OF

PRINCIPLES

Jet

Propulsion

and
Turbines

Gas

ZUCROW

J.

JOHN WILEY & SONS, INC.
CHAPMAN & HALL, LIMITED

NEW YORK
LONDON



PRINCIPLES OF
Jet Propulsion

and

Gas Turbines






PRINCIPLES OF

Jet Propulsion

and

Gas Turbines

M. J. ZUCROW

Professor of Gas Turbines and
Jet Propulsion, Purdue University

Revised Printing

NEW YORK + JOHN WILEY & SONS, INC.
LONDON - CHAPMAN & HALL, LIMITED



CoOPYRIGHT, 1948
BY
MAURICE J. ZUCROW

All Rights Reserved

This book or any pari theresf must not
de reproduced in any form without
the written permission of e pubhsher.

SECOND FRINTING, NOVEMEER, 1048

PRINTED IN THE UNITED STATES OF AMERICA



Dedicated

to my beloved but much-neglected wife

LILLIAN ZUCROW

whose patience made this book possible






Preface

This book is based on a lecture course entitled The Principles of
Jet Propulsion given by the author in 1943 and 1944, under the
sponsorship of the University of California ESMWT program, to
graduate engineers working in the aircraft companies located in the
Los Angeles area.

It was decided in preparing the original lecture notes to discuss
basic principles only, and in order to conform with the wartime re-
strictions on security only unclassified material was included. Since
the manuscript for this book was completed during the war years
the same policy was observed in its preparation. This introduced
certain difficulties, because it was necessary to omit certain data and
useful information. It is felt, however, that because the discussions
in this book are confined to basic principles the observance of the
interests of military security has not impaired the attainment of the
main objectives: the presentation of requsite fundamental theory
pertinent to an intelligent understanding of jet-propulsion engines
and gas-turbine power plants. Although the book is written pri-
marily for the student, and not for the specialist, it is hoped that it
will also be useful to those actively engaged in the aforementioned
fields.

In preparing the manuscript the author was guided by the expe-
rience obtained in teaching the ESMWT course discussed above.
He found that the interest in the subject cross-sectioned wvarious
branches of engineering. For that reason certain material which may
not be necessary for instructing aeronautical enginecring students
has been included. The instructor must use his own judgment in
the selection and order of the subject matter to be taught.

The author has drawn freely from the unclassified literature, and
credit is due to those authors, professional societies, publishers, and
manufacturers who were kind enough to permit the use of their
material. In this connection the National Advisory Committee for
Aeronautics deserves special mention. References to publications
are given in the text, and those used in any chapter are collected at
the end of that chapter. An earnest effort has been made to make
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viil PREFACE

the acknowledgments complete, but some omissions may have been
made inadvertently. The author hopes that the reader will take the
charitable point of view, and call the omission to his attention,

The author realizes that despite all his efforts it 18 probable that
some errors, and even mistakes, will be found in this book. He is
hopeful that they are few and insignificant, but he will welcome all
communications calling them to his attention.

Except for the last chapter, “Some Aspects of High-Temperature
Metallurgy,” the author takes full responsibility for the material
presented. He regrets that, owing to the conditions existing when
the manuscript was written, he was unable to avail himself of help-
ful criticisms as is possible under more normal conditions. He is
happy, however, to share the responsibility for the last chapter with
his co-author Mr. C. T. Evans, Jr., Chief Metallurgist, Elliott Com-
pany, Jeannette, Pennsylvania. The excellent cooperation received
from Mr. Evans in preparing the aforementioned chapter is grate-
fully acknowledged.

It is with great pleasure that the author expresses his indebtedness
to his colleague Dr. C. F. Warner, Assistant Professor of Mechanical
Engineering, Purdue University, who gave unsparingly of his val-
uable time to the reading of proof. He also wishes to express his
thanks to his former colleagues Mr. W. Murray, Mr. R. D. Geckler,
and Mr. T. B. Swanson for valuable aid in connection with some of
the charts and tables presented in Chapter 12. Finally, he feels it
is fitting to express here his appreciation to his former colleagues
Mr. B. L. Dorman and Mr. L. K. Petersen, and also to Mr. J. Dillon,
University of California, for their helpfulness in connection with the
ESMWT course mentioned above.

LA¥AYETTE, INDIANA
October 1947
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Chapter One

REVIEW OF FUNDAMENTAL PRINCIPLES

1. Units and Dimensions

Two kinds of quantities enter quite generally into engineering
measurements: dimensional quantities and dimensionless quantities.
A dimensional quantity is one which has its magnitude expressed
in terms of one or more fundamental units: for example, a velocity
of so many feef per second, an area of so many square feef, 2 momen-
tum of so many slug-feet per second, or the like.

A dimensionless quantity is one that has no dimensional category
and 1s, therefore, a pure number. Furthermore, the numerical
magnitude of a dimensionless quantity is independent of the size of
the fundamental units used for evaluating it, provided that a con-
sistent set of units is employed. A dimensionless quantity may be a
coefficient, such as the discharge cocflicient for an corifice, the ratio
of two similar variables, or the product of several dimensional quan-
tities so arranged that the result is dimensionless. A familiar ex-
ample of the last is the Reynolds number, which is the product
(velocity X length X density) dwided by dynamic (absolute) vis-
cosity.

The choice of either the size of the fundamental units or of the
dimensions for expressing the magnitude of a physical measurement
is arbitrary.! Experience has shown, however, that in the fields of
mechanics three principal dimensions suffice. They are length [L],
time [T, and either mass [M] or force [F]. All other dimensions for
expressing the magnitude of a physical measurement are derivable
from these. Thus. the dimensions of area are [L]?, of velocity [L]/1T],
and so forth.

It should be noted that, if mass [M] is taken as a principal dimen-
sion, then force is a derived quantity, and vice versa. Mass and
force are related by Newton's law of motion, force [F] = mass
[M] X acceleration [A]. Hence, if mass is a principal dimension, the
dimensions of force are [M][LI7T]~2

1 Superior numbers refer to items in the bibliography at the end of the chapter.
1



2 PRINCIPLES QF JET PROPULSION [Chap. 1

Each of the principal dimensions [L], [T, and [M] or {F] can be
expressed in terms of the others. Thus,

[Fl = [MILITT™? (L} = [FITPM)™Y [M] = [FITPIL]
and

[T] = [MILIFI™

[MILIFIHT]? = 1

Further:

It should not be implied from the foregoing that the principal
dimensions [L], [T], [M] or [F] are basic. As pointed out above, their
choice is arbitrary and is based on convenience. In general, the
principal dimensions may be any mutually independent set which
are convenient to use.

The selection of the size of the fundamental units is also arbitrary,
but the demand that they be consisient requires that numerically
they satisfy Newton's second law of motion. Thus the product
unit mass X unit acceleration must equal unii force.

In the field of mechanics two basic systems of measurement are
used: (1) the English gravitational system (EGS) and (2) the English
absolute system (EAS). Confusion sometimes arises in evaluating
the units of mass and weight (force) for these systems. This may
be due to the use of the same word, pound, for the unit of force
(weight) in the (EGS) and for the unit of mass in the (EAS). An-
other contributing factor may be the fact that the mass of a body
is determined by measuring its weight, that is, the gravitational force
exerted upon it.

The confusion is avoided by noting that mass 4s o gquantitaiive
measure of matter. It is characterized by possessing the property
called tnertia, the tendency of a lump of matter to remain at rest or
in an existing state of motion unless acted upon by an external force.
Furthermore, the mass of a substance is independent of its volume,
its nurnerical value being the same when the body is heated (ex-
panded) or cooled (contracted). Mass is a scalar quantity, while
force is a vector quantity.

In the EGS of units, which is used in this book unless specifically
stated to be otherwise, the unit of force F and the unit of accelera-
tion ¢ are chosen and the unit of mass m is calculated from F = ma.
Thus the pound is the chosen unit for force, the foot per second per
second is chosen as the unit for acceleration, and the unit of mass
is derived from substituting # =1 and ¢ = 1 into F = ma. The
unit of mass is a lump of matter which is given an acceleration of
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1 fi per sec per sec, in a vacuum, when acted upon by a force of 1
pound.

The simplest way to measure the mass of a body is to weigh it.
Hence, if a body weighs 1 pound, the gravitational attraction exerted
upon it is a force of 1 pound and this attraction imparts an accelera-
tion @ == g ft per sec per sec, the numerical value of g depending upon
the location of the body on the surface of the earth. To satisfy
the equation F = ma, the body should experience an acceleration of
1 ft der sec per sec. This means that m = W/g, where W is the
weight, must be equal to unity. Hence, the unit mass weighs g-
pounds. This unit is called 1 siug.

The standard acceleration is 32.1740 ft per sec per sec, and is
assumed to be the value at 45 degrees latitude and sea level.2 Its
value in metric units is 980.665 cm per sec per sec.

In the EAS the units of mass and acceleration are chosen and the
unit of force i1s the derived unit. The unit of mass is called the
pound, and the unit of acceleration is 1 ff per sec per sec. The unit
force imparts an acceleration of 1 fi per sec per sec to a 1-pound mass.
To satisfy Newton’s law, this unit of force must be 1/gth of the
weight of the 1-pound mass, and is called the poundel.

For a more detailed discussion of units of measurement consult
references 12 and 13,

Table 1-1 presents conversion factors for transferring measure-
ments from one system to another.

TABLE 1-1

CoNVERSION FACTORS FOR (GRAVITATIONAL AND ABSOLUTE SYSTEMS
OF MEASUREMENT

Given Multiply by Result
Force in pounds 32.174 Force in poundals
444,823 in dynes
Mass in pounds 0 0311 Mass In slugs
454 O in grams
0.454 in klograms
Length in feet 30.5 Length in centimeters
0 305 in meters

Table 1-2 lists the units which must be used with their respective
systems of measurement in order to satisfy the requirements of con-
sistency.
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TABLE 1-2
FuwnpameENTAL UNITS OF MEASUREMENT AND DIMENSIONS
Dimen-  Gravitational
Fundamental  sional System , ﬂbsnlu‘ca: System X

Quantity Symbal English Englizh Metric
Mass | ] 1 slug 1 pound 1 gram |
Length [L] 1 foot 1 foot 1 centimeter
Time (7] I second 1 second 1 second
Force [ 7l 1 pound 1 poundal 1 dyne

Table 1-3 presents the dimensional formulas and units of those
physical quantities pertinent to propulsion problems.

TABLE 1-3
DruensioNal Foryvras anp UxiTs

Cuantity

Acceleration
Angular velocity
Angular acceleration
Area
Compressibility
Density

Dynamic viscosity
Energy

Force

Gravity acceleration
Impulse

Kinematic viscosity
Length, linear dimension
Mass

Mechanical equivalent of heat
Modulus of elasticity
Moment

Momentum
Peripheral velocity
Pressure

Power

Revclutions per time
Rigidity modulus
Surface tension
Specific weight

Time

Torque

Weight

Work

Unit
English

Gravitational

System

ft /sec?
rad /sec
rad /sec?
ft?

ft2/1h
slug /ft?
tb-sec/ft?
ft-1b

1]
ft/sec?
l-sec

{t* /sec
1t

1 slug
ft-1b
1b/ft?
{t-lb
slug-ft/sec
ft/sec
1h/ft?
ft-lb /sec
rev/sec
b /ft?
Ih/ft
Ib/ft?

1 sec
ft-ib

Ib

ft-1b

Dimensional Formula

—

M, LT
L/T%
1/T
1/7T2

LE
LT M
M/I3
M/LT
MI2/Te
ML/T?
L/T?
ML/T
LXT

L

M
MI2/T?
M/LT?
MI?/T?
ML/T
L/T
M/LT?
ML/ T3
1/T
M/LT?
M/T?
M/I*T?®
T
MI2/T?
ML/T®
MI?/T?

F LT
L/T?
/T
1/7*
LE

I/ F
FT2/1t
FT/I?
FL

F
L/T?
FT
/T
L
FT2/L
FL
F/I2
FL
FT
L/T
F/I?
FL/T
1/T
F/I2
F/L
F/L?
T

FL

F

FL
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2. Dimensional Analysis

Many problems in engineering involve comparing the behavior
of two similar machines of widely different size or the prediction of
the behavior of a prototype from the behavior of a model. For the
comparisons to be accurate, it is essential that the prototype and its
model be geometrically similar in all respects. When the study also
involves the flow of a fluid, as in aerodynamics, it is also required
that the ratio of the forces due to the inertia and viscosity of the
fluid be in a constant ratio, if the flow patterns are to be similar.
This means that in problems involving fluid flow there must be dy-
namic similarity as well as geometric similarity., The comparison
of the behavior of machines and fluids utilizing the principle for
geometric and dynamic similarity is based on dimensional analysis.

Principal Notation
acoustic velocity = V gkRT, fps.

i =

B = mR = universal gas constant = 1.9864, Btu/lb mole F.

Cp = drag coefficlent.
: R k

cp = specific heat at constant pressure = \7 7))

Btu/Ib F.
o st consat s = ()
= t tant =—|—),
¢y = specific heat at constant volume A
Btu/lb F.
D = drag.
g = acceleration due to gravity = 32.174 ft/sec?.
g-mole = gram mole.
1
= % =+ I (pv) = enthalpy, Btu/lb.
AR = By — ho' = isentropic enthalpy change, Btu/lb.
Ak = By ~ he = enthalpy change, Btu/Ib.
VA :
ARy = ¢ T s = enthalpy change due to isentropic ex-

1+ Z;

pansion, Btu/lb.
Ak, = ¢,T1Z, = enthalpy change due to isentropic compres-
sion, Btu/lb.
J = mechanical equivalent of heat = Mrg Btu/ft-lb.
k = specific heat ratio, ¢p/¢y-
k-cal = kilogram calorie.
k-mole = kilogram mole.
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K = bulk modulus = , psf.
(dv/v)
(K)r = isothermal bulk modulus for a perfect gas = 2.
(K).q = adiabatic bulk modulus for a perfect gas = &p.
m = molecular weight.
M = Mach’s number.
p == pressure intensity, psfa.
dQ = heat added, Btu/Ib.
g = 2pV? = dynamic pressure, psf.
1Js = heat added during a change from state 1 to state 2,
Btu/1b.
R = gas constant = 1545/m, ft-Ib/Ib F.
re = py/p2 = pressure ratio for an expansion process from
1.
re = Po/Py = pressure ratio for a compression process from
P1.
ds = entropy change = dQ/T, Btu/Ib F.
T == absolute temperature in degrees Rankine (460 4 {° F).
u == internal energy, Btu/lb.
du = c,dT = internal energy change for a perfect gas,
Btu/lb.
o = specific volume, £t%/1b.
V.. = my = molar volume, {t*/Ib-mole.
V = velocity of a body in a fluid medium, fps, or total
volume as indicated in text.
W = weight, 1b.
k-1
Lo=1.,% — 1,
k—1
Z; = 7i Bo— 1.
Greek Symbeols
p = density, slug/ft>.
po = air density at sea level = 0.002378 slug/ft>.
o = p/pe = density ratio.
v = specific weight, Ib/ft°.
o = specific weight of air at sea level = 0.07651 ib/ft3.
u == absolute or dynamic viscosity, slug/ft sec.

¥ =

u/p kinematic viscosity, ft%/sec.

The importance of dimensional analysis to the engineer is that it

permits arranging the variables of a physical problem in such a

manner that the experimental work can be conducted without de-
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stroying the generality of the physical relationship.” This is par-
ticularly true when a large number of variables are involved.!519

The dimensions of a physical quantity stem from its definition;
thus density is mass per unit volume and is accordingly expressed by
the dimensional formula [M]/[L}. An important principle in anal-
vzing physical phenomena by applying dimensional analysis is the
principle of dimensional homogeneity.! This states that all the terms
of an equation expressing an actual relationship between physical
variables must have the same dimensions.

If a certain number of physical quantities enter into an equation,
since the equation must be dimensionally homogeneous, the number
of possible relationships is limited in a special manner.? Thus it
can be shown that, if the functional relationship

F(Q1, Q2+ Um) =0 )

is a complete equation describing the relationship between =

different physical quantities Oy, Oz * - - O, then, if there are » prin-
cipal dimensions, the relationship may be put in the form 2

f(?rll 5 'ﬂ'm--n) 2= () (2)

Relationship 1 is said to be a complete equation if it remains true
regardless of the size of the consistent set of fundamental units used
in evaluating it. In equation 2 the =’s are m — # independent
dimensionless gquantities formed from the original variables {,
Qs -+ Om In each 7 there will be »# -} 1 variables, and in each
successive = only one variable changes.

it should be noted that if more than one of the same kind of quan-
tity is involved in the relationship, such as several lengths, then all
of the same kind of quantity can be represented by means of one of
them and ratios of the others to it. In that case equation 2 becomes

flzr, Tg * '« Ty P17 +00) =0 (3)
where 7y, 7o - -+ are ratios.
Each = represents a dimensionless product of the form
=0 - Qu” (4)
where the a, b, - - - m are exponents.

To illustrate the method of analysis, consider the problem of
determining the aerodynamic resistance of an airplane or an airfoil.
The resistance will depend upon those variables that affect the
resistance of any body which is completely submerged in a large
body of fluid. Owing to the great depth of the submergence of the



8 FRINCIPLES OF JET PROPULSION [Chap. 1

airfoil, no surface waves are formed in the free surface of the atmos-
phere so that gravity has no effect upon the resistance.

If it is assumed that the airfoil moves through the air at constant
speed so that there are no acceleration forces, then the resistance
force, or drag D, will depend upon the following variables: V, the
relative velocity of the air and the airfoil; p, the density of the air;
u, the viscosity of the air; ¢, the acoustic velocity; and the size and
shape of the body.

For a series of geometrically similar bodies, a single linear dimen-
sion / will define each of them. Hence

FD, L V,pyma) =0 (@)

Since there are three principal dimensions, [F}, [L], and [T], and
six variables, there must be three dimensionless ratios. Hence, the
equation similar to equation 3 is

flmy, we, m3) = 0 ()

The #’'s are determined by selecting three variables raised to ex-
ponents and combining them with a fourth until all the variables
have been used. Hence, selecting , ¥V, and p as the three variables,

wy = DIFP¥p™
.
wa = alB V"

To solve for the exponents of the variables in 7y, they are expressed
in terms of their dimensions raised to the exponent of the variable
for which they are substituted. Thus

T = F.IB.pup—un, paTiay =i

Writing an equation for the exponents of each dimension, thus

-

[F] 142 —0] 2 = —1
[L] o1+ y1— 45 =0 x = —2
7] ~y+22 =0 3 = —2
Hence
D
ik MZQVzp

Similarly, for ws,

g = FTL™2. [B2. pr27—%. pariay —ia
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Solving for the exponents

[F] »a+1 =0] 3= —1
(L] % — 4 + yo—2=0} xy = —1
[77] 285 — 29 + 1 =0 s=1
Hence
o
2 Ly

Similarly, for g,
oy = LT_I-LH'LWT*M' FlgTEz;L-—-ézg

Hence
[F] 2 =0 2z == )
(L] 1+x3+ v —453=0; 23=0
[T] _1_3’*3 =0_,! Y3 = —-1
Hence
a 1
T3 —_

- V - Mach number

The dimensionless ratios give the following functional relationship

G i)
f ' =1
Pol2 LoV V

Or, since an expression for the drag 2 is desired,

oV
D = EoV% (i— , K) (5)
TR

The values of the unknown function are determined by test.
Measured values of D/2pV? are plotted against simultaneous values
of IpV/u for a constant value of V/a.

Similarly for a fixed value of 1oV /u (the Reynolds number) values
of D/PpV? can be plotted against V/a.

It should be noted that, at the usual speeds of airplanes, the air
can be assumed to be incompressible.’® The effect of ¥V/a can then
be neglected, and the drag equation can be assumed to be given by

z
D = BoV% (ﬂ)
L

Experiments also indicate that the resistance of an airplane under
the conditions where the compressibility of the air can be neglected
is approximately proportional to the square of the relative velocity V
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. ip
Then the function ¢ (—Z) reduces to a constant, the value of which
p

depends upon the shape of the body. Hence
D = PpV? X Constant

If the projected area of the body .S is used in place of #, since area
has the same dimensional formula, then

D = EKppV?S

Since the dynamic pressure of moving air is given by g = $p V7,
it is convenient to express the drag in terms of the dynamic pressure.
Thus

D = (Cp3pV3S = CpgS (6)

where Cp is called the drag coefficient.

From equation 6 it is seen that the drag of an airfoil or airplane
depends upon the density of the air, the relative wind velocity, the
wing area, and an experimentally determined drag coefficient.

For a more complete treatment of dimensional analysis and also
dynamic similarity the reader is referred to the references at the end
of this chapter.

3. Classification of Matter

Material substances can be segregated into two broad classifica-
tions: solids and fluids. Although the interest in this book is mainly
in the phenomena associated with motions of fluids, it 18 instructive
to focus the attention briefly upon the essential differences between
these two subdivisions of matter before proceeding to the study of
the pertinent properties of fluids.

To facilitate the manipulation of the mathematical relationships
which arise, it is convenient to assume the existence of ¢deal sub-
stances. Consequently, it is the criteria distinguishing 4deal solids
from ideal fluids that are to be discussed. Although no such idealized
substances occur in nature, their comsideration yields important
information which may be regarded as a first approximation to the
behavior of real substances. Furthermore, the equations derived
for an ideal substance can be made applicable to real substances by
introducing experimental coefficients or other suitable modifications.*

A fluid is defined as a substance composed of particles which move
with ease, change their relative positions without separation of mass,
and yield readily to pressure. This definition places in the category
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of fluids such substances as liquids, vapors, and gases or any sub-
stance which cannot be classified as a solid. There are borderline
cases where the line of demarkation between a fluid and a solid is
not clearly established by this definition. In by far the majority
of cases, however, the basic differences between solids, liquids, and
gases are sufficiently pronounced to distinguish them. This is most
conveniently accomplished by comparing their elastic properties.4®

4. Elastic Properties of Ideal Substances

An ideal substance is assumed to be homogeneous in composition
and 1sotropic. It can be shown that an isotropic body has only two
elastic constants: the bulk modulus K, and the rigidity modulus N.
These assumptions greatly reduce the complexity of the study of
elastic properties.®

(a) Bulk Modulus (K). Consider a cube having unit edges that is
subjected to a uniform hydrostatic pressure p; see Fig. 1. Assume
that the stresses due to the hydro-

static pressure are small so that P
Hooke’s law, the siress is proportional / \
lo the strain, 1s applicable.

The volume of the cube, as the re- ¥ "“*‘1‘ ~—T P
sult of the compression, is reduced by i ,-/ /,I
the amount Ao = 9q — v;, where the £ -1
subscripts 0 and 1 refer to the initial A
and final volumes, of the cube. Since T p
it was assumed that the cube had unit .. 1 Unir cobe subjected to
edges, the volume change Av represents uniform hydrostatic pressure.

the change in volume for a unit volume
of the material composing the cube; it is the strasz. The ratio of the
stress acting on the cube to the strain is a measure of the bulk modulus
K of the material.

Owing to the hydrostatic pressure p, each side of the cube expe-
riences a reduction in length e. Hence, the compressed volume of
the cube is

ﬂ1=(1—5)3=1—3E+362“83ﬁ1“33 (7)

Since the deformation e is very small, all powers higher than the
first may be neglected, so that the strain is given by

Ay = gq — 1) = —3e (8}

et it now be assumed that the hydrostatic pressure, stress per unit
area, is changed by the infinitesimal amount dp. The corresponding
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decrease in volume will be —dyp. If the initial volume is denated by
7, then the strain is —dv/v. By definition

Increment of stress per unit area
K = Bulk modulus =

Unit strain produced
or

K= —y— {(9)

(b) Compressibility (7). The compressibility of a material is de-
fined as the inverse of its buik modulus. Since the compressibility
of a substance varies with the predominating temperature, it and
the bulk modulus must be defined at a particular temperature and
the conditions under which the compression is conducted must be
specified.

It should be noted that the dimensions of the bulk modulus are
force/area = [F]/[L?. Its units are pounds per square foot, for which
the abbreviation is psf.

(c) Rigidity Modulus (¥). Consider the unit cube illustrated in
Fig. 2¢. The sides AD and B are extended by the tension stress
#, while the sides AB and DC are shortened by a compression stress
2 of the same magnitude. Let the increase in the length of the sides
AD and BC be denoted by ¢, and let the sides AB and DC be reduced
by this same amount. The type of strain produced by these stresses
is a shearing strain or shear.

P b
A T B A T B, B

Py B P /fb P
°
D C DI C
i R
() (&) {¢)

F1G. 2. Unit cube subjected to a shearing strain.

Refer to Fig. 28, and consider the rectangular prism BCD. The
face B( is subjected to the hydrostatic pressure $, while the face DC
is acted upon by the tension $ of the same magnitude. The prism
BCD is in equilibrium under the combined actions of these two normal
stresses and the forces due to the action of A BD on BCD. The re-

sultant of the two normal forces is the force p\/E acting along BD,
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The action of ABD on BCD is equal to this force but oppositely
directed as illustrated in the figure.
Since the cube was assumed to have unit edges, the area of the

face BD is V2 units. Consequently, the tangential stress on this
face has the same intensity p as the normal stresses acting on DC
and BC. Hence, the shearing stress may be measured on the area
subjected to either pure normal or pure tangential stress.

Refer to Fig. 2¢. Assume that the directions of the principal axes
of shear are along the diagonals 4C and BD, and that these diagonals
are contracted and elongated respectively by an amount ¢ per unit
length. It can be demonstrated that, when the strains are small,
no change is produced in the sides of the cube, the area of its un-
stressed face, and the perpendicular distance between the stressed
faces if all powers of ¢ above the first are neglected. The square of
Fig. 2a merely distorts to form the rhombus, Fig. 2¢. In other
words, the material of the cube is distorted without expansion.
The plane of the shear is the plane parallel to
which all points are displaced. This type of
strain is called a pure shear. Ar—z—gr—pb

If the rhombus of Fig. 2¢ is rotated so that de¢ i/ }5 T

!
i
|

coincides with a line through DC the result is
that llustrated in Fig. 3. The shearing strain
may be regarded as being prodiced by the b C
material of the cube sliding along parallel planes ¢ . 3 peorma
through distances proportional to the perpen- tion of unit cube due
dicular distances of these planes from the face to tangential stress.
DC, the sliding being caused by the tangential

stress p acting along the upper face of the cube. The strain due to
this tangential stress is measured by the angular displacement 0.
The rigidity modulus, also called the shear modulus, is defined by

p p

N==%=-—2—
6§ AL/L

(10)

For small angles tan 8 = 6.

5. Definitions for Ideal Solids and Fluids

Ideal solids and ideal fluids can be defined in terms of their bulk
and rigidity moduli.

(a) Ideal Solid. An ideal solid is a substance possessing bulk elas-
ticity and rigidity. When it is stressed, the external forces are bal-
anced by internal forces arising from the elastic strains, and in this
manner equilibrium is maintained. It should be noted that the
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stress on an element plane of an ideal solid may have any direction
with respect to that plane.4®

(b) Ideal Fluid. An ideal fluid is a substance possessing bulk elas-
ticity but no rigidity. An ideal fluid cannot, therefore, permanently
resist a tangential stress no matter how small the stress may be.
Consequently, the stress on any element plane in an ideal fluid is
always normal to that plane; the pressure is, therefore, independent
of the orientation of the plane. Hence, i an tdeal fluid the pressure
at any point is the same in every direction.

From the foregoing, it is apparent that an ideal fluid has the follow-
ing properties:'®

1. It can transmit pressure only.

2. Tt cannot transmit a tangential stress, hence it is frictionless.

3. The pressure at any pointin the fluid is the same in all directions.

Actual fluids differ from ideal fluids in that they are not friction-
less. There arise tangential stresses whenever there is relative mo-
tion between the fluid particles. These tangential stresses tend to
damp out the relative motion, and they exist as long as there is such
motion. The fluid yields to these stresses, different fluids yielding
at different rates depending upon their internal friction or their
dynowic or absolute viscosity. It should be noted, however, that
when a real fluid is at rest it behaves as an ideal fluud, for In that
condition it cannot support a tangential stress.

(¢) Ideal Liquid. An ideal liquid is defined as an incompressible
ideal fluid. This means that the bulk modulus for an ideal liquid
is infinite, or, conversely, the compressibility is zero. No real
liquid is truly incompressible, but the numerical values of the bulk
moduli for most real liquids are large enough to justify this assump-
tion. This is particularly true when small pressure changes are in-
volved. %

(d) Ideal Gas. The ideal gas is likewise defined in terms of the
bulk modulus. Since the value of bulk modulus for a gas depends
upon the type of compression process employed, the condition under
which the compression takes place must be specified. Two principal
comnpression processes are of particular interest: (@) isothermal and
() adiabatic.

