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Preface

This book grew out of a series of lectures on mechanics given to first-
year science students at Monash University over a number of years.
Though the name of only one author appears in the book, many of
my colleagues and co-lecturers contributed ideas and treatments of
topics over the years. Professor W.A. Rachinger set up an ‘ideal’
syllabus for the course, and with the passage of time some of this was
pruned and some topics were added, but the ‘core’ remained. My co-
lecturers have been Dr A.P. Roberts, Mr R. Turner, Dr K. Thompson,
and Dr J. Cashion; and Dr H.S. Perlman and Dr L. Francey have often
given aid in valuable discussions. One should not forget the students
either; on occasions their penetrating questions and location of errors
have indeed been helpful. Finally, I should like to thank my hosts,
Professor UM. Palma and Professor I. Cicarello at the Istituto di
Fisica dell’ Universita, Palermo, Sicily, where this book was written
‘in santa pace’ during a period of study leave.

I have tried to stress the importance of the Galilean Transformation
in Newtonian mechanics; the relation of conservation of quantities to
symmetry; and the use of conservation laws to simplify problems. The
centre-of-mass frame is also used a good deal. Some of the approaches
should remain useful to the reader even when he begins quantum
mechanics, and this has been borne in mind in the writing.

Melbourne 1975 v Gordon Troup
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Intfroductory definitions

1.1 INTRODUCTORY REMARKS

Mechanics is the oldest branch of the exact, experimental sciences, and
was founded as such by Galileo Galilei. In exact sciences the laws are
expressed by mathematical relationships (e.g. polynomial or differential
equations) and the quantities related by the laws must also have precise
mathematical definitions. These quantities are, in general, constructs
of our own minds; the scientific laws enable us to predict what will
happen if we do something to the world, but tell us nothing about what
we might call ‘ultimate reality’.

The physicist today regards length, time, mass, and charge as
fundamental quantities, and derives all other quantities from them.
From length, mass, and time the concept of force may be derived, and
we know that forces can cause the motion, or changes in the motion,
of objects. From this point of view mechanics is a unifying branch of
physics: wherever there are forces and motion, we may use mechanics
to analyze the situation, irrespective of the origin of the forces. We shall
be dealing with so-called ‘classical’ mechanics, and so ignoring the
particular behaviour of matter on the atomic scale. However, a thorough
grounding in classical mechanics is a great help in learning quantum
mechanics; and indeed many principles, such as the conservation laws,
are common to both.

One.problem in setting up a university textbook on mechanics is
that much of the material has been familiar to the reader for many
years, so that he feels he knows it all and thus becomes bored by the
subject. However, familiarity does not imply complete knowledge or
understanding; and there are sophisticated viewpoints and unifying
concepts that the reader will not have met before. In this text we shall
be stressing the Galilean Transformation and Galilean invariance, just
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as the Lorentz Transformation and Lorentz invariance are stressed in
special relativity. We shall also draw examples from many branches of
physics to illustrate the unifying nature of mechanics.

1.2 TIME AND LENGTH

We choose to define an interval of time by saying that we measure it
with a ‘clock’. There are many kinds of clocks, from the water-clock
used by Galilei in his experiments on inclined planes, through familiar
alarm clocks and watches, to the very sophisticated and accurate clocks
which count the vibrations of atoms. Clocks are based on phenomena
which occur regularly, either in fact or ‘on the average’. Thus the
period between sunrise and sunset is regular ‘on the average’, as is the
decay of radioactive atoms; whereas the period of a pendulum of given
length, for example, shows much greater regularity. The unit of time is
the second, which was defined in terms of the ‘mean solar day’ of
twenty-four hours (the definition of the mean solar day is complicated
in the extreme) and is now defined in terms of the number of vibrations
associated with a certain spectral line of the caesium atom. Since we
can make all the different kinds of clocks ‘agree’ on the time-interval
between certain repeatable or regular phenomena, we know how to
measure time-intervals very well. It is clear that we can take an ‘origin’
for our time, and measure the number of intervals after this origin as
positive, and the number before as negative. In general, the choice of an
origin for timing a phenomenon can be madé quite arbitrarily, and we
may choose it where most convenient.

We choose to define the length between two points A and B in a
plane as follows. We take a ruler, apply it to A and B simultaneously,
and note the number of divisions on the ruler lying between A and B.
We associate with each (regular) division on the ruler some unit of
length, and say that the length of the interval AB is the appropriate.
number of units observed. Everyone is familiar with a ruler, which must
have a straight edge; this we may define by using a beam of light, for
example. The fundamental physical unit of length is the metre, defined
either in terms of the standard metre etalon kept in Paris, or in terms
of the required number of wavelengths of light from a certain atomic
transition. This latter definition is regularly reviewed.

1.3 POSITION. CO-ORDINATE SYSTEMS

Once we have defined length, we can pass to the definition of arez and
volume, and to the specification of the position of an object or a
particle. We do this by choosing a frame of reference, and setting up a
co-ordinate system. Our choice of reference frame is in a sense
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completely arbitrary, but we shall see later on that there are particular
reference frames which are much more useful than others. For the
moment, we consider this page of the book as a plane, and presumably
it is stationary with respect to the reader. Then the most familiar co-
ordinate system is the Cartesian one, in which we set up (in this plane)
two lines at right angles to each other. The common zero (origin) is
taken as the intersection of the lines, and we label these axes x along
the page and y up the page; units of length to the right of the origin 0
along Ox are considered positive, to the left, negative; units along Oy
above O are considered positive, and below, negative. Thus the point
P in figure 1.1 is at x = 3, y = 4, and the point Q, at x = =2,y =
-3.

4
T
- — —— — ———

-
-
Y

— e —— o— o
.
T

ab———}

Fig. 1.1 A plane Cartesian co-ordinate system

Now Euclidean geometry tells us that the length of OP is 5 units;
and if we measured it, we should find that this was so. It is an
experimental fact that space i3 Euclidean to a very good approximation,
from distances as large as those between stars to distances as small as
those between atoms in a solid. This is quite a remarkable experimental
fact which the reader may not have contemplated before. We are not
talking about distances measured on curved surfaces, such as a sphere
or a saddle, but in three dimensions, defined below.
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We may also specify the position of the point P by quoting the
length OP, taken always as positive, and the angle between OP and Ox,
measured anticlockwise from Ox to be positive (angle is defined in
terms of lengths). Such co-ordinates are called polar co-ordinates, and
we shall find them useful later on in problems involving circular motion.
If the position of a point is (x, y) in the Cartesian frame, the position in
polar co-ordinates is defined from

OP =1 = [x*+y*]?
= X
cosf = r
sing = ¥ (r.1)

So are we have confined ourselves to two dimensions. To describe
the position of a point in three dimensions, we erect another axis
through the origin, perpendicular to both the x and y axes, and call it
.the z axis. The convention for the positive part of the z axis is as
follows: if Ox is rotated towards Oy, the direction of travel of a right-
handed screw is the positive direction of the z axis (figure 1.2). We
find similar situations if we rotate Oz towards Ox, which gives the
positive part of the y axis, and Oy towards Oz, which gives the positive
part of the x axis. This is known as a right-handed system of Cartesian
co-ordinates; we shall be concerned only with right-handed systems in
this text.

I}Z

X

Fig. 1.2 Right-handed Cartesian co-ordinates. If Ox is rotated
towards Oy, the direction of travel of a right-handed screw
is along Oz



The distance r to a general point P(x, y, z) is again given by
2 =x% +y? + 22, and it is in this sense of the use of three mutually
perpendicular axes that space is Euclidean.

There are two other important things about space which we know
from our own experience. If we take a figure, or an object, and transilate
it to a new position, the figure or object does not change its shape. Nor
does the figure or object change its shape when we rotate it to a new
position. In this sense space is invariant under translation and rotation.
We believe in this so much that if we perform an experiment with a
piece of apparatus and then translate it or rotate it to a new position,
and do not get the same results, we start to search for the effects (e.g.
force fields) which may have caused this lack of symmetry.

Since all our work in this book will be confined to two dimensions,
we shall not need polar co-ordinates in three dimensions. There are
many other kinds of co-ordinate systems which are useful in the
solution of particular problems — for example, if we wanted to solve
the problem of a vibrating elliptical membrane, it is convenient to use
ellipsoidal and confocal hyperboloidal co-ordinates, but we shall not be
concerned with them.

1.4 SCALARS

We call quantities that are represented by a number only (which may be
positive, negative, or zero) scalar quantities. Thus length is a scalar
quantity, and we shall see that mass is also; another example is
temperature. Another characteristic of a scalar is that its value at a
given point is independent of the co-ordinate system used to calculate
it. A scalar having the same algebraic form in all co-ordinate systems
is called an invariant. The length of some line with end points
P(x,y,z)and Q(x',y', z') will have the form

g={(x-xP+(y-y )y +@-2)}? (1.2)

in all co-ordinate systems, so it is an invariant. Nevertheless, it is a
function of the position of P, say, so there is nothing to stop a scalar
being a function of position. The temperature at various points in a
vessel containing water that is being heated is another example of a
scalar which is a function of position.

1.5 VECTORS. DISPLACEMENT

It is convenient to introduce the idea of a directed length. Consider the
point P(x, y) and the line OP joining it to the origin O (figure 1.3). We
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Fig. 1.3 Displacement

define a quantity called the displacement of P, and say that it has the
magnitude of the length OP, the direction of OP in space, and the sense
of passing from O to P. We observe that the point P'(—x, —y) would
have a displacement exactly similar to OP in magnitude and direction,
but the sense is now reversed. Quantities requiring the specification of
their magnitude, direction, and sense are called vector quantities. They
obey the triangle law of addition: the vectors A, B, and A + B are shown
in figure 1.4. A - B is defined as A + (-B), and from our foregoing

Fig. 1.4 Vector addition and subtraction



illustration it is clear that -B has the magnitude and direction in space
of B, but the reverse sense. This is illustrated in figure 1.4. Multi-
plication of the vector A by the positive scalar a gives a vector having
the same direction and sense as A, but having a magnitude a |A|, where
|Al = A is the magnitude of A. A negative scalar will also change the
sense of the vector.

Let us call the displacement vector OP of figure 1.3 the vectorr. It
is clear that if we take a vector of magnitude x with the direction and
sense of the positive x axis, and add to this a vector of magnitude y
with the direction and sense of the positive y axis, we obtain r.
Symbolically,

x+ty=r

But we know that x = r cos 8, where 0 is measured positively anti-
clockwise from Ox. We say that the vector r has the components x and
y along the directions Ox and Qy respectively, where the magnitude of
the component is given by the product of the magnitude of the original
vector r, and the cosine of the angle between r and the particular
direction. r is said to be ‘resolved into its x and y components’.

The concept of a unit vector is often useful. We shall denote unit
vectors by a circumflex over the bold-face symbol: thus A is the unit
vector (vector of unit magnitude) in the direction and sense of A.
Clearly, A = AA. The exceptions to this notation will be the unit
vectors i, j, and k along Ox, Oy, and Oz respectively; note that the
vector r of figure 1.3 is given by

r = xi+yj+ 0k
and P =x*+y*+0

There are other useful vector operations, notably the scalar and
vector products of two vectors. The scalar (or ‘dot’) product A.B is de-
fined by

A.B=ABcosf 1.3)

where 2 is the angle between A and B. We note that A.A = A?, so that
ii =jj=kk =1; and that A.B = O if A is perpendicular to B, so that
i.j=jk =k.i=0, and therefore

(ali + azj + a3k). (b| i+ sz + bak) =a;b; +a,b; + asbs (14)
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The vector (or ‘cross’) product is defined by the determinant

(a1i+azj+azk) x(bii+byj+b3k)= i j k (1.5)
3 a a3
bl b2 b3

ie. AxB=ABsind i

where 1l is a unit vector perpendicular to A and B, such that its sense is
given by the travel of a right-hand screw when A is rotated to B by the
shortest route. We note that A x A = O and hence

ixi=jxj=kxk=0 (1.6a)
and ixj=k,jxk=ikxi=j (1.6b)

which last is a vector statement of our right-hand-screw rule for setting
up a right-handed Cartesian co-ordinate system. Note that A x B =
—B x A, i.e. the vector product is non-commutative. The scalar and
vector products will be useful to us later on in the mechanics syllabus.

We saw in section 1.4 that we can have a scalar which is invariant,
i.e. its form is always the same in any (Cartesian) frame; an example is
the magnitude of a vector. We can also have vector invariants; for
example, the difference A — B between two vectors will have the form
{(xa -xp) it (ya-yp)it(za -1z k} in any Cartesian frame,
although the origins and axis directions may differ.

We have, in this section, chosen to regard a vector quantity as
analogous to a directed line element: something requiring the specifica-
tion of magnitude, direction, and sense. Vectors may also be defined in
terms of the way their Euclidean components transform from one
stationary Cartesian set of axes to another; this is discussed in Appendix
1. These transformation properties then lead on to more complicated
quantities like tensors, with which we shall be very little concerned.
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1.6 AVERAGE AND INSTANTANEOUS VELOCITY

Consider a point P whose displacement r from the origin O is a function
r(t) of time t, so that P traces out some path or trajectory in the x-y
plane (figure 1.5). Then if the displacement of P at time t; is r,, and
the displacement at t, > t, is r,, the average velocity v of P is defined

by

r; — 1, _ vector change in displacement
t, —ty time taken .7

V=

T
r(t) e

r(t,)

Fig. 1.5 Average velocity

It is vital that the reader remembers this definition, and does not
become sidetracked by the plausible but incorrect idea of ‘average
velocity’ as the sum of the ‘initial’ and ‘final’ velocities divided by 2.

From the definition, average velocity is clearly a vector. If we write
r, —r; =Ar, t, —t; =At, we obtain ‘

V=

(1.8)

=43
-t
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We now proceed to the limit At-0, and thus obtain the instantaneous
velocity v

wt) = &0 - iy 220 (1.9)

At-0 At

which has the magnitude of dr/dt and the direction and sense of Ar in
the limit A t » O for the time t. Consideration of figure 1.5 will show
that v(t) is tangential to the path at any time t. The magnitude |dr/dt|
of the instantaneous velocity v = dr/dt is called the speed, and is clearly

a scalar. v is a vector, and may be resolved into components, for
example, as required.

1.7 AVERAGE AND INSTANTANEOUS ACCELERATION

vi(t)

Av =v;— v,
Ya(ts)

Fig. 1.6 Average acceleration. This diagram is in ‘velocity-space’;
the directions of v, and v, are taken from the path of
Fig 1.5

In a similar fashion we define the average acceleration a as

= _ Y2 -Vi _ change in velocity
37§ -1, 7 time taken (1.10)

where the point P had velocity v, at t =t, and velocity v, att=t, >t,
(figure 1.6). Writing v, - v, = Av,and t, - t, = At, and proceeding to
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the limit At » O once more, we obtain the instantaneous acceleration a,

dv . Av
a =3, = lim ~ 1.11
dt At-0 At ( )
d?r
=ie (1.12)

from equation (1.9).

We note that although the instantaneous velocity is always tangential
to the path traced out by the moving point P in the x-y plane, we can-
not make any such general statement concerning the acceleration. The
relationship of the acceleration to the path depends on the form of the
acceleration and the kind of motion. However, if we consider the path
traced out in velocity space by the tip of the velocity vector, it is clear
that the acceleration vector will always be tangential to this path.
Figure 1.6 is plotted in ‘velocity-space’.

Having defined displacement, instantaneous velocity, and instantan-
eous acceleration, we could pass now to the study of kinematics —
motion per se of a particle — without enquiring into the ‘cause’ (e.g.
forces). But it is preferable to arm ourselves with two further principles
and definitions before we do, because our study of kinematics will be
much more powerful and will have more insight.

CHAPTER 1 PROBLEMS

1.1 A particle moves clockwise in a circle with uniform speed v;
the co-ordinate axes are as shown in figure 1.1p.

Fig. 1.1p
14




1.2

1.3

The particle is initially at 0, and reaches the point A after time
T. In terms of 1, v, and unit vectors i, j, write down the following
quantities:
(@) The displacement from the origin of the particle at A
(b) The average velocity vector of the particle over the path
fromOto A
(c) The average acceleration vector over the same path

For general motion of a particle in a plane, which of the following
statements is correct?
(a) The displacement vector is tangential to the path:
(i) always.
(ii) sometimes.
(iii) never.
(b) The velocity vector is perpendicular to the path:

(i) always.
(i) sometimes.
(iii) never.
" (c) The acceleration vector is perpendicular to the path:
(i) always.
(ii) sometimes.
(iii) never.

The equations of motion of a particle moving in a plane are

—10t + 30t2
—15t—20¢t?

X

y

(a) What are the x and y components of the acceleration?
(b) What are the x and y components of the initial velocity?
(c) Plot on the grid provided in figure 1.3p the path of the
particle for t > 1.
(d) At large values of t the motion is approximately
(i) circular.
(i) elliptic.
(iii) in a straight line.
(iv) none of these.
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Fig.‘ 1.3p

1.4 A particle of mass m kg moves in the horizontal circle ABCD.
The points B and D lie on the north-south diameter of the
circle and A and C lie on the east-west diameter (figure 1.4p).

The particle transverses the semi-circle ABC at the speed of
10 m/sec and then traverses the semi-circle CDA at a speed of
20 m/sec. The radius of the circle is 50 m.

(a) What is the magnitude of the average velocity vector of the
particle over the path ABC?

(b) What is the direction of the average velocity vector of the
particle over the path ABC?

o}

Fig. 1.4p 8
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1.5

1.6

©

(d)
©

What is the magnitude of the average velocity vector of the
particle over the path ABCDA?

What is the magnitude of the acceleration at point D?
What is the direction of the acceleration at point D?

A particle moves in the x-y plane. Its position co-ordinates at time
t are given by

X = 16t
y = 8t?

where x and y are in metres and t is in seconds.
Answers to the following questions sh .uld be numerical or in

terms of t.

(a) What is the position of the particle at t = 0?

(b) What is the position of the particle at t = 2 sec?

(c) What is the direction and magnitude of the average
velocity vector for the period t =0 to t = 2 sec?

(d) What is the value of the x component of velocity at time t?

(e) What is the value of the y component of velocity at time t?

(f)  What is the speed of the particle at t = 2 sec?

(g2) At what time is the kinetic energy of the particle a
minimum?

(h) What is the magnitude and direction of acceleration at time
1?

(i) What is the radius of curvature of the path of the particle

att=0?

A particle moves clockwise in the circle shown in figure 1.6p with
uniform speed v. At time t = 0, the particle is at P. Answer the
following questions.

(@
(b)
©
(d)
(e)

®

@@

What is the angular speed of the particle about C?

After how long does the particle first reach Q?

What is the displacement vector of the particle at Q?

What is the velocity vector of the particle at Q?

What is the average velocity vector of the particle over the
path P » Q? '

What is the average acceleration vector of the particle over
the path P+ Q?

What is the instantaneous acceleration vector of the particle
at Q?

17
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Fig. 1.6p

1.7 A particle starts from O at time t = 0 and moves with uniform
speed anticlockwise around the circle OBCP shown in figure 1.7p.
The angular velocity about the centre of the circle is w.

. o Ax
Fig. 1.7p attimet - 0
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Answer the following questions in terms of w, a, and the unit
vectors i along Ox and j along Oy.

@
(®)
©
(d)
©

®

Fig. 1.8p

How long does one revolution take?

What is the displacement vector of P from O?

What is the instantaneous velocity vector of the particle at
P?

What is the average velocity vector of the particle over the
circular path OBCP when the particle first reaches P?

What is the instantaneous acceleration vector of the particle
at P?

What is the average acceleration vector of the particle over
the circular path OBCP when the particle first reaches P?

1.8 Two identical gear wheels A and B, each of radius R, mesh
together, as shown in figure 1.8p. Wheel A is fixed in position at
the origin of a set of co-ordinates and does not rotate. The centre
of wheel B rotates about the origin in an anticlockwise direction
with angular velocity w. C is a spot of paint on the rim of wheel
B. At time t = 0, C is at position vector

r = BRi+0j) or 3R,0)

Write down expressions for the subsequent vectors:

(@
(®)
©

The position vector of C at time t

The velocity vector of C at time t

The average velocity vector of C between the times t = 0
andt=t

19



1.9 A wheel of radius 1, rolls without slipping along a horizontal
road in the +x direction. The +y direction is vertically upwards,
measured from the road surface (figure 1.9p). A nail in the rim of
the wheel is at the point r=0 at time t = 0.

N\

Fig. 1.9p

20

Using Cartesian co-ordinates write down analytic expressions for
the following functions of time.

(2)
(®)
©
(d)
©
®

®

The position vector r(t) of the nail

The velocity vector v(t) of the nail

The acceleration vector a(t) of the nail

The magnitude of the velocity {v (t)| of the nail

The magnitude |a(t)| of the acceleration of the nail
The average velocity vector v (t) of the nail, taken over a
long time

The average acceleration vector a(t) of the nail taken over a
long time



2
Kinematics

2.1 INERTIAL FRAMES. GALILEAN TRANSFORMATIONS

We now come to the question of which frames of reference are the most
useful or suitable in mechanics. The laws of mechanics are in fact
related to and formulated in the set of frames known as ‘inertial frames’.
An inertial frame is one in which the inertial principle of Galilei and
Newton holds true, i.e. that a body will remain at rest or continue with
uniform velocity in a straight line unless it is compelled to change its
state of rest or uniform rectilinear motion by some external influence.
This principle was an idealization by Galilei from the results of his
experiments in rolling spheres down inclined planes. If a test body
which is apparently not acted on by outside influences accelerates, the
frame is not inertial.

We shall see later on that an inertial frame is also an idealization to
some extent, since any frame which is accelerating cannot be truly
inertial. But ‘approximately inertial’ may be good enough for many
experiments. Thus a frame attached to a physics laboratory on the earth
is only approximately inertial, because the earth is rotating about its
axis and about the sun. But we can conceive of a series of frames at rest
with respect to the fixed stars, and in which no influences such as
gravity act, and these frames should be ideal inertial frames. We then
consider frames moving with uniform rectilinear velocity with respect
to these, and we find that these too are inertial, because a change of
frame does not influence the acceleration of a test body but only
changes the constant velocity of the test body by the velocity of the
reference frame. We come to see this more precisely when we consider
the Galilean Transformation, which enables us to move from a fixed
frame to a moving frame. We recall that the postulates of the Galilean
Transformation hold good only when the velocity of the moving frame
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is very much less than the velocity of light — which is in a great many
classical mechanical situations!

Fig. 2.1 Galilean frames

We consider a frame K at rest with respect to the fixed stars, having
Cartesian axes x, y, and z, and a frame K', with Cartesian axes x’, y',
and z', parallel to x, y, and z respectively; the origins of K and K’ coin-
cide at times t = t' = 0. and K’ is moving with constant velocity V = Vi
along Ox of K (figure 2.1). Then the Galilean Transformation which
relates x', y', and z' to x, y, and z at times t and t' is

X' =x-Vt ()
y' =y (b)
7=z (©)
=t @) 2.1)

and the reverse transformation is clearly

x=x+Vt (3
y=y' ®)
z=2 (©)
t=t' @ 2.2

which we could have obtained by considering K' as stationary, and K as
moving with velocity -Vi with respect to K'. The fact that the times
are unchanged on changing frames we take from experience when V <c,
where ¢ is the speed of light. We do not expect a good watch to lose
or gain time when we travel by train!

22




Now let us derive the transformation laws relating to velocity and
acceleration between K and K'. A velocity component in the x’ direction
in K’ will be given by
dx' _ d(x-Vt) _ dx-Vt)

at’ = dt dt

since from (2.1d) t = t’ and therefore dt = dt’, so that

dx' _ dx

d—t,' = at— -V (2.33)
and the other equations are clearly
dy' dy’ _ dy
id " " at (2.3b)
1} ’ d
g_.tzT -2 (2.3¢)

Let us consider equation (2.3a) further. dx/dt is the x component of
velocity of some object in the frame K; V is the velocity of K'; dx'/dt’
is the x' component of velocity of the object in the frame K', or
relative to the frame K'. We therefore see (or define) that the velocity
of A relative to B is the velocity of A minus the velocity of B. Since
this is the difference between two vectors, it is a vector invariant, and
must have the same form (and for two particular objects, the same
value) in all stationary frames, and further, in all frames related by a
Galilean transformation. This is easily proved from considering equation
(2.3a) for two different objects.

We now derive the law of transformation of accelerations. From
equations (2.3), since dt’ = dt, we have

dt'2 dt?
ey’ _ d%y
dt'z  de?
dt'z  de? (2.4)

i.e. a Galilean Transformation leaves accelerations unchanged. There-
fore a body unaccelerated in the initial inertial frame K is unaccelerated
in all frames related to K’ by a Galilean Transformation, i.e. all frames
related to frames stationary with respect to the fixed stars by Galilean
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Transformations are inertial frames. Since we expect the laws of
mechanics to be unchanged when we go from one inertial frame to
another, we are led to the idea that any law of mechanics, or any
expression that we use to relate mechanical quantities, should not
change its form when its constituents are subjected to a Galilean
Transformation, i.e. the laws should be covariant with respect to
Galilean Transformations. We shall have occasion to refer back to this
principle later on.

We may now collect the expressions of equations (2.1) and (2.3) in a
general vector form. That is, we consider a frame K' defined as
previously moving with a general vector velocity V with respect to K.
Then (2.1) becomes

r r-vt
t =t (2.5)

where r’ is the displacement of an object in K’ and r is its displacement
in K. The velocity transformation becomes

or _dr _y

dat'  dt
and the acceleration is the same in both frames.
The simple Galilean Transformation allows us to move with ease
between frames moving at constant velocity relative to each other. We
shall find this of use in solving problems, as will be illustrated further
on in this chapter.

2.6)

2.2 KINEMATICS

We are now in a position to tackle the study of kinematics, that section
of mechanics which studies the motion of a particle or a system of
particles without enquiring into the cause. A particle is an idealization
from an object whose geometrical dimensions are small in comparison
with its motional path. Thus the earth, in its motion about the sun,
is a very good approximation to a particle, which ideally has no
extension but retains other material properties such as mass and
electric charge, if required by the problem.

There is a sense in which the whole of mechanics is contained in the
definitions of displacement, instantaneous velocity, and instantaneous
acceleration. If we know any one of these quantities as a function of
time, we may determine the other two via the appropriate differential
or integral equations set out below in vector form.
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If r, v, a are the displacement, instantaneous velocity, and instantan-
eous acceleration of a particle respectively, then the appropriate
differential relations are:

dr _ dv _ d’r

Viaw? " & a2 (2.7)

and the appropriate integral relations are
v=fadt+a r=[vdr+p 2.8)

where t is the time and a, B are constants of integration.

The vector equations (2.7) and (2.8) conceal certain facts which the
component equations reveal. For example, taking components along
0x, Oy, and Oz, we must have

_dvy  @%x
& T4t ae
_dVy_dzy
y T @t " ae
dVZ_d2Z
aZ:Tit—_(th— (2.9)

where the v; and a; are the components of v and a respectively along

the directions Oi, i = X, y, z. Equations (2.9) tell us that the x
components of the velocity and displacement, for example, are com-
pletely governed by the x component of acceleration. There are many
problems in which the components of the acceleration are independent
of each other, and have particularly simple forms, so that it is worth-
while to look at the component equations.

It is also worth mentioning here a relationship which may at times
be useful in unravelling problems. It is, taking the x component as an
example:

d [ %
&( 2 )= ax (2.10)
cood ooy oo O dvgr o dvg 1
(s‘“"e ax @Y% TV g TVx G dx X dt vy
which is of use when ay or vy are known as functions of x but not

perhaps of t. The very important one-dimensional equation

a2x _ dvy
=2 = % = _p¥x

ae = dt (2.11)
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where n is a constant, may be solved by this method.

From the foregoing we see that kinematics comes down to solving
differential or integral equations. Important examples are given in the
following sections.

2.3 MOTION UNDER CONSTANT ACCELERATION. PROJECTILES

The first kinematical problem studied experimentally and theoretically
in mechanics (by Galilei!) was that of motion under constant
acceleration. What took him years to formulate takes us a minute or so
because of our knowledge of vector algebra and the integral calculus.
We shall first solve the problem in vector form, and then specialize it
to various important cases.

Consider a particle which suffers a constant (vector) acceleration a
throughout its motion. Therefore its velocity v is given by

v=[adita=at+a (2.12)

where a is the velocity at t = 0. The displacement r is given by
r=fvdt=%at2+at+ro (2.13)

where rg is the displacement at t = 0. These two vector equations con-
tain all the solutions to problems in which a particle suffers a constant
acceleration. There are two important cases. First, we know that the
acceleration due to gravity at the earth’s surface is effectively constant
— this was the system that Galilei studied. A charged particle in a
uniform electric field is also subject to a constant acceleration; this
principle was put to work by J.J. Thompson in measuring the charge-
to-mass ratio of the electron, and is put to work every day in cathode-
ray oscilloscopes. The two problems are identical in terms of the
mathematics used to solve them and the concepts of kinematics; but
the situations and the origins of the forces are quite different. Here we
see mechanics playing its unifying role.

+
Gravitational Accelerati Electrostatic Acceleration
—qj —@j
f uj f uj
[ ] + @

Fig. 2.2 (a) Gravitational acceleration (b) Electrostatic acceleration
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Figures 2.2a and 2.2b schematically illustrate the situations of a
particle subjected to the acceleration -gj due to gravity, projected up-
wards with initial velocity uj + Oi, and a positively-charged particle
between two electrodes subject to the same conditions: the causes of
the accelerations are different. For both systems

dby _dvy _
a  dat & (2.14a)
vy =u-gt (2.14b)

and if we choose that y = O when t = O, we obtain
y = ut - 3gt? (2.14¢)
If we use equation (2.10), we obtain
vy = u? = 2gy (2.14d)

all of which equations are doubtless familiar to the student, together
with their interpretations and solutions. To summarize, the maximum
height of the particle above y = O is reached in a time t = u/g and has
the value u?/2g, the particle reaches y = O at time 2(ufg) with
velocity —u.

If the acceleration exists in the y direction only, this is the solution
to the y components of the motion, irrespective of the velocities in the
x and z directions.

\J

v, Sin 6,

8
Vscos 8,

o

xY¥

Fig. 2.3 The projectile problem
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Consider the two-dimensional problem in which a particle, subject
to the constant acceleration -gj, is launched fromy=0,x=0att=0
with an initial velocity v, = v, cos 0 i + v, sin 0, j (figure 2.3). We can
tackle this problem in two ways.

(1) We recognize that we have solved the y component of the motion
for uj = v, sin 8 j. The x component of displacement is clearly
Xi=v, cosfyti,and we know that the total displacement r is given
by xi + yj at any time; the total velocity is given by v, cos 0,i
t vy sin 6], where vy is given by equation (2.14b) for
u=vysinf,.

(2) Since the x component of velocity is clearly constant, we solve
the problem for all t in the frame moving with this velocity, i.e.
we perform a Galilean Transformation into this frame. The dis-
placement or velocity at any time t in the original frame will then
be obtained from the solutions in the moving frame [i.c. equations
(2.14b), (¢), (d)] via the reverse transformation.

The work involved in both methods is roughly the same. We might
say that method (1) is the ‘mathematical’ method and method (2) the
‘physical’ method, because the idea of Galilean Transformations and
their relation to the laws of mechanics is an idea imposed by physics
and not by mathematics.

