].

% x,y = initial values; y must be row vector.

% xStop = terminal value of x.

% h = trial value of increment of x.

% eTol = per-step error tolerance (default = 1.0e-6).

% OUTPUT:

% xSol = x-values at which solution is computed.

% ySol = values of y corresponding to the x-values.

if size(y,1) > 1 ; y = y’; end % y must be row vector

if nargin < 6; eTol = 1.0e-6; end

n = length(y);

A = [0 1/5 3/10 3/5 1 7/8];

B = [ 0 0 0 0 0

1/5 0 0 0 0

3/40 9/40 0 0 0

3/10 -9/10 6/5 0 0

-11/54 5/2 -70/27 35/27 0

1631/55296 175/512 575/13824 44275/110592 253/4096];

C = [37/378 0 250/621 125/594 0 512/1771];

D = [2825/27648 0 18575/48384 13525/55296 277/14336 1/4];

% Initialize solution

xSol = zeros(2,1); ySol = zeros(2,n);

xSol(1) = x; ySol(1,:) = y;

stopper = 0; k = 1;
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for p = 2:5000

% Compute K’s from Eq. (7.18)

K = zeros(6,n);

K(1,:) = h*feval(dEqs,x,y);

for i = 2:6

BK = zeros(1,n);

for j = 1:i-1

BK = BK + B(i,j)*K(j,:);

end

K(i,:) = h*feval(dEqs, x + A(i)*h, y + BK);

end

% Compute change in y and per-step error from

% Eqs.(7.19) & (7.20)

dy = zeros(1,n); E = zeros(1,n);

for i = 1:6

dy = dy + C(i)*K(i,:);

E = E + (C(i) - D(i))*K(i,:);

end

e = sqrt(sum(E.*E)/n);

% If error within tolerance, accept results and

% check for termination

if e <= eTol

y = y + dy; x = x + h;

k = k + 1;

xSol(k) = x; ySol(k,:) = y;

if stopper == 1;

break

end

end

% Size of next integration step from Eq. (7.24)

if e˜= 0; hNext = 0.9*h*(eTol/e)ˆ0.2;

else; hNext=h;

end

% Check if next step is the last one (works

% with positive and negative h)

if (h > 0) == (x + hNext >= xStop )

hNext = xStop - x; stopper = 1;

end

h = hNext;

end
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EXAMPLE 7.8
The aerodynamic drag force acting on a certain object in free fall can be approxi-
mated by

FD = av2e−by

where

v = velocity of the object in m/s

y = elevation of the object in meters

a = 7.45 kg/m

b = 10.53 × 10−5 m−1

The exponential term accounts for the change of air density with elevation. The dif-
ferential equation describing the fall is

mÿ = −mg + FD

where g = 9.80665 m/s2 and m = 114 kg is the mass of the object. If the object is
released at an elevation of 9 km, determine its elevation and speed after a 10s fall with
the adaptive Runge–Kutta method.

Solution The differential equation and the initial conditions are

ÿ = −g + a
m

ẏ 2 exp(−by)

= −9.80665 + 7.45
114

ẏ 2 exp(−10.53 × 10−5 y)

y(0) = 9000 m ẏ(0) = 0

Letting y 1 = y and y 2 = ẏ, we obtain the equivalent first-order equations and the
initial conditions as

ẏ =
[

ẏ1

ẏ2

]
=
[

y 2

−9.80665 + (
65.351 × 10−3

)
y 2

2 exp(−10.53 × 10−5 y 1)

]

y(0) =
[

9000 m
0

]

The function describing the differential equations is
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function F = fex7_8(x,y)

% Diff. eqs. used in Example 7.8

F = zeros(1,2);

F(1) = y(2);

F(2) = -9.80665...

+ 65.351e-3 * y(2)ˆ2 * exp(-10.53e-5 * y(1));

The commands for performing the integration and displaying the results are
shown below. We specified a per-step error tolerance of 10−2 in runKut5. Consid-
ering the magnitude of y, this should be enough for five decimal point accuracy in the
solution.

>> [x,y] = runKut5(@fex7_8,0,[9000 0],10,0.5,1.0e-2);

>> printSol(x,y,1)

Execution of the commands resulted in the following output:

>> x y1 y2

0.0000e+000 9.0000e+003 0.0000e+000

5.0000e-001 8.9988e+003 -4.8043e+000

1.9246e+000 8.9841e+003 -1.4632e+001

3.2080e+000 8.9627e+003 -1.8111e+001

4.5031e+000 8.9384e+003 -1.9195e+001

5.9732e+000 8.9099e+003 -1.9501e+001

7.7786e+000 8.8746e+003 -1.9549e+001

1.0000e+001 8.8312e+003 -1.9519e+001

The first integration step was carried out with the prescribed trial value h =
0.5 s. Apparently the error was well within the tolerance, so that the step was accepted.
Subsequent step sizes, determined from Eq. (7.24), were considerably larger.

Inspecting the output, we see that at t = 10 s the object is moving with the speed
v = −ẏ = 19.52 m/s at an elevation of y = 8831 m.

EXAMPLE 7.9
Integrate the moderately stiff problem

y ′′ = −19
4

y − 10y ′ y(0) = −9 y ′(0) = 0

from x = 0 to 10 with the adaptive Runge–Kutta method and plot the results (this
problem also appeared in Example 7.7).



284 Initial Value Problems

Solution Since we use an adaptive method, there is no need to worry about the stable
range of h, as we did in Example 7.7. As long as we specify a reasonable tolerance
for the per-step error, the algorithm will find the appropriate step size. Here are the
commands and the resulting output:

>> [x,y] = runKut5(@fex7_7,0,[-9 0],10,0.1);

>> printSol(x,y,4)

>> x y1 y2

0.0000e+000 -9.0000e+000 0.0000e+000

9.8941e-002 -8.8461e+000 2.6651e+000

2.1932e-001 -8.4511e+000 3.6653e+000

3.7058e-001 -7.8784e+000 3.8061e+000

5.7229e-001 -7.1338e+000 3.5473e+000

8.6922e-001 -6.1513e+000 3.0745e+000

1.4009e+000 -4.7153e+000 2.3577e+000

2.8558e+000 -2.2783e+000 1.1391e+000

4.3990e+000 -1.0531e+000 5.2656e-001

5.9545e+000 -4.8385e-001 2.4193e-001

7.5596e+000 -2.1685e-001 1.0843e-001

9.1159e+000 -9.9591e-002 4.9794e-002

1.0000e+001 -6.4010e-002 3.2005e-002

The results are in agreement with the analytical solution.
The plots of y and y ′ show every fourth integration step. Note the high density of

points near x = 0 where y ′ changes rapidly. As the y ′-curve becomes smoother, the
distance between the points increases.

x
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7.6 Bulirsch–Stoer Method

Midpoint Method

The midpoint formula of numerical integration of y ′ = F(x, y) is

y(x + h) = y(x − h) + 2hF
[
x, y(x)

]
(7.25)

It is a second-order formula, like the modified Euler’s formula. We discuss it here
because it is the basis of the powerful Bulirsch–Stoer method, which is the technique
of choice in problems where high accuracy is required.

x - h x x + h
x

y'(x)

f (x,y)

h h

Figure 7.3. Graphical repesentation of the midpoint
formula.

Figure 7.3 illustrates the midpoint formula for a single differential equation y ′ =
f (x, y). The change in y over the two panels shown is

y(x + h) − y(x − h) =
∫ x+h

x−h
y ′(x)dx

which equals the area under the y ′(x) curve. The midpoint method approximates this
area by the area 2hf (x, y) of the cross-hatched rectangle.

x0 xnxn - 1x1 x2 x3

h
x

H
Figure 7.4. Mesh used in the midpoint method.

Consider now advancing the solution of y ′(x) = F(x, y) from x = x0 to x0 + H with
the midpoint formula. We divide the interval of integration into n steps of length
h = H/n each, as shown in Fig. 7.4, and carry out the computations

y1 = y0 + hF0

y2 = y0 + 2hF1

y3 = y1 + 2hF2 (7.26)

...

yn = yn−2 + 2hFn−1

Here we used the notation yi = y(xi) and Fi = F(xi, yi). The first of Eqs. (7.26) uses
the Euler formula to “seed” the midpoint method; the other equations are midpoint
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formulas. The final result is obtained by averaging yn in Eq. (7.26) and the estimate
yn ≈ yn−1 + hFn available from Euler formula:

y(x0 + H) = 1
2

[
(yn + (

yn−1 + hFn
)]

(7.27)

Richardson Extrapolation

It can be shown that the error in Eq. (7.27) is

E = c1h2 + c2h4 + c3h6 + · · ·
Herein lies the great utility of the midpoint method: we can eliminate as many of the
leading error terms as we wish by Richardson’s extrapolation. For example, we could
compute y(x0 + H) with a certain value of h and then repeat the process with h/2.
Denoting the corresponding results by g(h) and g(h/2), Richardson’s extrapolation—
see Eq. (5.9)—then yields the improved result

ybetter(x0 + H) = 4g(h/2) − g(h)
3

which is fourth-order accurate. Another round of integration with h/4 followed by
Richardson’s extrapolation get us sixth-order accuracy, etc.

The y’s in Eqs. (7.26) should be viewed as a intermediate variables, because unlike
y(x0 + H ), they cannot be refined by Richardson’s extrapolation.

� midpoint

The functionmidpoint in this module combines the midpoint method with Richard-
son extrapolation. The first application of the midpoint method uses two integration
steps. The number of steps is doubled in successive integrations, each integration
being followed by Richardson extrapolation. The procedure is stopped when two suc-
cessive solutions differ (in the root-mean-square sense) by less than a prescribed
tolerance.

function y = midpoint(dEqs,x,y,xStop,tol)

% Modified midpoint method for intergration of y’ = F(x,y).

% USAGE: y = midpoint(dEqs,xStart,yStart,xStop,tol)

% INPUT:

% dEqs = handle of function that returns the first-order

% differential equations F(x,y) = [dy1/dx,dy2/dx,...].

% x, y = initial values; y must be a row vector.

% xStop = terminal value of x.

% tol = per-step error tolerance (default = 1.0e-6).



287 7.6 Bulirsch–Stoer Method

% OUTPUT:

% y = y(xStop).

if size(y,1) > 1 ; y = y’; end % y must be row vector

if nargin <5; tol = 1.0e-6; end

kMax = 51;

n = length(y);

r = zeros(kMax,n); % Storage for Richardson extrapolation.

% Start with two integration steps.

nSteps = 2;

r(1,1:n) = mid(dEqs,x,y,xStop,nSteps);

rOld = r(1,1:n);

for k = 2:kMax

% Double the number of steps & refine results by

% Richardson extrapolation.

nSteps = 2*k;

r(k,1:n) = mid(dEqs,x,y,xStop,nSteps);

r = richardson(r,k,n);

% Check for convergence.

dr = r(1,1:n) - rOld;

e = sqrt(dot(dr,dr)/n);

if e < tol; y = r(1,1:n); return; end

rOld = r(1,1:n);

end

error(’Midpoint method did not converge’)

function r = richardson(r,k,n)

% Richardson extrapolation.

for j = k-1:-1:1

c =(k/(k-1))ˆ(2*(k-j));

r(j,1:n) =(c*r(j+1,1:n) - r(j,1:n))/(c - 1.0);

end

return

function y = mid(dEqs,x,y,xStop,nSteps)

% Midpoint formulas.

h = (xStop - x)/nSteps;

y0 = y;

y1 = y0 + h*feval(dEqs,x,y0);

for i = 1:nSteps-1



288 Initial Value Problems

x = x + h;

y2 = y0 + 2.0*h*feval(dEqs,x,y1);

y0 = y1;

y1 = y2;

end

y = 0.5*(y1 + y0 + h*feval(dEqs,x,y2));

Bulirsch–Stoer Algorithm

When used on its own, the module midpoint has a major shortcoming: the solution
at points between the initial and final values of x cannot be refined by Richardson
extrapolation, so that y is usable only at the last point. This deficiency is rectified in
the Bulirsch–Stoer method. The fundamental idea behind the method is simple: apply
the midpoint method in a piecewise fashion. That is, advance the solution in stages of
length H, using the midpoint method with Richardson extrapolation to perform the
integration in each stage. The value of H can be quite large, since the precision of the
result is determined mainly by the step length h in the midpoint method, not by H.

The original Bulirsch and Stoer technique19 is a complex procedure that incorpo-
rates many refinements missing in our algorithm. However, the function bulStoer

given below retains the essential ideas of Bulirsch and Stoer.
What are the relative merits of adaptive Runge–Kutta and Bulirsch–Stoer meth-

ods? The Runge–Kutta method is more robust, having higher tolerance for nonsmooth
functions and stiff problems. In most applications where high precision is not required,
it also tends to be more efficient. However, this is not the case in the computation of
high-accuracy solutions involving smooth functions, where the Bulirsch–Stoer algo-
rithm shines.

� bulStoer

This function contains a simplified algorithm for the Bulirsch–Stoer method.

function [xSol,ySol] = bulStoer(dEqs,x,y,xStop,H,tol)

% Simplified Bulirsch-Stoer method for integration of y’ = F(x,y).

% USAGE: [xSol,ySol] = bulStoer(dEqs,x,y,xStop,H,tol)

% INPUT:

% dEqs = handle of function that returns the first-order

% differential equations F(x,y) = [dy1/dx,dy2/dx,...].

19 Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, 1980.
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% x, y = initial values; y must be a row vector.

% xStop = terminal value of x.

% H = increment of x at which solution is stored.

% tol = per-step error tolerance (default = 1.0e-6).

% OUTPUT:

% xSol, ySol = solution at increments H.

if size(y,1) > 1 ; y = y’; end % y must be row vector

if nargin < 6; tol = 1.0e-6; end

n = length(y);

xSol = zeros(2,1); ySol = zeros(2,n);

xSol(1) = x; ySol(1,:) = y;

k = 1;

while x < xStop

k = k + 1;

H = min(H,xStop - x);

y = midpoint(dEqs,x,y,x + H,tol);

x = x + H;

xSol(k) = x; ySol(k,:) = y;

end

EXAMPLE 7.10
Compute the solution of the initial value problem

y ′ = sin y y(0) = 1

at x = 0.5 with the midpoint formulas using n = 2 and n = 4, followed by Richardson
extrapolation (this problem was solved with the second-order Runge–Kutta method
in Example 7.3).

Solution With n = 2 the step length is h = 0.25. The midpoint formulas, Eqs. (7.26)
and (7.27), yield

y 1 = y 0 + hf0 = 1 + 0.25 sin 1.0 = 1.210 368

y 2 = y 0 + 2hf1 = 1 + 2(0.25) sin 1.210 368 = 1.467 87 3

y h(0.5) = 1
2

(y 1 + y 0 + hf2)

= 1
2

(1.210 368 + 1.467 87 3 + 0.25 sin 1.467 87 3)

= 1.463 459
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Using n = 4 we have h = 0.125 and the midpoint formulas become

y 1 = y 0 + hf0 = 1 + 0.125 sin 1.0 = 1.105 184

y 2 = y 0 + 2hf1 = 1 + 2(0.125) sin 1.105 184 = 1.223 387

y 3 = y 1 + 2hf2 = 1.105 184 + 2(0.125) sin 1.223 387 = 1.340 248

y 4 = y 2 + 2hf3 = 1.223 387 + 2(0.125) sin 1.340 248 = 1.466 772

y h/2(0.5) = 1
2

(y 4 + y 3 + hf4)

= 1
2

(1.466 772 + 1.340 248 + 0.125 sin 1.466 772)

= 1.465 672

Richardson extrapolation results in

y(0.5) = 4(1.465 672) − 1.463 459
3

= 1.466 410

which compares favorably with the “true” solution y(0.5) = 1.466 404.

EXAMPLE 7.11

R

C

L

i

i
E (t )

The differential equations governing the loop current i and the charge q on the ca-
pacitor of the electric circuit shown are

L
di
dt

+ Ri + q
C

= E (t)
dq
dt

= i

If the applied voltage E is suddenly increased from zero to 9 V, plot the resulting loop
current during the first ten seconds. Use R = 1.0 �, L = 2 H and C = 0.45 F.

Solution Letting

y =
[

y 1

y 2

]
=
[

q
i

]

and substituting the given data, the differential equations become

ẏ =
[

ẏ1

ẏ2

]
=
[

y 2

(−Ry 2 − y 1/C + E ) /L

]
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The initial conditions are

y(0) =
[

0
0

]

We solved the problem with the function bulStoer using the increment H =
0.5 s. The following program utilizes the plotting facilities of MATLAB:

% Example 7.11 (Bulirsch-Stoer integration)

[xSol,ySol] = bulStoer(@fex7_11,0,[0 0],10,0.5);

plot(xSol,ySol(:,2),’k:o’)

grid on

xlabel(’Time (s)’)

ylabel(’Current (A)’)

Recall that in each interval H (the spacing of open circles) the integration was per-
formed by the modified midpoint method and refined by Richardson’s extrapolation.

PROBLEM SET 7.2

1. Derive the analytical solution of the problem

y ′′ + y ′ − 380y = 0 y(0) = 1 y ′(0) = −20

Would you expect difficulties in solving this problem numerically?
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2. Consider the problem

y ′ = x − 10y y(0) = 10

(a) Verify that the analytical solution is y(x) = 0.1x − 0.01 + 10.01e−10x. (b) Deter-
mine the step size h that you would use in numerical solution with the (nonadap-
tive) Runge–Kutta method.

3. � Integrate the initial value problem in Prob. 2 from x = 0 to 5 with the Runge–
Kutta method using (a) h = 0.1; (b) h = 0.25; and (c) h = 0.5. Comment on the
results.

4. � Integrate the initial value problem in Prob. 2 from x = 0 to 10 with the adaptive
Runge–Kutta method.

5. �

m
k

c

y

The differential equation describing the motion of the mass–spring–dashpot sys-
tem is

ÿ + c
m

ẏ + k
m

y = 0

where m = 2 kg, c = 460 N·s/m and k = 450 N/m. The initial conditions are y(0) =
0.01 m and ẏ(0) = 0. (a) Show that this is a stiff problem and determine a value of
h that you would use in numerical integration with the nonadaptive Runge–Kutta
method. (b) Carry out the integration from t = 0 to 0.2 s with the chosen h and
plot ẏ vs. t.

6. � Integrate the initial value problem specified in Prob. 5 with the adaptive Runge–
Kutta method from t = 0 to 0.2 s, and plot ẏ vs. t.

7. � Compute the numerical solution of the differential equation

y ′′ = 16.81y

from x = 0 to 2 with the adaptive Runge–Kutta method. Use the initial conditions
(a) y(0) = 1.0, y ′(0) = −4.1; and (b) y(0) = 1.0, y ′(0) = −4.11. Explain the large
difference in the two solutions. Hint: derive the analytical solutions.

8. � Integrate

y ′′ + y ′ − y2 = 0 y(0) = 1 y ′(0) = 0

from x = 0 to 3.5. Investigate whether the sudden increase in y near the upper
limit is real or an artifact caused by instability. Hint : experiment with different
values of h.
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9. � Solve the stiff problem—see Eq. (7.16)

y ′′ + 1001y ′ + 1000y = 0 y(0) = 1 y ′(0) = 0

from x = 0 to 0.2 with the adaptive Runge–Kutta method and plot y ′ vs. x.

10. � Solve

y ′′ + 2y ′ + 3y = 0 y(0) = 0 y ′(0) =
√

2

with the adaptive Runge–Kutta method from x = 0 to 5 (the analytical solution is
y = e−x sin

√
2x).

11. � Use the adaptive Runge–Kutta method to solve the differential equation

y ′′ = 2yy ′

from x = 0 to 10 with the initial conditions y(0) = 1, y ′(0) = −1. Plot y vs. x.

12. � Repeat Prob. 11 with the initial conditions y(0) = 0, y ′(0) = 1 and the integration
range x = 0 to 1.5.

13. � Use the adaptive Runge–Kutta method to integrate

y ′ =
(

9
y

− y
)

x y(0) = 5

from x = 0 to 5 and plot y vs. x.

14. Solve Prob. 13 with the Bulirsch–Stoer method using H = 0.5.

15. � Integrate

x2 y ′′ + xy ′ + y = 0 y(1) = 0 y ′(1) = −2

from x = 1 to 20, and plot y and y ′ vs. x. Use the Bulirsch–Stoer method.

16. �

k
m

x

The magnetized iron block of mass m is attached to a spring of stiffness k and
free length L. The block is at rest at x = L when the electromagnet is turned on,
exerting the repulsive force F = c/x2 on the block. The differential equation of
the resulting motion is

mẍ = c
x2

− k(x − L)

Determine the amplitude and the period of the motion by numerical integration
with the adaptive Runge–Kutta method. Use c = 5 N·m2, k = 120 N/m, L = 0.2 m
and m = 1.0 kg.
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17. �

θ

φ

A
B

C

The bar ABC is attached to the vertical rod with a horizontal pin. The assembly
is free to rotate about the axis of the rod. In the absence of friction, the equations
of motion of the system are

θ̈ = φ̇
2

sin θ cos θ φ̈ = −2θ̇ φ̇ cot θ

If the system is set into motion with the initial conditions θ(0) = π/12 rad, θ̇(0) =
0, φ(0) = 0 and φ̇(0) = 20 rad/s, obtain a numerical solution with the adaptive
Runge–Kutta method from t = 0 to 1.5 s and plot φ̇ vs. t.

18. � Solve the circuit problem in Example 7.11 if R = 0 and

E(t) =
{

0 when t < 0
9 sin πt when t ≥ 0

19. � Solve Prob. 21 in Problem Set 1 if E = 240 V (constant).

20. �
R1 L

L

R2 C
i1 i2

E (t )
i2i1

Kirchoff’s equations for the circuit in the figure are

L
di1

dt
+ R1i1 + R2(i1 − i2) = E(t)

L
di2

dt
+ R2(i2 − i1) + q2

C
= 0

where
dq2

dt
= i2

Using the data R1 = 4 �, R2 = 10 �, L = 0.032 H, C = 0.53 F and

E (t) =
{

20 V if 0 < t < 0.005 s
0 otherwise

plot the transient loop currents i1 and i2 from t = 0 to 0.05 s.
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21. � Consider a closed biological system populated by M number of prey and N
number of predators. Volterra postulated that the two populations are related by
the differential equations

Ṁ = aM − bMN

Ṅ = −cN + dMN

where a, b, c and d are constants. The steady-state solution is M0 = c/d, N0 = a/b;
if numbers other than these are introduced into the system, the populations
undergo periodic fluctuations. Introducing the notation

y 1 = M/M0 y 2 = N/N0

allows us to write the differential equations as

ẏ1 = a(y 1 − y 1 y 2)

ẏ2 = b(−y 2 + y 1 y 2)

Using a = 1.0/year, b = 0.2/year, y 1(0) = 0.1 and y 2(0) = 1.0, plot the two popu-
lations from t = 0 to 50 years.

22. � The equations

u̇ = −au + av

v̇ = cu − v − uw

ẇ = −bw + uv

known as the Lorenz equations, are encountered in theory of fluid dynamics.
Letting a = 5.0, b = 0.9 and c = 8.2, solve these equations from t = 0 to 10 with
the initial conditions u(0) = 0, v(0) = 1.0, w(0) = 2.0 and plot u(t). Repeat the
solution with c = 8.3. What conclusions can you draw from the results?

MATLAB Functions

[xSol,ySol] = ode23(dEqs,[xStart,xStop],yStart) low-order (probably
third order) adaptive Runge–Kutta method. The function dEqs must return the
differential equations as a column vector (recall that runKut4 and runKut5

require row vectors). The range of integration is from xStart to xStopwith the
initial conditions yStart (also a column vector).

[xSol,ySol] = ode45(dEqs,[xStart xStop],yStart) is similar toode23, but
uses a higher-order Runge–Kutta method (probably fifth order).
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These two methods, as well as all the methods described in in this book, belong
to a group known as single-step methods. The name stems from the fact that the
information at a single point on the solution curve is sufficient to compute the next
point. There are also multistep methods that utilize several points on the curve to
extrapolate the solution at the next step. These methods were popular once, but have
lost some of their luster in the last few years. Multistep methods have two shortcomings
that complicate their implementation:

� The methods are not self-starting, but must be provided with the solution at the
first few points by a single-step method.

� The integration formulas assume equally spaced steps, which makes it makes it
difficult to change the step size.

Both of these hurdles can be overcome, but the price is complexity of the algorithm
that increases with sophistication of the method. The benefits of multistep methods
are minimal—the best of them can outperform their single-step counterparts in cer-
tain problems, but these occasions are rare. MATLAB provides one general-purpose
multistep method:

[xSol,ySol] = ode113(dEqs,[xStart xStop],yStart)uses the variable-
order Adams–Bashforth–Moulton method.

MATLAB has also several functions for solving stiff problems. These are ode15s
(this is the first method to try when a stiff problem is encountered), ode23s, ode23t
and ode23tb.



8 Two-Point Boundary Value Problems

Solve y ′′ = f (x, y, y ′), y(a) = α, y(b) = β

8.1 Introduction

In two-point boundary value problems the auxiliary conditions associated with the
differential equation, called the boundary conditions, are specified at two different
values of x. This seemingly small departure from initial value problems has a major
repercussion—it makes boundary value problems considerably more difficult to solve.
In an initial value problem we were able to start at the point where the initial values
were given and march the solution forward as far as needed. This technique does not
work for boundary value problems, because there are not enough starting conditions
available at either end point to produce a unique solution.

One way to overcome the lack of starting conditions is to guess the missing values.
The resulting solution is very unlikely to satisfy boundary conditions at the other end,
but by inspecting the discrepancy we can estimate what changes to make to the initial
conditions before integrating again. This iterative procedure is known as the shooting
method. The name is derived from analogy with target shooting—take a shot and
observe where it hits the target, then correct the aim and shoot again.

Another means of solving two-point boundary value problems is the finite differ-
ence method, where the differential equations are approximated by finite differences
at evenly spaced mesh points. As a consequence, a differential equation is transformed
into set of simultaneous algebraic equations.

The two methods have a common problem: they give rise to nonlinear sets of
equations if the differential equation is not linear. As we noted in Chapter 4, all methods
of solving nonlinear equations are iterative procedures that can consume a lot of
computational resources. Thus solution of nonlinear boundary value problems is not

297
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cheap. Another complication is that iterative methods need reasonably good starting
values in order to converge. Since there is no set formula for determining these, an
algorithm for solving nonlinear boundary value problems requires intelligent input;
it cannot be treated as a “black box.”

8.2 Shooting Method

Second-Order Differential Equation

The simplest two-point boundary value problem is a second-order differential equa-
tion with one condition specified at x = a and another one at x = b. Here is an exam-
ple of a second-order boundary value problem:

y ′′ = f (x, y, y ′), y(a) = α, y(b) = β (8.1)

Let us now attempt to turn Eqs. (8.1) into the initial value problem

y ′′ = f (x, y, y ′), y(a) = α, y ′(a) = u (8.2)

The key to success is finding the correct value of u. This could be done by trial and
error: guess u and solve the initial value problem by marching from x = a to b. If
the solution agrees with the prescribed boundary condition y(b) = β, we are done;
otherwise we have to adjust u and try again. Clearly, this procedure is very tedious.

