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Solution to Exercise 1.1
The fixed points are the solutions of
qgiz) =2 =224+ c=0.

Evidently ¢(0) = ¢ > 0, ¢(1) = ¢—1 < 0, g(x) = +o00 as x — o0,
showing that 0 < & <1 < &.
Now

T =12 +0)
&= %(ff + C):
so by subtraction
Tpy1 — & = %(mi -&) = %(mn + &) (@0 — &1).

It follows that if |z, + &1| < 2, then |z,11 — &| < |zn — &|. Now
&1+& =2,80if 0 < g < & then g+ & < 2, and evidently z¢o+&; > 0.
Hence z; is closer to & then was xg, so also 0 < z; < &. An induction
argument then shows that each x,, satisfies 0 < z,, < &, and

|zn — &1] < (:1:0 ;€1> lzo — &1l

and z, — &.

Now @41 is independent of the sign of z,, and is therefore also in-
dependent of the sign of zy, and it follows that x,, — & for all zy such
that —52 < xo < 52.

The same argument shows that if zy > & then 1 > g > &, and so
T — 00. As before this means also that z, — oo if g < —&;.

If zg = & then of course x, = & for all n > 0. If g = —&, then
x1 = &, and again x, = & for all n > 0.



Solution to Exercise 1.2

Since f'(xz) = e — 1 and f"(z) = ¢*, f'(x) > 0 and f"(z) > 0 for
all z > 0. It therefore follows from Theorem 1.9 that if g > 0 then
Newton’s method converges to the positive root.

Similarly f'(z) < 0 and f"(z) > 0 in (—00,0) and the same argument
shows that the method converges to the negative root if x¢ < 0.

If o = 0 the method fails, as f'(0) = 0, and 21 does not exist.

For this function f, Newton’s method gives
exp(zn) — T — 2

exp(zy) — 1

1— (zn +2) exp(—x,)

B 1 —exp(z,)
~r,—1 n>1.

Tn4+1 =Tp —

:"I,'n

In fact, e~ 1% is very small indeed.
In the same way, when x; is large and negative, say o = —100,
—Tp — 2
Tptl R Ty — +1 =-2.

Hence when xy = 100, the first few members of the sequence are
100,99, 98, .. ; after 98 iterations x,, will get close to the positive root,
and convergence becomes quadratic and rapid. About 100 iterations are
required to give an accurate value for the root.

However, when o = —100, z; is very close to —2, and is therefore
very close to the negative root. Three, or possibly four, iterations should
give the value of the root to six decimal places.



Solution to Exercise 1.3

Newton’s method is

Tptl = Tp — f’(il? )
n

To avoid calculating the derivative we might consider approximating the
derivative by

Tn+96)— f(z
where ¢ is small. The given iteration uses this approximation, with
0 = f(xyn); if x, is close to a root then we might expect that f(x,) is
small.

If x, — £ is small we can write
F@n) = F(&) + (@n — O F' (&) + §(xn — > f"(€) + Olap — &)°
=nf + 57 f" + On)°
where n =z, — &, and f' and f" are evaluated at © = £. Then

f@n+ f(2n) = flzn) = fE+n+nf +50°F") — f(E+n)
=n(f) + 3B "+ (f)2 "]+ On)®.

Hence
o o)l
Tn+1 E=an—¢§ f(x+n+f(mn))_f(m”)
Pl s ;
=n nl(f")? + %nf’(?)‘f‘f’)f”] +O)
TG DROTSCY

f

This shows that if xy — 7 is sufficiently small the iteration converges
quadratically. The analysis here requires that f"’ is continuous in a
neighbourhood of £, to justify the terms O(n3). A more careful analysis
might relax this to require only the continuity of f".

The leading term in z,+; — £ is very similar to that in Newton’s
method, but with an additional term.

The convergence of this method, starting from a point close to a root,
is very similar to Newton’s method. But if z( is some way from the root
f(z,) will not be small, the approximation to the derivative f'(z,) is
very poor, and the behaviour may be very different. For the example

flz)=e"—2—2
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starting from xp = 1, 10 and —10 we find

1.000000
1.205792
1.153859
1.146328
1.146193
1.146193

U W N~ O

10.000000
10.000000
10.000000
10.000000
10.000000
10.000000

U W N~ O

-10.000000
-1.862331
-1.841412
-1.841406
-1.841406

= W NN = O

The convergence from xg = 1 is satisfactory. Starting from zy = —10
we get similar behaviour to Newton’s method, an immediate step to x;
quite close to —2, and then rapid convergence to the negative root.

However, starting from zy = 10 gives a quite different result. This
time f(zg) is roughly 20000 (which is not small), and f(zo + f(z0))
is about 10%°%0; the difference between xy and z; is excessively small.
Although the iteration converges, the rate of convergence is so slow that
for any practical purpose it is virtually stationary. Even starting from
o = 3 many thousands of iterations are required for convergence.



Solution to Exercise 1.4

The number of correct figures in the approximation z,, to the root &
is
D,, = integer part of {—logyo |€ — z,|}.
From (1.24) for Newton’s method we have

€= 2nn|  1F"(©)
€=z 27

Hence
D,y1~2D, — B,
where
11" ()]
B =logy o5
2111(¢)]

If B is small then D41 is close to 2 Dy, but if B is significantly larger
than 1 then D, ;1 may be smaller than this.
In the example,

F(z) =e* — z — 1.0000000005

fe)=et -1
Jh(@) =e,
and & = 0.0001. Hence
0.0001
B =log1o 3rmmmor — 1y =37

and the number of significant figures in the next iteration is about 2k —4,
not 2k.
Starting from z, = 0.0005 the results of Newton’s method are

0.000500000000000
0.000260018333542
0.000149241714302
0.000108122910746
0.000100303597745
0.000099998797906
0.000099998333362 14

DU W N = O
© O U= W Ww

where the last column shows the number of correct decimal places.
The root is £ = 0.000099998333361 to 15 decimal places.
The number of correct figures increases by a factor quite close to 4.



Solution to Exercise 1.5
From (1.23) we have
(€ —2n)f"(nn)
2f'(zn)
Now f'(€) =0, so by the Mean Value Theorem
f'(@n) = f1(€) = (@n — O f"(xn)
for some value of y,, between ¢ and z,. Hence

(€ — @) f" (nn)
2f"(xn) ‘
Now |f"(nn)| < M and |f"(x»)| > m, and so

§—Tpp = —

f_mn+1 =

|f - mn+1| < K|f - mn|>
where

k=M 1
2m

Hence if xg lies in the given interval, all z,, lie in the interval, and x,, — £.
Then n, — &, f"(nn) = f"(€) and f"(xn) — f"(€). This shows that

§— Tpi1 1
6 —Tn 2
and convergence is linear, with asymptotic rate of convergence In 2.
For the example f(z) =e® —1—z, f(0) =0, f'(0) = 0. Starting from
xg = 1, Newton’s method gives

1.000
0.582
0.319
0.168
0.086
0.044
0.022
0.011
0.006
0.003
0.001

© 00 O Ui W N H+= O

[
o

showing & — z reducing by a factor close to % at each step.



Solution to Exercise 1.6

When f(€) = f'(€§) = f"(§) = 0 we get from the definition of Newton’s
method, provided that f"’ is continuous in some neighbourhood of &,

§(@n = ) f" (1)
:f_m”+§( 2flll(n

=<5—xn>{ J}':,',”“ }

If we now assume that in the neighbourhood [€ — k, & + k] of the root
0<m<|f"(x)| < M, where M < 3m,

then
1€ — Tpi1| < K[§ — ],

where

M
K=1-—<1.
3m

Hence if z( is in this neighbourhood, all the z,, lie in the neighbour-
hood, and Newton’s method converges to £. Also,

|€ — $n+1| 2

|§ — 24| 37

so that convergence is linear, with asymptotic rate of convergence In(3/2).



Solution to Exercise 1.7

The proof follows closely the proof of Theorem 1.9.

From (1.23) it follows that z,+1 < &, provided that z, lies in the
interval I = [X,&]. Since f is monotonic increasing and f(§) = 0,
f(z) < 0in I. Hence if zg € I the sequence (z,) lies in I, and is
monotonic increasing. As it is bounded above by &, it converges; since
¢ is the only root of f(x) = 0 in I, the sequence converges to £. Since
f" is continuous it follows that

E-run ) 1O
(£ —zn)? 2f'(zn) 2]“(5)7

so that convergence is quadratic.




Solution to Exercise 1.8

Neglecting terms of second order in € we get

To=1+¢
Ty =—-14¢
Ty = 3€
r3=—-1—¢
T =—14+¢
r5 = —1.

Although this value of x5 is not exact, it is clear that for sufficiently
small € the sequence converges to —1.

With zg and z; interchanged, the value of z2 is of course the same,
but z3 and subsequent values are different:

ro=—-1+4¢
r1=1+¢
Ty = ie

r3=1—¢
zs=14+¢

:E5:1.
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Solution to Exercise 1.9

The function ¢ has the form
Tnf(Tn1) = Tn 1 f(xn) = E(f(@n1) — f(zn))

O(Tn,Tn-1) = (n — &) (@n—1 — ) (f(Tpn-1) — f(xn))

In the limit as x,, — £ both numerator and denominator tend to zero,

so we apply I’Hopital’s rule to give
. — lim f(@n1) —@p-1f'(2n) + {f'(20))
Al o) = e = O n — ) + (F@a1) — F@)(n 1 —
— f(mnfl) _mnflf,(f) +€
(f(@n-1) = f(E)(@n-1 = &)

so that
flen 1) —za 1 f'(E) +Ef'(E)
(f(@n-1) = f(E))(@n-1 &)
In the limit as x,,—1 — £ the numerator and denominator of v (z,_1)
both tend to zero, so again we use I’'Hopital’s rule to give

. . £'(@n-) = £(6)
P V) = e )@t ) + ) — )
We must now use I’Hopital’s rule again, to give finally

f"(@n1)
xn—l)(xn—l - 5) + fl(xn—l) + fl(xn—l)

1/)(1%71) =

lim Ez/J(a:n,l) = lim il

Ty 1—>
_
2f'(&)
Now the limit of ¢ does not depend on the way in which z,, and z,,_1
tend to &, so finally we have

T — € £(€)
(@n =) (an1—€)  27(6)

Now assume that

anrl - 6
(@01
then
Tn _f
A.
@ -0t
or
(Q?n - 6)1/!1 N Al/q7

Tp—1 —



11

and so
Tn41 _é- - A1+1/q'

(@ — 11/ 1(2n1 =€)

Comparing with the previous limit, we require

f"(©)
g—1/g=1, and A'fTYVe=212
/ 27/
This gives a quadratic equation for ¢, and since we clearly require that
f is positive we obtain ¢ = %(1 + /5), giving the required result.
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Solution to Exercise 1.10

Fig. 1.6 shows a typical situation with f"(x) > 0, so the graph of f
lies below the line PQ). Here P and @) are the points corresponding to
un and v,. Also R is the point corresponding to €, so that f(6) < 0.
Hence in the next iteration uyy1 = 6 and vy 41 = vy,

The same picture applies to the next step, and again vpy2 = vpt1,
and so on. Thus if f” > 0 in [uy,vn], and f(un) < 0 < f(vn) then
v, = vy foralln > N.

If on the other hand f(ux) > 0 and f(vxy) < 0 we see in the same
way that u, = uy for all n > N.

Similar results are easily deduced if f” < 0 in [un,vn]; it is only
necessary to replace f by the function —f.

Now returning to the situation in Fig. 1.6, the point v,, remains fixed,
and the points u, are monotonically increasing. Hence the sequence
(up,) is monotonically increasing for n > N, and is bounded above by
vn, and is therefore convergent to the unique solution of f(x) = 0 in the
interval [un,vn]. In the general situation, we see that one end of the
interval [u,,v,] eventually remains fixed, and the other end converges
to the root.

Write u,, = £ + 4§, and

unt1 —§ _ (€+0)f(vn) —unfF(E+9) — E(f(vn) — f(E+0))

5 6(f(uw) — F(E+0))
In the limit as § — 0 the numerator and denominator both tend to zero,
so we apply I’Hopital’s rule to give
g =& flon) —onfI(E+0) FEfI(E+S
O B 3 (e = e
_ Jlon) —un f'(§) +£F(€)
f(on)

Hence the sequence (u,) converges linearly to £, and the asymptotic rate

of convergence is
S fi- 0719}
f(ow)

- {1 - f{éfv))}

for some 7y lying between & and vy. Since f(§) = 0, it follows that

This may also be written
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nn > ¢ Evidently the closer vy is to the root &, the closer f'(ny) is to
f'(€), and the more rapidly the iteration converges.

Asymptotically this method converges more slowly than the standard
secant method. Its advantage is that if f(uo) and f(vo) have opposite
signs the iteration is guaranteed to converge to a root lying in [ug, vo];
the method is therefore robust. However, it is easy to draw a situation
where vg is far from ¢, and where the bisection method is likely to be
more efficient.
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Solution to Exercise 1.11

The sequence (z,) converges to the two-cycle a,b if z3, — a and
Zap+1 — b, or equivalently with a and b interchanged. So a and b are
fixed points of the composite iteration x,+1 = h(z,), where h(z) =
g(g(z)), and we define a stable two-cycle to be one which corresponds
to a stable fixed point of h. Now

W (x) =g'(9(x)) g'(2);

if h'(a) < 1 the fixed point a of h is stable; since g(a) = a it follows that
if |¢'(a)g'(b)| < 1 then the two-cycle a,b is stable. In the same way, if
lg'(a)g' (b)] > 1 then the two-cycle is not stable.

For Newton’s method

Tn+1 = Tnp — f(xm)/f’(xn)v

and the corresponding function g is defined by

g(a) =z — f(2)/f (z).

In this case

@)
9@ = Tpee
Hence, if
F@F"(@) | | F0) 1" (0)
‘ PP ‘ TA0E ‘“

the two-cycle is stable.
Newton’s method for the solution of 2> — 2 = 0 has the two-cycle
a, —a if
3

a’ —a
Te=aT gy
—a*+a
T T e
These equations have the solution
1
a = %

Here f'(a) = 3a*> — 1 = —2/5 and f"(a) = 6a = 6//5. So
s |0,
(@) | [fF(0))? ’

and the two-cycle is not stable.
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Solution to Exercise 2.1

Multiplication by @ on the right reverses the order of the columns of
A. Hence, writing B = QAQ,

Bij = Ant1—int1-j-

If L is lower triangular, then L;; = 0 whenever ¢ < j. Hence (QLQ);; =
0 whenever n+1—1¢ < n+1—j, or when ¢ > 7, thus showing that QLQ
is upper triangular.

Now suppose that A is a general n x n matrix, that B = QAQ, and
that B can be written as B = LU, where L is unit lower triangular
and U is upper triangular. Then

A=0BQ
=QL.UQ
=(QL.Q)(QULQ)

since Q% = I, the unit matrix. Now QL;(Q is unit upper triangular and
QL1Q is lower triangular, so we have the required form A = UL with
L =QU,Q and U = QL;Q. This factorisation is possible if we can write
B = L Uy, and this can be done if all the leading principal submatrices
of B are nonsingular. The required condition is therefore that all the
“trailing” principal submatrices of A are nonsingular.

The factorisation does not exist, for example, if

21
+=(50):

since the corresponding matrix B has B;; = 0.
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Solution to Exercise 2.2

We can write
A=LU",

where L is unit lower triangular, and U* is upper triangular. Now let
D be the diagonal matrix whose diagonal elements are the diagonal
elements of Uy, so that d;; = u};, and define U = D~*U*; then A = LDU
as required, since U is unit upper triangular.

The given condition on A ensures that uj; # 0 for ¢ = 1,...,n. The
procedure needs to be modified slightly when u}, = 0, since then D is
singular. All that is necessary is to define U = (D*)"'U*, where D*
is the matrix D but with the last element replaced by 1 and then to
replace Uy, by 1.

If the factorisation A = LU is known, we can use this procedure to
find D and U such that A = LDU. Then AT = UTDL”, which can be

written
AT = (WU (DLY),

where U”' is unit lower triangular and DL* is upper triangular. This is
therefore the required factorisation of AT
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Solution to Exercise 2.3

Suppose that the required result is true for n = k, so that any non-
singular k£ x k matrix A can be written as PA = LU. This is obviously
true for k = 1.

Now consider any nonsingular (n + 1) x (n + 1) matrix A partitioned
according to the first row and column. We locate the element in the
first column with largest magnitude, or any one of them if there is more
than one, and interchange rows if required. If the largest element is in
row 7 we interchange rows 1 and r. We then write

P(lr)A_ awT o OéOT lmT
" \pB) \pC (s

where « is the largest element in the first column of A. Writing out the
product we find that

am® =wT
pm? +C =B.
This gives
1
m = —w,
o
and

1
C=B--pm'.
e

Note that if & = 0 this implies that all the elements of the first column
of A were zero, contradicting our assumption that A is nonsingular.

Now det(A) = +a det(C), and so the matrix C is also nonsingular,
and as it is an n X n matrix we can use the inductive hypothesis to write

P*C =L"U".
It is then easy to see that
T T T
P(IT)A _ 10 a 0 1m
0 P* P*p L* o U*

since P*P* = I. Now defining the permutation matrix P by

10
— (1r)
P ( o P*> P
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we obtain

T T
PA— a 0 1m 7
P*p L* oU*

which is the required factorisation of A.
The theorem therefore holds for every matrix of order n + 1, and the

induction is complete.
Consider the matrix
01
A=
(01)

and attempt to write it in the form

=) Gi)-

qr 01

This would require

p=0
ps=1
q=0
qs+r=>o.

where the first two equations are clearly incompatible. The only possible
permutation matrix P interchanges the rows, and the factorisation is
obviously still impossible.
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Solution to Exercise 2.4

Partitioning the matrices by the first £ rows and columns, the equation

Ly - b becomes
C [Jjg !/2 ,8 ’

where we have used the fact that the first k rows of b are zero. Multi-
plying out this equation gives

L1y1 = 0
Cy, + L2y, =B,
from which it is clear that y, = 0, since L; and L, are nonsingular.

