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Solution to Exercise 1.1

The �xed points are the solutions of

q(x) � x2 � 2x+ c = 0:

Evidently q(0) = c > 0, q(1) = c � 1 < 0, q(x) ! +1 as x ! 1,

showing that 0 < �1 < 1 < �2.

Now

xn+1 =
1
2 (x

2
n + c)

�1 =
1
2 (�

2
1 + c);

so by subtraction

xn+1 � �1 =
1
2 (x

2
n � �21) =

1
2 (xn + �1)(xn � �1):

It follows that if jxn + �1j < 2, then jxn+1 � �1j < jxn � �1j. Now

�1+�2 = 2, so if 0 � x0 < �2 then x0+�1 < 2, and evidently x0+�1 > 0.

Hence x1 is closer to �1 then was x0, so also 0 � x1 < �2. An induction

argument then shows that each xn satis�es 0 � xn < �2, and

jxn � �1j <
�
x0 + �1

2

�n
jx0 � �1j;

and xn ! �1.

Now xn+1 is independent of the sign of xn, and is therefore also in-

dependent of the sign of x0, and it follows that xn ! �1 for all x0 such

that ��2 < x0 < �2.

The same argument shows that if x0 > �2 then x1 > x0 > �2, and so

xn !1. As before this means also that xn !1 if x0 < ��2.
If x0 = �2 then of course xn = �2 for all n > 0. If x0 = ��2, then

x1 = �2, and again xn = �2 for all n > 0.
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Solution to Exercise 1.2

Since f 0(x) = ex � 1 and f 00(x) = ex, f 0(x) > 0 and f 00(x) > 0 for

all x > 0. It therefore follows from Theorem 1.9 that if x0 > 0 then

Newton's method converges to the positive root.

Similarly f 0(x) < 0 and f 00(x) > 0 in (�1; 0) and the same argument

shows that the method converges to the negative root if x0 < 0.

If x0 = 0 the method fails, as f 0(0) = 0, and x1 does not exist.

For this function f , Newton's method gives

xn+1 = xn � exp(xn)� xn � 2

exp(xn)� 1

= xn � 1� (xn + 2) exp(�xn)
1� exp(xn)

� xn � 1 n > 1:

In fact, e�100 is very small indeed.

In the same way, when x0 is large and negative, say x0 = �100,

xn+1 � xn � �xn � 2

�1 = �2:

Hence when x0 = 100, the �rst few members of the sequence are

100; 99; 98; : : :; after 98 iterations xn will get close to the positive root,

and convergence becomes quadratic and rapid. About 100 iterations are

required to give an accurate value for the root.

However, when x0 = �100, x1 is very close to �2, and is therefore

very close to the negative root. Three, or possibly four, iterations should

give the value of the root to six decimal places.
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Solution to Exercise 1.3

Newton's method is

xn+1 = xn � f(xn)

f 0(xn)
:

To avoid calculating the derivative we might consider approximating the

derivative by

f 0(xn) � f(xn + Æ)� f(xn)

Æ
;

where Æ is small. The given iteration uses this approximation, with

Æ = f(xn); if xn is close to a root then we might expect that f(xn) is

small.

If xn � � is small we can write

f(xn) = f(�) + (xn � �)f 0(�) + 1
2 (xn � �)2f 00(�) +O(xn � �)3

= �f 0 + 1
2�

2f 00 +O(�)3

where � = xn � �, and f 0 and f 00 are evaluated at x = �. Then

f(xn + f(xn))� f(xn) = f(� + � + �f 0 + 1
2�

2f 00)� f(� + �)

= �(f 0)2 + 1
2�

2[3f 0f 00 + (f 0)2f 00] +O(�)3:
Hence

xn+1 � � = xn � � � [f(xn)]
2

f(x+ n+ f(xn))� f(xn)

= � � �2[(f 0)2 + �f 0f 00]

�[(f 0)2 + 1
2�f

0(3 + f 0)f 00]
+O(�)3

= �2
f 00(1 + f 0)

f 0
+O(�)3:

This shows that if x0 � � is suÆciently small the iteration converges

quadratically. The analysis here requires that f 000 is continuous in a

neighbourhood of �, to justify the terms O(�3). A more careful analysis

might relax this to require only the continuity of f 00.

The leading term in xn+1 � � is very similar to that in Newton's

method, but with an additional term.

The convergence of this method, starting from a point close to a root,

is very similar to Newton's method. But if x0 is some way from the root

f(xn) will not be small, the approximation to the derivative f 0(xn) is

very poor, and the behaviour may be very di�erent. For the example

f(x) = ex � x� 2
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starting from x0 = 1; 10 and �10 we �nd

0 1.000000

1 1.205792

2 1.153859

3 1.146328

4 1.146193

5 1.146193

0 10.000000

1 10.000000

2 10.000000

3 10.000000

4 10.000000

5 10.000000

0 -10.000000

1 -1.862331

2 -1.841412

3 -1.841406

4 -1.841406

The convergence from x0 = 1 is satisfactory. Starting from x0 = �10
we get similar behaviour to Newton's method, an immediate step to x1
quite close to �2, and then rapid convergence to the negative root.

However, starting from x0 = 10 gives a quite di�erent result. This

time f(x0) is roughly 20000 (which is not small), and f(x0 + f(x0))

is about 109500; the di�erence between x0 and x1 is excessively small.

Although the iteration converges, the rate of convergence is so slow that

for any practical purpose it is virtually stationary. Even starting from

x0 = 3 many thousands of iterations are required for convergence.
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Solution to Exercise 1.4

The number of correct �gures in the approximation xn to the root �

is

Dn = integer part of f� log10 j� � xnjg:
From (1.24) for Newton's method we have

j� � xn+1j
j� � xnj2 ! jf 00(�)j

2jf 0(�)j :

Hence

Dn+1 � 2Dn �B;

where

B = log10
jf 00(�)j
2jf 0(�)j :

If B is small then Dn+1 is close to 2Dn, but if B is signi�cantly larger

than 1 then Dn+1 may be smaller than this.

In the example,

f(x) = ex � x� 1:0000000005

f 0(x) = ex � 1

f 00(x) = ex;

and � = 0:0001. Hence

B = log10
e0:0001

2(e0:0001 � 1)
= 3:7

and the number of signi�cant �gures in the next iteration is about 2k�4,
not 2k.

Starting from x0 = 0:0005 the results of Newton's method are

0 0.000500000000000 3

1 0.000260018333542 3

2 0.000149241714302 4

3 0.000108122910746 5

4 0.000100303597745 6

5 0.000099998797906 9

6 0.000099998333362 14

where the last column shows the number of correct decimal places.

The root is � = 0:000099998333361 to 15 decimal places.

The number of correct �gures increases by a factor quite close to 4.
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Solution to Exercise 1.5

From (1.23) we have

� � xn+1 = � (� � xn)
2f 00(�n)

2f 0(xn)
:

Now f 0(�) = 0, so by the Mean Value Theorem

f 0(xn)� f 0(�) = (xn � �)f 00(�n)

for some value of �n between � and xn. Hence

� � xn+1 =
(� � xn)f

00(�n)

2f 00(�n)
:

Now jf 00(�n)j < M and jf 00(�n)j > m, and so

j� � xn+1j < Kj� � xnj;
where

K =
M

2m
< 1:

Hence if x0 lies in the given interval, all xn lie in the interval, and xn ! �.

Then �n ! �, f 00(�n)! f 00(�) and f 00(�n)! f 00(�). This shows that

� � xn+1

� � xn
! 1

2

and convergence is linear, with asymptotic rate of convergence ln 2.

For the example f(x) = ex�1�x, f(0) = 0, f 0(0) = 0. Starting from

x0 = 1, Newton's method gives

0 1.000

1 0.582

2 0.319

3 0.168

4 0.086

5 0.044

6 0.022

7 0.011

8 0.006

9 0.003

10 0.001

showing � � x0 reducing by a factor close to 1
2 at each step.
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Solution to Exercise 1.6

When f(�) = f 0(�) = f 00(�) = 0 we get from the de�nition of Newton's

method, provided that f 000 is continuous in some neighbourhood of �,

� � xn+1 = � � xn +
f(xn)

f 0(xn)

= � � xn +
1
6 (xn � �)3f 000(�n)
1
2 (xn � �)2f 000(�n)

= (� � xn)

�
1� f 000(�n)

3f 000(�n)

�
:

If we now assume that in the neighbourhood [� � k; � + k] of the root

0 < m < jf 000(x)j < M; where M < 3m;

then

j� � xn+1j < Kj� � xnj;
where

K = 1� M

3m
< 1:

Hence if x0 is in this neighbourhood, all the xn lie in the neighbour-

hood, and Newton's method converges to �. Also,

j� � xn+1j
j� � xnj ! 2

3
;

so that convergence is linear, with asymptotic rate of convergence ln(3=2).
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Solution to Exercise 1.7

The proof follows closely the proof of Theorem 1.9.

From (1.23) it follows that xn+1 < �, provided that xn lies in the

interval I = [X; �]. Since f is monotonic increasing and f(�) = 0,

f(x) < 0 in I . Hence if x0 2 I the sequence (xn) lies in I , and is

monotonic increasing. As it is bounded above by �, it converges; since

� is the only root of f(x) = 0 in I , the sequence converges to �. Since

f 00 is continuous it follows that

� � xn+1

(� � xn)2
= � f 00(�n)

2f 0(xn)
! � f 00(�)

2f 0(�)
;

so that convergence is quadratic.
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Solution to Exercise 1.8

Neglecting terms of second order in " we get

x0 = 1 + "

x1 =�1 + "

x2 =
1
2"

x3 =�1� "

x4 =�1 + "

x5 =�1:
Although this value of x5 is not exact, it is clear that for suÆciently

small " the sequence converges to �1.
With x0 and x1 interchanged, the value of x2 is of course the same,

but x3 and subsequent values are di�erent:

x0 =�1 + "

x1 = 1 + "

x2 =
1
2"

x3 = 1� "

x4 = 1 + "

x5 = 1:
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Solution to Exercise 1.9

The function ' has the form

'(xn; xn�1) =
xnf(xn�1)� xn�1f(xn)� �(f(xn�1)� f(xn))

(xn � �)(xn�1 � �)(f(xn�1)� f(xn))

In the limit as xn ! � both numerator and denominator tend to zero,

so we apply l'Hopital's rule to give

lim
xn!�

'(xn; xn�1) = lim
f(xn�1)� xn�1f

0(xn) + �f 0(xn))

�f 0(xn)(xn � �)(xn�1 � �) + (f(xn�1)� f(xn))(xn�1 � �)

=
f(xn�1)� xn�1f

0(�) + �

(f(xn�1)� f(�))(xn�1 � �)

so that

 (xn�1) =
f(xn�1)� xn�1f

0(�) + �f 0(�)

(f(xn�1)� f(�))(xn�1 � �)
:

In the limit as xn�1 ! � the numerator and denominator of  (xn�1)

both tend to zero, so again we use l'Hopital's rule to give

lim
xn�1!�

 (xn�1) = lim
xn�1!�

f 0(xn�1)� f 0(�)

f 0(xn�1)(xn�1 � �) + (f(xn�1)� f(�))
:

We must now use l'Hopital's rule again, to give �nally

lim
xn�1!�

 (xn�1) = lim
f 00(xn�1)

f 00(xn�1)(xn�1 � �) + f 0(xn�1) + f 0(xn�1)

=
f 00(�)

2f 0(�)
:

Now the limit of ' does not depend on the way in which xn and xn�1
tend to �, so �nally we have

xn+1 � �

(xn � �)(xn�1 � �)
! f 00(�)

2f 0(�)
:

Now assume that
xn+1 � �

(xn � �)q
! A;

then
xn � �

(xn�1 � �)q
! A;

or

(xn � �)1=q

xn�1 � �
! A1=q ;
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and so
xn+1 � �

(xn � �)q�1=q(xn�1 � �)
! A1+1=q :

Comparing with the previous limit, we require

q � 1=q = 1; and A1+1=q =
f 00(�)

2f 0(�)
:

This gives a quadratic equation for q, and since we clearly require that

� is positive we obtain q = 1
2 (1 +

p
5), giving the required result.



12

Solution to Exercise 1.10

Fig. 1.6 shows a typical situation with f 00(x) > 0, so the graph of f

lies below the line PQ. Here P and Q are the points corresponding to

un and vn. Also R is the point corresponding to �, so that f(�) < 0.

Hence in the next iteration un+1 = � and vn+1 = vn.

The same picture applies to the next step, and again vn+2 = vn+1,

and so on. Thus if f 00 > 0 in [uN ; vN ], and f(uN) < 0 < f(vN ) then

vn = vN for all n � N .

If on the other hand f(uN) > 0 and f(vN ) < 0 we see in the same

way that un = uN for all n � N .

Similar results are easily deduced if f 00 < 0 in [uN ; vN ]; it is only

necessary to replace f by the function �f .
Now returning to the situation in Fig. 1.6, the point vn remains �xed,

and the points un are monotonically increasing. Hence the sequence

(un) is monotonically increasing for n � N , and is bounded above by

vN , and is therefore convergent to the unique solution of f(x) = 0 in the

interval [uN ; vN ]. In the general situation, we see that one end of the

interval [un; vn] eventually remains �xed, and the other end converges

to the root.

Write un = � + Æ, and

un+1 � �

Æ
=

(� + Æ)f(vN )� vNf(� + Æ)� �(f(vN )� f(� + Æ))

Æ(f(vN )� f(� + Æ))
:

In the limit as Æ ! 0 the numerator and denominator both tend to zero,

so we apply l'Hopital's rule to give

lim
Æ!0

un+1 � �

Æ
= lim

Æ!0

f(vN )� vNf
0(� + Æ) + �f 0(� + Æ)

f(vn)� f(� + Æ)� Æf 0(� + Æ)

=
f(vN )� vNf

0(�) + �f 0(�)

f(vN )

Hence the sequence (un) converges linearly to �, and the asymptotic rate

of convergence is

� ln

�
1� (vN � �)f 0(�)

f(vN )

�

This may also be written

� ln

�
1� f 0(�)

f 0(�N )

�

for some �N lying between � and vN . Since f(�) = 0, it follows that
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�N > �. Evidently the closer vN is to the root �, the closer f 0(�N ) is to

f 0(�), and the more rapidly the iteration converges.

Asymptotically this method converges more slowly than the standard

secant method. Its advantage is that if f(u0) and f(v0) have opposite

signs the iteration is guaranteed to converge to a root lying in [u0; v0];

the method is therefore robust. However, it is easy to draw a situation

where v0 is far from �, and where the bisection method is likely to be

more eÆcient.
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Solution to Exercise 1.11

The sequence (xn) converges to the two-cycle a; b if x2n ! a and

x2n+1 ! b, or equivalently with a and b interchanged. So a and b are

�xed points of the composite iteration xn+1 = h(xn), where h(x) =

g(g(x)), and we de�ne a stable two-cycle to be one which corresponds

to a stable �xed point of h. Now

h0(x) = g0(g(x)) g0(x);

if h0(a) < 1 the �xed point a of h is stable; since g(a) = a it follows that

if jg0(a)g0(b)j < 1 then the two-cycle a; b is stable. In the same way, if

jg0(a)g0(b)j > 1 then the two-cycle is not stable.

For Newton's method

xn+1 = xn � f(xm)=f
0(xn);

and the corresponding function g is de�ned by

g(x) = x� f(x)=f 0(x):

In this case

g0(x) =
f(x)f 00(x)

[f 0(x)]2
:

Hence, if ����f(a)f 00(a)[f 0(a)]2

����
����f(b)f 00(b)[f 0(b)]2

���� < 1

the two-cycle is stable.

Newton's method for the solution of x3 � x = 0 has the two-cycle

a;�a if

�a= a� a3 � a

3a2 � 1

a=�a� �a3 + a

3a2 � 1
:

These equations have the solution

a =
1p
5
:

Here f 0(a) = 3a2 � 1 = �2=5 and f 00(a) = 6a = 6=
p
5. So����f(a)f 00(a)[f 0(a)]2

����
����f(b)f 00(b)[f 0(b)]2

���� = 36;

and the two-cycle is not stable.



15

Solution to Exercise 2.1

Multiplication by Q on the right reverses the order of the columns of

A. Hence, writing B = QAQ,

Bi;j = An+1�i;n+1�j :

If L is lower triangular, then Lij = 0 whenever i < j. Hence (QLQ)ij =

0 whenever n+1� i < n+1� j, or when i > j, thus showing that QLQ

is upper triangular.

Now suppose that A is a general n � n matrix, that B = QAQ, and

that B can be written as B = L1U1, where L is unit lower triangular

and U is upper triangular. Then

A=QBQ

=QL1U1Q

= (QL1Q)(QU1Q)

since Q2 = I , the unit matrix. Now QL1Q is unit upper triangular and

QL1Q is lower triangular, so we have the required form A = UL with

L = QU1Q and U = QL1Q. This factorisation is possible if we can write

B = L1U1, and this can be done if all the leading principal submatrices

of B are nonsingular. The required condition is therefore that all the

\trailing" principal submatrices of A are nonsingular.

The factorisation does not exist, for example, if

A =

�
2 1

0 0

�
;

since the corresponding matrix B has B11 = 0:
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Solution to Exercise 2.2

We can write

A = LU�;

where L is unit lower triangular, and U� is upper triangular. Now let

D be the diagonal matrix whose diagonal elements are the diagonal

elements of U1, so that dii = u�ii, and de�ne U = D�1U�; then A = LDU

as required, since U is unit upper triangular.

The given condition on A ensures that u�ii 6= 0 for i = 1; : : : ; n. The

procedure needs to be modi�ed slightly when u�nn = 0, since then D is

singular. All that is necessary is to de�ne U = (D�)�1U�, where D�

is the matrix D but with the last element replaced by 1 and then to

replace Unn by 1.

If the factorisation A = LU is known, we can use this procedure to

�nd D and U such that A = LDU . Then AT = UTDLT , which can be

written

AT = (UT )(DLT );

where UT is unit lower triangular and DLT is upper triangular. This is

therefore the required factorisation of AT .
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Solution to Exercise 2.3

Suppose that the required result is true for n = k, so that any non-

singular k � k matrix A can be written as PA = LU . This is obviously

true for k = 1.

Now consider any nonsingular (n+1)� (n+1) matrix A partitioned

according to the �rst row and column. We locate the element in the

�rst column with largest magnitude, or any one of them if there is more

than one, and interchange rows if required. If the largest element is in

row r we interchange rows 1 and r. We then write

P (1r)A =

�
�wT

p B

�
=

�
� 0T

p C

��
1mT

0 I

�

where � is the largest element in the �rst column of A. Writing out the

product we �nd that

�mT =wT

pmT + C =B:

This gives

m =
1

�
w;

and

C = B � 1

�
pmT :

Note that if � = 0 this implies that all the elements of the �rst column

of A were zero, contradicting our assumption that A is nonsingular.

Now det(A) = �� det(C), and so the matrix C is also nonsingular,

and as it is an n�n matrix we can use the inductive hypothesis to write

P �C = L�U�:

It is then easy to see that

P (1r)A =

�
1 0T

0 P �

��
� 0

T

P �p L�

��
1mT

0 U�

�

since P �P � = I . Now de�ning the permutation matrix P by

P =

�
1 0

0
T P �

�
P (1r)
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we obtain

PA =

�
� 0

T

P �p L�

��
1mT

0 U�

�
;

which is the required factorisation of A.

The theorem therefore holds for every matrix of order n+ 1, and the

induction is complete.

Consider the matrix

A =

�
0 1

0 1

�

and attempt to write it in the form

A =

�
p 0

q r

� �
1 s

0 1

�
:

This would require

p= 0

ps= 1

q = 0

qs+ r = b:

where the �rst two equations are clearly incompatible. The only possible

permutation matrix P interchanges the rows, and the factorisation is

obviously still impossible.
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Solution to Exercise 2.4

Partitioning the matrices by the �rst k rows and columns, the equation

Ly = b becomes �
L1 O

C L2

��
y1
y2

�
=

�
0

�

�
;

where we have used the fact that the �rst k rows of b are zero. Multi-

plying out this equation gives

L1y1 = 0

Cy1 + L2y2 = �;

from which it is clear that y1 = 0, since L1 and L2 are nonsingular.

Hence the �rst k rows of y are zero.

Column j of the inverse of L is y(j), the solution of

Ly(j) = e(j);

where e(j) is column j of the unit matrix and has its only nonzero

element in row j. Hence the �rst j � 1 elements of e(j) are zero, and

by what we have just proved the �rst j � 1 elements of y(j) are zero.

Thus in each column of the inverse all the elements above the diagonal

element are zero, and the inverse is lower triangular.
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Solution to Exercise 2.5

The operations on the matrix B are:

(i) Multiplying all the elements in a row by a scalar;

(ii) Adding a multiple of one row to another.

Each of these is equivalent to multiplying on the left by a nonsingular

matrix. Evidently the e�ect of successive operations (i) is that the diag-

onal elements in the �rst n columns are each equal to 1, and the e�ect

of successive operations (ii) is that all the o�diagonal elements are equal

to zero. Hence the �nal result in the �rst n columns is the unit matrix.

Hence the combined e�ect of all these operations is equivalent to mul-

tiplying B on the left by A�1; and the �nal result in the last columns is

the inverse A�1. The diagonal element brr at any stage is the determi-

nant of the leading principal r � r submatrix of A, multiplied by each

of the preceding scaling factors 1=bjj . Hence if all the leading principal

submatrices of A are nonsingular, none of the diagonal elements bjj used

at any stage are zero.

At each stage, the scaling of the elements in row j requires 2nmultipli-

cations. The calculation of each term bik � bijbjk involves one multipli-

cation, and there are 2n(n� 1) such elements, as row j is not involved.

Thus each stage requires 2n2 multiplications, and there are n stages,

giving a total of 2n3 multiplications.

However, in stage j the �rst j � 1 columns and the last n � j + 1

columns are columns of the unit matrix. Hence the scaling of row j only

involves n non zero elements, and in the calculating of the new elements

bik, half of the factors bjk are zero. This reduces the total number of

multiplications from 2n3 to n3.
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Solution to Exercise 2.6

The initial matrix B is

B =

0
@2 4 2 1 0 0

1 0 3 0 1 0

3 1 2 0 0 1

1
A :

After the successive stages of the calculation the matrix B becomes

B =

0
@1 2 1 1=2 0 0

0�2 2�1=2 1 0
0�5�1�3=2 0 1

1
A ;

B =

0
@1 0 3 0 1 0

0 1�1 1=4�1=2 0
0 0�6�1=4�5=2 1

1
A ;

B =

0
@1 0 0�1=8 �1=4 1=2

0 1 0 7=24�1=12�1=6
0 0 1 1=24 5=12�1=6

1
A :

The inverse matrix A�1 consists of the last three columns of this.
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Solution to Exercise 2.7

nX
i=1

j(Ax)ij=
nX
i=1

������
nX

j=1

aijxj

������
�

nX
i=1

nX
j=1

jaij j jxj j

=

nX
j=1

jxj j
nX
i=1

jaij j

� C

nX
j=1

jxj j

= Ckxk1:
Now choose

C =
n

max
j=1

nX
i=1

jaij j;

then evidently
nX
i=1

jaij j � C:

Let k be the value of j for which this maximum is attained; de�ne x to

be the vector whose only nonzero element is a 1 in position k. Then

nX
i=1

j(Ax)ij=
nX
i=1

jaikj

= C

= Ckxk1;
so that kAxk1 = Ckxk1, giving the result required.
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Solution to Exercise 2.8

(i) Write � = kvk2, so that

v21 + : : :+ v2n = �2:

It is then clear that v2j � �2, j = 1; : : : ; n, and so kvk1 � kvk2. Equality
is attained by any vector v which has a single nonzero element.

Now write � = kvk1, so that jvj j � � for all j. Then

kvk22 = v21 + : : :+ v2n � �2 + : : :+ �2 = n�2:

This is the required result; in this case equality is attained by any vector

v in which all the elements have the same magnitude.

(ii) From the de�nition of kAk1,

kAk1 = max
x

kAxk1
kxk1 :

Choose v to be a vector x for which this maximum is attained. Then

kAk1kvk1 = kAvk1
� kAvk2 (see above)

� kAk2kvk2
� kAk2pn kvk1: (see above)

Division by kvk1 gives the required result.

To attain equality, we require equality throughout the argument. This

means that Av must have a single nonzero element and that all the

elements of v must have the same magnitude. Moreover Av must have

its maximum possible size in both the 2-norm and the 1-norm. Thus v

must be an eigenvector of ATA. An example is

A =

�
1�1
1 1

�
; v =

�
1

1

�
:

Evidently the rowsums are 2, so that kAk1 = 2. It is easy to see that

ATA = 2I , and has both eigenvalues equal to 2. Hence kAk2 = p
2, as

required.