More systematic methods become available to us if we realize that the determi-
nation of u is a root-finding problem. Because the solution of the initial value problem
depends on u, the computed boundary value y(b) is a function of u; that is

y(b) = θ(u)

Hence u is a root of

r(u) = θ(u) − β = 0 (8.3)

where r(u) is the boundary residual (difference between the computed and specified
boundary values). Equation (8.3) can be solved by any one of the root-finding methods
discussed in Chapter 4. We reject the method of bisection because it involves too many
evaluations ofθ(u). In the Newton–Raphson method we run into the problem of having
to compute dθ/du, which can be done, but not easily. That leaves Brent’s algorithm
as our method of choice.

Here is the procedure we use in solving nonlinear boundary value problems:

1. Specify the starting values u1 and u2 which must bracket the root u of Eq. (8.3).
2. Apply Brent’s method to solve Eq. (8.3) for u. Note that each iteration requires

evaluation of θ(u) by solving the differential equation as an initial value problem.
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3. Having determined the value of u, solve the differential equations once more and
record the results.

If the differential equation is linear, any root-finding method will need only one
interpolation to determine u. But since Brent’s method uses quadratic interpolation,
it needs three points: u1, u2 and u3, the latter being provided by a bisection step. This
is wasteful, since linear interpolation with u1 and u2 would also result in the correct
value of u. Therefore, we replace Brent’s method with linear interpolation whenever
the differential equation is linear.

� linInterp

Here is the algorithm for linear interpolation:

function root = linInterp(func,x1,x2)

% Finds the zero of the linear function f(x) by straight

% line interpolation between x1 and x2.

% func = handle of function that returns f(x).

f1 = feval(func,x1); f2 = feval(func,x2);

root = x2 - f2*(x2 - x1)/(f2 - f1);

EXAMPLE 8.1
Solve the nonlinear boundary value problem

y ′′ + 3yy ′ = 0 y(0) = 0 y(2) = 1

Solution The equivalent first-order equations are

y ′ =
[

y ′
1

y ′
2

]
=
[

y2

−3y1 y2

]

with the boundary conditions

y1(0) = 0 y1(2) = 1

Now comes the daunting task of estimating the trial values of y2(0) = y ′(0), the
unspecified initial condition. We could always pick two numbers at random and hope
for the best. However, it is possible to reduce the element of chance with a little
detective work. We start by making the reasonable assumption that y is smooth (does
not wiggle) in the interval 0 ≤ x ≤ 2. Next we note that y has to increase from 0 to 1,
which requires y ′ > 0. Since both y and y ′ are positive, we conclude that y ′′ must be
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negative in order to satisfy the differential equation. Now we are in a position to make
a rough sketch of y :

0 2

1

x

y

Looking at the sketch it is clear that y ′(0) > 0.5, so that y ′(0) = 1 and 2 appear to be
reasonable values for the brackets of y ′(0); if they are not, Brent’s method will display
an error message.

In the program listed below we chose the nonadaptive Runge–Kutta method
(runKut4) for integration. Note that three user-supplied functions are needed to de-
scribe the problem at hand. Apart from the function dEqs(x,y) that defines the
differential equations, we also need the functions inCond(u) to specify the initial
conditions for integration, and residual(u) that provides Brent’s method with the
boundary residual. By changing a few statements in these functions, the program
can be applied to any second-order boundary value problem. It also works for third-
order equations if integration is started at the end where two of the three boundary
conditions are specified.

function shoot2

% Shooting method for 2nd-order boundary value problem

% in Example 8.1.

global XSTART XSTOP H % Make these params. global.

XSTART = 0; XSTOP = 2; % Range of integration.

H = 0.1; % Step size.

freq = 2; % Frequency of printout.

u1 = 1; u2 = 2; % Trial values of unknown

% initial condition u.

x = XSTART;

u = brent(@residual,u1,u2);

[xSol,ySol] = runKut4(@dEqs,x,inCond(u),XSTOP,H);

printSol(xSol,ySol,freq)

function F = dEqs(x,y) % First-order differential

F = [y(2), -3*y(1)*y(2)]; % equations.

function y = inCond(u) % Initial conditions (u is

y = [0 u]; % the unknown condition).
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function r = residual(u) % Boundary residual.

global XSTART XSTOP H

x = XSTART;

[xSol,ySol] = runKut4(@dEqs,x,inCond(u),XSTOP,H);

r = ySol(size(ySol,1),1) - 1;

Here is the solution :

>> x y1 y2

0.0000e+000 0.0000e+000 1.5145e+000

2.0000e-001 2.9404e-001 1.3848e+000

4.0000e-001 5.4170e-001 1.0743e+000

6.0000e-001 7.2187e-001 7.3287e-001

8.0000e-001 8.3944e-001 4.5752e-001

1.0000e+000 9.1082e-001 2.7013e-001

1.2000e+000 9.5227e-001 1.5429e-001

1.4000e+000 9.7572e-001 8.6471e-002

1.6000e+000 9.8880e-001 4.7948e-002

1.8000e+000 9.9602e-001 2.6430e-002

2.0000e+000 1.0000e+000 1.4522e-002

Note that y ′(0) = 1.5145, so that our initial guesses of 1.0 and 2.0 were on the
mark.

EXAMPLE 8.2
Numerical integration of the initial value problem

y ′′ + 4y = 4x y(0) = 0 y ′(0) = 0

yielded y ′(2) = 1.653 64. Use this information to determine the value of y ′(0) that
would result in y ′(2) = 0.

Solution We use linear interpolation

u = u2 − θ(u2)
u2 − u1

θ(u2) − θ(u1)

where in our case u = y ′(0) and θ(u) = y ′(2). So far we are given u1 = 0 and θ(u1) =
1.653 64. To obtain the second point, we need another solution of the initial value
problem. An obvious solution is y = x, which gives us y(0) = 0 and y ′(0) = y ′(2) = 1.
Thus the second point is u2 = 1 and θ(u2) = 1. Linear interpolation now yields

y ′(0) = u = 1 − (1)
1 − 0

1 − 1.653 64
= 2.529 89

Since the problem is linear, no further iterations are needed.
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EXAMPLE 8.3
Solve the third-order boundary value problem

y ′′′ = 2y ′′ + 6xy y(0) = 2 y(5) = y ′(5) = 0

and plot y vs. x.

Solution The first-order equations and the boundary conditions are

y ′ =

⎡
⎢⎣ y ′

1

y ′
2

y ′
3

⎤
⎥⎦ =

⎡
⎢⎣ y2

y3

2y3 + 6xy1

⎤
⎥⎦

y1(0) = 2 y1(5) = y2(5) = 0

The program listed below is based on shoot2 in Example 8.1. Because two of the
three boundary conditions are specified at the right end, we start the integration at
x = 5 and proceed with negative h toward x = 0. Two of the three initial conditions
are prescribed as y1(5) = y2(5) = 0, whereas the third condition y3(5) is unknown.
Because the differential equation is linear, the two guesses for y3(5) (u1 and u2) are
not important; we left them as they were in Example 8.1. The adaptive Runge–Kutta
method (runKut5) was chosen for the integration.

function shoot3

% Shooting method for 3rd-order boundary value

% problem in Example 8.3.

global XSTART XSTOP H % Make these params. global.

XSTART = 5; XSTOP = 0; % Range of integration.

H = -0.1; % Step size.

freq = 2; % Frequency of printout.

u1 = 1; u2 = 2; % Trial values of unknown

% initial condition u.

x = XSTART;

u = linInterp(@residual,u1,u2);

[xSol,ySol] = runKut5(@dEqs,x,inCond(u),XSTOP,H);

printSol(xSol,ySol,freq)

function F = dEqs(x,y) % 1st-order differential eqs.

F = [y(2), y(3), 2*y(3) + 6*x*y(1)];

function y = inCond(u) % Initial conditions.

y = [0 0 u];
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function r = residual(u) % Boundary residual.

global XSTART XSTOP H

x = XSTART;

[xSol,ySol] = runKut5(@dEqs,x,inCond(u),XSTOP,H);

r = ySol(size(ySol,1),1) - 2;

We skip the rather long printout of the solution and show just the plot:

x
0 1 2 3 4 5

y

-2

0

2

4

6

8

Higher-Order Equations

Consider the fourth-order differential equation

y(4) = f (x, y, y ′, y ′′, y ′′′) (8.4a)

with the boundary conditions

y(a) = α 1 y ′′(a) = α2 y(b) = β 1 y ′′(b) = β2 (8.4b)

To solve Eq. (8.4a) with the shooting method, we need four initial conditions at x = a,
only two of which are specified. Denoting the two unknown initial values by u1 and
u2, we have the set of initial conditions

y(a) = α 1 y ′(a) = u1 y ′′(a) = α2 y ′′′(a) = u2 (8.5)

If Eq. (8.4a) is solved with the shooting method using the initial conditions in
Eq. (8.5), the computed boundary values at x = b depend on the choice of u1 and u2.
We express this dependence as

y(b) = θ 1(u1, u2) y ′′(b) = θ2(u1, u2) (8.6)

The correct choice of u1 and u2 yields the given boundary conditions at x = b ; that is,
it satisfies the equations

θ 1(u1, u2) = β 1 θ2(u1, u2) = β2
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or, using vector notation

θ(u) = β (8.7)

These are simultaneous (generally nonlinear) equations that can be solved by the
Newton–Raphson method discussed in Art. 4.6. It must be pointed out again that
intelligent estimates of u1 and u2 are needed if the differential equation is not linear.

EXAMPLE 8.4

x
w0

v
L

The displacement v of the simply supported beam can be obtained by solving the
boundary value problem

d 4v
dx4

= w0

E I
x
L

v = d 2v
dx 2

= 0 at x = 0 and x = L

where E I is the bending rigidity. Determine by numerical integration the slopes at
the two ends and the displacement at mid-span.

Solution Introducing the dimensionless variables

ξ = x
L

y = E I
w0 L4

v

the problem is transformed to

d 4 y

dξ4 = ξ y = d 2 y

dξ2
= 0 at ξ = 0 and ξ = 1

The equivalent first-order equations and the boundary conditions are (the prime
denotes d/dξ )

y ′ =

⎡
⎢⎢⎢⎣

y ′
1

y ′
2

y ′
3

y ′
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y2

y3

y4

ξ

⎤
⎥⎥⎥⎦

y1(0) = y3(0) = y1(1) = y3(1) = 0

The program listed below is similar to the one in Example 8.1. With appropriate
changes in functions dEqs(x,y), inCond(u) and residual(u) the program can
solve boundary value problems of any order greater than two. For the problem at
hand we chose the Bulirsch–Stoer algorithm to do the integration because it gives us
control over the printout (we need y precisely at mid-span). The nonadaptive Runge–
Kutta method could also be used here, but we would have to guess a suitable step
size h.
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function shoot4

% Shooting method for 4th-order boundary value

% problem in Example 8.4.

global XSTART XSTOP H % Make these params. global.

XSTART = 0; XSTOP = 1; % Range of integration.

H = 0.5; % Step size.

freq = 1; % Frequency of printout.

u = [0 1]; % Trial values of u(1).

% and u(2).

x = XSTART;

u = newtonRaphson2(@residual,u);

[xSol,ySol] = bulStoer(@dEqs,x,inCond(u),XSTOP,H);

printSol(xSol,ySol,freq)

function F = dEqs(x,y) % Differential equations.

F = [y(2) y(3) y(4) x;];

function y = inCond(u) % Initial conditions; u(1)

y = [0 u(1) 0 u(2)]; % and u(2) are unknowns.

function r = residual(u) % Boundary residuals.

global XSTART XSTOP H

r = zeros(length(u),1);

x = XSTART;

[xSol,ySol] = bulStoer(@dEqs,x,inCond(u),XSTOP,H);

lastRow = size(ySol,1);

r(1)= ySol(lastRow,1);

r(2) = ySol(lastRow,3);

Here is the output:

>> x y1 y2 y3 y4

0.0000e+000 0.0000e+000 1.9444e-002 0.0000e+000 -1.6667e-001

5.0000e-001 6.5104e-003 1.2150e-003 -6.2500e-002 -4.1667e-002

1.0000e+000 -4.8369e-017 -2.2222e-002 -5.8395e-018 3.3333e-001

Noting that

dv
dx

= dv
d ξ

d ξ

dx
=
(

w0 L4

E I
dy
d ξ

)
1
L

= w0 L3

E I
dy
d ξ
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we obtain

dv
dx

∣∣∣∣
x=0

= 19.444 × 10−3 w0 L3

E I

dv
dx

∣∣∣∣
x=L

= −22.222 × 10−3 w0 L3

E I

v|x=0.5L = 6.5104 × 10−3 w0 L4

E I

which agree with the analytical solution (easily obtained by direct integration of the
differential equation).

EXAMPLE 8.5
Solve the nonlinear differential equation

y(4) + 4
x

y 3 = 0

with the boundary conditions

y(0) = y ′(0) = 0 y ′′(1) = 0 y ′′′(1) = 1

and plot y vs. x.

Solution Our first task is to handle the indeterminacy of the differential equation
at the origin, where x = y = 0. The problem is resolved by applying L’Hospital’s rule:
4y 3/x → 12y 2 y ′ as x → 0. Thus the equivalent first-order equations and the boundary
conditions that we use in the solution are

y ′ =

⎡
⎢⎢⎢⎣

y ′
1

y ′
2

y ′
3

y ′
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y2

y3

y4{
−12y 2

1 y2 near x = 0
−4y 3

1 /x otherwise

⎤
⎥⎥⎥⎥⎥⎥⎦

y1(0) = y2(0) = 0 y3(1) = 0 y4(1) = 1

Because the problem is nonlinear, we need reasonable estimates for y ′′(0) and
y ′′′(0). On the basis of the boundary conditions y ′′(1) = 0 and y ′′′(1) = 1, the plot of
y ′′ is likely to look something like this:

1
1

10
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If we are right, then y ′′(0) < 0 and y ′′′(0) > 0. Based on this rather scanty information,
we try y ′′(0) = −1 and y ′′′(0) = 1.

The following program uses the adaptive Runge–Kutta method (runKut5) for
integration:

function shoot4nl

% Shooting method for nonlinear 4th-order boundary

% value problem in Example 8.5.

global XSTART XSTOP H % Make these params. global.

XSTART = 0; XSTOP = 1; % Range of integration.

H = 0.1; % Step size.

freq = 1; % Frequency of printout.

u = [-1 1]; % Trial values of u(1)

% and u(2).

x = XSTART;

u = newtonRaphson2(@residual,u);

[xSol,ySol] = runKut5(@dEqs,x,inCond(u),XSTOP,H);

printSol(xSol,ySol,freq)

function F = dEqs(x,y) % Differential equations.

F = zeros(1,4);

F(1) = y(2); F(2) = y(3); F(3) = y(4);

if x < 10.0e-4; F(4) = -12*y(2)*y(1)ˆ2;

else; F(4) = -4*(y(1)ˆ3)/x;

end

function y = inCond(u) % Initial conditions; u(1)

y = [0 0 u(1) u(2)]; % and u(2) are unknowns.

function r = residual(u) % Bounday residuals.

global XSTART XSTOP H

r = zeros(length(u),1);

x = XSTART;

[xSol,ySol] = runKut5(@dEqs,x,inCond(u),XSTOP,H);

lastRow = size(ySol,1);

r(1) = ySol(lastRow,3);

r(2) = ySol(lastRow,4) - 1;
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The results are:

>> x y1 y2 y3 y4

0.0000e+000 0.0000e+000 0.0000e+000 -9.7607e-001 9.7131e-001

1.0000e-001 -4.7184e-003 -9.2750e-002 -8.7893e-001 9.7131e-001

3.9576e-001 -6.6403e-002 -3.1022e-001 -5.9165e-001 9.7152e-001

7.0683e-001 -1.8666e-001 -4.4722e-001 -2.8896e-001 9.7627e-001

9.8885e-001 -3.2061e-001 -4.8968e-001 -1.1144e-002 9.9848e-001

1.0000e+000 -3.2607e-001 -4.8975e-001 6.4879e-016 1.0000e+000

x
0.00 0.20 0.40 0.60 0.80 1.00

y

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

By good fortune, our initial estimates y ′′(0) = −1 and y ′′′(0) = 1 were very close to the
final values.

PROBLEM SET 8.1

1. Numerical integration of the initial value problem

y ′′ + y ′ − y = 0 y(0) = 0 y ′(0) = 1

yielded y(1) = 0.741028. What is the value of y ′(0) that would result in y(1) = 1,
assuming that y(0) is unchanged?

2. The solution of the differential equation

y ′′′ + y ′′ + 2y ′ = 6

with the initial conditions y(0) = 2, y ′(0) = 0 and y ′′(0) = 1, yielded y(1) =
3.03765. When the solution was repeated with y ′′(0) = 0 (the other conditions
being unchanged), the result was y(1) = 2.72318. Determine the value of y ′′(0) so
that y(1) = 0.
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3. Roughly sketch the solution of the following boundary value problems. Use the
sketch to estimate y ′(0) for each problem.

(a) y ′′ = −e−y y(0) = 1 y(1) = 0.5

(b) y ′′ = 4y2 y(0) = 10 y ′(1) = 0

(c) y ′′ = cos(xy) y(0) = 1 y(1) = 2

4. Using a rough sketch of the solution estimate of y(0) for the following boundary
value problems.

(a) y ′′ = y2 + xy y ′(0) = 0 y(1) = 2

(b) y ′′ = − 2
x

y ′ − y2 y ′(0) = 0 y(1) = 2

(c) y ′′ = −x(y ′)2 y ′(0) = 2 y(1) = 1

5. Obtain a rough estimate of y ′′(0) for the boundary value problem

y ′′′ + 5y ′′ y2 = 0

y(0) = 0 y ′(0) = 1 y(1) = 0

6. Obtain rough estimates of y ′′(0) and y ′′′(0) for the boundary value problem

y(4) + 2y ′′ + y ′ sin y = 0

y(0) = y ′(0) = 0 y(1) = 5 y ′(1) = 0

7. Obtain rough estimates of ẋ(0) and ẏ(0) for the boundary value problem

ẍ + 2x2 − y = 0 x(0) = 1 x(1) = 0

ÿ + y2 − 2x = 1 y(0) = 0 y(1) = 1

8. � Solve the boundary value problem

y ′′ + (1 − 0.2x) y 2 = 0 y(0) = 0 y(π/2) = 1

9. � Solve the boundary value problem

y ′′ + 2y ′ + 3y 2 = 0 y(0) = 0 y(2) = −1

10. � Solve the boundary value problem

y ′′ + sin y + 1 = 0 y(0) = 0 y(π) = 0
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11. � Solve the boundary value problem

y ′′ + 1
x

y ′ + y = 0 y(0.01) = 1 y ′(2) = 0

and plot y vs. x. Warning: y changes very rapidly near x = 0.

12. � Solve the boundary value problem

y ′′ − (
1 − e−x) y = 0 y(0) = 1 y(∞) = 0

and plot y vs. x. Hint: Replace the infinity by a finite value β. Check your choice of
β by repeating the solution with 1.5β. If the results change, you must increase β.

13. � Solve the boundary value problem

y ′′′ = − 1
x

y ′′ + 1
x2

y ′ + 0.1(y ′)3

y(1) = 0 y ′′(1) = 0 y(2) = 1

14. � Solve the boundary value problem

y ′′′ + 4y ′′ + 6y ′ = 10

y(0) = y ′′(0) = 0 y(3) − y ′(3) = 5

15. � Solve the boundary value problem

y ′′′ + 2y ′′ + sin y = 0

y(−1) = 0 y ′(−1) = −1 y ′(1) = 1

16. � Solve the differential equation in Prob. 15 with the boundary conditions

y(−1) = 0 y(0) = 0 y(1) = 1

(this is a three-point boundary value problem).

17. � Solve the boundary value problem

y(4) = −xy 2

y(0) = 5 y ′′(0) = 0 y ′(1) = 0 y ′′′(1) = 2

18. � Solve the boundary value problem

y(4) = −2yy ′′

y(0) = y ′(0) = 0 y(4) = 0 y ′(4) = 1
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19. �
y

x

v0

θ
8000 m t = 10 st = 0

A projectile of mass m in free flight experiences the aerodynamic drag force
FD = cv2, where v is the velocity. The resulting equations of motion are

ẍ = − c
m

vẋ ÿ = − c
m

vẏ − g

v =
√

ẋ 2 + ẏ 2

If the projectile hits a target 8 km away after a 10 s flight, determine the launch
velocity v0 and its angle of inclination θ . Use m = 20 kg, c = 3.2 × 10−4 kg/m and
g = 9.80665 m/s2.

20. �

N
x

L

w0
N

v

The simply supported beam carries a uniform load of intensity w0 and the tensile
force N. The differential equation for the vertical displacement v can be shown
to be

d 4v
dx 4

− N
E I

d 2v
dx2

= w0

E I

where E I is the bending rigidity. The boundary conditions are v = d 2v/dx2 = 0

at x = 0 and x = L. Changing the variables to ξ = x
L

and y = E I
w0 L4

v transforms

the problem to the dimensionless form

d 4 y

d ξ4 − β
d 2 y

d ξ2
= 1 β = NL2

E I

y |ξ=0 = d 2 y

d ξ2

∣∣∣∣
ξ=0

= y |ξ=1 = d 2 y

d ξ2

∣∣∣∣
ξ=1

= 0

Determine the maximum displacement if (a) β = 1.65929 and (b) β = −1.65929
(N is compressive).

21. � Solve the boundary value problem

y ′′′ + yy ′′ = 0 y(0) = y ′(0) = 0, y ′(∞) = 2
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and plot y(x) and y ′(x). This problem arises in determining the velocity profile of
the boundary layer in incompressible flow (Blasius solution).

8.3 Finite Difference Method

x1x0 x2 xn - 2 xn - 1 xn xn + 1
a b

y0

y1
y2

yn - 2 yn - 1 yn + 1
yn 

x

y

y3

x3

Figure 8.1. Finite difference mesh

In the finite difference method we divide the range of integration (a, b) into n − 1
equal subintervals of length h each, as shown in Fig. 8.1. The values of the numerical
solution at the mesh points are denoted by yi , i = 1, 2 . . . , n ; the two points outside
(a, b) will be explained shortly. We then make two approximations:

1. The derivatives of y in the differential equation are replaced by the finite difference
expressions. It is common practice to use the first central difference approxima-
tions (see Chapter 5):

y ′
i = yi+1 − yi−1

2h
y ′′

i = yi−1 − 2yi + yi+1

h2
etc. (8.8)

2. The differential equation is enforced only at the mesh points.

As a result, the differential equations are replaced by n simultaneous algebraic
equations, the unknowns being yi , i = 1, 2, . . . .n. If the differential equation is nonlin-
ear, the algebraic equations will also be nonlinear and must be solved by the Newton–
Raphson method.

Since the truncation error in a first central difference approximation is O(h2),
the finite difference method is not as accurate as the shooting method—recall that
the Runge–Kutta method has a truncation error of O(h5). Therefore, the convergence
criterion in the Newton–Raphson method should not be too severe.
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Second-Order Differential Equation

Consider the second-order differential equation

y ′′ = f (x, y, y ′)

with the boundary conditions

y(a) = α or y ′(a) = α

y(b) = β or y ′(b) = β

Approximating the derivatives at the mesh points by finite differences, the prob-
lem becomes

yi−1 − 2yi + yi+1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
, i = 1, 2, . . . , n (8.9)

y1 = α or
y2 − y0

2h
= α (8.10a)

yn = β or
yn+1 − yn−1

2h
= β (8.10b)

Note the presence of y0 and yn+1, which are associated with points outside the solution
domain (a, b). This “spillover” can be eliminated by using the boundary conditions.
But before we do that, let us rewrite Eqs. (8.9) as

y0 − 2y1 + y2 − h2 f
(

x1, y1,
y2 − y0

2h

)
= 0 (a)

yi−1 − 2yi + yi+1 − h2 f
(

xi, yi,
yi+1 − yi−1

2h

)
= 0, i = 2, 3, . . . , n − 1 (b)

yn−1 − 2yn + yn+1 − h2 f
(

xn, yn,
yn+1 − yn−1

2h

)
= 0 (c)

The boundary conditions on y are easily dealt with: Eq. (a) is simply replaced
by y1 − α = 0 and Eq. (c) is replaced by yn − β = 0. If y ′ are prescribed, we obtain
from Eqs. (8.10) y0 = y2 − 2hα and yn+1 = yn−1 + 2hβ, which are then substituted into
Eqs. (a) and (c), respectively. Hence we finish up with n equations in the unknowns
yi , i = 1, 2 . . . , n:

y1 − α = 0 if y(a) = α

−2y1 + 2y2 − h2 f (x1, y1, α) − 2hα = 0 if y ′(a) = α

}
(8.11a)

yi−1 − 2yi + yi+1 − h2 f
(

xi, yi,
yi+1 − yi−1

2h

)
= 0 i = 2, 3, . . . , n − 1 (8.11b)

yn − β = 0 if y(b) = β

2yn−1 − 2yn − h2 f (xn, yn, β) + 2hβ = 0 if y ′(b) = β

}
(8.11c)
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EXAMPLE 8.6
Write out Eqs. (8.11) for the following linear boundary value problem using n = 11:

y ′′ = −4y + 4x y(0) = 0 y ′(π/2) = 0

Solve these equations with a computer program.

Solution In this case α = 0 (applicable to y), β = 0 (applicable to y ′) and
f (x, y, y ′) = −4y + 4x. Hence Eqs. (8.11) are

y1 = 0

yi−1 − 2yi + yi+1 − h2 (−4yi + 4xi) = 0, i = 2, 3, . . . , 10

2y10 − 2y11 − h2(−4y11 + 4x11) = 0

or, using matrix notation

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 −2 + 4h2 1

. . .
. . .

. . .

1 −2 + 4h2 1
2 −2 + 4h2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

...
y10

y11

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
4h2x2

...
4h2x10

4h2x11

⎤
⎥⎥⎥⎥⎥⎥⎦

Note that the coefficient matrix is tridiagonal, so that the equations can be solved
efficiently by the functions LUdec3 and LUsol3 described in Art. 2.4. Recalling that
these functions store the diagonals of the coefficient matrix in vectors c, d and e, we
arrive at the following program:

function fDiff6

% Finite difference method for the second-order,

% linear boundary value problem in Example 8.6.

xStart = 0; xStop = pi/2; % Range of integration.

n = 11; % Number of mesh points.

freq = 1; % Printout frequency.

h = (xStop - xStart)/(n-1);

x = linspace(xStart,xStop,n)’;

[c,d,e,b] = fDiffEqs(x,h,n);

[c,d,e] = LUdec3(c,d,e);

printSol(x,LUsol3(c,d,e,b),freq)
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function [c,d,e,b] = fDiffEqs(x,h,n)

% Sets up the tridiagonal coefficient matrix and the

% constant vector of the finite difference equations.

h2 = h*h;

d = ones(n,1)*(-2 + 4*h2);

c = ones(n-1,1);

e = ones(n-1,1);

b = ones(n,1)*4*h2.*x;

d(1) = 1; e(1) = 0; b(1) = 0;c(n-1) = 2;

The solution is

>> x y1

0.0000e+000 0.0000e+000

1.5708e-001 3.1417e-001

3.1416e-001 6.1284e-001

4.7124e-001 8.8203e-001

6.2832e-001 1.1107e+000

7.8540e-001 1.2917e+000

9.4248e-001 1.4228e+000

1.0996e+000 1.5064e+000

1.2566e+000 1.5500e+000

1.4137e+000 1.5645e+000

1.5708e+000 1.5642e+000

The exact solution of the problem is

y = x − sin 2x

which yields y(π/2) = π/2 = 1. 57080. Thus the error in the numerical solution is
about 0.4%. More accurate results can be achieved by increasing n. For example, with
n = 101, we would get y(π/2) = 1.57073, which is in error by only 0.0002%.

