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Preface

This text covers the fundamentals of thermodynamics required to understand elec-
trical power generation systems. It then covers the application of these principles
to nuclear reactor power systems. It is not a general thermodynamics text, but is a
thermodynamics text aimed at explaining the fundamentals and applying them to
the challenges facing actual nuclear power systems. It is written at an undergraduate
level, but should also be useful to practicing engineers.

It starts with the fundamental definitions of thermodynamic variables such as
temperature, pressure and specific volume. It defines the Zeroth Law of Thermo-
dynamics. It then explains open and closed systems. The Ideal Gas law is intro-
duced along with some of its limitations for real gases. Gas kinetic theory is then
introduced to provide a background for the Ideal Gas Law and a foundation for
understanding for the theory of specific heats. Then it moves on to the First Law of
Thermodynamics and its realization in the internal energy and enthalpy potentials.
After addressing several applications, it moves on to the Second Law of Thermody-
namics and the concept of entropy. It then approaches entropy from the statistical
mechanics viewpoint to validate that it truly is a measurable physical quantity. It
concludes the fundamental theory portion of the book by discussing irreversibil-
ity, availability, and the Maxwell relations, touching slightly on the Third Law of
Thermodynamics.

The second portion of the book is devoted to specific applications of the funda-
mentals to Brayton and Rankine cycles for power generation. Brayton cycle com-
pressors, turbines, and recuperators are covered, along with the fundamentals of
heat exchanger design. Rankine steam generators, turbines, condensers, and pumps
are discussed. Reheaters and feed water heaters are also covered. Ultimate heat
rejections by circulating water systems are also discussed.

The third part of the book covers current and projected reactor systems and how
the thermodynamic principles are applied to their design, operation and safety anal-
yses.

Detailed appendices cover metric and English system units and conversions, de-
tailed steam and gas tables, heat transfer properties, and nuclear reactor system
descriptions.
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Chapter 1
Definitions and Basic Principles

Nuclear power plants currently generate better than 20 % of the central station elec-
tricity produced in the United States. The United States currently has 104 operating
power producing reactors, with 9 more planned. France has 58 with 1 more planned.
China has 13 with 43 planned. Japan has 54 with 3 more planned. In addition, Rus-
sia has 32 with 12 more planned. Nuclear generated electricity has certainly come
into its own existent and is the safest, cleanest and greenest form of electricity cur-
rently is in produced on this planet. However, many current thermodynamics texts
ignore nuclear energy and use few examples of nuclear power systems. Nuclear en-
ergy presents some interesting thermodynamic challenges and it helps to introduce
them at the fundamental level. Our goal here will be to introduce thermodynamics
as the energy conversion science that it is and apply it to nuclear systems. Certainly,
there will be many aspects of thermodynamics that are given little or no cover-
age. However, that is true for any textual introduction to this science; however by
considering concrete systems, it is easier to give insight into the fundamental laws
of the science and to provide an intuitive feeling for further study. Although brief
summary of definition and basic principles of thermodynamic are touched up in this
chapter for the purpose of this book, we encourage the readers to refer themselves
to references [1-6] provided at the end of this chapter.

1.1 Typical Pressurized Water Reactor

By far the most widely built nuclear system is the Pressurized Water Reactor (PWR).
There are a number of reasons for this. Steam turbines have for many decades been
the dominant means of generating mechanical energy to turn electrical generators.
The temperatures reached in the thermodynamic cycle of a PWR are within the
range of fairly, common engineering materials. They were the first system built
and operated reliably to produce electricity. A typical PWR system is described in
Fig. 1.1.

© Springer International Publishing Switzerland 2015 1
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Fig. 1.1 Pressurized water reactor schematic

The basic PWR consists of five major components, the reactor core, steam
generator(s), steam turbine, condenser, and electrical generator and three water/
steam loops. Each loop requires a pump that is not shown to keep the diagram
cleaner. The nuclear energy is converted to thermal energy in the reactor core. This
thermal energy is then transported via the first loop to the steam generator where it
is passed to the water in the second loop. The water in the second loop enters as a
liquid and is turned to steam. The steam then passes to the turbine where the thermal
energy is converted to mechanical energy to rotate the electrical generator. After the
thermal energy has been converted to mechanical energy in the steam turbine, the
low-pressure steam passes to the condenser to be cooled by the water in the third
loop. The second law of thermodynamics tells us that we cannot simply expand
the steam to a low enough energy state that it can return to the steam generator in
its original liquid state. Therefore, we must extract more thermal energy from the
low-pressure steam to return it to its liquid state where it can be pumped back into
the steam generator. The third loop is called the circulating water system and it is
open to the environment. There are multiple ways of providing this cooling water
including intake and return to a river, or the ocean, intake and return to a cooling
pond, or intake from a river and exhaust through a cooling tower. However, we are
getting ahead of ourselves.

Consider for a minute why nuclear energy is so useful. A great deal of energy is
produced by a very little mass.

Example Calculation: Calculate the U-235 consumed to produce 1 MW of ther-
mal energy for 1 day. Note that a Megawatt is a unit of power, or energy per unit
time,

1 MW=10° W=10°joules/s 1 day=24h=24*3600s
The energy released in fission of a U-235 atom is ~200 Mev

lev=1.6x10""71J 1 Mev=1.6x10"3J 200 Mev=32pJ
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Fissioning 1 atom of U-235 produces 3.2x 107! J

To produce 10° J requires 106/3.2 x 10~ atoms=3.125 x 10'® atoms

And for a duration of 8.64 x 10* s

The total number of atoms consumed will be 3.125 x 8.64 x 10?° atoms

Therefore 2.7 x 10?! atoms will be consumed

A gram mole of U-235 is 6.022 x 10> atoms

So a gram is 6.022 x 10?3/235=2.563 x 10?!' atoms/gram

Therefore 1 Megawatt-Day of nuclear energy consumes 1.05 g of U-235

The fundamental thing to understand is that a PWR converts nuclear energy to elec-
trical energy and it does this by converting the nuclear energy first to thermal energy
and then converting the thermal energy to mechanical energy, which is finally con-
verted to electrical energy. The science of thermodynamics deals with each of these
conversion processes. To quantify how each of these processes takes place we must
understand and apply the laws of thermodynamics.

1.2 Scope of Thermodynamics

Thermodynamics is the science that deals with energy production, storage, transfer
and conversion. It is a very broad subject affects most fields of science including
biology and microelectronics. The primary forms of energy considered in this text
will be nuclear, thermal, chemical, mechanical and electrical. Each of these can
be converted to a different form with widely varying efficiencies. Predominantly
thermodynamics is most interested in the conversion of energy from one form to
another via thermal means. However, before addressing the details of thermal en-
ergy conversion, consider a more familiar example. Newtonian mechanics defines
work as force acting through a distance on an object. Performing work is a way
of generating mechanical energy. Work itself is not a form of energy, but a way of
transferring energy to a mass. So when one mass gains energy, another mass, or
field, must lose that energy.

Consider a simple example. A 65-kg woman decides to go over Niagara Falls in
a 25-kg wooden barrel. (The first person to go over the fall in a barrel was a woman,
Annie Taylor.) Niagara Falls has a vertical drop of 50 m and has the highest flow
rate of any waterfall in the world. The force acting on the woman and barrel is the
force of gravity, which at the surface of the earth produces a force of 9.8 Newtons
for every kilogram of matter that it acts on. So we have
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W=FxD F=(65+25)x9.8=882.0N D=50m
W =882.0x50.0=44,100 Nm=44.1k ]

A Newton meter is a joule and 1000 J is a kilojoule. Therefore, when the woman
and barrel went over the falls, by the time they had reached the bottom, the force of
gravity had performed 44.1 kilojoules (kJ) of work on them. The gravitational field
had 44.1 kJ of potential energy stored in it, when the woman and the barrel were
at the top of the falls. This potential energy was converted to kinetic energy by the
time the barrel reached the bottom of the falls. Kinetic energy is also measured in
Joules, as with all other forms of energy. However, we are usually most interested
in velocities when we talk about kinetic energies, so let us extract the velocity with
which she hit the waters of the inlet to Lake Ontario.

AKE = APE = 44.1kI =12mV?* = (902) kg xV* V?* = 44.1kJ/(90/2) kg

Now it is a matter of converting units. A Joule is a Newton-meter. 1 Newton is de-
fined as 1 kg accelerated at the rate of 1 m/second/second. So

44.1kJ =44,100Nm
=44,100 kg m/s/s m

= 44,100 kg (m/s)’

V? = 44,100 kg(m/s)*/(90/2) kg
= 490/(1/2) = 980 (m/s)’
V' =31.3m/s (~70 mph)

Needless to say she recommended that no one ever try that again. Of course, others
have, some have made it, and some have drowned.

Before leaving this example, it is worth pointing out that when we went to cal-
culate the velocity, it was unaffected by the mass of the object that had dropped
the 50 m. So one-half the velocity squared represents what we will call a specific
energy, or energy per kilogram. In addition, the potential energy at the top of the
falls could be expressed as a specific potential energy relative to the waters below.
The potential energy per pound mass would just be the acceleration of gravity times
the height of the falls. Typically, we will use lower case letters to represent specific
quantities and upper case letters to represent extensive quantities. Extensive quan-
tities are dependent upon the amount of mass present. Specific quantities are also
referred to as intensive variables, though there are some intensive variables that
have no extensive counterpart, such as pressure or temperature.

p.e.=mgh/m=gh=9.8x50=0.49 kl/kg
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It is also worth pointing out that Newton’s law of gravity states that

F=gmMy (1.1)

RZ

where m | is the smaller mass and M, is the mass of the Earth. We can find the spe-
cific force on an object by dividing the gravitational force by the mass of the object.
For distances like 50 m on the surface of the Earth (R=6,378,140 m) we can treat R
as constant, but if the distance the gravitational force acts through is comparable to
the radius of the Earth, an integration would be required. Even on the top of Mount
Everest, the gravitational potential is within 0.25% of that at Sea Level, so gravity
is essentially constant for all systems operating on the face of the Earth.

1.3 Units

In this section, we will discuss the System International (SI) and English (E) Sys-
tems

1.3.1 Fundamental Units

The Before going further it will be a very good idea to discuss units for physical
quantities and the conversion of units from one system to another. Unfortunately,
the field of thermodynamics is beset with two popular systems of units. One is the
System International (SI) system consisting of the kilogram, meter, and second.
The other is the English (E) system consisting of the pound-mass, foot, and second.

Starting with the SI system, the unit of force is the Newton. The unit of work or
energy is the Joule and the unit of pressure is the Pascal. We have,

IN =1kg m/s’
1J=1Nm
1Pa=1N/m?

Now the acceleration of gravity at Sea Level on Earth is 9.8066 m/s?, so a 100 kg
mass will weight 980.66 Newton. Also when we want avoid spelling out very large
or small quantities we will usually use the standard abbreviations for powers of ten
in units of 1000. We have,

kilo=10’
mega=10°

giga=10’
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deci=10"
centi =107
milli=10""
micro=10"°

nano=10"

For the English system, we have

Ibm => 1 Ibf (at Sea Level)

1 ft-Ibf =11bf x1 ft

1 British Thermal Unit (BTU) =778 ft-lbf
1 psi =1 Ibf/in’

Note that the fact that 1 Ibf=1 lbm at Sea Level on Earth, means that a mass of
100 Tbm will weigh 100 Ibf at Sea Level on Earth. The acceleration of gravity at
Sea Level on Earth is 32.174 ft/s?. Thus we have 1 Ibf/(1 Ibm-ft/s?)=32.174. If we
move to another planet where the acceleration of gravity is different, the statement
that 1 Ilbm=>1 1bf doesn’t hold.

Consider comparative weights on Mars. The acceleration of gravity on Mars is
38.5% of the acceleration of gravity on Earth. So in the SI system we have

W =0.385*9.8066 m/s* x100 kg =377.7 N
In the English system, we have,

W =0.385*100 Ibm = 38.5 Ibf

1.3.2 Thermal Energy Units

The British thermal unit (Btu) is defined to be the amount of heat that must be
absorbed by a 1 Ib-mass to raise its temperature 1 °F. The calorie is the SI unit that
is defined in a similar way. It is the amount of heat that must be absorbed by 1 g
of water to raise its temperature 1°C. This raises the question as to how a calorie
compares with a joule since both appear to be measures of energy in the SI system.
James Prescott Joule spent a major part of his life proving that thermal energy was
simply another form of energy like mechanical kinetic or potential energy. Eventu-
ally his hypothesis was accepted and the conversion factor between the calorie and
joule has been defined by,

1 calorie=4.1868 J

The constant 4.1868 is called the mechanical equivalent of heat.
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1.3.3 Unit Conversion

As long as one remains in either the SI system or the English system, calculations
and designs are simple. However, that is no longer possible as different organiza-
tions and different individuals usually think and work in their favorite system. In
order to communicate with an audience that uses both SI and English systems it is
important to be able to convert back and forth between the two systems. The basic
conversion factors are,

1 kg =2.20462 lbm

11bm = 0.45359 kg

1m=3.2808 ft
1 ft=0.3048 m

1J=0.00094805 Btu
1 Btu=10551]

1 atm = 14.696 psi
latm=101325Pa
1 psi = 6894.7 Pa
1 bar =100000.0 Pa
1 bar = 14.504 psi

The bar unit is simply defined by rounding off Sea Level atmospheric pressure to
the nearest 100 kPa. There are many more conversion factors defined in the Appen-
dix, but they are all derived from this basic few.

1.4 Classical Thermodynamics

Classical thermodynamics was developed long before the atomic theory of matter
was accepted. Therefore, it treats all materials as continuous and all derivatives well
defined by a limiting process. Steam power and an ability to analyze it and optimize
it was one of the main drivers for the development of thermodynamic theory. The
fluids involved always looked continuous. A typical example would be the defini-
tion of the density of a substance at a point. We have,

. Am
p=lim > (1.2)

As long as AV does not get down to the size of an atom, this works. Since classi-
cal thermodynamics was developed, however, we have come to understand that all
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gases and liquids are composed of very small atoms or molecules and a limiting
process that gets down to the atomic or molecular level will eventually become
discontinuous and chaotic. Nevertheless, the continuous model still works well for
the macroscopic systems that will be discussed in this text and Classical Thermo-
dynamics is based on it.

At times, we will refer to an atomistic description of materials in order to develop
a method of predicting specific thermodynamic variables that classical thermody-
namics cannot predict. A typical example is the derivative that is called the constant
volume specific heat. This variable is defined as the rate of change of the internal
energy stored in a substance as a function of changes in its temperature. Classical
thermodynamics demonstrates that this variable has to exist and makes great use of
it, but it has no theory for calculating it from first principles. An atomistic view will
allow us to make some theoretical estimates of its value. Therefore, at times we will
deviate from the classical model and adopt an atomistic view that will improve our
understanding of the subject.

Classical thermodynamics is also an equilibrium science. The laws of thermo-
dynamics apply to objects or systems in equilibrium with themselves and their sur-
roundings. By definition, a system in equilibrium is not likely to change. However,
we are generally interested in how systems change as thermal energy is converted
to and from other forms of energy. This presents a bit of a dilemma in that the
fundamental laws are only good for a system in equilibrium and the parameters we
want to predict are a result of thermal energy changes in the system. To get around
this dilemma, we define what is called a quasi-equilibrium process. A quasi-equi-
librium process is one that moves from one system state to another so slowly and
so incrementally, that it looks like a series of equilibrium states. This is a concept
that classical thermodynamics had a great deal of difficulty clarifying and quantify-
ing. Basically, a process was a quasi-equilibrium process if the laws of equilibrium
thermodynamics could characterize it. This is sort of a circular definition, but once
again, we will find that the atomistic view allows us to make some predictions
and quantifications that identify a quasi-equilibrium process. Quasi-equilibrium
processes can occur very rapidly on time scales typical of human observation. For
example, the expansion of the hot gases out the nozzle of a rocket engine can be
well described as a quasi-equilibrium process with classical thermodynamics.

1.5 Open and Closed Systems

In the transfer and conversion of thermal energy, we will be interested in separating
the entire universe into a system and its environment. We will mainly be interested
in the energy transfers and conversions that go on within the system, but in many
cases, we will need to consider its interactions with the rest of the world or its en-
vironment. Systems that consist of a fixed amount of mass that is contained within
fixed boundaries are called closed systems. Systems that pass the mass back and
forth to the environment will be called open systems. Both open and closed systems
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Fig. 1.2 A closed system

allow energy to flow across their borders, but the flow of mass determines whether
they are open or closed systems. Open systems will also carry energy across their
borders with the mass as it moves. Consider the simple compressed gas in the piston
below as a closed system (Fig. 1.2).

In analyzing the closed system, we will be concerned about the changes in the
internal energy of the compressed gas as it interacts with its environment and the
transfers of mechanical and thermal energies across its boundary.

In analyzing open systems, the concept of a control volume comes into play. The
control volume is the boundary for the open system where the energy changes that
we are interested in takes place. The thing separates the open system from its envi-
ronment. Consider the following open system where we have now allowed mass to
flow in and out of the piston of our closed system above (Fig. 1.3).

- eSS

—
Compressed Gas ) Control
Volume

il E—

Heat

Fig. 1.3 An open system
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The control volume looks a lot like our system boundary from before, and it is.
The only difference is that we now allow mass to flow in and out of our control
volume. Thermal and mechanical energy can still flow across the boundary, or in
and out of the control volume. The mass flowing in and out can also carry energy
with it either way.

1.6 System Properties

In order to characterize a system we will have to identify its properties. Initial-
ly there are three main properties that we will be concerned with—density, pres-
sure and temperature all of which are intensive variables. We will use intensive
properties to characterize the equilibrium states of a system. Systems will be com-
posed of pure substances and mixtures of pure substances. A pure substance is
a material that consists of only one type of atom, or one type of molecule. A pure
substance can exist in multiple phases. Normally the phases of concern will be gas,
liquid, and solid, though for many pure substances there can be several solid phases.
Water is an example of a pure substance that can readily be observed in any of its
three phases.

A solid phase is typically characterized as having a fixed volume and fixed
shape. A solid is rigid and incompressible. A liquid has a fixed volume but no fixed
shape. It deforms to fit the shape of the container that is in it. It is not rigid but is
still relatively incompressible. A gas has no fixed shape and no fixed volume. It ex-
pands to fit the container that is in it. To characterize a system composed of one or
more pure components and one or more phases we will need to specify the correct
number of intensive variables required to define a state. Gibbs Phase Rule named
after J. Willard Gibbs who first derived it gives the correct number of intensive
variables required to completely define an equilibrium state in a mixture of pure
substances. It is

V=C-P+2 (1.3)

V = Number of variables required to define an equilibrium state.
C = The number of pure components (substances) present.
P = The number of phases present.

So for pure steam at Sea Level and above 100 °C, we have one component and one
phase so the number of variables required to specify an equilibrium state is 2, typi-
cally temperature and pressure. However, temperature and density would also work.
If we have a mixture of steam and liquid water in the system, we have one com-
ponent and two phases, so only one variable is required to specify the state, either
pressure or temperature would work. If we have a mixture like air that is composed
of oxygen, nitrogen, and argon, we have three components and three phases (the gas
phase for each component), we are back to requiring two variables. As we progress,
we will introduce additional intensive variables that can be used to characterize the
equilibrium states of a system in addition to density, pressure, and temperature.
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1.6.1 Density

Density is defined as the mass per unit volume. The standard SI unit is kilograms
per cubic meter (kg/m?). The Standard English unit is pounds mass per cubic foot
(Ibm/ft). If the mass per unit volume is not constant in a system, it can be defined
at a point by a suitable limiting process that converges for engineering purposes
long before we get to the atomistic level. The inverse of density is specific volume.
Specific volume is an intensive variable, whereas volume is an extensive variable.
The standard unit for specific volume in the SI system is cubic meters per kilo-
gram (m*/kg). The standard unit in the English system is cubic feet per pound mass
(ft3/lbm).

1.6.2 Pressure

Pressure is defined as force per unit area. The standard unit for pressure in the SI
system is the Newton per square meter or Pascal (Pa). This unit is fairly small for
most engineering problems so pressures are more commonly expressed in kilo-Pas-
cals (kPa) or mega-Pascals (MPa). The standard unit in the English system really
does not exist. The most common unit is pounds force per square inch (psi). How-
ever, many other units exist and the appropriate conversion factors are provided in
the Appendix.

Pressure as an intensive variable is constant in a closed system. It really is only
relevant in liquid or gaseous systems. The force per unit area acts equally in all
directions and on all surfaces for these phases. It acts normal to all surfaces that
contain or exclude the fluid. (The term fluid includes both gases and liquids). The
same pressure is transmitted throughout the entire volume of liquid or gas at equi-
librium (Pascal’s law). This allows the amplification of force by a hydraulic piston.
Consider the system in the following Figure. In the Fig. 1.4, the force on the piston
at B is greater than the force on the piston at A because the pressure on both is the
same and the area of piston B is much larger.

Moveable pistons

Liquid

Fig. 1.4 A hydraulic amplifier
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Fig. 1.5 Pressure in a liquid
column

dp

dh

In a gravity field, the pressure in a gas or liquid increases with the height of a
column of the fluid. For instance, in a tube containing a liquid held vertically, the
weight of all of the liquid above a point in the tube is pressing down on the liquid at
that point. Consider Fig. 1.5, then:

dp = pgdh
i (1.4)
p(0)=P(H)+ [ pgdh

Thus, the pressure at the bottom of the container is equal to the pressure on the top
of the fluid in the container plus the integral of the weight of the fluid per unit area
in the container.

This raises an interesting concept. Often it will be important to distinguish be-
tween absolute pressure and gage pressure. The preceding equation calculates the
absolute pressure. The gage pressure is simply the pressure exerted by the weight
of the column without the external pressure on the top surface of the liquid. It is
certainly possible to have a negative gage pressure, but not possible to have a nega-
tive absolute pressure. A vacuum pressure occurs when the absolute pressure in a
system is less than the pressure in the environment surrounding the system.

Using the setup in Fig. 1.6, a very common way of measuring pressure is an
instrument called a manometer. A manometer works by measuring the difference in
height of a fluid in contact with two different pressures. A manometer can measure
absolute pressure by filling a closed end tube with the liquid and then inverting it
into a reservoir of liquid that is open to the pressure that is to be measured. Manom-
eters can also measure a vacuum gage pressure. Consider Fig. 1.6 as below:

The tall tubes on the right in each system are open to the atmosphere. System A is
operating at a small negative pressure, or vacuum, relative to the atmosphere. Sys-
tem B is operating at a positive pressure relative to the atmosphere. The magnitude
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Fig. 1.6 Pressure measurement with manometers

of the pressure in each case can be calculated by measuring the height difference
between the fluids in the two sides of the U-tube and calculating its weight per unit
area. This is the difference in the pressures inside the Systems A or B and the atmo-
spheric pressure pushing down on the open columns on the right.

1.6.3 Temperature

The other intensive variable to be considered at this point is the temperature. Most
everyone is familiar with temperature as a measure of coldness or hotness of a
substance. As we continue our study of thermodynamics, we will greatly refine
our concept of temperature but for now it is useful to discuss how a temperature
scale is constructed. Traditionally the Fahrenheit scale was established by defining
the freezing point of water at Sea Level pressure to be 32 °F and the boiling point
of water to be 212 °F under the same conditions. A thermometer containing a fluid
that expands readily as a function of temperature could be placed in contact with a
system that contained ice and water vapor saturated air. The height of the fluid in
the thermometer would be recorded as the 32 °F height. Then the same thermometer
would be placed in a water container that was boiling and the height of the fluid in
the thermometer marked as the 212 °F point. The difference in height between the
two points would then be marked off in 180 divisions with each division represent-
ing 1 °F. The Celsius scale was defined in the same way by setting the freezing point
of water at 0 °C and the boiling point at 100 °C. Water was chosen as the reference
material because it was always available in most laboratories around the world.
When it became apparent that absolute temperatures were possibly more im-
portant than simply temperatures in the normal range of human experience, ab-
solute temperature scales were defined. The freezing point of water was defined
as 273.15 K and the boiling point was defined as 373.15 K, to match up with the
Celsius scale. Note that the unit on the absolute scale is Kelvins, not degrees Kel-
vin. It was named in honor of Lord Kelvin who had a great deal to do with the
development of temperature measurement and thermodynamics. The freezing point
of water was further defined as the equilibrium of pure ice and air saturated water.
However, it was difficult to attain this point because as ice melts it forms a layer of
pure water around itself, which prevents direct contact of pure ice, and air-saturated
water. Therefore, in 1954, the two-point method was abandoned and the triple point
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of water was chosen as a single standard. The triple point of water is 273.16 K,
0.01 K above the ice point for water at Sea Level pressure. A single point can be
used to define the temperature scale if temperatures are measured with a constant
volume, ideal gas thermometer. Basically, the ideal gas thermometer can measure
the pressure exerted by a constant volume of gas in contact with the system to be
measured. It can also measure the pressure exerted by the gas when in contact with
a system at the triple point of water. The ratio of the two pressures gives the ratio
of the measured absolute temperature to the absolute temperature of the triple point
of water.

However, additional secondary standards are defined to simplify calibration over
a broad range of temperatures. The International Practical Temperature Scale is de-
fined by

Triple point of equilibrium hydrogen 1381 K
Boiling point of hydrogen at 33.33 kPa 17.042 K
Boiling point of hydrogen at 1 atm 20.28 K
Boiling point of neon 27.102 K
Triple point of oxygen 54.361 K
Boiling point of oxygen 90.188 K
Triple point of water 273.16 K
Boiling point of water 373.15K
Freezing point of zinc 692.73 K
Freezing point of silver 1235.08 K
Freezing point of gold 1337.58K

Once the absolute temperature scale in Kelvins was defined it became part of the
SI system. An absolute scale matching the Fahrenheit scale between the freezing
point of water and its boiling point has been defined for the English system. Since
there are 180° between the freezing and boiling points in the Fahrenheit scale and
100° over the same range in the Kelvin scale, the absolute scale for the English
system, where the unit of measurement is called a degree Rankine, is simply 1.8
times the number of Kelvins. So the freezing point of water on the Rankine scale is
491.67 °R and the boiling point is 671.67 °R. Absolute zero on the Rankine scale is
—459.67 °F. To convert back and forth the following formulas apply.

T, =T.+273

T.=T,-273 (1.5)
T, =T, +460

T, =T, —460

T, = 1.8T,

5
TK :§TR
T, =1.8T.+32 (1.6)

T =2(1,-32)
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1.7 Properties of the Atmosphere

Before going further, it will be useful to have a model for the atmosphere that can
be used for calculations. This is important to realize that the atmosphere at Sea
Level supports a column of air that extends upwards of 50 miles. Given the equation
derived earlier for the pressure in a column of fluid, we have as always to begin at
Sea Level.

dp = —pgdh
Let p= PRT (1.7a)
Then
g
dp = —p-2—dh
p=-Ppr

Or integration the last term of Eq. 1.7a, we obtain

_g,

p=pge ™ (1.7b)

To perform the integration, the above temperature has been assumed constant. This
is not quite true as the standard lapse rate for the Troposphere up to about 40,000 ft
is approximately 2°C/1000 ft or 3.6 °F/1000 ft. This means that the air is denser
than the exponential model predicts. However, it is approximately correct for the
Troposphere particularly if only a limited range of elevations is considered and the
average temperature is used. The initial values at Sea Level for the standard atmo-
sphere are,

Pressure: 14.696 psi 101.325 kPa
Temperature 59°F (519°R) 15°C (288 K)
Density 076474 Ibm/ft? 1.225 kg/m?
Composition Mole fraction (%)

Nitrogen 78.08

Oxygen 20.95

Argon 0.93

Carbon dioxide 0.03

Ne, He, CH* et al. 0.01

A more extensive model of the atmosphere as a function of altitude is provided in
the Appendix. The relative composition is essentially constant up to the top of the
Troposphere.
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1.8 The Laws of Thermodynamics

It is useful at this time to state the Laws of Thermodynamics. Later chapters will
expand on them greatly, but realizing that there are four simple laws that all of the
analysis is built around will provide some structure to guide the way forward.

Zeroth Law of Thermodynamics: 7o bodies in thermal contact with a third
body will be at the same temperature.

This provides a definition and method of defining temperatures, perhaps the
most important intensive property of a system when dealing with thermal energy
conversion problems.

First Law of Thermodynamics: Energy is always conserved when it is trans-
formed from one form to another.

This is the most important law for analysis of most systems and the one that
quantifies how thermal energy is transformed to other forms of energy.

Second Law of Thermodynamics: [ is impossible to construct a device that
operates on a cycle and whose sole effect is the transfer of heat from a cooler body
to a hotter body.

Basically, this law states that it is impossible for heat to spontancously flow from
a cold body to a hot body. If heat could spontancously flow from a cold body to a
hot body, we could still conserve energy, so the First Law would hold. But every
experiment that has ever been performed indicates that thermal energy always flows
the other way. This law seems obvious enough but the implications are very signifi-
cant, as we will see.

Third Law of Thermodynamics: /¢ is impossible by means of any process, no
matter how idealized, to reduce the temperature of a system to absolute zero in a
finite number of steps.

This allows us to define a zero point for the thermal energy of a body.

To be taken under consideration and subject of this matter is beyond the scope
of this book.
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Chapter 2
Properties of Pure Substances

2.1 Introduction

A pure substance is a material with a constant chemical composition throughout its
entire mass. A pure substance can exist in one or more physical phases such as a
solid, liquid or vapor. Each phase will have homogeneous physical characteristics,
but all three phases could be different physical forms of the same pure substance.
The temperature and pressure boundaries between phases are well defined and it
usually requires an input or extraction of thermal energy to change from one phase
to another. Most pure substances have a well defined Triple Point where all three
phases exist in equilibrium.
In general matter can be classified into two broad categories:

1. Pure-Substances.
2. Mixture.

Each of these categories can be described as.

1. Pure substance: A pure substance is defined as a substance having a constant
and uniform chemical composition. Typically, it can be divided in two groups as:

1. Elements—all the same type of atom.
2. Compounds—substances made from two or more different kinds of atoms.

2. Mixture: The thermodynamic properties of a mixture of substances can be deter-
mined in the same way as for a single substance. The most common example of
this is dry air, which is a mixture of oxygen, nitrogen, a small percentage of
argon, and traces of other gases. The properties of air are well determined and
it is often considered as a single substance. Mixtures can be categorized as two
general types:

This chapter deals with the relationship between pressure, specific volume, and temperature for a
pure substance.

© Springer International Publishing Switzerland 2015 17
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1. Homogeneous—A substance that has uniform thermodynamic properties
throughout is said to be homogeneous. The characteristics of a homogeneous
mixture are;

a. Mixtures, which are the same throughout with identical properties every-
where in the mixture.

b. Not easily separated.

c. This type of mixture is called a solution. A good example would be
sugar dissolved in water or some type of metal alloy like the CROmium-
MOLYbdenum steel used in many bike frames.

2. Heterogeneous—A heterogeneous mixture is a type of mixture in which the
composition can easily be identified. Often there is two or more phases pres-
ent. Each substance retains its own identifying properties (e.g., granite) and it
includes.

a. Mixtures, which have different properties when sampled from different
areas. An example of this would be sand mixed with water.

b. A mixture in which the individual components can be seen with the naked
eye.

c. A mixture that can be easily separated.

Air is a homogeneous mixture of the gases nitrogen, oxygen, and other minor gases.
Here are some other examples of homogeneous mixtures

* Salt water

* Brewed tea or coffee

» Soapy water

» A dilute solution of hydrochloric acid
* Hard alcohol

* Wine

Here are some examples of heterogeneous mixtures

» Sandy water.

» (Cake mix and cookie dough.

» Salad.

* Trail mix.

* Granite.

* Sodium chloride (table salt) stirred up with iron filings.
» Sugar and salt mixed in a bowl.

* Carbonated beverage or beer (the CO, gas is mixed with the liquid).
* Orange juice with pulp in it

»  Water with ice cubes in it.

* Chicken noodle soup.

A pure substance normally requires only two independent properties to specify its
state. If pressure and specific volume, for example, are fixed, then all the other
properties become fixed. The equation relating pressure, volume, and tempera-
ture to each other is called an Equation of State. However, a more fundamental
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Fig. 2.1 Classification of matter. (Courtesy of NASA)

equation is required to specify all thermodynamic variables as a function of only
two properties. These fundamental equations will be called Thermodynamic Poten-
tials (Fig. 2.1).

An example of a simple equation of state which is satisfactory for most dilute
gases is the Ideal Gas Law—pV=nRT.

2.2 Properties of Pure Substances—Phase Changes

Now consider how a pure substance changes phases. the most common pure sub-
stance that is available around the world is water in its three phases—ice, liquid
water and steam.

Start with a solid body like ice and add heat. At first the temperature of the body
increases proportional to the amount of heat that is added. However, at some point
continued addition of heat will cause the body to start to melt. Once it starts to melt
the temperature stops increasing and remains constant while the solid is melting. The
amount of heat that is added to complete the melting is called the Heat of Fusion and
is normally expressed on per unit mass or per unit mole basis. Once the entire solid
is melted the temperature increases again in proportion to the amount of heat input.
Note that the increase in temperature per unit heat input for the solid and liquid are not
usually equal. As the substance continues to heat up, at some point the liquid will start
to vaporize. Once it starts to vaporize, the temperature remains constant until all of the
liquid is vaporized. The heat input per unit mass or unit mole required to change the
substance from a liquid to a vapor is called the Heat of Vaporization. Once all of the
liquid is vaporized, the temperature of the substance starts to increase again propor-
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tional to the heat input. This sequence of events is illustrated in Fig. 2.2 below, which
is called Temperature-Specific Volume or T-v Diagram.

A three dimensional view of these processes is presented in the Fig. 2.3. Note
that the surface has the following regions; Solid, Liquid, Vapor, Solid-Liquid,

Critical point

P = const.

Vapor Vapor
/ Saturated liquid
Liquid Saturated / =
Solid vapor g
v v
a b

Fig. 2.2 The T-v diagram

\ Critical point

P
Gas
2
» ———
_____ «_ e C
- P = const.
Solid | | S _ _ _ _ _ _ ,\\
\\
N T=T,
// - \V \\
P aeor N
e AN
// Triple line \\
Y
$ T

v

Fig. 2.3 The P-v -T rendering of a substance that contract on freezing
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Fig. 2.4 TIllustration of phase diagram

Solid-Vapor, and Liquid-Vapor. It also has a line where all three phases can coexist
called the Triple Line with an interest point that called Triple Point and depicted
in Fig. 2.4 as well. At the top if the Liquid-Vapor region, a point exists called the
critical point. Above the Critical Point, in either pressure or temperature, the fluid
cannot be identified as either Liquid or Vapor. In the Liquid-Vapor region called the
Vapor Dome, the following definition in Sect. 2.2.1 (next section) applies.

2.2.1 Phases of Pure Substances

A pure substance may exist in different phases, where a phase is considered to be a
physically uniform form of the substance. The three principle phases are as solid,
liquid and gas.

Figure 2.4 shows the typical behavior of pure substances. It is called a “phase
diagram” because three lines separate all three phases from each other.

2.2.2 Equations of State

Consider a closed system, in a vessel so equipped that the pressure, volume, and
temperature may be easily measured. If the volume is set at some arbitrary value
and the temperature is maintained at a specific value, then the pressure will be fixed
at a definite value. Once the V' and T are chosen, then the value of P at equilibrium
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is fixed. That is, of the three thermodynamic coordinates P, V', and T, only two
are independent variables. There exists an equation of equilibrium which connects
the thermodynamic coordinates and which robs one of them of its independence.
Such an equation, called an equation of state, is a mathematical function relating the
appropriate thermodynamic coordinates of a system in equilibrium. Every thermo-
dynamic system has its own equation of state, although in some cases the relation
may be so complicated that it cannot be expressed in terms of simple mathematical
functions. For a closed system, the equation of state relates the temperature to two
other thermodynamic variables.

An equation of state expresses the individual peculiarities of one system as com-
pared with another system and must, therefore, be determined either by experiment
or by molecular theory. A general theory like thermodynamics, based on general
laws of nature, is incapable of generating an equation of state for any substance. An
equation of state is not a theoretical deduction from the theory of thermodynamics,
but is an experimentally derived law of behavior for any given pure substance. It
expresses the results of experiments in which the thermodynamic coordinates of a
system were measured as accurately as possible, over a range of values. An equation
of state is only as accurate as the experiments that led to its formulation, and holds
only within the range of values measured. As soon as this range is exceeded, a dif-
ferent form of equation of state may be required.

Note that in any of the three homogeneous phases discussed in Sect. 2.2.1 in
above, a relationship exists that gives P = P(J,T). Or any of the variables can be
expressed in terms of the other two. These equations are called Equations of State.
In the two-phase regions, including their borders, specifying temperature alone will
set the pressure and vice versa. Giving both pressure and temperature will not de-
fine the volume because we will need to know the relative proportion of the two
phases present. The mass fraction of the vapor in a two-phase liquid-vapor region
is called the quality.

2.3 Ideal Gas

Any equation that relates the pressure, temperature, and specific volume of a sub-
stance is called an equation of state. There are many equations of state, some simple
and others very complex. The simplest and best-known equation of state for sub-
stances in the gas phase is the Ideal Gas equation of state. This equation predicts the
p-v-T behavior of a gas quite accurately for dilute or low-pressure gases. Probably
the definition of a low pressure or dilute gas is that it obeys the Ideal Gas Law. /¢
is based on the two modeling assumptions that (1) each molecule is a point mass
with no volume, and (2) they only interact by billiard ball-like collision conserving
energy and momentum of the colliding particles. The Ideal Gas equation of state
was formulated long before the atomic hypothesis was demonstrated, but these two
assumptions quickly lead to the properties of the Ideal Gas equation of state.
An Ideal Gas is one that obeys the following Equation of State.
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pV =nRT (2.1)

Absolute pressure

Volume of gas

Number of moles of the gas

Universal Gas Constant =8314 J/kmol/K=1545 ft-1bf/lbmol/°R=1.986 Btu/
Ibmol/°R

T  Absolute temperature in degrees Rankine or Kelvins

23 <o

Note that R is the Universal Gas Constant. A gas constant for a particular gas can
be obtained by dividing the universal constant by the molar mass to obtain the fol-
lowing equation.

R=%/M (22)

where M is molecular weight of gas. If we identify m as the mass of gas in kg or
Ibm, then another form of the Ideal Gas Law can be written as:

pV =mRT 2.3)
Identifying p =m/V as the gas density, then another form of the Ideal Gas Law is:
p=pRT (2.4)

Normally an Ideal Gas must be a pure substance. However, air is a mixture that
obeys the Ideal Gas Equation over a broad range of values for temperature and pres-
sure. Most gases obey the Ideal Gas Equation of State if the pressure is not too high
or the temperature too low.

The Ideal Gas law gives is a simple enough equation that given any two of the
thermodynamic variables, p, v, and T, the third can easily be found. Consider 2 kg-
moles of H, at 1000 °K and 0.2 MPa. Calculate the volume required to store the gas
at this temperature and pressure. The required volume is,

_ nRT
V4

14 = 2.0kg-moles *8314.47 J/kg-mole/K *1000 K /200,000 nt/m* = 83.1m’

Obviously, given temperature and density, or specific volume, the pressure could be
found in a similar manner. Given pressure and density, or specific volume, the tem-
perature is easily found from the same equation. For this reason, applying the Ideal
Gas Law is usually a good first guess when trying to solve for pressure, density, or
temperature.



24 2 Properties of Pure Substances

2.4 Real Gases and Vapors

In this section, the behavior and properties of real gases and vapors are described
and equations of state are identified.

An ideal gas is made up of particles that do not attract or repel one another. Real
gases are made up of atoms or molecules that may attract one another strongly, like
ammonia, water vapor, or sulfur dioxide. On the other hand, they may attract one
another hardly at all, like helium.

Real gases behave like ideal gases at “ordinary” temperatures and pressures.
However, if you heat them up and compress them to high pressure, then their be-
havior departs from ideal. If the molecules attract one another, a molecule in the
center of the gas is attracted equally on all sides and its motion is not affected. For a
molecule, which is very close to the wall of container, exerts lees force on the wall,
due to the intermolecular attractive forces with other molecules.

2.4.1 Simple Real Gas Equations of State

At higher pressures or lower temperatures, the equation of state becomes more com-
plicated. The volume taken up by the molecules of the gas must be considered and
the attraction of the molecules for each other lessens the pressure they exert on their
container. The first Equation of State to take these two effects into account was the
Van der Waals Equation of State given by,

_WT__a
(-b) v

p 2.5)

where a and b are constants appropriate to the specific gas. As far as thermo-
dynamics is concerned, the important idea is that an equation of state exists, not
whether it can be written down in a simple mathematical form. Also there exists no
equation of state for the states traversed by a system that is not in mechanical and
thermal equilibrium, since such states cannot be described in terms of thermody-
namic coordinates referring to the system as a whole.

It is generally impossible to express the complete behavior of a substance over
the whole range of measured values of p, v, and T by means of one simple equation
with two adjustable parameters (a and b). Several equations of state, such as the
Ideal Gas Law and those found below can be used to characterize the gas or vapor
phase. Several Equations of State that have found utility in thermodynamic analysis
are listed here.

S
a. p= T @ Van der Waals equation of state
2
(b-b) v
)
b. p= RT a Redlich-Kwong equation of state

p= _
v=b T"y(v+b)
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_RT aa
v=b v’ +2bv— b’
d. pv=RT(1+BP+ cpP? +--+) Virial Expansion

a/RTv

c. p Peng-Robinson equation of state

[¢]

. (pe )( —b) =RT Dieterici equation of state

( p+ %j (v—b)=RT Berthelot equation of state
T

=

aQ

. [ p+ ﬁ] (b—>b)=RT Clausius equation of state.
c

B
pv=9?T(1+—+
v Vv

=

>+ ) Another type of virial expansion

2.4.2 Determining the Adjustable Parameters

Every equation of state must satisfy a number of conditions.

1. It must reduce to the Ideal Gas Law as the pressure approaches zero or the tem-
perature increases without bound.

2. The critical isotherm must show a point of inflection at the critical point.

3. The isometrics on a p-T diagram should approach straight lines with either
decreasing density or increasing temperature. The critical isometric should be a
straight line.

Since the critical point is the limiting position on a p-v diagram (see Fig. 2.5 below)
as the two end-points (saturated liquid and saturated vapor) on the same isotherm
approach each other, it follows that the slope of the isotherm passing through the
critical point (the critical isotherm) is zero, or stated mathematically as;

oP
halll — 2.6
(aVJT_TC ’ (260

Also, the critical point is a point of inflection on the critical isotherm, because the
isotherm is concave upward at volumes less than the critical volume and concave
downward at specific volumes more than the critical volume; hence

2
a—}; =0 (2.6b)
aV T=T,

Equations 2.6a and 2.6b, along with the equation of state itself, enable one to evalu-
ate the constants in any two parameter equation of state based on the critical values
FPr, Ve, and T-. Consider, for example, the Van der Waals equation of state, which
can be written:
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Fig. 2.5 p-v diagram for pure
substance showing isotherms
in the region of critical point.
Solid lines represent the
values predicted by the Van
der Waals equation of state.
Points represents the experi-
mental values

-— (2.7)

where v =V /n is the molar volume. This equation holds fairly well in the vapor
region near and above the critical point. Equations 2.6a and 2.6b for molar volume
yield, respectively;

(ap) RT +2a 0 (289)
- = 5 t—x = .0a
). (v-b)? U

and

I
ov ) -b’ v ‘

Equations 2.8a and 2.8b can be rewritten as;

2a RT

0_3 = m (2.9)
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and
3a RT

- (2.10)
vt (L-b)

Dividing the first equation by the second to obtain the critical molar volume as;

ve =3b (2.11)

Substituting this value for v in the first of the two equations, we obtain a relation-
ship for the critical temperature as;

_ 8a
27bR

T. (2.12)

and finally, substituting these two values in the Van der Waals equation to obtain
the critical pressure as

_ a
27h°

Pc (2.13)

At the critical point these equations can be written as follows;

(ipj __ R 28, (2.14)
T=T¢

ov (e —b)? 0}
and
2
{a_fJ - 2Me  ba_, (2.15)
ov o1, (e —=b) ve

so that at the critical point, Van der Waals equation is given by

(PC +%](UC ~b)=RT,. (2.16)
Uc

Based on the critical point data then, we can calculate the Van der Waals constants
a and b in terms of the critical constants. Since it is possible to experimentally
measure the critical temperature and critical pressure, ¢ and b can be evaluated
from knowledge of £~ and 7~ through the following relations

27RT? RT,
== "¢ and b=—"=KC

(2.17)
64P. 8P,
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Table 2.1 Calculated values Substance 7

of Zc <
Water 0.230
Ammonia 0.242
Carbon dioxide 0.275
Nitrogen 0.287
Helium 0.291
Hydrogen 0.307
Van der Waals gas 0.375
Ideal gas 1.00

The values of @ and b are provided for a number of gases in the Appendix.
It follows for the Van der Waals equation of state at the critical point,

a

Poc 27p% 3
7, =0 _27b"  _ 2 _ 375 (2.18)
R i 8a 8

27hR

where Zc is the critical compressibility factor. If a substance behaved like an Ideal
Gas at the critical point, then Z_ would equal 1.0. If it obeys the Van der Waals equa-
tion, then this ratio should equal 0.375, which would be a measure of the departure
of the Van der Waals gas from an Ideal Gas. In Table 2.1 below, the calculated
values of Zc are listed for a number of interesting gases, and in no case is this ratio
equal to 0.375, or even close. Above the critical point, at higher pressure, the Van
der Waals equation is fairly satisfactory and is useful in many cases. Other equa-
tions of state give better values of Zec, but no two parameters Equation of State
adequately describes all properties of pure substances near the vapor dome.

2.4.3 Other Useful Two Parameter Equations of State

Many equations of state have been proposed to represent P —} —T data more accu-
rately than the Ideal Gas Law for those regions where it does not apply. Most of the
equations of state that have been proposed are empirical and only a few of them are
in wide use in thermodynamics and related engineering and physics fields. Two oth-
er equations of state, commonly used in engineering analysis, are presented below.

2.4.3.1 Redlich-Kwong Equation of State

The Redlich-Kwong (RK) equation of state is an empirical equation that is widely
used for engineering calculations.
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RT a
p= -
v-b T™v+b)

(2.19)

The constants @ and b of the Redlich-Kwong equation of state can be estimated
from the critical constants by the following relations. It is generally thought to pro-
vide satisfactory results above the critical temperature for any pressure.

225
ue 0.42748R°T; (2.20a)
L
b 0.0867RT, (2.20b)
P

c

This gives Z.=0.333 which is significantly closer to the range of interest for most
gases. The constants @ and b are evaluated in the Appendix for a number of gases.

2.4.3.2 Peng-Robinson Equation of State

The Peng-Robinson equation of state gives a slightly better approximation below
the critical temperature by adding another parameter, @, the acentricity factor given

by,

sat

K =0.37464+1.542260 — 0.269930>

a)=—1—log10(p

pc ]%C=0.7

(2.21a)

2 RT aa
=(1+x|1- |T P= - 2.21b
“ { K( V/TCH v=b 21 2by—b? (2210)

The Peng-Robinson constants are determined by

R2T?2 RT,
c b=0.07779607 —<
C C

a=0.45723553

(2.21¢)

It gives a Z.=0.307, closer to the range of a number of gases. The constants for
the Peng-Robinson Equation of State are provided for a number of gasses in the
Appendix.
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2.4.4 Common Equations of State with Additional Parameters

Equations of state play an important role in chemical engineering design and they
have assumed an expanding role in the study of the phase equilibrium of fluids and
fluid mixtures. Originally, equations of state were used mainly for pure compo-
nents. Many equations of state have been proposed in the literature with either an
empirical, semi-empirical or a theoretical basis. Brief reviews can be found in the
following sections.

2.4.4.1 Beattie-Bridgeman Equation of State

The Beattie-Bridgemen equation of state is given by

s NI
v

The constants 4, B,, @, b, and c are characteristic of a gas. These constants for
some substances are given in Table 2.2.

Table 2.2 Constants of Beattie-Bridgeman equation of state

Gas Pam’ B, x 10° ax10° hx10° S
o] WO [ (=]
mol mol mol

Air 0.1318 46.11 19.31 ~11.010 43.40
Ammonia | 0.2425 34.15 17031 19.112 | 4768.70
n-Butane 1.8030 246.20 121.61 94230 | 3500.00
Carbon 0.5073 104.76 71.32 72.350 660.00
dioxide

Ethane 0.5958 94.00 58.61 19.150 900.00
Ethylene 0.6234 121.56 49.64 35.970 226.80
Helium 0.00219 14.00 59.84 0.000 0.04
Hydrogen | 0.0200 20.96 ~5.06 ~43.590 5.04
Methane 0.2307 55.87 18.55 ~158.700 128.30
Neon 0.0215 20.60 21.96 0.000 1.01
Nitrogen 0.1362 50.46 26.17 ~6.910 42.00
Oxygen 0.1511 46.24 25.62 4.208 48.00
n-Pentane | 2.8634 394.00 150.99 139.600 | 4000.00
Propane 1.2078 181.00 7321 42.930 1200.00
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Table 2.3 Source Kenneth Wark, thermodynamics, 4th ed., p. 141

Gas a A, B B, cx107* | C,x107% | ax10° |T
n-Butane, | 190.68 | 1021.6 | 0.039998 | 0.12436 | 3205 1006 110.1 0.0340
CH,,

Carbon 13.86 277.30 | 0.007210 | 0.04991 151.1 140.4 8.470 | 0.0054
dioxide,

o,

Carbon 3.71 135.87 | 0.002632 | 0.05454 10.54 8.673 13.50 | 0.0060
monox-

ide, CO

Methane, | 5.00 187.91 | 0.003380 | 0.04260 25.78 22.86 12.44 | 0.0060
CH,

Nitrogen, | 2.54 106.73 | 0.002328 | 0.04074 7.379 8.164 12.72 | 0.0053
N2

2.4.4.2 Benedict-Webb-Rubin Equation of State

The Benedict-Webb-Rubin (BWR) equation of state is given by;

RT 1 b o 1 ¥ -y
P=T+7(9‘T(B°T)‘(AO*%*%)‘F(%‘5(“7] pHD
(2.23)

where 4,, By, Cy, a, b, ¢, a and y are constants for a given fluid. The BWR con-
stants for a few selected gases can be found in Table 2.3 above or in Perry’s Chemi-
cal Engineer’s Handbook. This equation of state is quite complex and contains eight
constants, and is able to predict the p —v —T data with higher accuracy compared to
many other equations of state.

The Equations of State used to calculate the steam properties in the Appendix
was broken down into five regions. Each region required between 10 and 43 con-
stants to adequately represent the data.

2.4.4.3 Virial Equation of State
The word virial comes from the Latin meaning force, thus it refers to the interaction

forces between molecules. In 1901 Kamerlingh Onnes suggested the virial equation
of state expressed as a power series in reciprocal volume; it is given by

P
RT

b

' (2.24a)

:1+E
v

L
1)2

C

where B, C, D, etc. are known as second virial coefficient, third virial coeffi-
cient etc. Virial coefficients express the deviations from the Ideal Gas Law due to
intermolecular forces. These virial coefficients are functions of temperature only.
The advantage of the virial equation of state is that it may be made to represent
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the experimental p—v—T data as accurately as required by increasing the num-
ber of constants. The values of the second virial coefficients have been determined
experimentally for a number of gases. The third virial coefficients are not known
for many substances and much less information is available beyond the third virial
coefficient. Moreover, the virial equation of state with more than three terms is
difficult to handle. The virial equation of state and the ideal gas law have a strong
theoretical base. They have been derived through statistical mechanical methods.
All other equations of state are empirical or semi-empirical. The virial equation of
state is sometimes written as a power series in the pressure as;

PP L BP+CPP+DP 4. (2.24b)
RT

where the coefficients B', C', D', etc. are functions of temperature only. The coef-
ficients B', C', D', etc. are related to the virial coefficients B, C, D, etc. by the
following relations:

B - % (2.25a)
2
c-C —Bz (2.25b)
(RT)

D,:D—3BC+3B3

Ry (2.25¢)

It has been found that the virial Eq. 2.24a adequately represents the experimental
data over a wide range of pressure, compared to the virial Eq. 2.24b when both these
equations are truncated after the third term [1]. The general form of Eq. 2.24a can
be written as;

P

B, C D, R
=S E — (2.26)
RT v v’ ,Z

L 3 i

C

The parameters in the equation (B,C,D =¢;) are again called “virial coefficients”.
If ¢; =0 for i >0, the virial equation reduces to the ideal gas equation. The accu-
racy required determines the number of terms that are kept—more terms makes the
equation more accurate, but also more complicated to work with. Virial coefficients
are different for each gas, but other than that are functions of temperature only.

Coecfficients are normally obtained by making measurements of p, v, and 7, and
fitting the equation. These values are then published so that others may use them.

Many forms of the virial equation exist. Truncating this equation after one coef-
ficient gives a quadratic equation in v. Thus, it retains some of the simplicity of the
Ideal Gas law allowing quick analytic solutions for v given p and T.

Po 1+ B (2.27a)

RT D)
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A number of methods (correlations, etc.) are available to determine B. In order to
improve accuracy and capture more behaviors, additional parameters are sometimes
added. One example is the Benedict-Webb-Rubin (BWR) Equation of State Eq. 2.23.

This equation provides a first order correction to the Ideal Gas Law for non-polar
species. It should not be attempted for polar compounds such as water that have a
non-zero dipole moment [1]. The following procedure may be used to estimate v
or P foragiven T for a non-polar species, one with a dipole moment close to zero,
such as hydrogen or oxygen and all other symmetrical molecules.

To use the truncated virial Equation of State proceeds in the following manner.

» Look up the critical temperature and pressure (7, and P,) for the species of in-
terest in Appendix. Also, look up the acentric factor, ®, a parameter that reflects
the geometry and polarity of a molecule, in the constants table for the Peng-
Robinson Equation of State in the Appendix. (A more complete list can be found
in Reid et al. [2].)

* Calculate the reduced temperature 7, using the relationship 7, =7 /T, .