By either method, we shall obtain the relations

x = (vgcos O )t

y = (Vo sin 0ot - 38t° (2.15)

in the original frame. The elimination of t from these two equations is
not difficult, so that we obtain the equation of the path of the particle,

_ -, fgsec 8,
y = x(tanf,) +x ( 2 ) (2.16)
which is clearly a parabola.

We have not only solved the projectile problem: a shell fired with
a certain initial velocity and subject to a uniform gravitational accel-
eration; we have also shown, by method (2), that the path of a particle
which moves vertically under constant acceleration in a frame K’ will be
a parabola in a frame K where K' moves with uniform velocity with
respect to K, such that V=V;.
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24 UNIFORM CIRCULAR MOTION

o ]

v P’

(a) (b)

Fig. 2.4 (a) Uniform circular motion (b) Velocity-space diagram

We consider a particle which moves with uniform speed around a
circle of radius r. This means that the magnitude of the velocity at
any instant is constant, but since the path is a circle the velocity can-
not be constant. Therefore the particle is being continuously accel-
erated. We set out to examine the motion by a vector method.

Let the velocity at some instant t be V, and at a later instant t + At
be V', where |V| = |V'| = V. In this time the radius from the centre O
to the particle will have moved through an angle A8 (figure 2.4a). Since
in the limit At » O the arc and the chord become equal, we have

A0 = VAt 2.17)
of, in the limit, V= rg—f = rw (2.18)

where w = dO/dt is the angular speed. Figure 2.4b illustrates the
situation in velocity space: the angle between V' and V must be A8,
since the velocity is always tangential to the path and therefore
perpendicular to the radius in this case. Since [V'| = |V| =V, the triangles
OPP' of figure 2.4a and QRS of figure 2.4b are similar, and therefore
we may write

AV . VAt |
vV ' (2.19)
dV - !2_ - 2

or bl wr (2.20)

in the limit. The direction of AV in the limit is clearly along the
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radius. Thus for uniform circular motion with speed V in a circle of
radius 1, the acceleration a is given by
V2

= w?r where V = wr, 2.21)

la] =
w being the angular speed, and the direction of a is always radially
inwards towards the centre of the circle from the position of the
particle.

We have used a very general vector method to solve this problem.
We could also solve it by using a combination of Cartesian and polar
co-ordinates. In figure 2.5 we have set the circle of radius r with its
centre at the origin of a set of Cartesian co-ordinates, and we show the
particle P at time t with the displacement vector r such that

r=rcosfitrsingj (222)
where 0 = wt and w is a constant angular speed. Hence

dr _ orsin i+ cr cos 0j (2.23)

dt

which has magnitude wr and is at right angles to r with the sense shown.

| Y

Fig. 2.5 Polar co-ordinates
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Finally

dzr_ 2 . 2 . 0. (224)
e T rcosfi-w rsinfj .

= —w?r from (2.22)
and we have the same results as by the general vector method.

25 NON-UNIFORM CIRCULAR MOTION

(a) (b)

Fig. 2.6 (a) Non-uniform circular motion (b) Velocity-space diagram

The particle now moves in a circle, but the velocity V' at time t + At
is equal in neither magnitude nor direction to the velocity V at time t.
The situation in the x-y plane and in velocity-space is illustrated in
figures 2.6a and 2.6b. We observe from the velocity diagram 2.6b that
we may split up the change in velocity V' - V = AV into two com-
ponents, AV, which will be directed inwards along the radius in the
limit At » O, and AV, which will be directed along the tangent in the
limit. By the arguments of Section 2.4, the magnitude of the radial
acceleration a, is

AV, _ \'

im Wt (2.25)
ats0 Ot r

a =

and the magnitude of the tangential acceleration a . is

ap = lim o - AV
T ate0 At dt (2.26)

The total acceleration a = a; + a; at any time. It is reasonably clear
that the instantaneous angular speed, ), must also depend on t, if we
define V(t) = w(t) r at any instant. The kind of analysis involving
Cartesian and polar co-ordinates carried out in section 2.4 becomes
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more tedious and complex, but not difficult. The results are identical
with (2.25) and (2.26) above, except perhaps that we gain the insight
that

_dvl_ do_ 478
T T fde o Tae (227

which we could have obtained from the definition of instantaneous
angular velocity.

2.6 GENERAL TWO-DIMENSIONAL MOTION

Fig. 2.7 General planar motion

Consider a particle that traces out a curving path in the x-y plane with
varying speed (figure 2.7). If we know the expression for the
acceleration as a function of time or position, we may in theory
calculate the equation of the path; or we may determine the x and y
components of acceleration from our knowledge of the path and the
instantaneous velocity. The treatment given in the previous section may
also sometimes be useful, if extended in the following way. The radial
component of acceleration (perpendicular to the path) is given by

& T 7L (2.28)

where 1., is the instantaneous radius of curvature of the path at the
particular point; and the transverse acceleration (tangential to the path)
is given by

- _d|—vl
ST (2.29)
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where we have stressed the magnitude change only. The expression
forrg is

2. 32 2 -1
e=8- (21 (R) (2.30)

(see figure 2.7), where ¢ is the angle the tangent makes with Ox, and s
is the distance measured along the path. Hence, in general, this is a
somewhat complicated way of looking at things and we shall not be
concerned with it.

2.7 MOTION IN A CONSTANTLY ACCELERATED FRAME |

Now that we have solved the equations associated with constant
acceleration, we examine the following important problem. Consider a
reference frame N, with Cartesian axes x’, y’, and z’, whose origin is
initially coincident with that of an inertial frame K at time t = t' = O;
the axes X, y, z of K are parallel to the axes x', y’, z' of N. Let N be
accelerated with uniform acceleration A along Ox. We want to find the
transformation of displacement, velocity, and acceleration between K
and N. We have:

x = x-zAt?

y =y

7 =z

t =t (2.31)

Fixing our attention now on x and x' components, we have

dx' _dx' _d. 1,0, - dx
At T at T atXT2AY) = g AL 2.32)
for the velocity transformation, and
ex_ &*x'_ d’x
dt'2 dt  dt? (2.33)

for the acceleration transformation. Thus any constantly (and hence
variably!) accelerated frame does not keep accelerations constant, and
therefore cannot be an inertial frame. It is nevertheless sometimes
convenient to work in accelerated frames and, of course, necessary to
know the consequences of being in an accelerated frame. We shall have
more to say on the topic in Chapter 3.
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CHAPTER 2 PROBLEMS

2.1

2.2

A train travels due north at 10 km/h relative to the ground. A
ship travels due west at 5 km/h relative to a current flowing south
at 2 km/h (relative to the ground). What is the velocity vector of
the train relative to the ship?

A motor boat which travels at 12 m/sec in still water is pointed
directly across a running river in which the velocity of the water
increases from zero at the banks to a maximum value at the
centre. Relative to a stationary observer on the bank of the river,
the boat’s speed varies as shown in figure 2.2p (i).

15 [—
14 / \

13

12

Speed H
(m/Sec™ ') §
i

ot

_-...-._

Np————
I SR
OF ===
-
s

6 10 12 16 18 20

Time (Sec)

Fig. 2.2p(i)

(a) How wide is the river?
(b) What is the approximate total length of the path followed

by the boat?
(¢c) Which of the paths shown in figure 2.2p (ii) best represents
the path taken by the boat?
A B Cc o E F G
f § Direction "vo:’ 3

Fig. 2.2p(ii)
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A rocket with a cabin of height 7 m is accelerating vertically
upwards with a constant acceleration of 4 m/sec. The speed of
the rocket at t = 0 is zero. At t =0, a particle is released and falls
under gravity from the cabin ceiling. Take the acceleration due to



gravity as 10 m/sec?.
(a) At what time T does the particle strike the floor?
() What is the velocity of the particle immediately before it
strikes the floor
(i) relative to the rocket?
(i) relative to an observer on the ground?

90° 907 ]

mb
»
Fig. 2.5p l 2y sec?

2.5 A spaceship is accelerating downwards at 2 m/sec?, as shown in
figure 2.5p. The local gravitational acceleration g is 3 m/sec?
downwards, parallel to the spaceship’s motion. A mass of 1 kg is
suspended from the ‘ceiling’ as shown by a spring whose spring
constant is k = 100 newton/metres.

(a) What is the extension of the spring?
An astronaut squirts a water pistol at a wall so that the
initial velocity of the water is parallel to the floor. If the initial
speed of the water is 2 m/sec, and the path to the wall is 2 m,
(b) how far from the initial line of flight does the water jet
strike the wall?

(c) does it strike the wall above or below the initial line of
flight?

(d) If the jet initiates at time t = 0, how far does the spaceship
move in the time of flight of the jet to the wall, given that
the spaceship’s velocity at t = 0 is 1 km/sec?

2.6 A merry-go-round at an amusement park is rotating with an anti-
clockwise angular velocity w =0.5 rad/sec and has a radius of 5m.
The operator of mass 100 kg starts walking at t = O from the
centre along one of the radial supporting beams with a constant
velocity 0-5 m/sec with respect ot the beam.
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2.7

2.8

29

2.10

2.11
36

(a) What is the centrifugal force acting on him at time t
(t <10 sec)?

(b) A child riding on the circumference lets a yo-yo dangle
loosely. At what angle to the vertical will it lie
(g=10 m/sec?)?

A 747 Jumbo Jet is circling at uniform speed V in a horizontal

circle of radius R. Take the acceleration due to gravity to be g.

(a) At what angle must the pilot bank the plane in order
that the passengers experience local ‘gravity’ perpendicular
to the floor?

(b) What is the magnitude of the local ‘gravitational’ acceleration
in the plane? A

() A stewardess walking at speed u with respect to the plane
crosses the cabin from one side to the other side going
‘uphill’, i.e. from the inside of the turning circle outwards.
At what angle 6 must she lean sideways in order to
maintain correct balance? In which direction does she lean?

A stone tied to a piece of string describes a circle with non-

uniform speed, the string always remaining taut. Which of the

following statements is false?

(a) The velocity vector is always tangential to the circle.

(b) The acceleration vector is always along the radius to the
stone.

(c) The angular momentum of the stone about the centre of
the circle is not conserved.

(d) The average velocity over one revolution is zero.

A projectile is fired with speed V from a point 0 at a height h
above a horizontal plane. Prove that the greatest distance from 0
at which the projectile can strike the plane is h + (V?/g).

An object moves in a circular path with a constant speed v of

50 cm/sec. The velocity vector v changes direction by 30° in 2 sec.

(a) Find the magnitude of the change in velocity, Av.

(b) Find the magnitude of the average acceleration during the
interval. .

(c) What is the centripetal acceleration of the uniform circular
motion?

Initially two particles are at positions x; = 5 cm, y, = 0, and



Xy =0, y, =10 cm with vy = —4x cm/sec and v, along — y as
shown in figure 2.11p.

Fig. 2.11p

() What must be the value of v, if they are to collide?

(b) What is the value of vy, the relative velocity?

(c) Establish a general criterion for recognizing a collision
course for two objects in terms of their positions ry, r, and
velocities vy, v .
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3
Dynamics of a particle

3.1 OPERATIONAL DEFINITION OF MASS. MOMENTUM, FORCE

We now come to study dynamics, which involves looking at the cause
of motion, e.g. forces. We avoid a great many philosophical and logical
difficulties associated with Newton’s laws of motion and the definition
of force if we define mass operationally.! We also gain insight into
the relations between the laws and conservation principles by this
method.

We begin by observing the interaction of two bodies in an ideal
situation where friction is reduced to a minimum; we can always then
extrapolate to the case of zero friction, as Galilei did for his principle
of inertia. We might observe two boys on ice-skates tugging at a pole,
or two dry-ice pucks connected by a string; the bodies may rotate about
each other, or collide, or whatever.

We should find empirically that

(i) thetwobodies are always accelerated in opposite directions;

(ii) the ratio of the accelerations is always the same for a
particular pair of bodies, irrespective of the motion,
although the ratio may be different for different pairs of
bodies.

If the co-ordinates of bodies 1 and 2 along the line of the
accelerations are X, , X, , we should have

X

piel S
%, kiz (3.1)

' This treatment follows that of K.R. Symon (1961) Mechanics (2nd edn,
Addison-Weslay, Reading, Mass.)
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where % denotes d?x/dt?, the minus sign shows that the accelerations
are oppositely directed, and k,, is a positive constant, characteristic of
the particular pair of bodies 1 and 2.

If both bodies were solid and of the same material, we should find
that the larger body was always accelerated the less. So some property
of a body determines how it is accelerated. We call this property mass,
and give it a number, as follows. '

Choose a ‘standard mass’ — body 1, for example. Then take two
different bodies, 2 and 3, and study the accelerations of three pairs in
turn, i.e. we determine k,,, k,3, and ks, .

We find that
ks ko3 kay =1 32)
Let body 1 have unit mass. Then we can define as follows:
Xy
mass of body i= mj=k;j=-3 (3.3)

Because of relation (3.2) we can get

2 1
-~ = _k -
» ki, kay
Sk m
ki,  m, ; (3.4)

i.e. the ratio of two masses is the negative inverse of the ratio of their
accelerations when paired, irrespective of the unit of mass. By equations
(3.3) and (3.4) we then obtain

mzxz = ‘mlj(l (3.5)

suggesting that the product m;%; will be important. We therefore call
this quantity the force acting on the body. By its definition it is
also a vector, like acceleration.

Mass turns out to be a scalar; we find empirically that masses m;, and
m, fastened together behave as a single body of mass (m; +m,). The
unit of mass is the kilogramme (kg), which is roughly the mass of 10° cc
of water. The unit of force is the newton (N), which gives 1 kg an
acceleration of 1 msec™.

If we define a quantity mx, the momentum, we find that, if m does
not change,

gz(mx) = mx = force (3.6)
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which is Newton’s Second Law of Motion.
Further, if we integrate equation (3.5) we obtain

m,X, = -m;X, *constant 3.7

which leads to conservation of momentum.

Note also that equation (3.5), referring to the two interacting masses,
contains Newton's Third Law of Motion, since the force m, X%,
exerted by m, is equal and opposite (the negative sign) to the force
m, X, exerted by m;.

The mass we have defined is inertial mass. If we allowed only
gravitational, or only electromagnetic, interactions, we should then
define ‘gravitational mass’ or ‘electromagnetic mass’.

It is an empirical fact that all ‘masses’ so defined are equal.

The equality of inertial and gravitational mass has been confirmed to
great accuracy in a large series of experiments, beginning with those of
Newton, who observed the periods of pendulums of the same length
but different bobs, found that the periods were the same, and concluded
that gravitational and inertial mass were equal to at least 1 part in
103, Further experiments were performed by Eétvos in the nineteenth
century, using a torsion balance and the acceleration on a body due to
the earth’s rotation, and, more recently, by Dicke and others;? these
last took the equality to 1 part in 10'. The most recent experiments
are those of Braginskii and Panov® who report equality to ~1 part in
10'2,

3.2 NEWTON’'S THREE LAWS OF MOTION. SOME CLARIFICA-
TIONS

For convenience, we re-state here Newton’s three laws of motion. Note
that we have defined mass operationally, and force from mass and
acceleration.

(1) The principle of inertia  Every body will continue in its state of
rest or of uniform rectilinear motion unless compelled to change
that state by the action of some force. This principle has been
discussed previously (Section 2.1).

(2) Therate of change of momentum is proportional to the impressed
force, and takes place in the direction of the force.

2 R.H. Dicke (1961), Scientific American, 205, 84.
3 vB. Braginskii and V.I. Panov (1972), Soviet Physics — JETP, 34, 463.
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3

We express this mathematically thus:

(mv = mgz =ma=F (3.8)

where we have taken the mass to be constant and F is the vector
sum of all the forces acting on the particle.

Why have we insisted that the mass should remain constant?
First, our experience tells us that in the macroscopic situations
with which classical mechanics deals successfully the total mass
is always conserved. Secondly, the naive mathematical treatment
of (3.8) leads to trouble, as can be shown immediately.

Let us write

d
q@mv) = F=mg ¥V (3.9)

If this equation is to be meaningful, it must be covariant with
respect to a Galilean Transformation, as equation (3.8) is. We

find that the terms m, a and dt M are unchanged by a Galilean

transformation, but that v is changed, and therefore the
expression, though correct mathematically, is incorrect physically.
If v could be interpreted as a relative velocity, equation (3.9)
would then be covariant with respect to Galilean Transformations,
since relative velocity is a vector invariant. We shall derive the
force equation for systems of variable mass later on, and we shall
indeed see that rather than v, we must insert the relative velocity
of the infinitesimal mass dm emitted in time dt. The reader
should therefore beware of following mathematics blindly with-
out checking whether the physics is correct.
Action and reaction are equal and opposite.

We can express this mathematically by saying that if Fy, is the
force due to the action of body 2 on body 1, and F,, is the force
due to the action of body 1 on body 2, then

Fi, = —Fn (3.10)

The reader must understand that in no sense can these action
and reaction forces be in equilibrium, since they act on different
bodies. Furthermore, the ‘paired’ bodies must be specified. If a
book is resting on a table, the answer to the question ‘What is
Newton’s Third Law reaction force to the gravitational attraction
of the earth for the book?” is not ‘the reaction force from the
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table’, but ‘the gravitational attraction of the book for the earth’.

The analysis of a very simple problem may help to clarify
matters further. Figure.3.1a shows a block of mass M being pulled
along by a rope of mass m; the rope is pulled by a hand. Figure
3.1b shows the system ‘broken’ at various points, so that we can
see the various action and reaction forces coming into play. The
suffix convention is that the body acted on comes first: thus
FMp is the force exerted on M by m, and so on.

Mass
hand
rope
M .
Fig. 3.1a A simple system
Fun Fan

—_— m *
M L] .
F — —_—
Fau Fun

Fig. 3.1b  The action and reaction forces
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Consider the situation when the whole system is at rest; we
may suppose that a frictional force F acts on the left on M. Then
we have the equations:

(i) forM Fym tF=0 (3.11a)
(i) form FmM*Fna=0 (3.11b)
(iii) Newton’s Third Law Fyp, = —FrMm (3.11¢)

from which we conclude that Fy,;y =—F.

Now let us suppose that the whole system is accelerating to
the right with acceleration a, and that there is no friction. The
equations now become:

i) forM FMm = Ma (3.12a)
Mm
(i) form Fom + FmH=ma (3.12b)



(iii) Newton’s Third Law FMm = FmM (3.12¢)

from which we conclude that Fpy = (m + M)a. It is clear that,
although the action and reaction forces are equal and opposite in
this case, there is no equilibrium, because the whole system is
accelerating. This is the resolution of the apparent ‘horse and
cart’ paradox, in which the possibility of the horse accelerating
the cart is supposed to be denied by Newton’s Third Law.

We observe from equation (3.12b) that the smaller m is, the
more nearly Fy v = Fnp, ice. strictly speaking only a massless
string transmits a tension unchanged. The exercise of calculating
the distribution of tension in a string of mass per unit length u
and length £ hauling a mass M with acceleration a is not difficult,
and is left to the reader.

3.3 THE FUNDAMENTAL FORCES OF NATURE. BEHAVIOUR
OF FORCES

It is thought at this stage in the development of physics that there are
only four fundamental interactions which may be thought of as giving
tise to all the various kinds of forces. For example, a spring force has its
origin in the electromagnetic interactions between the atoms of which
the spring is composed. In order of their strength, these interactions
are (i) the strong interaction, (ii) the electromagnetic interaction, (iii)
the weak interaction, and (iv) the gravitational interaction.

The strong interaction holds the nuclei of atoms together. Its
dependence is roughly of the form

Far'zexp(—L)
To

where 1, is of the order of 107 B3 ¢m. It is thus effectively a very short-
range force, but very strong within the 107'3 ¢m range.

Let us compare the fundamental interactions by giving the forces a
number in a particular situation; we choose to consider two protons
107" cm apart. Then the strong interaction has the value V2 x 103
newton.

The electromagnetic interaction (Coulomb interaction) holds atoms
together. It is responsible for mechanical forces such as friction, spring
forces, and inter-body. forces in contact collisions. The Coulomb force
is a long-range force, having an inverse square dependence on the
distance r from the source, i.e.

Far™
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The electrostatic force between two protons 1073 ¢m apart is V2 x 102
newton.

The weak interaction is an even shorter-range force than the strong
interaction; it is responsible for the decay of radioactive nuclei which
emit f particles (electrons) and neutrinos. The force between the
protons 107" cm apart from the weak interaction is 2 x 107!! newton.

The gravitational interaction is also a long-range, inverse square
force, which despite its weakness acts over vast distances and holds
together the solar system, galaxies, and clusters of galaxies. Gravity
is not well understood, despite the fact that it probably affects our lives
the most of all the fundamental interactions. The gravitational attraction
between two protons 107*3 cm apart is V2 x 107 newton.

We should recognize that talking about the ‘forces’ due to the strong
and weak interactions is, strictly, going beyond the realm of classical
mechanics, because for fundamental particles and small distances we
should be using quantum mechanics. From quantum mechanics comes
the viewpoint that we may regard.the various interactions as arising
from the exchange of ‘particles’ between the interacting objects. The
particles involved in the strong interaction are mesons; in the electro-
magnetic interaction, photons; in the weak interaction, hypothetical
intermediate bosons. The ‘graviton’ has been postulated for gravity.
We note that two skaters throwing a heavy ball to each other would
eventually separate, so that the ‘exchange’ of the ball leads to an
effective repulsive force; to obtain a similar attractive effective force
requires a little more ingenuity!

We often make models of forces, and it is worth considering some
of them. For example, a first approximation to the collision force be-
tween rigid bodies is shown in figure 3.1c, plotted against separation.

Collision
Force

fe . Separation

Fig. 3.1c  Collision force between two rigid bodies. A first
approximation
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The rigid bodies affect each other only on impact, and then with an
infinite force. A next approximation is the so-called ‘hard-core’ one,
in which the force becomes very large at some distance, 1, say, and
builds up gradually to this, with an initial, almost linear, spring-force
region near the contact region. This is shown in figure 3.1d. In a
collision the force on a body would then vary with time as shown in
figure 3.1e. We shall have occasion to return to this model later on.

Collision
Force

[ Separation

Fig. 3.1d The ‘hard-core’ approximation for collision between two
rigid bodies

time

Fig. 3.1e  Actual collision force between two rigid bodies

The frictional force in sliding friction is often represented as being
dependent only on the reaction force R of the surface to the sliding
body. The dependence of the magnitude of the frictional force is the
familiar

F=pR (3.13)
45



which is clearly velocity-independent. But we may have frictional forces
such as damping forces which depend on the velocity and always
oppose it,

F=-bv (3.14)

or resistance forces which depend on the square of the velocity, e.g.

F = —cv?% (3.15)

Finally, a velocity-dependent force which is of considerable importance
is the force exerted by a magnetic field of induction B on a particle of
charge q having velocity v: it is given by

F = qvxB (3.16)

34 MOTION IN A CONSTANTLY ACCELERATED FRAME Il
PRINCIPLE OF EQUIVALENCE

We return now to the study of motion in a constantly accelerated frame,
and its implications in terms of Newton’s laws of motion. Figure 3.2
depicts the following situation.

“Floor’ "Laboratory’

0 X

Fig. 3.2 Experiments in a constantly accelerated laboratory,

With respect to the fixed inertial frame I, the non-inertial frame N
is moving along Ox with a constant acceleration AX. Consider a
‘laboratory’ in N as shown; an observer in it cannot see out of the
laboratory, but can communicate with I, which can see into the
‘laboratory’.

The observer in N performs the following experiments.

(1) He releases a mass m from ‘rest’ in N.
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(2) He suspends a mass m from a spring balance as shown.
(3) He observes a pulse of light which is emitted from I parallel
to Oy.

The observer in I describes the results as follows. On release, the
mass m continues moving along parallel to Ox with the instantaneous
velocity it had just before release, since no forces now act and the law
of inertia holds. However, the laboratory N accelerates past the mass
m, which is therefore struck by the ‘floor’.

The mass m requires a force F to keep it accelerating. This force is
given by F = mA, and so the spring will be stretched by the amount
necessary to make the tension force in it equal in magnitude to mA.

Let the pulse of light enter the laboratory at time t = 0, and travel
for a time At parallel to Oy. The distance travelled parallel to Oy will
be cAt; meanwhile the laboratory will have moved a distance —A(A’t)2
parallel to Ox.

The observer in N describes the results as follows. On release, the
mass m accelerates towards the floor with acceleration — A.

The spring is stretched by just the amount that it would be stretched
if there were a ‘weight force® —mA acting towards the floor.

The light beam travels a distance cAt parallel to Oy, and a distance
-3A(At)? parallel to O'x’. These are the parametric equations of a
parabola. (Refer to a particle projected horizontally in a uniform
vertical gravitational field of acceleration A downwards; see figure 3.3.)

A(an?
2

IS NENNNNNNANRNNNy,
S

Fig. 3.3 Apparent light path in the accelerated frame
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Since N cannot see out of the laboratory, he cannot tell

(i) whether the laboratory is being uniformly accelerated parallel
to Ox (as I knows it is); or '

(ii) whether he (N) is stationary in a uniform gravitational field of
acceleration — A parallel to O'x’.

Thus in every dynamical experiment N performs he must postulate
the existence of the force —mA on a mass m if, for him, the law of
inertia is to hold. From the viewpoint of the inertial frame 1, this force
is non-existent. It is therefore called a ‘pseudo-force’, “fictitious force’,
or (better) an ‘inertial force’, since it is very real to anyone experiencing
it, as in a rapidly decelerating car. Hence:

(i) in auniformly accelerated frame the effects of the acceleration
are equivalent to those of a uniform gravitational field of the
same acceleration, but oppositely directed;

(i) the acceleration ay relative to the non-inertial frame N is equal
to the acceleration aj relative to the inertial frame I minus the
acceleration A of the non-inertial frame:

ay =aj—Aoraj=aNytA (3.17)

Einstein’s ‘Principle of Equivalence’, on which is founded his General
Theory of Relativity, states that it is impossible to distinguish between
uniform acceleration of a laboratory and an oppositely directed,
uniform gravitational acceleration (field) of the same magnitude by
experiments performed solely in the laboratory. A consequence of this
is (refer to experiment 3) that the path of a light ray should be curved in
passing through a gravitational field. The results of measurements on
the bending of starlight passing near the sun are not inconsistent with
Einstein’s General Relativistic prediction. Very accurate measurements
of the delay of radar echoes from Venus® which pass by the sun, and
of the radio signals from deep space probes,® have agreed very well
with Einstein’s predictions. A further prediction is that frequencies of
electromagnetic radiation emitted by similar sources will differ if the
sources are in different gravitational fields, or if they are at different
heights in a constant gravitational field (Appendix 2). This has also been
verified exactly.® Finally, the General Theory of Relativity predicts
gravitational waves, whereas the Newtonian theory does not. It may
be that these waves have been detected.’

4 LL Shapiro et al. (1968) Phys. Rev. Letters, 20, 1265.

: 1.D. Anderson (1971), NASA-JPL Technical Memorandum, 33-499.
R.V. Pound and G.A. Rebka Jr (1960), Phys. Rev. Letters, 4, 337.

7 1. Weber (1970), Phys. Rev. Letters, 24, 276.

48



It is worth remembering that Einstein’s Principle of Equivalence
came from thinking about experiments in a constantly accelerating
frame, and that the very simple thoughts we have been examining were
put forward for the first time by Einstein early in this century.

Examples: ‘Weightlessness’

We consider first a mass M in a lift which is in a uniform gravitational
“field of acceleration —gj, and is being accelerated upwards with an
acceleration +aj (figure 3.4a).

T "
Non-inertial Inertial

I R e
. lm”.) lm

(® (b) (c)

Fig. 3.4 (a) The lift problem (b) Non-inertial frame (c) Inertial frame

In the non-inertial frame of the accelerating lift, the effective
gravitational field is therefore the sum of the actual gravitational field
and that given by the principle of equivalence, i.e. we may write (figure

3.4b);
geffi = —8i—aj (3.18)

and since the mass is stationary in the non-inertial frame, the reaction
force R from the floor to the lift must be given by

R-M(gj+aj) =0, ie. R = M(a+g)j (3.19)

In the fixed inertial f}ame (figure 3.4c) we observe that the only
forces acting on M are (i) the actual gravitational force —Mgj and (ii)
the reaction force R from the floor. But M has acceleration +aj, and
therefore

R —Mgj = Maj (3.20)
giving R = M (g + a) j as before
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Consider now a lift in a gravitational field of acceleration —gj,
which is in ‘free fall’, i.e. the actual acceleration is also —gj. In the
non-inertial frame the actual acceleration —gj of the frame gives rise
to the equivalent ‘gravitational acceleration’ +gj. The resultant of this
and the actual gravitational acceleration —gj is zero: therefore R = 0,
and we have a ‘weightless’ situation.

In the fixed inertial frame the only forces acting on M are (i) the
weight force —Mgj and (ii) the reaction force R. But M has acceleration
—gk

R —Mgj=-Mgj,ie. R=0 (3.21)

and we come to the same conclusion

In the non-inertial frame of a satellite in a circular orbit about the
earth the actual centripetal acceleration gives rise to an effective
centrifugal gravitational field. But the satellite obtains its centripetal
acceleration from an actual gravitational field, such that if the mass of
the satellite is m, mg(r) = mv?(r)/r, where v(r) is the velocity of
the circular motion at radius r. Hence, as Newton recognized for the
moon, the satellite is in ‘free fall’ towards the earth, and therefore
by exactly similar arguments as for the lift in free fall, we have a
weightless situation.

In the fixed inertial frame the only force acting is the gravitational
force mg(r), which gives rise to the centripetal acceleration of value
g(r). Therefore, by the same argument as for the lift case, an object at
rest on the ‘floor’ of the satellite closest to the earth will experience
no reaction force. Since we must go very far away from gravitating
matter before the actual gravitational field is very close to zero, man is
likely to experience weightlessness in space travel only under ‘free fall’
conditions!

35 MOTION IN A ROTATING FRAME (TWO DIMENSIONS)

We have seen that the law of inertia is obeyed only in certain frames of
reference called inertial frames. The law is not obeyed in any reference
frame which is accelerating with respect to an inertial frame. A
further example is a rotating reference frame. However, as with
constantly accelerated frames, we can maintain a fiction that the law of
inertia is obeyed in such a frame if we determine the inertial forces
and allow these to act, as well as any real forces which may be present.

To see what happens in a rotating frame of reference we shall allow
a particle unrestricted movement in the x-y plane and from the
vector position r derive its velocity and acceleration vectors. We shall
not use the co-ordinates x and y but the more convenient polar
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Fig. 3.5 Polar co-ordinates

co-ordinates r and @ (figure 3 5). At any position on the plane we can
define two new unit vectors f and 6:

f = (cos 0,sin 6) (3.22)
8= (—sin 0, cos 8)

By forming the product I 1.0 we see that these are mutually perpendicular
and by forming |f] and |0| we see that they are unit vectors.

We describe the position of the particle in the fixed frame of
reference by

r=(x,y)=(rcosf,rsin8) = r(cos 0, sin #) (3.23)

In the possible motion both the radial co-ordinate r and the angular
co-ordinate @ can vary; hence we shall include both in any differen-
tiation. The velocity is

f = f(cos 8,sin )+ rd(—sin 8, cos 9) = if+18  (3.24)
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We see that in general the motion is partly in the radial direction r and
partly in the tangential direction 8. The acceleration is

i = i’ (cos 8, sin 8) + f6(—sin 6, cos )
B (—sin 8, cos 8) + 1§ (—sin 6, cos 6)
+16% (—cos 8, —sin )

F=(@{E—102)t+ (0 +2:6)6 (3.25)

i.e. any acceleration is partly radial and partly tangential.