EXAMPLE 8.7
Solve the boundary value problem

y ′′ = −3yy ′ y(0) = 0 y(2) = 1

with the finite difference method. (This problem was solved in Example 8.1 by the
shooting method.) Use n = 11 and compare the results to the solution in Example 8.1.

Solution As the problem is nonlinear, Eqs. (8.11) must be solved by the Newton–
Raphson method. The program listed below can be used as a model for other
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second-order boundary value problems. The subfunction residual(y) returns
the residuals of the finite difference equations, which are the left-hand sides of
Eqs. (8.11). The differential equation y ′′ = f (x, y, y ′) is defined in the subfunction
y2Prime. In this problem we chose for the initial solution yi = 0.5xi , which cor-
responds to the dashed straight line shown in the rough plot of y in Example 8.1.
Note that we relaxed the convergence criterion in the Newton–Raphson method to
1.0 × 10−5, which is more in line with the truncation error in the finite difference
method.

function fDiff7

% Finite difference method for the second-order,

% nonlinear boundary value problem in Example 8.7.

global N H X % Make these params. global.

xStart = 0; xStop = 2; % Range of integration.

N = 11; % Number of mesh points.

freq = 1; % Printout frequency.

X = linspace(xStart,xStop,N)’;

y = 0.5*X; % Starting values of y.

H = (xStop - xStart)/(N-1);

y = newtonRaphson2(@residual,y,1.0e-5);

printSol(X,y,freq)

function r = residual(y);

% Residuals of finite difference equations (left-hand

% sides of Eqs (8.11)).

global N H X

r = zeros(N,1);

r(1) = y(1); r(N) = y(N) - 1;

for i = 2:N-1

r(i) = y(i-1) - 2*y(i) + y(i+1)...

- H*H*y2Prime(X(i),y(i),(y(i+1) - y(i-1))/(2*H));

end

function F = y2Prime(x,y,yPrime)

% Second-order differential equation F = y’’.

F = -3*y*yPrime;
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Here is the output from the program:

>> x y1

0.0000e+000 0.0000e+000

2.0000e-001 3.0240e-001

4.0000e-001 5.5450e-001

6.0000e-001 7.3469e-001

8.0000e-001 8.4979e-001

1.0000e+000 9.1813e-001

1.2000e+000 9.5695e-001

1.4000e+000 9.7846e-001

1.6000e+000 9.9020e-001

1.8000e+000 9.9657e-001

2.0000e+000 1.0000e+000

The maximum discrepancy between the above solution and the one in Exam-
ple 8.1 occurs at x = 0.6. In Example 8.1 we have y(0.6) = 0.072187, so that the differ-
ence between the solutions is

0.073469 − 0.072187
0.072187

× 100% ≈ 1.8%

As the shooting method used in Example 8.1 is considerably more accurate than the
finite difference method, the discrepancy can be attributed to truncation errors in
the finite difference solution. This error would be acceptable in many engineering
problems. Again, accuracy can be increased by using a finer mesh. With n = 101 we
can reduce the error to 0.07%, but we must question whether the tenfold increase in
computation time is really worth the extra precision.

Fourth-Order Differential Equation

For the sake of brevity we limit our discussion to the special case where y ′ and y ′′′ do
not appear explicitly in the differential equation; that is, we consider

y(4) = f (x, y, y ′′)

We assume that two boundary conditions are prescribed at each end of the solution
domain (a, b). Problems of this form are commonly encountered in beam theory.

Again we divide the solution domain into n − 1 intervals of length h each. Re-
placing the derivatives of y by finite differences at the mesh points, we get the finite
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difference equations

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2

h4
= f

(
xi, yi,

yi−1 − 2yi + yi+1

h2

)
(8.12)

where i = 1, 2, . . . , n. It is more revealing to write these equations as

y−1 − 4y0 + 6y1 − 4y2 + y3 − h4 f
(

x1, y1,
y0 − 2y1 + y2

h2

)
= 0 (8.13a)

y0 − 4y1 + 6y2 − 4y3 + y4 − h4 f
(

x2, y2,
y1 − 2y2 + y3

h2

)
= 0 (8.13b)

y1 − 4y2 + 6y3 − 4y4 + y5 − h4 f
(

x3, y3,
y2 − 2y3 + y4

h2

)
= 0 (8.13c)

...

yn−3 − 4yn−2 + 6yn−1 − 4yn + yn+1 − h4 f
(

xn−1, yn−1,
yn−2 − 2yn−1 + yn

h2

)
= 0 (8.13d)

yn−2 − 4yn−1 + 6yn − 4yn+1 + yn+2 − h4 f
(

xn, yn,
yn−1 − 2yn + yn+1

h2

)
= 0 (8.13e)

We now see that there are four unknowns that lie outside the solution domain: y−1, y0,
yn+1 and yn+2. This “spillover” can be eliminated by applying the boundary conditions,
a task that is facilitated by Table 8.1.

Bound. cond. Equivalent finite difference expression

y(a) = α y1 = α

y ′(a) = α y0 = y2 − 2hα

y ′′(a) = α y0 = 2y1 − y2 + h2α

y ′′′(a) = α y−1 = 2y0 − 2y2 + y3 − 2h3α

y(b) = β yn = β

y ′(b) = β yn+1 = yn−1 + 2hβ

y ′′(b) = β yn+1 = 2yn − yn−1 + h2β

y ′′′(b) = β yn+2 = 2yn+1 − 2yn−1 + yn−2 + 2h3β

Table 8.1

The astute observer may notice that some combinations of boundary conditions
will not work in eliminating the “spillover.” One such combination is clearly y(a) = α 1

and y ′′′(a) = α2. The other one is y ′(a) = α 1 and y ′′(a) = α2. In the context of beam
theory, this makes sense: we can impose either a displacement y or a shear force E I y ′′′

at a point, but it is impossible to enforce both of them simultaneously. Similarly, it
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makes no physical sense to prescribe both the slope y ′ and the bending moment E I y ′′

at the same point.

EXAMPLE 8.8

P

L
v

x

The uniform beam of length L and bending rigidity E I is attached to rigid supports
at both ends. The beam carries a concentrated load P at its mid-span. If we utilize
symmetry and model only the left half of the beam, the displacement v can be obtained
by solving the boundary value problem

E I
d 4v
dx 4

= 0

v|x=0 = 0
dv
dx

∣∣∣∣
x=0

= 0
dv
dx

∣∣∣∣
x=L/2

= 0 E I
d 3v
dx3

∣∣∣∣
x=L/2

= −P/2

Use the finite difference method to determine the displacement and the bending
moment M = −E I (d 2v/dx 2) at the mid-span (the exact values are v = P L3/(192E I )
and M = P L/8).

Solution By introducing the dimensionless variables

ξ = x
L

y = E I
P L3

v

the problem becomes

d 4 y

d ξ4 = 0

y |ξ=0 = 0
dy
d ξ

∣∣∣∣
ξ=0

= 0
dy
d ξ

∣∣∣∣
ξ=1/2

= 0
d 3 y

d ξ3

∣∣∣∣
ξ=1/2

= −1
2

We now proceed to writing Eqs. (8.13) taking into account the boundary condi-
tions. Referring to Table 8.1, we obtain the finite difference expressions of the bound-
ary conditions at the left end as y1 = 0 and y0 = y2. Hence Eqs. (8.13a) and (8.13b)
become

y1 = 0 (a)

−4y1 + 7y2 − 4y3 + y4 = 0 (b)

Equation (8.13c) is

y1 − 4y2 + 6y3 − 4y4 + y5 = 0 (c)
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At the mid-span the boundary conditions are equivalent to yn+1 = yn−1 and

yn+2 = 2yn+1 − 2yn−1 + yn−2 + 2h3(−1/2)

Substitution into Eqs. (8.13d) and (8.13e) yields

yn−3 − 4yn−2 + 7yn−1 − 4yn = 0 (d)

2yn−2 − 8yn−1 + 6yn = h3 (e)

The coefficient matrix of Eqs. (a)–(e) can be made symmetric by dividing Eq. (e) by 2.
The result is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 7 −4 1
0 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 7 −4

1 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−2

yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0

0.5h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above system of equations can be solved with the decomposition and back
substitution routines in the functions LUdec5 and LUsol5—see Art. 2.4. Recall that
these functions work with the vectors d, e and f that form the diagonals of upper the
half of the coefficient matrix. The program that sets up and solves the equations is

function fDiff8

% Finite difference method for the 4th-order,

% linear boundary value problem in Example 8.8.

xStart = 0; xStop = 0.5; % Range of integration.

n = 21; % Number of mesh points.

freq = 1; % Printout frequency.

h = (xStop - xStart)/(n-1);

x = linspace(xStart,xStop,n)’;

[d,e,f,b] = fDiffEqs(x,h,n);

[d,e,f] = LUdec5(d,e,f);

printSol(x,LUsol5(d,e,f,b),freq)

function [d,e,f,b] = fDiffEqs(x,h,n)

% Sets up the pentadiagonal coefficient matrix and the

% constant vector of the finite difference equations.

d = ones(n,1)*6;
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e = ones(n-1,1)*(-4);

f = ones(n-2,1);

b = zeros(n,1);

d(1) = 1; d(2) = 7; d(n-1) = 7; d(n) = 3;

e(1) = 0; f(1) = 0; b(n) = 0.5*hˆ3;

The last two lines of the output are

>> x y1

4.7500e-001 5.1953e-003

5.0000e-001 5.2344e-003

Thus at the mid-span we have

v|x=0.5L = P L3

E I
y|ξ=0.5 = 5.2344 × 10−3 P L3

E I

d 2v
dx2

∣∣∣∣
x=0.5L

= P L3

E I

(
1

L2

d 2 y

d ξ2

∣∣∣∣
ξ=0.5

)
≈ P L

E I
ym−1 − 2ym + ym+1

h2

= P L
E I

(5.1953 − 2(5.2344) + 5.1953) × 10−3

0.0252

= −0.125 12
P L
E I

M |x=0.5L = −E I
d 2v
dx2

∣∣∣∣
ξ=0.5

= 0.125 12 P L

In comparison, the exact solution yields

v |x=0.5L = 5.208 3 × 10−3 P L3

E I
M |x=0.5L = = 0.125 00 P L

PROBLEM SET 8.2

Problems 1–5 Use first central difference approximations to transform the boundary
value problem shown into simultaneous equations Ay = b.

1. y ′′ = (2 + x)y, y(0) = 0, y ′(1) = 5.

2. y ′′ = y + x2, y(0) = 0, y(1) = 1.

3. y ′′ = e−x y ′, y(0) = 1, y(1) = 0.

4. y(4) = y ′′ − y, y(0) = 0, y ′(0) = 1, y(1) = 0, y ′(1) = −1.

5. y(4) = −9y + x, y(0) = y ′′(0) = 0, y ′(1) = y ′′′(1) = 0.
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Problems 6–10 Solve the given boundary value problem with the finite difference
method using n = 21.

6. � y ′′ = xy, y(1) = 1.5 y(2) = 3.

7. � y ′′ + 2y ′ + y = 0, y(0) = 0, y(1) = 1. Exact solution is y = xe1−x.

8. � x 2 y ′′ + xy ′ + y = 0, y(1) = 0, y(2) = 0.638961. Exact solution is y = sin(ln x).

9. � y ′′ = y 2 sin y, y ′(0) = 0, y(π) = 1.

10. � y ′′ + 2y(2xy ′ + y) = 0, y(0) = 1/2, y ′(1) = −2/9. Exact solution is y =
(2 + x2)−1.

11. �

v

x

w0

L /2 L /4L /4

I0

I1

I0

The simply supported beam consists of three segments with the moments of
inertia I0 and I 1 as shown. A uniformly distributed load of intensity w0 acts over
the middle segment. Modeling only the left half of the beam, we can show that
the differential equation

d 2v
dx2

= − M
E I

for the displacement v is

d 2v
dx2

= −w0 L2

4E I0
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
L

in 0 < x <
L
4

I0

I 1

[
x
L

− 2
(

x
L

− 1
4

)2
]

in
L
4

< x <
L
2

Introducing the dimensionless variables

ξ = x
L

y = E I0

w0 L4
v γ = I 1

I0

changes the differential equation to

d 2 y

d ξ2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
4
ξ in 0 < ξ <

1
4

− 1
4γ

[
ξ − 2

(
ξ − 1

4

)2
]

in
1
4

< ξ <
1
2

with the boundary conditions

y |ξ=0 = dy
d ξ

∣∣∣∣
ξ=1/2

= 0
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Use the finite difference method to determine the maximum displacement of the
beam using n = 21 and γ = 1.5 and compare it with the exact solution

vmax = 61
9216

w0 L4

E I0

12. �

d0

M0
d1d

x
v L

The simply supported, tapered beam has a circular cross section. A couple of
magnitude M0 is applied to the left end of the beam. The differential equation for
the displacement v is

d 2v
dx2

= − M
E I

= − M0(1 − x/L)
E I0(d/d0)4

where

d = d0

[
1 +

(
d1

d0
− 1

)
x
L

]
I0 = πd 4

0

64

Substituting

ξ = x
L

y = E I0

M0 L2
v δ = d1

d0

changes the differential equation to

d 2 y

d ξ2
= − 1 − ξ

[1 + (δ − 1)ξ ]4

with the boundary conditions

y |ξ=0 = y |ξ=1 = 0

Solve the problem with the finite difference method using δ = 1.5 and n = 21; plot
y vs. ξ . The exact solution is

y = − (3 + 2δξ − 3ξ )ξ2

6(1 + δξ − ξ )2
+ ξ

3δ

13. � Solve Example 8.4 by the finite difference method with n = 21. Hint : Compute
the end slopes from the second noncentral differences in Tables 5.3.

14. � Solve Prob. 20 in Problem Set 8.1 with the finite difference method. Use n = 21.

15. �

L

w0

x

v
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The simply supported beam of length L is resting on an elastic foundation of
stiffness kN/m2. The displacement v of the beam due to the uniformly distributed
load of intensity w0 N/m is given by the solution of the boundary value problem

E I
d 4v
dx 4

+ kv = w0, v|x=0 = d 2 y
dx2

∣∣∣∣
x=0

= v|x=L = d 2v
dx2

∣∣∣∣
x=L

= 0

The nondimensional form of the problem is

d 4 y

d ξ4 + γ y = 1, y|ξ=0 = d 2 y
dx2

∣∣∣∣
ξ=0

= y|ξ=1 = d 2 y
dx2

∣∣∣∣
ξ=1

= 0

where

ξ = x
L

y = E I
w0 L4

v γ = kL4

E I

Solve this problem by the finite difference method with γ = 105 and plot y vs. ξ .

16. � Solve Prob. 15 if the ends of the beam are free and the load is confined to the
middle half of the beam. Consider only the left half of the beam, in which case
the nondimensional form of the problem is

d 4 y

d ξ4 + γ y =
{

0 in 0 < ξ < 1/4
1 in 1/4 < ξ < 1/2

d 2 y

d ξ2

∣∣∣∣
ξ=0

= d 3 y

d ξ3

∣∣∣∣
ξ=0

= dy
d ξ

∣∣∣∣
ξ=1/2

= d 3 y

d ξ3

∣∣∣∣
ξ=1/2

= 0

17. � The general form of a linear, second-order boundary value problem is

y ′′ = r(x) + s(x)y + t(x)y ′

y(a) = α or y ′(a) = α

y(b) = β or y ′(b) = β

Write a program that solves this problem with the finite difference method for
any user-specified r(x), s(x) and t(x). Test the program by solving Prob. 8.

MATLAB Functions

MATLAB has only the following function for solution of boundary value problems:

sol = bvp4c(@dEqs,@residual,solinit) uses a high-order finite difference
method with an adaptive mesh to solve boundary value problems. The out-
put sol is a structure (a MATLAB data type) created by bvp4c. The first two
input arguments are handles to the following user-supplied functions:
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F = dEqs(x,y) specifies the first-order differential equations F(x, y) = y ′. Both F

and y are column vectors.

r = residual(ya,yb) specifies all the applicable the boundary residuals yi(a) −
αi and yi(b) − βi in a column vectorr, where αi and βi are the prescribed bound-
ary values.

The third input argumentsolinit is a structure that contains the x and y-values at
the nodes of the initial mesh. This structure can be generated with MATLAB’s function
bvpinit:

solinit = bvpinit(xinit,@yguess) where xinit is a vector containing the x-
coordinates of the nodes; yguess(x) is a user-supplied function that returns a
column vector containing the trial solutions for the components of y.

The numerical solution at user-defined mesh points can be extracted from the
structure sol with the MATLAB function deval:

y = deval(sol,xmesh) where xmesh is an array containing the x-coordinates of
the mesh points. The function returns a matrix with the ith row containing the
values of yi at the mesh points.

The following program illustrates the use of the above functions in solving
Example 8.1:

function shoot2_matlab

% Solution of Example 8.1 with MATLAB’s function bvp4c.

xinit = linspace(0,2,11)’;

solinit = bvpinit(xinit,@yguess);

sol = bvp4c(@dEqs,@residual,solinit);

y = deval(sol,xinit)’;

printSol(xinit,y,1) % This is our own func.

function F = dEqs(x,y) % Differential eqs.

F = [y(2); -3*y(1)*y(2)];

function r = residual(ya,yb) % Boundary residuals.

r = [ya(1); yb(1) - 1];

function yinit = yguess(x) % Initial guessses for

yinit = [0.5*x; 0.5]; % y1 and y2.



9 Symmetric Matrix Eigenvalue Problems

Find λ for which nontrivial solutions of Ax = λx exist

9.1 Introduction

The standard form of the matrix eigenvalue problem is

Ax = λx (9.1)

where A is a given n × n matrix. The problem is to find the scalar λ and the vector x.
Rewriting Eq. (9.1) in the form

(A − λI) x = 0 (9.2)

it becomes apparent that we are dealing with a system of n homogeneous equations.
An obvious solution is the trivial one x = 0. A nontrivial solution can exist only if the
determinant of the coefficient matrix vanishes; that is, if

|A − λI| =0 (9.3)

Expansion of the determinant leads to the polynomial equation known as the
characteristic equation

a1λ
n + a2λ

n−1 + · · · + anλ + an+1 = 0

which has the roots λi , i = 1, 2, . . . , n, called the eigenvalues of the matrix A. The
solutions xi of (A − λi I) x = 0 are known as the eigenvectors.

As an example, consider the matrix

A =

⎡
⎢⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦ (a)

326
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The characteristic equation is

|A − λI| =

∣∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣∣ = −3λ + 4λ2 − λ3 = 0 (b)

The roots of this equation are λ1 = 0, λ2 = 1, λ3 = 3. To compute the eigenvector
corresponding the λ3, we substitute λ = λ3 into Eq. (9.2), obtaining⎡

⎢⎣−2 −1 0
−1 −1 −1

0 −1 −2

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣0

0
0

⎤
⎥⎦ (c)

We know that the determinant of the coefficient matrix is zero, so that the equations
are not linearly independent. Therefore, we can assign an arbitrary value to any one
component of x and use two of the equations to compute the other two components.
Choosing x1 = 1, the first equation of Eq. (c) yields x2 = −2 and from the third equation
we get x3 = 1. Thus the eigenvector associated with λ3 is

x3 =

⎡
⎢⎣ 1

−2
1

⎤
⎥⎦

The other two eigenvectors

x2 =

⎡
⎢⎣ 1

0
−1

⎤
⎥⎦ x1 =

⎡
⎢⎣1

1
1

⎤
⎥⎦

can be obtained in the same manner.
It is sometimes convenient to display the eigenvectors as columns of a matrix X.

For the problem at hand, this matrix is

X =
[

x1 x2 x3

]
=

⎡
⎢⎣1 1 1

1 0 −2
1 −1 1

⎤
⎥⎦

It is clear from the above example that the magnitude of an eigenvector is indeter-
minate; only its direction can be computed from Eq. (9.2). It is customary to normalize
the eigenvectors by assigning a unit magnitude to each vector. Thus the normalized
eigenvectors in our example are

X =

⎡
⎢⎣1/

√
3 1/

√
2 1/

√
6

1/
√

3 0 −2/
√

6
1/

√
3 −1/

√
2 1/

√
6

⎤
⎥⎦

Throughout this chapter we assume that the eigenvectors are normalized.
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Here are some useful properties of eigenvalues and eigenvectors, given without
proof:

� All eigenvalues of a symmetric matrix are real.
� All eigenvalues of a symmetric, positive-definite matrix are real and positive.
� The eigenvectors of a symmetric matrix are orthonormal; that is, XT X = I.
� If the eigenvalues of A are λi , then the eigenvalues of A−1 are λ−1

i .

Eigenvalue problems that originate from physical problems often end up with
a symmetric A. This is fortunate, because symmetric eigenvalue problems are much
easier to solve than their nonsymmetric counterparts. In this chapter we largely restrict
our discussion to eigenvalues and eigenvectors of symmetric matrices.

Common sources of eigenvalue problems are the analysis of vibrations and sta-
bility. These problems often have the following characteristics:

� The matrices are large and sparse (e.g., have a banded structure).
� We need to know only the eigenvalues; if eigenvectors are required, only a few of

them are of interest.

A useful eigenvalue solver must be able to utilize these characteristics to minimize
the computations. In particular, it should be flexible enough to compute only what
we need and no more.

9.2 Jacobi Method

Similarity Transformation and Diagonalization

Consider the standard matrix eigenvalue problem

Ax = λx (9.4)

where A is symmetric. Let us now apply the transformation

x = Px∗ (9.5)

where P is a nonsingular matrix. Substituting Eq. (9.5) into Eq. (9.4) and premultiplying
each side by P−1, we get

P−1APx∗ = λP−1Px∗

or

A∗x∗ = λx∗ (9.6)
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where A∗ = P−1AP. Because λ was untouched by the transformation, the eigenval-
ues of A are also the eigenvalues of A∗. Matrices that have the same eigenvalues are
deemed to be similar, and the transformation between them is called a similarity
transformation.

Similarity transformations are frequently used to change an eigenvalue problem
to a form that is easier to solve. Suppose that we managed by some means to find a P
that diagonalizes A∗, so that Eqs. (9.6) are

⎡
⎢⎢⎢⎢⎣

A∗
11 − λ 0 · · · 0

0 A∗
22 − λ · · · 0

...
...

. . .
...

0 0 · · · A∗
nn − λ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x∗
1

x∗
2
...

x∗
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎥⎦

The solution of these equations is

λ1 = A∗
11 λ2 = A∗

22 · · · λn = A∗
nn (9.7)

x∗
1 =

⎡
⎢⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎥⎦ x∗

2 =

⎡
⎢⎢⎢⎢⎣

0
1
...
0

⎤
⎥⎥⎥⎥⎦ · · · x∗

n =

⎡
⎢⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎥⎦

or

X∗ =
[

x∗
1 x∗

2 · · · x∗
n

]
= I

According to Eq. (9.5) the eigenvector matrix of A is

X = PX∗ = PI = P (9.8)

Hence the transformation matrix P is the eigenvector matrix of A and the eigenvalues
of A are the diagonal terms of A∗.

Jacobi Rotation

A special transformation is the plane rotation

x = Rx∗ (9.9)
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where

k �

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 c 0 0 s 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −s 0 0 c 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

�

(9.10)

is called the Jacobi rotation matrix. Note that R is an identity matrix modified by the
terms c = cos θ and s = sin θ appearing at the intersections of columns/rows k and
�, where θ is the rotation angle. The rotation matrix has the useful property of being
orthogonal, or unitary, meaning that

R−1 = RT (9.11)

One consequence of orthogonality is that the transformation in Eq. (9.9) has the
essential characteristic of a rotation: it preserves the magnitude of the vector; that is,
|x| = |x∗|.

The similarity transformation corresponding to the plane rotation in Eq. (9.9) is

A∗ = R−1AR = RT AR (9.12)

The matrix A∗ not only has the same eigenvalues as the original matrix A, but due to
orthogonality of R it is also symmetric. The transformation in Eq. (9.12) changes only
the rows/columns k and � of A. The formulas for these changes are

A∗
kk = c2 Akk + s2 A�� − 2cs Ak�

A∗
�� = c2 A�� + s2 Akk + 2cs Ak�

A∗
k� = A∗

�k = (c2 − s2)Ak� + cs(Akk − A��) (9.13)

A∗
ki = A∗

ik = c Aki − s A�i , i �= k, i �= �

A∗
�i = A∗

i� = c A�i + s Aki , i �= k, i �= �

Jacobi Diagonalization

The angle θ in the Jacobi rotation matrix can be chosen so that A∗
k� = A∗

�k = 0. This sug-
gests the following idea: why not diagonalize A by looping through all the off-diagonal
terms and eliminate them one by one? This is exactly what Jacobi diagonalization does.
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However, there is a major snag—the transformation that annihilates an off-diagonal
term also undoes some of the previously created zeroes. Fortunately, it turns out that
the off-diagonal terms that reappear will be smaller than before. Thus Jacobi method
is an iterative procedure that repeatedly applies Jacobi rotations until the off-diagonal
terms have virtually vanished. The final transformation matrix P is the accumulation
of individual rotations Ri :

P = R1·R2·R3 · · · (9.14)

The columns of P finish up being the eigenvectors of A and the diagonal elements of
A∗ = PT AP become the eigenvectors.

Let us now look at the details of a Jacobi rotation. From Eq. (9.13) we see that
A∗

k� = 0 if

(c2 − s2)Ak� + cs(Akk − A��) = 0 (a)

Using the trigonometric identities c2 − s2 = cos 2θ and cs = (1/2) sin 2θ , we obtain
from Eq. (a)

tan 2θ = − 2Ak�

Akk − A��

(b)

which could be solved for θ , followed by computation of c = cos θ and s = sin θ . How-
ever, the procedure described below leads to a better algorithm.20

Introducing the notation

φ = cot 2θ = − Akk − A��

2Ak�

(9.15)

and utilizing the trigonometric identity

tan 2θ = 2t
(1 − t2)

where t = tan θ , we can write Eq. (b) as

t2 + 2φt − 1 = 0

which has the roots

t = −φ ±
√

φ2 + 1

It has been found that the root |t| ≤ 1, which corresponds to |θ | ≤ 45◦, leads to the
more stable transformation. Therefore, we choose the plus sign if φ > 0 and the minus

20 The procedure is adapted from W.H. Press et al., Numerical Recipes in Fortran, 2nd ed. (1992),
Cambridge University Press.
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sign if φ ≤ 0, which is equivalent to using

t = sgn(φ)
(

− |φ| +
√

φ2 + 1
)

To forestall excessive roundoff error if φ is large, we multiply both sides of the equation
by |φ| +

√
φ2 + 1 and solve for t, which yields

t = sgn(φ)

|φ| +
√

φ2 + 1
(9.16a)

In the case of very large φ, we should replace Eq. (9.16a) by the approximation

t = 1
2φ

(9.16b)

to prevent overflow in the computation of φ2. Having computed t, we can use the
trigonometric relationship tan θ = sin θ/ cos θ = √

1 − cos2 θ/ cos θ to obtain

c = 1√
1 + t2

s = tc (9.17)

We now improve the computational properties of the transformation formulas in
Eqs. (9.13). Solving Eq. (a) for A��, we obtain

A�� = Akk + Ak�

c2 − s2

cs
(c)

Replacing all occurrences of A�� by Eq. (c) and simplifying, we can write the transfor-
mation formulas in Eqs. (9.13) as

A∗
kk = Akk − t Ak�

A∗
�� = A�� + t Ak�

A∗
k� = A∗

�k = 0 (9.18)

A∗
ki = A∗

ik = Aki − s(A�i + τ Aki), i �= k, i �= �

A∗
�i = A∗

i� = A�i + s(Aki − τ A�i), i �= k, i �= �

where

τ = s
1 + c

(9.19)

The introduction of τ allowed us to express each formula in the form (original
value) + (change), which is helpful in reducing the roundoff error.