Hence the first k rows of y are zero.
Column j of the inverse of L is y?), the solution of

Ly = el

where e/) is column j of the unit matrix and has its only nonzero
element in row j. Hence the first j — 1 elements of el) are zero, and
by what we have just proved the first j — 1 elements of y¥) are zero.
Thus in each column of the inverse all the elements above the diagonal
element are zero, and the inverse is lower triangular.
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Solution to Exercise 2.5

The operations on the matrix B are:

(i) Multiplying all the elements in a row by a scalar;
(ii) Adding a multiple of one row to another.

Each of these is equivalent to multiplying on the left by a nonsingular
matrix. Evidently the effect of successive operations (i) is that the diag-
onal elements in the first n columns are each equal to 1, and the effect
of successive operations (ii) is that all the offdiagonal elements are equal
to zero. Hence the final result in the first n columns is the unit matrix.

Hence the combined effect of all these operations is equivalent to mul-
tiplying B on the left by A=1; and the final result in the last columns is
the inverse A~!. The diagonal element b, at any stage is the determi-
nant of the leading principal r x r submatrix of A, multiplied by each
of the preceding scaling factors 1/b;;. Hence if all the leading principal
submatrices of A are nonsingular, none of the diagonal elements b;; used
at any stage are zero.

At each stage, the scaling of the elements in row j requires 2n multipli-
cations. The calculation of each term b;;, — b;;bj;, involves one multipli-
cation, and there are 2n(n — 1) such elements, as row j is not involved.
Thus each stage requires 2n? multiplications, and there are n stages,
giving a total of 2n® multiplications.

However, in stage j the first j — 1 columns and the last n — j + 1
columns are columns of the unit matrix. Hence the scaling of row j only
involves n non zero elements, and in the calculating of the new elements
bik, half of the factors bj; are zero. This reduces the total number of
multiplications from 2n2 to n3.



Solution to Exercise 2.6

The initial matrix B is

242100
B=1103010
312001

After the successive stages of the calculation the matrix B becomes

1 2 1 1/200
B=|0-2 2-1/210
0-5-1-3/201

)

10 3 0 10
B=[01-1 1/4-1/20
00—6-1/4—5/21

’

100-1/8 —1/4 1/2
B=|0107/24-1/12-1/6
001 1/24 5/12-1/6

The inverse matrix A~! consists of the last three columns of this.

21
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Solution to Exercise 2.7

Z (Az)i| = > | iz

i=1 |j=1

n n
<D0 il ]

i=1 j=1

n n
= el > la]
j=1 i=1
n
<CY
j=1

= Cllz]:-

Now choose
n
n
C = max E lai;;
j=1 4
=1

then evidently

n

> laiyl < C.

i=1

Let k be the value of j for which this maximum is attained; define x to
be the vector whose only nonzero element is a 1 in position k. Then

n n

> lAm)i =) la
i=1 i=1
=C
= Cllz|l1,

so that [|Ax||; = C||x||1, giving the result required.
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Solution to Exercise 2.8

(i) Write a = ||v]|2, so that
v%+...+vi:a2.
It is then clear that v7 < o, j = 1,...,n, and 50 [|v]|oo < [|v]|2. Equality
is attained by any vector v which has a single nonzero element.

Now write § = ||v]|oo, S0 that |vj| < 3 for all j. Then

ol =vi+ ...+ 02 < B2 +...+p>=np
This is the required result; in this case equality is attained by any vector
v in which all the elements have the same magnitude.
(i) From the definition of ||A||~,

A
T[]l

Choose v to be a vector  for which this maximum is attained. Then

Ao [[oloo = [[Av]|o
<||Av|l2  (see above)
< lA[l2lv]l2
< |A|l2v/n ||v]|eo-  (see above)

Division by ||v||c gives the required result.

To attain equality, we require equality throughout the argument. This
means that Av must have a single nonzero element and that all the
elements of v must have the same magnitude. Moreover Av must have
its maximum possible size in both the 2-norm and the co-norm. Thus v
must be an eigenvector of AT A. An example is

()

Evidently the rowsums are 2, so that ||A||.c = 2. It is easy to see that
AT A = 2I, and has both eigenvalues equal to 2. Hence [|Al|2 = /2, as
required.

For the second inequality, choose u to be a vector which attains the
maximum possible ||Au||. Then in the same way

[All2llwll2 = [|Aul];
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< vm || Auf|
< vm [ Allsollullo
< vm | Allsolull2,
and the result follows by division by |u|l2. The argument follows as
above, but we have to note that the vector Au has m elements.
To attain equality throughout we now require that uw has a single
nonzero element, that all the elements of Au have the same magnitude,

and again that Au must have maximum size in both the 2-norm and
the oco-norm. Thus w must again be an eigenvector of AT A. A rather

- ()

which is a 2 x 1 matrix. Clearly ||A|| =1, ATA = 2I, so that [|A||s =
V2.

trivial example has
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Solution to Exercise 2.9

We know that || A||2 is the largest eigenvalue of AT A, which is A,,. In
the same way ||A~!||3 is the largest eigenvalue of

AT AT = (4T

and the eigenvalues of this matrix are the reciprocals of the eigenvalues
of AAT. Now the eigenvalues of A AT are the same as the eigenvalues
of ATA, so that ||A71|2 = 1/A;.

Now if ) is orthogonal, then Q7@ = I, and all the eigenvalues of I
are equal to 1. Hence by the result just proved, ||Q||> = 1.

Conversely, if ||A]l2 = 1, then the largest and smallest eigenvalues of
AT A must be equal, so all the eigenvalues are equal. Hence AT A = \I,
where ) is the eigenvalue. The matrix AT A is positive definite, so A > 0,
and writing

1
Q=74
we have shown that QT'Q = I, so that @ is orthogonal, as required.
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Solution to Exercise 2.10

Let A be an eigenvalue of ATA and let £ # 0 be the associated
eigenvector. Then, AT Az = Az, and therefore

|Az|? = 2T AT Ax = AT = \||z||2.

Hence, )\ is a nonnegative real number.
Now let ||-|| be a vector norm on R™ and let || -|| denote the associated
subordinate matrix norm on R"*™. Then,

Azl = IAz]| = [|AT Az]|
< [lATA| [l
< AT Al .
Since x # 0, it follows that
0 <A< [IAT 1Al

for each eigenvalue A of AT A. By Theorem 2.9, we then have that

1Al < [|AT]][]A]
for any subordinate matrix norm || - ||. For example, with ||- || = || - ||co,
on noting that [|A” || = ||4||1, we conclude that

A5 < 1411 [|Alloo,

as required.
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Solution to Exercise 2.11

On multiplying A by AT from the left, we deduce that

'n111...1}
1100...0
1010...0

T A
ATA= 100 1...0
1000 1

Writing the eigenvalue problem A7 Az = Az in expanded form then
gives
nry +To+r3+xr4+...+x, = Ar]
T+ Ty = )\272
T1 + T3 = Ax3

T1+ T4 = Axy

T+ T, = Az,

We observe that A = 1 is an eigenvalue corresponding to the (n — 2)
eigenvectors of ATA of the form = = (z1,29,...,7,)7, with z; = 0,
T3+ ...+, = 0. The two remaining eigenvectors of AT A are of the
form & = (x1,x2, T2, ...,x2) where z; and z» are nonzero real numbers,
and are found by solving the linear system

nry + (n— 1)zy = Ay

T+ X2 = )\272

which has a nontrivial solution when

n—An—1\ |5 _
det( 1 1_/\>_>\ (n+1)A+1=0,

i.€., when

)\:%(n+1) [li,/l—ﬁ].

By Theorem 2.9, we then have that

1 4
Al = 5+ 1) [+ T - i |
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Solution to Exercise 2.12

If (I — B) is singular, there is a nonzero vector x such that
(I-B)x =0,
so that
T = Bz.
Hence
Izl = [|B|| < [|B][ |||l

and so ||B]| > 1. It then follows that if ||A]| < 1, then I — A is not
singular.
From the relation

(I—-A)(I-A)*t=1I
it follows that
(I—-A) t=T+AT-A)"
and so

I =A< 1+ AT = A7
<L+ = A7)

Thus
(T=ADIT =4 <1,

giving the required result.
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Solution to Exercise 2.13

From Az = b and (A + 0A)(x + dx) = b it follows that
Adx +0A z+0A éx =0.

Then
(I+ A7'6A)0x = —A"10A bz,
or
dx = (I+A'6A) A7 6A bx.
and so
[6z|| < |7+ A7H6A) 71| A oA |6z

Applying the result of Exercise 2.12 we get, provided that [|A715A|| < 1,

[0z < AT SA] [[blec]l,

1—|A-104|

which is the required result.
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Solution to Exercise 2.14

Choose x to be an eigenvector of AT A with eigenvalue ), and dz to
be an eigenvector with eigenvalue p. Then

Az = b,
so that
b'b =2l AT Az = 2"z = Az z,
and
1113 = All]3-
In the same way
18b]I3 = pul|o]|3,

and so

|6xll> (A)W 162

el \n [1Bl]2

Now choose & so that A = \,, the largest eigenvalue of AT A, and éx
so that u = A1, the smallest eigenvalue. Then

An _
Al
and equality is achieved as required, with b = Ax and db = Adx.

K2 (A)7



Solution to Exercise 2.15

Following the notation of Theorem 2.12,

(a )= a(§ 5 )

we have
9 —6
a= 12 and A, = -8
0 20
and so
a=/(a"a)=15
and
3/5
g=1| 4/5 |.
0
Then
—6
rl =q"A,=(3/54/50)| -8 | =-10,
20
and
0
Qan:An_qu: 0 .
20
Finally
0
Qn = 0 )
1
and

R, = 20.

The required QR decomposition is therefore

9 —6 3/5 0
(12 —8):(4/5 0)(13 @8).
0 20 0 1

31
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The required least squares solution is then given by solving
R,z = Q'b,

or

(5 ) ()= ) (=)~

which gives
r] = 74:, Ty = 45.



Solution to Exercise 3.1
Using the relations (3.2) and (3.3) we find in succession
i1

121

l31

N O = = W N

Hence A = L LT where

L= 3 1
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Solution to Exercise 3.2

As in the solution to Exercise 1 we find that A = L LT, where

1 0 0
L= -2 1 0
2 1 1

Writing the system of equations Az = b, or L LTz = b, in the form

Ly = b,
e =y,

we find in succession

Y2
Yys = ]-7

and then

1’2:0

which is the required solution.
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Solution to Exercise 3.3

In the notation of equations (3.7) this example has

a;, = —1, 1=2,...,n
b, = 2, 1=1,...,n
c = —1, 1=1,...,n—1.

The elements [; and w; are determined uniquely by (3.7), with u; =
by = 2. Hence if we find expressions which satisfy all these equations
then they are the values of [; and w;. Suppose now that [; = —(j —1)/j.
Then the first equation, [; = —1/u;_1, requires that

uj = —=1/ljp1 = (j +1)/j.

This also satisfies u; = 2, as required. The second of equations (3.7) is
also satisfied, as

bj—lej_1 - 2+lj

2-(G-1/j
G +1)/3

Hence all the equations are satisfied, and
i = - -1/4, j=2,...,n
u;j = (j+1)/4, j=1,...,n—1.

To find the determinant, note that det(T) = det(L)det(U), and
det(L) = 1 since L is unit lower triangular.

det(U) = UL1U2...Un

_ 23 n+1
T 1277 n
= n+1.

Hence det(T) = n + 1.
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Solution to Exercise 3.4

Column j of the matrix T is the vector ¢(9), with the nonzero elements
cg.J_)l =-1, cg-]) =2, cg.]ll =-1,
with obvious modifications when j = 1 or 5 = n. Hence the scalar
product of ¢ and v® is

Mkj = —’U](-,i)l + 2’1)](~k) — Uj('i)l'

Ek) is a linear function of ¢, for i = 1,... k and fori = k,... n,

its is clear that My; = 0 when j # k. This is also true in the special

Since v

cases j = 1 and j = n since we can extend the definition of vj(.k) by

the same linear functions, which gives v(()k) =0 and vék) = 0. The two
linear functions give the same result when j = k. To find My a simple
calculation gives

My, = —(k=1D(n+1-k)+2k(n+1—-k)—k(n+1—-k—1)
= n+1.
Hence the scalar product of the vector v(*) /(n + 1) with each column

of T'is column k of the unit matrix, so that v(¥) /(n + 1) is column k of
the matrix 7'~!. This shows that the elements of the inverse are

i(n+l—Fk) .
T.;l - { k(TJ,-ll.): 1<k
2. n —1 -
TS ) 7 Z k.
This matrix is clearly symmetric.
All the elements of the matrix are positive, and the sum of the elements
in row ¢ is

7 . n

n+1—1 )
n+1 Zk+n+1 Z(n+1_k)
k=1 k=i+1
_n+1—ii(i+1) i (m=in—-i+1)
T on+1 2 n+1 2
Cin+1-1)
—

The oco—norm of 7! is the maximum rowsum; its value depends on
whether n is odd or even. If n is odd, the maximum is attained when
i=(n+1)/2, and is (n 4+ 1)?/8. If n is even, the maximum is attained
when i = n/2 and also when i = n/2 + 1; the maximum is n(n + 2)/8.
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Evidently the co—norm of T is 4, so finally the condition number is

1 2

s(n+1) n odd
o) =] 20T
fioo(T) {%n(n—l—Z), n even.
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Solution to Exercise 3.5

With the notation of Theorem 3.4 we can now write

Cj—1
luj| > |[bj] — la;] W
> |1bj] — la;] |
> eyl
> 0.

Note that the inequality "> |¢;| ’ now becomes ’> |¢;|” but we can still
deduce that u; # 0 since ¢; is not zero.
The matrix
1 10
T=|1 1 0
0 1 1
satisfies the given conditions, except that co = 0. It is obviously singular,
since the first two rows are identical. This also means that the leading
2 x 2 principal submatrix is singular, and so the LU factorisation does
not exist.
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Solution to Exercise 3.6

The proof is by induction on the order of the matrix; we suppose that
the given result is true for every n x n tridiagonal matrix, and consider
an (n+1) x (n+ 1) matrix 7' in the standard notation

by

We interchange the first two rows, if |az| > |b1], to get the largest element

in the first column on the diagonal. The result will be
by e di
pro| @ B oG

as b3 C3

where the permutation matrix P* may be the unit matrix, and then

dr = 0.
We can now write P*T = LUy, where
1
lo 1
L =
1 1 ’
by e di
U (%]
U, =
! as b3 ’
and
12 = ag/bI
U2 = b2 — 1201=
(%} = Cy — leI

In the special case where by = as = 0, so that the first column of T is
entirely zero, and the matrix is singular, we simply take P* =1, L1 =1
and U1 =T.

In the matrix U; the n x n submatrix consisting of the last n rows
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and columns is triple diagonal, and so by the induction hypothesis we
can write

This shows that
e (1 07 by (1, di,0,...)
PT_(lz I, >(0 P,L,U,
where Iy = (I5,0,0,...,0)7, and so

1 oF pep_ (1 o’ by (¢t d;,0,...) '
0 P, Pl, L, 0 U,

Thus the required result is true for all (n +1) x (n+ 1) matrices. Since
it is obviously true for any 1 x 1 matrix, the induction is complete.
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Solution to Exercise 3.7

This is an informal induction proof. The elements of L and U are
determined by (2.19). Suppose that we are calculating the elements [;;
for a fixed i, with j = 1,...,i — 1, and we are about to calculate [;,,
where r < i —p. Then b; = 0, since B is Band(p, ¢). Now

r—1
1
lip = — S bip = Y Ligtir o -
Upry el

Thus if I3 =lip = ... =1;,—1 = 0 it follows that [;;, = 0 also. Evidently
l;1 = 0 so an induction argument shows that [;; = 0 for all k <r <i—p.
Hence L is Band(p,0).

The argument for the matrix U is similar. Calculating the elements

u;j in order, we are about to calculate u;., where r > ¢+p. Then b;. = 0,
and if

Ulp = Ugp = ... = Uj—1, =0

it follows that u;- = 0, since

i—1
Ui = by — § Likugr-
k=1

Moreover it is clear that u;,, = 0, so the same induction argument shows
that ug,. = 0 for all k <1i <r — p. Hence U is Band(0, q).
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Solution to Exercise 3.8

With the usual notation, the equations determining the elements of L

and U include

_ax
oy = —
a1

and
U4 = Q24 — l21G14.

Now we are given that as4 = 0, but in general l2; and a4 are not zero.
Hence in general a4 is not zero.
In the same way
lyg = aa
a1
and
lyp = — (@42 — lyrur2).
U22
Here a4 = 0, but there is no reason why l4; or w12 should be zero.
Although a subdiagonal of A is entirely zero, there is no reason why
any of the elements of the same subdiagonal of L should be zero.
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Solution to Exercise 4.1

Suppose that g is a contraction in the co-norm, as in (4.5). Observe
that

lg(z)—g(y)|l, < n'/?|lg(x)—g(y)lle < Ln*/P||lz—yllew < Ln'/?||z—yl|,

Therefore, if L < n='/P then g is a contraction in the p-norm.
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Solution to Exercise 4.2
Substituting for x; we find
(Tw2 +25)% + 25 — 25 =0,

or
5023 + 350z + 600 = 0,

with solutions zo = —3 and —4. The corresponding values of z; are 4
and —3, giving the two solutions (4, —3)? and (-3, —4)%.
The Jacobian matrix of f is

21’1 21’2
1 -7 )

At the first solution (4, —3)T this is

(52,
(7 3)

Clearly the condition is not satisfied in either case.