An deal or perfect gas is defined as a perfect fluid for which the
bulk modulus when determined by compressing it isothermally is
numerically equal to the pressure.* Thus, the isothermal bulk modulus
(K) 1 for ¢ perfect gas is given by

d
K = — 2w p (1)

(dv/9)r




Chap. 1] REVIEW OF FUNDAMENTAL PRINCIPLES 15

The subscript T indicates that the temperature is constant. Hence
for the ssothermal compression of an ideal gas the following equation
applies

pdo+vdp = 0 (12)

The integration of equation 12 yields
pv = Constant (13}

Equation 13 states that, when an ideal gas is held at a constant
temperature, the pressure on the gas varies inversely with its volume.
This law was determined experimentally by Boyvle and also by
Mariotte.

1f the compression of the gas is frictionless and is conducted under
adiabatic conditions, no heat exchange between the gas and outside
sources or sinks, then the equation for the compression process is
#v® = Constant. The exponent £ represents the value of the ratio
of the specific heat of the gas at constant pressure to its specific heat
at constant volume and has different values for different gases.
Differentiating p#* = Constant yields

v*dp + k¥ lpdo =0
Dividing by pv*

2Ty
P ()
Or
Keg = i _, (14)
Kea = — Gy =

Equation 14 states that the adiabatic bulk modulus of an ideal gas
is equal to the product of its adiabatic exponent, &, and the absolute
pressure,

Thus, assuming air to be an ideal gas for which 2 = 1.4, then its
adiabatic bulk modulus is given by (K)s = 1.4p. Hence, at sea
level, (K)gq for air is 1.4 X 14.7 X 144 = 2970 psf.

6. Dynamic or Absolute Viscosity

It is this property of a real fluid, its viscosity, that is the source
of all so-called fluid friction.? It is by virtue of this property that a
real fluid in motion can sustain a shearing stress whereas an ideal
fluid cannot. Consequently, in formulating the equations of motion
for a real fluid, its dynamic viscosity, or more briefly its viscosity,
should be considered.
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The definition of the viscosity of a fluid is based upon the ability
of the fluid to resist and distort when subjected to an external force
causing a shear stress. Thus Maxwell defined viscosity as follows:
The viscosity of a substance is measured by the tangential force per
unit area on either of two horizontal planes at a unit distance apart
required to move one plane with unit velocity in reference to the
other plane, the space between being filled with the viscous fluid.

F=f4

1T A

b4

Fic. 4. Distribution of shearing stress in a fluid.

Figure 4 illustrates two parallel planes ¥ and Z at a distance
apart 5. [f the shearing stress f;, force per unit area, gives plane ¥
the velocity V with respect to plane Z, then, as first pointed out by
Newton, the velocity of each stratum of fluid between the planes
YV and Z will be proportional to its perpendicular distance from
plane Z.

The rate of shear is V/s and is, therefore, constant throughout a
homogeneous fluid. The total shearing force is F; = f;d, where 4
is the area of plane Y.

To maintain constant velocity the tangential force F; must be
opposed by an equal force due to the internal resistance of the fluid.
The ratio of this force to the rate of shear, called the coefficient of
viscosity, 1s defined by

F £ fgS

T AVs v

il

(15)

Ifd =1,5s=1,and V =1, then p is the dynamic viscosity as
defined by Maxwell. In general, therefore,

p o= [MILYTI™ X L1772 X [L] X [THL]
or

po=[MIILITHT]™  (slug/ft sec)

If {F], [L], and [T are taken as the principal dimensions, then the
unit of viscosity is

p = [FIITNL] (Ib sec/sq ft)
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Most physical data pertaining to the viscosity of fluids are ordi-
narily stated in metric units, usually centipoises, where 1 poise = 100
cenlipoise.

Table 1-4 presents the conversion factors for transferring the

units of dynamic viscosity from one system of measurement to
another.
TABLE -4

CoNvERSION Facrors rFor DenaMic ViIsScosiTy

[MULITUTIY or [AITNEI?

i« Given in Multiply by Obtained in
poises 100 centipoises
{1 gram/cm sec 0.0672 b/t sec
or 0.0672 poundal sec/ft>
dyne-sec/cm?) 0.00209 slug/ft sec
0.00209 1b sec/ft?
360 kg /meter hr
th/ft sec 14 .88 poise
or poundal sec/ft? 1,488 centipoise
(.03105 slug/ft sec
0.03105 1b sec/ft?
5,356 kg /meter hr
slug/ft sec 478.53 poise
or 1b sec/ft? 47,850 centipoise
32.174 Ib/ft sec
172,300 kg/meter hr
1 kg /meter hr 0.002778 poise
0.2778 centipoise
0.0001867 Ib/ft sec

0.000005804 Ib sec/ft?

In general, the viscosities of liquids decrease with increasing tem-
perature whereas the viscosities of gases increase with the temperature.

The viscosity of air as a function of temperature in degrees centi-
grade is given by Holman’s formula.’® Thus

wo= 1715.5(1 4 0.00275¢ — 0.00000034:%) X 107 (poises) (16)

where u = viscosity, poises.
{ = temperature, C.

To obtain the viscosity in slug/ft sec, the coefficient of the equa-
tion is multiplied by 2.09 X 1075, Thus

u = 3582.9(1 1+ 0.00275¢ — 0.00000034:%) X 10710 (17
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7. Kinematfic Viscosity

Although the dynamic viscosity is a measure of the stresses in a
fluid, in general it is the ratio of these stresses to the inertia of the
fluid which has to be considered. The inertial forces in the fluid
depend upon its density p. The ratio u/p is called the kinematic
viscosity and is denoted by ». Its dimensions are ft®/sec

p slug ftd

i =

avma 18
p ft sec  slug (18)

The data pertaining to the viscosity of a fluid are often stated in
terms other than its dynamic viscosity, such as {a) relative viscosity
or (b) Saybolt seconds.

8. Relative Viscosity

This is the ratio of the dynamic viscosity of the fluid to that of
water at a definite reference temperature. In this country relative
viscosity is ordinarily referred to the dynamic viscosity of water at
20 C or 68 F. At this temperature, the viscosity of water is prac-
tically 3{po poise or 1 centipoise. With this reference base, the
numerical value of the relative viscosity of a fluid is the same as its
dynamic viscosity in the proper units. Sometimes water at 0C
or 32 F is taken as the base liquid. Since the dynamic viscosity of
water at that temperature is 1.7921 centipoises, the dynamic viscosity
in terms of relative viscosity is given by

Dynamic viscosity = Relative viscosity X 1.7921 (centipoise)

9. Saybolt Viscosity

This method of measuring and stating viscosity is very common.
Since the rate of flow through the nozzle of the Saybolt viscometer
depends on the dynamic viscosity and the pressure head, and since
the pressure head is a function of the density of the fluid, Saybolt
viscosity is a function of the kinematic viscosity. For the new Say-
bolt viscometer, Herschel gives

poises

y = Kinematic viscosity ==
grams/cc

Or

1.8
y = 0.0022 X t — — (19)

where ¢ is the time in Saybolt seconds.
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Since the kinematic viscosity, », is the ratio of the dynamic vis-

cosity of the fluid to its density, equation 19 can be transformed to
give the dynamic viscosity p. Thus

1.8
p=p (0.0022; - T) (20)

where p is In grams per cubic centimeter.

In the metric system the density is equal to the specific gravity s,
so that eguation 20 can be written

1.8
TR (0.0022?: — T) poise (21)

Some commercial measurements of viscosity are made with the
Engler viscometer and the results are stated in Engler seconds.
The equation for this viscometer is

H 3.74 _
v = — = (,00147¢ — — poise/gram (22)
p
Hence
u = 0.00147¢p — 3.?4% poise
or
3.74 ‘
u = s{0.00147¢ — " poise (23)

10. Ideal or Perfect Gases

The ideal or perfect gas is a fluid which cannot be liquefied by
merely lowering its temperature. It is assumed that its structure
is such that the individual gas molecules remain so far apart that
they exert no attraction forces upon each other, and there is no
internal friction. Real gases deviate from these assumptions, but
the experimental results of the earlier scientists led to the belief
that certain gases such as oxygen, nitrogen, hvdrogen, and helium
behaved as ideal gases because they had hbeen unable to liquefy
them. It has now been demonstrated that under suitable conditions
all known gases can be liquefied.

Experiments indicate that the deviations in the behavior of a real
gas from the perfect gas increase as the pressure acting upon the gas
is raised or as the temperature is decreased. For many engineering
calculations the error due to assuming ideal-gas behavior is relatively
small and the results need not be corrected for deviations from the
perfect gas laws. These laws will now be reviewed.’
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(@) Boyle’s or Mariotte’s Law. This law has been discussed in
Section 5(d) of this chapter. Its most usual statement is, when the
temperature of a given mass of gas is kept consiont, the wolume and
pressure vary in inverse rato. The mathematical statement of this
law is equation 13, which is also written in the form

Py = oty = pv = Constant (24)

The numerical value of the constant depends upon the mass and
kind of gas involved, and the temperature predominating during
the isothermal change from state I to state 2. The graphical repre-
sentation of this law, the plot of absolute pressure as a function of
volume, is a rectangular hyperbola.

The product pz is a constant provided that the absolute tempera-
ture, 7, is constant. Consequently, the numerical value of pv

changes with 7, or }
v = f(T) (25)

In dealing with gases or vapors which do not follow the gas laws
closely the specific volume of the fluid should be obtained from
experimental data. Thus, for steam the tables of Keenan and
Keyes, Thermodynamic Properties of Steam, John Wiley and Sons,
should be used.

(b) Charles’ Law. Charles’ law may be stated as follows: 4f the
volume of a given mass of gas is kept constant and the temperature 1s
changed, the accompanying change in pressure is proporiional o the
change in absolute temperaiure. Mathematically,

El_ - E‘Z{ = %b-_l = Constant (26)

Ty T
where p is in pounds per square foot absolute and T in degrees
Rankine.

(c¢) Combination of Boyle’s and Charles’ Laws. Boyle’s and
Charles’ laws when combined yield the following equation

Pyt _ Doty _ v
Ty T

(d) Characteristic Equation. If the volume and temperature of
a confined gas are unchanged, then the pressure it exerts against
the containing vessel is proportional to the weight of gas. Obviously,
it requires five times as much pressure to force five times the weight
of the same gas into the identical volume. Furthermore, if the
pressure and volume are unaltered, then the temperature will vary
inversely as the weight of gas.

= Constant (27)
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From the foregoing, it follows that the constant in equation 27
must be proportional to the weight of gas. Replacing the constant
by WK, where R depends only upon the kind of gas and W is its
weight, then for a given volume of gas

% = WR = Constant

or
pv = WRT (28)

If a weight of 1 Ib of gas is considered, then # is the specific volume
of the gas in cubic feet per pound, and equation 28 becomes

pr = RT (29)

Equation 29 is known as the characteristic equation for perfeci gases.
The differential forms of this equation are

pdv +vdp = RAT (30)
or

Pdﬂ=RdT“ﬂd?"—=RdT""RT(£i£) (31)

4

(e) Avogadro’s Hypothesis. According to Avogadro’s hvpothesis,
equal volumes of all gases when af the same temperature and pressure
contain en equal number of molecules. This indicates that under the
same conditions of pressure and temperature a molecule of any gas
possesses a fixed volume. The specific weights of different gases
must, therefore, be proportional to their molecular weights.

Let z denote the specific volume of a gas and vy its specific weight,
and consider two different gases denoting them by the subscripts 1
and 2 respectively. Then, since v = 1/7,

m_vz_ g (32)

Uo Y1 gp1 (51

where #2; and ms are the molecular weights of the gases and p denotes
density.

In studies involving gases the calculations are frequently simplified
by introducing the unit called the mole, which is defined as follows:
let #m denote the molecular weight of a gas; then 1 mole = m 1b (or
m grams in the metric system). Thus 1 mole of oxygen, O,, weighs
2 % 16 = 32 1b, and 1 mole of ammonia, NHjy, weighs 14 + 3 = 17 Ib.

Since, at the same T and p, the volume of one molecule is the same
for all gases, it follows that the volume of 1 mole is the same for all
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gases at identical values of pand 7. Thusat? = 32F and p = 14.7
psia, 1 cu ft of oxygen weighs 0.08922 Ib. Hence the volume of 1
mole of oxygen under these conditions is 32 X 1/0.08922 = 358.7
cu ft. Thus 1 mole of any gasat 32 F and 14.7 psia occupies a volume
of 358.7 cu ft. Similarly, at 14.7 psia and 60 F, the volume of 1
mole of any gas is 380.6 cu ft.

() Relation between Gas Constant and Molecular Weight,
Multiply each side of equation 29 by the molecular weight #. Then

P Xwm=RT Xm (33}

Since 7 is the specific volume in cubic feet per pound and = is the
weight of gas in 1 mole, the product #m is the volume of 1 mole of
gas. For the conditions p = 14.7 X 144 = 2116.3 psfa and
T = 32 -+ 460 = 492 R, the product ovm = 358.7 cu ft. Substi-
tuting for mv in equation 33 gives
2116.3 X 358.7 1345
R = = — (34)
402 X m 72

The above relationship is not quite true for real gases but is suffi-
ciently accurate for most purposes.

If the characteristic equation is applied to 1 mole of gas, that is
w 1b, then the volume term on the left-hand side is the same for all
gases. Let V, = mvr = the volume of 1 mole of gas, and Ilet
mR = B.

Then equation 33 becomes

oV = BT (35)

where B = the universal gas constant and is independent of the kind
of gas.

The wvalues of the universal gas constant in different units of
measurement are listed below

B = 1.9864 Btu/F Ib-mole
1.9864 k cal /K k-mole
3.40709 ft Ib/F g-mole
847.81 m kg/K k-mole
8311.3 int. joule/K k-mole
8.3141 X 10" erg/K k-mole

where K denotes degrees Kelvin.
In this book the value of B used will be B = 1.986 Btu/F 1b mole.
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The thermodynamic constants for certain common gases are pre-
sented in Table 1-3.
TABLE 1-3

THERMODYNAMIC ConsTANTS FOR CoMMoON (GASES AND VAPORS

Gas Specific PR

Constant Heat at Sy
Chemi- Molec- R T0F ¢, at

cal ular {ft-ib/ (Btu/ 7OF

Gas or Vapor Symbol  Weight b F) IbF} approx
Argoen Ar 39.90 38.70 0.124 1.66
Heltum He 4.00 386.00 1.25 1.66
Hydrogen Ha 2.016  763.86 3 42 1.40
Nitrogen No 28.02 54.99  0.246 1.40
Oxygen Os 32.00 48.25  0.217 1.40
Air 28.96 53.35 0,240 1.40
Carbon dioxide CO. 44,00 35.12 0,206 1.30
Carbon monoxide CO 28.00 55.14  0.243 1.40
Methane CH, 16.03 06.31 0.528 1.31
(Octane CgH1s 114.14 13.55 (.349 1.66
Propane CaHg 44 .06 35.04 0.473 1.13
Water vapor -0 18.01 85.6 0.46 1.28

(¢) Dalton’s Law. This law states that, in a mixture of gases
where the constituents do not react chemically with one another,
each constituent behaves as if the others were absent.

From this law it follows that the pressure exerted by a mixture
of gases upon the walls of the containing vessel is the sum of the
pressures exerted by each gas in the mixture. The individual gas
pressures are called pariial pressures. If pn is the total pressure of
the gaseous mixture and p1, pe, P3, etc., are the partial pressures of

the constituents, then
Pm = D1+ Pa 0 P (36)

or
b = Tp = wiR1 Ty 4 weReTy -+ wsRn T (37)
U
where w,, is the volume of the gas mixture and wy, wy -+ + W, are the

weights of the individual constituents.

11. Principal Thermodynamic Properiies of Perfect Gases

A perfect gas is a homogeneous substance, and its state is com-
pletely determined if two of the coordinates , », and T are given.
Hence the following functional relationships can be written for a
perfect gas or any homogeneous fluid. Thus

p = P(ﬂ: T): v = EJ(Z'J, T)! and T = T(Pl ‘EJ) (38)
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The total differential 47 is given by
o1 A
dl = -—) dg -+ |— ) dv (39)
ap/ v /p

where the subscripts denote the coordinate that is held constant
during the change.
The total differentials dp and d» are accordingly

2.+ ()
= (=) @+ {=)ar
ap (aw ., o -+ 57/ (40)
and
dy = (az’) dp + (aﬂ ) aT (41)
v o/ ? aT P

In the thermodynamic discussions which follow the weight of gas
considered is 1 Ib unless specifically stated to be otherwise.

(@) Specific Heats and Specific Heat Ratio. The Regnault rela-
tionship between the specific heat at constant pressure ¢, and that
at constant volume ¢, 1s given by

R
Cp — Cp = 7 = ¢yl — 1) (42)
Hence
Jeyp k R k
= or ¢p = —|~——o (43)
R E—1 JNE -1
and
JCy 1 R 1
= Or ¢y = — -————) (43c)
R E—1 JN\E ~—1

According to the kinetic theory for gases the specific-heat ratio
depends on the number of atoms in the gas molecule ¢ Thus gases
baving the same atomic number should have approximately the
same values for & = ¢,/c,. Thus according to that theory

For monatomic gases %, = 1.66
For diatomic gases ko= 1.40

For triatomic gases k= 1.30

The above conclusion is accurate for monatomic gases, less accu-
rate for diatomic gases, and least accurate for triatomic gases
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For air the value of % at ordinary conditions is taken as 1.40. At
high temperatures and pressures this value will lead to substantial
error, but at ordinary temperatures it is reasonably accurate. [ts
use simplifies the numerical values of the functions of & in flow equa-
tions. Thus

Et1 o, 2 < "
26—1 " E—1 M FIHT (44)

(&) Internal Energy of a Perfect Gas. Joule's law shows that the
internal energy of a perfect gas is a function only of its tempera-
ture. Thus for 1 1b of gas the internal energy u is given by

x = f(T) Btu/lb (45)

According to the kinetic theory of gases the internal kinetic energy
of a perfect gas depends only upon the velocities of translation and
rotation of the gas molecules. These velocities and their associated
kinetic energies are functions only of the gas temperature. Since
the internal energy # is a direct function of the temperature T, this
means that the internal potential energy of a gas is zero. Hence,
the temperature of a gas is a direct measure of the random kinetic
energy of its gas molecules.

A differential change in the internal energy of 1 1b of gas is

du = ¢, dT Btu/lb (46)

For a perfect gas the specific heat ¢, is assumed to be a constant.
Hence

° = f 6o T = coT -+ g 47)

where #g is a constant of integration. Hence the change in mternal
energy in passing from state 1 to state 2 1s

s — 1y = (T2 — Ty) Btu/lb (48)

If the internal energy is measured above some arbitrary datum
for which #; = 0, then at this datum ¢,77 = 0 and #3 = ¢y1s.
Dropping the subscripts, the internal energy can be expressed above
the datum 71 = 0 by the equation

u = f(T) = ¢, T = cﬂ% Btu/Ib (49)
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ExampLE. The internal energy of air is measured above 520 R as the datum
If its molar internal energy at 1000 R is 2431 Btu per b mole F, what is its specific
heat at constant pressure? The molecular weight of air is 28.96,

Solutron.,

mug — 1) = 2431 = mc, (1000 ~ 520} = 480me,

Hence

2431
y = —— = 50 B
"me. 20 306 tu/lb mole F

_5.06

= (.1745 B F
28.96 0.1745 Btu/lb

Ty

For air
1545 154

m 28.96

53.35
718

R = 53.35 ft-lb/Ib F

cp = 0.1745 + = 0.2430 Btu/IbF

The internal energy when measured from the base T4 = 0 can be
expressed in terms of the gas constant K. Thus, substituting for ¢,
from equation 43a into equation 49,

_ m  RT
“TIe -0 Tk - D

ExayMpLE. Calculate the molar internal energy of air at 1000 R, assuming it
to be a perfect gas, 2 = 1.4, and the base temperature 15 520 R.
Soltitson.

(50)

o mR(Ty — Ty
I (T

2896 X 53.35 X 480
- 778 X 0.4

T

= 2383 Btu/lb mole F

(c) Enthalpy of Perfect Gas. The thermodynamic property called
enthalpy {also heat content and fotal heat) is defined by

b
h=u+= Btu/lb (51)

The enthalpy of a gas is, therefore, the sum of its internal energy
and the compression work pv/J done on the moving boundary of the
fluid. The compression work, also a state property, is the work
required to compress a gas volume v into a space which is at the
pressure $. Differentiating equation 51 gives the equation for an
infinitesimal change in enthalpy. Thus

1
dh = du+— (p dv + v dp) (52)
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But from the first law of thermodynamics

fm=dg—%p@ (53)

where dQ is the heat added to the fluid from external sources in Btu
per pound. Hence the heat added during a change from state 1 to
state 2 is given by

i
1Q2=h2—'k1—““ 7 dp (54)
J

or

1
bt — by = —10s — = ff’ dp (33)
J V1

The enthalpy, and also the internal energy, are state properties.
The value of the enthalpy at a given state is independent of the path
or process employed in bringing a substance to that state. For this
reason, the analysis of sieady-flow processes for gases is greatly
simplified by using this thermodynamic property. Any convenient
datum may be used for calculating differences in enthalpy.

Substituting for # from equation 49 in equation 51 and for pv

RT
h = EauT -t ':T— BtH/Ib (56)

Substituting for ¢, I from equation 50 and introducing & = ¢,/c,

gives the following
E v k RT
= ¢pl (57)

— e — — T

k= 1J E—1J

Hence for perfect gases, since ¢, = (R/J)(k/k — 1), the enthalpy
above any datum is the product of the specific heat and the tempera-
ture rise above the datum.

Let A% denote a finite change in the enthalpy of a perfect gas
accompanying a change from state 1 to state 2; then

1
Ah=hy — he = (fav1 — Data) } = ﬁ:p(.Tl — T3) (88)

E—1
(d) Entropy Change for Perfect Gas. If dQ is the heat added
from external sources, then the entropy change for a pure fluid which
undergoes a reversible change of state is defined by
aq

ds = — 59
= (39)



28 PRINCIPLES OF JET PROPULSION [Chap, 1

According to the first law

1
dQ = du + —pdy (60)
or
1
dQ = dh — Svdp (61)
Hence
; du+1pdﬂ dT+1pdv (62
_ — = Ly —
T TIT T 7T )
or
dh  1vd aT" 1 4
PR SN (63)
T J 7T T J T

These equations cannot be applied without modification to irre-
versible processes. (See Chapter 3.) To integrate these equations
the characteristic equation pv = RI is used to give the following
expressions

J aT . Rdy [dT G- 1) dfa] 640)
== Cy""”'_" —— = 6'!.? — —_— —
> rh J o A vl (6da
g’ Rdp
= L e —— (640)
T J b
Hence
T2 K Ua
51— 83 = ¢y log, 7 +- 7 log, o (65a)
s R Pa
= ¢y log, ~— ~ —log, — 635
p 108 T 7 OfF e ( )

If the entropy at some arbitrary selected base is sy = 0, then the
value of 5 at any other state is

$ = ¢y log, _{_ -t E log, hd (66a)
qu J o

= ¢p lOg, —Z — E log, 3 (66d)
Ty J Po

The entropy is constant for a reversible adiabatic process for which
pzr"’ = Constant. Hence, a reversible adiabatic process is an 7sen-
tropic process. An irreversible adiabatic is not given by pv* = Con-
stant and is not isentropic.
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(f) Changes of State. Processes by which a gas can pass from
state 1 to state 2 are, in the abstract at least, infinite in number.
In general, the following particular types of processes are of greatest
significance:

1. The isothermal change of state (€T = 0).

2. The adiabatic change of state (dQ = 0).

3. The polytropic change of state ($2" = Constant).

4, The isentropic change of state {(ds = 0).

It will be recalled from elementary thermodvnamics that all the
above changes of state can be regarded as special cases of the poly-
tropic change:

n = 0 corresponds to dp = 0
n =1 corresponds to &7 = 0

n = k corresponds to 2Q =0; ds =0

I

7 = « corresponds todV = 0

Flow processes which take place rapidly, such as the flow of gases
through the nozzle of a rocket motor or a thermal jet engine, the
blade passages of turbines and compressors, ducts and diffusers, and
the like, are substantially adiabatic (dQ = 0) owing to the extremely
short time interval available for heat transfer. These processes, how-
ever, are never isentropic (ds = 0} because they are invariably ac-
companied by internal friction, turbulence, wall friction, and eddies,
all of which increase the entropy of the fluid stream. Consequently,
when discussing the flow of gases through an ideal nozzle, turbine,
or compressor, it is tacitly assumed as a first approximation that the
changes of state are reversible and adiabatic, that is, iseniropic.

From elementary thermodynamics a change of state under isen-

tropic conditions is given by s

k
Plﬂlk = :Pgi«‘gk so that 0 = U (-—") (6?)

2

Substituting equation 67 into equation 38 gives the following ex-
pression for an isentropic decrease in enthalpy
1

5 -
Ak = ————— P12, [1 . (ﬂf?)
Jk — 1) D1 \p1
which can be transformed to read
Tk
Ay = Ty [1 . (25) ] (68)
D1 \P1

o R
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or
k=1

Pa\ k-
Aby = ¢ T [1 — (;—) ] Btu/lb (68a)
1

In the above equations the prime denotes that the change of state
is brought about by an isentropic process. Since the final entropy
ho! is smaller than the initial entropy #%i1, the final pressure s 1s
less than ;. Equation 68a applies, therefore, to an isentropic expan-
sion. The corresponding enthalpy change for an isentropic com-
pression (pz > p1) will be denoted by Ak, and it is given by

2 |
Ak, = hy' — ki . [pE)T 1] (69a)
¢ = — = R — a
2 i T — 1) 171 b
or
p—1
F
Ak = ¢,y Kf—) - 1} Btu/lb (695)
1
Letry = P]_,/Pz ang 7. = ﬁg/ﬁl, and let
E—1
Zy=1,  — 1 (70a)
and
E=1
Z, =7, & — 1 (700)
Then
Ab = ey Ty —2— Bt /1b (71)
- G 11
] pL 1 1 + )
and
ArS = ¢, T4 7, Btu/lb (712)

ExaMPLE. Alr at 60 F is compressed isentropically from a pressure of 1 atm.
Caleulate the enthalpy change in Btu per pound. Assume that & = 1393 and
¢p = 0.24 Btu/lb F.

Seolution, b1 0303
— 395
= = (1.283
k 1.395%
teo = 2

Zo =207 1 =0.21672
Ak = e,ThZ, = 0.24 X 520 X 0.21672
= 27.0 Btu/Ib

ExamPrLE. An ideal air turbine receives air at 1600 R and 3 atm pressure. Cal-
culate the ideal output in pound feet per pound of air. Assume that ¢, = 0.24
Btu/lb F and & = 1.395.
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Soluizon.
re =3 and Z; = 3% _ 1 = 03647

From equation 71
0 3647

1.3647
= 80,000 {ft-Ib/lb

Jahy =024 X 1600 X

X 778

12. Acoustic Velocity

The acoustic or sonic velocity is the speed with which sound and
also small disturbances are propagated in a fluid medium. Its im-
portance is due to its association with the phenomena encountered
in the flow of gases at high speeds. It also enters into the resistance
phenomena or drag encountered by high-speed aircraft,

From elementary physics the acoustic velocity for a fluid is the
square root of the ratio of its bulk modulus X to its density p. Thus,
let @ denote the acoustic velocity, then

a = ﬁ (73)

P

Since a liguid has a large bulk modulus, and its value is practically
constant, its acoustic velocity is large. To illustrate, consider the
acoustic velocity for water. According to reference 8, for this
liquid X = 43,200,000 1b/ft? and at ordinary temperatures v = pg
= 62.41 Ib/ft?, so that

43.2 % 10°% X 32.174
a = \/ X = 4700 fps

62.41

As pointed out in Section 3d, the bulk modulus of a gas depends
upon the thermodynamic process used to produce the relative change
in volume. If the pressure change is rapid, as it usually is, then
the assumption of adiabatic conditions is permissible, and from
equation 14, (K)zg = kp. Substituting the latter into equation 73,
the following equation is obtained for the acoustic velocity

AP gkpv = V gkRT (74)

p

For standard air 2 = 1.40 and R = 33.35. Hence, at sea level
where the standard temperature is 59 F, small pressure difierences
are propagated through the air with a velocity of 1120 fps.
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The acoustic velocity for standard air at any absolute temperature
T is accordingly

r

Values of the acoustic velocity for standard air are presented in
Table 1-6.