At the start of Jacobi’s diagonalization process the transformation matrix P is
initialized to the identity matrix. Each Jacobi rotation changes this matrix from P
to P∗ = PR. The corresponding changes in the elements of P can be shown to be
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(only the columns k and � are affected)

P∗
ik = Pik − s(Pi� + τ Pik) (9.20)

P∗
i� = Pi� + s(Pik − τ Pi�)

We still have to decide the order in which the off-diagonal elements of A are to be
eliminated. Jacobi’s original idea was to attack the largest element since this results
in fewest number of rotations. The problem here is that A has to be searched for
the largest element after every rotation, which is a time-consuming process. If the
matrix is large, it is faster to sweep through it by rows or columns and annihilate
every element above some threshold value. In the next sweep the threshold is lowered
and the process repeated. We adopt Jacobi’s original scheme because of its simpler
implementation.

In summary, the Jacobi diagonalization procedure, which uses only the upper half
of the matrix, is

1. Find the largest (absolute value) off-diagonal element Ak� in the upper half of A.

2. Compute φ, t, c and s from Eqs. (9.15)–(9.17).
3. Compute τ from Eq. (9.19).
4. Modify the elements in the upper half of A according to Eqs. (9.18).
5. Update the transformation matrix P using Eqs. (9.20).

Repeat the procedure until the Ak� < ε, where ε is the error tolerance.

� jacobi

The function jacobi computes all eigenvalues λi and eigenvectors xi of a symmetric,
n × n matrix A by the Jacobi method. The algorithm works exclusively with the upper
triangular part of A, which is destroyed in the process. The principal diagonal of A is
replaced by the eigenvalues, and the columns of the transformation matrix P become
the normalized eigenvectors.

function [eVals,eVecs] = jacobi(A,tol)

% Jacobi method for computing eigenvalues and

% eigenvectors of a symmetric matrix A.

% USAGE: [eVals,eVecs] = jacobi(A,tol)

% tol = error tolerance (default is 1.0e-9).

if nargin < 2; tol = 1.0e-9; end

n = size(A,1);

maxRot = 5*(nˆ2); % Limit number of rotations
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P = eye(n); % Initialize rotation matrix

for i = 1:maxRot % Begin Jacobi rotations

[Amax,k,L] = maxElem(A);

if Amax < tol;

eVals = diag(A); eVecs = P;

return

end

[A,P] = rotate(A,P,k,L);

end

error(’Too many Jacobi rotations’)

function [Amax,k,L] = maxElem(A)

% Finds Amax = A(k,L) (largest off-diag. elem. of A).

n = size(A,1);

Amax = 0;

for i = 1:n-1

for j = i+1:n

if abs(A(i,j)) >= Amax

Amax = abs(A(i,j));

k = i; L = j;

end

end

end

function [A,P] = rotate(A,P,k,L)

% zeros A(k,L) by a Jacobi rotation and updates

% transformation matrix P.

n = size(A,1);

diff = A(L,L) - A(k,k);

if abs(A(k,L)) < abs(diff)*1.0e-36

t = A(k,L);

else

phi = diff/(2*A(k,L));

t = 1/(abs(phi) + sqrt(phiˆ2 + 1));

if phi < 0; t = -t; end;

end

c = 1/sqrt(tˆ2 + 1); s = t*c;

tau = s/(1 + c);

temp = A(k,L); A(k,L) = 0;

A(k,k) = A(k,k) - t*temp;
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A(L,L) = A(L,L) + t*temp;

for i = 1:k-1 % For i < k

temp = A(i,k);

A(i,k) = temp -s*(A(i,L) + tau*temp);

A(i,L) = A(i,L) + s*(temp - tau*A(i,L));

end

for i = k+1:L-1 % For k < i < L

temp = A(k,i);

A(k,i) = temp - s*(A(i,L) + tau*A(k,i));

A(i,L) = A(i,L) + s*(temp - tau*A(i,L));

end

for i = L+1:n % For i > L

temp = A(k,i);

A(k,i) = temp - s*(A(L,i) + tau*temp);

A(L,i) = A(L,i) + s*(temp - tau*A(L,i));

end

for i = 1:n % Update transformation matrix

temp = P(i,k);

P(i,k) = temp - s*(P(i,L) + tau*P(i,k));

P(i,L) = P(i,L) + s*(temp - tau*P(i,L));

end

� sortEigen

The eigenvalues/eigenvectors returned byjacobiare not ordered. The function listed
below can be used to sort the results into ascending order of eigenvalues.

function [eVals,eVecs] = sortEigen(eVals,eVecs)

% Sorts eigenvalues & eigenvectors into ascending

% order of eigenvalues.

% USAGE: [eVals,eVecs] = sortEigen(eVals,eVecs)

n = length(eVals);

for i = 1:n-1

index = i; val = eVals(i);

for j = i+1:n

if eVals(j) < val

index = j; val = eVals(j);

end

end
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if index ˜= i

eVals = swapRows(eVals,i,index);

eVecs = swapCols(eVecs,i,index);

end

end

Transformation to Standard Form

Physical problems often give rise to eigenvalue problems of the form

Ax = λBx (9.21)

where A and B are symmetric n × nmatrices. We assume that B is also positive definite.
Such problems must be transformed into the standard form before they can be solved
by Jacobi diagonalization.

As B is symmetric and positive definite, we can apply Choleski’s decomposition
B = LLT , where L is a lower-triangular matrix (see Art. 2.3). Then we introduce the
transformation

x = (L−1)T z (9.22)

Substituting into Eq. (9.21), we get

A(L−1)T z =λLLT (L−1)T z

Premultiplying both sides by L−1 results in

L−1A(L−1)T z = λL−1LLT (L−1)T z

Because L−1L = LT (L−1)T = I, the last equation reduces to the standard form

Hz = λz (9.23)

where

H = L−1A(L−1)T (9.24)

An important property of this transformation is that it does not destroy the symmetry
of the matrix; i.e., a symmetric A results in a symmetric H.

Here is the general procedure for solving eigenvalue problems of the form
Ax = λBx:

1. Use Choleski’s decomposition B = LLT to compute L.
2. Compute L−1 (a triangular matrix can be inverted with relatively small computa-

tional effort).
3. Compute H from Eq. (9.24).
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4. Solve the standard eigenvalue problem Hz = λz (e.g., using the Jacobi method).
5. Recover the eigenvectors of the original problem from Eq. (9.22): x = (L−1)T z.

Note that the eigenvalues were untouched by the transformation.

An important special case is where B is a diagonal matrix:

B =

⎡
⎢⎢⎢⎢⎣

β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βn

⎤
⎥⎥⎥⎥⎦ (9.25)

Here

L =

⎡
⎢⎢⎢⎢⎣

β
1/2
1 0 · · · 0

0 β
1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β1/2
n

⎤
⎥⎥⎥⎥⎦ L−1 =

⎡
⎢⎢⎢⎢⎣

β
−1/2
1 0 · · · 0

0 β
−1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β−1/2
n

⎤
⎥⎥⎥⎥⎦ (9.26a)

and

Hi j = Ai j
(
βiβ j

)−1/2
(9.26b)

� stdForm

Given the matrices A and B, the function stdForm returns H and the transformation
matrix T = (L−1)T . The inversion of L is carried out by the subfunction invert (the
triangular shape of L allows this to be done by back substitution).

function [H,T] = stdForm(A,B)

% Transforms A*x = lambda*B*x to H*z = lambda*z

% and computes transformation matrix T in x = T*z.

% USAGE: [H,T] = stdForm(A,B)

n = size(A,1);

L = choleski(B); Linv = invert(L);

H = Linv*(A*Linv’); T = Linv’;

function Linv = invert(L)

% Inverts lower triangular matrix L.

n = size(L,1);

for j = 1:n-1

L(j,j) = 1/L(j,j);
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for i = j+1:n

L(i,j) = -dot(L(i,j:i-1), L(j:i-1,j)/L(i,i));

end

end

L(n,n) = 1/L(n,n); Linv = L;

EXAMPLE 9.1

40 MPa

80 MPa

30 MPa

60 MPa

30 MPa

The stress matrix (tensor) corresponding to the state of stress shown is

S =

⎡
⎢⎣80 30 0

30 40 0
0 0 60

⎤
⎥⎦MPa

(each row of the matrix consists of the three stress components acting on a coordinate
plane). It can be shown that the eigenvalues of S are the principal stresses and the
eigenvectors are normal to the principal planes. (1) Determine the principal stresses
by diagonalizing S with a Jacobi rotation and (2) compute the eigenvectors.

Solution of Part (1) To eliminate S12 we must apply a rotation in the 1–2 plane. With
k = 1 and � = 2 Eq. (9.15) is

φ = − S11 − S22

2S12
= −80 − 40

2(30)
= −2

3

Equation (9.16a) then yields

t = sgn(φ)

|φ| +
√

φ2 + 1
= −1

2/3 +
√

(2/3)2 + 1
= −0.53518

According to Eqs. (9.18), the changes in S due to the rotation are

S ∗
11 = S11 − tS12 = 80 − (−0.53518) (30) = 96.055 MPa

S ∗
22 = S22 + tS12 = 40 + (−0.53518) (30) = 23.945 MPa

S ∗
12 = S ∗

21 = 0
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Hence the diagonalized stress matrix is

S∗ =

⎡
⎢⎣96.055 0 0

0 23.945 0
0 0 60

⎤
⎥⎦

where the diagonal terms are the principal stresses.

Solution of Part (2) To compute the eigenvectors, we start with Eqs. (9.17) and (9.19),
which yield

c = 1√
1 + t2

= 1√
1 + (−0.53518)2

= 0.88168

s = tc = (−0.53518) (0.88168) = −0.47186

τ = s
1 + c

= −0.47186
1 + 0.88168

= −0.25077

We obtain the changes in the transformation matrix P from Eqs. (9.20). Because P is
initialized to the identity matrix (Pii = 1 and Pi j = 0, i �= j ) the first equation gives us

P∗
11 = P11 − s(P12 + τ P11)

= 1 − (−0.47186) [0 + (−0.25077) (1)] = 0.88167

P∗
21 = P21 − s(P22 + τ P21)

= 0 − (−0.47186) [1 + (−0.25077) (0)] = 0.47186

Similarly, the second equation of Eqs. (9.20) yields

P∗
12 = −0.47186 P∗

22 = 0.88167

The third row and column of P are not affected by the transformation. Thus

P∗ =

⎡
⎢⎣0.88167 −0.47186 0

0.47186 0.88167 0
0 0 1

⎤
⎥⎦

The columns of P∗ are the eigenvectors of S.

EXAMPLE 9.2

L L 2L

C C3C
i1 i2 i3

i1 i2 i3
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(1) Show that the analysis of the electric circuit shown leads to a matrix eigenvalue
problem. (2) Determine the circular frequencies and the relative amplitudes of the
currents.

Solution of Part (1) Kirchoff’s equations for the three loops are

L
di1

dt
+ q1 − q2

3C
= 0

L
di2

dt
+ q2 − q1

3C
+ q2 − q3

C
= 0

2L
di3

dt
+ q3 − q2

C
+ q3

C
= 0

Differentiating and substituting dqk/dt = ik, we get

1
3

i1 − 1
3

i2 = −LC
d2i1

dt2

−1
3

i1 + 4
3

i2 − i3 = −LC
d2i2

dt2

−i2 + 2i3 = −2LC
d2i3

dt2

These equations admit the solution

ik(t) = uk sin ωt

where ω is the circular frequency of oscillation (measured in rad/s) and uk are the
relative amplitudes of the currents. Substitution into Kirchoff’s equations yields
Au = λBu (sin ωt cancels out), where

A =

⎡
⎢⎣ 1/3 −1/3 0

−1/3 4/3 −1
0 −1 2

⎤
⎥⎦ B =

⎡
⎢⎣1 0 0

0 1 0
0 0 2

⎤
⎥⎦ λ = LCω2

which represents an eigenvalue problem of the nonstandard form.

Solution of Part (2) Since B is a diagonal matrix, we can readily transform the problem
into the standard form Hz = λz. From Eq. (9.26a) we get

L−1 =

⎡
⎢⎣1 0 0

0 1 0
0 0 1/

√
2

⎤
⎥⎦

and Eq. (9.26b) yields

H =

⎡
⎢⎣ 1/3 −1/3 0

−1/3 4/3 −1/
√

2
0 −1/

√
2 1

⎤
⎥⎦



341 9.2 Jacobi Method

The eigenvalues and eigenvectors of H can now be obtained with the Jacobi method.
Skipping the details, we obtain the following results:

λ1 = 0.14779 λ2 = 0.58235 λ3 = 1.93653

z1 =

⎡
⎢⎣0.81027

0.45102
0.37423

⎤
⎥⎦ z2 =

⎡
⎢⎣ 0.56274

−0.42040
−0.71176

⎤
⎥⎦ z3 =

⎡
⎢⎣ 0.16370

−0.78730
0.59444

⎤
⎥⎦

The eigenvectors of the original problem are recovered from Eq. (9.22): yi= (L−1)T zi ,
which yields

u1 =

⎡
⎢⎣0.81027

0.45102
0.26462

⎤
⎥⎦ u2 =

⎡
⎢⎣ 0.56274

−0.42040
−0.50329

⎤
⎥⎦ u3 =

⎡
⎢⎣ 0.16370

−0.78730
0.42033

⎤
⎥⎦

These vectors should now be normalized (each zi was normalized, but the transfor-
mation to ui does not preserve the magnitudes of vectors). The circular frequencies
are ωi = √

λi/ (LC ), so that

ω1 = 0.3844√
LC

ω2 = 0.7631√
LC

ω3 = 1.3916√
LC

EXAMPLE 9.3

n + 21 2
P

0-1
n +1

nn - 1

L
x

The propped cantilever beam carries a compressive axial load P. The lateral displace-
ment u(x) of the beam can be shown to satisfy the differential equation

u(4) + P
E I

u′′ = 0 (a)

where E I is the bending rigidity. The boundary conditions are

u(0) = u′′(0) = 0 u(L) = u′(L) = 0 (b)

(1) Show that displacement analysis of the beam results in a matrix eigenvalue
problem if the derivatives are approximated by finite differences. (2) Use the
Jacobi method to compute the lowest three buckling loads and the corresponding
eigenvectors.

Solution of Part (1) We divide the beam into n + 1 segments of length L/(n + 1)
each as shown and enforce the differential equation at nodes 1 to n. Replacing the
derivatives of u in Eq. (a) by central finite differences of O(h2) at the interior nodes
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(nodes 1 to n), we obtain

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

h4

= P
E I

−ui−1 + 2ui − ui+1

h2
, i = 1, 2, . . . , n

After multiplication by h4, the equations become

u−1 − 4u0 + 6u1 − 4u2 + u3 = λ(−u0 + 2u1 − u2)

u0 − 4u1 + 6u2 − 4u3 + u4 = λ(−u1 + 2u2 − u3)

... (c)

un−3 − 4un−2 + 6un−1 − 4un + un+1 = λ(−un−2 + 2un−1 − un)

un−2 − 4un−1 + 6un − 4un+1 + un+2 = λ(−un−1 + 2un − un+1)

where

λ = Ph2

E I
= P L2

(n + 1)2 E I

The displacements u−1, u0, un+1 and un+2 can be eliminated by using the prescribed
boundary conditions. Referring to Table 8.1, we obtain the finite difference approxi-
mations to the boundary conditions in Eqs. (b):

u0 = 0 u−1 = −u1 un+1 = 0 un+2 = un

Substitution into Eqs. (c) yields the matrix eigenvalue problem Ax = λBx, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 6 −4
0 · · · 0 0 1 −4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 2 −1 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solution of Part (2) The problem with the Jacobi method is that it insists on finding all
the eigenvalues and eigenvectors. It is also incapable of exploiting banded structures
of matrices. Thus the program listed below does much more work than necessary for
the problem at hand. More efficient methods of solution will be introduced later in
this chapter.

% Example 9.3 (Jacobi method)

n = 10; % Number of interior nodes.

A = zeros(n); B = zeros(n); % Start constructing A and B.

for i = 1:n

A(i,i) = 6; B(i,i) = 2;

end

A(1,1) = 5; A(n,n) = 7;

for i = 1:n-1

A(i,i+1) = -4; A(i+1,i) = -4;

B(i,i+1) = -1; B(i+1,i) = -1;

end

for i = 1:n-2

A(i,i+2) = 1; A(i+2,i) = 1;

end

[H,T] = stdForm(A,B); % Convert to std. form.

[eVals,Z] = jacobi(H); % Solve by Jacobi method.

X = T*Z; % Eigenvectors of orig. prob.

for i = 1:n % Normalize eigenvectors.

xMag = sqrt(dot(X(:,i),X(:,i)));

X(:,i) = X(:,i)/xMag;

end

[eVals,X] = sortEigen(eVals,X); % Sort in ascending order.

eigenvalues = eVals(1:3)’ % Extract 3 smallest

eigenvectors = X(:,1:3) % eigenvalues & vectors.

Running the program resulted in the following output:

>> eigenvalues =

0.1641 0.4720 0.9022

eigenvectors =

0.1641 -0.1848 0.3070

0.3062 -0.2682 0.3640

0.4079 -0.1968 0.1467

0.4574 0.0099 -0.1219
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0.4515 0.2685 -0.1725

0.3961 0.4711 0.0677

0.3052 0.5361 0.4089

0.1986 0.4471 0.5704

0.0988 0.2602 0.4334

0.0270 0.0778 0.1486

The first three mode shapes, which represent the relative displacements of the
buckled beam, are plotted below (we appended the zero end displacements to the
eigenvectors before plotting the points).

u

-0.4

-0.2

0.0

0.2

0.4

0.6

3

1

2

The buckling loads are given by Pi = (n + 1)2 λi E I/L2. Thus

P1 = (11)2 (0.1641) E I
L2

= 19.86
E I
L2

P2 = (11)2 (0.4720) E I
L2

= 57.11
E I
L2

P3 = (11)2 (0.9022) E I
L2

= 109.2
E I
L2

The analytical values are P1 = 20.19E I/L2, P2 = 59.68E I/L2 and P3 = 118.9E I/L2. It
can be seen that the error introduced by the finite element approximation increases
with the mode number (the error in Pi+1 is larger than in Pi). Of course, the accuracy
of the finite difference model can be improved by using larger n, but beyond n = 20
the cost of computation with the Jacobi method becomes rather high.

9.3 Inverse Power and Power Methods

Inverse Power Method

The inverse power method is a simple iterative procedure for finding the smallest
eigenvalue λ1 and the corresponding eigenvector x1 of

Ax = λx (9.27)
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The method works like this:

1. Let v be an approximation to x1 (a random vector of unit magnitude will do).
2. Solve

Az = v (9.28)

for the vector z.
3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z| = ±1/λ1 and v = x1. The sign of λ1 is de-
termined as follows: if z changes sign between successive iterations, λ1 is negative;
otherwise, λ1 is positive.

Let us now investigate why the method works. Since the eigenvectors xi of
Eq. (9.27) are orthonormal, they can be used as the basis for any n-dimensional vector.
Thus v and z admit the unique representations

v =
n∑

i=1

vi xi z =
n∑

i=1

zi xi (a)

Note that vi and zi are not the elements of v and z, but the components with respect
to the eigenvectors xi . Substitution into Eq. (9.28) yields

A
n∑

i=1

zi xi −
n∑

i=1

vi xi = 0

But Axi = λi xi , so that

n∑
i=1

(ziλi − vi) xi = 0

Hence

zi = vi

λi

It follows from Eq. (a) that

z =
n∑

i=1

vi

λi
xi = 1

λ1

n∑
i=1

vi
λ1

λi
xi

= 1
λ1

(
v1x1 + v2

λ1

λ2
x2 + v3

λ1

λ3
x3 + · · ·

)
(9.29)

Since |λ1/λi | < 1 (i �= 1), we observe that the coefficient of x1 has become more promi-
nent in z than it was in v; hence z is a better approximation to x1. This completes the
first iterative cycle.



346 Symmetric Matrix Eigenvalue Problems

In subsequent cycles we set v = z/|z| and repeat the process. Each iteration will
increase the dominance of the first term in Eq. (9.29) so that the process converges to

z = 1
λ1

v1x1 = 1
λ1

x1

(at this stage v = x1, so that v1 = 1, v2 = v3 = · · · = 0).
The inverse power method also works with the nonstandard eigenvalue problem

Ax = λBx (9.30)

provided that Eq. (9.28) is replaced by

Az = Bv (9.31)

The alternative is, of course, to transform the problem to standard form before apply-
ing the power method.

Eigenvalue Shifting

By inspection of Eq. (9.29) we see that the rate of convergence is determined by the
strength of the inequality |λ1/λ2| < 1 (the second term in the equation). If |λ2| is well
separated from |λ1|, the inequality is strong and the convergence is rapid. On the other
hand, close proximity of these two eigenvalues results in very slow convergence.

The rate of convergence can be improved by a technique called eigenvalue
shifting. If we let

λ = λ∗ + s (9.32)

where s is a predetermined “shift,” the eigenvalue problem in Eq. (9.27) is trans-
formed to

Ax = (λ∗ + s)x

or

A∗x = λ∗x (9.33)

where

A∗ = A − sI (9.34)

Solving the transformed problem in Eq. (9.33) by the inverse power method yields λ∗
1

and x1, where λ∗
1 is the smallest eigenvalue of A∗. The corresponding eigenvalue of the

original problem, λ = λ∗
1 + s, is thus the eigenvalue closest to s.

Eigenvalue shifting has two applications. An obvious one is the determination of
the eigenvalue closest to a certain value s. For example, if the working speed of a shaft
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is s rpm, it is imperative to ensure that there are no natural frequencies (which are
related to the eigenvalues) close to that speed.

Eigenvalue shifting is also be used to speed up convergence. Suppose that we are
computing the smallest eigenvalue λ1 of the matrix A. The idea is to introduce a shift
s that makes λ∗

1/λ
∗
2 as small as possible. Since λ∗

1 = λ1 − s, we should choose s ≈ λ1

(s = λ1 should be avoided to prevent division by zero). Of course, this method works
only if we have a prior estimate of λ1.

The inverse power method with eigenvalue shifting is a particularly powerful tool
for finding eigenvectors if the eigenvalues are known. By shifting very close to an
eigenvalue, the corresponding eigenvector can be computed in one or two iterations.

Power Method

The power method converges to the eigenvalue farthest from zero and the associated
eigenvector. It is very similar to the inverse power method; the only difference be-
tween the two methods is the interchange of v and z in Eq. (9.28). The outline of the
procedure is:

1. Let v be an approximation to xn (a random vector of unit magnitude will do).
2. Compute the vector

z = Av (9.35)

3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z| = ±λn and v = xn (the sign of λn is deter-
mined in the same way as in the inverse power method).

� invPower

Given the matrix A and the scalar s, the functioninvPower returns the eigenvalue of A
closest to s and the corresponding eigenvector. The matrix A∗ = A − sI is decomposed
as soon as it is formed, so that only the solution phase (forward and back substitu-
tion) is needed in the iterative loop. If A is banded, the efficiency of the program can
be improved by replacing LUdec and LUsol by functions that specialize in banded
matrices—see Example 9.6. The program line that forms A∗ must also be modified to
be compatible with the storage scheme used for A.

function [eVal,eVec] = invPower(A,s,maxIter,tol)

% Inverse power mehod for finding the eigenvalue of A

% closest to s & the correstponding eigenvector.
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% USAGE: [eVal,eVec] = invPower(A,s,maxIter,tol)

% maxIter = limit on number of iterations (default is 50).

% tol = error tolerance (default is 1.0e-6).

if nargin < 4; tol = 1.0e-6; end

if nargin < 3; maxIter = 50; end

n = size(A,1);

A = A - eye(n)*s; % Form A* = A - sI

A = LUdec(A); % Decompose A*

x = rand(n,1); % Seed eigenvecs. with random numbers

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x

for i = 1:maxIter

xOld = x; % Save current eigenvecs.

x = LUsol(A,x); % Solve A*x = xOld

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x

xSign = sign(dot(xOld,x)); % Detect sign change of x

x = x*xSign;

% Check for convergence

if sqrt(dot(xOld - x,xOld - x)) < tol

eVal = s + xSign/xMag; eVec = x;

return

end

end

error(’Too many iterations’)

EXAMPLE 9.4
The stress matrix describing the state of stress at a point is

S =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦MPa

Determine the largest principal stress (the eigenvalue of S farthest from zero) by the
power method.

Solution First iteration:

Let v =
[

1 0 0
]T

be the initial guess for the eigenvector. Then

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣1

0
0

⎤
⎥⎦ =

⎡
⎢⎣−30.0

10.0
20.0

⎤
⎥⎦
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|z| =
√

302 + 102 + 202 = 37.417

v = z
|z| =

⎡
⎢⎣−30.0

10.0
20.0

⎤
⎥⎦ 1

37.417
=

⎡
⎢⎣−0.801 77

0.267 26
0.534 52

⎤
⎥⎦

Second iteration:

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣−0.801 77

0.267 26
0.534 52

⎤
⎥⎦ =

⎡
⎢⎣ 37.416

−24.053
−34.744

⎤
⎥⎦

|z| =
√

37.4162 + 24.0532 + 34.7442 = 56.442

v = z
|z| =

⎡
⎢⎣ 37.416

−24.053
−34.744

⎤
⎥⎦ 1

56.442
=

⎡
⎢⎣ 0.662 91

−0.426 15
−0.615 57

⎤
⎥⎦

Third iteration:

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣ 0.66291

−0.42615
−0.61557

⎤
⎥⎦ =

⎡
⎢⎣−36.460

20.362
40.721

⎤
⎥⎦

|z| =
√

36.4602 + 20.3622 + 40.7212 = 58.328

v = z
|z| =

⎡
⎢⎣−36.460

20.362
40.721

⎤
⎥⎦ 1

58.328
=

⎡
⎢⎣−0.62509

0.34909
0.69814

⎤
⎥⎦

At this point the approximation of the eigenvalue we seek is λ = −58.328 MPa (the
negative sign is determined by the sign reversal of z between iterations). This is
actually close to the second-largest eigenvalue λ2 = −58.39 MPa! By continuing the
iterative process we would eventually end up with the largest eigenvalue λ3 = 70.94
MPa. But since |λ2| and |λ3| are rather close, the convergence is too slow from this
point on for manual labor. Here is a program that does the calculations for us:

% Example 9.4 (Power method)

S = [-30 10 20; 10 40 -50; 20 -50 -10];

v = [1; 0; 0];

for i = 1:100

vOld = v; z = S*v; zMag = sqrt(dot(z,z));

v = z/zMag; vSign = sign(dot(vOld,v));
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v = v*vSign;

if sqrt(dot(vOld - v,vOld - v)) < 1.0e-6

eVal = vSign*zMag

numIter = i

return

end

end

error(’Too many iterations’)

The results are:

>> eVal =

70.9435

numIter =

93

Note that it took 93 iterations to reach convergence.

EXAMPLE 9.5
Determine the smallest eigenvalue λ1 and the corresponding eigenvector of

A =

⎡
⎢⎢⎢⎢⎢⎣

11 2 3 1 4
2 9 3 5 2
3 3 15 4 3
1 5 4 12 4
4 2 3 4 17

⎤
⎥⎥⎥⎥⎥⎦

Use the inverse power method with eigenvalue shifting knowing that λ1 ≈ 5.