If we change the sign of f; the solutions remain the same, but the signs
of the elements in the second row of the Jacobian matrix are changed.
The condition is now satisfied at the first solution (4, —3)7, as the matrix

becomes
8 —6
-1 7 )

If we replace f by f* the solutions are still the same, and the Jacobian

matrix becomes
1-— 2:121 -7 - 2.1'2
-1 7 )

At the second solution (—3,—4)7 this is

(1)

The relaxation parameter A = 1/7 will give convergence in both cases.

and at (—3,—4)7 it is
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Solution to Exercise 4.3

Clearly ¢(0) = g(u) and ¢(1) = g(v). The function ¢ is differentiable,
and

' (t) = g'(1 = thu + tv) (—u +v).

Hence by applying the Mean Value Theorem to ¢, there is a real number
6 in (0,1) such that

which gives
g9(v) = g(u) = (v —u)g'((1 — O)u + 6v).

The result now follows by defining n = (1 — 8)u + fv, which lies on the
line between v and v, and is therefore in 2, since {2 is convex.
Since |¢g'(¢)| < 1 there is a value of § such that

l9' (=)l <k =31+ <1

for all z such that |z — (| < §. Convergence of the iteration follows in
the usual way, since

[Znt1 = ¢ = g(z") = g(0)]
= lza = Cllg' ()]

Hence |z, — (] < k™|z0 — (| provided that |zo — ¢| < d, and the sequence
(zn) converges to C.
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Solution to Exercise 4.4

The iteration
2"t = g* (™)

is in component form

T
A = (el 2f)

and the complex iteration z,4+1 = g(zn) gives
2" ™ = u@V,2)V) + w(al" ),

with + = +/—1, which are obviously identical.
The condition |g(¢)] < 1 gives

u? 402 < 1,

evaluated at the fixed point { = {3 + 1(s.
In its real form a sufficient condition for convergence is ||J(¢1, (&)||oo <
1, and the Jacobian matrix is

J= < ety ) :
Uy Uy
Using the Cauchy-Riemann relations this gives the sufficient condition

|ug| + |vz| < 1.

This is a more restrictive condition than that obtained from the complex
form, as it leads to

lug|> + |ve|* < 1 = 2Jugvg].
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Solution to Exercise 4.5

Clearly g;(1,1) = 1 and g¢»(1,1) = 1, so that (1,1) is a fixed point.
The Jacobian matrix is
2 2
J = < ERE A )
3L2 3%1

Evidently at the fixed point [|J||c = 3 > 1, so the sufficient condition
for convergence is not satisfied.

However, as in Exercise 4 this iteration corresponds to complex iter-
ation with the function g(z) = #(2? + 3 + i), as can be seen by writing
down the real and imaginary parts. Then ¢'(z) = %z, and at the fixed
point

lg'(L+9)] = 3v2 < 1,

so the iteration converges.
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Solution to Exercise 4.6

In component form the function g(x) = ¢ — K(x) f(x) is

k
gi(x) = z; — ZKir(ﬂJ)fr(fB)-

Differentiating with respect to x; gives the (4, j) element of the Jacobian
matrix of g as

dgi 0 <
o, dij — B, 7Z;Kir(ﬂﬁ)fr(%)
OKir , =, Ofr
= r K;,
T f ; 8mj

0
OK; k
amj fr - ;KiTJij

k
RSP
r=1

k
IEDY
r=1

all evaluated at the point x.

When we evaluate this at the point &€, we know that f(&) = 0, so that

fr = 0 for each value of r. Moreover, K is the inverse of the Jacobian
matrix, J, of f, so that

k
Z KirJrj = 6ij.

r=1
Hence all the elements of the Jacobian matrix of g vanish at the point

¢.
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Solution to Exercise 4.7

Evidently at a solution z; = z», and 22? = 2. Hence there are two
solutions, (1,1)T and (—=1,—1)T.  The Jacobian matrix of f is

_ 21’1 2372
()

J-1_ 1 1 2z

2(271 -f—mz) 1 21’1 ’
Hence Newton’s method gives
O N A N 12 ) @)+ (@) -2
A U3 R WO s 29

2 2

1 (xgo)) + (:Ugo)) +2

— 0 (0. 2 2
2T ) | () 4 (0) 42

and its inverse is

Thus ™ = 2\ for all positive values of n, and if we write z\") =
:Egn) = z(™ the iteration becomes

2
pnt1) (™) +1
2z (1)
Evidently if z(®) > 0 then (™) > 1 for all positive n. Moreover
(n) _1
(ntl) 2 "~ _
x 1 5207 (x 1),

and 0 < z — 1 < 2z when = > 1. Hence (™ — 1 as n — oo. It then
follows from

1
(n+1) _ 1 _ (n) _ 1\2
x 1= 527 (x 1)
that
gt -1 1
m — 5 asn — 00,

so that convergence is quadratic.
A trivial modification of the argument shows that if x§°) + xgo) <0
then the iteration converges quadratically to the solution (—1,—1)7.
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Solution to Exercise 4.8

We say that (z(®)) converges to £ linearly if (4.19) holds with ¢ = 1,
0<p<1andey=|z® — €| The rate of convergence is defined as

log,(1/p) = —logyg p-
The Jacobian matrix of f is

_ 2.7,'1 2:132
=TT

J-1_ 1 1 =2z
2@ —m) \ -1 221 )’
provided that z; # z5. Newton’s method then gives, provided that
(n) ()
Ty F Ty,

2 2
( :c§”“) ) _ ( x§”) )_ 1 ( 1 —2:{,';”) ) (xﬁ”)) + gxgn))
n+1 - n n n n
mg = mg ) 2(m§ ) —mg )) -1 2x§ ) xgn) + 5" —2

and a simple calculation then shows that mgn"'l) + mgn"'l) =2.

When :1;50) =1+4+a, xgo) =1— «a we find that

whose inverse is

mgl) =1+ %a, mgl) =1-

[These are exact values, not approximations for small a.]
We have shown that for any x(%), provided mgo) # :rgo), the result of
the first iteration satisfies :1;51) + xgl) = 2. Hence we can write :1;51) =

1+a, xél) =1-a. Then
:r;gn) =1+4a/2"!, :r;gn) =1-—q/2"!

for n > 1; this shows that the (x(™) converges linearly to (1,1)7, with
rate of convergence In 2.

Convergence is not quadratic, because the Jacobian matrix of f is
singular at the limit point (1,1)7.
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Solution to Exercise 4.9
With the given value of z we get
z+2 = (2k+ 3w +In[2k + 7] +n+2

= eZ
= (2k+ 3)wme’.

Hence

In[(2k + 7] + 7+ 2
n=Inl1-—2 T .
2k‘-|—§7r

Now
[In(1 + 2t)| < |¢]
for all nonzero real values of ¢, so that

In| <

In[(2k + L)a] + |y + 2
(2k + $)m

which gives
In[(2k + )] + 2
In| < 1
(2k + 5)7T

This is enough to give the required result, since for sufficiently large k
the other terms in the numerator and denominator become negligible,
and |n| is bounded in the limit by In k/2kx.

To give a formal analysis, we obviously find in the denominator that

(2k + $)m > 2rk.

For the numerator, we note that 1 <Ink for £ > 1, and so

In[(2k+ 7] +2 < In[(2k+ 3)7] +2Ink
< 3Ink+In[(2+ 3)7]
< 3lnk +1In(3n)
< 3lnk+1In(3m)lnk
< [B+In37)|Ink.
Finally
il < 0B,
where
_ 34 1In(3m)

C —
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Solution to Exercise 5.1

(i) Lemma 5.2
For the Householder matrix

2
H=1I-—vv’
vTv’U’U

which is clearly symmetric, we have
HH' = H?
(I — avvT)(I — avv?)
I —20vv! + a?volvo?
I+ (®vTv —2a)vo”
= 1

)

where we have written o = 2/(vTv). Hence H is orthogonal.

(ii)Lemma 5.3
Since Hj, is a Householder matrix,

2
Hk =1- T—'U]c'U]j;,
’Uk’Uk

for some vector v;. Now define the vector v, with n elements, partitioned

as
0
(3 ’

so that the first n — k elements of v are zero. Then v"v = v} vy, and

2 I O 2 0
I—— T — n = T
ol ? < 0 Iy > v’y ( Uk ) 0 )
(L O
= Lo H,
= A

)

so that A is a Householder matrix.
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Solution to Exercise 5.2

Since this is a 4 x 4 matrix, two Householder transformations are
required.

In the first transformation the Householder vector is v = (0,4,2,2)7.
The result of the first transformation is the matrix

2 -3 0 0
-3 1 3 4
0 3 -3 -9
0 4 -9 =2

In the second transformation the Householder vectoris v = (0,0,8,4)7,
and the result is
2 =3 0 0
-3 1 =5 0
0 -5 -—-11 -3
0 0 -3 6
This is the required tridiagonal form. Note that the first row and

column, and the leading 2 x 2 principal minor, are unaffected by the
second transformation.
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Solution to Exercise 5.3

Taking 6 = 0, the corresponding Sturm sequence is

po = 1
P1 = 3—-60=3
P2 2—-60)3)—-1=5

= (2-9)3) -1
pzs = (4-0)(5)—-43) =
P = )(

If 5% < 8 there are 4 agreements in sign, while if 50> > 8 there are
3 agreements in sign.

Taking 8 = 1, the corresponding Sturm sequence is

p = 1

pp = 3—-6=2

P2 = (2-6)(2)-1=1

pz = (A-0)1)-(4(2)=-5
pr = (1-6)(=5)—a*(1)=—-a?

In this case there are always three agreements in sign.

Hence if 50 > 8 the number of agreements in sign is the same, so no
eigenvalues lie in (0, 1), while if 5a® < 8 there is one more agreement in
sign for & = 0 than for # = 1, so there is exactly one eigenvalue in (0, 1).
If 52 = 8 then there is an eigenvalue at 0.
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Solution to Exercise 5.4
If Hx = cy, where c is a scalar, then
2T H He = PyTy;

but since H is a Householder matrix, HTH = I, and so

2 Tl
yTy’
Writing
2
H=1-—vvT
oTo vV
this shows that
- T(vTa:) v =cy

Hence v = a(x — cy), where ¢ is known, and « is some scalar. Now H
is unaffected by multiplying v by an arbitrary nonzero scalar, and the
required Householder matrix is H = H(v), where v =  + cy, and

Tz
CcC = —.
yTy

There are clearly two possible such Householder matrices.
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Solution to Exercise 5.5

From
(D+eA)e+eu)=(A+eu)(e+cu)
we find by equating powers of €° and ¢! that
De = )e

and

Du + Ae = \u + pe.

Since D is diagonal it follows from the first of these that A = d;; for
some j, and that e is the unit vector whose only nonzero element is
e; = 1. From the second equation,

drpuk + ag; :djjuk+,u6kj, k=1,...,n.

Taking k = j we see at once that p = a;;. For k # j it also follows that

U = 7‘“«]’

djj — dk

Since the eigenvector e + eu has to be normalised, we have
(e +ecul)(e +eu) =1.

Comparing coefficients of powers of e, we first see that e”e = 1, which
already holds, and then e”w = 0. This means that u; = 0.
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Solution to Exercise 5.6

Multiplying out the partitioned equation and equating powers of e
gives, for the leading term,

d116 = e
From the first of these we see that A = dy1; since none of the elements
of the diagonal matrix D,,_j, are equal to dy; the second equation shows
that f = 0.
Now equating coefficients of ¢ we get
Are+dpju+ A f = Au+ pe
Ale+ Asf+D,_v = Nv.

Making use of the facts that A = dy; and f = 0 the first of these

equations shows that p is an eigenvalue of Ay, and the second shows
that

Age + Dp_pv = \v.

This equation determines v, since the matrix D,,_j — AI is not singular.
Now equating coefficients of €2 we get

dyx+ Aju+ Av = Az + pu+ve
AYu+ D, yy+Asv = Iy+pv+vf.
The first of these reduces to
(A; — pl)u =ve — Ayv.

Determination of u from this equation is not quite straightforward, since
the matrix A; — pl is singular. However, if we know the eigenvalues 6;
and corresponding eigenvectors w; of A; we can write

u = Z Bjw;.
J
If we number these eigenvalues so that u = 6, and e = w;, we see that

> (65 — 61)Bjw; = vwy — Ayv.
J
Multiplying by w! we obtain
(0; — 61)B; = —w] Ayv;
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This determines j; for i # 1, since we have assumed that the eigenvalues
6; are distinct. The equation does not determine the coefficient f;; as
in Exercise 5 this is given by the requirement that the eigenvector of A
is normalised. Writing down this condition and comparing coefficients
of ¢ we see that e”u = 0, thus showing that 3; = 0.
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Solution to Exercise 5.7
Since A — uI = QR and Q is orthogonal, Q¥ (A — uI) = R. Hence
B = RQ+upl
= QA-phQ+nul
= QTAQ-pQTIQ+pI

= QTAQ.
Hence B is an orthogonal transformation of A.
Also
BT = (QT4AQ)"
= QUATQ
= QTAQ

since A is symmetric. Hence BT = B, so that B is symmetric.

We build up the matrix () as a product of plane rotation matrices
RPPHL(p,) asin (5.34), withp = 1,...,n—1. The first of these rotations,
with p = 1, replaces rows 1 and 2 of the matrix A — u/ with linear
combinations of these two rows, such that the new (2, 1) element is zero.
since the matrix is tridiagonal the new element (1,3) will in general be
nonzero. The second rotation, with p = 2, carries out a similar operation
on rows 2 and 3; in the result the element (3, 2) becomes zero, and (2, 4)
may be nonzero.

We now form the matrix R(Q); this involves taking the matrix R and
applying the same sequence of plane rotations on the right, but with each
rotation transposed. Since R is upper triangular, and the first rotation
operates on columns 1 and 2, a single nonzero element appears below the
diagonal at position (2,1). In the same way the second rotation operates
on columns 2 and 3, and introduces a nonzero element at (3,2). Hence
finally the only nonzero elements in the matrix B below the diagonal
are in positions (i + 1,7), for i = 1,...,n — 1. But we have just shown
that B is symmetric; hence B is also tridiagonal.
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Solution to Exercise 5.8

For this matrix the shift 4 = a,, = 0; we see that

e (L )( )

Evidently @ is orthogonal and R is upper triangular. It is then easy
to verify that B = R@Q = A. Hence in successive iterations of the
QR algorithm all the matrices A®) are the same as A, so they do not
converge to a diagonal matrix.
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Solution to Exercise 5.9

We use the shift a,,, = 10, so that

3 4
A—pul =

4 0

The QR decomposition of this matrix is

3 _4 5 12
A—pl=QR= 5 5 5
4 3 0 _16
5 5 5
Then the new matrix A is
12 3 _4
RQ + ul = 5 > > ) 4101
0 _16 4 3
5 5 5
which is
373 _64
25 25
_ 64 202

25 25
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Solution to Exercise 6.1

The inequalities follow immediately from Theorem 6.2, with n = 1,
o = —1 and z; = 1.

As an example we need a function whose second derivative is constant,
so that f"(£§) = M for any value of &; thus we choose f(z) = 22, and
M, = 2. Since f(1) = f(—1) = 1 the interpolation polynomial of degree
lispi(z)=1,and at z =0

1£(0) =p1(0)| = [0 1| = 1 = M/2

as required.



Solution to Exercise 6.2

(i) The interpolation polynomial is

pi(x) = T a03 + E(13 = za’.
—a a

The difference is
f(x) —pi(z) = 2° —2a® = x(x — a)(z + a).
Theorem 6.2 gives

x(x — a)

f@) - mle) = 25

Comparing these we see that

&= (z+a)/3.

f(€) = 3z(z — a)é.

(ii) The same calculation for f(z) = (2z — a)* gives
r—a 4T 4
=2 Z(2a —
@) =" + 220 - a),
and the difference is

f(@) = pi(2)

(22 —a)* + (z — a)a® — za

= 8z(r —a)(22* — 2az + a?).

Comparing with
w48(26 — a)2

we see that there are two values of &, given by

222 — 2ax + a2\ /*
o pos (H2t)

63
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Solution to Exercise 6.3
We know that
a(z:) =yi;, i=0,...,m,
and that
r(z) =y, i=1,...,n+1
Now suppose that 1 < j < n; then ¢(z;) = r(x;) = y;. Hence

(xj —mo)r(z)) — (¥j — Tpy1)q(z;)

;) =

p( J) Tn+1 — Lo

_ (x5 — x0)y; — (Tj — Tny1)yj
Tnt1 — To
Clearly
p(l’ ) — (ZEO - :Uo)’f'(:l?o) - (3:0 - xn—i—l)Q(xO)
0 In4+1 — Lo

= q(zo)
= VYo,

and in the same way p(Zn41) = Yn+1-
Hence p(z;) = y;, j =0,...,n+ 1, showing that p(z) is the Lagrange
interpolation polynomial for the points {(z;,y;) : i =0,...,n + 1}.