For the second inequality, choose u to be a vector which attains the

maximum possible kAuk2. Then in the same way

kAk2kuk2 = kAuk2
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�p
m kAuk1

�p
m kAk1kuk1

�p
m kAk1kuk2;

and the result follows by division by kuk2. The argument follows as

above, but we have to note that the vector Au has m elements.

To attain equality throughout we now require that u has a single

nonzero element, that all the elements of Au have the same magnitude,

and again that Au must have maximum size in both the 2-norm and

the 1-norm. Thus u must again be an eigenvector of ATA. A rather

trivial example has

A =

�
1

1

�
;

which is a 2� 1 matrix. Clearly kAk1 = 1, ATA = 2I , so that kAk2 =p
2.
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Solution to Exercise 2.9

We know that kAk22 is the largest eigenvalue of ATA, which is �n. In

the same way kA�1k22 is the largest eigenvalue of
A�1

T
A�1 = (AAT )�1;

and the eigenvalues of this matrix are the reciprocals of the eigenvalues

of AAT . Now the eigenvalues of AAT are the same as the eigenvalues

of ATA, so that kA�1k22 = 1=�1.

Now if Q is orthogonal, then QTQ = I , and all the eigenvalues of I

are equal to 1. Hence by the result just proved, kQk2 = 1.

Conversely, if kAk2 = 1, then the largest and smallest eigenvalues of

ATA must be equal, so all the eigenvalues are equal. Hence ATA = �I ,

where � is the eigenvalue. The matrix ATA is positive de�nite, so � > 0,

and writing

Q =
1p
�
A

we have shown that QTQ = I , so that Q is orthogonal, as required.
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Solution to Exercise 2.10

Let � be an eigenvalue of ATA and let x 6= 0 be the associated

eigenvector. Then, ATAx = �x, and therefore

kAxk22 = xTATAx = �xTx = �kxk22:
Hence, � is a nonnegative real number.

Now let k�k be a vector norm on Rn and let k�k denote the associated
subordinate matrix norm on Rn�n . Then,

j�j kxk= k�xk = kATAxk
� kATAk kxk
� kAT k kAk kxk:

Since x 6= 0, it follows that

0 � � � kAT k kAk
for each eigenvalue � of ATA. By Theorem 2.9, we then have that

kAk2 � kAT k kAk
for any subordinate matrix norm k � k. For example, with k � k = k � k1,

on noting that kAT k1 = kAk1, we conclude that
kAk22 � kAk1 kAk1;

as required.
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Solution to Exercise 2.11

On multiplying A by AT from the left, we deduce that

ATA =

2
66666664

n 1 1 1 : : : 1

1 1 0 0 : : : 0

1 0 1 0 : : : 0

1 0 0 1 : : : 0

: : : : : : : : : : : : : : : : : :

1 0 0 0 : : : 1

3
77777775

Writing the eigenvalue problem ATAx = �x in expanded form then

gives

nx1 + x2 + x3 + x4 + : : :+ xn = �x1

x1 + x2 = �x2

x1 + x3 = �x3

x1 + x4 = �x4

: : :

x1 + xn = �xn

We observe that � = 1 is an eigenvalue corresponding to the (n � 2)

eigenvectors of ATA of the form x = (x1; x2; : : : ; xn)
T , with x1 = 0,

x2 + : : : + xn = 0. The two remaining eigenvectors of ATA are of the

form x = (x1; x2; x2; : : : ; x2) where x1 and x2 are nonzero real numbers,

and are found by solving the linear system

nx1 + (n� 1)x2 = �x1

x1 + x2 = �x2

which has a nontrivial solution when

det

�
n� � n� 1

1 1� �

�
= �2 � (n+ 1)�+ 1 = 0;

i.e., when

� =
1

2
(n+ 1)

h
1�

q
1� 4

(n+1)2

i
:

By Theorem 2.9, we then have that

kAk2 = 1

2
(n+ 1)

h
1 +

q
1� 4

(n+1)2

i
:
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Solution to Exercise 2.12

If (I �B) is singular, there is a nonzero vector x such that

(I �B)x = 0;

so that

x = Bx:

Hence

kxk = kBxk � kBk kxk;
and so kBk � 1. It then follows that if kAk < 1, then I � A is not

singular.

From the relation

(I �A)(I �A)�1 = I

it follows that

(I �A)�1 = I +A(I �A)�1

and so

k(I �A)�1k � kIk+ kA(I �A)�1k
� 1 + kAk k(I �A�1k:

Thus

(1� kAk)k(I �A)�1k � 1;

giving the required result.
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Solution to Exercise 2.13

From Ax = b and (A+ ÆA)(x+ Æx) = b it follows that

A Æx+ ÆA x+ ÆA Æx = 0:

Then

(I +A�1ÆA)Æx = �A�1ÆA Æx;

or

Æx = (I +A�1ÆA)�1A�1 ÆA Æx:

and so

kÆxk � k(I +A�1ÆA)�1k jjA�1ÆAk kÆxk:
Applying the result of Exercise 2.12 we get, provided that kA�1ÆAk < 1,

kÆxk � 1

1� kA�1ÆAkkA
�1ÆAk kblxk;

which is the required result.
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Solution to Exercise 2.14

Choose x to be an eigenvector of ATA with eigenvalue �, and Æx to

be an eigenvector with eigenvalue �. Then

Ax = b;

so that

bT b = xTATAx = xT�x = �xTx;

and

kbk22 = �kxk22:
In the same way

kÆbk22 = �kÆxk22;
and so

kÆxk2
kxk2 =

�
�

�

�1=2 kÆbk2
kbk2 :

Now choose x so that � = �n, the largest eigenvalue of A
TA, and Æx

so that � = �1, the smallest eigenvalue. Then

�n
�1

= �2(A);

and equality is achieved as required, with b = Ax and Æb = AÆx.
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Solution to Exercise 2.15

Following the notation of Theorem 2.12,

�
a An

�
= (q Qn)

�
� rT

0 Rn

�
;

we have

a =

0
@ 9

12

0

1
A and An =

0
@ �6

�8
20

1
A

and so

� =
p
(aTa) = 15

and

q =

0
@ 3=5

4=5

0

1
A :

Then

rT = qTAn = (3=5 4=5 0)

0
@ �6

�8
20

1
A = �10;

and

QnRn = An � q rT =

0
@ 0

0

20

1
A :

Finally

Qn =

0
@ 0

0

1

1
A ;

and

Rn = 20:

The required QR decomposition is therefore0
@ 9 �6

12 �8
0 20

1
A =

0
@ 3=5 0

4=5 0

0 1

1
A �

15 �10
0 20

�
:
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The required least squares solution is then given by solving

Rnx = QT
nb;

or

�
15 �10
0 20

��
x1
x2

�
=

�
3=5 4=5 0

0 0 1

�0@ 300

600

900

1
A =

�
660

900

�
:

which gives

x1 = 74; x2 = 45:



33

Solution to Exercise 3.1

Using the relations (3.2) and (3.3) we �nd in succession

l11 = 2

l21 = 3

l31 = 1

l22 = 1

l32 = 0

l33 = 2:

Hence A = LLT where

L =

0
@ 2

3 1

1 0 2

1
A :
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Solution to Exercise 3.2

As in the solution to Exercise 1 we �nd that A = LLT , where

L =

0
@ 1 0 0

�2 1 0

2 1 1

1
A :

Writing the system of equations Ax = b, or LLTx = b, in the form

Ly = b;

LT x = y;

we �nd in succession

y1 = 4

y2 = 1

y3 = 1;

and then

x3 = 2

x2 = 0

x1 = 1;

which is the required solution.
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Solution to Exercise 3.3

In the notation of equations (3.7) this example has

ai = �1; i = 2; : : : ; n

bi = 2; i = 1; : : : ; n

ci = �1; i = 1; : : : ; n� 1:

The elements lj and uj are determined uniquely by (3.7), with u1 =

b1 = 2. Hence if we �nd expressions which satisfy all these equations

then they are the values of lj and uj . Suppose now that lj = �(j�1)=j.

Then the �rst equation, lj = �1=uj�1, requires that
uj = �1=lj+1 = (j + 1)=j:

This also satis�es u1 = 2, as required. The second of equations (3.7) is

also satis�ed, as

bj � ljcj�1 = 2 + lj

= 2� (j � 1)=j

= (j + 1)=j

= uj :

Hence all the equations are satis�ed, and

lj = �(j � 1)=j; j = 2; : : : ; n

uj = (j + 1)=j; j = 1; : : : ; n� 1:

To �nd the determinant, note that det(T ) = det(L) det(U), and

det(L) = 1 since L is unit lower triangular.

det(U) = u1u2 : : : un

=
2

1

3

2
: : :

n+ 1

n
= n+ 1:

Hence det(T ) = n+ 1.
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Solution to Exercise 3.4

Column j of the matrix T is the vector c(j), with the nonzero elements

c
(j)
j�1 = �1; c

(j)
j = 2; c

(j)
j+1 = �1;

with obvious modi�cations when j = 1 or j = n. Hence the scalar

product of c(j) and v(k) is

Mkj = �v(k)j�1 + 2v
(k)
j � v

(k)
j+1:

Since v
(k)
i is a linear function of i, for i = 1; : : : ; k and for i = k; : : : ; n,

its is clear that Mkj = 0 when j 6= k. This is also true in the special

cases j = 1 and j = n since we can extend the de�nition of v
(k)
j by

the same linear functions, which gives v
(k)
0 = 0 and v

(k)
n = 0. The two

linear functions give the same result when j = k. To �nd Mkk a simple

calculation gives

Mkk = �(k � 1)(n+ 1� k) + 2k(n+ 1� k)� k(n+ 1� k � 1)

= n+ 1:

Hence the scalar product of the vector v(k)=(n+1) with each column

of T is column k of the unit matrix, so that v(k)=(n+ 1) is column k of

the matrix T�1. This shows that the elements of the inverse are

T�1ik =

(
i(n+1�k)

n+1 ; i � k
k(n+1�i)

n+1 ; i � k:

This matrix is clearly symmetric.

All the elements of the matrix are positive, and the sum of the elements

in row i is

n+ 1� i

n+ 1

iX
k=1

k +
i

n+ 1

nX
k=i+1

(n+ 1� k)

=
n+ 1� i

n+ 1

i(i+ 1)

2
+

i

n+ 1

(n� i)(n� i+ 1)

2

=
i(n+ 1� i)

2
:

The 1�norm of T�1 is the maximum rowsum; its value depends on

whether n is odd or even. If n is odd, the maximum is attained when

i = (n+ 1)=2, and is (n+ 1)2=8. If n is even, the maximum is attained

when i = n=2 and also when i = n=2 + 1; the maximum is n(n+ 2)=8.
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Evidently the 1�norm of T is 4, so �nally the condition number is

�1(T ) =

�
1
2 (n+ 1)2; n odd
1
2n(n+ 2); n even:
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Solution to Exercise 3.5

With the notation of Theorem 3.4 we can now write

juj j �
����jbj j � kaj j

���� cj�1uj�1

����
����

� j jbj j � jaj j j
� jcj j
> 0:

Note that the inequality '> jcj j ' now becomes '� jcj j' but we can still

deduce that uj 6= 0 since cj is not zero.

The matrix

T =

0
@ 1 1 0

1 1 0

0 1 1

1
A

satis�es the given conditions, except that c2 = 0. It is obviously singular,

since the �rst two rows are identical. This also means that the leading

2� 2 principal submatrix is singular, and so the LU factorisation does

not exist.
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Solution to Exercise 3.6

The proof is by induction on the order of the matrix; we suppose that

the given result is true for every n� n tridiagonal matrix, and consider

an (n+ 1) � (n+ 1) matrix T in the standard notation

T =

0
BB@

b1 c1
a2 b2 c2

a3 b3 c3
: : : : : :

1
CCA :

We interchange the �rst two rows, if ja2j > jb1j, to get the largest element

in the �rst column on the diagonal. The result will be

P �T =

0
BB@

b�1 c�1 d�1
a�2 b�2 c�2

a3 b3 c3
: : : : : :

1
CCA

where the permutation matrix P � may be the unit matrix, and then

d�1 = 0.

We can now write P �T = L1U1, where

L1 =

0
BB@

1

l2 1

1

: : : : : :

1
CCA ;

U1 =

0
BB@

b�1 c�1 d�1
u2 v2

a3 b3
: : : : : :

1
CCA ;

and

l2 = a2=b
�
1

u2 = b2 � l2c
�
1

v2 = c2 � l2d
�
1:

In the special case where b1 = a2 = 0, so that the �rst column of T is

entirely zero, and the matrix is singular, we simply take P � = I , L1 = I

and U1 = T .

In the matrix U1 the n � n submatrix consisting of the last n rows
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and columns is triple diagonal, and so by the induction hypothesis we

can write

Pn

0
@ u2 v2

a3 b3
: : : : : :

1
A = LnUn:

This shows that

P �T =

�
1 0

T

l2 In

��
b�1 (c�1; d

�
1; 0; : : :)

0 PnLnUn

�

where l2 = (l2; 0; 0; : : : ; 0)
T , and so�

1 0
T

0 Pn

�
P �T =

�
1 0

T

Pnl2 Ln

� �
b�1 (c�1; d

�
1; 0; : : :)

0 Un

�
:

Thus the required result is true for all (n+1) � (n+1) matrices. Since

it is obviously true for any 1� 1 matrix, the induction is complete.
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Solution to Exercise 3.7

This is an informal induction proof. The elements of L and U are

determined by (2.19). Suppose that we are calculating the elements lij
for a �xed i, with j = 1; : : : ; i � 1, and we are about to calculate lir,

where r < i� p. Then bir = 0, since B is Band(p; q). Now

lir =
1

urr

(
bir �

r�1X
k=1

likukr

)
:

Thus if li1 = li2 = : : : = li;r�1 = 0 it follows that lir = 0 also. Evidently

li1 = 0 so an induction argument shows that lik = 0 for all k � r < i�p.
Hence L is Band(p; 0).

The argument for the matrix U is similar. Calculating the elements

uij in order, we are about to calculate uir, where r > i+p. Then bir = 0,

and if

u1r = u2r = : : : = ui�1;r = 0

it follows that uir = 0, since

uir = bir �
i�1X
k=1

likukr:

Moreover it is clear that u1r = 0, so the same induction argument shows

that ukr = 0 for all k � i < r � p. Hence U is Band(0; q).
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Solution to Exercise 3.8

With the usual notation, the equations determining the elements of L

and U include

l21 =
a21
a11

and

u24 = a24 � l21a14:

Now we are given that a24 = 0, but in general l21 and a14 are not zero.

Hence in general a24 is not zero.

In the same way

l41 =
a41
a11

and

l42 =
1

u22
(a42 � l41u12):

Here a42 = 0, but there is no reason why l41 or u12 should be zero.

Although a subdiagonal of A is entirely zero, there is no reason why

any of the elements of the same subdiagonal of L should be zero.
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Solution to Exercise 4.1

Suppose that g is a contraction in the 1-norm, as in (4.5). Observe

that

kg(x)�g(y)kp � n1=pkg(x)�g(y)k1 � Ln1=pkx�yk1 � Ln1=pkx�ykp :
Therefore, if L < n�1=p, then g is a contraction in the p-norm.
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Solution to Exercise 4.2

Substituting for x1 we �nd

(7x2 + 25)2 + x22 � 25 = 0;

or

50x22 + 350x2 + 600 = 0;

with solutions x2 = �3 and �4. The corresponding values of x1 are 4

and �3, giving the two solutions (4;�3)T and (�3;�4)T .
The Jacobian matrix of f is�

2x1 2x2
1 �7

�
:

At the �rst solution (4;�3)T this is�
8 �6
1 �7

�
;

and at (�3;�4)T it is � �6 �8
1 �7

�
:

Clearly the condition is not satis�ed in either case.

If we change the sign of f2 the solutions remain the same, but the signs

of the elements in the second row of the Jacobian matrix are changed.

The condition is now satis�ed at the �rst solution (4;�3)T , as the matrix

becomes �
8 �6

�1 7

�
:

If we replace f by f� the solutions are still the same, and the Jacobian

matrix becomes �
1� 2x1 �7� 2x2

�1 7

�
:

At the second solution (�3;�4)T this is�
7 1

1 �7
�
:

The relaxation parameter � = 1=7 will give convergence in both cases.
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Solution to Exercise 4.3

Clearly '(0) = g(u) and '(1) = g(v). The function ' is di�erentiable,

and

'0(t) = g0((1� t)u+ tv) (�u+ v):

Hence by applying the Mean Value Theorem to ', there is a real number

� in (0; 1) such that

'(1)� '(0) = '0(�);

which gives

g(v)� g(u) = (v � u)g0((1� �)u+ �v):

The result now follows by de�ning � = (1� �)u + �v, which lies on the

line between u and v, and is therefore in 
, since 
 is convex.

Since jg0(�)j < 1 there is a value of Æ such that

jg0(z)j � k = 1
2 [1 + jg0(�)j] < 1

for all z such that jz � �j � Æ. Convergence of the iteration follows in

the usual way, since

jzn+1 � �j = jg(zn)� g(�)j
= jzn � �j jg0(�)j
� kjzn � �j:

Hence jzn� �j < knjz0� �j provided that jz0� �j � Æ, and the sequence

(zn) converges to �.
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Solution to Exercise 4.4

The iteration

x(n+1) = g�(x(n))

is in component form

x
(n+1)
1 = u(x

(n)
1 ; x

(n)
2 )

x
(n+1)
2 = v(x

(n)
1 ; x

(n)
2 )

and the complex iteration zn+1 = g(zn) gives

x
(n+1)
1 + {x

(n+1)
2 = u(x

(n)
1 ; x

(n)
2 ) + {v(x

(n)
1 ; x

(n)
2 );

with { =
p�1, which are obviously identical.

The condition jg(�)j < 1 gives

u2x + v2x < 1;

evaluated at the �xed point � = �1 + {�2.

In its real form a suÆcient condition for convergence is kJ(�1; �2)k1 <

1, and the Jacobian matrix is

J =

�
ux uy
vx vy

�
:

Using the Cauchy-Riemann relations this gives the suÆcient condition

juxj+ jvxj < 1:

This is a more restrictive condition than that obtained from the complex

form, as it leads to

juxj2 + jvxj2 < 1� 2juxvxj:
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Solution to Exercise 4.5

Clearly g1(1; 1) = 1 and g2(1; 1) = 1, so that (1,1) is a �xed point.

The Jacobian matrix is

J =

�
2
3x1 � 2

3x2
2
3x2

2
3x1

�
:

Evidently at the �xed point kJk1 = 4
3 > 1, so the suÆcient condition

for convergence is not satis�ed.

However, as in Exercise 4 this iteration corresponds to complex iter-

ation with the function g(z) = 1
3 (z

2 + 3 + i), as can be seen by writing

down the real and imaginary parts. Then g0(z) = 2
3z, and at the �xed

point

jg0(1 + {)j = j 23
p
2j < 1;

so the iteration converges.
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Solution to Exercise 4.6

In component form the function g(x) = x�K(x)f (x) is

gi(x) = xi �
kX

r=1

Kir(x)fr(x):

Di�erentiating with respect to xj gives the (i; j) element of the Jacobian

matrix of g as

@gi
@xj

= Æij � @

@xj

kX
r=1

Kir(x)fr(x)

= Æij �
kX

r=1

@Kir

@xj
fr �

kX
r=1

Kir
@fr
@xj

= Æij �
kX

r=1

@Kir

@xj
fr �

kX
r=1

KirJrj ;

all evaluated at the point x.

When we evaluate this at the point �, we know that f(�) = 0, so that

fr = 0 for each value of r. Moreover, K is the inverse of the Jacobian

matrix, J , of f , so that

kX
r=1

KirJrj = Æij :

Hence all the elements of the Jacobian matrix of g vanish at the point

�.
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Solution to Exercise 4.7

Evidently at a solution x1 = x2, and 2x21 = 2. Hence there are two

solutions, (1; 1)T and (�1;�1)T . The Jacobian matrix of f is

J =

�
2x1 2x2
1 �1

�
;

and its inverse is

J�1 =
1

2(x1 + x2)

�
1 2x2
1 2x1

�
:

Hence Newton's method gives 
x
(1)
1

x
(1)
2

!
=

 
x
(0)
1

x
(0)
2

!
� 1

2(x
(0)
1 + x

(0)
2 )

 
1 2x

(0)
2

1 2x
(0)
1

! 
(x

(0)
1 )2 + (x

(0)
2 )2 � 2

x
(0)
1 � x

(0)
2

!

=
1

2(x
(0)
1 + x

(0)
2 )

0
B@
�
x
(0)
1

�2
+
�
x
(0)
2

�2
+ 2�

x
(0)
1

�2
+
�
x
(0)
2

�2
+ 2

1
CA

Thus x
(n)
1 = x

(n)
2 for all positive values of n, and if we write x

(n)
1 =

x
(n)
2 = x(n) the iteration becomes

x(n+1) =

�
x(n)

�2
+ 1

2x(n)
:

Evidently if x(0) > 0 then x(n) > 1 for all positive n. Moreover

x(n+1) � 1 =
x(n) � 1

2x(n)
(x(n) � 1);

and 0 < x � 1 < 2x when x > 1. Hence x(n) ! 1 as n ! 1. It then

follows from

x(n+1) � 1 =
1

2x(n)
(x(n) � 1)2

that

x(n+1) � 1

(x(n) � 1)2
! 1

2
as n!1;

so that convergence is quadratic.

A trivial modi�cation of the argument shows that if x
(0)
1 + x

(0)
2 < 0

then the iteration converges quadratically to the solution (�1;�1)T .
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Solution to Exercise 4.8

We say that (x(k)) converges to � linearly if (4.19) holds with q = 1,

0 < � < 1 and "k = kx(k) � �k1. The rate of convergence is de�ned as

log10(1=�) = � log10 �.

The Jacobian matrix of f is

J =

�
2x1 2x2
1 1

�
;

whose inverse is

J�1 =
1

2(x1 � x2)

�
1 �2x2
�1 2x1

�
;

provided that x1 6= x2. Newton's method then gives, provided that

x
(n)
1 6= x

(n)
2 , 

x
(n+1)
1

x
(n+1)
2

!
=

 
x
(n)
1

x
(n)
2

!
� 1

2(x
(n)
1 � x

(n)
2 )

 
1 �2x(n)2

�1 2x
(n)
1

!0
@
�
x
(n)
1

�2
+
�
x
(n)
2

�2
x
(n)
1 + x

(n)
2 � 2

1
A ;

and a simple calculation then shows that x
(n+1)
1 + x

(n+1)
2 = 2.

When x
(0)
1 = 1 + �; x

(0)
2 = 1� � we �nd that

x
(1)
1 = 1 + 1

2�; x
(1)
2 = 1� 1

2�:

[These are exact values, not approximations for small �.]

We have shown that for any x(0), provided x
(0)
1 6= x

(0)
2 , the result of

the �rst iteration satis�es x
(1)
1 + x

(1)
2 = 2. Hence we can write x

(1)
1 =

1+ �; x
(1)
2 = 1� �. Then

x
(n)
1 = 1 + �=2n�1; x

(n)
2 = 1� �=2n�1

for n � 1; this shows that the (x(n)) converges linearly to (1; 1)T , with

rate of convergence ln 2.

Convergence is not quadratic, because the Jacobian matrix of f is

singular at the limit point (1; 1)T .
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Solution to Exercise 4.9

With the given value of z we get

z + 2 = (2k + 1
2 ){� + ln[(2k + 1

2 )�] + � + 2

= ez

= (2k + 1
2 ){�e

� :

Hence

� = ln

�
1� {

ln[(2k + 1
2�] + � + 2

2k + 1
2�

�
:

Now

j ln(1 + {t)j < jtj
for all nonzero real values of t, so that

j�j < ln[(2k + 1
2 )�] + j�j+ 2

(2k + 1
2 )�

;

which gives

j�j < ln[(2k + 1
2�)] + 2

(2k + 1
2 )�

:

This is enough to give the required result, since for suÆciently large k

the other terms in the numerator and denominator become negligible,

and j�j is bounded in the limit by ln k=2k�.

To give a formal analysis, we obviously �nd in the denominator that

(2k + 1
2 )� > 2�k:

For the numerator, we note that 1 < ln k for k > 1, and so

ln[(2k + 1
2 )�] + 2 < ln[(2k + 1

2 )�] + 2 ln k

< 3 ln k + ln[(2 + 1
2k )�]

< 3 ln k + ln(3�)

< 3 ln k + ln(3�) ln k

< [3 + ln(3�)] ln k:

Finally

j�j < C
ln k

k
;

where

C =
3 + ln(3�)

2�
:
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Solution to Exercise 5.1

(i) Lemma 5.2

For the Householder matrix

H = I � 2

vTv
vvT ;

which is clearly symmetric, we have

HHT = H2

= (I � �vvT )(I � �vvT )

= I � 2�v vT + �2vvTvvT

= I + (�2vTv � 2�)v vT

= I;

where we have written � = 2=(vTv). Hence H is orthogonal.