So far we have described things as viewed in the fixed frame which is
an inertial frame; hence we know that any acceleration f is produced
by a real force. By a real force we mean a force produced by the
deformation of a restraining spring or the bending of the supports of
the particle or an electromagnetic or gravitational force. An observer
in the fixed frame sees only real forces producing real accelerations in
the fixed frame. For example, a real centripetal force produces a real
centripetal acceleration.

In the rotating frame of reference these real forces are still present
(the spring is still stretched, the support is still bent). But an observer

_in the rotating frame sees different accelerations, and hence in order
to maintain the fiction that the law of inertia works in his rotating
frame, he has to ‘invent’ extra ‘fictitious forces’. These ‘fictitious
forces’ (inertial forces) are unnecessary, and do not exist in the non-
rotating, fixed inertial frame, but in the rotating frame they are
needed to make the law of inertia work. Let us consider two special
examples.

(a) The particle is at rest in a uniformly rotating frame. In our
description this means t = 0, =0, and § =0, and in the fixed
frame we have a real centripetal force as the only acting force. In
the rotating frame this real force still acts but the particle is at
rest. Hence we require an inertial ‘centrifugal force’ to balance it.
This is equal in size and opposite in direction to the real force.

(b) The particle moves uniformly along a radius in the rotating frame.
Then r > 0, f = 0, and § = 0, and apart from centripetal
acceleration in the radial direction there is an acceleration of
26 8 in the tangential direction. In the fixed frame this is
produced by a real force. In the rotating frame we see the particle
moving in a radial straight line. Hence there can be no net
tangential force on it, so we require an inertial force equal and
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opposite to the real tangential force. This inertial force is called
the Coriolis force.

The surprising thing is that if, in the rotating frame, we remove the
real forces (remove the supports on the particle), then the inertial forces
still remain in the rotating frame and produce real accelerations as seen
in the rotating frame. Of course in the fixed frame of reference the

~ acceleration will be zero in such a case.

\ré

Fig. 3.6 Origin of the Coriolis acceleration (i)

We can visualize the origin of the real tangential force as follows.
We find it to come from two sources. To fix our ideas, let i'= 0, § = 0,
t = constant > 0, and 6 = constant > 0, so that the particle is moving
outwards along a radius_at uniform radial velocity, while the radius
turns at angular speed 6 (figure 3.6). Then the linear speed of the
particle in the tangential direction is just rf. If in time §t the radial
position increases to r + 81, the tangential speed increases to (r + 1)d,
So the acceleration is

@+81)0—-19 | i

ot

We see that a term 7 arises as Coriolis acceleration as a result of
changing the magnitude of the tangential velocity at constant direction.
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3¢

Fig. 3.7 Origin of the Coriolis acceleration (ii)

Now suppose we consider the radial velocity. In time t the direction
of the radial velocity changes by 65t (figure 3.7).

8t = 180
Hence the vector change = 05t

8f .
So 5 = {7}

is the term which arises in the Coriolis acceleration as a result of change
in direction of the radial velocity at constant magnitude. Therefore
the total Coriolis acceleration is 2i0 § The effective grawtatlonal
acceleration’, the Coriolis force per unit mass, is therefore —2i8 é
when we are in the rotating frame.

On the surface of a rotating sphere the forces are just as easy to
understand in principle, but the mathematical expression is a little more
complex. Coriolis forces cause wind velocity patterns to be whirlpool-
shaped. They make corrections necessary in gunnery range-finding,
- and also cause the strange motion of the Foucault Pendulum. Thus the
Coriolis force, like the centrifugal force, is one which arises in a
rotating frame of reference. A particle at rest in a rotating frame has a
centrifugal force acting on it. Note that an observer in the rotating
frame of reference can account for stationary or uniformly moving
particles in the rotating frame only by postulating the existence of .
centrifugal and Coriolis forces. Although ‘fictitious’, the forces can be
treated as real in the rotating frame — they do work on the particle —
and are examples of inertial forces which arise in frames that are
accelerating relative to inertial frames.
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3.6 DYNAMICS OF A PARTICLE. EXAMPLES

The dynamics of a particle are effectively contained in the Second Law
of Motion:
dv d%r

F=?Fi=ma=ma=mat—2 (3.26)

where f“ F; is the sum of the forces acting on the particle of mass m.

The fact that m is a constant for the particle effectively reduces the
problem to the kinematical one discussed in Chapter 2. Thus if we
know the dependence of the components of the resultant force F on the
co-ordinates and the time, we can, in principle at any rate, determine
completely the velocity and displacement components of the particle.
This is not to say that we shall find every problem easy to solve!

We now give some simple examples of dynamical situations which
reduce to kinematical situations which have already been dealt with.

(i) Particle of mass m and charge g in a constant electric field

E = Ej. We have
myj=qEory=3a B (327)
~which is the case of constant acceleration dealt with in Section
2.3.
(ii) Particle of mass m subject to the restoring force F = —kxi.
We have
mX = —kx
or X=-Kx (3.28)
m

which we discussed but did not solve in Section 2.2. The solution
(check by substitution) is

X = acos( ]£X+¢)

m

“where A and ¢ are constants of integration, usually specified by
the initial conditions.
(iii) The magnetic force on a charged particle. We consider a particle
of mass m and charge q projected into a magnetic field of
induction B with velocity v. Then

F=qvxB
By virtue of the properties of the vector product, the component
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of v parallel to B contributes nothing to the force. We may
therefore choose our z axis along B, and let the x and y axes be
perpendicular to B. With this convention we may write .

v =vgitvj+vgk
B = Bk 3.29)

Since the force is now only in the x-y plane, we move into a
Galilean frame x', y', z', moving with velocity v, along 0,; we
assume that B is unchanged by this transformation (and it turns
out that, even using special relativity, we are correct). In this
frame

Vo= vygi+vyj
B' = Bk’
and F'=F=qvVxB (3.30)

Now since B is constant in direction, F is always perpendicular to
B; by the vector-product definition, it is always perpendicular to
v. Therefore it changes only the direction of v’ with time, and
not the magnitude, just as occurs in circular motion; therefore
in the x', y', z frame we have circular motion such that

"2
“lr"'— = qv'IB (3.31)
so that the radius of the circle is given by

_ mlv| .
B (3.32)

Since we can choose the x' and y' axes anywhere, if the velocity
v' at the instant of the injection of the particle is along Ox’,
say, it is clear that mv' is actually the magnitude of the
momentum of the particle perpendicular to B. This can therefore
be used as a velocity- or momentum-selecting property for
particles of a particular q/m ratio. We further note that the
period T of the circular motion is given by
- 2mm _ 2m aB
m

T = B = = wherew =

w (3.33)



(i)

)

(vi)

and is the angular frequency: i.e. the period depends only on q/m
and B, and is independent of r. Transforming back to the Oxyz
frame, it is clear that the motion of the charged particle is a
spiral about the z axis, with pitch v,T;
2mmv,
vzl = 7B (3.34)

Resistive force. We consider a particle of mass m given an initial
velocity v, in a medium where it experiences a resistive force
—bv, where v is the velocity. For simplicity, we reduce the
situation to one dimension, and we have

dv

mX = -bx = -bv = m g (3.35)
whence dv .. Db dt

v m
giving V= Vgexp (—rle t) (3.36)

t m b
and X j‘o vdt = v, b [1 —exp (—E] t)] (3.37)
so that the particle actually comes to rest at a finite distance
from the origin after an infinite time!
Terminal velocity. Consider a particle of mass m which is subject
to a constant acceleration, say g, and a resistive force propor-
tional to the velocity. We then have

mX = mg—bX (3.38)

and we see that X = Owhenx = I%&, i.e. eventually the particle,

accelerated from rest, will reach a terminal velocity mg/b. This
fact is made use of in Millikan’s experiment, where the constant
acceleration of the charged oil-drops is provided by a constant
electric field. Note that since the particle at its terminal velocity
is moving with constant velocity, the resultant of the constant
force and the velocity-dependent force must be zero.

The reflex klystron. The reflex klystron is an electronic valve
used to generate microwaves, i.e. electromagnetic waves, with

" wavelengths of a few centimetres to a few millimetres.

An electron beam is generated and shaped by a suitable
‘electron gun’. It passes through a pair of very closely spaced
grids, which can be regarded as the plates of a parallel-plate
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capacitor; the grids are at a high positive potential with respect
to the electron gun. After passing through the grids the beam is
subjected to a retarding force by means of an electrode called
the ‘reflector’, which is at a negative potential with respect to the
electron gun. The beam is thus turned back on itself, and passes
through the grids again.

Reflector

- e o] e - —

<— Grids

-—— e - -

Electron Beam

| ['UTU'] I Cathode
{Electron Gun)

Fig. 3.8 The reflex klystron (schematic)
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We consider all the electrodes as plane-parallel so that we need
consider the motion in one dimension only. We ignore interaction
between individual electrons, and the transit-time effects through
the grids. Figure 3.8 is a schematic diagram. First, suppose that
the electrons in the beam are uniformly spaced in time, say 7
seconds apart. Let us examine the motion in the grid-to-reflector
space, assuming a uniform retarding field and no alternating
voltage on the grids. Let the velocity of the electrons at the
grids be v, and the field in the grid-reflector space be E. If the
electron mass is m, Newton’s Law of Motion tells us that

my = —eE
.. eE
or Y=

from which it is not difficult to show that if an electron passes
through the grids at time t,, its time of flight in the grid-reflector



region will be

2
to =2p Yo (3.39a)

and so it returns to the grids at time
2m
ty +tg =ty + o Vo (3.39b)

Hence the electrons will return to the grids still uniformly spaced
in time, and there will be no resultant a-c component of current
(or no changing charge density) induced on the grids considered
as a parallel-plate capacitor.

However, the grids form part of a circuit which is tuned to a
frequency, say w. Noise of thermal origin is always present, so
a small alternating field will exist between the grids; if the circuit
is sharply tuned, this field must be at frequency w. Let this
field be E,cos wt; then Newton’s Second Law tells us that

my = —eE, cos wt (between the grids)
. eE;,
so that V= vVom gy S0 wt

i.e. there is now a small periodic velocity component on the
electron stream after it passes through the grids. We choose to
consider its effect by saying that if an electron has passed through
the grids at time t,, the alternating component velocity is

vy sin wt,
(Note: v, # eE,/wm, because of transit-time effects.)
The time of flight in the field, from (3.40a), is then

tf = i%(vo+v1 sin wt,)

which is no longer independent of ty, i.e. of the time when the
electron enters the retarding field. The time of return of this
electron (1) to the grids is

2m

tRl =1 +tf=t1 +to+e—E- Vi sin wty (3.40)

We shall now show that ‘bunching’ of the beam occurs, i.e.
that there are regions in the beam where the spacing of the
electrons in time is less than the uniform initial spacing 7

59



60

(bunches), and therefore also regions where they are spaced
farther apart in time than 7 (rarefactions). We shall also show that
the bunches are uniformly spaced in time, so that as the bunches
and rarefactions pass back through the grids, an alternating charge
density will be induced on the grids. If the returning bunches are
declerated by the alternating field E;, they must give up their
energies to it, so causing it to increase in magnitude, and increasing
the bunching, etc. until the alternating charge density on the
grids becomes self-sustaining and an a-c signal at the frequency w
is generated. »
Consider an electron (2) passing through the grids at time
(ty + 7). Its time of arrival back at the grids will be, by (3.41),

tpy =t1 +7+(time of flight) =t, + 7 t0+€—g‘v1 sinw (t; +7)

The difference in arrival time back at the grids of electrons (1)
and (2) is then

try — tpy T+ %lé‘vl [sinw (t; +7)—sinwt,] (3.41)
and if 7 is very small, this becomes
.., 2m
tay —tpy TT+GE V1 COS Wiy .7 (3.42)

< 7 for cos wty, — ve (bunches)
> 7 for cos wt; + ve (rarefaétions)

and tg, — tg; is a minimum (i.e. maximum bunching) for
cos wt; = 1,i.e.sin wty =0, and decreasing. Thus the alternating
component of velocity is passing from positive through zero to
negative, and the alternating field on the grids must have passed
from an accelerating effect through zero to a decelerating effect.
The returning electrons must see a decelerating field in order to
give up their energy to it; since they are travelling in the opposite
direction to the electrons leaving the grids for the first time, this
corresponds to an accelerating field for the outgoing electron
stream. Maximum accelerating effect has been exerted by the
field on the grids when v, sin wt; is a maximum; this will occur
n + 3/4 cycles (n = 0,1,2...) after the time for maximum bunching
effect.

Hence we expect a series of mean times of flight t, for which
oscillations will occur.



Since

2m
to = ¢ Yo
and IE| = %1 (plane parallel geometry)

where V| is the grid-reflector potential difference, we expect
a series of values of V; for which oscillations will occur, and
regions of V where oscillations are impossible. This is indeed the

case.
D E

v|

A B - c -

& outgoing
—V,
l'- {cycle
& 1
returning

Fig. 3.9 The alternating velocity A,B,C — maximum bunching;
D, E — maximum accelerating effect for outgoing electrons,
and therefore maximum decelerating effect for returning
electrons

A plot of power output versus reflector voltage from an actual
klystron is shown in Fig. 3.10.

[((n—1)+ 4

Power
Output (4 B mos

mode

A

—ve Reflector Voltage

Fig. 3.10 Output power versus reflector voltage

Note that to solve this problem, given the alternating component
of velocity, we have used only Newton’s Second Law of Motion
and some mathematics, and we have assumed conservation of
energy (the energy of the decelerated electrons is given to the
retarding field), although we have not discussed it yet.
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CHAPTER 3 PROBLEMS

3.1

32

33

34

3.5

62

A body of mass M moves in outer space with speed V. It is
explosively separated into two equal parts such that they move
along the same direction in the same sense as before. If the
speed of one part is V/3, what is the speed of the other?

A book rests on a table. The reaction force (in the sense of

Newton’s Third Law) to the weight of the book is

(a) the force exerted by the table top on the book.

(b) the force exerted by the floor on the table legs.

(c) the gravitational attraction exerted by the book on the
earth.

(d) none of these.

A man stands in a lift which is accelerating downwards. The
force exerted by the lift floor on the man is

(a) equalto

(b) less than

(c) greater than
his weight.

A particle of charge q and mass m passes through a constant

electric field E between two plates of length x. The particle

enters the field with a velocity v perpendicular to the field.

(a) What is the time of flight through the field?

(b) What is the acceleration of the particle in the direction
of the field?

(c) What is the component vg of final velocity in the direction
of the field?

(d) What is the magnitude of the final speed?

At time t = O a train, previously moving at a constant speed of

30 m/sec, starts to decelerate at a constant rate of 1 m/sec?. At

time t = 3 sec a passenger drops a coin from a height of 2 m above

the floor. Assume that at t = 3 sec the coin is at rest relative to

the train, and take the acceleration of gravity as 10 m/sec?

(a) At what time does the coin strike the floor?

(b) Does the coin move towards the front or rear of the train
as it falls?

(¢) How far towards the front or the rear of the train does the
coin move during its fall?

(d) What is the magnitude and direction of the effective



gravitational field experienced by the coin? Express your
answer with respect to the true vertical axis.

3.6 A merry-go-round at an amusement park has a radius of 5 m and
is rotating with an angular velocity w = 0-5 rad/sec in an anti-
clockwise direction as viewed from abeve.

The operator of mass 100 kg starts walking at t = 0 from the
centre along one of the radial supporting beams with a constant
velocity of 0-5 m/sec with respect to the beam.

(a) At the instant shown in figure 3.6p, which of the four arrows
correctly represents the direction of the two pseudo-forces
the operator experiences?

(i) Centrifugal force

A B C D
(ii) Coriolis force
A B C D

(b) What is the magnitude of the centrifugal force acting on him
at time t(t < 10 sec)?

(c) What is the magnitude of the Coriolis force acting on him
at time t(t < 10 sec)?

(d) What is the magnitude of the operator’s speed with respect
to the ground at the time t(t < 10 sec)?

Fig. 3.6p
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3.7

3.8

A charged particle moves in the x direction through a region in
which there is an electric field Ey and a perpendicular magnetic
field B;. What is the condition necessary to ensure that the net
force on the particle will be zero? Show the v, E, and B vectors
on a diagram. What is the condition on vy if By = 10 statvolts/cm
and B, = 300 gauss?

A particle of charge q and mass M with an initial velocity vy
enters an electric field —E, (figure 3.8p). We assume that E is
uniform, i.e. its value is constant at all points in the region
between plates of length L (except for small variations near the
edges of the plates which we shall neglect).

Fig. 3.8p

39

64

(a) What forces act in the x and y directions respectively?

(b) Wil aforce in the y direction influence the x component of

the velocity?
(c) Solve for vy and vy as functions of time, and write the
complete vector equation for v(t). ,
(d) Choose the origin at the point of entry, and write the
complete vector equation for the position of the particle
as a function of time while the particle is between the
plates.

A very small cube of mass m is placed on the inside of a funnel
rotating with its axis vertical at a constant rate of v revolutions/sec
(figure 3.9p). The wall of the funnel makes an angle § with the
horizontal. The coefficient of static friction between the cube
and the funnel is u and the centre of the cube is a distance r from
the axis of rotation. What are the largest and smallest values of
v for which the block will not move with respect to the funnel? To
answer this you may assume that m < tan § < (1/u).

What would happen if either or both of these conditions is not
valid?



Fig. 3.9p

axis of rotation
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4

Dynamics of a system
of particles

4.1 IMPULSE. CONSERVATION OF LINEAR MOMENTUM

When we come to deal with systems of particles, and interactions
between particles such as collisions, we find that momentum is a most
useful concept. We return to the idea of two interacting bodies which
we considered in Section 2.1, and combine it with the ‘hard-core’
collision model of Section 3.3.

By Newton’s Third Law, the force experienced by body 1 due to
body 2 is equal and opposite to that experienced by body 2 due to body
1,i.e.

F12 = _F21 (41)

Let us assume for the moment that these are the only forces acting on
the particles. Then, since the momentum p, of body 1 is related to
F,, by Fy, =dp,/dt, we may write Ap, = f F, At, where the change
in momentum Ap; due to the action of Fy, for time At is called the
impulse. Similarly, Ap, = an At, and if we use the ‘hard-core’
collision model, we shall have a plot of F,,, say, against t, like that
shown in figure 3.1d. Clearly, since Fy; + F,; = O at every instant, we
have

[Fi2 At+ [Fyy At=Ap; +Ap; =0 4.2)

i.e. the total change in momentum of the two colliding particles is zero.
These contact collision forces are called impulsive forces, and can be of
enormous magnitude.

Now we know that electromagnetic forces, for example, are not
transmitted instantaneously, so that during the collision of, say, two
positively-charged particles, equation (4.1) cannot hold. But we
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postulate — and indeed find to be true experimentally — that the total
momentum measured a long time before the collision is equal to the
total momentum measured a long time after the collision. We also
know that mechanical forces cannot be transmitted instantaneously, so
that we must postulate the same thing. It should be clear that a
collision does not have to imply actual contact: it is a situation in
which the motion of two bodies is mutually affected by the interaction
between them. An explosion is a collision in this sense.

Now suppose that the two contacting bodies are both subject to
some external force, which acts during the time At of the collision. We
see that if the impulsive forces Fy;, F,; are very much greater than
the external force, or At is very small, or both, momentum will s#ill be
conserved to a very good approximation during the collision. Well
before and well after the collision the external force will have changed
the momentum, but we may consider that over the (very short) period
At of the collision the momentum is conserved. This is extremely
important, because it means that momentum is conserved even in
collisions where energy is not conserved, i.e. in so-called inelastic
collisions. Thus the presence of external resistive or dissipative forces
does not necessarily mean that momentum will not be conserved;
provided the impulsive forces are large enough, and the collision is short
enough in time, momentum will be conserved.

The reader is probably familiar with the idea of kinetic energy (KE),
though we have not yet discussed it. We shall here define only the
‘kinetic energy’ of a mass moving with speed v as 3mv?, and the
kinetic energy of a number of masses m; moving with respective speeds
v as ? %mivi2 . A perfectly elastic collision is one in which the total KE

before the collision equals the total KE after the collision.
42 CENTRE OF MASS. THE CENTRE-OF-MASS FRAME

A most useful concept in treating the motion of a system of particles
is the centre of mass. Consider a system of particles, with masses
denoted by mj; suppose a mass m; has a position vector rj in a particular
inertial frame, Then the co-ordinates of the centre of mass in this frame
are defined by

1l
I}

Z mj -TM (4.3a)

or fZm;=iM=2Zm _ (4.3b)
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where M = Z mj is the total mass of the system of particles. We shall
find the form (4.3b) the more useful, although (4.3a) is the strict
definition. Let us call myr; the moment of the mass m in the particular
inertial frame. Then the sum of the moments of the masses in the
centre-of-mass frame, i.e. the frame whose origin has co-ordinates ¥, is
zero. For, to move into the centre-of-mass frame, we must write the
co-ordinate of each mj as r; — r. The sum of the moments of all the
masses is therefore

Zmj(ri—©) = Tmy—F Tmy
i i

= 0 from (4.3b)

This result is rarely proved, but is sometimes useful.
Let us differentiate equation (4.3b) with respect to time. We obtain

F Im;= FM= z mji; 44
1 1

which defines the velocity of the centre of mass T in terms of the total
mass and the sum of the momenta of the particles. In words, the total
momentum equals the total mass times the velocity of the centre of
mass. If we move into the centre-of-mass frame, i.e. that frame having
velocity T, we find by an argument similar to that above that the sum of
the momenta in the centre-of-mass frame is zero. This is a most
~ important and useful result. The centre-of-mass frame is therefore often
called the zero-momentum frame.
Let us now differentiate equation (4.4). We obtain

13D m; = M=% mji (4.52)
=ZF; (4.5b)

by Newton’s Second Law of Motion, where the F; are the forces
experienced by each of the i particles.
We note that each Fj is made up of two parts:

Fi =Z Fexti+ ZFint (4.6)

where the Fg, are forces external to the system of particles, and the
Fint are internal, or action-reaction forces in the sense of Newton’s
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Third Law.
Over the whole system of particles, since the action-reaction forces
occur in pairs for each pair of particles, we must have

ZFinti=0

which leaves us with the equation

T Zmj=1M= ZFexj “.7

i.e. the total mass times the acceleration of the centre of mass equals
the sum of all the external forces acting on the particles. Hence if no
external forces act, the acceleration of the centre of mass is zero: the
momentum of the centre of mass is therefore a constant; since the
total mass M of the system is constant, the velocity of the centre of
mass is constant; and therefore the centre-of-mass frame with no
external forces acting is an inertial frame. Note also that the kinetic
energy of the centre of mass when no external forces act, defined by

KE = 3M®)? 4.8)

must also be a constant, by definition. Therefore, if only internal
dissipative forces act, only the KE relative to the centre of mass can
be destroyed, and not the KE of the centre of mass. Note that we can
determine the motion of the centre of mass if we know the sum of the
external forces. If any collisions take place in the system of particles
(including explosions), we can apply conservation of momentum to
calculate the positions and motions of the particles, since by our
previous discussion (Section 4.1), momentum is conserved during
collisions and explosive events even when an external force acts.

Since the centre-of-mass frame is inertial in the absence of external
forces, frames located on particles moving relative to the centre of mass
will in general be non-inertial if internal forces are present. This can
lead to important results. For example, consider the earth-moon
system in the particle approximation, and ignore outside influences.
Since .gravitation is an internal force for the system, the frame of the
common centre of mass is inertial in our approximation. The earth and
the moon are in ‘free fall’ towards each other (by Newton’s Third Law), so
neither is an inertial frame; a little thought shows that they must both
rotate about the common centre of mass. It is the ‘competition’ between
the centrifugal force of rotation about the common centre of mass and
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gravitational force due to the moon that gives rise to the tides on the
earth’s surface.

We now turn to the topic of one- and two-dimensional collisions
in the centre-of-mass frame (CM frame).

4.3 TWO-BODY COLLISIONS AND THE CM FRAME

We now specialize to the important case of two-body collisions. These
should be of interest to anyone who watches demonstrations on an air-
track, or plays billiards, or travels in a motor-car. Moreover, most of
what we know about the kinds of particles that exist, and the forces
they exert, comes from watching what happens when one particle is
bounced off another. This is true whether we are thinking of
Rutherford’s experiment, scattering alpha-particles off gold-foil, or
the more sophisticated work with cyclotrons, synchrotrons, and
cosmic-ray showers. In all of these the results when one particle hits
another are recorded in some way (Geiger counters, cloud chambers,
bubble chambers, photographic emulsion, etc.) and analyzed.

Since only the collision forces (which are internal) are acting, the
CM frame is an inertial frame (v.q, = constant). Suppose that, as a
result of the collision, the velocities of the particles change from u,, u,
to vy, v,. Then the scattering angles 6,, 6, are defined as shown:

Fig 4.1 Laboratory frame

If the measurements are done in the CM frame we call the angles
0,*, 6,*. Since P* =0, we have

mlul* = _mzllg*, and mlv,* = "mz\’g* (4.9)

showing that, in the CM frame, the particles before the collision travel
in opposite directions along the same straight line, while after the
collision they again are travelling in opposite directions along a
(generally different) straight line. So 0% # 6%
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Fig. 4.2 CM frame: left, before collision; right, after collision

Now suppose that the collision is elastic, i.e. the total kinetic energy
K remains unchanged. (In the laboratory frame, or in the CM frame? It
does not matter which, for even when the number of particles is
arbitrary

K* = 3 Zmy(vy—vem)?

Nl= D=

1 1
T myvh + 3V T mp -3 2 2Mp¥npVem
1
= K+3Mv2, —vVem- T mpvy
1
= K+ 3Mv2 —vem-Mvem
1
= K- 5Mv%m
But v, is constant. Thus if K is unchanged, so is K*, and vice versa).
(K*)before = 3M1 uf? + jm,puf?
=1 of L, 1 1
smyuf <m1 + mz) [from (4.9)]
Similarly

. =1 2f1 . 1
(K*)after = zmivf (ml + mz) [from (4.9)]
i.e. since
(K*) pefore = (K*) after
vi = uf
Similarly vy = uj (4.10)

i.e. a particle’s speed in the CM system is unchanged by an elastic
collision.

The relative speed u,, of the two particles before collision is defined
as the length of the vector (u; —u,), i.e. itis ju; —uyl.

Similarly Viz = |vp =2l

so that relative speed is the same in the CM frame as in the laboratory
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frame, since

u,lkz = luf - “:l = |(u; —vem) —(uy - ch)l
= Iul _u2I =Ujp

Speeds are unchanged in the CM frame in an elastic collision
Ivi — va| = ufz, and so (by this last result)

Viz = Uy (4.11)

i.e. the relative speed in the laboratory frame is unchanged by an
elastic collision. In fact, this result is sometimes used as the definition
of an elastic collision.

This last result illustrates a common use of the CM frame. We are
usually interested in measurements made in the laboratory frame,
since this is often the frame in which we (and our detecting instruments)
are at rest: i.e. it is our frame. But it may be much easier to work out
the problem in the CM frame. So we do this, and then deduce from
these results the laboratory frame results we are really concerned with.
This trick is especially useful when using scattering angles; but we first
need to know the relation between 6 and 0*.

Scattering Angles — Laboratory Frame and CM Frame

We look at the most common kind of scattering experiment: a
particle of mass m, travelling at velocity u, collides elastically with a
stationary ‘target’ of mass M:

o - O

Fig. 4.3 Laboratory frame: before collision

mu
We deduce Vem = = au
M m+M
m
where a =
m+M

In the CM frame we have the initial velocity u* given by
¥ =u-ve, = (1-au

since speed is unchanged in the CM frame (figure 4.4).
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Fig. 4,4 CM frame: after collision

To find the velocity in the laboratory frame, we simply add v, = om
(figure 4.5).

Fig. 4.5 Transforming from CM to laboratory frame

Applying the sine rule to the triangle OAB:
sind _ sin(6*—0)

(l-aju ~ ou
ie. 1 fa sin @ = sin 6* cos 6 —cos 6* sin 6
sin 6*
giving tanf = —0*—1;1‘ 4.12)
cos 6%+ &

We can now use this result to draw conclusions about possible
scattering angles 8 (which are the ones we actually observe). Note
first that, so long as equation (4.9) is satisfied, both momentum and
energy are conserved; since (4.9) is compatible with any scattering
angle 6*, we conclude that all values of §* are possible. Is the same true
of 87

Definitely not! For example, if m/M > 1, (4.12) shows that tan 6 can
never be negative, i.e. @ < n/2. (Look at the denominator on the RHS
and remember that sin 6 must be = 0.) Or: a particle cannot be scattered
backward unless the target particle has a greater mass than it. For
m/M = 1, we find from physical considerations (vector momentum
conservation!) that = n/2 is not allowed, but we may get as close to
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it as we wish.’

Can a particle be back-scattered if the target particle is more massive
than it (m/M < 1)? Certainly. In fact it can then be scattered straight
back along the path of approach (6 = m). For, when 6* = 7, the RHS
of (4.12) is zero; so tan @ is zero, or § = 7. (It is not § = 0, for when
6% is close to m, we can easily show from (4.12) that tan 6 is negative
and small, i.e. 8 is close to =, if (m/M) <1.)

Example 4.3(i): An Air-track Problem

To show how convenient the CM system can be, let us solve the
following problem. Two cars of masses m and M are released from a
height h on a tilted air-track. (Neglect their lengths: take them both as
being initially at height h.) The second car is infinitesimally behind
the first, and rebounds elastically from it after the first car has itself
rebounded elastically from the lower-end buffer. To what height does
the second car rebound? Let us take M > m, so that m/M can be
neglected; then the CM is located at all times to a good approximation
in the more massive particle, so that its frame is the CM frame.

m M

|
h
|
¥

Fig. 4.6 The tilted air-track problem

In this tilted air-track problem, just before the first collision, we get

* =
V3 u+vem

but now, Vem = U, the velocity of M
So Vi = vi+vem
= 3u
giving h’ = 9h (see Section 2.3), a result which is surprising when one

sees. it without the analysis.

Example 4.3(ii)
Large mass M stationary, small mass m moving with velocity v (one-
dimensional collision). Since the CM frame is the frame of M, v, = 0.

This is an example of a limit point of a set not being a member of the set. It is
also a case where najve mathematics and no physics would give the wrong result,
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Since the speed is unchanged in an elastic collision, m must rebound
with speed v and therefore velocity —v approximately. The KE transfer
is negligible, and hence this is no way to slow down particles of small
mass: the masses of the colliding particles need to be comparable if the
stationary mass is to take away much kinetic energy.

Example 4.3(iii)

Small mass m stationary, large mass M moving with velocity v. In the
CM frame (approximately that of M), the mass m has velocity —v. Since
the speed is unchanged in an elastic collision, the velocity of m in the
CM frame after collision must be +v. Therefore in the laboratory frame
it is +2v.

The General Two-dimensional Collision  We shall see later on that
nearly all two-body collisions occur in a plane, owing to a conservation
law. The situation in which a target particle 2 is stationary, and another,
1, is fired at it with velocity ui is quite general, since we can obtain any
velocity of 2 by a suitable Galilean Transformation. Conservation of
momentum then gives (see figure 4.7)

m;u=m,V,;cos @ + myv,cos ¢

0 =m,;v,sin 8 + m,v,sin ¢ (4.13)
and conservation of KE for a perfectly elastic collision gives
mu? = mvi + myv3 (4.14)

If we know m,, m,, and u, we still cannot solve the general problem,
since we have only three equations and there are four unknowns
(v1, V2, 0, ¢). We have to specify one of the unknowns. In a perfectly
inelastic collision, where 1 and 2 go off joined together, we have 6 = ¢,
V1 =V, and therefore the problem becomes soluble.