65
Solution to Exercise 6.4

We find that

Tn1(l—1/n) = (2-1/n)(2-3/n)...(1/n)(-1/n)
(2n—1)(2n—3)...(1)(-1)
nn—i—l
1 (2n)!
S prtl 240 (2n)
(2n)!
nntl2npl’

Substitution of Stirling’s formula (cf. also Chapter 2, Section 2.1)
gives

1 (2n)2n+1/2e—2n
T pntlon T pntl/2g-n
2n+1/2 e~

= - - n — 0o
n

Tsi(L=1/n) ~

as required.
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Solution to Exercise 6.5

Suppose that there exists qopt+1 € Pont1, different from po,41 and
also having these properties. Define 7 = papt1 — @2n41; then r(z;) =
0, ¢ =0,...,n. By Rolle’s Theorem there exist n points §;, j =1,...,n,
one between each consecutive pair of z;, at which '(¢;) = 0. Applying
Rolle’s Theorem again, there exist n — 1 points ng, £k = 1,...,n — 1,
at which 7" (n;) = 0. But we also know that r""(x;) =0, i =0,...,n,
making a total of 2n points at which " vanishes. However, the proof
breaks down at this point, since we cannot be sure that each )y, is distinct
from all the points x;; all we know is that ny lies between x_1 and xg41
and it is possible that n, = xy.

Suppose that ps(z) = co + c12 + cox? + c323 + caz® + c52°. The given
conditions lead to the equations

cp—C+teC2—c3+cg—c =
Co
cop+c1+cat+c3+cqtcs
2¢y — 6c3 + 12¢4 — 20c¢5
2¢co

200 + 6c3 + 12¢4 + 20c5 =

o o o~ o -

Adding equations 1 and 3, and using equation 2, gives
Co+ ey = 2.
Now ¢y = ¢ = 0, so that ¢4 = 2. Adding equations 4 and 6 gives
4co 4 24c4 = 0,

which is clearly inconsistent. Hence this system of equations have no
solution.
With the change ps(—1) = —1, adding equations 1 and 3 now gives

ey +c4 =0,

so the same argument now leads to ¢ = c2 = ¢4 = 0. The equations
now only require that

c1 +c3+cs 1
603 + 2065 = 0.

Hence ¢; = a can be chosen arbitrarily, and then ¢3 = —13—004, c =
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1+ %a. A general form of the polynomial satisfying the given conditions
is

ps(z) = x + B(Tx — 102° + 32°),

where (3 is arbitrary.
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Solution to Exercise 6.6
The polynomial lp(z) must satisfy the conditions
lo(zo) =1, lo(z;) =1'(z;) =0, i=1,...,n.
This shows that

The polynomial h;(z) must satisfy
hi(ilﬁj):&ij, j:O,...,n,
h;(l’j)zo, j:l,...,n.

It must therefore contain the factors (z — z;)%, j=1,...,n, j # i, and
(x — o). There must be one other linear factor, and so

r — X

i(x) =(1 — & Li(x))?,
@) = (1 + e — ) E= 2 [1,(0)
where
nor—x;
Ll(x): H 7]7
j=1zi 08T Y

and the value of « is determined by the condition hf(x;) = 0. It is easy
to see that

h;(:l?z) =a+ + 2L;(:L’z)

T; — To

and so
1

Li — Lo

o= —

In the same way the polynomial k;(x) must satisfy
ki(zj) =0, 7=0,...,n,
and
ki(zj)=4dij, j=1,...,n.
It is easy to see that
-
ki(z) = (z — xi)[h(l’)?ﬁ-

Each of these polynomials is of degree 2n.
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As in the proof of Theorem 6.4, we consider the function

0(0) = £0) = pan(t) - L L e,

where now
n
w(x) = (v — o H:L'—x
i=1

If z is distinct from all of the z;, then () vanishes at all the points z;,
and at z. Hence by Rolle’s Theorem 1)’ (t) vanishes at n + 1 points lying
between them; ¢)’(¢) also vanishes at z;, j = 1,...,n. This means that
Y'(t) vanishes at 2n + 1 distinct points, so by repeated applications of
Rolle’s Theorem we see that 1"+ () = 0 for some 7 in (a,b). This
gives the required result.
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Solution to Exercise 6.7

The expressions are a natural extension of those in Exercise 6.

We now define
n—1

and we see that

! _— 5 T — Tp
o(z) o(z) pa—

r — T
@) = Lo(@’ =2

These are both polynomials of degree 2n — 1, and satisfy the conditions
we require.
The polynomials h; and k; are given by

(x — w0)(x — zp)
(zi — z0)(Ti — Tn)

hi(z) = [1 + a(r — ;)] Li(z)?,

where

1 1
Ti — To Ti — Tn

and
(x — o) (z — z,)

ki(z) = (v — 2:)[Li ()] (xi — o) (xi — an)

The error bound is obtained as in Exercise 6 by considering the func-
tion
f(:l?) - p2n—1($)

(2)2

P(t) = f(t) — pan—1(t) — (t)?,

where now
n—1

m(x) = (v — xo)(x — xy) H (x —x;)?.

i=1
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Solution to Exercise 6.8

The zeros of the polynomial are at —2,—1,0,1,2 and 3. These are
symmetric about the centre point %, and the polynomial has even degree.
Hence it is symmetric about the point = = % Since it does not vanish
in the interval (0,1) the maximum is attained at the midpoint, 3. The
maximum value is

a(3) =&

Write = z, + 07/8, where k is an integer and 0 < 6 < 1. Then writ-
ing u(z) = p(#), where p(#) is the Lagrange interpolation polynomial, we
see that p is defined by the interpolation points (j, f(z;)),j = —2,...,3.
Then the difference between f(z) and u(zx) is just the error in the La-
grange polynomial, which is

[T 0-3) ,,

sinx —u(z) = Y (m),

where —2 < 5 < 3, and ¢"7 denotes the 6th derivative of the function
9(0) = f(xy + 67/8) with respect to 6. Hence

9" (m) = (x/8)° F1(¢),

where x;—2 < £ < x43. Now f(z) =sinz, so

9" ()] < (7/8)°.

Hence using the above bound on the polynomial.

6!

225 1 (m\6
64 6! (5)
0.000018.

|sinz —u(z)] =

‘ p(e) gVI ("7)
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Solution to Exercise 6.9
In the interpolation polynomial the coefficient of f(x;), where 0 <
1<n-—1,is
2n—1 z . n—1 z . n—1 z . c
- dr _ - dr Y
H,:I?j—a?r - H,:I?j—ilﬁrH:Ej—Z’r—E
r=0,r#j r=0,r#j r=0
_ pj(z) pj(z—e¢) (Z’—:Ej—é‘)
pjlx;) @j(x; —¢) —€

In the same way the coeflicient of f(x,+;) is

n—1 n—1
H T — Ty H T — Ty —€ _ T @j(x) ‘Pj(x_f)
o Tite =T oo tite—w—¢ e ilzy) pj(zj+e)

Adding these two terms gives the required expression.
In the limit as € — 0 it is clear that

pi(z —e) = p;j(z).

The required limit can therefore be written

i@l GO @,
@j(x;) = = p;j(x;) &0,
where
T —x; T—1Tj—¢
G(e) = mf(mj +e) - Wj_g)f(mj);
since it is clear that G(0) = 0.
Now
G'(0) = Wf (zj) — [%(mj)]ﬁ](xj)f(%)
1 r—x; , 2V F s
+<Pj(%)f($]) [@j(%’)]z%( D)
In the notation of (6.14) we have
() = $il@
Lite) pi(z;)’
' 215
Lie) = i)

A little algebraic simplification then shows that as ¢ — 0 the terms
involving f(z;) and f(x;4,) tend to Hj(z)f(z;) + K;(z)f'(x;), which
are the corresponding terms in the Hermite interpolation polynomial.
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Solution to Exercise 6.10

For f(z) = z°, since f(0) =0, f'(0) = 0, there is no contribution to
the interpolation polynomial from these two terms. In the notation of
(6.14) we find that

x
L = =
1(37) a’
2
x
K@) = Sa-a),
72 2
Hi(z) = =) [1 - a(m —a)]
Hence
2 2
oz 4 T 2 5
ps(z) = ;(m —a)ba® + =) [1 - E(m —a)] a
= 3a’2® —2a2°.
The error is therefore
> —p3(z) = 2°(2® - 3a’r +2a%)
= 2%(z —a)*(z + 2a)
2%(z — a)?
D

where ¢ = (z + 2a)/5. This is the required result, since fIV(¢) = 5!¢.
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Solution to Exercise 6.11

Since f(z) is holomorphic in D, the only poles of g(z) are the points
where the denominator vanishes, namely the point z = z and the points
z=uwj, j =0,...,n. Since they are distinct, they are all simple poles.
Hence the residue at z = z is

R, = lim(z—x)g(2)

z—T

= lim f(2) ﬁ %

z—x
k=0

= f(a).
In the same way the residue at z = z; is

Ry = lim (z—a;)9(2)

Z2=Tj

n
= dim (o -y L [ A
2T Z—kaOZ—xk

n
T — T}
= e 1 o=
k=0kztj Ik
= —Lj(@)f(z;).
Hence the sum of the residues is just f(z) — pn(z). The Cauchy
Residue Theorem then gives the required result.

The contour C' consists of two semicircles of radius K, joined by two
straight lines of length b — a. Hence the length of the contour is 27K +

2(b —a). Hence
/O o(2) dz /O l9(2)] dz

< 27K +2(b—a)]G,
provided that |g(z)| < G for all z on C'. Now for all z on C we know
that |z —z| < K and |z — 2| < K, and since x and all the x; lie in [a, b]
we also know that | — ;| < (b —a). Hence
(b—a)"tt
Kntl ’

Using the result of the Residue Theorem, this shows that
b—a+aK)M (b—a\"

K‘ )

IN

l9(2)] < M e

|f (@) = pn(z)] <

™
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as required. Since K > b—a, the right-hand side tends to zero asn — oo,
which is the condition for p,, to converge uniformly to f, for = € [a, b].

The function f(z) has poles at z = 4:. For the interval [a,b] we
require that the corresponding contour C' does not contain these poles;
this requires that the distance from & to any point on [a,b] must be
greater than b — a. For the symmetric interval [—a, a] the closest point
to 2 is x = 0, with distance 1. Hence the length of the interval must be
less than 1, and we require that a < 1/2.

This is the condition required by the above proof, so it is a sufficient
condition, but may not be necessary. Evidently it is not satisfied by
[-5,5].
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Solution to Exercise 6.12
Expanding f(h) and f(—h) about the point z = 0, we get
Fh) = F(0)+hy(0) + Lh2F1(0) + LR £,
f(=h) = F(0) = hf'(0) + 3h*f"(0) — §A*F" (&),
where & € (0,h) and & € (—h,0). Hence,
F(h) = f(=h) = 2hf'(0) + Gh* (f"(€1) + f"(€2)) -

The continuity of f" on [—h, h] implies the existence of £ in (—h, h) such
that 5(f" (&) + f"'(&)) = f"'(€). Therefore,

f(h) = f(=h)
2h

— f1(0) = §h*F"(9),
and hence
Ey —E—

2h

Taking the absolute value of both sides, and bounding |f"'(£)| by Ms
and |e4| and |e_| by €, we have that

E(h) = gh*f"(€) +

€
7
Let as consider the right-hand side of this inequality as a function of
h > 05 clearly, it is a positive and convex function which tends to 4oo if
h — +0 or h = +o0.

Setting the derivative of h %hZMg + 7 to zero yields,

|[E(h)| < §h*Ms +

€
h?

e (2)7
- (&

gives the value of h for which the bound on |E(h)| is minimized.

LpMy — — =0,

and therefore,
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Solution to Exercise 7.1
The weight wy, is defined by
wk—/Lk d:r;—/ H <x_$j>dx.
L — 5
@ j=1,j#k J

Now if xx = a+ kh then z,—y, =a+ (n —k)h =b—kh =a+b— xy.
Making the change of variable y = a + b — x we get

_/a ﬁ <a+b—y—m]~> dy

b=tk N R T
b n

= / 11 ( Tny ¥ )dy
@ j= 17#’6 Tn—j = Tn—k

[ G

i=1,i#n—k
= Wp—k,

Wk

where we have replaced j by n — ¢ in the last product.
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Solution to Exercise 7.2

The Newton—Cotes formula using n + 1 points is exact for every poly-
nomial of degree n. Now suppose that n is even and consider the poly-
nomial

tnr1(7) = [v = (a+b)/2]"*

This is a polynomial of odd degree, and is antisymmetric about the
midpoint of the interval [a,b]. Hence

b
/ gn+1(z)dz = 0.

The Newton—Cotes approximation to this integral is

n
Z Wk qrt1(Tk)-
k=0

Now Exercise 1 has shown that w,_; = wg, and the antisymmetry of
Gn+1 shows that gni1(vx) = —gny1(vn—g). Hence the Newton—Cotes
formula also gives zero, so it is exact for the polynomial g,41.

Any polynomial of degree n + 1 may be written

Pn+1 = Cqn+t1 + Pn,

where ¢ is a constant and p, is a polynomial of degree n. Hence the
Newton-Cotes formula is also exact for pp41.
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Solution to Exercise 7.3

It is clear that a quadrature formula is exact for all polynomials of
degree n if, and only if, it is exact for the particular functions f(z) =
z", 1 =0,...,n. The given formula is exact for the function z" provided
that

1
/ z"dz = wo(—a)" + wia”,
-1
that is, if
1— (_1)r+1
r+1

To be exact for polynomials of degree 1 we must therefore satisfy this

equation for r = 0 and » = 1. This gives

=a"[(—1)"wo + wq].

= wo+w
0 = a[-wo+w].
Since « is not zero, these give at once wy = wy = 1.

For the formula to be exact for all polynomials of degree 2 we also
require to satisfy the equation with r = 2, giving

2 . .
3= az[wo +w] = 2a2.

As a > 0 this requires the unique value a = 1/v/3.
The same equation with r = 3 gives
0 = a®[~wo + wi]

which is satisfied, so when o = 1/ V/3 the formula is exact for ", r =
0,1,2,3. It is therefore exact for every polynomial of degree 3.
[Note that it is also exact for the function " for every odd integer r.]



80
Solution to Exercise 7.4
As in Exercise 3 the formula is exact for all polynomials of degree 3 if,
and only if, it is exact for the functions z", r = 0,1,2,3. This requires
that
= wo+ w1 + w2+ ws
—Wo — %wl + %’LUQ + ws

wo + %w1 + $w2 + w3

O Wi O [\

= —wp— w1 + 3wy + ws.

From the 2nd and 4th of these equations it is easy to see that wg =
w3 and w; = ws; this also follows from Exercise 1. The 1st and 3rd
equations then become

= 2'LUO + 2’LU1

2'LUO + %wl .

This leads to wp = w3 = %, w; = wy = 2.
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Solution to Exercise 7.5

By symmetry the integral is zero for every odd power of z, and both
formulae also give the result zero. Hence the difference is zero for the
3. 2%, Both formulae give the correct result for all polyno-
mials of degree 3; hence we only have to consider the functions z* and

26

functions z,

For z* the integral has the value 2/5 and a simple calculation shows
that the two formulae give the results (i) 2/3 and (ii) 14/27. Hence the
errors are

zt: (i) —4/15, —16/135.

Similarly for 2% the integral is 2/7, and the two formulae give the
results (i) 2/3 and (ii) 122/243, giving for the errors
2% (i) —8/21, —368/1701.

Hence for the polynomial

2 3 4 5
Ps = Co + C1Xx + C2T” + C3x” + 4™ + C5x

the respective errors are (i) —1=c4 and (i) — ¢4, so the second is more
accurate, by a factor 3.
For the polynomial

2 4
Pe = Co +C1x + c2x” + 03:1;3 + cqx” + 05:1;5 + 06:1;6
: N4 8 s 16 368
the respective errors are (i)—qzca — 576 amd7 (ii) —i35c4 — 7757 Hence
if we choose a polynomial for which ¢ = —15C4 the error in Simpson’s

rule is zero, but the error in formula (ii) is not.
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Solution to Exercise 7.6

Simple algebra shows that the errors in the approximation by the
trapezium rule of the integrals fol z*dz and fol z°dz are —3/10 and
—1/3 respectively.

Similarly the errors in the approximation by Simpson’s Rule of the
same integrals are —1/120 and —1/48 respectively.

Hence the errors in the approximation of

1
/ (z° — Cz*)dz
0

by the trapezium rule and Simpson’s rule are

2C -1 (trapezium rule)
3C— = (Simpson's rule).

The trapezium rule gives the correct value of this integral when C =
10/9.

Moreover the trapezium rule gives a more accurate result than Simp-
son’s rule for this integral when

55C = 51 < I C — 55l

A sketch of the graphs of the two functions of C' on the left and right
of this inequality shows that it is satisfied when C lies between the two
extreme values which are the solutions of

3 1 _ 1 1
ﬁc_§ - 1200 48
30_1 _ _j1lo_ 1L
100 3 = [1200 48]‘

These values are % and % as required.
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Solution to Exercise 7.7

To determine c_1, ¢y, ¢; and ¢y, we demand that the quadrature
rule integrates 1, z, 22 and 2® exactly, for, then it will integrate any
polynomial from P3 exactly. Hence,

c_1+cec+cr+e = 1
—C_1+c1 + 262 %
c_1+c1 +4es %
—c_1t+c1 + 862 = % .
Solving this linear system yields
071262:—21—4, Cozclzg.

Suppose that f and its derivatives up to and including order 4 are
defined and continuous on the closed interval [—1,2] which includes
the interval of integration, [0,1], as well as all the quadrature points,
—1,0,1,2. Consider

E(f) = / f(@)de — Q(f) = / (@) - ps(a)lde,

where p3 is the Lagrange interpolation polynomial of f of degree 3 on
the interval [—1,2] with interpolation points —1,0,1,2. Hence, by the
remainder theorem for Lagrange interpolation,

B < G | Im(@)lda,

where m4(x) = (z + )z(z — 1)(z — 2). Now, |m4(z)| = (1 — 2H)z(2 — x)
for all z € [0, 1], and therefore,

1
/ ra(2)|de = L.
0
Thus,

where My = max,e[—1,91|f(2)]-
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Solution to Exercise 7.8

From the definition we see that

Tm) = “2fo+fotfi.]
T(2m) = %[%fﬁfﬁfﬁ...],

where we use the notation

fi = fla+j(b—a)/2m).