(ii)Lemma 5.3

Since Hk is a Householder matrix,

Hk = I � 2

vTk vk
vkv

T
k ;

for some vector vk. Now de�ne the vector v, with n elements, partitioned

as �
0

vk

�
;

so that the �rst n� k elements of v are zero. Then vTv = vTk vk, and

I � 2

vTv
v vT =

�
In�k 0

0 Ik

�
� 2

vTv

�
0

vk

�
(0 vTk )

=

�
In�k 0

0 Hk

�
= A;

so that A is a Householder matrix.
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Solution to Exercise 5.2

Since this is a 4 � 4 matrix, two Householder transformations are

required.

In the �rst transformation the Householder vector is v = (0; 4; 2; 2)T .

The result of the �rst transformation is the matrix0
BB@

2 �3 0 0

�3 1 3 4

0 3 �3 �9
0 4 �9 �2

1
CCA :

In the second transformation the Householder vector is v = (0; 0; 8; 4)T ,

and the result is 0
BB@

2 �3 0 0

�3 1 �5 0

0 �5 �11 �3
0 0 �3 6

1
CCA :

This is the required tridiagonal form. Note that the �rst row and

column, and the leading 2 � 2 principal minor, are una�ected by the

second transformation.
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Solution to Exercise 5.3

Taking � = 0, the corresponding Sturm sequence is

p0 = 1

p1 = 3� � = 3

p2 = (2� �)(3)� 1 = 5

p3 = (4� �)(5)� (4)(3) = 8

p4 = (1� �)(8)� �2(5) = 8� 5�2:

If 5�2 < 8 there are 4 agreements in sign, while if 5�2 > 8 there are

3 agreements in sign.

Taking � = 1, the corresponding Sturm sequence is

p0 = 1

p1 = 3� � = 2

p2 = (2� �)(2)� 1 = 1

p3 = (4� �)(1)� (4)(2) = �5
p4 = (1� �)(�5)� �2(1) = ��2:

In this case there are always three agreements in sign.

Hence if 5�2 > 8 the number of agreements in sign is the same, so no

eigenvalues lie in (0; 1), while if 5�2 < 8 there is one more agreement in

sign for � = 0 than for � = 1, so there is exactly one eigenvalue in (0; 1).

If 5�2 = 8 then there is an eigenvalue at 0.
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Solution to Exercise 5.4

If Hx = cy, where c is a scalar, then

xTHTHx = c2yTy;

but since H is a Householder matrix, HTH = I , and so

c2 =
xTx

yTy
:

Writing

H = I � 2

vTv
v vT

this shows that

x� 2

vTv
(vTx)v = cy:

Hence v = �(x � cy), where c is known, and � is some scalar. Now H

is una�ected by multiplying v by an arbitrary nonzero scalar, and the

required Householder matrix is H = H(v), where v = x� cy, and

c =

s
xTx

yTy
:

There are clearly two possible such Householder matrices.
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Solution to Exercise 5.5

From

(D + "A)(e+ "u) = (� + "�)(e+ "u)

we �nd by equating powers of "0 and "1 that

De = �e

and

Du+Ae = �u+ �e:

Since D is diagonal it follows from the �rst of these that � = djj for

some j, and that e is the unit vector whose only nonzero element is

ej = 1. From the second equation,

dkkuk + akj = djjuk + �Ækj ; k = 1; : : : ; n:

Taking k = j we see at once that � = ajj . For k 6= j it also follows that

uk =
akj

djj � dkk
:

Since the eigenvector e+ "u has to be normalised, we have

(eT + "uT )(e+ "u) = 1:

Comparing coeÆcients of powers of ", we �rst see that eTe = 1, which

already holds, and then eTu = 0. This means that uj = 0.
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Solution to Exercise 5.6

Multiplying out the partitioned equation and equating powers of "

gives, for the leading term,

d11e = �e

Dn�kf = �f :

From the �rst of these we see that � = d11; since none of the elements

of the diagonal matrix Dn�k are equal to d11 the second equation shows

that f = 0.

Now equating coeÆcients of " we get

A1e+ d11u+A2f = �u+ �e

AT
2 e+A3f +Dn�kv = �v:

Making use of the facts that � = d11 and f = 0 the �rst of these

equations shows that � is an eigenvalue of A1, and the second shows

that

AT
2 e+Dn�kv = �v:

This equation determines v, since the matrix Dn�k��I is not singular.
Now equating coeÆcients of "2 we get

d11x+A1u+A2v = �x+ �u+ �e

AT
2 u+Dn�ky +A3v = �y + �v + �f :

The �rst of these reduces to

(A1 � �I)u = �e�A2v:

Determination of u from this equation is not quite straightforward, since

the matrix A1 � �I is singular. However, if we know the eigenvalues �j
and corresponding eigenvectors wj of A1 we can write

u =
X
j

�jwj :

If we number these eigenvalues so that � = �1 and e = w1, we see thatX
j

(�j � �1)�jwj = �w1 �A2v:

Multiplying by wT
i we obtain

(�i � �1)�i = �wT
i A2v;



58

This determines �i for i 6= 1, since we have assumed that the eigenvalues

�j are distinct. The equation does not determine the coeÆcient �1; as

in Exercise 5 this is given by the requirement that the eigenvector of A

is normalised. Writing down this condition and comparing coeÆcients

of " we see that eTu = 0, thus showing that �1 = 0.
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Solution to Exercise 5.7

Since A� �I = QR and Q is orthogonal, QT (A� � I) = R. Hence

B = RQ+ � I

= QT (A� � I)Q+ � I

= QTAQ� �QT I Q+ � I

= QTAQ:

Hence B is an orthogonal transformation of A.

Also

BT = (QTAQ)T

= QTATQ

= QTAQ

since A is symmetric. Hence BT = B, so that B is symmetric.

We build up the matrix Q as a product of plane rotation matrices

Rp;p+1('p) as in (5.34), with p = 1; : : : ; n�1. The �rst of these rotations,
with p = 1, replaces rows 1 and 2 of the matrix A � �I with linear

combinations of these two rows, such that the new (2; 1) element is zero.

since the matrix is tridiagonal the new element (1; 3) will in general be

nonzero. The second rotation, with p = 2, carries out a similar operation

on rows 2 and 3; in the result the element (3; 2) becomes zero, and (2; 4)

may be nonzero.

We now form the matrix RQ; this involves taking the matrix R and

applying the same sequence of plane rotations on the right, but with each

rotation transposed. Since R is upper triangular, and the �rst rotation

operates on columns 1 and 2, a single nonzero element appears below the

diagonal at position (2; 1). In the same way the second rotation operates

on columns 2 and 3, and introduces a nonzero element at (3; 2). Hence

�nally the only nonzero elements in the matrix B below the diagonal

are in positions (i + 1; i), for i = 1; : : : ; n � 1. But we have just shown

that B is symmetric; hence B is also tridiagonal.
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Solution to Exercise 5.8

For this matrix the shift � = ann = 0; we see that

A = QR =

�
0 1

�1 0

��
1 0

0 �1
�
:

Evidently Q is orthogonal and R is upper triangular. It is then easy

to verify that B = RQ = A. Hence in successive iterations of the

QR algorithm all the matrices A(k) are the same as A, so they do not

converge to a diagonal matrix.
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Solution to Exercise 5.9

We use the shift an;n = 10, so that

A� �I =

0
@ 3 4

4 0

1
A :

The QR decomposition of this matrix is

A� �I = QR =

0
@ 3

5 � 4
5

4
5

3
5

1
A
0
@ 5 12

5

0 � 16
5

1
A :

Then the new matrix A(1) is

RQ+ �I =

0
@ 5 12

5

0 � 16
5

1
A
0
@ 3

5 � 4
5

4
5

3
5

1
A + 10 I

which is 0
@ 373

25 � 64
25

� 64
25

202
25

1
A :
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Solution to Exercise 6.1

The inequalities follow immediately from Theorem 6.2, with n = 1,

x0 = �1 and x1 = 1.

As an example we need a function whose second derivative is constant,

so that f 00(�) = M for any value of �; thus we choose f(x) = x2, and

M2 = 2. Since f(1) = f(�1) = 1 the interpolation polynomial of degree

1 is p1(x) = 1, and at x = 0

jf(0)� p1(0)j = j0� 1j = 1 =M2=2

as required.
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Solution to Exercise 6.2

(i) The interpolation polynomial is

p1(x) =
x� a

�a 03 +
x

a
a3 = xa2:

The di�erence is

f(x)� p1(x) = x3 � xa2 = x(x � a)(x+ a):

Theorem 6.2 gives

f(x)� p1(x) =
x(x � a)

2!
f 00(�) = 3x(x � a)�:

Comparing these we see that

� = (x + a)=3:

(ii) The same calculation for f(x) = (2x� a)4 gives

p1(x) =
x� a

�a (�a)4 + x

a
(2a� a)4;

and the di�erence is

f(x)� p1(x) = (2x� a)4 + (x� a)a3 � xa3

= 8x(x � a)(2x2 � 2ax+ a2):

Comparing with

x(x � a)

2!
48(2� � a)2

we see that there are two values of �, given by

� = 1
2a �

�
2x2 � 2ax+ a2

12

�1=2

:
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Solution to Exercise 6.3

We know that

q(xi) = yi; i = 0; : : : ; n;

and that

r(xi) = yi; i = 1; : : : ; n+ 1:

Now suppose that 1 � j � n; then q(xj) = r(xj) = yj . Hence

p(xj) =
(xj � x0)r(xj )� (xj � xn+1)q(xj)

xn+1 � x0

=
(xj � x0)yj � (xj � xn+1)yj

xn+1 � x0
= yj :

Clearly

p(x0) =
(x0 � x0)r(x0)� (x0 � xn+1)q(x0)

xn+1 � x0
= q(x0)

= y0;

and in the same way p(xn+1) = yn+1.

Hence p(xj) = yj ; j = 0; : : : ; n+1, showing that p(x) is the Lagrange

interpolation polynomial for the points f(xi; yi) : i = 0; : : : ; n+ 1g.
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Solution to Exercise 6.4

We �nd that

�n+1(1� 1=n) = (2� 1=n)(2� 3=n) : : : (1=n)(�1=n)
=

(2n� 1)(2n� 3) : : : (1)(�1)
nn+1

= � 1

nn+1

(2n)!

2:4: : : : :(2n)

= � (2n)!

nn+1 2n n!
:

Substitution of Stirling's formula (cf. also Chapter 2, Section 2.1)

gives

�n+1(1� 1=n) � � 1

nn+1 2n
(2n)2n+1=2e�2n

nn+1=2 e�n

= �2n+1=2 e�n

n
; n!1

as required.
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Solution to Exercise 6.5

Suppose that there exists q2n+1 2 P2n+1, di�erent from p2n+1 and

also having these properties. De�ne r = p2n+1 � q2n+1; then r(xi) =

0; i = 0; : : : ; n. By Rolle's Theorem there exist n points �j ; j = 1; : : : ; n,

one between each consecutive pair of xi, at which r
0(�j) = 0. Applying

Rolle's Theorem again, there exist n � 1 points �k; k = 1; : : : ; n � 1,

at which r00(�k) = 0. But we also know that r00(xi) = 0; i = 0; : : : ; n,

making a total of 2n points at which r00 vanishes. However, the proof

breaks down at this point, since we cannot be sure that each �k is distinct

from all the points xi; all we know is that �k lies between xk�1 and xk+1

and it is possible that �k = xk .

Suppose that p5(x) = c0+ c1x+ c2x
2+ c3x

3+ c4x
4+ c5x

5. The given

conditions lead to the equations

c0 � c1 + c2 � c3 + c4 � c5 = 1

c0 = 0

c0 + c1 + c2 + c3 + c4 + c5 = 1

2c2 � 6c3 + 12c4 � 20c5 = 0

2c2 = 0

2c2 + 6c3 + 12c4 + 20c5 = 0:

Adding equations 1 and 3, and using equation 2, gives

c2 + c4 = 2:

Now c0 = c2 = 0, so that c4 = 2. Adding equations 4 and 6 gives

4c2 + 24c4 = 0;

which is clearly inconsistent. Hence this system of equations have no

solution.

With the change p5(�1) = �1, adding equations 1 and 3 now gives

c2 + c4 = 0;

so the same argument now leads to c0 = c2 = c4 = 0. The equations

now only require that

c1 + c3 + c5 = 1

6c3 + 20c5 = 0:

Hence c5 = � can be chosen arbitrarily, and then c3 = � 10
3 �; c1 =
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1+ 7
3�. A general form of the polynomial satisfying the given conditions

is

p5(x) = x+ �(7x� 10x3 + 3x5);

where � is arbitrary.
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Solution to Exercise 6.6

The polynomial l0(x) must satisfy the conditions

l0(x0) = 1; l0(xi) = l0(xi) = 0; i = 1; : : : ; n:

This shows that

l0(x) =

nY
i=1

(x� xi)
2

(x0 � xi)2
:

The polynomial hi(x) must satisfy

hi(xj) = Æij ; j = 0; : : : ; n;

h0i(xj) = 0; j = 1; : : : ; n:

It must therefore contain the factors (x� xj)
2; j = 1; : : : ; n; j 6= i, and

(x� x0). There must be one other linear factor, and so

hi(x) = (1 + �(x � xi))
x� x0
xi � x0

[Li(x)]
2;

where

Li(x) =

nY
j=1;j 6=i

x� xj
xi � xj

;

and the value of � is determined by the condition h0i(xi) = 0. It is easy

to see that

h0i(xi) = �+
1

xi � x0
+ 2L0i(xi)

and so

� = � 1

xi � x0
� 2L0i(xi):

In the same way the polynomial ki(x) must satisfy

ki(xj) = 0; j = 0; : : : ; n;

and

k0i(xj) = Æij ; j = 1; : : : ; n:

It is easy to see that

ki(x) = (x� xi)[Li(x)]
2 x� x0
xi � x0

:

Each of these polynomials is of degree 2n.
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As in the proof of Theorem 6.4, we consider the function

 (t) = f(t)� p2n(t)� f(x) � p2n(x)

�(x)2
�(t)2;

where now

�(x) = (x� x0)

nY
i=1

(x� xi)
2:

If x is distinct from all of the xj , then  (t) vanishes at all the points xj ,

and at x. Hence by Rolle's Theorem  0(t) vanishes at n+1 points lying

between them;  0(t) also vanishes at xj ; j = 1; : : : ; n. This means that

 0(t) vanishes at 2n + 1 distinct points, so by repeated applications of

Rolle's Theorem we see that  (2n+1)(�) = 0 for some � in (a; b). This

gives the required result.
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Solution to Exercise 6.7

The expressions are a natural extension of those in Exercise 6.

We now de�ne

Li(x) =
n�1Y

j=1;j 6=i

x� xj
xi � xj

;

and we see that

l0(x) = L0(x)
2 x� xn
x0 � xn

;

ln(x) = Ln(x)
2 x� x0
xn � x0

:

These are both polynomials of degree 2n� 1, and satisfy the conditions

we require.

The polynomials hi and ki are given by

hi(x) = [1 + �(x � xi)]
(x� x0)(x� xn)

(xi � x0)(xi � xn)
Li(x)

2;

where

� = � 1

xi � x0
� 1

xi � xn
+ 2L0i(xi)

and

ki(x) = (x� xi)[Li(x)]
2 (x� x0)(x� xn)

(xi � x0)(xi � xn)
:

The error bound is obtained as in Exercise 6 by considering the func-

tion

 (t) = f(t)� p2n�1(t)� f(x) � p2n�1(x)

�(x)2
�(t)2;

where now

�(x) = (x� x0)(x� xn)

n�1Y
i=1

(x� xi)
2:
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Solution to Exercise 6.8

The zeros of the polynomial are at �2;�1; 0; 1; 2 and 3. These are

symmetric about the centre point 1
2 , and the polynomial has even degree.

Hence it is symmetric about the point x = 1
2 . Since it does not vanish

in the interval (0; 1) the maximum is attained at the midpoint, 1
2 . The

maximum value is

q( 12 ) =
225
64 :

Write x = xk+ ��=8, where k is an integer and 0 � � < 1. Then writ-

ing u(x) = p(�), where p(�) is the Lagrange interpolation polynomial, we

see that p is de�ned by the interpolation points (j; f(xj)); j = �2; : : : ; 3.
Then the di�erence between f(x) and u(x) is just the error in the La-

grange polynomial, which is

sinx� u(x) =

Q3
j=�2(� � j)

6!
gV I(�);

where �2 < � < 3, and gV I denotes the 6th derivative of the function

g(�) = f(xk + ��=8) with respect to �. Hence

gV I(�) = (�=8)6fV I(�);

where xk�2 < � < xk+3. Now f(x) = sinx, so

jgV I(�)j � (�=8)6:

Hence using the above bound on the polynomial.

j sinx� u(x)j =

����p(�)6!
gV I(�)

����
� 225

64

1

6!

��
8

�6
� 0:000018:
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Solution to Exercise 6.9

In the interpolation polynomial the coeÆcient of f(xj), where 0 �
j � n� 1, is

2n�1Y
r=0;r 6=j

x� xr
xj � xr

=
n�1Y

r=0;r 6=j

x� xr
xj � xr

n�1Y
r=0

x� xr � "

xj � xr � "

=
'j(x)

'j(xj)

'j(x� ")

'j(xj � ")

�
x� xj � "

�"
�
:

In the same way the coeÆcient of f(xn+j) is

n�1Y
r=0

x� xr
xj + "� xr

n�1Y
r=0;r 6=j

x� xr � "

xj + "� xr � "
=

x� xj
"

'j(x)

'j(xj)

'j(x� ")

'j(xj + ")
:

Adding these two terms gives the required expression.

In the limit as "! 0 it is clear that

'j(x � ")! 'j(x):

The required limit can therefore be written

['j(x)]
2

'j(xj)
lim
"!0

G(")

"
=

['j(x)]
2

'j(xj)
G0(0);

where

G(") =
x� xj

'j(xj + ")
f(xj + ")� x� xj � "

'j(xj � ")
f(xj);

since it is clear that G(0) = 0.

Now

G0(0) =
x� xj
'j(xj)

f 0(xj)� x� xj
['j(xj)]2

'0j(xj)f(xj)

+
1

'j(xj)
f(xj)� x� xj

['j(xj)]2
'0j(xj)f(xj):

In the notation of (6.14) we have

Lj(x) =
'j(x)

'j(xj)
;

L0j(x) =
'0j(x)

'j(xj)
:

A little algebraic simpli�cation then shows that as " ! 0 the terms

involving f(xj) and f(xj+n) tend to Hj(x)f(xj) +Kj(x)f
0(xj); which

are the corresponding terms in the Hermite interpolation polynomial.
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Solution to Exercise 6.10

For f(x) = x5, since f(0) = 0; f 0(0) = 0, there is no contribution to

the interpolation polynomial from these two terms. In the notation of

(6.14) we �nd that

L1(x) =
x

a
;

K1(x) =
x2

a2
(x � a);

H1(x) =
x2

a2

�
1� 2

a
(x� a)

�
:

Hence

p3(x) =
x2

a2
(x� a) 5a4 +

x2

a2

�
1� 2

a
(x � a)

�
a5

= 3a2x3 � 2a3x2:

The error is therefore

x5 � p3(x) = x2(x3 � 3a2x+ 2a3)

= x2(x� a)2(x+ 2a)

=
x2(x� a)2

4!
5!�;

where � = (x + 2a)=5. This is the required result, since f IV (�) = 5!�.
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Solution to Exercise 6.11

Since f(z) is holomorphic in D, the only poles of g(z) are the points

where the denominator vanishes, namely the point z = x and the points

z = xj ; j = 0; : : : ; n. Since they are distinct, they are all simple poles.

Hence the residue at z = x is

Rx = lim
z!x

(z � x)g(z)

= lim
z!x

f(z)

nY
k=0

x� xk
z � xk

= f(x):

In the same way the residue at z = xj is

Rj = lim
z!xj

(z � xj)g(z)

= lim
z!xj

(z � xj)
f(z)

z � x

nY
k=0

x� xk
z � xk

= �f(xj)
nY

k=0;k 6=j

x� xk
xj � xk

= �Lj(x)f(xj ):
Hence the sum of the residues is just f(x) � pn(x). The Cauchy

Residue Theorem then gives the required result.

The contour C consists of two semicircles of radius K, joined by two

straight lines of length b� a. Hence the length of the contour is 2�K +

2(b� a). Hence ����
Z
C

g(z) dz

���� �
����
Z
C

jg(z)j dz
����

� [2�K + 2(b� a)]G;

provided that jg(z)j � G for all z on C. Now for all z on C we know

that jz�xj � K and jz�xj j � K, and since x and all the xj lie in [a; b]

we also know that jx� xj j � (b� a). Hence

jg(z)j �M
(b� a)n+1

Kn+1
; z 2 C:

Using the result of the Residue Theorem, this shows that

jf(x)� pn(x)j < (b� a+ �K)M

�

�
b� a

K

�n+1

;
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as required. SinceK > b�a, the right-hand side tends to zero as n!1,

which is the condition for pn to converge uniformly to f , for x 2 [a; b].

The function f(z) has poles at z = �{. For the interval [a; b] we

require that the corresponding contour C does not contain these poles;

this requires that the distance from { to any point on [a; b] must be

greater than b� a. For the symmetric interval [�a; a] the closest point
to { is x = 0, with distance 1. Hence the length of the interval must be

less than 1, and we require that a < 1=2.

This is the condition required by the above proof, so it is a suÆcient

condition, but may not be necessary. Evidently it is not satis�ed by

[�5; 5].
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Solution to Exercise 6.12

Expanding f(h) and f(�h) about the point x = 0, we get

f(h) = f(0) + hf 0(0) + 1
2h

2f 00(0) + 1
6h

3f 000(�1);

f(�h) = f(0)� hf 0(0) + 1
2h

2f 00(0)� 1
6h

3f 000(�2);

where �1 2 (0; h) and �2 2 (�h; 0). Hence,
f(h)� f(�h) = 2hf 0(0) + 1

6h
3 (f 000(�1) + f 000(�2)) :

The continuity of f 000 on [�h; h] implies the existence of � in (�h; h) such
that 1

2 (f
000(�1) + f 000(�2)) = f 000(�). Therefore,

f(h)� f(�h)
2h

� f 0(0) = 1
6h

2f 000(�);

and hence

E(h) = 1
6h

2f 000(�) +
"+ � "�

2h
:

Taking the absolute value of both sides, and bounding jf 000(�)j by M3

and j"+j and j"�j by ", we have that
jE(h)j � 1

6h
2M3 +

"

h
:

Let as consider the right-hand side of this inequality as a function of

h > 0; clearly, it is a positive and convex function which tends to +1 if

h! +0 or h! +1.

Setting the derivative of h 7! 1
6h

2M3 +
"
h to zero yields,

1
3hM3 � "

h2
= 0;

and therefore,

h =

�
3"

M3

�1=3

gives the value of h for which the bound on jE(h)j is minimized.
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Solution to Exercise 7.1

The weight wk is de�ned by

wk =

Z b

a

Lk(x)dx =

Z b

a

nY
j=1;j 6=k

�
x� xj
xk � xj

�
dx:

Now if xk = a + kh then xn�k = a + (n � k)h = b � kh = a + b � xk .

Making the change of variable y = a+ b� x we get

wk = �
Z a

b

nY
j=1;j 6=k

�
a+ b� y � xj

xk � xj

�
dy

=

Z b

a

nY
j=1;j 6=k

�
xn�j � y

xn�j � xn�k

�
dy

=

Z b

a

nY
i=1;i 6=n�k

�
y � xi

xn�k � xi

�
dy

= wn�k;

where we have replaced j by n� i in the last product.
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Solution to Exercise 7.2

The Newton{Cotes formula using n+1 points is exact for every poly-

nomial of degree n. Now suppose that n is even and consider the poly-

nomial

qn+1(x) = [x� (a+ b)=2]n+1:

This is a polynomial of odd degree, and is antisymmetric about the

midpoint of the interval [a; b]. HenceZ b

a

qn+1(x)dx = 0:

The Newton{Cotes approximation to this integral is

nX
k=0

wk qn+1(xk):

Now Exercise 1 has shown that wn�k = wk, and the antisymmetry of

qn+1 shows that qn+1(xk) = �qn+1(xn�k). Hence the Newton{Cotes

formula also gives zero, so it is exact for the polynomial qn+1.

Any polynomial of degree n+ 1 may be written

pn+1 = c qn+1 + pn;

where c is a constant and pn is a polynomial of degree n. Hence the

Newton{Cotes formula is also exact for pn+1.