» Calculate the following coefficients:

0.422
B, =0.083— 16 (2.27b)
0.172
B =0139-—"53 (2.27¢)
T,
p =2 (B, +®B,) (2.27d)

c

» Substitute into Eq. 2.27 the value of B and whichever of the variables p and v
is known and solve for the other variable. Solution for p is straightforward. If v
is to be determined, the equation can be rearranged into a quadratic and solved
using the quadratic formula.

v —ﬂv—ﬂB =0

p p

» Normally one of the two solutions is reasonable and the other is not and should
be discarded; if there is any doubt, estimate v from the ideal gas equation of state
and accept the virial equation solution that comes closest to v, ;-

2.4.4.4 Equation of State Comparison

Virial equations with one coefficient cannot represent thermodynamic systems
where both liquid and vapor are present. A “cubic” equation of state is needed to do
this. We have identified three two-parameter equations of state above for which data
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is presented in the Appendix. The most sophisticated of these is the Peng-Robinson
equation because it corrects the “a” coefficient for the acentric factor.

__ AT aa (2.282)
(L=b) V' +2bv-b’
where the constants are given by;

P22
a=0.45723553 (2.28b)

T,
(2.28¢c)
K = 0.37464 +1.542260 — 0.269930° (2.28d)

2
a= [1+ K(l—\/ZJJ (2.28¢)
T,

In this equation, the b term is a volume correction, while a is a molecular interac-
tion parameter. The constants all depend on the critical temperature and pressure of
the gas. These can be looked up easily in a data table.

The “acentric factor”, omega ®, is also easily looked up. It is related to the ge-
ometry of the gas molecule.

To use the Peng-Robinson equation:

1. Lookup T,, P., and the acentric factor for the species of interest in the Appendix.

2. Plug in and find «, b, and alpha a.

3. Plug these into the Peng-Robinson equation; the result will be a cubic equation
in v depending on p and T.

4. Solve for the unknown you seek.

Solving the cubic equation can be accomplished with a binary search using the
computer or by analytically solving the cubic equation. The equation can be trans-
formed to

(b—ﬂ)v +( —3b2—2mT) (zf xr, —%b]zo
p p P p p

v +alv2 +a,v+a; =0

The analytic solution is given by,
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Vv +alv2 +av+a; =0
Transform to

a
X +bx+b, =0 v=x-——t

2

b — 3a, —aq b = 2a; —9aya, +27a;
‘ 3 : 27
PRI 2 53
-2 4+ 150, 1real, 2 imaginary, —=+—— =0, 3 real, 2 equal,
4 27 4 27
b; B

—+— <0, 3 real & distinct
4 27

For the first case

C:3_b_2+ 54_5 D:3_b_2_ 54_5
2 4 27 2 V4 27

x=C+D x:—C;D+C_TD -3 x=—C+TD—C_TD\/3

For the third case of three real unequal roots let,

—“2/

2
—a13/
27

=2 cos(94) xa =2 cos{ 8 +254) x5 =25 cos(8] +454)

Example 2.1 Carbon dioxide at 500 K and 6.5 MPa flows at 100 kg/h. Use the
one parameter Viral Equation of State and the Peng-Robinson Equation of State to
determine the volumetric flow.

cos¢ =

Solution The pressure and temperature are known, so look up the critical proper-
ties, the acentric factor, and the Peng-Robinson constants in the Appendix.
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The critical properties are T,=304.2°K, p_=7.39 MPa, and the acentric factor

is 0.225.
Evaluating the B coefficients,

T.=500.0/304.2=1.64365 B, =0.083—-0.422/T,"* =—0.1076
B, =0.139-0.422/T,*> = 0.0867

B=8314.47*304.2/7.39E+6*(-0.1076+0.225*0.0867)=-0.03014
2
) S )
V= ﬂi (ﬂj +@ =(0.31978+0.081651)/ 44 = 0.01382m" /kg
2p 2p p
The Peng-Robinson coefficients are

a =0.39576 MPa-m’ /kgmol”b = 0.02662 m> /kgmol

K = 0.37464 +1.5422%0.225 - 0.26993%0.225> = 0.70797

2
0c=(1.0+0.70797{1— /% }) =0.6357
C

_RT B oa
v=b v’ +2bv—b>

v3+(b—ﬂJv2+(ﬂ—3b2—2ﬂb)v+b3+ﬂb2—%b=0

p

p p p p p

Applying the cubic formula gives
a, =-0.61295, a, =0.002526, a; =-0.00055844, b, =—0.12271, b, =-0.017101
2 43
sz + b—l >0, 1 real, 2 imaginary
C=0.22044 D=0.18555

v=0.5%(0.22044+0.18555)/44.0 =0.01387 m3/kg

It is worth noting that the Ideal Gas solution is

L, RT__ 8314.47%500
pAM ~ 6500000.0* 44

= 0.01454 m3/kg and the tables give 0.01389 m’/kg
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Fig. 2.6 The P—V, T -V and P—T diagrams

So the Ideal Gas solution is high by 4.65 %. The virial solution is low by 0.54 %,
and the Peng-Robinson solution is low by 0.14 %.

The volumetric flow rate with the viral solution will be 100*0.01382=1.382 m’/h

The volumetric flow rate with the Peng-Robinson solution would be
100*0.01387=1.387 m’/h

2.4.5 The Liquid-Vapor Region

Appling Fig. 2.6 shows that at any given (7,0) between saturated points 1 and 2,
liquid and vapor exist as a mixture in equilibrium. Let v, and v, to represent the
specific volumes of the saturated liquid and the saturated vapor, respectively, while
m is the total mass of the system that is shown in Fig. 2.6 and m the mass amount
of mass in the liquid phase, and m, the amount of mass in the vapor phase, then
for a state of the system represented by (7',v) the total volume of the mixture is the
same of the volume occupied by the liquid and the occupied by the vapor as [3]:

mo =m,U; +my, (2.29)
m=m; +m, (2.30)

or dividing both side of Eq. 2.29 by m, then utilizing Eq. 2.30, we have;
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Fig.2.7 The T —V diagram T
showing the saturated liquid
and saturated vapor points

P = consl.

Vapor

(2.31)

m
The ratio x = —%- is called quality because steam that has a larger proportion of vapor

m
is considered “higher quality” than steam with a lesser mass of vapor. v, =v, —v,
is the heat of vaporization. If we take a slice through the 3-D plot to form the P-T'
plane and include the Critical Point we will obtain the plot that is shown in Fig. 2.4.

Note that the percentage liquid by mass in a mixture is 1000(1—x) and the per-
centage vapor is 100x . See Fig. 2.7.

For most substances, the relationships among thermodynamic properties are too
complex to be expressed by simple equations. Therefore, properties are frequently
presented in the form of tables. Some thermodynamic properties can be measured
easily and those that can’t are calculated by using the thermodynamic relations that
they must satisfy and the measurable properties.
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Fig. 2.8 Illustration of 7-v process steps and its diagram

The working fluid of most interest to engineer’s and by far the fluid most stud-
ied is water. Its properties have been tabulated for years in what are called Steam
Tables. A set of Steam Tables are provided in the back of the book, within the Ap-
pendix. The Tables are Appendix 14.1-14.7.

2.5 T -V Diagram for a Simple Compressible Substance

Consider an experiment in which a substance starts as a solid and is heated up at
constant pressure until it becomes a gas. The process is depicted in Fig. 2.8.

As heat is applied to the solid, the temperature increases and the volume in-
creases slightly. When the melt temperature is reached, the temperature remains
constant but the volume continues to increase as the solid is converted to a liquid.
Once all of the material has been converted to a liquid, the temperature begins to
increase again as more heat is added. When the vaporization temperature is reached,
the liquid begins to be converted to a vapor and the temperature remains constant as
more heat is added. Once all of the liquid has been converted to vapor, adding more
heat will once again cause the temperature to rise.[3—7].
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Fig. 2.9 Tllustration of P -V diagram

2.6 P -V Diagram for a Simple Compressible Substance

The general shape of a p—V diagram for a pure substance is very similar to that
of a T—V diagram and its representation by the vapor dome as discussed before.
Figure 2.9 is a presentation of a p — V' diagram.

On this diagram the subscript f* denotes a saturated liquid (fluid) and g denotes
a saturated vapor (gas).

2.7 P-V-T Diagram for a Simple Compressible
Substance

All the data that are represented on both the p-v and p-T diagrams can be shown one
diagram if the three coordinates p, v, and T are plotted along orthogonal axes. The
result is called the p-v-T surface and two such surfaces are shown in Figs. 2.10 and
2.11, the first for a kilogram of an unusual substance like water that contracts upon
melting, and the second for a kilogram of a typical substance like carbon dioxide
that expands upon melting.

Where the critical point is denoted by the letter C and the triple point by 7P.
The critical isotherm is marked 7. Every point on the P—} —T surface represents
a state of equilibrium for the substance. If the p-v-T surface is projected on the p-v
plane, then the usual p-v diagram is seen and upon projecting the p-v-T surface onto
the p-T plane, the entire solid-vapor region projects into the sublimation curve, the
entire liquid-vapor region projects into the vaporization curve, the entire solid-lig-
uid region projects into the fusion curve, and, finally, the Triple-Point Line projects
into the triple point on the phase diagram [4].
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Fig.2.11 P—V —T surface for CO,, which expands while Melting

The P-V —T surfaces present a great deal of information at once, but in typi-
cal thermodynamic analysis it is more convenient to work with two-dimensional
diagrams, such as the p-v and T-v diagrams (Fig. 2.12).

Example 2.2 Determine the volume change when 1 kg of saturated water is com-
pletely vaporized at a pressure of (a) 1 kPa, (b) 100 kPa, and (c) 10000 kPa.

Solution Appendix A14.2 provides the necessary values. The quantity being sought
is v, =v, —v,. Note that p is given in MPa
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that contracts on freezing. expands on freezing (like water).

Fig. 2.12 Illustration of P—JV —T diagram for two cases

a. 1kPa. Thus, v/, =129.183-0.001 =129.182 m’/kg.

b. 100 kPa MPa. Again v =1.673-0.001=1.672 m’ /kg.

c. 10,000 kPa=10 MPa. Finally, v, =0.018034-0.001453 = 0.016581 m’ / kg,
Example 2.3 Four kg of water is placed in an enclosed volume of 1 m?. Heat is

added until the temperature is 420 °K. Find (a) the pressure, (b) the mass of vapor,
and (c) the volume of the vapor.

Solution Appendix A14.1 is used. The volume of 4 kg of saturated vapor at 420 °K
is (0.425255) (4)=1.701 m’>. Since the given volume is less than this, we assume the
state to be in the quality region.

a. In the quality region the pressure is given as p=437.24 kPa.
b. To find the mass of the vapor we must determine the quality. It is found from
Eq. 2.3, using the actual v=1/4 m3/kg, as;

0.25=0.001087 +(0.425255—-0.001087)

m
thus x =0.2489/0.425255=0.5853. Using the relationship of x = —%, the vapor
mass is "

My =mx = (4)(0.5853) =2341kg

c. Finally, the volume of the vapor is found from
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V, =vgm, = (0.4253)(2.341) = 0.9956 m’

Note that in a mixture where the quality is not very close to zero, the vapor phase
occupies most of the volume. In this example, with a quality of 58.53 % it occupies
99.56 % of the volume.

Example 2.4 Four kg of water is heated at a pressure of 220 kPa to produce a
mixture with quality x = 0.8. Determine the final volume occupied by the mixture.

Solution Using Appendix A14.2 to determine the appropriate number at 220 kPa
we linearly interpolate between 0.2 and 0.3 MPa. This provides, at 220 kPa.

Vg

~(220-200
250200

)(0.718697 —0.885735) +0.885735 = 0.8189 m’ /kg

Note that no interpolation is necessary for v, since for both pressures v, is the
same to four decimal places. Using Eq. 2.6, we now find

V=0, +x(V, ~0;) = 0.0011+(0.8)(0.8189 —0.001) = 0.6554 m’ /kg

The total volume occupied by 4 kg is ¥ = mv = (4 kg)(0.6640 m*> /kg) = 2.621 m”.

Example 2.5 Two lb of water is contained in a constant-pressure container held at
540 psia. Heat is added until the temperature reaches 1100 °R. Determine the final
volume of the container.

Solution: Use Appendix 14.7. Since 540 psia lies between the table entry values,
the specific volume is simply

L =1.2223+(0.4)(1.0017 —1.2223) =1.1341 f* / Ibm

The final volume is then V' =mv = (2)(1.2115) =2.2681 ft>

Example 2-6 Calculate the pressure of steam at a temperature of 500°C and a
density of 24 kg/m? using (a) the ideal-gas equation, (b) the van der Waals equa-
tion, (c) the Redlich-Kwong equation, (d) the Peng-Robinson equation, and (e) the
steam table.

Solution

a. Using the ideal-gas equation, P = pRT =(24/18)(8.31447)(773) = 8569.4 kpa.

b. Using values for ¢ and b from the Appendix for the Van der Waals equation
provides;

_RT a 8.31447(773)_553.0;1 7954 pa

_ R _a
v=b v* 18 63084 (18
24 4
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c. Using values for a and b from the Appendix for the Redlich-Kwong equation
gives;

p_ BT a _ (B31447)(773) 14258.5
v=b vE+bNT 18 105110 (18)(18 j
2_o. 2122 40.02110 |773
24 24 )\ 24

=7931kpa

d. For the Peng-Robinson equation the acentric factor for water is 0.3437.

Kk =0.37464 +1.542260 — 0.269930°

2
T.
a=0.8447:

8.31447*773 0.8447%*599.4

_ _ =7934.24 kPa
0.75-0.01895  (0.75% +2%0.01895%0.75—0.01895%)

p

e. Thesteam table provides the most precise value for the pressure. Using 7 =500 °C
and v =1/24=0.04166 m’/kg, we find P =8141 kPa. Note that the ideal-gas
law has an error of 5.3 %, and the errors of each of the other three equations are
Van der Waals=—2.29 %, Redlich Kwong=-2.58 %, Peng-Robinson=—2.54%
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Chapter 3
Mixture

Not all thermodynamic systems contain only pure substances. Many systems of
interest are composed of mixtures of pure substances. It is important to be able to
analyze these systems as well as those containing only pure substances. Therefore,
an understanding of mixtures is essential to the study of thermodynamics.

3.1 Ideal Gas Mixtures

In the following section we will be studying gas mixtures and introduce certain
conceptual framework and properties of substances that are mixed. Rederas can also
refer to references at the end of this chapter for further information on the subject
of mixture.[1-3].

3.1.1 Avogadro’s Number

In order to provide a conceptual framework for understanding mixtures it is easi-
est to start with Ideal Gas Mixtures and address the fundamentals. Then real gas
effects and liquid effects can be added in. The Ideal Gas is composed of point mol-
ecules that have no volume and only interact with billiard ball-like collisions. This
description does not distinguish between one type of molecule or another. So the
only thing that matters when combining two or more ideal gases is how many mol-
ecules of each gas are present. To get the number of molecules of a gas present it
is a simple matter to divide the mass of the gas by the molecular weight of the gas
and multiply by a constant known as Avogadro’s Number. A kilogram-mole of
any pure substance contains 6.022 x 10°° molecules or atoms. Avogadro’s number
gives the number of molecules in a mole of a pure substance. To get the number of
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kilogram-moles in a given mass, the mass of the substance is divided by the molecu-
lar mass in kilograms. For instance,

5 kilograms of He = 5 kg/4 kg per kg-mole
= 1.25 kg-moles He = 7.528 x 10*®atoms He
5 kg/28 kg per kg-mole
0.1786 kg-moles N, = 1075 x 10** molecules N,

5 kilograms of N,

It is generally not important to know the number of atoms or molecules present, but
in most cases, it is important to know the number of moles present. So it is useful
to remember that when quantities are measured in moles, it is the same as if they
were measured in atoms or molecules. Classical thermodynamics was developed
long before the atomic hypothesis was demonstrated but the concept of a mole of
material superseded classical thermodynamics.

3.1.2 Mass Fractions

When pure substances are mixed, they are typically quantified by the amount of
mass of each substance present. The mass fraction for a component of a mixture is
the mass of that component divided the total mass of the mixture. Knowing the mass
fractions for a mixture is useful if one wants to know the recipe for putting the mix-
ture together, but they are generally not usually useful for predicting the thermody-
namic characteristics of the mixture. Consider a mixture of 5 kg N, an 15 kg of CO,.

Total Mass = 5kg + 15kg = 20 kg
Mass fraction N2 = 5/20 = 0.25
Mass Fraction CO2 = 15/20 =0.75

Unfortunately, the mass fractions tell very little about the thermodynamic character-
istics of the mixture other than the recipe for putting it together.

3.1.3 Mole Fractions

A more useful characterization of the mixture is the mole fraction of the compo-
nents. In order to calculate mole fractions, the moles of each component present
must be calculated first. To get the moles of a component present the components
mass must be divided by its molecular weight. For instance

5 kg N, =5kg/28 kg per kg-mole = 0.1786 kg-moles of N,
15 kg CO, =15 kg/44 kg per kg-mole = 0.3409 kg-moles of CO,
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Total kg-moles = 0.1786 + 0.3409 = 0.5195 kg-moles
Mole Fraction N, =0.1786/0.5195 = 0.3438
Mole Fraction CO, = 0.3409/0.5195 = 0.6562

Now that we have the mole fractions present, we have the relative numbers of mol-
ecules of each gas present. These fractions will be far more useful for determining
the properties of the gas mixture than the relative masses.

Example 3.1 Consider a mixture of O, and H, that is 5 wt % H,. If it is burned,
which component will be consumed entirely, and which component will be left
over.

Solution To solve this problem we must find the mole fractions of the two gases
and consider that 1 mol of O, combines with 2 moles of H, to form water.

Ny, = 0.1/2=0.05

oy = 0.9/32=0.0281

Aoy = 0.0781

Nip, = 0.05/0.0781=0.64

nso, = 0.0281/0.0781=0.36

n

0.32moles of Oy will combine with 0.64 moles of Hy leaving 0.04 moles of excess O,
The final mixture will contain 0.32 moles of H,O and 0.04 moles of O,

0.32 0.04
Ny o=—— —0889 n,, =——=0.111
TH0 7032 40.04 10 703240.04

3.1.4 Dalton’s Law and Partial Pressures

Ideal gases when combined to form a mixture can be modeled fairly easily. Basi-
cally each if the gases expand to fill the volume of the mixture. Each gas exerts a
pressure proportional to the number of atoms or molecules present. So each gas
behaves as it is an Ideal Gas ignoring the other gases present. Dalton’ s Law states
that the total pressure exerted by a mixture is simply the sum of the partial pressures
of the gases in the mixture.

nRT
pTutal:Zipi:Zi IV
pi _ =ny,
Protal ini

Thus, the partial pressure of an Ideal Gas is equal to the mole fraction of the gas in
the mixture.
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3.1.5 Amagat’s Law and Partial Volumes

Amagat’s law is similar in that it states that the partial volumes occupied by a mix-
ture add up to the total volume of the mixture at the system pressure.

RT
=

p
Vi 1
L = =N,
vV M I

It is a little harder to measure partial volumes but the concept has utility in some
cases.

Example 3.2 A rigid tank contains 2 kg of N? and 4 kg of CO? at a temperature of
25°C and 2 MPa. Find the partial pressures of the two gases and the gas constant
of the mixture.

Solution To find the partial pressures we need the mole fractions. The moles of N,
and CO, are, respectively as follows;

N, :% — 2 _0.0714 mol
: 4 Therefore N, =N, +N, =0.1623 mol
Ny, =22 = 2 = 0.0909 mol
M, 44

The mole fractions are

ﬂ ~0.0714 mol _ 0
N, 0.1623 mol '

m

Ny _0.0909 mol _ .
N, 0.1623 mol

m

npy = 440

Nra=

The partial pressures are then;

R =n;,P=(044)2)=088MPa and P =n,,P=(0.56)2)=0.1.12 MPa

The molecular weight is M,, = Min,; + M,n, , = (28)(0.44) +(44)(0.56) = 36.96
kg/kmol. The gas constant of the mixture is then given by;

B 8318 s ka/kek
M, 36.96

m
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3.2 Real Gas Mixtures

Real gas mixtures are more complicated than Ideal Gas Mixtures because the mol-
ecules have volume and they are attracted to each other in different ways. The best
that can be done is to develop a real gas model based on equivalent critical tempera-
tures and pressures.

3.2.1 Pseudo Critical States for Mixtures—Kay’s Rule

Kay’s rule states that mixtures of real gases can be approximately modeled by cal-
culating a psuedo-critical state for the mixture based on a mole fraction weighted
critical temperature and mole fraction weighted critical pressure. We have,

Tc,equiv = an,iTCJ
i

pc,equiv = Z nf,ipc,i
i

This will not work very well if the conditions of interest are too close to the highest
critical temperature of one of the components.

3.2.2 Real Gas Equations of State

Once the pseudo-critical temperature and pressure have been determined, either the
Van der Waals or Redlich-Kwong equation of state can be used to estimate proper-
ties. The virial and Peng-Robinson equations present the added difficulty of trying
to estimate the acentric factor, which adds an additional source of uncertainty.

Example 3.3 Estimate the pressure exerted on a 3 m? tank used to store 100 kg of
air at 200 K. The mole fractions for air are 0.78 N, 0.21 O,, and 0.01 Ar.

Solution First calculate the pseudo-critical state for the mixture.

T,

c,equiv

—0.78%126.2+0.21%154.84+0.01%151.0 =132.45K
Pecquiv = 0.78%3.39+0.21*5.08+0.01*4.86 = 3.76 MPa
MW =0.78%28+0.21%32+0.01%39.95 = 28.96

Choose to model the air with the Redlich-Kwong model. Note,

v =0.03m" [kg = 0.03%28.96 = 0.8687 m* [ kgmol
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The Redlich-Kwong constants become

- 0A2T48* RIS 0.42748%8314.477132.45%

=1.5868x10°
Pe 3760000
*OR * * *
p_ O0867*R*T, _ 0.0867*831447*13245 _ 20
D 3760000
Then calculating the required pressure,
pe RT 3 a
v=b T%y(v-b)
_ 831447%200 1.5868x10°
0.8687—-0.02539 200" (0.8687)(0.8687 —0.02539)
=1.819 MPa

For the Ideal Gas model the pressure would have been 1.914 MPa or about 5.2%
more.

3.3 Liquid Mixtures

Liquid mixtures can be very simple or quite complicated.

3.3.1 Conservation of Volumes

Typically gases are assumed to have an indefinite shape and an indefinite volume,
whereas liquids are assumed to have an indefinite shape but a definite volume, and
solids have a definite shape and definite volume. When this simple model works,
combining two volumes of different liquids will produce a volume that is simply the
sum of the volumes of the components. If the volumes of the molecules of the two
liquids are similar, this is a good approximation.

3.3.2 Non-Conservation of Volumes and Molecular Packing

However, if one of the components of the mixture has a large molecular structure
and the other component is a fairly small molecule like H,0, it is possible for the
smaller molecules to take up space between the large molecules and the net volume
of the mixture to be significantly smaller than the simple sum of the volumes of the
two components. Quantifying this effect is beyond the level of this text.
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Chapter 4
Work and Heat

This chapter deals with two quantities that affect the thermal energy stored in a
system. Work and heat represent the transfer of energy to or from a system, but
they are not in any way stored in the system. They represent energy in transition
and must carefully defined to quantify their effect on the thermal energy stored in a
system. Once they are quantified, they can be related to the conservation of energy
principle known as the First Law of Thermodynamics.

4.1 Introduction of the Work and Heat

A closed system can interact with its surroundings in two ways, either by;

a. Work Transfer.
b. Heat Transfer.

These may be called energy transfer or energy interactions and they bring about
changes in the properties of the system. Positive work occurs when the system
transfers energy to its surroundings by some mechanical or electrical process. Posi-
tive heat transfer occurs when the surroundings transfer thermal energy to the sys-
tem. Normally a temperature difference is the driving potential that moves thermal
energy into or out of a system.

4.2 Definition of Work

The formal definition of work is “a force acting through a distance”. When a system
undergoes a displacement due to the action of a force, work is taking place and the
amount of work is equal to the product of the force and the displacement in the
direction of the force. The term work is so common with many meanings in the Eng-
lish language that it is important to be very specific in its thermodynamic definition.
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Piston \

Velocity <=—— ——
Cylinder
Connecting rod

Fig. 4.1 Work being done by expanding gases in a cylinder

Work is done by a force as it acts upon a body moving in the direction of the
force.

If the force acts, but no movement takes place, no work is done. Work is per-
formed by the expanding exhaust gases after combustion occurs in a cylinder of
an automobile engine as shown in Fig. 4.1. In this case the energy produced by
the combustion process can be transferred to the crankshaft by means of the con-
necting rod, in the form of work. Therefore, the work can be thought of as energy
being transferred across the boundary of a system, the system being the gases in the
cylinder.

A similar concept is the work done in the turbine to generate electricity in a
nuclear power plant. The gas pressure rotates the turbine blades producing a torque
that turns generator. Thermal energy is transferred from the reactor core to the steam
generator in the first loop. The second loop then uses this steam to drive the turbine.
See Fig. 4.2 for the basic configuration of the loops.

Work is done by a system, if the sole external effect on the surroundings would
be the raising of a weight [1]. The work done, however, by one part of a system on
another part is called internal work. Internal work is not discussed in macroscopic
thermodynamics. Only the work that involves an interaction between a system and
its surroundings can be analyzed. When a system does external work, the changes
that take place can be described by means of macroscopic quantities referring to
the system as a whole, in which case the change may be imagined as the raising
or lowering of a suspended weight, the winding or unwinding of a spring, or more
generally the alteration of the position or configuration of some external mechani-
cal device.

The magnitude of the work is the product of the weight and the distance that the
weight is lifted. Figures 4.3a, b shows that the battery cell is connected to an exter-
nal circuit through which charge flows. The current may be imagined to produce
rotation of the armature of a motor, thereby lifting a weight or winding a spring.
For an electrochemical cell to do work, it must be connected to an external circuit.
Figure 4.3b is the interaction for Fig. 4.3a that qualifies as work in the thermody-
namic sense.
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How This interaction shows the basic
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Fig. 4.2 Basic schematic of nuclear power plants and steam loops
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Fig. 4.3 Work being done by electrical means

The thermodynamic convention defines positive work as that done by the system
on its surroundings. Negative work is defined as work is done on the system. Fig-
ure 4.4 is a simple presentation of positive and negative work W for interactions
between a system and its surroundings.

The units of work in the SI system are Newton-meters. A Newton—meter is also
defined as a Joule. In the English system, the basic unit is foot-pound force. There
is no other name. A new quantity defined as power can be introduced as the rate
of doing work W . In the SI system, the unit for power is Joules per second (J/s)
or Watts (W), while in English system the unit is ft-lbf/sec. An additional English
system unit is the horsepower (hp) which is defined as 550 ft-Ibf/sec. Note that
1 hp=746 W.
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Fig. 4.4 Work interaction
between a system and its
surroundings

Surroundings

a Wis positive b Wis negative

The work associated with a unit mass will be designated as w or specific work.
It should not be confused with specific weight as is given by:

w=— 4.1)

4.3 Quasi-Static Processes

Before going further, it is important to note that thermodynamics can only be used
to describe equilibrium states. A system in thermodynamic equilibrium will satisfy
the following requirements:

1. Mechanical equilibrium: There are no unbalanced forces or torques acting on
any part of the system or on the system as a whole.

2. Thermal equilibrium: There are no temperature differences between parts of the
system or between the system and its surroundings.

3. Chemical equilibrium: There are no chemical reactions within the system and no
motion of any chemical constituent from one part of a system to another part.

A system in thermodynamic equilibrium with its surroundings will have no motion
take place and as result, no work will be done, since there is no displacement of
any kind.

If the sum of the external forces is changed so that there is a finite unbalanced
force acting on the system, then the condition for mechanical equilibrium is no lon-
ger satisfied and the following situations will arise:

1. Unbalanced forces or torques will be created within the system; resulting in tur-
bulence, waves, etc.. The system as a whole may execute some sort of acceler-
ated motion.

2. As aresult of this turbulence, acceleration, etc., a non-uniform temperature dis-
tribution may be brought about, as well as a finite difference of temperature
between the system and its surroundings. The sudden change in the forces and
in the temperature may produce a chemical reaction or the motion of a chemical
constituent.
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The above finite unbalanced force may cause the system to pass through non-equi-
librium states. If it is desired, during a process, to describe every state of a system
by means of system-wide thermodynamic coordinate, then the process must not be
performed using a finite unbalanced force or torque. Under these circumstances, the
external forces acting on a system are varied only slightly so that the unbalanced
force is infinitesimal, and the process proceeds infinitesimally slowly. A process
performed in this mode is said to be quasi-static.

If all of the states through which the system passes can be described by means
of thermodynamic coordinates referring to the system as a whole, and an equation
of state for all these states is valid, the process is called quasi-static. A quasi-static
process is an idealization that is applicable to any thermodynamic system, including
electric and magnetic ones. The conditions for such a process can never be achieved
in the real world, but can often be approached with almost any degree of accuracy.

Classical thermodynamics does not quantify how infinitesimally slowly a pro-
cess must take place to be considered quasi-static. Molecular gas kinetics requires
only that the process proceed slowly compared to the speed of the molecules in the
gas. This allows system properties to be equilibrated across the system faster than
the system configuration changes. Examples of processes that seem rapid, but can
be treated as quasi-static are the expansion of combustion products in a gasoline
engine, or the expansion of the exhaust gases of a chemical rocket.

The reason for the introduction of a quasi-static process is to allow calculations
without addressing the complications of friction within the system. This approach
is no different from that of Newtonian’s mechanics with its mass-less springs and
ideal pulleys, or that of circuit theory with wires with no resistance, or batteries with
constant voltage. Later reversible processes will be considered that are synonymous
quasi-static processes because dissipative processes are ignored.

4.4 Quasi-Equilibrium Work Due to Moving Boundary

Consider the piston-cylinder arrangement with the included gas in it as shown in
Fig. 4.5. The expanding gas can be treated as instantaneously in equilibrium at a
given pressure p and volume V. Initially the system is characterized by the pressure
p; and volume 7. If we let the piston move out to the new equilibrium state at
position 2 that is specified by pressure p, and volume ¥, via a quasi-static process,
all intermediate points in the travel path of the piston can be characterized by the
pressure p and the volume V' at those points. This is required because the macro-
scopic properties p and V' are significant only for equilibrium states.

If A4 is the area of the piston and the piston moves an infinitesimal distance d/,
the force F acting on the pistonis ' = pA . The infinitesimal amount of work done
by the gas on the piston is:

SW = F-dl = pAdl (4.2)
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where dV = Adl =infinitesimal displacement volume. The small delta (5 ) sign in
SW represents an inexact differential. When the piston moves out from position 1
to position 2 with the volume changing from J; to ¥, , the amount of work /' done
by the system will be (Fig. 4.6);

6
Wia =], pdv (43)

In Fig. 3.6, the magnitude of the work done is given by the area under path 1-2.
Since p is at all times a thermodynamic coordinate, all the states passed through
by the system as the volume changes from 7, to ¥, must be equilibrium states, and

Py 1 Quasi-static

Fig. 4.6 Quasi-state pd} work
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the path 1-2 must be quasi-static. The piston moves infinitely slowly so that every
state passed through is an equilibrium state.

The integration J pdV  can be performed only on a quasi-state path.

The significant key in Eq. 4.3 is that we assume the pressure is known for each
position as the piston moves from volume ¥; to volume ¥, and typical pressure-
volume (P-V) diagrams are shown in Fig. 4.7 below. The work W,_, is the cross-
hatched area under the P-V Curve from the definition of the integration process. The
integration process highlights two very important features.

First, as work is performed from state 1 to state 2 by the moving piston of
Fig. 4.7, pressure and volume changes of a gas during expansion may be indicated
by the area under the curve of Fig. 4.8a. However, the expansion of the gas could be
represented by the area under curve of Fig. 4.8b. The area under curve of Fig. 4.8b
work is significantly larger than the work under the curve of Fig. 4.8a.

The end states 1 and 2 are identical, yet the areas under the P-V curves are very
different. In addition to being dependent on the end points, work depends on the
actual path that connects the two end points.

Thus, work is a path function, as contrasted with a point, or state, function, which
is dependent only on the end-points. The differential of a path function is called an

®' Pdv

Fig. 4.8 Work depends on the path between two states
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inexact differential, whereas the differential of a point or state, function is an exact
differential. An inexact differential will be denoted with the symbol & and the inte-
gral of 6W is W _, as shown in Eq. 4.2 in above, where the subscript emphasizes
that the work is associated with the path as the process passes from state 1 to state
2, however the subscript may be omitted when the work done is written simply as
W . In this case, we would never write %, or W, , since work is not associated with
a state but with a process. Work is not a property.
The integral of an exact differential, for example, dT , would be

T,
jTZ dT =T, - T, (4.4)
1

where 7] is the temperature at state 1 and 7, is the temperature at state 2.

The second observation to be made from Eq. 4.3 is that the pressure is assumed
to be constant throughout the volume at each intermediate position. The system
passes through each equilibrium state shown in the P-V diagrams of Fig. 4.8a and
b. An equilibrium state can usually be assumed even though the variables may ap-
pear to be changing quite rapidly. Combustion is a very rapid process that cannot be
modeled as a quasi-static process. The other processes in the internal combustion
engine (expansion, exhaust, intake, and compression) can be assumed to be quasi-
static processes, as they occur at a slow rate, thermodynamically.

As a final comment regarding work we may now discuss what is meant by a
simple system. For a system free of surface, magnetic, and electrical effects, the
only work mode is that due to pressure acting on a moving boundary. Such simple
systems require only two independent variables to establish an equilibrium state of
the system composed of a homogeneous substance. If other work modes were pres-
ent, such as an electric field, additional independent variables would be necessary,
such as the electric field intensity.

On the P-V Diagram depicted in Fig. 4.9, an initial equilibrium state character-
ized by the coordinates 7}, V;, and T}, as well as a final equilibrium state coordi-
nates by P, V', and T; of a hydrostatic system are represented by two the points
i and f, respectively.

There are many ways in which the system may expand from i to f . For ex-
ample, using Fig. 4.9 the pressure may be kept constant from i to a (isobaric
process) and then the volume kept constant from a to f (isochoric processes),
in which case the work done is equal to the area under the line ia, W =2£),, and
positive, because work is being done by the system. Another possibility is the path
ibf", in which case the work is the area under the line bf’, or £V, . The straight line

from i to f represents another path, where the work is % BV, - The most work is

done by system traversing path igf, which does more work than traversing path if,
which does more work than traversing path ihf. We can see, that the work done by
a system depends not only on the initial and final states but also on the intermediate
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Fig. 4.9 Work depends on the path of integration from initial equilibrium state ; to the final
equilibrium state f

states, namely, on the path of integration. This basically another way of saying that,
for a quasi-static process, the expression

w=[" pav 4.5)
Vi

cannot be integrated until P is specified as a function of J/ using an appropriate
equation of state.

The expression PdV is an infinitesimal amount of work and is represented by
the symbol of §W . There is, however, an important distinction between an infini-
tesimal amount of work and the other infinitesimals, such as dP or dV . An infini-
tesimal amount of hydrostatic work is an inexact differential, that is, SW is not the
differential of an actual function of the thermodynamic coordinates. To indicate that
an infinitesimal amount of work is not a mathematical differential of a function W
and to emphasize at all times that it is an inexact differential, it gets denoted by 61 .

4.5 Definition of a Cycle in Thermodynamic

Any process or series of processes whose end states are identical is termed a cycle.
The processes through which the system has passed can be shown on a state dia-
gram, but a complete description of the path also requires a statement of the heat
and work crossing the boundary of the system. Consider Fig. 4.10. It shows such a
cycle in which a system starts at state ‘1’ and changes pressure and volume through
a path 1-2-3 to return to its initial state ‘1°.
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Fig. 4.10 Cycle of p (Pressure)
operations

W (Violuma)

With this definition of a cycle, consider the following p-V diagrams. For curve
I'in Fig. 4.11a an expansion, the volume increases, ) is positive, and the integral
Eq. 4.3 is positive. For curve 11 in Fig. 4.11b, where the gas is being compressed,
the volume decreases, so the same integral is negative. According to the sign con-
vention for work, work is done by the system in the process represented by curve I,
and work is done on the system in the process represented by curve II. In Fig. 4.11c,
curve [ and II are drawn together so that they constitute two processes that bring the
gas back to its initial state. The net work for the cycle is positive as represented by
the area enclosed between the two curves.

Such a series of two or more processes, represented by a closed figure is called
a cycle. The area within the closed figure in Fig. 4.11c is obviously the difference
between the areas curves I and II and, therefore, represents the net work done in
the cycle. Notice that the cycle is traversed in a direction such that the net work is
positive, and the net work is done by the system. If the direction of the cycle were
reversed, then the net work would be negative as the net work is done on the system

[2].

Fig. 4.11 P-V diagram of a gas with shaded area to show work done by the system or work done
on the system. a curve I, expansion; b curve II, compression; ¢ curves I and II together constitute
acycle
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4.6 Path Functions and Point or State Functions

Further interpretation of Eq. 4.3 and with reference to Fig. 4.12, it is possible to
take a system from state 1 to state 2 along many quasi-static paths as mentioned in
above, such as 4, B or C. Since the area under each curve represents the work
for each process, the amount of work involved in each case is not a function of the
states of the process, and it depends on the path the system follows in going from
state 1 to state 2. For this reason, work is called a path function, and oW is an in-
exact or imperfect differential.

Thermodynamic properties are point or state functions, since for a given state;
there is a definite value for each property. The change in a thermodynamic property
of a system when changing states is independent of the path the system follows dur-
ing the change of state, and depends only on the initial and final states of the system.
The differentials of point, or state, functions are exact or perfect differentials, and
the integration is simply

[Fav=v,-7, (4.6)
1

The change in volume thus depends only the end states of the system irrespective of
the path the system of follows. On the other hand, work done in a quasi-static pro-
cess between two given states depends on the path followed and will be expressed
as;

2
[om =mw,—-m, (4.7a)
Or a more simple form will be written as

ngw W, = W, (4.7b)

Path Functions and Point or State Functions can be expressed as:

Fig. 4.12 Work-a path
function
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* Path functions: Magnitudes depend on the path followed during a process as
well as the end states. Work (), heat ( Q) are considered as path functions.
Work and heat are examples of path functions. Heat and work are inexact dif-
ferentials. Their change cannot be written as difference between their end states.
Thus;

In the case of Work,

2 .
L OW =W, —W, abbreviated as W,_, or W, (4.8a)
In case of Heat we will have;
2
L 50#Q,-Q, abbreviated as O, , or,0, (4.8b)

* Point or State Functions: Depend on the state only, and not on how a system
reaches that state. Properties are point functions, (i.e. pressure, volume, tempera-
ture, etc) and they are exact differentials. For example Temperature and Volume
can be expressed as,

J';z dr =T, -T, (4.92)
i

J‘:Z v =v, -V, (4.9b)
f

In addition, to distinguish an inexact differential S/ from an exact differential dV’
or dP as we explained in Sect. 4.4 of this chapter the 6 symbol is used.
From Eq. 4.2b, we can write the following expression.

1
dV =—5W (4.10)
P

Here, 1/p is called the integration factor. Therefore, an inexact differential 6W
when multiplied by an integrating factor 1/p becomes an exact differential dV" .

For a cyclic process, the initial and final states of the system are the same, and
hence, the change in any property is zero, i.e.

$dv =0¢de=0¢dr=0 (4.11)

where the symbol ¢ denotes the cyclic integral around a closed path. Therefore, the
cyclic integral of a property is always zero.
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4.7 Pdv Work for Quasi-Static Process

It must be emphasized that the area on a P-V diagram represents the work for a qua-
si-static process only. For non-equilibrium processes the work cannot be calculated
using _[Pd V. Either p must be given as a function of V or it must be determined by
some other means. Consider the following examples in which integration of | PdV
can be carried out, because the path of integration is provided by an equation of
state or a state function.

1. Constant pressure expansion presented by Fig. 3.13 process 1-2, which is depicts
an isobaric process (Fig. 4.13).

W, = jVVlz PV = P(V, - ;) (4.12)

2. Constant volume process represented in Fig. 4.14 as the process 1-2, depicting
an isochoric process.

Wy =], Pav =0 (4.13)
1
Fig. 4.13 Constant pressure
process
1 2
Q /77
# 7 A
"/ Wi-z// g
/ /
v, Vs
e = V
Fig. 4.14 Constant volume
process pyb——— 1
(=1
Paf————-2
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Fig. 4.15 Process in which
PV is constant

4  Work and Heat

_..V

3. Aprocess in which PV = Constant as shown in Fig. 4.15.

W_, = IVZ PdV,PV =RV, =C ,where C is a constant presentation.
n

Substitution gives;

s
Wia=RK[ S-=RKin2

P
=RVt
P,

(")

P:—

V

ndv
" 1
(4.14)

2

4. A process in which PV" =C as shown in Fig. 4.16, where both n and C are

constant.

Fig. 4.16 Process in which
PV" is constant
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PV" = PlVln = Pszn =C

Llds
1744

P=

v V. PVn -n+l |2
Wl,2=J‘2PdV= 2 ll'dV=(PlV1") V
n h " —n+

n

B g B V"= RI <1
l-n\? ! 1-n (4.15)
n-1/n
_RG-RV, _RW|, (B
n—1 n—1 P

For each of these processes the inexact differential can be converted to an exact
differential so that the integration can easily be performed. The states that the
quasi-static process passes through are defined by the function that performs this
conversion

4.8 Non-equilibrium Work

In order to have a concept for a non-equilibrium work process, we consider a system
to be formed by the gas in Fig. 4.17. In part (a) work is crossing the boundary of
the system by means of the rotating shaft and the volume doesn’t change. We cal-
culate the work input, neglecting any friction in the pulley system, by multiplying
the distance the weight drops by its weight. This action does not mean the work is
equal to W = IPdV, which is zero. The paddle wheel provides a non-equilibrium
work mode.

Suppose the membrane in Fig. 4.17b ruptures, allowing the gas to be expanded
and fill the evacuated volume. There is no resistance to the expansion of the gas at

APe

8 i Gas Vacuum

Gas |

Weight
a b

Fig. 4.17 A system with rotating shaft paddle and weight attached to a pulley
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Fig. 4.18 Illustration of

example 4.1 I W I

100 kg R e g

the moving boundary as the gas fills the volume; hence, there is no work done. Yet
there is a change in volume by the gas’s expansion to fill the entire container. The
sudden expansion is a non-equilibrium process, and again the W = IPdV relation-
ship cannot be used to calculate the work.

Example 4.1 A 100-kg mass drops 3 m, resulting in an increased volume in the
cylinder of 0.002 of Fig. 4.18. The piston maintains a constant gage pressure of
200 kPa. Determine the net work done by the gas on the surroundings.

Solution Assessing the problem and considering Fig. 3.18, we see that, the paddle
wheel does work on the system, the gas, due to the 100 kg mass dropping 3 m, con-
sequently the work done is negative.

W = —(F)(d) = —(mg)(d) = —(100)(9.8)(3) = —2940 Joules

The work done by the system on this frictionless piston is positive since the system
is doing the work. It is

W = (PA)(h) = (P)(Ah) = PV =(200000)(0.002) = 400 Joules
Therefore, the net work done is;

w

net

=-2940+ 400 = -2540 Joules

4.9 Other Work Modes

There are many other forms of work than ¥ = | PdV or simple displacement work

on a straight line. Some additional types of work are,

a. Electrical Work: When a current flows through a resistor that is shown in
Fig. 4.19, taken as a system, there is work transfer into the system. This is
because the current can drive a motor, the motor can drive a pulley and the pul-
ley can raise a weight.
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Fig. 4.19 Electrical work
illustration WWk dnd H eat T faﬂ#ﬂ

The current flow is / = fl—c ,and C is the charge in coulombs and 7 is the time
T

in seconds. Thus dC is the charge crossing a boundary during time dt. If E is
the voltage potential, the work is given by:

OW =E.dC
= Eldt
Therefore
2

W= L Eldc (4.16)

The electrical power will be;
= tim O~ gy (4.17)
dr—o dtr

Work is transferred at this rate.

b. Shaft Work: When a shaft, taken as the system according to Fig. 4.10, is rotated
by a motor, there is work transfer into the system. This is because the shaft can
rotate a pulley which can raise a weight. If 7' is the torque applied to the shaft
and J0 is the angular displacement of the shaft, the shaft work is then given by:

2
W= [ Tdo (4.18)

and the shaft power is
. 2_do
W=|T—=Tw
[ - (4.19)

where o is the angular velocity and 7' is applied torque (Fig. 4.20).

c. Paddle-Wheel Work or Stirring Work: As the weight is lowered, and the pad-
dle wheel turns as shown in Fig. 4.21, there is work transfer into the fluid system
which gets stirred. Since the volume of the system remains constant, IPdV =0.
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Fig. 4.20 Shaft work r—q
illustration

|
1

Yeys —
Aepunoq weaisAg ——

If m is the mass of the weight lowered through a distance dz and T is the torque
transmitted by the shaft in rotating through an angle d6, the differential work
transfer to the fluid is given by;

dwW =mgdz = Td6
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Fig. 4.21 Paddle-wheel work illustration

and the total work transfer is presented by.

W= jf mgds = jf Tdo

71
777~
f; ’.ﬁ. 'f.‘l ‘:
l | { r |
LUy
Weight g
(4.20)

d. Flow Work: The flow work, significant only in a flow process or an open sys-
tem, represents the energy transferred across the system boundary because of the
energy imparted to the fluid by a pump, blower or compressor to make the fluid
flow across the control volume. Flow work is analogous to displacement work.
Let P be the fluid pressure in the plane of the imaginary piston, which acts in a
direction normal to it as it can be seen in Fig. 4.22. The work done on this imagi-
nary piston by the external pressure as the piston moves forward is given by:

Fig. 4.22 Flow work
illustration

AN

i

S

(4.21)

P, V1. A'l

@ P2, Vzqu

= m




4  Work and Heat

where dV is the volume of fluid element about to enter the system.
OWyow = PLAM (4.22)

where dV =vdm . Therefore, flow work at inlet Fig 4.22 is given by:
(6Wﬂow )in = p]U]dml (423)

Equation 4.23 can also be derived in a slightly different manner. If the normal
pressure P is exerted against the area 4, giving a total force (P14) against
the piston, in time dr , this force moves a distance a distance ¥ dt , where V] is
the velocity of flow (piston). The work in time dr is P14V1dT | or the work per
unit time is p, 4,¥; . Since the flow rate

AV _dm
W=—=— (4.24)
v dt

The work done in time dt becomes;

(6Wﬂow )in = p]U]dml (425)

Similarly, flow work of the fluid element leaving the system is;

(5Wﬂow )out = p202dm2 (426)

The flow work per unit mass is thus

Whow = PV 4.27)

It is the displacement work done by mass moving across the system boundary.

. Work Done in Stretching a Wire: Let us consider a wire as the system. If the
length of the wire is changed from L to L+dL by the tension f;. the infinitesi-
mal amount of work done is equal to,

SW = frdL

The minus sign is used because a positive value of JL means an expansion of
the wire, for which work must be done on the wire, i.e., negative work. For a
finite change of length,

W=-[ frdL (4.28)

If the stretching is kept within the elastic limit, where E is the modulus of elas-
ticity, s is the stress, ¢ is the strain, and A is the cross-sectional area, then;
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r =sA=FEecA since 5 =

ds:d—L
L

SW =—frdL = —Ec ALde

Therefore;

W=-deL| eds = —%(53 -&) (4.29)

f. Work Done in Changing the Area of a Surface Film: A film on the surface of
a liquid has a surface tension, which is a property of the liquid and the surround-
ings. The surface tension acts to make the surface area of the liquid a minimum.
It has units of force per unit length. The work done on a homogeneous liquid film
in changing its surface area by an infinitesimal amount d4 is;

oW =—ocdA

where o is the surface tension (N/m). Therefore.

W= oat (430)

g. Magnetization of a Paramagnetic Solid: The work done per unit volume on
a magnetic material through which the magnetic and magnetization fields are
uniform is;

OW =—HdI
and

I
1~ W= .
W, —W- B Hdl (4.31)

where H is the field strength, and / is the component of the magnetization field
in the direction of the field. The minus sign provides that an increase in magne-
tization (positive d/ ) involves negative work.

The following equations summarize the different forms of work transfer:
Displacement Work:

Compressible Fluid W = Lz pdV
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Electrical Work W' = Lz EdC = Lz Eldt
Shaft Work W = .[12 7d0

Surface Film W = Lz odA

Stretched Wire W = Lz JrdL

2
Magnetized Solid /' = —L Hdl

It may be noted in the above expressions that the work is equal to the integral of the
product of an intensive property and the change in its related extensive property.
These expressions are valid only for quasi-static processes.

There are some other forms of work, which can be identified in processes that are
not quasi-static, for example, the work done by shearing forces in a process involv-
ing friction in a viscous fluid.

Example 4.2 One kg of steam with a quality of 20% is heated at a constant pres-
sure of 200 kPa until the temperature reaches 700 K. Calculate the work done by
the steam.

Solution The work is given by;
W = [PdV = P(Vy ~V}) = mP(v, —vy)
To evaluate the work we must determine v, and v, . Using Steam Tables, we find

vy +x(L, —U,)=0.001061+(0.2)(0.8857-0.001061) = 0. 1780m’* /kg
From the superheat table we locate state 2 at 7, = 400 °C and P, =0.2 MPa as:

v, =1.61172m’ /kg
The work is then

W = (1)(200)(1.61172 —0.1780) = 286.7kJ

Note: With the pressure having units of kPa, the result is in kJ

Example 4.3 A 110-mm-diameter cylinder contains 100 cm? of water at 330 K. A
50-kg piston sits on top of the water. If heat is added until the temperature is 500 K,
find the work done.

Solution The pressure in the cylinder is due to the weight of the piston and remains
constant. Assuming a frictionless seal (this is always done unless information is
given to the contrary), a force balance provides

7(0.110)* 7(0.110)*
4 4

mg = pA—p,,. A =(50)(9.81)+101325.0

. p=152938.6Pa
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The atmospheric pressure is included so that absolute pressure results. The volume
at the initial state 1 is given as

V,=100x10° =10"* m’

Using v, at 330 K, the mass is calculated to be

-4
N 10 09gsakg
v, 0.001015

At state 2 the temperature is 500 K and the pressure is 0.1516 MPa. Interpolating to

find the specific volume gives,

(1.61172-3.18482)
(0.2-0.101325)

v, =3.18482+ 0.152938.6—0.101325) = 2.362m°/k;
2 ( ) g

V, = mv, =(0.09852)(2.362) = 0.2327m’

Finally, the work is calculated to be

W =PV, —V)=152938.6*(0.2327-0.0001) = 35573.5J or 35.6kJ

Example 4.4 Energy is added to a piston-cylinder arrangement, and the piston is
withdrawn in such a way that the quantity P}/ remains constant. The initial pres-
sure and volume are 200 kPa and 2 m?, respectively. If the final pressure is 100 kPa,
calculate the work done by the gas on the piston.

Solution The work is found from Eq. 3.3 to be
e e
Mz = .[2 Py = .[2 ;dV

Where we have used PV = C . To calculate the work we must find C and 7, . The
constant C 1is found from

C = PV, =(200)(2) = 400k]

To find ¥, we use BV, = PV,, which is, of course, the equation that would result
from an isothermal process (constant temperature) involving an ideal gas. This can
be written as

BV (200)(2)
P, 100

=4m’

Finally,

Moo=, ﬂdV 4001n— =277K]
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This is positive, since work is done during the expansion process by the system (the
gas contained in the cylinder).

Example 4.5 Determine the horsepower required to overcome the wind drag on a

modern car traveling 90 km/h if the drag coefficient Cj, .is 0.2. The drag force is

given by Fj, = %pVZACD, where A is the projected area of the car and V' is the
velocity. The density P of air is 1.23 kg/m?. Use 4 =2.3 m?.

Solution To find the drag force on a car we must express the velocity in m/s:
V' =(90)(1000/3600)=25 m/s. The drag force is then
The drag force is then

F, = %pvz AC, = [%j(l 23)(25%)(2.3)(0.2) =177 N

To move this drag force at 25 m/s the engine must do work at the rate
W =F,V =177)(25)=4425 W
The horsepower is then

H, = AW 5 o3 hp
746 W/hp

Example 4.6 The drive shaft in an automobile delivers 100 N-m of torque as it
rotates at 3000 rpm. Calculate the horsepower delivered.

Solution The power is found by using W =T . This requires @ to be expressed
in rad/s.

o= (3000)(271)(%) =314.2 rad/s

Hence Ji7 = (100)(314.2) = 31420 Watt or H, = % =42.1hp

Example 4.7 The air in a circular cylinder of Fig. 4.23 is heated until the spring is
compressed 50 mm. Find the work done by the air on the frictionless piston. The
spring is initially unstretched, as shown in the figure.

Solution The pressure in the cylinder is initially found from a force balance:

2
= (101325)@450)(9.81) - p, =163777Pa

R4 =F,

atm

2
A+W P ”(041)
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Fig. 4.23 For example 4.7 %

K = 2500 N/m

50 kg

|..7 10 cm ———I

To raise the piston a distance of 50 mm, without the spring, the pressure would be
constant required would be force times distance:

2
W=PAxd= (163777)@(0.05) = 64.32 Joules

For the additional work performed to compress the spring, with spring constant
K and the compression from a length x, to x, the force doing the work given by
F = Kx .This becomes,

W =" Fdx = [ Kxdx = %K(xg —X12) = [%J (2500)(0.05)* = 3.125 Joules
X X

The total work is then, found by summing the above two values:

Wyot = 64.32+3.125 = 67.45 Joules

4.10 Reversible and Irreversible Process

Reversible Process: A reversible process (also sometimes called a quasi-static pro-
cess) is one that can be stopped at any stage and reversed so that the system and
surroundings are exactly restored to their initial stage. See Fig. 4.24

This Process has the following characteristics:

1. It must pass through the same states on the reversed path as were initially visited
on the forward path.

2. This process when undone will leave no history of events in the surroundings.

3. It must pass through a continuous series of equilibrium states.
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Fig. 4.24 Reversible process
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No real process is truly reversible but some processes may approach reversibility,

to a close approximation.

Example Some examples of nearly reversible processes are:

AN N AW =

. Electrolysis

. Frictionless relative motion

. Expansion and compression of a spring
. Frictionless adiabatic expansion or compression of a fluid
. Polytropic expansion or compression of a fluid
. Isothermal expansion or compression of a fluid

Irreversible Process An irreversible process is one in which there are frictions-
like losses, usually involving heat transfer, such that it cannot be reversed. See

Fig. 4.25.

An irreversible process is usually represented by a dotted (or discontinuous)
line joining the end states to indicate that the intermediate states are indeterminate.

Irreversibilities are of two types:

Fig. 4.25 Irreversible
process

Pa

\ Nonequilibrium
states
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1. External Irreversibilities: These are associated with dissipating effects outside
the working fluids. An example is mechanical friction occurring during due to
some external movement.