Hence
3T(2m) — T (m) = 136—_ma[2f0 +4fi +4fo+4fz+4fi+. ..
—fo—2fr—2fs—..]
= ?[f0+4f1+2f2+4f3+2f2+...],
m

which agrees with S(2m).
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Solution to Exercise 7.9

From Theorem 7.4 it follows that
b
/ F@)de — T(m) = A/m? + E(m)

where m?E(m) — 0. Hence

T'(m)-T02m) —A/m? + A/4m? — E(m) + E(2m)
T(2m)—T@4m) —A/4m? + A/16m? — E(2m) + E(4m)
_ —124-16m?*[E(m) — E(2m)]
—3A — 16m?2[E(2m) — E(4m)]

— 4.

Table 7.3 for the values m = 4, 8, 16 gives this ratio the values 3.72,3.91, 3.97
respectively; these indicate satisfactory convergence to limiting value 4.



86
Solution to Exercise 7.10

In the same way as in Exercise 9 we get

—A/m*+ A/(2m)* — E(m) + E(2m)
—A/(2m)> + A/(4m)* — E(2m) +

T(m)—T(2m)
(

A(—4% +2%) — (4m)*[E(m) — E(2m)]
) — E(

T(2m) — T(4m)

 A(=22+ 1) — (4m)[E(2m
- 2%

— E(4m)]

Table 7.4 for the values m = 4, 8, 16 gives this ratio the values 2.47,2.49,2.50
respectively; these are consistent with a value of a such that 2% = 2.5,

or a =1n2.5/1n2. The value o = 4/3 fits this data quite well.



Solution to Exercise 7.11

With the notation of Section 6.3

Low) = 3(1-2)

L) = e+

Ho(w) = 1(1l—2)[1+ (e +1)]
Hi) = Ho+11-(o—1)]
Kolw) = H1-o)(+1)
Ki(z) = Yaz+1)>*=z-1).

The required polynomial is then
ps(x) = Ho(z)f(=1) + Hi(2)f(1) + Ko(a)f'(=1) + K1 () f' (1),
and
(x4 1) (x—1)?
f(@) —ps(z) = Tflv(f)
for some ¢ € (—1,1).

Integration of this equation gives the required result, with

/ (22 — 12V (E)da

-1

_ 1
E| = 5

1
< ﬁMél/ (z? —1)%dz

where
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Solution to Exercise 7.12

We have seen that

q1 (t) = —t

() = —3tP+3
_ 143 1

q3(t) = _Et + Et'

By integration it follows that

() = —5tt+ 5P+ A
gs(t) = —agt’ + a5t® + Ast + As.
Now ¢5(t) must be an odd function, so A5 =0, and ¢5(1) = 0, so that
_ 1 L7
A4= 155 ~ 3 = 300
Hence
au(t) = —-Lt*+ L2 - L
() = —mpt° + gt — gt
In the same way
g(t) = —=5t0 4+ gptt — st + Ag
ar(t) = —sipt’ + 5t — megt® + Ast + A

Since g7 is an odd function, A7 = 0; since ¢7(1) =0

_ 1 1 7 _ 31
Ag = 5010 — 720 T 2160 — 15120

Hence
_ 1 46 1 44 7 42 31
a6(t) = —wpt + 1zt — 70t + 190
_ 147 1 45 7 43 31
q7(t) - _5040t +%t - 2160t +15120’5'

For the coefficients ¢, we obtain from the definition
a = @1)/22=-%
o = q(l)/ 24 = 7%—0

C3 = QG(I)/QGZ—m
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Solution to Exercise 7.13

Since sin z is an odd function, ffﬂ sinrzdz = 0 for all values of r. For
the same reason the composite trapezium rule will also give the value
zero, so the rule gives the correct value of the integral for every value of
r, whether or not it is a multiple of m.

When r = 0, cosrx = 1, so the composite trapezium rule gives the
exact result in this case also.

Now suppose that r is a positive integer; then the composite trapezium
rule for [”_cosrazdz becomes

m—1
Ty, = h[§ cos(—rm) + Z cos(—rm + jré) + % cosrn],
=1

where § = 27 /m. Since the first and last terms are equal, this can be
written, using the given relations,

Ty

h Z cos(—rm + jrf)

Jj=1

(—l)thcosjre
j=1

(=1)"h[sin(m + 3)rf — sin 176]/sin 176

= 0,
since mrf = 2rw. Hence, in general, the composite trapezium rule gives
the result zero, which is the correct value of the integral.

However, the argument breaks down when sin %7%9 = 0, which occurs
when r is a multiple of m. Now if r = km then

cos(—rm + jrf) = cos(—kmn + 2jrm/m) = cos(—rm + 2jkm) = (—1)".
Thus all the terms in the sum are equal, and the result of the composite
trapezium rule is
T = (=1)"mh = (=1)"2m.

[Note that if m = 1 the result is (—1)"27 for every positive value of
r, since r is always a multiple of 1.]
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Solution Exercise 8.1
(i) Write M = || f]|co, so that
|f(z)| <M, for a<z<h.

Then

{If11237

b
/ w(a)[f () dz

b
< / w(z)M?dz
Taking square roots gives the required result.
(ii) Many examples are possible; here are two, where for simplicity we
have assumed that the weight function w(z) = 1:
(iia) Define
2M
f(.'L’) - 1+k2(1’—0)27
where

c=3(a+b),

and k is a constant to be determined. Then clearly ||f||.c = 2M > M,
as required. For the 2—norm we find that

/b 4M2 q

o 1+ E2(z—c)? o

4M? _ -

= ? {tan™" L1k(b—a) —tan™" Lk(a—b)}

4M>7

k )
and we have the required property if
_8M 2
=

{1flloo}”

<

k

(iib) Another function with the required properties is

2M
_f HFa+d-z), alz<z+d
f(m)_{o, a+0<z<bh.



91
Then, as before, ||f||lcoc =2M > M. Now

52
4M?36§
3
and we have the required property if § = 3¢/8M?>.

2 a+9d
Ul = 2 / (a+6—2)’da
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Solution of Exercise 8.2

Suppose that p,, is the minimax polynomial of degree n for the even

function f on [—a,a]. Then there is a sequence of n + 2 points z; at
which

fl@j) = bulz;) = (-1)E, j=1,...,n+2
where |E| = ||f — Pnlloo- Now define the polynomial g, by
qn(m) :ﬁn(_m);
then

since f is an even function. Also

If —anlle = max|f(z) — gn()|
= max|f(-z) — pn(-2)|
= |If = Pulloo,

since the interval [—a, a] is symmetric. Thus the points
(—zj), j=n+2,n+1,...,1

form a sequence of critical points for the approximation ¢,, and g, is
therefore a minimax polynomial for f. But the minimax approximation
is unique, so that ¢, = p,, and p,, is an even polynomial.

This means in particular that the minimax polynomial of odd degree
2n + 1 is an even polynomial, and the coefficient of z27*!
is therefore identical to pe,,, which is the minimax polynomial of degree

is zero. It

2n + 1, as well as being the minimax polynomial of degree 2n. The
minimax polynomial p,,, has a sequence of 2n + 3 critical points.

The proof has also shown that the critical points are symmetrical in
the interval [—a, a]; if x; is a critical point, so is —x;.
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Solution to Exercise 8.3

The minimax polynomial of degree n is an odd function; the minimax
polynomial approximation of degree 2n +1 is therefore also the minimax
approximation of degree 2n + 2.

The proof follows the same lines as that of Exercise 2. With the same
notation,

then
—f(=zj) — gn(—z;) = (-1)JE, j=1,...,n+2
since f is an odd function. Thus the points
(—zj), j=n+2,n+1,...,1

form a sequence of critical points for the approximation —g, to the
function f(z), and —q,, is therefore a minimax polynomial for f. But
the minimax approximation is unique, so that —¢, = p,, and p, is an
odd polynomial.

This means in particular that the minimax polynomial of even degree
2n + 2 is an odd polynomial, and the coefficient of z27*2
therefore identical to po;,11, which is the minimax polynomial of degree
2n + 2, as well as being the minimax polynomial of degree 2n + 1. The
minimax polynomial ps,+1 has a sequence of 2n + 4 critical points.

The proof has also shown that the critical points are symmetrical in
the interval [—a, al; if x; is a critical point, so is —z;.

is zero. It is
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Solution of Exercise 8.4

(i) Since g is an odd function and the interval is symmetric, the ap-
proximation will be an odd polynomial, so take
p2(z) = a1z,

There will be four alternate maxima and minima, symmetric in the
interval, including the points +1. The other two will be internal extrema,
which we take to be £6. The condition that these two points are extrema
of the error gives

¢y —cosf =0,
and the condition that the magnitudes of the extrema are equal gives
cp—sinl = FE
c10 —sinf = -—F.
From these equations it is easy to deduce that
(14 80)cosf —sinl —sinf = 0.

This equation for # has exactly one root in (0,1); it is easy to see that
the left-hand side is monotonic decreasing in (0,1). Having determined
this value, we see at once that ¢; = cosf and E = cosf —sinl. The
numerical values are § = 0.4937, ¢; = 0.8806 and E = 0.0391, giving

p2(z) = 0.8806x, |lg — p2|loc = 0.0391.

(ii) Since h is an even function and the interval is symmetric, the
approximation will be an even polynomial, so take
p3(z) = co + co2”.

There will be five alternate maxima and minima, symmetrical in the
interval, including the points —1, 0 and 1. The other two will be internal
extrema, which we take at £a. The condition that these points are
extrema gives

2co0 4 2arsin(a?) = 0,
and the condition that the magnitudes of the maxima and minima are
all equal gives
co+cy—cosl = FE,
co + 20 —cos(a?) = -F
Co — 1 = F.



From these we obtain in succession

ca = cosl—1,

sin(a®?) = 1-cosl,
E = i{e(l-a®) +cos(a®) —cosl},
co = 1+ FE.

The numerical values are:
p3(z) = 1.0538 — 0.4597z2,
with oo = 0.6911.

| cos(a?) — psleo = E = 0.0538,

95
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Solution to Exercise 8.5

Since p, is a polynomial, it is a continuous function. Suppose that
pn(0) = A. In the interval [—n,n], where 7 is an arbitrarily small num-
ber, there will be points x at which H(z) = 1, and points at which
H(z) = —1. At such points |H(z) — pp(z)| will be arbitrarily close to
|A — 1| and |A + 1] respectively. Hence ||H — ppl|oo cannot be smaller
than |[A — 1| or |A + 1]. If A is nonzero, one of these quantities will be
greater than 1, and if A = 0 we shall have ||f — pp||oo > 1.

By the previous argument the polynomial of degree zero of best ap-
proximation to H (z) on [—1, 1] must have py(0) = 0. It is therefore the
zero polynomial, po(z) = 0, and is unique.

The polynomial of best approximation, of degree 1, must also have
p1(0) = 0, so must have the form p;(x) = c¢;z. Then the difference
e1(x) = H(x) — cix is antisymmetric about « = 0, so that e(—z) =
—e(z). The difference attains its extreme values at 0 and at +1; |e(1)| =
|1 — ¢1], and |e(z)| takes values arbitrarily close to 1 close to = 0.
Hence ||H — p1||s = 1 provided that |1 —¢;| < 1; the polynomial of best
approximation of degree 1 is not unique. Any polynomial p;(z) = ¢z,
with 0 < ¢; < 2, is a polynomial of best approximation.



97
Solution to Exercise 8.6

It is evidently very easy to construct a function f which is zero at each
of the points t;, i = 1,..., k, but is not zero everywhere; any polynomial
which has these points as zeros, for example, is such a function. For such
a function Z(f) = 0, but f is not identically zero. Hence Zi(.) does not
satisfy the first of the axioms for a norm. However, if p,, is a polynomial
of degree n < k, then if Zy(p,) = 0 the polynomial p, must vanish at
the k points ¢, so it must vanish identically. Thus Z(.) is a norm on
the space of polynomials of degree n, if k > n; it is easy to see that the
other axioms hold.

Suppose that the polynomial ¢; satisfies the given conditions

F0) = a1 (0) = =[f(3) —al(3) = F(1) — ar(D).

If ¢* is a polynomial of degree 1 which gives a smaller value for Z, then
Z3(f —q*) < Z3(f — q1); hence ¢*(x) — ¢1(x) must be negative at t;
and t3, and positive at t». This is impossible if ¢* is a polynomial of
degree 1. Hence ¢; is the polynomial which minimises Z(f — p1) over all
polynomials of degree 1.

Writing ¢;(z) = o + Sz the conditions give

l-aa = FE
e/?—a-18 = -E
e—a—f = E.

These easily lead to S =e — 1, a = % + %\/E — %e. The error is
Zy(f —q) = E=1—35Ve+ e

A straightforward, but tedious, approach to the case k = 4 is to solve
each of the four problems obtained by choosing three out of these four
points. In each case, having constructed the polynomial approximation
p1, evaluate Z4(f —p1), and the required approximation is the one which
gives the least value to this quantity.

Alternatively, choose three of the four points and construct the poly-
nomial p; which minimises Z3(f — p1). Evaluate |f(¢*) — p1(t*)| at the
point ¢* which was omitted. If this value does not exceed Z3(f — p1),
then p; is the required approximation. If it does exceed Z3(f — p1) re-
place one of the points chosen, for which f(¢;) — pi(¢;) has the same
sign as f(t*) — p1(t*), by t*, and repeat the process. Continue this re-
peated choice of three of the four points until the required polynomial
is reached.
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Solution to Exercise 8.7

Since A is a fixed nonzero constant, the problem of finding the poly-
nomial of best approximation to f(z) = 0 by polynomials of the given
form is equivalent to choosing the coefficients to minimise

which is the same as requiring to minimise
2" — (1/A)gn—1lloo-

This is just the problem of approximating the function z™ by a polyno-
mial of lower degree; hence we should choose the polynomial p,(z) so
that

n—1

2" = (1/A)> " aga® =277 T, (2),

k=0
where T}, is the Chebyshev polynomial of degree n. The formal result is

A
pn(z) = WTn(x):
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Solution to Exercise 8.8

Clearly,

f(z) =ans1 lm”“ - Xn: _—akmk] .

a
k=0 n+1

We seek the minimax polynomial p, € P, for f on the interval [—1,1]
in the form

o) = E bz .
k=0
Thus,

f(@) = pu(@) = ani [w”“ - Lw] :

a
k=0 n+1

According to Theorem 8.6, the || - ||ooc norm of the right-hand side is
smallest when

n
by, — ay,
Z — gk =gt 27T L ().
k=0 An+41

Therefore, the required minimax polynomial for f is

pn(@) = f(#) — an12” " Tga (2) -
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Solution to Exercise 8.9

The minimax polynomial must be such that f(z) — p;(z) has three
alternating extrema in [—2,1]. Since f is convex, two of these extrema
are at the ends —2 and 1, and the other must clearly be at 0. Graphi-
cally, the line p; must be parallel to the chord joining (-2, f(—2)) and
(1, f(1)). Thus

pi(z) =co — %m

The alternating extrema are than

f(=2)—pi(-2) = 2—(cw+3)=3—c0
f(O) _pl(o) = 0 — (CO) = —Cp
f()—p(1) = 1_(00—%)23—00.

These have the same magnitude if

5 —co = —(—co),

so that the minimax polynomial is

and [|f = pillec = 3-
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Solution to Exercise 8.10
A standard trigonometric relation gives
cosnf = L[cos(n + 1)0 + cos(n — 1)6];
Writing « = cosf, T, (z) = cosn#b, gives (a).
Suppose that (b) is true for polynomials of degree up to and including

n. Then it follows from (a) that Tp4+1 is a polynomial of degree n + 1
with leading coefficient 2"; hence (b) follows by induction, since Ty = 1.

Evidently To(z) = 1 is an even function and Tj(z) = x is an odd
function. Then (c) follows by induction, using (a).

The zeros of Ty, (z) are x; = cosd;, where §; is a zero of cosd. Evi-
dently
C 1
—3)m
cosnu =cos(j — z)r =0,
n

giving (d); these values of x; are distinct, and lie in (-1, 1).

Part(e) is obvious, since |T,,(z)| = | cosnf| < 1, provided that |z] <1
to ensure that 6 is real.

Part (f) follows from the fact that cosnd = £1 when 6 = kn/n, k=
0,...,n.
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Solution to Exercise 8.11

There are many possible examples, most easily when f is an oscillatory
function. For example, consider

. 3n(z —a)
f(z) =sin e
This function attains its maxima and minima, all of magnitude 1, at the
points
vj=a+ %(b—a), j=1,3,5.

Hence the polynomial p; of degree 1 of best approximation to f on [a, b]
is p1(z) = 0, and none of the three critical points is equal to a or b.
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Solution to Exercise 8.12

By expanding the binomial we see that
n
(1—z+tz)" = ank(:n)tk.
k=0
Substituting ¢ = 1 shows at once that
n
1= ank(m).
k=0
Differentiate with respect to t, giving
n
nz(l —x+tr)" ! = ank (z)kth 1,
k=0
substituting t = 1 then gives
n
nr = Z kpngk(x).
k=0
Differentiate again with respect to ¢, giving
n
n(n —1)z*(1 -z +t2)" > = par(@)k(k — 1) ¢
k=0

substituting ¢t = 1 then gives

n

n(n—1)2% = k(k — 1)pus(z).

k=0
Now
Z(m —k/n)’pur(z) = 2? ank(:v) — (2z/n) Z kpnk ()
k=0 k=0 k=0
+(1/n?) Zk2pnk(x)
k=0
= 2° - (2z/n)nz + (1/n*)[n(n — 1)2* + na]
_ z(1l - m)

From the definition of p,(z), and using the facts that each ppx(z) > 0
when 0 <z <1and Y}, pu(z) =1, we find

n

f(@) = palx) = Y _[f (@) = f(k/n)par(x),

k=0
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and
|f(z) — pu(z)] < Z |f(2) — f(k/n)|pnk(z).
k=0
Then
STIf@) = Fk/m)par(z) < > (e/2)pak(®)
= (6/2)ank(w)
k=0
= ¢g/2.
For the other sum
D If(@) = Fk/n)par(z) < 2M Y pui(x)
< 2M/522(x—k/n)2pnk(:c)
< 2M/6*) (x— k/n)’pu(@)
k=0
= 2M/62@
< 2M/62$
M
T o282’

since all the terms in the sums are non-negative, and 0 < z(1—z) < 1/4.
Thus if we choose Ny = M/§%¢ we obtain

Y1 (@) = f(k/n)lpar(z) < e/2.