Fig. 4.7 General planar collision (laboratory frame)
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44 SYSTEMS OF VARIABLE MASS. ROCKETS

Although the rotal momentum of a system of particles remains constant
if no external forces act, it is clear that, by collisions for example, a
transfer of momentum can take place. A stream of particles striking a
body will transfer momentum to the body, and we may regard the rate
of increase of momentum of this body as an effective force. So we
proceed first to calculate the momentum transferred per unit time by a
stream of particles each having mass m and velocity v. Suppose that the
particles strike a wall normally. The transferred momentum per particle
will depend on the final momentum of the particle: if the collision is
perfectly elastic, the particles will reverse their velocity and so the
momentum transfer per particle is 2mv. If the particles are brought to
rest (inelastic collision), the momentum transfer per particle is mv.

Let the number of particles per unit volume be n. Then the mass
density is p = nm. A particle at a distance Ax from the wall will reach it
in a time At = Ax/v; if the stream of particles has a cross-sectional area A
normal to v, all the particles in the volume AAx will strike the wall in
time At. This number of particles is therefore

nAAX = nAvAt (4.15)

and the number of collisions per second is nAv. The momentum transfer
per second, for perfectly elastic collisions, i.e. the effective force, is

F = Anv(2mv) = 2Anmv? = 2Apv? (4.16)

It is also clear that if a stream of similar particles emerges from a body
with velocity v, the effective force on the body must be half that set
out in (4.16), i.e. Anmv? = Apv?. This is the principle of the rocket and
the jet engine. But if we regard the rocket motor by itself, for example,
its mass is changing, and apart from our discussion in section 3.2 we are
as yet unsure how to treat this. Accordingly we set out the problem
from first principles, so that we can see how the correct expression for
the force arises in a system where the mass of a part varies.

We consider a mass M, moving with velocity v at time t in an inertial
frame (figure 4.8). At time t + At it has emitted a portion AM with
velocity u as shown, and the remaining (M — AM) moves with velocity
v+ Ay,

Suppose that an external force Fext acts. Then the motion of the
centre of mass of the whole system (M — AM, and AM) is given by

dp
Fext = dt 4.17)
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Am v+ Mv
®—+v -‘u_‘ —i—’

t i t4 &

Fig. 4.8 The rocket problem

The change in momentum AP is given by the difference between the
final and the initial momenta:

AP = (M — AM) (v + Av) + AMu — My (4.18)
AP AV AM
v MAt+ [u—(v+Av)] At (4.19)
Taking IA“:’ 0 we obtain

D  (Av/At)+ (dv/dt)
(i) (AM/At) - (dM/dt).

If we consider AM as the mass ejected by the more massive body, i.e. we
focus attention on the more massive body, dM/dt will be a negative
quantity, and we may rewrite (4.19) as

dv. _dM__dM
O —Fext = M+vi-u (4.202)
- %3 v—1) g—i“ (4.20b)

i.e. the velocity of the ejected mass must be taken into account. We
note that (v — u) is the relative velocity of the ‘main’ mass to the ejected
mass in the limit At -~ 0. Hence the expression (4.20b) for variable mass
is now Galilean covariant, and the naive expression

dp dv dM
at = Mdt +VH 4.21)

. Is seen to be a special case where the velocity of the emitted mass is
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zero in the inertial frame, so that the velocity of the main mass relative
to the ejected mass is v in this special case.

Before passing on to the case of the rocket, it is instructive to
consider the following problem. Sand is falling vertically into a box at
a rate dm/dt; the box is to be kept moving horizontally with constant
velocity v, (figure 4.9). What is the horizontal force required?

dm sand
dt

box
Fig. 4.9 The sand-box problem

We have to note a number of things. The velocity of the box is
constant, so (dv/dt) = 0. The velocity of the box relative to the sand
“before it collects the sand is vg; the final relative velocity is 0. So we
have the situation of equation (4.20b), except that it is effectively
reversed with respect to the previous problem: dM is now a positive
quantity, whereas we treated it as negative in the previous problem. The
final result is therefore

F=v, %“ (4.22)

If the sand were projected into the box with a horizontal component
of velocity v,, no external force would be required to pull the box
along, because the relative velocity of the box to the sand in the
horizontal direction would always be zero.

Of course the vertical component of velocity of the sand that is
destroyed exerts a downward force on the box, but this did not enter
the problem. It should be clear from the foregoing discussion that even
apparently simple variable-mass problems must be approached with care,
and that it is probably safest to go back to first principles.

We return now to the problem of the rocket. In equation (4.20b)
(u — v) is the relative velocity of the exhaust gases to the main body of
the rocket; call it vie}. We can then rewrite (4.20b) as

dv dM
M at - Fext + Vrel gt (4.23)

from which it is clear that if Feys opposes the motion (as air resistance
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would), M(dv/dt) is reduced. So a rocket is clearly most efficient in the
absence of any resistive forces. If we therefore set Foy¢ = 0, we obtain

dv

Y o vl Y or dv = Vet oo (4.24)

M

and if we presume that the rocket starts with zero velocity, we obtain
\4 M dM
dv = v v
flov = [} %

ie. V = Vil i (Mg/M)

where Mg is the initial mass of the rocket. The negative sign occurs
because vp¢] as we have set up the original equation (4.20b) is opposite
in sense to v. We see that the larger the ratio of the initial to the final
mass, the larger is the final velocity; for a certain vy and a certain
final velocity vy, the ratio of the final to the initial mass is

M¢/My) = exp(—ve/vie])

which explains why rockets with high final velocities must have most of
their original mass in fuel. We also see that for a given (My/M), v is

directly proportional to vy, which is therefore made as high as possible.

For a given temperature T in the combustion chamber of a rocket, the

less massive the combustion products, the higher will be the v of the

exhaust. This explains why troublesome liquid hydrogen is sometimes

used as a rocket fuel.

It should be noted that if a rocket starts from rest in empty space
under the influence of no external forces, the centre of mass of the
rocket remains stationary. The main body of the rocket is a non-inertial
frame moving with a variable acceleration dv/dt, but it is possible to
solve the rocket problem in this non-inertial frame. Try it!

CHAPTER 4 PROBLEMS

4.1 A particle of mass m executes motion such that its velocity is
described by v = v, sin (2nt/T) where T (a constant) is the
period of the motion and v is constant.

(a) What is the impulse received by the mass from t = 0 to
t=T/4?

(b) What is the average force acting on m from t =0 to t = T/4?

(c) What is the impulse received by the mass from t = 0 to
t=T/2?
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4.3

4.4

4.5

80

@

What is the average force acting on m from t = T/4 to
t=T/27

Two masses m; and m, have velocities v, and v, respectively

along Ox.

(a) What is the velocity of the centre of mass?

(b) In the centre-of-mass frame, what is the velocity of m;
relative to m,?

(c) The two masses collide perfectly elastically. What is the

speed of m, relative to m, after the collision, in the centre-
of-mass frame?

Two masses collide perfectly inelastically. Which of the following
statements are false?

(@)
()
©

(d)

The relative velocity after the collision is zero.

The kinetic energy of the centre of mass is not conserved.
The kinetic energy of the particles with respect to the
centre of mass is not conserved.

Momentum is conserved.

A 10 kg block is at rest on a frictionless table. Three separate
experiments are performed.

I
II

111

(@)
(b)
©)
@
(e)

The block is struck by a metal ball which rebounds.
The block is struck by a lump of hard clay which is at rest
after collision.

The block is struck by a lump of soft clay which adheres to
the block after collision. The metal ball and lumps of clay
have masses of 2 kg. They have the same initial speed and
collide head-on with the 10 kg block.

In which experiment (or experiments) does the block
acquire the greatest speed? '
In which experiment (or experiments) does the block
acquire the least speed?

In which experiment will there be the greatest reduction in
total kinetic energy?

Which of the projectiles will suffer the greatest impulse
during the collision?

Which of the projectiles will suffer the greatest change of
kinetic energy?

Two particles of masses m; and m, and speeds u; and u, collide.
Their speeds after the collision are v; and v, respectively. Which



one or more of the following statements are true? (Assume that

no forces act on the particles save during the collison).

(a) The total momentum in any inertial reference frame is
constant.

(b) The total momentum in the centre-of-mass frame is
constant.

(c) The total momentum in the centre-of-mass frame is
constant and zero.

(d) The total momentum in the centre-of-mass frame is
constant and zero if and only if the collision is perfectly
elastic.

(¢) In the centre-of-mass frame u, =v;.

(f) In the centre-of-mass frame u, = v, if and only if the
collision is perfectly elastic.

4.6 A wall is struck by 300 particles per second, each of mass 5 g,
moving at a speed of 2 m/sec normal to the wall.
(a) What is the average force exerted on the wall when the
particles are absorbed?
(b) If, in the last question, the particles rebound perfectly
elastically from the wall, what is the average force exerted
on the wall?

V ———t
A 8
G )

4.7 Two similar cars A and B each of mass 2 m are connected
rigidly together by a light rod (figure 4.7p). Car C has mass m.
Initially C is at rest midway between A and B, which are moving
with a velocity V to the right.

(a) What is the final velocity of the system if A and C collide
perfectly inelastically?

(b) If the collision between A and C is perfectly elastic but that
between B and C is perfectly inelastic, what then is the
final velocity of the system? Compare with (a).

(c) If both collisions are perfectly elastic, what are the
laboratory velocities of C after the first and second
collisions? Use the centre-of-mass reference frame.

Fig. 4.7p
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4.8

49

4.10

82

A particle of mass m and initial velocity v; strikes a stationary

particle of mass M. The collision is perfectly elastic. It is

observed that after the collision the particles have equal and
opposite velocities in the laboratory frame.

(a) What is the velocity of the centre of mass?

(b) What is the ratio M/m?

(c) What is the final kinetic energy of m in the laboratory
frame?

(d) Newton calculated the resistive force for an object travelling
through a fluid by supposing that the particles of the fluid
(supposedly initially stationary) rebounded elastically when
struck by the object. On this model the resistive force
would vary as some power, n, of the speed v of the
object. Calculate the value of n.

Two particles move in the same straight line. One is of mass

m kg and moves initially according to the position-time relation-

ship x; = 5t. The other is of mass 2m kg and moves initially

according to the relationship x, = 21 — 2t. x; and X, are in

metres and the time t is in seconds.

(a) Find the speed of massm at t =0.

(b) Find the speed of mass 2m at t = 0.

(c) A collision will occur at what time?

(d) A collision will occur at what position?

(e) Find the speed of mass m just before collision.

(f)  Find the speed of mass 2m just before collision.

(g) Find the momentum of the system before collision.

(h) If the collision is perfectly elastic, what is the momentum
of the system after collision?

(i)  Ifthe collision is completely inelastic, what is the momentum
of the system after collision?

A truck on an African safari expedition is struck broadside on by
a charging rhinoceros. The truck has a mass of 3000 kg and is
travelling at 20 m/sec in the +x direction. The rhinoceros has a
mass of 2000 kg and is travelling at 10 m/sec in the +y direction.
The collision is completely inelastic and the rhinoceros is carried
along with the truck after the collision. What are the components
in the x and y directions of the following?

(a) The velocity of the centre of mass of the truck and the

rhinoceros
(b) The velocity of the truck in the centre-of-mass frame before



the collision

(c) The velocity of the rhinoceros in the centre-of-mass frame
before the collision

(d) The velocity of the rhinoceros-truck combination relative
to the ground after the collision

(¢) In joules, what is the energy lost in the collision?

N T

Fig. 4.11p(i)

4.11 Two bodies each of mass 5;0 kg are joined by a spring of

negligible mass. The spring is compressed and the assembly

projected with an initial speed of 196 m/sec at an angle 8 to the

horizontal. At point B the projectile reaches its maximum height

h, 10 seconds after firing [figure 4.11p (i)]. Take g as constant

and equal to 9-8 m/sec? and neglect air resistance.

(a) Show that angle 6 = 30°.

(b) What is the maximum height h reached?

(c) Find the vector velocity at point B.

(d) What is the kinetic energy at point A? :

(¢) What is the total energy at the instant of projection?
At point B the spring is released and all three components

separate. Body 1 follows the trajectory BCD, which is horizontal

at B [figure 4.11p (ii)].

N T

NI D
N D
-]

Fig. 4.11p(ii)

(f) How long after projection does body 1 reach D?
(g) What is the horizontal component of velocity at point C?
(h) Find the impulse imparted to body 1 by the spring.
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@)
k)
O
(m)

()
O)

How long after projection does body 1 reach the height
h/2 on the way down?

What impulse is given to body 2 by the spring?

How long after projection does body 2 land?

Where does body 2 land?

How much work is done by gravity during the complete
motion?

How much work is done by the spring?

If the mass of the spring, although negligible for the
preceding questions, is not zero, where and when does the
spring land?



S

Energy andits
conservation

5.1 WORK, ENERGY, CONSERVATIVE FORCES

If a force is applied to a particle, for example, and a component of the
particle’s motion is in the same direction and sense as the force, we say
that the force does work. We define the element of work dW done by
the force F in displacing the particle by dS by

dW = F.dS (5.1)

The unit of work is the newton/metre, or joule. Work is clearly a scalar,
and will be negative if the component of displacement in the direction
of the force has the opposite sense to the force. Power is defined as the
rate of doing work, and the instantaneous power P is defined as
dw
P=-—=Fuv 5.2
i (52)
where v is the instantaneous velocity. The unit of power is the watt,
which equals one joule/sec.

Fig. 5.1 Particle path in a force field
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Suppose that a particle moves through a force field along a path S
from point P to point Q (figure 5.1). For simplicity, we illustrate the
situation in two dimensions. The force may vary in magnitude and
direction over the path. To find the total work done, we split up the
path into elements, AS;, and approximate the force acting over each
AS; by its value F; at the beginning of each element, for example. Then
the total work W done by the force F over the path S from P to Q is

+Q
W=lm EIFAS;={ FdS (5.3)
AS;~01i P

Q
where fp denotes what we have defined: the line-integral of the varying

force F over the path S from P to Q.
Let us confine our attention to the x component of the motion, say
from x, to x, of the particle of mass m. We will have

X
w={ Fydx (5.3)
Xo

where F, is the x component of the force, and we may drop the bar-
sign because clearly we now have an ordinary integral. By Newton’s
Second Law we have

X X . X dv \
W=/ X Fydx= [ Xy m¥dx = f % mvy F)%( dx = f v;‘( mvydvy
0

= 3mvZ -3 mv§0 (5-4)

=

where v, and Vx, are the velocities of the particle at x and x, res-

pectively. We note that the increase in the quantity %mv,z( is equal to
the work done on the particle by the x component of the force. We
shall find similar relations between the y and z components of the
velocity and the y and z components of the force. Hence we define a
quantity, the kinetic energy:
= smlv? = jmv.y

and we note that the increase in the kinetic energy is equal to the work
done on the particle by the resultant force. Clearly, a decrease in the
kinetic energy must mean that work is done by the particle. So we may
also consider the kinetic energy of a body as the work it is capable of

86



doing before being brought to rest.

Suppose we take a particle around a closed path in some force field;
we may enquire what is the total work done by the force on the particle
during the round trip. It will be the line-integral around the closed path,
denoted by ¢:

W = § FdS (5.5)

There are forces for which equation (5.5) gives W = 0 for any closed
path. We call such forces conservative forces. Let us consider a particular
round trip, shown in figure 5.2, for a conservative force field. Then,
since

B A
é FdS = f F.dS, +f FdS, =0 (5.6)
A B
B B
we must have f FdS, = f FdS, .7
A A

i.e. the work done in going from A to B is independent of the path
taken, and depends only on the positions of A and B. This is an
equivalent definition of a conservative force.

Fig. 5.2 A closed path

Some simple examples are now in order. Consider a particle of mass
m moving in a uniform gravitational field of acceleration —gj, and
for simplicity, consider the paths shown in figure 5.3 to be in the x-y
plane, such that Pis at height h,j and Q is at height h,j. The work done
by the force —mgj in taking the particle from Q to P by either path is
clearly mg(h, — h;), since any x components of the path contribute
nothing to the elementary scalar products —mgj.dS. Therefore this
gravitational force is a conservative force, by the criterion of the
previous paragraph.
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Q(x,, hy)

P(x, hy)
Fig. 5.3 Closed path in a uniform gravitational field

Consider now the degenerate closed path of figure 5.4, lying along
the x axis from A to B, such that AB = 2. Suppose that a constant
frictional force acts so that it always opposes the direction of motion.
Then the work done by the force in going from A -+ B (path 1) is (-F).
The work done in going from B + A (path 2) is F(—%); and the total
work around the whole closed path is —2F2 # 0. Hence, as we suspected,
this frictional force is not conservative. Dissipative forces such as
friction are not conservative; but we can always choose to ignore them
to a first approximation at any rate, and consider any conservative
forces in a given situation first. We shall see in the next sections that
conservative forces are capable of a very elegant treatment which greatly
simplifies many problems in mechanics.

N
o A — ——p
Fig. 5.4 Closed path with a frictional force

5.2 POTENTIAL ENERGY. POTENTIAL ENERGY DIAGRAMS IN
ONE DIMENSION

Since the work done by a conservative force on a particle moving
between two points depends only on the position of the points, and not
on the path, there is a sense in which we can regard the particle as being
capable of doing work by reason of its position. For example, a particle
at a height h in a gravitational field will gain kinetic energy 3mv® = mgh
on falling through the height h; this kinetic energy we may then use in
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some way. We are thus led to the idea of potential energy, which we
define in the following way. We say that there exists a scalar potential
function U(r) which has a single value for each r throughout the
conservative force field. We define the change AU in this function
between the points r and r,, as

AU = U(r) - U(ry) = change in potential energy

and we define AU = —-AT (5.8)

where AT is the change in Kinetic energy in going from ry to r.

Now AT = [* Fds = - [OF.ds
(o]

= —AU, from (5.8)

Hence AU

U@ -UG) = [ :0 F.dS (5.9)

i.e. the change in potential energy between r and r, is the work done by
the force in moving from r to r,,.

From equation (5.8) we see that if the kinetic energy increases, the
potential energy decreases. From (5.8) and (5.4) we have

U() - Ulrp) = —[zmv? () — 3mvi(ro)]

or U(r) + 3mv3(r) = Urp) + 3mv2 (rp) (5.10)

constant

From (5.10) we observe that the sum of the potential and kinetic
energies is a constant; we call this the total energy, E,

ie. E=T+U (5.11)

We also observe that the addition of an arbitrary constant to each side
of (5.10) or (5.11) preserves the equality. Hence the zero of total, and
therefore potential, energy is arbitrary, and we may take it where it is
most convenient. This is because only differences in potential energy
matter. This refers to the defining equation (5.8).
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Let us specialize (5.9) to one dimension: the x axis, say. Then we
obtain

AU=fx"°Fdx=—fx’(‘)Fdx

or dU = —Fdx, giving F = —%’I (5.12)
That is, the negative of the slope of the one-dimensional potential-
energy function at some point gives the value of the force at that point.
Hence a plot of the potential-energy function can be a most useful
device for examining the motion of a dynamical system.

Relation (5.12) can be most useful in deciding how to draw a
potential-energy diagram: some difficulty is often experienced in know-
ing where to set the (arbitrary!) zero, for example in the case of
electrostatic potential energy. Consider the potential energy of a test
positive charge at a distance r from a positive charge q, for example.
When r>oo, the force tends to zero, so the potential-energy curve must
asymptote to the r axis. As r decreases, the test charge experiences a
repulsive force; work must be done against this force, so the potential
energy must increase as r decreases, and we obtain the conventional r’!
curve shown in figure 5.5a. If we have a positive test charge, and a
charge —q, the force still tends to zero as r>cc; but as r decreases, the
force is attractive and therefore does work, and hence the potential
energy must decrease as r decreases, giving rise to the curve of figure
5.5b, clearly the mirror image of figure 5.5a.

u(n

Fig. 5.5a Potential energy of a positive charge in the field Qf a.charge +q
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u(n

Fig. 5.5b  Potential energy of a positive charge in the field of a charge
-q

We may even construct potential-energy diagrams when we do not
know much about the origin or nature of ihe force. Consider an
a-particle (positively charged) approaching a positively-charged nucleus.
It must experience the r' potential of figure 5.5a at first. But when it
comes sufficiently close to the nucleus, the short-range, ‘strong-inter-
action’ force must take over, because we know that a-particles exist
inside the nucleus. Therefore we may construct the potential-energy
curve of figure 5.6a, where in the region of the attractive unclear force

the slope of the curve is determined by the force F = — g—rU We can now
investigate our model by firing o-particles at a nucleus. It turns out
that the potential-energy diagram is of the right form, but its predictions
are at variance with the facts: an a-particle with total energy E, say,

classically speaking cannot get out of the nucleus, but nuclei do emit

U(V)I £

(]

Fig. 5.6a  Potential energy of an a-particle near a nucleus
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u(n)

Fig. 5.6b Potential energy of a neutron near a nucleus

a-particles of energy lower than the height Eg of the ‘potential barrier’.
This ‘tunnelling’ through a potential-energy barrier can be explained
only by quantum mechanics.

For completeness, consider now a possible potential-energy diagram
for a neutron. 1t experiences no Coulomb force, and only the ‘strong-

interaction’ force, so that the potential-energy diagram would look like

that of 5.6b; again, the slope is determined by F = — %J

Since the potential energy is a scalar , we may add potential energies
arising from different kinds of forces. Thus a mass in a gravitational
field has a potential energy mgh, where h is the height above a given
point (figure 5.7a). If the mass experiences a spring force, the potential
energy from this alone is 3kx?, say, where x is the displacement from
the equilibrium point of the spring (figure 5.7b). The potential-energy

U(h)

o]

Fig. 5.7a  Potential energy in a uniform gravitational field
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U(x)

U(x) +kx?

Fig. 5.7b  Potential energy of a spring force

diagram of a mass suspended from a spring under gravity is the sum of
the two potential-energy diagrams, as shown in figure 5.7c, with suitable
redefinitions of x and h. We note that adding a straight line to a parabola
still gives us a parabola so that the character of the motion under the
spring force is unchanged.

U(x)

lu-u+u,

U; = §k(x')*

U, = mgx’

Fig. 5.7c  Resultant potential energy from (a) and (b)

53 COMPLETE SOLUTION OF ONE-DIMENSIONAL PROBLEMS

In principle, one-dimensional dynamical problems in which we know
the form of the potential-energy curves are completely soluble. Let us
commence with '

U(x) + 3mv? = U(x,) +3mvp = E

93



and eliminate v, so that we may solve for x as a function of time. At any -
instant, we have

jmv> = T = E-U(x) (5.13a)

so we obtain first

(=9

v=%_4 /2 [E-Um)] (5.13b)

Todt

where the positive and negatii'e solutions depend on the direction of v,
and the total energy E is constant. We may write (5.11) as

ZE —U(x)]}'% dx = dt (5.14)
or f: dx 3 = f: dt = t—t, (5.15)
0{—%[E—U(x)]}2 0

an integral equation, which can be solved (numerically if necessary!)
for x. As it stands, equation (5.15) does not appear to give us much
information about the motion, so we return to the simpler equation
(5.13). We note that v = 0 for E = U(x), and that U(x) > E yields an
‘imaginary’ velocity which we reject in classical mechanics as unphysical.
Hence the regions for which U(x) > E represent regions where a particle
cannot be. The points for which U(x) = E are called ‘turning points’ of

the motion. The relation between U and the force, F = — % tells us that

the slope of the U(x) versus x curve is zero when F = 0. At such a point,
U(x) may be a maximum (d*U/dx? — ve), a minimum (4> U/dx? + ve),
or run parallel to the x axis [(@*U/dx?) = 0]. These correspond to
positions of unstable, stable, and neutral equilibrium respectively.
Consider a general potential-energy diagram as shown in figure 5.8. When
we depart a little way from a local maximum, we see that the force,
by equation (5.12), acts in a direction away from the local maximum,
and tends to increase the displacement. When we depart a little from a
local minimum, the force acts towards the local minimum, and tends to
decrease the displacement. When U(x) is parallel to the x axis, there is
no force produced by a small displacement. Thus the use of potential-
energy diagrams, coupled with equations (5.12) and (5.13), gives us
considerable information about the motion of a dynamical system.

To show that equation (5.15), despite its awkward-looking form, is
useful, let us solve it for the case U(x) = %kx’, the potential of a
restoring spring force F = —kx. We have
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v
E

E,

Fig. 5.8 Some general potential-energy functions: 0-xy, neutral
equilibrium; x,, x4, stable equilibrium; x3, x5, unstable
equilibrium. Note that a particle with total energy E is
confined to the region x4 <x <xB; X 4, xg are the turning
points of the motion. A particle with energy E; may be
anywhere along the x axis. At any point the kinetic
energy T =E — V, where E is the total energy

myi; x & 5.16
(B —— e

[(2E/x) - x?] :

where we have put x, = t, = 0 for simplicity. The LHS is a standard
form:

m\3 k \3
m\3 in( )2 x =
(%) arcsm(ZE) X =t
orifx =0, t =0, we obtain
1 1
X = (%) 2 sin (%)2 t (5.17)
1

which is simple harmonic motion with angular frequency (&)z and

1 m
amplitude (%) =%, if Ux) =E at x = x,.
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54 FIELD THEORY I. POTENTIAL IN THREE DIMENSIONS.
THE GRADIENT OPERATOR

In the previous section we dealt with the potential-energy function U(x),
a scalar function of the single space co-ordinate x, and we found it use-
ful to have the related quantity (dU/dx), whose value at the point x
measures the rate at which U increases from one point to another. We
are now going to generalize potential functions to three dimensions; it
is convenient to consider any general scalar field quantity V(x, y, z)
whose value depends on three space co-ordinates, and then specialize to
the case of potential. In this way we get a better introduction to what is
called field theory.

If we are dealing with a scalar field quantity V(x, y, z), whose value
depends on three space co-ordinates, it turns out to be useful here
also to have a quantity which measures the rate of increase of V. But
obviously we can move away from a given point (X, y, Z) in an infinite
number of directions, and generally speaking the rate of increase of V
will be different in these different directions. So things are more
complicated. But it turns out that we need not introduce more than one
vector quantity related to V in order to be able to get the rate of
increase of V in any direction. We do it like this.

Suppose the quantity V has a constant value V at all points on some
surface S;. Take a point P on S;, and consider the surface S,, very
close to S;, on which V has the constant value V, — which of course
will be very close to V; (see figure 5.9). The shortest way to get to S,
from P is obviously to go along the normal to S, at P. (If we take a small
enough area around P we can treat it as flat and the normal is just the
straight line at right angles to this bit of a plane.) So it is in this direction
PN away from P that V is increasing fastest. In fact its rate of increase
isjust (V, —V;)/PN. In any other direction PQ, at an angle 0 to PN, the
rate of increase is (Vo — V,)/PQ = (V, — V) cos 8/PN. (For
PQ =PN/cos 0.)

Fig. 5.9 Equipotential surfaces
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We now define a vector quantity called the gradient of V, written
gradV, or VV, by letting V, — V,; become small, and saying:
The magnitude of VV at P is

lim - 18
\/1 *Vg (V2 vl)/PN (5 )
and the direction of VV at P is the direction of the normal PN.
Then the rate of increase of V, in the direction PQ making an angle 6
with PN is just VV.PQ, where PQ is a unit vector in the direction PQ
(Check this from the above result, and the definition of the ‘dot’
product.)

If we multiply this rate of increase by the small length PQ the result
is evidently V, — V,. Putting this in a neater form: the increase 5§V
corresponding to a displacement 8r is

8V = VV.Sr (5.19)

Suppose that §ris in fact the direction of the x axis (the direction of the
unit vector i). Then obviously the rate of increase of V is (by definition!)
the partial derivative dV/dx. But it is alsoVV.i from the above, and we
know that this is the expression for the x component of VV. So we
have that the x component of VV is just 3V/dx, and similarly the
y component is dV/dy and the z component is dV/dz. So we have
another way of definingVV:

v . av LV
Ve tayitak (5.20)

This form is useful when we have to calculate with the gradient; we
choose a convenient co-ordinate system (X, y, z) and work out the
components. Of course the value of 9V/dx will depend on what we
choose as the x axis, and similarly for 3V/dy and 8V/dz. But our original
definition of VV shows that the whole vector vV is the same no matter
what co-ordinate system we choose; only its division into components
changes. We say that V'V is a vector invariant.

An important interpretation of the gradient arises when the scalar
field is a potential function. This means (by the definition of ‘potential’)
that the work done against the (vector) field E in moving a small charge
from a point of potential V to a point of potential (V +8V) is qbV =
VV.ér, where 8r is the displacement of q.
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But, since gE is the force, this work is also (from the definition of
‘work’) —qE.8r. Since these expressions have to hold for all paths we
see that

E=-VVorF=-VU

dU.
is the three-dimensional version of the relation E = - (%-\(’— or F= “dx in
one dimension.

A further use of the V-operator, in determining whether known force
fields are conservative, is given in Appendix 3.

55 ENERGY AND SYMMETRY |

The total energy function

E =} Zmvivit U = T+U (5.21)

of a system of particles contains a great deal of information about the
motion of that system by virtue of its symmetry or invariance
properties. For simplicity we confine ourselves to a single particle for
the moment.

First, we note that the expression for the kinetic energy of a single
particle is unchanged in form by a Galilean Transformation, since

Tx' = im(vg = V). (v —V) = tmvg'.vg’'

where V is the velocity of K. It is also clearly unchanged by any
rotations, since any rotation of axes cannot alter the sum vy + vg, +v}
= |v|?; we shall have occasion to refer to this later on. Clearly these
statements can be suitably generalized to a multi-particle system.

We see therefore that the symmetry of the total energy is governed
by that of the potential function. We now state (without proof) the
following theorem (valid for any number of particles).

Theorem  If a potential function is invariant under translation in a
particular direction, then the momentum in that direction is conserved,
i.e. is a constant of the motion in all frames.

As an example, consider a particle moving under the gravitational
potential mgy. It is clear that this is invariant under a translation
along the x axis, and therefore the x component of momentum is
conserved. These are just the conditions we set up for the projectile
problem in Section 2.3. )

Consider now two interacting particles. If the interaction potential
energy depends only on |(r; — r;)l, say, where 1y, r, are the position
vectors of the particles, it is clear that this will also be invariant
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under translation, and that again momentum will be conserved. We note
that the gravitational and electrostatic forces are of this form. The
generalization of this kind of interaction to a system of particles is
obvious.

The invariance theorem above is important in higher mechanics, and
also carries over into quantum mechanics. Constants of the motion
usually help to reduce the number of co-ordinates necessary in the
solution of a problem. There is, in fact, a technique for solving
complicated dynamical problems by finding co-ordinate transformations
that give constants of the motion, eventually ending up with an effective
one-dimensional problem which we know is completely soluble.

CHAPTER 5 PROBLEMS

5.1 A massless coiled spring AB lies on a horizontal frictionless table,
the end B of the spring being held fixed. A body of mass 0-5 kg
moving with a constant speed of 4 m/sec in the direction AB
strikes the end A of the spring and compresses it by 10 cm.
The body and spring remain in contact until the spring regains its
original length.