Solution
% Example 9.5 (Inverse power method)

s = 5;

A = [11 2 3 1 4;

2 9 3 5 2;

3 3 15 4 3;

1 5 4 12 4;

4 2 3 4 17];

[eVal,eVec] = invPower(A,s)

Here is the output:

>> eVal =

4.8739

eVec =

0.2673
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-0.7414

-0.0502

0.5949

-0.1497

Convergence was achieved with 4 iterations. Without the eigenvalue shift 26 iter-
ations would be required.

EXAMPLE 9.6
Unlike Jacobi diagonalization, the inverse power method lends itself to eigenvalue
problems of banded matrices. Write a program that computes the smallest buckling
load of the beam described in Example 9.3, making full use of the banded forms. Run
the program with 100 interior nodes (n = 100).

Solution The function invPower5 listed below returns the smallest eigenvalue and
the corresponding eigenvector of Ax = λBx, where A is a pentadiagonal matrix and
B is a sparse matrix (in this problem it is tridiagonal). The matrix A is input by its
diagonals d, e and f as was done in Art. 2.4 in conjunction with the LU decomposition.
The algorithm for invPower5 does not use B directly, but calls the function func(v)

that supplies the product Bv. Eigenvalue shifting is not used.

function [eVal,eVec] = invPower5(func,d,e,f)

% Finds smallest eigenvalue of A*x = lambda*B*x by

% the inverse power method.

% USAGE: [eVal,eVec] = invPower5(func,d,e,f)

% Matrix A must be pentadiagonal and stored in form

% A = [f\e\d\e\f].

% func = handle of function that returns B*v.

n = length(d);

[d,e,f] = LUdec5(d,e,f); % Decompose A

x = rand(n,1); % Seed x with random numbers

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x

for i = 1:50

xOld = x; % Save current x

x = LUsol5(d,e,f,feval(func,x)); % Solve [A]{x} = [B]{xOld}

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x

xSign = sign(dot(xOld,x)); % Detect sign change of x

x = x*xSign;

% Check for convergence

if sqrt(dot(xOld - x,xOld - x)) < 1.0e-6
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eVal = xSign/xMag; eVec = x;

return

end

end

error(’Too many iterations’)

The function that computes Bv is

function Bv = fex9_6(v)

% Computes the product B*v in Example 9.6.

n = length(v);

Bv = zeros(n,1);

for i = 2:n-1

Bv(i) = -v(i-1) + 2*v(i) - v(i+1);

end

Bv(1) = 2*v(1) - v(2);

Bv(n) = -v(n-1) + 2*v(n);

Here is the program that calls invPower5:

% Example 9.6 (Inverse power method for pentadiagonal A)

n = 100;

d = ones(n,1)*6;

d(1) = 5; d(n) = 7;

e = ones(n-1,1)*(-4);

f = ones(n-2,1);

[eVal,eVec] = invPower5(@fex9_6,d,e,f);

fprintf(’PLˆ2/EI =’)

fprintf(’%9.4f’,eVal*(n+1)ˆ2)

The output, shown below, is in excellent agreement with the analytical value.

>> PLˆ2/EI = 20.1867

PROBLEM SET 9.1

1. Given

A =

⎡
⎢⎣7 3 1

3 9 6
1 6 8

⎤
⎥⎦ B =

⎡
⎢⎣4 0 0

0 9 0
0 0 4

⎤
⎥⎦
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convert the eigenvalue problem Ax = λBx to the standard form Hz = λz. What is
the relationship between x and z?

2. Convert the eigenvalue problem Ax = λBx, where

A =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦ B =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦

to the standard form.

3. An eigenvalue of the problem in Prob. 2 is roughly 2.5. Use the inverse power
method with eigenvalue shifting to compute this eigenvalue to four decimal

places. Start with x =
[

1 0 0
]T

. Hint: two iterations should be sufficient.

4. The stress matrix at a point is

S =

⎡
⎢⎣ 150 −60 0

−60 120 0
0 0 80

⎤
⎥⎦MPa

Compute the principal stresses (eigenvalues of S).
5.

m

L L

k

θ2θ1

2m

The two pendulums are connected by a spring which is undeformed when the
pendulums are vertical. The equations of motion of the system can be shown
to be

kL(θ2 − θ1) − mgθ1 = mL θ̈1

−kL(θ2 − θ1) − 2mgθ2 = 2mL θ̈2

where θ1 and θ2 are the angular displacements and k is the spring stiffness.
Determine the circular frequencies of vibration and the relative amplitudes
of the angular displacements. Use m = 0.25 kg, k = 20 N/m, L = 0.75 m and
g = 9.80665 m/s2.
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6.

L L

L

C

C

C

i1 i2

i3i1

i2

i3

Kirchoff’s laws for the electric circuit are

3i1 − i2 − i3 = −LC
d2i1

dt2

−i1 + i2 = −LC
d2i2

dt2

−i1 + i3 = −LC
d2i3

dt2

Compute the circular frequencies of the circuit and the relative amplitudes of the
loop currents.

7. Compute the matrix A∗ that results from annihilation of A14 and A41 in the matrix

A =

⎡
⎢⎢⎢⎣

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

⎤
⎥⎥⎥⎦

by a Jacobi rotation.

8. � Use the Jacobi method to determine the eigenvalues and eigenvectors of

A =

⎡
⎢⎣ 4 −1 −2

−1 3 3
−2 3 1

⎤
⎥⎦

9. � Find the eigenvalues and eigenvectors of

A =

⎡
⎢⎢⎢⎣

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

⎤
⎥⎥⎥⎦

with the Jacobi method.



355 9.3 Inverse Power and Power Methods

10. �Use the power method to compute the largest eigenvalue and the corresponding
eigenvector of the matrix A given in Prob. 9.

11. � Find the smallest eigenvalue and the corresponding eigenvector of the matrix
A in Prob. 9. Use the inverse power method.

12. � Let

A =

⎡
⎢⎣1.4 0.8 0.4

0.8 6.6 0.8
0.4 0.8 5.0

⎤
⎥⎦ B =

⎡
⎢⎣ 0.4 −0.1 0.0

−0.1 0.4 −0.1
0.0 −0.1 0.4

⎤
⎥⎦

Find the eigenvalues and eigenvectors of Ax = λBx by the Jacobi method.

13. � Use the inverse power method to compute the smallest eigenvalue in Prob. 12.

14. � Use the Jacobi method to compute the eigenvalues and eigenvectors of the
matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 2 3 1 4 2
2 9 3 5 2 1
3 3 15 4 3 2
1 5 4 12 4 3
4 2 3 4 17 5
2 1 2 3 5 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

15. � Find the eigenvalues of Ax = λBx by the Jacobi method, where

A =

⎡
⎢⎢⎢⎣

6 −4 1 0
−4 6 −4 1

1 −4 6 −4
0 1 −4 7

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 −2 3 −1
−2 6 −2 3

3 −2 6 −2
−1 3 −2 9

⎤
⎥⎥⎥⎦

Warning: B is not positive definite.

16. �

1 n2

L
x

u

The figure shows a cantilever beam with a superimposed finite difference mesh. If
u(x, t) is the lateral displacement of the beam, the differential equation of motion
governing bending vibrations is

u(4) = − γ

E I
ü

where γ is the mass per unit length and E I is the bending rigidity. The bound-
ary conditions are u(0, t) = u′(0, t) = u′′(L, t) = u′′′(L, t) = 0. With u(x, t) =
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y(x) sin ωt the problem becomes

y(4) = ω2γ

E I
y y(0) = y ′(0) = y ′′(L) = y ′′′(L) = 0

The corresponding finite difference equations are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 5 −2
0 · · · 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−2

yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−2

yn−1

yn/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

λ = ω2γ

E I

(
L
n

)4

(a) Write down the matrix H of the standard form Hz = λz and the transformation
matrix P as in y = Pz. (b) Write a program that computes the lowest two circular
frequencies of the beam and the corresponding mode shapes (eigenvectors) using
the Jacobi method. Run the program with n = 10. Note: the analytical solution for
the lowest circular frequency is ω1 = (

3.515/L2
)√

E I/γ .

17. �

1 20 3 4 5 6 7 8 9 10

L /4 L /4

(b)

PP L /2L /4 L /4

EI0 2EI0 EI0
(a)

The simply supported column in Fig. (a) consists of three segments with the
bending rigidities shown. If only the first buckling mode is of interest, it is
sufficient to model half of the beam as shown in Fig. (b). The differential equation
for the lateral displacement u(x) is

u′′ = − P
E I

u
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with the boundary conditions u(0) = u ′(L/2) = 0. The corresponding finite dif-
ference equations are⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
0 0 −1 2 −1 0 0 · · · 0
0 0 0 −1 2 −1 0 · · · 0
0 0 0 0 −1 2 −1 · · · 0
...

...
...

...
...

. . .
. . .

. . .
...

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

...
u9

u10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5/1.5
u6/2

...
u9/2
u10/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

λ = P
E I0

(
L

20

)2

Write a program that computes the lowest buckling load P of the column with
the inverse power method. Utilize the banded forms of the matrices.

18. �

θ3
θ2θ1

L
L

L

k k
k

P

The springs supporting the three-bar linkage are undeformed when the linkage
is horizontal. The equilibrium equations of the linkage in the presence of the
horizontal force P can be shown to be⎡

⎢⎣6 5 3
3 3 2
1 1 1

⎤
⎥⎦
⎡
⎢⎣ θ1

θ2

θ3

⎤
⎥⎦ = P

kL

⎡
⎢⎣1 1 1

0 1 1
0 0 1

⎤
⎥⎦
⎡
⎢⎣ θ1

θ2

θ3

⎤
⎥⎦

where k is the spring stiffness. Determine the smallest buckling load P and the
corresponding mode shape. Hint: the equations can easily rewritten in the stan-
dard form Aθ = λθ, where A is symmetric.

19. �

m 2m3m
kk k k

u1 u2 u3
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The differential equations of motion for the mass–spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3

where ui(t) is the displacement of mass i from its equilibrium position and k
is the spring stiffness. Determine the circular frequencies of vibration and the
corresponding mode shapes.

20. �

L L L L

C C/5C/2 C/3 C/4
i1 i2 i3 i4

i1 i2 i3 i4

Kirchoff’s equations for the circuit are

L
d2i1

dt2
+ 1

C
i1 + 2

C
(i1 − i2) = 0

L
d2i2

dt2
+ 2

C
(i2 − i1) + 3

C
(i2 − i3) = 0

L
d2i3

dt2
+ 3

C
(i3 − i2) + 4

C
(i3 − i4) = 0

L
d2i4

dt2
+ 4

C
(i4 − i3) + 5

C
i4 = 0

Find the circular frequencies of the currents.

21. �

L L L L

C C/2 C /3 C/4

i1 i2 i3 i4
i1 i2 i3 i4

L

Determine the circular frequencies of oscillation for the circuit shown, given the
Kirchoff equations

L
d2i1

dt2
+ L

(
d2i1

dt2
− d2i2

dt2

)
+ 1

C
i1 = 0

L
(

d2i2

dt2
− d2i1

dt2

)
+ L

(
d2i2

dt2
− d2i3

dt2

)
+ 2

C
i2 = 0



359 9.4 Householder Reduction to Tridiagonal Form

L
(

d2i3

dt2
− d2i2

dt2

)
+ L

(
d2i3

dt2
− d2i4

dt2

)
+ 3

C
i3 = 0

L
(

d2i4

dt2
− d2i3

dt2

)
+ L

d2i4

dt2
+ 4

C
i4 = 0

22. � Several iterative methods exist for finding the eigenvalues of a matrix A. One of
these is the LR method, which requires the matrix to be symmetric and positive
definite. Its algorithm very simple:

Let A0 = A
do with i = 0, 1, 2, . . .

Use Choleski’s decomposition Ai= Li LT
i to compute Li

Form Ai+1 = LT
i Li

end do

It can be shown that the diagonal elements of Ai+1 converge to the eigenvalues of
A. Write a program that implements the LR method and test it with

A =

⎡
⎢⎣4 3 1

3 4 2
1 2 3

⎤
⎥⎦

9.4 Householder Reduction to Tridiagonal Form

It was mentioned before that similarity transformations can be used to transform an
eigenvalue problem to a form that is easier to solve. The most desirable of the “easy”
forms is, of course, the diagonal form that results from the Jacobi method. However,
the Jacobi method requires about 10n3 to 20n3 multiplications, so that the amount of
computation increases very rapidly with n. We are generally better off by reducing the
matrix to the tridiagonal form, which can be done in precisely n − 2 transformations
by the Householder method. Once the tridiagonal form is achieved, we still have to
extract the eigenvalues and the eigenvectors, but there are effective means of dealing
with that, as we see in the next article.

Householder Matrix

Householder’s transformation utilizes the Householder matrix

Q = I − uuT

H
(9.36)
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where u is a vector and

H = 1
2

uT u = 1
2

|u|2 (9.37)

Note that uuT in Eq. (9.36) is the outer product; that is, a matrix with the elements(
uuT

)
i j = uiuj . Since Q is obviously symmetric (QT = Q), we can write

QT Q = QQ =
(

I − uuT

H

)(
I − uuT

H

)
= I − 2

uuT

H
+ u

(
uT u

)
uT

H 2

= I − 2
uuT

H
+ u (2H) uT

H 2
= I

which shows that Q is also orthogonal.
Now let x be an arbitrary vector and consider the transformation Qx. Choosing

u = x + ke1 (9.38)

where

k = ± |x| e1 =
[

1 0 0 · · · 0
]T

we get

Qx =
(

I − uuT

H

)
x =

[
I − u (x + ke1)T

H

]
x

= x − u
(
xT x + keT

1 x
)

H
= x − u

(
k2 + kx1

)
H

But

2H = (x + ke1)T (x + ke1) = |x|2 + k
(
xT e1 + eT

1 x
)+ k pt2eT

1 e1

= k2 + 2kx1 + k2 = 2
(
k2 + kx1

)
so that

Qx = x − u = −ke1 =
[
−k 0 0 · · · 0

]T
(9.39)

Hence the transformation eliminates all elements of x except the first one.

Householder Reduction of a Symmetric Matrix

Let us now apply the following transformation to a symmetric n × n matrix A:

P1A =
[

1 0T

0 Q

][
A11 xT

x A′

]
=
[

A11 xT

Qx QA′

]
(9.40)

Here x is represents the first column of A with the first element omitted, and A′

is simply A with its first row and column removed. The matrix Q of dimensions
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(n − 1) × (n − 1) is constructed using Eqs. (9.36)–(9.38). Referring to Eq. (9.39), we
see that the transformation reduces the first column of A to

[
A11

Qx

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11

−k
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The transformation

A ← P1AP1 =
[

A11 (Qx)T

Qx QA′Q

]
(9.41)

thus tridiagonalizes the first row as well as the first column of A. Here is a diagram of
the transformation for a 4 × 4 matrix:

1 0 0 0

0
0 Q
0

·
A11 A12 A13 A14

A21

A31 A′

A41

·
1 0 0 0

0
0 Q
0

=
A11 −k 0 0

−k
0 QA′Q
0

The second row and column of A are reduced next by applying the transformation to
the 3 × 3 lower right portion of the matrix. This transformation can be expressed as
A ← P2AP2, where now

P2 =
[

I2 0T

0 Q

]
(9.42)

In Eq. (9.42) I2 is a 2 × 2 identity matrix and Q is a (n − 2) × (n − 2) matrix constructed
by choosing for x the bottom n − 2 elements of the second column of A. It takes a total
of n − 2 transformations with

Pi =
[

Ii 0T

0 Q

]
, i = 1, 2, . . . , n − 2

to attain the tridiagonal form.
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It is wasteful to form Pi and then carry out the matrix multiplication Pi APi . We
note that

A′Q = A′
(

I − uuT

H

)
= A′ − A′u

H
uT = A′−vuT

where

v = A′u
H

(9.43)

Therefore,

QA′Q =
(

I − uuT

H

) (
A′−vuT ) = A′−vuT − uuT

H

(
A′−vuT )

= A′−vuT − u
(
uT A′)
H

+ u
(
uT v

)
uT

H

= A′−vuT −uvT + 2guuT

where

g = uT v
2H

(9.44)

Letting

w = v − gu (9.45)

it can be easily verified that the transformation can be written as

QA′Q = A′−wuT −uwT (9.46)

which gives us the following computational procedure which is to be carried out with
i = 1, 2, . . . , n − 2:

1. Let A′ be the (n − i) × (n − i) lower right-hand portion of A.

2. Let x =
[

Ai+1,i Ai+2,i · · · An,i

]T
(the column of length n − i just to the left of

A′).
3. Compute |x|. Let k = |x| if x1 > 0 and k = − |x| if x1 < 0 (this choice of sign mini-

mizes the roundoff error).

4. Let u =
[

k+x1 x2 x3 · · · xn−i

]T
.

5. Compute H = |u|2/2.
6. Compute v = A′u/H.
7. Compute g = uT v/(2H).
8. Compute w = v − gu.
9. Compute the transformation A ← A′− wT u − uT w.

10. Set Ai,i+1 = Ai+1,i = −k.
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Accumulated Transformation Matrix

Since we used similarity transformations, the eigenvalues of the tridiagonal matrix
are the same as those of the original matrix. However, to determine the eigenvectors
X of original A we must use the transformation

X = PXtridiag

where P is the accumulation of the individual transformations:

P = P1P2· · · Pn−2

We build up the accumulated transformation matrix by initializing P to a n × n
identity matrix and then applying the transformation

P ← PPi =
[

P11 P12

P21 P22

][
Ii 0T

0 Q

]
=
[

P11 P21Q
P12 P22Q

]
(b)

with i = 1, 2, . . . , n − 2. It can be seen that each multiplication affects only the right-
most n − i columns of P (since the first row of P12 contains only zeroes, it can also be
omitted in the multiplication). Using the notation

P′=
[

P12

P22

]

we have [
P12Q
P22Q

]
= P′Q = P′

(
I − uuT

H

)
= P′ − P′u

H
uT = P′− yuT (9.47)

where

y = P′u
H

(9.48)

The procedure for carrying out the matrix multiplication in Eq. (b) is

� Retrieve u (in our triangularization procedure the u’s are stored in the columns
of the lower triangular portion of A).

� Compute H = |u|2/2.
� Compute y = P′u/H.
� Compute the transformation P′ ← P′− yuT .

� householder

This function performs the Householder reduction on the matrix A. Upon return,
d occupies the principal diagonal of A and c forms the upper subdiagonal; that is,
d = diag(A) and c = diag(A,1). The portion of A below the principal diagonal is
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utilized to store the vectors u that are needed in the computation of the transformation
matrix P.

function A = householder(A)

% Housholder reduction of A to tridiagonal form A = [c\d\c].

% Extract c and d by d = diag(A), c = diag(A,1).

% USAGE: A = householder(A)

n = size(A,1);

for k = 1:n-2

u = A(k+1:n,k);

uMag = sqrt(dot(u,u));

if u(1) < 0; uMag = -uMag; end

u(1) = u(1) + uMag;

A(k+1:n,k) = u; % Save u in lower part of A.

H = dot(u,u)/2;

v = A(k+1:n,k+1:n)*u/H;

g = dot(u,v)/(2*H);

v = v - g*u;

A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - v*u’ - u*v’;

A(k,k+1) = -uMag;

end

� householderP

The functionhouseholderP returns the accumulated transformation matrix P. There
is no need to call it if only the eigenvalues are to be computed. Note that the input
parameter A is not the original matrix, but the matrix returned by householder.

function P = householderP(A)

% Computes transformation matrix P after

% householder reduction of A is carried out.

% USAGE: P = householderP(A).

n = size(A,1);

P = eye(n);

for k = 1:n-2

u = A(k+1:n,k);

H = dot(u,u)/2;

v = P(1:n,k+1:n)*u/H;
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P(1:n,k+1:n) = P(1:n,k+1:n) - v*u’;

end

EXAMPLE 9.7
Transform the matrix

A =

⎡
⎢⎢⎢⎣

7 2 3 −1
2 8 5 1
3 5 12 9

−1 1 9 7

⎤
⎥⎥⎥⎦

into tridiagonal form using Householder reduction.

Solution Reduce the first row and column:

A′ =

⎡
⎢⎣8 5 1

5 12 9
1 9 7

⎤
⎥⎦ x =

⎡
⎢⎣ 2

3
−1

⎤
⎥⎦ k = |x| = 3. 7417

u =

⎡
⎢⎣k + x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣5.7417

3
−1

⎤
⎥⎦ H = 1

2
|u|2 = 21. 484

uuT =

⎡
⎢⎣ 32.967 17 225 −5.7417

17.225 9 −3
−5.7417 −3 1

⎤
⎥⎦

Q = I − uuT

H
=

⎡
⎢⎣−0.53450 −0.80176 0.26725

−0.80176 0.58108 0.13964
0.26725 0.13964 0.95345

⎤
⎥⎦

QA′Q =

⎡
⎢⎣ 10.642 −0.1388 −9.1294

−0.1388 5.9087 4.8429
−9.1294 4.8429 10.4480

⎤
⎥⎦

A ←
[

A11 (Qx)T

Qx QA′Q

]
=

⎡
⎢⎢⎢⎣

7 −3.7417 0 0
−3.7417 10.642 −0.1388 −9.1294

0 −0.1388 5.9087 4.8429
0 −9.1294 4.8429 10.4480

⎤
⎥⎥⎥⎦

In the last step we used the formula Qx =
[
−k 0 · · · 0

]T
.
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Reduce the second row and column:

A′ =
[

5.9087 4.8429
4.8429 10.4480

]
x =

[
−0.1388
−9.1294

]
k = − |x| = −9.1305

where the negative sign on k was determined by the sign of x1.

u =
[

k + x1

x2

]
=
[

−9. 2693
−9.1294

]
H = 1

2
|u|2 = 84.633

uuT =
[

85.920 84.623
84.623 83.346

]

Q = I−uuT

H
=
[

0.01521 −0.99988
−0.99988 0.01521

]

QA′Q =
[

10.594 4.772
4.772 5.762

]

A ←

⎡
⎢⎣A11 A12 0T

A21 A22 (Qx)T

0 Qx QA′Q

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

7 −3.742 0 0
−3.742 10.642 9.131 0

0 9.131 10.594 4.772
0 0 4.772 5.762

⎤
⎥⎥⎥⎦

EXAMPLE 9.8
Use the function householder to tridiagonalize the matrix in Example 9.7; also de-
termine the transformation matrix P.

Solution
% Example 9.8 (Householder reduction)

A = [7 2 3 -1;

2 8 5 1;

3 5 12 9;

-1 1 9 7];

A = householder(A);

d = diag(A)’

c = diag(A,1)’

P = householderP(A)

The results of running the above program are:

>> d =

7.0000 10.6429 10.5942 5.7629
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c =

-3.7417 9.1309 4.7716

P =

1.0000 0 0 0

0 -0.5345 -0.2551 0.8057

0 -0.8018 -0.1484 -0.5789

0 0.2673 -0.9555 -0.1252

9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Sturm Sequence

In principle, the eigenvalues of a matrix A can be determined by finding the roots of
the characteristic equation |A − λI| = 0. This method is impractical for large matrices
since the evaluation of the determinant involves n3/3 multiplications. However, if the
matrix is tridiagonal (we also assume it to be symmetric), its characteristic polynomial

Pn(λ) = |A−λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 − λ c1 0 0 · · · 0
c1 d2 − λ c2 0 · · · 0
0 c2 d3 − λ c3 · · · 0
0 0 c3 d4 − λ · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
can be computed with only 3(n − 1) multiplications using the following sequence of
operations:

P0(λ) = 1

P1(λ) = d1 − λ (9.49)

Pi(λ) = (di − λ)Pi−1(λ) − c2
i−1 Pi−2(λ), i = 2, 3, . . . , n

The polynomials P0(λ), P1(λ), . . . , Pn(λ) form a Sturm sequence that has the fol-
lowing property:

� The number of sign changes in the sequence P0(a), P1(a), . . . , Pn(a) is equal to the
number of roots of Pn(λ) that are smaller than a. If a member Pi(a) of the sequence
is zero, its sign is to be taken opposite to that of Pi−1(a).

As we see shortly, Sturm sequence property makes it relatively easy to bracket the
eigenvalues of a tridiagonal matrix.
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� sturmSeq

Given the diagonals c and d of A = [c\d\c], and the value of λ, this function returns
the Sturm sequence P0(λ), P1(λ), . . . , Pn(λ). Note that Pn(λ) = |A − λI|.

function p = sturmSeq(c,d,lambda)

% Returns Sturm sequence p associated with

% the tridiagonal matrix A = [c\d\c] and lambda.

% USAGE: p = sturmSeq(c,d,lambda).

% Note that |A - lambda*I| = p(n).

n = length(d) + 1;

p = ones(n,1);

p(2) = d(1) - lambda;

for i = 2:n-1

p(i+1) = (d(i) - lambda)*p(i) - (c(i-1)ˆ2 )*p(i-1);

end

� count eVals

This function counts the number of sign changes in the Sturm sequence and returns
the number of eigenvalues of the matrix A = [c\d\c] that are smaller than λ.

function num_eVals = count_eVals(c,d,lambda)

% Counts eigenvalues smaller than lambda of matrix

% A = [c\d\c]. Uses the Sturm sequence.

% USAGE: num_eVals = count_eVals(c,d,lambda).

p = sturmSeq(c,d,lambda);

n = length(p);

oldSign = 1; num_eVals = 0;

for i = 2:n

pSign = sign(p(i));

if pSign == 0; pSign = -oldSign; end

if pSign*oldSign < 0

num_eVals = num_eVals + 1;

end

oldSign = pSign;

end
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EXAMPLE 9.9
Use the Sturm sequence property to show that the smallest eigenvalue of A is in the
interval (0.25, 0.5), where

A =

⎡
⎢⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎥⎦

Solution Taking λ = 0.5, we have di − λ = 1.5 and c2
i−1 = 1 and the Sturm sequence

in Eqs. (9.49) becomes

P0(0.5) = 1

P1(0.5) = 1.5

P2(0.5) = 1.5(1.5) − 1 = 1.25

P3(0.5) = 1.5(1.25) − 1.5 = 0.375

P4(0.5) = 1.5(0.375) − 1.25 = −0.6875

Since the sequence contains one sign change, there exists one eigenvalue smaller
than 0.5.

Repeating the process with λ = 0.25 (di − λ = 1.75, c 2
i−1 = 1), we get

P0(0.25) = 1

P1(0.25) = 1.75

P2(0.25) = 1.75(1.75) − 1 = 2.0625

P3(0.25) = 1.75(2.0625) − 1.75 = 1.8594

P4(0.25) = 1.75(1.8594) − 2.0625 = 1.1915

There are no sign changes in the sequence, so that all the eigenvalues are greater than
0.25. We thus conclude that 0.25 < λ1 < 0.5.

Gerschgorin’s Theorem

Gerschgorin’s theorem is useful in determining the global bounds on the eigenvalues
of an n × n matrix A. The term “global” means the bounds that enclose all the eigen-
values. We give here a simplified version of the theorem for a symmetric matrix.

� If λ is an eigenvalue of A, then

ai − ri ≤ λ ≤ ai + ri, i = 1, 2, . . . , n
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where

ai = Aii ri =
n∑

j=1
j �=i

∣∣Ai j

∣∣ (9.50)

It follows that the global bounds on the eigenvalues are

λmin ≥ min
i

(ai − ri) λmax ≤ max
i

(ai + ri) (9.51)

� gerschgorin

The function gerschgorin returns the lower and the upper global bounds on the
eigenvalues of a symmetric tridiagonal matrix A = [c\d\c].

function [eValMin,eValMax]= gerschgorin(c,d)

% Evaluates the global bounds on eigenvalues

% of A = [c\d\c].