Finally adding together these two sums we obtain

|f(£L’) _pn(m)| <€/2+5/2:g

when n > Np. Since the value of Ny does not depend on the particular
value of  chosen, this inequality holds for all = in [0, 1].
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Solution to Exercise 9.1

We start with ¢o(z) = 1, and use the Gram-Schmidt process. It is
useful to note that

/1 —In(z) z¥dz = 1/(k + 1)2.
0

Writing
p1(z) =z — agpo(w)
we need
v - foi —In(z) z o (v)dz
Jo —In(x)[po(x)]?dz
- -
and so

o1(z) =z —1/4.
Now writing
p2(2) = 2% = boo(z) — bigp (2)

we find in the same way that

bp = 1/9
by = 5/T.
Hence
pa(2) = @ —(1/9) = (5/7)(z —1/4)

= 22— (5/7)x + (17/252).
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Solution to Exercise 9.2

Since the polynomials ¢;(x) are orthogonal on the interval [—1,1] we
know that

/llgoi(tmj(t)dt:o, i+
In this integral we make the change of variable
t=@2cv—a-0b)/(b—a), x=3[b—a)t+a+b],
and it becomes

b
[ ei@s—a=0)/b-a) (22 - a =)/~ ) ;- do.

This shows that the new polynomials form an orthogonal system on the
interval [a, b].
From the Legendre polynomials

po(t) = 1
pi(t) =t
ea(t) = t*—1/3

we write t = 2z — 1 and get the orthogonal polynomials on [0, 1] in the
form

po(z) = 1

pr(z) = 2z-1

pa(z) = (2z—-1)2-1/3
= 42® —4x+2/3

The different normalisation from the polynomials in Example 9.5 is
unimportant.



107
Solution to Exercise 9.3

We are given that

1
| et e@eseras =0, i

Making the change of variable = ¢/b this becomes

b
| et aapi=o, iz
0
This shows that the polynomials 1;(z) defined by

Vi(z) = @j(z/b), j=0,1,...

are orthogonal over the interval [0, ] with the weight function w(z) =

ma
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Solution to Exercise 9.4

Suppose that the required result is true for some value of k, with
0<k<n-—1. Then

(%)k (1 —2?)" = (1 - 2%)"*g(n).

Differentiation then gives
d\" d A
. 1— 2\n — —(1— 2\n—k
() a-ar = fa-2rtew
= 2n—-k)z(l—2>)"" g (x)
+(1 = 2?)" g (2)
= (1-2®)""*1=2n - k)zq(z) + (1 — 2°)q,
= (1-2")""" g (a),
which is of the required form with k replaced by k + 1. Since the result
is trivially true for & = 0 it is thus true for all £ such that 0 < k < n.
This means that every derivative of order less than n of the function
(1 — %)™ has the term (1 — 2?) as a factor, and therefore vanishes at
r = =*l1.
Write D for d/dz, and suppose that 0 < i < j. Then by integrating
by parts

/_11 vi(x)pj(x)de = / D¥( ) DI (1 —2%) dz
D

[DI(1 -2 DI (1 - 2?)]" |

- / DT (1 — 2% DI (1 — 2?)" dx
-1

1
—/ DY (1 — 2% DI7Y(1 — 2?) da,
-1

since we have proved that the derivatives vanish at +1.
The process of integration by parts can be repeated until we find that

1 1
[ ei@ei@is = (1 [ D¥a-2) DI 2
—1 —1
This integral is zero, since D?!(1 — z?)? is a constant, and the function

Di=i=1(1 — 22)7 vanishes at 1, 0 < i < j. The polynomials ¢;(z) and
@;(x) are therefore orthogonal as required.

()]
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Taking 7 =0,1,2,3 we get

QDU(CE) = ]-7
p1(@) = D(1-2%)
= 2z,
p2(@) = D’(1-2%)
D(—4x + 42°)
= —4+4 1222,
pa(@) = D(1—a?)

D?*(—6z + 122° — 62°)
= D(—6+ 36z® — 30z%)
= 72z — 12023

These are the same, apart from constant scale factors as the polynomials
given in Example 9.6.
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Solution to Exercise 9.5

This is very similar to Exercise 4, and we shall only give an outline
solution.
Suppose that

DFale™® = 2i *q (x)e?,
where g (z) is a polynomial of degree k. Then by differentiation
DMtale s = e *[(j — k)’ " () + 27 gy (z) — 27 ()]
= /g,

and the first result follows by induction.
To prove that the polynomials form an orthogonal system, write

/Oooezapi(x)wj(x)dm _ /OooDi(xiez)@j(x)dx,

and the orthogonality follows by repeated integration by parts, as in
Exercise 4.
The first members of the sequence are

eo(z) = 1,

p1(x) = e*D(xe ™) =1-—ux,

wo(z) = €*D[(2z —2%)e ] =2 — da + 27,
p3(x) e”D?[(32% — 2°)e ]

= e'D[(6x — 32" — 32% + 2%)e 7]
= 6—12z+9z% — 2°.
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Solution to Exercise 9.6

Evidently ;11 (2z)—Cjzp;(x) is in general a polynomial of degree j+1,
but if C is chosen to be equal to the ratio of the leading coefficients of
@j+1(x) and @;(z) then the coefficient of the leading term is zero, and
the result is a polynomial of degree j only. Hence it can be expressed as
a linear combination of the polynomials ¢ (z) in the form

pi1(@) — Ciap;(x) = EJ: @ kon (),
where o
o= | " w@)lpi (0) — Crrs(2)lor (a)d
where
A= | " w(@)ipn (@)

Now k < j in the sum, and so

b
[ w@es @@ = o

Moreover ¢;(z) is orthogonal to every polynomial of lower degree, and
SO

/b w(z)p;(z) zop(x)de =0, k+1<j.
a
These two equations show that
ajr=0, k=0, .. j—1
Hence
pi+1(x) = (Cjz + Dj)p;(x) + Ejpj—a1(x) =0,  j >0,

where Dj = Qj and Ej = —Qjj-1-
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Solution to Exercise 9.7

Since C is the ratio of the leading coefficients of the polynomials
@j+1(x) and ¢;(z), which are both positive, Cj is also positive.
We saw in Exercise 6 that

b
o = /w(w)[soj+1<x>—cjwju)m_l(x)dx

b
= =0y [ wl@hmes@os1 (@),

since @;_1(x) and ¢;41(x) are orthogonal.

Now the same argument as in Exercise 6, but with j replaced by j—1,
shows that ¢;(z) — Cj_1zpj_1(x) is a polynomial of degree j — 1; it is
therefore orthogonal to ¢;(x). This shows that

b
/ w(@)p; () — Cjora0;—1 (2))p; () d.

Hence

b b
[ w@es @i @is = o [Cw@les

which is positive. Hence Ej is positive.

The proof of the interlacing property follows closely the proof of The-
orem 5.8; it proceeds by induction. Suppose that the zeros of ¢;(z) and
@j—1(x) interlace, and that £ and 7 are two consecutive zeros of p;(z).
Then

0ir1(&) = —Ejpj1(8), wjr1(n) = —Ejp;1(n).

But there is exactly one zero of ¢;_1 () between £ and 1, so that ¢;_1(§)
and ¢;_1(n) have opposite signs. Hence ¢;11(§) and ¢;j41(n) also have
opposite signs, and there is a zero of ¢;i1(x) between ¢ and 7. This
has located at least j — 1 zeros of ;41 (z). Now suppose that ¢ is the
largest zero of ¢;(x); then ( is greater than all the zeros of ¢;_1 (), and
wj—1(¢) > 0, since the leading coefficient of each of the polynomials is
positive. Hence ¢;41(¢) < 0, and there is a zero of ;11 (x) greater than
(. By a similar argument ;41 (x) has a zero which is smaller than the
smallest zero of ¢;(x). This has now located all the zeros of ;i1 (x),
and shows that the zeros of ¢;(z) and ;41 (z) interlace.

To start the induction, the same argument shows that the zero of
p1(x) lies between the zeros of ys ().



113
Solution to Exercise 9.8

We can write

Pny1(z) = CZI%'ITHI — qn(7),

where ¢,,(z) is a polynomial of degree n.

Now the best polynomial approximation of degree n to z
mined by the condition that z"** — p,(z) is orthogonal to ¢;(z), for
7 =0,...,n. But the above equation shows that

nt+l s deter-

n+l Qn(x) _ Pnt1 (22)
Cn—i—l - cn+1 ’
n+1 n+1

T

which clearly satisfies this orthogonal condition. Hence the best poly-
nomial approximation is

_ 1™ = g (a)
p”(x) - n+1 .
Cn—i—l

and the expression for the 2—norm of the difference follows immediately.
Using w(z) =1 on [—1,1] we know that

_.3_5
p3(x) = 2° — 5.

so the best approximation to ? is the polynomial 2z. The norm of the
error is given by

lle® — pall3

I
\L
)

w
|
wlot
B,

W
[N
&

= 152/189.

Notice that in this example c? =1 for every j.
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Solution to Exercise 9.9
The proof is by induction, but we shall not fill in all the details. The

polynomial @ (x) is constructed by writing

k

pr(z) = 2% —appo(r) — ... — ap—1pk-1(z),

where
L@ty @)z
T w(@)ps (@)]Pde

Suppose that the required result is true for polynomials of degree less

than k. Since w(z) is an even function, a; is zero whenever j and k
have opposite parity. Thus in a polynomial of odd degree all the even
coefficients are zero, and in a polynomial of even degree all the odd
coefficients are zero. This gives the required result.

The coefficients «y; are given by

I w@S @@
T w(@) e (0)]Pde
Evidently v; is zero if f(z) is an even function and j is odd, since we

have just shown that ¢; is then an odd function. Similarly if f(x) is an
odd function.
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Solution to Exercise 9.10

By definition H is an odd function, so by the results of Exercise 9 the
polynomial of best approximation of degree 0 is just

po(z) =0,
and the polynomials of best approximation of degrees 1 and 2 are the
same. Moreover p; has the form
pi(z) = 1np1(x).

The orthogonal polynomials in this case are the Legendre polynomials,
0 1 (z) = x. Hence
JL H(@)p) (z)dz

J2ilpr (@) de
2 fol zdz
f_ll x2dx

1

373
3

5 .

Hence the polynomials of best approximation are

p1(z) = po(x) = %m
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Solution to Exercise 10.1

We saw in Exercise that the sequence of orthogonal polynomials for
the weight function —Inx on [0, 1] begins with

po(r) =1, @i(x)=z—1, @a(x) =a” - 32+ 35.

For n = 0 there is just one quadrature point, the zero of o1 (x), which
is at %. The corresponding quadrature weight is

1
Wo :/ —Inzdr =1.
0

For n = 1 the two quadrature points are the zeros of ¢; (z), which are

zo = 3 — 5V106, w1 =& + 5V106.

The corresponding weights are

+ -2./106

1
Woz/ —Inz(x —21)*/(x0 — 21)? dz = I
0

N

and

Wy =1 — 22./106.

Note that in this case a good deal of heavy algebra is saved by de-
termining the weights by direct construction, requiring the quadrature
formula to be exact for polynomials of degrees 0 and 1. This leads to
the two equations

Wo+Wp = /—lnmdmzl
Woil?o‘f‘WliEl = /—lnmmdm:%.

Solution of these equations gives the same values as above for Wy and
Wi.
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Solution to Exercise 10.2

The Gauss quadrature formula
b n
| w@ @i =Y Wit
@ k=0
is exact when f(z) is any polynomial of degree 2n + 1. It is therefore

exact for the polynomial Ly (z), which has degree n. Since Lj(z) =1
and Ly(x;) = 0 for k # j, this shows that

b
/ w(x) Ly (x)de = Wy.
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Solution to Exercise 10.3

The first two of the sequence of orthogonal polynomials for the weight
function w(z) = x on the interval [—1,1] are easily found to be

po(z) =1
and

pi1(z) =z —¢,

1 1
c:/ zxde // zdr =2/3.
0 0

Hence the Gauss quadrature formula for n = 0 with this weight func-
tion on [0, 1] has quadrature point 2/3 and weight

where

1
Wo :/ zdr =1/2.
0

The error of this quadrature formula, for a function with a continuous
second derivative, is given by Theorem 10.1 as

£ 1 N 1 en
#/0 z(z —2/3)*dze = L " ().

This gives the required result.
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Solution to Exercise 10.4

We know that the Chebyshev polynomials T,.(z) form an orthogonal
system with weight function w(z) = (1 —2?)~'/? on the interval [-1, 1].
Hence the quadrature points z; for n = 0 are the zeros of T),41(x), which
are

xzj =cos[(2j + 1)m/(2n +2)], j=0,...,n.

Suppose that for some value of n

- ) sin(2n + 2)6
2 )= ——FF"—
;COS( i+ 2sinf
Then
n+1 .
) sin(2n + 2)6
Z cos(2j+1) = ————— +cos(2n+ 3)0
= 2sind
_ sin(2n 4 2)60 + 2sin6 cos(2n + 3)0
o 2sin6
_ sin(2n 4 4)0
B 2sinf '

so the same result is true with n replaced by n+ 1. The result is trivially
true for n = 0, so it holds for all positive integer n.
If 8 = pm, where p is an integer, then

n

> cos(2j+ Dpr = (=1)P = (=1)"(n +1).

=0 =0

Hence

- 0 k=1 n
2 + 1)r/(2n + 2) = T

]Z:%cosk(]-F )w/(2n + 2) {n+1 k=0

which means that
ZT]C(:E]'):O, k::l,...,n.
j=0

But T}, is orthogonal to Ty for & > 0, so

1
/ (1-2*) YT (x)de =0, k=1,...,n.

-1
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Moreover
Z To(z;) =n+1
=0

and

/ (1 —22)~YV2Ty(z)dx = =

-1

Putting these together we find that

L ZTk(xj)zl/ (1 — 22)~1 /2Ty (z)dz.

n+1 = T ) 1
Thus the quadrature formula with weight function w(z) = (1 — z2)~1/2
on the interval [—1, 1], with quadrature points and weights
zj=cos(2j+)m/(2n+2), Wj=n/(n+1), k=0,...,n
is exact for the polynomials Ty (x), £k =0,...,n. It is therefore exact for

every polynomial of degree n, and because of the choice of the quadrature
points z; it is also exact for every polynomial of degree 2n + 1.
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Solution to Exercise 10.5

Using the same notation as in Section 10.5, write

n

w(x) = H(m —a})?.

k=1

This is evidently a polynomial of degree 2n, and hence the quadrature
formula

b n
/ w(z)m(z)de = Won(a) + Z Wi (zy)

k=1
is exact. But by the definition 7(z;) =0, k =1,...,n, so that

b
/ w(z)m(z)dz = Won(a),

Since w(z) and 7(z) are positive on [a, b], it follows that Wy > 0.
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Solution to Exercise 10.6

By integration by parts

oo

/000 e *xLi(x)p,(x)dz = [e "xp,(x)L;(z)],
- /000 e "L;(z)[—zpr(z) + pr(z) + zp.(z)]dz
= /00 e~ Lj(xz)xp,(x)dz
0

- [ L@ @) + e,

Since pr(z) + zpl.(z) is a polynomial of degree r, and r < j, the last
term is zero by the orthogonality properties of the Laguerre polynomials
Lj(z). This gives the required result, and shows that the polynomials
defined by

j(x) = Lj(x) — Lj(x)
form an orthogonal system for the weight function w(x) = e~%x on the

interval [0, oco].
The Radau quadrature formula (10.27) thus gives

o0 n
/0 ™ pon(z)da = Wopan(0) + > Wipan(zk)
k=1

where the quadrature points zy, & = 1,...,n are the zeros of the poly-
nomial Ly (z) — L! (z). From Exercise 5 we have L;(z) =1 — z, so that
Ly(z) — Li(z) = 2 — z, which gives the quadrature point z; = 2.

For the Gauss quadrature formula with weight function w(z) = ze™
the corresponding weight is

T

Hence using (10.28) we have

Wy =Wy /z] =1/2,
and

Wo=1-1/2=1/2.
Therefore

/Ooo e " pa(w)de = £p2(0) + £p2(2).
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Solution to Exercise 10.7

If we divide the polynomial ps,,—1 (z) by the polynomial (z —a)(b—z),
which has degree 2, the quotient is a polynomial of degree 2n — 3, and
the remainder p(z) has degree 1. This remainder can then be written in
the form p(z) = r(z — a) + s(x — b).

Using a similar notation to that of Section 10.5, we now write

b

b b
/w(:c)an_l(:C)dx:/ w(m)(x—a)(b—x)qgn_g(:z:)dx+/ w(z)p(r)de.

Now let z;, W}, k=1,...,n — 1 be the quadrature points and weights
respectively for a Gauss quadrature formula using the modified weight
function w(z)(z — a)(b— ) over the interval [a, b]. This modified weight
function is non-negative on [a, b], and the quadrature formula is exact
for every polynomial of degree 2n — 3.