2. Internal Irreversibilities: These are associated with dissipating effects within
the working fluid. An example is unrestricted expansion of a gas.

Example: Some examples of irreversible processes are:

. Relative motion with friction

. Combustion

. Diffusion

. Free expansion

. Throttling

. Electricity flow through a resistance
. Heat Transfer

. Plastic deformation

0NN bW

4.11 Definition of Energy (Thermal Energy or Internal
Energy)

Energy is generally defined as the potential to do work. Mechanical energy is classi-
cally divided into kinetic and potential energy. Kinetic mechanical energy is related
to the velocity that a mass possesses. Potential mechanical energy is related to the
distance a mass is above some neutral reference plane. Tension in a spring or surface
film tension are other forms of potential mechanical energy. There are many other
forms of energy including electrical, chemical, and nuclear. Thermodynamics deals
with another type of energy called “thermal energy” or “internal energy”. If energy
were not such a broad term, it might simply be possible to call the internal energy
stored in a fluid simply “energy”. But to distinguish the thermal energy stored in a
fluid as a result of the temperature of the fluid, from other forms of energy the nor-
mal thermodynamic term is Internal Energy. Internal Energy, or thermal energy,
is generally represented by a capital U (sometimes and E). Normally the two ways
that the Internal Energy of a system is changed is by Work or Heat Transfer. Both
Work and Heat Transfer affect the Internal Energy of a system. When a system does
Work on its environment, it gives up Internal Energy. When Heat is transferred to a
system, its Internal Energy increases. Heat Transfer, like Work, is a path dependent
process. Both Heat transfer and Work represent energy in transition. These are the
only forms in which energy can cross the boundaries of a system. Neither heat nor
work can exist as stored energy.
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4.12 Definition of Heat

Detailed analysis of heat and heat transfer will be addressed in Chapter twelve of
the text, but it will be discussed conceptually at this time to relate it to changes in
Internal Energy of systems. In the preceding section, several work modes by which
energy is transferred macroscopically to or from a system were addressed. Energy
can also be transferred microscopically to or from a system by means of interactions
between the molecules that form the surface of the system and those that form the
surface of the surroundings. If the molecules of the system boundary are more ac-
tive than those of the surrounding boundary, they will transfer energy from the sys-
tem to the surroundings, with the faster molecules transferring energy to the slower
molecules. On this microscopic scale the energy is transferred by a work mode:
collisions between particles. A force occurs over an extremely short time span, with
work transferring energy from the faster molecules to the slower ones. The problem
is that this microscopic transfer of energy is not observable macroscopically as any
of the work modes addressed so far and a means must be developed to account for it.

System temperature is a property, which increases with increased molecular ac-
tivity. Thus, it is not surprising that microscopic energy transfer can be related to
the macroscopic property temperature. This macroscopic transfer of energy that we
cannot account for by any of the classic macroscopic work modes will be called
heat. Heat is energy transferred across the boundary of a system due to a difference
in temperature between the system and its surroundings. A system does not contain
heat, it contains energy, and heat is energy in transit.

Heat, like work, is something that crosses a boundary. Because a system does
not contain heat, heat is not a property. Thus, its differential is inexact and is written
as 00 where Q is the heat transfer. For a particular process between state 1 and
state 2 the heat transfer could be written as Q,_, (or ; 0, ), but it will generally be
denoted by Q. The rate of heat transfer will be denoted by O .

By convention, if heat is transferred to a system it is considered positive. If it
is transferred from a system, it is negative. This is opposite from the convention
chosen for work; if a system performs work on the surroundings it is positive. Posi-
tive heat transfer adds energy to a system, whereas positive work subtracts energy
from a system. A process in which there is zero heat transfer is called an adiabatic
process. Such a process is approximated experimentally by insulating the system so
that negligible heat is transferred.

Heat denoted by the symbol of Q, and it may be defined in an analogous way
to work as follows:

“Heat is something which appears at the boundary when a system changes its
state due to a difference in temperature between the system and its surroundings”.

Heat, like work, is a transient quantity, which only appears at the boundary while
a change is taking place within the system.

It is apparent that neither S or §Q are exact differentials and therefore any
integration of the elemental quantities of work or heat which appear during a change
from state 1 to state 2 must be written as;

2
[Tom =m =, =, = W, or simply W (4.32a)
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and
.[125Q =0-0,=0,=0 (4.32b)

Sign Convention If the heat flows into a system from the surroundings, the quan-
tity is said to be positive and, conversely, if heat flows from the system to the sur-
roundings it is said to be negative. In other words, we can say:

* Heat received by the system= +Q
* Heat rejected or given up by the system= —Q

4.13 Comparison of Work and Heat

There certain Similarities and Dissimilarities between Work and Heat,
1. Similarities:

1. Both are path functions and inexact differentials.

2. Both are boundary phenomenon i.e., both are recognized at the boundaries of
the system as they cross them.

3. Both are associated with a process, not a state. Unlike properties, work or heat
has no meaning at a state.

4. Systems possess energy, but not work.

2. Dissimilarities:

1. In heat transfer temperature difference is required.

2. In a stable system there cannot be work transfer, however, there is no restric-
tion for the transfer of heat.

3. The sole effect external to the system from work could be reduced to rise of a
weight but in the case of a heat transfer other effects are also observed.

In case of heat and heat transfer process, it is sometimes convenient to refer to heat
transfer per unit mass. Heat transfer per unit mass will be designated by letter ¢ and
defined by the following expression as;

g= (4.33)

3O

There are three modes of heat transfer,

1. Conduction
2. Convection
3. Radiation

Briefly, each of these modes can be explained as follows,
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1. Conduction

This results from the collision of neighboring molecules in which the kinetic energy
of vibration of one molecule is transferred to its nearest neighbor. Thermal energy is
thus spread by conduction even if the molecules themselves do not move their loca-
tion appreciably. The mathematical expression of this process is given by Fourier s
Law of heat transfer, which for a one-dimensional plane wall takes the form

. AT
— k42D 4.34
0=-k4 ; (4.34)

where k is the thermal conductivity with units of W/m.K (Btu/sec-ft-°R), AL is the
thickness of the wall, AT is the temperature difference, and A4 is the wall area.
Often, the heat transfer is related to the common R -factor, resistivity, given by
R,.. =AL/k . Note that heat flows in the opposite direction of the temperature
gradient.

2. Convection

In addition to conduction, when a vibrating molecule moves from one region to
another, it takes its thermal energy with it. This type of movement of thermal energy
is called convection. Convection is expressed in terms of the temperature difference
between the bulk temperature of a fluid 7., and the temperature of the surface 7.
Newton's law of cooling expresses this as;

0=hAT,-T,) (4.35)

where 5, is the convective heat transfer coefficient, with units of W/m? K (Btu/sec-
ft 'R), and depends on the properties of the fluid including its velocity and the wall
geometry. Free convection occurs due to the temperature difference only, whereas
forced convection results from the fluid being forced, as with a fan. Convection is
once again in the direction opposite the temperature difference. Heat must move
from high to low temperature.

3. Radiation

Radiation is energy that is transmitted by electromagnetic radiation. All bodies emit
electromagnetic radiation as a result of electron transitions within their atoms. The
electrons are moved to excited states via collisions with other atoms. When they re-
turn to their normal state, they emit radiation. At absolute zero, temperature there is
no atomic motion, so there is no exciting of the electrons and bodies do not radiate.
Radiation heat transfer is calculated using the Stefan-Boltzmann law and accounts
for the energy emitted and the energy absorbed from the surroundings.

Q = SO-A(T4 7?5“1‘!}’}”) (436)
where o is the Stefan-Boltzmann constant (o =5.67x1"° W/m2.K*), ¢ is the
emissivity which is a number within the interval of 0 <¢ <1 where ¢ =1 is for
a blackbody, a body that emits the maximum amount of radiation, and 7},,, is the
uniform temperature of the surroundings. The temperatures must be absolute tem-
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peratures and the area A must be the area over which the systems in question face
each other.

Example: 4.8 A paddle wheel adds work to a rigid container by dropping a 50 kg
weight a distance of 2 m from a pulley. How much heat must be transferred to result
in an equivalent effect?

Solution For this non-equilibrium process the work is given by;
W =(mg)(d) = (50)(9.8)(2) =980 Joules

The heat O that must be transferred equals the work, 980 J.

Example: 4.9 A 10-m long by 3-m high wall is composed of an insulation layer
with R=2 m? K/W and a wood layer with R=0.5 m? K/W. Estimate the heat transfer
rate through the wall if the temperature difference is 40 °C.

Solution The total resistance to heat flow through the wall is

RTotal =R +RW()od =2405=2.5 mzK/W

Insulation
The heat transfer rate is then;

o=_A AT:10X53><40:480W

Total

Note that AT measured in °C is the same as AT measured in Kelvin

Example: 4.10 The heat transfer from a 2-m-diameter sphere to a 25 °C air stream
over a time interval of 1 h is 3000 kJ. Estimate the surface temperature of the sphere
if the heat transfer coefficient is 10 W/m?K. Note that the surface area of a sphere
is 472

Solution The heat transfer is
Q=h AT, -T,) or 3x10° =10 x 47 x1*(T, —25)x 3600
The surface temperature is calculated to be
T, =31.6°C

Example: 4.11 Estimate the rate of heat transfer from 200 °C sphere which has an
emissivity of 0.8 if it is suspended in a cold room maintained at —20 °C. The sphere
has a diameter of 20 cm.

Solution The rate of heat transfer is given by;

Surr

O=e04(T* T}, ) =08x 567 x 10 x 47 x 0.1 (473’ ~253") = 262/s
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Chapter 5
First Law of Thermodynamics

The first law of thermodynamics states that the total energy of a system remains
constant, even if it is converted from one form to another.

5.1 Introduction

The first law of thermodynamics is generally thought to be the least demanding
to grasp, for it is an extension of the law of conservation of energy, meaning that
energy can be neither created nor destroyed. However much energy there was at the
start of the universe, there will be that amount at the end. However, thermodynam-
ics is a subtle subject, and the first law is much more interesting than this remark
might suggest. Moreover, like the zeroth law, which provided an impetus for the in-
troduction of the property ‘temperature’ and its clarification, the first law motivates
the introduction and helps to clarify the meaning of the elusive concept of ‘energy’.

Energy balance, based on the First Law of Thermodynamics, is developed
to better understand any process, to facilitate design and control, to point at the
needs for process improvement, and to enable eventual optimization. The degree
of perfection in the energy utilization of the process, or its particular parts, allows
comparison with the degree of perfection, and the related process parameters, to
those in other similar processes. Comparison with the currently achievable values
in the most efficient systems is especially important. Priorities for the required
optimization attempts for a system, or its components, can be established. Such
priorities can be carried out based either on the excessive energy consumption, or
on the particularly low degree of perfection.

However, the energy approach has some deficiencies. Generally, energy exchange
is not sensitive to the assumed direction of the process, e.g., energy analysis allows
heat to be transferred spontaneously in the direction of the increasing temperature.
Energy also does not distinguish its quality, e.g., 1 Watt of heat equals 1 Watt of
work or electricity.

The first law of thermodynamics states that the total energy of a system remains
constant, even if it is converted from one form to another. For example, kinetic
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energy—the energy that an object possesses when it moves—is converted to heat
energy when a driver presses the brakes on the car to slow it down. The first law
of thermodynamics relates the various forms of kinetic and potential energy in a
system to the work, which a system can perform, and to the transfer of heat. This
law is sometimes taken as the definition of internal energy, and also introduces
an additional state variable, enthalpy. The first law of thermodynamics allows for
many possible states of a system to exist. However, experience indicates that only
certain states occur. This eventually leads to the second law of thermodynamics and
the definition of another state variable called entropy.

Work is motion against an opposing force. Raising a weight against the opposing
force of gravity requires work. The magnitude of the work depends on the mass of
the object, the strength of the gravitational pull on it, and the height through which
it is raised. Work is the primary foundation of thermodynamics and in particular of
the first law. Any system has the capacity to do work. For instance, a compressed or
extended spring can do work such as that can be used to bring about the raising of a
weight. An electric battery has the capacity to do work, for it can be connected to an
electric motor, which in turn can be used to raise a weight. It is not an entirely obvi-
ous point, but when an electric current passes through a heater, it is doing work on
the heater, for the same current could be used to raise a weight by passing it through
an electric motor rather than the heater. Then why a heater is called a ‘heater’ and
not a ‘worker’ is obvious from the concept of heat that was defined in Chap. 4.

The first law of thermodynamics is commonly called the conservation of energy.
In elementary physics courses, the study of the conservation of energy emphasizes
changes in mechanical kinetic and potential energy and their relationship to work.
A more general form of conservation of energy includes the effects of heat transfer
and internal energy changes. This more general form is usually called the first law
of thermodynamics. Other forms of energy may also be included, such as electro-
static, magnetic, strain, and surface energy.

To understand and have better concept of work from thermodynamics point of
view, a term is needed to denote the capacity of a system to do work. That term is
energy. A fully stretched spring has a greater capacity to do work than the same
spring only slightly stretched. A liter of hot water has a greater energy than a liter
of cold water. Therefore concept of energy is just a measure of the capacity of a
system to do work.

The First Law of Thermodynamics states that energy can neither be created
nor destroyed only altered in form. For any system, energy transfer is associated
with mass crossing the control boundary, external work, or heat transfer across the
boundary. These produce a change of stored energy within the control volume. The
mass flow of a fluid is associated with the kinetic, potential, internal, and “flow”
energies that affect the overall energy balance of the system. The exchanges of
external work and heat complete the energy balance. That is why The First law of
Thermodynamics is referred to as the Conservation of Energy principle, meaning
that energy can neither be created nor destroyed, but rather transformed into vari-
ous forms as the fluid within the control volume changes. A system is a region in



5.1 Introduction 87

space (control volume) through which a working fluid may or may not pass. The
various energies associated with the fluid are then observed as they cross the bound-
aries of the system and the balance is made. As discussed in Chap. 1, a system may
be one of three types:

1. Isolated System
2. Closed System
3. Open System

The open system, the most general of the three, allows mass, heat, and external
work to cross the control boundary. The balance is expressed in work, as all ener-
gies into the system are equal to all energies leaving the system plus the change in
storage of energies within the system.

The system might be a mechanical device, a biological organism, or a speci-
fied quantity of material such as the refrigerant in an air conditioner, or the steam
expanding in a turbine. A thermodynamic system is a system that can interact (and
exchange energy) with its surroundings, or environment, in at least two ways, one
of which is heat transfer. A familiar example is a quantity of popcorn kernels in a
pot with a lid. When the pot is placed on a stove, energy is added to the popcorn by
conduction of heat; as the popcorn pops and expands, it does work as it exerts an
upward force on the lid and displaces it (Fig. 5.1).

The state of the popcorn changes in this process, since the volume, temperature,
and pressure of the popcorn all change as it pops. A process such as this one, in
which there are changes in the state of a thermodynamic system, is called a thermo-
dynamic process. With thermodynamic systems, it is essential to define clearly at
the start exactly what is and is not included in the system. Only then can the energy
transfers be unambiguously described. For instance, in the popcorn example, the
system was defined to include the popcorn, but not the pot, lid, or stove.

Fig. 5.1 The popcorn

in the pot is a thermo-
dynamic system. In the
thermodynamic process
shown here, heat is added to
the system, and the system
does work on its surroun-
dings to lift the lid of the pot
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5.2 System and Surroundings

The First Law of Thermodynamics tells us that energy is neither created nor
destroyed, thus the energy of the universe is a constant. However, energy can
certainly be transferred from one part of the universe to another. To work out
thermodynamic problems we will need to isolate a certain portion of the universe
(the system) from the remainder of the universe (the surroundings).

For example, consider the pendulum example given in the last section. In real life,
there is friction and the pendulum will gradually slow down until it comes to rest.
We can define the pendulum as the system and everything else as the surroundings.
Due to friction there is a small but steady transfer of heat energy from the system
(pendulum) to the surroundings (the air and the bearing upon which the pendulum
swings). Due to the first law of thermodynamics the energy of the system must
decrease to compensate for the energy lost as heat until the pendulum comes to rest.
[Remember though the total energy of the universe remains constant as required by
the First Law.]

When it comes time to work homework, quiz and exam problems not to mention
to design a power plant the first Law of Thermodynamics will be much more useful
if we can express it as an equation.

AE=Q+ W (First Law of Thermodynamicsa chemical reaction the energy )

* AE=The change internal energy of the system.
* (O=The heat Transferred into/out of the system.
» W=The work done by/on the system.

This reformulation of the First Law tells us that once we define a system (remember
we can define the system in any way that is convenient) the energy of the system
will remain constant unless there heat added or taken away from the system, or
some work takes place.

5.2.1 Internal Energy

We have already discussed work and heat extensively, but a few comments are in
order regarding internal energy. The internal energy encompasses many different
things, including:

» The kinetic energy associated with the motions of the atoms,
» The potential energy stored in the chemical bonds of the molecules,
» The gravitational energy of the system.

It is nearly impossible to sum all of these contributions up to determine the absolute
energy of the system. That is why we only worry about 4E, the change in the energy
of the system. This saves all of us a lot of work, for example:

+ [f the temperature doesn’t change we can ignore the kinetic energy of the atoms,
» If no bonds are broken or destroyed we can ignore the chemical energy of the
system,
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» If the height of the system does not change then we can ignore gravitational
potential energy of the system.

Our convention for AF is to subtract the initial energy of the system from the final
energy of the system.

AE = E( final) — E(initial) = Q+W

In a chemical reaction the energy of the reactants is £ (initial) and the heat of the
products is £ (final). Now if we ask the question whether the nuclear power plant
follow the first law of thermodynamics, we can positive say yes to the question and
the reason behind is that because a Nuclear Power plant does not create or destroy
energy, and they convert energy, and the amount of energy in the system and the
surroundings remains constant.

5.2.2 Heat Engines

The work-producing device that best fits into the definition of a heat engine is the
steam power plant, which is an external-combustion engine. That is, the combus-
tion process takes place outside the engine, and the thermal energy released during
this process is transferred to the steam as heat.

Heat engines, technically speaking, are continuously operating thermodynamic
systems at the boundary of where there are heat and work interactions. Simply, a
heat engine converts heat to work energy or vice versa (Fig. 5.2).

An example of a common heat engine is a power plant. It consists of four main
elements, a boiler, turbine, condenser, and feed pump, and the main circulating heat
transfer entity is water. If we consider the power plant to be a closed system with its
boundary enclosing the operating components, we can apply the First Law of Ther-
modynamics. The boiler burns a fuel source, causing a transfer of Q. . heat
to water inside, vaporizing it. The high-pressure vapor enters the turbine, resulting
in a work output of W ..~ and then leaves still as steam but at lower pressure and
temperature. The vapor moves through the condenser where it condenses back into
water, 10sing Q. qensation D€L to the surroundings. The water is pumped back into
the boiler, requiring W work.

pump
Since AE=Q+W, and assuming a steady state of operation (AE=0),

(Qcombustion - Qcondensation) + (Wpump - I/Vturbine) =0

or

/4

Qcambustian - Qcondensation = I/Vturbine " pump

Generally, W_ issignificantly lessthanthe W_ . attained. However, Q .
pump g . turbine . “Ccondensation

may be even more than two-thirds the magnitude of Q. «ions MeaNing that the

total useful work obtained from the combustion of fuel is less than one third of
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Exhaust gases

Turbine
T Water Vapor I
- - - %
o
turbine
g mb. fné . Water vapar
combusia Boiler and liguid
Fuel and air /7 \I/
Condenser
) o
%“mﬁ’ g
Pump condensation
<— Liguid water
Fig. 5.2 Diagram of steam power plant
the total work theoretically possible from a complete conversion of Q. . . The

second law of thermodynamics embodies the fact that no engine can be constructed
that is 100 % efficient.

5.3 Signs for Heat and Work in Thermodynamics

As noted in Chap. 4 energy transfers in any thermodynamic process are measured
in terms of the quantity of heat Q added to the system and the work W done by the
system. Both O and W may be positive, negative, or zero (Fig. 5.3).

A positive value of Q represents heat flow info the system, with a correspond-
ing input of energy to the system. A negative value of Q represents heat flow out
of the system. A positive value of W represents work done by the system against its
surroundings, such as work done by an expanding gas, and hence corresponds to
energy leaving the system. Negative W, such as work done during compression of a
gas by its surroundings, represents energy entering the system.

5.4 Work Done During Volume Changes

A gas in a cylinder with a movable piston is a simple example of a thermodynamic
system. Internal-combustion engines, steam engines, and compressors in refrigera-
tors and air conditioners all use some version of such a system.
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Surroundings Surroundings
(environment) (environment)

e f

Fig. 5.3 A thermodynamic system may exchange energy with its surroundings (environment) by
means of heat and work. a When heat is added to the system, Q is positive. b When heat is trans-
ferred out of the system, Q is negative. ¢ When work is done by the system, W is positive. d When
work is done on the system, W is negative. Energy transfer by both heat and work can occur
simultaneously; in e heat is added to the system and work is done by the system, and in f heat is
transferred out of the system and work is done on the system ([1])

Consider a microscopic viewpoint, based on the kinetic and potential energies of
individual molecules in a material, to develop intuition about thermodynamic quan-
tities. (It is important to understand that the central principles of thermodynamics
can be treated in a completely macroscopic way, without reference to microscopic
models. Indeed, part of the great power and generality of thermodynamics is that it
does not depend on details of the structure of matter.) First, consider the work done
by the system during a volume change. When a gas expands, it pushes outward on
its boundary surface as it moves outward. Hence an expanding gas always does
positive work. The same thing is true of any solid or fluid material that expands
under pressure, such as the popcorn in Fig. 4.1.

The work done by a gas in a volume change can be understood by considering
the molecules that make up the gas. When one such molecule collides with a sta-
tionary surface, it exerts a momentary force on the wall but does no work because
the wall does not move. However, if the surface is moving, such as a piston in a
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gasoline engine, the molecule does work on the surface during the collision. If the
piston in Fig. 5.4a moves to the right, so that the volume of the gas increases, the
molecules that strike the piston exert a force through a distance and do positive
work on the piston. If the piston moves toward the left as in Fig. 5.4b, so the volume
of the gas decreases, then positive work is done on the molecule during the colli-
sion. Hence the gas molecules do negative work on the piston.

Figure 5.5 shows a fluid in a cylinder with a movable piston. Suppose that the
cylinder has a cross-sectional area 4 and that the pressure exerted by the system at
the piston face is p. The total force F exerted by the system on the piston is F' = pA.
When the piston moves out a small distance Ax, the work AW done by this force is

AW = FAx = pAAx (5.1)

where AV is the infinitesimal change of volume of the system. Thus, we can express
the work done by the system in this infinitesimal volume change as

AW = pAV (5.2)

In a finite change of volume from | to ¥,

W = Z pAV (5.3)
Fig. 5.4 a When a mole- 8
cule strikes a wall moving Motl(.)n Of
away from it, the molecule : piston
does work on the wall—the T —
molecule’s speed and kinetic
energy decrease. The gas
does positive work on the
piston. b When a molecule
strikes a wall moving toward Motion of

it, the wall does work on the
molecule—the molecule’s
speed and kinetic energy
increase. The gas does nega-
tive work on the piston ([1])

piston

I O

o

Fig. 5.5 The infinitesimal
work done by the system
during the small expansion

Axis AW = pAAx
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Fig. 5.6 The work done equals the area under the curve on a pV/-diagram. a In this change from
state 1 to state 2 the volume increases and the work and area are positive. b In this change from
state 1 to state 2 the volume decreases; the area is taken to be negative to agrees with the sign of
W. The two states are reversed from part (a). ¢ The area of the rectangle gives the work done for a
constant-pressure process. In this case, volume increases and W >0

This equation says the total work is equal to the sum of all the infinitesimally small
volume changes time the pressure at that volume.

In general the pressure of the system may vary during the volume change. To
evaluate Eq. 5.3, we have to know how the pressure varies as a function of volume.
We can represent this relationship as a graph of p as a function of V' (called a pV -
diagram). Figure 5.5a shows a simple example. In the figure, Eq. 5.3 is represented
graphically as the area under the curve of p versus ¥ between the limits ¥} and V,.

According to the rule we stated for the sign of work, work is positive when a
system expands. In an expansion from state 1 to state 2 in Fig. 5.6a the area under
the curve and the work are positive. A compression from 1 to 2 in Fig. 5.6b gives
a negative arca; when a system is compressed, its volume decreases and it does
negative work on its surroundings.

If the pressure p remains constant while the volume changes from V] to V,
(Fig. 5.5¢), the work done by the system is

W= py~;) (5.4)
In any process in which the volume is constant, the system does no work because
there is no displacement.

5.5 Paths Between Thermodynamic States

We have seen that if a thermodynamic process involves a change in volume,
the system undergoing the process does work (either positive or negative) on its
surroundings. Heat also flows into or out of the system during the process, if there
is a temperature difference between the system and its surroundings. Consider
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Fig. 5.7 a Three different paths between state 1 and state 2. b—d. The work done by the system
during a transition between two states depends on the path chosen [1]

now how the work done by, and the heat added to, the system during a thermody-
namic process depend on the details of how the process takes place.

When a thermodynamic system changes from an initial state to a final state, it
passes through a series of intermediate states. We call this series of states a path.
There are always infinitely many different possibilities for these intermediate states.
When they are all equilibrium states, (a quasi-static process) the path can be plot-
ted on a pV -diagram (Fig. 5.7a). Point 1 represents an initial state with pressure
p, and volume V. Point 2 represents a final state with pressure p, and volume V.
To pass from state 1 to state 2, we could keep the pressure constant at p, while the
system expands to volume V, (point 3 in Fig. 5.7b.), then reduce the pressure to p,
(probably by decreasing the temperature) while keeping the volume constant at V,
(to point 2 on the diagram). The work done by the system during this process is the
area under the line 1 — 3; no work is done during the constant-volume process 3 —
2. Or the system might traverse the path 1 — 4 — 2 (Fig. 5.7¢); in that case the work
is the area under the line 4 — 2, since no work is done during the constant-volume
process 1 — 4. The smooth curve from 1 to 2 is another possibility (Fig. 5.7d), and
the work for this path is different from that for either of the other paths.

The work done by the system depends not only on the initial and final states, but
also on the intermediate states, that is, on the path. Furthermore, the system can
move through a series of states forming a closed loop, suchas 1 -3 -2 — 4 —
1. In this case, the final state is the same as the initial state, but the total work done
by the system is not zero. (In fact, it is represented on the graph by the area enclosed
by the loop). It follows that it does not make sense to talk about the amount of work
contained in a system. In a particular state, a system may have definite values of the
state coordinates p, V, and T, but it wouldn’t make sense to say that it has a definite
value of W.

Example 5.1 A gas is taken through the cycle illustrated below. During one cycle,
how much work is done by an engine operating on this cycle? (Fig. 5.8)

Solution Start in the lower left hand corner of the rectangle and work clockwise.
Call the lower left corner point 1, the upper left corner point 2, the upper right cor-
ner point 3 and the lower right corner point 4.

W=Wig Wy + Wiy + Wy,
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Fig. 5.8 Sketch of a full
cycle in Example 5.1
2
2p 3
P
1 4
v v v “

State 1 State 2

50L
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a b

Fig. 5.9 a Slow, controlled isothermal expansion of a gas from an initial state 1 to a final state 2
with the same temperature but lower pressure. b Rapid, uncontrolled expansion of the same has
starting at the same state 1 and ending at the same state 2

W= (pAV)l%Z + (pAV)2»3 + (pAV)3a4 + (pAV)4»l

From1to2, AV =0,s0 (pAV),_,, =0.From2to3, (pAV), 5 =2Px3V =6PV .
From 3 to 4, (pAV);,, =0, and from 4 to 1, (pAV),,, =—-Px3V =-3PV.
Adding these up gives

W=0+6PV+0-3PV =3PV

Therefore, the work done by an engine operating on this cycle is a positive 3P} on
each cycle.

Like work, the heat added to a thermodynamic system when it undergoes a
change of state depends on the path from the initial state to the final state. Here is an
example. Consider changing the volume of a certain quantity of an ideal gas from
2.0 to 5.0 L while keeping the temperature constant at 7=300 K. Figure 5.9 shows
two different ways to do this. In Fig. 5.9a the gas is contained in a cylinder with a
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piston, with an initial volume of 2.0 L. The gas expands slowly, supplying heat from
the electric heater to keep the temperature at 300 K. After expanding in this slow,
controlled, isothermal manner, the gas reaches its final volume of 5.0 L; it absorbs
a definite amount of heat in the process.

Figure 5.9b shows a different process leading to the same final state. The con-
tainer is surrounded by insulating walls and is divided by a thin, breakable partition
into two compartments. The lower part has volume 2.0 L, and the upper part has
volume 3.0 L. In the lower compartment, place the same amount of the same gas as
in Fig. 5.9a, again at 7=300 K. The initial state is the same as before. Now break the
partition. The gas undergoes a rapid, uncontrolled expansion, with no heat passing
through the insulating walls. The final volume is 5.0 L, the same as in Fig. 5.9a. The
gas does not do any work during this expansion because it does not push against
anything that moves. The uncontrolled expansion of a gas into vacuum is called a
free expansion.

Experiments have shown that when an ideal gas undergoes a free expansion,
there is no temperature change. Therefore the final state of the gas is the same as
in Fig. 5.9a. The intermediate states (pressures and volumes) during the transition
from state 1 to state 2 are entirely different in the two cases; Fig. 5.9a and b repre-
sent two different paths connecting the same states 1 and 2. For the path in Fig. 5.9b,
no heat is transferred into the system and the system does not do any work. Like
work, heat depends not only on the initial and final states but also on the path.

Because of this path dependence, it would not make sense to say that a system
“contains” a certain quantity of heat. To see this, suppose that an arbitrary value is
assigned to “the heat in a body” in some reference state. Then presumably the “heat
in the body” in some other state would equal the “heat in the body” in the reference
state and the heat added when the body goes to the second state. However, that is
ambiguous. The heat added depends on the path taken from the reference state to
the second state. The obvious conclusion is that there is no consistent way to define
“heat in a body”. It is not a useful concept.

While it does not make sense to talk about “work in a body” or “heat in a body,”
it does make sense to speak of the amount of internal energy in a body.

5.6 Path Independence

Consider a system enclosed in adiabatic (thermally non-conducting) walls. In
practice, ‘adiabatic’ means a thermally insulated container, like a well-insulated
vacuum flask. The temperature of the contents of the flask can be monitored using
a thermometer, a concept introduced by the zeroth law. Now do some experiments.

First, churn the contents of the flask (that is, the system) with paddles driven
by a falling weight, and note the change in temperature this churning brings about.
J. P. Joule (1818-1889), one of the fathers of thermodynamics, performed exactly
this type of experiment in the years following 1843. The work accomplished can
be calculated based on heaviness of the weight and the distance through which it
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Fig. 5.10 The observation
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fell. Then remove the insulation and let the system return to its original state. After
replacing the insulation, put a heater into the system and pass an electric current
through it for a time that result in the same work being done by the heater as was
done by the falling weight. The conclusion arrived at in this pair of experiments and
in a multitude of others of a similar kind is that the same amount of work, however
it is performed, brings about the same change of state of the system.

This is analogous to climbing a mountain by a variety of different paths, each
path corresponding to a different method of doing work (see Fig. 5.10). Provided
we start at the same base camp and arrive at the same destination, we shall have
climbed through the same height regardless of the path we took between them. That
is, we can attach a number (the ‘altitude’) to every point on the mountain, and cal-
culate the height we have climbed, regardless of the path, by taking the difference
of the initial and final altitudes for our climb. Exactly the same process, applies to
our system. The fact that the change of state is path-independent means that we can
associate a number, which we shall call the infernal energy (symbol U) with each
state of the system. Then we can calculate the work needed to travel between any
two states by taking the difference of the initial and final values of the internal en-
ergy, and using Fig. 5.9, then we can write;

Work required (W) = U ; (final) - U; (initial) (5.5)

The observation of the path-independence of the work required to go between two
specified states in an adiabatic system (remember, at this stage the system is adia-
batic) has motivated the recognition that there is a property of the system that is a
measure of its capacity to do work. In thermodynamics, a property that depends
only on the current state of the system and is independent of how that state was
prepared (like altitude in geography) is called a state function. The state function
for the energy stored in a closed system is called internal energy. It has a definite
parallel with the state function called temperature that was defined by the Zeroth
Law of Thermodynamics.
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5.7 Heat and Work

Internal energy can change by an agency other than by doing work. One way of
regarding this additional change in internal energy is to interpret it as arising from
the transfer of energy from the system into the surroundings due to the difference in
temperature caused by the work that has been done. This transfer of energy because
of a temperature difference is called &eat.

A simple model gives “work as the transfer of energy that makes use of the
uniform motion of atoms in the surroundings” as depicted in Fig. 5.11. Moreover,
“heat is the transfer of energy that makes use of the random motion of atoms in the
surroundings”.

In more pictorial terms, using Fig. 5.11 and noting that temperature is a property
that tells us the relative numbers of atoms in the allowed energy states, with the
higher energy states progressively more populated as the temperature is increases.
A block of iron at high temperature consists of atoms that are oscillating vigorously
around their average positions. At low temperatures, the atoms continue to oscillate,
but with less vigor. If a hot block of iron is put in contact with a cooler block, the
vigorously oscillating atoms at the edge of the hot block jostle the less vigorously
oscillating atoms at the edge of the cool block into more vigorous motion, and they
pass on their energy by jostling their neighbors. There is no net motion of either
block, but energy is transferred from the hotter to the cooler block by this random
jostling where the two blocks are in contact. That is why the above statement that
was made, and is repeated here again, is a valid statement. That is, “heat is the
transfer of energy that makes use of the random motion of atoms in the surround-
ings” [2].

Surroundings Surroundings

Fig. 5.11 The molecular distinction between the transfer of energy as work (/eft) and heat (right).
Doing work results in the uniform motion of atoms in the surroundings; heating stimulates their
disorderly motion
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5.8 Heat as Energy in Transition

The amount of energy that is transferred as heat into or out of the system can be
measured very simply: we measure the work required to bring about a given change
in an adiabatic system, and then the work required to bring about the same change
of state in a non-adiabatic system (the one with thermal insulation removed), and
take the difference of the two values.

That difference is the energy transferred as heat. A point to note is that this type
of the measurement of the rather elusive concept of ‘heat’ has been put on a purely
mechanical foundation as the difference in the heights through which a weight falls
to bring about a given change of state under two different conditions (See Fig. 5.12
below).

Once the energy is inside the system, either by making use of the uniform motion
of atoms in the surroundings (a falling weight) or of randomly oscillating atoms (a
hotter object, such as a flame), there is no memory of how it was transferred. Once
inside, the energy is stored as the kinetic energy (the energy due to motion) and the
potential energy (the energy due to position) of the constituent atoms and that en-
ergy can be withdrawn either as heat or as work. The distinction between work and
heat is made in the surroundings: the system has no memory of the mode of transfer
nor is it concerned about how its store of energy will be used.

Consider a closed system and use it to do some work or allow a release of energy
as heat. Its internal energy falls. Then leave the system isolated from its surround-
ings for an indefinite amount of time. Return to it and measure its capacity to do
work. Invariably it’s capacity to do work—its internal energy—is the same as when
it was first isolated. In other words,

Fig. 5.12 When a system is adiabatic (/eff), a given change of state is brought about by doing a
certain amount of work. When the same system undergoes the same change of state in a non-adia-
batic container (right), more work has to be done. The difference is equal to the energy lost as heat
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The internal energy of an isolated system is constant.

That is the first law of thermodynamics, or at least one statement of it, for the law
comes in many equivalent forms.

5.9 The First Law of Thermodynamics Applied to a Cycle

Having discussed the concepts of work and heat completely in Chap. 3 and briefly
in Sect. 5.7 of this chapter again, we are now ready to present the first law of
thermodynamics. Recall that a law is not derived or proved from basic principles but
is simply a statement that we write based on our observations of many experiments.
If an experiment shows a law to be violated, either the law must be revised or
additional conditions must be placed on the applicability of the law. Historically, the
first law of thermodynamics was stated for a cycle and the net heat transfer is equal
to the net work done for a system undergoing a cycle. This is expressed in equation
form by Eq. 5.6 as follow;

dYw=>0 (5.6)
or

gst =955Q (5.7)

where the symbol 95 implies an integration around a complete cycle. Therefore, the
first law of thermodynamics can be stated as: whenever a system undergoes a cyclic
change, however complex the cycle may be, the algebraic sum of the work transfer
is equal to the algebraic sum of energy transfer as heat. Another way of interpreting
the first law of thermodynamics is the conclusion that Joule made from his experi-
ment which is depicted in Fig. 5.9a, b and that is, the net work done on the system is
always proportional to the net energy removed from the system as heat, irrespective
of the type of work interaction, the rate at which work was done on the system, and
the method employed for transferring the energy in the form of work into thermal
energy and it can be shown as the following equation

Cﬁ dQ(fmmsystem) = ¢ dVV(ansystem) (58)

The first law can be illustrated by considering the following experiment. Let a weight
be attached to a pulley/paddle-wheel setup, such as that shown in Fig. 5.9a. Let the
weight fall certain distance thereby doing work on the system, contained in the in-
sulated (adiabatic) tank shown, equal to the multiplied by the distance dropped. The
temperature of the system (the fluid in the tank) will rise an amount of AT. Now, the
system is returned to its initial state (the completion of the cycle) by transferring heat
to the surrounding, as implied by the Q in Fig. 5.9b. This reduces the temperature of
the system to its initial temperature. The first law states that this heat transfer will be
exactly equal to the work, which was done by the falling weight [3].
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5.10 Sign Convention

To avoid confusion as to whether the work is being done on the system by the sur-
rounding, or by the system on the surroundings and whether energy is transferred
as heat from the system, or to the system, the following sign convention is de-
fined with reference to Fig. 5.13. The work done by a system on its surroundings is
treated as a positive quantity. Similarly, the energy transfer as heat to a system from
its surroundings is also treated as a positive quantity. With this convention, Eq. 5.8
becomes,

~§do-(-aw)=§do-(am)=0 (5.9)

or

gS(dQ—dW)zo (5.10)

It should be noted that there is no restriction on the type of process the system has
undergone. Therefore, the first law of thermodynamics is applicable to reversible as
well as irreversible processes.

The first law of thermodynamics, as stated above, has a number of important
consequences.

5.11 Heatis a Path Function

Suppose a system is taken from an initial state 1 to state 2 by the path 1a2 and it
is restored to the initial state through the 2bl according to Fig. 5.14. Then, the
system has undergone a cyclic change. If the system is restored to the initial state
by following path 1a2cl it has experienced a different cycle. Apply the first law of
thermodynamics to the two cycles 1a2bl and la2cl.

.[laZdQ+.|.2bldQ_."la2dW_ ¥ =0 -1

J‘laZdQ+J.chdQ_J.laZdW_.[chdW:0 (5-12)

Fig. 5.13 Sign convention
for heat and work interactions
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Fig. 5.14 Reversible cycles

on P -V diagram
2
c
P a
1
Vv
Subtracting Eq. 5.12 from 5.11, gives,
IzbldQ_J-chdQ_(J‘zbldW_ 2c1dW):0 G.13)
Since work depends on the path, we have
j aw - aw =0 (5.14)
261 2cl
Therefore
o0 [, 40 (515)

That is, energy transfer as heat is not a point function, neither is it a property of the
system. Therefore, heat interaction is a path function and its differential is not exact.

Example 5.2 A spring is stretched a distance of 0.8 m and attached to a paddle
using the figure below. The paddle wheel then rotates until the spring is unstret-
ched. Calculate the heat transfer necessary to return the system to its initial state
(Fig. 5.15).

Solution The work done by spring on the system is given by;

038 08 (0.8)°
Wiy =|, Fev=] 100xdx=(100) {T} =32N
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Fig. 5.15 Example 5.2 K « 100 N'm
L  —

Since the heat transfer returns the system to its initial state, a cycle results. The first
law then states that O, , =W, ,=321].

5.12 Energy is a Property of System

Quite often changes in the state of a system when it undergoes a process are impor-
tant, rather than when it passes through a cycle. Evaluating the energy changes of
the system while it interacts with its surrounding for a specific process is necessary.
Rearranging Eq. 5.13 gives;

[, do=dw)=| (do-dw) (5.16)

This shows that while JdQ and Jd W depend on the path followed by the system,

the quantity | (dQ —dW) is the same for both the processes 2b1 and 2cl, connect-
ing states 2 and 1. By considering several other cycles, it can be observed that

(dO—dW) is the same for all the processes connecting states 1 and 2. Therefore

I(dQ —dW)) does not depend on the path followed by the system, but depends only
on the initial and final states of the system. Hence, the quantity J.(dQ—dW) is an

exact differential. Therefore it is the differential of a property of the system. This
property is the energy of the system and is represented by E£. The differential change
in the energy of the system is given by,

dE = dQ—dW (5.17)

The energy of a system is the sum of the macroscopic and microscopic modes of
energy, i.e.

E=KE+PE+U (5.18)
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and

dE = d(KE)+ d(PE)+dU = dQ —dw (5.19)

Therefore, whenever a system undergoes a change of state, energy may cross the
boundary as either heat or as work, and the change in the energy of the system
is equal to the total energy that crosses the boundary. The energy of the system
may change from one form to the other. For example, kinetic energy may change
into either potential energy or internal energy. Equation 5.19 simply accounts
for the energy when the system interacts with the surroundings. The quantity
[d(KE)+ d(PE)+ dU] represents the net change in the energy of the system while
dQ and dW represent the energy transfer across the boundary of the system in the
form of heat and work, respectively. The net change in the energy of the system is
exactly equal to the net energy transfer across the boundary of the system.

5.13 Energy of an Isolated System is Conserved

A system, which does not exchange energy with the surroundings, in the form
of either heat or work, is called an isolated system. During any process in such a
system dQ =0 and dW = 0. The first law of thermodynamics then reduces to

dE=0orE, = E (5.20)

for a reversible or an irreversible process. Therefore, the energy of an isolated
system remains constant.

Example 5.3 A radiator of a heating system with a volume of 0.1 m? contains satu-
rated steam at 0.2 MPa. The inlet and outlet valve of the radiator are closed. Due
to the energy transfer as heat to the surroundings, the pressure drops to 0.15 MPa.
Determine the amount of steam and water at the final pressure.

Solution Steam contained in the radiator.

The process followed by the system is shown on a P —v diagram in Fig. 5.14 below
(Fig. 5.16).

Specific volume of the saturated steam at 0.2 MPa, v, = 0.885 m*/kg.

Volume of the radiator, V' = 0.1 m?

Total mass of the steam, m = y__ ol _ 0.113 kg.

v, 0.8854
Since the quantity of steam and the volume of the radiator are constant, the steam

undergoes a constant volume process. Therefore, v =constant; or v, =v,

At P, =0.15MPa v, =0.001053 m3/kg v, =1.159 m/kg T=111.37 °C
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Fig. 5.16 Sketch for
Example 5.3 ona
P—v diagram

02

0.15

]
X=07637

Constant quality line

Since v, <L <v,, the final state is wet steam of quality X;.

Uy = X,0, +(1-X,)v, 0.8854 = X, (1.159) + (1 X,)(0.001053)

Or X, =0.7637

The saturation temperature at P, =0.15 MPa, 7, =111.37 °C. Quality of the steam
in the final state, X, =0.7637 . Mass of vapor=0.7637(0.1138)=0.86 kg and mass
of liquid=0.027 kg.

Example 5.4 An insulated and rigid container of 1 m?® volume contains helium
at 20°C and 100 kPa pressure. A paddle wheel is rotated inside the container rai-
sing the temperature of helium to 60°C. Assume that helium obeys the relation
PV = NRT and du=CdT with C =12.4717 ki/kmol K. Determine the
work done on helium and the final pressure of helium.

Solution
3
_Ah _ 100“30 L 0.041 kmol
RT, 8314x10° x293.15
Au=CAT
or

AU = NC,AT =0.041x12.4717(40) = 20.4685 kJ
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AU =-W or W =-20.4685kJ

h_L p2=P1T2=100><103><313.15

P T T 293.15

=106.82 kPa

5.14 Internal Energy and the First Law of Thermodynamics

Internal energy is one of the most important concepts in thermodynamics. What is
internal energy? It can be approached in various ways. Start with one based on the
ideas of mechanics. Matter consists of atoms and molecules, and these are made
up of particles having kinetic and potential energies. Tentatively define the internal
energy of a system as the sum of the kinetic energies of all its constituent particles,
plus the sum of all the potential energies of interaction among these particles.

Note that internal energy does not include potential energy arising from the
interaction between the system and its surroundings. If the system is a glass of
water, placing it on a high shelf increases the gravitational potential energy arising
from the interaction between the glass and the earth. But this has no effect on the
interaction between the molecules of the water, and so the internal energy of the
water does not change.

The symbol U represents internal energy. During a change of state of the system
the internal energy may change from an initial value U, to a final value U,. Denote
the change in internal energy as AU =U, —-U, .

Heat transfer is energy transfer. Adding a quantity of heat O to a system, without
doing any work during the process, will increase the internal energy by an amount
equal to Q. That is, AU = QO . When a system does work ¥ by expanding against
its surroundings and no heat is added during the process, energy leaves the system
and the internal energy decreases. That is, when W is positive, AU is negative, and
conversely. So AU = —W. When both heat transfer and work occur, the total change
in internal energy is

U,-U, =AU =Q—-W (First law of thermodynamics) (5.21)

This can be rearranged to

O=AU+W (5.22)

The message of Eq. 5.5.22 is that in general when heat Q is added to a system, some
of this added energy remains within the system, changing its internal energy by
an amount AU. The remainder leaves the system again as the system does work W
against its surroundings. Because I and Q may be positive, negative, or zero, U can
be positive, negative, or zero for different processes (Fig. 5.17).
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Surroundings Surroundings Surroundings
(environment ) (environment ) (environment )
Q=150 W=100] Q=-150) W=-100] Q=150) W=150)
System System System
a AU=Q-W=450] b AU=Q-W=-50] ¢ AU=Q-W=0

Fig. 5.17 In a thermodynamic process, the internal energy of a system may increase, decrease,
or stay the same. a If more heat is added to the system than the system does work, AU is positive
and the internal energy increases. b If more heat flows out of the system than work is done on the
system, AU is negative and the internal energy decreases. ¢ If the heat added to the system equals
the work done by the system, A{7 = () and the internal energy is unchanged

Equations (5.21) or (5.22) is The First Law of Thermodynamics. It is a general-
ization of the principle of conservation of energy to include energy transfer through
heat as well as mechanical work. This principle can be extended to ever-broader
classes of phenomena by identifying additional forms of energy and energy trans-
fer. In every situation in which it seems that the total energy in all known forms is
not conserved, it has been possible to identify a new form of energy such that the
total energy, including the new form, is conserved. There is energy associated with
electric fields, with magnetic fields, and, according to the theory of relativity, even
with mass itself.

At the beginning of this discussion, internal energy was tentatively defined in
terms of microscopic kinetic and potential energies. This has drawbacks, however.
Actually calculating internal energy in this way for any real system would be hope-
lessly complicated. Furthermore, this definition isn’t an operational one because it
doesn’t describe how to determine internal energy from physical quantities that can
be measured directly.

So look at internal energy in another way. Starting over, define the change in
internal energy AU during any change of a system as the quantity given by Eq. 5.21,
AU = Q-W . This is an operational definition, because Q and W can be measured.
It does not define U itself, only AU. This is not a shortcoming, because the value
of the internal energy of a system can be defined to have a specified value in some
reference state, and then use Eq. 5.21 to define the internal energy in any other state.

This new definition trades one difficulty for another. If U is defined by Eq. 5.21,
then when the system goes from state 1 to state 2 by two different paths, is AU the
same for both paths? Q and W are, in general, not the same for different paths. If
AU, which equals O —W , is also path-dependent, then AU is ambiguous. If so, the
concept of internal energy of a system is subject to the same criticism as the errone-
ous concept of quantity of heat in a system, as discussed earlier in the chapter.

The only way to answer this question is through experiment. For various ma-
terials and processes, Q and W have been measured for various changes of state
and various paths to learn whether AU is, or is, not path-dependent. The results of
many such investigations are clear and unambiguous: While Q and W depend on the
path, AU = Q—W is independent of path. The change in internal energy of a system
during any thermodynamic process depends only on the initial and final states, not
on the path leading from one to the other.
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Experiment, then, is the ultimate justification for believing that a thermodynamic
system in a specific state has a unique internal energy that depends only on that state.
An equivalent statement is that the internal energy U of a system is a function of the
state coordinates p, ¥, and T (actually, any two of these, since the three variables are
related by the equation of state).

To say that the first law of thermodynamics, given by Eqs. 5.21 or 5.22, represents
conservation of energy for a thermodynamic process is correct, as far as it goes.
However, an important additional aspect of the first law is the fact that internal
energy depends only on the state of a system. In changes of state, the change in
internal energy is path-independent.

All this may seem a little abstract if one wants to think of internal energy as
microscopic mechanical energy. But remember classical thermodynamics and the
concept of internal energy were developed long before atoms and molecules were
proven to exist. There’s nothing wrong with the microscopic view. But in the inter-
est of precise operational definitions, internal energy, like heat, can and must be
defined in a way that is independent of the detailed microscopic structure of the
material.

Two special cases of the first law of thermodynamics are worth mentioning. A
process that eventually returns a system to its initial state is called a cyclic process.
For such a process, the final state is the same as the initial state, and so the fotal
internal energy change must be zero. Then;

U,=U, and Q=W (5.23)

If a net quantity of work W is done by the system during this process, an equal
amount of energy must have flowed into the system as heat Q. But there is no reason
why either Q or W individually has to be zero.

Another special case occurs in an isolated system, one that does not do any
work on its surroundings and has no heat flow to or from its surroundings. For any
process taking place in an isolated system,

W=0=0 (5.24)

and therefore

U,-U, =AU =0 (5.25)

In other words, the internal energy of an isolated system is constant.

Example 5.5 You propose to eat a 900 Calorie hot fudge sundae (with whipped
cream) and then run up several flights of stairs to work off the energy you have
taken in. How high do you have to climb? Assume that your mass is 60 kg.

Solution The system consists of you and the earth. Remember that one food-value
calorie is 1 kcal=1000 cal=4190 J. The energy intake is;
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0 =900 keal(4190 J/kcal) = 3.77x10°]

The potential energy output required to climb a height 4 is;

W = mgh = (60kg)(9.8m/sec )i = (588N)h

If the final state of the system is the same as the initial state (that is, no fatter, no
leaner), these two energy quantities must be equal: Q = . Then

6
h= 2 =M = 6410 m about 21,000 ft) Good luck!

mg 588N

Example 5.6 Figure 5.18 below shows a PV-diagram for a cyclic process, one
in which the initial and final states are the same. It starts at point a and proceeds
counterclockwise in the PV-diagram to point b, then back to @, and the total work
is W=-500 J. (a) Why is the work negative? (b) Find the change in internal energy
and the heat added during this process.

Solution

a. The work done equals the area under the curve, with the area taken as positive
for increasing volume and negative for decreasing volume. The area under the
lower curve from a to b is positive, but it is smaller than the absolute value of the
negative area under the upper curve from b back to a. Therefore, the net area (the
area enclosed by the path, shown with red stripes) and the work are negative. In
other words, 500 more joules of work are done on the system than by the system.

b. For this and any other cyclic process (in which the beginning and end points are
the same), AU=0, so W =Q =-500J. That is, 500 J of heat must come out of
the system.

Fig. 5.18 The net work done p
by the system in the process
aba is —500 J. Would it
have been if the process had
proceeded clockwise in this
PV-diagram?
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Example 5.7 A rigid volume tank contains 6 ft* of steam originally at a pressure
of 400 psia and a temperature of 1300 °R. Estimate the final temperature if 800 Btu
of heat is added.

Solution The first law of thermodynamics, with AKE = APE =0, is Q—-W =AU.
For a rigid container the work is zero. Thus

0 =AU =m(u, —uy)

From Steam tables on page A-80 first column and second row group, we read
u; =1302 Btu/lbm and v; =1.8871 ft*/Ibm for a temperature of 1300 °R. The mass
is then;

14 6 [ft’]

=— = =3179bm
v 1.8871[ft’/Ibm]

m1=

Then using the First Law for the energy transferred to the volume by heat is given,
thus we +have

800=3.179 (u, —1302) ..u, =1553.7 Btu/lbm

So the state is specified by v,=1.8871 ft¥/lbm and u,=1553.7 Btu/Ilbm. u and v are
two thermodynamic parameters which are enough to define a state. However no
tables exist for temperature as a function of u and v. So a double linear interpolation
is required. First four pressure-temperature combinations must be identified that
bound both the desired u and v. For this case these combinations are (from Table
Al14.7. pages A-86 and A-87)

P =550 psiT = 1800 Rv =1.9358 ft* / Ibmu = 1513.8 Btu/lbm
P =600 psiT =1800 Rv =1.7729 ft* / Ibmu = 1513.1 Btu/lbm
P =550 psiT = 1900 Rv = 2.0479 ft* / Ibmu = 1558.8 Btu/Ibm

P =600 psiT = 1900 Rv =1.8760 ft* / Ibmu = 1558.3 Btu/Ibm

A double linear interpolation is required. The first interpolation can be done in
pressure or temperature, but then the second one must be performed in the other
variable. Consider interpolating in pressure first. At 1800 R this gives

Ujg00 =1513.84(1.9358 —1.8871)/(1.9358 —1.7729)*(1513.1-1513.8)

Ug00 =1513.840.298*(-0.7) =1513.6 Btu / Ibm
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U, g00 = 1558.8+(2.0479 —1.8871)/ (2.0479 —1.8760) * (1558.3 —1558.8)
U, g00 =1558.8+0.936*(=0.5) =1558.33

T(1553.7) =1800+(1553.7-1513.6) / (1558.33-1513.6) *100
T(1553.7) =1800+0.896*100 =1889.6 R

Example 5.8 A frictionless piston is used to provide a constant pressure of 400 kPa
in a cylinder containing steam originally at 500 K with a volume of 2 m?. Calculate
the final temperature if 3500 kJ of heat is added.

Solution The first law of thermodynamics gives AU=Q — W. The work done is
W=p(V,=V ). The mass remains unchanged m,=m.,
K2

m=—= =3.526kg
v 0.56722

Then the First Law gives
3500 =400%*(3.526v, —2)+3.526* (1, —2690)

This requires iteration on v, and u, to find the final temperature. After some effort
this gives,

T, =965 K

5.15 Internal Energy of an Ideal Gas

For an ideal gas, the internal energy U depends only on temperature, not on pres-
sure or volume. Consider again the free-expansion experiment described earlier.
A thermally insulated container with rigid walls is divided into two compartments
by a partition (Fig. 5.19). One compartment has a quantity of an ideal gas, and the
other is evacuated.