79

Solution to Exercise 7.3

It is clear that a quadrature formula is exact for all polynomials of

degree n if, and only if, it is exact for the particular functions f(x) =

xr; r = 0; : : : ; n. The given formula is exact for the function xr provided

that Z 1

�1

xr dx = w0(��)r + w1�
r;

that is, if

1� (�1)r+1

r + 1
= �r [(�1)rw0 + w1]:

To be exact for polynomials of degree 1 we must therefore satisfy this

equation for r = 0 and r = 1. This gives

2 = w0 + w1

0 = �[�w0 + w1]:

Since � is not zero, these give at once w0 = w1 = 1.

For the formula to be exact for all polynomials of degree 2 we also

require to satisfy the equation with r = 2, giving

2

3
= �2[w0 + w1] = 2�2:

As � > 0 this requires the unique value � = 1=
p
3.

The same equation with r = 3 gives

0 = �3[�w0 + w1]

which is satis�ed, so when � = 1=
p
3 the formula is exact for xr ; r =

0; 1; 2; 3. It is therefore exact for every polynomial of degree 3.

[Note that it is also exact for the function xr for every odd integer r.]
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Solution to Exercise 7.4

As in Exercise 3 the formula is exact for all polynomials of degree 3 if,

and only if, it is exact for the functions xr; r = 0; 1; 2; 3. This requires

that

2 = w0 + w1 + w2 + w3

0 = �w0 � 1
3w1 +

1
3w2 + w3

2
3 = w0 +

1
9w1 +

1
9w2 + w3

0 = �w0 � 1
27w1 +

1
27w2 + w3:

From the 2nd and 4th of these equations it is easy to see that w0 =

w3 and w1 = w2; this also follows from Exercise 1. The 1st and 3rd

equations then become

2 = 2w0 + 2w1

2
3 = 2w0 +

2
9w1:

This leads to w0 = w3 =
1
4 ; w1 = w2 =

3
4 .
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Solution to Exercise 7.5

By symmetry the integral is zero for every odd power of x, and both

formulae also give the result zero. Hence the di�erence is zero for the

functions x; x3; x5. Both formulae give the correct result for all polyno-

mials of degree 3; hence we only have to consider the functions x4 and

x6

For x4 the integral has the value 2=5 and a simple calculation shows

that the two formulae give the results (i) 2=3 and (ii) 14=27. Hence the

errors are

x4 : (i)� 4=15; �16=135:
Similarly for x6 the integral is 2=7, and the two formulae give the

results (i) 2=3 and (ii) 122=243, giving for the errors

x6 : (i)� 8=21; �368=1701:
Hence for the polynomial

p5 = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5

the respective errors are (i) � 4
15c4 and (ii) � 16

135 c4, so the second is more

accurate, by a factor 4
9 .

For the polynomial

p6 = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6

the respective errors are (i)� 4
15c4 � 8

21c6 and (ii) � 16
135 c4 � 368

1701 . Hence

if we choose a polynomial for which c6 = � 7
10c4 the error in Simpson's

rule is zero, but the error in formula (ii) is not.
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Solution to Exercise 7.6

Simple algebra shows that the errors in the approximation by the

trapezium rule of the integrals
R 1
0 x

4 dx and
R 1
0 x

5 dx are �3=10 and

�1=3 respectively.
Similarly the errors in the approximation by Simpson's Rule of the

same integrals are �1=120 and �1=48 respectively.
Hence the errors in the approximation ofZ 1

0

(x5 � Cx4) dx

by the trapezium rule and Simpson's rule are

3
10C � 1

3 (trapezium rule)
1
120C � 1

48 (Simpson0s rule):

The trapezium rule gives the correct value of this integral when C =

10=9.

Moreover the trapezium rule gives a more accurate result than Simp-

son's rule for this integral when

j 310C � 1
3 j < j 1

120C � 1
48 j:

A sketch of the graphs of the two functions of C on the left and right

of this inequality shows that it is satis�ed when C lies between the two

extreme values which are the solutions of

3
10C � 1

3 = 1
120C � 1

48
3
10C � 1

3 = �[ 1
120C � 1

48 ]:

These values are 15
14 and 85

74 as required.
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Solution to Exercise 7.7

To determine c�1, c0, c1 and c2, we demand that the quadrature

rule integrates 1, x, x2 and x3 exactly, for, then it will integrate any

polynomial from P3 exactly. Hence,

c�1 + c0 + c1 + c2 = 1

�c�1 + c1 + 2c2 = 1
2

c�1 + c1 + 4c2 = 1
3

�c�1 + c1 + 8c2 = 1
4 :

Solving this linear system yields

c�1 = c2 = � 1
24 ; c0 = c1 =

13
24 :

Suppose that f and its derivatives up to and including order 4 are

de�ned and continuous on the closed interval [�1; 2] which includes

the interval of integration, [0; 1], as well as all the quadrature points,

�1; 0; 1; 2. Consider

E(f) =

Z 1

0

f(x)dx �Q(f) =

Z 1

0

[f(x)� p3(x)]dx ;

where p3 is the Lagrange interpolation polynomial of f of degree 3 on

the interval [�1; 2] with interpolation points �1; 0; 1; 2. Hence, by the

remainder theorem for Lagrange interpolation,

jE(f)j � M4

(3 + 1)!

Z 1

0

j�4(x)jdx ;

where �4(x) = (x + 1)x(x � 1)(x � 2). Now, j�4(x)j = (1� x2)x(2 � x)

for all x 2 [0; 1], and therefore,Z 1

0

j�4(x)jdx = 11
30 :

Thus,

jE(f)j � 11
720M4 ;

where M4 = maxx2[�1;2] jf(x)j.
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Solution to Exercise 7.8

From the de�nition we see that

T (m) =
b� a

m
[ 12f0 + f2 + f4 : : :]

T (2m) =
b� a

2m
[ 12f0 + f1 + f2 + : : :];

where we use the notation

fj = f(a+ j(b� a)=2m):

Hence

4
3T (2m)� 1

3T (m) =
b� a

6m
[2f0 + 4f1 + 4f2 + 4f3 + 4f4 + : : :

�f0 � 2f2 � 2f4 � : : :]

=
b� a

6m
[f0 + 4f1 + 2f2 + 4f3 + 2f2 + : : :];

which agrees with S(2m).
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Solution to Exercise 7.9

From Theorem 7.4 it follows thatZ b

a

f(x)dx� T (m) = A=m2 +E(m)

where m2E(m)! 0. Hence

T (m)� T (2m)

T (2m)� T (4m)
=

�A=m2 +A=4m2 �E(m) +E(2m)

�A=4m2 +A=16m2 �E(2m) +E(4m)

=
�12A� 16m2[E(m)�E(2m)]

�3A� 16m2[E(2m)�E(4m)]

! 4:

Table 7.3 for the valuesm = 4; 8; 16 gives this ratio the values 3:72; 3:91; 3:97

respectively; these indicate satisfactory convergence to limiting value 4.
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Solution to Exercise 7.10

In the same way as in Exercise 9 we get

T (m)� T (2m)

T (2m)� T (4m)
=

�A=m� +A=(2m)� �E(m) +E(2m)

�A=(2m)� +A=(4m)� �E(2m) +E(4m)

=
A(�4� + 2�)� (4m)�[E(m)�E(2m)]

A(�2� + 1)� (4m)�[E(2m)�E(4m)]

! 2�:

Table 7.4 for the valuesm = 4; 8; 16 gives this ratio the values 2:47; 2:49; 2:50

respectively; these are consistent with a value of � such that 2� = 2:5,

or � = ln 2:5= ln 2. The value � = 4=3 �ts this data quite well.
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Solution to Exercise 7.11

With the notation of Section 6.3

L0(x) = 1
2 (1� x)

L1(x) = 1
2 (x+ 1)

H0(x) = 1
4 (1� x)2[1 + (x+ 1)]

H1(x) = 1
4 (x+ 1)2[1� (x� 1)]

K0(x) = 1
4 (1� x)2(x+ 1)

K1(x) = 1
4 (x+ 1)2(x� 1):

The required polynomial is then

p3(x) = H0(x)f(�1) +H1(x)f(1) +K0(x)f
0(�1) +K1(x)f

0(1);

and

f(x)� p3(x) =
(x+ 1)2(x� 1)2

24
f IV (�)

for some � 2 (�1; 1).
Integration of this equation gives the required result, with

jEj = 1
24

����
Z 1

�1

(x2 � 1)2f IV (�)dx

����
� 1

24M4

Z 1

�1

(x2 � 1)2dx

= 2
45M4;

where

M4 = max
x2(�1;1)

jf IV (x)j:
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Solution to Exercise 7.12

We have seen that

q1(t) = �t
q2(t) = � 1

2 t
2 + 1

6

q3(t) = � 1
6 t

3 + 1
6 t:

By integration it follows that

q4(t) = � 1
24 t

4 + 1
12 t

2 +A4

q5(t) = � 1
120 t

5 + 1
36 t

3 +A4t+A5:

Now q5(t) must be an odd function, so A5 = 0, and q5(1) = 0, so that

A4 =
1
120 � 1

36 = � 7
360 :

Hence

q4(t) = � 1
24 t

4 + 1
12 t

2 � 7
360

q5(t) = � 1
120 t

5 + 1
36 t

3 � 7
360 t:

In the same way

q6(t) = � 1
720 t

6 + 1
144 t

4 � 7
720 t

2 +A6

q7(t) = � 1
5040 t

7 + 1
720 t

5 � 7
2160 t

3 +A6t+A7:

Since q7 is an odd function, A7 = 0; since q7(1) = 0

A6 =
1

5040 � 1
720 +

7
2160 = 31

15120 :

Hence

q6(t) = � 1
720 t

6 + 1
144 t

4 � 7
720 t

2 + 31
15120

q7(t) = � 1
5040 t

7 + 1
720 t

5 � 7
2160 t

3 + 31
15120 t:

For the coeÆcients cr we obtain from the de�nition

c1 = q2(1)=2
2 = � 1

12

c2 = q4(1)=2
4 = 1

720

c3 = q6(1)=2
6 = � 1

30240 :
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Solution to Exercise 7.13

Since sinx is an odd function,
R �
�� sin rxdx = 0 for all values of r. For

the same reason the composite trapezium rule will also give the value

zero, so the rule gives the correct value of the integral for every value of

r, whether or not it is a multiple of m.

When r = 0, cos rx � 1, so the composite trapezium rule gives the

exact result in this case also.

Now suppose that r is a positive integer; then the composite trapezium

rule for
R �
��

cos rxdx becomes

Tm = h[ 12 cos(�r�) +
m�1X
j=1

cos(�r� + jr�) + 1
2 cos r�];

where � = 2�=m. Since the �rst and last terms are equal, this can be

written, using the given relations,

Tm = h

mX
j=1

cos(�r� + jr�)

= (�1)rh
mX
j=1

cos jr�

= (�1)rh[sin(m+ 1
2 )r� � sin 1

2r�]= sin
1
2r�

= 0;

since mr� = 2r�. Hence, in general, the composite trapezium rule gives

the result zero, which is the correct value of the integral.

However, the argument breaks down when sin 1
2r� = 0, which occurs

when r is a multiple of m. Now if r = km then

cos(�r� + jr�) = cos(�km� + 2jr�=m) = cos(�r� + 2jk�) = (�1)r:
Thus all the terms in the sum are equal, and the result of the composite

trapezium rule is

Tm = (�1)rmh = (�1)r2�:
[Note that if m = 1 the result is (�1)r2� for every positive value of

r, since r is always a multiple of 1.]
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Solution Exercise 8.1

(i) Write M = kfk1, so that

jf(x)j �M; for a � x � b:

Then

fkfk2g2 =

Z b

a

w(x)[f(x)]2dx

�
Z b

a

w(x)M2dx

= M2C2:

Taking square roots gives the required result.

(ii) Many examples are possible; here are two, where for simplicity we

have assumed that the weight function w(x) � 1:

(iia) De�ne

f(x) =
2M

1 + k2(x� c)2
;

where

c = 1
2 (a+ b);

and k is a constant to be determined. Then clearly kfk1 = 2M > M ,

as required. For the 2�norm we �nd that

fkfk1g2 =

Z b

a

4M2

1 + k2(x� c)2
dx

=
4M2

k

�
tan�1 1

2k(b� a)� tan�1 1
2k(a� b)

	
� 4M2�

k
;

and we have the required property if

k =
8M2�

"
:

(iib) Another function with the required properties is

f(x) =

�
2M
Æ (a+ Æ � x); a � x � x+ Æ

0; a+ Æ � x � b :
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Then, as before, kfk1 = 2M >M . Now

fkfk1g2 =
4M2

Æ2

Z a+Æ

a

(a+ Æ � x)2dx

=
4M2Æ

3

and we have the required property if Æ = 3"=8M2.
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Solution of Exercise 8.2

Suppose that p̂n is the minimax polynomial of degree n for the even

function f on [�a; a]. Then there is a sequence of n + 2 points xj at

which

f(xj)� p̂n(xj) = (�1)jE; j = 1; : : : ; n+ 2

where jEj = kf � p̂nk1. Now de�ne the polynomial qn by

qn(x) = p̂n(�x);
then

f(�xj)� qn(�xj) = (�1)jE; j = 1; : : : ; n+ 2

since f is an even function. Also

kf � qnk1 = max jf(x)� qn(x)j
= max jf(�x)� p̂n(�x)j
= kf � p̂nk1;

since the interval [�a; a] is symmetric. Thus the points

(�xj); j = n+ 2; n+ 1; : : : ; 1

form a sequence of critical points for the approximation qn, and qn is

therefore a minimax polynomial for f . But the minimax approximation

is unique, so that qn � p̂n, and p̂n is an even polynomial.

This means in particular that the minimax polynomial of odd degree

2n + 1 is an even polynomial, and the coeÆcient of x2n+1 is zero. It

is therefore identical to p̂2n, which is the minimax polynomial of degree

2n + 1, as well as being the minimax polynomial of degree 2n. The

minimax polynomial p̂2n has a sequence of 2n+ 3 critical points.

The proof has also shown that the critical points are symmetrical in

the interval [�a; a]; if xj is a critical point, so is �xj .
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Solution to Exercise 8.3

The minimax polynomial of degree n is an odd function; the minimax

polynomial approximation of degree 2n+1 is therefore also the minimax

approximation of degree 2n+ 2.

The proof follows the same lines as that of Exercise 2. With the same

notation,

qn(x) = p̂n(�x);
then

�f(�xj)� qn(�xj) = (�1)jE; j = 1; : : : ; n+ 2

since f is an odd function. Thus the points

(�xj); j = n+ 2; n+ 1; : : : ; 1

form a sequence of critical points for the approximation �qn to the

function f(x), and �qn is therefore a minimax polynomial for f . But

the minimax approximation is unique, so that �qn � p̂n, and p̂n is an

odd polynomial.

This means in particular that the minimax polynomial of even degree

2n+ 2 is an odd polynomial, and the coeÆcient of x2n+2 is zero. It is

therefore identical to p̂2n+1, which is the minimax polynomial of degree

2n+ 2, as well as being the minimax polynomial of degree 2n+ 1. The

minimax polynomial p̂2n+1 has a sequence of 2n+ 4 critical points.

The proof has also shown that the critical points are symmetrical in

the interval [�a; a]; if xj is a critical point, so is �xj .



94

Solution of Exercise 8.4

(i) Since g is an odd function and the interval is symmetric, the ap-

proximation will be an odd polynomial, so take

p2(x) = c1x:

There will be four alternate maxima and minima, symmetric in the

interval, including the points�1. The other two will be internal extrema,

which we take to be ��. The condition that these two points are extrema

of the error gives

c1 � cos � = 0;

and the condition that the magnitudes of the extrema are equal gives

c1 � sin 1 = E

c1� � sin � = �E:
From these equations it is easy to deduce that

(1 + �) cos � � sin 1� sin � = 0:

This equation for � has exactly one root in (0,1); it is easy to see that

the left-hand side is monotonic decreasing in (0,1). Having determined

this value, we see at once that c1 = cos � and E = cos � � sin 1. The

numerical values are � = 0:4937, c1 = 0:8806 and E = 0:0391, giving

p2(x) = 0:8806x; kg � p2k1 = 0:0391:

(ii) Since h is an even function and the interval is symmetric, the

approximation will be an even polynomial, so take

p3(x) = c0 + c2x
2:

There will be �ve alternate maxima and minima, symmetrical in the

interval, including the points �1, 0 and 1. The other two will be internal
extrema, which we take at ��. The condition that these points are

extrema gives

2c2�+ 2� sin(�2) = 0;

and the condition that the magnitudes of the maxima and minima are

all equal gives

c0 + c2 � cos 1 = E;

c0 + c2�
2 � cos(�2) = �E

c0 � 1 = E:



95

From these we obtain in succession

c2 = cos 1� 1;

sin(�2) = 1� cos 1;

E = 1
2fc2(1� �2) + cos(�2)� cos 1g;

c0 = 1 +E:

The numerical values are:

p3(x) = 1:0538� 0:4597x2; k cos(x2)� p3k1 = E = 0:0538;

with � = 0:6911.
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Solution to Exercise 8.5

Since pn is a polynomial, it is a continuous function. Suppose that

pn(0) = A. In the interval [��; �], where � is an arbitrarily small num-

ber, there will be points x at which H(x) = 1, and points at which

H(x) = �1. At such points jH(x) � pn(x)j will be arbitrarily close to

jA � 1j and jA + 1j respectively. Hence kH � pnk1 cannot be smaller

than jA � 1j or jA + 1j. If A is nonzero, one of these quantities will be

greater than 1, and if A = 0 we shall have kf � pnk1 � 1.

By the previous argument the polynomial of degree zero of best ap-

proximation to H(x) on [�1; 1] must have p0(0) = 0. It is therefore the

zero polynomial, p0(x) = 0, and is unique.

The polynomial of best approximation, of degree 1, must also have

p1(0) = 0, so must have the form p1(x) = c1x. Then the di�erence

e1(x) = H(x) � c1x is antisymmetric about x = 0, so that e(�x) =

�e(x). The di�erence attains its extreme values at 0 and at �1; je(1)j =
j1 � c1j, and je(x)j takes values arbitrarily close to 1 close to x = 0.

Hence kH�p1k1 = 1 provided that j1� c1j � 1; the polynomial of best

approximation of degree 1 is not unique. Any polynomial p1(x) = c1x,

with 0 � c1 � 2, is a polynomial of best approximation.
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Solution to Exercise 8.6

It is evidently very easy to construct a function f which is zero at each

of the points ti; i = 1; : : : ; k, but is not zero everywhere; any polynomial

which has these points as zeros, for example, is such a function. For such

a function Zk(f) = 0, but f is not identically zero. Hence Zk(:) does not

satisfy the �rst of the axioms for a norm. However, if pn is a polynomial

of degree n < k, then if Zk(pn) = 0 the polynomial pn must vanish at

the k points tj , so it must vanish identically. Thus Zk(:) is a norm on

the space of polynomials of degree n, if k > n; it is easy to see that the

other axioms hold.

Suppose that the polynomial q1 satis�es the given conditions

f(0)� q1(0) = �[f( 12 )� q1](
1
2 ) = f(1)� q1(1):

If q� is a polynomial of degree 1 which gives a smaller value for Z, then

Z3(f � q�) < Z3(f � q1); hence q
�(x) � q1(x) must be negative at t1

and t3, and positive at t2. This is impossible if q� is a polynomial of

degree 1. Hence q1 is the polynomial which minimises Z(f �p1) over all
polynomials of degree 1.

Writing q1(x) = �+ �x the conditions give

1� � = E

e1=2 � �� 1
2� = �E

e� �� � = E:

These easily lead to � = e� 1, � = 3
4 +

1
2

p
e� 1

2e. The error is

Z3(f � q1) = E = 1
4 � 1

2

p
e+ 1

2e:

A straightforward, but tedious, approach to the case k = 4 is to solve

each of the four problems obtained by choosing three out of these four

points. In each case, having constructed the polynomial approximation

p1, evaluate Z4(f�p1), and the required approximation is the one which

gives the least value to this quantity.

Alternatively, choose three of the four points and construct the poly-

nomial p1 which minimises Z3(f � p1). Evaluate jf(t�)� p1(t
�)j at the

point t� which was omitted. If this value does not exceed Z3(f � p1),

then p1 is the required approximation. If it does exceed Z3(f � p1) re-

place one of the points chosen, for which f(tj) � p1(tj) has the same

sign as f(t�) � p1(t
�), by t�, and repeat the process. Continue this re-

peated choice of three of the four points until the required polynomial

is reached.
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Solution to Exercise 8.7

Since A is a �xed nonzero constant, the problem of �nding the poly-

nomial of best approximation to f(x) � 0 by polynomials of the given

form is equivalent to choosing the coeÆcients to minimise

k0� pnk1;
which is the same as requiring to minimise

kxn � (1=A)qn�1k1:
This is just the problem of approximating the function xn by a polyno-

mial of lower degree; hence we should choose the polynomial pn(x) so

that

xn � (1=A)

n�1X
k=0

akx
k = 2�n�1Tn(x);

where Tn is the Chebyshev polynomial of degree n. The formal result is

pn(x) =
A

2n+1
Tn(x);
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Solution to Exercise 8.8

Clearly,

f(x) = an+1

"
xn+1 �

nX
k=0

�ak
an+1

xk

#
:

We seek the minimax polynomial pn 2 Pn for f on the interval [�1; 1]
in the form

pn(x) =
nX

k=0

bkx
k :

Thus,

f(x)� pn(x) = an+1

"
xn+1 �

nX
k=0

bk � ak
an+1

xk

#
:

According to Theorem 8.6, the k � k1 norm of the right-hand side is

smallest when
nX

k=0

bk � ak
an+1

xk = xn+1 � 2�nTn+1(x) :

Therefore, the required minimax polynomial for f is

pn(x) = f(x)� an+12
�nTn+1(x) :
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Solution to Exercise 8.9

The minimax polynomial must be such that f(x) � p1(x) has three

alternating extrema in [�2; 1]. Since f is convex, two of these extrema

are at the ends �2 and 1, and the other must clearly be at 0. Graphi-

cally, the line p1 must be parallel to the chord joining (�2; f(�2)) and
(1; f(1)). Thus

p1(x) = c0 � 1
3x:

The alternating extrema are than

f(�2)� p1(�2) = 2� (c0 +
2
3 ) =

4
3 � c0

f(0)� p1(0) = 0� (c0) = �c0
f(1)� p1(1) = 1� (c0 � 1

3 ) =
4
3 � c0:

These have the same magnitude if

4
3 � c0 = �(�c0);

so that the minimax polynomial is

p1(x) =
2
3 � 1

3x;

and kf � p1k1 = 2
3 .
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Solution to Exercise 8.10

A standard trigonometric relation gives

cosn� = 1
2 [cos(n+ 1)� + cos(n� 1)�];

Writing x = cos �; Tn(x) = cosn�, gives (a).

Suppose that (b) is true for polynomials of degree up to and including

n. Then it follows from (a) that Tn+1 is a polynomial of degree n + 1

with leading coeÆcient 2n; hence (b) follows by induction, since T0 = 1.

Evidently T0(x) = 1 is an even function and T1(x) = x is an odd

function. Then (c) follows by induction, using (a).

The zeros of Tn(x) are xj = cos �j , where �j is a zero of cos �. Evi-

dently

cosn
(j � 1

2 )�

n
= cos(j � 1

2 )� = 0;

giving (d); these values of xj are distinct, and lie in (�1; 1).

Part(e) is obvious, since jTn(x)j = j cosn�j � 1, provided that jxj � 1

to ensure that � is real.