Hence

b n—1
/ (@)@ - a) (b~ D)ion5(@) = 3 Wi on_5(2}),

k=1
so that
b n—1
Wy .
/a w(z)pap—1(z)de = Z mp2n—l($k)
k=1
b plai)
+/ w(z)p(z)de — Wy———k
a (@)p() kz::l k(xk_a)(b_xk)
Now

/abw(:z:)l’(x)dx =r /ab w(z)(z —a)dx + s /abw(x)(b — z)du,

and

p(zy) r 5

Gi-ab-a)  b-a noa
It follows from the definitions of p(x),r and s that
r=pm-1(0)/(b—a), s=pan-1(a)/(b—a).
We have therefore constructed the Lobatto quadrature formula

b n—1
| w@)i@ds = Wos(@) + 3 Wis(en) + WafO)

k=1
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which is exact when f is any polynomial of degree 2n—1. The quadrature
points are zj = x}, and the weights are

Wy

Wk:ﬁ, k:l,...,n—l,
(z), —a)(b—=x})
and
b n—1
Wo = / w(z)(b— z)dz — Y Wi(b— xx),
@ k=1
b n—1
W, = / w(z)(x — a)dz — Z Wi (zr — a).
@ k=1
The weights wg, kK =1,...,n—1 are clearly positive, since the weights

W, are positive.
To show that Wy is positive, we apply the quadrature formula to the

polynomial

n—1

P(z)=(b—ux) H (x — xp)>.

k=1
This is a polynomial of degree 2n —1, so the quadrature formula is exact.
The polynomial P(z) vanishes at the points zx, k =1,...,n — 1, and
at b, so we find that

b
/ w(x)P(x)de = WyP(a).

This shows that Wy > 0, since P(z) and w(z) are non-negative on [a, b].
The proof that W, is positive is similar.
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Solution to Exercise 10.8

We use direct construction, using the condition that the quadrature
formula must be exact for polynomials of degree 3. This gives the con-

ditions
1
Ao+ A1+ 4, = / der =2

-1
1

—Ag+ Ay +4 = / xzdzx =0
-1
1

Ag+ Az + 4y = / ridr =2/3

-1
1

A+ At 4+ A = / 22dz = 0.
-1

From the second and fourth equation we find that A;z;(1 —2}) =0, so
that either 1 = 0 or ;1 = 1 or A; = 0. Since the quadrature points
must be distinct we reject the possibility that ;1 = 1. From the first
and third equations we find that

A (L—a3) = 4/3,

so that A; cannot be zero. We therefore have ; = 0 and A; =4/3. Tt
is then easy to find that Ay = A2 = 1/3, and the quadrature formula is
Simpson’s rule.
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Solution to Exercise 10.9

Using the given notation, and writing ¢ = b — a,

I(m) = b;a [3f(a)+ fla+ Lo)+ ...+ fla+ 2=Le) + S F(B)] (2.1)
S(m) = bﬁ:na[f(a)+4f(a+ic)+2f(a+ic)+4f(a+%c)+..
+2f(a+ 2=Le) + 4f(a+ 22=Lc) + f(D)].
MGm) ="t o)+ flat L] (22)
Hence
2I(2m) —I(m) = 2b2:na[%f(a)+f(a+ 7—=c) + fla+ =c)
+fla+ 50) + ..+ 2le) + 5 f(D)]
—b_Ta [3f(a)+ fla+ Loy +...+ 1 F(b)]
= Tt k) bt Sa+ o)
= M(m)
In the same way
$1(2m) — 31(m) = % [%f( )+ fla+ 5=¢) + fla+ =)

+f(a+ o) + ...+ 28=Le) + 1 £(D)]

2m

P @) + flat L)+ 3S0)]
= 20 0) + 4f(a+ o) +2f(at Bo) +

+4f(a+ 2te) + f(b)]
= S(m).

Finally, using these relations,

%M(m) + %I(m) =

U wiws ol
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Solution to Exercise 11.1
Suppose that on the interval [a, b] the knots are at
a=x20 <1 < ... < xyy = 0.

On each of the m intervals [z;, z;11] the spline is a polynomial of degree
n; the spline is therefore determined by m(n + 1) independent coeffi-
cients. On each of these intervals the value of the polynomial is given
at the two ends; this gives 2m interpolation conditions. At each of the
internal knots 1, ..., z,—1 the derivatives of orders 1,2,...,n —1 must
be continuous; this gives (m — 1)(n — 1) smoothness conditions.

The number of additional conditions required to define the spline
uniquely is therefore

mn+1)—2m—(m—-1)(Mn—-1)=n-—1.
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Solution to Exercise 11.2
(i) According to Theorem 11.1 applied on the interval [z;_1, z;],
f@) =sp(@) = 37" O —zim) (& —2i), @€ lwi1,zi].

But f"(z) =0, so si(x) = f(x).
(ii) Similar to part (i), but using Theorem 6.4 with n = 1.

(iii) According to Definition 11.2, the natural cubic spline must satisfy
the end conditions sj(xo) = s§(xy,) = 0. The polynomial f does
not in general satisfy these conditions, so s2 and f are not in
general identical.
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Solution to Exercise 11.3
The quantities o; are determined by (11.7), which in this case become

h(oiy + 40 +0i1) = (6/h){(i +1)*h> — 2> + (i — 1)°n%}
= 36ih?, i=1,...,m—1,

together with o9 = 0,,, = 0.

Substituting f'(z;) = 6ih for o; we see at once that the equations are
satisfied. Moreover op = 0 as required, but f"(z,,) = 6mh =6 # 0, so
the final equation is not satisfied. Hence these values do not satisfy all
the equations, and s» is not identical to f.

However, if the two additional equations are replaced by op = f”(0)
and oy, = f"(1) then all the equations determining o; are satisfied. Since
the system of equations is nonsingular this means that o; = f"(ih),i =
0,...,m; hence sy and f are identical,
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Solution to Exercise 11.4

By definition
1f = sll3

1f = arerlls
= / ) — Y v )P
k
To minimise this we require that
o (15 = s18) =o.
which gives
—2 /Ol[f(-’ﬂ) =Y arpr(@)pj(z)de =0, j=0,...,m.
k

This yields the required system of equations.
Now ¢ (z) is nonzero only on the interval [z4_1,Zr+1], and so

1
/(pi(:v)(pj(:v)dx:[) i Ji—j| > 1.
0

Hence the matrix A is tridiagonal. The diagonal elements are given by
1
4 = [ ln@Fe
0
(i+1)h
= [, el

i—1)h
_ /ih (x—G=1R)? /“’“)h (x—G+Dh)?
(i—1)h h? ih h?
1 1
= h/ tzdt+h/ 2 dt
0 0
2
= gh, 121,,m—1

after an obvious change of variable.

At the two ends the same argument shows that
1
A070 == Am,m == gh

For the nonzero off-diagonal elements we get in the same way

1
Aiiy1 = /(pi(x)(pi_l,_l(x)dx
0



B /“*”h (i+1)h—x x—ih
~ h “h

= h/o (1 —t)tdt

and in the same way

Aic1i = !

The matrix A is evidently symmetric.
Hence all the elements of A are non-negative, and
2
3
with

6 6 3

Ao > Aor and A + A1

dz

1 1 1
h=A;>A; 1 +Aiiy1=-h+_-h=zh, i=1,...

131

These are the conditions required for the success of the Thomas algo-

rithm.
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Solution to Exercise 11.5

The elements of the vector b are
1
b = / zp;(x)dx
0

ih . (i+1)h .

(-1 D —

— / xwdx+/ xwdx
(i—1)h h ih h

hZ/l(i—1+t)tdt+h2/1(i+1)—t)tdt
= ih2,0 i=1,...,m-1 0

In the same way

bg:hz/l(l—t)tdtzlhz.
0 6

Substituting the values a; = ih we get

1
> Aijjh = 6h2[(i—1)+4i+(i+1)]
J
— th
- bi:
and
. 1,
> Agjh = gh [0+ 1]
J
1
= Zp2
6
= by

Thus the quantities «; = ¢h satisfy the system of equations, and the
solution is therefore s(x;) = a; = x;.
When f(z) = 2° we find in the same way that

1
bi = /m2api(m)dm
0

1 1
h3/ (j—1+t)2tdt+h3/ (+1—t)?¢tdt
0 0

= R +1/6).
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Using ay, = (kh)? + Ch? gives
1 . . .
> Aoy = gh3[(i —1)? +4i* + (i + 1)? + 6C)]
J

= B +1/34+C), i=1,...,m—1,
so the equations are satisfied if
R*[i* +1/3+ C] = b; = h*[i* + 1/6]

i.e., if C = —1/6. A similar argument shows that this value of C' also
satisfies the equations for ¢ = 0 and ¢ = m. Hence the solution of
the system of equations is oy = (kh)? — h?/6, and so s(zy) = a =

f(zy) — h?/6.
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Solution to Exercise 11.6

If 2 < athen (z —a)? = 0 and (z —a)7™ = 0; if # > a then
(x —a); = (z —a). So in both cases
(z—a)? (z—a)=(z—a)}th.

From the definition

n+1
[(n+2)h — ]Sy (x —h) = Z(—D’“( ”']:1 )[(n+2)h—x](x—h—kh)1
k=0

n+2
DY (A IR TER ERyi

giving -
S (2) + [(n + 2)h — 2]Sp(z — h)
_ :f:i(_nk{( ”;:1 ) v — ( Zfi )[(n+2)h—x]}(a¢—kh)1

H(ME ) e cor (20D ) (b oe - ok 2

0 n+1
n+1
= S (-1t ( e ) (= kR 4+ 2l 4+ (=1)™2 (@ — (n + 2)h)
k=1
= STH-l(x)a

where we have used the additive property of the binomial coefficient

n+1 n+1\ [ n+2
()G =007
Now to show that S, (z) > 0; it is clear that Sy(z) > 0 for all z.
Suppose that, for some positive integer k, Si(xz) > 0 for all z. Notice
that Si(z) = 0 when z < 0, and when z > (k+ 1)h. It then follows that
xSk (z) > 0, and that [(k 4+ 2)h — ]Sk (z) > 0. Thus Sk41(x) > 0 for all
x, and the required result follows by induction.
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Solution to Exercise 11.7

The proof is by induction, starting from the fact that S;(z) is clearly
symmetric. Now suppose that, for some positive integer n, S, (z) is
symmetric. Then use of the recurrence relation from Exercise 6 shows
that
Spt1((n+2)h/2+2z) = [(n+2)h/2+z]Sp((n+2)h/2 + x)

+(n+2)h—(n+2)h/2 —z]S,((n+ 2)h/2 +z — h)
= [(n+2)h/2+2]Sp((n +2)h/2 + z)
+[(n+2)h/2 — 2]S,(nh/2 + x)
= [(n+2)h/2+2]Sp((n+1)h/2 + 2z + h/2)
+[(n+2)h/2 — 2]Sp((n + 1)h +x — h/2).

Using the symmetry of S, (z) we now see that changing the sign of x

merely interchanges the two terms in this expression, leaving the sum

unchanged. Hence S,+1(x) is symmetric, and so by induction every
Sp(x) is symmetric.
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Solution to Exercise 12.1
a)
|f(z,y) = flz,2)] = 227y — 2| < 2Jy — ]
for all z € [1,00) and all y,z € R. The Lipschitz constant is therefore

L=2.
b) By the Mean Value Theorem,

Fey) = Fo.2)| = |§—£(x,n>| ly— 7]

where 7 lies between y and z. In our case,

of 2 1 1

ZJ — o < Z
for all z € [1,00) and all y,z € R. Therefore, the Lipschitz constant is
L=1/e.
c)

_ 2y 2z
fen) = feal = (reh| 2 - 2
1 —yz|

< 2x2x1xly—zf,

for all € (—o0,00) and for all y,z € R. The Lipschitz constant is
therefore L = 4.
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Solution to Exercise 12.2

Observe that y(z) = 0 is the trivial solution to the initial value prob-
lem. To find nontrivial solutions to the initial value problem we separate
the variables (assuming now that y # 0):

yfzfn%dy =dx.

Integrating this yields

o+ 0\
o= (225)

2m/(2m+1

which is a solution to the differential equation y' =y ) for any

choice of the constant C'. Hence,

2m—+1
(2fn+fl) ) r < —b
yb(l') = 0 72 . T € [_b7 b]
(29:7;?1) ) r2>b

is a solution to the given initial value problem for any b > 0. Thus we
have infinitely many solutions to the initial value problem.

This does not contradict Picard’s Theorem, since f(z,y) =y
does not satisfy a Lipschitz condition in any neighbourhood of a point
(z,0) for any = € R. This can be seen by showing that the opposite of
the Lipschitz condition holds: for any L > 0 there exists (z,y) # (z,0)
such that

|f(@,y) = f(,0)] = [y>™/Crab] = [y Gm+D > Ly|.

2m/(2m+1)

Such is for example (z,y) with any z € R and

1 2m+1
0< |yl < (Z) .
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Solution to Exercise 12.3

The solution to the initial value problem is
+
() =14 (e~ 1),

Picard’s iteration has the form: yo(z) = 1,

T

Ynt1(x) = 1+/ (pyn(t)+q)dt = 1+qx+p/ yn(t)dt, n=0,1,2,...
0 0

The function g is a polynomial of degree 0, and therefore, by induction,
Yn is a polynomial of degree n. In particular,

Yo () = 1,
yi(z) = 1+ (p+q)u,
2
xr
ya(z) = 1+(p+q)fv+p(p+q)g,
2 ) z3
ys(r) = 1+(p+Q)w+p(p+q)§+p(p+q)§
etc.
2 n
yn(z) = 1+p_+q {px-%(px) +'”+(p:z:) }
2! n!
P+q |~ (px)*
= 14+—— -1 .
p kZ:O k!

Passing to the limit as n — oo, we have that

lim g () = 1 + ’%(epw 1) = y(a),

n—o0

as required.
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Solution to Exercise 12.4

Euler’s method for the initial value problem has the form

yn+1:yn+hyrlz/57 n=0,1,2,..., Yo =0.

Hence y,, = 0 for all n > 0. Therefore Euler’s method approximates the
trivial solution y(z) = 0, rather than y(z) = (4z/5)%/%.
The implicit Euler method for the initial value problem is

Ynit =yn Fhyt, n=0,1,2,...,  yo=0.
Put y,, = (C,,h)%/*; then,

ol -l =cit, nxo.

yo = 0 implies that Cy = 0. Thus, C/* — C/* = ¢/*(Ccy — 1) = 0,
which means that either C; = 0 or C; = 1. Taking C; = 1, we shall
prove by induction the existence of C;, > 1 for all n > 2 such that
yn = (Ch)?/* is a solution of the implicit Euler scheme.

We begin by observing that

CHL (M = 1) = (CL/Y .

Putting t = C’rllfl, this gives the polynomial equation

p(t) = t(t* = 1) — (C/*)° =0.
Suppose that C,, > 1 for some n > 1 (this is certainly true for n = 1).
As p(1) < 0 and lim¢—, 1 o, p(t) = +00, the polynomial p has a root, t.,

say, in the interval (1, 00); therefore, C,,.; = t* > 1. By induction, then,
C, > 1foralln > 2.
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Solution to Exercise 12.5

The exact solution of the initial value problem is

1
y(z) = §m2e_5w.
The Euler approximation is
Yn+1 Zyn+h($n€75z" _Syn)a n:071727"'7 Yo =0.
Clearly, y; = 0, y2 = h?e ™" etc.
n—1
Yni1 = h2e—5h Z(k + 1)(ef5h)k(1 _ 5h)n717k
k=0
n—1 e_5h k
2 ,—5h n—1
= 1-— 1
h2e=5"(1 — 5h) ];O(m )(1_5h>

Taking n = N — 1 where h = 1/N, we have

k=0
Passing to the limit,

1 5 N—2 N-—-2
. _ . L 5N o
dmo = g e (1- ) 2y
_ ey 1 N(N -1)
- ¢ NN 2
1

= 58_5
= y(1),

as required.
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Solution to Exercise 12.6

a) The truncation error of Euler’s method is

T —yl(x z —ylx 1

T, = y( n+1)h y( n) _f(xn;y(xn)) — y( n+1)h y( n) _yl(xn) — §hy”(€n)
for some &, € (T, Tny1). In our case, y' = Inln(4 + y?). Therefore,

d d 1 1 Inln(4+y?) 2y

"— — = —lnln(4 2y -

! Ta " n(+y7) In(4 + y2) 4 + y? 4 In(4 +y2) 4+9y2’
and hence |y"(z)| < 1 x £ = 1. Thus, |T,| < 1h.
b) We have

Yn+1 = Yn + hf(xna Z/n) )
Y(@nt1) = y(@n) + hf(@n,y(z,)) + BT .

By subtraction and using a Lipschitz condition for f(z,y) = Inln(4+y?),
with Lipschitz constant L, and letting e, = y(x,) — yn, we have eg = 0
and

lens1] < len| + hLlen] + BTn|, n=0,1,...,N 1.