When the partition is removed or broken, the gas expands to fill both parts of the
container. The gas does not do any work on its surroundings because the walls of the
container don’t move, and there is no heat flow through the insulation. So both O
and W are zero, and the internal energy U is constant. This is true of any substance,
whether it is an ideal gas or not.

Does the temperature change during a free expansion?. Suppose it does change,
while the internal energy stays the same. In that case we have to conclude that the
internal energy depends on both the temperature and the volume or on both the
temperature and the pressure, but certainly not on the temperature alone. But if 7' is
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Fig. 5.19 The partition is
broken (or removed) to start
the free expansion of gas into
the vacuum region

> Insulation

-

#”

constant during a free expansion, for which we know that U is constant even though
both P and V change, then we have to conclude that U depends only on 7, not on
PorV.

Many experiments have shown that when a low-density gas undergoes a free
expansion, its temperature does not change. Such a gas is essentially an ideal
gas. The conclusion is: The internal energy of an ideal gas depends only on
its temperature, not on its pressure or volume. This property, in addition to the
ideal-gas equation of state, is part of the ideal-gas model. Both properties will be
used frequently in later systems calculations.

5.16 Introduction to Enthalpy

In the solution of problems involving systems, certain products or sums of properties
occur with regularity. One such combination of properties can be demonstrated by
considering the addition of heat to the constant-pressure situation shown in Fig. 5.20.
Heat is added slowly to the system (the gas in the cylinder), which is maintained
at constant pressure by assuming a frictionless seal between the piston and the
cylinder. If the kinetic energy changes and potential energy changes of the system
are neglected and all other work modes are absent, the first law of thermodynamics
requires that Eq. 5.21 apply,

o-w=U,-U, (5.26)
The work done using the weight for the constant pressure process is given by;
W =pPWV,-V,) (5.27)
The first law can then be written as;

O=U+PV),—(U+PV), (5.28)
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Fig. 5.20 Constant pressure heat addition

The quantity in parentheses U+pV is a combination of properties, and it is thus a
property itself. It is called the enthalpy H of the system,

H=U+PV (5.29)
The specific enthalpy /4 is found by dividing by the mass.

h=u+Pv (5.30)

Enthalpy is a property of a system. It is so useful that it is tabulated in the steam
tables along with specific volume and specific internal energy. The energy equation
can now be written for a constant pressure process as

O, =H,-H, (5.31)

The enthalpy has been defined assuming a constant-pressure system with difference
in enthalpies between two states being the heat transfer. For a variable-pressure
process, the difference in enthalpy is not quite as obvious. However, enthalpy is
still of use in many engineering problems and it remains a property as defined by
Eq. 5.29. In a non-equilibrium constant-pressure process AH would not equal the
heat transfer.

Because only changes in the enthalpy or the internal energy are important, the
datum for each can be chosen arbitrarily. Normally the saturated liquid at 0°C is
chosen as the datum point for water.

Example 5.9 A frictionless piston is used to provide a constant pressure of 400 kPa
in a cylinder containing steam originally at 500 K with a volume of 2 m3. Calculate
the final temperature if 3500 kJ of heat is added.

Solution This is the same problem as Example 5.8. However using the concept of
enthalpy the solution is simpler, 9=H,—H,. Then
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3500 = (h, —2916.2)*3.526
~3500+2916.2*3.526

h
2 3.526

=3908.8

T, =964.8K

5.17 Latent Heat

When a substance changes phase from either a solid to a liquid or a liquid to a gas, it
requires an input of energy to do so. The potential energy stored in the inter-atomic
forces between molecules needs to be overcome by the kinetic energy of the motion
of the particles before the substance can change phase.

Starting with a substance that is initially solid, as it is heated, its temperature will
rise as depicted in the graph of Fig. 5.21.

Starting a point A, the substance is in its solid phase, heating it brings the
temperature up to its melting point but the material is still a solid at point B. As it
is heated further under constant pressure, the energy from the heat source goes into
breaking the bonds holding the atoms in place. This takes place from B to C. At point
C all of the solid phase has been transformed into the liquid phase. Once again, as
energy is added the energy goes into the kinetic energy of the particles raising the
temperature, (C to D). At point D the temperature has reached its boiling point but it
is still in the liquid phase. From points, D to E thermal energy overcomes the bonds
holding the particles in the liquid state and the particles have enough kinetic energy
to escape to the vapor state. Then substance enters the gas phase and its temperature
continues to rise with added heat inputs. Beyond E, further heating under pressure
can raise the temperature still further.

Fig. 5.21 Temperature
change with time. Phase F
changes are indicated by flat
regions where heat energy
used to overcome attractive
forces between molecules

phase change
(vapourisation)

Temperature

phase change
{melting)

Energy Input
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Table 5.1 Latent heat of fusion and vaporization for certain substances

Substance Specific latent heat of °C Specific latent heat of °C
fusion kJ/kg™! vaporization kJ/kg™!

Water 334 0 |2258 100
Ethanol 109 -114 838 78
Ethanoic acid 192 17 395 118
Chloroform 74 —64 254 62
Mercury 11 -39 294 357
Sulphur 54 115 1406 445
Hydrogen 60 —259 449 —253
Oxygen 14 -219 213 —183
Nitrogen 25 -210 199 -196

The Latent Heats of Fusion and Vaporization are the heat inputs required to pro-
duce the phase changes. The word latent means hidden, when the phase change is
from solid to liquid it is the latent heat of fusion, and when the phase change is from
liquid to a gas, it is the latent heat of vaporization.

The energy required is Q = mL, where m is the mass of the substance and L is the
specific latent heat of fusion or vaporization required to produced the phase change.

Table 5.1 lists the Latent Heat of Fusion and Vaporization for certain substances.

The amount of energy that must be transferred in the form of heat to a substance
held at constant pressure in order that phase changes occur is called the latent heat.
It is the change in enthalpy of the substance at the saturated conditions of the two
phases. The heat that is necessary to melt (or freeze) a unit mass at the substance at
constant pressure is the heat of fusion and is equal to i, = h, — h;, where #; is the
enthalpy of saturated solid and 4, is the enthalpy of saturated liquid. The heat of
vaporization is the heat required to completely vaporize a unit of saturated liquid (or
condense a unit mass of saturated vapor) and it equal to /2, = h, —h,. When a solid
changes phases directly to a gas, sublimation occurs and the heat of sublimation is
equal to /, = h, — h;.

The heat of fusion and the heat of sublimation are relatively insensitive to pres-
sure or temperature changes. For ice the heat of fusion is approximately 320 kJ/kg
(140 Btu/lbm) and the heat of sublimation is about 2040 kJ/kg (880 Btu/lbm). The
heat of vaporization of water is identified as /1, in Appendices 14.1, 14.2, 14.5 and
14.6.

5.18 Specific Heats

For a simple system, only two independent variables are necessary to establish the
state of the system as specified by Gibbs Phase Rule. This means that properties like
specific internal energy u can be tabulated as a function of two variables, In the case
of u, it is particularly useful to choose 7 and v. Or,
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u=u(T,v) (5.32)

Using the calculus chain rule, we express the differential in terms of the partial
derivative as follow using the function u and its independent variables 7 and v in
Eq. 5.32;

_ Ou

du=—
oT

dT+a—u

L

dv (5.33)
T

L

The Chain Rule for Functions of Two Variables

The Chain Rule
If x=x(f) and y=y(f) are differentiable at ¢ and

z=f(x,y)= f(x(¢),y(t)) is differentiable at (x(¢),y(¢)), then
z= f(x(¢), y(2)) is differentiable at ¢ and is written as;

dz_%@Jr@d_y_az Oz

—= x dy
di oxdt oydt 0Ox|, oy|,

This can be proved directly from the definitions of z being differentiable at
(x(2), y(¢)) and x(#) and y(¢) being differentiable at z.

Example of Chain Rule

In physics and chemistry, the pressure P of a gas is related to the volume 7,
the number of moles of gas n, and temperature 7 of the gas by the following
equation:
_ nRT

V

P

where R is a constant of proportionality. We can easily find how the pressure
changes with volume and temperature by finding the partial derivatives of
P with respect to V" and P, respectively. But, now suppose volume and tem-
perature are functions of variable time ¢ (with n constant): ¥ =V (¢) and
T =T(t). We wish to know how the pressure P is changing with time. To
do this we need a chain rule for functions of more than one variable. We will
find that the chain rule is an essential part of the solution of any related rate
problem, then we can write dP / dt as;

dP_0Pdl oPdV _nRdl nRT dV
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Since u, v, and T are all properties, the partial derivative is also a property and is
called the constant volume specific heat, C, and that is

= 2_; (5.34)
1
Since many experiments have shown that when a low-density gas undergoes a free
expansion, its temperature does not change. Such a gas is by definition an Ideal Gas.
The conclusion is that, the internal energy of an Ideal Gas depends only on its
temperature, not on its pressure or volume. This property, in addition to the Ideal
Gas equation of state, is part of the Ideal Gas model. Because there is no change in
temperature, there is no net heat transfer to the substance under experiment. Obvi-
ously since no work is involved, the first law requires that the internal energy of
an ideal gas does not depend on volume. Thus the second term in Eq. 5.33 is zero.

au

=0 5.35
ool. (5.35)

Combining Eqs. 5.33, 5.34 and 5.35 we have;
du =C,dT (5.36)
This can be integrated to give;

Uy — ity = IT? C,dT (5.37)

For a known C,(T') the Eq. 5.37 can be integrated to find the change in internal
energy over any temperature interval for an ideal gas. By a similar argument, con-
sidering specific enthalpy to be dependent on the two variables temperature 7" and
pressure P, we have;

dT+%

» 0P

an="
or

dP (5.38)
T

The constant-pressure specific heat C,, is defined as the partial,

o _oh

== 5.39
»=or (539)

P
For an Ideal Gas and the definition of enthalpy,

h=u+Po=u+RT (5.40)
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Where we have used the ideal-gas equation of state. Since u is only a function of 7
per Eq. 5.5.32, h also is only a function of T for an ideal gas. Hence, for an ideal gas;

Ohl _ (5.41)
OP|,
Then from Eq. 5.38, we have;
dh=C,dT (5.42)

and integrating 5.5.5.42 over the temperature range T to T, will give the following
result.

hy —hy = jf C,dr (5.43)

Often it is convenient to denote the specific heat on a per-mole rather than a per
kilogram basis and the specific heats can be written as:

C,=MC, and Cp=MCp3 (5.44a)

where M is the molar mass. The value of C_'U and C » have been fit very accurately
with a five parameter fit whose coefficients are given in Appendix A11 for a number
of gases and combustion products. C, and C), can be derived from the specific heats
per mole by dividing by the Molar mass M defined as

=" (5.44b)
n

where m is the mass and 7 is the number of moles of the substance. The normal units
used for m and »n are kg and kgmol. Therefore the normal unit for M is kg/kgmol.
The enthalpy Eqgs. 5.30 or 5.40 for an ideal gas can written as,

dh = du +d(Pv) (5.45)

Introducing the specific heat relations and the ideal-gas equation, gives,
C,dT = C,dT + RdT (5.46)
Dividing both sides by dT results in the following relation for an Ideal Gas:

C,=C,+R (5.47)

The same relation holds for the molar specific heats and the universal gas constant
C, =G, +R . Note that the difference between C, and C, for an ideal gas is al-



5.18 Specific Heats 119

ways a constant, even though both are functions of temperature. Defining the ratio
of specific heats y, we can see this ratio is also property of interest and is written as,

y=-"2 (5.48)

Substitution of Eq. 5.48 into Eq. 5.47, results in the following useful relationships.

C,= (%}R (5.49a)

or

C - [Lj R (5.49b)
L 7/ _1

Since R for an ideal gas is constant, the specific heat ratio y just depends on tem-
perature 7.

For gases, the specific heat slowly increases with increasing temperature. Since
they do not vary significantly over fairly large temperature differences, it is often
acceptable to treat C), and C, as constants. In this case, the integration is simple
and the internal energy and enthalpy can be expressed as,

uy —uy =G, (T, =Th) (5.50)

hy—h =C,(T,-T)) (5.51)

Example 5.10 The specific heat of superheated steam at 200 kPa can be
determined by the equation

C,= 20+ 7% kg K
2500

a. What is the enthalpy change between 500 and 1000 K for 5 kg of steam? Com-
pare with the steam tables.

b. What is the average Cp between 500 and 1000 °K based on the equation and
based on the tabulated data?
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Solution

a. The enthalpy change is found to be

AH = ijZ C.dT = 5]‘000[2.0+ﬂj dT =5323K)
5P 500 2500

From Table 14.3 at page A-53 and A-59 we find, using P=200 kpa

AH =m(3990.1-2924.8) = 5(1065.3) =5326.5kJ
b. The average value Cp 4, is found by using the relation

&)
mCp pygAT = ijl C,dr

or

(5)(1000—500)C) ., = 5]51320(2.0 +L 2_5(7)80j AT

The integral on right-hand side of above relation was evaluated in part (a) of the

problem; hence, we have

(5)(500)Cp g = 5323

5323
Cpave = 3500 =2.1292=2.13kJ/kg K

Using the values from the steam table, we have

=2.1306 = 2.13 kJ/kg' K

_Ah(3990.1-2924.8) 1065.3
CP,Avg I - 500

AT 500

Because the steam tables give the same values as the linear equation of this exam-
ple, we can safely assume that the Cp(7) relationship for steam over this tempera-
ture range is closely approximated by a linear relation. This linear relation would
change, however, for each pressure chosen; hence, the steam tables are essential.

Example 5.11 Determine the value of C, for steam at 7=1500 R and
P =800 psia (See Appendix 14.6 page A-87).

Solution To determine C, we use a finite-difference approximation to Eq. 5.39. We
use the entries at 7 =1600 "R and 7 =1400 °R are used (a forward difference),
Cp is too low. If values at 7 =1500 'R and T =1300 "R are used (a backward



5.18 Specific Heats 121

difference), C, is too high. Thus, both a forward and a backward value (a central
difference) should be used resulting in a more accurate of the slope.

Example 5.12 Calculate the change in enthalpy between 300 and 1200 K for nitro-
gen gas three ways:
1. Look up the change in the enthalpy given in the tables in Appendix A13.7.

2. Calculate the constant pressure specific heat at 300 K based on the fitted coeffi-
cients in Appendix A11. Multiply this specific heat value times the temperature
difference to get the change in enthalpy over this temperature range.

3. Integrate the fitted expansion from 300 to 1200 K to get the enthalpy change.
Solution
1. From Appendix A13.7

h(300 K) =7754.4 kj | kgmol h(1200 K) =35806.4 kJ / kgmol

Ah =35806.4—7754.4 = 28,052 kJ/kgmol
2. From Appendix A1l

2
:% c, =Co{929—}+6191q 2 +c20+c303q 2 4,07
+7

0 =3C, =12.2568(1)—7.0276*3lq 2 $3.1766%3—0.5465%3 1 2 10.0328 %3

kcal

C, =12.2568—-12.1722+9.5298 —2.8396+0.2952 = 7.070
7 kgmol — K

C, =7.07*4.1868 = 29.60 kJ/kgmol
Ah =29.6%(1200-300) = 26,640 kJ/kgmol(-5%)
3. The following steps is used to calculate the step 3 of this problem

300, 1200

L T TN 2= =12
100 100

7 o, 0,
Ah= [ C,dT =100] C,d0 =100 (¢, + 0" + .0 + .07 +¢,0°)d0
Ul o' 0,

122 -37)
%
2
1272 =37y
%
2

Ah =6728.15kcal/kgmol = 28,169.4 kJ/kgmol(+0.4%)

12.2568* (12 -3)—-7.0276*
Ah=100%*

393
+3.1766 * (2 -3)

—0.5465* +0.0328 *

(12> -3%)
2
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5.19 Heat Capacities of an Ideal Gas

It is usually easiest to measure the heat capacity of a gas in a closed container under
constant-volume conditions. The corresponding heat capacity is called the specific
heat at constant volume and is designated C, . Heat capacity measurements for
solids and liquids are usually carried out in the atmosphere under constant atmo-
spheric pressure, and we call the corresponding heat capacity the specific heat at
constant pressure, designated C,, . If neither p nor V' is constant, we have an infi-
nite number of possible heat capacities.

Consider C, and C, for an ideal gas. To measure C, , an ideal gas is heated in
arigid container at constant volume. To measure C,, , the gas is allowed expand just
enough to keep the pressure constant as the temperature rises.

Why should these two molar heat capacities be different? The answer lies in the
first law of thermodynamics. In a constant-volume temperature increase, the system
does not do any work, and the change in internal energy AU equals the heat added
Q. In a constant-pressure temperature increase, on the other hand, the volume must
increase; otherwise, the pressure (given by the ideal-gas equation of state) could not
remain constant. As the material expands, it does an amount of work . According
to the first law,

O=AU+W (5.52)

For a given temperature increase, the internal energy change U of an ideal gas has
the same value no matter what the process (remember that the internal energy of
an ideal gas depends only on temperature, not pressure or volume). Equation 5.52
then shows that the heat input for a constant-pressure process must be greater than
that for a constant-volume process because additional energy must be supplied to
account for the work done during the expansion. So C,, is greater than C, for an
ideal gas. The pV-diagram in Fig. 5.22 shows this relationship. For air, C,, is 40%
greater than C, at temperatures near room temperature.

The ratio of specific heats then is a dimensionless parameter that will be useful
for predicting many Ideal Gas processes. It is denoted by, denoted by the Greek
letter gamma,

C

=7 (5.53)
4 C,
For gases, C, is always greater than C, and y is always greater than unity. This

quantity plays an important role in adiabatic presses for an ideal gas. Below is a
table with specific heats and ratios of specific heats for various temperatures for
air. Note that in most gas dynamics text books y also is known as Adiabatic Index
(Table 5.2).

Here’s a final reminder: For an Ideal Gas the internal energy change in any
process is given by AU = nC, AT, whether the volume is constant or not.
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Fig. 5.22 Raising the tempe- P
rature of an ideal gas from T
to 7, by a constant-volume or 5.0
a constant-pressure process.
For an ideal gas, U depends
only on 7, so AU is the same
for both processes. In the
constant-volume process, no
work is done, so Q = AU.

But for the constant-pressure = - Constant volume
process, Q is greater, since s 5
it must include both AU
and W = p;(V, —V1). Thus _Constant pressure
C,>C,
P v P] I

|

|

|

1

14
o v,

ra

Table 5.2 Table of ratio of Temperature
fic heat for i p C17 C, 4

specific heat for air K kl/kg K kl/kg K
200 1.002 0.715 1.401
300 1.005 0.718 1.400
500 1.029 0.742 1.387
1000 1.140 0.853 1.336
2000 1.249 0.962 1.298

Example 4.13 Cooling a Dorm Room.

A typical dorm room or bedroom is about § m x4 m x 2.5 m. The density of air on
a typical day is about 1.225 kg/m 3. First find the mass of the air in the room. Then
find the change in the internal energy of this much air when it is cooled from 23.9 to
11.6°C at an constant pressure of 1.00 atm. Treat the air as an ideal gas.

Solution This is a constant pressure process. One way to do this is to find Q from
O =nC,AT | then find the volume change. After finding the volume change, then
find the work done by the gas from W = pAV'. Finally, use the first law to find AU.
This would be perfectly correct, but there’s a much easier way. For an ideal gas the
internal-energy change is AU =nC, AT for every process, whether the volume is
constant or not. So all that is needed is C,. The average of 23.9°C and 11.6°C is
about 18 °C or about 291 K. We’ll use the value for C,, from the table at 300 K which
is 0.718 kJ/kg K. We also need the mass of the air.

mass = px ¥V =1.225kg/m ~8x4x2.5m =98 kg
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Then

AU =98 kgx0.718 kJ / kg Kx (11.6°C—-23.9°C)

AU =-865kJ =—-8.65x10° J

A room air conditioner must extract this much internal energy from the air in the
room and transfer it to the air outside.

5.20 Adiabatic Processes for an Ideal Gas

An adiabatic process is a process in which no heat transfer takes place between a
system and its surroundings. Zero heat transfer is an idealization, but a process is
approximately adiabatic if the system is well insulated or if the process takes place
so quickly that, there is not enough time for appreciable heat flow to occur.

In an adiabatic process, Q =0, so from the first law, AU =—W. An adiabatic
process for an ideal gas is shown in the pV-diagram in Fig. 5.23 below.

As the gas expands from volume V, to V,, it does positive work, so its internal
energy decreases and its temperature drops. If point a, representing the initial state,
lies on an isotherm at temperature 7T + AT, then point b for the final state is on a
different isotherm at a lower temperature 7. For an ideal gas, an adiabatic curve at
any point is always steeper than the isotherm passing through the same point. For an
adiabatic compression from ¥, to V,, the situation is reversed and the temperature
rises accordingly.

Fig. 5.23 A pV-diagram of
an adiabatic process for an
ideal gas. As the gas expands
from V_to V,, its tempera-
ture drops from 7+ AT to T,
corresponding to the decrease
in internal energy due to

the work /7 done by the gas
(indicated by the shaded
area). For an ideal gas, when
an isotherm and an adiabatic
pass through the same point
on a pV-diagram, the adiaba-
tic is always steeper

"l?ﬂ

/ }b

Vv
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The air in the output pipes of air compressors used in gasoline stations and in
paint-spraying equipment is always warmer than the air entering the compressor;
this is because the compression is rapid and hence approximately adiabatic. Adia-
batic cooling occurs when you open a bottle of your favorite carbonated bever-
age. The gas just above the beverage surface expands rapidly in a nearly adiabatic
process; the temperature of the gas drops so much that water vapor in the gas con-
denses, forming a miniature cloud.

Caution Keep in mind that “adiabatic heating” and “adiabatic cooling,” really
mean “raising the temperature” and “lowering the temperature,” in an adiabatic
process respectively. In an adiabatic process, the temperature change is due to work
done by, or on the system; there is no heat flow at all.

A relation can be derived between volume and temperature changes for an in-
finitesimal adiabatic process in an ideal gas. Equation 5.55 gives the internal
energy change AU for any process for an ideal gas, adiabatic or not, so we have
AU =nC,AT . Also, the work done by the gas during the process is given by F.
Then, since AU = —AW for an adiabatic process, we have

nC, AT = —pAV (5.54)
To obtain a relation containing only the volume / and temperature 7, eliminate p

using the ideal-gas equation in the form p = pRT. Since m = pV, write the ideal gas
equation as p = (n/V)-RT. Substituting this into Eq. 4.63, gives

nC, AT =—§RTAV

Rearranging, gives

The coefficient R/C, can be expressed in terms of y =C, /G, . We have

ich’_c“ :&_1:7,_1
C, C C

v L

AT AV

p g =0 (5.55)
Because y is always greater than unity for a gas, (y —1) is always positive. This
means that in Eq. 5.55, AV and AT always have opposite signs. An adiabatic expan-
sion of an ideal gas (AV >0) always occurs with a drop in temperature (AT <0),
and an adiabatic compression (AV <0) always occurs with a rise in temperature
(AT > 0); this confirms the earlier prediction.
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Equation 5.5.55 does not help much in its current form for solving problems.
To get it to a form that will help requires a little calculus. Taking differentials and
integrating gives,

In7T +(y —1)InV = constant

In(7V" ") = constant (5.56)

Thus, for an initial state (7}, V') and a final state (T, V),
TV~ = T,V,” ! (Adiabatic process, ideal gas) (5.57)

The T"s must always be absolute (Kelvin) temperatures.

Equation 5.56 can be converted into a relation between pressure and volume
by eliminating 7, using the ideal-gas equation in the form 7 = p/Rp = pV/nR.
Substituting this into Eq. 5.56, gives

pv pr1
nR

= constant

or because n and R are constant

pV7 = constant (5.58)
For an initial state (p,, V) and a final state (p,, V,), Eq. 5.58 becomes
V) = p,V" (Adiabatic process, ideal gas) (5:59)
V', and V, can be eliminated between Eqgs. 5.58 and 5.59 to obtain
r
fl:[EJVI (5.60)
2] T,

It is also possible to calculate the work done by an ideal gas during an adiabatic
process. In this case Q=0 and W =—-AU which holds true for any adiabatic pro-
cess. For an ideal gas, AU =nC, (T, —T;). If the mass n and the initial and final
temperatures 7, and T, are known, then

W =nC,(T; - Ty) (5.61)

Using the Ideal Gas law p = pRT =(m/V):RT in this equation to obtain
C 1
W:?U(prl_szz):ﬁ(prl - V) (5.62)



5.20 Adiabatic Processes for an Ideal Gas 127

Fig. 5.24 Hot steam pres-
sure cooker

where C =R/y —1I). If the process is an expansion, the temperature drops. 7| is
greater than 7, . p,V) is greater than p,J’, and the work is positive, as expected. If
the process is a compression, the work is negative.

Throughout this analysis of adiabatic processes assumed the Ideal Gas equation
of state, which is valid only for equilibrium states. Strictly speaking, these results
are valid only for processes that are fast enough to prevent appreciable heat ex-
change with the surroundings (so that O =0 and the process is adiabatic), yet slow
enough that the system does not depart very much from thermal and mechanical
equilibrium. Even when these conditions are not strictly satisfied, though, Eq. 5.59
through 5.61 gives useful approximate results.

Hot steam escapes from the top of this pressure cooker at high speed. Hence,
it has no time to exchange heat with its surroundings, and its expansion is nearly
adiabatic. As the steam’s volume increases, its temperature drops so much (See
Eq. 5.59) that it feels cool on this chef’s hand (See Fig. 5.24 above).

Example 5.14 Adiabatic Compression in a Diesel Engine

The compression ratio of a diesel engine is 15 to 1; this means that air in the
cylinders is compressed to 1/15 of its initial value (Fig. 5.25). If the initial pressure
is 1.10x 10° Pa and the initial temperature is 27 °C (300 K), find the final pressure
and the temperature after compression. Air is mostly a mixture of diatomic oxygen
and nitrogen; treat it as an ideal gas with y =1.4.

Solution We have p,=1.10x105 Pa, 7} =300K , and ¥} /¥, =15. From Eq. 5.57,

y-1
r-r| A = (300 K)(15)** =886 K =613 C
2 1 V.

2

From Eq. 5.59,

14
Py =p (gj = (1.01x10° pa)(15)"*
2

=44 .8x10° pa = 44atm
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Fig. 5.25 A(ﬁgbatic com- Maximum
pression of air in a cylinder

) . Initial volume compression
of a diesel engine

If the compression had been isothermal, the final pressure would have been 15 atm,
but because the temperature also increases during an adiabatic compression, the
final pressure is much greater.

When fuel is injected into the cylinders near the end of the compression stroke,
the high temperature of the air attained during compression causes the fuel to ignite
spontaneously without the need for spark plugs.

Example 5.15 Work done in an adiabatic process

In Example 5.12, how much work does the gas do during the compression if the
initial volume of the cylinder is 1.00 L=1.00x 10~* m*? Assume that C, for air is
0.718 kl/kkgK and y =14 .

Solution Determine the mass using the Ideal Gas equation of state

p=pRT =(m/V)RT.

P (1.01x10° Pa)(1.00 107> m*)
RT, (287.05"q ,,)(300 K)

m=1.173x10"kg

and Eq. 5.26 gives
W =nC,(T, -T,)

=1.173x107 kg(0.718 kJ / kg K)(300 K —886 K)

W =—0.494 k] = —494 ]
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With the second method,

1
W=——_(RV—-RV,)
y—1

1
1.40-1

W=

-3 3
(1.01x10° Pa)(1.00x 107 ) — (44.8x10° Pa)[wﬂ

W =—494 k] = —494 ]

The work is negative because the gas is compressed.

5.21 Summary

This has been a long Chapter but its fundamentals can be summarized with the
following main points and equations.

* A thermodynamic system can exchange energy with its surroundings by heat
transfer or by mechanical work and in some cases by other mechanisms. When
a system at pressure p expands from volume ¥, to V,, it does an amount of work
W given by

W= pAV (5.63)

If the pressure is constant during the expansion

W=p(V,-1) (5.64)

* In any thermodynamic process, the heat added to the system and the work done
by the system depends not only on the initial and final states, but also on the path
(the series of intermediate states through which the system passes).

» The first law of thermodynamics states that when heat Q is added to a system
while it does work W, the internal energy U changes by an amount

U, -U, = AU = Q —W (First Law of Thermodynamics) (5.65)

» The internal energy of any thermodynamic system depends only on its state. The
change in internal energy during a process depends only on the initial and final
states, not on the path. The internal energy of an isolated system is constant.

* An adiabatic process requires no heat transfer into or out of a system, O =0.

* An isochoric process implies constant volume, AV =0, = W =0.

* An isobaric process implies constant pressure, Ap =0=W = p(V, =V]).



130 5 First Law of Thermodynamics

* An isothermal process implies constant temperature.
¢ The heat capacities C,, and C, of an ideal gas are related by

C,=C,+R (5.67)

The ratio of heat capacities, C,,/C,, is denoted by y
Cc

i (5.68)
CL)

7/:

« For an adiabatic process for an ideal gas the quantities 7V”" and pV’ are
constant. For an initial state (p,, ¥}, T;) and a final state (p, , V5, T5),

TlVly_l — Tsz}’—l (5.67)
oV =p V7 (5.68)

Or eliminating ¥, and V, between these equations gives,

4

T -1
% = [7‘}7 (5.69)
2 2

The work done by an ideal gas during an adiabatic expansion is

C 1
W=nCU(T1—T2)=?“(p1VI—sz2)=ﬁ(pr]—szz) (5.70)
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Chapter 6
The Kinetic Theory of Gases

As stated previously Classical Thermodynamics is very much a mathematical disci-
pline. Given that the defining equations are known, the theory is developed around
multi-variable calculus. The theory is actually quite elegant, but it does not pre-
dict how to estimate or calculate the fundamental quantities or the properties that
characterize them. For this, a transition to Statistical Thermodynamics is required.
Statistical Thermodynamics starts with the kinetic theory of gases and treats fluids
as made up of large assemblages of atoms or molecules. It can be a very detailed
and extensive theory that extends well beyond the subjects of interest to this text.
However, a smattering of Statistical Thermodynamics, including the kinetic theory
of gases, will be useful for understanding a number of Classical Thermodynamics
phenomena. A brief sojourn into the kinetic theory of gases is useful.

6.1 Kinetic Theory Basis for the Ideal Gas Law

Classical thermodynamics is based on treating all fluids (gases and liquids) as a
continuum. This means there is no macroscopic structure to the fluid. However,
liquids and gases in particular are made up of individual atoms or molecules. To
extend Classical Thermodynamics to be able to predict some of the parameters that
show up in the classical equations, molecular structure must be considered. Begin
by considering the size of some molecules of interest. Though there is some internal
structure to each of these molecules, they can be approximated as spheres to first
order (Table 6.1).

Generally of more interest to the analysis are the number of molecules per cubic
millimeter and the fraction of available volume they take up. For the above mol-
ecules, this data is presented in Table 6.2.

Example 6.1 Estimate the molecules per cubic millimeter for CO, and the fraction
of volume it occupies at STP. The average radius for the CO, molecule is 0.226 nm.
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Table 61 Effective molecu- Gas Effective atom/ Volume per
lar radii and volumes per molecule radius atom/molecule
molecule (nm) (cubic mm)
Helium 0.152 1.46E-20
Argon 0.181 2.50E-20
Nitrogen 0.175 2.23E-20
Oxygen 0.161 1.76E-20
Hydrogen 0.155 1.57E-20
Water 0.157 1.62E-20
Table ,6'2 Volume fraction Gas Fraction of volume at STP
occupied at STP
Helium 3.93E-5
Argon 6.71E-5
Nitrogen 5.99E-5
Oxygen 4.73E-5
Hydrogen 4.21E-5
Water 4.34E-5

STP standard temperature and pressure, 273.15 K and 1 atmo-
sphere pressure (101.3 k Pa)

Solution The effective volume of the CO, molecule is

V= 4Tﬂr3 = 4?”(0.226x10‘9)3 =4.835x10"% nm?

And the number of molecules per cubic meter for any gas at STP is given by

N, P 26 4
N=N, P _Na/RT _ N,p N,p _ 6.022x10°° *101325 9 687x10% molecsules
M M R RT 8314.47*273.15 m
MHT

N,= Avogadro's Number

Then the volume per cubic millimeter occupied by the molecules is,

v =V *N =4.835x10"2"*2.687x10% /1.0x10° =1.299x107> mm’

molecules

It is clear that in a volume as small as a cubic millimeter there are a huge number of
molecules and they fill only a very small fraction of the volume.
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Fig. 6.1 Column volume for
molecules impacting the wall

vdt

Now consider these molecules as they hit a stationary wall that confines them.
Assume that they are moving equally in all directions and have a distribution of
speeds. Thus at each speed the number that pass through a small area on the surface
of a sphere that is characterized by the polar and azimuthal angles 6 and ¢ is given
by

din,gy = din, sinf@dOd¢ 6.1)
4r

Consider a cylinder that ends on the surface of the wall and intercepts a small
area dA on the wall. The cylinder is of length vdt. (Only consider molecules close
enough to the wall that they do not collide with each other before they hit the wall.)
(Fig. 6.1).

Then the molecules with a given speed that will intercept the surface during dt
are those that are contained in the volume dV given by,

dV = dA(vdt cos ) (6.2)

The number that are headed in the right direction and can intercept the surface in
the time df are given by,

diying = gy dV = dAdidn, m‘%jﬂ 63)
T
So the number colliding per dAdt is given by,
an_ . . ;
colliding 1 sin@ cos0dOd¢ (6.4)

dAdt v 4

Now for every collision in which the molecule is scattered elastically, each mol-
ecule has a change in momentum corresponding to twice its momentum perpen-
dicular to the fixed surface.

Amv =mvcos0 —(—mvcos0) = 2mvcos 0 (6.5)
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The total momentum change for those colliding in dAdt is

sin@ cos” 0dOd¢
2

Amvdn dAdt (6.6)

_ 2
colliding — my dnv

Integrating over 0 from 0 to 7/2 and ¢ from 0 to 2z gives,

A’an}Ilcolliding =

%mv2 dn, dAdt (6.7)

for the total momentum change due to molecules at velocity v. Integrating over
all velocities to get the total momentum change and setting that equal to the total
impulse gives,

dFdt =L m [ v dn,dadr (6.8)
30
or
dFdt 1 ® } dF
drat _1 dn |=9E (6.9)
dAdi 3mU0 R 7
Then defining
n<v2> = J'OOO vzdnv (6.10)
Thus
_1 2 6.11
p= gnm <v > (6.11)

PV =~Nm(>?) (6.12)

This looks like the Ideal Gas law,
pV =nRT (6.13)

Note that n = N/N, where N_ is Avogadro’s number 6.022E+26 molecules per kilo-
gram-mole. So the Ideal Gas law is

pV=N(R/N,)T = NkT

k =R/Na=8314.47J/kmol/K/6.022E + 26 molecules/kmol

k =1.381E —23J/molecule/K — Boltzmanns constant
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and,

pV = NkT :%Nm<v2> <v2> :3]% Vims :\/@ :\/% (6.14)

Example 6.2 Estimate J/ _for a nitrogen molecule in a gas at 300 K. Compare this
with the speed of sound in nitrogen at this temperature givenby V. . =./yRT .

Solution So estimating the Vrms for nitrogen at 300 K gives

T 3138110 =M 300K
Vs = 1| — = - =516.9m/sec
m 28*1.661x10 " kg

The speed of sound in nitrogen is

Vound =JYRT =1.4%8314.47/28%300 =353 2m/s

So the molecules, on average, are traveling significantly faster than the speed of
sound. Thus if the gas is pushing a piston at speeds below 0.1 the speed of sound,
the gas molecules hardly know the piston is moving and the process of moving the
piston looks like a quasi-static one.

Perhaps more important is the following relationship.

EKE=%m<v2>:%kT (6.15)

which relates the average kinetic energy of a gas molecule to the absolute tempera-
ture.

6.2 Collisions with a Moving Wall

Now using the same type of analysis to evaluate collisions with a moving wall,
consider a wall moving relatively slowly compared to the RMS velocity of the mol-
ecules in the gas. The change in kinetic energy of a molecule striking a wall moving
away from it is given by,

AKE 94 = %m[(vcos@)2 —(vcosO — 2u)2J

1
AKE 94 = Em[vz cos? 0 —v* cos” 6 + 4uv cos 6 —4u2J

AKE g 4 =2muvcost (6.16)
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Multiplying this by the number of molecules striking the wall with velocity v gives,

. 2r
sin 6 cos OdQJO de
4r

T
AKE, = 2mvuj02 cos Ovdhn,

T
AKE ,, = muv*dn, joz sind cos’ 0d0O

AKE,, :%muvzdnv (6.17)
Then integrating over velocity gives,
1
AKEA:—nmu<v2>:pu (6.18)
3
Multiplying by the area of the moving wall gives
dx dv  AKE,,
Au=pA—=p—= &
PR ™ ™
pdV =AKE (6.19)

6.3 Real Gas Effects and Equations of State

The Ideal Gas assumes that the molecules are small spherical masses of negligible
volume that only interact with each other by bouncing off each other elastically.
This is not true because as the temperature goes down and the pressure increases,
eventually each gas will condense into a liquid. So as a minimum, there are two cor-
rections that must be made to the Ideal Gas law as an Ideal Gas becomes a ‘real gas’
or vapor. The first correction is for the volume that the molecules take up as they get
in the way of each other. Rudolf Clausius proposed that the actual volume V could
be corrected to a volume V' such that V'=V—b. He estimated that the excluded
volume should be four times the volume of each molecule. So he calculated b’ as

? N7zr? where ris the molecular radius. Van der Waals in 1873 included a second

correction factor to take into account the forces of attraction that molecules exert
on each other. These forces typically fall off very rapidly with distance between
molecules ~1/r%, so they are appreciable only between one molecule and its near-
est neighbor. Since the molecules are attracted to each other one would expect that
the actual pressure would be reduced from the pressure calculated by the Ideal Gas
Law. If p’ is the pressure based only on instantaneous collisions, the actual pressure
would be given by,

2
b= p'_a'(ﬁj (6.20)
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Combining this effect with the Clausius correction gives the Van der Waals equation
of state.

2
{p+a'(%) }(V—b')=mSRT (6.21)

Redefining
a=da'Na* b=>b'Na/N (6.22)

gives Van der Waal’s equation of state,

(p+ah*)v——b)=RT (Van der Waals) (6.23)

6.4 Principle of Corresponding States

Van der Waals also noticed that if the actual temperature and pressure for a gas are
normalized by the pressure and temperature at the critical point (the top of the vapor
dome) to produce a reduced temperature and pressure. The compressibility factor,
Z=pv/RT, for most gases could then be plotted on a small number of charts with the
value of Z_. being the distinguishing factor among the charts. A typical generalized
compressibility chart is given below for Z.=0.27 (Fig. 6.2).
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Fig. 6.2 Generalized compressibility chart for Z=0.270
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As shown previously the Van der Waals coefficients a and b are found in terms
of the critical state values. The coefficients are given by
272
g 2RI NI, (6.24)
64pcr Spcr

when these values are substituted into the Van der Waals equation, it can be ex-
pressed in terms of the reduced pressure, temperature and specific volume.

[P,+3J(3v,—1):8T, P,=£, T,,:l, y, == (6.25)

2 ¥
V) Fe Te Ve

For the Redlich-Kwong model this becomes,

p - T, — 0.42748 (6.26)
v, =0.0867 1,y 10.0867)
and for the Peng-Robinson model; this becomes
T, 0.457240 (627)

£= -
v, =0.077796 2 +0.1556v, —0.00605

Note that based on the corresponding states theory, the Ideal Gas Constant does not
show up and units depend only on what is used for critical state values.

6.5 Kinetic Theory of Specific Heats

The relationship for point molecules was derived above

%m<v2> _ %kT (6.28)

where the average kinetic energy of a point molecule is equal to 3/2kT. Had the
same derivation been made for point molecules in a plane, the average kinetic en-
ergy would equal to k7, and if the molecules were confined to a line, the average
kinetic energy would be equal to 1/2kT. Since the molecules are bouncing around
in three dimensions, they essentially have three degrees of freedom. The Equi-Par-
tition of Energy theorem states that each degree of freedom contributes 1/2kT to
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the thermal energy of the gas. Admittedly at this point this is somewhat of a hand
waving argument, but it will be proven more rigorously later on.

Now when dealing with diatomic and polyatomic molecules, they can store en-
ergy in two additional modes. Since they have a non-spherical shape, they can store
energy as a rotation about their center of mass. In addition, since they are not rigidly
connected, they can store energy because of vibration between the atoms.

For any three-dimensional structure, there are potentially three different axes
about which energy can be stored in the rotation of the structure. However, for a
diatomic molecule there are really only two degrees of freedom associated with the
rotation of the molecule. Rotation about the axis joining the two atoms stores an
insignificant amount of energy and its contribution to stored energy is negligible.
Therefore, for a diatomic molecule, gas rotation can contribute only £7 to the stored
energy per molecule. Of course, for polyatomic molecules, the full three degrees of
freedom associated with rotation are possible and rotation can potentially contribute
3/2kT to the stored energy per molecule.

A diatomic molecule stores the energy of vibration as the kinetic energy of sepa-
ration and the potential energy of separation. Therefore, vibration contributes two
degrees of freedom to the energy storage in a diatomic molecule. The relationship
for polyatomic molecules depends on the vibration modes available and excited, but
certainly more than two degrees of freedom are possible.

Based on this model a diatomic gas should store internal energy in the following
manner.

U=U

trans

+U

rot

+ Uvib

U= % NKT + NkT + NkT (6.29)

Or factoring out the number of molecules,

U:N(%kT+kT+ij

3 (6.30)
U:n(ESRTPBTPRT)
Then to calculate the specific heat we have
uzgz[gﬂiTHRTPJ%Tj
n 2
du 3 7
Cv:d_T =E§R+5R+§R:EER (6.31)

C, _C+R=2w
2
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This implies that for a monatomic Ideal Gas we should have,

C, = %ER =1.5%8.3143kj/(kgmole — K) =12.47kj /(kgmole — K)

C,= %i}% =20.79kj /(kgmole — K) (6.32)
k =5/3=1.667

All of which are in excellent agreement with experiment. However, for a diatomic
gas like hydrogen this implies that

C, = %‘R =3.5%8.3143kj/(kgmole — K) = 29.1kj/(kgmole — K)

g , 6.33
C, =5 % =374k /(kgmole ~ K) (6.33)
k =9/7=1286

which is not in good agreement with experiments. These are over estimates of the
specific heats for diatomic gases at normal temperatures below the onset of disas-
sociation.

Consider the following chart for hydrogen. Basically at low temperatures, Cp
takes the value of a monatomic gas. As the temperature increases, the specific heat
increases in what appears to be two steps when plotted against the temperature on a
logarithmic scale. The first step corresponds to the activation of rotational degrees
of freedom. The second step corresponds to the activation of the vibration degrees
of freedom (Fig. 6.3).

The transitions between the levels are functions of characteristic temperatures
for rotation and vibration. For hydrogen these temperatures are 7. =87.5 K and

rot
T ,=6382 K. For other diatomic gases the transition temperatures are listed in

Table 6.3.

Perhaps the most useful thing to observe from this table is that for temperatures
of interest with air as the working fluid, both oxygen and nitrogen are in the region
where the rotational degrees of freedom have been activated and the vibration de-
grees of freedom are still dormant. Thus for both gases C should be 5/2 R and Cp
should be 7/2 R. This gives a value for k of 7/5 or 1.4 which matches the experi-

mental value quite well near room temperature.
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ConstantPressure Specific Heat for
Hydrogen
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Fig. 6.3 Constant pressure specific heat for H, vs. temperature

Tabl.e 6.3 C.hara.cteristic Gas Characteristic rota- | Characteristic
rotation &.v1braF10n tempera- tion temp (K) vibration temp (K)
tures for diatomic molecules
(Reference: [1]) H, 87.5 6382

OH 27.2 5411

HCI 15.2 4331

CH 20.8 4145

N, 2.88 3416

HBr 12.2 3839

CcO 2.78 3143

NO 2.45 2758

0, 2.08 2289

CI2 0.346 813

Br, 0.116 468

Na, 0.223 231

K, 0.081 134

6.6 Specific Heats for Solids

Based on the simple models above, its worth commenting on the specific heat of
a solid. The atoms vibrating in a solid at room temperature store energy in two
modes—the kinetic energy of movement about the neutral position, and the po-
tential energy of the field trying to restore the atoms to the neutral position. So for
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Table 6.4 Debye temp cra- Substance Debye temperature (K)

tures for selected materials
Lead 88
Mercury 97
lodine 106
Sodium 172
Silver 215
Calcium 226
Zinc 235
Copper 315
Aluminum 398
Iron 453
Diamond 1860

each possible direction of motion, there is kT energy stored. (A solid is essentially a
constant volume phase so the constant pressure and constant volume specific heats
are equal.) This gives

U =3NkT =3RT C, =3R (6.34)

This is known as the law of Dulong and Petit. It is only valid if the temperature of
the solid is well above the Debye temperature for the solid. Below the Debye tem-
perature of a solid the constant volume specific heat is given by

12 ¢x, x° 3 0
X %o },xo =TD,®D = DebyeTemperature (6.35)

C,=3R —
x; 70 et -1 et -1

v

Some typical values of Debye temperatures are given in Table 6.4.
This end the excursion to solids. Unfortunately, liquids are a bit more compli-
cated and cannot easily be addressed here.

6.7 Mean Free Path of Molecules in a Gas

So far, the collisions between gas molecules have been neglected, which is the
equivalent of treating the molecules as point masses. Collisions actually do not af-
fect the velocities of the molecules if the gas is in an equilibrium state. When two
molecules collide their energies change, but because the gas is in equilibrium, for
every molecule whose energy increases another’s energy must decrease. Now con-
sider some properties that can apply to non-equilibrium states. In order to do this,
collisions and the size of the molecules must be taken into account.
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Fig. 6.4 A track ofa O
molecule in a gas O O

O

The first thing that must be considered is how far molecules travel between col-
lisions. Begin by assuming that one molecule of interest is moving and all of the
other molecules are frozen in place. The moving molecule moves from place to
place colliding with the other molecules as it travels with a track like that described
in Fig. 6.4.

Treating the molecules as hard spheres, when the moving molecule approaches
another molecule, the closest its center can come to the other molecule’s center is
two times their radii. Now in many cases the two molecules will not meet with a
collision velocity vector aligned with their centers. Often there will be skimming
collisions. So the area that a stationary molecule presents to the moving molecule
looks like a circular target with a radius twice that of one of the molecules. The area
presented to the moving molecule that will produce a collision will be called its
cross section and will be symbolized by 4 . Thus,

o =n(2r)? = 4nr? (6.36)

Now if the molecule is moving with velocity v along this zigzag path, in a time t, it
will sweep out a volume given by

V =vto

The number of non-moving molecules per unit volume can be represented by N,
measured in molecules per cm?.

N =N,2Z
M

p = density inkilograms/m’

M = molecular mass (6.37)

N, = Avogadro's Number

Then the number of collisions occurring in the volume swept out by the moving
molecules path will be

C=Novt
(6.38)
g = Nov
t
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The collisions per unit time will depend on the number of atoms per unit volume,
the collision cross section, and the speed of the colliding molecule. The average
distance between collisions will be the distance traveled divided by the number of
collisions.

PR __ (6.39)
Novt No

The average distance between collisions is called the Mean Free Path and is usu-
ally identified with the symbol A .

Example 6.3 Calculate the scattering cross section for CO, and the mean free path
at STP.

Solution The effective molecular radius for CO, is 0.226 nm so,

o =4mr® =4%3.1415926%(0.226x107°)* = 6.41x107"" m?

Then the mean free path is

1
2=
2.687x10% *6.41x107"

=5.8x10%m = 58nm

Therefore, a CO, molecule will normally average traveling about 128 diameters
before having a collision at STP.

When the assumption that only one molecule is moving and all of the others are
stationary is relaxed the equation for the mean free path must be modified slightly.
If all of the molecules are assumed to have the same speed, the equation for the
mean free path is given by,

_ 075
No

A (6.40)

If the molecules have a distribution of speeds typical of a gas at temperature, (Max-
well-Boltzmann distribution) the mean free path is modified to,

_0.707
No

A (6.41)

6.8 Distribution of Mean Free Paths

Not all collisions occur after a molecule travels one mean free path. Some travel
farther and some travel less than a mean free path. Consider starting with a group of
molecules 7, In traveling a distance dx, some of them dn will collide with atoms in
the gas. There will be n,—dn left. In the next distance dx, some more will collide,
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but the number that collide will be proportional to the number that are traveling, so
a balance equation can be written as,

dn =—p_ndx (6.42)
where p,_ is simply the probability of a collision. The number of collisions per unit

distance is simply the number of collisions per unit time divided by the velocity of
the molecules. Therefore, from Eq. 6.38 the collisions per unit distance are given by,

C
—=No (6.43)
vt

The inverse of collisions per unit distance is simply distance per collision, which is
the probability of a collision in a unit distance. Thus

p.=No (6.44)
Then separating variables and integrating Eq. 6.42 gives,

dn

—=—-Nodx
n
In(n) = —-Nox+ constant (6.45)
n=nye N

Given this distribution of free paths, now calculate the average path, or mean free
path.

“xdn [ xpnge P dx 1 eo 1 1
b =— [ (pxe P d(px) = —=—— (649
ny "y Pe 0 V2 No

c

as expected. So Eq. 6.45 can be written as

n=nye '* (6.47)
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Fig. 6.5 A gas between a .
moving and a stationary plate ¥ Moving Plate

StationaryPlate v X

6.9 Coefficient of Viscosity

Consider Fig. 6.5. It represents two plates that are moving relative to each other
with a gas in between. The lower plate is stationary and the upper plate is moving to
the right. To keep the upper plate moving a force is required to overcome the friction
of the gas between the two plates. The friction force is defined by

dv
F=pd=—
% (6.48)

1 = coefficient of viscosity

The coefficient of viscosity establishes the relationship between the friction force
and the velocity gradient in the fluid. The gas must have zero velocity in the x direc-
tion at the bottom plate and it must have the velocity of the upper plate at the point
in meets the upper plate.

The dashed line represents a surface with in the gas at an arbitrary distance from
the bottom plate. The macroscopic velocity of the gas, v, is much less than the
rms velocity of the gas molecules due to thermal excitation, so the results for an
equilibrium gas can be used. The gas molecules above the dashed line possess a
greater momentum than the gas molecules below the dashed line. As a result when
the molecules cross the dashed line there is a net rate of transport of momentum and
by Newton’s second law there must be a force to sustain this momentum transport.

A macroscopic analogy would be two pickup trucks passing each other on the
road with one going faster than the other does. If a rider in the bed of the faster
pickup truck tosses a bale of hay to the slower pickup truck at right angles to the
trucks, the slower truck will feel a jump in momentum because the bale of hay is
traveling at a faster speed when it arrives. In the reverse situation, if a rider in the
back of the slower pickup truck tosses a bale of hay to the faster truck, the faster
truck will feel a loss of momentum because the hay is traveling at a slower speed
when it lands in the faster truck.
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dv

dA

Fig. 6.6 Demonstration of small volume at distance

Now consider Fig. 6.6. Compute the average height above the dashed line plane
that a molecule has its last collision (or change in momentum) prior to crossing the
plane.

In Fig. 6.6 dV is a small volume at a distance » from the differential d4 in the
crossing plane. The vector » makes an angle with the normal to the plane of # and d4
fills a solid angle dw with respect to dV. Now if Cfis the collision frequency in dV,
and the total number of molecules in dV" is NdV the the total number of collisions in
dV in time dt will be,

1
ne = C/Navai (6.49)

The factor 2 appears so as to not count collisions twice. At each collision, two
new free paths originate and they start off uniformly in all directions. The number
headed toward dA is given by,

dw dAcos6
ECdeth do = 2 (6.50)

The fraction that reach dA is given by Eq. 6.43 and writing dV in spherical coordi-
nates as dV = r” sin0d0d¢dr gives

dn,, =~ C, NdAdrsin0 cose *dOdgr (6.51)

Then

1

= " [ qudsi g 1 6.52
nﬁ]—ECfNJ.O [\7 ], dAdtsin6 cosbe dodgdr = C;NAdAds (6.52)
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And since

C,= %n/p = iNVdAdt v = averagemoleculespeed (6.53)

Now to get the average height of the last collision before crossing the plane, multi-
ply by the height r cos 6 and integrate over r, 6, and ¢ . This gives,

_ 1 iz 2 2 ‘% Sy
n, _chdAdzjo sin6 cos” 00 [ " dg| “re dr=-L-N2*dAds  (6.54)
And dividing by the total collision rate in V" gives

lC/-Nﬂ,szdt
6 2
Yave = 1 ==1 (655)

~C,NAdAdt
4

Now at a height above the plane the flow velocity is

3 2 2 dv
V= vp/ane + E @ (656)
And the momentum carried by a single molecule is
=m| v+ 2 A a 6.57
p 3" (6.57)

So the total net momentum carried across the plane by molecules crossing from
above is given by,

Byper =iN\7m(v+§l§j
y

And the total net momentum by those crossing from below is

Plower:lN‘jm v_z)’ﬂ
4 3 dy

The net rate then is the difference of these two quantities, or,

P, = %Nmil dv (6.58)

dy
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From Newton’s second law this is equal to the viscous force per unit area. There-
fore, the coefficient of viscosity is given by

= Nma or =2 (6.59)
3 30

The substituting for the mean velocity,

(6.60)

2 (2kaj%

30 T

Once again, more advanced analysis taking into account the motion of all of the
molecules in the gas will give

Ry ( 2mkT j%
= (6.61)

o= 16\/56

T

Note that these two equations only differ by 3 %. An unexpected conclusion of this
equation is that the viscosity of the gas only depends on the temperature and is in-
dependent of the pressure or density. Experiment bears this out except at very low
pressures where the mean free path becomes of the order of the distance between
the two plates. In addition, this relation was can be used to determine the size of
molecules. Consider

2

5 [2kaj% c

RPN 7

Arr

and for the liquid state

K _ NuVmolecule _ Na4ﬂ/3r3 — l — 4717Na 7’3 — Bl”3
m M M p 3M
Combining
S . € Amu (6.62)
Bp 4ru CBp

This was one of the earliest methods developed for determining the size of mol-
ecules.
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6.10 Thermal Conductivity

The analysis for thermal conductivity proceeds in the same fashion as viscosity
where the velocity gradient in Eq. 6.48 is replaced by the temperature gradient and
both planes are stationary. This gives,

dT 0 dT
=k A— ===k, — 6.63
O=kyr dy q y Tdy ( )

The mean energy of a molecule at a temperature 7' is EkTT , where f'is the number
of degrees of freedom that are active. The energy carried across the arbitrary plane
per unit area per unit time from a volume above the plane is

wper 4 9 7B 37 dy

and the energy carried across the plane from a volume below the plane is

:lmkatT_Eid_Tj
4 3

Giower

2 dy
Differencing these two gives

1 dr
= = Nvfkpd o
et p vk & (6.64)

Comparing Eq. 6.65 with Eq. 6.64 the thermal conductivity must be given by

|
7 2k, T2
by = Ny = L e L g (26T j (6.65)
6 6 o 3 0 \mm
Once again more exact theories give
1
_ 257 fkp 2kBTj/2 666
T 64\/5 o Tm ( . )

Thus, the thermal conductivity should only depend on temperature. This is in good
agreement with experiment down to pressures where the mean free path becomes
comparable to the separation between the plates.