(a) Determine the force constant K of the spring.

(b) Draw sketch graphs of the potential energy and total energy
of the system as a function of the body’s position.

(c) Draw a sketch graph of the velocity of the body as a
function of position before, during, and after the collision.

(d) What was the total impulse delivered to the mass by the
spring?

(¢) What was the total amount of work done on the body by
the spring during their time of contact?

Fig. 5.2p
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A mass of 1 kg passes point A in figure 5.2p with a speed of

1 m/sec and proceeds down the frictionless incline. It collides

with a horizontal massless spring at C, remaining in contact while

it compresses the spring 10 cm to the point D. The spring then

resumes its original length and the body moves back up the

incline. The value of g, the gravitational acceleration, is 10 m/sec?.

(a) What is the kinetic energy of the body at B?

(b) What is the total mechanical energy at C?

(c) What impulse is delivered to the spring while the body
moves from C to D?

(d) What total impulse is delivered to the spring by the body
during the total time for which the two are in contact?

(e) What is the work done on the spring in compressing it from
C toD?

(f) What is the force constant of the spring?

A mass of 10 kg rests on top of a vertical coil spring of negligible
mass, thereby compressing it by 0-1 m. The acceleration due to
gravity is 9-8 m/sec.

(a) What is the value of k, the restoring force for unit
displacement, in newtons/metre?

(b) What is the elastic potential energy of the spring when the
block rests on the spring?

(c) What is then the gravitational energy of the block, taking
the top of the uncompressed spring as the zero level?

The block is now removed and later dropped on to the spring
from a height of 0-4 m above the uncompressed position.

(d) What is the total mechanical energy E of the block while it
is falling towards the spring?

() The block strikes the spring and compresses it, no
mechanical energy being lost on impact. At the instant of
maximum compression what is the total mechanical energy
of the block/spring system?

(f) At this instant of maximum compression what is the total
mechanical energy of the block alone?

A projectile of mass m is fired in a uniform gravitational field of
intensity g with an initial speed v. It traverses the trajectory
shown in figure 5.4p and reaches a maximum height h at the
point B. In answering the following questions neglect the effect
of air resistance and give your answers in terms of the parameters
m, v, g, and h.



Fig. 5.4p
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What is the kinetic energy of the projectile at the point B?
What is the horizontal component of velocity at point B?
What is the horizontal component of velocity at point A?
What is the vector acceleration of the projectile at point B?
What is the vector acceleration of the projectile at point A?
What is the radius of curvature of the trajectory at the -
highest point B?

Relate 8, the angle of elevation of the gun, to the quantities
v, g8, h. ‘

What is the total work done on the projectile during its
passage from A to C?

What is the change in momentum suffered by the projectile
in travelling from A to C?

Describe the conditions under which the radius of curvature
at the point B could be zero.

If, at the point A, the projectile exploded into two pieces, -
one of which was projected vertically downwards, would
you expect the maximum height reached by the other piece
to be greater than or less than h? State your reasons.

Distinguish between the mass of a body and its weight.
Two bodies whose masses are m and M are held a distance
h apart. Each attracts the other with a force which has a
constant value K, independent of their separation. The
bodies are released. If the forces of mutual attraction are
the only ones acting, how much work has been done by
these forces when the bodies collide?

Use momentum and energy considerations to show that,
when they collide, the body of mass m has acquired a
velocity v given by
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Consider the problem of an object falling from a height h
to the earth’s surface. Show. that this situation approximates
to the hypothetical situation described in part (b) and that
the result obtained in that part reduces, in this approxi-
mation, to the familiar expression for the velocity acquired
by a falling object.

A closed horizontal tube of mass 5 kg rests on a frictionless table.
Inside the tube and at its centre are two masses of 1 kg and 4 kg,
initially joined together. It is arranged that a small explosion
separates these two masses so that they fly towards the opposite
ends of the tube (experiencing no retarding forces on the way)
and are embedded in the ends. The 1 kg mass starts off with a
speed of 12 m/sec.

5.6
(@
(®)
©)
@
Fig. 5.7p
5.7
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Calculate the initial speed of the 4 kg mass.

What happens when the 1 kg mass hits the end of the tube?
After this impact, what is the velocity of the 4 kg mass
relative to the tube?

Describe the subsequent motion of the system.

Energy
(arbitrary units)
3
[}
24 |
[}
]
i
L
1
1
1
1 . . ———x
12346 10 )
distance
(arbitrary units)
—1 4
—2 4

The potential energy curve in figure 5.7p represents the force
experienced by a positively-charged particle (proton) approaching
an atomic nucleus. Answer the following questions.



(a) In which region or regions of the diagram could a proton
move if it had a total energy of
@) -1 unit?

(i) +3 units?

(b) Indicate any equilibrium points on the diagram, and state
the nature of the equilibrium.

(c) What is the minimum total energy a proton must have to
get into or out of the nucleus?

(d) A proton is originally far to the right, moving to the left
with a total energy of 2 units. Describe its subsequent
motion.

(¢) What is the magnitude and direction of the force on a
positively-charged particle in the region 1 < x < 2?

(f) A neutron experiences the same attractive force as the
positively-charged particle inside the nucleus, but no force
outside. Taking the nucleus to occupy 0 < x < 2,
sketch the appropriate potential-energy curve for a neutron.

Potential Energy V
A
A
2
—4 —2 0 2 4 6 8
_—
Position x

Fig. 5.8p

"~ 5.8 A particle moves in the x direction shown in figure 5.8p. It is
subjected to a conservative force field. The potential V of the
particle is given by

V = Asin? (’L—x) in the range —4 < x < 8,
V = 0 elsewhere.
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Fig. 5.9p o

104

(a) Which of the following positions are positions of equili-
brium? Give your reasons.

x=-2,—-1,0,+1,+2,+3, +4, 45, +6

(b) Which of these are positions of stable equilibrium? Give
your reasons.

(c) Which ranges of x are forbidden to a particle whose total
energy is A/2? Give your reasons.
Questlons (d) to (i) relate to the motion of a particle which is
projected in the +x direction from the point x = 0 with a kinetic
energy of 2A, and is subjected to the force field described above.
(d) At which points will the kinetic energy reach a minimum
value?

(e) At which points will the total energy of the system reach a
maximum value?

(f)  Atwhich points will the speed of the particle be a minimum?

(g) At which points will the speed of the particle be a
maximum?

(h) What is the magnitude and direction of the force exerted

on the particle when it is at the position x =2/3?
(i) Write down an expression for the kinetic energy of the
particle as a function of position within the range 0 <x <8.
The next two questions relate to a particle which is projected
in the +x direction from the point x =0 with a kinetic energy of
3A, and is subjected to the force field described above.
() At which point does the particle come to rest?
(k) Describe the subsequent motion of the particle.

Figure 5.9p represents a potential-energy diagram for a particle
which can move along the x direction. The particle has a total
energy E, and is initially at x = 0, moving in the +x direction.

Potential Energy

pT 4 S ———
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Which one of the following correctly describes the sub-

sequent motion of the particle?

(i) It continues to move along the positive x direction
and never returns to x = 0.

(ii) It reaches x = X and remains at rest at this point.

(iii) It moves to x = X and then returns to x = 0.

The energy of the particle at x =0 is

(i) - all kinetic energy.

(i) all potential energy.

(iii) partly kinetic and partly potential.

The force on the particle is

(i) constant.

(i) directly proportional to the displacement from O.

(iii) proportional to the square of the displacement from 0.

(iv) proportional to the displacement from X.

The direction of the force is

(i) in the positive x direction.

(ii) in the negative x direction.

(iii) along the direction of the potential-energy curve.

(iv) at right angles to Ox.

5.10 A particle within a certain nucleus has a potential energy V(x)
like that shown in figure 5.10p, where x = 0 at the centre of the
nucleus. The particle is said to be ‘bound’ if it cannot move
outside the limits x = +1, and ‘free’ otherwise.

Fig. 5.10p

V(x)

A —1 a\yc +1 D—= X
—W

In the region between A and D,

VX)=(U+W) x> 2-x?)+K

where K is a constant. Qutside this region V(x) falls rapidly
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to zero as shown. Answer the following questions in terms of the

quantities V and W.

(a) What is the value of the constant K in the above expression
for V(x)?

(b) What is the greatest energy a bound particle can have?

(c) What is the greatest speed a bound particle can have?

(d) What is the least amount of work that would need to be
done to free a particle originally at rest at the centre of
the nucleus (x = 0)?

(¢) How much work would have to be done to shift a
stationary particle from C to a point a large distance to the
right of D?

(f) What is the magnitude of the force on the particle at the
point x =+ %?

(g) The direction of the force at the point x = +§ is
(i) towards the centre of the nucleus.
(ii) away from the centre of the nucleus.
(iii) along the tangent to the potential-energy curve.
(iv) out of the paper in a sense given by the right-hand

screw rule.
(h) Name a point labelled in the diagram where the force is

zero.

(i) What is the least speed a particle (of mass m) would
need to start with in order to pass right through the
nucleus from a point far away to the right?



Simple harmonic
motion-free,
damped and driven

6.1 FREE SHM FROM THE ENERGY CONSERVATION VIEW-
POINT

We have seen in previous sections, 3.6 and 5.3, that a particle of mass
m, subject to a restoring force F = —kx i, for example, moves such that
its displacement x from the origin is given by

X = Asin(wgt +¢) 6.1)

where wg, = V' k/m is the angular frequency, t is the time, ¢ is a phase
angle, and A is the amplitude (magnitude of the maximum displace-
ment) of the motion. This kind of repetitive, oscillatory motion is
known as simple harmonic motion (SHM), and we are now going to
delve into some aspects of it in considerable detail. .

Why? Because of its universality, and its importance in physics and
engineering. Let us demonstrate the universality first. Suppose we have
some potential function, V(x), which has a local minimum, which we
may take as being at x = 0 without loss of generality. We recall from
section 5.2 that a particle with this minimum energy is in a state of
stable equilibrium, ie. will experience a restoring force for small
displacements from the location of the actual minimum. Now it is a
fact that, if we know the derivatives of a function at x = 0, we may
expand that function for small displacements x in a series; thus

2
V(x) = V(0) + xV' (0) + ’2% V'@©0)+... 6.2)
This is Maclaurin’s theorem. Using F = —(dV/dx), and the fact that

V'(0) = (dV/dx);-q = O for the minimum at x = 0, we have that the
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restoring force F for small displacements is given by

F = - g_z = —x V"(0) + higher-order terms 6.3)

Hence all small oscillations about stable equilibrium are (at least to a
good approximation) simple harmonic oscillations.

Simple harmonic oscillations occur in electromagnetic circuits, and
the quantum-mechanical simple harmonic oscillator forms the basis for
the quantization of the electromagnetic field, among other things. So
the simple harmonic oscillator deserves a full treatment.

V(x)

[o]

Fig. 6.1 Potential energy of a simple harmonic oscillator

The potential-energy curve V(x) for a simple harmonic oscillator is
a parabola, V(x) = 3kx? (figure 6.1). It is clear from the figure that the
greater the value of the total energy, the greater is the amplitude.
Since the total energy is all potential at the turning points of the motion,
we have immediately:

1
E = 3kA? or A = (%)2

And since the kinetic energy is the difference between the total energy
and the potential energy,

Imv? = E-V(x) = E—-3kx? (6.5)

i.e. the kinetic energy follows an inverted parabola with respect to the
displacement x. This is also illustrated in figure 6.1. Finally, the
maximum kinetic energy is clearly at x = 0, and

1 i kA?
§Il‘lV2 = E = ikA2 or V?nax = -I?l— (6-6)
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These results are often obtained by manipulations with x and X as
functions of t, but are much more simply obtained from the potential-
energy curve and energy conservation considerations. Equations (6.1)
(6.5), and (6.6) completely categorize the simple harmonic motion: and
we recall that equation (6.1) was obtained by the energy method of
solution in section 5.3.

6.2 DAMPED SHM — QUALITATIVE SOLUTION

It is clear that, up to now, we have ignored any dissipative (i.e. non-
conservative) forces in our treatment of simple harmonic motion.
A very commonly encountered force is the viscous damping force,

F = —bv = —bx . 6.7

where b is some constant. A line integral over a degenerate closed path
along the x axis shows clearly that this is a non-conservative force; even
more simply, the motion always does work against this force, and there-
fore the total energy (unless supplied from outside) must decrease.
Using this fact, and a potential-energy diagram, we can obtain a
qualitative idea of the motion. First, let us suppose that the damping
is light: this means that the total energy runs down slowly, i.e. it
takes many periods of the oscillation before, say, half of the total
energy is dissipated. Suppose that the SHM oscillator starts off from
x = —A; it will not reach x = +A, because the energy will have run down
to some value, say E;. The next excursion in the negative x direction
will be even smaller, because the energy will have run down to E,, say
(figure 6.2). So by these qualitative considerations we obtain a plot of
displacement versus time like that in figure 6.3.

V(x)
E

3 ]
3 /

T

Fig. 6.2 Damped SHM energy diagram
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Fig. 6.3 Qualitative lightly damped behaviour

Suppose now that the damping is so heavy that the total energy runs
down almost to zero in half a period of oscillation. This must mean that
the ‘oscillator’, if it starts from —A, say, will not even have the
‘runningdown’ oscillations of figure 6.3, but must behave as shown in
figure 6.4.

Fig. 6.4 Qualitative heavily damped behaviour

Since the motion is always being opposed, we should expect that the
time-interval between two successive zero-crossings in figure 6.3 would
be greater than the half-period T/2 of the undamped oscillator. This
must be so, since if, as in figure 6.4, the damped oscillator never makes
a zero-crossing, there is a sense in which the period is infinite.

We have gone about as far as we can go with our qualitative
considerations and the energy diagram. It is time to turn to the exact
solution.
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6.3 DAMPED SHM — QUANTITATIVE SOLUTION

The equation of motion of the SHM oscillator subject to the viscous
damping force of equation (6.7) is

mX = —bx —kx (6.8a)
or mX+bx+kx =0 (6.8b)
We have already solved this equation for k = 0 (section 3.6 (iv)), and
we found that the velocity decreased exponentially with respect to time.
We solve (6.8) by making an inspired guess at the solution, and check-
ing this in the original differential equation (quite a fruitful way of

solving differential equations).
We set

= Aexp(—t/T)cos(w't + ¢) (6.9)

and we find that this is a solution if

1
_ 2m _ b 2
re s RG]
L%

2

= [wd - ; (6.10)
i.e. we have
x = A exp( bt )cos[ [:; (21;1)2]; t+ ¢’
= A exp(-t/r)cos {[wf) —}2] 2 t+ ¢} 6.11)

Consider the case w' >0, i.e. wd > 772, or 7> wy!. We have an oscilla-
tion, of period (2m/w"), which has a decreasing amplitude, A exp(-t/7).
This is shown in figure 6.5; the similarity to the qualitative predictions
of figure 6.3 is not surprising. The quantity 7 is the ttme-constant of
of the decay of the amplitude: the amplitude has fallen to e of its
original value at t = 0 in time 7. The time-constant for the decay of the

energy (xA?) is therefore 27.
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Fig. 6.5 Lightly damped oscillations

Consider the case w' = 0, ie. 7 = 7¢ = ‘*’o We now have no
oscillations, but a simple exponential approach to zero, if the oscillator
began at x = A, with time-constant 7 (figure 6.6). We note that T is
less than any of the 7 associated with the previous case w' > 0; the
approach to zero is quicker!

Fig. 6.6 Critically damped behaviour

What happens when ' is imaginary, i.e. 7 < wg ? We must now take
courage and make use of the mathematical relationship (i = vV=1):

cos 0 = 3(elf + &10)

which gives us, setting ¢ = 0 for convenience,

’ ’
cos(iw't) = (e t+ Wt

! This treatment of so-called ‘critically damped motion’ is not quite correct
(see e.g. K.R. Symon, Mechanics, op. cit., p. 47) but it will serve our purpose.
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So that equation (6.9) becomes effectively

x = A exp(—t/7); [exp(w't) + exp (-w't)] (6.12)

We note that this expression contains the exponential function
A exp {— [7! + '] t}: in other words, the effective time-constant has
increased from 7 to ("' + w'), so that the approach to zero [actually
a sum of two exponentials from (6.12)] is without oscillations, but
slower than in the case w' = 0.

X

Fig. 6.7 Overdamped behaviour

In the case where w' > 0, and damped (decaying) oscillations
occur, the oscillator is said to be underdamped; in the case where w' =0,
and we have the minimum time-constant 7¢» the oscillator is said to be
critically damped; it the case «' imaginary, where we have no
oscillations but again an effective time-constant greater than 7, the
oscillator is said to be overdamped.

When we have something like a meter which reads electrical current,
for example, and the needle works against a restoring spring force, we
like to know the value of the current as quickly as possible. So we
build in some damping, preferably so that the system is critically
damped, i.e. it settles down with the minimum possible time-constant.
It is possible to do this either mechanically or electrically, since we can
have damped electromagnetic oscillations in a circuit which has
resistance, capacitance, and inductance present.

64 DRIVEN SHM. RESONANCE

Since friction or viscous damping is always present in any practical
system, we must supply energy from outside if we expect a practical
simple harmonic oscillator to have a constant amplitude. It is quite
easy to generate simple harmonic driving forces, either mechanically or
electrically, so we choose to investigate the case where a damped
harmonic oscillator is subject to the harmonic driving force
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F = F,cos wt (6.13)

say, where w may differ from the frequency wg = \/k—lr—n of the un-
damped harmonic oscillator. In fact, we shall investigate what happens
as the driving frequency, w, is varied.

Before solving the equation of motion, we shall give the results of
an experiment which is readily set up on an air-track. A carriage of a
certain mass and a spring of a certain stiffness form the oscillator; the
air-track and the spring supply some friction. The oscillator is driven
by means of a piston from a variable speed motor; the piston is coupled
to the spring by a suitable connection (figure 6.8). We determine first
the approximate frequency w, of the oscillator; we then start the motor
at a speed such that the driving frequency w is considerably greater

than w,.
-3 2 1
e U000V 00U
A

Fig. 6.8 A driven oscillator: (1) air track carriage; (2} spring;
(3) piston; (4) wheel, driven by variable-speed motor

We observe that the carriage oscillates with the frequency w of the
driving piston, but 180° out of phase with it. We decrease w, and
observe the motion for a series of values of w as it approaches wg. We
find that the amplitude of the motion increases as w » wg, and at
w = w, the amplitude gets very large (sometimes disastrously!), and
that here the motion of the carriage is about 90° out of phase with
that of the driving piston.

As we decrease w below w,, and observe the motion for various
values, we find that the amplitude of the motion decreases once more;
when w < w,, the motion of the mass is in phase with the driving
piston. A typical set of results is plotted in figures 6.9a and 6.9b.
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Fig. 6.9a Amplitude versus driving frequency (experimental)

Phase
180°4— X X
90°4+— X
0 % T hd
gy

Fig. 6.9b Phase versus driving frequency (experimental)

Let us now table the equation of motion of the driven SHM
oscillator, which is

mX = —kx —bx + F, cos wt (6.14a)
or mX + bx + kx = F; cos wt (6.14b)

’To bring out the significance of the solution, it is now convenient to
rewrite (6.14b) in the following form:

< b - k Fo
2 = X =— COs wt
X+ X+ X=—
¢ g. 2. _Fo
or X+7g X + woX = — cos wt (6.14¢)

- where we have set (b/m) = 7, the time-constant at which the energy
runs down [see equations (6.10) and (6.11) and the following
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discussion]. Now we expect the steady-state solution to be a sinusoidal
oscillation at the driving frequency, of constant amplitude (dependent
on F, and w), with a phase different from that of the driving
frequency, i.e. a solution of the form

F
X= nT?Z cos(wt + ¢) (6.15)

say, where the constants Q and ¢ can be determined by substituting
(6.15) back in the original equation. After some tedious but not
difficult algebra, we find that

Q= [(0* ~wl)? + wiry 2]

-w|T
tan ¢ = T/e_i

N

(6.16)

T, = 20"

—_—

|
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}
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Fig. 6.10a Oscillation amplitude versus driving frequency
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Fig. 6.10b Oscillation phase versus driving frequency

The solutions for the amplitude A = F/m and for the phase angle ¢
are plotted, for various values of Te, in figures 6.10a and 6.10b. We.
observe that when 7, is large (i.e. the damping is small), the amplitude
is a maximum near w ¥ wq, and falls off on either side; the phase
variation corresponds to that we found by experiment. The phenomenon
of the large amplitude when w * w, i.e. the driving frequency is
approximately equal to the resonant frequency of the undamped
oscillator, is known as resonance. It can be useful, or disastrous.
Soldiers ‘break step’ when crossing a bridge, for example, to avoid
possible disastrous consequences of resonance. We see also that the
frequency width of the resonance curve between the points (Amax/\/f),
where Ap .. is the maximum amplitude, decreases as the damping
decreases; these points are known as the ‘half-power points’, for a
reason which should be obvious [equations (6.4)]. We can therefore
use the property of resonance to select only certain frequencies; this
is just what is done in a radio or television receiver, where the behaviour
of a suitable circuit containing inductance, capacitance, and resistance
is exactly analogous to that of our mechanically-driven harmonic
oscillator. The spectral lines emitted by atoms also have the characteristic
bell-shaped curve for power versus frequency. If 7, = 27 is large, we
may set Aw = w ~ Wy, W T Wg, and we find that the square of the
amplitude falls off as [(Aw)* + 72]™" or [1 + 72(Aw)*]™*. This is
known as a Lorentz line-shape, and is of considerable importance in
physics.

6.5 ANHARMONIC OSCILLATORS. AN EXAMPLE

Although the simple harmonic oscillator is very important in physics,
we can have periodic phenomena which are not simple harmonic: these

117



are called anharmonic. For example, if the higher-order terms in the
expansion of the potential function V(x) about a local minimum are not
negligible, we shall have anharmonic oscillations. Rather than treat one
of these cases, we consider a simple but illustrative example: a particle
(such as a steel ball) making a perfectly elastic collision with a plane
surface (such as a steel plate) under gravity. We assume that the
velocity of the ball on striking the plate is reversed in sign, and
unchanged in magnitude; and we confine our attention to one
dimension, the y direction, say. Let the plate be at y = 0, and the
particle commence from height H at t = 0. The potential-energy
diagram is shown in figure 6.11. From this we obtain that the amplitude
of the motion H is directly proportional to the energy:

= E
H = ng (6.18)
and that the maximum kinetic energy
%mv?nax =E=mgH or V?:m =2gH (6.19)
while the kinetic energy curve is a straight line:
1
smv? = E — mgy (6.20)
V(v}
B |
AN \t\ / «Fs\ i
& A |
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Fig. 6.11 Potential-energy diagram for the ‘bouncing particle’
oscillator

These equations should be compared with (6.4), (6.5), and (6.6). The
period T of the motion is given by

1
T = (2H/g)? o (6.21)
whereas the period of SHM is independent of the amplitude. Finally,
we have for the displacement versus time plot:

y=H-1g(t—-nT)> n=1,2,3...(y decreasing)

y= %g( —"2‘—T)2 m=1,3,5...(y increasing) (6.22)

because of the discontinuity in the motion. Each kind of anharmonic
oscillator has to be analyzed separately.
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CHAPTER 6 PROBLEMS

6.1

6.2

(a) A simple pendulum on the earth swings with a period of T
sec. If it were transported to the surface of the moon, the
time for one oscillation would be
@ T
(ii) greater than T.

(iii) less than T.

(b) A body is suspended by a spring and performs vertical
oscillations of period T sec on the earth. If the system were
transported to the surface of the moon, the time for one
oscillation would be
G T
(ii) greater than T.

(iii) less than T.

{(c) A body of mass m lies on a horizontal frictionless table
and is connected by a light spring to a fixed point on the
table. On the earth the period of oscillation is T. If the
system were transported to the moon, the time for one
oscillation would be
i T
(ii) greater than T.

(iii) less than T.

A body of mass m oscillates with simple harmonic motion
according to the equation

x =30 cos (31rt + gl) metres

Find

(2) the displacement at the time t = 2 sec;

(b) the velocity at the time t = 2 sec;

(c) the acceleration at the time t = 1 sec;

(d) the phase angle;

(¢) the period of the motion;

(f) the maximum kinetic energy of the system;

(g) the values of t corresponding ‘to this maximum Kkinetic
energy.

(h). How many times per second does the potential energy of
the system pass through its maximum value?

(i) At what values of x does this occur?
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6.3

6.4
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The equation of motion of a simple harmonic oscillator is

mX+kx=0

where m is the mass of the system and k is the restoring force
per unit displacement.
The solution of this equation is of the form:

x#Acos(wt+6)

(a) What is the significance of the quantities A and &7

(b) How is w related to k and how is it related to the period
of the motion?

(c) How does the period of the motion depend on the
amplitude?

Assume in the following that 6 = 0. .

(d) What are the possible values of velocity and acceleration
when the displacement is equal to +5A? At what values of
t will this occur?

(¢) At what values of t will the system attain its maximum
value of:
(i) kinetic energy;
(ii) potential energy; and
(iii) total energy?

(f) How many times per second does the kinetic energy of the
system pass through its minimum value? At what values of
x does this occur?

(g) If the system is subjected to a damping force proportional
to the speed, what is the equation of motion?

(h) If, in addition, the damped system is subjected to an
external sinusoidal force, what is the equation of motion?

The equation of motion of an undamped harmonic oscillator
subjected to an impressed force F(t) is

mX + kx = F(t) ' Y

The solution is always the sum of two parts, the first of the

form x = A sin (wt + 8) where w? = K/m, and the second

dependent on F(t).

(a) Let F(t) = F, (a constant independent of time). Show that
x = Fg/mw? satisfies equation (1).



6.5

6.6

(b) The total solution is now
F
x = A sin (wt +8) + =,
mw

What does the second term represent physically? (Hint: .
Consider the difference between a mass on the end of a
spring oscillating either horizontally or vertically.)

(©) Now let F(t) = ka cos t. Show that x = X sin (2t + )]

" satisfies equation (1) for all values of t and hence find the
values of X and y.

(d) The total solution is now x = A sin (wt + 8) + X sin
(2t + o). If the frequencies £ and w are very similar we
can write § = w + € where € is small. Show that this leads to
an oscillation of frequency w which has a time-dependent
amplitude. [It is convenient to write x in the complex form

x = A* exp (iwt) + X* exp (if2t).]

(e) As what physical phenomenon is this time-dependence of
the amplitude usually referred to?

One end of a light horizontal spring, with a force constant of 800
newtons/metre, is fixed, and a 2 kg mass is attached to the other
end. The mass is pulled along a horizontal table so that the
spring is stretched by 5 m and then released from rest at time
t = 0. The resulting motion is simple harmonic.

(a) Find the force required to give the displacement of 5 m.
(b) What is the period T of oscillation?

"~ (¢) What is the amplitude A?

(d) Find the kinetic energy of the oscillator at time t = T/2.

(e) Find the potential energy at time t = T/2.

(f) Find the total mechanical energy at time t = 3T/4.

(g) What is the potential energy when the displacement is A/2?

(h) What is the kinetic energy when the displacement is A/2?

(i) What is the total energy when the displacement is zero?
Sand is dropped on the table to introduce a friction force

F¢ =—b(dx/dt) where b is constant.

(G)  Write down dimensions for b.

A mass m on a spring of modulus k is made to oscillate along the
x direction by application of an oscillatory force F = F cos wt.
The mass experiences a small viscous drag force proportional to
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its velocity, —bx. Hence the equation of motion is
mX + bx + kx = F cos wt
The solution is of the form

X = A cos wt + Bsin wt

, (k ~ mw?)
t =
with A=Fo (k —mw?)? +b2w?
B bw

=Fo (k—mw?)? +b%w?

(a) Write out the expression for the velocity of the mass.

(b) Write out the expression for the rate at which the force F
is doing work.

(c) What is the mean rate of working (average over one cycle)?

(d) At what frequency is the mean rate of working a maximum?

From equations (6.16) and (6.17), write the response of the
driven simple harmonic oscillator in terms of an in-phase and an
out-of-phase part, i.e. as

x = A cos wt + B sin wt

Show that the average power P = < Fx > dissipated (average
over one cycle) is given by
F} w?[1e

P= =
2m (w) - w?) + wiry

and is a result of the out-of-phase component. Show that for
woTe > 1 (light damping), the ‘Q’ or ‘quality factor’ defined by

Q=2 energy.stored
average energy loss in 1 period

is given by Q = wq7e.

Show that the power absorption is reduced to one-half the
value at resonance at frequencies given approximately by
w = weo * (1/27) for light damping. Hence show that

_ resonant frequency
Q = F4ll width at half maximum power




7
Rotational motionl

7.1 PRIMITIVE CONCEPTS. TORQUE. ANGULAR MOMENTUM

We know a great deal about rotational motion by practical experience,
without ever having formalized it. For example, door-handles are set as
far away as practically possible from the hinges of a door, and when we
go to open a door, we pull at right angles to the plane of the door
(initially at least) because we know we shall then need the least
effort. We know that the closer the door-handle is set to the hinges, the
greater will be the effort required to open the door, and that if we
pull at an angle other than perpendicular to the plane of the door, we
shall also have to use more effort.

The physicist formalizes and quantifies these ideas into the concept
of torque, or the vector moment of a force about a point. If a force F
acts at some point P with position vector r (figure 7.1), then the torque
J is defined by

J=rxF=rFsinfn (7.1

(o]
Fig. 7.1 Definition of torque
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where f is the unit vector perpendicular to r and F, with its sense given
by the right-hand screw rule for the vector product. It is easy to check
from figure 7.1 that if the force tends to rotate r anticlockwise as
shown, then the sense of J is out of the paper: i.e. the direction of
rotation of the right-hand screw is the direction in which F tends to turn
r. We also see that when r is perpendicular to F, F must be large if r is
small for constant J and vice versa; and either r or F must increase for
constant J, if sin § # 1. So if we think of torque as a measure of
‘turning ability’, our experience with doors is well formalized and
quantified.

How can we fit this into our foregoing mechanics framework?
Before we do, we must define a new quantity, called the moment of
momentum or the angular momentum. We shall use the latter term, but
the former is a good mnemonic for the definition of the angular
momentum L of a particle of momentum p = mv about a point 0 with
respect to which the particle has a position vector r (figure 7.2):

o
Fig. 7.2 Definition of angular momentum

L=rxp=rxmv (7.2)

We observe here also that the direction of rotation of the right-hand
screw is the direction in which p is tending to rotate r. We note also that
the definitions of torque and of angular momentum depend very much
on the specification of the origin of r, in a way in which linear
momentum in fixed frames, for example, does not.