13. Mach Number

It was mentioned in Section 2, in discussing the resistance of a body
in an infinite medium, that when the compressibility of the air
affects the resistance the ratio of the local velocity V to the acoustic
velocity «, called the Mach number M, is a dimensionless criterion
of the flow phenomena. For a compressible fluid it follows from
equation 74 that the Mach number is given by

V v
M=—= ——— 76
a \/gkRT (76)
or
7 |7
M= — = - 77
a® gkRT (77)

As pointed out in reference 9, the physical significance of the Mach
number can be readily grasped by considering equation 77. The
ratio V?/a® is a ratio of kinetic energies. Since V is the velocity of
the directed motion of the gas particles, V? measures the kinetic
energy of directed flow. The magnitude of the acoustic velocity a
for a given gas depends upon the absolute temperature T, so that
the kinetic energy corresponding to ¢” depends upon the thermal
energy imparted to the gas. According to the kinetic theory of gases
the thermal energy is utilized in increasing the random translation
and random rotation of the gas molecules. Hence, ¢? is a measure
of the kinetic energy assoclated with the random movements of
the gas molecules. The value of M? for a given set of conditions,
therefore, measures the ratio of the kinetic energy of directed flow
to the kinetic energy of random motion. Since both thermal and
directed kinetic energies appear in the flow equations for compress-
ible fluids, the Mach number of the directed flow indicates the degree
of controlled motion regardiess of the cause producing the type of
motion.
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Taking the logarithms of both sides of equation 77 and differ-
entiating gives the following relationship between changes in the
Mach number, gas velocity, and gas temperature.

aM dV 14T

WSV TaIT e

ExavrLe. A gas flows through a restricted passage with a speed of 2800 fps.
Tts local temperature is 3000 I; its specific heat ratic & and gas constant K are
1.25 and 60 respectively. Calculate the local sonic velocity and Mach number.

Solution.

2 =V1.25 X 32.174 X 60 X 3000 = 2680 fps

It is shown in reference 11 that the pressure and density changes
produced by a plane disturbance in a compressible fluid are related
to the acoustic velocity by the relationship

— =g (79)

As the speed of a body through a compressible fluid increases, the
effect of the compressibility of the fluid is to distort the normal
stream lines. When sonic and supersonic speeds are attained there
is a change in the character of the flow patterns. The basic char-
acteristics associated with high-speed air flow are discussed in later
chapters.

14. Standard Atmosphere

The aerodynamic forces acting upon an airplane are dependent
upon the physical properties of the atmospheric air at the flight
altitude. Furthermore, the power output of any type of propulsion
system utilizing air as one of its working fluids or the reactions of
flowing air to produce a thrust for propulsion purposes are also
affected by the properties of the atmosphere. The altitude of the
airplane enters into performance problems because the following
properties of the air change with altitude: air density p, air pres-
sure p, and air temperature 7.

Because these properties of the air change with the altitude, it
has become the practice to express the performance characteristics
of the airplane, or its components, as a function of altitude rather
than by the specific variables p, p, and T. For the purpose of stand-
ardizing performance data, practically all the major countries have
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Altitude

in
1000 ft

W B+~ e U RS LI S I N

Temper-

ature
‘R
519,

515.
311,
508.
504.
301.
497 .
494 .
490.
487,
433.

0
4
3
4
8
2
6
0
6
0
4
479.38
476.2
4726
469.1
465.5
461.9
458.3
4547
451.3
447.7
1

3

9

S

9

3

7

1

5

i

D

.9

3

v

.3

.0

444.
140,
436.
433.
419.
426,
422,
419,
415.
412,

408
404
401
397
394
393
303.0
393.0
393.0
393.0
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TABLE 16

PROPERTIES OF STANDARD AIR

Density

Ratio

L
£0
1.0000

0.6710
9428
L0151
. 8881
.8616
L8358
8106
. 7839
L7618
L7384

L7154
.6931
L6712
6499
62901
. 6088
5891
. 3698
. 3509
3327

5148
4974
4805
4640
- 4430
.4323
4171
4023
.3879
3740

3603
3472
3343
3218
.3098
.2962
2824
.2692
2566
2447

o =

=

'—l.

.000

.0299
L0607
.0928
1260
.1606
1965
2336
L2724
3125
3342

3977
4428
4898
. 3386
. 3896
L6425
L6973
L7530
8132
L8772

9425
(0104
L0812
1551
2321
3132
.3975
A857
3780
6737

(7783
8801
L9813
.1075
2279
L3761
5411
L7147
8971
4..0856

G0 G Lok G G D B2 BRI BRI BI b B B OBI B B3 B2 B3 e b e e = b b el R e e

.000

015
.030
045
061
077
.094
111
128
146
164

182
201
221
. 240
.261
. 282
303
325
347
370

394
418
443
468
- 494
521
548
577
.606
635

666
. 697
.730
763
LT97
837
. 882
927
1.974
2.022

T T e e el e el el e el B el el A -

Pressure
Ratio

2?2
P
1.0000
0.9643
.0207
.8962
. 8630
.8320
.8013
L7716
L1426
7147
.6876

.6613
6366
(6112
L5874
.5642
.3418
.5201
L4992
4789
4593

4404
4221
4045
3374
3709
3550
3396
.3249
.3105
.2968

2836
L2708
.2584
. 2466
2351
. 2242
L2137
. 2038
19472
. 1851

[Chap. 1

Acoustic
Velocity
fps
a

1120

1116
1112
1109
1105
1101
1097
1093
1089
1085
1081

1077
1073
1069
1063
1061
1057
1053
1048
1044
1040

1036
1032
1028
1023
1019
1015
1011
1007
1002
997.9

993.5
989.1
984.7
980.3
976.1
974.5
974.5
074.3
074.5
974.5
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TABLE 1-6 (Continued)

PROPERTIES OF STANDARD AR

Density Pressure  Acoustic
Altitude Temper- Ratio Ratio Velocity
in ature P 1 1 P fps
1000 ft ‘R ¢ 20 - - 0 o
41 393.0 0.2332 4.289 2.070 0.1761 074.5
42 303.0 L2224 4,497 2.120 L1683 974.5
43 393.0 .2120 4.717 2.171 1605 974.5
44 393.0 .2021 4.949 2.224 .1530 Q74.5
45 393.0 .1926 5.192 2,278 L1438 074.5
46 393.0 1837 5.444 2.333 .1391 074.5
47 393.0 L1751 5.711 2.350 .1325 074.5
48 393.0 1669 5.902 2.447 1264 974.5
49 393.0 . 1591 6.285 2.507 1203 974.5
50 393.0 (1517 6.592 2.567 1149 974.5
51 393.0 . 1446 6.916 2,430 .1095 974.5
52 393.0 1379 7.252 2.693 L1044 074.5
53 393.0 (1315 7.605 2.758 Q9935 974.3
54 393.0 1254 7.974 2.824 0949 0745
55 393.0 . 1195 8.368 2.892 . 0903 G74.5
56 393.0 1139 8.780 2.963 .0863 074.5
57 393.0 1086 9.208 3.034 .0822 074.5
58 303.0 .1036 9.653 3.107 .0784 974.5
39 393.0 00872 10.13 3.183 L0747 974.5
60 393.0 .09412 10.63 3.261 .0713 974.5
61 393.0 08974 11.15 3.340 L0679 974.5
62 393.0 08555 11.70 3.421 .0648 974.5
63 393.0 08135 12.26 3.502 0617 974.5
64 393.0 07775 12.86 3.586 0389 974.5
65 393.0 07413 13.49 3.687 .0561 974.5
66 363.0 Q7067 14.15 3.761 .0535 974.5
67 393.0 .06737 14 85 3.853 0510 974.5
68 393.0 .06422 15.58 3.947 0486 0743
69 323.0 06123 16.30 4.037 0464 074.5
70 393.0 05838 17,13 4.139 0442 974.5
[ 393.0 04597 21.76 4.665 .0348 974.5
80 393.0 .03621 27.54 5.248 0274 974.5
85 393.0 02852 35.07 5.922 0216 974.5
90 393.0 02246 44 .52 6.673 0170 374.5
35 393.0 01769 56.53 7.519 0134 974.5
100 393.0 .01393 71.79 8.472 0106 974.5
105 393.0 .01097 00.99 9.538 00831 974.5
110 393.0 .00864 115.7 10.75 00654 974.5
115 303.0 00681 146.8 12.11 00515 974.5
120 393.0 .00536 186.6 13.66 00406 974.5
125 393.0 00422 237.0 15.39 .00320 974.5
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adopted the so-called International Standard Atmosphere. This
standard is based upon the assumptions presented below:

Sea-level temperature # = 15C = 59 F = 519 R
Isothermal temperature f; = —355C = —67TF = 393 R
Temperature gradient 0.0065 C/m = 0.003566 F/it
Linear lapse rate 59 — 0.003566 F /it

Sea-level pressure po = 2116.4 Ib/ft?

A detailed discussion of the Standard Atmosphere is presented in
N.A.CA. Technical Report 218, 1925,

The ratio of the density p of the air at an altitude % to the seca-level
density pg is denoted by o, where ¢ = p/pg. It is customary to ex-
press the air density at any altitude in terms of the density ratio.

Thus

Yo
p=0py = ? (80)

where pg = sea-level density = 0.002378 slug/ft®.
vo = sea-level specific weight = 0.07651 Ib/ft3.

‘Table 1-6 presents the characteristics of the standard atmosphere
from sea level up to an altitude of 125,000 ft.
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Chapter Two

MOMENTUM AND ENERGY RELATION-
SHIPS FOR FLUIDS

1. The Reaction Principle

The fundamental operating principle of any jet-propulsion device
is the action-equals-reaciion principle formulated by Sir Isaac Newton
in 1687. This principle, generally known as Newton's third law of
motion, states that fo every aciion there is an egual and opposite
recction. Examples of this principle are quite familiar. Thus if
one throws a large stone away from him, a reaction is experienced
by the thrower tending to move him backwards. Another familiar
illustration is the recoil of a gun when the projectile leaves the barrel.

Where motion of a body through a fluid medium is concerned the
reaction principle predominates. Thus rowing a boat or swimming
in water are methods for utilizing this principle. It is employed
by the screw for propelling a ship, the propeller for moving an air-
plane, and for jet propulsion. In all these examples a fluid is accel-
erated in the direction opposite to that of the desired motion for the
body, and the reaction due to its acceleration produces a propulsion
force or thrust in the direction of motion. The magnitude of the
propulsion force is determined by the application of the momentum
principle.

2. Definition of Momentum

Newton termed the momenium of a body the quantity of motion
and defined it as the product of the mass of the body and its veloc-
ity.l® Thus, if v is the velocity of a body and # its mass, its momen-

tum M is given by
W
M=mv=—v (1)
£

The symbols 1n bold-face type are vector quantities.

The direction of the momentum vector is identical with that of

the velocity vector. The momentum vector can be resolved into
38
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its components in any specified direction.? If the components are
referred to three mutually perpendicular axes X, ¥, and Z, then,
denoting the direction of the components by the subscripts x, v,
and z respectively, the following vector equations may be written

M= M, + M, - M, (2)
and

V=1 +v, -+,

where 7, = dx/dt, v, = dy/dt, and v, = dz/di.

If the mass of the body is constant, Newton’s first law of motion
can be applied to the force acting in any specified direction.? Thus,
for the x direction

d
X = mé (2,) == ma, (3)

Similar expressions can be written for the ¥ and 2 directions.
In general, the following expression can be written for each di-
rection:

FeZ =2 y
—dz(‘-’?ﬁ)-—é;( ) (4)

Equation 4 is the mathematical representation of Newton's second
law, and it states that the rate of change of momentum in any direction
15 equal o the force acting in that direc-

{207, A
Equation 4 can be rewritten in the M, FAt=M,~M,
form
Fdi = dimv) = d(M) )
0 i B

This equation states that the change
in momentum is equal to the time im-
pulse (F df) of the force (F). Figure 1
is a vector representation of a change in the momentum of a particle.

Fi1c. 1. Vector representation
of momentum change.

3. Conservation of Momenium

This important principle may be stated as follows: tf the resuliant
of the external forces which act on o body has no component wn o gven
direction, the linear momentum of the body in the given direction re-
mains constant. 'This means that, if any portion of a system expe-
riences a momentum change in one direction, the rest of the system
experiences a corresponding change in momentum in the opposite
direction so that the resultant of all the momentum changes for the
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complete system is zero. This principle can be represented by the
vector equaticn
M; + My = m vy + maevy = 0 (6)

where the subscripts 1 and 2 refer to the two portions of the material
system under consideration.

Thus consider a projectile fired from a gun. Suppose that the
projectile weighs 1000 1b and the gun is mounted on a ship weighing
2000 tons (4,000,000 Ib). If the muzzle velocity of the projectile is
2500 fps, the conservation of momentum principle applied to the
ship and projectile gives

"1, = Mials (7)
1060 4,000,000
X 2500 = Vo
32.174 32.174

Hence the velocity imparted to the ship in the direction opposite
to the motion of the projectile is 0.623 fps.

It is quite apparent from equation 7 that, the larger the difference
in the masses of the bodies exchanging momentum, the greater is
the difference in their velocities.

4. Momentum of a Confinuum of Particles

The equations presented in the preceding sections are in a strict
sense applicable only to an isolated particle. Consider now a mass
of fluid; this may be regarded to be a system composed of a large
number of discrete particles. It is possible to write an expression
similar to equation 4 for each particle of the system.? The resultant
force acting on the continuum of particles can then be obtained by
taking the vector sum of the momenta of all the particles. This
can be expressed mathematically by the equation

a —dE = 2 F 8
&;(’r‘?’w)—&; (M) = (8)

The above equation states that the time rate of change of momen-
tum for a system of discrete particles is equal to the total of all the
forces acting on the particles comprising the system.

In general, the forces acting on any single particle of the fluid may
be segregated into two groups:? (1) external forces, such as gravity,
mass attraction, pressures acting on outer beoundary, and friction
forces on outer boundary; and {2) internal forces, pressure and fric-
tion, acting within the outer boundary surface and between adjacent
particles.
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The internal forces act in pairs. Thus consider any pair of parti-
cles, such as those illustrated in Fig. 2; for each of the internal
forces Pap or Fap exercised by particle ¢ on particle b there is an
equivalent force exercised by particle b on particle . Consequently,
if the summation described by equation 8 is made for all the particles
forming a bounded volume of fluid, the internal forces cancel out and
only the external forces remain.2¥® Hence, the momentum change of

Fi1G. 2. Internal forces acting on a continuum of particles.

a fluid depends only upon the external forces. The result of the
summation equation & written for » = 4 particles may be written in

the form

d Pt
- WV, = EF&:; 9
dt <; ) i ®)

Equation 9 states that ihe fime rate of change of the total momentum
of a bounded mass system of discrete particles 5 equal to the resuliant
of the external forces and is independent of the tnternal forces.

Integrating 9 between the time limits #; and #3, and letting A
denote a finite change,

2
ASmT = f (3o ) di (10)
1

Equation 10 states that the change in momentum of o bounded
system of particles during any period of time is equal fo the integral
of the time impulse of the sum of the external forces acting on the system
over that pertod.

In many engineering problems it is not the force acting on the
Auid that is of interest, but the reaction exerted by the fluid on some
body with which it i{s in contact.

5. External Forces Acting on a Flowing Fluid

Consider a fluid flowing through the passage illustrated in Fig. 3.
From Section 4 it follows that the following kinds of external force
can act upon the boundaries of the fluid.
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(¢) Pressures over the bounding surfaces at the cross sections 4
and B: both these forces are directed inward with respect to the
fluid boundaries.

(3) Impressed forces, such as gravitational attraction.

(¢) Pressures due to the inner surface of the conduit acting #pon
the boundary of the fluid.

In the majority of cases of fluid flow the effect of gravity is so
small that it mayv be neglected, and the external forces then belong
to categories {(¢) and (¢) above.

=1::,Aao M.+P
n:a
-M R
A " +
=
B r

R= ME,'I' {_Mg) + (—Pﬂ,}+ {-’Pa} =
Resultant force acting on flud

F1c. 3. Determination of the resultant force exerted by the walls of a conduit
on a fluid

Refer to Fig. 3, and let the subscripts ¢ and b refer to cross sections
A and B respectively. Let

P, = A.p, = pressure force acting on .

P, = A43pp = pressure force acting on b.
R = resultant pressure force from the conduit actingon the fluid.
M = momentum per second.
$# = pressure intensity.
A = area.

The vector sum of the forces P,, Py, and R must be equal to the

change in the momentum entering and leaving the conduit in 1 sec
Thus
Pa"‘Pb“}‘R:Mb“Ma
Hence
R=M, — M, —P, - P (11)

This last equation may be rewritten as a sum of the vectors,* thus
R =M; + (—Ma) + (—Po) + (—Ps) (12)

Equation 12 gives the value of the force acting on the fluid. Re-
versing the direction of R gives the force exerted by the fluid on the
conduit.
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Refer to Fig. 3. The vector Oa = M, 4 P,, Ob = M; - P,
and the resultant Or = R. Hence the vector #Q = —R is the
resultant force exerted by the fluid on the conduit.

6. Reaction of a Fluid upon a Body Immersed within I

Figure 4 illustrates schematically a body immersed in a stream
of fluid. The force acting on the body in the direction of its motion
can be calculated by applying the principles discussed in the pre-
ceding sections. In analyzing the problem two methods of approach

——— fmr——
T T
—ran e——
immersed hody
i E — N
-~ H“‘"'--...
D o { e 7T T i p
1 ~ — 2
oy P~
E’ —— — r—D
1w Wy
1l 5 S
— e o
S, 8,

Fi1G. 4. Momentum theorem applied to a2 body immersed in a fluid,

are possible: (¢) the fluid may be considered to be at rest and the
body to move through it; or (3) the body may be assumed to be
stationary and the fluid to flow toward the body with the velocity
which the body actually possesses.

In the first approach the problem is referred to an absolute system
of coordinates, and in the second to a relative coordinate system.
Since the reactions between the body and the fluid are independent
of the coordinate system selected either approach may be employed
to determine the magnitude of the force acting on the immersed
body. This force is equal to the difference between the increase in
the momentum of the fluid stream and the increase in the pressure
force acting on the surfaces enclosing the body. These surfaces are
the planes .57 and S; which are perpendicular to the reaction force,
called the thrust 3, and they extend to infinity. The surfaces S
and S; are located far enough from the body so that the pressure
intensities p; and ps, acting over S; and Ss, are the same as the fluid
pressures in the absence of the body; that is, $; and $, are the un-
disturbed pressures for the fluid. If m; and mg are the mass rates of
flow per unit area crossing Sy and Sp respectively, the thrust J is

q =fmw2 ng -*fmwl dS1 -+ [f Pa as ""‘f 25’1 dS:] (13)
.15'2 51 32 Hﬂ
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It is apparent {rom equation 13 that only where #, = $o is the
thrust given solely by the rate of change in the momentum of the fluid.

7. Moment of Momentum (Angular Momentum)

The moment of momentum of a particle about a fixed axis, most
frequently called its engular momentum, is the product of the momen-
tum of the particle and the distance perpendicular to the line drawn
in the direction of the velocity of the particle; see Fig. 3.

-
% 90°

/ Tr
~ \1’
-
Oy* B tfixed point)
A

MM = momentum X r= Mur

F16. 5. Moment of momentum (angular momentum) of a particle.

Since momentum is a vector quantity, angular momentum can
also be represented by a vector.?2® The vector representing the angu-
lar momentum of a particle bears the same relation to the vector
representing momentum that the vector representing the moment
of a force bears to the vector representing the force.®

Since the momentum and time impulse of the external force F
are equivalent wvectors, moments may be taken about a selected

axis. Let .
rm = radius to momentum vector

rs = radius to force vector

Then for a system of particles
d
éz(mv)rm = ZFy; (14)

This last equation states that the time rate of chunge of the vesultant
angular momentum of a system of pariicles 15 equal to the resullant
moment of the external forces.

From the preceding sections it is seen that for a body of flowing
fluid the resultant momentum and the resultant moment of momen-
tum depend on the external forces alone.

8. Energy Transfer between a Fluid and a Rolor

The gas-turbine type of power plant is an assembly of fluid dy-
namical machines which depend for their operation upon the energy
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transfer between a working fluid and a rotor. In the case of turbine
machines, the fluid transfers energy to the rotor, while in the case
of pumps and compressors the rotor transfers energy to the fluid.
In neither of these cases is the energy transfer complete because
of losses, and the excellence of the energy transfer is expressed in
terms of experimentally determined coefficients.

The mathematical development of the underlving principles of
energy transfer is due to the German mathematician Euler, but the

Fic. 6. General case of a moving blade passage.

first clear explanation of the application of these principles to tur-
bines and compressors is due to G. Zeuner (Theorien der Turbinen,
Leipzig, 1899). The analysis presented here is based on references
7 and 8.

The basis of the theory of energy transfer rests on the following
simplifying assumptions: {a) the flow through the rotor is steady
and uniform over the entrance and exit cross sections of the flow
passage; (8) the rotor, to which the blades which form the flow
passages are attached, rotates with a uniform angular velocity;
(¢) there are no losses due to fluid by-passing the flow passages
formed by the blading; (¢) there is no friction loss due to the sides
of the rotor being in contact with the fluid; (¢) the fluid completely
fills the flow passages in the rotor.

Tt should be realized that no real machine behaves in accordance
with the assumptions outlined in the preceding. Furthermore, the
theory is incomplete since it neglects the effect of circulation by not
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taking into consideration the actual velocity and pressure distribu-
tions around the rotor blades. Since the losses external to the rotor
are neglected, and the fluid which by-passes the blading is not
faken into account, the theory is concerned only with the fluid which
actually flows through the blading. Nevertheless, the theory is
instructive since it gives an understanding of the factors infinencing
the energy transfer.

Figure 6 illustrates a rotating blade passage. Since the velocity
of flow over any cross section is uniform, all velocities are referred
to points in the entrance and exit cross sections which are repre-
sentative of the average fiuid velocities.

Notation
¢ = absolute velocity.
Acy = €14 — G2 = whirl velocity, fps.
w = relative velocity.
u = tangential velocity.
Subscripis
1 entrance.
2 exit.

a axial direction.
# direction of .

Angles
a = angle between ¢ and .
B == angle between w and %.

Cy 1
=

F1c. 7. Velocity diagram for a fluid entering a moving blade passage.

Let the rotor have the uniform angular velocity « rad/sec. The
general forms of the velocity triangles for the fluid entering and
leaving the blade passage are illustrated in Fig. 8.



Chap. 2] MOMENTUM AND ENERGY 47

Entering ] Leaving
O

Fic. 8. Velocity diagrams for a fluid entering and leaving a moving blade passage.

It is apparent from Figs. 7 and 8 that any axial component of
either an absolute or a relative velocity is given by an equation of
the form

Cg ™= W = C 8N @ = Wsin (15)

In general, a relative velocity is given by the vector equation
w=¢—1u (16)
and its tangential component w, is given by
Wy, = W cos P (17)

The tangential component of the entrance absolute velocity ¢; is
given by
Clu ™= Wiy T %1 = €1 COS oy = w1 €OS By + %1 (18)

The tangential component of the exit absolute velocity ¢z is

given by
Cou = Wy — Ug = Cg COS @y = Wy COS B3 — Wy (19)

The relationship between the velocity vectors ¢, w, and #% is ob-
tained by applying the law of cosines. Thus, in general, this gives

w? = 2+ u® ~— 2uc cos o (20)

Substituting ¢, for ¢ cos e, equation 20 becomes

2 = 2 4+ 42— 2uc,

w

Rearranging
A+ 12 — w® = 2uc, (21)
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An equation similar to equation 21 can be written for the entrance
and exit velocity triangles. Thus for the entrance to the blade
passage

612 - 14312 - ‘IEJ’IE = 2H1£1u (22{1)

and for the exit section

sz - ’Mgz — ‘Eﬂgz = 2uelyy, (226)
The velocity triangles are employed for calculating the tangential
components ¢y and ¢s,, while the absolute velocity ¢z and the rela-
tive velocity wy are determined by applying the energy and conti-
nuity equations. The absclute velocity ¢; is usually known or readily
determined; for example, in a turbine ¢; would be the exit velocity
of the fluid leaving the nozzle or stationary blades. The tangential
velocities #; and #s are determined from the rotational speed of
the rotor «, and the radii Ry and R, from the center of rotation to
the inlet and exit reference points.
Subtracting equation 225 from 22¢ and rearranging the terms,

(#1614 — U2Cqu)
= 3[(c? — &) + (u® — u®) + (we® — wy®)] (23a)

When #acq, is larger than #yciy, equation 22¢ is subtracted from
225, and

(%aCau — H161w)
= %[(Ezz — €12) + (’“22 - ﬂlz) +- (‘wlz - WEE)] (230)

Examination of equation 23a or 235 reveals that each term on the
right-hand side has the form %(velc}city)ﬂ". Hence, since the equation
applies to a constant weight rate of flow of fluid, which is premised
by the assumption of steady flow, it signifies that equations 23¢ and
23b are energy equations. Each term in parentheses corresponds to
a change in the kinetic energy of the fluid. It is, therefore, concluded
that equations 23¢ and 235 present the factors influencing the energy
transfer, and if these equations are multiplied by 1/¢ they present
the energy transfer relationship for 1 Ib of fluid. Let L denote the
energy transfer in foot-pounds per pound of fluid, the subscript ¢
denoting that the fluid transfers energy to the rotor, and the sub-
script ¢ that the energy transfer is from the rotor to the fluid.

As a consequence of the energy transfer there 1s a torque infer-
action between the rotor and fluid, or vice versa. In either event
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the net efiect is a tangential force acting on the fluid in a pump, and
on the rotor in a turbine. The moment of this force around the
axis of rotation is the torque due to the interaction of the fluid and
rotor. The product of the torque and the angular velocity of the
rotor give the rate of energy transfer, that is, the power absorbed or
developed. The magnitude of the torque is equal to the rate of
change in the angular momentum of the fluid between the entrance
and exit sections. In a pump, the angular momentum is increased,
while in a turbine it is decreased.

The angular momentum theorem applied to a flowing fluid states
that the time rate of change of the resultant angular momentum of
a system of discrete particles in a given direction is equal to the
moment of the external forces acting in the same direction.

Let the symbol MM denote angular momentum and ® denote
torque.

If the torque is exerted by the fluid, it will be denoted by &s;
if the rotor exerts torque on the fluid the torque is denoted by &..

For a turbine ¢, is larger than ¢ay, hence

1
$; = MM; — MM, = E(Rlﬁu ~ Rotou) (24a)

whereas for a pump or compressor

1
$, = MMy ~ MM; = — (Rzﬁzu — Rlﬂlu) (245)
4

The energy transfer per pound of fluid is accordingly

o
Lt. o tbf_m S e (.R]_ﬂlu - Rﬂﬂgu_) (25&)
£
and
4
L,_—, = @cw = — (.Rg{'.‘-‘gu e Rlﬂlu) (255’)
£

When the energy transfer is from the fluid to the rotor, as in a
turbine, then ¢4 > €24 S0 that equations 24e¢ and 244 show that
the energy transfer depends only upon the tangential components,
¢1, and cou, and the tangential velocities %, and #s. The axial com-
ponents €1 = Wiq and caq = wae do not enter into the energy transfer
in any manner. The change in these components is eflective only in
producing axial thrust on the rotor.
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Substituting for (#161n — %6eu) and for (ugcou — #1C1q) from
equations 23a and 235 into the above equations gives

1
Ly = ™ (612 — ) + (% — ue®) — (w® — wo®)]  (26a)
g
and

1 o o
Le = Eg (e — 1B + (ue® — u1*) + (w? — wy™)]  (260)

Equations 26a and 265 present the energy transfer in terms of
kinetic-energy changes for the fluid.

In general, the energy transfer is independent of the path taken
by the fluid in flowing through the rotor. The conditions at the
entrance and exit sections determine the effectiveness of the energy
transfer.

Equations 24a and 245 show that the basic requirement is that the
flow passage be so arranged that a change in the direction of the flow
is produced. In other words, the fluid-flow direction must be turned,
and the net amount of this turning determines the energy transfer.
Consequently, if the flow passage is so designed that the net amount
of turning of the flow direction is zero, there can be no energy
transfer.”

Equations 24a and 245 are applicable to any type of fluid and
any rotor, since mno assumptions were made concerning either of
them. The only assumption that is implied, in addition to those
made at the outset, is that it is possible to calculate the velocity
terms involved. Until the magnitudes of ¢, and ¢s, are established,
the equations cannot be solved.

The magnitudes of the tangential components €y, and &g, are
governed by the angles with which the fluid enters and leaves the
flow passage. In a strict sense, the angles « and 8 are not the geo-
metric angles of the blading, but those made by the absolute and
relative velocities with the tangential velocities. Practically, they
may be regarded as being the blade angles required to give the fluid
shockless entrance and exit.

The derivation of the energy-transfer equation imposed no re-
strictions upon the magnitudes of the tangential velocities #3 and #g.
They may be unequal as in radial-flow machines, or equal as in axial-
flow machines.