Part (f) follows from the fact that cosn� = �1 when � = k�=n; k =

0; : : : ; n.
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Solution to Exercise 8.11

There are many possible examples, most easily when f is an oscillatory

function. For example, consider

f(x) = sin
3�(x� a)

b� a
:

This function attains its maxima and minima, all of magnitude 1, at the

points

xj = a+
j

6
(b� a); j = 1; 3; 5:

Hence the polynomial p1 of degree 1 of best approximation to f on [a; b]

is p1(x) � 0, and none of the three critical points is equal to a or b.
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Solution to Exercise 8.12

By expanding the binomial we see that

(1� x+ tx)n =

nX
k=0

pnk(x)t
k :

Substituting t = 1 shows at once that

1 =
nX

k=0

pnk(x):

Di�erentiate with respect to t, giving

nx(1� x+ tx)n�1 =

nX
k=0

pnk(x)k t
k�1;

substituting t = 1 then gives

nx =
nX

k=0

kpnk(x):

Di�erentiate again with respect to t, giving

n(n� 1)x2(1� x+ tx)n�2 =

nX
k=0

pnk(x)k(k � 1) tk�2;

substituting t = 1 then gives

n(n� 1)x2 =

nX
k=0

k(k � 1)pnk(x):

Now
nX

k=0

(x� k=n)2pnk(x) = x2
nX

k=0

pnk(x)� (2x=n)

nX
k=0

kpnk(x)

+(1=n2)

nX
k=0

k2pnk(x)

= x2 � (2x=n)nx+ (1=n2)[n(n� 1)x2 + nx]

=
x(1� x)

n
:

From the de�nition of pn(x), and using the facts that each pnk(x) � 0

when 0 � x � 1 and
Pn

k=0 pnk(x) = 1, we �nd

f(x)� pn(x) =

nX
k=0

[f(x)� f(k=n)]pnk(x);
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and

jf(x)� pn(x)j �
nX

k=0

jf(x)� f(k=n)jpnk(x):

Then X
1

jf(x) � f(k=n)jpnk(x) <
X
1

("=2)pnk(x)

= ("=2)

nX
k=0

pnk(x)

= "=2:

For the other sumX
1

jf(x)� f(k=n)jpnk(x) � 2M
X
2

pnk(x)

� 2M=Æ2
X
2

(x� k=n)2pnk(x)

� 2M=Æ2
nX

k=0

(x� k=n)2pnk(x)

= 2M=Æ2
x(1� x)

n

� 2M=Æ2
1

4n

=
M

2Æ2n
;

since all the terms in the sums are non-negative, and 0 � x(1�x) � 1=4.

Thus if we choose N0 =M=Æ2" we obtainX
2

jf(x)� f(k=n)jpnk(x) � "=2:

Finally adding together these two sums we obtain

jf(x)� pn(x)j < "=2 + "=2 = "

when n � N0. Since the value of N0 does not depend on the particular

value of x chosen, this inequality holds for all x in [0; 1].
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Solution to Exercise 9.1

We start with '0(x) = 1, and use the Gram-Schmidt process. It is

useful to note that Z 1

0

� ln(x)xkdx = 1=(k + 1)2:

Writing

'1(x) = x� a0'0(x)

we need

a0 =

R 1
0
� ln(x)x'0(x)dxR 1

0 � ln(x)['0(x)]2dx

= � 1
4

and so

'1(x) = x� 1=4:

Now writing

'2(x) = x2 � b0'0(x) � b1'1(x)

we �nd in the same way that

b0 = 1=9

b1 = 5=7:

Hence

'2(x) = x2 � (1=9)� (5=7)(x� 1=4)

= x2 � (5=7)x+ (17=252):
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Solution to Exercise 9.2

Since the polynomials 'j(x) are orthogonal on the interval [�1; 1] we
know that Z 1

�1

'i(t)'j(t) dt = 0; i 6= j:

In this integral we make the change of variable

t = (2x� a� b)=(b� a); x = 1
2 [(b� a)t+ a+ b];

and it becomesZ b

a

'i((2x� a� b)=(b� a))'j((2x� a� b)=(b� a))
2

b� a
dx:

This shows that the new polynomials form an orthogonal system on the

interval [a; b].

From the Legendre polynomials

'0(t) = 1

'1(t) = t

'2(t) = t2 � 1=3

we write t = 2x� 1 and get the orthogonal polynomials on [0; 1] in the

form

'0(x) = 1

'1(x) = 2x� 1

'2(x) = (2x� 1)2 � 1=3

= 4x2 � 4x+ 2=3

The di�erent normalisation from the polynomials in Example 9.5 is

unimportant.
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Solution to Exercise 9.3

We are given thatZ 1

0

x� 'i(x)'j(x) dx = 0; i 6= j:

Making the change of variable x = t=b this becomesZ b

0

t� 'i(t=b)'j(t=b) dx=b
�+1 = 0; i 6= j:

This shows that the polynomials  j(x) de�ned by

 j(x) = 'j(x=b); j = 0; 1; : : :

are orthogonal over the interval [0; b] with the weight function w(x) =

x�.
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Solution to Exercise 9.4

Suppose that the required result is true for some value of k, with

0 � k < n� 1. Then�
d

dx

�k
(1� x2)n = (1� x2)n�kqk(n):

Di�erentiation then gives�
d

dx

�k+1

(1� x2)n =
d

dx
(1� x2)n�kqk(x)

= �2(n� k)x(1� x2)n�k�1qk(x)

+(1� x2)n�kq0k(x)

= (1� x2)n�k�1[�2(n� k)xqk(x) + (1� x2)q0k(x)]

= (1� x2)n�k�1qk+1(x);

which is of the required form with k replaced by k + 1. Since the result

is trivially true for k = 0 it is thus true for all k such that 0 � k < n.

This means that every derivative of order less than n of the function

(1 � x2)n has the term (1 � x2) as a factor, and therefore vanishes at

x = �1.
Write D for d=dx, and suppose that 0 � i < j. Then by integrating

by partsZ 1

�1

'i(x)'j(x)dx =

Z 1

�1

Di(1� x2)iDj(1� x2)j dx

=
�
Di(1� x2)iDj�1(1� x2)j

�1
�1

�
Z 1

�1

Di+1(1� x2)iDj�1(1� x2)n dx

= �
Z 1

�1

Di+1(1� x2)iDj�1(1� x2)j dx;

since we have proved that the derivatives vanish at �1.
The process of integration by parts can be repeated until we �nd thatZ 1

�1

'i(x)'j(x)dx = (�1)i
Z 1

�1

D2i(1� x2)iDj�i�1(1� x2)j dx:

This integral is zero, since D2i(1 � x2)i is a constant, and the function

Dj�i�1(1� x2)j vanishes at �1, 0 � i < j. The polynomials 'i(x) and

'j(x) are therefore orthogonal as required.
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Taking j = 0; 1; 2; 3 we get

'0(x) = 1;

'1(x) = D(1� x2)

= �2x;
'2(x) = D2(1� x2)2

= D(�4x+ 4x3)

= �4 + 12x2;

'3(x) = D3(1� x2)3

= D2(�6x+ 12x3 � 6x5)

= D(�6 + 36x2 � 30x4)

= 72x� 120x3:

These are the same, apart from constant scale factors as the polynomials

given in Example 9.6.



110

Solution to Exercise 9.5

This is very similar to Exercise 4, and we shall only give an outline

solution.

Suppose that

Dk xje�x = xj�kqk(x)e
�x;

where qk(x) is a polynomial of degree k. Then by di�erentiation

Dk+1 xje�x = e�x[(j � k)xj�k�1qk(x) + xj�kq0k(x) � xj�kqk(x)]

= xj�k�1qk+1e
�x;

and the �rst result follows by induction.

To prove that the polynomials form an orthogonal system, writeZ 1

0

e�x'i(x)'j (x)dx =

Z 1

0

Di(xie�x)'j(x)dx;

and the orthogonality follows by repeated integration by parts, as in

Exercise 4.

The �rst members of the sequence are

'0(x) = 1;

'1(x) = exD(xe�x) = 1� x;

'2(x) = exD[(2x� x2)e�x] = 2� 4x+ x2;

'3(x) = exD2[(3x2 � x3)e�x]

= exD[(6x� 3x2 � 3x2 + x3)e�x]

= 6� 12x+ 9x2 � x3:
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Solution to Exercise 9.6

Evidently 'j+1(x)�Cjx'j(x) is in general a polynomial of degree j+1,

but if Cj is chosen to be equal to the ratio of the leading coeÆcients of

'j+1(x) and 'j(x) then the coeÆcient of the leading term is zero, and

the result is a polynomial of degree j only. Hence it can be expressed as

a linear combination of the polynomials 'k(x) in the form

'j+1(x)� Cjx'j(x) =

jX
k=0

�j;k'k(x);

where

�j;k =
1

Ak

Z b

a

w(x)['j+1(x) � Cjx'j(x)]'k(x)dx;

where

Ak =

Z b

a

w(x)['k(x)]
2dx:

Now k � j in the sum, and soZ b

a

w(x)'j+1(x)'k(x)dx = 0;

Moreover 'j(x) is orthogonal to every polynomial of lower degree, and

so Z b

a

w(x)'j (x)x'k(x)dx = 0; k + 1 < j:

These two equations show that

�j;k = 0; k = 0; : : : ; j � 1:

Hence

'j+1(x)� (Cjx+Dj)'j(x) +Ej'j�1(x) = 0; j > 0;

where Dj = �j;j and Ej = ��j;j�1.
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Solution to Exercise 9.7

Since Cj is the ratio of the leading coeÆcients of the polynomials

'j+1(x) and 'j(x), which are both positive, Cj is also positive.

We saw in Exercise 6 that

�j;j�1 =

Z b

a

w(x)['j+1(x)� Cjx'j(x)]'j�1(x)dx

= �Cj

Z b

a

w(x)x'j (x)'j�1(x)dx;

since 'j�1(x) and 'j+1(x) are orthogonal.

Now the same argument as in Exercise 6, but with j replaced by j�1,

shows that 'j(x) � Cj�1x'j�1(x) is a polynomial of degree j � 1; it is

therefore orthogonal to 'j(x). This shows thatZ b

a

w(x)['j (x)� Cj�1x'j�1(x)]'j(x)dx:

Hence Z b

a

w(x)x'j (x)'j�1(x)dx =
1

Cj�1

Z b

a

w(x)['j (x)]
2dx;

which is positive. Hence Ej is positive.

The proof of the interlacing property follows closely the proof of The-

orem 5.8; it proceeds by induction. Suppose that the zeros of 'j(x) and

'j�1(x) interlace, and that � and � are two consecutive zeros of 'j(x).

Then

'j+1(�) = �Ej'j�1(�); 'j+1(�) = �Ej'j�1(�):

But there is exactly one zero of 'j�1(x) between � and �, so that 'j�1(�)

and 'j�1(�) have opposite signs. Hence 'j+1(�) and 'j+1(�) also have

opposite signs, and there is a zero of 'j+1(x) between � and �. This

has located at least j � 1 zeros of 'j+1(x). Now suppose that � is the

largest zero of 'j(x); then � is greater than all the zeros of 'j�1(x), and

'j�1(�) > 0, since the leading coeÆcient of each of the polynomials is

positive. Hence 'j+1(�) < 0, and there is a zero of 'j+1(x) greater than

�. By a similar argument 'j+1(x) has a zero which is smaller than the

smallest zero of 'j(x). This has now located all the zeros of 'j+1(x),

and shows that the zeros of 'j(x) and 'j+1(x) interlace.

To start the induction, the same argument shows that the zero of

'1(x) lies between the zeros of '2(x).
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Solution to Exercise 9.8

We can write

'n+1(x) = cn+1
n+1x

n+1 � qn(x);

where qn(x) is a polynomial of degree n.

Now the best polynomial approximation of degree n to xn+1 is deter-

mined by the condition that xn+1 � pn(x) is orthogonal to 'j(x), for

j = 0; : : : ; n. But the above equation shows that

xn+1 � qn(x)

cn+1
n+1

=
'n+1(x)

cn+1
n+1

;

which clearly satis�es this orthogonal condition. Hence the best poly-

nomial approximation is

pn(x) =
cn+1
n+1x

n+1 � 'n+1(x)

cn+1
n+1

:

and the expression for the 2�norm of the di�erence follows immediately.

Using w(x) = 1 on [�1; 1] we know that

'3(x) = x3 � 5
3x:

so the best approximation to x3 is the polynomial 5
3x. The norm of the

error is given by

kx3 � p2k22 =

Z 1

�1

[x3 � 5
3x]

2dx

= 152=189:

Notice that in this example cjj = 1 for every j.
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Solution to Exercise 9.9

The proof is by induction, but we shall not �ll in all the details. The

polynomial 'k(x) is constructed by writing

'k(x) = xk � a0'0(x) � : : :� ak�1'k�1(x);

where

aj =

R a
�a
w(x)xk'j(x)dxR a

�a
w(x)['j (x)]2dx

:

Suppose that the required result is true for polynomials of degree less

than k. Since w(x) is an even function, aj is zero whenever j and k

have opposite parity. Thus in a polynomial of odd degree all the even

coeÆcients are zero, and in a polynomial of even degree all the odd

coeÆcients are zero. This gives the required result.

The coeÆcients 
j are given by


j =

R a
�a
w(x)f(x)'j (x)dxR a

�a w(x)['j (x)]
2dx

:

Evidently 
j is zero if f(x) is an even function and j is odd, since we

have just shown that 'j is then an odd function. Similarly if f(x) is an

odd function.
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Solution to Exercise 9.10

By de�nition H is an odd function, so by the results of Exercise 9 the

polynomial of best approximation of degree 0 is just

p0(x) = 0;

and the polynomials of best approximation of degrees 1 and 2 are the

same. Moreover p1 has the form

p1(x) = 
1'1(x):

The orthogonal polynomials in this case are the Legendre polynomials,

so '1(x) = x. Hence


1 =

R 1
�1H(x)'1(x)dxR 1
�1
['1(x)]2dx

=
2
R 1
0 xdxR 1

�1
x2dx

=
1

2=3

=
3

2
:

Hence the polynomials of best approximation are

p1(x) = p2(x) =
3
2x:
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Solution to Exercise 10.1

We saw in Exercise that the sequence of orthogonal polynomials for

the weight function � lnx on [0; 1] begins with

'0(x) = 1; '1(x) = x� 1
4 ; '2(x) = x2 � 5

7x+
17
252 :

For n = 0 there is just one quadrature point, the zero of '1(x), which

is at 1
4 . The corresponding quadrature weight is

W0 =

Z 1

0

� lnx dx = 1:

For n = 1 the two quadrature points are the zeros of '1(x), which are

x0 =
5
14 � 1

42

p
106; x1 =

5
14 +

1
42

p
106:

The corresponding weights are

W0 =

Z 1

0

� lnx (x � x1)
2=(x0 � x1)

2 dx = 1
2 +

9
424

p
106

and

W1 =
1
2 � 9

424

p
106:

Note that in this case a good deal of heavy algebra is saved by de-

termining the weights by direct construction, requiring the quadrature

formula to be exact for polynomials of degrees 0 and 1. This leads to

the two equations

W0 +W1 =

Z
� lnx dx = 1

W0x0 +W1x1 =

Z
� lnxx dx = 1

4 :

Solution of these equations gives the same values as above for W0 and

W1.
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Solution to Exercise 10.2

The Gauss quadrature formulaZ b

a

w(x)f(x)dx =

nX
k=0

Wkf(xk)

is exact when f(x) is any polynomial of degree 2n + 1. It is therefore

exact for the polynomial Lk(x), which has degree n. Since Lk(xk) = 1

and Lk(xj) = 0 for k 6= j, this shows thatZ b

a

w(x)Lk(x)dx =Wk :
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Solution to Exercise 10.3

The �rst two of the sequence of orthogonal polynomials for the weight

function w(x) = x on the interval [�1; 1] are easily found to be

'0(x) = 1

and

'1(x) = x� c;

where

c =

Z 1

0

xxdx

�Z 1

0

x dx = 2=3:

Hence the Gauss quadrature formula for n = 0 with this weight func-

tion on [0; 1] has quadrature point 2=3 and weight

W0 =

Z 1

0

x dx = 1=2:

The error of this quadrature formula, for a function with a continuous

second derivative, is given by Theorem 10.1 as

f 00(�)

2!

Z 1

0

x(x� 2=3)2 dx = 1
72f

00(�):

This gives the required result.
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Solution to Exercise 10.4

We know that the Chebyshev polynomials Tr(x) form an orthogonal

system with weight function w(x) = (1�x2)�1=2 on the interval [�1; 1].
Hence the quadrature points xj for n = 0 are the zeros of Tn+1(x), which

are

xj = cos[(2j + 1)�=(2n+ 2)]; j = 0; : : : ; n:

Suppose that for some value of n

nX
j=0

cos(2j + 1)� =
sin(2n+ 2)�

2 sin �
:

Then

n+1X
j=0

cos(2j + 1)� =
sin(2n+ 2)�

2 sin �
+ cos(2n+ 3)�

=
sin(2n+ 2)� + 2 sin � cos(2n+ 3)�

2 sin �

=
sin(2n+ 4)�

2 sin �
;

so the same result is true with n replaced by n+1. The result is trivially

true for n = 0, so it holds for all positive integer n.

If � = p�, where p is an integer, then

nX
j=0

cos(2j + 1)p� =

nX
j=0

(�1)p = (�1)p(n+ 1):

Hence
nX

j=0

cos k(2j + 1)�=(2n+ 2) =

�
0 k = 1; : : : ; n

n+ 1 k = 0:

which means that
nX

j=0

Tk(xj) = 0; k = 1; : : : ; n:

But Tk is orthogonal to T0 for k > 0, soZ 1

�1

(1� x2)�1=2Tk(x)dx = 0; k = 1; : : : ; n:
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Moreover
nX

j=0

T0(xj) = n+ 1

and Z 1

�1

(1� x2)�1=2T0(x)dx = �:

Putting these together we �nd that

1

n+ 1

nX
j=0

Tk(xj) =
1

�

Z 1

�1

(1� x2)�1=2Tk(x)dx:

Thus the quadrature formula with weight function w(x) = (1� x2)�1=2

on the interval [�1; 1], with quadrature points and weights

xj = cos(2j + 1)�=(2n+ 2); Wj = �=(n+ 1); k = 0; : : : ; n

is exact for the polynomials Tk(x); k = 0; : : : ; n. It is therefore exact for

every polynomial of degree n, and because of the choice of the quadrature

points xj it is also exact for every polynomial of degree 2n+ 1.
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Solution to Exercise 10.5

Using the same notation as in Section 10.5, write

�(x) =

nY
k=1

(x � x�k)
2:

This is evidently a polynomial of degree 2n, and hence the quadrature

formula Z b

a

w(x)�(x)dx =W0�(a) +

nX
k=1

Wk�(xk)

is exact. But by the de�nition �(xk) = 0; k = 1; : : : ; n, so thatZ b

a

w(x)�(x)dx =W0�(a);

Since w(x) and �(x) are positive on [a; b], it follows that W0 > 0.
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Solution to Exercise 10.6

By integration by partsZ 1

0

e�xxL0j(x)pr(x)dx =
�
e�xxpr(x)Lj(x)

�1
0

�
Z 1

0

e�xLj(x)[�xpr(x) + pr(x) + xp0r(x)]dx

=

Z 1

0

e�xLj(x)xpr(x)dx

�
Z 1

0

e�xLj(x)[pr(x) + xp0r(x)]dx:

Since pr(x) + xp0r(x) is a polynomial of degree r, and r < j, the last

term is zero by the orthogonality properties of the Laguerre polynomials

Lj(x). This gives the required result, and shows that the polynomials

de�ned by

'j(x) = Lj(x)� L0j(x)

form an orthogonal system for the weight function w(x) = e�xx on the

interval [0;1].

The Radau quadrature formula (10.27) thus givesZ 1

0

e�xp2n(x)dx =W0p2n(0) +
nX

k=1

Wkp2n(xk)

where the quadrature points xk; k = 1; : : : ; n are the zeros of the poly-

nomial Ln(x)�L0n(x). From Exercise 5 we have L1(x) = 1� x, so that

L1(x) � L01(x) = 2� x, which gives the quadrature point x1 = 2.

For the Gauss quadrature formula with weight function w(x) = xe�x

the corresponding weight is

W �
1 =

Z 1

0

xe�x = 1:

Hence using (10.28) we have

W1 =W �
1 =x

�
1 = 1=2;

and

W0 = 1� 1=2 = 1=2:

Therefore Z 1

0

e�xp2(x)dx = 1
2p2(0) +

1
2p2(2):
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Solution to Exercise 10.7

If we divide the polynomial p2n�1(x) by the polynomial (x�a)(b�x),
which has degree 2, the quotient is a polynomial of degree 2n � 3, and

the remainder �(x) has degree 1. This remainder can then be written in

the form �(x) = r(x � a) + s(x� b).

Using a similar notation to that of Section 10.5, we now writeZ b

a

w(x)p2n�1(x)dx =

Z b

a

w(x)(x�a)(b�x)q2n�3(x)dx+
Z b

a

w(x)�(x)dx:

Now let x�k;W
�
k ; k = 1; : : : ; n� 1 be the quadrature points and weights

respectively for a Gauss quadrature formula using the modi�ed weight

function w(x)(x�a)(b�x) over the interval [a; b]. This modi�ed weight

function is non-negative on [a; b], and the quadrature formula is exact

for every polynomial of degree 2n� 3.

Hence Z b

a

w(x)(x � a)(b� x)q2n�3(x) =

n�1X
k=1

W �
k q2n�3(x

�
k);

so thatZ b

a

w(x)p2n�1(x)dx =
n�1X
k=1

W �
k

x�k � a)(b� x�k)
p2n�1(x

�
k)

+

Z b

a

w(x)�(x)dx �
n�1X
k=1

W �
k

�(x�k)

(x�k � a)(b� x�k)

NowZ b

a

w(x)�(x)dx = r

Z b

a

w(x)(x � a)dx+ s

Z b

a

w(x)(b � x)dx;

and

�(x�k)

(x�k � a)(b� x�k)
=

r

b� x�k
+

s

x�k � a
:

It follows from the de�nitions of �(x); r and s that

r = p2n�1(b)=(b� a); s = p2n�1(a)=(b� a):

We have therefore constructed the Lobatto quadrature formulaZ b

a

w(x)f(x)dx =W0f(a) +

n�1X
k=1

Wkf(xk) +Wnf(b);
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which is exact when f is any polynomial of degree 2n�1. The quadrature
points are xk = x�k, and the weights are

Wk =
W �

k

(x�k � a)(b� x�k)
; k = 1; : : : ; n� 1;

and

W0 =

Z b

a

w(x)(b � x)dx �
n�1X
k=1

Wk(b� xk);

Wn =

Z b

a

w(x)(x � a)dx�
n�1X
k=1

Wk(xk � a):

The weights wk; k = 1; : : : ; n�1 are clearly positive, since the weights

W �
k are positive.

To show that W0 is positive, we apply the quadrature formula to the

polynomial

P (x) = (b� x)

n�1Y
k=1

(x� xk)
2:

This is a polynomial of degree 2n�1, so the quadrature formula is exact.

The polynomial P (x) vanishes at the points xk; k = 1; : : : ; n � 1, and

at b, so we �nd that Z b

a

w(x)P (x)dx =W0P (a):

This shows that W0 � 0, since P (x) and w(x) are non-negative on [a; b].

The proof that Wn is positive is similar.
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Solution to Exercise 10.8

We use direct construction, using the condition that the quadrature

formula must be exact for polynomials of degree 3. This gives the con-

ditions

A0 +A1 +A2 =

Z 1

�1

dx = 2

�A0 +A1x1 +A2 =

Z 1

�1

xdx = 0

A0 +A1x
2
1 +A2 =

Z 1

�1

x2dx = 2=3

�A1 +A1x
3
1 +A2 =

Z 1

�1

x3dx = 0:

From the second and fourth equation we �nd that A1x1(1� x21) = 0, so

that either x1 = 0 or x1 = 1 or A1 = 0. Since the quadrature points

must be distinct we reject the possibility that x1 = 1. From the �rst

and third equations we �nd that

A1(1� x21) = 4=3;

so that A1 cannot be zero. We therefore have x1 = 0 and A1 = 4=3. It

is then easy to �nd that A0 = A2 = 1=3, and the quadrature formula is

Simpson's rule.
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Solution to Exercise 10.9

Using the given notation, and writing c = b� a,

I(m) =
b� a

m

�
1
2f(a) + f(a+ 1

mc) + : : :+ f(a+ m�1
m c) + 1

2f(b)
�
(2.1)

S(m) =
b� a

6m
[f(a) + 4f(a+ 1

2mc) + 2f(a+ 1
mc) + 4f(a+ 3

2mc) + : : :

+2f(a+ m�1
m c) + 4f(a+ 2m�1

2m c) + f(b)]:

M(m) =
b� a

m
[f(a+ 1

2mc) + : : :+ f(a+ 2m�1
2m c)]: (2.2)

Hence

2I(2m)� I(m) = 2
b� a

2m
[ 12f(a) + f(a+ 1

2mc) + f(a+ 1
mc)

+f(a+ 3
2mc) + : : :+ 2m�1

2m c) + 1
2f(b)]

�b� a

m

�
1
2f(a) + f(a+ 1

mc) + : : :+ 1
2f(b)

�
=

b� a

m
[f(a+ 1

2mc) + : : :+ f(a+ 2m�1
2m c)]

= M(m):

In the same way

4
3 I(2m)� 1

3I(m) = 4
3

b� a

2m
[ 12f(a) + f(a+ 1

2mc) + f(a+ 1
mc)

+f(a+ 3
2mc) + : : :+ 2m�1

2m c) + 1
2f(b)]

� 1
3

b� a

m

�
1
2f(a) + f(a+ 1

mc) + : : :+ 1
2f(b)

�
=

b� a

6m
[f(a) + 4f(a+ 1

2mc) + 2f(a+ 1
mc) +

: : :+ 4f(a+ 2m�1
2m c) + f(b)]

= S(m):

Finally, using these relations,

2
3M(m) + 1

3I(m) = 4
3I(2m)� 2

3I(m) + 1
3I(m)

= 4
3I(2m)� 1

3I(m)

= S(m):
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Solution to Exercise 11.1

Suppose that on the interval [a; b] the knots are at

a = x0 < x1 < : : : < xm = b:

On each of the m intervals [xi; xi+1] the spline is a polynomial of degree

n; the spline is therefore determined by m(n + 1) independent coeÆ-

cients. On each of these intervals the value of the polynomial is given

at the two ends; this gives 2m interpolation conditions. At each of the

internal knots x1; : : : ; xm�1 the derivatives of orders 1; 2; : : : ; n�1 must

be continuous; this gives (m� 1)(n� 1) smoothness conditions.