Now the ratio of the viscosity to the thermal conductivity from Egs. 6.57 and
6.62 is



Reference

Table 6.5 Comparison of
reduced viscosity-thermal
conductivity ratio for several
gases

But

This gives

Consider Table 6.5 for some common gases.

151
Gas (273 K) o
mthermal
Argon 0.405
Hydrogen 0.504
Oxygen 0.511
Nitrogen 0.512
Carbon dioxide 0.590
M
19?, kg = m=—
2 N,
C
_He (6.67)
]Mkthermal

The ratio is pretty accurate for Argon but the multi-atom molecules overshoot
due to internal degrees of freedom for energy storage. The velocity does not carry
all of the energy that is transported.

Reference

1. Lee JF, Sears FW, Turcotte DI (1973) Statistical thermodynamics, 2nd edn. Addison-Wesley,

Boston



Chapter 7
Second Law of Thermodynamics

The second law stipulates that the total entropy of a system plus its environment
cannot decrease; it can remain constant for a reversible process but must always
increase for an irreversible process.

7.1 Introduction

The First Law of Thermodynamics has been validated experimentally many times
in many places. It is truly a law of physics. It always allows the conversion of en-
ergy from one form to another, but never allows energy to be produced or destroyed
in the conversion process. But it is not a complete description of thermal energy
conversion processes. The First Law would allow heat to be transferred from a cold
body to a hot body as long as the amount of heat transferred decreased the internal
energy of the cold body by the amount it increased the internal energy of the hot
body. However, this never happens. Heat can only be transferred from a hot body
to a cold body. Therefore, there is a requirement for a Law that explicitly states
the direction of thermal energy transfer in addition to the conservation of energy
expressed by the First Law. This is the Second Law of Thermodynamics. A simple
statement of the Second Law would be that “heat can’t be spontaneously transferred
from a cold body to a hot body.” More statements that are elegant will be provided
shortly.

7.2 Heat Engines, Heat Pumps, and Refrigerators

Consider Fig. 7.1. Heat is transferred from a heat reservoir to an ideal heat engine
to produce work.

Unfortunately, it is virtually to transfer heat to a heat engine without using some
kind of a working fluid. Therefore, if the working fluid is passed to the heat engine
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Fig. 7.1 Ideal heat engine -
Heat Reservoir

Heat Work
Engine

Fig. 7.2 Real heat engine .
Heat Reservoir

Hegt Work
Engine

Heat Reservoir

and all of its contained heat is converted to work, it will have to be released to the
environment with no heat or at zero absolute temperature. This is virtually impos-
sible to do, so any realistic heat engine will need to operate between two heat reser-
voirs, one to provide the heat and another to absorb the working fluid after the work
has been extracted from it. Therefore, a simple concept of a heat engine would have
to look like Fig. 7.2. There must be a high temperature reservoir to provide heat and
a low temperature reservoir to accept heat after the work has been performed. Then

W=Q11 _QL

Now there are basically three devices that operate in a cycle that can be represented
by this model of a heat engine. These are a True Heat Engine, a Heat Pump, and a
Refrigerator.

For the True Heat Engine, the objective is to produce work, so its efficiency is
given by,

n=— (7.1)
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Note that O, = W+ Q, and h could be optimized by minimizing Q,, The heat pump
absorbs work and produces heat to the upper reservoir. Its Coefficient of Perfor-
mance is given by,

COP,, = %

(7.2)

Once again Q,=W+Q,, but COP could be maximized by minimizing W. The re-
frigerator absorbs work and removes heat from the low temperature reservoir. Its
Coefficient of Performance is given by,

_9
Cor, =~ (7.3)

In this case COP could be maximized by minimizing W also.

7.3 Statements of the Second Law of Thermodynamics

The Second Law must apply to each of these devices, so consider two more elegant
statements of the Second Law.

Clausius Statement “It is impossible to construct a device which operates on a
cycle and whose sole effect is the transfer of heat from a cooler body to a hotter
body”.

Kelvin-Plank Statement “It is impossible to construct a device which operates on
a cycle and produces no other effect than the production of work and the transfer of
heat from a single body”.

The two statements are equivalent. See Figs. 7.3a and b as follow;

Note that both statements are negations. They cannot be proven theoretically
from some higher first principle argument, but have simply been determined to be
correct by experiments similar to the First Law. They also rule out any heat engine
that can be 100 % efficient.

TH Th

A

Tc |———| Device Device L —»

a b
Fig. 7.3 a Not allowed by Kelvin-Plank statement. b Not allowed by Clausius statement
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7.4 Reversibility

Now in order to find the most efficient engine possible given two heat reservoirs,
the concept of reversibility must be quantified. Reversibility was touched on in the
First Law chapter when quasi-static processes were discussed. A reversible process
is simply one that once it has taken place it can be reversed back to the original
state. It is the thermodynamic equivalent of a frictionless surface in mechanics or a
resistance-less wire in an electrical circuit. No process is reversible, but a process
can reversed if the energy losses are so small as to be negligible. The energy losses
that have to be considered are

. Friction losses

. Heat transfer across a finite temperature difference
. Unrestrained expansion of a gas

. Mixing of simple substances

. Chemical or nuclear reactions

[ I S R S R

Friction losses mean that energy is lost when two bodies slide across each other.
When the sliding is reversed, additional friction losses occur so a process involving
friction cannot be reversed. Heat transfers across a finite temperature drop mean
that when the process is reversed, the heat must transfer from a colder body to a hot-
ter body. This is impossible. Unrestrained expansion of a gas means that the volume
increased without work or heat being applied. A gas cannot be compressed without
doing work. When substances are mixed, it requires work to separate them so this
type of process cannot be reversed. Finally, once a chemical or nuclear reaction
has occurred, the products cannot be converted back to the ingredients without the
input of energy. Now if these processes are eliminated and only reversible processes
considered, it is possible to talk about the Carnot engine.

7.5 The Carnot Engine

The heat engine that operates most efficiently between a given high temperature
reservoir and a given low temperature reservoir is a Carnot engine named after
Sadi Carnot who first proposed it. It uses reversible processes to complete a ther-
modynamic cycle and produce the most useful work possible. It also establishes a
standard to which other heat engines can be compared to determine how well they
use the thermal energy available in a high temperature reservoir. If their efficiency
is significantly less than the Carnot efficiency, there may be improvements possible
to boost their efficiency. The simplest model for a Carnot Engine is one based on
an Ideal Gas cycle. The cycle consists of four processes and is described in Fig. 7.4,
which the figure is the plot of the cycle in a 7-v diagram.

Assume a piston cylinder arrangement that can alternately be placed in contact
with hot and cold reservoirs and during the transition can be treated as adiabatic.



7.5 The Carnot Engine 157

Fig. 7.4 T-v diagram for
Carnot cycle 1 2

Process 1-2 is an isothermal expansion from point 1 to point 2. Heat is added
reversibly at the high temperature reservoir and the volume contained by the piston
expands.

v
O s =W, = [ pdV = mRTHln( /Vl) (7.4)

Process 2—3 is an adiabatic expansion form point 2 to point 3. The volume continues
to expand adiabatically.

Sy
T,
0=0 % = (T_LJ (7.5)

Process 3—4 is an isothermal compression from point 3 to point 4. The piston cyl-
inder arrangement is placed in contact with the cold reservoir and the gas is com-
pressed isothermally.

v,
Qs =Wy = _[pdV =mRT} In (74) (7.6)

3

Process 4-1 is an adiabatic compression from point 4 to point 1. The gas continues
its compression back to its initial conditions.

S
o=0 |[L| 2k (7.7)
Ty £
Then the efficiency for the cycle is given by
v,
T, ln( / )
W 0,0 o, ") a9

0 O O THIn(%)
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and for the adiabatic processes,

V. V, v, v
34 VY, =V, a4 m(Vy):]n(ly) (7.9)
v, V. v, V, V3 8
Therefore
T,
—1-2L 7.10
n 7, (7.10)

which is the fundamental relationship for the Carnot efficiency of a reversible heat
engine.

When the cycle is operated in reverse, the heat engine becomes a heat pump and
this gives,

1 1
COP,, = &: O = = (7.11)
VVnet QH_QL ]_Q/ 1_77
O T,
This is the fundamental relationship for a Carnot heat pump.
By the same analysis the COP for a Carnot refrigerator is given by
COP, = 2 __9 (7.12)

1 1
W, 0,-0, Q%L_lz T%L_l

and this is the fundamental relationship for a Carnot refrigerator.

Example 7.1: A Carnot Engine operates between two temperature reservoirs main-
tained at 240 °F and 40 °F. If the desired output from the heat engine is 15 hp what
is the heat transfer from the high temperature reservoir and the heat transfer to the
low temperature reservoir?

Solution: The efficiency of the Carnot Engine is given by

T, 40+4 2
,7=1__L=1_M=1_@=_=0.286
T, 240+ 460 700 7
15%254
0.286=Q—” 0, = w__b'D 5=1.33xIOSBtu/hr

w 0.286  0.286
0, =0, —W =1.33x10° —=15*2545 = (1.33—0.38)x10° = 9.5x10" Bru / hr

Example 7.2: A Carnot engine operates with air on the following cycle.
Process 1-2 Constant temperature expansion at 327°C
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Process 2-3 Adiabatic expansion to 8 m/kg

Process 3—4 Constant temperature compression at 77 °C

Process 4-1 Adiabatic compression starting at 80 kPa back to 327°C
Determine the thermal efficiency and the work output per cycle per kg.

Solution: The thermal efficiency is

T, 2
7I=1__L=1_77+—73=1_@=0~417
T, 327+273 600

H

At 4 the specific volume can be found from the Ideal Gas equation

8314.47 *35()
RT,
= e 48-96469 =1.256m" / kg
s 8.0x10

Then for an adiabatic compression from 4 to 1,
1

y-1

4

350

T 25
vo=v,| = =1.256(—) =0.3264
T, 600

Also for the adiabatic exp ansion from 2 to 3,
1

T 25
Sl =8(@j =2.079
T, 600

2
Then the work for the isothermal exp ansion from1 to 2,

vV
4, = RT, ln( %) =287%600*In (2079 1) ¢\ = 3.189x10° Joutes

q, = RT, ln(%) =287*350*In(1-256/) = ~1.860x10° Joules

Woorvete = 4 =4, = (3.189 = 1.860)x1 0’ Joules = 1.329x10° Joules
Oor

n=—=0417= ——o

_m w=0.417%3.189x10° = 1.329x10’ Joules
qu .189x

7.6 The Concept of Entropy

When the fundamental concepts of Classical Thermodynamics were being formu-
lated the scientific community investigated a number of concepts that would for-
malize the Second Law analytically. The concept that was finally settled on was
8Q/T . If a cyclic integral of this quantity is taken for the Carnot engine cycle it
gives,

95§=Q_H_& (7.13)
T T, T,

H L
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and for the Carnot cycle

o _ 1 O _ 9 (7.14)

L
Oy Ty r, T,

This then leads to the conclusion that

Cﬁﬁzg (7.15)
T

As a result 6Q/T is a perfect differential and it can define a new property of a
thermodynamic system. This property is called entropy and given the symbol S. Its
differential is given by,

JY

ds=—= 7.16
T (7.16)

reversible

1/T serves as an integrating factor for dQ. It can be integrated for a process to give,

AS=J% (7.17)

Note that S is an extensive property and it can be converted to a specific entropy by
dividing by the mass, s =S/m. In addition, an adiabatic-reversible process implies
AS =0, the Carnot cycle can be plotted on a T-s diagram rather than a 7-v diagram.
Figure 7.5 is such a plot.

Then,

Fig. 7.5 Temperature-
entropy plot for a Carnot 1 2
cycle

Y
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For a reversible process the heat transfer can be written as dQ = TdS. This allows the
First Law for closed systems to be written as

dU = 8Q — 8W =TdS — pdV (7.19)

Or on a per unit mass basis it can be written,

du =Tds — pdv (7.20)

The First Law for a flow system using the enthalpy gives,

h=u+ pv
dh = du+ pdv +vdp (7.21)
dh =Tds + vdp

7.7 The Concept of Entropy

Now consider an Ideal Gas with constant specific heats. Dividing Eq. 7.20 by 7 and
using the Ideal Gas law gives

ds = Pt o Al pdv (7.22)
T Ty

This can be integrated to give,

s,—5,=C, h{QJ + Rln(v—zj (7.23)
T

Y

Equation 7.23 can also be evaluated as,
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ds—C ﬂ——d =C, d—T—Rd

rp (7.24)

s5,~-5,=C In| 2 L\ Rrin
T pl

Of course, these equations only apply to reversible processes. However since they
relate changes in entropy to other thermodynamic properties at the two end states,
the can be used for reversible and irreversible processes.

If the entropy change is zero, called an isentropic process, then Eq. 7.23 becomes

-1 ] Y
L_ (ij L_ [&j g N &:[ﬁj (7.25)
T Vs T, P P\
Of course, these equations are exactly the ones obtained earlier for a quasi-static
adiabatic process.

Example 7.3: Nitrogen is contained in a rigid volume at 27°C and 100 kPa. A
paddle wheel does 900 kJ of work on the nitrogen. If the volume is 3 m?, calculate
the entropy increase assuming constant specific heats.

Solution: Treating the process as adiabatic

W =AU =mC AT
Calculating the mass based on the Ideal Gas law

Sk
:%:831140:;0 *3 =3.367kg
-48 300

C - R :8314'47/28:742.4J/kg/1<
y—1 1.4-1

9.0x10° =3.367*742.4* (T, —300)

5
T, =300+%=300+360=660K
3.367*742.4

ASzm*CV*ln(%j=3.367*742.4*ln(660 1.97kJ / K
1

300) -

Example 7.4: Nitrogen is heated to 327°C and a pressure of 1.5 MPa. It is then
expanded to 200 kPa with a reversible adiabatic process. Calculate the work done
by the nitrogen assuming it to be calorically perfect.
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Solution: The first law gives

W =mC(T,-T))
p y% 0.286
T,=T, j =600%(0-2/ ()" =337k (7.26)
1
—w=742.4%(337 - 600) =—195k/ / kg

7.8 Entropy for an Ideal Gas with Variable Specific Heats

If the Ideal Gas does not have constant specific heats over the temperature range of
interest, the entropy change equations are very useful. Consider the constant pres-
sure specific heat equation,

gs=dh _vdp _ - dT _pdp
T T T " p

T

S, =8, zjcpd—f—Rln(&j

T, pl
Now define
e
0 o _ | ~p»
s s = j Ldr (7.27)
and
S, =8 —SO—SO—RID[&j (7.28)
2 1= P2 1 :
P

This can be rearranged as,

S )

Py _ 7k = (7.29)
P e (@)
This allows the definition of a relative pressure, p,, as,
p =t (730)
Thus for an isentropic process,
Py _ P (7.31)

pl prl
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The volume ratio can be found by applying the Ideal Gas law to get

RT/ n/
v“w__/p,_nL _/p

22 _ = = (7.32)
vl RY/ pZ Ti 7/
b D
Therefore a relative volume can be defined as, v , with
V2 _ Ve (7.33)
v, v

Both p, and v, are tabulated as a function of temperature for several gases in Ap-
pendix 13.

Example 7.5: Rework Example 7.3 assuming variable specific heats.

Solution: As before m=3.367 kg
First law —w=u, —u,

__Ww __(900) 55512/ _ _
w, =W/ +u, = et 2/, =465.56k] | kg =13035.6kJ / kmol

T(13035.6) = 650 + 13035.6 130108 *25=650+0.0446*25=651.1K

13566.4-13010.8

5" =186.3310
s =209.411+0.0446* (210.2928 —209.1411) = 209.193

The Ideal Gas law gives the pressure at state 2

T, 651.1
=p,| = |=100%| —— |=217kP
P pl[T] ( 300 j a

1

AS =m|:(sg —s;’)—Rm(P%] ﬂ

=3.367*[209.193—186.3310—8.31447*ln(217100ﬂ/28
=1.97kJ / K

Example 7.6: Rework Example 7.4 assuming variable specific heats.

Solution: Assume isentropic process,
AtT=600K, P ,=16.13
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p.=p, [&j:m.m*(%j:z.ls
p 1.5

1

T(2.15)=325+ 207184 4 s 35510.574%25-330.4K
2.38-1.84

-W=u, —u,
u, =11911.4/28 =425.4

6073.4+0.574*(6595.7 — 6073.4)
u2 =

28

w=425.4-227.6=197.7kJ / kg

=227.6

7.9 Entropy for Steam, Liquids and Solids

For pure substances like steam the specific entropy is included in the steam tables
similar to specific volume, specific internal energy and specific enthalpy. In the
mixed phase region, the specific entropy is calculated based on the steam quality
similar to the other properties.

A (7.34)

S=S‘ V4

J

For a compressed liquid or solid, the specific heat can be assumed constant and both
assumed incompressible (dv =0), so,

Tds = du = CdT
ds = c% (1.35)

As_, = Cln(gj
T,

1

Certainly if the specific heat is known as a function of temperature, the function-
al dependence can be substituted in the above equations and the integration per-
formed. Specific heats for liquids and metals are listed in Appendix B and Appendix
9 (Bahman).

Example 7.7: Steam is contained in a rigid container at 600 K and 0.8 MPa. The
pressure is reduced to 60 kPa. Calculate the entropy change and heat transfer.

Solution: The specific volume must remain the same. The initial specific volume
is taken from the superheated steam tables

v, =0.34046 m’ kg u, = 2841.1kJ kg s, =7.33094k/kg/K
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Then at 60 kPa the fluid must be in the mixed liquid-vapor region, so from Ta-
ble 14.2 of Appendix 14, the specific volumes are

v, =0.001033 m’ lkg v, =2.73183 m’ lkg
0.34046 = 0.001033 + x* 2.73183x = (0.34046 —0.001033) /2.73183 = 0.124

So the final internal energy is

u, =359.8+0.124*2129.2 = 623.8 kJ/kg

and

s, =1.14524+0.124*6.38586 = 1.93709 kJ/kg/K

Au=2841.1-623.8=2217.3kJ/kg
As =7.330904 —1.93709 = 5.38385 kJ/kg/K
7.10 The Inequality of Clausius

The Carnot cycle is a reversible cycle operating between two reservoirs. If an ir-
reversible cycle operates between the same two reservoirs, the available work from
the irreversible cycle will have to be less than the available work from the reversible
cycle. That is

w., <W

irr rev

If the First Law is applied to a cycle and equal amounts of heat QH are transferred
from the high temperature reservoir, more heat will be transferred to the low tem-
perature reservoir for the irreversible cycle.

QH = VVrev + QL,/‘ev
QH = VVirr + QL,irr

So when performing the cyclic integral for dS.

gS(‘STQj <0 (7.36)

For a reversible process the above integral is 0, of course. If an irreversible refrig-
erator is being considered more work will be required that for a reversible refrigera-
tor, the heat transferred at the high temperature reservoir will be greater so the cyclic
integral will still be less than zero for an irreversible process. So the fundamental
result can be written for any cycle,
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Fig. 7.6 Power plant cycle

95(5_Qj <0 (137)
T irr

This is known as the inequality of Clausius. It is a consequence of the Second Law
of Thermodynamics.

Example 7.6: A steam power plant operates on the cycle shown in the Fig. 7.6 below

Process 1-2: Adiabatic compression in the pump

Process 2—-3: Isothermal heat transfer in the boiler

Process 3—4: Adiabatic expansion in the turbine

Process 4—1: Isothermal heat transfer in the condenser

The quality at point 4 after expansion through the turbine is 88 %. The quality
leaving the condenser and entering the pump at point 1 is 18 %. Does this cycle the
inequality of Clausius?

Solution: To check the inequality of Clausius the following integral must be
evaluated.

9552:%_%
r T, T,

From the steam tables Appendix 14.2, the two temperatures are
T, ,=4530K T,,=3332K

The heat transfer in the boiler is u,_ 5= 1821.2 kJ/kg
The heat transfer in the condenser is u,_,=(0.88—0.18)*2204.6=1543.2 kJ/kg
Then

§00 18212 15432

= =4.02031-4.63145=-0.61114
T 453.0 3332

Therefore, the inequality of Clausius is satisfied.
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7.11 Entropy Change for an Irreversible Process

Now consider a cycle composed of two reversible processes as shown in Fig. 7.7.
Process 1, goes from state A to state B as a reversible process. Process 2

returns from state B to state A as a reversible process. Process 3. also returns from

state B to state A, but it is an irreversible process. The reversible processes give,

B A
j5—QJ +j5—Qj -0 (7.38)
A T alongl B T along2
But for the cycle A-1-B-3-A,
B A
j 5—Q) +j5—Qj <0 (7.39)
A T along 1 B T along 3
Subtracting Eq. 7.38 from Eq. 7.39 gives
A A
IQJ N 15_Qj (7.40)
B T along 2 B T along 3
But along path 2,
A
AS = j 5—QJ
B T Along 2

Thus for any path representing any process,
Aszj5—Q or ds>%¢ (7.41)
T T

The relationship expressed by Eq. 7.41 leads to a fundamental statement. Consider
an infinitesimal heat transfer to a system at an absolute temperature T, if the process

Fig. 7.7 A cycle with an

irreversible process Trer
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Fig. 7.8 Insulated tank

He Void

is reversible, the change in entropy is AQ/T. If the process is irreversible the change
in entropy is greater than AQ/T. The effect of irreversibility, e.g. friction, is to in-
crease the entropy of the system.

So to check to see if a process is possible, simply see if it satisfies Eq. 7.41. If it
does not then the process is impossible. Entropy plays the same roll for the Second
Law, as does energy for the First Law.

Now consider an isolated system. It exchanges no work or heat with its surround-
ings. The First Law requires that for any process U, = U,. For this case Eq. 7.41 be-
comes AS > 0. Therefore, the entropy of the isolated system must remain constant or
increase. For any real process that must be irreversible to some extent, the entropy
of the system increases.

It is possible to consider the universe as an isolated system and break it down to
a subsystem and its environment. This would then give,
=AS

sub—system

AS

environment

>0 (7.42)

Once again the equality applies to a reversible process and the inequality applies

to any real (irreversible) process. This is sometimes, referred to the mathematical
statement of the Second Law.

Example 7.9: Helium is contained in one-half of an insulated tank as shown below,
confined by a membrane. The membrane is ruptured and the helium expands to fill
the tank. Calculate the specific entropy change for this system. See Fig. 7.8 below

Solution: There is no heat transfer so the final temperature is equal to the initial
temperature. Using Eq. 7.23 for the entropy change gives,

As = R*In(v,/v,) = 8.31447/4*In2 = 1.44 kJ/kg/K

7.12 The Second Law Applied to a Control Volume

The Second Law can be applied to a control volume in the same way that the First
Law was. It simply requires a balance equation that conserves, or increases, entropy.
This can be written,

AS +AS

exiting

AS

entering

+AS

surroundings

>0 (7.43)

In Control Volume
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This can be refined to

o
AS. +mys, —ms, + 90, 20

surr

Then considering changes as a function of time and using the dot notation to signify
a rate this becomes,

S, +ritys, — iy, +% >0 (7.44)

For a steady flow process, the entropy in the control volume does not change and
the mass entering is equal to the mass exiting so this becomes,

m(s, —sl)+%20 (7.45)

surr

In all cases the equal sign applies to reversible processes and the greater than sign
applies to all real (irreversible) processes. If a process is adiabatic and reversible,
AS=mAs=0 and the process is called isentropic.

Finally, for devices like turbines and compressors, an isentropic process defines
the ideal process and the adiabatic efficiency of a device can be defined as,

W I/Visen ropic
nmrbine - cl = o (746)

ncompressor
isentropic actual

Note that since a turbine does work on its environment, the actual work is less than
the isentropic work, so the efficiency requires the actual to be divided by the theo-
retically maximum possible, the isentropic work. On the other hand, for a compres-
sor, the environment is doing work on the working fluid, so the work required will
be greater that the theoretical minimum work, the isentropic work. The relationship
is reversed.

Example 7.10: Superheated steam enters a turbine at 900 K and 1 MPa and exits
at 10 kPa. If the mass flow is 2 kg/sec, determine the power output if the process is
assumed to be isentropic.

Solution: The enthalpy for the high temperature steam is 3758.5 kJ/kg and the
entropy is 8.09857 kJ/kg/K. For an isentropic expansion the entropy at 10 kPa
must be the same. At 10 kPa the saturation entropies are s.=0.64922 kJ/kg/K and
s, =8.14889 kl/kg/K, so

8.09857 = 0.64922 + x*7.49968 x = (8.09857—0.64933)/7.49968 =0.9933

Therefore, the final enthalpy is
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h=191.8+0.9933%2392.1=2567.8kJ/kg
Ah=3758.5-2567.8 =1190.7 kJ/kg

P=2%1190.7=23814kW

Example 7.11: Assume that the turbine in Example 7.10 is 80% efficient. Deter-
mine the entropy and temperature of the final state.

Solution: For 80 % efficiency, the change in enthalpy must be 80 % of the isentro-
pic change in enthalpy.

h,, =0.8%1190.7 = 952.6 kJ/kg
h, =3758.5-952.6 = 2805.9 kJ/kg

At 10 kPa, h=2805.9 kJ/kg gives a vapor in the super heated region between 400 K
and 450 K.

T, =400+ (2805.9 - 2738.7)/(2834.7 = 2738.7)* 50 = 400+ 0.7% 50 = 435 K
s, = 8.58137+0.7*(8.80763  8.58137) = 8.73975 kJ/kg/K



Chapter 8
Reversible Work, Irreversibility, and Exergy
(Availability)

From thermodynamic point of view, work is considered a macroscopic event, such
as raising or lowering a weight or winding or unwinding of a spring. In this, chapter
we talk about, which work can be reversible or irreversible and what do we mean
by either of these processes.

8.1 Reversible Work, and Irreversibility

Second law efficiency is defined as the actual work divided by the reversible work.

Ny = Wactual (81)
WReversible

It is easiest to explain in terms of a heat engine cycle. Let us consider two heat
engines that operate between hot and cold temperature reservoirs. The first engine
operates between 600 and 300 K. The second operates between 1200 and 300 K.
Both have a thermal efficiency of 30 %.

nr :0.30=K
0

H

Now the Carnot efficiency for a reversible engine is given by,

T
Ne =1.0—-£
TH
300
or Ne =1.0———=50% for the first
600
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and e =1.0 _300 75% for the second.
1200

Since they are both operating at a thermal efficiency of 30 %, the first is operating
at a second law efficiency

0.3
T]”J = E =0.6 or 60%

and the second is operating at a second law efficiency

0.3
=——=0.4 or 40%
M2 =475 °

Therefore, the first is making better use of its heat source than the second is. This
is the fundamental concept of a second law efficiency. It should be possible to im-
prove the thermal efficiency of the second engine more than the first.
For individual processes, the concept becomes a little more difficult to define.
For a turbine or engine the second law efficiency is given by
W sctual (8.2)

Ny =
WReversibl@
but for a compressor or pump the second law efficiency is given by

W eversible
Mire = Vl;,—hl (8.3)
Actual

For an open system control volume the first law can be written as

Q Wy = riyhy —rinh +U,, (8.4)

The second law for a control volume is

. ] ) 0 .
ch +1myS, —mys, _T__Sprod =0 (85)
Eliminating () between the two equations gives
W = U, + 1,8, —tity (hy =T,50) ity by =T,5)) =T, 8 (8.6)

S prod Tepresents the irreversibility. So setting it to zero gives the reversible shaft
work. Then integrating over time gives,

Wy e = m; (u; _Tosi)_mf(uf _Tasf)'*'ml(hl —T,s1)—my(h, = T,s,) (8.7)

s,rev
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The actual work can be measured or determined from a First Law analysis

174

s,act

=mu; —mgup +mhy —myhy +Q (8.8)

The second law efficiency then is simply the ratio of the two. The irreversibility is
given by

I= VVs,rev - VVs,acZ = To (mef —m;S; + 1S, _mlsl)_Q (89)

For a steady flow process

I/I./s,rev = m[hl _h2 +7:)(S2 =5 )] (8.10)
Wy aer = 1(h = 1)+ O (8.11)
I=mT,(s;=5)-0Q (8.12)

Example 8.1 An ideal steam turbine is supplied with steam at 14 MPa and 1100 K,
and exhausts at 60 kPa. (a) Determine the reversible work and irreversibility. (b) If
the turbine has an adiabatic efficiency of 0.88, what is the reversible work, irrevers-
ibility and second law efficiency?

Solution

a. Fromthesteamtablesat14MPa& 1100K, %, =4170kJ/kgands,=7.37798kJ/kg/K.
From the saturated pressure table at 60 kPa, 5,=7.53110 kJ/kg/K which is greater
than s,, so the final steam is in the quality region.

sy =1.14524 KIkg/K. s, =6.38586 ki/kg/K

h, =359.8 kl/kg hy, =2293.0 kl/kg
_ 737798114524 _ o
6.38586

h, =359.8+0.976%2293.0 = 2597.8 ki/kg
Ah = 4170-2597.8 = 15722 ki/kg
W, =1572.2 kl/kg 1=0

b. For an adiabatic efficiency of 0.88, w_ =0.88*w =1383.5 kl/kg

h, = h —1383.5=4170-1383.5=2786.5 kl/kg

Interpolating in the superheated steam tables at 60 kPa, T, = 426.8,

s, =7.86890 kJ/kg/K

Assuming 7, =298 K,

W, =h —h,—T,(s, —s,) =1383.5-298%(7.37798—7.8689) = 1529.8 kJ/kg

w,., =h—h,=1383.5kl/kg n, =1383.5/1529.8=0.904 =T, (s, —s,)
=146.3 kl/kg
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Example 8.2 Measurements are made on an adiabatic compressor with its supply
air at 100 kPa and 300 °K. The exhaust air is measured at 600 kPa and 525 °K. Can
these measurements be correct?

Solution At300°K,p,,=1.39s0p,,=1.39*600/100=8.34. This gives 7}, =498.2°K

so since the reversible temperature is less than 525 °K, the process is possible. The
adiabatic efficiency can be calculated as 7=Ah_ /Ah,  =5826.3/6627.0=0.879.

8.2 Exergy

It is often important to know the maximum work available from a heat source or
thermal body that must reject heat to the local atmosphere or environment. For
energy production systems like geothermal or ocean gradients, the peak reservoir
temperatures are specified. For combustion systems, the peak temperature of the
working fluid is determined by the heating value of the fuel and its complete com-
bustion in air. For nuclear systems and solar thermal systems, the peak temperature
is essentially infinite. However, all systems are limited by the material that must
contain them, so the peak temperature for combustion systems often does not reach
that possible by complete combustion of all of the air available. Nuclear and solar
thermal systems are even more limited by material properties because they must use
a thermal gradient to transfer heat to the working fluid rather than heating it directly
as in combustion systems. Therefore, one of the concepts useful for comparing ther-
mal systems is a concept called exergy. It is defined as,

X= (WReversible )Max (8 1 3)

The maximum reversible work can be obtained from an energy source that must
reject heat to the local environment. On the other hand, one can express that Ex-
ergy (also called Availability or Work Potential): the maximum useful work that can
be obtained from a system at a given state in a given environment; in other words,
the most work you can get out of a system. It is also sometimes called Availability
and sometimes the symbol ¥ or @ is used.

The local environment is called the “dead state” and symbolize it with a o be-
cause an energy source that is at the temperature and pressure of the local environ-
ment does not have a heat sink to which it can reject heat. To estimate the exergy
available both the temperature and pressure of the local environment must be con-
sidered.

The work that can be done in expanding from the initial pressure of the fixed
mass to the environmental pressure is,

W= pdV = (p_p())dV+ p()dV = 5Wmeﬁll + p()dV (814)
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For a reversible process, the only way that heat can be transferred is through a
Carnot cycle. And since the energy will be removed from the mass with the excess

energy above the dead state, the heat transfer will be negative. The work available
from the heat engine is given by,

- Bso—so-Toso—so_7 99 8.15
Wy (1 T)SQ 50 T5Q 50 T, (8.15)

In this case the LY =dS 1is negative because heat is being transferred from the
system, so

Wy =60-(-T,dS)=00+T,dS

850 =Wy, -T,dS (8.16)

The First Law gives for a negative heat transfer

dU =80~ W =Wy +T,dS — W,y — podV (8.17)

Uus

So,
5WT0ta1U9¢ful = 6WHE + 5WUSQﬁ1[ =-dU - podV + TodS (8 1 8)

Performing the integration from the initial state to the dead state gives,

Wrowatseia =X = (U =U,) + p,(V =V, )=T,(S=S,) (8.19)

which gives the exergy for a closed system.
Now for an open system or control volume the First Law is,

QW = hytivy — hyriyy +U (8.20)
and for the Second Law,

Sprod = Spmy —Spmy + SCV _T_ (821)

Eliminating O between the First and Second Law equations gives,
Wy =~Ucy +T,Scy = (hy =T,y i, + (= T,50)rin =T, Sprog (8.22)
Now integrating over time and noting that S, _, is due to irreversibilities, we have,

Weey = (u; =T, s )m; —(uy =T,s p)m + (b —T,s)my — (hy = T},5,)m, (8:23)
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The actual work can be determined from a First Law analysis as before,
W sctuar = mMitt; —=m gty +myhy —myhy + O (8.24)

Then the irreversibility is given by,

I=T,(symp—s;m; +s,my —sm) =0 (8.25)

For steady flow,

Waey = U = hy)in+T, (s, —s;) and [ =T, (s, —s,)— O (8.26)

Note that the reversible work is not necessarily the same as the isentropic work.
If the entropy changes during the process, the reversible work does not equal to
isentropic work. So a process must be both adiabatic and reversible to be isentropic.

In all of the above, the changes in kinetic or potential energy have been neglect-
ed. If the changes in kinetic or potential energy are significant, they can be included
by noting that they will have zero values in the “dead state” so these energies are
essentially completely recoverable in a reversible process.

If we include the kinetic and potential energies, we can define a state variable

exergy by,
2
x=h+%+ gz-Ts (8.27)

However, it is important to remember that x has a zero value at the appropriate
“dead state” of interest for the particular process or engine.
The concept of second law efficiency can be generalized to that of second law
effectiveness given by,
_ (exergy produced) + (work produced) + (adjusted heat produced)
;=

8.28
(exergy supplied) + (work used) + (adjusted heat used) (8.28)

Remember that the adjusted heat produced or used by a device is based on the heat
reservoir that interacts with the device and it must do so through a Carnot cycle, or
the process would not be reversible.

T,
Qadjusted = [1 - T_OJ 0 (8.29)

hr

Example 8.3 Which system can do more useful work, 1.0 kg of H,O at1000 K and
500 kPa or 1.0 kg of Air at 1000 K and 500 kPa.
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Solution Assume a dead state of 300 K and 101.325 kPa.
Then the exergy for the H,O is given by

X =mlh-h,-T, s?—sg—Rln[ﬁj
Po

X =-134790.1-8853.5-300 182.830—226.5235—8.31447ln[ 200 ]
18 101.325

X =2390.35kJ

And the exergy for the air is given by

X=m|h—-h,-T, [slo —s) —Rln(ﬁﬁ
Po

X:; 29016.1-7414.4-300 55.7943—92.4604—8.31447ln[ 200 j
28.9669 101.325
X=1262.93kJ

Therefore, for the same conditions, the kilogram of water has almost twice the ex-
ergy.

Example 8.4 How much useful work is wasted in the condenser of a power plant
that takes in steam with a quality of 0.85 and 1 psi and delivers saturated liquid at
the same pressure?

Solution Choose the dead state as 537 °R and 1 psi. Note the atmosphere is not the
reference here.

The exergy at the inletis x; =/ —h, =T, (s, —s,)

The exergy at the outletis x, =h, —h, =T, (s, —s,)

The difference in exergy is the useful work wasted, so

Wasted = %1 =Xy =y =hy =T, (5, = 5,)

/4 =69.94+0.85*1037.9-537(0.13292 + 0.85*1.84897 - 0.13292)
W, usiea = 0.85%1037.9-537%*0.85*1.84897 = 38.3Btu/lbm

wasted
w

Example 8.5 Calculate the exergy of steam at 1000 °R and 500 psia. The surround-
ings are at 520 °R and atmospheric pressure.

Solution
x=h—-h,-T (s—s,) bydefinitionh,=s,=0
x=h-T,5s=1263.2-520%1.5253 =470.0 kl/kg
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Example 8.6 Determine the second law efficiency for an ideal isentropic nozzle.
Hydrogen enters the nozzle at 3000 K and 7.0 MPa with negligible kinetic energy
and exits to a pressure of 0.1 MPa. Assume the dead state is 300 K and 0.1 MPa.

Solution Since the process is isentropic, use the gas tables for hydrogen

s0=s0—RIn 2L =197.898 - 8.31447 *ln£=162.574 kJ/kmol

P>
T,=1045.4K h =96,299.9 kJ/kmol %, =29,631.1kJ/kmol

: 2% (h — * 9— 1)*
h1:h2+M;/ V_\/ (i;lw hy) _ [2#(96,299.9 ;9,6311) 1000 _ g 1651 ms

The exergies are

X =[h—h,~T,(s" —s° - Rin 2Lyy M

o

=[96,299.9 -7,628.8 -300(197.898 —125.873 —8.31447 * 1n&)]/2=38,830.4 kl/kg

2
X :[hz—h0+V7—Tn(sg—sg —RIn22ym

o

2*%8165.1°
=(36,259.577,628.8+W —300(168.337-125.873)]/2=38,830.4 kl/kg

And the second law effectiveness is

. M 388304
Ty 38,8304

which is to be expected since it is an isentropic process.



Chapter 9
Gas Kinetic Theory of Entropy

This chapter will attempt to provide a physical understanding of the concept of en-
tropy based on the kinetic theory of gases. Entropy in classical thermodynamics is a
mathematical concept that is derived from a closed cycle on a reversible Carnot heat
engine. For many students it lacks physical meaning. Most students have a physical
understanding of variables like volume, temperature, and pressure. Internal energy
and enthalpy are easy to understand, if not intuitive. However, entropy is a bit more
difficult. The discussion that follows is an attempt to provide physical insight into
the concept of entropy at the introductory level. Prof. Leonard K. Nash, Dover
Edition, 2006, bases this discussion on the excellent text, “Elements of Statistical
Thermodynamics” [1-4].

In basic mechanics, the student learns that all two-body problems are solvable
analytically, and some three-body problems are also solvable. However, beyond
that, many-body problems are very complicated. However, they can theoretically be
solved numerically for any given set of conditions that specify the initial position
and momentum for all of the bodies involved, the problems become extraordinarily
difficult for more than a handful of bodies. If we consider only the simplest of
interactions, the collisions of hard spheres, for the molecules in a cubic millimeter
of gas at standard temperature and pressure there is no hope of producing determin-
istic solutions for the ~1020 molecules that could have any engineering meaning.
However, we know that the behavior of a gas under these conditions is predictable
and we need only measure a few parameters with relatively crude instruments to
describe its condition. The analytic technique that allows us to explain how this is
possible is statistical mechanics. We can characterize the hard sphere interactions of
many molecules in a statistical manner and derive macroscopic properties, or rela-
tions between properties that allow us to predict gas behavior.
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9.1 Some Elementary Microstate and Macrostate Models

In order to develop this capability, let us start by analyzing some very simple experi-
ments. The simplest experiment is the flipping of a fair coin multiple times. Consid-
er the outcomes of flipping two coins. There are four possible outcomes. We have

First coin H H T T
Second coin H T H T

Now consider the total number of heads observed. One-fourth of the time, two
heads will be observed. One-half of the time one head will be observed. In ad-
dition, one-fourth of the time no heads will be observed. Each tossing sequence
is “independent and equally probable”, but the “observation of one head” is most
likely. Consider what happens when we toss four coins.

First coin H/H H|H T | T T |T H|H H|H T | T T|T
Secondcom |H 'H |H H T T |T |T |T |T |[T |[T H |H H H
Thirdcoin |H |T |H |T 'H |T H |T H |T H |T H |T H|T
Fourthcon |H |H |T |T 'H|/H T |T H|H T |T H|H T|T
Numberof |4 |3 |3 |2 |2 |1 |1 |0 |3 |2 |2 |1 |3 |2 |2 |1

heads

Note that the distribution is,

One observation with zero heads,
Four observations with one head,
Six observations with two heads,
Four observations with three heads, and
One observation with four heads.

The number of observations W, with H heads, and T tails, out of N tosses, can be
predicted by the formula

N!

= 9.1
H!T!
4!
Zero Heads W =—=1
0!4!
One Head W:i:4
113!
4! 4%
Two Heads W =——= 3:6
2121 1*2
4!
Three Heads W =——=4
3!
4!
Four Heads W =—""_=1

410!
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Now consider what happens with eight coins. We have

|
Zero Heads W—8——1

0!8!

]!
OneHead W =——=38

"7

8!
Two Heads W =——=28

216!

]!
Three Heads W = —— =56

3151

]!
Four Heads W =——=70

414\

]1
Five Heads W =——=156

513!
i w 8! 28
Six Heads _ﬁ_

8!
Seven Heads W = — =38

71!

]!
Eight Heads W =——

8'0'

Note that the peak number of observations always occurs for the distribution that
gives half heads and half tails, exactly as we would expect.

Now it will be useful to identify each of the possible outcomes of flipping the
coins a “microstate” for our system. Each of these microstates is assumed to be
equally likely. With the two coins there are four such microstates. With the four
coins, there are 16 such microstates. When we go to eight coins, there are 256 such
microstates. Now the observed results of the coin flips will be called a “macrostate”
for the system. For the two coins, there are three macrostates (1, 2, or 3 heads)
that can be distinguished. For the four coins, there are five macrostates that can be
distinguished. And for the eight coins there are nine macrostates that can be distin-
guished. The probability of observing a macrostate will depend upon what fraction
of the microstates possible that will produce an outcome that is observed as that
macrostate.

In order to compare these distributions with distributions for larger numbers of
coins it is useful to normalize them by dividing the number of observations for each
number of heads by the number of observations for the most likely number of heads.
When we do this, we get the following normalized values for the observation of the
number of heads in each case.

Two coins Four coins Eight coins
0 Heads 0.5000 0 Heads 0.1667 0 Heads 0.0143
1 Head 0.1143
1 Head 0.6667 2 Heads 0.4000




184 9 Gas Kinetic Theory of Entropy

Two coins Four coins Eight coins
3 Heads 0.8000
1 Head 1.0000 2 Heads 1.0000 4 Heads 1.0000
5 Heads 0.8000
3 Heads 0.6667 6 Heads 0.4000
7 Heads 0.1143
2 Heads 0.5000 4 Heads 0.1667 8 Heads 0.0143

A plot of the normalized data is presented in the Fig. 9.1 along with the data for 16
and 32 coins.

Note that the curve for the frequency of the number of observed heads peaks at
the 50 % point and the curve get narrower as the number of coins increases. So we
can say that the most likely observation is that half of the coins are heads, and as
we increase the number of coins, it is more and more likely that we get closer to the
50% heads observation. In fact by the time we have flipped 14,000 coins, a 1 % de-
viation from the expected observation of 7000 heads will occur less than 50 % of the
time. By the time, we have flipped 46,000 coins a 1% deviation from the expected
23,000 heads will occur less than 10% of the time. By the time we have flipped
92,000 coins, a 1% deviation from the expected 46,000 heads will occur less than
1% of the time. As the number of coins increases, the probability of observing a
macrostate deviation from the expected 50 % heads that is measurable continues to
shrink until it is “impossible”. Certainly if we flipped 10?° “fair” coins the probabil-
ity of measuring a number of heads that deviated from the 5x 10! heads estimate
by more than a hundredth of a percent would be negligible.

Now consider an example closer to a system of interest in thermodynamics. In a
solid, the atoms vibrate about their equilibrium positions at all temperatures above
absolute zero, or the zero internal energy level. Quantum mechanics tells us that the
frequency of vibration is quantitized and that only certain frequencies are allowed.

Frequency of Number of Heads

12

ssssss 2 Coins

= == 4 Coins

w8 Coins

w16 Coins

32 Coins

Normalized Frequncy of Heads

0 0.2 04 0.6 0.8 |

Fraction of Max Heads

Fig. 9.1 Normalized frequency of number of heads observed
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This leads to the following equation for the allowed energy levels for a vibrating
atom.

- (mljhv 92)
2

Where v is the fundamental vibration frequency and /4 is Plank’s constant—te-
quired to convert a frequency to energy units. The ground state for the atom cor-
responds to n=0 and each increasing integral value of n corresponds to the atom
acquiring another quantum of energy. This model establishes a uniform energy grid
with units of energy being passed from one atom to the next as a single phonon.

Now let us consider three distinguishable atoms and distribute three quanta or
units of energy among them. This can be done ten possible ways.

Configuration Atom 1 Atom 2 Atom 3
1 3 0 0
2 0 3 0
3 0 0 3
4 2 1 0
5 0 2 1
6 1 0 2
7 2 0 1
8 1 2 0
9 0 1 2
10 1 1 1

Therefore, there are ten microstates for this problem, but only three macrostates.
We can observe in the first macrostate that one atom of the three has all three units
of energy. In the second macrostate, one atom has two units of energy and another
has one unit of energy. Finally, each of the atoms could have a single unit of energy.
Three microstates contribute to the first macrostate, six microstates to the second,
and one microstate to the third. If each microstate is equally likely, then the macro-
states should be observed in the ratio of 3:6:1. Note that the seemingly best-ordered
macrostate, one unit of energy in each atom, is the least likely.

As we increase the number of microstates, it will become important to have a
generic formula to predict the number of microstates that contribute to a particular
macrostate. Let us start with the second macrostate. To achieve this macrostate there
are three ways that we can assign the first two quanta of energy. Once this has been
done, there are two atoms left that we can assign the remaining quanta. Then we
can assign zero quanta to the last atom. Therefore, there are 3 times 2 times 1 ways
this macrostate can be achieved. So we will have 3 x2x 1 or 3! Microstates. Now
consider the first macrostate. There are three choices for assigning all three quanta
of energy. Once that is done we can assign zero quanta to either of the remaining
two atoms and then assign another zero quanta to the last atom. However, these two
choices are indistinguishable. So once again, we have 3! Choices, but 2 or 2! of
them are indistinguishable. Finally consider the third macrostate. We can assign the
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first quanta to any of the three atoms, the second quanta to either of the two remain-
ing, and the last quanta to the last atom. There are once again 3! Ways of assigning
the quanta, but 3! of them are indistinguishable. So we have

Macrostate 1: 3!/2!=3
Macrostate 2: 3!/1!'=6
Macrostate 3: 3!/3!=1

Now let’s extend this argument to N atoms. We can assign a specific number of
quanta of energy to the first atom in N ways, to the second in N—1 ways, to the
third in N—2 ways, etc. So the total number of ways we can assign quanta to N
atoms is N!. However, if some of the numbers of quanta are identical, the resulting
macrostates will be indistinguishable. So we must reduce the number of microstates
used to form a macrostate by N, !, where N, is the number of times a given number
of quanta is repeated. Thus the number of microstates contributing to a macrostate
can be written as N!/N_!. If there are two groups of quanta that contain the same
number of quanta, the number of microstates contributing to this macrostate will be
given by N!/(N_IN,!). The general formula will then become, letting p equal the
number of microstates contributing to a particular macrostate

N!
"IN, ! (9.3)
q

ny

w

Consider now two additional examples. First, consider the observable macrostates
when five quanta of energy are distributed among five atoms. The macrostates are,
(Fig. 9.2).

Macrostate 1: All five quanta to one atom—5!/(1!*4!)=5

Macrostate 2: Four quanta to one atom, and 1 to another—S5!/(1!*1!*31)=20

Macrostate 3: Three quanta to one atom, 2 to another—S5!/(1!*1!*31)=20

Macrostate 4: Three quanta to one atom, 1 to a second and 1 to a third—
SH(11*21%21)=30

Macrostate 5: Two quanta to one atom, two quanta to a second, and 1 to a third—
SH@2I*11*21)=30

Macrostate 6: Two quanta to one atom, and 1 quantum to each of 3 atoms—
SY(1I*31*%11)=20

Macrostate 7: One quantum to each atom—5!/(5!)=1

So there are a total of 126 microstates, but only 7 observable macrostates.

Now consider the case where we add five amore atoms but no more quanta. For
ten atoms and five quanta, we have the same number of macrostates as above, but
there are more indistinguishable microstates contributing to each because of the
added atoms that do not receive a quantum of energy (Fig. 9.3). The calculation is

Macrostate 1: 10!/(1!*91)=10

Macrostate 2: 10!/(1!*1*8!)=10*9=90
Macrostate 3: 10!/(1!*1!*81)=10%*9=90
Macrostate 4: 10!/(1!*21*71)=10%9*8/2=360
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Fig. 9.2 Macrostate frequencies for five quanta in five atoms
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Fig. 9.3 Macrostate frequencies for five quanta in ten atoms

Macrostate 5: 101/(2!*11*7!1)=10%9*7/2=360
Macrostate 6: 10!/(1!*31*6!)=10%9*8*7/3/2=840
Macrostate 7: 101/(5!*51)=10*9*8*7%6/5/4/3/2=252

Note that we only added five atoms or doubled the original number, but the total
number of microstates increased to 2002, or an increase of almost a factor of 16.
Also, note that of the 2002 microstates possible, 840 or about 42 % of them con-
tributed to the most probable macrostate. If we assign an equal probability to each
microstate, Macrostate 6 is 2.33 times as likely as its nearest competitors are.

9.2 Stirling’s Approximation for Large Values of N

Now since we will want to consider the number of atoms in a realistic macroscopic
piece of material, which for a gas is on the order of 102°~10%7 atoms, we will need
a better way to compute factorials than simply multiplying them out. Also since
the magnitude of N! goes up very rapidly as N increases, it will be useful to look at
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Fig. 9.4 Comparison of Stirling’s approximation to In(N!) to In(N!) (N=10 to N=100)

In(N!) rather than simply N!. Our formula for the natural logarithm of the number
of microstates, In(W), then becomes,

__In@vh 9.4
In(W) Zln(qu M 94)

And once we have calculated In(W) it is straightforward to calculate W, but that can
often be too large of a number to store on most calculators or computers. In most
cases we will simply work with In(W). Of course we really haven’t helped ourselves
very much as In(N!) is as difficult to calculate as N!. However there exists a very
accurate approximation to In(N!) developed by Stirling that gives In(N!) as

In(N!) ~ N*In(N)-N 9.5)

A comparison of Stirling’s approximation and the actual In(N!) is given in Fig. 9.4.
Since it is hard to tell the difference between the two curves in Fig. 9.4, the frac-
tional error in Stirling’s approximation is plotted in Fig. 9.5.

It can be seen that the approximation is accurate to less than a percent by the
time N reaches 100. For the cases we will be interested when N approaches 10%° or
greater, Stirling’s approximation is very accurate.

9.3 The Boltzmann Distribution Law

We saw from the coin flip problem and the five quanta distributed among ten atoms
that the most probable macrostate tends to dominate as the number of microstates
increases. If we are going to deal with very large numbers of atoms, the most prob-
able macrostate will tend to dominate even more. So it would be useful to be able
to find this macrostate very quickly. When we do this we are asking, what is the
distribution of the qu that define the most likely configuration macrostate. Now
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Fig. 9.5 Fractional error in Stirling’s approximation (N=10 to N=500)

when we are dealing with very large numbers of microstates, we will also have
very significant numbers of macrostates. These macrostates can be packed so close
together and ordered in such a way that /¥ can be thought of as a function of a con-
figuration index for macrostates similar to the way it is presented in Fig. 9.3. We can
let this variable be called C. Then if we think of  as a continuous function of C, we
can find the most likely macrostate by differentiating W, or In/¥, as a function of C.

aw (9.6)
dc
Our formula for W is then,
!
W - N 9.7)

N,L.N,IN, IN,!.N_!

where the levels /, m, and n are identified, and it is not implied that only z levels
are available but only there are some finite number of levels of interest. At the peak
value of W we will assume that the levels 1, m, and n have the occupation numbers
N, N, and N,. For a normal solid, the numbers N, N, and N, are assumed to be
quite large. To get the derivative with respect to the configuration index C, we will
then perturb the numbers N, N, , and N, to see what a small change in C will have
on W. Basically setting the derivative to zero means that small changes in C will
have a negligible effect on W. However we must conserve energy in doing this, so
let us transfer one atom from level / to level m and one atom from level # to level /.
If the levels are equally spaced in energy, this will conserve energy. Now we have

N,'=N,-1, N,=N,+2, and N,'=N, -1
where the primes indicate the new occupation numbers for the three levels. Our new

configuration then will be,

W= Nt (9.8)
N, 1..(N,—DI(N,, + 2)(N, —DL...N, !
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Since we assumed the original configuration was the max W configuration, an in-
finitesimal change like we have just made should not change the value of W as at
the peak W, dW/dC=0. Therefore, these two values of # should be equal. We have,

NI N!
N,'...N,\N,\N,\...N.! N,'...(N,=D)I(N,, +2){(N, =)I...N_!

Canceling common terms this becomes,
N,V¥*N, *N 1= (N, -D)I*(N,, +2)!*(N, -1)!
N . N (N, +2)!

(N,-D)! (N,-1)! N,,! .9)
N ¥(N, =D N, *(N, =1)! (N, +2)*(N,, +DN,,!
(N, -1)! N, - N, !