% USAGE: [eValMin,eValMax]= gerschgorin(c,d).

n = length(d);

eValMin = d(1) - abs(c(1));

eValMax = d(1) + abs(c(1));

for i = 2:n-1

eVal = d(i) - abs(c(i)) - abs(c(i-1));

if eVal < eValMin; eValMin = eVal; end

eVal = d(i) + abs(c(i)) + abs(c(i-1));

if eVal > eValMax; eValMax = eVal; end

end

eVal = d(n) - abs(c(n-1));

if eVal < eValMin; eValMin = eVal; end

eVal = d(n) + abs(c(n-1));

if eVal > eValMax; eValMax = eVal; end

EXAMPLE 9.10
Use Gerschgorin’s theorem to determine the global bounds on the eigenvalues of the
matrix

A =

⎡
⎢⎣ 4 −2 0

−2 4 −2
0 −2 5

⎤
⎥⎦
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Solution Referring to Eqs. (9.50), we get

a1 = 4 a2 = 4 a3 = 5

r1 = 2 r2 = 4 r3 = 2

Hence

λmin ≥ min(ai − ri) = 4 − 4 = 0

λmax ≤ max(ai + ri) = 4 + 4 = 8

Bracketing Eigenvalues

The Sturm sequence property together with Gerschgorin’s theorem provides us con-
venient tools for bracketing each eigenvalue of a symmetric tridiagonal matrix.

� eValBrackets

The function eValBrackets brackets the m smallest eigenvalues of a symmetric
tridiagonal matrix A = [c\d\c]. It returns the sequence r1, r2, . . . , rm+1, where each
interval (ri, ri+1) contains exactly one eigenvalue. The algorithm first finds the global
bounds on the eigenvalues by Gerschgorin’s theorem. The method of bisection in
conjunction with the Sturm sequence property is then used to determine the upper
bounds on λm, λm−1, . . . , λ1 in that order.

function r = eValBrackets(c,d,m)

% Brackets each of the m lowest eigenvalues of A = [c\d\c]

% so that there is one eivenvalue in [r(i), r(i+1)].

% USAGE: r = eValBrackets(c,d,m).

[eValMin,eValMax]= gerschgorin(c,d); % Find global limits

r = ones(m+1,1); r(1) = eValMin;

% Search for eigenvalues in descending order

for k = m:-1:1

% First bisection of interval (eValMin,eValMax)

eVal = (eValMax + eValMin)/2;

h = (eValMax - eValMin)/2;

for i = 1:100

% Find number of eigenvalues less than eVal

num_eVals = count_eVals(c,d,eVal);

% Bisect again & find the half containing eVal
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h = h/2;

if num_eVals < k ; eVal = eVal + h;

elseif num_eVals > k ; eVal = eVal - h;

else; break

end

end

% If eigenvalue located, change upper limit of

% search and record result in {r}

ValMax = eVal; r(k+1) = eVal;

end

EXAMPLE 9.11
Bracket each eigenvalue of the matrix in Example 9.10.

Solution In Example 9.10 we found that all the eigenvalues lie in (0, 8). We now bisect
this interval and use the Sturm sequence to determine the number of eigenvalues in
(0, 4). With λ = 4, the sequence is—see Eqs. (9.49)

P0(4) = 1

P1(4) = 4 − 4 = 0

P2(4) = (4 − 4)(0) − 22(1) = −4

P3(4) = (5 − 4)(−4) − 22(0) = −4

Since a zero value is assigned the sign opposite to that of the preceding member, the
signs in this sequence are (+, −, −, −). The one sign change shows the presence of
one eigenvalue in (0, 4).

Next we bisect the interval (4, 8) and compute the Sturm sequence with λ = 6:

P0(6) = 1

P1(6) = 4 − 6 = −2

P2(6) = (4 − 6)(−2) − 22(1) = 0

P3(6) = (5 − 6)(0) − 22(−2) = 8

In this sequence the signs are (+, −, +, +), indicating two eigenvalues in (0, 6).
Therefore

0 ≤ λ1 ≤ 4 4 ≤ λ2 ≤ 6 6 ≤ λ3 ≤ 8
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Computation of Eigenvalues

Once the desired eigenvalues are bracketed, they can be found by determining the
roots of Pn(λ) = 0 with bisection or Brent’s method.

� eigenvals3

The function eigenvals3 computes the m smallest eigenvalues of a symmetric
tridiagonal matrix with the method of Brent.

function eVals = eigenvals3(C,D,m)

% Computes the smallest m eigenvalues of A = [C\D\C].

% USAGE: eVals = eigenvals3(C,D,m).

% C and D must be delared ’global’ in calling program.

eVals = zeros(m,1);

r = eValBrackets(C,D,m); % Bracket eigenvalues

for i=1:m

% Solve |A - eVal*I| for eVal by Brent’s method

eVals(i) = brent(@func,r(i),r(i+1));

end

function f = func(eVal);

% Returns |A - eVal*I| (last element of Sturm seq.)

global C D

p = sturmSeq(C,D,eVal);

f = p(length(p));

EXAMPLE 9.12
Determine the three smallest eigenvalues of the 100 × 100 matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
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Solution

% Example 9.12 (Eigenvals. of tridiagonal matrix)

format short e

global C D

m = 3; n = 100;

D = ones(n,1)*2;

C = -ones(n-1,1);

eigenvalues = eigenvals3(C,D,m)’

The result is

>> eigenvalues =

9.6744e-004 3.8688e-003 8.7013e-003

Computation of Eigenvectors

If the eigenvalues are known (approximate values will be good enough), the best
means of computing the corresponding eigenvectors is the inverse power method
with eigenvalue shifting. This method was discussed before, but the algorithm did
not take advantage of banding. Here we present a version of the method written for
symmetric tridiagonal matrices.

� invPower3

This function is very similar to invPower listed in Art. 9.3, but executes much faster
since it exploits the tridiagonal structure of the matrix.

function [eVal,eVec] = invPower3(c,d,s,maxIter,tol)

% Computes the eigenvalue of A =[c\d\c] closest to s and

% the associated eigenvector by the inverse power method.

% USAGE: [eVal,eVec] = invPower3(c,d,s,maxIter,tol).

% maxIter = limit on number of iterations (default is 50).

% tol = error tolerance (default is 1.0e-6).

if nargin < 5; tol = 1.0e-6; end

if nargin < 4; maxIter = 50; end

n = length(d);

e = c; d = d - s; % Apply shift to diag. terms of A

[c,d,e] = LUdec3(c,d,e); % Decompose A* = A - sI

x = rand(n,1); % Seed x with random numbers

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x
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for i = 1:maxIter

xOld = x; % Save current x

x = LUsol3(c,d,e,x); % Solve A*x = xOld

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x

xSign = sign(dot(xOld,x)); % Detect sign change of x

x = x*xSign;

% Check for convergence

if sqrt(dot(xOld - x,xOld - x)) < tol

eVal = s + xSign/xMag; eVec = x;

return

end

end

error(’Too many iterations’)

EXAMPLE 9.13
Compute the 10th smallest eigenvalue of the matrix A given in Example 9.12.

Solution The following program extracts the m th eigenvalue of A by the inverse
power method with eigenvalue shifting:

Example 9.13 (Eigenvals. of tridiagonal matrix)

format short e

m = 10

n = 100;

d = ones(n,1)*2; c = -ones(n-1,1);

r = eValBrackets(c,d,m);

s =(r(m) + r(m+1))/2;

[eVal,eVec] = invPower3(c,d,s);

mth_eigenvalue = eVal

The result is

>> m =

10

mth_eigenvalue =

9.5974e-002

EXAMPLE 9.14
Compute the three smallest eigenvalues and the corresponding eigenvectors of the
matrix A in Example 9.5.
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Solution
% Example 9.14 (Eigenvalue problem)

global C D

m = 3;

A = [11 2 3 1 4;

2 9 3 5 2;

3 3 15 4 3;

1 5 4 12 4;

4 2 3 4 17];

eVecMat = zeros(size(A,1),m); % Init. eigenvector matrix.

A = householder(A); % Tridiagonalize A.

D = diag(A); C = diag(A,1); % Extract diagonals of A.

P = householderP(A); % Compute tranf. matrix P.

eVals = eigenvals3(C,D,m); % Find lowest m eigenvals.

for i = 1:m % Compute corresponding

s = eVals(i)*1.0000001; % eigenvectors by inverse

[eVal,eVec] = invPower3(C,D,s); % power method with

eVecMat(:,i) = eVec; % eigenvalue shifting.

end

eVecMat = P*eVecMat; % Eigenvectors of orig. A.

eigenvalues = eVals’

eigenvectors = eVecMat

>> eigenvalues =

4.8739 8.6636 10.9368

eigenvectors =

-0.2673 0.7291 0.5058

0.7414 0.4139 -0.3188

0.0502 -0.4299 0.5208

-0.5949 0.0696 -0.6029

0.1497 -0.3278 -0.0884

PROBLEM SET 9.2

1. Use Gerschgorin’s theorem to determine global bounds on the eigenvalues of

(a) A =

⎡
⎢⎣ 10 4 −1

4 2 3
−1 3 6

⎤
⎥⎦ (b) B =

⎡
⎢⎣ 4 2 −2

2 5 3
−2 3 4

⎤
⎥⎦
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2. Use the Sturm sequence to show that

A =

⎡
⎢⎢⎢⎣

5 −2 0 0
−2 4 −1 0

0 −1 4 −2
0 0 −2 5

⎤
⎥⎥⎥⎦

has one eigenvalue in the interval (2, 4).

3. Bracket each eigenvalue of

A =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

4. Bracket each eigenvalue of

A =

⎡
⎢⎣6 1 0

1 8 2
0 2 9

⎤
⎥⎦

5. Bracket every eigenvalue of

A =

⎡
⎢⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎤
⎥⎥⎥⎦

6. Tridiagonalize the matrix

A =

⎡
⎢⎣12 4 3

4 9 3
3 3 15

⎤
⎥⎦

with Householder’s reduction.

7. Use Householder’s reduction to transform the matrix

A =

⎡
⎢⎢⎢⎣

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

⎤
⎥⎥⎥⎦

to tridiagonal form.
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8. � Compute all the eigenvalues of

A =

⎡
⎢⎢⎢⎢⎢⎣

6 2 0 0 0
2 5 2 0 0
0 2 7 4 0
0 0 4 6 1
0 0 0 1 3

⎤
⎥⎥⎥⎥⎥⎦

9. � Find the smallest two eigenvalues of

A =

⎡
⎢⎢⎢⎣

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

⎤
⎥⎥⎥⎦

10. � Compute the three smallest eigenvalues of

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 3 −2 1 0
−4 8 −4 3 −2 1

3 −4 9 −4 3 −2
−2 3 −4 10 −4 3

1 −2 3 −4 11 −4
0 1 −2 3 −4 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the corresponding eigenvectors.

11. � Find the two smallest eigenvalues of the 6 × 6 Hilbert matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/2 1/3 · · · 1/6
1/2 1/3 1/4 · · · 1/7
1/3 1/4 1/5 · · · 1/8

...
...

...
. . .

...
1/6 1/7 1/8 · · · 1/11

⎤
⎥⎥⎥⎥⎥⎥⎦

Recall that this matrix is ill-conditioned.

12. � Rewrite the function eValBrackets so that it will bracket the m largest
eigenvalues of a tridiagonal matrix. Use this function to bracket the two largest
eigenvalues of the Hilbert matrix in Prob. 11.

13. �

m 2m3m
kk k k

u1 u2 u3
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The differential equations of motion of the mass–spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3

where ui(t) is the displacement of mass i from its equilibrium position and k is
the spring stiffness. Substituting ui(t) = yi sin ωt, we obtain the matrix eigenvalue
problem ⎡

⎢⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎥⎦
⎡
⎢⎣ y1

y2

y3

⎤
⎥⎦ = mω2

k

⎡
⎢⎣1 0 0

0 3 0
0 0 2

⎤
⎥⎦
⎡
⎢⎣ y1

y2

y3

⎤
⎥⎦

Determine the circular frequencies ω and the corresponding relative amplitudes
yi of vibration.

14. �
u1 u2 un

m
k1 k2 kn

mm
k3

The figure shows n identical masses connected by springs of different stiffnesses.
The equation governing free vibration of the system is Au = mω2u, where ω is the
circular frequency and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 · · · 0
−k2 k2 + k3 −k3 0 · · · 0

0 −k3 k3 + k4 −k4 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 −kn−1 kn−1 + kn −kn

0 · · · 0 0 −kn kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Given the spring stiffness array k =
[

k1 k2 · · · kn

]T
, write a program that computes

the N lowest eigenvalues λ = mω2 and the corresponding eigenvectors. Run the
program with N = 4 and

k =
[

400 400 400 0.2 400 400 200
]T

kN/m

Note that the system is weakly coupled, k4 being small. Do the results make sense?

15. �

1 n2

L
x
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The differential equation of motion of the axially vibrating bar is

u′′ = ρ

E
ü

where u(x, t) is the axial displacement, ρ represents the mass density and E is the
modulus of elasticity. The boundary conditions are u(0, t) = u′(L, t) = 0. Letting
u(x, t) = y(x) sin ωt, we obtain

y ′′ = −ω2 ρ

E
y y(0) = y ′(L) = 0

The corresponding finite difference equations are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(

ωL
n

)2
ρ

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−1

yn/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) If the standard form of these equations is Hz = λz, write down H and the
transformation matrix P in y = Pz. (b) Compute the lowest circular frequency of
the bar with n = 10, 100 and 1000 utilizing the module inversePower3. Note: the
analytical solution is ω1 = π

√
E/ρ/ (2L).

16. �

1 2P nn - 1

L

xP

u

k

The simply supported column is resting on an elastic foundation of stiffness k
(N/m per meter length). An axial force P acts on the column. The differential
equation and the boundary conditions for the lateral displacement u are

u(4) + P
E I

u′′ + k
E I

u = 0

u(0) = u′′(0) = u(L) = u′′(L) = 0

Using the mesh shown, the finite difference approximation of these equations is

(5 + α)u1 − 4u2 + u3 = λ(2u1 − u2)

−4u1 + (6 + α)u2 − 4u3 + u4 = λ(−u1 + 2u2 + u3)

u1 − 4u2 + (6 + α)u3 − 4u4 + u5 = λ(−u2 + 2u3 − u4)

...
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un−3 − 4un−2 + (6 + α)un−1 − 4un = λ(−un−2 + 2un−1 − un)

un−2 − 4un−1 + (5 + α)un = λ(−un−1 + 2un)

where

α = kh4

E I
= 1

(n + 1)4

kL4

E I
λ = Ph2

E I
= 1

(n + 1)2

P L2

E I

Write a program that computes the lowest three buckling loads P and the corre-
sponding mode shapes. Run the program with kL4/(E I ) = 1000 and n = 25.

17. � Find smallest five eigenvalues of the 20 × 20 matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 1
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 2 1 0
0 0 · · · 0 1 2 1
1 0 · · · 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note: this is a difficult matrix that has many pairs of double eigenvalues.

MATLAB Functions

MATLAB’s function for solving eigenvalue problems is eig. Its usage for the standard
eigenvalue problem Ax = λx is

eVals = eig(A) returns the eigenvalues of the matrix A (A can be unsymmetric).

[X,D] = eig(A) returns the eigenvector matrix X and the diagonal matrix D that
contains the eigenvalues on its diagonal; that is, eVals = diag(D).

For the nonstandard form Ax = λBx, the calls are

eVals = eig(A,B)

[X,D] = eig(A,B)

The method of solution is based on Schur’s factorization: PAPT = T, where P
and T are unitary and triangular matrices, respectively. Schur’s factorization is not
covered in this text.



10 Introduction to Optimization

Find x that minimizes F (x) subject to g (x) = 0, h(x) ≥ 0

10.1 Introduction

Optimization is the term often used for minimizing or maximizing a function. It is suf-
ficient to consider the problem of minimization only; maximization of F (x) is achieved
by simply minimizing −F (x). In engineering, optimization is closely related to design.
The function F (x), called the merit function or objective function, is the quantity that
we wish to keep as small as possible, such as cost or weight. The components of x,
known as the design variables, are the quantities that we are free to adjust. Physical
dimensions (lengths, areas, angles, etc.) are common examples of design variables.

Optimization is a large topic with many books dedicated to it. The best we can do in
limited space is to introduce a few basic methods that are good enough for problems
that are reasonably well behaved and don’t involve too many design variables. By
omitting the more sophisticated methods, we may actually not miss all that much.
All optimization algorithms are unreliable to a degree—any one of them may work on
one problem and fail on another. As a rule of thumb, by going up in sophistication we
gain computational efficiency, but not necessarily reliability.

The algorithms for minimization are iterative procedures that require starting
values of the design variables x. If F (x) has several local minima, the initial choice of
x determines which of these will be computed. There is no guaranteed way of finding
the global optimal point. One suggested procedure is to make several computer runs
using different starting points and pick the best result.

More often than not, the design is also subjected to restrictions, or constraints,
which may have the form of equalities or inequalities. As an example, take the min-
imum weight design of a roof truss that has to carry a certain loading. Assume that

382
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the layout of the members is given, so that the design variables are the cross-sectional
areas of the members. Here the design is dominated by inequality constraints that
consist of prescribed upper limits on the stresses and possibly the displacements.

The majority of available methods are designed for unconstrained optimization,
where no restrictions are placed on the design variables. In these problems the min-
ima, if they exit, are stationary points (points where gradient vector of F (x) vanishes).
In the more difficult problem of constrained optimization the minima are usually lo-
cated where the F (x) surface meets the constraints. There are special algorithms for
constrained optimization, but they are not easily accessible due to their complexity
and specialization. One way to tackle a problem with constraints is to use an uncon-
strained optimization algorithm, but modify the merit function so that any violation
of constraints is heavily penalized.

Consider the problem of minimizing F (x) where the design variables are subject
to the constraints

gi(x) = 0, i = 1, 2, . . . , M (10.1a)

hj (x) ≤ 0, j = 1, 2, . . . , N (10.1b)

We choose the new merit function be

F ∗(x) = F (x) + λP(x) (10.2a)

where

P(x) =
M∑

i=1

[gi(x)]2 +
N∑

j=1

{
max

[
0, hj (x)

]}2
(10.2b)

is the penalty function and λ is a multiplier. The function max(a, b) returns the larger
of a and b. It is evident that P(x) = 0 if no constraints are violated. Violation of a
constraint imposes a penalty proportional to the square of the violation. Hence the
minimization algorithm tends to avoid the violations, the degree of avoidance being
dependent on the magnitude of λ. If λ is small, optimization will proceed faster be-
cause there is more “space” in which the procedure can operate, but there may be
significant violation of constraints. On the other hand, a large λ can result in a poorly
conditioned procedure, but the constraints will be tightly enforced. It is advisable to
run the optimization program with λ that is on the small side. If the results show un-
acceptable constraint violation, increase λ and run the program again, starting with
the results of the previous run.

An optimization procedure may also become ill-conditioned when the con-
straints have widely different magnitudes. This problem can be alleviated by scaling
the offending constraints; that is, multiplying the constraint equations by suitable
constants.
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10.2 Minimization Along a Line

f(x)

x

Local minimum

Global minimum

Constraint boundaries
c d

Figure 10.1. Example of local and global minima.

Consider the problem of minimizing a function f (x) of a single variable x with the
constraints c ≤ x ≤ d. A hypothetical plot of the function is shown in Fig. 10.1. There
are two minimum points: a stationary point characterized by f ′(x) = 0 that represents
a local minimum, and a global minimum at the constraint boundary. It appears that
finding the global minimum is simple. All the stationary points could be located by
finding the roots of df/dx = 0, and each constraint boundary may be checked for a
global minimum by evaluating f (c) and f (d ). Then why do we need an optimization
algorithm? We need it if f (x) is difficult or impossible to differentiate; for example, if
f represents a complex computer algorithm.

Bracketing

Before a minimization algorithm can be entered, the minimum point must be brack-
eted. The procedure of bracketing is simple: start with an initial value of x0 and move
downhill computing the function at x1, x2, x3, . . . until we reach the point xn where
f (x) increases for the first time. The minimum point is now bracketed in the inter-
val (xn−2, xn). What should the step size hi = xi+1 − xi be? It is not a good idea have
a constant hi since it often results in too many steps. A more efficient scheme is to
increase the size with every step, the goal being to reach the minimum quickly, even
if the resulting bracket is wide. We chose to increase the step size by a constant factor;
that is, we use hi+1 = chi , c > 1.

Golden Section Search

The golden section search is the counterpart of bisection used in finding roots of
equations. Suppose that the minimum of f (x) has been bracketed in the interval
(a, b) of length h . To telescope the interval, we evaluate the function at x1 = b − Rh
and x2 = a + Rh, as shown in Fig. 10.2(a). The constant R will be determined shortly.
If f1 > f2 as indicated in the figure, the minimum lies in (x1, b); otherwise it is located
in (a, x2).
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Rh
Rh

a bx1 x2

f1 f2

2Rh - h 

Rh'
Rh'

a bx1 x2

h

h'

x

x

f(x)

f(x)

(a)

(b)

Figure 10.2. Golden section telescoping.

Assuming that f1 > f2, we set a ← x1 and x1 ← x2, which yields a new interval (a, b) of
length h′ = Rh, as illustrated in Fig. 10.2(b). To carry out the next telescoping operation
we evaluate the function at x2 = a + Rh′ and repeat the process.

The procedure works only if Figs. 10.1(a) and (b) are similar; i.e., if the same
constant R locates x1 and x2 in both figures. Referring to Fig. 10.2(a), we note that
x2 − x1 = 2Rh − h. The same distance in Fig. 10.2(b) is x1 − a = h′ − Rh′. Equating
the two, we get

2Rh − h = h′ − Rh′

Substituting h′ = Rh and cancelling h yields

2R − 1 = R(1 − R)

the solution of which is the golden ratio 21:

R = −1 + √
5

2
= 0.618 033 989 . . . (10.3)

Note that each telescoping decreases the interval containing the minimum by the
factor R, which is not as good as the factor of 0.5 in bisection. However, the golden
search method achieves this reduction with one function evaluation, whereas two
evaluations would be needed in bisection.

The number of telescopings required to reduce hfrom |b − a | to an error tolerance
ε is given by

|b − a | Rn = ε

21 R is the ratio of the sides of a “golden rectangle,” considered by ancient Greeks to have the perfect
proportions.
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which yields

n = ln(ε/ |b − a|)
ln R

= −2.078 087 ln
ε

|b − a | (10.4)

� goldBracket

This function contains the bracketing algorithm. For the factor that multiplies suc-
cessive search intervals we chose c = 1 + R.

function [a,b] = goldBracket(func,x1,h)

% Brackets the minimum point of f(x).

% USAGE: [a,b] = goldBracket(func,xStart,h)

% INPUT:

% func = handle of function that returns f(x).

% x1 = starting value of x.

% h = initial step size used in search.

% OUTPUT:

% a, b = limits on x at the minimum point.

c = 1.618033989;

f1 = feval(func,x1);

x2 = x1 + h; f2 = feval(func,x2);

% Determine downhill direction & change sign of h if needed.

if f2 > f1

h = -h;

x2 = x1 + h; f2 = feval(func,x2);

% Check if minimum is between x1 - h and x1 + h

if f2 > f1

a = x2; b = x1 - h; return

end

end

% Search loop

for i = 1:100

h = c*h;

x3 = x2 + h; f3 = feval(func,x3);

if f3 > f2

a = x1; b = x3; return

end

x1 = x2; f1 = f2; x2 = x3; f2 = f3;

end

error(’goldbracket did not find minimum’)
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� goldSearch

This function implements the golden section search algorithm.

function [xMin,fMin] = goldSearch(func,a,b,tol)

% Golden section search for the minimum of f(x).

% The minimum point must be bracketed in a <= x <= b.

% USAGE: [fMin,xMin] = goldSearch(func,xStart,h)

% INPUT:

% func = handle of function that returns f(x).

% a, b = limits of the interval containing the minimum.

% tol = error tolerance (default is 1.0e-6).

% OUTPUT:

% fMin = minimum value of f(x).

% xMin = value of x at the minimum point.

if nargin < 4; tol = 1.0e-6; end

nIter = ceil(-2.078087*log(tol/abs(b-a)));

R = 0.618033989;

C = 1.0 - R;

% First telescoping

x1 = R*a + C*b;

x2 = C*a + R*b;

f1 = feval(func,x1);

f2 = feval(func,x2);

% Main loop

for i =1:nIter

if f1 > f2

a = x1; x1 = x2; f1 = f2;

x2 = C*a + R*b;

f2 = feval(func,x2);

else

b = x2; x2 = x1; f2 = f1;

x1 = R*a + C*b;

f1 = feval(func,x1);

end

end

if f1 < f2; fMin = f1; xMin = x1;

else; fMin = f2; xMin = x2;

end
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EXAMPLE 10.1
Use goldSearch to find x that minimizes

f (x) = 1.6x3 + 3x2 − 2x

subject to the constraint x ≥ 0. Compare the result with the analytical solution.

Solution This is a constrained minimization problem. Either the minimum of f (x) is
a stationary point in x ≥ 0, or it is located at the constraint boundary x = 0. We handle
the constraint with the penalty function method by minimizing f (x) + λ [min(0, x)]2.

Starting at x = 1 and choosing h = 0.1 for the first step size ingoldBracket (both
choices being rather arbitrary), we arrive at the following program:

% Example 10.1 (golden section minimization)

x = 1.0; h = 0.1;

[a,b] = goldBracket(@fex10_1,x,h);

[xMin,fMin] = goldSearch(@fex10_1,a,b)

The function to be minimized is

function y = fex10_1(x)

% Function used in Example 10.1.

lam = 1.0; % Penalty function multiplier

c = min(0.0,x); % Constraint penalty equation

y = 1.6*xˆ3 + 3.0*xˆ2 - 2.0*x + lam*cˆ2;

The output from the program is

>> xMin =

0.2735

fMin =

-0.2899

Since the minimum was found to be a stationary point, the constraint was not
active. Therefore, the penalty function was superfluous, but we did not know that at
the beginning.

The locations of stationary points are obtained analytically by solving

f ′(x) = 4.8x2 + 6x − 2 = 0

The positive root of this equation is x = 0.273 494. As this is the only positive root,
there are no other stationary points in x ≥ 0 that we must check out. The only other
possible location of a minimum is the constraint boundary x = 0. But here f (0) = 0
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is larger than the function at the stationary point, leading to the conclusion that the
global minimum occurs at x = 0.273 494.

EXAMPLE 10.2

c

d

y

b ba

H

B

x

x
_

C

The trapezoid shown is the cross section of a beam. It is formed by removing the top
from a triangle of base B = 48 mm and height H = 60 mm. The problem is to find the
height y of the trapezoid that maximizes the section modulus

S = Ix̄/c

where Ix̄ is the second moment of the cross-sectional area about the axis that passes
through the centroid C of the cross section. By optimizing the section modulus,
we minimize the maximum bending stress σ max = M/S in the beam, M being the
bending moment.