The number of additional conditions required to de�ne the spline

uniquely is therefore

m(n+ 1)� 2m� (m� 1)(n� 1) = n� 1:
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Solution to Exercise 11.2

(i) According to Theorem 11.1 applied on the interval [xi�1; xi],

f(x) � sL(x) =
1
2f

00(�)(x � xi�1)(x� xi) ; x 2 [xi�1; xi] :

But f 00(x) � 0, so sL(x) � f(x).

(ii) Similar to part (i), but using Theorem 6.4 with n = 1.

(iii) According to De�nition 11.2, the natural cubic spline must satisfy

the end conditions s002(x0) = s002(xm) = 0. The polynomial f does

not in general satisfy these conditions, so s2 and f are not in

general identical.
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Solution to Exercise 11.3

The quantities �i are determined by (11.7), which in this case become

h(�i�1 + 4�i + �i+1) = (6=h)f(i+ 1)3h3 � 2i3h3 + (i� 1)3h3g
= 36ih2; i = 1; : : : ;m� 1;

together with �0 = �m = 0.

Substituting f 00(xi) = 6ih for �i we see at once that the equations are

satis�ed. Moreover �0 = 0 as required, but f 00(xm) = 6mh = 6 6= 0, so

the �nal equation is not satis�ed. Hence these values do not satisfy all

the equations, and s2 is not identical to f .

However, if the two additional equations are replaced by �0 = f 00(0)

and �m = f 00(1) then all the equations determining �i are satis�ed. Since

the system of equations is nonsingular this means that �i = f 00(ih); i =

0; : : : ;m; hence s2 and f are identical,
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Solution to Exercise 11.4

By de�nition

kf � sk22 = kf �
X

�k'kk22

=

Z 1

0

[f(x)�
X
k

�k'k(x)]
2dx:

To minimise this we require that

@

@�j

�kf � sk22
�
= 0;

which gives

�2
Z 1

0

[f(x)�
X
k

�k'k(x)]'j(x)dx = 0; j = 0; : : : ;m:

This yields the required system of equations.

Now 'k(x) is nonzero only on the interval [xk�1; xk+1], and soZ 1

0

'i(x)'j (x) dx = 0 if ji� jj > 1:

Hence the matrix A is tridiagonal. The diagonal elements are given by

Aii =

Z 1

0

['i(x)]
2 dx

=

Z (i+1)h

(i�1)h

['i(x)]
2 dx

=

Z ih

(i�1)h

(x� (i� 1)h)2

h2
dx+

Z (i+1)h

ih

(x� (i+ 1)h)2

h2
dx

= h

Z 1

0

t2 dt+ h

Z 1

0

t2 dt

=
2

3
h; i = 1; : : : ;m� 1

after an obvious change of variable.

At the two ends the same argument shows that

A0;0 = Am;m =
1

3
h:

For the nonzero o�-diagonal elements we get in the same way

Ai;i+1 =

Z 1

0

'i(x)'i+1(x) dx
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=

Z (i+1)h

ih

(i+ 1)h� x

h
:
x� ih

h
dx

= h

Z 1

0

(1� t)tdt

=
1

6
h; i = 0; : : : ;m� 1;

and in the same way

Ai�1;i =
1

6
h; i = 1; : : : ;m:

The matrix A is evidently symmetric.

Hence all the elements of A are non-negative, and

2

3
h = Aii > Ai;i�1 +Ai;i+1 =

1

6
h+

1

6
h =

1

3
h; i = 1; : : : ;m� 1;

with

A0;0 > A0;1 and Am;m +Am;m�1:

These are the conditions required for the success of the Thomas algo-

rithm.
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Solution to Exercise 11.5

The elements of the vector b are

bi =

Z 1

0

x'i(x) dx

=

Z ih

(i�1)h

x
x � (i� 1)h

h
dx+

Z (i+1)h

ih

x
(i+ 1)h� x

h
dx

= h2
Z 1

0

(i� 1 + t) t dt+ h2
Z 1

0

(i+ 1)� t) t dt

= ih2; i = 1; : : : ;m� 1:

In the same way

b0 = h2
Z 1

0

(1� t)t dt =
1

6
h2:

Substituting the values �i = ih we getX
j

Aij jh =
1

6
h2[(i� 1) + 4i+ (i+ 1)]

= ih2

= bi;

and X
j

A0;jjh =
1

6
h2[0 + 1]

=
1

6
h2

= b0:

Thus the quantities �i = ih satisfy the system of equations, and the

solution is therefore s(xi) = �i = xi.

When f(x) = x2 we �nd in the same way that

bi =

Z 1

0

x2 'i(x) dx

= h3
Z 1

0

(j � 1 + t)2 t dt+ h3
Z 1

0

(j + 1� t)2 t dt

= h3(i2 + 1=6):
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Using �k = (kh)2 + Ch2 givesX
j

Aij�j =
1

6
h3[(i� 1)2 + 4i2 + (i+ 1)2 + 6C]

= h3[i2 + 1=3 + C]; i = 1; : : : ;m� 1;

so the equations are satis�ed if

h3[i2 + 1=3 + C] = bi = h3[i2 + 1=6]

i.e., if C = �1=6. A similar argument shows that this value of C also

satis�es the equations for i = 0 and i = m. Hence the solution of

the system of equations is �k = (kh)2 � h2=6, and so s(xk) = �k =

f(xk)� h2=6.
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Solution to Exercise 11.6

If x � a then (x � a)n+ = 0 and (x � a)n+1
+ = 0; if x > a then

(x� a)+ = (x� a). So in both cases

(x� a)n+ (x� a) = (x� a)n+1
+ :

From the de�nition

[(n+ 2)h� x]Sn(x� h) =

n+1X
k=0

(�1)k
�

n+ 1

k

�
[(n+ 2)h� x](x � h� kh)n+

=

n+2X
k=1

(�1)k�1
�

n+ 1

k � 1

�
[(n+ 2)h� x](x � kh)n+;

giving

xSn(x) + [(n+ 2)h� x]Sn(x� h)

=
n+1X
k=1

(�1)k
��

n+ 1

k

�
x�

�
n+ 1

k � 1

�
[(n+ 2)h� x]

�
(x� kh)n+

+

�
n+ 1

0

�
xn+ x+ (�1)n�1

�
n+ 1

n+ 1

�
[(n+ 2)h� x ](x � (n+ 2)h)n+

=

n+1X
k=1

(�1)k
�
n+ 2

k

�
(x� kh)n+1

+ + xn+1
+ + (�1)n+2(x� (n+ 2)h)n+1

+

= Sn+1(x);

where we have used the additive property of the binomial coeÆcient�
n+ 1

k

�
+

�
n+ 1

k � 1

�
=

�
n+ 2

k

�
:

Now to show that Sn(x) � 0; it is clear that S1(x) � 0 for all x.

Suppose that, for some positive integer k, Sk(x) � 0 for all x. Notice

that Sk(x) = 0 when x � 0, and when x � (k+1)h. It then follows that

xSk(x) � 0, and that [(k + 2)h� x]Sk(x) � 0. Thus Sk+1(x) � 0 for all

x, and the required result follows by induction.
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Solution to Exercise 11.7

The proof is by induction, starting from the fact that S1(x) is clearly

symmetric. Now suppose that, for some positive integer n, Sn(x) is

symmetric. Then use of the recurrence relation from Exercise 6 shows

that

Sn+1((n+ 2)h=2 + x) = [(n+ 2)h=2 + x]Sn((n+ 2)h=2 + x)

+[(n+ 2)h� (n+ 2)h=2� x]Sn((n+ 2)h=2 + x� h)

= [(n+ 2)h=2 + x]Sn((n+ 2)h=2 + x)

+[(n+ 2)h=2� x]Sn(nh=2 + x)

= [(n+ 2)h=2 + x]Sn((n+ 1)h=2 + x+ h=2)

+[(n+ 2)h=2� x]Sn((n+ 1)h+ x� h=2):

Using the symmetry of Sn(x) we now see that changing the sign of x

merely interchanges the two terms in this expression, leaving the sum

unchanged. Hence Sn+1(x) is symmetric, and so by induction every

Sn(x) is symmetric.
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Solution to Exercise 12.1

a)

jf(x; y)� f(x; z)j = 2x�4jy � zj � 2jy � zj
for all x 2 [1;1) and all y; z 2 R. The Lipschitz constant is therefore

L = 2.

b) By the Mean Value Theorem,

jf(x; y)� f(x; z)j = j@f
@y

(x; �)j jy � zj

where � lies between y and z. In our case,

@f

@y
(x; �) = e�x

2 1

1 + �2
� 1

e
;

for all x 2 [1;1) and all y; z 2 R. Therefore, the Lipschitz constant is

L = 1=e.

c)

jf(x; y)� f(x; z)j = (1 + e�jxj)

���� 2y

1 + y2
� 2z

1 + z2

����
= 2(1 + e�jxj)

j1� yzj
(1 + y2)(1 + z2)

jy � zj
� 2� 2� 1� jy � zj ;

for all x 2 (�1;1) and for all y; z 2 R. The Lipschitz constant is

therefore L = 4.
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Solution to Exercise 12.2

Observe that y(x) � 0 is the trivial solution to the initial value prob-

lem. To �nd nontrivial solutions to the initial value problem we separate

the variables (assuming now that y 6= 0):

y�
2m

2m+1 dy = dx :

Integrating this yields

y(x) =

�
x+ C

2m+ 1

�2m+1

;

which is a solution to the di�erential equation y0 = y2m=(2m+1) for any

choice of the constant C. Hence,

yb(x) =

8>>><
>>>:

�
x+b
2m+1

�2m+1

; x � �b
0 ; x 2 [�b; b]�

x�b
2m+1

�2m+1

; x � b

is a solution to the given initial value problem for any b � 0. Thus we

have in�nitely many solutions to the initial value problem.

This does not contradict Picard's Theorem, since f(x; y) = y2m=(2m+1)

does not satisfy a Lipschitz condition in any neighbourhood of a point

(x; 0) for any x 2 R. This can be seen by showing that the opposite of

the Lipschitz condition holds: for any L > 0 there exists (x; y) 6= (x; 0)

such that

jf(x; y)� f(x; 0)j = jy2m=(2m+1)j = jyj2m=(2m+1) > Ljyj :
Such is for example (x; y) with any x 2 R and

0 < jyj <
�
1

L

�2m+1

:
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Solution to Exercise 12.3

The solution to the initial value problem is

y(x) = 1 +
p+ q

p
(epx � 1) :

Picard's iteration has the form: y0(x) � 1,

yn+1(x) = 1+

Z x

0

(pyn(t)+q)dt = 1+qx+p

Z x

0

yn(t)dt ; n = 0; 1; 2; : : :

The function y0 is a polynomial of degree 0, and therefore, by induction,

yn is a polynomial of degree n. In particular,

y0(x) � 1 ;

y1(x) = 1 + (p+ q)x ;

y2(x) = 1 + (p+ q)x+ p(p+ q)
x2

2!
;

y3(x) = 1 + (p+ q)x+ p(p+ q)
x2

2!
+ p2(p+ q)

x3

3!
etc.

yn(x) = 1 +
p+ q

p

�
px+

(px)2

2!
+ : : :+

(px)n

n!

�

= 1 +
p+ q

p

"
nX

k=0

(px)k

k!
� 1

#
:

Passing to the limit as n!1, we have that

lim
n!1

yn(x) = 1 +
p+ q

p
(epx � 1) = y(x) ;

as required.
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Solution to Exercise 12.4

Euler's method for the initial value problem has the form

yn+1 = yn + hy1=5n ; n = 0; 1; 2; : : : ; y0 = 0 :

Hence yn = 0 for all n � 0. Therefore Euler's method approximates the

trivial solution y(x) � 0, rather than y(x) = (4x=5)5=4.

The implicit Euler method for the initial value problem is

yn+1 = yn + hy
1=5
n+1 ; n = 0; 1; 2; : : : ; y0 = 0 :

Put yn = (Cnh)
5=4; then,

C
5=4
n+1 � C

1=4
n+1 = C5=4

n ; n � 0 :

y0 = 0 implies that C0 = 0. Thus, C
5=4
1 � C

1=4
1 = C

1=4
1 (C1 � 1) = 0,

which means that either C1 = 0 or C1 = 1. Taking C1 = 1, we shall

prove by induction the existence of Cn > 1 for all n � 2 such that

yn = (Cnh)
5=4 is a solution of the implicit Euler scheme.

We begin by observing that

C
1=4
n+1((C

1=4
n+1)

4 � 1) = (C1=4
n )5 :

Putting t = C
1=4
n+1, this gives the polynomial equation

p(t) � t(t4 � 1)� (C1=4
n )5 = 0 :

Suppose that Cn � 1 for some n � 1 (this is certainly true for n = 1).

As p(1) < 0 and limt!+1 p(t) = +1, the polynomial p has a root, t�,

say, in the interval (1;1); therefore, Cn+1 = t4� > 1. By induction, then,

Cn > 1 for all n � 2.
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Solution to Exercise 12.5

The exact solution of the initial value problem is

y(x) =
1

2
x2e�5x :

The Euler approximation is

yn+1 = yn + h(xne
�5xn � 5yn) ; n = 0; 1; 2; : : : ; y0 = 0 :

Clearly, y1 = 0, y2 = h2e�5h, etc.

yn+1 = h2e�5h
n�1X
k=0

(k + 1)(e�5h)k(1� 5h)n�1�k

= h2e�5h(1� 5h)n�1
n�1X
k=0

(k + 1)

�
e�5h

1� 5h

�k

Taking n = N � 1 where h = 1=N , we have

yN =
1

N2
e�5=N

�
1� 5

N

�N�2 N�2X
k=0

(k + 1)

�
e�5=N

1� (5=N)

�k
:

Passing to the limit,

lim
N!1

yN = lim
N!1

1

N2
e�5=N

�
1� 5

N

�N�2 N�2X
k=0

(k + 1)

= e�5 lim
N!1

1

N2

N(N � 1)

2

=
1

2
e�5

= y(1) ;

as required.
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Solution to Exercise 12.6

a) The truncation error of Euler's method is

Tn =
y(xn+1)� y(xn)

h
�f(xn; y(xn)) = y(xn+1)� y(xn)

h
�y0(xn) = 1

2
hy00(�n)

for some �n 2 (xn; xn+1). In our case, y0 = ln ln(4 + y2). Therefore,

y00 =
d

dx
y0 =

d

dx
ln ln(4+y2) =

1

ln(4 + y2)

1

4 + y2
2yy0 =

ln ln(4 + y2)

ln(4 + y2)

2y

4 + y2
;

and hence jy00(x)j � 1� 1
2 = 1

2 . Thus, jTnj � 1
4h.

b) We have

yn+1 = yn + hf(xn; yn) ;

y(xn+1) = y(xn) + hf(xn; y(xn)) + hTn :

By subtraction and using a Lipschitz condition for f(x; y) = ln ln(4+y2),

with Lipschitz constant L, and letting en = y(xn)� yn, we have e0 = 0

and

jen+1j � jenj+ hLjenj+ hjTnj ; n = 0; 1; : : : ; N � 1 :

To calculate the Lipschitz constant of f , note that by the Mean Value

Theorem,

jf(x; y)� f(x; z)j = j@f
@y

(x; �)j jy � zj

for some � which lies between y and z. In our case,

@f

@y
=

1

ln(4 + y2)

2y

4 + y2

and therefore ����@f@y
���� � 1

ln 4
� 1

2
:

Hence, L = 1=(2 ln4).

c) From part b) we have e0 = 0 and

jen+1j � jenj+ hLjenj+ hjTnj ; n = 0; 1; : : : ; N � 1 :

Therefore, letting T be such that jTnj � T for all n � 0 (e.g., T = 1
4h),

je1j � hT ;

je2j � (1 + hL)hT + hT ;

je3j � (1 + hL)2hT + (1 + hL)hT + hT ;
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etc.

jenj � (1 + hL)n�1hT + : : :+ hT = hT
�
(1 + hL)n�1 + : : :+ 1

	
= hT

(1 + hL)n � 1

1 + hL� 1
=
T

L
[(1 + hL)n � 1] � T

L

�
(ehL)n � 1

�
=
T

L

�
enhL � 1

� � T

L
(eL � 1) ;

as in our case nh � Nh = 1 for all n = 0; 1; : : : ; N � 1. This gives,

max
0�n�N

jy(xn)� ynj � h

4
� (2 ln 4)� (e1=(2 ln 4) � 1) = h� 0:30103067384

which is less than 10�4 provided that N = 1=h � 3011 = N0.
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Solution to Exercise 12.7

The truncation error is

Tn =
y(xn+1)� y(xn)

h
� 1

2
h (f(xn+1; y(xn+1)) + f(xn; y(xn))) :

Using repeated integration by parts,Z xn+1

xn

(x� xn+1)(x� xn)y
000(x)dx = (x� xn+1)(x� xn)y

00(x) jx=xn+1x=xn

�
Z xn+1

xn

(2x� xn � xn+1)y
00(x)dx

= �
Z xn+1

xn

(2x� xn � xn+1)y
00(x)dx

� (2x� xn � xn+1)y
0(x) jx=xn+1x=xn

+

Z xn+1

x=xn

2y0(x)dx

= �(xn+1 � xn)y
0(xn+1) + (xn � xn+1)y

0(xn) + 2[y(xn+1)� y(xn)] :

Therefore,

y(xn+1)�y(xn) = h

2
[y0(xn+1)+y

0(xn)]�1

2

Z xn+1

xn

(xn+1�x)(x�xn)y000(x)dx :

Using the Integral Mean Value Theorem on the right-hand side,

y(xn+1)�y(xn) = h

2
[y0(xn+1)+y

0(xn)]�1

2
y000(�n)

Z xn+1

xn

(xn+1�x)(x�xn)dx

with �n 2 (xn; xn+1). Now, using the change of variable x = xn + sh,Z xn+1

xn

(xn+1�x)(x�xn)dx = h3
Z 1

0

(1�s)sds = h3
Z 1

0

(s�s2)ds = 1
6h

3 :

Thus, we have

y(xn+1)� y(xn) =
h

2
[f(xn+1; y(xn+1)) + f(xn; y(xn))] � 1

12
h3y000(�n) ;

with �n 2 (xn; xn+1). Hence,

Tn = � 1

12
h2y000(�n) :

In particular,

jTnj � 1

12
h2M ;

where M = max�2R jy000(�)j.
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To derive a bound on the global error en = y(xn)� yn, note that

y(xn+1) = y(xn) +
h

2
[f(xn+1; y(xn+1)) + f(xn; y(xn))] + hTn ;

yn+1 = yn +
h

2
[f(xn+1; yn+1) + f(xn; yn)] :

Subtracting and using a Lipschitz condition on f , we have

jen+1j � jenj+ h

2
(Ljen+1j+ Ljenj) + hjTnj

and therefore,

jen+1j � jenj+ h

2
(Ljen+1j+ Ljenj) + 1

12
h3M :

This can be rewritten as follows:

jen+1j �
�
1 + 1

2hL

1� 1
2hL

�
jenj+

1
12h

3M

1� 1
2hL

; n = 0; 1; 2; : : : ;

with e0 = 0 (assuming that 0 < h < 1=L). By induction, this implies

that

jenj � h2M

12L

"�
1 + 1

2hL

1� 1
2hL

�n
� 1

#
:
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Solution to Exercise 12.8

We shall perform a Taylor series expansion of the truncation error

Tn =
y(xn+1)� y(xn)

h
� 1

2 [f(xn; y(xn)) + f(xn+1; y(xn) + hf(xn; y(xn)))]

=
y(xn+1)� y(xn)

h
� 1

2 [y
0(xn) + f(xn+1; y(xn) + hy0(xn))]

= y0(xn) +
1
2hy

00(xn) +
1
6h

2y000(xn) +O(h3)
� 1

2fy0(xn) + f(xn; y(xn)) + hfx(xn; y(xn)) + hy0(xn)fy(xn; y(xn))

+ 1
2 [h

2fxx(xn; y(xn)) + 2h2y0(xn)fxy(xn; y(xn)) + h2(y0(xn))
2fyy(xn; y(xn))]g+O(h3)

= 1
6h

2[fy(fx + fyf)� 1
2 (fxx + 2fxyf + fyyf

2)] jx=xn +O(h3)
where, in the transition to the last line, we used that

y0 = f ;

y00 = fx + fyy
0 = fx + fyf ;

y000 = fxx + fxyy
0 + fyy

00 + (fxy + fyyy
0)y0

= fxx + 2fxyf + fxfy + f(fy)
2 + fyyf

2 :
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Solution to Exercise 12.9

The classical 4th-order Runge{Kutta method is

yn+1 = yn +
1
6h(k1 + 2k2 + 2k3 + k4)

where, in our case,

k1 = f(xn; yn) = �yn

k2 = f(xn +
1
2h; yn +

1
2hk1)

= �(yn +
1
2�hyn) = �yn +

1
2�

2hyn

k3 = f(xn +
1
2h; yn +

1
2hk2)

= �(yn +
1
2�hyn +

1
4�

2h2yn)

= �yn +
1
2�

2hyn +
1
4�

3h2yn

k4 = f(xn + h; yn + hk3)

= �(yn + �hyn +
1
2�

2h2yn +
1
4�

3h3yn)

= �yn + �2hyn +
1
2�

3h2yn +
1
4�

4h3yn :

Therefore,

yn+1 =
�
1 + (�h) + 1

2 (�h)
2 + 1

6 (�h)
3 + 1

24 (�h)
4
�
yn :

On the other hand, for the exact solution,

y(xn+1) = e�xn+1 = e�xne�h = e�hy(xn) ;

and therefore,

y(xn+1) =
�
1 + (�h) + 1

2 (�h)
2 + 1

6 (�h)
3 + 1

24 (�h)
4 + : : :

�
y(xn) :

The factor multiplying yn in the numerical method coincides with the

factor multiplying y(xn) in the exact solution, up to terms of order

O(h4).
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Solution to Exercise 12.10

Taylor series expansion of the truncation error yields

Tn = (1� �� �)y0(xn) + h
�
1
2 � �


�
y00(xn) +

1
6h

2y000(xn)

�1

2
h2�
2(fxx + 2y0fxy + (y0)2fyy) jx=xn +O(h3) :

For consistency, we require that � + � = 1. For second order accuracy,

we demand, in addition, that �
 = 1
2 .

Suppose that �+� = 1 and �
 = 1
2 and apply the resulting numerical

method to y0 = y, y(0) = 1 whose exact solution in y(x) = ex. Then,

Tn = 1
6h

2exn � 1
2h

2�
2(0 + 0 + 0) = 1
6h

2exn

which cannot be made equal to zero for any choice of �, � and 
. There-

fore, there is no choice of these parameters for which the order of the

method exceeds 2.

Suppose that � + � = 1 and �
 = 1
2 , and apply the method to

y0 = ��y, y(0) = 1, where � > 0. Thus, y0 = 1 and

yn+1 = (1� �h+ 1
2 (�h)

2)yn n = 0; 1; : : : :

Therefore,

yn = (1� �h+ 1
2 (�h)

2))n ; n = 0; 1; : : : :

The sequence (yn) is bounded if, and only if,

j1� �h+ 1
2 (�h)

2j � 1

which holds, if and only if, 0 < h � 2=�. Now, assuming this restriction

on h,

y(xn)� yn = e��xn � (1� �h+ 1
2 (�h)

2)n

= (e��h)n � (1� �h+ 1
2 (�h)

2)n

=
�
e��h � (1� �h+ 1

2 (�h)
2
�

� �(e��h)n�1 + (e��h)n�2(1� �h+ 1
2�

2h2) + : : :+ (1� �h+ 1
2�

2h2)n�1
�
:

Each of the n terms in the last line is bounded by 1, and therefore

j(e��h)n�1+(e��h)n�2(1��h+ 1
2�

2h2)+: : :+(1��h+ 1
2�

2h2)n�1j � n :

On the other hand, (for example, by the Leibniz criterion for the re-

mainder in a convergent alternating series)

je��h � (1� �h+ 1
2 (�h)

2j � 1
6 (�h)

3
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and therefore,

jy(xn)� ynj � 1
6 (h�)

3n = 1
6�

3h2xn

where xn = nh, n � 0.