In axial-flow machines, the entire flow is assumed to be concen-
trated at some circle which is representative of the average flow con-
ditions. This circle is usually taken at the pitch diameter that divides
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the flow area through the blades into two equal portions. This pitch
diameter is generally taken to be the root mean square of the diam-
eters based on the radii from the center of rotation to the blade root
and blade tip. If the blade height is small enough, compared to the
wheel diameter, no serious error is introduced by using the radius
from the center of rotation to the mean height of the blade in cal-
culating the pitch diameter.

Since equations 24a and 245 involved no assumptions regarding the
characteristics of the fluid, they apply to both incompressible and
compressible fluids. Although the equations contain no factors
that are related explicitly to the characteristics of the working fluid,
the fluid characteristics enter in an indirect manner since the magni-
tudes of wy and ¢y are affected by the properties of the fluid.

Similar comments are applicable to the losses in the flow passage
due to heat transfer, fluid friction, and shock. Since the equation is
concerned only with the inlet and exit conditions, it is independent
of these losses. Though the losses, like the fluid characteristics, do
not appear explicitly, they are incorporated in the equation by virtue
of the effect these losses produce upon the exit velocities. This means
that any improvement that reduces the losses in the blade passage
will be indicated by the effect produced on the exit velocity.

I't has been shown that the energy transfer equations for a turbine
or & compressor in foot-pounds per pound are given by

Ly = ~ (41014 — #2624 (26c¢)
g
and
1
Lc = — (%252“ = 'Hv]_ﬂlu) (26&2)
g

Since the rotor turns with the uniform angular velocity  rad/sec,

th
= Hy = le and Uy = Rzm (2?)

Substituting for #; and ug in the above energy equations

L
Lt == - (le:lu — Rgﬂgu) (28&)
g
and
&2
L, = E (Rﬂ-‘??u — Rlﬂla) (285}

A product of the form Re, is termed the whirl of the fluid, and the
velocity change Acy, = &1y — €, s called the whirl velocity. It is
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seen from equations 28a and 285 that the energy transfer depends
directly upon the change in whirl produced between entrance and
exit sections of the flow passage. If the entrance whirl is the larger,
the machine is a turbine; if it is the smaller, the machine is a pump
Or COMpPressor.

The interpretation of equations 26a and 265 for a turbine and
pump are as follows:

In a turbine the term (6% — ¢2°)/2g represents the change in the
kinetic energy of the fluid due to its change in absolute velocities.
Since ¢z is smaller than ¢y the above term represents a removal of
kinetic energy from the fluid by the rotor. The kinetic energy
(1/2g)¢s? is called the leaving or exit loss.

The term (12 — %5°)/2g is a change in kinetic energy in the
turbine blades due to R; and R, being unequal. This indicates
that, if this so-called ‘‘centrifugal effect” is to be utilized to transfer
energy from the fluid to the roter, then the flow through a radial
turbine must be radially inward.

The term (w® — wo®)/2g represents the conversion of pressure
into kinetic energy in the flow passage through the turbine rotor.
Ii the velocity of the fluid relative to the rotor is greater at exit
than at entrance, this means that pressure energy has been con-
verted into kinetic energy in the flow passages. This effect is termed
the reaction effect.

For a pump or compressor, the above terms have similar signifi-
cance. The term (¢o° — ¢,°)/2g represents the change in kinetic
energy of the fluid as it flows through the rotor. Since ¢z is greater
than ¢y in this type of machine, the increase in kinetic energy is
provided by the rotor., This increase in kinetic energy is available
for conversion into pressure energy in the machine itself, and not
in the rotor.

The term (us® — %#1%)/2g represents a change in static pressure
accomplished within the rotor due to centrifugal force acting on the
fluid. When #s and %y are unequal, as in a centrifugal compressor,
the fluid flows radially and, as it flows to the impeller tip, it expe-
riences an increasing centrifugal eflect. Since a centripetal force is
required at any radius to rotate the fluid about the axis of the im-
peller, all fluid at the greater radii exerts a force on the fluid at the
smaller radii, indicating that the static pressure of the fluid increases
from the impeller hub to its tip. This centrifugal effect exists m
conjunction with other flow effects superposed upon it

The term (wy? —~ ws?)/2g is the change in kinetic energy due to
the change in the relative velocity of the fluid relative to the rotor
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flow passages. In a radial-flow pump or compressor, the fluid is
retarded in its flow relative to the rotor, so that w; > 1wy this term,
therefore, represents a conversion of kinetic energy into stafic pres-
sure within the rotor itself. Consequently, the total increase in
static pressure within the rotor or impeller is given by

— [(12® — 1) + (w;” — wp*)]
2g

This increase in static pressure is termed the reaction effect of the
pump or COMpressor.

In axtel-flow machines Ry = Ry = R and #%; = us = u, so that
the energy transfer equations differ from those for a radial-flow
machine by the absence of the centrifugal-eflect term. Hence for
an axial-flow turbine

1 oy
Ly = — (610 — Cou) = — Acy (29)
g g
or
1
Ly = E-E [(c1? — ca®) + (ws® — w1?)] (30)

This work is available at the periphery of the turbine and is, of
course, equal to the product of the tangential force F, X #. The
equation gives the work transferred to the turbine rotor periphery.

In an axiel-flow fan, compressor, or blower the energy transferred
by the rotor to 1 Ib of the fluid is

Le = 5‘; [(ca® — &1®) -k (wy® — wo?)] (31)

Equation 31 gives the work done ?
by the ideal compressor upon 1 lb ——t
of fluid. 0 —

It is instructive to consider the F ML :
energy changes for a complete "> =
machine. Consider a centrifugal e\ (4[" %
pump 7 such as that illustrated 24

schematically in Fig. 9. —

The fluid enters the pump with e ——
with the absolute velocity cz. If plete machine.
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there is no friction in the inlet to the pump, then

2
¢
2o + 2= P _ Total pressure = Constant (32)

Yy 2z v

Since there are no losses, it follows from the Bernoulli theorem that

+— =4 (33)

or

P = P (34)

In this case the total pressure at the entrance to the tmpeller py
is equal to the total pressure at the entrance to the machine 4.
If ¢y is small compared to ¢, so that it can be assumed that ¢ = 0,
then the kinetic energy term is due to conversion of the static pres-
sure $; into kinetic energy. Otherwise, it is due to the conversion
of total pressure.

If the conversion of pressure into kinetic energy is accompanied
by loss, this is indicated by the efficiency ceefficient, less than unity,
ne. In that case, the kinetic energy of the fluid entering the impeller
is reduced, and

2
¢ —
y 1 P10 1 (35)
23 Y

Equation 35 is quite general and is applicable to the passage lead-
ing from the entrance to the machine to the entrance of the rotor.
As written, it applies to any incompressible fluid, but a similar
expression can be written for a compressible fluid by replacing
the Bernoulli equation bv the energy equation for the stream lines
taken with reference to the rotating axes. Thus for 1 1b of Auid

1 1
cpT 4 — w* — — ?R* = Constant (36)
Y 2¢

For simplicity, the discussion for the present will be confined to
incompressible fluids.

The process of converting kinetic energy into static pressure within
the rotor is also accompanied by losses. In an actual pump impeller
the fluid motion is accompanied by turbulence and friction and the
fluid does not move along stream lines as assumed by theory. The
velocity distribution across the flow passage is non-uniform, being the
resultant of a circulatory and a translatory flow. The fluid tends to
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rotate in the direction opposite to that of the rotor. The extent of
the circulatory flow depends upon the shape of the flow passage.
Increasing the number of blades, which gives better guidance to the
fluid, tends to reduce the circulatory flow.1

In impellers for compressible fluids such as aw compressors, the
conditions are generally worse. The fluid enters the impeller with
large impact losses, if the speed of rotation deviates from the best
operating speed. Flow separation generally begins at the inlet-vane
tips, and, by the time the fluid reaches the impeller outlet, the passage
is incompletely filled. The circumferential velocity traverse of the
air in any one passage is very complicated. The fluid is generally
flowing radially outward near the high-pressure side of the blade
and radially inward near the low-pressure side of the adjacent blade.
Besides all of this, most of the air crowds to the back wall of the
impeller.

Because of the losses associated with the aforementioned phenom-
ena, the reaction effect is smaller than in the ideal case. This can be
expressed by means of the eficiency coefficient #,

It has already been pointed out that the transformation of the
kinetic-energy term (co® — ¢;%)/2g into pressure must be accom-
plished in the diffuser, which is generally not an efficient process.
The fluid leaves the pump impeller with the large velocity ¢z, and
leaves the machine with the lower velocity ¢;. Let

e _br G
¥ Y 2

If there were no losses in the passage leading from the rotor exit to
the machine exit (diffuser), then

ar

2g v

Owing to the aforementioned losses, the transformation of ca>/2g
into pressure is reduced. Let 54 be the efficiency coefficient for this

process; then

c? P — Do
g —— =
2g v
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Losses are encountered due to fluid friction in the flow passages.
These friction losses increase practically proportional to the square
of the velocity of the fluid and the wetted areas of the flow passages.
Since the friction factor for a flow passage increases with its rough-
ness, in the interest of reducing the friction losses, the surfaces of
all the How passages should be as smooth as is practicable. Energy
must be expended to rotate a rotor surrounded by a body of fluid.
This energy is dissipated in heating the fluid and is called the disk
friction loss.

9. Characteristics of Hydraulic Jel Propulsion

Some of the earliest applications of jet propulsion were made by
the British and Swedish governments to the propulsion of ships.®
Water was inducted at the forward end of the vessel, it flowed through
pumps which imparted energy to it, and it was then discharged at
the rear through suitable nozzles. The complete flow path for the
propulsive fluid, the water, comprises the entrance piping, the pump
impeller passages, the outlet piping, and the discharge nozzle. These
form the complete guide system acting on the fluid, and the fluid
reacts upon the guide system.® For the purpose of propelling the ship,
it is only the fore and aft component of the fluid reaction that is of
interest. This component of force is denoted by 3 and is termed the
propulsion force or thrust. Let

V = absolute velocity of ship, fps.

absolute velocity of jet, fps.

relative velocity of the water discharged to the rear,
taken with respect to the discharge nozzle, ips.

area of exit section of nozzle, sq ft

weight flow rate of water, Ib/sec.

propulsion power, ft-1b/sec.

thrust power, ft-1b/sec.

leaving loss, ft-1b/sec.

resultant force acting on water in the fore and aft direc-
tion, 1b.

force or thrust propelling ship, Ib.

momentum, slug-ft/sec.

specific weight of propulsion fluid, 1b/ft,

density of propulsive fluid = ~v/g, slug/ft>.

V/w = speed ratio.

angular velocity of pump impellers, rad/sec.

efficiency.
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Subscripis

at entrance

at exit.

hydraulic.

propulsion.

at time { = 0,

condition of maximum thrust power
required.

available.

R R Oy TN

The jet of water is discharged from the exhaust nozzle with the
relative velocity w, while the ship moves in the opposite direction
with the absolute velecity V. Hence, the absolute velocity of the
jetisc = (w— V).

For convenience the relative coordinate system will be used. The
ship is assumed to be at rest, and the water approaches the ship
with the actual velocity of the ship V. The velocity of the water
entering the guide system is assumed to be so small that it may be
neglected, which is substantially correct.?®? Its momentum at the
entrance section is My = 0. Let the weight flow of water be G 1b/sec;
then the change in momentum per second is given by

& G
R=My ~-M;=—-c=—(w~¥V) Ib
g £

The external force R is the reaction of the guide system on the
fluid and acts in the direction of increasing fluid velocity. The pro-
pulsion thrust 3 = — R acts in the direction of motion of the ship.
Neglecting the minus sign, which denotes the direction of the thrust,
the thrust equation becomes

G 1)
J=~{w—V)=———(@w~V) 1b (37)
8 £

since G = yAw lh/sec.

The net work done upon the water is utilized to increase its kinetic
energy. This work is the energy transferred by the pump impeller
and the reaction force of the guide systemn. The pump work in
foot-pounds per second is the torque of the impeller M; times its
angular velocity « and its hydraulic efficiency 74 This work Miwny
is called the propulsion power P and is equal to the useful work done
by the propulsion jet 3V, called the thrust power Py, plus the kinetic
energy lost with the ejected fluid (G/2g)¢% called the exit or leaving
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loss P;. Hence, noting that ¢ = (w — V), the energy equation
hecomes

P = Py + Py, (38)
Substituting for P, Py, and Py,
G
Mom, = 5V + — (@ — V)2 (39)
28
Substituting for 3 from equation 37
G G )
Miwny = — {(w — V)V—I_E(w_ V) (40)
g
&
= — @ — 7Y
2g

The ratio of the thrust power 3V to the propulsion power 1f iy, 18
a measure of the effectiveness with which the kinetic energy imparted
to the fluid is transformed into useful work. This ratio is called the
propulsion efficiency and is denoted by gp. Thus

3V
M FALERS S

np = (41)
Substituting for 3 from equation 37 and for Mwyy from equation 40
gives the following equation for the propulsion efficiency

2w —~ VYV 2V 2v
np =~ =

-~V V+w 1+
where v = V/w is called the speed ratio.

The overall efficiency for the propulsion plant (the pumps and
hydraulic system) is denoted by 7 and is given by

N 1 (ZV)_ (2?) (43)
ﬂ—ﬂhﬂP—Mzw—'ﬂh V 4 w = Nk 1+ »

It is seen from equation 43 that to obtain a high propulsion effi-
clency the velocity ratio » must be close to unity. This means that
the exit relative velocity of the jet w should be of the same order of
magnitude as the speed of the ship V. Equation 37 shows that,
when V and w are of the same order of magnitude, the thrust de-
veloped per pound of water 3/G approaches zero. This means that
if V and w are of the same order of magnitude the weight of v-ater
pumped per second, &, becomes extremely large. Further, when
V = w all thrust development ceases.

(42)
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Equation 43 indicates why the early attempts to apply hydraulic
jet propulsion to ships were unsuccessful. The plant efficiency 9
depends directly upon the hydraulic efficiency of the pump =z,
which had a low value. With a more efficient pump the possibilities
of hydraulic jet propulsion became more favorable.

The thrust equation when expressed in terms of the jet area, speed
ratio, and fluid density p is given by

3= pduw?(l — ») (44)
The corresponding equation for the thrust power Pr is
Py = 3V = pdw’(1l — »)» (45)

From these equations it is apparent that, as w approaches the
magnitude of ¥, to obtain a high value of propulsion efficiency, the
area of the discharge nozzle 4 sq ft becomes exceedingly large.

If the rate of flow of water G is kept constant, the thrust power Py
is a parabolic function of the speed of the ship V¥, since for that con-
dition the discharge velocity w is a constant. In that case the thrust
power equation becomes

Py = 3V = Constant(v — »%) (46)

Differentiating equation 46 with respect to » and setting the
right-hand side equal to zero shows that the maximum thrust power
occurs when the speed ratio is » = 0.5. The propulsion efficiency
corresponding to the speed ratio for maximum thrust power is ob-
tained by substituting » = 0 5 into equation 42.

Thus, when the thrust power attains its maximum value (G con-

stant) » 5
= = — = 0.667
1+v» 3
The rate of flow of water through the propulsion system can be
determined directly from equation 40. Thus
ngﬂ.ﬂ
L
The thrust can be expressed in terms of the pump power by com-
hining equations 47 and 37. Thus

2Mt£ﬂ

5=W?}'h(w“v)

nP

G = (47

2M.0
w+ V




60 PRINCIPLES OF JET PROPULSION [Chap. 2

Let 3; be the thrust at starting up, that is, when the speed of the
ship is V' = 0. Then
221{;&}

UQ == Th (4:9)
w

Let 3, denote the magnitude of the thrust when the thrust power
isa maximum. [twill be recalled that the thrust power is a maximum
when » = V/w = 0.5, or when V' = w/2. Then from equation 48

. _(2th) H‘]:(Mfcu 503
m = w+ v "?h”"‘s w L)

The ratio of the starting-up thrust 3 to the thrust at maximum
thrust power J,, is seen to be /3, = 1.5. This thrust ratio is con-
siderably smaller than that obtainable from a screw propeller.
To increase this ratio during the start-up period additional power
would have to be supplied.

In ship propulsion the required thrust power Pry is given by an
equation of the following form *

Prp = VS ft-Ib/sec {51)

where & is a constant depending for its value on the characteristics
of the ship in question.

When a ship propelled by a hydraulic jet is moving at constant
speed, the required thrust power Prg and the available thrust
power P, = 3V are equal. Hence

yAw

BV =bV3 = —(w — MV (@)
g
Hence .
Aw Aw
ey T ®)
gb gb

Solving equation (b) for the speed of the ship

vAw 4gh
V=—wm—1{1=af14 (¢)
2gb v A
The propulsion efficiency is
/ 4b
211 — AL + ——
v ( + TA)

V4w 4ob
1_\/1+g 2gb

np = (52)
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Multiply the numerator and the denominator of equation 32 by

[1 + V1 - (4gb/vA)]; then
(53)
3+ \/1 + égé

To compare the efficiency of the jet pmpulsion system with that
of the screw propeller, the plant efficiency is required. Thus

Anp

n = qpp = = (54)
3+ 41 +i

This last equation gives the combined efficiency of the hydraulic
jet and 1ts pump.

ExampLE. A ship is propelied at 20 mph by hydraulic jet propulsion. The
resistance coefficient of the ship is & = 2.5; the area of the discharge nozzle opening
is 4 = 2.5 sq ft; the hydraulic efhiciency of the pumpsis i = 0.60; and the specific
weight of the water is v = 62.5 Ib/ft?.

Calculate: (¢) the propulsion efficiency up; (0) the volumetric rate of flow of
water Q cfs; {¢) the plant efficiency 1.

Solution.

4 4
@ p = = —— = 0,842
[ ax 3217 X 2.5 &TS

3 1
AT s R 2s

(by 20 mph = 25 X 88 = 29.3 fps
From equation 42

2 X 29.3
nr = 0.842 = m
Hence
w = 40.3 {ps
Q= 4w

= 2.5 40.3 = 101 cfs
() n = np-up = 0.842 < 0.60 = 0.505

10. Momentum and Circulation

When a moving body is completely submerged in a fluid the
reaction of the Auid on the body is to produce a resistance force
opposing the motion and a force normal to the direction of motioa.
The resistance force is termed the drag, and the normal force the
Iifi. As pointed out in reference 14, if every detail of the flow con-
ditions around the body were known then the velocities and pres-
sures at all points in its surface could be evaluated by applying the
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Bernoulli theorem to each point. By integrating the results the
resultant pressure force would be obtained, and its components in
the direction of motion and normal to that direction would be the
drag and lift respectively. Since the foregoing procedure cannot be
applied these force components are evaluated by applying the
momentum principle to the flow.

Fig. 10. Flow through a blade grid.

Figure 10 illustrates schematically a portion of an infinite row of
equally spaced identical blades. Since it is the relative motion
between the blades and the fluid which gives rise to the hydrodynamic
forces, the relative coordinate system can be used. This assumes
that the blades are stationary and the fluid flows towards them.
Further, let all the blades be placed at the same angle of attack
with their leading edges on a line normal to the direction of the
flow. Let the spacing between the blades be denoted by S, and
consider unit length of blade perpendicular to the plane of the paper
of an arbitrary blade. Owing to the geometrical arrangement the
flow pattern around each blade is identical. The lines AB and CD
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may be regarded as the typical stream lines or stream surfaces for
each blade of the row.
Let ABCD be a region between the two aforementioned stream

lines that is bounded by the lines (surfaces) AC and BD drawn
parallel to the v axis.

Let
w = velocity.
M = momentum.
F = force.
$ = pressure.
G = weight rate of flow, Ib/sec.
m = (/g = mass rate of flow, slug/sec.

g = acceleration due to gravity = 32.174 ft/sec”.
I, = 1ift force, 1b.
D = drag force, 1b.

Subscripts

1 denotes at section AC.
2 denotes at section BD.
x 1In direction of x axis.
y in direction of y axis.

Greek
p = density, slug/ft®.
v = specific weight, Tb/ft>.
I' = circulation.

Since the bounding surfaces AB and CD are tangent to the direc-
tion of flow at all points, no fluid can flow across these boundaries.
Therefore, fluid can flow only across the surfaces AC and BD. The
weight rates of flow across these two surfaces are

Gy = WaSY) and Gg = w2m572 (55)

Since S has the same value at AC that it has at BD, and v is as-
sumed constant, then from continuity Gy = Gg and wy; = Wey = W,

Assume that there is no heat transfer, no losses due to friction, and
no turbulence. The Bernoulli theorem applied to these two cross
sections gives

Or

p1 =~ P = — (wy® — wy®) (56)
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Any forces acting upon the bounded mass of fluid bounded by the
surface ABCD will be transmitted to the blade. The total external
force acting in any direction is the vector sum of that due to momen-
tum change and that due to change in pressure forces. Since there
is no velocity change in the x direction (wy; = way = w,) the only
forces acting on 4 C and BD in the x direction are those due to pres-
sure difference: there can be no force in the x direction owing to mo-
mentum considerations. Let this pressure force component be de-
noted by F,;. Heace

Fr = S(p1 — P2) (57)
Noting that

wi? = w,t + wy” (a)
and

we® = Wa,® + wo,” )

substitute (@) and (b) into equation 56 and then in equation 57,

The result is

S
F, = Eg_ (Woow + Way® — Wig® — Wiy') (58)

Or 5ince Wiy = Way = Wy

F, = Z§ (wﬁyz a ‘wlyg) = lS(‘WEy + wiy)(wey — wyy)  (59)
2z 2g
The surfaces 4A.B and CD are located in the same relative positions
with regard to adjacent blades; hence there is no unbalanced pressure
force acting on those surfaces. The velocity component 1wy, is #of
equal to ws,; consequently there is a force acting in the y direction
due to the rate of change in momentum.
The rate of change in momentum of the fluid is My, — My, and
the force required to produce this change is

M, — My, = E (wWey — wiy)

The force acting on the blade is

Sy

Fy = —w.{wiy — way) (60)

Let
I' = S{wqy, — wey,) = SAw, (61)
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Substituting equation 61 into equation 59 gives the following equa-
tion for the force F,. Since F, = I the drag force acting on the blade

U g = T
D=F,= —pT C 1y2 21) (62}
The force F, is a lift force acting on the blade. Let L = F,, then
L = pTw, (63)

In equation 62 the factor (wy, + ws,)/2 is the average of the y
components for the entrance and exit velocities. Consequently,
the F. is proportional to the average y component of the velocity
of the fluid. Similarly, the force L = F, is proportional to the
average x component of the fluid velocity.

The physical significance of the factor T can be obtained in the
following manner. Let the boundaries of the region enclosed by
CABDC be traversed in the order indicated, and the length of the
houndary be multiplied by the velocity component parallel to the
boundary. Thus

For CA the result is Swyy,

For AB the result is AB - w
For BD the result is —Swa,
For DC the result is ~DB - w

If the above products are summed up, taking cognizance of the
signs, the clockwise direction being taken as positive, then, since
AB = DB, the result of the summation is S(wy, — @sy)} which from
equation 61 is equal to T.

The value of T is called the circulation around the blade. It can
be shown, by using the same argument as above, that the value of
the circulation is the same for all closed regions enclosing the blade.
Mathematically speaking, the summation procedure in the foregoing
is equivalent to taking the line integral around the closed curve of
the tangential velocity to the bounding surface. Thus

T =fﬁw cos 8-ds (64)

where § = angle between the velocity vector =, and a tangent to
the closed curve.
ds = an elementary length of the closed curve.

Physically, the circulation T is a measure of the speed of rotation
of the fluid as a solid body.
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If the blade pitch .S is made infinite the system illustrated in Fig.
9 reduces to a single blade (or airfoil) in an infinite Auid medium.
If at the same time the bounding sections AC and BD are moved
infinite distances to the left and right respectively the circulation
is maintained constant, and the lifting force per unit length of
blade, which is denoted by L’, is given by

I’ = o'V, (63)
where 1 is the velocity of the undisturbed stream.

Equation 65 is known as the Kutta-Joukowski theorem.
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Chapter Three

THERMODYNAMICS OF GAS FLOW

1. Introduclion

Turbojet engines and gas turbines utilize the thermodynamic proc-
esses of compressing atmospheric air, heating it to a high tempera-
ture by burning a fuel in it, and where auxiliary jet propulsion is
utilized with the gas turbine then in both cases the gases are finally
discharged through a suitably shaped exhaust nozzle. These proc-
esses are common regardless of the prime mover used for driving the
air compressor. On the other hand, rocket motors generate high-
pressure, high-temperature gases in a suitahle combustion chamber
and then exhaust the gases through some form of nozzle.

The purpose of this chapter is to review the thermodynamic prin-
ciples upon which the processes mentioned above are based. As a
first approximation it will be assumed that air or the propellant
gases behave thermodynamically in accordance with the laws for
perfect gases and the flow is one-dimensional. The basic relation-
ships involved can be demonstrated by applying these laws. The
results obtained in this manner can then be modified to take into
account the deviations from the foregoing assumptions.

The equations derived in this chapter can be used with any con-
sistent set of units (see page 2); those presented with the notation
are for the English gravitational system.

Notation
o = V ghRT = acoustic velocity, {ps.
A = area, sq ft.
A; = area of smallest cross section (throat}, sq ft.
¢ = absolute velocity, fps.
B = (b — Tos) = availability function, Btu/Ib.
Ry k .
Cp = 7 (ﬁ == gpecific heat at constant pressure, Btu/Ib F.
R 1 )
Cp = 3 (;——J = gpecific heat at constant volume, Btu/lb F.

&7
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C. = contraction coefficient for a fluid jet.

Cp = ¢C, = discharge coefficient for a nozzle or orifice.
D = diameter, {t.

F; = kinetic energy, 1t-1b/1b.

E, = potential energy, ft-1b/Ib.
Ep = heat energy due to friction, {t-1b/Ib.
f = friction factor in the Fanning equation.
f = A/G = area which passes a flow of 1 Ib/sec.
¢ = acceleration due to gravity, 32.174 ft/sec’.
G = weight flow rate, Ib/sec.
H = (hy — k") = available energy for an expansion, Btu/Ib.

k= enthalpy of fluid = —1 == ( )f a fect
— in
enthalpy ol fim %4 — P T\ or a periec

gas, Btu/lb.
Al = a finite charge in enthalpy, Btu/lb.
Ak, == a finite increase in enthalpy (flow compression), Btu/lb.
Ak; = a finite decrease in enthalpy (flow expansion), Btu/Ib.
J = 778 ft-1b/Btu = mechanical equivalent of heat.
k = ¢,/c, = specific heat ratio.

L = useful work done on or by a fluid, Btu/Ib.
1Lo = useful work done on or by a fluid hetween sections 1 and 2.
m = molecular weight, mass rate of flow (slug/sec), or hy-

draulic radius (ft), as indicated in the text.

M = velocity /¢ = Mach number.

$ = absolute static pressure, psf.

Q = heat flow, Btu/Ib.
102 = heat added between sections 1 and 2, Btu/Ib.

g = %p(velocity)® = dynamic pressure, psf.

R = gas constant = 1545 /{molecular weight), ft-1Ib/lb F.

(R = friction force, Ib.

ro = po/Py = pressure ratio for a compression process.

y, = P1/ps = pressure ratio for an expansion process.
1/r; = ps/P1 = expansion ratio for an expansion process.

s = entropy, Btu/lb F.
As = a finite change in entropy, Btu/lb F.
T = absolute temperature (460 4+ t° F), ° R,

B 1
T = total temperature = I [1 + (T) *ME]'
3 = thrust, Ib.

RT 1
U = 7 (Ie 1) = internal energy for a perfect gas, Btu/lb
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1/v = specific volume, cu ft/lb.
relative velocity, fps.

total weight, 1b.

distance in direction of x axis,
force in direction of x axis.
wetted perimeter, {t.

elevation, ft.

k=1 E—1
(ro ¥ — 1) for a compression process = M2

r—1
Zi = (r; ¥ — 1) for an expansion process.
Greek
a = divergence angle for a nozzle.

I

f

N Pl R o
[

I

N
I

v = 1/y = pg = specific weight, 1b/ft%.
k-1
Tg Do E . _ )
g =—=-— = 1sentropic temperature ratio.
I3 1
n = efficiency.
p = v/g = 1/vg = density, slug/ft3.
2 = summation.
T = friction force per unit area, psf.

o = ‘\/; = velocity coefficient.
) k41

’ % {( I)E (1)'??}
A E—1Ll\z, e
T Total temperature E—1
(I) = "‘"-E = . - p = —!—— (Ha———-) Mﬂ,
Ty  Initial static temperature 2
Subscripls
1 = initial state (in general).
2 = final state (in general).
¢ = critical.
¢ = exit section.
i = throat section of nozzle, or total, as indicated in text.
¢ = combustion chamber, or compression,as indicated in text
0 == initial or rest condition.

max. = maximum.
L = limiting value.
F = friction.