Solution Considering the area of the trapezoid as a composite of a rectangle and
two triangles, we find the section modulus through the following sequence of
computations:

Base of rectangle a = B (H − y) /H

Base of triangle b = (B − a) /2

Area A = (B + a) y/2

First moment of area about x-axis Qx = (ay) y/2 + 2 (by/2) y/3

Location of centroid d = Qx/A

Distance involved in S c = y − d

Second moment of area about x-axis Ix = ay 3/3 + 2
(
by 3/12

)
Parallel axis theorem Ix̄ = Ix − Ad 2

Section modulus S = Ix̄/c
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We could use the formulas in the table to derive S as an explicit function of y, but
that would involve a lot of error-prone algebra and result in an overly complicated
expression. It makes more sense to let the computer do the work.

The program we used is listed below. As we wish to maximize S with a minimization
algorithm, the merit function is −S. There are no constraints in this problem.

% Example 10.2 (root finding with golden section)

yStart = 60.0; h = 1.0;

[a,b] = goldBracket(@fex10_2,yStart,h);

[yopt,Sopt] = goldSearch(@fex10_2,a,b);

fprintf(’optimal y = %7.4f\n’,yopt)

fprintf(’optimal S = %7.2f’,-Sopt)

The function that computes the section modulus is

function S = fex10_2(y)

% Function used in Example 10.2

B = 48.0; H = 60.0;

a = B*(H - y)/H; b = (B - a)/2.0;

A = (B + a)*y/2.0;

Q = (a*yˆ2)/2.0 + (b*yˆ2)/3.0;

d = Q/A; c = y - d;

I = (a*yˆ3)/3.0 + (b*yˆ3)/6.0;

Ibar = I - A*dˆ2; S = -Ibar/c

Here is the output:

optimal y = 52.1763

optimal S = 7864.43

The section modulus of the original triangle is 7200; thus the optimal section
modulus is a 9.2% improvement over the triangle.

10.3 Conjugate Gradient Methods

Introduction

We now look at optimization in n-dimensional design space. The objective is to min-
imize F (x), where the components of x are the n independent design variables. One
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way to tackle the problem is to use a succession of one-dimensional minimizations
to close in on the optimal point. The basic strategy is

� Choose a point x0 in the design space.
� loop with i = 1, 2, 3, . . .

Choose a vector vi .

Minimize F (x) along the line through xi−1 in the direction of vi . Let the minimum
point be xi .

if |xi − xi−1| < ε exit loop
� end loop

The minimization along a line can be accomplished with any one-dimensional
optimization algorithm (such as the golden section search). The only question left
open is how to choose the vectors vi .

Conjugate Directions

Consider the quadratic function

F (x) = c −
∑

i

bi xi + 1
2

∑
i

∑
j

Ai j xi xj

= c − bT x + 1
2

xT Ax (10.5)

Differentiation with respect to xi yields

∂ F
∂xi

= −bi +
∑

j

Ai j xj

which can be written in vector notation as

∇F = −b + Ax (10.6)

where ∇F is the gradient of F .
Now consider the change in the gradient as we move from point x0 in the direction

of a vector u. The motion takes place along the line

x = x0 + su

where s is the distance moved. Substitution into Eq. (10.6) yields the expression for
the gradient along u:

∇F |x0+su = −b + A (x0 + su) = ∇F |x0
+ s Au
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Note that the change in the gradient is s Au. If this change is perpendicular to a vector
v; that is, if

vT Au = 0 (10.7)

the directions of u and v are said to be mutually conjugate (noninterfering). The
implication is that once we have minimized F (x) in the direction of v, we can move
along u without ruining the previous minimization.

For a quadratic function of n independent variables it is possible to construct n
mutually conjugate directions. Therefore, it would take precisely n line minimizations
along these directions to reach the minimum point. If F (x) is not a quadratic function,
Eq. (10.5) can be treated as a local approximation of the merit function, obtained by
truncating the Taylor series expansion of F (x) about x0 (see Appendix A1):

F (x) ≈ F (x0) + ∇F (x0)(x − x0) + 1
2

(x − x0)T H(x0)(x − x0)

Now the conjugate directions based on the quadratic form are only approximations,
valid in the close vicinity of x0. Consequently, it would take several cycles of n line
minimizations to reach the optimal point.

The various conjugate gradient methods use different techniques for constructing
conjugate directions. The so-called zero-order methods work with F (x) only, whereas
the first-order methods utilize both F (x) and ∇F . The first-order methods are com-
putationally more efficient, of course, but the input of ∇F (if it is available at all) can
be very tedious.

Powell’s Method

Powell’s method is a zero-order method, requiring the evaluation of F (x) only. If the
problem involves n design variables, the basic algorithm is

� Choose a point x0 in the design space.
� Choose the starting vectors vi , i = 1, 2, . . . , n (the usual choice is vi = ei , where ei

is the unit vector in the xi-coordinate direction).
� cycle

do with i = 1, 2, . . . , n

Minimize F (x) along the line through xi−1 in the direction of vi . Let the
minimum point be xi .

end do
vn+1 ← x0 − xn (this vector is conjugate to vn+1 produced in the previous loop)
Minimize F (x) along the line through x0 in the direction of vn+1. Let the minimum

point be xn+1.

if |xn+1 − x0| < ε exit loop
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do with i = 1, 2, . . . , n

vi ← vi+1 (v1 is discarded, the other vectors are reused)

end do
� end cycle

Powell demonstrated that the vectors vn+1 produced in successive cycles are mu-
tually conjugate, so that the minimum point of a quadratic surface is reached in
precisely n cycles. In practice, the merit function is seldom quadratic, but as long as
it can be approximated locally by Eq. (10.5), Powell’s method will work. Of course, it
usually takes more than n cycles to arrive at the minimum of a nonquadratic function.
Note that it takes n line minimizations to construct each conjugate direction.

Figure 10.3(a) illustrates one typical cycle of the method in a two dimensional
design space (n = 2). We start with point x0 and vectors v1 and v2. Then we find the
distance s1 that minimizes F (x0 + sv1), finishing up at point x1 = x0 + s1v1. Next, we
determine s2 that minimizes F (x1 + sv2), which takes us to x2 = x1 + s2v2. The last
search direction is v3 = x2 − x0. After finding s3 by minimizing F (x0 + sv3) we get to
x3 = x0 + s3v3, completing the cycle.

P0

P1

P2

P3
P4

P5P6

P0(x0)

P1(x1)

P2(x2)

P3(x3)
v1

v3

s2v2

s3v3

s1v1

v2
(a) (b)

Figure 10.3. The method of Powell.

Figure 10.3(b) shows the moves carried out in two cycles superimposed on the
contour map of a quadratic surface. As explained before, the first cycle starts at point
P0 and ends up at P3. The second cycle takes us to P6, which is the optimal point. The
directions P0 P3 and P3 P6 are mutually conjugate.

Powell’s method does have a major flaw that has to be remedied—if F (x) is not
a quadratic, the algorithm tends to produce search directions that gradually become
linearly dependent, thereby ruining the progress towards the minimum. The source
of the problem is the automatic discarding of v1 at the end of each cycle. It has been
suggested that it is better to throw out the direction that resulted in the largest decrease
of F (x), a policy that we adopt. It seems counterintuitive to discard the best direction,
but it is likely to be close to the direction added in the next cycle, thereby contributing
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to linear dependence. As a result of the change, the search directions cease to be
mutually conjugate, so that a quadratic form is not minimized in n cycles any more.
This is not a significant loss since in practice F (x) is seldom a quadratic anyway.

Powell suggested a few other refinements to speed up convergence. Since they
complicate the bookkeeping considerably, we did not implement them.

� powell

The algorithm for Powell’s method is listed below. It utilizes two arrays: df contains
the decreases of the merit function in the first n moves of a cycle, and the matrix u

stores the corresponding direction vectors vi(one vector per column).

function [xMin,fMin,nCyc] = powell(h,tol)

% Powell’s method for minimizing f(x1,x2,...,xn).

% USAGE: [xMin,fMin,nCyc] = powell(h,tol)

% INPUT:

% h = initial search increment (default = 0.1).

% tol = error tolerance (default = 1.0e-6).

% GLOBALS (must be declared GLOBAL in calling program):

% X = starting point

% FUNC = handle of function that returns f.

% OUTPUT:

% xMin = minimum point

% fMin = miminum value of f

% nCyc = number of cycles to convergence

global X FUNC V

if nargin < 2; tol = 1.0e-6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’; end % X must be column vector

n = length(X); % Number of design variables

df = zeros(n,1); % Decreases of f stored here

u = eye(n); % Columns of u store search directions V

for j = 1:30 % Allow up to 30 cycles

xOld = X;

fOld = feval(FUNC,xOld);

% First n line searches record the decrease of f

for i = 1:n

V = u(1:n,i);

[a,b] = goldBracket(@fLine,0.0,h);
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[s,fMin] = goldSearch(@fLine,a,b);

df(i) = fOld - fMin;

fOld = fMin;

X = X + s*V;

end

% Last line search in the cycle

V = X - xOld;

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

% Check for convergence

if sqrt(dot(X-xOld,X-xOld)/n) < tol

xMin = X; nCyc = j; return

end

% Identify biggest decrease of f & update search

% directions

iMax = 1; dfMax = df(1);

for i = 2:n

if df(i) > dfMax

iMax = i; dfMax = df(i);

end

end

for i = iMax:n-1

u(1:n,i) = u(1:n,i+1);

end

u(1:n,n) = V;

end

error(’Powell method did not converge’)

function z = fLine(s) % F in the search direction V

global X FUNC V

z = feval(FUNC,X+s*V);

EXAMPLE 10.3
Find the minimum of the function22

F = 100(y − x2)2 + (1 − x)2

22 From Shoup, T. E., and Mistree, F., Optimization Methods with Applications for Personal Computers,
Prentice-Hall, 1987.
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with Powell’s method starting at the point (−1, 1). This function has an interesting
topology. The minimum value of F occurs at the point (1, 1). As seen in the figure,
there is a hump between the starting and minimum points which the algorithm must
negotiate.

1000
800
600
400
200

0

y

1.5
1

0.5
0
-0.5

-1 x

1.510.50-0.5-1-1.5

Solution The program that solves this unconstrained optimization problem is

% Example 10.3 (Powell’s method of minimization)

global X FUNC

FUNC = @fex10_3;

X = [-1.0; 1.0];

[xMin,fMin,numCycles] = powell

Note that powell receives X and the function handle FUNC as global variables.
The routine for the function to be minimized is

function y = fex10_3(X)

y = 100.0*(X(2) - X(1)ˆ2)ˆ2 + (1.0 -X(1))ˆ2;

Here are the results:

>> xMin =

1.0000

1.0000

fMin =

1.0072e-024

numCycles =

12
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EXAMPLE 10.4
Use powell to determine the smallest distance from the point (5, 8) to the curve
xy = 5.

Solution This is a constrained optimization problem: minimize F (x, y) = (x − 5)2 +
(y − 8)2 (the square of the distance) subject to the equality constraint xy − 5 = 0. The
following program uses Powell’s method with penalty function:

% Example 10.4 (Powell’s method of minimization)

global X FUNC

FUNC = @fex10_4;

X = [1.0; 5.0];

[xMin,fMin,nCyc] = powell;

fprintf(’Intersection point = %8.5f %8.5f\n’,X(1),X(2))

xy = X(1)*X(2);

fprintf(’Constraint x*y = %8.5f\n’,xy)

dist = sqrt((X(1) - 5.0)ˆ2 + (X(2) - 8.0)ˆ2);

fprintf(’Distance = %8.5f\n’,dist)

fprintf(’Number of cycles = %2.0f’,nCyc)

The penalty is incorporated in the M-file of the function to be minimized:

function y = fex10_4(X)

% Function used in Example 10.4

lam = 1.0; % Penalty multiplier

c = X(1)*X(2) - 5.0; % Constraint equation

distSq = (X(1) - 5.0)ˆ2 + (X(2) - 8.0)ˆ2;

y = distSq + lam*cˆ2;

As mentioned before, the value of the penalty function multiplier λ (called lam

in the program) can have profound effects on the result. We chose λ = 1 (as shown in
the listing of fex10 4) with the following result:

>> Intersection point = 0.73307 7.58776

Constraint x*y = 5.56234

Distance = 4.28680

Number of cycles = 7

The small value of λ favored speed of convergence over accuracy. Since the viola-
tion of the constraint xy = 5 is clearly unacceptable, we ran the program again with
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λ = 10 000 and changed the starting point to (0.733 07, 7.587 76), the end point of the
first run. The results shown below are now acceptable.

>>Intersection point = 0.65561 7.62654

Constraint x*y = 5.00006

Distance = 4.36041

Number of cycles = 4

Could we have used λ = 10 000 in the first run? In this case we would be lucky and
obtain the minimum in 17 cycles. Hence we save only six cycles by using two runs.
However, a large λ often causes the algorithm to hang up, so that it generally wise to
start with a small λ.

Fletcher–Reeves Method

Let us assume again that the merit function has the quadratic form in Eq. (10.5). Given
a direction v, it took Powell’s method n line minimizations to construct a conjugate
direction. We can reduce this to a single line minimization with a first-order method.
Here is the procedure, known as the Fletcher–Reeves method:

� Choose a starting point x0.
� g0 ← −∇F (x0)
� v0 ← g0 (lacking a previous search direction, we choose the steepest descent).
� loop with i = 0, 1, 2, . . .

Minimize F (x) along vi ; let the minimum point be xi+1.

gi+1 ← −∇F (xi+1).

if
∣∣gi+1

∣∣ < ε or |F (xi+1) − F (xi)| < ε exit loop (convergence criterion).

γ ← (gi+1 · gi+1)/(gi · gi).

vi+1 ← gi+1 + γ vi .
� end loop

It can be shown that vi and vi+1 are mutually conjugate; that is, they satisfy the
relationship vT

i Avi+1 = 0 . Also gi · gi+1 = 0.
The Fletcher–Reeves method will find the minimum of a quadratic function in

n iterations. If F (x) is not quadratic, it is necessary to restart the process after every
n iterations. A variant of the Fletcher–Reeves method replaces the expression for γ by

γ = (gi+1 − gi) · gi+1

gi · gi
(10.6)

For a quadratic F (x) this change makes no difference since gi and gi+1 are orthogonal.
However, for merit functions that are not quadratic, Eq. (10.6) is claimed to eliminate
the need for a restart after n iterations.
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� fletcherReeves

function [xMin,fMin,nCyc] = fletcherReeves(h,tol)

% Fletcher-Reeves method for minimizing f(x1,x2,...,xn).

% USAGE: [xMin,fMin,nCyc] = fletcherReeves(h,tol)

% INPUT:

% h = initial search increment (default = 0.1).

% tol = error tolerance (default = 1.0e-6).

% GLOBALS (must be declared GLOBAL in calling program):

% X = starting point.

% FUNC = handle of function that returns F.

% DFUNC = handle of function that returns grad(F),

% OUTPUT:

% xMin = minimum point.

% fMin = miminum value of f.

% nCyc = number of cycles to convergence.

global X FUNC DFUNC V

if nargin < 2; tol = 1.0e-6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’; end % X must be column vector

n = length(X); % Number of design variables

g0 = -feval(DFUNC,X);

V = g0;

for i = 1:50

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

g1 = -feval(DFUNC,X);

if sqrt(dot(g1,g1)) <= tol

xMin = X; nCyc = i; return

end

gamma = dot((g1 - g0),g1)/dot(g0,g0);

V = g1 + gamma*V;

g0 = g1;

end

error(’Fletcher-Reeves method did not converge’)

function z = fLine(s) % F in the search direction V

global X FUNC V

z = feval(FUNC,X+s*V);
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EXAMPLE 10.5
Use the Fletcher–Reeves method to locate the minimum of

F (x) = 10x2
1 + 3x2

2 − 10x1x2 + 2x1

Start with x0 =
[

0 0
]T

.

Solution Since F (x) is quadratic, we need only two iterations. The gradient of F is

∇F (x) =
[

20x1 − 10x2 + 2
−10x1 + 6x2

]

First iteration:

g0 = −∇F (x0) =
[

−2
0

]
v0 = g0 =

[
−2

0

]
x0 + s v0 =

[
−2s

0

]

f (s) = F (x0 + sv0) = 10(2s)2 + 3(0)2 − 10(−2s)(0) + 2(−2s)

= 40s2 − 4s

f ′(s) = 80s − 4 = 0 s = 0.05

x1 = x0 + sv0 =
[

0
0

]
+ 0.05

[
−2

0

]
=
[

−0.1
0

]

Second iteration:

g1 = −∇F (x1) =
[

−20(−0.1) + 10(0) − 2
10(−0.1) − 6(0)

]
=
[

0
−1.0

]

γ = g1 · g1

g0 · g0
= 1.0

4
= 0.25

v1 = g1 + γ v0 =
[

0
−1.0

]
+ 0.25

[
−2

0

]
=
[

−0.5
−1.0

]

x1 + sv1 =
[

−0.1
0

]
+ s

[
−0.5
−1.0

]
=
[

−0.1 − 0.5s
−s

]

f (s) = F (x1 + sv1)

= 10(−0.1 − 0.5s)2 + 3(−s)2 − 10(−0.1 − 0.5s)(−s) + 2(−0.1 − 0.5s)

= 0.5s2 − s − 0.1
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f ′(s) = s − 1 = 0 s = 1.0

x2 = x1 + s v1 =
[

−0.1
0

]
+ 1.0

[
−0.5
−1.0

]
=
[

−0.6
−1.0

]

We have now reached the minimum point.

EXAMPLE 10.6

b

h

The figure shows the cross section of a channel carrying water. Determine h, b
and θ that minimize the length of the wetted perimeter while maintaining a cross-
sectional area of 8 m2. (Minimizing the wetted perimeter results in least resistance to
the flow.) Use the Fletcher–Reeves mathod.

Solution The cross-sectional area of the channel is

A = 1
2

[b + (b + 2h tan θ)] h = (b + h tan θ)h

and the length of the wetted perimeter is

S = b + 2(hsec θ)

The optimization problem can be cast as

minimize b + 2hsec θ

subject to (b + h tan θ)h = 8

Equality constraints can often be used to eliminate some of the design variables.
In this case we can solve the area constraint for b, obtaining

b = 8
h

− h tan θ

Substituting the result into the expression for S, we get

S = 8
h

− h tan θ + 2hsec θ

We have now arrived at an unconstrained optimization problem of finding h and θ

that minimize S. The gradient of the merit function is

∇S =
[

∂S/∂h
∂S/∂θ

]
=
[

−8/h2 − tan θ + 2 sec θ

−hsec2 θ + 2hsec θ tan θ

]



402 Introduction to Optimization

Letting x =
[

h θ

]T
and starting with x0 =

[
2 0

]T
, we arrive at the following

program:

% Example 10.6 (Minimization with Fletcher-Reeves)

global X FUNC DFUNC

FUNC = @fex10_6; DFUNC = @dfex10_6;

X = [2.0;0.0];

[xMin,fMin,nCyc] = fletcherReeves;

b = 8.0/X(1) - X(1)*tan(X(2));

theta = X(2)*180.0/pi; % Convert into degrees

fprintf(’b = %8.5f\n’,b)

fprintf(’h = %8.5f\n’,X(1))

fprintf(’theta = %8.5f\n’,theta)

fprintf(’perimeter = %8.5f\n’,fMin)

fprintf(’number of cycles = %2.0f’,nCyc)

Note that the starting point X and the function handles FUNC (function defining
F ) and DFUNC (function defining ∇F ) are declared global. The M-files for the two
functions are

function y = fex10_6(X)

% Function defining F in Example 10.6

y = 8.0/X(1) - X(1)*(tan(X(2)) - 2.0/cos(X(2)));

function g = dfex10_6(X)

% Function defining grad(F) in Example 10.6

g = zeros(2,1);

g(1) = -8.0/(X(1)ˆ2) - tan(X(2)) + 2.0/cos(X(2));

g(2) = X(1)*(-1.0/cos(X(2)) + 2.0*tan(X(2)))/cos(X(2));

The results are (θ is in degrees):

>> b = 2.48161

h = 2.14914

theta = 30.00000

perimeter = 7.44484

number of cycles = 5
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PROBLEM SET 10.1

1. � The Lennard–Jones potential between two molecules is

V = 4ε

[(σ

r

)12
−
(σ

r

)6
]

where ε and σ are constants, and r is the distance between the molecules. Use the
functionsgoldBracketandgoldSearch to findσ/r that minimizes the potential
and verify the result analytically.

2. � One wave function of the hydrogen atom is

ψ = C
(
27 − 18σ + 2σ 2) e−σ/3

where

σ = zr/a0

C = 1

81
√

3π

(
z

a0

)2/3

z = nuclear charge

a0 = Bohr radius

r = radial distance

Find σ where ψ is at a minimum. Verify the result analytically.

3. � Determine the parameter p that minimizes the integral∫ π

0
sin x cos px dx

Hint: use numerical quadrature to evaluate the integral.

4. �

R3= 1.5 R4 = 1.8 

E = 120 V
i1

i2i1

i2
R R5= 1.2 

R2= 3.6 R1= 2 

Kirchoff’s equations for the two loops of the electrical circuit are

R1i1 + R3i1 + R(i1 − i2) = E

R2i2 + R4i2 + R5i2 + R(i2 − i1) = 0

Find the resistance R that maximizes the power dissipated by R. Hint : solve
Kirchoff’s equations numerically with one of the functions in Chapter 2.
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5. �

T

a
r

T

A wire carrying an electric current is surrounded by rubber insulation of outer
radius r . The resistance of the wire generates heat, which is conducted through
the insulation and convected into the surrounding air. The temperature of the
wire can be shown to be

T = q
2π

(
ln(r/a)

k
+ 1

hr

)
+ T∞

where

q = rate of heat generation in wire = 50 W/m

a = radius of wire = 5 mm

k = thermal conductivity of rubber = 0.16 W/m · K

h = convective heat-transfer coefficient = 20 W/m2 · K

T∞ = ambient temperature = 280 K

Find r that minimizes T .

6. � Minimize the function

F (x, y) = (x − 1)2 + (y − 1)2

subject to the constraints x + y ≤ 1 and x ≥ 0.6.

7. � Find the minimum of the function

F (x, y) = 6x2 + y 3 + xy

in y ≥ 0. Verify the result analytically.

8. � Solve Prob. 7 if the constraint is changed to y ≥ −2.

9. � Determine the smallest distance from the point (1, 2) to the parabola y = x 2.



405 10.3 Conjugate Gradient Methods

10. �

C

x

d

0.4 m

0.4 m

0.2 m

Determine x that minimizes the distance d between the base of the area shown
and its centroid C .

11. �

0.43H

r

H
x

C

The cylindrical vessel of mass M has its center of gravity at C . The water in
the vessel has a depth x. Determine x so that the center of gravity of the
vessel–water combination is as low as possible. Use M = 115 kg, H = 0.8 m and
r = 0.25 m.

12. �

b

b
a

a

The sheet of cardboard is folded along the dashed lines to form a box with
an open top. If the volume of the box is to be 1.0 m3, determine the dimen-
sions a and b that would use the least amount of cardboard. Verify the result
analytically.
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13. �

a b

P
u

v

A
B

C

B'

The elastic cord ABC has an extensional stiffness k. When the vertical force P is
applied at B, the cord deforms to the shape AB′C . The potential energy of the
system in the deformed position is

V = −Pv + k (a + b)
2a

δ2
AB + k (a + b)

2b
δ2

BC

where

δAB =
√

(a + u)2 + v2 − a

δBC =
√

(b − u)2 + v2 − b

are the elongations of AB and BC . Determine the displacements u and v by min-
imizing V (this is an application of the principle of minimum potential energy:
a system is in stable equilibrium if its potential energy is at a minimum). Use
a = 150 mm, b = 50 mm, k = 0.6 N/mm and P = 5 N.

14. �

b = 4 m 

P = 50 kN

Each member of the truss has a cross-sectional area A. Find A and the angle θ

that minimize the volume

V = bA
cos θ

of the material in the truss without violating the constraints

σ ≤ 150 MPa δ ≤ 5 mm
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where

σ = P
2A sin θ

= stress in each member

δ = Pb
2E A sin 2θ sin θ

= displacement at the load P

and E = 200 × 109 Pa.

15. � Solve Prob. 14 if the allowable displacement is changed to 2.5 mm.

16. �
r1 r2

L = 1.0 m L = 1.0 m
P = 10 kN

The cantilever beam of circular cross section is to have the smallest volume pos-
sible subject to constraints

σ 1 ≤ 180 MPa σ 2 ≤ 180 MPa δ ≤ 25 mm

where

σ 1 = 8P L

πr3
1

= maximum stress in left half

σ 2 = 4P L

πr3
2

= maximum stress in right half

δ = 4P L3

3π E

(
7

r 4
1

+ 1

r 4
2

)
= displacement at free end

and E = 200 GPa. Determine r1 and r2.

17. � Find the minimum of the function

F (x, y, z) = 2x 2 + 3y 2 + z2 + xy + xz − 2y

and confirm the result analytically.

18. �

r

h

b

The cylindrical container has a conical bottom and an open top. If the volume V
of the container is to be 1.0 m3, find the dimensions r , h and b that minimize the
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surface area S. Note that

V = πr2
(

b
3

+ h
)

S = πr
(

2h +
√

b2 + r2
)

19. �

3 m

4 m

P = 200 kN

P = 200 kN

12

3

The equilibrium equations of the truss shown are

σ 1 A1 + 4
5
σ 2 A2 = P

3
5
σ 2 A2 + σ 3 A3 = P

where σ i is the axial stress in member i and Ai are the cross-sectional areas.
The third equation is supplied by compatibility (geometrical constraints on the
elongations of the members):

16
5

σ 1 − 5σ 2 + 9
5
σ 3 = 0

Find the cross-sectional areas of the members that minimize the weight of the
truss without the stresses exceeding 150 MPa.

20. �

B

H

y1
y2

L1

L2

L3

W1

W2

1

3

2

A cable supported at the ends carries the weights W1 and W2. The potential energy
of the system is

V = −W1 y1 − W2 y2

= −W1 L1 sin θ1 − W2(L1 sin θ1 + L2 sin θ2)
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and the geometric constraints are

L1 cos θ1 + L2 cos θ2 + L3 cos θ3 = B

L1 sin θ1 + L2 sin θ2 + L3 sin θ3 = H

The principle of minimum potential energy states that the equilibrium config-
uration of the system is the one that satisfies geometric constraints and mini-
mizes the potential energy. Determine the equilibrium values of θ1, θ2 and θ3

given that L1 = 1.2 m, L2 = 1.5 m, L3 = 1.0 m, B = 3.5 m, H = 0, W1 = 20 kN and
W2 = 30 kN.

MATLAB Functions

x = fmnbnd(@func,a,b) returns x that minimizes the function func of a single
variable. The minimum point must be bracketed in (a,b). The algorithm used
is Brent’s method that combines golden section search with quadratic interpo-
lation. It is more efficient than goldSearch that uses just the golden section
search.

x = fminsearch(@func,xStart) returns the vector of independent variables that
minimizes the multivariate function func. The vector xStart contains the
starting values of x. The algorithm is the Nelder–Mead method, also known
as the downhill simplex, which is reliable, but much less efficient than Powell’s
method.

Both of these functions can be called with various control options that set op-
timization parameters (e.g., the error tolerance) and control the display of results.
There are also additional output parameters that may be used in the function call, as
illustrated in the following example (the data is taken from Example 10.4):

>> [x,fmin,output] = fminsearch(@fex10_4,[1 5])

x =

0.7331 7.5878

fmin =

18.6929

output =

iterations: 38

funcCount: 72

algorithm: ’Nelder-Mead simplex direct search’





Appendices

A1 Taylor Series

Function of a Single Variable

The Taylor series expansion of a function f (x) about the point x = a is the infinite
series

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
(x − a)2

2!
+ f ′′′(a)

(x − a)3

3!
+ · · · (A1)

In the special case a = 0 the series is also known as the MacLaurin series. It can be
shown that the Taylor series expansion is unique in the sense that no two functions
have identical Taylor series.