N, *N,=(N,, +2)*(N,, +1)

Now the 1 and 2 are negligible compared to N so this becomes

N,*N, =N? (9.10a)

or

Nl _ Nm
NN (9.10b)

and
& N, N N, N

N, N, N, N, N, 7 ©.11)

m

Basically, we have a geometric series. Now consider a system of atoms where the
spacing between energy levels is not a constant. We will have,

En"bm _P (9.12)
Em — € q

where p and ¢ are small integers. Now let us withdraw p+¢ units of energy from
level m and transfer ¢ of them to level n and p of them to level /. This change will
maintain the total energy constant as we can see by writing the previous equation as,

(€, —€,)q+ (g —€,)=0 9.13)
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Now if the original configuration was the maximum W configuration, we will have
N! N!
N, L...N;IN,IN, I...N_! N N d(N;+ )N, —p—)(N, +¢q)!....N_!

(N +p)! (N, +9)! N, !

N,! N,! (N,-p—q)!
N;+p)...N; +DN! (N, +q)....(N,+DN,,!
N;! ' N,!
:Nm(Nm -1...(N,,—p—q+1)(N,,—p—q)!
(N —p—9)!

(N, +p)...(N, +1)(N, +q)...(N, +1)= N, (N, =1)...(N,, — p—q+1) (9.14)

Now since we chose p and ¢ as small integer they are negligible once again when
compared with NV, N, and N,. This then gives,

NPNS = NI*4 (9.15)

Of course the equation we derived for uniform spacing can be represented by this
equation with p=1 and ¢=1. This equation can then be written as,

Nl Nm
pln| — |=¢gIn| /=
Nm Nl’l

! h{ﬁj: ! h{ﬁjzﬁ (9.16)

Em— € Nm En—En Nn

or

where B is just a constant because we could write the same relationship for any set
of adjoining levels. So we have

N.

1

1n(N"j=/3(g,.—gn) (9.17)

and level 7/ and level n are now not necessarily adjoining levels. So if we define the
ground state level with the subscript o, we can write

In [%—:] =-Pe,



192 9 Gas Kinetic Theory of Entropy

or

N _ b2 (9.18)

which is the celebrated Boltzmann distribution law for the most likely configuration
energy distribution.

9.4 Estimating the Width of the Most Probable
Macrostate Distribution

With the Boltzmann distribution law stated, we can now realistically estimate the
width of the peak configuration in configuration space. Let us choose a set of small
parameters to quantify the relative change in the population numbers for each level.
We will define,

q == N, (9.19)

If the population of a level increases, o will be positive, and if the population of
a level decreases, o will be negative. Since we are only shifting the configuration
slightly, we would expect |a| < 1. We can write,

N,-N, =a,N, (9:20)

Now since we have a fixed total number of atoms we must have,

AN =(N,=N,)+(Ny=N)+.c.= > at,N, = 9.21)

AE =£,(N,~N,)+& (N, =N ) +.....= > g,a,N, =0 (9.22)
n

Now we can write,

N,=N, +a,N,
and

v
N, ! TI(N, +a,N,)!
w_ n _n (9.23)

v N! |
W /H(N,,mnNn)! TN,
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Taking natural logarithms of both sides gives,

In (%} =" In[(N, +a,N,)1-> In[N,!] (9.24)

All of the term should be large enough to qualify for Stirling’s approximation, so
1n(;/Vj Z(N +a,N,)In(N, +a,N,)— Z(N +a,N,)— ZN InN, +ZN
This can be written,
w
m( ) ZN InN, ZN +2N In(1+ a,, )+Za N,InN,
+2anann(l+an)N ZN In N, +ZN Za N,
Cancelling terms
ln(W) ZN In(l+a, )+Za N,InN, +Za N, In(l+a,)- Za N,

and for |a,|<1,In(l+a,)~a,

In [%j:ZanNn +ZanNn InN, +Za3NV, —ZanNn :ZanNn InN, +Za3Nn
n n n n n n
Now remembering the Boltzmann distribution law,
InN,=InN, = feg,

We have,
4 2
In| - =InN,» a,N, - Be,a,N,+Y a;N, (9.25)

By the requirements to conserve atoms and energy, the first two summations must
be identically zero. Therefore,

In [WW] = ;aan (9.26)
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Note that all of the terms in this summation are positive because ¢, is squared. So
let us define an RMS value by,

2 B
2.0, N,
N

a 9.27
~ 9:27)
or
Na? =Y alN, (9.28)
ln(zj = Na?
Wl
W' _ -na? 9.29)
w

Now consider a small sample of material that only contains 6 x 10%° atoms, a milli-
mole. In addition, consider a shift from the most likely configuration that involves
an RMS change in occupation numbers that is one part in a billion (10°). We have,

a=1x10"
a’=10""% (9.30)

w' _ 20 1418 _ 2 _ ~
(_ = o (6x1070107%) _ -6x107 _ =600 _ | =260

or a configuration whose occupation numbers differ from the maximum W con-
figuration by an RMS value of one part in a billion will be 1072 times less likely
to be observed than the maximum W configuration. Basically, the only measurable
configuration that can be observed will look like the maximum W configuration.

9.5 Estimating the Variation of W with the Total Energy

Now let us consider how W changes with changes in the total energy available to a
well defined number of atoms. We have,
N!
TN, 9.31)
n

InW =InN-> InN,!
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Differentiating,
dinW ==Y "dInN,,!

Applying Stirling’s approximation,

dinN,!=d(N,InN,-N,)=N, cji]\/” +InN,dN,—-dN,=InN,dN,
dinW =-Y"InN,dN, (9.32)
Moreover, for the most likely configuration, we have,
InN,=InN,A - B¢, (9.33)
dinW =-InN,> dN,+ B ¢,dN, (9.34)

The first sum on the right hand side is identically zero for the fixed number of atoms
under consideration. The second term on the right hand side is simply,

B2 e,dN, =B d(e,N,)=pd &,N, = BdE

So we have

dinW = BdE (9:35)

This can be integrated for a constant f to give,

W, —=InW, = B(E, — E,)

1%
In (#] = B(E, - E) (9.36)

1
W, = VKeﬂ(Ez*E1)

Thus W the number of microstates contributing to a macrostate increases exponen-
tially with increasing energy.

It is worth pointing out at this point that we have only demonstrated that this
equation holds for a system of distinguishable objects like our fixed-in-place atoms,
though it does in fact hold more generally. Several other restrictions or caveats
still apply at this point. The first is the assumption that by transferring energy or
heat to our system, there is no shift in the quantum levels of our oscillators. This
is a reasonable assumption for oscillating atoms in a solid. In a gas where it can be
shown that the energy levels are a function of the volume containing the atoms or
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molecules, our result only applies to constant volume increases in energy. A second
obvious restriction is that the addition of energy will cause no change in the number
of atoms present due to chemical or nuclear reactions. Finally, we have assumed f
is constant. If f changes, we have a different system.

9.6 Analyzing an Approach to Thermal Equilibrium

Now let us consider two solid bodies, X and Y, that will be brought together in ther-
mal contact. Before they are brought together, they will be in the macrostates char-
acterized by WX and WY microstates respectively. So if there are W, microstates in
body X and W,, microstates in body Y, when the two bodies are considered jointly,
there are a total of W, *W, microstates possible by combining each microstate in
body X with each of the microstates in body Y. Now when the two bodies are
brought into thermal contact and allowed to redistribute their energy between them,
the number of possible microstates for the most likely configuration will change.
If they were in equilibrium before thermal contact with different values of /7, what
will their final values of W be.

For the approach to equilibrium and eventual equilibrium, the relevant expres-
sion is,

d(Wy *Wy) =0 (9.37)
During the approach to equilibrium, the product W, *W, must increase or remain

constant. When it remains constant, the two bodies have reached an equilibrium
state. We can rewrite this as,

WydWy + W dWy >0
aw,
%4__}/ >0

X WY

or

dinWy +dnWy, >0 (9-38)

and substituting for dIn(#) from above gives,

BydEy + BydEy, >0 9-39)

Now if X and Y constitute an isolated system such that their combined energies can
neither increase nor decrease as they come into thermal equilibrium, we must have,
Ey + Ey = Cons tant
dEy +dEy, =0

dEy =—dE,
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Therefore, we have

BydEy —BydEy >0 (9-40)
Now suppose that the approach to equilibrium starts with body Y at a higher tem-

perature than body X so that heat or energy flows from body Y to body X. Then dE,
must be greater than zero. Or,

By = By

Soaslongas f3, is greater that 3, , energy will flow from body Y to body X. When
By equals B, equilibrium will be obtained.

9.7 The Physical Meaning of S

B then appears to have the behavior of an inverse temperature. So we could write,

_1 (9.42)
P T
but this would cause trouble dimensionally. Remember we had that
N,
n _ —Pe
=e n 943
5 (9.43)

o

Therefore, b must have the dimensions of energy. This simply means that we
must multiply the temperature by a constant that converts temperature to energy.
We have used a constant like this before and we called it Boltzmann’s constant,
k=1.381x 1072 joules/K or 8.62x 107 eVIK.
If we use this constant to define 3, we have B =1/kT and,
&

n

N __n
N—” =e I (9.44)

o

We have also required that at the lowest energy level for any macroscopic system,
all of the atoms must be in the ground state. We have chosen the energy of the
ground state to be zero. Therefore, our formulation of B as //kT is consistent in that
at absolute zero temperature, only the ground state will have a non-zero population.
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9.8 The Concept of Entropy

Now for any isolated thermodynamic system we have asked that any changes that
take place must have g > (. The direction of any spontaneous change will be
that that causes W to increase and equilibrium will be attained when py attains its
maximum value. Now as we have shown, any value of W for a macroscopic system
will be immense, so for convenience sake we will find it easier to talk about /n( )
and perform our analysis with /n( ). Note that d In(#W) > 0 whenever gy > and
the equilibrium arguments apply to it as well.

Now consider once again when we combine two systems, X and Y. W for the
combined system will be W,.W,, but In(W) will be In(W )+ In(W,), so that In(W)
combines like any extensive property for thermodynamic systems. So we could de-
fine an extensive parameter for a macroscopic thermodynamic system as S=In(W).
We could then write that S, =S, +S,. However we can do somewhat better by de-
fining S=kS=kin(W). This is Boltzmann’s famous equation developed even before
we were certain that atoms existed.

S =k -In(W) (9.45)

Of course, S will satisfy the requirements for an extensive system parameter. By
incorporating the constant &k, we will place our statistical definition of entropy on
the same scale as our classical thermodynamic entropy scale. We have,

dinW = BdE
kd\nW =kBdE

d(kInW) =deE
kT

ds = dE _00 _du (9.46)
T T T
Note also that
S—>0asT—0 (9.47)

So this definition of entropy also satisfies the Third Law of Thermodynamics, or the
so called Nernst Postulate.
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9.9 Partition Functions

Now let us return to the Boltzmann distribution law for distinguishable atoms in a
solid. We have

N,
n o _ e .Bsn

N, (9.48)

N, =N,e Fen

Then the total number of atoms or molecules is given by

N=N,+N +Ny,+N;+......
N=N,e P ¢ NePa 4 NePory NP5 .

(9.49)
N=N,(e P e P e Porqpeobo )
N = NOZe_ﬁg‘f
q
And we can write
N
No=S
e
q
N 7ﬁ8n
N, = e—,ﬁg
e
q
7= Zeiﬁ e = Partition Function
q
(9.50)

N = N e Pen

n

Note that if we choose ¢, to be equal to 0, Z will always be greater than 1.0 in mag-
nitude and the magnitude of the summation will depend on how widely spaced the
energy levels are in units of 1/8.
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9.10 Indistinguishable Objects

Everything we have done so far applies to distinguishable objects. That is each atom
in a solid is located in one place in the crystal and it can be distinguished in space
from all other atoms.

However, when we want to consider a dilute gas, all of the atoms or molecules
are continuously moving about and it is impossible to assign an observational
uniqueness to each of them. In addition, the energy of interest for each of the atoms
or molecules is their kinetic energy. Therefore, we have,

2
g=gmy (9.51)

The energy for a classical particle is not quantitized but rather is a continuous vari-
able. More important is the fact that the speed and energy of a particle can have a
definite value, but it can be traveling in an infinite number of directions. Thus there
are many physically different locations and directions of movement that these at-
oms and molecules can have that are characterized by the same energy. When this
happens, we say that the energy levels are degenerate.

To start let us constrain the atoms to move only in the x, y, or z direction. Then
we will have for the occupation numbers the following,

Ny = %eﬂ(;mvzij]vyi = geﬁ{imv;]]vzi - %e ﬁ(%mvgl) (9.52)
But v,; =v,; =v_; so we can write,
N, = Nyi =N
i) 05
Ni = E?;e

where the three appears because the energy level is three-fold degenerate. In gen-
eral, we can write this as

_ -PBe;
N, =—we "™

Z=Y vt (9.54)

o; is the number of the degeneracy of the ith energy level.

Now consider the following example. Let us take a cubic meter sphere of ar-
gon at 15°C and one atmosphere. The radius of the argon atom is approximately
0.181 nm. So it will occupy 2.5 x 1072’ m>. Or in one cubic meter there will be room
for 4.0x10%® cubicles that could contain an argon atom. Now consider the direc-
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tions that these atoms could move. For an atom at the center of a sphere containing
one cubic meter, we can compare the solid angle formed by the projection of the
atom’s cross sectional area on the interior surface of the sphere with the total surface
are of the sphere. There are approximately 1.17 x 10! locations that the atom mov-
ing from the center of the sphere to its inner surface that the atom could hit without
overlapping with another location. That is there are 1.17 x 10!° different directions
that could be observed as distinct for this atom departing from the center of the
sphere towards the outer wall. Of course, not all of the atoms can be located at the
center of the sphere simultaneously. But as an atom is placed away from the center
of the sphere its projected area on the near wall will increase and its projected area
on the far wall will decrease, providing a somewhat compensating effect.

Therefore, there are approximately 4 x 1047 locations in space and direction that
an atom of argon can have in this one cubic meter sphere. At 15°C and one atmo-
sphere pressure, there are about 2.5 x 10>* atoms of argon. Thus for every atom of
argon there are 1.6 x 1023 locations that it can occupy with a specific energy level.
The degeneracy is overwhelming.

Now if we take n atoms with an energy ¢, and place them in some subset of
the available degenerate locations, most of the locations will be unoccupied and
those that are occupied, will only contain one atom. The probability of two atoms
being located in the same location in space and direction is infinitesimally small.
(Obviously two atoms cannot not occupy the same physical space, so let each of
the physical locations be large enough to accommodate ten atoms. Then instead of
having 4 x 10%” possibilities, there will only be 4 x 104 possibilities. The probability
is still infinitesimally small of finding two atoms in one of these locations.)

The question now becomes “How many distinguishable configurations can be
formed by placing n indistinguishable objects in w boxes?” The answer to this is
straightforward and looks a lot like something we have seen before. The number of
distinguishable configurations is given by,

(o)l (9.55)

i
n;lo;!

And since n, is considerably smaller than ®,, we can express this in the following
fashion

_ (m + ;) =1+ 0,)(1n; =2+ @;)...(1+ ;) )(o;)!

w;
n;lo;!
. = (it o)~ 1+ 0)(n =2+ ). (1+ ,)! (9:56)
e n;!

®; is much larger than n, so in the numerator it is reasonable to approximate every
term by o, giving,

(9.57)
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This equation applies to the ith energy level, which for the moment we will leave as
quantitized. Then the overall number of states possible is the product of each of the
number of states for each energy level or,

1_[(0)1_)”1‘

W =T1W, =
I[n; !

(9.58)

The above equation applies to an assembly of N indistinguishable units like gas
molecules in free translation, whereas the previous equation

V! (9.59)

IIn;!

1

applies to an assembly of identical but distinguishable units, like atoms in a crystal.
Now let us select three energy levels in an assembly and require that they are
spaced such that

Em— €

En —&m E
. (9.60)

where p and q are small integers and as before try to determine the most likely
configuration.

We will transfer g units of energy from level m to level n and p units of energy
from level m to level 1.

Energy will be conserved as

q(e, —€,)+ple; —¢€,)=0 9.61)

Then for the most likely configuration, we must have that the derivative of W with
respect to small changes in the numbers of atoms with specific energies is zero. Or,

ool opray .ol oo Tonr T ot ol
n,lomn,\n, . 0! - n,l...(m+p)(n,—p-q)(n, +q)!...n!
1 _ ofw,” o]
mln,'n ! (n+p)(n, —p—q)(n,+q)!
1 of w,” o]

ml(n,, —D(n,, =2)...(n,, —p—q)in,! B (m+p)m+p=1)...n{(n,, — p=\(n, +q)(n, +qg=1)...n,!

»
1 ]

(n,, —D(n,, —2)...(n,, — p—q)! B (m+p)m+p=D...(n, —p—)(n, +q)(n, +q-1)...

» q
n n%
P oy~ P4 4 9.62
1 SOy @y o A, _ w, ( )
nbtd nf'nl o ,
wm w}’l

-P=q 4
wm w}'l
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This looks like a geometric progression of the quantities in braces so the Boltzmann
distribution law becomes,

M _ Mo -pe (9.63)

w; @y

This says that the average occupation of an energy level follows an exponential
distribution. This is a little different from the result that we obtained for distinguish-
able units with localized atoms in a solid matrix. Now let us sum the number of
atoms present.

ny n _pe
N=ng+m+n+ny...=ny+—we P+ Lo, P
@ @y
n - n

_ 20 Beg _ Mo
N=—"> e =—7 (9.64)
ny N n, N _
Lo o AP
w, Z w, Z

Now note that Z is only a function of the energy levels and the degeneracies of the

energy levels.
7= ze_ﬂgq = za)ie_ﬁsi (9 65)
q i

Therefore, Z clearly represents the partition function per unit. Now if we have two
units, we will have Z.=Z *Z,. that is the total partition function must be the product
of the individual partition functions per atom. If we have N atoms than the total
partition, function must be

7 =7V (9.66)

total

However since the units are not distinct we must take into account this fact and di-
vide the total partition function by N! for the number of ways they can be rearranged
without an observable difference. This gives

z"
erans = m (967)

It should be pointed out that the N! factor only applies to the condition where the
occupation of any given state is very much less than 1.0 so that there are far more
states available than there are atoms or molecules to occupy them, so that the high-
est occupancy for any state is 1 unit. If this were not the case then we would have
to replace the N! by N !/IIn; !. It should be pointed out that this form of the partition
function only applies to the translational states of low-density gas molecules where
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the number of states available far exceeds the number of atoms available to occupy
them.

Now when we have multi-atom molecules it is possible for the molecules to store
energy internally in terms of rotations and vibrations. Quantum mechanics states
that these internal degrees of freedom are quantitized and therefore the number of
states that can be occupied does not greatly exceed the number of atoms available.
So if we write our partition function for a single unit, we will have

& = gi,trans + gi,rot + gi,vib

7 = ze—ﬁei — Ze_ﬁ(gi,tml1.v+gi,ml+8i‘vil))
i i

— 7ﬂg[,lmm- _ﬁ‘c‘i,rm ’ﬁgi,vib _ % %
Z= Ze Ze Z@ - Ztrans Zrot Zvib
i i i

(9.68)

Then when we consider the whole ensemble of units and take to products of the
individual partition functions this becomes,

7 = l:%} AR YA (9.69)
total — NI rot vib

We do not apply the N/ factor to the rotation and vibration partition functions be-

cause we can distinguish which atom is vibrating or rotating. Having obtained the

partition function for an Ideal gas, consider how thermodynamic parameters can

be obtained from the partition function. First, consider the internal energy. We can

write for the case of distinguishable units

U=E=nyey+me +ny&y +.....
‘ (9.70)
E =80Ee_ﬂ8° +81Ee7ﬁ“‘1 +82Eefﬁ82 Fonn
Z VA VA

> gqe_ng
N ,
E=— (ge 70 +g1e7P1 4 gye P2 )= N1

L
q

Now treating the &, as constants, each of the terms in the numerator can be ob-
tained by differentiating the similar term in the denominator with respect to 3.

_d ey P ©9.71)
dp ‘
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So we can write
45
E=-N—! =N
Y
q
~d(NlnZz) dinz"
dp dp

1dZ __dinZ

zdp  dp

(9.72)

E=

Thus, we have a very clean expression for the internal energy in terms of the parti-
tion function. Consider now the partition function for translation for the Ideal Gas.

ZN

dln[']

E:__N'__iln[ ! j d 1N (9.73)
dp dp

N dp

Nevertheless, N! is a constant so the first term is zero and we have,

d
E=-N—InZ (974)

ap

In addition, this can be taken back a step further to obtain the original summation
for the total internal energy. This works so long as the volume containing the gas is
held constant. So for the translation partition function of an Ideal Gas, the constant
volume restriction must be added. We have,

d
E=|-N—InZ (9.75)
[ ap :|V
Now noting that f§ = %T
dﬂ=—d—T2 CL—E
kT*  dp
E__[dan] dr
L ar |, |dBl, (9.76)
dr |,

Now consider entropy. We have

S=klnWw .77)
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For distinguishable units we had

InW =InN-)» InN,!=NInN-N->» N,InN,+) N,
q q q

W =NInN-> N,InN,=NInN->N, lnge_ﬁg‘f

q q

N
InW=NInN-) N,In—- > N, (-Pe
In =NInN-1 NZN +BY.N,
nW =Nln nEq p ﬁq 0&q

an:NlnN—Nlng+ﬁE:Nan+ﬁE

mW=mnz"+BE=InZ,,, +BE

S=kinZ" +kBE =Nk1nZ+k$E:Nkan+§

ota

(9.78)

(9.79)

This gives an expression for the entropy in terms of the total energy and the parti-

tion function.
For indistinguishable units we have,

H(coq)N‘f
w=4___
IIN,!

q

Following a derivation similar to the above, we obtain

N

S:kln[z—]+kﬁE

N!

Or

S=kInZ

trans

+kBE=kInZ,

rans T F

Using our previous result for the internal energy gives

dinZ d

wans | = LTI Z,
dT :|V dT [ trans ]V

S=klnZ

trans

+kT[

(9.80)

(9.81)

(9.82)
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If we consider a gas composed of multi-atom molecules, then we must replace Z

with Z . Therefore, we have,
S = di;[kT InZ,.,1= j [kTInZ,,.*Z,,*Z,;]
S =%[len Zyans TKTINZ,  +kTInZ ;] (9.83)
S=8ans T Sor +Suin

Therefore, the entropy is factorable and separable into terms that correspond to the
different mechanisms in the molecules.

9.11 Evaluation of Partition Functions

Now let us evaluate the translational partition function for an Ideal Gas. The energy
of an individual atom or molecule is given by,
|

m
e=—mv =— (v’ +v* +?
2 2 X y z

(9.84)

Now quantum mechanics tells us that an atom, moving in a box can only have cer-
tain discrete energies. These energies are obtained by solving Schrodinger’s wave
equation in three dimensions. From a macroscopic standpoint, the discreteness of
the energies is impossible to determine because the separation is infinitesimally
small on compared to macroscopic dimensions. But when the wave equation is
solved in a rectangular box, the allowed energies are given by the relation

h2 ni n2
&= < +—=—+-=
8m Lfc L L ©-85)

h is Plank’s constant and the L’s are the lengths of the sides of the box. Consider a
cubical box 10 cm on a side containing argon at room temperature. Then we have

(9.86)

E =

- [nf +n +n§]
8mL

The average energy of an atom is 0.025 eV and the mass is 40 amu. Plugging all of
this in gives

[n; +n, +n2]~5x10" 9.87)
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Therefore, the level of degeneracy is very comparable to the classical description
given before for the sphere. However now we see how the volume containing the
gas comes into the equation directly. The L? term in the denominator is essentially
the volume to the two-thirds power. Much like the classical case, the energy can
easily be separated into three terms, each of which will be associated with one of
the three axes. Thus, we can write our partition function as a product of the partition
functions for each of the three possible directions. For the x dimension we have

h2
- _Ze_ﬂSmLz J . 8’”ern
™ 0 (9.88)
2wm
z, =—/,—
h B

The y and z dimensions are identical so,

(9.89)

3
an]% LLL [22m]? .
B W B

— * * —
z=2z.%z, zz—|:

Now applying the relation for internal energy as a function of the partition function
gives,

E=U=- % :_i hlzeranS
dp dp N!

W W, (9.90)
E:—illni(znm) VN]—il (IJ
dg| NI\ »? g \B),

For a constant volume all of the terms in the square brackets are constant so we
have,

E=y= 453N (9.91)
2 dp Zﬁ

The classical definition of the constant volume specific heat is

] -fw]
olar), ar 2/3V_2dT[3 (9.92)

The classical value for a monatomic gas constant volume specific heat is

C, =12.47])/gm-mole/K =1.247 x 10® erg/gm-mole/K
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Therefore
N AL og7x10f — 8 (9.93)
2 .dT| B gm—mole* K
af1] T T
—{—}=—[kT]=k:— gm_’;we =138x10710 —E
ar| p| dT 3 6.002x 102 atoms atom* K
gm—mole

Thus, the value of Boltzmann’s constant can be derived by considering the constant
volume specific heat of a monatomic gas, which is a well measured and defined

quantity.

k=138x10"erg/K =1.38x1072 Joule/K (9:94)
Previously we had
go3N (9.95a)
2p
This now gives
E= %NkT and C, = %Nk (9.95b)

Now let us introduce the thermodynamic potential most easily expressed in terms
of the partition function. Consider the Helmholtz Free Energy defined by F=E—TS

F:E—T(kan+§J:E—lenZ—E

(9.96)
F=-kTlnhZ
and we have for the monatomic Ideal Gas
N
F=-kTIn Vi =—kT[-InN'!'+ Nlnz]
F=—kT[-(NInN-=N)+ Nlnz] (9.97)

F = —NkT[1+In(z/N)]
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We can write the entropy as

E-F
S: =
T T

3
> NKT + NKT1 + In(z/ N)]
2 _ Nk(% I %) (9.98)

Substituting for z gives

%
S:Nk{%+h1[[2nkT] %]} Nk=R Nm=M

h2

¥ (9.99)
S=%12+In [—2’”‘4”] r
2 PN | N
This can be rewritten as
P
S=RInV +>RInT+>Rin M+4%K| >+1n 2”12 (9.100)
2 2 2 BN
This is a famous equation called the Sackur-Tetrode equation.
Now consider changes in S. If only the volume changes we have
V.
S2—SI=EKInV2—EK1nV1=EK1n(%Vl) (9.101)

the exact relation we get from classical thermodynamics. If only the temperature
changes, we get

S, -5, = %iKlnTz —%smnrl - %smn(%): c, m(%) (9.102)

Once again, this is the expected behavior from classical thermodynamics. The last
two terms provide constants that allow us to calculate the entropy of a monatom-
ic ideal gas from first principles or fundamental constants. This table taken from
Nash’s book and attributed to K. K. Kelley evidences the excellent agreement of
this equation with the entropies determined by calorimetric measurements for the
noble gases at 298 K and one atmosphere.

Entropies (cal/gm-mole/K)

Noble gas Calorimetric Theoretical

Neon 35.01+/~0.1 34.95+/-0.01
Argon 36.95+/-0.2 36.99+/-0.01
Krypton 39.17+/-0.1 39.20+/-0.01
Xenon 40.7+/-0.3 40.54+/—0.01
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9.12 Maxwell-Boltzmann Velocity Distribution

Our Maxwell energy distribution is of the following form,

2
my;
Ni _ Eefsz
o Z
_m} (9.103)
N, = Ewie 24T
Z

For the classical continuous velocity distribution, we can write this as

mvz

ANy =Y ¢ 2T gy (v) (9.104)

In order to integrate this equation and determine the normalizations we need to
determine a degeneracy function as a function of the velocity. The simplest answer
to this question is to let the total number of degeneracies increase as the volume of
velocity space. That simply says that

o(v)= gnv3 do(v) = 4rvidy

Then

sz

dN(v)= ge_ 26T 47y dy

mv2

N= .[ dvie 2T gy

> % e
j ¢ W gy = (2” ) [y ay (9.105)
0 m 0

%
7= 47r(2k ) J.y2 - dy = 4ﬂ(2kT) 1\/—
m m

%
Z:(anT)

m

Then taking dN(v)=N(v)dv, we have

2

% _mv
N@) = N(z kT) 4mvie 24T (9.106)
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This is the Maxwell Boltzmann velocity distribution.

The average velocity is given by

_ [8kT
V=,[—
Tm
The rms velocity is given by
3kT
Vims =l
m
The most probable velocity is given by
2kT
Vimode =4[~
m
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Chapter 10
Thermodynamic Relations

In this chapter, we will discuss mathematical relationship of thermodynamics in
exact formulation using differential formation of these relations.

10.1 Thermodynamic Potentials

Classical thermodynamics has a very rich mathematical background. In a course
aimed at engineering thermodynamics, it is not terribly useful to go into this analy-
sis too deeply, but touching on some of the methods is worthwhile. Start by sum-
marizing without proof some properties of the four common thermodynamic poten-
tials. The first of these potentials is the internal energy, which is identified with the
symbol U. The internal energy U has been used for a good portion of this study to
date. Though in the past it was considered it a function of many variables, its natural
variables are S and V. Normally it is written as,

U=U(S.,)V) (10.1)
If we differentiate U with respect to S and V, holding the other variable constant
we get,

au =Y
ds

dS+d—U

, o av

av (102)
S

Also the combined First and Second Laws can be written

dU =TdS — pdV (10.3)

Then T can be identified with Cj{—g

and —p with aq
av

Vv N
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The enthalpy was defined as,

H=U(S,V)+pV =H(S,p) (10.4)
So
dH = dU + pdV +Vdp = Tds — pdV + pdV +Vdp =Tds+Vdp ~ (10.5)
And
ar =) gs 9 dp (10.6)
ds |, dP|g

Once again, 7 can be identified as d—H| and V can be identified as d—H\ g

as '’ dp
Remember that the reason for choosing enthalpy as the thermodynamic potential
of interest is that our system will be in contact with a pressure reservoir during the
process of interest.

In addition to internal energy and enthalpy, two other thermodynamic potentials
are sometimes of interest. The first is the Helmholtz Potential or Helmholtz Free
Energy (The term Free Energy is a poor choice of words and only causes prob-
lems.). The Helmholtz Potential is useful when our system of interest is in contact
with a thermal reservoir that holds the temperature constant during the process of
interest. The Helmholtz Potential is defined as,

F=U-TS
dF = dU —TdS — SdT = Tds — pdV —TdS — SdT = —pdV — SdT
Ll Ll B

av|; ar|,
_g_dF

dr|,

dF
—p=— 10.7
p vl (10.7)

Clearly, the natural variables for the Helmholtz Potential are /" and 7.

The second new potential is the Gibbs Potential or Gibbs Free Energy (Bad
choice of words.). This potential is useful when systems are in contact with the
atmosphere and the pressure and temperature are held constant by using the atmo-
sphere as a sink. The Gibbs potential is defined by,
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G=H-TS

dG = dH —TdS — SdT = Tds + Vdp —TdS — SdT = Vdp — SdT

dG:d—G dp+d—G dar
dp |, ar|,

g 96
ar|,

y 49 (10.8)
dp r

Now it may seem a little confusing why certain variables are chosen as the differen-
tial variables in the above equations. The simple answer is that only two variables
are required to define the state of a simple system, and the two that are chosen
should be the ones that make a particular process most transparent or provide the
simplest solution.

The internal energy may be looked upon as the available work (or heat) from a
constant volume system. The enthalpy may be looked upon as the available work
from a system in contact with a pressure reservoir. The Helmholtz Potential is the
available work from a system in contact with a temperature reservoir. In addition,
the Gibbs Potential is the available work from a system in contact with a pressure
and temperature reservoir.

The relationship for the internal energy as a function of the entropy can be in-
verted to give the entropy as a function of the internal energy and volume. The same
can be done for the enthalpy. When either of these are accomplished, the resulting
entropy function can be used to identify the direction of approach to equilibrium
and the actual equilibrium state. The entropy function so defined will be maximized
at equilibrium. Thus,

S=SWU,V)

ds =B qu+ B gy
duy|, avly

S=S(H,p)

as =B g B 4 (10.9)
dH |, dp|,

Both of these expressions are useful in some of the algebraic manipulations of Clas-
sical Thermodynamics.
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10.2 Maxwell Relations

At this point Classical Thermodynamics drifts off into a mathematical maze that
is well defined but becomes more obscure equation by equation.! Now having de-
fined the four classic potentials, it is possible to apply the results of the Calculus
of Several Variables to them to obtain differential relations between the various
thermodynamic properties. Perhaps the most useful application of this calculus is to
be able to express the derivatives, or rates of change of entropy. In terms of the rate
of changes of more measurable variables, like pressure, temperature, and volume.
From the Calculus of Several Variables, remember that the order of differentia-
tion doesn’t matter when the differentiation is performed with respect to two inde-
pendent variables provided the function and its derivatives are continuous. The state
functions of thermodynamics satisfy these restrictions. Therefore for any w=w(x, y),

o’w _ &'w (10.10)
Ox0y  Oyox

Also, consider the situation where there are four state variables, say w, x, ), and z,
any two of which can be chosen as the independent variables for a simple compress-
ible system. Start with x as a function of y and w.

dx=ﬁ dy+ﬂ dw (10.11)
ayl, dwl,,
Then choose y to be a function of z and w.
dy =L e Pl g (10.12)
dz|,, w,

Now substitute Eq. 10.12 into Eq. 10.11 to get

A
dy|, \ dz|, w|, wl,,
a’w=ﬁ i dz + x| A dw (10.13)
dy|, dz|,, dwl, dy|, dwl,
But
A R (10.14)
dz|,, dw|,

' [1], Chap. 2.
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So the following two relations must hold.

de| _dxp dx] dy (10.15)
dwl, dwl, dy| dw|,
x| _dx| dy (10.16)
dz|, dy|, dz|,
Equation 10.16 can be put in a more symmetrical form to yield.
dx| dy| dz| (10.17)
dy|, dz|, dx|,

Sometimes it is simply called the chain rule and can be extended to any number of
variables.

Now consider a simple example for a real gas where its equation of state can be
written as v=w(T, p) or p=p(T, v), before addressing the thermodynamic potentials.
Differentials for these two equations can be written as

dv=@|r dp+ﬂ|p dr

ap Iy dv + | dT (10.18)

d
P =5

Eliminating dp between these two equations and collecting the coefficients of dv
and dT gives,

1_@|Ta_p|T dv = @‘T 6p| ‘ dr (10.19)
p % op aT

Now since changes in dv and dT are independent, both coefficients must be equal
to zero. Therefore,

a9 d 1
12,2, )

dap al‘
ov '’
dv |
dv  dp v op TP O
op rorh Torl or b x
T
dp
1oV . .
=——| Coefficient of Thermal Expansion
Var|,
190 i
=———| Isothermal Compressibility (10.20)
Voop|,
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Thus, the requirements for continuity of derivatives of state variables allow rela-
tionships between the derivatives themselves to be defined.

Example 10.1 Calculate the (a) Coefficient of Thermal expansion and (b) the Iso-
thermal Compressibility for (1) an Ideal Gas and a real gas based on (2) a virial
expansion, and (3) the Peng-Robinson equation of state.

Solution
a) 1) Ideal Gas « :liﬂ :lﬁzl
v oT pl, vp T
2) Virial Expansion
VZZE(V+B)
p
2vﬂ:£ﬂ+£(v+3)
or p or p
2v—E @=£(v+B)
p)or p

1oy _R_(v+B) :5“’%:1(“%
v oT vp(2v_RTj v 1 T v
P

3) Peng-Robinson Equation

b RT B oa
v—b v 4+2bv—b?
V4 by =302+ b :E( 2+2bv—b2)—aa(v—b)
p
(3v2+2bv—3b2)@:5( 2+2bv—b2)+£(2v+2b)ﬁ—aa@—a(v—b)a—“
or p p or or or

3V + 2bv— 32 —20% — 2bv+ ) L :5(v2 +2bv—b2)—a(v—b)a—a
or p oT

lﬂzli(v2+2bv—b2)—a(v—b)2? 1(v2+2bv—b2) a(l_%) cu

voT v (1-3b° + aa) T (1-36%+aa) (-3’ +aa)oT

b) 1) Ideal gas x = Loy

1 __l[RTj_l
v opl, -p*) p
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2) Virial Expansion

vzzﬂ(v+8)
p
ZV@:_E( +B)+ RT ov
v p p
(2__j@:_£( B)=@:—l(v+B)
a v a p
L2ty
vop p
3) Peng Robinson

v +v2b—=3b%v+ b° =E(V2 +2bv—b*)—aa(v—b)
p

(3v2+2bv—3b2)@=— - (V2 +2bv—b?) - aal +—(2 2
o P o p op

(3v2—2v2+2bv—2bv—3b2—aa)Q:——(v +2bv—b?)
9
p P

Clov 1 (P +26v=0b%)
vop p (1-3b° —aa)

Now consider the two derivative definitions that were obtained for the Helmholtz

Potential.

_dr
dr,
_dS| _dF
dvl, — drav
_dr
davl;
_d’F
~dvdr

_ds
dviy

_dp
dar|,
dp
drl,

(10.21)

This is known as the Third Maxwell relation and allows estimation of the change in
entropy vs. pressure at constant temperature by measuring the change in pressure
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vs. temperature at constant volume. The rest of the Maxwell relations are derived in
a similar manner, and are given as,

B_T = _a_p First Maxwell Relation
V| as|,

B_T = B_V Second Maxwell Relation
dplg S|,

B_S = _B_V Fourth Maxwell Relation.
pl; P

10.3 Clapeyron Equation

The Third Maxwell relation above can be applied to obtain hfg at a point on the va-
por dome identified by p_and 7. Start with, ’

ds| _Se7Sr Sk _dp (10.22)
vl vg=ve v dT|,
dh =Tds —vdp
dp=0
[dn=hy = [Tds=T,As=T,s,, (10.23)
Then
dp| _ hg
dr Vo Tovfg
dp
he =T (10.24)

Yo

Now the derivative can be evaluated from the saturated state tables using a central
difference approximation.

| _ Mg

drl,,  Tovg (10.25)
dp

b =Tovge —r

| _p-p (10.26)

arl, " 1,1
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At low pressures, this becomes the Clausius-Clapeyron equation by ignoring the
value of v, and approximating A by RT/p (Ideal Gas).

dp| _P hy

T = (10.27)

This will allow extrapolating to pressures below those tabulated by rewriting this
equation as,

dp _ hfng
p  RT?
h
1n(&j = ﬁ(l —ij (10.28)
P R\T T,

10.4 Specific Heat Relations Using the Maxwell Relations

The internal energy differential can be written

du=" g+ g car+ ) g (10.29)
dT|, Vip avly
And considering
s =s(T,v)
a’s:é dT+§ dv
v Vir
Then
du =Tds — pdv
du=T s dT+§ dv —pdv:Tﬂ dar + s —-pldv  (10.30)
dT|, Vir dT|, aviy
So
¢
dT |,
du = s —p:Td—p -p (3rd Maxwell Relation)
avly vy dT|,

Clp
v |: ITV pi| 4 ( )
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This allows calculation of du, given an equation of state that relates p, v, and T.
Approaching enthalpy the same way and writing.

s=s(T, p)
ds:ﬂ a’T—l—ﬂ dp
ari, dp|,
dh:Tds+vdp:T{£ dT+£ dp}+va’p
ar|, dp|,
c =14
P ar|,

dh=C dT + v—Tﬂ
’ dar

} dp (4th Maxwell Relation) (10.32)
P

This can be integrated to get dh given an equation of state for p, v, and T.

Example 10.2 Demonstrate that the dp correction term in the dh equation for (1) an
Ideal Gas is zero and (2) is non zero for the Peng Robinson equation.

d
Solution The dp term in the dh equation is given by |:V—T ﬁ }dp
P
1. Ideal Gas v—Tﬁ :v—TiE:v—TE:v—v:O
oT oT p P

2. Peng Robinson—From Example 2.1
1ov 1P +2bv-0") 0(1—%) oo
vol T (1-3b*+aa) (1-3b° +aa) 0T

v v 2bv=bY) a(1-b;)mv da
oT (1-3b* +aa) (1-3b*+aa)oT

Now revisiting the two differential entropy equations above,

ds=£ dT+§ dv=&dT+d—p dv
dT|, av|; dT |,
And
C
ds =B ar B gy e gr (10.33)
ar|, dp|, T dari,

These two equations will allow calculation of changes in entropy for real gases re-
quiring only the specific heats as a function of temperature and a real gas equation
of state.
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10.5 The Difference Between the Specific Heats for a Real
Gas

Now consider the difference between the specific heats for a real gas. From above

c,-C, =% 1%
dar dT|,
p
By Eq. 10.15
| _ds|  ds| dv
drl|, drl,” avl, dar|,
So
c,-C,=1% &
avlp dT|,
So
¢,-c, -1 &
dvly dT|,

and applying the Third Maxwell Relation again gives,
dv.

C,-C, = ¥ (10.34)
dr dTp
For an ideal gas
dp| _Rdvl _Rpdp dvi _RR_RT ., ,
ar\, v dri, p dT| dT|, vp pv

For an Ideal gas as expected. However this is not the case for a real gas.

Example 10.3 Based on Eq. 10.33 derive an expression for the difference in spe-
cific heats for a real gas using the Peng-Robinson equation.

Solution Equation 10.33 is

dv
dr|,

c -c -1%
’ dr,
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Evaluating the two derivatives

_ RT aa
p_v—b Vi 4 2bv—b?

op| R a oa
or|, v=b \+2bv—b? oT

Z? aT{HK( \//Tﬂ _za_(/T) Ti _aK[TT

1
a_p _ R N aak L A
or|, v—b v +2bv—b*TT,
ov R<v2+2bv—b2) a(v—b) [ 1 ]yz
R = — — —oK| —
orl, p (1-3b"+aa) (1-3b"+aa) TT,

Y
C,—C, =R —— 4K (LJ

P v-b R(v2+2bv—b2) TT,

1 yZ
2 (vz +2bv—b2) aaK(v—b)(Tch

p (1—3b2+aa) ! (1—3b2+aa)

10.6 Joule-Thomson Coefficient

When a fluid passes through a throttling device, the enthalpy remains constant. Nor-
mally the temperature of the fluid will drop. However for real gases, the tempera-
ture may remain the same or it may increase. What happens depends on the value of

what is called the Joule Thomson coefficient, C,,.

dar
Crr = e
P,

(10.35)
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If C,, is positive, a temperature decrease follows a pressure decrease. If it is nega-
tive, a temperature increases results. Consider,

dh=C dT+{v—T—v
? d

d }dp
TP
v
0:deT+|:v—T—
d

d }dp
TP
1| a
:—{T—V —v} (10.36)
h CP dTP

dr
dp

With a throttling valve it is relatively easy to measure a temperature increase or
decrease, so this is one way of measuring Cp. Note also that for an Ideal Gas, the
Joule-Thompson coefficient is always zero.

Example 10.4 Derive an expression for the Joule Thompson Coefficient for a gas
obeying the real gas equation represented by a virial expansion.

=
Cr ZCLPI:T%(1+%)—\/:‘

o= 1e)
P

Solution The Joule Thompson Coefficient is

ZL[Tﬂ
, C,| dr

dT
JT =d_
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Chapter 11
Combustion

Chemical combustion is the major source of energy used for transportation and
the production of electricity. In this chapter, thermodynamic concepts important to
the study of combustion are examined. Basic property relations for ideal gases and
ideal-gas mixtures and first law of thermodynamics have been discussed in previ-
ous chapters. Some review of these concepts will be covered as they are integral to
the study of combustion. Readers should refer to reference [1-5] at the end of this
chapter for further information and details.

11.1 Introduction

Combustion is a rapid exothermic reaction that liberates substantial energy as heat
and has the ability to propagate through a suitable medium. This propagation results
from the strong coupling of the reaction with the molecular transport process. The
chemistry and physics of combustion involves the destruction and rearrangement
of certain molecules and a rapid energy release within a few millionths of second.
Currently, the study of combustion is a mature discipline and an integral element
of diverse research and development programs from fundamental studies of the
physics of flames and high-temperature molecular chemistry to applied engineer-
ing projects involved with developments such as advanced coal-burning equipment
and improved combustion furnaces, boilers, and engines. These developments are
important in optimizing fuel use and controlling the emission of pollutants.

The study of combustion starts with the mass and energy balances that bound the
combustion process. Then, the energy characteristics of various important fuel re-
sources and their physical and chemical properties are considered. Finally the prac-
tical stoichiometry and thermochemical requirements that apply during combustion
processes including chemical reactions, equilibrium compositions and temperatures
are discussed.
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Combustion is the conversion of a substance called a fuel into products of com-
bustion by combination with an oxidizer. The combustion process is an exothermic
chemical reaction, i.e., a reaction that releases energy as it occurs. Thus, combustion
may be represented symbolically by:

Fuel + Oxidizer — Products of combustion + Energy.

Here the fuel and the oxidizer are reactants, i.e., the substances present before the
reaction takes place. This relation indicates that the reactants produce combustion
products and energy. Either the chemical energy released is transferred to the sur-
roundings as it is produced, or it remains in the combustion products in the form of
elevated internal energy (temperature), or some combination thereof.

Fuels are evaluated, in part, based on the amount of energy or heat that they
release per unit mass or per mole during combustion of the fuel. Such a quantity is
known as the fuel’s heat of reaction or heating value.

Heats of reaction may be measured in a calorimeter, a device in which chemical
energy release is determined by transferring the released heat to a surrounding fluid.
The amount of heat transferred to the fluid in returning the products of combustion
to their initial temperature yields the heat of reaction. In combustion processes, the
oxidizer is usually air but could be pure oxygen, an oxygen mixture, or a substance
involving some other oxidizing element such as fluorine. Only oxygen based oxi-
dizers will be considered in what follows. Chemical fuels exist in gaseous, liquid,
or solid form. Natural gas, gasoline, and coal, are the most widely used examples of
these three forms. Each is a complex mixture of reacting and inert compounds. The
analysis process proceeds in three steps:

» Concepts and definitions related to element conservation,

* A definition of enthalpy that accounts for chemical bonds,

» First-law concepts defining heat of reaction, heating values, etc., and adiabatic
flame temperature.

Actually, combustion is a result of dynamic, or time-dependent, events that occur on
a molecular level among atoms, molecules, radicals and solid boundaries. The rapid
reactions produce gradients that transport processes convert into heat and species
fluxes that speed-up the reactions.

At the heart of fossil-fueled power plant operation is the combustion process.
Through the combustion process, a modern power plant burns fuel to release the
energy that generates steam—energy that ultimately is transformed into electricity.
Yet, while the combustion process is one of a power plant’s most fundamental pro-
cesses, it is also one of the most complexes.

Combustion, or the conversion of fuel to useable energy, must be carefully con-
trolled and managed. Only the heat released that is successfully captured by the
steam is useful for generating power. Hence, the ability of the steam generator to
successfully transfer energy from the fuel to steam is driven by the combustion pro-
cess, or more precisely, the characteristics of the combustion process.

A chemical reaction may be defined as the rearrangement of atoms due to redis-
tribution of electrons. In a chemical reaction the terms, ‘reactants’ and ‘products’
are frequently used. ‘Reactants’ comprise the initial constituents which start the
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reaction while ‘products’ are the final constituents which are formed by the chemi-
cal reaction. Although the basic principles, which will be discussed in this chapter,
apply to any chemical reaction, the focus will be on combustion.

11.2 Chemical Combustion

Combustion is a chemical process in which a substance reacts rapidly with oxygen
and gives off heat. The original substance is called the fuel, and the source of oxy-
gen is called the oxidizer. The fuel can be a solid, liquid, or gas. For most forms of
transportation propulsion, the fuel is usually a liquid. The oxidizer, likewise, could
be a solid, liquid, or gas, but is usually a gas (air). Rockets, on the other hand, usu-
ally carry their own oxidizer in addition to their fuel.

During combustion, new chemical substances are created from the fuel and the
oxidizer. These substances will be called exhaust. Most of the exhaust comes from
chemical combinations of the fuel and oxygen. When a hydrogen-carbon-based fuel
(like gasoline) burns, the exhaust includes water (hydrogen + oxygen) and carbon
dioxide (carbon + oxygen). However, the exhaust can also include chemical com-
binations from the oxidizer alone. If the gasoline is burned in air, which contains
21% oxygen and 78 % nitrogen, the exhaust can also include nitrous oxides (NOX,
nitrogen + oxygen). The temperature of the exhaust is high because of the heat that
is transferred to the exhaust during combustion. Because of the high temperatures,
exhaust usually occurs as a gas, but there can be liquid or solid exhaust products as
well. Soot, for example, is a form of solid exhaust that occurs in some combustion
processes.

During the combustion process, as the fuel and oxidizer are turned into exhaust
products, heat is generated. Interestingly, some source of heat is also necessary to
start combustion. Gasoline and air are both present in your automobile fuel tank;
but combustion does not occur because there is no source of heat. Since heat is both
required to start combustion and is itself a product of combustion, we can see why
combustion takes place very rapidly. Once combustion gets started, we do not have
to provide the heat source because the heat of combustion will keep things going.
We do not have to keep lighting a campfire, it just keep burning.

To summarize, for combustion to occur three things must be present (Fig. 11.1):

1. A fuel to be burned,
2. A source of oxygen, and
3. A source of heat.

Because of combustion, exhaust products are created and heat is released. You can
control or stop the combustion process by controlling the amount of the fuel avail-
able, the amount of oxygen available, or the source of heat.

Actually, combustion is a result of dynamic, or time-dependent, events that oc-
cur on a molecular level among atoms, molecules, radicals and solid boundaries.
Therefore, this chapter presents chemical kinetics that includes kinetic theory of
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Combustion

" Exhaust

O

Fig. 11.1 Simple chemical combustion illustration. (Courtesy of NASA)

gases, elementary reactions and reaction rate theory. Furthermore, the rapid reac-
tions produce gradients that transport processes convert into heat and species fluxes
that speed-up the reactions.

11.3 Combustion Equations

A simple chemical-reaction equation is the combustion of propane in a pure oxygen
environment. The chemical reaction is represented by;

C;H; +50, — 3CO, +4H,0 (11.1)

Note that the number of moles on the left-hand side may not equal the number of
moles on the right-hand side. However, the number of atoms of an element must
remain the same, before, after, and during a chemical reaction; this demands that the
mass of each element be conserved during combustion.

In writing the equation some knowledge of the products of the reaction was as-
sumed. Complete combustion was assumed. The products of complete combustion
of a hydrocarbon fuel will be H,0 and CO,, Incomplete combustion results in prod-
ucts that contain H,, CO, C, and/or OH.
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For a simple chemical reaction, such as Eq. 11.1, writing down a balanced chem-
ical equation is straightforward. For reactions that are more complex the following
systematic method proves useful [5]:

1. Set the number of moles of fuel equal to 1.

2. Balance CO, with number of C from the fuel.
3. Balance H,O with H from the fuel.

4. Balance O, from CO, and H,0.

For the combustion of propane, it was assumed that the process occurred in a pure
oxygen environment. Actually, such a combustion process normally occurs in air.
Nominally air consists of 21 % O, and 79 % N, by volume so that for each mole of
O, in a reaction there are 3.76 mol of N,

7 376 Mol (11.2)

21 mol O,

Thus, on the (simplistic) assumption that N, will not undergo any chemical reaction,
Eq. 1.1 is replaced by

C;Hg +5(0, +3.76N,) — 3CO, +4H,0 +18.8N, (11.3)

The minimum amount of air that supplies sufficient O, for the complete combustion
of the fuel is called Theoretical Air or Stoichiometric Air. When complete combus-
tion is achieved with theoretical air, the products contain no O,, as in the reaction
of Eq. 11.3. In practice, it is often found that if complete combustion is to occur, air
must be supplied in an amount greater than theoretical air. This is due to the chemi-
cal kinetics and molecular activity of the reactants and products. The term percent
theoretical air is used to compare the actual air provided to the combustion process
compared to stoichiometric air (Eq. 11.4a).

% theoretical air = 100% + % excess air (11.4a)

Slightly, insufficient air results in CO being formed; some hydrocarbons may result
from larger deficiencies [5]. So in summary, a mixture of air and fuel is called Stoi-
chiometric if it contains just sufficient oxygen for the complete combustion of the
fuel. Moreover, the percentage of excess air is given by the following (Eq. 11.4b):

Actual (A/F) ratio — Stoichiometric (A/F) ratio (11.4b)
Stoichiometric (A/F) ratio

Percentage excess air =

where A denotes Air while F denotes Fuel.

The parameter that relates the amount of air used in a combustion process is the
air-fuel ratio (AF), which is the ratio of the mass of air to the mass of fuel. The
reciprocal is the fuel-air ratio (FA) (Eq. 11.5). Thus

m

. m g
AF = —air_ FA =Sl (11.5)

m fuel Mgy
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Considering propane combustion with theoretical air as in (Eq. 11.3), the air-fuel
ratio is (see Eq. 11.6).
My _ (5)(4.76)(29) —15.69 Kg air

AF = — .
M (H(44) Kg fuel

(11.6)

where the molecular weight of air is taken as 29 kg/kmol and that of propane as
44 kg/kmol. If for the combustion of propane, AF>15.69, a Lean or Weak mixture
occurs; if AF<15.69, a Rich mixture results.

For solid and liquid fuels the ratio are expressed by mass, while for gaseous fuels
the ratios are normally expressed by volume. For boiler plant, the mixture is usu-
ally greater than 20 % lean; for gas turbines, it can be as much as 300 % lean. Petrol
engines have to meet various conditions of load and speed, and operate over a wide
range of mixture strengths. The following definition is then used (Eq. 11.7):

Stoichiometric (A/F) ratio (11.7)
Actual (A/F) ratio

Mixture strength =

In this situation, the working values range between 80 % (lean) and 120 % (rich).
Where fuels contain some oxygen (e.g. ethyl alcohol C,H,O) this oxygen is avail-
able for the combustion process, and so the fuel requires a smaller supply of air [6].

The combustion of hydrocarbon fuels involves H,O in the products of combus-
tion. The calculation of the dew point of the products is often of interest; it is the
saturation temperature at the partial pressure of the water vapor. If the temperature
drops below the dew point, the water vapor begins to condense. The condensate
usually contains corrosive elements, and thus it is often important to ensure that the
temperature of the products does not fall below the dew point.

Example 11.1 Butane is burned with dry air at an air-fuel ratio of 20. Calculate (a)
the percent excess air, (b) the volume percentage of CO, in the products, and (c) the
dew-point temperature of the products.