Superscripis
Prime denotes isentropic process.
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2. Dynamic Equations for the Steady Flow of Fluids

The discussions in this chapter assume that the fluid moves under
the conditions for steady flow. This signifies that the static pressure 4,
the specific weight of the fluid v and the velocity w are constant with
respect to time at each cross section of the flow passage. Under
these conditions the weight rate of flow & is the same at all cross
sections and does not vary with time.

In reality, steady flow can exist only if the fluid particles move
along stream lines. Consequently, the turbulent eddying flow which
accompanies most of the practical examples of flow is not steady,
even if no variations in the rate of flow can be detected with ordinary

measuring instruments. However, un-

4 1, A+dA  der the conditions where the rate of

discharge G is constant, it is possible to

W . %ﬂ vy, draw fixed lines in the fluid stream in
d ,/< PTE  quch a manner that they are tangential

¥ /ég—— to the average direction of the flow.
_}J de a% The actual fluid motion can thereby be

3 conceived as being composed of a steady

Fic 1. Fluid element flowmng MoOtion along these stream lines, with
in a converging passage. irregular random disturbances of veloc-

ity superimposed upon them.*

Figure 1 illustrates an arbitrary converging passage through which
a fluid is flowing. Assume that the flow is steady, does not change
its elevation, and is in the direction of the constriction, so that the
velocity is increasing; that is, the fluid is being accelerated. To deter-
mine the magnitude of the force causing the acceleration consider
an element of the fluid bounded by the two parallel surfaces 1-1
and 2-2 perpendicular to the direction of flow and the infinitesimal
distance dx apart.?

The following forces act on the fluid element in the direction of
the x axis:

(@) The pressure force pa on the left-hand face due to the pressure
intensity £.

() The pressure force —{(p + dp)(4 + d4) on the right-hand
face, the negative sign indicating that it acts in the negative direction.
It should be noted that for the configuration shown dp and dA are
both negative since the pressure and area have decreased at section 2.

(¢) On the bounding surface of the element of fluid there acts a force
which has the component [p + ({@p/2)] dA acting in the x direction.

(@) The ¥ component of the wall friction force which is denoted
by —da®.
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The net force acting on the fluid element in the positive direction
of the x axis is the vector sum of the aforementioned forces. Neglect-
ing all differentials smaller than the first, the general equatiom for
the sum. of the external forces is

d
ZX = p4d — (p + dp)(4 + dA) +(p +—§)dA — d®
= —Adp ~ dm (1)

The resultant external force, —A dp — 4R, imparts to the ele-
ment the acceleration dw/dé. The mass of the element is pA dx
= (v/¢)A dx. The equation for the acceleration of the element will
now be determined.

Each particle of fluid moves along a certain stream line, and its
instantaneous velocity @ is a function of the time ¢ and the distance
x it moves along its stream line. Hence w is a function of both ¢
and x. Thus w = f(}, x), and its total differential dw is

dw = e+ (2)
T = X —
ox ]

The acceleration equation far the particle is

dw 0w dx dw di dw  ow

e =

—— f—— = — -+ — 3
at ox dt + 0t di ax ot )

The term dw/df is the increase in velocity with respect to time at
the same point on the stream line, while the term w dw/dx is the
increase in velocity due to the particle moving with the velocity
through a field of flow having the velocity gradient dw/dx.

In view of the assumption of steady tflow, the velocity at a given
point is invariant with time. Hence the term dw/df = 0, and the
term ¢ 8w /dx is the only one that is significant. This means that
the fluid particle acceleration in steady flow is a function of x alone,
and the partial differential notation may be replaced by that for
ordinary differentials. Thus

dw dw

—

di dx @)

The external force producing this acceleration is given by equation
1. Hence, using equation 4 for the acceleration, applying D’Alem-
bert’s principle, and dividing through by the area 4, gives

dR
dp + pwdw + —- =0 (3)
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Multiplying through by » = 1/y = 1/pg, where v is the specific
volume

w0 o AR
vdp +~dw+ —— =0 (6)
g A

If the fluid changes its elevation by the amount dz in the distance

dx, equation 6 becomes .

%F

v dR
wdp-i—d(—h)—f-————l—dzmﬂ (N
2g A

Equation 7 is the general form of the dynamic equation for the
flow of any fluid in contact with solid boundaries. To integrate this
equation the relationship between $ and v, the flow area, and the
friction force must be established as functions of the flow path.

In general, where the flow of a gas is under consideration the term
dz 1s so small that it may be neglected. Further, if the friction co-
efficient for the passage is denoted by f, its hydraulic radius by ,
and its length by dx, then, for perfect gases, the dynamic equation
for flow with friction becomes

p o w

ip = — L 2 e i (72)
gRT™ 2m gRT

3. Energy Equation for the Flow of Gases

Refer to Fig. 2, which illustrates the general condition for the
flow of a fluid. The energy relationships for the flow of a gas are

TdL ft-lb/1b

2
}

C o wp=wytdw

l dQ Btu/lb

F1G. 2. Energy balance for steady flow of a fluid,

based on the conception that its motion is related to some process
that involves heat exchange. Consequently, the macroscopic aspects
of the flow process are amenable to analysis by the application of
the law of the conservation of energy. Consider a flow of 1 1b of gas.
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Then, if the quantity of heat 40 Btu/lb is added to the gas from all
sources, and the external work 1/J dL Btu/lb is removed from the
gas, it follows from the first law of thermodynamics that, in the
absence of friction and changes in potential energy,

dQ=du+41—ﬂdp+}*pdw+—1—wdw+}udL Btu/lb (8)
J J Jg J

Where the flow process involves energy losses such as friction,
shock, and turbulence the energy expended in overcoming the re-
sistances is converted into heat that remains in the gas. Its effect,
as is shown later, is to raise the final enthalpy of the fluid above that
which would have resulted if no friction or turbulence were associated
with its motion. Let the energy loss per unit weight due to friction
be denoted by 1/J dEp; then for flow wiih f?iction equa’ciun 8 becomes

1

dQ—-du+—adp—[— jﬂdﬂ—]——wdw—{— dL—l— dEF (9)
Jg

If the fluid experiences a change in its potential energy by virtue

of changing its elevation by the amount dE, per unit weight, then
equation 9 becomes

1 1
dQ = du —1—}(?::039 + pdv + ~wdw + 4L + dEg -I—dEp) Btu/lb
g

(10)
But, by definition, the entha.lpy change dk is given by

dh = du + — d(pﬂ)—du—i— (p dv + v dp) (11}

Substituting in terms of dk into equation 10 from equation 11 and
noting that d& = ¢, dT for gases

1
dQ = dh + — wdw + (dEF + dEp) + dL (12a)
Jg
For gases
1 1 1
dQ = ¢, dT + —wdw + — (dEr + dEp) + —dL (125)
Jg J J

or

k
T4+ —wd d.r dEp) - — dL 12¢)
aQ = (k—l)fd + g'w w-I—J( r -+ dEp) (

Referring to the flow passage illustrated in Fig. 2, denote the state
coordinates of the fluid at section 1 by the subscript 1, and those at
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section 2 by the subscript 2. Further, let Q- denote the heat added
to the gas from all sources during its movement from section 1 to sec-
tion 2, 1/J,(Ep)s denote the potential energy change, and 1/7;(Ep)s
denote the heat energy due to frictional effects. Integrating equa-
tion 10 between the limits 1 and 2 gives

1 1
1Qo = (ug — uy) + E}(wzz — w®) + F; (Patta — £101)

1 1 1
—(E ~1Ls + = 1(E
t 51(Ep)s + 7 ls + 21 (Br)e (13)

The above energy equation can be stated in terms of the enthalpy
changes for the fluid by integrating equation 12a. Thus

1 1 1 1
= By By +— (we? — w1?) + = (E — 1 (Ep —1Ls (14
10 = ho— k1 + zgj(‘%z 01~) Jl( P)E‘Jl—].l( 7)o + il (14)

Equations 10 and 14 are the most general forms of the energy
equation for the steady flow of a fluid. They are general statements
of the energy relationship for any flow passage and any fluid. The
only restriction imposed 1s that the passage cannot store energy.

4. Reversible Processes and Available Energy

A reversible process may be defined as one which is in such a state
of equilibrium at all points in its path that any small change in the
“driving force” will cause it to proceed in the direction corresponding
to the sign of the change. In a heat-flow process the driving force
is the temperature difference applied to the equilibrium state. Con-
sequently, if an arbitrarily small temperature difference will produce
either a compression or an expansion, depending upon its sign, and
the corresponding works are equal to the quantities of heat trans-
ferred, then the process is reversible. It is apparent from the fore-
going that heat-flow processes invelving friction cannot be reversible
because an amount of heat equal to the friction must always be
supplied before the direction of the process can be reversed. This
heat of friction does not reappear as external work but is dissipated
within the system. Since friction invariably accompanies the fiow
of real gases, actual flow processes are trreversible. As a matter of
fact all natural processes are irreversible; they tend to proceed in a
given direction and never reverse themselves unless work is done,
at the expense of some other system, to reverse them. JIdeal flow
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processes can be conceived, however, which are frictionless and re-
versible. They are of great importance because actual flow processes
can be studied in terms of these ideal processes and the results cor-
rected to take care of the departures from the ideal.

Even in reversible processes it is not possible to transform thermal
energy completely from one form into another. Experience has
demonstrated that the transformation is inevitably accompanied by
a degradation of energy into a less useful form.? The thermal energy
associated with a gas cannot, therefore, be converted entirely into
mechanical work by permitting the fluid to expand. This is because
the thermal energy is associated with the random movements of the
gas molecules * and is not completely subject to control. It should
be realized that the first law of thermodynamics is not concerned
with this matter and gives no information regarding it. It is con-
cerned only with that portion of the thermal energy that is converted
into useful work and points out that each Btu of heat converted into
work produces 778 ft-Ib (the exact value is 778.2 ft-1b).* It is the
second law that is concerned with the quantity of thermal energy
that can be converted into useful work, and this law presents the
basis for judging the performances of actual processes.®

The second law is based entirely on scientific experience!® which
has demonstrated, as stated by Stodola,” that “whereas work can
always be transformed into heat (as, for example, through friction)
the reverse process, transformation of heat into work, is neither
unlimited nor can it be carried out at will.” The transformation of
heat always requires that there be a temperature difference between
the heat source and the heat sink. The second law was first formu-
lated by Clausius (1850). Thus

A. Heat cannot itself flow from a reservoir at lower lemperaiure
to one ai a kigher temperaiure without there being changes in
the envirenment (Clausius).

A later statement due to Thomson (1851} is

B. No machine is possible which removes heat from a heat reservotr
and changes i completely into work without changes laking
place tn the environment.

The last statement is based on the following definition, due to
Ostwald, of a perpetual-motion machine of the second type: a machine
that undertakes to transform heat drawn from a single reservoir
into work without changing anything else in its environment.
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A satisfactory statement of the second law based on Ostwald’s
definition of a perpetual-motion machine of the second type is as
follows:

C. Perpetual motion of the second type is impossible even with an
ideal, frictionless, perfectly insulated heat engine.r

The above statements point out that in a reversible heat transfer
process a part of the heat energy is always urnoevazlable for conversion
into work. Thus, if 1 1Ib of a substance acts as a heat reservoir at
the temperature 7" at any instant, and supplies heat {, by a re-
versible process, to a reversible engine, the engine always rejects a
portion of this heat to the lowest available temperature Ty, The
maximum conversion of the heat into work (1/7)L, is obtained in a
Carnot engine and is given by

— =~ [ (75 e (150)
—_— = —— e 54
J T T
or
AL fTﬂd -I-TfTGdQ 155
= - —_— 5
r; - ¢ o). T (155)
Integrating between the temperatures 77 and 7
1 To
— AL = — [Q — Tgs} (15¢)
J T
Equation 15¢ states that, in a reversible process where the total
Ta
heat transfer is Q, a quantity of heat equal to [Tgs] is unavailable
‘51

for conversion into work, and the balance can be completely con-
verted into work only in an ideal machine. !

Because of the assumption of reversibility all the heat rejected

must take place at the temperature Ty. Consequently, in accordance
with the second law,

dQ = Tods (15d)

The addition or removal of the heat dQ changes the internal
energy of the substance in accordance with the first law. Thus

1
du = dQ — = dL (16)
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The work obtained, {1/J) dL, is composed of the maximum useful

work (1/J) dLlypax and the work (1/J) po dv required to overcome
the pressure of the environment.*® Hence

1 1
du = Tods — — dLpae — — D5 dv 17
(I 7 mas j}.‘bﬁ ( )

Integrating between 7 and Ty, and transposing, gives an expression
for the maximum work obtainable from a reversible process. Thus

L

1
- }Lm&x. = Uy — Ug — T[](Sl "_ Sﬂ) an }PU(?JI - ﬂﬂ') (18)

This last expression is usually presented in the following form- it
is called the avaslability function and is denoted by B. Thus
B = {u1 + pov1 — Tos1) — (1o + povo — Toso) (19)

Since po and Ty are fixed for a given process, it is seen that the
availability is a function of the initial state, i.e., state 1. The change
in avatlability for a reversibile process proceeding from state 1 to
state 2 is accordingly

AB = (ug + pove = Tosa) — {(#1 + pov1 —~ To51) (20)

In a reversible flow process, where gravitational work and potential
energy changes are neglected,™ the availability change reduces to

1
&Bzﬂ.h"Tﬂ&S= “}me (21)

For a more detailed discussion of availability consult references
2,3, 8,9 and 10.

5. Dynamic Equations for Frictionless Flow of Grases

Refer to the general dynamic equation, equation 7, and assume
that a gas encounters no friction as it flows along its path, nor dees
its elevation change. Then d® = dz = 0, and equation 7 reduces to

2

02 2 w? o
vdp —i—d(m-) =0 or —f vdp = ; ks (22)
1 g

2g 28
and equation 7a, in terms of the fluid density p, becomes
ap
— dwdw =0 or dp = —pwdw (22a)

o
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Rewriting equation 22¢ in the following form
— s = W AW (228)
But, from Chapter 1, equation 79,
— = g2 = (acoustic velocity)?

Hence in the case of the frictionless flow of gases the energy equation
becomes

o g
e @
or
dp Py
e (235)
dw a”

Referring to equation 22 it is apparent that the kinetic energy,
Ey = w?/2g, derived from expanding a gas in frictionless flow is

exactly equal to the work, - f v dp, obtainable by expanding the gas

in a piston engine.

If the pressure change in flowing from station 1 to station 2 is very
small, no sensible error is introduced by using the average of the end
pressures, 3(p; + p2), instead of the actual pressures. A mean
value of the specific volume #,, = 1/v,, can then be applied. Hence,
for very small pressure changes, the kinetic energy F; in foot-pounds
per pound, is given by

i.)-

i P — P2
By = -f vdp = vpl{py — pp) = —m—m—m (24)
1 Tm
Substituting equation 24 into 22
Ym Y
p1+ —w? = ps + — wy® = Constant (25)
2g 2g

Equation 25 is recognized as the Bernoulli equation for incompres-
sible fluids. It could have been obtained directly from equation 22
by assuming that p = vy/g = constant. Hence, for the flow of a
non-viscous incompressible fluid in a horizontal passage,

1 1
— (we® — w1 B) = — (p1 ~ p3) (26)
2g Y
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If changes in elevation are encountered by the incompressible fluid,
then dE, = pgdzand the Bernoulli equation takes the following form

dp + pgdz + gﬂw‘*) =0 @7)

6. Isentropic Flow Equation for Gases

For an isentropic process ds = dQ = 0, and the changes in the
internal energy of the gas are due entirely to the work of flow com-
pression or expansion; this work is represented by the term (1/7)p dv
in equation 8. If the flow process is an expansion, the temperature
of the gas is lowered, which signifies that the internal energy of the
gas is decreased; the reverse obtains for a compression. Hence

{
du +}pdﬂ = { (28a)
or
AT+t pg R( ! )dT—I—l d (280)
Cy - = -
7P =3\ 1 Few

The energy equation for 1sentropic flow and no work done on or
removed from the gas is obtained by substituting 4@ = dL = 0 and
equation 28¢ into equation 8. The result is

@
vdp +—dw =0 (29)
£
For an isentropic process it follows from 12¢
1 v
OmdQ=Tds:dm—|—}pdw=dk—}dp (30)
Hence for a reversible process
Jdh —vdp =0 (31)

Substituting for v dp from equation 29 into equation 31 gives the
following energy equation for the isentropic flow of a fluid. Thus

w”
Jah -+ d (—) =0 (32)
28

and the dynamic equation, equation 22, is

'IEJZ
vdp - d —-):U
28
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It is seen from equations 22 and 32 that in non-turbulent, friction-
less adiabatic flow the energy and dynamic equations are identical.
If the pressure in the direction of flow is decreasing (accelerated flow)
the flow passage is called a nozgle; if it is increasing (decelerated flow)
it is a diffuser.

For a perfect gas dk = ¢, dI. Substituting this into equation 32
and for ¢, in terms of & and R yields

k 1
(—-——)Rd?—]~wwdw = (
4

Hence the energy equation for the isentropic flow of a gas can be

written in the form
bR AT + (b — 1) wdw = 0 (33)

Dividing through by kgRT = a?

A =12 dw =0
Ml e NE gy
T a?

Dividing and multiplying the last term by w, the energy equation
for the isentropic flow of a gas becomes

a7 da
— 4 (B — I)M'z-m = {) (33a)
T 10

Integrating equation 32 and using the prime to denote that the
end point is attained by an isentropic process

1
2—} (‘Iﬂgfz - Tﬂlz) = kl - }12! = H = ﬁkgr Btll/lb (34)
g
In mechanical units

we'? — w2 = 50,000 Ak (fps)® (35)

Equation 34 gives the maximum change in kinetic energy obtain-
able from expanding a fluid from state 1 to state 2. The term
H = (hy — ky') is termed the awvailable energy for the reasons ex-
plained in Section 4; it is also referred to as the isentropic enthalpy
change,

Assume that the initial velocity wy is small enough so that the
assumption w; = 0 is justified. Then the final velocity of the gas is

wy’ = 223.TV}hy — by = 2237V = 223.7V ARy (36)

The velocity wy’ is termed the zsentropic velocity.
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If the initial kinetic energy is not zero, then the isentropic velocity
is given by

we! = V29JH 4w fps (37)

7. Total Temperature and Ideal Pressure Rise Ratio

In the preceding section it was shown that the energy equation
for isentropic flow is given by equation 32. For a perfect gas this
eguation can be written in the form

w?
Jep dT + d(—) = ()
2g

That the process is isentropic is indicated by writing 7%’ for the
final temperature instead of 75. Hence the energy equation is

2 b

Ty + = (38)
= -
2g7 Pt 287

)y 22
cple’ +

Solving for the ideal temperature ratio To'/T7 = 0

T/ " 2 ) 72
T (Y
T 2gicy, 1y W

Assuming that the flow is a compression process, so that wy'/wy is
less than unity, substitute for ¢, from equation 1-43 and note that
M2 = wi?/ay® = w,%/gkRT; then

B~ 1 W'
B=1+-———M12(1—~ 22) (40)

2 W
If the final velocity is zero, the temperature 75" is called the

stagnation or fofal temperature and is denoted by T, and the ratio
/Ty = ®. Thus

T E—1 R — 1
2 I:M12

=L =1 - M2 o e
T, 7 2

po—]| @

The relationship between the temperature change and the corre-

sponding pressure change is obtained from equation 31 and the
characteristic equation for perfect gases, Thus

2 ip
Jdh =0dp = Jop dT = {— RdT=RT—; (42)
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From which it follows from. equations 42 and 33¢

AT /B~ 1\ dp dw
.ﬁz( ) YV utat (43)
T k P W

Integrating equation 43 between the limits T'= 14, T =T,
P = pg, and p = p; gives

T; E—1 _‘2!’1‘-
IDgg — == o IOgg -
I £ 21
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Fi1Gg. 3. Ideal temperature rise ratic for normal air.

The relationship between the idec! pressure rise ratio pi/p; and
the Mach number is
k1

=—=|—] = Mi* 4 ——_] 44
T, . 2 F TR (44)

The total pressure p;, also called the stagnation pressure, is that cor-
responding to the pressure in an infinite reservoir from which the
fluid is accelerated isentropically to its actual velocity. It is seen
from equation 1-70 that in general Z, = ¢ — 1. For the stagnation
condition § = ®, Hence, using equations 41 and 44,

-1

Zo=0~1=& — 1 = M2 {45)
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The entering Mach number as a function of the ideal pressure
rise ratio is accordingly

M\/Z(e’bl)«.fzz 46
TN, Ty S Np 1 7f (46)

The 1deal pressure rise ratio resuiting from the isentropic decelera-
tion of a gas from an initial Mach number M} to a final Mach number
M3 is obtained from the ratic (p:/P1)ary/ (be/D1)st,.

42
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F1G. 4. Ideal temperature rise ratio for normal air.

For normal air 2 = 1.395 and R = 53.33 according to reference
44, Values of the parameter Z, for normal air are presented in
Table 4-5.

Figures 3 and 4 present ® = 73/7 as a function of M. Figure 5
presents #;/p; as a function of .
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ExAMPLE. Air at atmosphere pressure and 39 F flows into an ideal diffuser.

The entrance velecity is 600 ips. Calculate the ideal final (ram) pressure and the
total temperature,

Solution.

a1 = V gERTy = V/32.174 X 1.395 X 53.35 X 510 = 1115 fps

My = 898 = 0.540

From equation 43

Z, = 0.1975 X (0.54)% = 0.0576
From Table 4-35

— =7, = 1.219
1

$; = 17.9 psia  (final pressure)
From equation 41

1 . 1.305 — 1
Ty 2

=
1

|

i

{0.540)%

=14 (0.1975 X 0.293) = 1.0575
Ty = 1.0575 X 519 == 548 R (total temperature)

It follows from equation 38 and the foregoing that, for perfect
gases in isentropic flow, since ¢, is constant,

2

23]
T + = Tn
2gJ¢cy
and
&
Wy
7o' + = T
2g]c,

Hence for perfect gases in isentropic flow the total temperature is a
constant.

8. Adiabatic Flow with Friction

Refer to the general form of the energy equation, Section 3, and
agsume that the external work d. = 0. Then

1dw® 1

1
dQ = dh + - —dK —dE 47
Q -|~Jr 72 +J F”JI‘J_ P (47)

The work expended on the gas in overcoming friction is trans-
formed into heat. If the fluid loses no heat to the outside, all the
foregoing heat remains with it. This signifies that the entire quan-
tity of heat added to the fluid consists of two parts. The heat
supplied from external sources dQe. and the heat equivalent of the
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work expended in overcoming friction 1/J({dEr). Consequently the
heat added 4Q is given by

1
dQ = dQest -+ }dEF (48)

Substituting equation 48 into equation 9, noting that 4L = 0, gives
the following equation for the flow of a fluid when no work is done
by or taken from the fluid.

{Quee. + — dE d}z+1d(wz)+1dE v lame 9
ext. & 7 CLF = 7\ 7 ORF T abp
From equation 49 it follows that the energy equation for 1 Ib of fluid
when there is friction, no external work, and heat losses is

DOus = dh + 4@ L Lap (50)
e = = g 2
= J 2z J d

If the change in potential energy is negligible, which is true for gases,
and if the flow is adiabatic
d{(w*®)

1
dk + - =0 51
+5 22 (51)

Equation 51, which is the energy equation for the adiabatic flow of
a fluid with friction when there is no external work and no change
in potential energy, is seen to have the same form as the energy
equation for the isentropic flow of a gas; see equation 32, This
means that in adiabatic flow, with or without friction, the total
energy remains constant.

The difference between the total energy equations for adiabatic
flow is not stated explicitly. It does appear, however, in the integra-
tion of the energy equation. If the flow is isentropic the enthalpy
in the final state, denoted by the subscript 2, is %2/, and when the
flow is accompanied by friction the final enthalpy is 4s. The values
of hs" and ks for identical values of the expansion ratio $o/p1 are
different, ks’ being smaller than %e. Furthermore, the process in-
volving friction is accompanied by an increase in entropy, whereas
for isentropic flow ds = 0. The two adiabatic processes are com-
pared on the fz and ks planes in Fig. 6.

The energy equation for adiabatic flow with friction integrates to

we? — wi? = 2gT(hy — hs) = 207 Ak (52)

In the isentropic case ws is replaced by wy’ and %3 by k'. The
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difference between the enthalpy changes for the two processes is the
heat equivalent of the work expended in overcoming friction. Hence

1 1
hy — hg = hy — hy' — }'1(EF)2 = H — }1(EF)2 (33)

For gases

h]_ — kg = EP(T]_ —_— Tg)
and

By — By’ = cp(T1 — TY)

Assuming ¢, constant, or assuming that its average values for the
temperature ranges involved are not significantly different, it follows
that when adiabatic flow is accompanied by friction T > Ty’

p
pt— 1
Isentropic
Adiabatic
with friction
Py
2 2

0
Fi1G. 6. Isentropic and polytropic expansions compared on the p-» and %-5 planes.

In the case of flow with friction the heat added dQ is given by
equation 48, Consequently, the equations of Section 114, Chapter 1,
can be used for calculating entropy changes by using equation 48
above for defining Q.

9. Efficiency of an Adiabatic Flow Expansion

The ultimate goal of an adiabatic flow expansion is to convert as
large a fraction as possible of the available energy H into kinetic
emergy. This conversion is a maximum when there are no losses
and all the kinetic energy associated with the approach velocity @,
is fully utilized. When the flow is accompanied by friction, shock,
and turbulence the enthalpy change (4y — A2} < H and the kinetic
energy wi>/2gJ may not be utilized completely.

The effectiveness of the passage (nozzle) wherein the flow expansion
occurs, in converting the total energy supplied it into kinetic energy,
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is termed the nozzle efficiency #,. The total energy supplied the

nozzle is
2 FAY
U (22 )
= H4 — = 54
Ep + 22T 2 (34)

The energy converted into kinetic energy is denoted by Ep, where

P T SRR (55)
Y S L P A Py
Consequently the nozzle efficiency is
E}g ('IE.'E )2
m = =1 56
= =\ (56)

In an actual flow process all the approach kinetic energy may not
be fully utilized. Instead only the fraction o;%w:?/2g7, where ¢; is
a coefficient less than unity, may be available to the nozzle, In that
event the kinetic energy of the final stream is given by

£}
2wy w2

—— = fy — kg + % —— 57
2gj. 1 2 @] zg‘}, ( }

The actual final velocity can be expressed in terms of the ideal
velocity @y’ by introducing the velocity coefficient ¢e < 1, where
vy = wy/ws’. Hence the general equation for the final velocity of the
fluid stream is

W = (102'\‘/2ng -+ @12 ‘IEJ]_E (58)

As bhefore, n, = (ws/wy")%, which will have different values, de-
pending upon the completeness with which the entrance kinetic
energy wy2/2gJ is utilized.

10. Efficiency of Conversion of Enthalpy info Kinelic Energy

Where the approach velocity is zero or negligible, the final velocity
of the fluid is due entirely to the transformation of enthalpy into
kinetic energy. As before the efficiency of the expansion is (ws/2¢g’)?,
and, to distinguish this efficiency from the case where the approach
velocity is involved, it is denoted by ;. Hence when w; = 0

2
Wy kl - kg .&hﬁ
e (w,.;) By — by H (59)
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Introducing the velocity coefficient ¢o, where

ﬂ«'zz == @22(‘&’2;)2
then
mo=ga or @5 =V (60)

If 1/7(EFr) is the enthalpy increase due to friction, then

1
Ay = H — —E
£ 7 F

and

C_E-Q/NBr | W/DE

H H

(61)

The expansion process with friction cannot be represented by the
equation po* = constant, where % = ¢,/¢,. It can, however, be
represented by the polytropic equation g™ = constant, where n % .
The relationship between =, &, and 5; will now be derived, assuming
that ¢, is a constant and small pressure ratios are involved.