A Taylor series is meaningful only if all the derivatives of f (x) exist at x = a and
the series converges. In general, convergence occurs only if x is sufficiently close to a;
i.e., if |x − a| ≤ ε, where ε is called the radius of convergence. In many cases ε is infinite.

Another useful form of the Taylor series is the expansion about an arbitrary
value of x:

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ f ′′′(x)

h3

3!
+ · · · (A2)

Since it is not possible to evaluate all the terms of an infinite series, the effect of
truncating the series in Eq. (A2) is of great practical importance. Keeping the first
n + 1 terms, we have

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ · · · + f (n)(x)

hn

n!
+ En (A3)

where En is the truncation error (sum of the truncated terms). The bounds on the
truncation error are given by Taylor’s theorem:

En = f (n+1)(ξ )
hn+1

(n + 1)!
(A4)
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where ξ is some point in the interval (x, x + h). Note that the expression for En is
identical to the first discarded term of the series, but with x replaced by ξ . Since the
value of ξ is undetermined (only its limits are known), the most we can get out of
Eq. (A4) are the upper and lower bounds on the truncation error.

If the expression for f (n+1)(ξ ) is not available, the information conveyed by
Eq. (A4) is reduced to

En = O(hn+1) (A5)

which is a concise way of saying that the truncation error is of the order of hn+1, or
behaves as hn+1. If h is within the radius of convergence, then

O(hn) > O(hn+1)

i.e., the error is always reduced if a term is added to the truncated series (this may not
be true for the first few terms).

In the special case n = 1, Taylor’s theorem is known as the mean value theorem:

f (x + h) = f (x) + f ′(ξ )h, x ≤ ξ ≤ x + h (A6)

Function of Several Variables

If f is a function of the m variables x1, x2, . . . , xm, then its Taylor series expansion
about the point x = [x1, x2, . . . , xm]T is

f (x + h) = f (x) +
m∑

i=1

∂ f
∂xi

∣∣∣∣
x

hi + 1
2!

m∑
i=1

m∑
j=1

∂2 f
∂xi∂xj

∣∣∣∣
x

hi hj + · · · (A7)

This is sometimes written as

f (x + h) = f (x) + ∇ f (x) · h + 1
2

hT H(x)h + · · · (A8)

The vector ∇ f is known as the gradient of f and the matrix H is called the Hessian
matrix of f .

EXAMPLE A1
Derive the Taylor series expansion of f (x) = ln(x) about x = 1.

Solution The derivatives of f are

f ′(x) = 1
x

f ′′(x) = − 1
x2

f ′′′(x) = 2!
x3

f (4) = − 3!
x4

etc.

Evaluating the derivatives at x = 1, we get

f ′(1) = 1 f ′′(1) = −1 f ′′′(1) = 2! f (4)(1) = −3! etc.
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which upon substitution into Eq. (A1) together with a = 1 yields

ln(x) = 0 + (x − 1) − (x − 1)2

2!
+ 2!

(x − 1)3

3!
− 3!

(x − 1)4

4!
+ · · ·

= (x − 1) − 1
2

(x − 1)2 + 1
3

(x − 1)3 − 1
4

(x − 1)4 + · · ·

EXAMPLE A2
Use the first five terms of the Taylor series expansion of ex about x = 0:

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

together with the error estimate to find the bounds of e.

Solution

e = 1 + 1 + 1
2

+ 1
6

+ 1
24

+ E4 = 65
24

+ E4

E4 = f (4)(ξ )
h5

5!
= e ξ

5!
, 0 ≤ ξ ≤ 1

The bounds on the truncation error are

(E4)min = e0

5!
= 1

120
(E4)max = e1

5!
= e

120

Thus the lower bound on e is

emin = 65
24

+ 1
120

= 163
60

and the upper bound is given by

emax = 65
24

+ emax

120

which yields

119
120

emax = 65
24

emax = 325
119

Therefore,

163
60

≤ e ≤ 325
119

EXAMPLE A3
Compute the gradient and the Hessian matrix of

f (x, y) = ln
√

x2 + y2

at the point x = −2, y = 1.
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Solution

∂ f
∂x

= 1√
x2 + y 2

(
1
2

2x√
x2 + y 2

)
= x

x2 + y 2

∂ f
∂y

= y
x2 + y 2

∇ f (x, y) =
[

x/(x2 + y 2) y/(x2 + y 2)
]T

∇ f (−2, 1) =
[
−0.4 0.2

]T

∂ 2 f
∂x2

= (x2 + y 2) − x(2x)
(x2 + y 2)2

= −x2 + y 2

(x2 + y 2)2

∂ 2 f
∂y 2

= x2 − y 2

(x2 + y 2)2

∂ 2 f
∂x∂y

= ∂ 2 f
∂y∂x

= −2xy
(x2 + y 2)2

H(x, y) =
[
−x2 + y 2 −2xy
−2xy x2 − y 2

]
1

(x2 + y 2)2

H(−2, 1) =
[
−0.12 0.16

0.16 0.12

]

A2 Matrix Algebra

A matrix is a rectangular array of numbers. The size of a matrix is determined by the
number of rows and columns, also called the dimensions of the matrix. Thus a matrix
of mrows and n columns is said to have the size m× n (the number of rows is always
listed first). A particularly important matrix is the square matrix, which has the same
number of rows and columns.

An array of numbers arranged in a single column is called a column vector, or
simply a vector. If the numbers are set out in a row, the term row vector is used. Thus
a column vector is a matrix of dimensions n × 1 and a row vector can be viewed as a
matrix of dimensions 1 × n.

We denote matrices by boldface, upper case letters. For vectors we use boldface,
lower case letters. Here are examples of the notation:

A =

⎡
⎢⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ b =

⎡
⎢⎣b1

b2

b3

⎤
⎥⎦ (A9)
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Indices of the elements of a matrix are displayed in the same order as its dimensions:
the row number comes first, followed by the column number. Only one index is needed
for the elements of a vector.

Transpose

The transpose of a matrix A is denoted by AT and defined as

AT
i j = A ji

The transpose operation thus interchanges the rows and columns of the matrix. If
applied to vectors, it turns a column vector into a row vector and vice versa. For
example, transposing A and b in Eq. (A9), we get

AT =

⎡
⎢⎣A11 A21 A31

A12 A22 A32

A13 A23 A33

⎤
⎥⎦ bT =

[
b1 b2 b3

]

An n × n matrix is said to be symmetric if AT = A. This means that the elements
in the upper triangular portion (above the diagonal connecting A11 and Ann) of a
symmetric matrix are mirrored in the lower triangular portion.

Addition

The sum C = A + B of two m× n matrices A and B is defined as

Ci j = Ai j + Bi j , i = 1, 2, . . . , m; j = 1, 2, . . . , n (A10)

Thus the elements of C are obtained by adding elements of A to the elements of B.
Note that addition is defined only for matrices that have the same dimensions.

Multiplication

The scalar or dot product c = a · b of the vectors a and b, each of size m, is defined as

c =
m∑

k=1

akbk (A11)

It can also be written in the form c = aT b.
The matrix product C = AB of an l × m matrix A and an m× n matrix B is

defined by

Ci j =
m∑

k=1

Aik Bkj , i = 1, 2, . . . , l; j = 1, 2, . . . , n (A12)
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The definition requires the number of columns in A (the dimension m) to be equal to
the number of rows in B. The matrix product can also be defined in terms of the dot
product. Representing the ith row of A as the vector ai and the jth column of B as the
vector b j , we have

Ci j = ai · b j (A13)

A square matrix of special importance is the identity or unit matrix

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(A14)

It has the property AI = IA = A.

Inverse

The inverse of an n × n matrix A, denoted by A−1, is defined to be an n × n matrix
that has the property

A−1A = AA−1 = I (A15)

Determinant

The determinant of a square matrix A is a scalar denoted by |A| or det(A). There is no
concise definition of the determinant for a matrix of arbitrary size. We start with the
determinant of a 2 × 2 matrix, which is defined as∣∣∣∣∣A11 A12

A21 A22

∣∣∣∣∣ = A11 A22 − A12 A21 (A16)

The determinant of a 3 × 3 matrix is then defined as∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣ = A11

∣∣∣∣∣A22 A23

A32 A33

∣∣∣∣∣− A12

∣∣∣∣∣A21 A23

A31 A33

∣∣∣∣∣+ A13

∣∣∣∣∣A21 A22

A31 A32

∣∣∣∣∣
Having established the pattern, we can now define the determinant of an n × nmatrix
in terms of the determinant of an (n − 1) × (n − 1) matrix:

|A| =
n∑

k=1

(−1)k+1 A1kM1k (A17)
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where Mik is the determinant of the (n − 1) × (n − 1) matrix obtained by deleting the
ith row and kth column of A. The term (−1)k+i Mik is called a cofactor of Aik.

Equation (A17) is known as Laplace’s development of the determinant on the
first row of A. Actually Laplace’s development can take place on any convenient row.
Choosing the ith row, we have

|A| =
n∑

k=1

(−1)k+i AikMik (A18)

The matrix A is said to be singular if |A| = 0.

Positive Definiteness

An n × n matrix A is said to be positive definite if

xT Ax > 0 (A19)

for all nonvanishing vectors x. It can be shown that a matrix is positive definite if the
determinants of all its leading minors are positive. The leading minors of A are the n
square matrices ⎡

⎢⎢⎢⎢⎣
A11 A12 · · · A1k

A12 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

⎤
⎥⎥⎥⎥⎦ , k = 1, 2, . . . , n

Therefore, positive definiteness requires that

A11 > 0,

∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣ > 0, . . . , |A| > 0 (A20)

Useful Theorems

We list without proof a few theorems that are utilized in the main body of the text.
Most proofs are easy and could be attempted as exercises in matrix algebra.

(AB)T = BT AT (A21a)

(AB)−1 = B−1A−1 (A21b)∣∣AT
∣∣ = |A| (A21c)

|AB| = |A| |B| (A21d)

if C = AT BA where B = BT , then C = CT (A21e)
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EXAMPLE A4
Letting

A =

⎡
⎢⎣1 2 3

1 2 1
0 1 2

⎤
⎥⎦ u =

⎡
⎢⎣ 1

6
−2

⎤
⎥⎦ v =

⎡
⎢⎣ 8

0
−3

⎤
⎥⎦

compute u + v, u · v, Av and uT Av.

Solution

u + v =

⎡
⎢⎣ 1 + 8

6 + 0
−2 − 3

⎤
⎥⎦ =

⎡
⎢⎣ 9

6
−5

⎤
⎥⎦

u · v = 1(8)) + 6(0) + (−2)(−3) = 14

Av =

⎡
⎢⎣a1·v

a2·v
a3·v

⎤
⎥⎦ =

⎡
⎢⎣1(8) + 2(0) + 3(−3)

1(8) + 2(0) + 1(−3)
0(8) + 1(0) + 2(−3)

⎤
⎥⎦ =

⎡
⎢⎣−1

5
−6

⎤
⎥⎦

uT Av = u · (Av) = 1(−1) + 6(5) + (−2)(−6) = 41

EXAMPLE A5
Compute |A|, where A is given in Example A4. Is A positive definite?

Solution Laplace’s development of the determinant on the first row yields

|A| = 1

∣∣∣∣∣2 1
1 2

∣∣∣∣∣− 2

∣∣∣∣∣1 1
0 2

∣∣∣∣∣+ 3

∣∣∣∣∣1 2
0 1

∣∣∣∣∣
= 1(3) − 2(2) + 3(1) = 2

Development on the third row is somewhat easier due to the presence of the zero
element:

|A| = 0

∣∣∣∣∣2 3
2 1

∣∣∣∣∣− 1

∣∣∣∣∣1 3
1 1

∣∣∣∣∣+ 2

∣∣∣∣∣1 2
1 2

∣∣∣∣∣
= 0(−4) − 1(−2) + 2(0) = 2

To verify positive definiteness, we evaluate the determinants of the leading
minors:

A11 = 1 > 0 O.K.

∣∣∣∣∣A11 A12

A21 A22

∣∣∣∣∣ =
∣∣∣∣∣1 2
1 2

∣∣∣∣∣ = 0 Not O.K.

A is not positive definite.
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EXAMPLE A6
Evaluate the matrix product AB, where A is given in Example A4 and

B =

⎡
⎢⎣−4 1

1 −4
2 −2

⎤
⎥⎦

Solution

AB =

⎡
⎢⎣a1·b1 a1·b2

a2·b1 a2·b2

a3·b1 a3·b2

⎤
⎥⎦

=

⎡
⎢⎣1(−4) + 2(1) + 3(2) 1(1) + 2(−4) + 3(−2)

1(−4) + 2(1) + 1(2) 1(1) + 2(−4) + 1(−2)
0(−4) + 1(1) + 2(2) 0(1) + 1(−4) + 2(−2)

⎤
⎥⎦ =

⎡
⎢⎣4 −13

0 −9
5 −8

⎤
⎥⎦
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Adams–Bashforth–Moulton method, 296
adaptive Runge–Kutta method, 277–284
algebra. See linear algebraic equations systems;

matrix algebra
ans, 5
appendices, 411–419
array manipulation, 21–25

array functions, 23–25
creating arrays, 6–8, 21–23

augmented coefficient matrix, 29

bisect, 147–148
bisection method, for equation root, 146–149
brent, 151–153
Brent’s method, 150–155
buildvec function, 15
Bulirsch–Stoer algorithm, 288
Bulirsch–Stoer method, 291

algorithm, 288
midpoint method, 285–286
Richardson extrapolation, 286

bulStoer, 288–289

calling functions, 17–18
cardinal functions, 104
cell arrays, creating, 8–9
celldisp, 8
character string, 9
char, 4
choleski, 48
Choleski’s decomposition, 46–52
class, 4
coefficient matrices, symmetric/banded, 55–66

symmetric, 59–60
symmetric/pentadiagonal, 60–66
tridiagonal, 56–59

command window, 25

composite Simpson’s 1/3 rule, 206
composite trapezoidal rule, 202–203
conditionals, flow control, 12–14
conjGrad, 88–89
conjugate, 87
conjugate gradient methods, 87–96,

390–402
conjugate directions, 391–392
Fletcher–Reeves method, 398–402
Powell’s method, 392–398

continue statement, 15–16
count eVals, 368–369
cubic splines, 115–121, 192–196
curve fitting. See interpolation/curve fitting
cyclic tridiagonal equation, 92

data types/classes, 4
char array, 4
class command, 4
double array, 4
function handle, 4
logical array, 4

deflation of polynomials, 174
direct methods, 31
displacement formulation, 77
Doolittle’s decomposition, 43–46
double array, 4

editor/debugger window, 25
eigenvals3, 373
eigenvalue problems. See symmetric matrix

eigenvalue problems
else conditional, 12
elseif conditional, 12–13
embedded integration formula, 277
eps, 5
equivalent equation, 32

421
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error
input, 6
in program execution, 16–17
programming, 6

Euler’s method, stability of, 274
eValBrackets, 371–372
evalPoly, 173
evaluating functions, 18–19
exponential functions, fitting, 131–137

finite difference approximations, 182–187
errors in, 187
first central difference approximations,

183–184
first noncentral, 184–185
second noncentral, 185–187

first central difference approximations,
183–184

first noncentral finite difference
approximations, 184–185

fletcherReeves, 399–400
Fletcher–Reeves method, 398–402
flow control, 12–17

conditionals, 12–14
loops, 12, 14–17

force formulation, 79
for loop, 14–15, 16
fourth-order differential equation, 317–321
fourth-order Runge–Kutta method, 260–261
function concept, 143
function definition line, 17
function handle, 4
functions, 17–20

calling, 17–18
evaluating, 18–19
function definition line, 17
in-line, 19–20

gauss, 38–39
Gauss elimination method, 34–42

algorithm for, 36–39
back substitution phase, 36
elimination phase, 35–36
multiple sets of equations, 39–42

Gauss elimination with scaled row pivoting,
68–72

Gaussian integration, 218
abscissas/weights for Gaussian quadratures,

223
Gauss–Chebyshev quadrature, 224–225
Gauss–Hermite quadrature, 225–226
Gauss–Laguerre quadrature, 225
Gauss–Legendre quadrature, 224

Gauss quadrature with logarithmic
singularity, 205, 226

determination of nodal abscissas/weights,
221–223

formulas for, 218–219
orthogonal polynomials, 220–221

gaussNodes, 227–228
gaussPiv, 70–71
gaussQuad, 228
gaussQuad2, 238–240
gaussSeidel, 82, 86–87
Gauss–Seidel method, 84–87
gerschgorin, 370
Gerschgorin’s theorem, 369–371
goldBracket, 386–387
goldSearch, 387

Horner’s deflation algorithm, 174
householder, 363–364
householderP, 364–365
householder reduction to tridiagonal form,

359–367
accumulated transformation matrix,

363–367
householder matrix, 359–360
householder reduction of symmetric

matrix, 360–362

if, 12, 14–17
ill-conditioning, in linear algebraic equations

systems, 30–31
indirect methods, 31
inf, 5
initial value problems

adaptive Runge–Kutta method, 277–284
Bulirsch–Stoer method, 291

Bulirsch–Stoer algorithm, 288
midpoint method, 285–286
Richardson extrapolation, 286

introduction, 251–252
MATLAB functions for, 295–296
problem set, 273, 291–295
Runge–Kutta methods, 257–267

fourth-order, 260–261
second-order, 258–260

stability/stiffness, 273–277
stability of Euhler’s method, 274
stiffness, 274–275

Taylor series method, 252–257
in-line functions, 19–20
input/output, 20–21

printing, 20–21
reading, 20



423 Index

integration order, 237
interpolation/curve fitting

interpolation with cubic spline, 115–121
introduction, 103
least–squares fit, 125–137

fitting a straight line, 126–127
fitting linear forms, 127
polynomial fit, 128–130
weighting of data, 130–137

fitting exponential functions,
131–137

weighted linear regression,
130–131

MATLAB functions for, 141–142
polynomial interpolation, 103–115

Lagrange’s method, 103–105, 108
limits of, 110–115
Neville’s method, 108–110
Newton’s method, 105

problem set, 121–125, 138–141
interval halving methods, 146
inverse quadratic interpolation, 150
invPower, 347
invPower3, 374–375
i or j, 5, 7–8, 9

jacobi, 333–335
Jacobian matrix, 238
Jacobi method, 328–344

Jacobi diagonalization, 330, 336
Jacobi rotation, 329–330
similarity transformation/diagonalization,

328–329
transformation to standard form, 336–344

Laguerre’s method, 174–179
LAPACK (Linear Algebra PACKage), 28
least-squares fit, 125–137

fitting a straight line, 126–127
fitting linear forms, 127
polynomial fit, 128–130
weighting of data, 130–137

fitting exponential functions, 131–137
weighted linear regression, 130–131

linear algebraic equations systems. See also
matrix algebra

Gauss elimination method, 34–42
algorithm for, 36–39
back substitution phase, 36
elimination phase, 35–36
multiple sets of equations, 39–42

ill-conditioning, 30–31
introduction, 28

iterative methods, 84–96
conjugate gradient method,

87–96
Gauss–Seidel method, 84–87

linear systems, 30–31
LU decomposition methods, 42–55

Choleski’s decomposition, 46–52
Doolittle’s decomposition, 43–46

MATLAB functions for, 100–102
matrix inversion, 81–83
methods of solution, 31–32
notation in, 28–29
overview of direct methods, 32–34
pivoting, 66–81

diagonal dominance and, 68
Gauss elimination with scaled row

pivoting, 68–72
when to pivot, 72–75

problem set, 55, 75–81, 100
symmetric/banded coefficient matrices,

55–66
symmetric, 59–60
symmetric/pentadiagonal, 60–66
tridiagonal, 56–59

uniqueness of solution for, 29, 30
linear forms, fitting, 127
linear systems, 30–31
linInterp, 299
logical, 11
logical array, 4
loops, 12, 14–17
LUdec, 44–45
LUdec3, 58–59
LUdec5, 63
LUdecPiv, 71–72
LUsol, 45–46
LUsol3, 59
LUsol5, 63–64
LUsolPiv, 72

matInv, 72
MATLAB

array manipulation, 21–25
cells, 8–9
data types, 4
flow control, 12–17
functions, 17–20
input/output, 20–21
operators, 9–11
overview, 1–3
strings, 4
variables, 5–6
writing/running programs, 25–26
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MATLAB functions
initial value problems, 295–296
interpolation/curve fitting, 141–142
linear algebraic equations systems, 100–102
multistep method, 296
numerical differentiation, 198–199
numerical integration, 250
optimization, 409
roots of equations, 180–181
single-step method, 296
symmetric matrix eigenvalue problems, 381
two-point boundary value problems, 324

matrix algebra, 414–419
addition, 415
determinant, 416–417
example, 418–419
inverse, 416
multiplication, 415–416
positive definiteness, 417
transpose, 415
useful theorems, 417

matrix inversion, 81–83
midpoint, 286–288
modified Euler’s method, 259
multiple integrals, 235–248

Gauss–Legendre quadrature over
quadrilateral element, 236–243

quadrature over triangular element, 243–247

NaN, 5
neville, 109–110
newtonCoeff, 107–108
Newton–Cotes formulas, 201–209

composite trapezoidal rule, 202–203
recursive trapezoidal rule, 204–205
Simpson’s rules, 205–209
trapezoidal rule, 202

newtonPoly, 106
newtonRaphson, 156–158
newtonRaphson2, 161–163
Newton–Raphson method, 155–160
norm of matrix,
notation, 28–29
numerical differentiation

derivatives by interpolation, 191–196
cubic spline interpolant, 192–196
polynomial interpolant, 191–192

finite difference approximations, 182–187
errors in, 187
first central difference approximations,

183–184
first noncentral, 184–185
second noncentral, 185–187

introduction, 182
MATLAB functions for, 198–199
problem set, 196–198
Richardson extrapolation, 188–191

numerical integration
Gaussian integration, 218

abscissas/weights for Guaussian
quadratures, 223

Gauss–Chebyshev quadrature, 224–225
Gauss–Hermite quadrature, 225–226
Gauss–Laguerre quadrature, 225
Gauss–Legendre quadrature, 224
Gauss quadrature with logarithmic

singularity, 205, 226
determination of nodal abscissas/weights,

221–223
formulas for, 218–219
orthogonal polynomials, 220–221

introduction, 200–201
MATLAB functions for, 250
multiple integrals, 235–248

Gauss–Legendre quadrature over
quadrilateral element, 236–243

quadrature over triangular element,
243–247

Newton–Cotes formulas, 201–209
composite trapezoidal rule, 202–203
recursive trapezoidal rule, 204–205
Simpson’s rules, 205–209
trapezoidal rule, 202

problem set, 214–218, 233–235, 247–248
Romberg integration, 210–214

operators, 9–11
arithmetic,
comparison, 11
logical, 11

optimization
conjugate gradient methods, 390–402

conjugate directions, 391–392
Fletcher–Reeves method, 398–402
Powell’s method, 392–398

introduction, 382–383
MATLAB functions for, 409
minimization along a line, 384–390

bracketing, 384
golden section search, 384–390

problem set, 403–409
overrelaxation, 85

P-code (pseudo-code), 25
pi, 5
pivot equation, 35–36
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pivoting, 66–81
diagonal dominance and, 68
Gauss elimination with scaled row

pivoting, 68–72
when to pivot, 72–75

plotting, 26–27
polynFit, 128–129
polynomial interpolant, 191–192
polynomials, zeroes of, 171–179
polyRoots, 176–177
Powell, 394–395
Powell’s method, 392–398
Prandtl stress function, 245
printing input/output, 20–21
printSol, 254

quadrature. See numerical integration

reading input/output, 20
realmax, 5
realmin, 5
recursive trapezoidal rule, 204–205
relaxation factor, 85
return command, 15, 16
Richardson extrapolation, 188–191,

286
romberg, 212–213
Romberg integration, 210–214
roots of equations

Brent’s method, 150–155
incremental search method, 144–146
introduction, 143–144
MATLAB functions for, 180–181
method of bisection, 146–149
Newton–Raphson method, 155–160
problem set, 165–171, 180
systems of equations, 160–165

Newton–Raphson method, 160–165
zeroes of polynomials, 171–179

deflation of polynomials, 174
evaluation of polynomials, 172–173
Laguerre’s method, 174–179

roundoff error, 187
Runge–Kutta–Fehlberg formula, 277
Runge–Kutta methods, 257–267

fourth-order, 260–261
second-order, 258–260

runKut4, 260–261
runKut5, 280–281, 285

scale factor, 68
script files, 25
secent formula, 167

second noncentral finite difference
approximations, 185–187

second-order differential equation, 313–317
second-order Runge–Kutta method, 258–260
shooting method, for two-point boundary value

problems, 298–308
higher-order equations, 303–308
second-order differential equation, 298–303

similarity transformation, 329
Simpson’s 1/3 rule, 206
Simpson’s rules, 205–209
sortEigen, 335–336
sparse matrix, 101
splineCurv, 117–118
splineEval, 118–119
stability/stiffness, 273–277

stability of Euhler’s method, 274
stiffness, 274–275

stdDev, 129–130
stdForm, 337, 338
steepest descent method, 87
stiffness, 274–275
straight line, fitting, 126–127
strcat, 7–8, 9
strings, creating, 9
Strum sequence, 367–369
sturmSeq, 368
swapRows, 70
switch conditional, 13–14, 16
symmetric coefficient matrix, 59–60
symmetric matrix eigenvalue problems

eigenvalues of symmetric tridiagonal
matrices, 367–376

bracketing eigenvalues, 371–372
computation of eigenvalues, 373–374
computation of eigenvectors, 374–376
Gerschgorin’s theorem, 369–371
Strum sequence, 367–369

householder reduction to tridiagonal form,
359–367

accumulated transformation matrix,
363–367

householder matrix, 359–360
householder reduction of symmetric

matrix, 360–362
introduction, 326–328
inverse power/power methods, 344–352

eigenvalue shifting, 346–347
inverse power method, 344–346
power method, 347–352

Jacobi method, 328–344
Jacobi diagonalization, 330, 336
Jacobi rotation, 329–330
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symmetric matrix eigenvalue problems (cont.)
similarity transformation/diagonalization,

328–329
transformation to standard form,

336–344
MATLAB functions for, 381
problem set, 352, 376–381

symmetric/pentadiagonal coefficient matrix,
60–66

synthetic division, 174, 151–153

taylor, 254
Taylor series, 252–257, 411–414

function of several variables,
412–414

function of single variable, 411–412
transpose operator, 7
trapezoid, 204–205
trapezoidal rule, 202
triangleQuad, 244–245
triangular, 32–33
tridiagonal coefficient matrix, 56–59
two-point boundary value problems

finite difference method, 312–321

fourth-order differential equation, 317–321
second-order differential equation, 313–317

introduction, 297–298
MATLAB functions for, 324
problem set, 308–312, 321–324
shooting method, 298–308

higher-order equations, 303–308
second-order differential equation, 298–303

underrelaxation factor, 85

variables, 5–6
built-in constants/special variable, 5
example, 5–6
global, 5

weighted linear regression, 130–131
while loop, 14
writing/running programs, 25–26

zeroes of polynomials, 171–179
deflation of polynomials, 174
evaluation of polynomials, 172–173
Laguerre’s method, 174–179
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