Solution The reaction equation for theoretical air is
C,4H,, +6.5(0, +3.76N,) — 4CO, + 5H,0 + 24.44N,

a. The air-fuel ratio for theoretical air is

Maiy  _ (6.5)(4.76)(29) 1547 Kg air

AF = .
Mg (1)(58) Kg fuel

This represents 100 % theoretical air. The actual air-fuel ratio is 20. The excess
air is then

AF,,, — AF,, 20-15.47

%excess air = [ j(l 00%) = W(l 00%) =29.28%

th
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b. The reaction equation with 129.28 % theoretical air is

C,H,o +(6.5)(1.2928)(0, +3.76N, ) + 4CO, +5H,0+1.9030, +31.6N,

The volume percentage is obtained using the total moles in the products of com-
bustion. For CO, we have

4

%CO, = [m

j(lOO%) =9.41%

c. To find the dew-point temperature of the products we need the partial pressure of
the water vapor. It is found using the mole fraction to be

5
Pi,0 = V11,0 Pam = (42'5]*101.3251&1 =11.76kPa

where we have assumed an atmospheric pressure of 101.325 kPa. Using Appen-
dix 14.2 we find the dew-point temperature to be T 4 —49°C.

When a chemical reaction occurs, there may be considerable change in the chemical
composition of a system. The problem this creates is that for a control volume the
mixture that exits is different from the mixture that enters.

11.4 Mass and Mole Fractions

The amount of a substance present in a sample may be indicated by its mass or by
the number of moles of the substance. A mole is defined as the mass of a substance
equal to its molecular mass or molecular weight. Molecular weights for substances
of interest are given in the Appendix. Compound molecular weights can be obtained
by adding up the atomic weights of the constituents.

The composition of a mixture may be given as a list of the fractions of each of the
substances present. Thus we define the mass fraction, of a component i, mf;, as the
ratio of the mass of the component, m;, , to the mass of the mixture (Eq. 11.8), m:

mf, M (11.8)
m

It is evident that the sum of the mass fractions of all the components must be 1. Thus
(Eq. 11.9):

mfy +mfy +....=1 (11.9)

The mole fraction of component i, x;, is the ratio of the number of moles of com-
ponent i, #,, to the total number of moles in the mixture (Eq. 11.10), #n:

(11.10)
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The total number of moles, 7, is the sum of the number of moles of all the compo-
nents of the mixture (Eq. 11.11):

n=m by .. (11.11)

It follows that the sum of all the mole fractions of the mixture (Eq. 11.12) must
equal 1.

X +x,+...=1 (11.12)

The mass of component i in a mixture is the product of the number of moles of
i and its molecular weight, M,. The mass of the mixture is therefore the sum,
m=mM, +n,M, +--- over all components of the mixture. Substituting x;»n for n,

, the total mass becomes (Eq. 11.13);

m=(x M, +x,M,+..)n (11.13)

But the average molecular weight of the mixture is the ratio of the total mass to the
total number of moles. Thus, the average molecular weight is (see Eq. 11.14).

M=m/n=xM +x,M, +... (11.14)

Example 11.2 Express the mass fraction of component 1 of a mixture in terms of:
(a) the number of moles of the three components of the mixture, n;, n,, and n,
, and (b) the mole fractions of the three components. (c¢) If the mole fractions of
carbon dioxide and nitrogen in a three component gas containing water vapor are
0.07 and 0.38, respectively, what are the mass fractions of the three components?

Solution
a. Because the mass of i can be written as m; = n, M, , the mass fraction of compo-
nent / can be written as:

n M,
mM, +n, M, +nyM; +...

mf; =

For the first of the three components, i =1, this becomes:

mM,
mM, +n, M, +ny M,

mf| =

Similarly, for i=2 and i=3:

mf, = n M,
m M, +n, M, +ny, M,
ny M
mfy =

mM, +n, M, +ny, M,
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b. Substituting n, = x;n;, n, = x,n,, etc. in the earlier equations and simplifying,
we obtain for the mass fractions:
mfy = x; M, [(x, M| + x, M, + x;M7)
mfy =X, M, [(x My + X, M, + x3M53)
mfy = x3Ms [ (5 My + X, M, + x3M5)
c. Identifyingthesubscripts 1,2, and 3 with carbon dioxide, nitrogen, and water vapor,

respectively, we have x; =0.07,x, =038, and x; =1-0.07-0.038 =0.55.
Then:

mf, = (0.07)(0.44)/[(0.07)(44) + (0.38)(28) + (0.55)(18)]
= (0.07)(0.44)/(23.62) = 0.1304

mf, = (0.38)(28)/(23.62) = 0.4505

mf, = (0.55)(18)/(23.62) = 0.4191

As a check we sum the mass fractions: 0.1304+0.4505+0.4191=1.0000.

For a mixture of gases at a given temperature and pressure, the ideal gas law shows
that pV; = m,RT holds for any component, and pV =nRT for the mixture as a
whole. Forming the ratio of the two equations, we observe that the mole fractions
have the same values as the volume fraction (Eq. 11.15):

xl.:Vi/Vzni/n (1115)

Similarly, for a given volume of a mixture of gases at a given temperature,
pV; =nRT for each component and pV =nRT for the mixture. The ratio of the
two equations shows that the partial pressure of any component i is the product of
the mole fraction of i and the pressure of the mixture (Eq. 11.16):

. = pn; Jn=px, (11.16)

Example 11.3 What is the partial pressure of water vapor in Example 11.2 if the
mixture pressure is two atmospheres?

Solution The mole fraction of water vapor in the mixture of Example 11.2 is 0.55.
The partial pressure of the water vapor is therefore (0.55)(2)=1.1 atm.

11.5 Enthalpy of Formation

In order to deal with the heat produced in a chemical reaction, a reference point is
required so that changes in enthalpy can be computed. The standard reference con-
ditions are 25°C (77°F, 298 K, 537°R) and 1 atmosphere pressure. The enthalpy
of a substance at the reference state is usually identified as #°. At these conditions
many of the elements in their normal form are defined to have a 0.0 enthalpy of



236 11 Combustion

formation or heat of formation, h° r- Typically this includes gases like oxygen,
nitrogen, and hydrogen as well as the solid form of carbon. Other gases like carbon
dioxide and water vapor have a negative heat of formation at standard conditions.
This means that when they are formed by burning carbon with oxygen, or hydrogen
with oxygen, a certain amount of energy will be given off. The reaction is exother-
mic. When oxygen, nitrogen, or hydrogen is decomposed to oxygen ions, nitrogen
ions, or hydrogen ions energy is required. The heat of formation for these reactions
is positive because energy must be added to the molecule break it down into ions.
Therefore they are endothermic reactions.

H, +%02 —>2H,0  —241,820KJ/Kg-mol

C+0, - CO, ~393,520KJ/Kg-mol

0, >20 ~249,170KJ/Kg - mol
N, —2N ~472,680KJ/Kg - mol
H, —>2H ~218,000KJ/Kg - mol

The negative sign for the heats of formation means that when the reaction occurred,
energy was given up by the reactants.
The First Law for a chemical reaction can be written as Eq. 11.17,

Q=Hp—HR (11.17)

H, is the enthalpy of the products of combustion that leave the combustion chamber

and H, is the enthalpy of the reactants that enter the combustion chamber. If the

reactants are stable elements and the reaction occurs at constant temperature and

pressure at the reference state (77 °F and 1 atm) then the H’s represent the heats of

formation for the substances involved. If the temperature deviates from the refer-

ence state, each of the enthalpies must be corrected for the temperature changes.
The general equation for a flowing system is (Eq. 11.18):

0-Ws= 3 N, g +(hD)=n")| =3 N, [mg+(an-n7)] L)
prod P

r
react

N, = moles of products N, =moles of reactants

h(T)—h° = Change in enthalpy from the reference state

The general equation for a rigid chamber is (Eq. 11.19):

o-w,=U,-U,
ZP%NP [h/”, +(h(T)—h")—va —g;tN, [h; +(h(T)—h”)—pvl (11.19)

0-W,=U,-U,

-3 N, [hf; +(h(T)—h”)—‘RTJ -3 N, [hf; +(h(T)—h”)—§va

prod P react
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The changes in enthalpy from the reference state can be calculated by the following

techniques
For a solid or liquid Ak = CAT.
For gases
1. Ah=C,AT
2. Use tabulated values for Ak
3. Use generalized charts for a real gas

4. Use tables for vapors like the steam tables

Example 11.4 Volumetric analysis of the products of combustion of an unknown
hydrocarbon measured on a dry basis gives the following mole percents

CO, = 10.4%
CO =12%
0, =28%
N, = 85.6%

Determine the composition of the hydrocarbon and the percent theoretical air.

Solution The combustion equation is

C,H, +c(0, +3.76N,) - 10.4C0O, +1.2C0+2.80, +85.6N, +dH,0

Writing equations to balance each of the species gives

C: a=104+12 a=116
3.76c=856 c=22.8

2c=104(2)+12+2.82)+d  d=2(22.8)-20.8-12-56=18
b=2d=36

= O Z

The actual equation for 100 % theoretical air must be

Cy16Hag +20.6(0, +3.76N,) = 11.6CO, +77.5N, +18H,0

22.8 mol of air were used and only 20.6 were needed, so % Theoretical Air=110.7%

Example 11.5 Methane is burned with dry air at an air-fuel ratio of 5. Calculate the
percent excess air and the percentage water vapor in the exhaust. Estimate the dew
point temperature of the products.

Solution The combustion equation is
CH,+20,+2(3.76)N, > 2H,0+CO, +2(3.76)N,

2(28.9669)
16.043

The stoichiometric air-fuel mixture is AFy; = 3.611
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The percent excess air is 100*(5—3.611)/3.611=38.47 %. So the balance equation is
CH, +1.385(20, +2(3.76)N,) - 2H,0+ CO, +0.770, +10.4N,

There are 2+1+0.77+10.4=14.17 mol of products.

The mole percent of H,O in the exhaust is 2/14.17=14.1%

The partial pressure of H,O in the exhaust is (2/14.17)*101325=14.3 kPa
The saturation temperature (dew point) at 14.3 kPa is 326 K=53°C.

Example 11.6 Gaseous methyl alcohol and air enter a combustion chamber at 25 °C
and 1 atm and leave at 550 K and 1 atm. Assume 150 % theoretical air. Estimate the
heat transfer to the chamber.

Solution The reaction equation is
CH;0H +1.5{1.5[0, +(3.76)N, |} > 2H,0+ CO, +0.750, +2.25(3.76) N,

The First Law gives

Q=D N,(h}+Ah),— > N,(h+Ah),

prod react

Products

H,O hy =-241,820 Ah=h(550)—h(298)=17,489.1-8853.3 =8635.8
CO, h;=-393,520 Ah=h(550)—h(298)=18,878.8-8378.4=10,500.4

0, hy =00 Ah =h(550)-h(298) =15,363.4—-7766.2 =7597.2
N,, h;=0 Ah =h(550)—-h(298) =15,095.3-7754.3 =7431.0
Reactants

CH;0H h; =-200,890

The balance equation is

0 = 2%(-241,820 +8635.8) + (~393,520 +10,500.4)
+8.46%7431.0 +0.75%7597.2 — (~200,890)

kJ
=-579,930
© km

; of Methyl Alchol
0

The above calculation assumes the water in the exhaust is liquid which at the tem-
perature of the exhaust products is not very likely. So an additional enthalpy must
be added to the Ah for H,O to account for the vaporization of water.

Ahy, =2256.6kJ kg = 40,619.0kJ/Kmol

Adding this to the negative Q gives Q=—1539,311 kJ/kmol of Methyl Alcohol.
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Table 11.1 Selected enthalpies of combustion and enthalpies of vaporization

Substance Formula Higher heating value (kJ/kmol) h,,
Hydrogen H,(g) —285,840

Carbon C(s) —393,520

Carbon monoxide CO(g) —282,990

Methane CH,(2) —890,360

Acetylene C,H,(g) —1,299,600

Ethylene C,H,(g) —1,410,970

Ethane C,H(g) —1,559,900

Propylene C,H(g) —2,058,500

Propane C,H(g) —2,220,000 15,060
n-Butane C,H, (2 -2,877,100 21,060
n-Pentane C.H ,(2) —3,536,100 26,410
n-Hexane CH, ,(2) —4,194,800 31,530
n-Heptane C.H,(g) —4,853,500 36,520
n-Octane CH ((2) —5,512,200 41,460

Note that the heat of formation for nitrogen and oxygen is zero on both sides of
the equation. If the methyl alcohol had entered as a liquid, we would have had to
add its heat of vaporization to the reactant side of the equation further reducing the
heat available per mole of the fuel.

11.6 Enthalpy of Combustion

With most hydrocarbons, normal combustion occurs with oxygen in the air. There-
fore, the enthalpy change for the complete combustion of a substance with oxygen
is called the heat of combustion. Several heats of combustion are tabulated below
in Table 11.1. If the products of combustion contain water in the vapor state, an al-
lowance for the heat required to vaporize the water must be included in the change
in enthalpy from the reference state. If the products of combustion include water in
the liquid state, the heat of vaporization is not subtracted and this gives the Higher
Heating Value for the heat of combustion for this fuel.

11.7 Adiabatic Flame Temperature

In many cases, the heat released in the combustion reaction will determine the final
temperature of the products and the gases present in the combustion chamber. The
temperature achieved assuming no heat transfer to the surroundings is called the
Adiabatic Flame Temperature. Since the change in enthalpy of the products will
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depend on this temperature, the Adiabatic Flame Temperature must be found buy
iteration. Note also that when a fuel is burned in air, the heat required to bring the
nitrogen in the air up to the Adiabatic Flame Temperature must be included in the
analysis. The Adiabatic Flame Temperature can be lowered by adding excess air
above that required for complete combustion. Typically, this will be required due to
peak temperature restrictions on the materials used for construction e.g. the strength
of turbine blades downstream of the combustion process.

It is worth pointing out at this point that combustion in itself is an irreversible
process and to achieve complete combustion typically requires a pressure loss in
the combustion chamber. Since the major part of the fluid flowing through an air
combustion chamber does not participate in the chemical reactions (primarily the
nitrogen), the combustion process can be thought of as simply heating the working
fluid. A nuclear heated heat exchanger can often accomplish the same heating with
a lower pressure loss. However, in the nuclear heated system the temperature drops
are in the opposite direction requiring heat exchanger walls to operate at a higher
temperature than the combustion chamber walls.

Example 11.7 Calculate the enthalpy of combustion of gaseous octane and liquid
octane assuming the reactants and products to be at the reference state of 25 °C and
1 atmosphere. Assume liquid water in the products exiting the steady flow combus-
tion chamber.

Solution The reaction is

CyH 3 +12.5(0, +3.76N,) — 8CO, + 9H,0+ 47N,

Products
H,0 hy =-285,830
Co, hy =-393,520
N, hy =0
Reactants
CsHyg(D) hy = —208,450 hy, = 41,460
CgH(2) hy = —208,450
Liquid Octane

Q =8(=393,520) +9(~285,830) — (208,450 — 41,460) = 5.4707x10° kJ /kmol

Gaseous Octane

Q = 8(-393,520) + 9(~285,830) — (208,450) = 5.5122x 10 kJ /kmol
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Example 11.8 Kerosene is burned with theoretical air in a jet engine. Estimate the
adiabatic flame temperature. Kerosene can be treated as n-Dodecane—C,,H, and
has a heat of formation of —291,010 kJ/kmol.

Solution The balance equation is

Cy,H,g +18.5(0, +3.76N,) —>12C0O, +13H,0+69.5N,

For the Adiabatic Flame Temperature Q=0, so

Products

H,0 h; =-241,820 Ah(H20) =?

Co, hy =-393,520 Ah(CO2)E7?

N, Ah(N2) = ?
Reactants

C,Hys hy =-291,010
Q=0=12(-393,520+Ah(CO2,)) +13(-241820 + Ah(H20))
+69.5Ah(N2)—-(-291,010)

At 25°C we would have

Q =12(~393,520) +13(~241,820) + 291,010 = 7.5749 x 10° kJ / kmol

Treating all of the products as nitrogen the dominant product, we would have
94.5 kg-mol of product. Thus, the change in enthalpy per mole is 80,158 kJ/kmol.
At 25°C nitrogen has an enthalpy of 7754.3 kJ/kmol. So the gas tables are entered
looking for an enthalpy of 87,912 kJ/kmol. This corresponds to a temperature of
2660 K. Then evaluating the Ah’s for H,O and CO, at 2660 K gives

Ah(H,0) =116547.5-8853.3=107690.0
Ah(CO,) =140041.3-8378.4 =131660.0
Ah(N,) =87846.0 - 7754.3 = 80092.0

At 2660 K the net heat balance is
Q=-7.5749x 10° + 13(107690.0) +12(131660.0) + 69.5(80092.0) = 97,138 kJ / kmol

Since it is positive, the temperature does not quite reach 2660 K. Now noting that
both H,0O and CO, had larger enthalpy changes than nitrogen, the number of moles
can be adjusted to represent them with the all nitrogen model.

Ah(H,0)/Ah(N,) =107690.0/80092 = 1.35
Ah(CO,)/Ah(N,) = 131660/80092 = 1.64
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So the new number of moles will be N=69.5+1.35(13)+1.64(12)=106.7.
Dividing the 25 °C enthalpy excess by 106.7 gives 7.5749 x 105/106.7=71,017kJ/
kmol.
Add this to the nitrogen enthalpy at 25 °C to get 78,771 kJ/kmol. The gas table
gives a temperature of about 2410 K.

Ah(H,0) =103045.9 —8853.3 = 94,193
Ah(CO,)=124671.2-8378.4=116,290.0
Ah(N,) =78,688.1-7754.3 =70,934.0

Q=-7.5749x10° +13(94,193) +12(116,290) + 69.5(70934) = —24,998 k.J / kmol

So now the temperature is bracketed. The new mole effectiveness ratios for H,0O
and CO, are 1.33 and 1.64. Therefore, 2410 K is very close and in fact the best
answer obtained by another iteration is T=2416.3 K which is probably 2 or 3 too
many digits for the round offs that have been made in the solution process.

It is obvious that this would be a very stressing temperature, and so most jet en-
gines are running at a mixture ratio quite a bit lower than stoichiometric.
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Chapter 12
Heat Transfer

Thermodynamics deals with the transfer of heat to and from a working fluid and
the performance of work by that fluid. Since the transfer of heat to a working fluid
is central to thermodynamics, a short excursion into the technology of heat transfer
is useful to tie thermodynamics to real world devices. Heat transfer processes are
never ideal and a study of the technology of heat transfer will develop an under-
standing of the trade offs in the design of the devices that actually accomplish the
heat transfer. Heat transfer technology provides the basis on which heat exchangers
are designed to accomplish the actual transfer of thermal energy.

12.1 Fundamental Modes of Heat Transfer

There are three fundamental modes of heat transfer.

1. Conduction.
2. Convection.
3. Radiation.

The temperature distribution in any system or medium is controlled by the com-
bined effects of these three modes of heat transfer. In most situations one mode
dominates and temperature distributions and heat fluxes can be obtained very ac-
curately by only considering that mode. In general, heat transfer can be a multidi-
mensional time dependent phenomena. However, for heat engines, transient heat
transfer effects are not usually as important as steady state heat transfer phenomena
and they will be neglected in discussion that follows.

© Springer International Publishing Switzerland 2015 243
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12.2 Conduction

Conduction occurs in stationary materials as a result of the vibrations of atoms
or molecules in the materials. It is governed by Fourier’s law of heat conduction,
which in one dimension is written as,

Qx:—kAa—T Btwh or W (12.1a)
Ox
or
qr=%=—k5—T Btw/h/ft> or W/m? (12.1b)
T4 Ox

Simply stated the heat flow per unit area is proportional to the negative of the
temperature gradient. The proportionality constant is called the thermal conductiv-
ity and it has units of watts/meter/K or Btus/ft/°R. The thermal conductivities of
typical materials vary widely by material and it also depends on the temperature
of the materials. Some typical values are given in the Appendix for solids, liquids,
and gases.

12.3 Convection

Heat transfer by convection occurs as the result of a moving fluid coming in contact
with a fixed surface. The moving fluid carries the heat and deposits it on the surface
or draws it out of the surface. There are two types of convection. In forced convec-
tion, the fluid is being driven or forced along by some mechanism other than ther-
mal gradients at the surface. In free convection the fluid is moved along by thermal
gradients or temperature differences at the surface. Convection obeys Newton’s law
of cooling given by,

0 =hA(T, ~T,,) (12.2a)

q=nT,-T,) (12.2b)

g in this case is the heat flux per unit area at the wall. The symbol / is identified as
the film heat transfer coefficient. It has units of Watts/m?/K or Btu/hr/ft?>/R. Where
k in Eq. 12.1b, the thermal conductivity, is a function of only the material and its
temperature, A, the film heat transfer coefficient, depends on the properties of the
fluid, the temperature of the fluid, and the flow characteristics. Multiple correlations
have been determined for calculating an appropriate /# for most materials and flow
situations.
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12.4 Radiation

Radiation heat transfer takes place by means of electromagnetic waves transmitted
from one body to another. It does not require a medium and so can transfer heat
across a vacuum. It is governed by the Stefan-Boltzmann radiation heat transfer
equation,

O=e04 (1" -1} (12.3a)
q=86<Tl4—T24) (12.3b)

The heat transferred in this case depends on the difference in the fourth power of the
temperature of the two bodies. It also depends on a universal constant, o, call the
Stefan-Boltzmann constant equal to 5.6697 x 10~ W/m? K*. The variable £ depends
on the surface material of the two bodies and can depend on their temperatures as
well. It is called the emissivity and varies between 0.0 and 1.0. The area factor A, ,
is the area viewed by body 2 of body 1, and can become fairly difficult to calculate.
Note that because the temperatures are raised to the 4th power and then differenced,
radiation heat transfer must always be calculated based on absolute temperatures
(K or °R). Both conduction and convection depend only on the linear differences of
temperature and any consistent temperature scale will work.

Radiation heat transfer is important at very high temperatures and in a vacuum.
However, for most designs involving terrestrial power plants, the heat transfer is
dominated by conduction and convection, so radiation will not be treated exten-
sively in this text. In addition, to get good quantitative results in analyzing radiation
heat transfer problems, accurate calculation of the view factors, or A, ,, is required.
The effort involved is well beyond the level of this text. Siegel and Howell by these
authors refer interested students to the text.

Before going into more detailed analysis of the modes of heat transfer, it will
be useful to provide the definitions of a number of terms of importance. These are
provided in Table 12.1 below.

Example 12.1 A constant temperature difference of 300 °F (166.7 °C) is maintained
across the surfaces of a slab of 0.1-ft (0.0306-m) thickness. Determine the rate of
heat transfer per unit area across the slab for each of the following cases. The slab
material is copper (k=220 Btu/h.ft.°F or 380.7 W/m °C), aluminum (k =130 Btu/h.
ft.°F or 225.7 W/m °C), carbon steel (k=10 Btu/h.ft.°F or 17.3 W/m °C), brick
(k=0.5 Btu/h.ft.°F or 0.865 W/m °C), and asbestos (k=0.1 Btu/h.ft.°F or
0.173 W/m °C)

Solution The Fourier law for one-dimensional heat conduction is given by
Eq. 12.1b:
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Table 12.1 Definitions for terms of importance for heat transfer

Blackbody A body with a surface emissivity of 1. Such a body will emit all of the
thermal radiation it can (as described by theory), and will absorb 100 % of
the thermal radiation striking it. Most physical objects have surface emis-
sivities less than 1 and hence do not have blackbody surface properties

Density, p The amount of mass per unit volume. In heat transfer problems, the den-

sity works with the specific heat to determine how much energy a body
can store per unit increase in temperature. Its units are kg/m?

Emissive power

The heat per unit time (and per unit area) emitted by an object. For a
blackbody, this is given by the Stefan-Boltzmann relation 7°*

Graybody A body that emits only a fraction of the thermal energy emitted by an
equivalent blackbody. By definition, a graybody has a surface emissivity
less than 1, and a surface reflectivity greater than zero

Heat flux, ¢ The rate of heat flowing past a reference datum. Its units are W/m?

Internal energy, e

A measure of the internal energy stored within a material per unit volume.
For most heat transfer problems, this energy consists just of thermal
energy. The amount of thermal energy stored in a body is manifested by
its temperature

Radiation view
factor, F,

The fraction of thermal energy leaving the surface of object 1 and reach-
ing the surface of object 2, determined entirely from geometrical consider-
ations. Stated in other words, F', is the fraction of object 2 visible from
the surface of object 1, and ranges from zero to 1. This quantity is also
known as the Radiation Shape Factor. Its units are dimensionless

Rate of heat
generation, ¢,,,,

A function of position that describes the rate of heat generation within a
body. Typically, this new heat must be conducted to the body boundaries
and removed via convection and/or radiation heat transfer. Its units are
W/m?

Specific heat, ¢

A material property that indicates the amount of energy a body stores for
each degree increase in temperature, on a per unit mass basis. Its units are
J/kg-K

Stefan-Boltzmann
constant, ¢

Constant of proportionality used in radiation heat transfer, whose value is
5.669 x 1078 W/m2-K*. For a blackbody, the heat flux emitted is given by
the product of  and the absolute temperature to the fourth power

Surface emissiv-
ity &

The relative emissive power of a body compared to that of an ideal black-
body. In other words, the fraction of thermal radiation emitted compared
to the amount emitted if the body were a blackbody. By definition, a
blackbody has a surface emissivity of 1. The emissivity is also equal to
the absorption coefficient, or the fraction of any thermal energy incident
on a body that is absorbed

Thermal conduc-

A material property that describes the rate at which heat flows within a

tivity, k body for a given temperature difference. Its units are W/m-k
Thermal diffusiv- | A material property that describes the rate at which heat diffuses through
ity, o a body. It is a function of the body’s thermal conductivity and its specific

heat. A high thermal conductivity will increase the body’s thermal diffu-
sivity, as heat will be able to conduct across the body quickly. Conversely,
a high specific heat will lower the body’s thermal diffusivity, since heat is
preferentially stored as internal energy within the body instead of being
conducted through it. Its units are m?/s
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For the problem considered here ¢ should be constant everywhere in the medium
since there are no heat sources or heat sinks in the slab. The integration of this equa-
tion across the slab for constant ¢ and £ gives;

gxly =—HT|;

or

h-T

g=k Btu/h.ft? (orW/m?)

In the present problem 7} —7, =300°F, L = 0.1 ft, and & is specified for each ma-
terial considered. Then, the heat fluxes, for copper, aluminum, carbon steel, brick,
and asbestos, respectively, are given as 6.6 x 103, 3.9 x 104, and 3 x 10? Btu/h.ft> (or
20.8x 105, 12.3x10%, 9.5x10% 4.7x 103, and 9.5x 10> W/m?). Note that the heat
transfer rate is higher with a larger thermal conductivity.

Example 12.2 A fluid at 500 °F (260 °C) flows over a flat plate, which is kept at a
uniform temperature of 100 °F (82.2°C). If the heat transfer coefficient /4 for con-
vection is 20 Btu/h.ft?.°F (113.5 W/m?°C), determine the heat transfer rate per unit
area of the plate from the fluid into the plate.

Solution Heat transfer by convection between a fluid and a solid surface is given
by Eq. 12.2b

q=nhT,~T,) Btwhfi’(or W/m?)

Taking /=20 Btu/h.ft?. °F (or 113.5 W/m?°C) and 7, -7, = 500—100 = 400° F (or
222.2°C), the heat flux at the wall becomes

g =20x400 = 8x10° Btw/h.ft* (or25.2kW/m?)

Example 12.3 Two identical bodies radiate heat to each other. One body is at 30 °C
and the other at 250 °C. The emissivity of both is 0.7. Calculate the net heat transfer
per square meter.

Solution Using Eq. 12.3a, we can write the following analysis;

Q=e0 (L' -T;)
=0.7x56.7x107 x1x(523* —=303*)
=2635W
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12.5 Heat Conduction in a Slab

The most general form of the steady state heat conduction equation occurs when the
material through which the heat is transported also has an internal source of heat. So
consider the slab geometry defined by Fig. 12.1.

The heat balance equation for a volume given by Adx will be,

Heat conducted out of Adx—Heat conducted into Adx = Heat generated within
Adx

Now assuming the overall heat flow is from left to right, the heat conducted into
Adx will be given by

dr
o =—kAd—
Qin dx,
The heat conducted out will be
2
q,. =—kAd—T =-A kd—T +ikd—T dx+l dz kd—T dx’...
dx | dx|, dx dx|, 2dx"  dx|,
q,,=-4 kd—T +ikd—T dx
dx|, dx dx|,

Then identifying the heat generation rate per unit volume as Q(x) the balance equa-
tion becomes

dT d  dT dT
—q, =0(x)Adx =—-Alk—| +—k—| dx |+k4—
Do =9 = O(X) [ ol T . ] axl.
d  dT
xX)dx =——k—| dx
o) dx dx|,
Fig. 12.1 Slab with internal e e T R e R T
heat source Pt
. q®) | | q(x+dx) L
_____..:._.,I_______
=

Y
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If k is not a function of position or temperature then,

Q/(cx) d2 V() (12.4)

This is a form of the classic Poisson’s equation. The V2 operator is indicated be-
cause when the equation is generalized to two or three dimensions, the two or
three-dimensional version of this operator gives the correct form of the equation.
Of course, if the heat source is not present then the equation reduces to Laplace’s
equation.

V2T =0 (12.5)

12.6 Heat Conduction in Curve-Linear Geometries

Solving the two or three dimensional heat transfer equation is a difficult problem
in the general case. However, for most heat transfer situations of interest to nuclear
engineering one-dimensional solutions are usually all that is required. However,
many times those solutions require the equation to be written in curvi-linear geom-
etry, either cylindrical or spherical coordinates. Poisson’s equation in cylindrical
coordinates is

o) :_(lirdlj__(lﬂﬂ TJ (12.6)

And in spherical coordinates,

27
Qo) |1 d pdl) 24T 4T (12.7)
k p-dp  dp pdp dp?

Now integrating Poisson’s Equation for a constant Q in cylindrical coordinates gives

|

1d dT

JQrdr——kJ——r—rd kl ar _, dr

F——r—
dr dr dr

2 2
Q{r__n_J:krd_T‘ e dT

Ul

2 2 " dr dr
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Note that the first term on the right hand side is simply the heat being transferred
into or out of the surface at r|. Separating terms and integrating again gives,

1 4
2 dr|, dr
[Qz o AL ]ﬂ=—de (12.8)
2 r
G W S I Y
ANl o

There are two unknown constants of integration in this case, namely the heat flux
on the surface at 7 =r, and the temperature 7', on that surface. Since the outer sur-
face has not been specified yet, and there will be boundary conditions on it, both of
the inner boundary constants cannot be specified independent of the outer surface
boundary conditions. In the fuel pin case where r, is taken as 0, the derivative term
at 7, must be zero and the equation simplifies to,

2
’
22 k-1

or (12.9)
Onry = drk(T;, ~T)

The term on the left hand side is simply the linear heat rate and 7', is a function of
T, and this heat rate. A boundary condition at r, is required in order to specify 7.
Normally the boundary condition at r, is given in terms of some kind of a heat flux,
or a derivative boundary condition. It would be unrealistic to set 7, to a specified
value because that would assume that the heat flux could be adjusted to hold it at
this value. A second simplification of Eq. 12.8 occurs for the case of no heat produc-
tion in the region of interest. In that case, Eq. 12.9 simplifies to

—[kg ]qln( ] k(T -T)
drrl n
dT

il 2| =L 2 (12.10)
dr i n k R

Example 12.3 Consider a fuel pin with a linear heat rate of 300 W/cm and a radius
0f 0.41 cm and a thermal conductivity of 2.0 W/m/K. Neglect the clad for the pres-
ent. It is cooled by water flowing by with a bulk temperature of 585 K and a film
heat transfer coefficient 20,000 W/m?/K. Estimate the surface temperature of the
fuel pin and its centerline temperature.

T,-T, =




12.6  Heat Conduction in Curve-Linear Geometries

Solution First obtain the volumetric heat rate

_ 300W/cm

= 568W/cm’®
7(0.41)

Then the heat flux into the fluid is given by

300W/em*100 = 22r * h(T, —T,) = £ *2*0.0041* 20,000 * (T} — 585)

30,000

=643.2K
2* 7 *0.0041*20,000

T, =585+

Then applying Eq. 12.9 gives
onr? = 4rk(T; -T,) =300 = 47[*%(1"1 —643.2)

I, = 643.2+ﬂ =1836.6K
47*0.02
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Example 12.4 Hot water is flowing through a thick tube and is being cooled by
water flowing on the outside of the tube. The temperature of the hot water is 600 K.
The temperature of the cold water is 400 K. The film heat transfer coefficient for
the hot water is 20,000 W/m%*/K and the film heat transfer coefficient for the cold
water is 100,000 W/m?/K. The tube is 3 mm thick with an inner diameter of 1.5 cm
and has a thermal conductivity of 16.7 W/m/K. Calculate the surface temperatures

of the tube.

Solution The key is realizing that the same amount of heat is flowing through all

three materials. We have

q= hcold (Z}uter surface Tcold water)
k

q= 7. (Y;nner surface T;mter surface)
7 In-%

i
q= hhot (Thut water — T;'nner surface)

20,000(600—1T; 167

16.7

100, Ooo(nutersurface - 400) = m (Y;nnemul_‘face - 7:mtemurfazce
3.269(600—~T,)=T, ~T,,  1961.4=4.269T, —T,,

T, =4269T, —1961.4 16.347(T,, —400) =T, - T,

6538.8=17.347T, T,  6538.8=17.347(4.269T —1961.4) T,

6538.8+17.347*1961.4=(17.347*4.269 — )T,
T,=55524K T, =4.269%55524—1961.4=408.9 K

nnersurface) = M( innersurface — Tz)utersurface)
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Now consider the integral of the Poisson Equation in spherical geometry.

)

j-Qrzdr = —kj.rlz

Ul

3 3
ol -1 = ﬂﬂ_rlzd_T
3 3 dr dr

ir2 d—Trzdr
dr dr

3
%dr—{%+k;’lzi’—T Jd—fz—kdr
}"rl r
o) (or ,dT| 1 1
O | Evrerr S | ——= |2k@ -1
Q[66 3] )\ s @-1

Then for the case where r, = 0, this reduces to

2
Q%:k(Tl_Tz) (12.11)

Note that a heat rate per sphere could be defined as

4
—nr'Q

Qsphere = 3

In addition, Eq. 12.11 can be written as
Qsphere = 87Tr2k(Tl - TZ)
And for the case of no heat generation within the shell,

" [i—l}k(Tl—Tz) (12.12)

non

Example 12.5 Estimate the maximum amount of heat that can be generated per
spherical particle with a radius of 0.5 mm contained in a shell of pyrolytic carbon
0.1 mm thick. The outer surface of the particle will be maintained at 700 °K by a
very efficient heat removal system. The peak temperature allowed for the uranium
dioxide in the fuel particle is 1800 °K. The average thermal conductivity for ura-
nium dioxide is 3.0 W/m/K. The average thermal conductivity for pyrolytic carbon
is 2.0 W/m/K.

Solution For the sphere

Oyperemax = 871k(Ty —Ty) = 87 *0.0005*3.0* (1800~ 7)) = 0.0377(1800 7}
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For the shell

=K {i—i}k(n 1)
dr 5 r K
4n'r12kd—T =4z’ #(TS ~700)
rl, 2[ 11 )
1 rl o
A
2.0
Qsphere,max =—4r 1 (TS —700)

I
(0.0006 ~0.0005 )
=0.0754(T, —700)

Qsph ere,max

Then

Qsphere ,max

T, =700+
0.0754

Qsphere,max

— 0.0377{ 1800~ 700 — Lteremax
0.0754

1 'SQsphere,max =41.47

Qsphere,max = 27 . 6W

12.7 Convection

Convection is more complicated than conduction and depends much more on the
configuration of the heat transfer media than conduction. However, it has been ana-
lyzed in detail for many different configurations and as a result, efficient prediction
of convection results depends on finding the correct analysis for the problem under
consideration.

There are several ways of categorizing convection results. The most basic is
dividing convection into forced convection and free convection. In forced convec-
tion, a pressure drop drives the heat transport media or fluid and the velocity of the
fluid does not depend on the heat transfer or thermal gradients. In free convection,
there is no pressure drop driving the fluid and its velocity develops because of the
buoyancy of the fluid and thermal gradients. Forced convection is by far the most
common in heat exchangers and nuclear reactors.

The second way of dividing convection is into internal flows and external
flows. Internal flows are typically flows with in a pipe or pipe-like structure. The
flow is confined and there is no free surface. External flows deal with flows on
a surface and are generally bounded on only one side. However, pipes or other
confining media can be so large that what happens on one surface is not influ-
enced by other confining surfaces and therefore the flow can be treated as an
external flow.
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12.8 Boundary Layer Concept

In most convection situations, the transition from the bulk temperature of the fluid
to the temperature of the confining surface occurs over a very short distance very
close to the surface. The velocity of the fluid and its temperature must match the
velocity of the wall, usually zero, and the temperature of the wall. The transition
from the bulk fluid velocity and the bulk fluid temperature occurs over a very thin
region in the fluid called the boundary layer. A physical description of the boundary
layer is provided in Fig. 12.2.

Figure 12.2 describes the development of the velocity and thermal boundary lay-
ers over a flat plate. The outer boundaries of each are defined by where the velocity
reaches 99% of its free stream value and the temperature difference between the
fluid and the wall reaches 99 % of its ultimate value. There is no reason that the two
boundary layers should be the same thickness, but sometimes they are taken to be
so to simplify the analysis. In the case of the external flow over a flat plate, both
boundary layers start at zero thickness at the start of the plate and grow continu-
ously along the plate. In order to predict the heat transfer on the plate, it is important
to track the growth of the velocity boundary layer as well as the thermal boundary
layer.

At the start of the flat plate, the velocity profile varies in a very smooth manner
almost parabolic in the distance from the plate. The fluid flows in smooth layers
over the plate with each layer moving in a stable manner. This is called laminar
flow. The heat transfer is basically by a conduction mechanism between layers. As
the fluid travels down the plate, eventually the layers become unstable and pack-
ets of fluid move transverse to the plate in random motions. The flow becomes
turbulent. In this case, the packets of fluid transport heat as they move within the
boundary layer. The transition from laminar flow to turbulent flow is controlled
by the ration of the inertia forces in the boundary layer to the viscous forces in the
boundary layer. This ratio is given by

6*=T-T,
Velocity Temperature Velocity
profile profile boundary
layer
Thermal
boundary
layer
§(x)  |8,0x)
X
6y, =0 Wall

Fig. 12.2 Velocity and thermal boundary layers for laminar flow over a flat plane [5]
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~ ViscousForce /,lV/L2 u v

Moreover, it is called the Reynolds number after Osborne Reynolds who first recog-
nized its importance in characterizing the flow through pipes. Note that it is dimen-
sionless and is simply a number. Typically around Re=2300 flow over a smooth
plate will transition from laminar to turbulent flow. Of course, this can vary depend-
ing on the roughness of the plate and the smoothness of the flow upstream of the
plate. A better description of the phenomena in a transitioning boundary layer is
presented in Fig. 12.3.

Since heat transfer in the turbulent boundary layer is greater, it is often desirable
to “trip” the boundary layer near the front of the plate by adding roughness or ir-
regularities to cause an immediate transition to turbulent flow. However, turbulent
flow does cause a greater drag on the flat plate and will cause a greater friction force
attempting to slow the flow over the plate. The trade between increased heat transfer
and increased drag will be important to the design of heat exchangers. The drop in
pressure required to obtain the desired heat transfer represents the mechanical cost
of the heat transfer.

The flow over a curved surface complicates the boundary layer flow even more.
Consider Fig. 12.4. The fluid approaches the curved body from the left. As the fluid

Unseparated Boundary
flow layer

Point of
inflection,
du
oy

y=0

Fig. 12.4 Boundary layer separation for flow over a curved body [5]
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n the wake wake

Fig. 12.5 Flow around a circular cylinder as Reynolds number varies [5]

approaches, the pressure builds up in the fluid as the body slows it down. Then as
the fluid flows over the body, the pressure decreases due to flow speeding up. The
boundary layer on the front surface is compressed because of the higher pressure
but expands as the pressure decreases. Eventually as the flow turns the corner and
moves down the backside of the body, the flow separates due to a loss of energy in
the boundary layer. This produces a low pressure on the backside of the curved body
increasing the drag that the fluid sees significantly.

A quantitative description of the flows across a cylinder as a function of the
Reynolds number is given by Fig. 12.5. Note that in this case the Reynolds number
used to categorize the flows is based on the diameter of the cylinder.

Re= PP (12.14)

U

Flow over a flat plate, or over a curved surface (circular cylinder), provide the
basis for most film heat transfer correlations for forced convection in external
flows. Free convection produces significantly different boundary layer phenom-
ena and additional variables come into play. The free convection scenario of
most interest is on a vertical flat plate, or tube, and gravitational forces and the
buoyancy of the fluid become important. Two typical scenarios are described in
Fig. 12.6.

The flow is significantly more complicated than that in forced convection.

Moving on to internal flow heat transfer, the development of the flow pattern for
laminar flow is described in Fig. 12.7.

At the entrance to the tube, the flow is uniform across the tube surface area.
However, the boundary layer builds up on all internal surfaces until there is no flow
outside of the boundary layer. When this occurs, the velocity profile within the tube
takes on a parabolic shape and maintains that shape for the rest of the tube length.
Typically, the region near the entrance while the flow is developing varies from 10
to 60 diameters for very smooth tubes. If the flow is turbulent, the velocity profile
is much flatter. Once again, the transition from laminar to turbulent flow occurs at
a Reynolds number of approximately 2300. Since turbulent flows generally give
the better heat transfer, roughness at the entrance may be included to transition to
turbulent flow at a significantly lower Reynolds number.

Heat transfer to or from the fluid flowing in the tube depends on the surface
conditions of the tube. Two surface conditions are usually used to characterize the
heat transfer to the fluid. The first condition is that of a uniform surface temperature
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Turbulent
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Pt

Turbulent

() Hot wall (b) Cold wall

Fig. 12.6 The velocity boundary layer for free convection on a vertical plate [5]

for the tube. In this case, since the tube surface temperature does not change the
difference between the fluid mean temperature and the surface temperature decays
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Fig. 12.8 a Mean fluid and surface temperatures—constant surface temperature. b Mean fluid and
surface temperatures—constant heat flux

exponentially from the difference at the inlet. The second condition is that of a
uniform heat flux into or out of the tube along its length. For this case, the mean
fluid temperature increases or decreases linearly from the inlet, and the surface tem-
perature of the tube moves to a constant difference from the mean fluid temperature
after entrance effects have died out. Typical results for both conditions are shown
in Fig. 12.8a and b.

As should be obvious, heat transfer by convection can be very different
depending on the geometry of the situation and the flow pattern. Fortunately,
a great deal of work has been competed in the past and heat transfer correla-
tions are available for most problems of interest. These correlations or solu-
tions for various flow patterns and conditions are normally expressed in terms
of dimensionless groups of parameters relevant to the convection problem of
interest.
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12.9 Dimensionless Numbers or Groups

Much like the Reynolds number that represents the ratio of inertial forces to viscous
forces there are a number of dimensionless groups that allow analysis of many
convective heat transfer problems based on general solutions. The second of these
dimensionless numbers that is of interest is the Prandtl number. It is the ratio of
the kinematic viscosity to the thermal diffusivity or the ratio of the momentum and
thermal diffusivities.

Y7,
k% _HC, (12.15)
k
e,
For a Prandtl number of 1.0, the thermal boundary layer and velocity boundary

layer are the same thickness.
Typical values for some fluids are,

1%
Pr=—=
a

Air ~0.71

Water ~0.8-2.0
Liquid metals ~0.003-0.03
Oils ~100-50,000

Flow patterns and heat transfers are generally so different for the three ranges of
Prandtl numbers above that different heat transfer correlations will be required for
each of the three ranges. Corrections based on Prandtl numbers will be useful within
the three different ranges.

Perhaps the most important dimensionless group for convection heat transfer is
the Nusselt number. The Nusselt number represents the ratio of convection to pure
conduction heat transfer and is given by,

Nu= "L (12.16)
k

Most heat transfer correlations would relate the Nusselt number to other dimension-
less numbers characterizing the flow pattern of interest. Then the film heat transfer
coefficient h, can be calculated knowing the thermal conductivity of the fluid and
the appropriate length of interest. Often the length of interest will be the diameter of
the tube through which the flow is passing or an equivalent diameter for non-circular
flow paths. This introduces a term that allows conversion of non-circular flow paths
to equivalent ones called the hydraulic diameter. The hydraulic diameter is defined
as four times the flow area divided by the wetted perimeter of the flow channel.

44

D, = (12.17)

P

wetted
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The Nusselt number is the direct connection to the calculation of the film heat
transfer coefficient.

A modified form of the Nusselt number that is often used instead is the Stanton
number. The Stanton number is defined as the Nusselt number divided by the Reyn-
olds number and the Prandtl number.

St= U Ny = St*Re*Pr (12.18)
Re*Pr
h
St = (12.19)
pre,

The Stanton number is particularly useful for fluids that have Prandtl numbers close
to 1.0.

An additional number that is often used to correlate heat transfer is the Peclet
number. It is simply the product of the Reynolds number and the Prandtl number.

vL /.C U VL VL
Pe = Re*P =/’/* p/:_:_ 12.20
e = Re*Pr f A c, p ( )

U

Since the pressure drop through a channel is the mechanical energy that must be
paid in order to accomplish heat transfer, it is essential to have correlations that
predict the pressure drops. This introduces another set of dimensionless numbers.
The first of these is the friction factor given by

T

Note that L/D is also a dimensionless number and in using any correlation, it is
important to know if this ratio was included when the friction factor correlation was
developed. Obviously the pressure drop will be greater the longer the flow channel.

The second parameter of interest for predicting pressure drops is the coefficient
of friction. It is defined by

(12.21)

C =—"t (12.22)

7, is the wall shear stress. The coefficient of friction is more fundamental than the
friction factor and can be applied to geometries other that internal flow in tubes.

These dimensionless parameters are enough to address most forced convection
heat transfer situations. Additional parameters will be required for high speed flows
or for free convection. For details on these parameters and how they are used refer
to a standard heat transfer text such as Incropera et al. in the References section.
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Example 12.6 Estimate the friction pressure drop in a PWR flow channel if the
flow rate of the water is 1.25 m/s and the effective temperature is 600 K. The
hydraulic diameter for the channel is 1.18 cm and its length is 363 cm. The friction
factor is given by

£ =0.184Re )"
Solution Calculating the fluid properties

p=6489kg/m’

C, =7000.0
1=8.10E—5
k=0.497
* *
Ro o 048.9%125 0.0118:11&164
8.10E—5
0.184
/=0.184Re,, " =———__=0.0178
P 118,163%2

2 % 2
1y PV . 363 648.9%1.25 ~
Ap—/D AT S 0.0178=5.55 kPa

12.10 Correlations for Common Geometries

Over a Flat Plate The two correlations of interest for a flat plate will be those that
give the average coefficient of friction and the average Nusselt number for a plate
of length L [1]. For laminar flow and an isothermal plate they are

C,, =1.328Re;? (12.23)

Nu, =0.664Re,Prs (12.24)

These equations apply to gases and liquids with Prandtl numbers near 1.0. The
properties should be evaluated at the average temperature between that of the fluid
and that of the plate. For fluids with very small Prandtl numbers, a better Nusselt
number correlations is,

Nuy =1.13Pe;’ (12.25)
which is good for Prandtl numbers less than 0.05 and Peclet numbers greater than

100.
For turbulent flow over a flat isothermal plate the friction factor is given by,
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C,, =0.1184Re (12.26)

The Nusselt number is given by

y 1
Nu, =0.0592Re,’ Pt (12.27)

Of course, for smooth flow at the front of the flat plate the first part of the heat
transfer will have to be calculated with the laminar equations up until the transition
point (nominally Re~2300) and then the turbulent equations used thereafter. If the
front edge of the flat plate is rough, enough no laminar regions will exist and the
turbulent equations can be used for the whole length of the plate.

For the case of a flat plate with a constant heat flux, the equation for the Nusselt
number in laminar flow is,

Nu, =0.906Re, > Pr’* (12.28)

And the equation for turbulent flow with a constant heat flux is,

Nu, =0.616Re’ Pr'* (12.29)

Example 12.7 Many early reactors were built with flat plate aluminum fuel ele-
ments. Calculate the film heat transfer coefficient and coefficient of friction for
flow across a flat plate 0.5 m in length at a water velocity of 1.5 m/s. The bulk water
temperature is 350 K and the fuel plate surface temperature is 365 K. Assume a
constant heat flux from the plate.

Solution Evaluating the water properties at the mid film temperature 357.5 K

p=973.7 —M(W?ﬂ —937.2) =973.7-0.15%36.5 = 968.2 kg/m’
400-350

C, =4195.0+0.15*(4256 —4195) =4204.2 J/kg/K

U =343E-04-0.15%(3.43-2.17)E — 04 = 3.24E — 04 N *s/m>
k=0.668+0.15*(0.688 —0.668) = 0.672 W/m/K

968.2%1.5%0.5

Re=—1= =2 -

=2,241,204
324E-4
—_4%*
Pr= 3.24E-4%4204.2 —9.027
0.672

Clearly the flow is turbulent and for a constant heat flux,

Nu, =0.616Re)* Pr/* =0.616%2241204°82.027°33 =93,810.3

h= %93,810.3 =126,081W/m? /K
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The coefficient of friction is

C,, =0118aRe * = — 2115600636

2241204%2

Along Circular Tubes The same two correlations are of interest for flow in and
around circular tubes, though the friction factor usually replaces the coefficient of
friction. The friction factor for fully developed laminar flow is given by [1],

r=5 (12.30)

- Re)

For fully developed turbulent flow there are two correlations.

£ =0316Re,* belowRe = 20,000 (12.31)

-
f=0.184 ReDA aboveRe = 20,000

For an isothermal boundary condition on the inside of the tube, the laminar flow
correlation for fully developed flow is,

Nuj, =3.66 (12.32)
For a constant heat flux, the laminar flow correlation is,
Nup, =4.36 (12.33)

For turbulent flow with small to moderate temperature differences between the sur-
face and the fluid mean temperature the Dittus-Boelter correlation is,

4
Aszonznmﬁfk" (12.34)

Where n=0.4 if the fluid is being heated and n =0.3 if the fluid is being
cooled. This correlation is satisfactory if 0.6 < Pr <160, Re,,> 10,000, and

L/D>10.
For large temperature differences, a slightly better correlation is given by

4
Nuy = 0.027Re.s m%Eiij (12.35)
u,

which, is good for 0.7 <Pr< 16,700, Re,,> 10,000, and L/D > 10. All properties ex-
cept U, are evaluated at the mean fluid temperature.

In this case these two correlations may be applied to both a constant surface
temperature condition and a constant heat flux condition.
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Fig. 12.9 Flow channel
between four tubes p

All of the above correlations were developed for flow within tubes. For the flow
along the outside of tubes in an array, a simple trick is used to apply these correla-
tions to this case. Consider the array of four tubes in Fig. 12.9 below.

The flow channel between the tubes can be treated as flow within a cylindrical
tube if the hydraulic diameter is adjusted properly. The hydraulic diameter is cal-
culated as,

B 4* Area _4*(p2—7rr2)
" Wetted Perimeter 2nr

(12.36)

Then all of the above correlations apply. Note that this model assumes no cross
flow, all of the flow is exactly along the tubes.

Example 12.8 At a point in a Boiling Water Reactor (BWR) the water temperature
is 270°C and the clad surface temperature is 300 °C. The diameter of the fuel rods is
1.25 cm and they are spaced on a square matrix with a pitch of 1.62 cm. The water
is flowing at the rate of 2 m/s. Calculate the film heat transfer coefficient using the
correlation for a large temperature drop across the thermal boundary layer.

Solution For a large temperature drop, the properties are evaluated at the mean
fluid temperature, in this case 285 °C.

p=831_3_w
00-500

C, =4660.0+0.58*(7000-4660) = 6017.2 J/kg/K
4=1.18E-04—-0.58*(1.18—0.810)E —4=9.65E—5 N *s/m’
k=0.642—-0.58*(0.642—-0.497) = 0.558 W/m/K

C _ &k
Pr:ﬂ p=9.65E 5%6017.2

k 0.558
M, =118E-04-0.73*%(1.18-0.810)E—4=9.099E -5 N *s/m?

(831.3-648.9) =831.3-0.58*182.4 = 725.5 kg/m’

=1.0406
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The hydraulic diameter is calculated as

2
4(1.622 _”(125)

* 2 _ 2
p, =¥ =) =1.423cm
2xr 7l.25
%9 %
Re_ J25:5%2%001423 1o
9.65E—5
4 1
Nty = 0.027Rers P/ [ £ |=0.027%213,966°%1.0406035 205 _ 53325
1 9.099
h=—" Nuy =298 53395 220,910 Wim¥/K
D, 0.01423

Across a Circular Tube For flow across a circular tube the concept of separately
describing laminar and turbulent coefficients does not make sense. The flow rapidly
transitions and separates at all but the lowest Reynolds numbers. The data for the
drag coefficient defined as

FD
2

Afp7

Cp= A, =tube frontal area,F}, = drag force (12.37)

A plot of the drag coefficient vs, Reynolds number is given in Fig. 12.10.
An engineering correlation for the heat transfer for a single tube in cross flow is
given by,

1
Nuj, = CRe}, Pré (12.38)

]
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Fig. 12.10 Drag coefticient for flow across a single circular [5]
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Table 12.2 Coefficients for Re, C m
Eq. 12.37
0.4-4 0.989 0.330
4-40 0.911 0.385
404000 0.683 0.466
4000-40,000 0.193 0.618
40,000-400,000 0.027 0.805

where C and m are given in the following table for ranges of Reynolds numbers
(Table 12.2).

This correlation is good for both a constant surface temperature and a constant
heat flux.