11. Efficiency of a Polytropic Expansion
In adiabatic flow with friction dk # 1/J (¢ dp) but

| |
—Ep=dh ——vd 62
7 Er ¥ P (62)

If the change of state is an expansion, as illustrated in Fig. 6, the
process is accompanied by a decrease in enthalpy. Hence, the change
in available energy for an isentropic expansion 1s

iH = —dh (63)

For an adiabatic expansion involving friction it follows from
equation 59 that if »; is constant, which is substantially true for

small pressure ratios,

dh al
dH = — — = ~¢p— (64)
L ne

But from equation 62

1 — 1 —
mdh=-— Ut
U L1

1
}EF = (1 — ) dH = — cp &1 {65)

Equating equations 62 and 65 and substituting ¢, ¢ = dh

1*"‘1}; i
c, a1 = cﬂdT—ﬂ}vdp

T
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from which it follows that

1
(7?# - 1)4‘.733 aT = NiCn a7 — 1 }‘EJ' d?

or
1
¢y dT = ms— v dp (66)
J
RT R{ &\, :
Substituting for v = -P— and ¢, = 7 (!a_j) in equation 66
k ap
R -~——-> dT = q:.RT _f;
so that
g E—1\d
7= ()5 (©7
Integrating equation 67
T E—1
ogu > = n: () o (22) (68)
& 1 k 21
so that
e—1
7, (pz)ﬂ*(“r)
T y2)

Substituting for 79/71 from the characteristic equation for perfect
gases

—

¥

It was pomated out in Section 9 that the change of state equation is
" = constant. Hence

o _ (_fz;_)i (za)l‘“(% -

1 2 P2

n_ ()T )

U1

From equation 70 it follows that

1k —me—1)
n b
or
R k (71)
n = =
B~k — 1} -+ 2(1 — 7
Hence

n— 1 (k--l)
7" - k
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The efficiency of the expansion is given by

_ = 1/n
(k- 1)/k

e (72)

A similar expression can be derived, by applying the same argu-
ment, to an adiabatic compression process with friction. Ia that case

_ T!'ﬂk 73
S Y R (73)
and
(-1
" = 1) /m (74)

Since the efficiency of an expansion process is denoted by 4,
then for an expansion
k

El _ (E%)In—m(fc—l} (75)

P2 i)

and the corresponding temperature ratio is

T, (pl)w(%—l) 76)

Tz_ v

For a compression process the efficiency is denoted by 1%.; then

ok
bo (ﬂl)ﬂ (z:l)““““lh-k'h—m o
D1 Vg g
n—1 E—1

@@ e
Ty Do D2

12. The Continuify Equation for Gases

and

If the weight rate of flow of a fluid is G Ib/sec, then for each cross
section of the flow passage

Aw
G = Awy = ~— = Constant (79)
E‘T

Equation 79, known as the continuity eguation, is based on the
principle of the conservation of matter. It states that the same
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weight of fluid must pass through all cross sections of a flow con-
duit of any shape. This means that for any two stations in the
flow passage

G = Aiwyyvr = Agweys = Constant

26
2.4 : /
22 | /
20 | ; y,

18} BER /V;

1.6 h /
14 : /

1.2 /

1.0

pA
M,
=

GVT,

Weight flow pararmeter

0.2 p/

0.6 .'.r/

04 r
012 ‘/ !

/
ol |
0 02 04 06 088 10 12 14 18 18 20
Mach number

N
!
e | o

Fig. 7. Weight flow parameter vs. Mach number for normal air.

For u perfect gas the weight rate of flow can be expressed in terms
of the Mach number by applying the characteristic equations for

perfect gases. Since M = w/V gkRT, equation 79 can be written

in the form
gk
G = pAM yj— 80
p \!RT (80)
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Substituting for T from equation 41 into equation 80

pA ko T E—1
G = M A= e
[ ] &1

76 1 J
7.2 /
6.8 | /

6.4 /

6.0 | ’

5.6
i ) /
5.2 /

G

GVT
PA
\x

43

1.4 7 ' "

Weight flow parameter

40 7
] ) / %

32 //
238 /

24 /

20 22 24 26 28 30 32 34 36 38 40
Mach number

Frc. 8. Weight flow parameter vs. Mach number for normal air.

For normal air (& = 1.395 and R = 353.33) equation 81 can be
written in the form

GV T,

— = MV0.84[1 4 0.1975M2] (for normal air)  (82)
P

Figures 7 and 8 present the parameter G\/ﬁ/ pA as a function of
Mach number for normal air.
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For perfect gases equation 79 can be combined with the charac-
teristic equation 1-29 which gives the following expression for per-
fect gases,

Ap
G = w— = Constant (83)
R7
80.0
A

700 /,..--""
alE vl
=" 600 -
2 i

-~

E_ 5C.0 /.f
2 .
= 40.0 /"'
: v d
‘5 30.0 it
Q 4
3 200 £
2

10.0

0 |

0 2 04 08 08 10 12 14 16 18 20
Mach number

Fic. 9. Velocity-temperature parameter vs. Mach number for normal air.

Substituting for G from equation 83 into equation 81, and solving

for w gives
E—1

T 4
w = —VEgRT, [1 - M’E} M

L

Substituting for 7/7; from equation 41 gives the following results

¥ B M (84)
VekRT: | k—
S \/ {45ty
2
For normal air equation 84 becomes
W 490
(85)

VT, V1 -+ 0197512

Figures 9 and 10 present values of w/ \/E as a function of M;
the values of 7 are defined by equation 44.
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95.0
93,0
91.0
89.0
87.0
85.0
83.0
81.0
79.0
77.0

750

730
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)

fj‘
{j
pd
L/
/
/
/
A
)4
/
/
//

/f

/

/

20 22 24 26 28 30 32 34 36 38 40
Mach number

Fre. 10. Velocity-temperature parameter vs. Mach number for normal air.

Examrre. Air flows through a duct with a velocity of 600 fps. The weight
flow is 20 1b/sec. If the area of the duct is 80 sq in. and the Mach number 1s 0.3,
calculate the static pressure.

Solution.

W 49 i
VT, V1 +0.1975M7
600 49 % 0.5 24.5
N - - = 24.0
VT, V1401975 X 0.25  V/1.049
T; = 628 R
G_”/E_* = MV 0.845[1 + 0.1975M7
;]
20 % 25 -
= 0.5v/0.845
o 80 0.845 X 1.0404

M = 13.3 psia
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ExamMpLE Aiwr approaches an ideal diffuser with a Mach number of 06 It 13
desired to attain a stagnation temperature of 600 R. What must be the mitial
velocity?

Solutron M = 06 so that w/V T; = 284 Hence
wy = 28 4‘\/% = 695 fps

Refer to equation 83, and differentiate logarithmically, noting
that G = constant The result gives a relationship between relative
changes in the variables Thus

dA+dw+dp dT—l’} y
A W P T (86)

For a constant weight rate of flow G, the change in velocity is
obtained by solving equation 79 for w and differentiating. Thus

@] w

The last equation indicates the dependence of the fluid velocity
on the specific volume and cross-sectional area changes. An expres-
sion relating the rate of change of area with velocity (d4/dw) is
obtained by differentiating the first form of equation 79 and dividing
the result by dw  Thus, substituting o = /¢

1dA+1+1dp 0 83
Adw w pdw% (88)

But, from equation 23%, dp/dw = —pw/a®. Substituting this last
expression into equation 88 and solving for d4 /dw gives
a4 A w? |
dw w ¢ 0
From which it follows that
dw dA ( 1 ) (29
w A\l — M @)

But from equations 1-78 and 3-33¢

L ]

2

—

dw d4dM 14T M E—1 dw
e ) L
W M 2 T M

w
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Hence the velocity and Mach number changes are related by the
1:'
equation o I
= (90)

E—~1
“ M[-T W+1]

The relative change in flow area dd /4 for the isentropic flow of a
perfect gas can be related to the Mach number in the following
manner.** Thus, from equation 8%

d4 dw
= — — (1 — M?) (91)
A 70
Substituting for dw/w from equation 90 yields
g4 (1 — M) M
—— - (92)
A R—1_ M
M= 41
Integrating the last expression
i e
E~1 JEew
! [1 + — Mﬂ} |
fog, 4 = log, ” + (93)

where C) is a constant of integration. Equation 93 can be written

in the form
C k 1 ]sz+11;
. _ Y ST
A= —11 4+ —F M 94
M { B 2 J (94)

The integration constant C; is evaluated by letting 4 = Ay when
M = My; then

Aa M
Cl = e b+1 (95)
E—1 SGE—1)
o]
2
Substituting for €y in equation 94 gives the following expression
for the area ratio -
[ E—1_ 13G-1)
y > 1 -+ 5 M
A, 11; ™ k=1 | (%)
0 1+ M2
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As shown in reference 34 it is of advantage to let Ay be unity when
Mo = 1, when plotting the relationship between A/4y and M.
Figures 11 and 12 present 4/4, as a function of Mach number on
the aforementioned basis, for normal air.

8.0
5.0
E 410
X
-
o
®
3
= 30 \(\
20 \
/“"’
N ~ g
\\ ..--"'"f '
1.'0 H"""!— d""‘-#-
0 g2 04 05 083 10 12 14 16 18 20

Mach number

F1G, 11, Area ratio vs. Mach number for normal air.

For normal air equation 96 becomes

A

J.MG

Ay

M

|

1+ 0.1975M7 }3*“32
1+ 0.1975M¢°

If My =1 when 49 = 1, then

A4 =

1+ 0.19753°

|

1.1975

}3-032

(97)

(98)
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11.0 -

10.0 /

9.0 /

oo
o
M

Py
o
e
-~

Area ratio A /A,
h
o
™

i

o>
1%
N

i
o
N

A7

L3

o

b
\

2,0 P

1.0

20 22 24 26 28 30 32 34 36 38 440
Mach number

Fic. 12. Area ratio vs. Mach number {or normal air.

ExsMPLE. An ideal air diffuser is to reduce the Mach number of the entering
alr from My = 0.8 to Ma = 0.2. Determine its area ratio.

Soluiion.,
From Fig, 11
A
For M = 0.8 — = 1.04
Ag
For M = (0.2 i = 2.98
Ao
Hence
2.98
tin = wewemm = 2,
Area ratio T5 86

13. Discharge Velocity for a Perfect Gas Flowing through a
Converging Nozile

Refer to Fig. 13. Assume that a perfect gas flows out of a large
container through a converging nozzle. Let $4, Ty, and 2; in the
container remain constant with time. Similarly po, T2, and vs at
the exit section of the convergent nozzle are constants. Since py is
greater than s the flow process is an expansion. Further, let it be
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assumed that no external work is removed from or done upon the
gas and that there is no friction and no heat transfer. The flow
process is, therefore, isentropic; and the change in the kinetic energy
of the gas in flowing from station 1 to station 2 is given by equation
34, and the isentropic discharge velocity is given by equation 37.

1Lo=0 1?2 =0

! 2

L JE——C - o g
- P,

i (3

G [:© Air compressor

Fic. 13. Flow of gas through a converging nozzle under steady-state condition
with no heat added or mechanical work removed.

Substituting for Ak’ = H, from equation 1-68 and R7; == vy, the
result is

||' k-1
? E P\ F
wy' = /28 —— RT [1—(--—) :|+*w2 99
2 \/ gk 7 1 Py 1 (99)
or in terms of Z; (see Chapter 1, Section 11f)
wy' = /I2 Je, T “ + w? ips (100)
2 \ “8J6pi 1 + Z, 1 P

If the approach velocity wy can be neglected, then, dropping the
subscript, the isentropic exhaust velocity

Z
w' = \/2 Jep, T ( ) 101
gSilply | + 2, (101)
or N
E RT,[/ Z
w' = 223.7 1( M) fps (102)
E—1 J \1+ 2

Equations 101 and 102 demonstrate that the magnitude of the
isentropic velocity for a gas is a function of its gas constant, initial
temperature, specific heat ratio, and the expansion ratio po/p1. It
is evident from the preceding equations that we” attains its maximum
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value for a given gas and initial temperature when the expression
Zi/(1 + Z;) reduces to unity, i.e.,, when p, = 0. This signifies that
the gas attains its maximum isentropic discharge velocity when it

2600 06x10°

2400 24

2200 / 2.2

2000 \ 2 2.0

1800 o ; 1.8
W 7

1600 .

5

/
/
: &

i
g
3
o

i

—

3% )

Density p, slug/ft®

Velocity w’, fps

3
1
\\
e
/

/

800 / 7 \\
600 \

7
NV/ERE \
[

o
o

f
=
N -

200 \ 0.2
0

0.2 0.4 0.6 08 1.0
p,lp

¢

Fic. 14, Velocity and density of a gas as a function of expansion ratic. {(Repro-
duced from 0. G. Tietjens, AS5.M.E. semi-annual meeting, June 9-11, 1930.)

expands into a vacuum. The maximum isentropic discharge velocity,
which is denoted by wmez., is given by

. [gRRT

Figure 14, taken from reference 16, illustrates the relationship
between w’ and p2/p; for a gas having the thermodynamic constants
T, = 523 R and kb = 1.405.

If the flow through the nozzle is accompanied by friction, the
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actual exhaust velocity = will be reduced by the energy losses. The
actual velocity is related to the isentropic discharge velocity by the
velocity coefficient ¢, where

w = o (104)

Since the energy losses can be expressed in terms of the kinetic
energy of the gas, they are propertional to (velocity)?. The efficiency
of the enthalpy conversion into kinetic energy is given by equation 60.

The actual expansion process can be represented by the polytropic

equation pv"” = constant. The actual discharge velocity is obtained
k—1 n—1

by replacing (p2/p1) ¢ in equation 99 by (ps/p1) » and noting
that gtRTy = ¢®. Thus for small pressure ratios

20k p# w(5F)7 h~1

\ -
SR LA | [ Y M 2}
w2 B - 1?151 {[ (P1) ] + 2 *

n—1
/ : P?‘) ﬂ :I - }
= 2 - | — S 2 5
We N7 1 a4 {{1 (15‘1 — ; My (1053)

where 7 is defined by equation 71,

The last equation expresses the discharge velocity in terms of the
inlet acoustic velocity ¢4, the inlet Mach number M, the expansion
ratio p3/9;, and k.

The foregoing analysis assumes that the approach kinetic energy
is fully utilized. If thisis not the case then ﬂ{ 1 is replaced by 1% M2,

or

Values of the parameter Z, = {ps/p1) » — 1 for several values
of n are presented in Table 3-1,

The efficiency of the flow expansion process is called the nozzle
efficiency #, and, in general, is defined by the equation

2
n = (?‘3«) (105¢)

H@’

The velocity ws’ is given by equation 99, and ws, the actual dis-
charge velocity, is given by equation 105. When the approach
velocity wy = 0, then 5. = %4, where . is defined by equation 72.
For the flow expansions occurring in stationary nozzles, such as
those for impulse turbines (see Chapter 10), the assumption that
wy = 0 is usually justified, and no serious error is introduced by

assuming that 5, = n; = ¢*, where ¢ is the velocity coefficient de-
fined by equation 104.
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TABLE 3.1
5l
%
Values of Z, = (P—l) -1
2
(1 > 2}
Values of »
n/pe 1.2 1.25 1.30 1.35 1.40
1.1 0.016 0.019 0.022 0.026 0.028
1.2 .031 037 043 048 053
1.3 045 L054 .062 070 LO78
1.4 L0358 070 .081 .001 ,101
1.5 070 .085 .098 2110 .123
1.6 081 .099 115 .130 144
1.7 092 112 .130 L 147 164
1.8 .103 125 . 145 164 183
1.9 113 L 137 160 181 .201
2.0 123 .149 174 197 L2109
2.5 .165 .201 L2335 . 268 . 206G
3.0 .201 246 .289 .329 .369
3.5 .232 .284 .336 383 .431
4.0 260 .320 378 432 LART
4.3 285 .351 415 476 526
5.0 307 .380 .449 .517 584
5.3 .328 406 482 L5535 627
6.0 348 .431 512 .590 . 068
6.3 . 366 .454 . 540 624 it
7.0 .383 476 .566 .55 .743
7.5 . 3399 .496 L5091 . 685 778
8.0 414 .316 .616 714 811
9.0 442 .952 . 660 766 RT3
1¢.0 468 385 L7101 .816 931
11.0 401 .616 L7139 .862 984
12.0 .513 -644 L1774 .902 1.034
13.0 .533 LG70 .807 .942 1.081
14.0 .549 .696 .839 .982 1.126
15.0 .S70 719 .868 1.017 1.168
16.0 (587 L741 .806 1.052 1.208
17.0 604 L7162 .923 1.083 1.247
18.0 .G19 .783 .948 1.114 1.284
19.0 .633 . 802 973 1.143 1.319
20.0 648 .822 .996  1.173 1.354
22.0 .G74 . 855 1.041 1.227 1.418
23.0 . 686 872 1.0063 1.252 1.453
24.0 .698 .387 1.082 1.277 1,470
25.0 L1710 903 i.103 1.302 1.505
26.0 L7121 .018 1.121 1.324 1.537
28.0 .'743 94 1.158 1.370 1.5091
30.0 .763 .974 1.192 1.413 1.643
32.0 782 1.000 1.223 1.454 1.692
34.0 800 1.024  1.256 1.492 1.739
36.0 .B17 1.048 i.287 1.513 1.784
38.0 .834 1.071 1.315 1.532 1.827
40.0 L850 1.092 1.343 1.603 1.869
42.0 863 1.112 1.372 1.632 1.915
44.0 .879 1.133 1.396 1.665 1.0953
46.0 .893 1.152 1.423 1.6095 1.992
48.0 .906 1.168 1.447 1.728  2.028
50.0 918 1.187 1.468 1.735 2.065
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Table 4-3 may be used for estimates of the enthalpy changes due
to compression and expansion of air. For compressions the results
will be sufficiently accurate for most purposes, if the initial tempera-
ture 7 i1s below 600 R. For expansions the error increases as the
initial temperature is raised. The error is due to the assumption that
k is a constant at all air temperatures, which is not strictly true.
For a more detailed discussion of the effect of temperature on the
thermodynamic properties of air, see Chapter 4.

ExaMPLE. Air at 25 psia discharges through a converging nozzle, The initial
alr temperature is 600 R, and the back pressure is 14.7 psia. What is the exhaust
velocity, if the efficiency of the expansion is 0.897 Assume ¢, = (.24 Btu/Ib F.

Solwtion.,
25,

=

=222 170
e=qp s b
From Table 4-5
Zs
Z; = 0.16203 and = 0.140
! an 1 + Z;
z
H o= g, Ty ——— = 0.24 X 600 X 0.140 = 20.15 Btu/lb
1+ Z,

By — hy = n = 0.80 X 20.15 = 17.95 Btu/Ib

w = 223.7V 1795 = %45 fps
Check.

o = Vi = 0.943
w = 0943 X 223.7V/20.15 = 945 fps

14. Weight Flow Equation for Nozzle Flow

The weight rate of gas low through the nozzle, assuming w; = 0,
is obtained by substituting from equations 104 and 101 into the
continuity equation 79 and substituting (/& — DRI = Jep, 7.
Thus, if C, 1s the contraction coefficient, then

k Z
G = CopArwe'vs = CupAd \/2 ( )RT [b/sec (106
cPAzwWn Y2 ePLLRY gkm—l 1+ 7, 1 / ( )

From po* = constant

2
13\? 1\? %
O-O8 W
(5] U1 H

Substituting for v into equation 106 and expressing Z; in terms of the
pressure ratio, see equation 170z, the weight flow equation becomes

k41
k

a
20k Py sz)*é (?2) ]
ey TR L\, " (108)
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Let

Cp = Cop = discharge coefficient (109)
1
E Bl Z
G = Cpds \[25131 (pz):\ i (110)
m Tk —1\p 12
Let

[ Zr [bo\i

£ 2\%
= 111
v \kﬁ1\/1+z¢(pl) (1)

Figure 15 presents curves of ¢ vs. po/p1 for different values of Z.

0.5 -i$
04 \
T 0.3 / ’,
’ 02— ,//
/]
0.1 ”//// |
i |
0 0.2 0.4 06 0.8 1.0

EoKS

=L
T
F1G. 15. Parametfer y vs. expansion ratio.

The weight rate of flow expressed in terms of ¢ is given by

2g
G = CpAs) \HZgg = CpdadV 2gp1v1 = Cpday \f'ﬁ;?l (112)
o1 i

or
G
— = 8.025Cp¢ \/E (113)
Ag U1
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Equation 110 shows that the weight rate of flow for a fixed ex-
panston ratio (¢ = constant) depends only upon the initial tempera-
ture of the gas. Under these conditions the weight rate of flow is

proportional to 1/ ‘V/E, which signifies that raising the initial tem-
perature decreases the weight flow.

For well-rounded nozzles the contraction coefficient C, = 1

In the discussion following this section it will be assumed that the
discharge coefficient Cp = 1, and the prime denoting isentropic con-
ditions will be omitted.

15. Effect of Compressibility on the Confinuity Relationships

The effect of the compressibility of the gas upon the weight rate
of flow can be determined by studying the manner in which the
pressure changes affect the specific weight of the gas.* Rewriting
the continuity equation, 4

fyw == E'}"Iﬂ = ] (114)

where f is the area through which passes a flow of 1 Ih/sec
The area f can be expressed as a function of v and w, thus

1
2= e Ib/ft? sec (115)

Assume now that the gas is at rest, denoting the rest condition by
the subscript 0; then w = wp, = 0, and the corresponding static
pressure and specific weight are g and vy Since wg = 0, it follows

that
yw = yowy = 0 (a)

Now assume that the gas is permitted to expand completely into
a perfect vacuum so that the final pressure is 3 = 0. Under these
conditions the specific volume of the gas becomes infinite and its
corresponding specific weight zero; hence v = 0. Furthermore, the
gas attains the maximum possible velocity corresponding to the
expansion ratio, or the value of w = w,.-. For this condition the
product yw is again zero, since

YW = YWmax = 0 (since y = 0) (%)

Equations {¢) and () show that there are two limiting conditions
where the weight rate of flow is zero. One corresponds to zero pressure
drop to cause flow (we == 0 and $; = £5); the other, to an infinite
expansion of the gas where the velocity attains its maximum value
but the specific weight is zero (v = 0and p. = 0). It follows, there-
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fore, that there are two Hmiting values for the back pressure: s = #;
and ps = 0. DBetween these limits the curve of weight flow as a
function of expansion ratio {(or the back pressure ps) must have at
least one maximum point. Investigations have shown 3 that there
is only one maximum point between the limits p» = $y and p5 = 0.

The manner in which the discharge velocity and density, p = v/z,
of a gas vary with the expansion ratio is illustrated in Fig. 14.

If the weight flow G for a given nozzle is plotted as a function of
the expansion ratio 1/7;, as is done in Fig. 16, it is seen that the

ch
Crax f,.._B
-
Cannot
Ao exist ;
/ physmallyl
/ |
[
o ) 20 T R/A

Fic. 16. Weight flow through a nozzle vs expansion ratio

maximum flow Guge. Will be reached at a particular value of the
expansion ratio. This particular value of 1/#;, which is denoted by
(1/%¢)er, 1s called the critical expansion ratio.

Hence, there is one value of the expansion ratio between 1/7; = 1
and 1/#; = 0 where the weight flow G attains its maximum value
Further decrease in the back pressure does not change the flow; it
merely remains fixed at the value Guax

It is evident from equation 112 that the expansion ratio at which
the maximum weight flow will occur corresponds to that which
makes the parameter ¥ a maximum, that is, when

(Y
g

The value of 1/7; for the maximum weight flow can be obtained by
differentiating equation 116

1 kt1
%
— (—) = Maximum (116)

¥t

[E-@"]

dip2/P1)
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The result of the differentiation is
%

(§>cr= (;—IQL.: ({jf])k_:l (117)

Equation 117 gives the expansion ratio corresponding to the
maximum weight flow per unit area of the nozzle (G/Ag)max. The
velocity corresponding to this expansion ratio is called the ¢ritical

velocity and is denoted by w,..

0.52

1"‘ 0.58 \
wl
45, AN

=(i
£

O

in

-

r.

0.56 o

Throai prassure
Admisseon prassure

o
N
o

Ratio

IS
054 \\\\
053 | ™~

1.10 1.15 1.20 1.25 1.30 1.35 1.40
Values of specific heat ratio (k)

Frg. 17. Values of critical pressure ratio as a function of the specific heat ratio.

Equation 117 shows that the eritical expansion ratio depends only
upon the specific heat ratio for the gas. Figure 17 presents the values
of the critical expansion ratio as a function of the specific heat ratio .

16. Critical Velocity
The equation for the critical velocity is obtained by substituting
the critical expansion ratio from equation 117 into equation 102 and

expressing it in terms of £ and ;. Thus
B—1

po
i (2
2% F— 1™ EL1
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which reduces to

i k 118
= o
22 Pl P11 (118)
Hence the critical velocity 1s
a \/ L (28 or 119
or = R
-1 171 \k 1 1 ( )

Equation 119 can be rewritten in the form

<20 = /2 mk Plﬂl
7 N . R+ ljbcri-'cr

P cr¥er (@)

Since the process has been assumed to be isentropic

Por 21\*
() ®
1-%

D191 _[( i );;—E]T_( 2 )"1 B4
perver  L\E+ 1 “\r+1) T2 ©)

Substituting from (¢) into (@) gives the following expression for the

critical velocity
Wop = V ghPerTer = G2 (120)

From Chapter 1, Section 12, it is seen that, when the critical
velocity prevails at the nozzle exit section (area Aj), it is identical
with the local acoustic velocity as.

Hence

17. Maximum Weight Flow

The foregoing has established that the maximum weight rate of
flow of gas Guax Occurs when the parameter ¥ = yanax. This value
is obtained when the converging nozzle operates with the critical
expansion ratio. When this occurs the velocity in the exit section 18
the local sonic value. The value of Ynax. is obtained by substituting
for the critical expansion ratio in the equation for . Hence

_ (2 )-m ; (121)
V. = E4+1 E+1
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Substituting for ¢ = Ymgx into equation 112 gives the expression
for the maximum weight flow of gas through the nozzle. Thus

Cmax = 4 (k + 1) \/ﬁe + 1 \/R’rl (122

For gases with 2 = 1.4
$1 Aspy
Guax = 3.894 \;_ ~ 3.89 (123
: V'RT, )

The maximum values of ¥ are indicated by the broken lines in
Fig. 15.

It should be borne in mind that the flows calculated by the above
equation will be too high in any actual example. To obtain the
correct flow, the result must be multiplied by an experimentally
determined discharge coefficient.

The foregoing demonstrates that the calculated plot of G vs. po/p4,
for the range po/p; = 0 to unity, is correct until the value of pa/py
is reduced from unity to the critical ratio, for which the acoustic
velocity is attained in the exit section or throat. Since disturbances
beyond the throat can no longer be propagated upstream, the flow
behaves as if there had been no further reduction in the back pres-

sure; it has no way of recognizing the

A, B__. reduction in pressure. C.“onsequentiy,
SES, e T M, when the back pressure is equal to or
— | — less than the critical value the nozzle
—_ —m

discharges the same flow, the critical
Fi1G, 18. Induced flow through a Jiow, Go = Guax. The broken-line
nozzle and duct. portion of the curve in Fig. 16 does

not exist physically.

The aforementioned conditions can be explained by considering
the arrangement illustrated in Fig. 18 taken from reference 2. As-
sume that a gas held at constant pressure flows from the region A
through the nozzle of area A4 into the confined space B where the
critical back pressure is maintained at the nozzle outlet by the ex-
haust fan &. The gas flows out of the nozzle exit section into space B
with the acoustic velocity. Let the fan exhaust the gas from the
space B at a more rapid rate than that at which it is being discharged
by the nozzle. The pressure in the space B will fall below the critical
value, and the reduction in the pressure will cause a pressure wave to
travel from the fan blades toward the nozzle exit section with the
speed of sound. The gas is being discharged, however, with the same
velocity. The pressure wave stands at the exit section of the nozzle;
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that is, it is impossible for the reduction in pressure to propagate
itself upstream into the nozzle. The exit velocity of the gas remains
unchanged and does not rise above the acoustic velocity or change
the state of the gas in region 4 even if the region B is completely
evacuated. This fact was known to St. Venant and Wantzel (1839)
and was explained both theoretically and experi-
mentally by Grashof (1875) and by Zeuner (1900).

Experiments show that the shape of the jet dis-
charging from a nozzle is different depending on
whether the back pressure is above or below the
critical value. When the back pressure is above the Fic. 19. Shape
critical pressure, the jet issues as a cylindrical parallel  of jet discharged
stream, its surface being gradually retarded by the from a converg-

) . . ing nozzle with
surrounding gas, so that a mixing zone is produced supercritical
in which the velocity of the jet finally drops to that  pack pressure.
of the surroundings. This is illustrated in Fig. 19.

When the back pressure is less than the critical pressure, the jet
expands as it discharges from the nozzle, as indicated in Fig. 20; here
the pressure of the gas in the jet leaving the nozzle is the critical
pressure which is higher than the back pressure. The sudden reduc-
tion in pressure causes the gas to expand In an explosive fashion.
The gas particles are accelerated radially and owing to their inertia
move beyond their equilibrium positions, thereby creating a pressure
reduction in the core of the jet that
causes the particles to reverse them-
selves. This phenomenon is periodic.
The jet becomes thinner in some sec-
tions and thicker in others, so that
standing waves are observed. These
are associated with loud noise and de-~
crease the available energy of the gas.

Consider now that the back pressure po is held constant and the
upstream pressure py is continuously increased from the initial value
p1 = Ppg. As $; is increased the weight rate of flow is increased in
accordance with equations 112 and 113 until the critical pressure
ratio is reached. Thus, for gases with 2 = 1.4, the critical pressure
ratio occurs when ps/p1 = 0.5283 or when pi/ps = 1/0.5283 =
1.89/1. When $1/ps = 1.89 the velocity in the nozzle exit section is
the local acoustic velocity as.