149

Solution to Exercise 12.11

For this method, �3 = 1, �2 = �, �1 = ��, �0 = �1, �3 = 0, �2 = �,

�1 = �, �0 = 0. Therefore,

C0 = 0 ;

C1 = 3 + �� 2� ;

C2 = 9
2 +

3�
2 � 3� ;

C3 = 27
6 + 7�

6 � 5�
2 ;

C4 = 81
24 +

51�
24 � 9�

6 ;

C5 = 243
120 +

31�
120 � 17�

24 :

Setting C1 = 0 implies that � � 2� = �3 and therefore C2 = 0 also.

Setting C3 = 0 implies that 7�� 15� = �27. Solving the linear system

�� 2� = �3, 7�� 15� = �27 gives � = 9, � = 6; with this choice, we

have C0 = C1 = C2 = C3 = 0, and also, C4 = 0 and C5 = 1=10.

Therefore, with � = 9, � = 6 the method is 4th-order accurate. For

such � and �, the �rst characteristic polynomial of the method is

�(z) = z3 + 9(z2 � z)� 1 = (z � 1)(z2 + 10z + 1)

which has the roots z1 = 1, z2=3 = �5�p24. Since the Root Condition
is violated by z3, the method is not zero-stable.
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Solution to Exercise 12.12

For this method, �3 = 1, �2 = 0, �1 = b, �0 = a, �3 = 0, �2 = 1,

�1 = 0, �0 = 0. These give

C0 = 1 + b+ a ;

C1 = 2 + b :

Setting C0 = 0, C1 = 0, to achieve consistency of the method, implies

that a = 1, b = �2. Next,

C2 =
9 + b

2
� 2 = 7

2 � 2 = 3
2 6= 0 :

Therefore, the method is consistent and at most �rst order accurate.

To investigate the zero-stability of the method for a = 1 and b = �2,
consider the �rst characteristic polynomial of the method:

�(z) = z3 � 2z + 1 = (z � 1)(z2 + z � 1) :

This has roots

z1 = 1 ; z2=3 =
1
2 (�1�

p
5)

one of which (z3) is outside the closed unit disc. By the Root Condi-

tion, the method is not zero-stable. Further, by Dahlquist's Equivalence

Theorem the method is not convergent.

Let us apply the method to y0 = 0, y(0) = 1 whose exact solution is

y(x) � 1. Then,

yn+3 � 2yn+1 + yn = 0 :

The general solution of this third-order linear recurrence relation is

yn = A � 1n +B �
 
�1 +p

5

2

!n

+ C �
 
�1�p5

2

!n

;

where A, B, C are arbitrary constants. For suitable initial conditions

A = 0, B = 0, C = 1, and therefore

yn = (�1)n
 
1 +

p
5

2

!n

;

which means that the numerical solution oscillates between positive and

negative values whose absolute value increases exponentially with n,

exhibiting `zero-instability'. Clearly, the solution bears no resemblance

to the exact solution y(x) � 1.
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Solution to Exercise 12.13

The �rst characteristic polynomial of the method is �(z) = z2 � �,

� > 0, whose two roots are z1=2 = �p�. To ensure zero-stability (using
the Root Condition), we need to assume that 0 < � � 1.

To explore the accuracy of the method, note that �2 = 1, �1 = 0,

�0 = ��, �2 = 1
3 , �1 =

4
3 , �0 =

1
3 . Therefore,

C0 = 1� � = 0 with � = 1 :

With � = 1 we also have C1 = C2 = C3 = C4 = 0, while C5 = � 1
90 .

Therefore, the method is 4th-order accurate.

Since the method is zero-stable and 4th-order accurate (in particular

it is consistent) when � = 1, it follows from Dahlquist's Equivalence

Theorem that it is 4th order convergent when � = 1.
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Solution to Exercise 12.14

Let us explore the zero-stability of the methods.

a) �(z) = z � 1. This has only one root, z = 1. By the Root Condition,

the method is zero-stable.

b) �(z) = z2 + z � 1. This has roots z1 = 1 and z2 = �2. The second
root violates the Root Condition; the method is not zero-stable.

c) �(z) = z2 � 1. This has roots z1=2 = �1. By the Root Condition the

method is zero-stable.

d) �(z) = z2 � z = z(z � 1), whose roots are z1 = 0 and z2 = 1, so the

method is zero-stable.

e) �(z) = z2 � z = z(z � 1), so the method is zero-stable.

Let us explore the absolute stability of the methods a) and c).

a) The stability polynomial of the method is �(z; �h) = z�1��h whose

only root is z1 = 1 + �h. For the method to be absolutely stable, it is

necessary and suÆcient that jz1j < 1, i.e., �1 < 1+ �h < 1. Hence, the

method is absolutely stable if, and only if, 0 < h < 2=(��).
c) Here �(z; �h) = z2 � 1� 1

3�h(z
2 + 4z + 1). Now �(z; �h) = 0 if, and

only if,

z2 � 4�h

3� �h
z � 3 + �h

3� �h
= 0 :

Note that since � < 0 and h > 0, we have 3� �h 6= 0:

Given a quadratic polynomial of the form z2 � az + b, for both roots

to lie in the open interval (�1; 1) it is necessary and suÆcient that

the polynomial is positive at z = 1 and z = �1, it is negative at the

stationary point z = a=2 (i.e., a2=4 � a2=2 + b = b � a2=4 < 0) and

�1 < a=2 < 1 (i.e., �2 < a < 2).

In our case, the �rst two requirements yield

1� 4�h

3� �h
� 3 + �h

3� �h
> 0 ;

1 +
4�h

3� �h
� 3 + �h

3� �h
> 0 ;

with � < 0. These inequalities yield the contradictory requirements that

3��h > 0 and 3��h < 0. The method is not absolutely stable for any

value of h > 0.
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Solution to Exercise 12.15

For this method, �2 = 1, �1 = �(1 + a), �0 = 1, �2 = (3 � a)=4,

�1 = 0, �0 = (1� 3a)=4.

With these values, C0 = 1�a is equal to zero if, and only if a = 1. Let

us suppose that a = 1. Then, C1 = C2 = C3 = 0 and C4 = �1=12 6= 0,

which means that the method is 3rd-order accurate when a = 1. For

a 6= 0 the method is not consistent.

To check zero stability, for a = 1, we consider the �rst characteristic

polynomial �(z) = z2 � 2z + 1 = (z � 1)2. This has double root z = 1

on the unit circle. The Root Condition implies that the method is not

zero-stable.

For absolute stability for a = 1, consider the stability polynomial

�(z; �h) = z2 � 2z + 1� 1
2�h(z

2 � 1). Proceeding as in part (c) of the

previous question, we �nd that there is no h > 0 for which the method

is absolutely stable.
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Solution to Exercise 12.16

We seek a method of the form

ayn+2 + byn+1 + cyn+1 = hfn+2 :

For this method, �2 = a, �1 = b, �0 = c, �2 = 1, �1 = 0, �0 = 0. We

demand that

C0 = a+ b+ c = 0 ;

C1 = 2a+ b� 1 = 0 ;

C2 = 4a
2 + b

2 � 2 = 0 :

Solving the resulting linear system for a, b, c gives

a = 3
2 ; b = �2 ; c = 1

2 :

This choice ensures that the method is 2nd-order accurate.

The �rst characteristic polynomial of the resulting method is �(z) =
3
2z

2�2z+ 1
2 which has roots z1 = 1 and z2 = 1=3. By the Root Condition

the method is zero-stable, and Dahlquist's Equivalence Theorem implies

that the method is 2nd-order convergent.

The stability polynomial of the method is

�(z; �h) = 3
2z

2 � 2z + 1
2 � �hz2 :

The roots of this have absolute value less than one if and only if

�(1; �h) > 0 ; �(�1; �h) > 0 ;

at the stationary point z0 = 2=(3� 2�h) where �0z(z0; �h) = 0 we have

�(z0; �h) < 0 and �1 < z0 < 1.

These requirements yield��h > 0, 4��h > 0, (1=2)�1=((3=2)��h)>
0, and �1 < 2=(3� 2�h) < 1, each of which holds for all h > 0 and all

� < 0. The method is absolutely stable for all h 2 (�1; 0).
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Solution to Exercise 12.17

The �-method has stability polynomial

�(z; �h) = z � 1� �h[(1� �) + �z]

whose only root is

z =
1 + �h(1� �)

1� �h�
;

where � = a + {b is a complex number with negative real part, a < 0.

Now,

jzj2 = (1 + ah(1� �))2 + b2h2(1� �)2

(1� ah�)2 + h2�2b2
:

We have jzj < 1 if, and only if,

2a

a2 + b2
< h(2� � 1) :

For the method to be A-stable we need this to be true for all � with

negative real part a, which is true if, and only if, 2� � 1 � 0, that is,

when 1
2 � � � 1.
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Solution to Exercise 12.18

The quadratic Lagrange interpolation polynomial of y is

p2(x) =
(x� xn+1)(x � xn+2)

(xn � xn+1)(xn � xn+2)
y(xn)

+
(x� xn)(x� xn+2)

(xn+1 � xn)(xn+1 � xn+2)
y(xn+1)

+
(x� xn)(x� xn+1)

(xn+2 � xn)(xn+2 � xn+1)
y(xn+2) :

Di�erentiation of this gives

p02(xn+2) =
1

2h
[3y(xn+2)� 4y(xn+1) + y(xn)] :

By expanding y(xn) and y(xn+1) into a Taylor series about xn+2 we get

p02(xn+2) = y0(xn+2) +O(h2) :
The truncation error of BDF2 is

Tn =
3y(xn+2)� 4y(xn+1) + y(xn)

2h
� f(xn+2; y(xn+2)) :

Noting that the last term is equal to y0(xn+2) and expanding each of

y(xn) and y(xn+1) into a Taylor series about xn+2, we get

Tn =
1

3
h2y000(�n)� 2

3
h2y000(�n) ;

where �n 2 (xn+1; xn+2) and �n 2 (xn; xn+2). Therefore Tn = O(h2).
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Solution to Exercise 12.19

The implicit Runge{Kutta method has the form

yn+1 = yn + h(b1k1 + b2k2)

where

k1 = f(xn + c1h; yn + a11k1h+ a12k2h) ;

k2 = f(xn + c2h; yn + a21k1h+ a22k2h) :

When applied to y0 = �y, we get

k1 = �(yn + a11k1h+ a12k2h) ;

k2 = �(yn + a21k1h+ a22k2h) :

Rearranging this,

(1� �a11h)k1 � �a12hk2 = �yn

��a21hk1 + (1� �a21h)k2 = �yn :

The matrix of this linear system is I � �hA, and the corresponding

determinant is � = det(I � �hA). In expanded form,

� = 1� �h(a11 + a22) + (�h)2(a11a22 � a12a21) :

Let us suppose that � 6= 0. Solving the linear system for k1 and k2 gives

k1 =
�yn(1 + �h(a12 � a22))

�
; k2 =

�yn(1 + �h(a21 � a11))

�
:

For the method with the given Butcher tableau,

c1 =
1
6 (3�

p
3) ; c2 =

1
6 (3 +

p
3) ;

b1 = b2 =
1
2

a11 =
1
4 ; a12 =

1
12 (3� 2

p
3) ;

a21 =
1
12 (3 + 2

p
3) ; a22 =

1
4 :

Therefore,

k1 = �yn(1� 1
6�
p
3)=�

k2 = �yn(1 +
1
6�
p
3)=�

which then gives

yn+1 = (1 +
�h

�
)yn
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with

� = 1� 1
2�h+

1
12 (�h)

2 :

Thus,

yn+1 =
1 + 1

2 (�h) +
1
12 (�h)

2

1� 1
2 (�h) +

1
12 (�h)

2
:

Writing the quadratic polynomials in the numerator and the denomina-

tor in factorised form, we have

yn+1 =
(�h+ 3 + {

p
3)(�h + 3� {

p
3)

(�h� 3� {
p
3)(�h � 3 + {

p
3)
yn :

The numerical solution will exhibit (exponential) decay for complex � =

a+ {b with negative real part a, a < 0, provided that����� (�h+ 3 + {
p
3)(�h+ 3� {

p
3)

(�h� 3� {
p
3)(�h� 3 + {

p
3)

�����
2

< 1 :

Writing p = 3 + {
p
3, this can be written as follows:����
�
�h+ p

�h� p

��
�h+ �p

�h� �p

�����
2

< 1 ;

The expression on the left can be rewritten as

j�hj2 + jpj2 + 2Re(p�h)

j�hj2 + jpj2 � 2Re(p�h)

j�hj2 + jpj2 + 2Re(p�h)

j�hj2 + jpj2 � 2Re(p�h)
� A+Re(X)

A�Re(X)

A+Re( �X)

A�Re( �X)

where A = j�hj2 + jpj2, and X = 2p�h.

Now,

A+Re(X)

A�Re(X)

A+Re( �X)

A�Re( �X)
< 1

if, and only if,

2A(Re(X) + Re( �X)) < 0 :

In our case p = 3 + {
p
3, � = a+ {b, so

Re(X) = Re(2p�h) = 2h(3a�
p
3b) ; Re( �X) = Re(2p�h) = 2h(3a+

p
3b)

which means that

Re(X) + Re( �X) = 12ha
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As A > 0 and Re(X) + Re( �X) = 12ha < 0, we deduce that

A+Re(X)

A�Re(X)

A+Re( �X)

A�Re( �X)
< 1

for all complex � with negative real part. Consequently,�����(�h+ 3 + {
p
3)(�h+ 3� {

p
3)

(�h� 3� {
p
3)(�h� 3 + {

p
3)

�����
2

< 1

for all complex � with negative real part. This implies that the method

is A-stable.
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Solution to Exercise 13.1

Expanding y(x+h) and y(x�h) in Taylor series and adding the results
gives

y(x+h)+y(x�h) = 2y(x)+h2y00(x)+
2

4!
h4yIV (x)+

1

6!
h6[yV I(�1)+y

V I(�2)];

where x� h < �2 < x < �1 < x+h. Since yV I is continuous, there is an

� such that

yV I (�1) + yV I(�2) = 2yV I(�); x� h < � < x+ h:

The required result is then immediate.
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Solution to Exercise 13.2

The matrix M has elements

Mjj =
2

h2
+ rj ; Mj;j�1 =Mj;j+1 = �1=h2:

Since r(x) > 0 this matrix satis�es the conditions of Theorem 3.6 since

the diagonal elements are positive, the o�-diagonal elements are nega-

tive, and in each row the diagonal element is at least as large as the sum

of the magnitudes of the o�-diagonal elements. Hence the matrix M is

monotone.

Now de�ne M� to be a matrix identical to M , except that each diag-

onal element is M�
jj = 2=h2. Then evidently M� is also monotone, and

since M �M�,

jjM�1jj1 � jjM��1jj1:
But we know from Exercise 4 that jjM�1jj1 � 1

8 .
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Solution to Exercise 13.3

To determine the local truncation we substitute the values of the exact

solution of the problem y(xj) in place of yj and �nd the residual in the

di�erence approximation. Since we are using the exact solution, we may

replace r(x)y(x)�f(x) by y00(x). Expanding in Taylor series and writing
xj�1 = x� h, xj+1 = x+ h, on assuming y000 is continuous we get

y(x� h) + y(x+ h)� 2y(x) = h2y00(x) +
1

3!
h3[y000(�1)� y000(�2)]

��1y
00(x� h) + �0y

00(x) + �1y
00(x+ h) = (��1 + �0 + �1)y

00

+h[���1y000(�3) + �1y
000(�4)];

from which the �rst result follows.

(ii) In the same way, when ��1 + �0 + �1 = 1, and assuming yIV is

continuous

y(x� h) + y(x+ h)� 2y(x) = h2y00(x) +
1

4!
h4[yIV (�1) + yIV (�2)]

��1y
00(x� h) + �0y

00(x) + �1y
00(x+ h) = y00 + h[���1y000(x) + �1y

000(x)]

+
1

2
h2[��1y

IV (�3) + �1y
IV (�4)];

(iii) When ��1 + �0 + �1 = 1, ��1 = �1 6= 1=12, we get on requiring

that yV I is continuous

y(x� h) + y(x+ h)� 2y(x) = h2y00(x) +
1

12
h4yIV (x)

+
1

6!
h6[yV I(��1 + yV I (�2)]

��1y
00(x� h) + �0y

00(x) + �1y
00(x+ h) = y00 + �1h

2yIV (x) +

�1
4!
h4[yV I(�3) + yV I(�4)]
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(iv) In the same way, when ��1 = �1 =
1
12 and �0 =

5
6 , now requiring

that yV III( is continuous,

y(x� h) + y(x+ h)� 2y(x) = h2y00(x) +
1

12
h4yIV (x)

+
2

6!
h6yV I(x)

+
1

8!
h8[yV III(��1) + yV III(�2)];

��1y
00(x� h) + �0y

00(x) + �1y
00(x+ h) = y00 +

1

12
h2yIV (x)

+
1

12

2

4!
h4yV I(x)

1

12

1

6!
h6[yV III(�3) + yV III(�4)]

from which the last result follows.
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Solution to Exercise 13.4

Taylor expansion, with integral form of the remainder, gives

y(x+ h) = y(x) + hy0(x) +
1

2!
h2y00(x) +

1

3!
h3y000(x)

+
1

4!
h4yIV (x) +

1

5!
h5yV (x)

+

Z h

0

(h� s)5

5!
yV I(x+ s)ds:

The expansion of y(x� h) is obtained by changing the sign of h, so the

integral term becomesZ �h

0

(�h� s)5

5!
yV I(x+ s)ds =

Z 0

�h

(h+ s)5

5!
yV I(x+ s)ds:

In the same way we obtain

y00(x+ h) = y00(x) + hy000(x) +
1

2!
h2yIV (x) +

1

3!
h3yV (x)Z h

0

(h� s)3

3!
yV I (x+ s)ds:

The expansion of y00(x � h) is similar, with the integral replaced byZ 0

�h

(h+ s)3

3!
yV I(x + s)ds:

Inserting these expressions into the expression for the truncation error,

only the integral terms are left, and we obtain

h2Tj = �
Z h

0

(h� s)5

5!
yV I(x+ s)ds

�
Z 0

�h

(h+ s)5

5!
yV I(x+ s)ds

+
1

12
h2
Z h

0

(h� s)3

3!
yV I(x+ s)ds

+
1

12
h2
Z 0

�h

(h+ s)3

3!
yV I(x+ s)ds:

Hence

h2Tj =

Z h

�h

G(s)yV I(xj + s)ds;
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as required, with G(s) = G(�s). Now G may be written

G(s) =
(h� s)3

360
[3(h� s)2 � 5h2]; 0 � s � h:

The factor (h � s)3 is non-negative on [0; h]. The quadratic factor has

a minimum at s = h, where the value is �5h2, and it takes the value

�2h2 at s = 0. Hence this factor is negative on (0; h). This shows that

G(s) � 0 on [�h; h]. The integral mean value theorem then shows that

ther exists a value of � 2 (�h; h) such that

h2Tj = �yV I(xj + �)

Z h

�h

G(s)ds:

A simple calculation shows thatZ h

�h

G(s)ds = 2

Z h

0

�
t5

5!
� h2

t3

72

�
dt = � h6

240
;

which is the required result.
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Solution to Exercise 13.5

The proof follows the same lines as that of Theorem 13.4, but with

two di�erences.

First, the operator L(') is now

L(')j = �'j�1 � 2'j + 'j+1

h2
+

1

12
[rj�1'j�1 + 10rj'j + rj+1'j+1]

= �aj'j�1 + bj'j � cj+1'j+1;

where

aj = 1=h2 � rj�1=12

bj = 2=h2 + 10rj=12

cj = 1=h2 � rj+1=12:

To apply the maximum principle we require that each of the coeÆcients

aj ; bj and cj is non-negative. This requires that h
2r(x) < 12 on [a,b].

The other di�erence is in the algebraic details. With the same de�ni-

tion of the function ' we now �nd that

L(')j = �8C + [rj�1'j�1 + 10rj'j + rj+1'j+1=12:

Since rj'j � 0 the same argument still applies. We can de�ne C = T=8,

and deduce that jej j � T=8. Using the exxpression for Tj obtained in

Exercise 4, this gives the required result.
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Solution to Exercise 13.6

The proof in the text has shown that ej + 'j � 0, for j = 0; 1; : : : ; n.

There are two �nal steps in the proof.

First, since C � 0 and D � 0 we see that

'j � E; j = 0; 1; : : : ; n:

This means that

ej � �E
= C(b� a)2 +D(b� a)

=
1

24
h2M4(b� a)2 +

1

6
h2M3(b� a):

The �nal step is to prove the same inequality for �ej . With the same

de�nitions it is easy to see that

L�(�e+ j + 'j) � 0; j = 0; 1; : : : ; n� 1:

The maximum principle then shows that

�ej + 'j � max(�e0 + '0;�en + 'n; 0);

moreover, en = 'n = 0. In the last part of the proof in the text we can

replace ej by �ej throughout, and the argument still holds. This shows

that �e0+'0 � 0. Hence �ej � �'j ; j = 0; 1; : : : ; n. As we have shown

that 'j � E, this means that

�ej � �E; j = 0; 1; n� 1:

Putting these two results together we get jej j � �E, which is the re-

quired result.
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Solution to Exercise 13.7

The function coshax evidently satisfy the di�erential equation. The

factor 1= cosha then ensures that it also satis�es the boundary condi-

tions. The problem is clearly symmetric about x = 0.

With the given function Yj we see that

Yj�1 � 2Yj + Yj+1

h2
=

cosh#(xj � h) + cosh#(xj + h)� 2 cosh#xj
h2 cosh#

=
2 cosh#xj(cosh#h� 1)

h2 cosh#
;

so that Yj is the solution of the di�erence approximation provided that

�2cosh#h� 1

h2
+ a2 = 0:

This is equivalent to

# = (1=h) cosh�1(1 + 1
2a

2h2):

It is also clear that Y0 = Yn = 1, so the boundary conditions are satis�ed.

Expanding in Taylor series we �nd that

cosh# = cosha� a3h2

24
sinha+O(h4);

cosh#x = coshax� a3xh2

24
sinh ax+O(h4);

cosh#x

cosh#
=

coshax

cosha
+
h2a3

24

coshax sinh a� x sinh ax cosha

(cosh(a)2
+O(h4):

The term in h2 has a maximum when its derivative vanishes. This leads

to either x = 0 or

tanh ax

ax
=

cosha

a sinh a� cosha
:

Now tanh a < a when a > 0, so the right hand side is negative, but the

left hand side is positive. Hence the only maximum is at x = 0, and

here the term in h2 is

1

24
h2a3 sinh a=(cosha)2 � a4

24
h2;

since tanh a � a and cosha � 1.

The truncation error is

Tj =
h2

12
yIV (�) =

h2

12

a4 coshax

cosha
� a4

12
h2
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Theorem 13.4 then shows that

jYj � y(xj)j � (b� a)2

8

a4

12
h2 =

a4

24
h2

also.
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Solution to Exercise 13.8

The analysis is the same as in the previous exercise, but with a2

replaced by �a2, or with a replaced by ia. The result is

y(x) =
cosax

cosa
;

Yj � y(xj) =
1

24
h2a3(cosax sin a� x sin ax cosa)=(cosa)2

+O(h4):

Theorem 13.4 cannot be applied to this problem, as it requires that

r(x) > 0; here r(x) = �a2 < 0. The analysis requires that cosa 6= 0;

if cosa = 0 the boundary value problem has no solution. Hence a must

not be an odd multiple of �=2.

Note also that it is more diÆcult to obtain a simple bound on the

term of order h2 in this case. In general it may have any number of

maxima and minima in [�1; 1], and the largest of them will not be at

x = 0.
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Solution to Exercise 13.9

Evidently the function y = sinm�x satis�es the di�erential equation

�y00 = m2�2y, and also satis�es the boundary conditions y(0) = y(1) =

0, when m is an integer.