Across Tube Bundles In addition to flow through tubes and across one tube, a
common geometry is flow across banks of tubes. In this case, there are two com-
mon configurations as described in Fig. 12.11. Either the tubes are lined up directly
behind each other, or they are staggered. The relevant parameters to describe the
geometry are the tube’s diameter, D, the spacing between the tubes in a plane per-
pendicular to the flow, S, and the spacing between rows, S,. The Nusselt number
is given by

1
Nupy =1.13C, Re o prs (12.39)

The Reynolds number is based on the maximum fluid velocity computed from

Sr

Vinax = S, -D Voo (12.40)

for the inline configuration and for the staggered configuration if A1 is less than A2.
It will occur at A2 if

L
St Al

g
lo.
O
Sy
-
s

Fig. 12.11 Tube banks. a Inline. b Staggered



12.10 Correlations for Common Geometries 267
Table 12.3 Constants for Eq. 12.39 [1]
S,/D
1.25 1.5 2.0 3.0
S,/D C, m C, ‘ m C, m | m
Aligned
1.25 0.348 0.592 0.275 0.608 0.100 0.704 0.0633 | 0.752
1.50 0.367 0.586 0.250 0.620 0.101 0.702 0.0678 | 0.744
2.00 0.418 0.570 0.299 0.602 0.229 0.632 0.198 0.648
3.00 0.290 0.601 0.357 0.584 0.374 0.581 0.286 0.608
Staggered
0.600 - - - - - - 0.213 0.636
0.900 - - - - 0.446 0.571 0.401 0.581
1.000 - - 0.497 0.558 - - - -
1.125 - - - - 0.478 0.565 0.518 0.560
1.250 0.518 0.556 0.505 0.554 0.519 0.556 0.522 0.562
1.500 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568
2.000 0.404 0.572 0.416 0.568 0.482 0.556 0.449 0.570
3.000 0.310 0.592 0.356 0.580 0.440 0.562 0.428 0.574
Table 12.4 Correction factors for Eq. 12.42 for less than ten rows [1]
NL 1 2 3 4 5 6 7 8 9
Aligned 0.64 0.80 0.87 0.90 0.92 0.94 0.96 0.98 0.99
Staggered | 0.68 0.75 0.83 0.89 0.92 0.95 0.97 0.98 0.99
2(Sp —D)<(Sy —D) Sj =+/SF+8}
In which case
V (12.41)

Vo o=—r
max Z(SD—D)

The constants for Eq. 12.39 are given in Table 12.3 above. This equation and table
were developed for banks of tubes with more than ten rows. For less than ten rows,
the Nusselt number must be corrected according to Eq. 12.42 below and Table 12.4.

N”D,<1o = CzN”D,zlo

The table of values for C, is given below.
The pressure drop across a bank of tubes is given by

Ap=N,x (P

max

V2/2jf

(12.42)

(12.43)



268 12 Heat Transfer

0.1 1 10
(Pp- VP, - 1)

0.6
0.4

0.2

0.1

008 07 0 o T o

R‘D. max

Fig. 12.12 Friction factor and X for aligned tube banks [1]
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Fig. 12.13 Friction factor and X for staggered tube banks [1]

The friction factor for aligned tube banks is given in Fig. 12.12 and for staggered
tube banks in Fig. 12.13.

The parameter X is also given in the inserted sub-plots in Figs. 12.12 and
12.13.
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Example 12.9 Calculate the effective film heat transfer coefficient and the friction
factor for a tube bank of staggered tubes with the following dimensions.

Tube Diameter=3 cm
Spacing Transverse to the Flow=6 cm
Spacing Parallel to the Flow=6 cm
Entering Flow Velocity=50 m/s
Fluid is Water (steam) at 500 K and 15 kPa
Eight rows of tubes
Solution Begin by calculating V_ =6/(6-3)=2*V_ =100 m/s
*
Then Re, .« = 100%0.03 =30,639
’ 5.75965*1.70E -5

S,/D=2.0 S,/D=2.0 For staggered tubes C,;=0.482 m=0.556

Equation 12.39 gives

1
Nu=1.13C; Rep Pr/s = 1.13%0.482%30,639°5%¢ *|
Nu=170
Correcting for 8 tubes gives Nu =0.98*170=166.6

k 0.0339

Then h=— Nu = 166.6 =188.2W/m? /K
D 0.03

The pressure drop is given by Eq. 12.43.
¥ max?
Ap =NLx£p m K}f

From Fig. 12.13 at a Re of 30,639 f=0.21 and y =1.05

2
Ap =8*1.05*L*0.21 =1.531kPa

5.75965%*2

12.11 Enhanced Heat Transfer

Newton’s law of cooling is given by
0=ANT,-T,)

When no more improvements in the film heat transfer coefficient, h, can be made,
the heat transfer rate can still be increased by increasing the heat transfer area. This
is usually accomplished by adding fins to the heat transfer surfaces. This is very
common when one fluid is a liquid and the other fluid is a gas. The automobile
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Fig. 12.14 Fin on a vertical Te Ts

t

T
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radiator is a common example. A typical geometry for a fin attached to a vertical
surface is shown in Fig. 12.14.

The cross sectional area of the fin is given by A_=w*, and the perimeter of the
fin is given by P=2w + 2¢t. Detailed analysis of the heat transfer from the fin to the
fluid is given in Incropera et al. for many different boundary conditions, but a good
approximation for many finned situations is given by the solution,

g, =M tanhmlL,

M = |hPkA (T, -T _ | k2
= c( - w) m= E (1244)
- t

LC—L+A

It is also a reasonable approximation for fins around a tube that extend out an
amount equal to the radius of the tube.

The utility of adding fins to a surface has to be evaluated in terms their heat
transfer effectiveness. The fin heat transfer effectiveness is defined by

Heat transferred through the fin

E =
7" Heat transferred through the base area without the fin

oo 4 NPT, -T,) Pk (12.45)
7 AT, -T,) hA(T,-T,) hA,

Another measure of fin performance is given by the fin efficiency. In this case the
heat transferred by the fin is compared with the heat that could be transferred if the
entire fin were at the wall temperature.
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_ MtanhmL  \JhPkA.(T; —T,)tanhmL  tanhmL
r hPL(T, ~T,,) hPL(T, ~T,,) mL

(12.46)

In the end, the important parameter of interest in transferring heat is the overall
performance of the heat transfer surface with the fins attached. Since adding one
fin is not the optimal solution usually, an array of fins will be added with the spac-
ing between the fins identified as S. Then the overall surface efficiency is given by

g = o _ Dot surace T D ins _ [N, h4, + Ni(S*wT, —T,)

" WA+ A )T L) NRAANKS*T =T o
n = nA +S*w :ﬁanf +S*w _ Nn, A, +(4,—NA,) :I—NAf =1

© A +S*w N A4 +S*w 4, 4, !

Note that 4, is the total surface area of the fins and the remaining wall surface that
is exposed to the fluid. 4 ; is simply the surface are of one fin. Then Newton’s law
of cooling can be written as

0=n,h4,(T;-T,) (12.48)
and the increased heat transfer effectiveness is represented by the increased surface
are and the overall surface efficiency.

Example 12.10 Estimate the overall surface effectiveness for heat transfer from a
1 m by 1 m copper radiation that has 3 cm fins extending into the airflow. The 3 cm
fins are 1 mm thick and run the length of the 1 m dimension. They are spaced 9 mm
apart. The wall temperature is 600 K and the air temperature is 350 K. Assume tur-
bulent flow at a Reynolds number of 5000.

Solution The Nusselt numberError! Bookmark not defined. for turbulent airflow
over a flat plate is

A
Nu; =0.0592 Re% Pr=0.0592* 5000%0.7% =47.85

h=S =08 4785-144 m= [P0
L 1 kA,

P=2*¥Im=2m A =1m*0.001 m=0.001 m* k=379 W/m/K

* *
P / 1.44%2 _ 9757 ny = tanh mL _ tanh 2.757*0.03 09977
379%0.001 mL 2.757*%0.03

For a 1 m high plate there will be 100 fins spaced 9 mm apart with a thickness of
I mm. The total area will be
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A,=100%0.009 +2%0.03)1.0=6.9 sqm
Then the overall effectiveness is given by

~ 100%2%*0.03*1

n, =1.0 (1-0.9977) = 99.8

12.12 Pool Boiling and Forced Convection Boiling

A good starting point to analyze mechanism of heat transfer in a boiling system is
given by the subject of pool boiling. The most common situation and the simplest
form of boiling is pool boiling in which boiling occurs is where a solid surface in
contact with a liquid is brought to a temperature above the saturation temperature
of the liquid and immersed below the free surface of the liquid causes boiling. This
process is also called saturated (or bulk) boiling because liquid is maintained at
saturation temperature. On the other hand, when the main body of the liquid in the
immediate vicinity of the heated surface is at, slightly above, or below the saturation
temperature the situation is called sub-cooled (or local) boiling because the vapor
bubbles that are formed at the hot metal surface either collapse without leaving the
surface or collapse immediately upon leaving the surface.

When the liquid is significantly below saturation temperature and the heater tem-
perature is low, that is the only time that fiee convection occurs.

Although the heat transfer mechanism of pool boiling is reasonably understood
by engineers and investigators of this field, and their findings were extensively
discussed in different literatures, it is still not an easy task to theoretically analyze
and predict characteristic of an even simple boiling system. For example, one of the
pioneers of this subject Nukiyama experimentally managed to establish the charac-
teristic of pool boiling phenomena. He deduced both the heat flux and the tempera-
ture from measurements of current and voltage of a submersed electrical element
inside a body of saturated water and initiated boiling on the surface of the wire.
Since then other scientists have done further investigation of this phenomenon and
their fact findings for pool boiling of water at atmospheric pressure is illustrating in
Fig. 12.15. This figure demonstrate the variation of the heat transfer coefficient as
a function of the temperature difference between the wall surface 7, and the liquid
saturation 7, temperatures in the pool boiling of a liquid at saturation temperature

The Fig. 12.15 shows six different regions where the plot going through each di-
vision forms slope which is different from those in other region. Events that taking
in each region is described as below;

1. In this region, no vapor bubbles are formed because the energy transfer from the
heated surface to the saturated liquid is by free convection from the free surface.

2. In this region, bubbles begin to form at the hot surface of the wire, but as soon as
they are separated from the surface, they will dissipate in the liquid.

3. In this region, bubbles are detached from the electrical wire surface and they rise
to the surface of the liquid where they will dissipate.
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Fig. 12.15 Principal boiling regimes in pool boiling of water at atmospheric pressure and satura-
tion temperature T, from an electrically heated platinum wire. (From Faber and Scorah [5])

4. In this region, the bubble formation is taking place rapidly, that bubbles begin to
coalesce before they detached, consequently a large fraction of the heating sur-
face is blanketed by an unstable film of vapor, which causes an abrupt loss in the
heat flux and in the boiling heat transfer coefficient. This is an unstable region
and it signifies transition from nucleate boiling to film boiling. (Fig. 12.17).

5. In this region, the heat flux decreases to a minimum level and the wire surface
is blanketed with a stable film of vapor and it is called the stable film boiling
region.

6. In this region, both heat flux and the heat transfer coefficient increases with
T,, — T, because the wire surface temperature in this region is sufficiently high
for thermal radiation effects to augment heat transfer through the vapor film. It
is significant to mention that in this region, the boiling also takes place as stable

film boiling but radiation effects are dominant.

If the heat flux ¢ is also plotted as a function of the temperature difference 7, —T,,
the general shape of the heat-flux curve (Fig. 12.16) would be similar to that of the
heat transfer coefficient curve that is shown in Fig. 12.15.

Free convection is the process that the heat transfer from the heater (i.e. electrical
element or wire) surface to the saturated liquid takes place. In this region, the heater
surface is only a few degrees above the saturation temperature of the liquid, but the
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Fig. 12.16 The poll boiling curve [5]

flow produced by free convection in the liquid is sufficient to remove the heat from
the surface. The heat transfer correlation, then are in form of

Nu = £(Gr,Pr) (12.49)

And as soon as we can determine the heat transfer coefficient ;, then the heat flux
for the free convection regime can be obtained from the following relationship as;

q=hT,-T,) (12.50)

Free convection, transition to boiling, and changes in the boiling mechanism can
best be seen in Fig. 12.16.

The figure shows a plot of heat flux versus the temperature difference (7, —7,,,)
between a horizontal cylindrical heater surface and the saturation temperature of the
surrounding liquid. This curve presents the results of common pool boiling experi-
ment of electrically conduction wire, which is submerged in a stationary pool of wa-
ter at saturation temperature and atmospheric pressure. As we can see in Fig. 12.16
for values of (T, —T,,,) <10°F (point A to B on curve) the heat flux is the value that
is predicated for free convection with no phase change. Evaporation takes place at
the pool free surface and if we consider the water as liquid then this event occurs
at the surface of electric heater less than approximately 10 °F above the saturation
temperature of water.

The heater surface in most cases exceeds the saturation temperature of the lig-
uid (i.e. water) by some perceptible amount before noticeable boiling commences.
There requires and excessive temperature that is explained by the Eq. 12.51 below,
depends on the type of fluid and the pressure.
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Fig. 12.17 Nucleate pool boiling from a horizontal cylindrical heater at low heat flux [5]

Re— 2Ta (12.51)
th/g (Tv _Tsat)

Where

R : Bubble radius
o . Surface tension
. Saturated temperature
T, : Vapor temperature
p,: Vapor density
hy, . Specific enthalpy of vaporization

Additionally, the type and condition of filament surface is significant since these
factors determine the number and the size of the small vapor and gas bubbles from
which bubble growth should begin.

Between point B and C as it can be seen on Fig. 12.16 where the temperature dif-
ference (7, — T, ) is approximately equal to 10 °F, the curve shows a sharp increase
in the slope, which is indication of large increase in the heat transfer coefficient,
which is due to the inception of nucleate boiling at the heater surface. Figure 12.17
is showing such nucleate boiling regime from a horizontal cylindrical heater where
the liquid near the heater has gained sufficient superheat to cause significant num-
bers of bubble to come to live and grow.

When a liquid changes phase and converts to vapor at the free surface of a liquid,
the process is referred to as evaporation. However, when the phase changes in a
vigorous manner within the bulk of a liquid, the process is called boiling.

A boiling process may take place in certain designated purposes such as;

1. The generation of large quantities of vapor, as in a steam power plant or in chem-
ical processing, or
2. The production of large heat fluxes with moderate temperature differences.

From what we know these two objectives may not be related, since heat fluxes are
required to provide the latent heat of vaporization designated as 4, and necessary
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when generating large quantities of vapor within instrument of reasonable size.
When the phase change in a liquid is taking place without significant rising of liq-
uid temperature due to energy being put into it, then the large heat fluxes in boiling
are possible.

The second general situation under which boiling occurs called forced convec-
tion boiling. In this case, there is the added complexity of the forced flow of liquid
through the tube or past the surface on which boiling occurs.

12.13 Nucleate Boiling Regime

The process of originating a bubble is referred to as nucleation. The term nucleate
boiling is used since the vapor bubbles are formed at discrete nucleation sites and
Fig. 12.17 has picture such process from a horizontal electric heater.

The nucleate boiling regime can be separated into two distinct regions in which
bubbles are formed on the surface of the electrical heater. Utilizing Fig. 12.15 where
it shows a region designated as II, bubbles start to form at the favored sites on the
heater surface, but as soon as the bubbles are detached from the surface, they dis-
sipated in the liquid. In region III, the nucleation sites are numerous and the bubbles
are generating at very high rate that causes continuous vapor columns to appear.
As result, very high heat fluxes can be obtained in this region. In the nucleate boil-
ing regime, the heat flux increases rapidly with increasing temperature difference
(T, —T,,) until the peak heat flux is reached and the burnout point can be defined
at that peak, which is departure from nucleate boiling (DNB), or critical heat flux
(CHF). As soon as the peak heat flux is exceeded, an extremely large temperature
difference is needed to realize the resulting heat flux. Such extreme temperature
difference may cause the burning up, or melting down of conducting heating fila-
ment. If the number of active nucleation sites increases, the interaction between the
bubbles may become important and will affect the heat transfer within the region
where this process takes place. Although one should consider other variables such
as state of the fluid and properties of filament materials in a heat transfer analysis
among other factors in the nucleate boiling regime. One empirical equation that is
correlating the heat flux in the entire nucleate boiling regime with various param-
eters in relation to forced convection presented by Rohsenow as follows;

~ 0.33
¢ AT _c q o (12.52)
hys Py T\ why \ o -p))

Where

¢, b Specific heat of saturation liquid, J/(kg.°C)

Cy & Constant, to be determined from experimental data that depends on heating
surface-fluid combination.
h, o Latent heat of vaporization, J/kg.
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Table 12.5 Values of the
coefficient C; of Eq. 12.52
for water surface combina-
tion. (Source: Evaluation of
constants for the Rohsenow
pool-boiling correlation. J
Heat Transf 90:239-247)
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Liquid-surface combination Cy

Water—copper 0.0130
Water—scored copper 0.0068
Water—emery-polished copper 0.0128
Water—emery-polished, paraffin-treated copper 0.0147
Water—chemically etched stainless steel 0.0133
Water—mechanically polished stainless steel 0.0132
Water—ground and polished stainless steel 0.0080
Water—Teflon pitted stainless steel 0.0058
Water—platinum 0.0130
Water—brass 0.0060

Table 12.6 Value; of lic!kuid- Saturation temperature °C Surface tension " x 10° N/m
vapor surface tension g for
water 0.00 75.6
15.56 73.2
37.78 60.7
93.34 60.1
100.00 58.8
160.00 46.1
226.7 31.9
293.3 16.2
360.00 1.46
374.11 0.00
ga Gravitational acceleration, m/s2.
Pr=c,u, J,=  Prandtl number of saturated liquid.
qo Boiling heat flux, W/m?.
AT =T, -T,,, Temperature difference between wall and saturation temperature, °C.
oG Viscosity of saturated liquid, kg/(m s).
PP, = Density of liquid and saturated vapor, respectively, kg/m?.
o Surface tension of liquid-vapor interface, N/m.

In Eq. 12.52 the exponent n and the coefficient C, are the two provisions for adjust-
ing the correlation for the liquid-surface combination. Table 12.5 lists the experi-
mentally determined values C,, for water boiling on a variety of surfaces. The value
of n for water should be taken as 1.

Table 12.6 gives the value of vapor-liquid surface tension for water at different

saturation temperatures.

Example 12.11 During the boiling of saturated water at T, = 100°C with an elec-
tric heating element, a heat flux of ¢ = 7x10>W/m? is achieved with a tempera-

ture difference of AT =T, T,

Eq. 12.52?

sat

=10.4"C. What is the value of the constant C, in
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Solution The physical properties of saturated water and vapor are taken as

¢, =4216,J/(kg’'C)  h, =2257x10°J/kg.
p; = 960.6kg/m’ p, = 0.6kg/nr
Pr=1.74 =0.282x10" kg/(ms)
; Hy

o =588x10°N/m g =9.81m/s>

These numerical values are substitute into Eq. 12.52 with n =1, we get

_ 033
Cpl AT B q o
hyy Pt/ v whe N glpr—py)

0.33
4216)104)  _ (7 x 10%) / 58.8 x 107
(2257 x 10(1.74) 7] (0.282 x 10)(2257 x 10%) {9.81(960.6-0.6

C,~0.008

Example 12.12 A brass heating element of surface area 4 =0.04 m?, main-
tained at a uniform temperature 7, =112°C, is immersed in a saturated water
at atmospheric pressure at temperature 7.=100°C. Calculate the rate of
evaporation.

Solution The physical properties of saturated water and vapor at 100°C were
given in Example 12.11. Introducing these properties into Eq. 12.52 with n=1 and
AT =T, -T,,=112-100=12°C, obtaining the coefficient C _ for water brass from

sat

Table 12.5 as C;=0.006, the heat flux becomes;

3
cp AT lg(o-p))
g=|—2—— 1 uh, 8o —py)
hes Pr’ Cyp o

3
:[(2(;52716—)(1120)3)] (0.282 x 107)(2257 x 10%) \/
X

=2521.23 kW/m?

(9.81)(060.6—0.6)
(58.8 x 107%)

The total rate of heat transfer is

Q=area X ¢q
=(0.04)(2521.23) =100.85 kW
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The rate of evaporation is

P
By

10085 x 10°

2757 % 10° =0.0447kg/s =160.9kg/h
X

12.14 Peak Heat Flux

The correlation that is found in Eq. 12.52 is enough to provide information about
the heat flux in nucleate boiling, but it cannot to predicate the peak heat flux. To
be able to have the knowledge of such information in a nucleate boiling regime is
of interest because of burnout consideration. As we described before, if the heat
flux exceeds the peak heat flux, the burnout situation takes place. This is the cir-
cumstances that the transition from the nucleate to stable film boiling regime takes
place, in which, depending on the kind of fluid, boiling may occur at temperature
difference well above the melting point of the heating surface. The following cor-
relation by expert in the field for determination of the peak flux heat was proposed:

1 % 1
G = F(L) % 0.131p]% hglo g(p; o (12.53)
where
hy = Latent heat of vaporization, J/kg.
g= Gravitational acceleration, m/s2.

Gmax = Peak heat flux, W/m?,
p;, p, = density of liquid and saturated vapor, respectively, kg/m?.
o = Surface tension of liquid-vapor interface, N/m.

and F(L") is a correction factor that depends on heat geometry and is provided in
Table 12.7.
The dimensionless characteristic length of L’ of the heater is defined as;

o

Table 12.7 Correction factor /(L") for use in Eq. 12.53. (Based on Lienhard and coworkers)
Heater geometry F(L") Remarks

Infinite flat plate facing up 1.14 L'>2.7; L is the heat width or diameter
L'>0.15; L is the cylinder radius

Horizontal cylinder 0.89+2.27¢ 34T’

Large sphere 0.84 L'>4.26; L is the sphere radius
Small sphere 1.734/(L")"? 0.15<L’'<4.26: L is the sphere radius
Large finite body ~0.90 L'>4; L=(volume)/(surface area)
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where L is the characteristic dimension of the heater and other quantities are de-
fined as before. In Eq. 12.53 the physical properties of the vapor are evaluated at
T=1/2(T,+T_). The enthalpy of evaporation / , and the liquid properties must be
evaluated at the saturated temperature of the liquid.

Example 12.13 Water at saturation temperature and atmospheric pressure is boiled
in the nucleate boiling regime with a large plate heating element facing up. Calcu-
late the peak heat flux.

Solution The physical properties of saturated water and vapor at 100 °C were given
in Example 12.11. Introducing these properties into Eq. 12.53, with the correction
factor F(L’)=1.14 obtained from Table 12.7 for a large plate heating element facing

up, the peak heat flux ¢, is determined as;

o = F(L) % 0.1319)" b, [0”g(p, ~ p,))*
= (1.14)(0.131)(0.6)% (2257 x 10%)

x {(58.8 10‘3)(9.81)(960.6—0.6)}%
=1.27 x 10* W/m? =1.27 MW/m?

Example 12.14 Water at atmospheric pressure and saturation temperature is boiled
in a 25-cm diameter, eclectically heated, mechanically polished, stainless-steel pan.
The heated surface of the pan is maintained at a uniform temperature 7, =116 °C.

a. Calculate the surface heat flux.
b. Calculate the rate of evaporation from the pan.
c. Calculate the peak heat flux.

Solution The physical properties of saturated water and vapor for AT =7, —T,
=16 Care taken as;

¢, =4216, J/(kg'C)  h, =2257x10"J/kg.

P = 960.6kg/m’ P, = 0.6kg/m’
Pr, =1.74 1, = 0.282x10 kg/(ms)
o' =58.8x10° N/m g =9.81m/s’

a. Equating 12.52 is used to compute the surface heat flux for water n=1 and using
Table 12.5, we have C /.:0.0132 for water-mechanically polished stainless steel.
Introducing all the numerical values into Eq. 12.53, we obtain;

0.33
4216)16) 0135 q \/ 58.8 x 1072
(2257 x 10°)(1.74) (0.282x1073)(2257x 10°) \/ (9.81)(960.6 - 0.6
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Then the surface heat flux becomes
g=5.61 x 10°W/m>

b. The total rate of heat transfer becomes
0= Area X g =(§ x (0.25) )(5.61 x 10°)
=0.275 x 10°W or J/s

The rate of evaporation becomes
=2
hfg
0275 x 10°

=257 % 10° x 3600 = 43.9kg/h
ST x

c. To calculate the peak heat flux, we use Eq. 12.53 with the factor F(L’) taken
from Table 12.7 for infinite flat plate facing up being equal to 1.14, which is

valid for
L’ = L (g(p]—:pv) 2 2‘7
V o}

For L=0.25 m and other quantities as given above, we have L'=100, which is larger
than the specified lower bound 2.7.
Hence for ¢,,,, we have;

1 . ]
= F(L) % 01319, hyl0"g(p, ~ p, ) *

Imax
= (1.14)(0.13)(0.6)% (2257 x 10%)

x {(58.8 x 10‘3)(9.81)(960.6—0.6)}%
=127 x 10° W/m? =1.27 MW/m?

Note that ¢ =5.61 x 10°W/m? is well below the peak heat flux 1.27 x 10° W/m?
or J/(m2.s).

12.15 Film Boiling Regime

As soon as the nucleate boiling region ends and the unstable film boiling region
begins after the peak heat flux is reached. Using Fig. 12.15, knowing that there are
no correlations are available for the prediction of heat flux in this unstable region
until the minimum point in the boiling curve is reached and the stable film boiling
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region starts. In the region V and VI where we are within the stable film-boiling re-
gion, the heating surface is separated from the liquid by a vapor layer across which
heat must be transferred. Due to low thermal conductivity of vapor in this region,
large temperature differences are needed in order to have proper heat transfer, there-
fore, heat transfer in this region is generally avoided when high temperatures are
involved. However, stable film boiling has numerous applications in the boiling of
cryogenic fluids.

Bromley developed a theory to predict the heat transfer coefficient for stable film
boiling on the outside of a horizontal cylinder and the basic analysis is very similar
to Nusselt’s theory for film-wise consideration on a horizontal tube. The result of
his study for the average heat transfer coefficient j, for stable film boiling, in ab-
sence of radiation, is given by;

3 Y
hy = o.&{kv (Pr =P )8y, [1+ 0'40"”ATH (12.55)
w,DyAT hy,
where
hy = Average boiling heat transfer coefficient in absence of radiation,
W/(m?2.°C)
hy = Latent heat of vaporization, J/kg.
= Gravitational acceleration, m/s?.
k, = Thermal conductivity of saturated vapor, W/(m.°C).
PPy = density of liquid and saturated vapor, respectively, kg/m?.
D, = Outside diameter of tube, m.
Coy = Specific heat of saturated vapor, J/(kg.°C).
u, = Viscosity of saturated vapor, kg/(m s).
AT =T, -T,,, temperature difference between wall and saturation temperatures,
°C.

and the physical properties of vapor must be evaluated at T;=1/2(T_+T_)). In addi-
tion, the enthalpy of evaporation / , and the liquid density p; should be evaluated at
the saturation temperature T, of the liquid.

Example 12.15 Water at saturation temperature T.=100°C and atmospheric pres-
sure is boiled with an electrically heated horizontal platinum wire of diameter
D=0.2 cm. Boiling takes place with a temperature difference of T, —T =454°C in
the stable film boiling range. Calculate the film boiling heat transfer coefficient and
the heat flux, in the absence of radiation.

Solution The physical properties of vapor are evaluated at T.=1/2(T, +T_ )=(554
+100)/2=327°C=600°K

¢,, =20262026 j/kg C  k, =0.0422W/(m’C)

u,, =2067x10°kg/(ms)  p, =0.365kg/m’
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and the liquid density and A, are evaluated at the saturation temperature T,=100°C
as;

p; =960.6kg/m*  h =2257x10’J/kg

The heat transfer coefficient 4, for stable film boiling without the radiation effects
is computed from Eq. 12.55 as:

1
k) (0, = p,)ghy (1 , 04e, AT Jr

M1, DyAT hy,

hy = 0.62[
g

_ 0.6 (0:0422)° (0.365)(960.6 ~0.365)(98.1)(2257 x 10°)
' (2.067 x 107°)(0.002)(454)

2257 x 10°
=270.3 W/(m?>.°C)

Ji
y ( 14 (0:4)(2026)(454) H
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Chapter 13
Heat Exchangers

A heat exchanger is a heat transfer device that exchanges heat between two or more
process fluids. Heat exchangers have widespread industrial and domestic applica-
tions. Many types of heat exchangers have been developed for use in steam power
plants, chemical processing plants, building heat and air conditioning systems,
transportation power systems and refrigeration units.

The actual design of heat exchangers is a complicated problem. It involves more
than heat-transfer analysis alone. Cost of fabrication and installation, weight, and
size play important roles in the selection of the final design from a total cost of own-
ership point of view. In many cases, although cost is an important consideration,
size and footprint often tend to be the dominant factors in choosing a design.

13.1 Heat Exchangers Types

Most heat exchangers may be classified as one of several basic types. The four
most common types, based on flow path configuration, are illustrated in Fig. 13.1
below [1].

1. In concurrent, or parallel-flow, units the two fluid streams enter together at one
end, flow through in the same direction, and leave together at the other end;

2. In countercurrent, or counter-flow, units the two streams move in opposite
directions.

3. Insingle-pass crossflow units one fluid moves through the heat transfer matrix at
right angles to the flow path of other fluid.

4. In multipass crossflow units one fluid stream shuttles back and forth across the
flow path of the other fluid stream, usually giving a crossflow approximation to
counterflow.

© Springer International Publishing Switzerland 2015 285
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Hot fluid in =3 —3— Hot fluid out

Cold fluid in Cold fluid out

a Parallel flow
Hot fluid in == —>—— Hot fluid out
Cold fluid out Cold fluid in
b Counterflow
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+ Single-pass crossflow
c Hot fluid out
o ,f""‘\\ ,I"'\
Hot fluid in —sw— r - ! —>—— Hot fluid out
N _#¥
'. -

Cold fluid out Cold fluid in

d Multipass crossflow

Fig. 13.1 Types of flow path configuration through heat exchanger

The most important difference between these four basic types lies in the relative
amounts of heat transfer surface area required to transfer the desired amount of heat
between the two fluids.

Figure 13.2 below shows the relative area required for each type as a function of
the change in temperature of the fluid with the largest temperature change require-
ment for a typical set of conditions. In the region in which the fluid temperature
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Fig. 13.2 The required relative heat transfer surface area as a function of the ratio of the tempera-
ture rise (or drop) in the fluid stream having the greater change in temperature to the difference in
temperature between the inlet streams

change across the heat exchanger is a small percentage of the difference in tem-
perature between the two entering fluid streams, all the units require roughly the
same area. The parallel-flow heat exchanger is of interest primarily for applications
in this region. Cross-flow units have a somewhat broader range of application, and
are peculiarly suited to some types of heat exchanger construction that have special
advantages. The counter-flow heat exchanger requires the least area. Furthermore, it
is the only type that can be employed in the region in which the temperature change
in one or both of the fluid streams closely approaches the temperature difference
between the entering fluids streams.

In addition, heat exchangers may be classified as direct contact or indirect con-
tact. In the direct-contact type, heat transfer takes place between two immiscible
fluids, such as a gas and a liquid, coming into direct contact. For example, cooling
towers, jet condensers for water vapor, and other vapors utilizing water spray are
typical examples of direct-contact exchangers.

An Immiscible Fluids are incapable of is being mixed or blended together.
Immiscible liquids that are shaken together eventually separate into layers. Qil
and Water are typical immiscible fluids.

In the indirect-contact type of heat exchangers, such as automobile radiators, the
hot and cold fluids are separated by an impervious surface, and they are referred to
as surface heat exchangers. There is no mixing of the two fluids.
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13.2 Classification of Heat Exchanger by Construction
Type

Heat exchangers also can be classified according to their construction features. For
example, there are tubular, plate, plate-fin, tube-fin, and regenerative exchangers.
An important performance factor for all heat exchangers is the amount of heat trans-
fer surface area within the volume of the heat exchanger. This is called its compact-
ness factor and is measured in square meters per cubic meter.

13.2.1 Tubular Heat Exchangers

Tubular exchangers are widely used, and they are manufactured in many sizes, flow
arrangements, and types. They can accommodate a wide range of operating pres-
sures and temperatures. The ease of manufacturing and their relatively low cost
have been the principal reason for their widespread use in engineering applications.
A commonly used design, called the shell-and-tube exchanger, consists of round
tubes mounted on a cylindrical shell with their axes parallel to that of the shell.

Figure 13.3 illustrates the main features of a shell-and tube exchanger having one
fluid flowing inside the tubes and the other flowing outside the tubes. The principle
components of this type of heat exchanger are the tube bundle, shell, front and rear
end headers, and baffles. The baffles are used to support the tubes, to direct the fluid
flow approximately normal to the tubes, and to increase the turbulence of the shell
fluid. There are various types of baftles, and the choice of baffle type, spacing, and
geometry depends on the flow rate allowable shell-side pressure drop, tube support
requirement, and the flow-induced vibrations. Many variations of shell-and-tube
exchanger are available; the differences lie in the arrangement of flow configura-
tions and in the details of construction.
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Fig. 13.3 A shell-and-tube heat exchanger; one shell pass and one tube pass [2]
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Fig. 13.4 Shell-and-tube heat exchangers. a One shell pass and two tube passes. b Two shell
passes and four tube passes [3]

Baftled heat exchangers with one shell pass and two tubes passes and with two
shell passes and four tube passes are shown in Figs. 13.4a [3] and b [3], respectively
[3].

The character of the fluids may be liquid-to-liquid, liquid-to-gas, or gas-to-gas.
Liquid-to-liquid exchangers have the most common applications. Both fluids are
pumped through the exchangers; hence, the heat transfer on both the tube side and
the shell side is by forced convection. Since the heat transfer coefficient is high with
the liquid flow, generally there is no need to use fins [2].

The liquid-to-gas arrangement is also commonly used; in such cases, the fins usu-
ally are added on the gas side of the tubes, where the heat transfer coefficient is low.

Gas-to-gas exchangers are used in the exhaust-gas and air preheating recupera-
tors for gas gas-turbine systems, cryogenic gas-liquefaction systems, and steel fur-
naces. Internal and external fins generally are used in the tubes to enhance heat
transfer.

13.2.2 Plate Heat Exchangers

As the name implies, plate heat exchangers usually are constructed of thin plates.
The plates may be smooth or may have some form of corrugation. Since the plate
geometry cannot accommodate as high pressure and/or temperature differentials as
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a circular tube, it is generally designated for moderate temperature and/or pressure
differentials. The compactness factor for plate exchangers ranges from about 120
to 230 m?/m?.

13.2.3 Plate Fin Heat Exchangers

The compactness factor can be significantly improved (i.e., up to about 6000 m?/
m?®) by using the plate-fin type of heat exchanger. Figure 13.5 illustrates typical
plate-fin configurations. Flat plates separate louvered or corrugated fins. Cross-
flow, counterflow, or parallel-flow arrangements can be obtained readily by prop-
erly arranging the fins on each side of the plate. Plate-fin exchangers are generally
used for gas-to-gas applications, but they are used for low-pressure applications not
exceeding about 10 atm (that is, 1000 kPa). The maximum operating temperatures
are limited to about 800 °C. Plate-fin heat exchangers have also been used for cryo-
genic applications.

13.2.4 Tube Fin Heat Exchangers

When a high operating pressure or an extended surface is needed on one side, tube-
fin exchangers are used. Figure 13.6 illustrates two typical configurations, one with
round tubes and the other with flat tubes. Tube-fin exchangers can be used for a
wide range of tube fluid operating pressures not exceeding about 30 atm and operat-
ing temperatures from low cryogenic applications to about 8§70 °C. The maximum
compactness ratio is somewhat less than that obtainable with plate-fin exchangers.

CORRUGATED
AIR FINS

Fig. 13.5 Plate-fin heat exchangers. (Courtesy of Harrison Radiator Division of General Motors
Corporation)
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Fig. 13.6 Tube fin heat exchangers. (Courtesy of Harrison Radiator Division of General Motors
Corporation)

The tube-fin heat exchangers are used in gas turbine, nuclear, fuel cell, automo-
bile, airplane, heat pump, refrigeration, electronics, cryogenics, air conditioning,
and many other applications.

13.2.5 Regenerative Heat Exchangers

Regenerative heat exchangers use a heat transfer matrix that is heated by one fluid
and then cooled by the second fluid. The flow over the matrix is switched as a func-
tion of time with both fluids flowing over the same surfaces of the matrix. They
have seen little use in fixed station power plants and will not be emphasized here.

13.3 Condensers

Condensers are used for such varied applications as steam power plants, chemical
processing plants, and nuclear electric plants for space vehicles. The major types
include the surface condensers, jet condensers, and evaporative condensers. The
most common type is the surface condenser, which has the feed-water system [4].
Figure 13.7 shows a section through a typical two-pass surface condenser for a large
steam turbine in a power plant. Since the steam pressure at the turbine exit is only
1.0-2.0 in Hg absolute, the steam density is very low and the volume rate of flow
is extremely large. To minimize the pressure loss in transferring steam from the
turbine to the condenser, the condenser is normally mounted beneath and attached
to the turbine. Cooling water flows horizontally inside the tubes, while the steam
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Fig. 13.7 Section through a typical two-pass surface condenser for a large plant. (Courtesy of
Allis-Chalmers Manufacturing Company)

flows vertically downward from the large opening at the top and passes transversely
over the tubes. Note that provision is made to aspirate cool air from the regions just
above the center of the hot well. This is important because the presence of noncon-
densable gas in the steam reduces the heat transfer coefficient for condensation.

13.4 Boilers

Steam boilers are one of the earliest applications of heat exchangers. The term
steam generator is often applied to boiler in which the heat source is a hot fluid
stream rather than the products of combustion.

An enormous variety of boiler types exist, ranging from small units for house
heating applications to huge, complex, expensive units for modern power stations.

13.5 Classification According to Compactness

The ratio of the heat transfer surface areca on one side of the heat exchanger to
the volume can be used as a measure of the compactness of heat exchangers. A
heat exchanger having a surface area density on any one side greater than about
700 m?/m? quite arbitrarily is referred to as a compact heat exchanger regardless of
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its structural design. For example, automobile radiators having an area density ap-
proximately 1100 m?*/m?® and the glass ceramic heat exchangers for some vehicular
gas-turbine engines having an area density approximately 6600 m?/m? are compact
heat exchangers. The human lungs, with an area density of about 20,000 m?/m?, are
the most compact heat-and-mass exchanger. The very fine matrix regenerator for
the Stirling engine has an area density approaching that of the human lung.

On the other hand extreme of the compactness scale, plane tubular and shell-and-
tube type exchangers, having an area density in the range of 70-500 m?/m?, are not
considered compact [2].

The incentive for using compact heat exchangers lies in the fact that a high value
of compactness reduces the volume for a specified heat exchanger performance.

When heat exchangers are to be employed for automobiles, marine uses, aircraft,
aerospace vehicles, cryogenic systems, and refrigeration and air conditioning, the
weight and size—hence the compactness—become important. To increase the ef-
fectiveness or the compactness of heat exchangers, fins are used. In a gas-to-liquid
heat exchanger, for example, the heat transfer coefficient on the gas side is an order
of magnitude lower than for the liquid side. Therefore, fins are used on the gas side
to obtain a balanced design; the heat transfer surface on the gas side becomes much
more compact.

13.6 Types of Applications

Heat exchangers are often classified based on the application for which they are in-
tended, and special terms are employed for major types. These terms include boiler,
steam generator, condenser, radiator, evaporator, cooling tower, regenerator, recu-
perator, heater, and cooler. The specialized requirements of the various applications
have led to the development of many types of construction, some of which are
unique to particular applications [5].

13.7 Cooling Towers

In locations where the supply of water is limited, heat may be rejected to the atmo-
sphere very effectively by means of cooling towers such as that Fig. 13.8 here. A
fraction of the water sprayed into these towers evaporates, thus cooling the balance.
Because of the high heat of vaporization of water, the water consumption is only
about 1% as much as would be the case if water were taken from a lake or a stream
and heated 10 or 20 °F.

Cooling towers may be designed so that the air moves through them by thermal
convection, or fans may be employed to provide forced air circulation. To avoid
contamination of the process water, shell-and-tube heat exchangers are sometimes
employed to transmit heat from the process water to the water recirculated through
the cooling tower.
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hll

Fig. 13.8 a Vertical induced draft-cooling tower. (Courtesy Foster Wheeler Corp.) [1]. b Sche-
matic of cooling tower. ¢ Forced convection cooling tower with draft induced by a fan [1]

13.8 Regenerators and Recuperators

The thermal efficiency of both gas-turbine power plants can be greatly increased if
heat can be extracted from the hot gases that are leaving the gas turbine and added
to the air being supplied to the combustion chamber. For a major gain in thermal
efficiency, it is necessary to employ a very large amount of heat transfer surface
area. This is particularly noticeable in gas-turbine plants, where even with counter-
flow the size of the heat exchanger required for good performance is inclined to be
large compared to the size of the turbine and compressor. This characteristic can be
observed even in the small, portable gas turbine (about 3 ft in diameter) shown in
Fig. 13.9. Note that in this device the hot combination gases leave the radial in-flow
turbine wheel at the right end of the shaft and enter a set of heat exchanger cores
arranged in parallel around the central axis.

Figure 13.10 shows a close-up view of one of these cores. In each core, the hot
gases from the turbine flow roughly radially outward through one set of gas pas-
sages. Air from the centrifugal compressor wheel at the center of the shaft flows to
the right through the space just inside of the outer casing and axially into the other
set of gas passages through the core. The air being heated makes two passes, flow-
ing first to the right in the outer portion of the core and then back to the left through
the inner portion, thus giving a two-pass crossflow approximation to counterflow
(The flow passages through the combustion chamber are not shown in this view).

As can be seen in Fig. 13.10, the heat exchanger core is constructed of alternate
layers of flat and corrugated sheets. The flat sheets separate the hot and cold fluid
streams, while the corrugated sheets act as fins that roughly triple the heat transfer

Fig. 13.9 A small gas-tur-
bine power plant fitted with
a recuperator to improve the
fuel economy. (Courtesy of
AiResearch ~ Manufacturing
Co.) [5]
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Fig. 13.10 A brazed plate-fin
recuperator core for the gas
turbine of Fig. 13.9. (Cour-
tesy of AiResearch Manufac-
turing) [5]

surface area per unit of volume. Note also that the axis of the corrugations is at right
angles in alternate layers to provide a crossflow pattern for the two fluid streams.
One of several recuperator units to be mounted in parallel in a much larger gas
turbine plants is shown in Fig. 13.11. The hot exhaust gas from the turbine enters
vertically at the bottom, flows upward through the heat transfer matrix, and dis-
charges vertically from the top. The air from the compressor enters a large circular
port at the top at the right end, flows vertically downward in pure counterflow, and
leaves a second circular port at the bottom to flow to the combustion chamber. The
hot exhaust gas passages are formed by corrugated sheets sandwiched between flat
plates that extend all the way from the bottom to the top of the unit. The air to be

Fig. 13.11 A welded steel recuperator for a large gas-turbine power plant. (Courtesy Harrison
Radiator Division, General Motors Corp) [5]
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heated flows horizontally from the long plenum at the top into the spaces between
the walls of the exhaust gas passages. Curved space strips guide the air through a
90° bend and then downward between the heated walls. A similar header arrange-
ment is used at the bottom. Note that both the flow passage area and the heat transfer
surface area for the hot exhaust gas are about three times as great as the correspond-
ing values for the air being heated. This comes about because the two fluid streams
differ in density by a factor of about four.

The air pre-heaters in steam power plants are usually quite different from the
units just described for gas turbines. Rotary regenerators are often used. These con-
sist of a cylindrical drum filled with a heat transfer matrix made of alternately flat
and corrugated sheets. The drum is mounted so that the hot gas heats a portion of
the matrix as it passes from the furnace to the stack. The balance of the matrix gives
up its stored heat to the fresh air in route from the forced draft fans to the furnace.
The ducts are arranged so that the two gas streams move through the drum in coun-
terflow fashion while it is rotated, so that the temperature of any given element of
the metal matrix fluctuates relatively little as it is cycled from the hot to the cold
gas streams.

In the steam- and gas-turbine power plant fields a distinction is sometimes made
between air pre-heaters that involve a conventional heat transfer matrix with con-
tinuous flow on both sides of a stationary heat transfer surface and those through
which the fluids flow periodically, the hot fluid heating one section of the matrix
while the cold fluid is removing heat from another section. Where this distinction is
made, the term regenerator is applied to the periodic-flow type of heat exchanger,
since this term has long been applied to units of this type employed for blast fur-
naces and steel furnaces, whereas the term recuperator is applied to units through
which the flow is continuous.

Recuperators are used for gas turbine, but the gas turbines installed until the mid-
1970’s suffered from low efficiency and poor reliability. In the past, large coal and
nuclear power plants dominated the base-load electric power generation (Point 1 in
Fig. 13.12). Base load units are on line at full capacity or near full capacity almost
all of the time. They are not easily nor quickly adjusted for varying large amounts
of load because of their characteristics of operation [6]. However, there has been a
historic shift toward natural gas-fired turbines because of their higher efficiencies,
lower capital costs, shorter installation times, better emission characteristics, the
abundance of natural gas supplies, and shorter start up times (Point 1 in Fig. 13.12).
Now electric utilities are using gas turbines for base-load power production as well
as for peaking, making capacity at maximum load periods and in emergencies, situ-
ations because they are easily brought on line or off line (Point 2 in Fig. 13.12).
The construction costs for gas-turbine power plants are roughly half that of compa-
rable conventional fossil fuel steam power plants, which were the primary base-load
power plants until the early 1980°s, but peaking units are much higher in energy
output costs. A recent gas turbine manufactured by General Electric uses a turbine
inlet temperature of 1425 °C (2600 °F) and produces up to 282 MW while achiev-
ing a thermal efficiency of 39.5 % in the simple-cycle mode. Over half of all power
plants to be installed in the near future are forecast to be gas turbine or combined
gas-steam turbine types (Fig. 13.12).
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Fig. 13.12 A gas-turbine engine with recuperator

In gas turbine engines with the Brayton Cycle that includes recuperator, the tem-
perature of the exhaust gas leaving the turbine is often considerably higher than
the temperature of the air leaving the compressor. Therefore, the high-pressure air
leaving the compressor can be heated by transferring heat to it from the hot exhaust
gases in a counter-flow heat exchanger, which is also known as a regenerator or
recuperator [See Fig. 13.13 on point-1]. Gas turbine regenerators are usually con-
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Fig. 13.13 T-s diagram of a Brayton cycle with regeneration
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structed as shell-and-tube type heat exchangers using very small diameter tubes,
with the high-pressure air inside the tubes and low-pressure exhaust gas in multiple
passes outside the tubes [7]. The thermal efficiency of the Brayton cycle increases
as a result of regeneration since the portion of energy of the exhaust gases that is
normally rejected to the surroundings is now used to preheat the air entering the
combustion chamber. This, in turn, decreases the heat input (thus fuel) requirements
for the same net work output. Note, however, that the use of a regenerator is recom-
mended only when the turbine exhaust temperature is higher than the compressor
exit temperature. Otherwise, heat will flow in the reverse direction (to the exhaust
gases), decreasing the efficiency. This situation is encountered in gas turbines oper-
ating at very high-pressure ratios [Point 1 on Fig. 5].

The highest temperature occurring within the regenerator is the temperature
of the exhaust gases leaving the turbine and entering the regenerator (Point 1 on
Fig. 13.13). The gas turbine recuperator receives air from the turbine compressor at
pressures ranging from 73.5 to 117 psia and temperatures from 350 to 450 °F (Point
3 on Fig. 13.13). Under no conditions can the air be preheated in the regenerator
to a temperature above this value. In the limiting (ideal) case, the air will exit the
regenerator at the inlet temperature of the exhaust gases. Air normally leaves the
regenerator at a lower temperature (Point 1 on Fig. 13.13). Gas turbine exhaust gas
passes over the other side of the recuperator at exhaust temperatures ranging from
750 to 1000 °F. Compressor air temperatures are now raised to higher temperatures
up to about 750-900 °F as it enters the combustor. Turbine exhaust gases are then
reduced to between 500 and 650°F from the original 750 to 1000 °F. This heat
recovery contributes appreciably to the turbine fuel rate reduction and increase in
efficiency (Point 3 on Fig. 13.13). The regenerator is well insulated and any changes
in kinetic and potential energies are neglected.

A regenerator with a higher effectiveness will save a greater amount of fuel since
it will preheat the air to a higher temperature prior to combustion [Point 1 on Fig. 4].
However, achieving a higher effectiveness requires the use of a larger regenerator,
which carries a higher price tag and causes a larger pressure drop because shaft
horsepower is reduced. Pressure drop through the regenerator or recuperator is im-
portant and should be kept as low as practical on both sides. Generally, the air
pressure drop on the high-pressure side should be held below 2% of the compres-
sor total discharge pressure. The gas pressure drop on the exhaust side (hot side)
should be held below 4 in. of water. Therefore, the use of a regenerator with a very
high effectiveness cannot be justified economically unless the savings from the fuel
costs exceed the additional expenses involved. The effectiveness of most regenera-
tors used in practice is below 0.85. The thermal efficiency of an ideal Brayton cycle
with regeneration depends on the ratio of the minimum to maximum temperatures
as well as the pressure ratio. Regeneration is most effective at lower pressure ratios
and low minimum-to-maximum temperature ratios.

Gas-to-air recuperators (or regenerators) are also used on marine type indus-
trial, and utility open-cycle gas turbine applications. In this application, recuperator
receives air from the turbine compressor at pressure and temperature ranging as
above, where gas turbine exhaust gas passes over the other side of the recuperator
at exhaust temperature, depending on the turbine. The air side (high pressure side)
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of the recuperator is in the system between the compressor and the combustor and
compressor air is raised to a higher temperature up what is mentioned in above as it
enters the combustor. Obviously, pressure drop through the regenerator or recupera-
tor is important and should be kept as low as practical on both sides.

13.9 Heat Exchanger Analysis: Use of the LMTD

Utilizing the Log Mean Temperature Difference (LMTD) method is one way to
design or to predict the performance of a heat exchanger, it is essential to relate
the total heat transfer rate to measurable quantities such as the inlet and outlet fluid
temperatures, the overall heat transfer coefficient, and the total surface area for heat
transfer. Two such relations may readily be obtained by applying overall energy
balances to the hot and cold fluids, as shown in Fig. 13.14. In particular, if q is the
total rate of heat transfer between the hot and cold fluids and there is negligible heat
transfer between the exchanger and its surroundings, as well as negligible potential
and kinetic energy changes, application of the steady flow energy equation, gives;

Grorar = My My = My ) (13.1a)

and

Qrorar =M (he o —h, ;) (13.1b)

Where # is the fluid enthalpy. The subscripts 4 and c¢ refer to the hot and cold
fluids, whereas the subscripts i and o designate the fluid inlet and outlet condi-
tions. If the fluids are not undergoing a phase change and constant specific heats are
assumed, these expressions reduce to

Dot = MpCp (T =T ) (13.2a)
and
Grorar = McCp (Lo =T ;) (13.2b)
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Fig. 13.14 Heat transfer between two moving fluids separated by a solid boundary
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where the temperatures appearing in the expressions refer to the mean fluid tem-
peratures at the designated locations. Note that Eqs. 13.1 and 13.2 are independent
of the flow arrangement and heat exchanger type.

Now consider the heat transfer at a particular point, x, on the heat transfer sur-
face. At x there will be a bulk hot fluid temperature given by T, (%), a wall surface
temperature on the hot fluid side given by T ,(x), a wall surface temperature on the
cold fluid side given by 7, (x), and a cold fluid bulk temperature given by T, (%),
The total temperature drop from the hot fluid at x to the cold fluid at x is given by

AT =T, (x)=T; () =T, (x) =T, (X)+ T ,(x) =T, () + T (x) =T . (x)
= ATf’h +AT, + ATf’c

Then the heat flux leaving the hot fluid is given by

dq(x)
dq(x) dx
I hy Ay Ty () =T (X)) = hy ,dd, ) AT, (x) ATy, (x) = m
The heat flux crossing the wall between the two fluids is given by,
dq(x)
k k
W) s (1,0 T, () = St AT, () AT, ()=
dx 8, ’ ' 8, ky A
s,
And the heat flux into the cold fluid is given by,
dq(x)
dq(x) dx
dx = hf,CdAf,C (T:S‘,C (.x)_Tfjc (x)) = hf,CdAf,CATf,C (X) ATf,C (x) = W

Then the difference in the bulk temperatures of the two fluids can be written as

dq(x) dq(x) dq(x)

dx dx dx
T, (x)=-T, = + +
T = e da,
ShTES (SidAs [ e (13.3)
:dq(x) 1 N 3, 1

+
dv | hyydd,,  kdA, hydd,,
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Note that §, will depend on the geometry. For slab or plate geometry

8,= At the wall thickness

For cylindrical geometry typical of tubes,

,
8,=r,In (”—”’) Tow — Ty = the tube wall thickness

Tin

301

Also note that the differential areas do not all have to be equal. There will be a slight
difference if the bounding surface is a tube, but the addition of fins to either the hot
or the cold side could change the effective area significantly and that is the area that
must be used in Eq. 13.3. Also, note that the areas are areas per unit length. That is

why they have been written as dA.

1

dg(x) 1 1 1 )
Ty (x)=T; . (x)= = +——
fih S
¢ dx U‘LA Ua;A hf,hdAf,h kydA, hf,chf,c
dx dx

dg(x) dA

=2 ., =T,

dx dx(f’h 'f’C)

Then the heat lost by the hot fluid is given by

dg(x) - dTy j,(x)
dx Sh=ph gy

And the heat gained by the cold fluid is given by

dg(x) _ o AT
de TP dy

Combining these two equations gives

Ayp() dlp () dgo| 1 1
dbx de

thp,h mccp,c
AT(x) = Tf,h (x)— Tf,c (x)

dAT(x) _ _dd, f 11
dx de \mC,, mC

(13.4)

(13.5)

dA
- v, -7
o L= Tre)
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h{ﬂ]:_m LI (13.6)
AY{ mhcp,h mccp,c

Now for the hot fluid flowing from left to right Eq. 13.2a becomes

Integrating gives

1 _ Ty —Trp2)

my, Cp,h Qtotal

Qrotal = 1M, Cp,h (T fhl T T f,h,z)

In addition, for the cold fluid also flowing from left to right (parallel flow) Eq. 13.2b
becomes

1 _(Tf,c,Z_Tf,c,l)

(g Cp,c Yrotal

Q1otal = mcCp,c (Tf,c,Z - Tf,c,l)

Plugging these into Eq. 13.3 gives

ATi Qiotal Grotal

UA
= (Tf,h,2 - Tf,c,2 - Tf,h,l + Tf,c,l)
total
AT, UA AT, — AT,
In [_ZJ = _(ATZ - AT{) Qrotal = UA(Z—I)
ATi Grotal In ﬂ
AT;
_ (AT, -AT)

Qrotal = UAAT]m AT;m - (137)

ml A2
AT,

This looks a lot like Newton’s law of cooling with AT, playing the role of the
standard AT . AT, is called the log-mean temperature difference.
Now consider the counter flow arrangement. In this case Eq. 13.5 becomes,

dq(x) _ . dTy . (x)
dx Jemre gy

Moreover, Eq. 13.6 becomes,

AT,
ln(—2]=—UA - ! —— !
AT, m,C,,  m.C,.
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Then Eq. 13.2b becomes
total = mccp,c (Tf,c,l - Tf,c,2)

This gives

ln[ATZ ] _ _UA[Tf,h,l Ty Trea—Tren )
Qto