For gases with 2 = 1.4, it was shown that

( E) _ 3.89
“12 max \/RT]_

I

FiG. 20. Shape of jet discharged
from a converging nozzle with sub-
critical back pressure.
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Constant upstream Constant back
pressure. Decreasing pressure. Increasing
hack pressure upstream pressure
oot s :

it

2o

=2
B
5
0.528 1.0 1.9
o e
) 1
Y <1 7 -t

p, = upstream pressure (constant for p, /p, < 1)
p,= downstream pressure {constant for p, /p, >1)

Fic. 21. Nozzle characteristics with constant upstream pressure and variable
back pressure, and with constant back pressure and variable upstream pressure.
(Reproduced from O, G. Tietjens, A.S.M.E., semi-annual meeting, June 9-11, 1930 }
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Hence, if 77 is held constant and p, is further increased above that
corresponding to py/p, = 1.89, the weight flow increases linearly
with $1. This increase is due to the increased specific weight of the
gas crossing the exit area Az. The volumetric rate of discharge is
unafiected by increasing i, as is seen from the following. Let

Qmax denote the volumetric rate of flow per unit area corresponding
to pa/P1 = 0.5283. Then

G
Qm&x = (:‘;‘__)ﬂl = 3,80V RTl

1

which is seen to be independent of #,
The exit velocity is given by equation 119 and for £ = 1.4 becomes

.IE ———
We = gy = ngRTl = 6.13V RTy

which is also independent of the pressure p;.
The two types of back-pressure conditions are illustrated in Fig.
21, which is based on reference 16.

18. The Converging-Diverging or De Laviat Nozzle

Figure 22 represents an isentropic expansion on the gz plane.

pv* = constant

Work recovered by
adiabatic expansion

T U

Fic. 22. Work recovered by expansion from critical pressure to correct back
pressure

From the preceding sections it follows that, when a gas expands
in a converging nozzle, the enthalpy transformable into kinetic
energy is limited to that represented by the upper cross-hatched
portion of the diagram, that is, the area of the diagram located above
the critical pressure pe.. The area of the diagram below p.. is not
transformed into kinetic energy but is used up in frictional heat and
noise after the gas jet emerges from the converging nozzle.?
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De Laval showed that the total enthalpy drop corresponding to
the pressure drop {(p1 — p3) could be transformed into kinetic
energy if a divergent downstream cone is added to the converging
nozzle. This form of nozzle is called the De Laval nozzle and is
illustrated in Iig. 23.

The phenomenon which takes place in a De Laval nozzle can be
explained by means of the equations derived for the converging

A, =4,
¢ AN
e s s 4, =4,
A a—
I 2

“ ;J - S
b' tﬂeginn of supersonic velocities
Sonic velocity in throat

Region of subsonic velocities

Fig. 23. The De Laval nozzle.

nozzle. Thus it was shown that, for isentropic flow and zero velocity

of approach, the kinetic energy E; denved from the expansion of
1 1b of gas 1s given by

'Iﬂgz
Ey = —— ft-lb/1b (a)
2¢
where
2 2 P i
Wa 2
L = — | vdp = R (e b
- fw kwlpm[ m) ] ®)

from which, assuming ¢ = 1, and dropping the subscript, the velocity
equation becomes

= V2F —_-\/ ) f2 ] 2gk ( Z ) f (c)
A/ _ = ? 5
w g g 1 vap . 1151 \1 =z p

The interpretation of these equations can be illustrated graphically
as shown in Fig. 24 by the following procedure.®

(¢) Curve E; shows how the kinetic energy changes with the back
pressure. Thus, when pp = Py, Er = 0, and when p; = 0, E;
= [k/(k — 1)lpizy. The intermediate values are obtained by means
of equations (a) and (b). The total mechanical work transformed
into kinetic energy is the area to the leit of the kinetic-energy curve
I, between the pressure limits 4 and ps.
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(8) The curve denoted by @ is the velocity curve for different
back pressures. It is obtained by integrating the kinetic-energy
curve between the pressures p; and pq for different values of the back
pressure Ps. Lhis procedure gives a series of values of total kinetic
energy for different back pressures. The corresponding velocities are

by

A
2

0

Fic. 24. Flow conditions in a De Laval nozzle. (Reproduced from E. Schmidt,
Binfuhrung in die technische Thermodynamak, Julius Springer, Berlin, 1936.)

obtained by taking the square root of these kinetic energies and multi-

plying them by '\/2} In this manner a curve of the velocity w as a
function of back pressure is obtained.

(¢) Curve v shows the specific volume as a function of the back
pressure. it is obtained from the kinetic energy relationship

w*
—-— = fy = —f v dp
28

The value of the specific volume is computed for several values of
pa, and the result is plotted as a function of .

() The curve marked 4/G is the nozzle area per unit weight flow
as a function of the back pressure. It is obtained by applying the
continuity equation, 4 = Gv/w. From the curves for 2 and » the
ratio 4 /G is calculated. It is seen that as the back pressure is de-
creased the area per unit weight flow 4 /G first decreases, then attains
a minimum value, and then increases again as already explained.

ExaMpLE. High-pressure air at 100 psig and 500 R discharges through a well-
rounded nozzle. The back pressure is 14.7 psia. Find the isentropic exhaust
velocity. Assume ¢y = 0.243.

p1 = 100 + 147 = 114.7 psia
pg = 14.7
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From Table 4-5
Zf = 0.7890

0.7890
1.7890

If the velocity coefficient ¢ = 0.96, then the actual velocity is

we = e = 0.96 X 1640 = 1370 fps

' = 223.?1\}0.243 X 500 X = 1640 {ps

19. Area Rafio for Complete Expansion

It has been shown that for a converging nozzle the parameter ¢
cannot exceed the value ¢ = Y.

Refer to Fig. 25, where ¢ is plotted as a function of 1/7. For
continuity, the product 4y must remain constant at all sections of
the nozzle.

Vi

Nozzle throat

?IE"max.

Converging section

1 Py

F1c. 25. Relationships for converging-diverging flow passage.

In a nozzle constructed with a divergent discharge section follow-
ing the narrowest section (the throat), the parameter ¥ must decrease
in the divergent outlet section in order to maintain continuity. This
signifies that for such a nozzle, or flow passage, the pressure beyond
the throat section can continue to decrease. The conditions in the
divergent section are illustrated in Fig. 25. They correspond to that
part of the ¥ vs. 1/7; curve lying to the left of 1/7, = (po/P1)er

At any arbitrary cross-sectional area A of the divergent portion

Ay = Apbnax. = Constant (124)

where 4; = A, = A, = cross-sectional area of the nozzle throat in
square ieet.
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Refer to Fig. 25. From equation 124 the area ratio, based on the
throat area, at any section is

A e AC (125)
= — J
A, Y/ AB
From the curve of Fig. 25 the area ratio A/A4; required to trans-
form the enthalpy into kinetic energy for expansion to the critical
ratio can be determined.
By substituting the values of ¥ and Ypax. from equations 111 and
121 into equation 123, the ratio of the throat area A4; to the exit
area As = A, is obtatned. Thus

1 2 A+1
TRCRNES Y S
A Ymax 2 E—1L\py Y
A, (k4 INFI/pNE B 41 &
- b N\ E
=) Ol -() ] we
Ae: 2 £1 E—1 1

Equation 126 gives the area ratio required to expand a gas adia-
batically from an initial pressure Py to a pressure po = P, at the exit
section, p. being lower than the throat pressure #:;. It is seen that
the area ratio depends only on the specific heat ratio 2 and the
expansion ratio ps/P1 = D./P1.

An expression for the ratio of the velocities at the exit section
and the throat is obtained by combining equations 102 and 120.
Let w; = w., denote the threat velocity, and w, the velocity in the
exit section; then

or

k—1
SN
Wt 2 — 1 £1
Figure 26 presents the curves of 4,/4; as functions of p,/p; for
several values of k, and Fig. 27 presents w./w; as a function of p./p;.
The conditions when the back pressure pg is reduced to zero, so
that $1/pg = infinity, are of special interest. Assuming that 2 = 1.4,

and that the area ratio is infinitely large, the ratio of the exit velocity
to the throat velocity is

' k=1
ANE R 1
RN T R
E—1 E—1

Wy D1 —
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Hence for the limiting case (when p, = 0) the ideal exit velocity

is 2.45 times the acoustic velocity corresponding to the conditions
in the throat section.

70
£.0
50
<
< )
g 40 V174
g 1IN/

7]
30 //:,{/

20|

o 10 20 30 40 50
Pressure ratio By { B,

F16. 26, Nozzle area ratio for complete expansion for various values of the specific
heat ratio,

According to the equation for an adiabatic expansion, when g5 = 0,
the temperature ratio Ty/7y is given by

k—1

Iz _ (E%)T= 0
11 21
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The last equation indicates that if the expansion could be carried
to po = 0 the corresponding temperature of the gas at the exit from

2.5

aw

2.0

AR

7

15 f

1.0 //’

0.5
0
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0 1 2 3 4 5
pl Hota Use lower scale
o for lower group
B of curves

F1G. 27, Ratio of exit velocity to throat velocity for different values of the specific
heat ratio.

the nozzle must fall to absolute zero, assuming that the gas does not
liquefy. The entire enthalpy of the gas is then converted into kinetic
energy, and the gas molecules no longer possess any random motion
but move similarly in parallel paths.
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20. General Discussion of Flow through a Converging-Diverging
Passage

The equations for the ideal weight rate of flow G, derived above,
show that if G is constant, as required by continuity, then for each
cross-sectional area of the divergent part of the nozzle there is a
corresponding expansion ratio P;/f., where $, is the pressure at
the section in question. Hence if A, denotes the area corresponding
t0 Py, and A, is the throat area, then for the maximum weight fow
(acoustic velocity in the throat) the ratio $./p; can be plotted as a
function of 4,/A4, for the critical flow Gy, or different percentages
of Gmax.. Such a plot is illustrated in Fig. 28.

|—x—3-l :
|

.,

90% critical - ]
2 ]
MNozzie ~2 Critrcal flow

[ ———— r—— — — = r— —— —

e ™

S
S

|
|
i

Arearatip A /A,
F1G. 28. Variation in pressure ratio along a converging-diverging passage.

Figure 28 shows that for a given cross-sectional areg there are two
values of $,/p1 which satisfy the equation for the maximum weight
flow. One value corresponds to an expansion of the fluid, or nozzle
action; the other to a compression, or diffuser action. The two
curves, one marked nozzle and the other labeled diffuser, intersect
at the throat section. As far as energy and continuity considerations
are concerned two different processes are possible. There can be an
expansion from the nozzle entrance to the throat and either a further
expansion with supersonic velocity in the divergent section or a
recompression of the gas, depending upon the magnitude of the back
pressure. If the weight flow is less than the critical value, there is
only one ideal exit pressure which satisfies the flow equation. From
the continuity equation G = Aw/» = constant

ddA dw dv

A-I-w-—;—=0 (128)
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From the energy equation for isentropic flow

-

—8p = —dw
4
Hence
dw gudp
w  w

For an isentropic process po* = constant, and

d d
Lo
P 7
Substituting for dw/w and dv/v into equation 128
dA4 oy — w”
i P dp
A wlkp
and finally
d4 1/ 1 dp
—— =~ 1) — (129)
A E\M P

Equation 129 relates the pressure and area changes and the Mach
number. The relationship between the wvelocity and area changes
and the Mach number is given by equation 91, which is repeated
here for convenience:

A dw
—— = (]~ MP) (130)
A 7

Equations 129 and 130 are extremely helpful in studying the effect
of changing the area of the flow passage for different flow velocities,
ie.,, Mach numbers.

Consider now the conditions to be satisfied when the flow passage
1s to be employed for accelerating the flow of a compressible fluid.
Because the fluid velocity is increasing, its pressure must be falling
as it passes through the passage. Hence dp in equation 129 is nega-
tive while dw in eguation 130 is positive.

If a fluid enters a flow passage with a subsonic velocity (M < 1),
then for dw to be positive requires d4 /4 to be negative; that is, the
passage must converge. Conversely, if the entrance velocity is
supersonic (M > 1), then to produce a velocity increase (dw positive
and dp negative) requires that d4 /4 be positive; that is, the passage
must diverge.

The foregoing shows that a continuous flow passage which is to
accelerate the velocity of the gas from an initial subsonic value to a
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supersonic value must comprise a convergent section followed by a
divergent section. In other words the flow passage must have the
general features of the De Laval nozzle.

Consider now the case for decelerating a fluid to obtain a flow
compression. Here the pressure is to increase (dp positive) and the
velocity decrease (dw negative). If the gas wvelocity is subsonic
(M < 1), it follows, from equations 129 and 130, that d4/4 must
be positive. Flow compression of a subsonic flow requires a divergent
passage. Conversely, if the flow is supersonic (M > 1), to obtain a
flow compression d4/4 must be negative; the passage must con-
verge. Hence, if a flow deceleration begins with a supersonic velocity
and is to end with a subsonic velocity the flow passage must first
converge and then diverge. If a flow compression begins and ends with
supersonic velocities, the flow passage must converge continuously.

Summarizing, a converging-diverging passage, such as a De Laval
nozzle, can produce the following flow phenomena. If the entering
velocity is subsonic, the velocity continues to increase and the pres-
sure to decrease up to the throat section. If the velocity in the
throat is still subsonic, a flow compression occurs in the divergent
section. If the velocity in the throat is the local sonic value, either
a flow expansion with supersonic velocities or a flow compression
with subsonic velocities can occur in the divergent section. Which

of these flow phenomena will occur

\/ depends upon the pressure at the exit
&y

w, of the converging-diverging passage.

— : -

—/\ To illustrate these important facts

4, further, consider the flow conditions in

Fic. 29. A converging-diverging & Passage constructed from a converg-

flow passage. ing passage connected to one which
diverges as illustrated in Fig. 29,

Let wy; = entrance velocity, w, = throat velocity. Four different
cases can be distinguished.

Case I (wy < a, w; < ¢). The velocity of the gas increases in the
converging section unti! the throat section is reached. In the diverg-
ing section the velocity decreases. Correspondingly, the pressure
decreases in the converging section until the throat section is reached
and then increases again. Owing to friction and to separation of
the jet from the wall, especially if the divergence is too large, the
pressure does not reach its initial wvalue. The variation in the
velocity and pressure along the passage is illustrated in Fig. 30.

Case IT (w; < @, wy = a). The gas velocity increases in the con-
verging section with a corresponding decrease in pressure. Acoustic
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velocity is attained at the throat. Bevond the throat the velocity
increases in the diverging section with a corresponding diminution
in pressure. This corresponds to a pure expansion flow where, apart

l,;_.---Thrr::at section
Converging = hee~—Diverging -~—
P
|
3.30
w0y
¥
T
Converging--»-
3.31
iy
X
b
|
1
wy \ 2.32
|
J'/N
!
I
|
N\ -7
wy | 3-33
|
K

Frgs. 30-33. Effect of entrance and throat velocities on pressure distribution in a
converging-diverging passage.

from losses due to wall friction, all the pressure drop is transformed
into kinetic energy. This case is illustrated in Fig. 31.

Case III (wy > a, w; > a). The gas enters the converging section
with supersonic velocity and decreases in this section while the pres-
sure increases. Since w; > a the flow accelerates again in the diverg-
ing section with a consequent decrease in the pressure. See Fig. 32.
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Case I'V (wy > a, w; = a). The flow conditions in the converging
section are similar to those for Case III. The velocity decreases until
the acoustic velocity is reached in the throat, and in the diverging
section it continues to decrease while the pressure increases. This
case corresponds to a pure flow compression, in which, as in Case I,
there are large separation losses in the diverging section. The losses
due to jet separation exceed those resulting from wall friction.
The conditions are illustrated in Fig. 33.

The converging-divergent nozzles used with rocket motors are
designed to bring the velocity of the combustion gases from subsonic
to supersonic flow, This is desirable because the higher the exhaust
velocity of the gases the greater is the thrust developed for a given
weight rate of flow.

21. Effect of Back Pressure on a Converging-Diverging Nozzle

It was shown that for a given back pressure the area ratio of the
nozzle must have a definite value to obtain complete expansion of the
gas. The question naturally arises, what Is the effect of changing
the back pressure in operating a given nozzle?

For a given area ratio there is one correct value for the back pres-
sure $o. If the back pressure falls helow the correct value the condi-
tions inside the nozzle are unaffected. The disturbance created by
lowering #5 propagates itself only with the acoustic velocity while
the jet discharges with supersonic velocity. The discharging jet
expands, however, as it reaches the exit in much the same manner
as that for a jet from a converging nozzle discharging into a region
with subcritical back pressure.

Raising the back pressure above the correct value causes a pres-
sure wave to propagate with sonic speed into the boundary of the
jet which is emerging with supersonic speed. The superposition of
both wvelocities produces a pressure wave with an inclined front.
This forms at the corner of
the exit section from the
nozzle and forces its way into
the jet.

F1c. 34. Jet separation and shock due to in- A pressure wave starts at
correct back pressure. the exit edge forming a Mach

angle wave front similar to

that formed at the nose of a projectile moving with supersonic speed.
In this pressure wave the pressure suddenly increases from that in the
exit section to that of the surroundings, causing a compression shock,
and 18 called a shock wave. Behind the shock wave, the jet contracts
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to a smaller cross section corresponding to the effect of the external
pressure on the local specific volume. If the exit pressure is increased

further, the jet separates from the wall of the nozzle as illustrated in
Fig. 34.
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Fic. 35. Effect of back pressure on the pressure along the axis of a De Laval nozzle.
{Reproduced from A. Stodola, Steam and Gas Turbines, Vol, 1, McGraw-I1ill
Book Co., 1927.)

At the wall, because of friction, the jet velocity falls to zero so
that the boundary layer is moving with subsonic speed. The exces-
sive external pressure propagates through the boundary layer and
tears the jet away from the wall.

The foregoing conclusions regarding the effect of incorrect back
pressure are based on the experiments of A. Stodola, who measured
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the variation in pressure along the axis of a converging-diverging
nozzle operating with different back pressures. The results obtained
are illustrated in Fig. 33.

Reference to Fig. 35 shows that, when the back pressure was cor-
rect, curve M, the pressure along the axis of the nozzle was the lowest
for the tests and is the limiting condition for all of them. As the
back pressure was slightly increased, the pressure along the axis
showed a sharp increase or shock close to the nozzle exit. Further
increase in the back pressure intensified the shock and it moved
further inside the nozzle: see curves K, J, H, . The waves illus-
trated on these curves are standing pressure waves that propagated
themselves back into the jet.

In curve D, the acoustic velocity was not quite attained, but the
shock wave traveled upstream and occurred close to the throat section.

Curves such as €, B, and 4 are typical for flows in the range of
subsonic velocities; the expanded part of the nozzle transforms the
velocity back into pressure again. This type of flow is normal for
incompressible fluids, and these curves are similar to those for water
flowing through a venturi meter.

22. Some Aspecls of Nozzle Design

Tests have demonstrated that the transformation of pressare
energy into kinetic energy in a nozzle can be accomplished with a
high degree of efficiency. Measurements by M. S. Kisenko 3 show
that even with nozzles having rough interior surfaces the velocity
coefficient ¢ = w/w’ = 0.92. For a correctly designed nozzle with
a smooth, well-polished interior surface, values of ¢ = 0.96 to 0.98
are attainable. The exact geometry of the converging approach
section is not critical. All that is required is that it make a smooth
transition with the throat section. Consequently the throat section
can be made quite short. Though a well-rounded entrance is not
essential, it 1s of advantage in that it permits of a shorter approach
section. The geometry of nozzles for measuring the flow of fluids
should be patterned after the standards recommended by the
A.S5.M.E. Special Research Committee on Fluid Meters and should
be installed in accordance with the recommendations of that com-
mittee. These nozzles are designed with a well-rounded entrance,
usually of elliptical shape. In nozzles which are to be used for reac-
tion propulsion devices, such as rocket motors, the approach section
need not be well rounded. It can be a conical convergence, and no
measurable loss in thrust will be experienced for a range of included
angles varying from 30° to 70°.
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The total included angle (2a) of the conical divergence of the
nozzle must be held between certain limits if separation of the jet
from the nozzle walls is to be avoided. From the point of view of
light weight and minimum heat losses the divergence angle « should
be as large as permissible in jet-propulsion nozzles. According to
reference 31 the most faverable value for the cone angle (2a) for
thrust motor nozzles is approximately 25°. This conclusion is based
on tests where the pressure in the outlet section of the nozzle was
kept equal to the pressure of the surrounding atmosphere. Most
rocket motor nozzles operate with the pressure in the outlet sec-
tion slightly above that of the surrounding atmosphere (see Chap-
ter 12), and the divergence angle for such a nozzle can be as high as
e = 17° without any serious losg in thrust. In general, it is recom-
mended that the divergence angle « be less than 15°.

On the basis of his tests Kisenko concluded in addition to the
results discussed above that (1) a nozzle with a conical divergence
and ending with 2 cylindrical portion gives a better velocity distribu-
tion than a conventional De Laval nozzle; (2) a nozzle designed in
accordance with the Frankl method # gives uniformly distributed
velocity and static pressure distribution and increases the jet reac-
tion 2 to 3 per cent.

23. Compression Shock

The experiments of Stodola described in the preceding section
present a phenomenon associated with supersonic flow. It was seen
that if the back pressure was higher than that required to give
maximum discharge with subsonic exit velocity, but less than that
to produce complete expansion of the gas at the exit section, then
smooth flow consistent with the pressure ratio and given area ratio
is not possible.® A more or less discontinuous rise in pressure occurs
at some location in the divergent portion of the nozzle, the location
being influenced by the magnitude of the back pressure. Because
of the shock wave the fluid experiences a large loss in kinetic energy
and leaves the nozzle with subsonic velocity. The loss in kinetic
energy is larger than the increase in pressure energy; since the pro-
cess is a non-reversible adiabatic the loss in kinetic energy is con-
verted into heat which remaing in the fluid.*

The type of flow described above can exist only if the fluid moves
with supersonic speed upstream to the shock. The normal velocity
of the fluid leaving the shock is always subsonic.’

Figure 36 illustrates the manner in which the pressure may change
in the direction of flow along the nozzle. The lowest curve illustrates



123 PRINCIPLES OF JET PROPULSION [Chap. 3

the pressure variation along the nozzle with the correct back pressure
(isentropic expansion). The dotted curves are lines of constant total
energy for three different back pressures. The vertical lines represent

By
P Subsonic velocities -

-
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due 1o shock
\
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Fic 36. Effect of back pressure upon the static pressure along a converging-
diverging passage.

the increased pressure due to shock. Thus if the pressure decreases
adiabatically to the area 4,, and the back pressure is p,”, the pres-
sure increases rapidly from the value $, to the value p, due to shock
and then more gradually to the final back pressure £,”. A method for
calculating the constant energy lines is presented in reference 16
Refer to Fig. 37. Let it be assumed that the fluid flows in a direc-
tion perpendicular to a shock wave which is assumed fixed in space
Then by continuity the rate of mass

Shock wave -

{stationary) flow 2 is
iy a__wz W = p1ln = pallla (131)
/ Py

The momentum equation for the
fluid flowing through the shock, since
the flow area is constant, is given by

pa — p1 = m{uwy — wy) (132)

The work done per second by the
pressures p; and ps, respectively, is
p1wn and powy. The increase in kinetic
energy is {(m/2)(ws* — wi?). The
change in the internal energy of the gas in flowing through the shock
wave, foot-pounds per slug, is from equation 1-50.

lgal p,
a

Fic 37. Isentropic flow through
a discontinuity

1
J(ug = ug) = Je ,(Ty — T1) = (}b2 — ﬂ) (133)
E—1\ezs p1
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Hence the energy equation for the flow through the shock wave is

P1wy — Paws + i;" (wy® — wy?) = S (‘p'% - &) (134)

B—1\ps m
or
m
P1ws — PaWs + — (wa — wy)(ws + wy) = B (22“ — Ei) (135)
2 E— 1 \pe P1

Substituting from equation 132 into equation 135 gives
iy — gy = (P22 ) = 2 (222 sy

Rearranging and dividing by m
(o1 + ) (w—~1 2o (22 s

" E—1\ps 1

But, from equation 131, @ /m = 1/p; and wy/m = 1/ps; hence equa-
tion 137 becomes

-21-(¢>1+p2)(3——3)= : (E—PI) (138)

pL P2 E—1\p2 p

Equation 138 relates the pressures and densities on the two sides of
the shock wave. Since the process is irreversible it is accompanied
by an increase in entropy. It can be shown # that because of the
requirement that the entropy of the gas must increase after the gas
flows through the shock wave, the latter is always a compression
wave. [The density ratio is from equation 138

&'3_ _ (k " 1)15’1 -+ (k + 1)?2

- (139)
pr (B — Ups -+ &+ 1)y
or
1

2 () +
P2 PL R T (140)
P1 P2 L (k T 1)

1 E—1

The preceding equations assume that there is a discontinuity in
the flow process. In a real fluid no discontinuity can exist and the
propagation of a shock wave of the permanent type is explained from
the bases of the viscosity of the fluid or its thermal conductivity,
which make this type of wave possible.®
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Shock-wave phenomena are of importance in connection with flight
at supersonic speed because of their effect on the aerodynamic resist-
ance to flight. They are of importance also in diffusers for supersonic

ramjets.
12 7.0
11 6.0
10 ' 50
) n
g 09 By A0
-
e ool
i
&
= 08 ~ 3.0
[.1]
=
[T
. 20
07 / M, .
06 Sum 10
M""n-.
.
0.5 : 0

1.0 1.2 14 16 18 20 22 24
Initial Mach number M

Fic. 38. Final Mach number and pressure ratio as a function of initial Mach
number for a normal shock (normal air).

The relationship between the Mach number M of the gas up-
stream to a plane compression shock and M, after the shock * is
given by

1+ EM;? 1 -} kMo
-+ &My — - / + kMo : (141)
T
WME g MM
The corresponding equation for the pressures p; and pq is
1+ EM°
71 _ -+ 22 (142)
by 1+ EM;

This last relationship is plotted in Fig. 38.
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In addition to plane or normal compression shocks of the afore-
mentioned type, shocks of the following characteristics are associated
with the supersonic flow of gas entering a device such as a diffuser,

1. Normal shock upstream to the entrance, with no pressure
recovery downstream.

2. Normal shock upstieam with subsonic velocities accompanied
by pressure recovery downstream.

3. Oblique shock fronts followed by subsonic speed, or a succession
of obligque shocks.

The above does not include all the shock phenomena associated
with supersonic air flow approaching ducts, but it does include the
principal types. Further, discussion of supersonic air flow is beyond
the scope of this book. Nevertheless, because of the importance of
this subject of shock waves to high-speed aircraft and diffiusers, some
of the principal equations, taken from reference 29, are presented
below for convenience. The specific heat ratio for air used in these
equations is & = 14

1
2 _ 2 (7342 — 1) (143)
P 6
p_l (TM* — 1) (144)
Pz O
M2+ 5
Wy P2 6.,
P "‘PlzZ(Pz—m) (146)
pot+ P11 2Nzt m
M2 45
Mo% = 147
TR — 1 (147)
W Wy = G (148)
2 rr 2 5 M 2
Tg _ da . (a"ﬂf1 1)( -+ 1 ) (149)
T, a4® 6 602

24. General Equation for Flow of Gr.rses:in Pipes.

The general dynamic equation for the flow of a gas, including
friction and neglecting elevation changes (dz = 0), is given by equa-
tion 6. In that equation the friction force d® depends upon the area
of the passage wall in contact with the gas and the friction per unit
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area 7 of the wall surface. Let v be the weited perimeter and dx the
length of passage under consideration; then the wall area in contact
with the fluid is v dx. The total friction force acting on the fluid
element 4@ is given by

dR = tydx (150)

The friction force per unit area is usually stated in terms of a
friction coefficient f, where f is defined, as in reference 13, by the
equation

f=1—= (151)

= f (152)

Substituting for ¢ gives the following expression for the friction
force

AR = — wfy dx (153)
2¢

Let m = A/y = the hydraulic radius; then the dynamic flow

equation becomes
w dx
vdp + — d‘w -i—f-—~~——=0 (154)
g 2g m

For perfect gases this equation can also be written in the form
presented earlier in Section 2, as equation 7a. Thus

a wagd L wd (155
b=k T R )

Sometimes it is more convenient to state the flow equation in
terms of the weight rate of gas flow G lb/sec. Substituting for w and
dw from equations 79 and 87 into equation 153 gives

vdp + ~ (A) (vdv—-«*—dﬁo (AG)f dx =0 (156)

For a straight passage of constant cross-sectional area, such as a
pipe or duct, d4 = 0, so that

1(6)2 1 /G\® +*
vdp +—\|— wdv-{—"—(E)f—-dx#O (157)
g \A 2p 2
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It can be shown by dimensional analysis ¥ that the friction co-
efficient f is a function of the Reynolds number K., and the Mach
number M, Experiments by J. H. Keenan with steamn ¥ and by
W. Frossel with air * indicate that in the regime of turbulent flow
the {riction coefficient is practically independent of the Mach number.
Their experiments also indicated that f is the same function of R,
for both compressible and incompressible fluids.