The numerical approximation Yj = sinm�xj also satis�es the bound-

ary conditions, and

Yj�1 + Yj+1 = sinm�(xj � h) + sinm�(xj + h)

= 2 sinm�xj cosm�h

= 2Yj cosm�h:

Hence

�Æ
2Yj
h2

= �2 cosm�h� 2

h2
Yj = �Yj ;

showing that the di�erence equations are satis�ed, with

� =
2(1� cosm�h)

h2
:

Expanding in Taylor series gives

� =
2

h2
�
1
2 (m�h)

2 � 1
24 (m�h)

4 cos �
�

= m2�2 � 1
12m

4�4h2 cos �;

where �m�h < � < m�h. This gives

j�� �j � 1
12m

4�4h2:

The truncation error of the approximation is

Tj =
1
12h

2yIV = 1
12h

2m4�4yj +O(h4)

So the error bound in (13.23) gives

j�� �j �
1
12h

2m4�4jjyjj
jjyjj = 1

12h
2m4�4 +O(h4);

which agrees with the result just obtained.
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Solution to Exercise 14.1

(a)

v2(x) =

�Z x

a

1 � v0(t)dt
�2

�
Z x

a

12dt

Z x

a

jv0(t)j2dt

= (x� a)

Z x

a

jv0(t)j2dt

� (x� a)

Z b

a

jv0(t)j2dt

for all x 2 [a; b], using the Cauchy{Schwarz inequality. On integrating

both sides, Z b

a

jv(x)j2dx � 1

2
(b� a)2

Z b

a

jv0(x)j2dx ;

as required.

(b)

jv(x)j2 =

Z x

a

d

dt
[v(t)]2dt

= 2

Z x

a

v(t) v0(t)dt

� 2

�Z x

a

jv(t)j2dt
� 1

2
�Z x

a

jv0(t)j2dt
� 1

2

� 2

 Z b

a

jv(t)j2dt
! 1

2
 Z b

a

jv0(t)j2dt
! 1

2

= 2kvkL2(a;b) kv0kL2(a;b)
for all x 2 [a; b], and therefore

max
x2[a;b]

jv(x)j2 � 2kvkL2(a;b) kv0kL2(a;b) ;

as required.
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Solution to Exercise 14.2

(a) The weak formulation of the problem is: �nd u 2 H1
0(0; 1) such that

A(u; v) = `(v) for all v in H1
0(0; 1), where

A(u; v) =

Z 1

0

(u0v0 + uv)dx ;

`(v) =

Z 1

0

fvdx :

(b) To derive the weak formulation of the problem, multiply the di�er-

ential equation by an arbitrary function v 2 H1(0; 1), and integrate by

parts in the term involving u00v. Then,Z 1

0

(�u00 + u)vdx =

Z 1

0

(u0v0 + uv)dx� u0vjx=1
x=0

=

Z 1

0

(u0v0 + uv)dx� u0(1)v(1) + u0(0)v(0) :

Since we have no information about u0(0), we eliminate this term by

selecting v 2 H1(0; 1) such that v(0) = 0. Let us therefore de�ne

H1
E0(0; 1) = fv 2 H1(0; 1) : v(0) = 0g :

Hence, noting also that u0(1) = 1, we have thatZ 1

0

(�u00 + u)vdx =

Z 1

0

(u0v0 + uv)dx� v(1) 8v 2 H1
E0(0; 1) ;

and thereforeZ 1

0

(u0v0 + uv)dx = v(1) +

Z 1

0

fvdx 8v 2 H1
E0(0; 1) :

On observing that u needs to satisfy the same homogeneous boundary

condition at x = 0 as the one we have required for v, we conclude that

the weak formulation of the problem is: �nd u 2 H1
E0
(0; 1) such that

A(u; v) = `(v) for all v 2 H1
E0
(0; 1), where

A(u; v) =

Z 1

0

(u0v0 + uv)dx ;

`(v) = v(1) +

Z 1

0

fvdx :

(c) Proceeding in the same way as in part (b), we multiply the di�erential
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equation by v 2 H1(0; 1) and integrate by parts in the term involving

u00v. This yieldsZ 1

0

(u0v0 + uv)dx� u0(1)v(1) + u0(0)v(0) =

Z 1

0

fvdx

for all v 2 H1(0; 1). As �u0(1) = u(1)� 2 from the boundary condition

at x = 1, we can use this in the identity above; also, since we have no

information about u0(0), again we choose v 2 H1(0; 1) such that v(0) = 0

to eliminate the term involving u0(0). Thus, the weak formulation is:

�nd u 2 H1
E0
(0; 1) such that A(u; v) = `(v) for all v 2 H1

E0
(0; 1), where

A(u; v) = u(1)v(1) +

Z 1

0

(u0v0 + uv)dx ;

`(v) = 2v(1) +

Z 1

0

fvdx :

Uniqueness of weak solution. In each of the three examples, the weak

formulation of the problem has the same general form: �nd u 2 V such

that A(u; v) = `(v) for all v 2 V , with a suitable choice of the space V

(namely, V = H1
0(0; 1) in (a), and V = H1

E0
(0; 1) in parts (b) and (c)).

Suppose that there are two weak solutions u and ~u. Then, on sub-

traction, A(u� ~u; v) = 0 for all v 2 V . As u� ~u is an element of V , we

can take v = u� ~u, which gives

A(u� ~u; u� ~u) = 0 :

In (a) and (b) this meansZ 1

0

�j(u� ~u)0j2 + ju� ~uj2� dx = 0 ;

and in part (c)

ju(1)j2 +
Z 1

0

�j(u� ~u)0j2 + ju� ~uj2� dx = 0 ;

both of which imply that u� ~u � 0, i.e., u � ~u, and hence uniqueness.
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Solution to Exercise 14.3

The proof of Theorem 14.4 is identical to the proof of Theorem 14.1

on replacing u by uh, H1
E(a; b) by S

h
E, w 2 H1

E(a; b) by w
h 2 ShE, and

v 2 H1
0(a; b) by v

h 2 Sh0 throughout.
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Solution to Exercise 14.4

From Corollary 14.1,

ku� Ihuk2A � max
1�i�n

�
hi
�

�2
"
Pi +

�
hi
�

�2

Ri

#
nX
i=1

ku00k2L2(xi�1;xi)

� h2

�2

�
P +

h2

�2
R

�
ku00k2L2(a;b) :

By Ce�a's Lemma,

ku� uhkA � ku� IhukA � h

�

�
P +

h2

�2
R

�1=2

ku00kL2(a;b) :



177

Solution to Exercise 14.5

The �nite element approximation of the boundary value problem is:

�nd uh 2 Sh0 such that

p0

Z 1

0

(uh)0(vh)0dx+ r0

Z 1

0

uhvhdx =

Z 1

0

fvhdx 8vh 2 Sh0

where Sh0 = spanf'1; : : : ; 'n�1g. Seek

uh(x) =
n�1X
j=1

Uj'j(x)

and choose vh = 'i for i = 1; 2; : : : ; n� 1; hence,

p0

n�1X
j=1

Uj

Z 1

0

'0j'
0
idx+r0

n�1X
j=1

Uj

Z 1

0

'j'idx =

Z 1

0

f'idx ; i = 1; 2; : : : ; n�1 :

For ji� jj > 1 each of the integrals on the left-hand side of this identity

is equal to 0, since the supports of 'j and 'i are then disjoint. For

i = j � 1; j; j + 1, after calculating the integrals involved we have

�p0Ui�1 � 2Ui + Ui+1

h
+r0h

Ui�1 + 4Ui + Ui+1

6
=

Z 1

0

f'idx ; i = 1; 2; : : : ; n�1 ;

and we put U0 = 0 and Un = 0, given that uh(0) = 0 and uh(1) = 0.

Equivalently,

�p0Ui�1 � 2Ui + Ui+1

h2
+r0

Ui�1 + 4Ui + Ui+1

6
=

1

h

Z 1

0

f'idx ; i = 1; 2; : : : ; n�1 ;

with U0 = 0 and Un = 0.

Let us expand f into a Taylor series with remainder:

f(x) = f(xi)+(x�xi)f 0(xi)+1

2
(x�xi)2f 00(xi)+1

6
(x�xi)3f 000(xi)+O((x�xi)4) :

Hence,

1

h

Z 1

0

f(x)'i(x)dx =
1

h

Z xi+1

xi�1

f(x)'i(x)dx

=
1

h

Z xi+1

xi�1

f(xi)'i(x)dx +
1

2h

Z xi+1

xi�1

(x� xi)
2f 00(xi)'i(x)dx +O(h4)

= f(xi) +
1

12
h2f 00(xi) +O(h4) :
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The �nite di�erence equations arising from the �nite element method

are

�p0Ui�1 � 2Ui + Ui+1

h2
+r0

Ui�1 + 4Ui + Ui+1

6
= f(xi)+

1

12
h2f 00(xi) ; i = 1; 2; : : : ; n�1 ;

with U0 = 0 and Un = 0. The truncation error of the scheme is

Ti = �p0ui�1 � 2ui + ui+1

h2
+r0

ui�1 + 4ui + ui+1

6
�f(xi)� 1

12
h2f 00(xi) ; i = 1; 2; : : : ; n�1 ;

where ui = u(xi) for i = 0; 1; : : : ; n. Therefore, after Taylor series

expansion,

Ti = �p0
�
u00(xi) +

1

12
h2uIV (xi) +O(h4)

�

+r0

�
u(xi) +

1

6
h2u00(xi) +O(h4)

�

�f(xi)� 1

12
h2f 00(xi)

= � 1

12
h2p0u

IV (xi) +
1

6
h2r0u

00(xi)� 1

12
h2
��p0uIV (xi) + r0u

00(xi)
�
+O(h4)

=
1

12
h2r0u

00(xi) +O(h4) :

We de�ne the global error ei = u(xi)� Ui = u(xi)� uh(xi). Then,

�p0 ei�1 � 2ei + ei+1

h2
+ ri

ei�1 + 4ei + ei+1

6
= Ti ; i = 1; 2; : : : ; n� 1 ;

with e0 = 0, en = 0. As in the proof of Theorem 13.4 we have, with

T = max1�i�n jTij, that

max
0�i�n

jeij � 1

8
(1� 0)2T

� 1

8

�
1

12
h2r0 max

1�i�n�1
ju00(xi)j+O(h4)

�

=
1

96
h2r0 max

1�i�n�1
ju00(xi)j+O(h4)

� Mh2 ;

where M is a positive constant, M > 1
96h

2r0max1�i�n�1 ju00(xi)j.
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Solution to Exercise 14.6

The di�erence equation arising from the �nite element method is

�p0Ui�1 � 2Ui + Ui+1

h
+r0

n�1X
j=1

Uj

Z xi+1

xi�1

'j'idx =

Z xi+1

xi�1

f'idx ; i = 1; 2; : : : ; n�1 ;

with U0 = 0, Un = 0. Now, using the trapezium rule,Z xi+1

xi�1

'i�1'idx =

Z xi

xi�1

'i�1'idx+

Z xi+1

xi

'i�1'idx � 1

2
h(0+0)+

1

2
h(0+0) = 0 :

Similarly,Z xi+1

xi�1

'2i dx =

Z xi

xi�1

'2i dx+

Z xi+1

xi

'2i dx �
1

2
h(0 + 1) +

1

2
h(1 + 0) = h ;

and Z xi+1

xi�1

f'idx � 1

2
h(0 + f(xi)) +

1

2
h(f(xi) + 0) = hf(xi) :

The di�erence scheme therefore becomes

�p0Ui�1 � 2Ui + Ui+1

h
+ r0hUi = hf(xi) ; i = 1; 2; : : : ; n� 1;

with U0 = 0 and Un = 0. Equivalently,

�p0Ui�1 � 2Ui + Ui+1

h2
+ r0Ui = f(xi) ; i = 1; 2; : : : ; n� 1;

with U0 = 0 and Un = 0, which is identical to the central di�erence

approximation from Chapter 13. From Theorem 13.4, and noting that

Ui = uh(xi), we then have that

max
0�i�n

ju(xi)� uh(xi)j � 1

96
h2M4 = O(h2) :
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Solution to Exercise 14.7

To establish the weak formulation, we multiply the di�erential equa-

tion by a function v 2 H1(a; b) and integrate by parts in the term in-

volving (pu0)0v; hence,Z b

a

(pu0v0 + ruv)dx � p(x)u0(x)v(x)jx=bx=a =

Z b

a

fvdx 8v 2 H1(a; b) :

Replacing p(a)u0(a) by �u(a)�A and p(b)u0(b) by B � �u(b), we haveZ b

a

(pu0v0+ruv)dx+�u(a)v(a)+�u(b)v(b) = Av(a)+Bv(b)+

Z b

a

fvdx 8v 2 H1(a; b) :

We thus de�ne

A(w; v) =

Z b

a

(pw0v0 + rwv)dx + �w(a)v(a) + �w(b)v(b)

`(v) = Av(a) +Bv(b) +

Z b

a

fvdx :

The weak formulation of the problem is: �nd u 2 H1(a; b) such that

A(u; v) = `(v) for all v 2 H1(a; b).

The �nite element approximation of the boundary value problem is:

�nd uh 2 Sh such that A(uh; vh) = `(vh) for all vh 2 Sh, where Sh =

spanf'0; : : : ; 'ng.
Writing uh(x) =

Pn
j=0 Uj'j(x) and choosing vh = 'i, i = 0; 1; : : : ; n,

we get a system of n + 1 linear equations for the n + 1 unknowns

U0; U1; : : : ; Un.

Uniqueness follows by noting that

A(vh; vh) =
Z b

a

p(x)j(vh)0j2 + r(x)jvhj2dx+ �jvh(a)j2 + �jvh(b)j2 :

Thus, if A(vh; vh) = 0 then vh � 0 on [a; b]. Hence, if uh and ~uh are both

solutions of the �nite element approximation, then A(uh � ~uh; vh) = 0

for all vh 2 Sh. With vh = uh�~uh, we have that A(uh�~uh; uh�~uh) = 0,

and therefore uh � ~uh � 0 on [a; b].

Let us now write down the system of linear equations. The (i; j) entry

Mij of the matrix M of the linear system is

Mij = A('j ; 'i) =
Z xi+1

xi�1

(p(x)'0j'
0
i + r(x)'j'i)dx
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for i; j = 1; : : : ; n� 1. For i = 0,

M0j = A('j ; '0) =
Z x1

0

(p(x)'0j'
0
0+r(x)'j'0)dx+�'j (a) ; j = 0; 1; : : : ; n :

Note that 'j(a) = 0 unless j = 0.

For i = n,

Mnj = A('j ; 'n) =
Z xn

xn�1

(p(x)'0j'
0
n+r(x)'j'n)dx+�'j(b) ; j = 0; 1; : : : ; n :

We note that 'j(b) = 0 unless j = n.

The matrixM is tridiagonal. Since, A('i; 'j) = A('j ; 'i), the matrix

M is symmetric.

Let vh(x) =
Pn

i=0 Vi'i(x) and V = (V0; : : : ; Vn)
T . Then,

V
TMV = (V0; : : : ; Vn)

TM

0
B@

V0
...

Vn

1
CA =

nX
j=0

nX
i=0

A('j ; 'i)VjVi = A(vh; vh)

=

Z 1

0

(p(x)j(vh)0j2 + r(x)jvhj2)dx+ �jvh(a)j2 + �jvh(b)j2 > 0

unless vh � 0, i.e., V = 0 in R
n+1 . Therefore, the matrix M of the

linear system is positive de�nite.
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Solution to Exercise 14.8

The weak formulation of the boundary value problem is: �nd u 2
H1
E0
(0; 1) = fv 2 H1(0; 1) : v(0) = 0g such that

A(u; v) �
Z 1

0

(u0v0 + uv)dx+ �u(1)v(1) =

Z 1

0

fvdx � `(v)

for all v 2 H1
E0
(0; 1).

Let ShE0 = spanf'1; : : : ; 'ng. The �nite element approximation of the

boundary value problem is: �nd uh 2 ShE0 such that A(uh; vh) = `(vh)

for all vh in ShE0 . Let us write u
h(x) =

Pn
j=1 Uj'j(x) and take vh = 'i,

i = 1; 2; : : : ; n. Then, for the case of � = 0 and f(x) � 1, we obtain the

following di�erence equations: U0 = 0,

�Ui�1 � 2Ui + Ui+1

h2
+
Ui�1 + 4Ui + Ui+1

6
=

1

h

Z xi+1

xi�1

'i(x)dx ; i = 1; 2; : : : ; n�1 ;

and, for i = n, we have

Un�1A('n�1; 'n) + UnA('n; 'n) =
Z xn

xn�1

'n(x)dx :

Therefore, U0 = 0,

�Ui�1 � 2Ui + Ui+1

h2
+
Ui�1 + 4Ui + Ui+1

6
= 1 ; i = 1; 2; : : : ; n� 1 ;

and

Un�1

�
� 1

h2
+

1

6

�
+ Un

�
1

h2
+

1

3

�
=

1

2
:

For n = 3, we have h = 1=3 and 1=h2 = 9 and therefore,�
18 + 4

6

�
U1 +

��9 + 1
6

�
U2 = 1��9 + 1

6

�
U1 +

�
18 + 4

6

�
U2 +

��9 + 1
6

�
U3 = 1��9 + 1

6

�
U2 +

�
9 + 2

6

�
U3 = 1

2 :

Solving this yields U1 = 0:2039, U2 = 0:3177, U3 = 0:3543, together

with U0 = 0.
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Solution to Exercise 14.9

The energy norm k � kA is de�ned by

kvkA =

�Z 1

0

p(x)jv0j2 + r(x)jvj2dx
�1=2

:

By Ce�a's Lemma, ku� uhkA � ku� IhukA. Therefore,

c0

Z 1

0

j(u� uh)0j2dx � P

Z 1

0

j(u� Ihu)0j2dx +R

Z 1

0

ju� Ihuj2dx :

This yields

c0

Z 1

0

j(u� uh)0j2dx �
�
P
h2

�2
+R

h4

�4

�
ku00k2L2(0;1) ;

that is, Z 1

0

j(u� uh)0j2dx � h2

�2c0

�
P +R

h2

�2

�
ku00k2L2(0;1) :

By the Poincar�e{Friedrichs inequality [cf. Exercise 1],Z 1

0

j(u� uh)j2dx � h2

2�2c0

�
P +R

h2

�2

�
ku00k2L2(0;1) :

By adding the last two inequalities, we have

ku� uhk2H1(0;1) �
3h2

2�2c0

�
P +R

h2

�2

�
ku00k2L2(0;1) :

Therefore,

ku� uhkH1(0;1) � C1hku00kL2(0;1) :
where

C1 =
1

�

s
3

2c0

�
P +R

1

�2

�
:

Let us now bound ku00kL2(0;1) by kfkL2(0;1). Multiplying the di�eren-

tial equation by u, integrating by parts and using the boundary condi-

tions u(0) = 0 and u(1) = 0 yieldsZ 1

0

(p(x)ju0j2 + r(x)juj2)dx =

Z 1

0

f(x)u(x)dx :

Therefore, by the Cauchy{Schwarz inequality,

c0ku0k2L2(0;1) � kfkL2(0;1)kukL2(0;1) :
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According to the Poincare{Friedrichs inequality,

kukL2(0;1) � 1p
2
ku0kL2(0;1) :

Hence,

ku0kL2(0;1) � 1

c0
p
2
kfkL2(0;1) ;

which then yields

kukL2(0;1) � 1

2c0
kfkL2(0;1) :

Summing the squares of the last two inequalities and taking the square{

root gives

kukH1(0;1) = (ku0k2L2(0;1) + kuk2L2(0;1))1=2 �
p
3

2c0
kfkL2(0;1) :

Now we use this to bound ku00kL2(0;1). First, observe that from the

di�erential equation,

u00 = �p
0

p
u0 +

r

p
u� f

p
:

Therefore,

ku00kL2(0;1) � kp
0

p
k1ku0kL2(0;1) + kr

p
k1kukL2(0;1) + k1

p
k1kfkL2(0;1)

�
�
kp

0

p
k21 + kr

p
k21
�1=2

(ku0k2L2(0;1) + kuk2L2(0;1))1=2 + k1
p
k1kfkL2(0;1)

�
 �

kp
0

p
k21 + kr

p
k21
�1=2 p

3

2c0
+ k1

p
k1
!
kfkL2(0;1) :

Letting

C2 =

�
kp

0

p
k21 + kr

p
k21
�1=2 p

3

2c0
+ k1

p
k1

we then deduce that

ku00kL2(0;1) � C2kfkL2(0;1) :
Hence,

ku� uhkH1(0;1) � ChkfkL2(0;1) ;
with C = C1C2 and C1 an C2 as de�ned above.
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In the special case when p(x) � 1, r(x) � 0, and f(x) � 1, we have

C1 =
1

�

r
3

2
and C2 = 1 ;

which yields

ku� uhkH1(0;1) � h

�

r
3

2
:

With h = 10�3, we then have

ku� uhkH1(0;1) �
10�3

�

r
3

2
:
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Solution to Exercise 14.10

When the trapezium rule is used to approximate the integral
R 1
0 fv

hdx

in the �nite element method, the method becomes: �nd uh 2 Sh0 such

that

A(uh; vh) �
Z 1

0

((uh)0(vh)0+uhvh)dx =

Z 1

0

Ih(fvh)dx � `h(vh) ; vh 2 Sh0 :

The argument now proceeds in much the same way as discussed in Sec-

tion 14.5 in the case when the integral `(vh) =
R 1
0
fvhdx is computed

exactly. We de�ne the dual problem

�z00 + z = u� uh ; x 2 (0; 1) ; z(0) = 0 ; z(1) = 0 :

Hence,

ku� uhk2L2(0;1) = hu� uh;�z00 + zi
= A(u� uh; z) = A(u� uh; z � Ihz) +A(u� uh; Ihz)
= A(u� uh; z � Ihz) + [`(Ihz)� `h(Ihz)]

= A(u� uh; z � Ihz) +
Z 1

0

[f(Ihz)� Ih(fIhz)]dx
� T1 +T2 :

Term T1 is bounded in exactly the same way as shown in Section 14.5:

T1 � K0

 
nX
i=1

h4i kR(uh)k2L2(xi�1;xi)
!1=2

ku� uhkL2(0;1) ;

where K0 = 2=�2.

As for T2,

(T2)
2 �

�Z 1

0

jf(Ihz)� Ih(fIhz)jdx
�2

�
Z 1

0

jf(Ihz)� Ih(fIhz)j2dx

�
nX
i=1

h4i
�4
k(fIhz)00k2L2(xi�1;xi)

=

nX
i=1

h4i
�4
kf 00(Ihz) + 2f 0(Ihz)0k2L2(xi�1;xi)

�
nX
i=1

h4i
�4

�
max

x2[xi�1;xi]
jf 00j kIhzkL2(xi�1;xi) + 2 max

x2[xi�1;xi]
jf 0j k(Ihz)0kL2(xi�1;xi)

�2
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�
nX
i=1

h4i
�4

�
max

x2[xi�1;xi]
jf 00j2 + 4 max

x2[xi�1;xi]
jf 0j2

�

�
�
kIhzk2L2(xi�1;xi) + k(Ihz)0k2L2(xi�1;xi)

�
� max

1�i�n

h4i
�4

�
max

x2[xi�1;xi]
jf 00j2 + 4 max

x2[xi�1;xi]
jf 0j2

�

�
nX
i=1

kIhzk2L2(xi�1;xi) + k(Ihz)0k2L2(xi�1;xi)

= K2
2kIhzk2H1(0;1);

where

K2 = max
1�i�n

h2i
�2

�
max

x2[xi�1;xi]
jf 00j2 + 4 max

x2[xi�1;xi]
jf 0j2

�1=2

:

Now,

kIhzkH1(0;1) = kIhz � z + zkH1(0;1) � kIhz � zkH1(0;1) + kzkH1(0;1)

� h

�

�
1 +

h2

�2

�1=2

kz00kL2(0;1) + kzkH1(0;1) :

However, �z00 + z = u� uh, and therefore

kz00kL2(0;1) � kzkL2(0;1) + ku� uhkL2(0;1) :
As

kz0k2L2(0;1) + kzk2L2(0;1) = hu� uh; zi � ku� uhkL2(0;1)kzkL2(0;1) ;
we conclude that

kzkL2(0;1) � ku� uhkL2(0;1) ;
and then also,

kz0k2L2(0;1) + kzk2L2(0;1) � ku� uhk2L2(0;1) :
Hence

kz00kL2(0;1) � 2ku� uhkL2(0;1) ;
and so

kIhzkH1(0;1) �
"
2h

�

�
1 +

h2

�2

�1=2

+ 1

#
ku� uhkL2(0;1) :
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Consequently,

T2 � K2kIhzkH1(0;1) � K2

"
2h

�

�
1 +

h2

�2

�1=2

+ 1

#
ku� uhkL2(0;1) :

Therefore,

T2 � K1 max
1�i�n

h2i

�
max

x2[xi�1;xi]
jf 00j2 + 4 max

x2[xi�1;xi]
jf 0j2

�1=2

ku�uhkL2(0;1) ;

where

K1 =
1

�2

"
2h

�

�
1 +

h2

�2

�1=2

+ 1

#
ku� uhkL2(0;1) :

Using the estimates of T1 and T2 yields the required a posteriori error

bound.

Given a positive tolerance TOL, the mesh adaptation algorithm pro-

ceeds as discussed in Section 14.5.