Let us differentiate both sides of equation (7.2). We have, by the
rules for differentiating a vector product,
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dL d (rxmv)——xmv+rxmd— (7.32)

t
=0+rxF (7.3b)

since (dr/dt) = v and v x v = 0. In other words, the rate of change of
angular momentum is proportional to the impressed torque, and takes
place in the direction of the torque. But we must always remember that
the directions of the torque of a force F, and of the moment of a
momentum my, are at right angles to F and mv respectively, given by
the vector-product rule. We also note that if

J=0,ie.r=00rF=0orr I F (7.4)
then g:‘ 0, i.e. L constant,

which means that we have a principle of rotational inertia: a particle
rotating about an origin will continue to do so in the absence of any
torques. Note that, by (7.4), forces can be present. In fact, let us
consider a very simple situation, in which a very light particle of mass
m is in a circular gravitational orbit about a very massive particle, which
is thus a good approximation of the centre-of-mass inertial frame. We
observe that the gravitational force F always acts along the line
joining the light particle to the origin on the massive particle. Hence
the torque of the gravitational force is zero, and once the particle is set
revolving, it must continue to revolve! Ideally, we can build up rigid
bodies from assemblies of particles, so if a rigid body is set revolving
and there are no torques, then it must continue to revolve. We are
rather less familiar with rotational inertia than we are with linear
inertia, so the consequences of rotational inertia seem strange to us;
thus, for example, we wonder at the behaviour of a gyroscope (to be
discussed later) but not at the Galilei-Newton law of inertia.
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7.2 ANGULAR VELOCITY AND ANGULAR ACCELERATION AS
VECTORS

Fig. 7.3 Uniform circular motion

Let us consider a particle of mass m moving in a circle of radius r with
uniform speed v. Then its angular momentum is (figure 7.3)

L=rxmv=mvrL (7.5)
=mr’wL

where w is the angular speed of the particle. We observe that if we
could specify ¢ as a vector, with magnitude w, direction perpendicular
to the plane of rotation, and sense given by the right-hand-screw rule,
so that it lies along the axis of rotation, we should have the convenient
relationship, for this special case,

L = mfw = lw (7.6)

where 1 = mr? is called the moment of inertia of m about the origin 0.

Since w = (d9/dt) and time is a scalar, if w is a vector, then df — an
infinitesimal angular displacement — must be a vector. It is easy to
verify that large, finite angular rotations about different axes — say,
90° rotation about two axes at right angles — do not commute, so that
finite rotations cannot be represented by vectors, whose addition law is
commutative. But as we make the angles of rotation smaller and smaller,
we find that, in the limit, infinitesimal rotations, d6, and df, say,
about axes 1 and 2 do commute, and we may represent them by
vectors of magnitude d@, and d@,, with directions and senses given by
the axes 1 and 2 respectively and the right-hand screw rule: so df, + d@,
=d8, +df,. So we are justified in representing (df/dt) = w as a vector,
with magnitude «w and direction and sense given by the axis of rotation
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and the right-hand-screw rule.
Differentiating equation (7.6) once more with respect to time, we
obtain (since r is constant, and therefore I is constant)

_=1¢,=1@9=er (1.7)

showing that the rate of change of angular momentum is given by the
product of the moment of inertia and the angular acceleration. The case
of uniform speed gives r x F = 0, since the force is always parallel to r;
but if we have a tangential force changing v (see section 2.5), but r
remains constant, then «w would be non-zero, and parallel to r x F for
this special case. Why do we keep stressing this? The reason will emerge
in the next section.

7.3 ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES

The total angular momentum of a system of i particles with masses m;,
position vectors rj, and velocities v; is given by

L=ZL=Zrxmy (7.8)
i i

While we are considering the system, suppose that the centre of mass has
velocity V and position co-ordinate R. Then we may write

! I
L = Ei(R+ri) x m; (V+v)

where ] and v} are the position vector and velocity respectively of the
ith particle with respect to the centre of mass. Hence

L = RxV(Em) + RxEmy; + Zrx my; + (Cmyr) x V (7.9)

The second and fourth terms in the expansion are zero, since we know
(section 4.2) that £ m;v; = Zmyr} = 0; hence

L=RxMV+zir;xmivi (7.10)

Loy *S

where £ my =M, Lcy is the angular momentum of the centre of mass
about 0, and S is the angular momentum of the system about its centre
of mass. This latter is often called the ‘spin angular momentum’ of the
system.

127



A short digression is in order here. Most of the elementary particles
— electrons, protons, neutrons, photons, for example — have an
intrinsic spin angular momentum, and so do many nuclei. It turns out
that electrons, protons, and neutrons have spins of 3h units of angular
momentum, where h is Planck’s constant (6-6 x 107>* joule/sec)
divided by 2n. Photons have spin h. The behaviour of particles with
spin that is an odd multiple of 3h is quite different from those with
integral h values for spin; the former particles are called fermions, the
latter, bosons. A classic example is the different behaviour of the He?
and He® nuclei: He® behaves like a normal liquid until it freezes, but
He* becomes a ‘superfluid’ with quite remarkable properties before it
eventually solidifies. So angular momentum is a very fundamental
property of matter!

Now we return to the main path of our argument, and differentiate
equation (7.10) with respect to time. We will obtain [see equation (7.3)]

dL_ dlem | dS _ ' « F.
dt = i +dt—RxMA+‘.>17rlel (7.11)

where A is the acceleration of the centre of mass: we know that
MA = ZFqy¢, the sum of the external forces (section 4.2). So if
R x Fqyt =0, ie. no resultant forques act about the origin, owing to
forces acting on the centre of mass, the angular momentum of the centre
of mass, Lcym, remains constant. What about the spin S? We write
ds ’ ’
a - ?l’i X Fextit ‘?'iXFinti (7.12)

where Fey¢ i and Fjy i are the sums of the external and internal forces
respectively acting on the ith particle. The first term is the sum of
the external torques relative to the centre of mass. If this is zero, we
are left with the last term, which we can show is zero by Newton’s
Third Law, provided that the interaction forces act along the lines
joining the various particles. Consider, for example, the jth and (j + 1)th
particle, and denote the force on j due to j+ 1 as Fj. Then we have

l'iXFj = (l'j"l'j+1)XFj+l'j+1XFj

"

NepX Fj (since (rj hy Pl Fj)

1}

41X CFagy

128



by Newton’s Third Law. So the torques of all such internal forces will
vanish in pairs, and we have the result that if no external torques act
about the centre of mass, the angular momentum S about the centre of
mass is constant. Note that the results obtained for Ly and S are more
general than requiring the external forces to vanish. Consider, for
example, two equal masses joined by a straight rod of negligible mass
which rests on a knife-edge in a uniform gravitational field of
acceleration —gj (figure 7.4). If the rod lies along the x axis, then the
sum of the external forces on the system clearly vanishes. However,
unless the knife-edge is at the centre of mass, there are resultant torques
about the knife-edge and about the centre of mass, so that the angular
momentum of the system must change with time.

2mg
('"\f — - ra @ Y

1 !

mg

Fig. 7.4 Dumbbell on knife-edge

It is important to note that in two-body collisions, where we have
only interaction forces of the kind discussed above, angular momentum
is conserved. Therefore, two-body collisions of this kind must be
confined to a plane, as we mentioned but did not prove in section 4.3.

Finally, we now take a very simple example to show why equations
(7.6) and (7.7), relating angular momentum and its rate of change to
angular velocity and angular acceleration respectively, are special cases.
In order to do this, we first need to refine our definition of angular
velocity and to extend our definition of moment of inertia.

If a rigid body, considered as an assembly of particles, is rotating
about an axis, and the rate of change of the angle perpendicular to the
axis is w, then the angular velocity vector w lies along the axis of
rotation, has the magnitude w, and sense given by the right-hand-screw
rule for rotation.

The velocity v of any point with position vector r of the rotating
rigid body is given by

V=wXTr (7.13)

129



where the origin of r lies somewhere on the rotational axis.
The moment of inertia of a rigid body, considered as an assembly
of i particles, about an axis along Oz is given by
I, = Zmi(x} +y}) (7.14)
i

The moments of inertia I, Iy, about Oy, Oy, can be obtained from
equation (7.14) by cyclic permutation of the co-ordinates.

A

Fig. 7.5 Rotating dumbbell

Consider the ‘dumb-bell’ shown in figure 7.5: two particles of mass
m connected by a rod of length 22 and negligible mass. It is made to
rotate about the axis shown, with angular speed w. The angular velocity
vector therefore lies along this axis, and its direction is vertically up-
wards. The top mass 1 is moving into the paper, the bottom mass 2, out
of the paper.

In terms of the quantities shown in the figure, taking the origin at 0,
the velocities of the masses 1 and 2 are

vy = wxr; = w!sin @ into paper
vV, = wxr, = wfsin @ out of paper
The angular momentum of the system about O is
L=L;+L, =r, Xmv; +r, xmv,
= (mf.v, + mf.v,;) perpendicular to the line joining 1 and 2
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= 2mQ.w4 sin @ perpendicular to the line joining 1 and 2
= 2m@wsin 6 L (7.15)

where L is the unit vector perpendicular to the line joining 1 and 2 (see
figure 7.5).
It is quite clear that L is not parallel to w. We therefore cannot write

L = Izw (7' 1 6)

where I, is the moment of inertia about the axis of rotation, taken as
being the z axis. In fact

I, =2m@?* sin® 0 (7.17)

so that even the magnitude is wrong as given by relation equation
(7.16). Some thought shows that as the ‘dumbbell’ rotates about the
axis shown, the angular momentum vector rotates about the angular
velocity vector. Hence the angular momentum is changing, and a forque
must be supplied to keep it changing. This torque must come from the
bearings of the axis of rotation. Hence an equal and opposite torque

must be exerted on the bearings.

Fig. 7.6 Angular momentum diagram

From figure 7.6 we see that the tip of L traces out a circle in a plane
perpendicular to Oz. Let the component of L in this plane rotate by a
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small angle 8¢ in time §t. The change AL in angular momentum is
given by Tét, where T is the torque:

AL = Tét
But AL = L sin ¢-8 ¢ (from the figure).

Hence Tét = Lsin¢-6y
or T = Lsin ¢-.g¥£
= Lsin¢-w

in the limit since the component of L perpendicular to Oz clearly
rotates with angular speed w. Both magnitude and direction of T are
correctly given by the relationship

% = T = w x L(Check this) (7.18)

Such a torque must always exist if w is constant and not parallel to L.
When is w parallel to L? This question is answered in the next
chapter.

CHAPTER 7 PROBLEMS

7.1 Two particles A and B of masses m and 2m respectively are
connected by a rigid rod of negligible mass, .of length 2r,
freely pivoted at its centre O (figure 7.1p). These two particles
are, at first, stationary. Another particle C of mass m travelling
with velocity v relative to the laboratory and perpendicular to the
direction of the rod strikes A, the smaller of the two connected

particles. y
A -
me oM
c
r
o
r
Fig. 7.1p ™s
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(@
®)
©
(d)
O

What is the kinetic energy of the complete system of three
masses relative to the laboratory before the collision?
What is the velocity vector of the centre of mass relative
to the laboratory before the collision?

What is the velocity vector of mass C relative to the centre
of mass before the collision?

What is the velocity vector of masses A and B relative
to the centre of mass before the collision?

What is the total kinetic energy relative to the centre of
mass before the collision?

On collision particle C sticks to A and the system starts to
rotate about point O fixed in the laboratory.

®
(®

(h)
®

@
(Y]
M
(m)
G))

What is the velocity vector of the centre of mass relative to
the laboratory immediately after the collision?

What is the impulse due to external forces which acted on
the system during the collision?

Where was this external impulse applied?

What "change occurred in the total angular momentum
about 0 during the collision?

What is the total angular momentum about O before the
collision?

What is the total angular momentum about O after the
collision?

What is the moment of inertia of the system about O after
the collision?

What is the angular velocity of the system about O after
the collision?

What is the kinetic energy relative to the laboratory after
the collision?

A dumbbell consists of two massive particles, A and B, each of
mass m, attached to the ends of a bar of length d and negligible
mass. The dumbbell is at rest on a horizontal frictionless surface.
Another ball, C, also of mass m, moves along a line perpendicular
to the dumbbell with speed Vg, and collides with and sticks to B.

()
(®)
©)

(@
©

Where is the centre of mass of the system ABC located?
What is the total momentum of the system ABC?

What is the total angular momentum of the system
ABC about its centre of mass?

What is the total kinetic energy of the system ABC?
What is the velocity of the centre of mass?

The following questions refer to the motion after the collision.
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®
(2)
(h)
@
0]
)
o
(m)

What is the total linear momentum of the system after the
collision?

What is the total angular momentum of the system about
its centre of mass after the collision?

What is the velocity of the centre of mass after the
collision?

What is the moment of inertia of the system ABC about the
centre of mass?

What is the angular velocity of rotation of the system about
the centre of mass?

What is the kinetic energy of the centre of mass after the
collision?

What is the kinetic energy of rotation about the centre of
mass after the collision?

Is kinetic energy conserved in the collision?

7.3 A metre stick lies on a frictionless horizontal table. It has mass M,
moment of inertia M/12 about its centre of mass, and is pivoted
so that it can rotate about its centre of mass 0, but not
move horizontally.

Fig. 7.3p

}
d
+

A particle of mass m moving with velocity v as shown in
figure 7.3p collides with the metre stick at a point d from its
centre and adheres to the stick. Answer the following questions.

(@
(®)
©

(@)
134

What is the total angular momentum of the system about Q
before the collision?

What is the total angular momentum of the system about 0
after the collision?

What is the moment of inertia about O of the system metre
stick and particle after the collision?

What is the angular velocity of the system about 0?



7.4

7.5

7.6

(e)
®

(®
(h)

What is the rotational kinetic energy of the system about 0?
What is the kinetic energy of the particle before the
collision?

Is kinetic energy conserved in the collision?

Does an external force act on the system during the
collision? If so, where?

A body with moment of inertia I about a principal axis, about
which it can rotate, is subject to a restoring torque T such that

dL
T=57=ko

where 0 is the angle through which the body has rotated about
the principal axis. Show that the body will execute rotational
simple harmonic motion.

A truck travelling at 50 km/h has wheels of 1 m diameter.

(2)
()

©

What is the angular speed of the wheels about the axle?
If the wheels are brought to a stop uniformly in 30 turns,
what is the angular acceleration?

How far does the truck advance during the braking period?

Assume the earth to be a sphere of uniform density.

(@
(b)

©

(@

What is the rotational kinetic energy? Take the radius of the
earth to be 6:4 x 10° km and its mass to be 6-0 x 10%* kg.
Suppose that this energy could be harnessed for man’s use.
For how many years could the earth supply 1 kw of power
to each of the 35 x 10° persons on the earth?

We find from astronomical observations that the earth’s
rotation is slowing down so that the day is lengthening at
the rate of 0-001 seconds per century. This is the result of
tidal friction exerting a retarding torque on the earth. What
is the magnitude of this torque?

In kilowatts, what is the rate of dissipation of kinetic
energy of the earth’s rotation as a result of rotation against
this torque?
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8
Rotational motion 2

8.1 THE ROTATION OF RIGID BODIES

4

Fig. 8 1 Particle in a rotating rigid body (general)

We are now going to consider a rigid body as an assembly of particles,
and consider the contribution of a particular particle to the total
angular momentum when the rigid body is rotated about an axis with
angular velocity w. The general situation is shown in figure 8.1 for the
element of mass m, where w = wk; we shall take a new set of axes such
that x’ lies along r, the line joining mj to Oz parallel to the x-y plane,
and Oz' = Oz. The general situation, projected onto the plane of the
paper, is shown in figure 8.2, and this is little different from figure
7.5, which we have already considered. From the arguments advanced
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for figure 7.5 we see that the angular momentum L; of m; about 0 is
given by

Li=m@wsin6 L (8.1)
where L is perpendicular to 2. We may write this as
L = -Liyi+L,k
= m%w sin 0.sin 6 k —mP w sin §.cos 6 i
= mQw 92 —k mw Q' Zi

= mwx'? k—-mwx'zi (8.2)

z

4

<>

[}

Fig. 8.2 The new axes for the particle

Now we note that mx'? is jusi the moment of inertia of the element
of mass m about Oz. Let us transform the term in i’ back to the original
i and j co-ordinates, by writing

i=cosgi+singj

y

X .
= _—, sSin = —_— 8.3
cos® VX2 +y? ¢ VX2 +y? ®.3)
X =X +y?
whence -mwx’zi = —mw(xzi + yzk) (8.4)

In other words, an element of mass m of a rigid body rotating with
angular velocity w = wk has in general angular momentum components
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along all three axes. The z component of angular momentum is given by

L =L w=m(x* +y*)w (8.5)

where [ is the moment of inertia of m about Oz, while the other
components depend on the products of inertia —mxz and'—myz: The
total contribution from these will vanish if Oz is an axis of symmetry,
i.e. if to every element m at (x, y) there corresponds an equivalent
element m at (—x, —y). Another way of defining an axis of symmetry
is to say that it is a direction through a body such that if the body is
rotated about this axis by all successive 1/n of a revolution,
n integral > 1, the body always appears identical; for example, a regular
hexagonal prism has an axis of sixfold symmetry through the centres
of the hexagonal faces (figure 8.3).

Hexagonal (6-fold)
symmetry axis

Fig. 8.3 Axis of symmetry

We see, therefore, that if the axis of rotation or a rigid body is an
axis of symmetry, ¢ is parallel to L . In general, therefore, if we rotate
a rigid body about some axis, L and w are not parallel, and a torque
must be supplied to keep L rotating about w (see figure 7.6). Hence the
disastrous effects of unbalanced wheels on car steering!

If a body has no axes of symmetry, nevertheless the following
theorem can be proved (we shall not prove it):

Theorem In any rigid body, there are always three mutually
perpendicular axes, called the principal axes of inertia, such that
rotation about any one of these axes will give L Il .

To specify completely what is going on when a rigid body is

rotating, we need to know the moments of inertia and products of
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inertia of the body. These can be collected into a single entity, the
so-called inertia tensor, which can be represented by a 3 x 3 matrix.
If we consider it ‘operating’ on the angular velocity w, we notice that,
in general, it changes the direction and magnitude of w. Symbolicaily,

L = [I] w where [I] is the inertia tensor. (8.6)

Written out completely, we have the relation

LX = IXX IXY IXZ wZ
Ll = |l Ly Iy, wy
L] = [y Ly, w, (8.7)

where
I, = Tmy(x} +y})
is the mofnent of inertia about the z axis, for example, and
Ix = Ixz = Z mjxjz
is the appropriate product of inertia, for example.

Sometimes we set I,, = k2 = m;, where k, is the appropriate radius
of gyration. This is set down here for completeness only, and we shall
not be using it.

Consider now a different case: a body rotating freely in space, i.e.
with its axis of rotation not fixed by any ‘supports’ (so that w can
change its direction), and with no external torque J on it. (Think of a
satellite spinning about a non-principal axis.) Since J = 0, the angular
momentum L must be constant. But this tells us straightaway that the
direction of w — i.e. the axis of rotation — not only can change, but in
fact must change, in the general case. (Think of the rotating dumbbeil
we examined in Chapter 7; we found that, if wis fixed, L must change.
It follows that, when L cannot change, w cannot be fixed.)

It is not hard to show that now the axis of rotation must whirl
(precess) about the (fixed) direction L.
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So, summing up: in the general case of rotation about a non-principal
axis, when w is fixed (i.e. there are ‘supports”), L rotates about the fixed
direction, w. The supports provide the needed torque

= dL
Y=
When there are no supports, and no external torque, then dL/dt =0
and w rotates about the fixed direction L.
To calculate the moments and products of inertia for continuous
rigid bodies, we must go over to the integral formulations

M 2 2 M
IL,= O(x +y*)dm, L, = Oxzdm

where M = f dm is the total mass of the rigid body. A representative
table for commonly met solids is given on page . Two useful theorems
help us to extend these results: the parallel axis theorem (for any
solid) and the perpendicular axis theorem (for laminae). These are
(without proof):

FParallel axis theorem 1f a body has a moment of inertia Iop about
some axis through the centre of mass, then the moment of inertia I
about a parallel axis through a point O distance h from the centre of
mass (figure 8.4) is

Io = Icum + Mh?
ft——— h ———

CM (]

Fig. 8.4 Parallel axis theorem

Perpendicular axis theorem If the moments of inertia about two
perpendicular axes Ox, Oy in the plane of the lamina are I, and Iy
respectively, then the moment of inertia about the axis Oz perpendicular
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to both of them and to the plane of a lamina (figure 8.5) is given by
L=+l

b4

Fig. 8.5 Perpendicular axis theorem

8.2 ROTATIONAL KINETIC ENERGY

Consider once more a particle of mass m rotating in a circle of radius r
with uniform angular velocity . The kinetic energy of the particle,
with speed v, is

2

T=3mv? =3mw?r? =3lw? = L?/21 (8.8)

[ dld
0=

where I = mr® is the moment of inertia and L = Iw is the angular
momentum. These results can clearly be generalized to the case of a
rigid body rotating with angular velocity wy about a principal axis
say Oz:

’

(o

T=31_w

Y44

=

2
z ~(89)
ZZ

N
N

If x and y are the other principal axes, and we have the components
wy and wy of w along these axes, we must have (since Ly is parallel to
Wy, Ly is parallel to wy by definition in this case):

==X + — + 7 (8'10)
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If we take axes other than the principal axes of inertia of a body, the
expression for the kinetic energy involves the products of inertia (we
state it here for completeness):

=1 2 2 2
T =5y wx+ Iyy“’y +1,,w; + Zwanyy + 2“’y"*’zlyz + 2wzwxlzx)
which can be proved from the general relationship
T = Zmy? = Emi(wxri)z. For this case X, y, and z are not the

i .
principal axes of inertia, and w = w,i + Wy + w,k.

X

It is clear that a rigid body can have only rotational energy with
respect to the centre of mass. A system of particles which are free to
move, however, may have both rotational and translational energy with
respect to the centre of mass. Thus two masses attached by a spring
and free to move on a frictionless table may vibrate and rotate with
respect to the centre of mass. '

The importance of taking into account a rigid body’s rotation with
respect to the centre of mass is brought out by a very simple example.
We first consider a uniform sphere of mass M which simply slips down
a plane of length L and height h = L sin § (figure 8.6). The velocity of
the centre of mass would then be given by

IMV? = MgLsin 8, i.e. V2 = 2gLsin (8.11)

P

¥

Mg

[}

Fig. 8.6 Sphere on inclined plane

If now the sphere rolls down the plane without slipping, we have the
kinetic energy of the centre of mass, and of rotation with respect to
the centre of mass. Rolling without slipping means that the point of the
sphere in contact with the plane may be considered instantaneously at
rest, so that the centre of mass of the sphere has a velocity, relative to
this point, of Rw, where w is angular velocity about the centre of
mass. The energy equation is now
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T=MV? + 1 =IMV? 4 ﬂ(l‘—{)z

=MV +  2MR? (T‘{)Z

= %. MV? = MgL sin 6 (8.12)

so that V = (10/7) gL sin @ for this case. [compare (8.11).]
8.3 GYROSCOPES AND TOPS. PRECESSION

We are now in a position to understand the apparently strange behaviour
of gyroscopes and tops. We can take a gyroscope as being a suitably
mounted flywheel that rotates very rapidly about its axis of cylindrical
symmetry. Suppose that it is free to rotate in a ball-and-socket support
at one end, and that the other end is initially supported so that the
rotational axis is horizontal (figure 8.7); this support is then removed.
The gyroscope will not drop down significantly towards the vertical,
as one might expect, but will rotate in the horizontal plane with a
constant angular velocity about a vertical axis through the ball-and-
socket support. Let us analyze the motion from the rotational dynamics
viewpoint.

I

O]

O
r 3 O

Initial support
(later removed)

VA YA
Fig. 8.7 Gyroscope

Let the angular speed of the gyro flywheel be §2, and the moment of
inertia about the rotational axis be I; let the mass of the gyroscope be
M, situated effectively at its centre of mass distant € from the support.
Then we clearly have a torque Mgf acting about O, such that if
figure 8.7 represents the initial situation, the direction and sense of the
torque are out of the paper. The change in angular momentum caused

143



by this torque T acting for a time &t is 8L = Tdt. The angular
momentum L = IS of the flywheel we take as being to the Jefz. Hence
L + 8L is out of the plane of the paper and, viewed from above, as in
figure 8.8, has rotated anticlockwise with respect to L. It should be
obvious that if L were directed to the right, i.e. the gyroscope flywheel
were spinning in the opposite direction, the addition of 8L would still
bring the resultant angular momentum vector out of the plane of the
paper, but the rotation, viewed from above, of L + 5L would now be
clockwise.

30

Tét
T6t x Ny,
(] * &

Fig. 8.8 A view looking vertically down on the gyroscope in the
plane of the paper, i.e. down the y axis

When the gyroscope axis has rotated or precessed in the time 5t
through the angle 80 (figure 8.8), we see that the torque of the force
—Mg is still perpendicular to (L + 8L). In other words, the magnitude of
L is not changing, but its direction is. Since the magnitude of the force
—Mg is constant, the axis of the gyroscope will precess (rotate) with a
constant angular velocity about the vertical direction. We can calculate
this constant angular speed w = }sitm0 (66/5t) in the following way

from figure 8.8. We clearly have

Ls6 = Tt (8.13)
v 80 _
or L&t =T
giving wL = Tin the limit. (8.14)

If we represent w and L by their appropriate vectors, we find

dL
T=7% =wxL (8.15)

[Compare equation (7.8), Section 7.3]

Since T has magnitude Mgg, we note that the angular velocity of
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precession has magnitude

_ Mg _ Mge
lwl =7~ = Tq (8.16)

so that w is directly proportional to M and £ and inversely proportional
toL,i.e. toland Q.

The precessional motion of a gyroscope appears strange to us merely
because we are not used to thinking in terms of torques, but are used
to thinking in terms of forces. Thus we naively expect the gyroscope
axis in figure 8.7 to fall under the gravitational force —Mgj; but
rotational inertia keeps L in the original plane, and it is the torque of
the force —Mgj which changes the direction of L in this plane.

Car wheels and bicycle wheels possess angular momentum, whose
direction must be changed if we want to turn corners. By Newton’s
Third Law, or by a consideration of the conservation of angular
momentum, we conclude that to every applied torque there is an equal
and opposite reaction torque. If we wish to turn left while travelling
forwards on a bicycle, we lean to the left to apply the appropriate
torque. If we just wrench the handlebars around, the resulting reaction
torque will tilt us to the right. This is also why a motor-car body needs
springs!

Spinning tops are familiar objects, and we have all seen the axis of
rotation of the top precessing about the vertical direction. Let us try
to understand this free precession of a top from our knowledge of
rotational motion.

L,
Q
L

)

Mg o

Fig. 8.9 Precessing top

Let the top have mass M, and let the centre of mass be at a distance
£ along the axis from the tip (figure 8.9). Let the axis of the top make
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an angle 6 with the vertical axis Oz, and we presume that the angular
momentum L of the top about the axis through its centre of mass is
very much greater than the angular momentum of the centre of mass
about 0. It is convenient to resolve L into a component L,k in the
z direction, and a component L in the x-y plane. Since the torque
vector due to the force -Mgk must be confined to the x-y plane, it is
only L, which will change. By exactly similar arguments to those used
previously for the gyroscope, we see that the magnitude of L; will not
change, only the direction, since the torque always remains perpendicular
to Lj. From diagrams 8.10a and 8.10b we see that if the torque
T = MgQ® sin 8T acts for a time §t, and changes the angular momentum
by AL, we must have

TAt = AL = LJ_8¢ (8.17)
o _ T
so that 5t Ll

and in the limit &t » O, the angular velocity of precession has
magnitude

_dop _ T _ Mghsing _ Mgl
@=§ L, - Lsmg L (8.18)

L+ aL
3z L
Fig. 8.10a Fig. 8.10b
General angular The changing component of
momentum diagram angular momentum
We also have
Lwsing = T =%‘ (8.19)
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and it is easy to check that, in fact

dL _
T=a——wa (8.20)

[Compare equations (8.15) and (7.8).]

Why do these three situations (the rotating ‘unbalanced’ dumbbell,
the precessing gyroscope, and the precessing top) all have the equation
(dL/dt) = w x L in common? It is a consequence of the fact that, in
each case, there is a component of L which is fixed, and a component of
L does not change in the rotating frame. If we have a frame rotating
with angular velocity «w, we can relate the rate of change d/dt' of
quantities in this rotating frame to the rate of change d/dt in a fixed
(inertial frame) by
twxr 8.21)

d _ (e
dt| inertial = |dt | rotating

A very simple application of this was hidden in our definition of
for a rotating body, in which we said that v = w x r for a point with
instantaneous position vector r with respect to a fixed origin on the
axis of rotation; in the rotating frame r is seen as constant, so in the
fixed frame,

%:v:wxr[l]

The relation (8.21) allows us to calculate the Coriolis and
centrifugal accelerations in a very elegant way. Let us suppose that r
can change in the rotating frame: we then have, using suffixes i for
inertial and r for rotating,

dl .- [4d]
[dt]ir— [dt_rr+wxr (8.22)

and we assume that w is constant. Now apply [(%] to both sides:
i

[g_t] [%HF%J [%Jiw}x,+wx %]ir
(8.23)

! The equation (dL/dt) = w x L, equations (8.21), (8.22), and the associated
transformations between fixed and rotating frames are very important in
quantum mechanics [R.P. Feynman etal (1957), J. Appl Phys, 28, 49]
and in the field of magnetic resonance, where they form the basis of the famous
‘Bloch equations® {F. Bloch (1946), Phys. Rev. 70, 460]
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Now we must convert the expressions with [g] on the RHS by

dt|;
(8.21) in order to obtain a result containing only w and things observed
in the rotating frame. The second term vanishes because w is constant,
and we obtain finally

d 21'= 12r+2¢.;x d rtwx(wxr) (8.24)
at|;  |dt|, dt| '

or _ a=a,+2Wxvi+wx(wxr) (8.25)

where a; is the acceleration observed in the inertial frame, a; is the
acceleration observed in the rotating frame, and v, is the velocity
observed in the rotating frame. Hence the terms 2w x vy and w x (w x 1)
are due to the acceleration of the frame (see section 3.4). Hence an
observer in the rotating frame must postulate the inertial forces giving
rise to the inertial accelerations —2w x v; (the Coriolis force) and
—w x (w xr) (the centrifugal force). The two-dimensional elementary
derivation of these inertial forces was given in section 3.5.

wy
©,
) -
Fig. 8.11a Initial spin axis

Fig. 8.11¢ Final spin axis

Fig. 8.11b Intermediate axis with precession

As a final example of conservation of angular momentum, we
consider a cylindrical spacecraft initially set spinning about the long
axis of the cylinder (figure 8.11a). We may write the initial angular
momentum as Ly = [yw,, say, where I is the moment of inertia about
the long axis and w,, is the initial angular velocity; the rotational
kinetic energy will be T = L?)/2IO. Even though no external forces act,
internal torques and body forces can cause the spacecraft to start
precessing about the direction of L (figure 8.11b). Internal strains and
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dissipative forces will begin to take up some of the rotational kinetic
energy. Conservation of angular momentum holds in the absence of
external forces: the only way angular momentum can be conserved is
for the precession angle to become larger, until eventually the satellite
spins about an axis perpendicular to the long axis of the cylinder (figure
8.11c); so that Ly = 1,w,, where I, is the larger moment of inertia
about the axis, and w, < w, so that T, = (L3/2];) < T, This is
clearly, therefore, the most stable axis of rotation, about which the
spacecraft should be set spinning initially.