For smooth pipes Nikuradze * has proposed the following relation
between f and R,

Tlf} = 0.3959 + 4 logig (Re VT) (158)

The following equation by Koo correlates the data for long smooth
pipes ® for Reynolds numbers ranging from 3 X 10% to 3 X 10°.

f = 0.00140 + 0.125R,~%3* (159}

For a range of R, values from 5 X 10% to 200 X 10°® the following
equation correlates the data for smooth pipes

f = 0.046R,™02 (160)

R. P. Genereaux ¥ suggests, on the basis of his analysis of pipe
friction data, the following simpler equation as being sufficiently
accurate for most engineering purposes.

f = 0.04R, %1 (161)

This equation is applicable for Reynolds numbers ranging from
4 % 10° to 20 X 10% In the usual range of Reynolds numbers,
230,000 to 500,000, the friction coefficient may be assumed to be a
constant at the value 0.005 (N.A.C.A.T.M. 844}

If a constant value of f is applicable, or if a mean value for the
length of passage is used, then since m = D/4 for a pipe, where D 15
the diameter in feet, equation 157 becomes

d 1 2 v 2 2 dx
f—fb+m®mge—2+-(z f==0  (162)

1 v g th g D
Before proceeding to a discussion of the integration of equation
162 it should be noted that the friction coefficient f is that used in the

Fanning equation for pipe friction loss. According to the Fanning
equation, the pressure loss in a pipe due to friction dpr is given by

frat | Ay @2 v
dpr = dx = dx == 2f| — ] —dx (163)
pr 20D f D

Zgm
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Many books use the D’Arcy formula for evaluating pipe friction
loss. In that equation, if dzp is the head loss due to friction, then

d dzp = f' ¥ f’(A iy (164)
— 2 & —_— e == —_— —_—
pr = vy dzr 22D 22D

From the foregoing equation it is seen that the friciion facior f' in
the ID’Arcy equation is four times the friction coefficient f in the
Fanning equation. The friction coefficient used in this book is that
based on the Fanning equation.

Reference to equation 156 will show that, if the equation is divided
by #, the specific volume, so that its dimensions are force per unit
area, then the third term is identical with the pressure loss due to
friction as defined by the Fanning equation.

For more detailed discussions of the {friction coefficient for pipe
flow the reader is referred to references 13, 14, 20, 21, 22, and 47.

It is apparent that for a conduit of constant area equation 86
reduces to

d al dw
il = — (165)
P I W
But from equation 155
da 1 ax 1
@ __ — ff — — w dw (166)
P RT 2m  gRT
which can be written in the form
dp 5 4% o, AW
— = = RMf — — kM (167)
P 2 w
Equating 165 and 167
EM* ,dw 4T  dw
~f——dx — kM = — — (168)
2m W T w

If there is no change in total energy, the friction heat remains in
the gas Substituting from equations 43 and 90 for d7°/T and dw/w
in equation 168 gives the following expression for (fk/2m)dx

L (1 — M»dM
2m ME{[(k — 1)/2]M% 4+ 1)

(169)
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Equation 169 can be integrated by expanding it into a series. It
is simpler, however, as pointed out in reference 34 to perform the
integration by either the trapezoid or Simpson's rules # for the dis-
tance x which changes the initial Mach number to the value M = 1.
Thus

fhx =1 (1 —~ MHdM
e =f ; 5 (170)
2m  Jy—y M1 - [(B — 1)/2] M%)
For normal air the last equation becomes
frx M=1 (1 — M) 4dM
fir_ 4= 200 -
2m Sy MP{0.1975MF + 1}
11 -
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Fig, 39, Friction parameter as a function of Mach number for flow in a straight
constant-area duct.

Figures 39 and 40 present the friction parameter {fkx/2m) as a
function of M. The curves were obtained by using Simpson’s rule
From this curve the length of straight pipe required to change the
Mach number from one value to another when the flow involves
friction is readily determined.
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Fig. 40. Friction parameter as a function of Mach number for flow in a straight
constant-area duct.

25. Flow in Pipes with Friction and No Heat Transfer (dQ = 0O)

This type of flow is comparable to that for a perfectly insulated
pipe or to flow so rapid that no appreciable heat transfer can take
place. The friction energy heats up the gas and changes its specific
volume and enthalpy. As pointed out in Section 8, the relationship
between the pressure and specific volume is given by pv™ = constant,
where # =% k. The equation for the condition of the gas as it flows
along the pipe can be determined by the methods of references 12
and 13 presented below. _&

I't has been pointed out by A. Stodola  that the energy and con-
tinuity equations give no implicit information regarding the in-
fluence of pipe friction. Thus, if %, is the initial enthalpy of the fluid

and % is its enthalpy at any peint in the pipe, the aforementioned
equations become
wr w,’

— k= - 172
s 2Jg 2Jg (172)

and
Gv = Aw (173)
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Further, since the weight rate of flow & lb/sec is constant for all
cross-sectional areas A, then

2
w? = (g) e (174)

Substituting equation 174 into equation 172 gives the following
equation for any section of the pipe

e 2 ﬂz
k+ (A) Zo7 I (175)
Equation 175 is the equation for a Fanno line (see references 12
and 3), and is applicable rrespective of the law of friction that pre-
vails. By applying this equation a family of curves can be drawn
for G/A = constant for the same value of the initial enthalpy % = 2,.
A plot of the Fanno lines * will show that, since the flow process is
such that the change in the condition of the gas must involve an
increase in entropy, the velocity of a gas expanding in a cvlindrical
pipe can never exceed its acoustic velocity.
For perfect gascs, the enthalpy is, in general, given by

B
STt (176)

where the constant B = &/(k% —~ 1).
Consider any two sections in the flow path and write their Fanno-
line equations, denoting the sections by the subscripts 1 and 2, and

substitute for the corresponding values of %y and ks from equation
176. Then

Zom +(7) 5 @ 5
Byo= = (o) + (=) == — —= = +
2 J<P11)+ 1) 2.7 23} J@zz) 2gf 23]

or in general

(AG) + —(G)B w | B (177)
267 J’P“_ 4] 2 TP

But (G/4)% = (wi/v1)? = (we/v2)”. Substituting for (G/4)* into
equation 177 gives

w 2 T w 2 alls
1 P1vy _ _l_f?,aff 178)
2¢JB J 2gJB J

Rearranging and substituting for B = &/(k — 1)

(B — 1)%'12] (& — 1)%'21
2gkprmy 2gkpova

= Pals [1 + (179)

Plﬂl [1 +



138 PRINCIPLES QF JET PROPULSICN [Chap. 3

Noting that a¢® = gkpv and M = w/a, equation 179 can be written
in the following form.

E—1
bu [1 -+ 5 JM‘?] = Constant {180)

Equation 180 is the Fanno-line equation in a different form.

To obtain a relationship between the pressure £ and the specific
volume v for the gas at any point it is simpler to substitute for the
enthalpy % from equation 176 into equation 175, solve for p, and
differentiate: note that B, %, and G/4 are constants. The result is

p 1 (G)zd Jh; dy (181)
T e —— —_— ﬂ et ——
4 A B ¢*

Dividing equation 181 by v gives the following expression for the
first term of equation 162

ap 1 2dv  Jhidv
— = | =} == (182)
v 2eB\A/ v B v

Substituting from equation 181 into equation 162 and integrating
between the limits 1 and 2, assuming that f is constant (that is, a
mean value is to be used for the pipe length in question) and letting
xp — %1 = } = the length of the pipe, the following result is obtained.

..mz:(l 1 _}_1(0)2(1 1)1 w2+2(6)2fl 0 (183)
—_———— b —_——— Qg — —_1 —_— =
2B \v® 7y g \4 2B - 77 g\4A/° D

Substituting for B = k/(# — 1) and solving for fi/D gives

11 g(A)z[Jk@(k—l)(l 1) 1(G)ﬂ(k+1>l ﬂ
LAY A RN A A AV AN Y A

{184)

But from equation 175

y (6)2 912 +.B (G)E To? +B
i =7 207 JPIE’I =\7 Dotz

Substituting for k. into equation 184, noting that (G/4)* = w*/¢”,
that w, /we = 71/79, and gkpr = a?, the result is

4f1 (k e 1) wz)ﬂ 1( 1 k- 1) [ wl)z]
— = ~ | ——Jlog. | —} +~ 1—{— 185
D 2k o8 W + k J.MIE + 2 Wo ( )
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From equation 185 the values of 4fI/D for a given value of the
initial Mach number M7 can be calculated for a series of values of
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Fig. 41, Pressure ratio vs. friction parameter for different Mach numbers for
adiabatic flow in a straight pipe.

wa/wy = vo/vy. If the value of the friction factor is given or known,
it is then a simple matter to determine the velocity corresponding
to a given pipe length. It should be noted that the maximum attain-
able velocity is limited to the local acoustic value.
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Figures 41 and 42 are plots of the ratio po/p1 as a function of
4fl/D for different initial Mach numbers as the parameter. Simmi-
larly, Figs. 43 and 44 present 4f1/D vs. we/wq = v9/v, for different
constant values of the Mach number.
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Fic, 42. Pressure ratio vs. friction parameter for different Mach numbers for
adiabatic flow in a straight pipe.



20

15 I - Y
— M=020
A
/7 i '/
i /
/ /
10 / /
/ 025 /j
4 e i
e [T/ 7 |
[ |
' 030
5 / p T T
[/ 2 )l
[ s w7
& 10,70 |
0.50
N ey |
1 2 3 4 5
Wy
Wy
Fic. 43. Friction parameter vs. velocity ratio for different Mach numbers for
adiabatic flow in a straight pipe.
300 .
M=0050]| /
y
- /
/‘
/
4
200 / 0.060 ,,/
—_, A
1V /
Zla / 0070 | /
| /]
[ !/ i 0.080 | /1
AT 0000 |/
e
P 0.100} P
| o125|
0.150)'/r/
O.Eﬂjg_,_r
00 2 4 6 8 10 12 14 16 18
W,y
e |

Fie. 44. TFriction parameter vs. velocity ratio for different Mach numbhers for
adiabatic flow in a straight pipe.
141



142 PRINCIPLES OF JET PROPULSION [Chap. 3

26. Limifing Conditions for Adiabatic Flow with Friction

The equation for the condition of the fluid as it flows along the
pipe, equation 172, does not hold in the neighborhood of p = 0; in
fact, it is true down to a definite limiting pressure $r.” This arises
from the fact that the friction loss in the pipe cannot decrease to zero
except at the exit end of the pipe. Beyond this location, owing to
the absence of wall friction, it is possible for the gas to expand isen-
tropically to lower pressures than the limiting pressure $z. The
value of pr, and the corresponding value of vz, can be determined
by equating the slopes of the isentropic condition curve pv* = con-
stant and that of the actual condition curve equation 161 at the
state point corresponding to the coordinates py and z;. Following

E—1{G\
the method of references 7 and 49, let & = —2;%— -) , then equa-
tion 178 becomes, on solving for p,
I
potT T (186)
v
and the slope of the curve is given by
d Y by ?
_15’=_@11+ 1)—-6 (187)

do 7°

For the isentropic expansion beyond $z, differentiating % = con-
stant gives

d k
@ _ _cP (188)
ay g
Hence, substituting the limiting conditions 7 and oy,
k 7 by, 2
PL=PII‘[; S (189)
UL 21,
from which
9, 4+ by bur?
pruog, = DL TN 0L (190)

k k

This value of 2rv;, must be equal to that obtainable from equation
186. Combining equation 186 with equation 190 and solving for
the ratio of specific volumes, the result is

- () (4 2)
— ) = —— )1 == 191
EF1) E+1 + buy (191)
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k—1 2 B —1fw)\?
Substituting ford = —— @ = (wl> ,and ai® = gkpo:,

ng Egk i
into equation 191 gives the following equation for the specific volume
ratio
or, Wr {k—1[1+ 2 ]}%
e = e 192
v Wy E+1 (2 — 1)11,2 (192)

The pressure ratio fr/p1 is obtained in a similar manner # by

E—1 2
solving equation 190 and substituting for & = >, (wl) and
-:'Ia]_2 = gkpl‘ﬂ'l. Thus .

o )
— = M* 14 193
P VNI AT VRS (193)

Since the ratio G/4 = w/v is constant throughout the length of
the pipe, it follows that

wr, o,
— = - (194)
@ |
Hence, equation 192 gives the ratio of the limiting velocity wy to
the initial velocity wy, as well as the specific volume ratio.
The acoustic velocity at the exit from the pipe is given by

ar = Vikgprvr = \/kgﬁ’lﬂl PivL _ aq \)EEE (195)
P10 h2akh!

Substituting for v;/? and $r./f: from equations 192 and 193,
respectively, into equation 195, the following equation is obtained
for the acoustic velocity at the exit section

BN
L P (& — 13,2

Equation 196 is the same as equation 192 for the limiting velocity @y,
for irreversible adiabatic flow. This signifies that as the gas flows
through the pipe its pressure decreases until the gas attains a velocity
corresponding to the acoustic velocity for the local pressure and
specific-volume conditions. Any further reduction of the back
pressure into which the pipe discharges has no effect on the gas
velocity.

The limiting values of the ratios wr/wy = v1/vy, and pr/p1 for
air, plotted as functions of the entering Mach number for adiabatic
flow with friction, are presented in Fig. 45.
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[t is apparent from these curves and the discussions of the preced-
ing sections that where gases are transported at high velocities in
ducts great care must be exercised in their design. As discussed in
connection with the flow through nozzles, the maximum weight rate
of flow through a duct is attained when the local acoustic velocity is
attained in any section perpendicular to the main direction of flow.
This has an important bearing on the design of the flow passages
for gas turbines and thermal jet engines,® and an analysis of the
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F1c. 45, Limiting velocity and pressure ratios for adiabatic flow in a straight
pipe as functions of initia! Mach number.

flow path to determine the Mach numbers under the different flow
conditions is essential if “choking’’ of the flow at some point is to
be avoided.

27. Isothermal Flow in Pipes with Friction

The dynamic equation for the flow of a compressible fluid in a

pipe is given by equation 157, which is repeated here for convenience.
Thus, with m = D/4

J +1(G)2d+2f(6)2ﬂ2d -0 197
v dp \7 o do .\ D:JG—- (197)

For isothermal flow the Reynolds number remains constant since the
dynamic viscosity is a function mainly of the temperature. Hence,
the friction coefficient f is also constant. The equation of state is

pv = Constant

di de
—P— = — — (isothermal flow) (198)
v

or
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The continuity equation gives the relationship

dw dv
S, (199)
Substituting {(G/4)* = (w/v)? into equation 197
1 _dv  2fwf
vdp + ~ 2’ — 4 ——dx = 0 (200)
g o g D
or
w*p? (dv dx
pap -+ —+2f-~> = 0 (201)
oy \ v D
Substituting for dv/v = d‘w/ 2 from equation 199 gives
go ap
2 4— *% zf——-“-o (202)

Combining equations 198 and 199 with equation 202 as is done

in reference 19,
gpv fdp dp dx
__P; (...) — = 4 2f—=0 (203)
we NP P D
The limiting values of # = $7 and w = wy occur when fdx/D = 0.
Substituting, fdx/D = 0 into equation 203 shows that at the limit-
ing condition

or the limiting velocity is given by
wy = Vgpror = ar/Vk (204)

This equation indicates that the maximum attainable velocity
with isothermal flow wy is less than the acoustic veloaty.

The pressure ratio corresponding to the limiting velocity is ob-
tained by combining equation 204 with the continuity equation and
the equation of state. Thus

L _ E"—I.__-_wlw/_ ;VE (205)

1 v WL

By combining the continuity equation, the equation of state, and
equation 201, letting ] == x» — #y, integrating, and rearranging as
is done in reference 19, the result is

= 1 — | — — 2 log, 200
D B b % \p, (200)
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28. Effect of Friction in Gas Flow

1t has been pointed out in preceding sections that the heat gen-
erated in overcoming frictional resistance to flow goes into heating
up the gas. This heat increases the random motion of the gas
molecules and increases the entropy of the gas. The energy converted
into friction decreases the available energy as illustrated in Fig. 6.
The available energy decrease 1s given by

1 ]
Tds =—FEp =—4d 207
7 F 7 P (207)

where dpr is the pressure drop due to friction.
The entropy increase can be expressed in terms of the Mach
number by applying the method of reference 34. Thus, from equa-

tion 207
v
ds = —d 208
T br (208)

The pressure drop dpr, due to friction, in the distance dix is from
equation 7a, given by

d U Yo (200)
el ma i W w ——
br = RT 2m
Combining 208 and 209 and substituting M* = w*/gkRT
R kdx
ds =—M 2 (210}
J 2m
. fkdx :
Substituting for ; from equation (169)
7
R _, (1 — M3 dM
ds = 7 M — (211)

]

The rate of change in the entropy of the gas with Mach number,
ds/dM, is accordingly

ds R (1 - M*%

dM J E—1
a| () e 1]

Equation 212 illustrates an important effect produced by frictional
resistance to flow. Thus, when M = 1 the derivative ds/dM = Q,

(212)
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which means that this is the condition for the maximum value of
the entropy. Since all natural processes tend to approach the con-
dition for maximum entropy, as pointed out in Section 4, the fore-
going signifies that, in flow with friction only, the velocity of the
gas tends to reach the local acoustic value,

29. Diffuser Action or Compression Flow

Diffusers are of importance to all types of propulsion equipment
which induct air from the atmosphere. For bedies moving through
the air at either subsonic or sonic speeds the function of the air
intake system is to decelerate the air with the minimum of friction
so that a large portion of the ideal pressure rise will be recovered.
In air intakes moving at supersonic speeds the phenomenon is com-
plicated by the formation of shock waves at the entrance. The
discussions here are limited to diffusers for subsonic air flow.

The problems of diffusion arise in the intake air systems of aircraft
engines, in the discharge passages from high-speed rotary compres-
sors, and many other applications. Diffusion as a flow process is
not as efficient as the reverse process, the expansion of a gas to secure
high velocities.

(¢) Ram Efficiency. The final pressure attained in the diffuser
outlet is termed the ram pressure, and the ratio of the actual pressure
rise effected by the diffuser to the ideal value is called the ram effi-
ciency nr. If Py is the static pressure of the entering air, the ideal
pressure rise, Ap’, is given by

AP =Py — 1 (213)

where #; is defined by equation 44.
The actual final pressure is ps < £:, so that the actual pressure
rise Ap = ps — p1. The ram efficiency is accordingly

A ——
e (214)

Ap" P — P
The temperature rise in the diffuser is determined likewise from
equation 44. It should be noted, as pointed out in reference 29, that
the expression for the ideal temperature rise

Ty E—1 5
=-—=14—]M;
T 2
is applicable to the processes of bringing a free stream of gas to
stagnation either isentropically or after traversing a shock wave.
This means that ® depends only on the initial Mach number.
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(b) Effect of Friction on Diffusion Process. It can be shown that
the velocity gradient for a flow passage is given by

de 1 — M2

dw i (fkﬂi’g i dA)
2m A dx

(215)

If the cross-sectional area of the passage is constant throughout
‘ts length, 44 /dx = 0, and the velocity gradient dw/dx is positive
if the flow is subsonic (M < 1). Conversely, if the flow is supersonic
(M > 1) the velocity gradient is negative.

For a divergent passage, dd/dx is positive. Consequently, if
the gas enters the diffuser with subsonic velocity, the condition for
the accomplishment of a Alow compression is that

1d4  fEM*
—— >
A dx 2m

(@)

Since the friction factor f has, in general, a value of approximately
0.005, so that the friction term tends to be smaller than the area
term, the divergent passage with subsonic flow tends to produce a
flow compression {negative velocity gradient). The effect of friction
is to oppose this action and will prevent diffusion when

1dd fEM?

:4_ dx 2m (&)

If # is the radius of the cross section of a conical diffuser,3 then
A = x* and m = r/2. Hence

ad d4d dr ar
= moe Do — (¢)
dx dy dx dax
and
idd 2dr
—— = @)
A dx ¥ dx

where dr/dx is the tangent of the angle made by the diffuser wall and
the longitudinal axis of the passage.
For a subsonic conical diffuser, therefore, there will be no diffusion

when
dr  fRM?

dx 2 @)
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It is scen from the above that the effect of friction, in a subsonic
diffuser, is to accelerate the gas velocity and oppose the normal
diffusion action. In the interests of securing the greatest possible rise
in pressure, the friction should be kept as small as possible.

(¢) Energy Efficiency of Diffuser. The efficiency of the diffuser on
an energy basis is that fraction of the kinetic energy which is con-
verted into pressure rise. It can be determined by comparing the
kinetic energy which would be obtained by expanding the diffused
gas back to the entrance pressure with that obtainable from an
expansion from the 100 per cent ram pressure $;. Since no work is
removed from the gas, the stagnation temperature 7 is the same
for both expansions. Hence

np ==

E1

1 — (pi/P2) *

h—1

1 — (p1/Pe) *
k-1

Multiplying the numerator and denominator by (p:/py) * gives
the following equation

(216)

k-1 k-1
B P
- (/1) u@t/?ﬂ) (217)
(pe/t1) & — 1
Substituting from equation 44 into equation 217
7 k-1
)
93p = 1 — 5 [(E) - 1} (218)
(k - 1).31»'.{ _'p2
For normal air with 2 = 1.395 this becomes
< 06 k—1
5. AN
= ) — I] 219)
w M2 |:(;§’33 (

In this last equation M is the Mach number of the air at the entrance
to the diffuser.
1
Let Zp = (p3/p2) ® — 1; then the efficiency equation becomes

2 5.06
'ﬂD=1“(k_1)MEZD“1—7u2f"‘(ZD) (220)

ExaMpLe. Air enters a diffuser at 520 R and 14.7 psia. Its entrance velocity
relative to the diffuser walls is 600 fps. The design of the diffuser is such that its
energy efficiency is 0.8. Calculate the air pressure at the discharge section.
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Solution.

My = —2L = 0535 and M = 0.281

V ghRTy
From equation 45
Ze = 019757 = 0.0535

From Table 45

by = 12194
From equation 220
5.06Zp
0.8 =1 ~ =1 — 18.02
0.281 v

18.0Zp = 0.2 sothat Zp = 0.0111

Hence from Table 4-5

2t _ 1,040

P2

po = 1.161py
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Chapter Four

THERMODYNAMIC PROPERTIES OF AIR

1. Introduction

The working fluid emploved in gas turbine power plants and
thermal jet engines, regardless of the cycle adopted, consists mainly
of heated air containing a small admixture of combustion products
derived from the combustion of the fuel utilized to raise the tempera-
ture of the air. In analyzing the various cycles which hold promise,
either for gas turbine propeller-drive propulsion plants or for straight
thermal jet propulsion, the thermodynamic properties of the working

| L Gy (fuel)
’\/ T
- 4

= S

G, (air =G,
(i) Compressor Turbine | Cat Gr =G

Diffuser I
Combustion chamber

Fic. 1. Principal components of a thermal jet engine.

fiuid enter. Consequently, thermodynamic data pertaining to the
working fluid must be available so that the thermodynamic relation-
ships can be calculated with reasonable engineering accuracy.
Figure 1 illustrates an elementary form of thermal jet engine. The
quantity of air G, Ib/sec enters the diffuser wherein its pressure is
raised before it flows into the compressor. The compressor raises
the pressure of the air still more and then discharges it into the com-
bustion chamber. Here, a fuel is introduced at substantially ambient
temperature and burned under practically isobaric conditions, thereby
raising the temperature of the working fluid to the desired value,
The hot working fluid leaving the combustion chamber consists
of a mixture of heated air and the products of combustion of the
fuel with a portion of the air. The mixture contains a large excess
153
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of air, usually between three and seven times the quantity required
to burn the fuel completely. No serious error is introduced, there-
fore, if it is assumed that the fluid entering the turbine is entirely
heated air. In the turbine the working fluid expands, converting
thermal energy into mechanical work. The turbine is so designed
that it furnishes exactly the amount of work needed to drive the air
compressor. The turbine exhaust gases are then discharged through
the exhaust nozzle.

Several variations of the above arrangement are possible. For the
present, however, it should be noted that the main thermodynamic
processes involved are compressions and expansions. If each com-
ponent of the thermal jet engine were an ideal piece of apparatus,
the compression and expansion processes would be isentropic. Owing
to various heat and friction losses, the actual processes are not isen-
tropic.

The exact analysis of any cycle should take into consideration the
effect of the fuel-air ratio as well as the variation in the specific heat,
but since the former is small, it can be neglected without introducing
any sensible error; this is equivalent to assuming that the working
fluid is dry air. The effect of temperature on the value of the
specific heat of alr, however, should, in general, be taken into
account.

The purpose of this chapter is to discuss some of the thermo-
dynamic properties of air, to present data concerning its specific
heat, and to describe methods for taking into account the variation
of the specific heat when analyzing thermodynamic processes.

2. Deviation of Air from Perfect Gas

If air were a perfect gas, it would behave in accordance with the

characteristic equation for perfect gases discussed in Chapter 1.
Thus

v
?"&':RT or '}—25121 (1)

Equation 1 assumes that the specific heat of the perfect gas is a
constant. For air, this law does not hold exactly, although for most
gases it is followed with sufficient closeness for engineering compu-
tations. The major discrepancies arise from the fact that the value
of the specific heat of air is not a constant but is affected by both
pressure and temperature. Table 4-1 presents data taken by Hol-
born and Otto showing the degree to which air deviates from the
perfect-gas law.! More exact equations of state are those of Beattie
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and Bridgeman;' see also references 18, 24, 25, and 26. For data

on the deviation of other gases from the perfect-gas law see
reference 2,

TABLE 4-1
VALUES oF pv/RT rom AIR
{(Holborn and Otto, Zeut. Physik, Bd. 33, 1935)

Abs Pressure Temperature, °C
kg/cm?  psi 0 50 100 150 200
0 (1 1 1 1 1 1

10 142 0.9945 0.9990 1.0012 1.0025 1.0031
20 284 9895 09984 1.0027 1.0051 1.0064
30 426 L9851 0 9981  1.0045 1.00%8  1.0Q97
40 568 9812 0.9982 10065 1.0108 1.0132
50 710 9770 0.9986 1.0087 1.0139 1.0168
60 852 9751 0.9993  1.0112  1.0172 1.0205
70 9% (9730 1.0004 1.013% 1.0206 1.0243
80 1136 9714 1.0018 1.0169 1.0242 1.0282
90 1278 9704 1.0036  1.0201 1.0279 1 0322
100 1420 9699 1.0057  1.0235 1.0319 1.0364

Examination of Table 4- 1 shows that the deviation in the behavior
of air from the perfect-gas law is influenced by the predominating
pressure and temperature. It should be noted that, since the specific
heat at constant pressure ¢, is not constant, the specific heat ratio
E = c,/¢, 1s also a function of the pressure and temperature,

The range of operating pressures for thermal jet-propulsion engines
and gas-turbine power plants, as judged by the pressure ratios obtain-
able with light-weight compressors at this time, is between 50 and
100 psia. In this pressure range the effect of pressure on the specific
heat ¢, and on the specific heat ratio % is so small that it can be
ignored. This is readily apparent from the data in Fig. 2, which
presents the instantaneous values of ¢, in Btu/Ib F and the specific
heat ratio 2 = ¢,/¢, as functions of the air temperature in degrees
Fahrenheit for different constant pressures.®

It is seen from Fig. 2 that for pressures below 150 psia the specific
heat ¢, and the specific heat ratio & can be assumed to be defined
by the curves for zero pressure. At a temperature of 0 F and zero
pressure the value of ¢, is 0.240 Btu/lb and the corresponding value
of B = cp/c, = 1.40. 1t is seen that for the temperature range 0 F
to 4000 F the effect of moderate pressures can be ignored, but the
effect of temperature is appreciable.
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Assuming that the curve for p = 0 is applicable, it is seen that ¢,
changes from 0.24 at O F to 0.275 at 1300 F, an increase of 15 per
cent. As the temperature is increased, the wvalue of ¢, increases
almost linearly at the rate of 0.015 Btu/lb/1000 ¥. Since the work
of either a compression or an expansion process varies directly with
¢p, the actual mean value of ¢, for the temperature range involved

should be used.
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F1G. 2. Specific heat and specific heat ratio for air at different pressures as a
function of temperature. (Reproduced from F. O. Ellenwood, N. Kulik, and
N. R. Gay, Cornell Univ. Eng. Expt. Sta., Bul. 30, October 1942,)

3. Data on Specific Heat of Air

The most recent measurements of the instantanecus values of
specific heats of gases, and also those considered most accurate, are
due to Professor R. 