8.4 ENERGY AND SYMMETRY IlI: ANGULAR MOMENTUM

We have seen that the angular momentum of a mechanical system is

constant when no external torque is acting. However, in many cases of

interest the angular momentum, or one of its components, is constant

even when forces are acting on the system. This may be deduced from

the symmetry of the system with regard to the total energy.
For a free particle of mass m the total energy is given by

E = %; . (8.26)

where p is the linear momentum. This is just the kinetic energy.
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Fig. 8.12 Rotation of axes

Equation 8.26 has complete spherical symmetry. That means that the
expression is invariant for co-ordinate transformations involving a
rotation about any axis through the origin. Consider the simple example
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illustrated in figure 8.12. The mass m has momentum p = pyi + pyj
with p, = 0. In the co-ordinate system x', y', z', which is rotated
through the angle 8 about the Oz axis relative to xyz the momentum
components are

Py = Py cos 0 + py sin 0
U —- .
py = pycos() Py sin 6
p, =0

and P, +p;/2 = Py + P

Similar results hold for rotation about any axis through 0. For a
particle of mass m moving in a force field F, the total energy is given by

2
E+ gﬁ + V() (8.27)

where p is the linear momentum and V(r) is the potential energy at r,
the position vector of the particle. V(r) is the work done against the
force F in bringing the particle from infinity to the point r. That is,

V() = j F.dr, and V is a scalar quantity.
T

Since the kinetic energy is invariant for rotations, the symmetry of E
depends entirely on that of V and hence on that of F.
" The angular momentum L of a mass m about an axis through 0 is
given by the vector product

L=rxp
where r is the radius vector to m and p is the linear momentum of m.
dL _ dr dp
Thus qi- P TIX g
= rx F(r)

where F(r) is the force acting on m at the position r. The angular
momentum L is constant for a free particle, since F is zero. This means
that all three components of L are constant and that L* =L + L;, +L2
is constant. If the particle has intrinsic angular momentum or spin,
this is maintained throughout the motion. The angular momentum is
constant when the force F is parallel to r. This holds for the important
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case of a central force, which by definition has F parallel to r. For a
central force towards the origin O the magnitude of the force depends
only on the magnitude of the radius vector |r|. Spherical surfaces
concentric with 0 form equipotential surfaces, so that V is a spherically
symmetric potential. Thus E is spherically symmetric, and when this is
the case L is constant.

Note that the force F is always perpendicular to the equipotential
surfaces (section 5.4). A particle moving on an equipotential surface is
doing no work. The general rule is that the components of L along the
axis of symmetry are constants. For central forces all components of L
are constants, since r is parallel to F everywhere. Thus again L? is a
constant for motion in a central force field.

In a field of force which acts only in one direction, the component of
angular momentum about an axis in the direction of the force is
constant. For this case the equipotential surfaces are parallel planes
perpendicular to the direction of the force. The local gravitational force
gives an example. For such a force field in the z direction F, is the only
non-zero component of the force and

ddit'l = (rxF),

=0

Thus L, is constant. The only axis of symmetry for this system is the
Z axis.

The motion of a charged particle in a uniform magnetic field is of
considerable interest. The force acting, the Lorentz force, is such that
the charged particle moves in a circle whose plane is perpendicular to
the direction of the magnetic field (section 3.6). The radius of the circle
is determined by the mass and charge of the particle and by the
magnitude of the magnetic field. For the particle to move in a circle
the Lorentz force must be a centripetal force. There is no component of
force in the direction of the magnetic field which we may choose as the
z direction.

The equipotential surfaces here are the curved surfaces of cylinders
co-axial with the z axis. For this motion it may be seen that L, is
constant. Once again there is symmetry for rotation about the z axis
only. Hence we may state the theorem: if V(r) has an axis of rotational
symmetry, the angular momentum about this axis is conserved, i.e. is a
constant of the motion.
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(a)

(b)
(i)

Fig. 8,13 Moments of Inertia

(i) (a)> Uniform thin circular ring of mass M, radius R,
about an axis through the centre, perpendicular
to the plane of the ring:

I=MR?

(b) about‘ an axis through the centre in the plane of
the ring:

I=% MR?

(ii)

(ii) Solid circular disc of mass M about an axis
perpendicular to the plane of the disc, through its
centre:

=3 MR?

2R

(iii)

(iii) Solid circular cylinder of mass M about an axis
perpendicular to the cylinder axis through the centre
of mass:

JMR*  M®?
4 12
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(iv)
(iv) Solid sphere about any axis through its centre:
2 2
=M.
I 5 R

Other moments of inertia for these solids (e.g. disc
about an axis perpendicular to a plane passing
through the periphery of the disc) can be calculated
simply from the parallel axis theorem

Quantum Mechanics

The link between the symmetry of the energy under rotations and
conservation of angular momentum has significance beyond classical
mechanics. In quantum mechanics it can be shown that L? is a constant
of the motion if the total energy function is spherically symmetric.
Such a spherically symmetric function has cylindrical symmetry about
any chosen axis, so that L, is also constant in this case. Similarly it can
be shown that an energy function having an axis of symmetry implies
that the component of angular momentum along the axis is constant.
In quantum mechanics, the relations

L? = o+ 1) 25
4
where £ = 0, 1...(n—1) is the total angular momentum quantum

number, n is the principal quantum number, and h is Planck’s constant
and

h
L, = Mgy,
where Mg =0, £1, ..., #£ is the magnetic quantum number, hold for

the hydrogen atom, in which the potential energy of the Coulomb
force is spherically symmetric.
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CHAPTER 8 PROBLEMS

8.1

Fig. 8.1p /

8.2

154

Two equivalent particles 1 and 2 of mass m are joined by a
straight rod of negligible mass and length 2r with its centre at the
origin (figure 8.1p). The system is forced to rotate with constant
angular velocity w about the y axis, so that the angle § is con-
stant as shown in figure 8.1p. The z axis is pointing out of the
page towards you. The questions below refer to the instant in
time at which the system lies in the x-y plane. Give your answers
in terms of r, 8, w and the unit vectors i, j, k along the x, y and z
axes.

r

2m

(a) What is the velocity of mass 1?

(b) What is the moment of inertia of the system about the
y axis?

(c) From first principles, or otherwise, calculate the instan-
taneous magnitude and direction of the angular momentum
vector.

(d) What is the torque required to keep the angular momentum
vector precessing with constant angular velocity about the
y axis?

(e) This torque is applied with a lever arm aj. In what direction
does the necessary force occur? ‘

A dumbbell consisting of two particles of mass m separated by
a rod of length 2% and negligible mass is forced to rotate about
the vertical axis Oz shown in figure 8.2p with angular speed w.
The sense of rotation is such that the lower mass is moving out of
the paper.

(a) What is the direction of the angular velocity vector?



Fig. 8.2p
| (®)
| ©

)

What are the direction and magnitude of the angular
momentum vector at the instant depicted above?

Is there a component of angular momentum which is
conserved? If so, which one?

What is the magnitude of the torque required to keep the
dumbbell rotating?

8.3 A hoop of radius R and mass M which lies flat on a horizontal
frictionless table is set in rotation about its centre with angular
velocity w (figure 8.3p). The moment of inertia about the centre
is MR?. Initially the hoop has no translational motion. A piece
of putty of mass m, moving on a straight path at speed v strikes
the hoop tangentially and sticks to it.

Fig. 8.3p
(2)
®)
©)
@

A

!
l

What is the linear momentum of the whole system before
the collision?

What is the angular momentum about O of the whole
system before the collision?

What is the angular momentum about O of the whole system
after the collision?

What is the moment of inertia about O of the whole system
after the collision?
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8.4

Fig. 8.4p

8.5

(e) With respect to a fixed co-ordinate system with origin O,
what is the total kinetic energy of the whole system (trans-
lational plus rotational) before the collision?

(f) Is kinetic energy conserved in this collision?

(g) Does the hoop move across the table after collision?
Give your reasons.

A cylinder of radius r and moment of inertia 4mr? is allowed to
roll without slipping around the inside of a larger fixed cylinder
of radius R (figure 8.4p). Initially the small sylinder is at rest with
its centre of mass on the horizontal radius of the large cylinder,
and at time t its position is given by the angle ¢.

(a) What is the potential energy at the position ¢?
(b) Show that its kinetic energy at the position ¢ is
3m (R —1)? ¢°.

A man of mass m stands on the edge of a freely rotating hori-
zontal wheel of moment of inertia I and radius R (figure 8.5p).
The man then walks inwards along a radial arm of the wheel at
constant speed u. The initial angular velocity of wheel and man
is §2, and you may neglect the dimensions of the man compared
to the radius of the wheel.

Fig. 8.5p
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(a) What is the angular velocity w of the wheel as a function
of time for 0 < t < (R/u)?



()

(©
@

What is the angular velocity of the wheel when the man
reaches the centre?

Is kinetic energy conserved in this motion?

If your answer to part (c) is ‘yes’, explain why; if it is no,
explain where the change in energy comes from or goes to.
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Q
Central forces

9.1 DEFINITION AND PROPERTIES

If a particle experiences a force which is always directed along the
position vector r of the particle with respect to some origin or centre,
and which is some function f(r) of r only, the force is said to be a
central force. Thus if the origin is at 0, and the particle is at P
(figure 9.1), the central force F is given by

F = f(r)f ©9.1)

where 1t is the unit vector along the position vector r = OP.

(]

Fig. 9.1 Central force

The Coulomb and gravitational forces are of this type. But as far
back as section 3.1, when we studied the interaction of two bodies only,
we discovered that in an ideal situation the interaction forces are
directed along the line joining the two bodies. In other words, all
Newtonian action and reaction forces between pairs of particles are
central forces. It is conceivable that the action and reaction forces
between two bodies could be as is illustrated in figure 9.2, where they
are still equal and opposite; but this is not the case in ideal situations.
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2 Fy

Fig. 9.2 Conceivable action-reaction forces

We have seen that central interaction forces
(i) conserve the total /inear momentum of a system of particles
(the momentum of the centre of mass): section 4.2, when no
external forces act;
(ii) conserve the total angular momentum of a system of particles
about the centre of mass when no external torques act: section
7.3;
(iii) conserve the total angular momentum of a system of particles
when no external forces act.
As a consequence of (i) and (ii), momentum is conserved in a two-body
collision where the interaction forces are central; and so is angular
momentum, as a consequence of (ii) and (iii), which leads to the fact
that all two-body central-force collisions and orbits must be planar.
We see therefore that central forces are not only a very common and
important class of force, but that they also imply certain conservation
principles which make problem-solving much simpler.

92 THE TWO-BODY PROBLEM. CONSTANCY OF AREAL
VELOCITY

A very familiar central-force problem is that where we consider only
the interaction of two bodies — for example, the rotation of the earth
about the sun, or of an electron about a nucleus. We show below that
the two-body problem can always be reduced to the problem of a single
body moving about an origin of the particular central force. Thus the
two-body problem is always exactly soluble, even though numerical
methods may be necessary for peculiar cases. Three-body or many-
body problems cannot be solved exactly; approximations must always
be made.

Consider two particles, of mass m,, m,, with position vectors r , r,
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respectively with respect to an origin O in some inertial frame. The
central interaction force between them lies always along the direction of
r, — rp, and depends only on |r, — r;|. Suppose that the force is
attractive: if we write ry; =1, —ry, we have

@ myry =—f(ry)fy (b) m, iy = (1),
9.2)

where f,, is unit vector along r, — ry, and f(ry; ) is some function of 1,y
=|r, —ry| only (figure 9.3). Now we know that the centre of mass must
lie along v, ; let us move into the centre-of-mass frame, and consider the
motion of m,, say, with respect to the centre of mass. We assume that
there are no external forces acting, so the centre-of-mass frame is
inertial.

m, ry=lry-rp |

0

Fig. 9.3 Two-body problem

The position-vector of m, with respect to the centre of mass is

m;

’
rn = —F/————7r
27T m tm,

21

by definition of the centre of mass, so we may write

m2f’2 = “Iﬁ%nlml—z‘ i"21 = f(r) 2 ©.3)
since the force in unchanged by a Galilean Transformation. It is clear
from equation (9.3) that we now have only a single vector ry, to deal
with, so we have reduced the problem to a one-body one; in this case
we have ‘fixed’ m;, and the result is that the ‘effective’ mass of m, is
‘reduced’ in the ratio m,/(m; + m;). We may therefore rewrite
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equation (9.3), without loss of generality, as
mi = ~f(r)f = F(r) .4

for an attractive force, where we understand that m may have to be
suitably ‘reduced’ as in equation (9.3). We shall now prove a property
common to all central-force orbits, whatever the form of f{r), which
derives from the conservation of angular momentum.

[o]

Fig. 9.4 ‘Areal velocity’

The angular momentum is L = r x mv. Let us resolve v into a
component v; along r and a component vg which is perpendicular to r.
Then, by the properties of the vector product, L = r x mvg. But,
instantaneously,

de
Vg =rg =1w 9.5)
where w is the angular velocity, and consideration of figure 9.4 shows
that the area of the elementary triangle OPQ, which must tend to that
of OPR in the limit, is just 31.1d0, swept out in time dt. We therefore
have

de ; :
L=rxmvg=mrr i L=2mA,L 9.6)

where Ay = 1r2(d6/dt) is the ‘areal velocity’, or area swept out per
unit time by r. Since L is constant, we see, from (9.6), that Ay is
constant. Thus the law of equal areas being swept out in equal times by
the line joining the ‘moving’ body to the ‘fixed’ body applies to all
central-force orbits, whatever the form of f(r), and whether the force is
attractive or repulsive. As applied to the motion of the planets about
the sun under gravity, it is doubtless familiar as Kepler’s second law.

9.3 SOLUTION OF THE TWO-BODY PROBLEM USING
‘EFFECTIVE POTENTIAL’

We now show how, in principle at any rate, we can use the method of
section 5.3 to solve completely the two-body central-force problem
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for any f(r). In doing so, we reduce the problem from a two-dimensional
problem to a one-dimensional one, making use of a constant of the
motion — in this case, the angular momentum.

p

N

)
Fig. 9.5  Polar co-ordinate system

We know that the motion is planar because of angular momentum
conservation. Taking polar co-ordinates r and § in the (x, y) plane,
we write the velocity v as

v=if+ 160 9.7

where @ is normal to t (figure 9.5). Hence the total energy (assumed
conserved) is

E = 3mi? + imr?62 + V(1) 9.8)

where V(r) is the potential energy corresponding to f(r); if we absorb
the sign of the force in f(r), we have of course (section 5.2)
f(r) = —[dV(r)]/dr, since V(r) does not depend on 6. The angular
momentum is

L =r x mv = mr?6k = constant 9.9)

and we now substitute the value of § obtained from (9.9) into (9.8),
thus reducing the two-dimensional problem to a one-dimensional
problem, by eliminating the co-ordinate 8 associated with the constant

of the motion L.! We thus obtain
1 This kind of co-ordinate is called ‘ignorable’ in advanced mechanics because

it can always be eliminated by an appropriate substitution.
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2, E +V() (9.10)

E= 2m

Nl'—‘

This is equivalent to a one-dimensional energy equation

Fmiz +V'(r) =

where V@) = 9.11)
is an ‘effective potential energy’. When we substitute the value of § from
equation (9.9) and (9.8), we have moved into the non-inertial frame
rotating with angular velocity 6. We expect to see an inertial force
appearing, and it turns up in the energy equation as the effective
centrifugal potential L*[2mr® due to the angular momentum L. The
effective centrifugal force due to L is L?/mr® (check this). There
remains now nothing more to do but solve for r as a function of t in
equation (9.11) by the method of section 5.3. This can of course be a
very difficult problem, and for certain situations numerical methods
may be necessary.

94 INVERSE SQUARE LAW FORCES

Two very important forces, the Coulomb force and the gravitational
force, are of the inverse square type; they may be written

F(r) = Kr™? ©.12)

where the constant K contains the sign of the force (attractive or
repulsive). The resulting potential is

V(@) = Kr! (9.13)
so that equation (9.10) becomes
12 L2 K
E = smr +2~m—r§‘+ I
vy . L2 LK
V() = Smp? + r 9.19)

In order to obtain information about the motion, we plot the
effective potential V'(r) of equation (9.14) in figure 9.6 for the
following cases:

(@ K> 0 (repulsive force)

(ii) K =0 (angular momentum contnbutnon alone)
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(iii) K <0, L+ 0 (attractive force)
(iv) K<0,L =0 (inverse square attractive force alone)
We note that for K > 0, K = 0, the particle can never be ‘bound’ to the
centre of force.
‘|
K >0

Fig. 9.6 ‘Effective potentials’ for inverse square law force

For K >0, L # 0, particles with energies less than O can be ‘trapped’
in the effective-potential well, with minimum at r,. A particle with
energy Epip, is in stable equilibrium at 1o — and clearly this must be a
.circular orbit. So the circular orbit is the most stable orbit, for earth
satellites, for example.

For a total energy > 0, particles are ‘reflected’ by the contribution
from the angular momentum, i.e. owing to angular momentum the
effective force on the particle close to the force centre becomes
repulsive. The derivation of the orbits other than the circular one is
somewhat laborious, and requires some knowledge of conic sections.
Without proof, the orbits are:

E<0 cellipse
K<0 E=0 parabola
E>0 hyperbola

L=0,K<0
straight line

K>0, hyperbola unless L =0

Thus, if two attracting particles approach each other from infinity,
they can never contact each other unless they approach along the same
straight line, i.e. L = O for system, a result true for Newtonian mechanics
only. The foregoing material illustrates the usefulness of the ‘effective
potential’ and potential-energy diagram technique in solving problems.
When we consider that Newton worked out all the planetary orbits
from first principles, notwithstanding the labour and the difficulty, we
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should have an even greater respect for his genius.

Finally, a note about Kepler’s laws of planetary motion. The first
law (that the planets move about the ‘sun in ellipses, with the sun at
one focus) emerges from the orbit calculation which we have omitted;
it is trivial for the circular orbit case. We have already proved the second
law (constancy of areal velocity) for any central force. The proof of
the third law (T?2aR3, where R is the mean distance from the sun and
T is the period for the orbit) is almost trivial for the circular orbit, and
is left as an exercise; for the elliptical orbit the proof is more difficult,
but it illustrates the use of the conservation laws.

Let us therefore sketch a proof of Kepler’s third law, using certain
properties of the ellipse, conservation of energy, and conservation of
angular momentum. First, let us integrate the constant areal velocity,
Ay, which is equal to the total angular-momentum L divided by twice
the reduced mass, u, [see equations (9.3), (9.6)] over one period,T.
We obtain the area of the ellipse

_LT
mab = o
_ 2mabu
or T= e (9.15)

where a and b are the semi-major and semi-minor axes of the ellipse
respectively. When the radius vector lies along the semi-major axis of
the ellipse, the velocity vector is perpendicular to it: hence the
kinetic energy K may be written in the form

= 515(‘—}3)2 .16)

as for motion in a circle, where d is now the larger or smaller distance
from the origin (focus) along the semi-major axis. Let us call these
r; and 1, respectively. Then the total energy becomes

E=K+U
-1;2 _1__ _GM]MZ _L2 L _GM1M2
=3 (rlz) T —2_“(1,22) o 9.17)

Now, for an ellipse, the quantity e, defined by b% = a2 (1 —e?), is
known as the ellipticity; and also the distances r, and r, defined above
are given by r; = a(l + e), r, =a(l —e). If we substitute these into the
energy equation (9.16) and eliminate E, we shall obtain the relation

L? = a(1 — e?) GM;M, u (9.18)
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Squaring equation (9.15), substituting for L?, and using the relation
between b and a involving the ellipticity, we finally obtain

_ 4n?a?

" GM; +M,)
ie. T? is proportional to the cube of the semi-major axis of the
ellipse. Since a is related to b via the ellipticity, the relation is
equivalent to, but more general than, Kepler’s original statement
involving the mean distance from the sun, because T> a R3, from

equation (9.19), will be strictly true only when the mass of a ‘planet’
can be ignored in comparison with that of its ‘sun’.

T? (9.19)

CHAPTER 9 PROBLEMS

9.1 Find the components of force for the following potential-
energy functions.
(a) V=axy?z?, where a is a constant
(b) 'V =3Kr?, where K is a constant
(©) V=3K*+ Kyy2 +3K,2?, where K, Ky, and K, are
different constants

9.2 Find the force on a particle which moves in a region of
potential

where a is a constant and 1, is the distance of the particle to the
point x = —b, y =0, z = 0, and r, is its distance to the point
x=b,y=0,z=0.

9.3 Plot against r the functions V and V' =V + (L?/2mr?) for a
particle of mass m and angular momentum L which moves under
the action of a central force F(r) for each of the following
potential functions.

(a) V =ar, where a is a positive constant
by v=¢2

(c) V=2 ,whereoz<ﬁ
2m

@ V=5 ,whereoz>L—2
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9.4 Show that F = nF(r), where n is a unit vector directed away from
the origin, is a conservative force by showing that

9.5

fz F.dr
Iy :

along any path between r, and r, depends only on r; and r,.
(Hint: Express F and dr in spherical co-ordinates.)

The attractive force between a neutron and a proton has the
potential (in Yukawa’s theory) V(r) = ke ®/r, where k isa
negative constant.

(2)

®
©

@
©

Find the force.

Compare this with an inverse square law of force.

What types of motion can occur if a particle of mass m
moves under the action of such a force?

How do the motions differ from the corresponding motions
for an inverse square law of force?

Find L and E for motion in a circle of radius a.
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10
Gravi’ra’rion

10.1 INTRODUCTION TO FIELD THEORY I1. GAUSS'S THEOREM

We know that we can have distributions of charge or of matter which
will give rise to electric or gravitational fields respectively whose be-
haviour throughout space may not be inverse square, although the basic
particle interaction of these fields is inverse square. A very simple
example is the field of the electric dipole illustrated in figure 10.1a.
The resultant electric field along the y axis, for example, is clearly not
proportional to y 2, because of the vector sum involved; nor is it any
longer a central force. But there are certain symmetrical and continuous
distributions of charge or of matter for which the resultant force fields
are calculated very simply, by the use of a theorem called Gauss’s
theorem, which we shall now prove. Before we do so, we need some
further definitions of terms used in field theory. '

AY
N
\
\
\\
/ N
\
/
’ \
/ \
/ \
/ \
/ ¢ ¢ \
/ = 3 \
Vi 2 o] \ » X

—q +q

Fig. 10.1a Electric dipole
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Vector Field: Flux and Divergence
The gradient VV is a vector invariant associated with a scelar field
V(X, v, z). There are also useful scalar invariants associated with a
vector field E(x, y, 2).

Consider a small portion, of area §S and .unit normal n, of a closed
surface S. The direction of n is conventionally taken outward from the
surface. Consider the quantity

E.néS

Its physical significance is most easily seen in the case where E stands
for the quantity of something — water, perhaps — flowing through unit
area perpendicular to E per second. E.néS is then simply the quantity
of water flowing through this bit of surface per second. (The dot
product correctly allows for the ‘slant’ of the surface — only its area
normal to E counts.)

However, this quantity is useful even when E does not represent
the flow of anything physical. We add up all the products E.néS for all
portions of the surface S, in the limit where §S goes to zero, and write

the result
[ E.ndS or ] E.dS
S S

(The vector dS conventionally denotes ndS.) We call this integral the
flux of E through S. Thus the flux is the ‘surface integral of the normal
component’. We shall now point out three useful properties of the flux.

Flux of a Conserved Quantity

Suppose that E is really a flow of some quantity whose total amount
inside S is Q. Q may be water (in grams), heat (in calories), neutrons
(their number), etc. Suppose further that this quantity cannot be
created or destroyed inside S, i.e. it is conserved. Then change in Q
with time can occur only by flow into or out of S. Since the total
flow out of S is simply the flux as we defined it (out because we took
the normal outwards), we have immediately:

/SE.dS --19 (10.1)

This apparently trivial result is quite basic in relating variation in space
to variation in time, and can later on give us important ‘equations of
continuity’. ‘
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Slicing up a Surface

Fig. 10.1b Slicing up a surface

Suppose we cut through the surface S so that it divides into two pieces
S; and S,, with S the surface of separation (figure 10.1b). Consider
now the sum of the fluxes through S, and S,. How is it related to the
flux through the original surface S? The difference

]sl ' [sz ) fs

will be seen to arise only from the contributions from S, i.e. the

difference is
/ E.n, dS' + / E.nz dS’
s’ s’

where n, and n, are the unit normals at a point to S; and S,
respectively. But n; and n, differ only because of the convention that
we take the normal in the ourwards direction — which makes n, = —n;.
Thus these last two integrands cancel each other at every point.
Conclusion: the sum of the fluxes through S; and S, is equal to the
flux through S.

If we now consider S; and S, each further divided in two, the same
result applies to the sum of the four fluxes. Continuing thus, we
conclude: if we dissect a volume into any number of pieces, the sum
of the fluxes through the surfaces of these pieces is equal to the flux
through the original bounding surface. Note that the constituent
pieces can even be infinitesimal.

Flux Related to Enclosed Volume '

In some physical problems we are given the value of a vector field on a
surface; in others the data naturally occurs as the values of a scalar
field inside a volume. It is very handy to be able to jump from one to
the other and this we can do by means of Gauss’s theorem, which we
specialize to the case of the inverse square law.
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Suppose that our field E is due to a point source at O, that its
direction at a point P is along the line OP, and that its magnitude
falls off as 1/(OP)?. For the sake of being definite we shall talk in terms
of this electrostatic law, for which the field E(r) at a distance r from
the source (of charge q) has the magnitude

E(r):ZT.r_le; % (10.2)

where €, is a universal constant. The direction of E is from the source to
the field point when q is positive. We are after a result about the normal
surface integral of E. We shall begin with a special surface and then
work our way up to an arbitrary one.

Fig. 10.2 Surface for proving Gauss’s theorem

The ‘box’ in figure 10.2 has its long faces (not infinitesimal)
parallel to E, and so their contribution to the flux integral is zero.
The end faces are ‘caps’ of spheres centred on the charge q, of area § A,
and 6A,, small enough for us to neglect their curvature when we want
to. Then the flux integral is

(E1 g )dAl + (Ez My )dAz
= -E, dA] +E, dA2

Now, E decreases as 1/r*, while dA increases as 1/1*; so the product
EdA is constant, and the total flux is thus zero.

Now we make the ‘box’ a little more complicated by allowing the end
faces to ‘tilt’. If the “tilt” is through an angle 9, the area increases by a
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factor 1/cos 6. But the normal component of E is no longer E, but
E cos 6. (Check these last two sentences.) Thus the product EdA is
unchanged; so the flux remains zero.

But now we have a thin ‘splinter’ of arbitrary length, with end faces
of arbitrary slope. By putting splinters like this together, when the end
faces are small enough we can make any surface we like. Thus the flux
integral is zero for any surface. But there is an important proviso: our
proof holds good only if the surface (like the box above) does not
enclose the charge q. What if it does enclose it?

Here we use a very effective trick. Take a very special ‘enclosing’
surface: a small sphere of radius r centred on the charge q. Then E on
the surface is always normal to it (it is along a radius) and is of
magnitude (1/4me;) (q/r*). Since the total area is 4nr’, the flux is
(4nr?) x (1/4mey) (q/r*) = q/ey. Now given an arbitrary surface S
enclosing the charge, we make a sphere s like this, small enough to fit
inside S, and then we consider the surface consisting of s + S. This may
seem a queer surface, but if you think about it you will see that there is
no problem in building it up out of the end faces of our thin splinters.
They fill the space between s and S, which contains no charge. So the
flux through these splinters, and hence through s + S, is zero.

Thus flux through S = —(flux through s)

~2)

(We have to put in the extra minus sign because the normal to s has to
be outward from the space between s and S, and so runs inward now

along the radius.)
[ E.dS
S

When more than one charge is involved, we simply add the results
for each charge separately; fluxes due to different charges obviously add
to give the total flux. We then get

0, when q is outside S

q/eqy, when q is inside S

] E.dS = (total charge inside S)/e, (10.3)
S

This is Gauss’s Law for electrostatics. For gravitation, it becomes

/ g.dS = 4nGM (10.4)
S
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where g is the acceleration due to gravity over the surface S, G is the
universal gravitational constant, and M is the mass enclosed by the
surface S. Note that the surface S is perfectly general, so we may
imagine it anywhere convenient. Such surfaces are called ‘Gaussian
surfaces’. We now give some examples of the use of Gauss’s theorem as
applied to gravitation.

10.2 GRAVITATIONAL FIELDS OF SOME UNIFORM, SYMMETRIC

OBJECTS
///’ \\\\
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Fig. 10.3 Uniform sphere. The Gaussian surfaces are dotted

Consider a uniform sphere of radius R, centre at 0, which has a total
mass M. We want to determine the gravitational acceleration (i) at some
radius r; > R; (ii) at some radius r, < R (figure 10.3). By symmetry,
g is always perpendicular to spherical surfaces concentric with the
uniform sphere, and its value is the same at all points on any one
surface. The surface area of a sphere of radius r, > R centred on 0
is 4nr;?, and so the flux of g through this Gaussian surface is

—g, 4w, % = 47GM (10.5)

by Gauss’s theorem, since the total mass M is enclosed by this surface:
g1 is the value of g on the surface. Hence

_GM

& =3 (10.6)
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which is a familiar result: the negative sign occurs because g is directed
towards the centre of the uniform sphere.

Now we consider case (ii), i.e. we consider the flux of g = g,
everywhere on the surface of a sphere of radius r, >R, centred on 0.
Again, by symmetry, g is everywhere perpendicular to this Gaussian
surface, and its flux is

—ga4mr3 = 4nGM, (10.7)

by Gauss’s theorem, where M, is the mass enclosed by the surface of
radius r,. It should be clear that M, /M is given by the ratio of the
volume of the sphere of radius r, to that of radius R, so that

3
M, = ;_3 M (10.8)
and equation (10.7) becomes
2 3
—g82I3 = G E; M
giving g, = —1,GM (10.9)

The results of these calculations are shown plotted in figure 10.4.

GM
wl L¥

o] R '
Fig. 10.4 Gravitational field of uniform sphere

Next, consider an infinitely long cylinder of mass m per unit
length and radius R (figure 10.5); this could be an approximation to a
gas-cloud in space, or to the slowly-curving arm of a spiral nebula.
Because the cylinder is infinitely long, g must everywhere be
perpendicular to the surfaces of concentric cylinders, and by symmetry
must have the same value at any point of any one cylinder. We again
calculate g at some radius r; > R, and some radius r, < R, using
Gauss’s theorem.
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Fig. 10.5 Infinite uniform cylinder: Gaussian surfaces are dotted

For r; > R, consider the unit length of a cylinder of radius r; >R
concentric with the cylinder of radius R. The flux of g through the
surface is

—g; 271,

since g is everywhere perpendicular to the cylinder surface, and the end
faces of the unit length, chosen normal to the cylinder axis, make no
contribution. The enclosed mass is clearly m, so we have, by Gauss’s
theorem,

—g1271; =47Gm (10.10)
2G:

which gives g =- —rﬂ . (10.11)
1

For r; <R, the flux of g presents no problems. The mass enclosed
by the unit length of the cylinder of radius r, <R is

_nm
M2 = g2 (10.12)
so that eventually we obtain by Gauss’s theorem

_2r2Gm
R? (10.13)

a result analogous to that for the sphere. Note that for both the sphere
and the cylinder we could have treated a non-uniform radial distribution
of density quite successfully.

10.3 A ‘MODERN’ USE OF GAUSS’S THEOREM

We shall now briefly describe a use of Gauss’s theorem in a very up-to
date problem: that of ‘mascons’, or concentrations of mass, on the
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moon. These were first discovered by anomalies (accelerations) in the
orbits of lunar artificial satellites. We shall grossly simplify the problem
to bring out the principles.

‘mascon’

Fig. 10.6 A ‘mascon’ on the moon (idealized)

Suppose that the moon is a uniform sphere of mass M, except for a
small, more dense sphere of mass m < M and radius p which touches
the surface as shown in figure 10.6. If the radius of the moon is R
> p, the average gravitational acceleration at its surface will be given
by —(GM/R?) to a very good approximation, since the density
difference to the ‘mascon’ is only a small anomaly. At the point where
the ‘mascon’ touches the surface, we may consider the acceleration due
only to the mascon by drawing our spherical ‘Gaussian surface’ to
coincide with the spherical mascon. The gravitational acceleration due
to the mascon is then given by — (Gm/p?) exactly, by our model, and
this must be the value of the gravitational acceleration at the point
where the mascon touches the surface. We can then proceed, from the
known average lunar density and supposed densities for the mascon for
example, to calculate p. This use of Gauss’s theorem to calculate
mascon ‘radii’ or densities has given estimates which are in reasonable
agreement with those determined by other methods.

10.4 ESCAPE VELOCITIES

Knowing how the gravitational force falls off from the surface of some
object to infinity, we may use conservation of energy to determine the
minimum velocity necessary to escape from the gravitational field of
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the object, i.e. to arrive at infinity with zero velocity. We have the
the total energy of a mass m:

E =3mv? + V() = jmv? _Gll\{'l_m : (10.14)
for a sphere of mass M and radius R. Since the object is to arrive at
infinity with zero velocity, and the potential energy will also be zero
there, we have E = 0, giving us

2 _2GM -

Ve =R (10.15)
where v, is the escape velocity. The result for the uniform cylinder of
mass m per unit length and radius R is that vé is infinite, i.e. it is
impossible to escape from such a system. This can be seen more easily
from the fact that the work done to go from R to infinity must be

“26M
Wo-[ 2y
R T
which is an infinite integral, than from the form of the potential energy.

CHAPTER 10 PROBLEMS

10.1 Gauss’s theorem for gravitation is

[g.dS =-anG [pav
S \%

(@ (i) In the above equation what is g?

(i) What is the meaning of the left-hand side of the
equation?

(b) (i) What is the meaning of the right-hand side?
(ii)  What is the significance of the negative sign?

(c) Use the above equation ot calculate the magnitude and
direction of the gravitational field at a point inside a very
long cylinder of uniform density.

10.2 The gravitational force of attraction between two bodies of
masses m; and m, at a separation r is

Gml m;
r2

F(r)=-

Assume that the moon (mass m) moves in a circular orbit of
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10.3

radius r, about the earth (mass M). Assume also that m < M.
(@) Find an expression for the moon’s speed in its orbit.
(b) Find an expression for the time for one orbit.
Suppose that the moon were to be arrested in its orbit at
separation 1, and then released at rest with respect to the
earth.

(c) Write down an equation relating the kinetic energy and the
potential energy of the moon in the earth’s gravitational
field when the moon is at separation r.

(d) How long will it take the moon to crash into the earth?
(ignore the earth’s motion about the sun, consider the
earth’s radius as negligibly small, and take

1

I e%de _T
0 2)
(1-¢)

W -

Gauss’s theorem for gravitation is

[g.d8 =—4nG / p dV
S \%

where g is the gravitational field intensity; the integral is taken
over a closed surface S; and dS is an element of area of this
surface. The surface S encloses volume V over which the density
p is integrated.

Fig. 10.3p
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The outer arm of a spiral galaxy can be approximated by a
cylinder of density p, radius R, and infinite length (figure 10.3p).
(a) Using Gauss’s theorem, calculate:

(i) the gravitational field at a distance r(>R) from the
centre of the cylinder;



(ii) the gravitational field at a distance r(<R) from the
centre of the cylinder.
(b) Calculate the period of revolution of a small satellite
moving in a circular orbit of radius r very close to the
surface of the cylinder.

10.4 Gauss’s Law for gravitation is

g .dS =— 47GM

where G is the universal gravitational constant, g is the
acceleration due to gravity, and the surface integral of g is over
a surface S which contains a total mass M.

Derive an expression for the acceleration due to gravity at a
point situated a distance r from the centre of a solid sphere of
mass density p and radius R
(a) forr>R;

(b) forr<R.

10.5 A mass M is moving in a uniform circular orbit of radius R about
a centre of gravitational attraction 0. The magnitude of the
acceleration due to gravity at distance R from 0 is g. Answer the
following questions.

(a) What is the torque about 0 of the gravitational force on M?
(b) What is the amount of inertia of the mass M about 07

v M

Y

Fig. 10.5p

A small mass m is moving with speed v tangentially to the orbit
of M, as shown in figure 10.5p. It strikes M when their velocities
are parallel, and sticks to M. Answer the following questions.
(c) What is the total angular momentum of m and M about 0

before the collision?
(d) What is the total angular momentum of m and M about 0
after the collision?
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10.6

©
®
®)
(h)
@
®

(k)

What is the instantaneous new angular velocity of m and M
about 0?

What is the total rotational kinetic energy before the
collision?

What is the total rotational kinetic energy instantaneously
after the collision?

What is the instantaneous new velocity, v/, of M and m?
The resulting combined mass takes on an elliptical orbit
about 0. Give brief arguments to show that R is now the
closest approach of this orbit to 0.

The furthest distance of the new orbit from 0 is R’
Using Newton’s law of gravitation, express the gravitational
acceleration at R’ in terms of g, R, and R’ only.

Using the above expression, and conservation, of angular
momentum, derive an expression for R’ in terms of R, g, m,
M, and v’ [see (h)].

Suppose that the mass m in problem 10.5 is moving in the
direction opposite to that shown in figure 10.5p. Answer parts

() -

@
)

(k)

10.7
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(h) of problem 10.5 under this new condition.

Give brief arguments to show that R is now the most distant
part of the new elliptical orbit from 0.

The closest approach of the new orbit to 0 is R’. Using
Newton’s law of gravitation, express the gravitational
acceleration at R” in terms of g, R, and R’ oniy.

As for (k) of problem 10.5, using (h) of 10.6.

A small spaceship, of mass 2m (which can be considered as a
particle), is in a circular orbit of radius r about a uniform spherical
planet of radius R. The acceleration due to gravity at the surface
of the planet is g. The spaceship separates into two equal halves
of mass m: the relative velocity of separation is initially 2v, and
the (small) impulse for separation is tangential to, and in the
plane of, the orbit.

(@

(b)
©

Give physical reasons to show that the decelerated mass
will now go into an elliptical orbit about the planet, with
the point of separation being the furthest point on the new
orbit from the planet.

What is the orbit of the spaceship’s centre of mass after
separation?

Find the maximum value of v for which the decelerated
mass just fails to graze the planet on the side opposite
to the spaceship’s point of separation.



Appendix]1: Vector
analysis

Frames of Reference or Co-ordinate Systems in Three-dimensional
Euclidean' Space

Rectangular Cartesian Co-ordinate System K

Consists of three mutually perpendicular straight lines meeting at the
origin, as indicated in figure A1.1. (It is right-handed, i.e. rotation from
the positive x axis to the positive y axis of a right-hand screw will
produce an advance in the direction of the positive z axis.)

K
L Y axis
X
/7I
-7
yd | v

I

0—‘ l > X axis

Z axis

Fig. A1.1 Cartesian co-ordinates

Y Comment on Euclidicity Rectangular Cartesian systems can be used only in
Euclidean or flat space. One cannot use them in ‘curved’ spaces — consider a
two-dimensional curved space such as the surface of a sphere.

It is an experimental fact that physical space is approximately Euclidean in our
region.
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Position of a Point with Respect to K

Definition: The position of P with respect to a frame K is specified by
the ordered triple of numbers x, y, z measured as indicated.

Other Co-ordinate Systems

For example: spherical polar co-ordinates as in figure Al.2. The
position of P is specified by r, 8, ¢.

X

Fig. A1.2 Spherical polar co-ordinates

Note: We shall use only rectangular Cartesian systems below. Hence, by

frame of reference or co-ordinate system we shall mean rectangular
Cartesian system.

Co-ordinate Transformations between Rectangular Cartesian Frames
(Stationary with Respect to Each Other)
Definition (see figure A1.3):

z
Fig. A1.3 Displaced Cartesian frames

182



Call X, X3

Y, X2 . .
rotation translation
Z, X3 constants constants
s/ / |
then x; = 2 3jj; + b; i=1,2,3
.=1 1
] (AL1)

where the a;; and b; are constants’ which depend on the relative
orientation of] K' with respect to K and the Euclidicity of space. Note
that it is a linear co-ordinate transformation.

Example: If there is no displacement of origins and if the x5 and xj3
axis of K and K' coincide, we have the situation in figure Al.4.

K
[ X i
X', |°\\
I\
| X;
A o c
9 \e}
3\ X,
° D
Xa X3

Fig. A1.4 Rotated Cartesian frames

Consider point P with co-ordinates (x,, x;, 0) with respect to K
(x1, x5, 0) with respect to K’

2 . . .
We can write out the nine transformation constants ajj explicitly in a square
array called a matrix thus:

a1 412 a13
a21 a2 az3

431 a32 aas
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Clearly X; = OA+AB+BC
OD cos 8 + DB sin 6 + BPsin 8

OD cos 6 + DP sin 6

But OD = x, and DP =x,

Xy = X; cos 6 + X, sin 8 (Al.2a)
Similarly, we can show
Xy = —X; sin @ + X, cos @ (Al1.2b)
It is also clear that even if P has a non-zero x3v component
| X3 = X3 here. (A1.2¢)

Thus we see that the transformation constants, if K’ is oriented with
respect to K as in the diagram, are, by comparing each of (A1.2a), (b),
and (c) with (A1.1)

a5y =cosf@, ap=sinf, a;3=0

a1 =—sin 0, azp = COS e, as3 =0

az; =0, asp =O, a33 = 1 (A13)

or in matrix form,

cosf, sinf, O
‘—sine, cos 8, Ol

o, 0, 1

Note again that we got (A1.2) from the orientation of K’ with respect
to K, using properties of plane trigonometry and the fact that the co-
ordinate systems were rectangular Cartesian. These last two features
depend on the Euclidicity of space.

Scalar Quantity (or an Invariant)

Definition: Any quantity (it can be a function of position) whose
numerical magnitude is the same in all frames (stationary), e.g. mass,
time, distance. Clearly position is not a scalar.
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A Defining Property of Euclidean Space

Consider any two points Q (x; + AX;, X; + AXp, X3 + Ax3) and P
(x1, X2, X3) with respect to any K (rectangular Cartesian of course)
(see figure A1.5). Then the distance (AS)? between Q and P is a
scalar* defined by

(AS) = (Ax()* + (Axz)* + (Ax3)?

Z Ax; Ax; (this is simply Pythagoras’ theorem)
i

(= f:ijAx]) etc. (A14)

\
o gjo

Xy i Ax,
Fig. A1.5 Euclidean space

Note:  (Al.4)is not true in curved space. Consider

AS = QR = PR (figure A1.6)

(8S)* # (QR)? + (PR)?
P

Fig. A1.6 Curved space

*That it is indeed a scalar will be evident after magnitudes of vectors have been
discussed (page 189).
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Transformation Law for Co-ordinate Differences Ax;
From (A1.1) we deduce that

v J

Relation between the aij’

From the fact that distance is a scalar given by (Al.4), ie. from

’ !
IEAXI Axi = E Axk Axk

we have, using (A1.5), that
(T a.: Ax: ¥ a4, Ax ) = T Axy Ax
ijl_]Ax_]klk k‘ X k =%k

ie. j?k (? 3j;a ) ij bxy = 12(3 Axy Axy
This means that

;aij aj =1 whenj=k

l =0whenj#k

We write this:

where § k> called the Kronecker delta, is defined by

5. = lifj=k

k™ Joifj#k
Vectors
Definition: Consider the co-ordinate transformation xi =2 3 X
between K' and K. ]

Let Ai and A; (i = 1, 2, 3) be ordered sets of quantities with respect
to K' and K respectively. We say that A and A{ are the components
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along the x; and x; axes with respect to K and K' respectively of the one
vector A if and only if A; and A, are related by

! = .« A 7

Note: Although A,;, A,, A; specify A with respect to K, we have not
yet defined precisely how A and A,, A,, A, are related.

Examples: Co-ordinates of a point are the components of the position
vector (if we consider only rotation).

Co-ordinate differences are the components of the relative position
vector.

Velocity components v; = dx; /dt (dt scalar) are the components of
the velocity vector.

Acceleration components a; = dv; /dt are the components of the
acceleration vector.

Force components f; = ma; (m scalar) are the components of the
force vector.

Equality of Vectors
Definition: A = B if and only if A, = B; (=1, 2, 3) with respect to any

one co-ordinate system K.

Significance of Vectors
If two vectors are equal in one co-ordinate system, they are equal in all
co-ordinate systems.

Proof: Since A; =2i) a; Aj, B; = ;2‘ a; Bj

then Aj = Bj implies A; = B;.

Hence A = B in all co-ordinate systems if A = B in one.
Corollary: If all the components of a vector A vanish in one co-ordinate

system (we then write A = 0), they vanish in all, i.e. A = 0 in all
co-ordinate systems.
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Multiplication of Vector by Scalar m
Definition: mA is defined as that mathematical object whose
components are mA,;.

Property: maA is a vector.

Proof: Trivial.

Addition and Subtraction of Vectors

Definition: A * B is defined as that mathematical object whose
components are A; + B;.

Properties of Addition and Subtraction (Proofs Trivial)

(1) A +Bis avector.

(2) A+ B=B+ A (addition commutative)

(3) (A+B)+C=A +(B+C) (addition associative)

Scalar Product of Two Vectors (or Dot Product)
Definition: The scalar product of A and B, written A.B, is defined by

AB=ZA;B, (Al1.8)
i
Property: The scalar product is a scalar, i.e. invariant.
proof BATB = B(Da A Zay By
i i] k
= T (Zaz;ag)A B
ik i ij ik’ Tk
= jzlisjk AJ By, using (A1.6)
= 24D
]
But = A{ B is the scalar product of A and B with respect to K
i
and T A; B, is the scalar product of A and B with respect to K.
i

QED
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Magnitude or Norm of a Vector
Definition: Magnitude of A, written A, is defined by

A= (A.A)%
“VERA
i

Property: The magnitude of a vector is a scalar, i.e. invariant with
respect to the frame of reference (from invariance of scalar product).

Unit Vector
Definition:  Any vector, written &, say, whose magnitude is 1:

iec.ee=1

Orthogonal Vectors
Definition: Any two non-zero vectors A and B (whose components are
not all zero) such that A.B = O are said to be mutually orthogonal.

Note: This ‘orthogonality’ will shortly be seen to mean perpendicularity.
Basic Vectors 3, j, k (or ey, &, ,ég)

Definition: Consider a co-ordinate system K.

Let ¢, have components (1, 0, 0)
¢, have components (0, 1, 0)
&3 have components (0, 0, 1) with respect to K (A1.9)

Clearly &,, é,, €3 are mutually orthogonal unit vectors (i.e. éi.éj = Sij)
and we can regard them as unit vectors along the directions of the x, y,
and z axes of K.

Expansion of any Vector in Terms of its Components with Respect to a
Basis Set of Vectors

Any vector A can be written as a linear combination of the basis vectors
é; of a frame of reference K, the coefficients being the components A
of A with respect to K.

ie. A= 2 Ai éi
1
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ie. A=AitA j+ Ak (A1.10)

Proof: The only vectors which could not be written as linear
combinations of the form A = «, é, + a, ¢, + a;¢é; would be those
which are orthogonal to each of é,, & and &, (just as &; cannot be
written as a linear combination of ¢, and ¢&,).

By the definition of the three-dimensionality of space, there can be
no vectors orthogonal to é,, é, and €. Hence every vector A can be
written

A=2aléi
1

To show that the o = Aj, scalar multiply A = T a;é by ¢,.
i

We get A.¢, =?aiéi.él
ie. Ajx1+A; x0+A3 x0=2 0465
i
ie. a; =A;. Similarly a; ='A;, 03 = A3
i
T—_—— A
‘I/‘ |
o ] _

— A i

Fig. A1.7 Vector components

Comment: This expansion is very useful for the geometric interpretation
of vectors. Thus (m two dimensions, to simplify drawing) we can depict

A= A4+ AyJ as in figure A1.7, and we see that A, = Acosf,
Ay = A sin 6. Also, for instance, smce the addition of A and B can now
be expressed by A + B = (A, + By)i i+ (Ay + By)] +(Az+ By k we
have, in two dimensions, the situation shown in figure A1.8. This shows
that our definition of the sum of two vectors is equivalent to the
parallelogram rule for addition (see figure A1.8).
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bi

Fig. A1.8 Vector addition

Alternative Expression for Scalar Product
For any two vectors A and B,

A.B = AB cos 8 (figure A1.9) (Al.11)

where A and B are the magnitudes of A and B and 0 is the angle
between A and B.

Fig. A1.9 Scalar product

Proof: Choose a co-ordinate system so that the x; and x, axes are in
the plane of A and B.

Then ~ AB= AB, +A;B,
= AcosaBcosfB+ AsinaBsinB
= AB (cos « cos 8 + sin asin f)
= ABcos (a—f)

i.e. AB=ABcos?
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And since A.B is a scalar and the right-hand side involves only scalars,
it is true in all co-ordinate systems and not just the special one we
chose.

Vector Product (or Cross Product)

Definition: The vector product, written C = A x B, of any two vectors
A and B with components A; and B; with respect to a frame K, is
defined as that mathematical object whose components C; with respect
to K are

Cl =AéB3 _A3B2
C2 =A3Bl —A1B3 (Note CyCliC 1-2-3-» l.)
C3 =A1B2 _AgBl (A1.12)

The Vector Product of Two Vectors Is a Vector

Proof: We show that the components of C defined above transform like
the components of a vector. Consider a co-ordinate system K so that
A and B lie in the (x; x,) plane. This is no restriction. We then have
A3 = B3 = 0 and therefore, from the above definition, C, = C, = 0.
Consider now a rotation of a co-ordinate system K + K’ around the x5
axis of K. This is a restriction, but the proof is too hard without it. The
coefficients of the co-ordinate transformation have already been derived
[see equation (A1.3)], namely

aj; 412 413 cosf sinf O
a1 23 as3 = —sin @ cos 8 0
a3 as as3 o 0 1
Hence Al = Ajcosf+A,sinf+0
A, = —A;sinf+A; cosf+0
A5 =0x0+1x0=0
and similarly for B;.
Hence Ci=A,B5—A3B; =0
because B3=B; =0
and A3=A; =0
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Likewise C2=0

Hence we can write

C'1-‘- an El +ap fz +a; Gy ®
0 0 0

’ r ’ / .o

Ca=23 C; +ay5n C; +a53 C, (i)

Finally,
C3= A}B3—A}B)
= (A, cos 0 + A, sin 0) (—B, sin 0 + B, cos 6)
—(~A; sin 0 + A, cos 0) (B, cos 8 + B, sin 0)
=A,B, cos® 0 —A;B, sin® § —A, B, sin 6 cos 6 + A, B, sin 0 cos §

+A;B, sin 6 cos & — A, B, sin 6 cos 0 + A, B, sin? 6 —A, B, cos?8
=A1B2 —A2B1
=C;3

Hence we can write

Cy=ay (il +ay, (iz +a33 Gy

\
0 0 1 (iii)

Thus from (i), (ii), and (iii) we see that the C; transform like the
components of a vector. Hence the vector product is indeed a vector.

Expansion of Vector Product in Terms of Components and Basis Vectors
From the definition of A x B and expansion (A1.10) we see that

AxB=(A;B; - A;3B,)é; +(A3B, —A;B3)é; +(A;B; - A, B))é;

(Al1.13)
or more conveniently

é] € ‘63
AxB = Ay A, A
B, B, B;
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Alternative Expression for Vector Product
AxB=ABsinfh (Al.14)

where 0 is the angle between A and B and 1 is a unit vector perpen-
dicular to the plane of A and B and the direction of advance of a right-
hand screw being rotated from A to B.

Proof: Choose a co-ordinate system so that A and B are in the (x; X3)
plane, i.e. so that A3 = B3 =0 (figure A1.10).

| 8

Fig. A1.10 Vector product

Then, from (A1.13),
AxB = éa(Ale _A2B1)
= é; (AcosaBsinf—AsinaB cosf)

é; ABsin(B—a)

[}

AxB = é; ABsin#

ie. AXxB = ABsinf n

Since LHS is a vector and RHS is a vector multiplied by scalars, the
relation is true in all co-ordinate systems.

Example of Vector Product
If a charge q moves with velocity v in a magnetic field B then it
experiences a force F given by F = qv x B.
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Properties of Vector Product
From (A1.14) we see that

AxB=-BxA

[ A L]
and €1 X €7 e3

. a ’

€ X €35 €

A A
€3 X € T e

a A a A
e2X e;=¢e3Xx e3=0

€ X €

Covariance

Definition: An equation is said to be covariant with respect to given
co-ordinate transformations if its algebraic form is unchanged by those
transformations.

Ultimate Significance of Vectors

Vector equations are covariant with respect to co-ordinate trans-
formations between co-ordinate systems which are stationary with
respect to each other. This is clear whether we write the equation in
component form or in abstract vector form.

For example, if A, B, and C are vectors,

and if A; + B; = C; with respect to a given K,
then A{ + B; = C{ with respect to all K,

and we can write A + B = C irrespective of the co-ordinate system.

Back to Physics

Since the basic laws of physics are vector equations, we can formulate
what we will call a Principle of Relativity, albeit a trivial one, namely:
The laws of physics are covariant with respect to co-ordinate trans-
formations between frames of reference which are at rest with respect
to each other.

The starting point of the Theory of Relativity is the question:Is this
still true if the frames are moving with respect to each other?
We require this to be true for the Newtonian laws of mechanics under
Galilean Transformations.
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Some Useful Vector Identities

ABxC = | A A, A;
B; B, Bs
C; C G
Ax(BxC) = (AC)B—(AB)C
(AxB)xC = (A.C)B—(B.OA
??_t(fA) = ?1{ A+ f dA (f a scalar)

dam -4 pia. P

dA dB
(AxB) xB+Axdt
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Appendix2:The
principle of equivalence

Clock Rates in a Uniform Gravitational Field

We consider two ¢locks, A and B, separated by a distance h, and subject
to a uniform upward acceleration g (figure A2.1). These clocks pass
close to a third clock C in an inertial frame. All three clocks have
previously been synchronized to make sure that they keep the same
time when alone in an inertial frame and at rest with respect to each
other.

Fig. A2.1 Accelerating clocks

The clocks A and B have upward velocities v and vp respectively
as they pass C in succession. We assume that these velocities are very
much less than c, the velocity of light, and proceed to apply the special
theory of relativity to the situation. We want to find the relation
between a fixed interval of time T¢ as measured by C, and the
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corresponding intervals T4 and Tg as measured by A and B as they
each pass by C.

V2 “_1' K3 VTA

We have Ta=Tc (1 - -;:%) 2= T¢ <1 + ?) (A2.1)
vi\-3 . v

and similarly Tg=T¢ (l ——3—3—) 2=Tc <1 + 5%2> (A2.2)

Hence in the approximation vy, vg, both <€ c

Ty :=TA<1+—A) TA( ‘f‘) (A2.3)

since vf; = vz +2gh

Gravitational Field

ol

Source of gravitational field

Fig. A2.2 Clocks in a gravitational field

By the principle of equivalence, the result (A2.3) should apply if the
clocks A and B are separated and at rest in a uniform gravitational field
directed oppositely to the original upward acceleration. That is, for the
situation of figure A2.2, we must also have

VA~V
TB=TA(1+gc—';>=TA<1--A—Cz—B> (A24)

where VA and Vg are the gravitational potentials at A and B
respectively [see S. Chandrasekhar, An. J. Phys. 40, 224 (1972); L.I.
Schiff, ibid. 28, 340 (1960)] .
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Appendix3:The ‘curl(Vx)
operatorand
conservative forces

We saw in section 5.4 that if we had a scalar potential function
V(x,y, z), then the force F(x, y, z) was given by

=-VV=-grad V (A3.1)

N I I del’. Consi
where ¥ = i axti 3y +k 3z is the vector operator, ‘del’. Consider now

the operation vx, which we define as

curl F=vxF= |i j k
R R
ox dy 0z
Fy Fy F, (A3.2)

for some vector function of position F(x, y, z). If we took seriously the
the way ¥ ‘looks like’ a vector, we should guess that ‘VxV’isa zero
operator, from our knowledge of the vector product. It is in fact a very
simple exercise to show that, for any scalar function V(x, vy, z),

Vx(VV)=(Vx V)V=curlgrad V=0 (A3.3)

From this, and from the relation (3.1), we conclude that for any
vector (force) field F with a scalar potential,

curl F=0

This gives us an immediate method of determining whether a force
field F(x, y, z) is conservative or not; if curl F = 0, then F is the gradient
of some scalar function V, i.e. we have a potential function and F is
conservative,
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(x.y+ h) (x+ h, y+ h)

Aw

F,,“/F
ys «

(x.v) 1 (x+ h y)

Fig. A3.1 Elementary closed path

Let us see why this is so physically. Remember that a conservative
field is one in which the line-integral j;F.dQ around any closed path is
zero. Consider a little square of side h, with its side parallel to the x
and y axes (figure A3.1). Along side 1 the tangential component of F is
the x component. Taking its value at the middle of side 1 as Fy, the
line-integral along side 1 is approximately Fyh. For side 3 the x
component of F has increased to [Fy + h (0F,/dy)] . Noticing the op-
posite direction of integration on side 3 as compared to 1, we see that
the line-integral along 3 is

3F,
—(Fx+ h 5

so the pair of sides 1 and 3 contributes a net amount of

Similarly, the pair of sides 2 and 4 contributes an amount

o 2y
ox

to the line-integral. The total value of the line-integral around the path

1234 anticlockwise is
n2 ( OFy _ 3&)
Jx 9y

which we can rewrite as
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(Vvx l:")Z SA

where §A = h? is the area of the square, and (V x F), is the z
component of ¥ x F as defined in (A3.2). If we associate the direction
k with the normal to the area enclosed by the path in the anticlockwise
direction (the right-hand-screw rule), we may write

(vxF),8A = § F.d¢

for this path 1234 around the elementary square. So that, in the limit
h - 0, the components of ¥ x F measure the value of the line-integral
of F around infinitesimal closed paths in planes normal to the co-
ordinate axes. So taking the curl of a force F effectively samples the
line-integrals around all infinitesimal closed paths. If the result is
everywhere zero, F must therefore be conservative by definition.

The final total result §; F.d¢ = fs(curl F).dA is known as Stokes’s

theorem; S is the surface surrounded by the closed path L.
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damped oscillations, 109-113
Dicke, R.H. 40
dipole, electric 168
dot product 10
driven oscillations 113
dynamics
of particles 55-70
rotational 12348
of variable-mass systems 76-79

earth, as inertial frame 21
Einstein’s principle of equivalence 48
electric field
constant, motion in 26
for dipole 168
sinusoidal, motion in 58
elementary particles, spin of 128
energy
conservation of 89
gravitational potential 176
mechanical 85, 86, 89, 141
of oscillations 108
potential 89-95
of simple harmonic motion 108
Eétros 40
escape velocity 176
equilibrium
neutral 94
stable 94
unstable 94
equipotential surfaces 96
equivalence, principle of 48

field, gravitational 172-177
first law, Newton’s 40
flux of a conserved quantity 169
force, action 41
centrifugal 52
centripetal 52
classification of fundamental 43 .
conservative 87
fictitious 48
gravitational 163, 173, 177
inertial 48
non-conservative 88
_and potential energy 90, 98
pseudo 48
reaction 41
force constant 55
forced oscillations 113
Foucault pendulum 54
free fall 49 )
friction, as non-conservative force
88

Galilean transformation 22

Galilean relativity 22

Galilei’s law of inertia 21, 40

Gauss’ theorem 172
and gravitation 172-177

gradient vector, of a scalar function
96

gravitation, Newton’s law of 163,
173,177

gravitational field 172-177

_gravitational force 163, 173, 177

gravitational mass 40

gravitational potential energy 176
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28

gyroscope, precession of 143

harmonic motion
damped 109-113
forced 113
simple 107-116
harmonic oscillator, simple 107-116

ignorable co-ordinates 162
impulse 66
inelastic collisions 67, 75
inertia
law of 21, 40
moment of 130
products of 139
inertial force 48
inertial frame 21
inertial mass 40
invariants 8, 11, 184

- kinematics 24

kinetic energy 86
mtational 141
Klystron §7

length §
linear momentum
conservation of 40
of a particle 39
of a system 68, 69
linear motion with constant accel-
eration 26
line, integral 86
mascons 176
mass
centre of 67
gravitational 40
inertial 40
operational definition of 38
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reduced 160
variable 76
measurements 5
mechanics
classical 4
quantum 99, 153
moment
of a force 124
of inertia 130
of momentum 124
momentum
angular 124
conservation of 40, 124
linear 39
moon and mascons 176
motion
in one dimension 26, 55, 57-61, 93
in a plane 26, 29, 31, 32
of planets 161-166
of projectiles 27
rectilinear 26, 55, 57-61
uniform circular 29

Newton and inertial and gravitational
mass 40
Newton’s law of gravitation 163, 173,
177
Newton’s laws of motion 4043
first 40
second 40
third 41
non-conservative forces 88
non-inertial frames 21, 33, 46, 50
operational definition
length 5§
mass 38
time §
oscillations, anharmonic
damped 109, 111
energy of 108
forced 113
frequency of 107, 11}, 116
life-time of 111
period of 109
‘Q 122
simple harmonic 107-116

Panov, V. L. 48

parallel axis theorem 140

particle dynamics 55

particle kinematics 24-37

periodic motion 55, 107
perpendicular axis theorem 141
phase of simple harmonic motion 107
plane

204

motion in a 26, 29, 31, 32
collisions in a 70, 75, 159
planets, motion of 161-166
potential energy 88-99
and force 90, 98
gravitational 177
and work 89
potential gradient 96
power 85
Pound, R. V. 48
precession 143-149
of gyroscope 143
of top 145
principle of equivalence 48
products of inertia 139
projectile motion 27

‘Q’ (of simple harmonic motion) 122
quantum mechanics 99. 153
reaction force 41
Rebka, G. A. 48
reduced mass 160
reference frames 5, 21, 33, 50

inertial 21

non-inertial 21

rotating 50

uniformly accelerated 33
relative acceleration 33
relative velocity 23
relativity, Galilean 22
relativity

general theory 48

special theory §, 56
resistance to motion 57
resonance 115
right-hand screw rule 7, 11
rigid body, rotation of 136
rocket 77

thrust on 78
rotational dynamics 123, 136
rotational inertia 125

sand-box problem 78
scalar product (of vectors) 10, 188
scalars 8
Schiff, I. L. 48
SHM — see simple harmonic motion
Shapiro, 1. J. 48
simple harmonic motion
amplitude of 108
damped 109-113
driven 113
energy of 108
forced 113
equation of motion 107



frequency of 107,111, 116
period of 109
phase of 107
simple harmonic oscillator 107-116
speed, average 12,13
symmetry and conservation 98, 149
Symon, K. R. 38

terminal velocity 57
third law of motion 41
thrust 78

time, standard of 6
top, precession of 145
torque 124

uniform circular motion 29
uniform rectilinear acceleration 26

Vector field 199
vector gradient of a scalar 96
vector product 11,192
vectors

addition of 9, 188

components of 10

curl of 199

resolution of 10

subtraction of 9, 188
velocity

average 12

escape 176

instantaneous 12

relative 23

terminal 57

variable 32
Venus, radar signals from 48
vibration of spring 55, 114

weber, 1. 48
weightlessness 49
work 85
by a constant force 86
path dependence of 87
as scalar product 86
by a variable force 86
work-energy theorem 86
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