To calculate the Lipschitz constant of f, note that by the Mean Value
Theorem,

F@y) — f(z,2)] = rg—;(x,nn v~ 7

for some i which lies between y and z. In our case,
g . 1 2y
Oy  In(4+y?) 4+y2

and therefore

of 1 1
< — x=.
Jy| ~— Ind 2

Hence, L = 1/(21n4).
c¢) From part b) we have eg = 0 and

|en+1|S|en|+hL|en|+h|Tn|7 n:O,l,...,N—l.
Therefore, letting T be such that |T,,| < T for all n > 0 (e.g., T = 1h),

|61| S hT,
lea] < (1+hL)hT + AT,
les)] < (1+hL)*hT + (1 +hL)hT + T,
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etc.

|en| <

(1+AL)" 'hT + ...+ hT =T {(1+hL)" ' + ...+ 1}

(1+hL)» -1 T N T . i
= —_— m m = — - <_ -
hT TThL =1 L[(1+hL) 1]_L((e )" —1)
T

[ (enhL_l) S

T
L _(eL_1)7

L

as in our case nh < Nh =1 for alln =0,1,..., N — 1. This gives,

h
max |y(zn) = yn| < 7 x (2104) X (et/(In9) _ 1) = h x 0.30103067384

0<n<N

which is less than 10~* provided that N = 1/h > 3011 = Ny.
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Solution to Exercise 12.7

The truncation error is

Y(Tni1) — y(on) _ 1

T, = h 2h(f(mn+1>y(xn+l)) + f(2n,y(T0)))
Using repeated integration by parts,
Tn41 —
[ e s sy @ = (@ )= oy @) [
Tn -
- / (22— — Tpy1)y" (z)dz
Tn
Tn4+1
= —/ 2z — 2y — Tpy1)y" (z)dz
Tn41
- o=~y @) [0 [ 2o
T=Tn
= _(xn-‘rl - mn)yl(mn-i-l) + (xn - xn-‘rl)yl(xn) + Q[y($n+1) - Z/(l’n)] :
Therefore,
h., , I "
Yne)=yen) = 2l )y el [ ner =) ey )

n

Using the Integral Mean Value Theorem on the right-hand side,

V)=o) = 51 ne )+ @)= 30" [ @) o)

n

with &, € (¢, p+1). Now, using the change of variable z = x,, + sh,

Tn41 1 1
/ (pt1—z)(z—x,)dz = h3/0 (1—s)sds = h3/0 (s—s’)ds = th*.
T

n

Thus, we have

[N

@, 9 nin)) + F ()] = 25" (60

with &, € (¢, Znt1). Hence,

Y(@ns1) —y(zn) =

1
Tn:——h2 " ).
5y (&)
In particular,

1
T, < —h*M
Tl < 520,

where M = maxeer |y (£)].
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To derive a bound on the global error e,, = y(z,,) — yn, note that

y($n+1) = y(xn) + g[f(xTH-l:y(xn-i-l)) + f(xn,y(:z:n))] + hT, )
Ynt1 = Ynt g[f($n+1:yn+l) + f(zn,yn)] -

Subtracting and using a Lipschitz condition on f, we have
h
lent1] < len| + §(L|€n+1| + Lley|) + h| T,
and therefore,
h 1,
lent1| < len| + §(L|en+1| + Llen|) + Eh M.

This can be rewritten as follows:

1+ 3hL Lh3M

lent1]| < (ﬁ) len] +12—7%hL7 n=0,1,2,...,

with eg = 0 (assuming that 0 < h < 1/L). By induction, this implies
that

h2M | (1+ LnL\"

len| < = -1 .

12L |\1-1nL
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Solution to Exercise 12.8

We shall perform a Taylor series expansion of the truncation error

Y(Tny1) — y(@n)

T, = T @ y(@n) + f@es, y(on) + hf @n,y(@a)))]
_ w — Ly (&) + f(@ns1, y(@n) + hy' (2))]

= y'(xn) + 5hy" (wn) + §h7%Y" (25) + O(R%)
—31Y' (@) + f(@n,y(@n)) + hfa(@n, y(zn)) + hy' (@0) fy (@n, y(@0))
+%[h2fm($n:y($n)) + 2h2y’($n)fxy($n:y($n)) + h2(y'(xn))2fyy($n,y(mn))]} + O(h3)
= %h2[fy(fx + fyf) = %(fm +2fayf + fyny)] |z:wn +O(Rh?)

where, in the transition to the last line, we used that
y = f,
y" = fz+fyy,:fz+fyf>
"= fee + fzyyl + fyy” + (fzy + fyyyl)yl
= fzz + 2fwyf + fzfy + f(fy)2 + fyyf2 .
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Solution to Exercise 12.9
The classical 4th-order Runge-Kutta method is
Ynt1 = Yn + sh(kr + 2ks + 2k3 + ky)

where, in our case,

k= f(xn:yn) = \NJn
ky = f(zn+ $h,yn + shky)

= AYn + 2Xhyn) = Ayn + 2N hy,,
ks = f(zn+ $hoyn + $hks)

= Ayn + $Ahy, + 1XR2y,,)
= Ayn + %)\thn + %)\3h2yn
ks = f(zyp+h,yn + hks)

= AYn + MNyn + 2217y, + 2X3K3y,)

= Ayn + A2hy, + SX3R%y, + IXTRPy,
Therefore,

Ynt1 = (1+ (Ah) + 3(A)? + §(AR)® + 55 (AB)*) g .

On the other hand, for the exact solution,

ATn AR Ah

Y(Tng1) = Xt = Aot = eMy(zy,),

and therefore,
Y(@nt1) = (1+ (AR) + 3(AR)* + 2(AR)? + L (AR +...) y(zy) -

The factor multiplying y, in the numerical method coincides with the

factor multiplying y(x,) in the exact solution, up to terms of order
O(hY).
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Solution to Exercise 12.10
Taylor series expansion of the truncation error yields
T = (I—a=PB)y(za)+h(5—B87)y" @)+ 5h*y" (22)
317 fox + 20 fay () i) Lo, + O

For consistency, we require that o + 8 = 1. For second order accuracy,
we demand, in addition, that gy = %

Suppose that a4+ =1 and 8y = % and apply the resulting numerical
method to y' =y, y(0) = 1 whose exact solution in y(z) = e®. Then,

T, = th%e"™ — Lh?By*(0+ 0+ 0) = $he™

which cannot be made equal to zero for any choice of , 8 and . There-
fore, there is no choice of these parameters for which the order of the
method exceeds 2

Suppose that a + 8 = 1 and gy = 2, and apply the method to
y' = =Xy, y(0) = 1, where A > 0. Thus, yo = 1 and

Yni1 = (L= Ah+2(AR)*)y, n=0,1,....
Therefore,
yn = (1= Ah+ 1(AR)*)", n=0,1,....
The sequence (y,,) is bounded if, and only if,
|1 — A+ 3(AR)’| <1

which holds, if and only if, 0 < h < 2/A. Now, assuming this restriction
on h,

Y(@p) —yn = e M — (1= Ah+ 1R
Cot ) ( — A+ L(AR)%)"
(e — A+ 1(AR)?)

x [(e™)" + (e —*h) (1= A+ IXR%) + .+ (L= Ah+ INR%)1]
Each of the n terms in the last line is bounded by 1, and therefore
[(e™ M)l (e M) T2 (1= Ah+2AZR?) 4.+ (L= AR+ 3X2R%)" T < .

On the other hand, (for example, by the Leibniz criterion for the re-
mainder in a convergent alternating series)
2

™ — (1= M+ 3(AR)°| < §(AR)?



148
and therefore,
|y(mn) - yn| < %(h)‘)3n = %)‘3h2mn

where z,, = nh, n > 0.



Solution to Exercise 12.11
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For this method, a3 =1, a0 =, a1 = —a, a0 = -1, f3 =0, B2 = 3,

B1 = B, Bo = 0. Therefore,

Co
Cy
Cy
Cs
Cy
Cs

0,
3+a—23,

9 3a

3 =30,
27 4 Ta _ 568
6 6 2
81 , 5la _ 98
24 24 6 7
243 3la 173

120 120 24 °

Setting C; = 0 implies that « — 28 = —3 and therefore C; = 0 also.
Setting C3 = 0 implies that 7o — 158 = —27. Solving the linear system
a—20=-3,7a— 158 = =27 gives a« = 9, § = 6; with this choice, we
have Cy = C; = C2 = C3 =0, and also, Cy = 0 and C5 = 1/10.

Therefore, with « = 9, = 6 the method is 4th-order accurate. For
such « and 3, the first characteristic polynomial of the method is

p(2) =22 +9(2—2)—1=(z—1)(z2+10z+1)

which has the roots 21 = 1, 25/3 = —5 £+ v/24. Since the Root Condition
is violated by z3, the method is not zero-stable.
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Solution to Exercise 12.12
For this method, a3 = 1, as =0, a1 = b, ag = a, B3 =0, f2 = 1,
B1 =0, Bo = 0. These give
Co = 1+b+a,
Ci = 2+0.

Setting Cp = 0, C; = 0, to achieve consistency of the method, implies
that a = 1, b = —2. Next,
_ _7 _3
Cy = 5 —2=5-2=5#0.
Therefore, the method is consistent and at most first order accurate.
To investigate the zero-stability of the method for a = 1 and b = -2,
consider the first characteristic polynomial of the method:

p(z) =22 —224+1=(z-1)(>+2-1).
This has roots
21 =1, 22/3:%(—1i\/5)

one of which (z3) is outside the closed unit disc. By the Root Condi-
tion, the method is not zero-stable. Further, by Dahlquist’s Equivalence
Theorem the method is not convergent.

Let us apply the method to y' = 0, y(0) = 1 whose exact solution is
y(xz) = 1. Then,

Ynt3 — 2yn+1 + Yn = 0.

The general solution of this third-order linear recurrence relation is

yn:A.1n+B.<_l+‘/g> +C-<_1%\/5> 7

where A, B, C' are arbitrary constants. For suitable initial conditions
A =0, B=0,C =1, and therefore

o= (-1)" (1 *f) ,

which means that the numerical solution oscillates between positive and
negative values whose absolute value increases exponentially with n,
exhibiting ‘zero-instability’. Clearly, the solution bears no resemblance
to the exact solution y(z) = 1.
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Solution to Exercise 12.13

The first characteristic polynomial of the method is p(z) = 2? — a,

a > 0, whose two roots are z, /5 = £+/a. To ensure zero-stability (using
the Root Condition), we need to assume that 0 < o < 1.

To explore the accuracy of the method, note that as = 1, a; = 0,
Qg = —a, B = %, B = %, Bo = % Therefore,

Co=1—-a=0 witha=1.

With a = 1 we also have C; = C; = C3 = Cy = 0, while C5 = — 5.
Therefore, the method is 4th-order accurate.

Since the method is zero-stable and 4th-order accurate (in particular
it is consistent) when « = 1, it follows from Dahlquist’s Equivalence
Theorem that it is 4th order convergent when o = 1.
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Solution to Exercise 12.14

Let us explore the zero-stability of the methods.

a) p(z) = z — 1. This has only one root, z = 1. By the Root Condition,
the method is zero-stable.

b) p(z) = z° + z — 1. This has roots z; = 1 and zz = —2. The second
root violates the Root Condition; the method is not zero-stable.

¢) p(z) = 2z — 1. This has roots z;» = £1. By the Root Condition the
method is zero-stable.

d) p(z) = 22 — 2 = z(z — 1), whose roots are z; = 0 and zz = 1, so the
method is zero-stable.

e) p(z) = 22 — 2 = z(z — 1), so the method is zero-stable.

Let us explore the absolute stability of the methods a) and ¢).

a) The stability polynomial of the method is 7(z, Ah) = z—1— Ah whose

only root is z; = 1 + Ah. For the method to be absolutely stable, it is

necessary and sufficient that |z1| < 1, i.e., =1 < 1+ Ah < 1. Hence, the

method is absolutely stable if, and only if, 0 < h < 2/(=\).

¢) Here m(z,Ah) = 22 —1 — £Ah(2* + 4z + 1). Now (2, \h) = 0 if, and

only if,

5 4\h Z_3+)\h _
3—M\h 3—\h

Note that since A < 0 and h > 0, we have 3 — A\h # 0.

Given a quadratic polynomial of the form 22 — az + b, for both roots
to lie in the open interval (—1,1) it is necessary and sufficient that
the polynomial is positive at z = 1 and z = —1, it is negative at the
stationary point z = a/2 (i.e., a®*/4 —a®/2+b = b — a®/4 < 0) and
—1<a/2<1 (ie, -2<a<?2).

In our case, the first two requirements yield

z 0.

L__AAh 3+n .
3= A 3 Ah ’
L A 34 .
3— A 3 Ah ’

with A < 0. These inequalities yield the contradictory requirements that
3—MAh >0 and 3 — Ah < 0. The method is not absolutely stable for any
value of h > 0.
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Solution to Exercise 12.15

For this method, ay = 1, a1 = —(1+a), ap = 1, B2 = (3 —a)/4,
61 = 0, 60 = (]. - 3(1)/4

With these values, Cy = 1 —a is equal to zero if, and only if a = 1. Let
us suppose that a = 1. Then, C; = Cy =C3 =0and Cy = —1/12 # 0,
which means that the method is 3rd-order accurate when a = 1. For
a # 0 the method is not consistent.

To check zero stability, for a« = 1, we consider the first characteristic
polynomial p(z) = 22 — 2z + 1 = (2 — 1)?. This has double root z = 1
on the unit circle. The Root Condition implies that the method is not
zero-stable.

For absolute stability for a = 1, consider the stability polynomial
m(z,A\h) = 22 — 2z + 1 — $\h(2* — 1). Proceeding as in part (c) of the
previous question, we find that there is no h > 0 for which the method
is absolutely stable.
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Solution to Exercise 12.16
We seek a method of the form

aYnt2 + Ynt1 + cYny1 = hfngo.

For this method, as = a, a1 = b, a9 =¢, f2 =1, f1 =0, Bp = 0. We
demand that

Co = a+b+c:0,

C, = 2a+b-1=0,
_ 4a b —

C2 = 74‘5—2—0.

Solving the resulting linear system for a, b, ¢ gives

a=2%, b=-2, c=1.
This choice ensures that the method is 2nd-order accurate.

The first characteristic polynomial of the resulting method is p(z) =
%z2—2z+% which has roots z; = 1 and z; = 1/3. By the Root Condition
the method is zero-stable, and Dahlquist’s Equivalence Theorem implies
that the method is 2nd-order convergent.

The stability polynomial of the method is
m(z,Ah) = 32° — 2z + 1 — Ah2%.
The roots of this have absolute value less than one if and only if
w(1,A\h) >0, =(—=1,\h) >0,

at the stationary point zop = 2/(3 — 2Ah) where 7. (29, Ah) = 0 we have
(20, A\h) <0 and —1 < zp < 1.

These requirements yield —Ah > 0,4—Xh > 0, (1/2)—1/((3/2)—Ah) >
0, and —1 < 2/(3 — 2Ah) < 1, each of which holds for all ~ > 0 and all
A < 0. The method is absolutely stable for all h € (—00,0).
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Solution to Exercise 12.17
The #-method has stability polynomial
w(z,Ah) =z —1—Ah[(1 —0) + 6]
whose only root is
14+ Xr(1-9)
1=
where A = a + b is a complex number with negative real part, a < 0.
Now,
o2 = (1 +ah(1—0))? +b*h%(1 —6)?
N (1 — ahb)? + h262b>
We have |z| < 1 if, and only if,
2a
a? + b2
For the method to be A-stable we need this to be true for all A with

negative real part a, which is true if, and only if, 20 — 1 > 0, that is,
when 1 <6 <1.

< h(20 —1).
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Solution to Exercise 12.18

The quadratic Lagrange interpolation polynomial of y is

(T — Tng1) (@ — Tny)
P(@) = (Tn = Tpt1)(Tn — Tnt2) (@)
(z — ) (@ — Tnyo)
(Tn41 — Tn) (Tnt1 — Tny2
(x — @) (T — Tpt1)
)

(mn+2 — Tp mn+2 - mn+1

+

_|_

)y($n+2) .

Differentiation of this gives
1
Py (Tny2) = %[33/(2:”4_2) — 4y (znt1) +y(zn)].

By expanding y(z,,) and y(z,+1) into a Taylor series about z,,42 we get
Py (Tni2) = Y (Tny2) + O(R?).
The truncation error of BDF2 is

T = 3y(Tny2) — 4y(Tni1) + y(xn)
" 2h

Noting that the last term is equal to y'(z,+2) and expanding each of
y(z,) and y(x,41) into a Taylor series about z,,42, we get

— f(@nt2,¥(Tnt2)) -

1 2
T, = §h2y"'(€n) - §h2y"'(nn),

where &, € (Tni1,%nt2) and n, € (T, Tyi2). Therefore T,, = O(h?).
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Solution to Exercise 12.19
The implicit Runge-Kutta method has the form
Yn+1 = Yn + h(biky + b2k2)
where
ki = f(zn+cih,yn + ar1kih + ar2kah),
ky = f(zn+ c2h,yn + as1kih + asskah) .
When applied to y' = Ay, we get
ki = Ayn+aikih + ai2kzh),
ky = Ayn + a21k1h + aznkah).
Rearranging this,
(1= Xai1h)k; — Aaishks = Ayn
—Aag1hky + (1 — Aas1h)ke = Ay, .

The matrix of this linear system is I — AhA, and the corresponding
determinant is A = det(I — MAhA). In expanded form,

A =1— Ah(ay1 + az) + (Ah)*(a11a22 — a12as) -

Let us suppose that A # 0. Solving the linear system for k; and k2 gives

o Ayn(]. + Ah(alz — (122)) ko — )\yn(]- + /\h(a21 — all))
- A ) 2 = A .
For the method with the given Butcher tableau,

61:%(3—\/3), 02:%(34‘\/3),

ki

by=by =1
0112%, G12=%(3—2\/§),

021:%(34—2\/3), (122:%.

Therefore,
ko= Aya(l-1a3)/A
kr = Ayn(1+iAV3)/A
which then gives
Ah

Yny1 = (1 + K)yn
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with
A=1-ixn+ L2,
Thus,
L+ 2(\h) + 5 (A\h)?
_ 2 12
I T T IO + R

Writing the quadratic polynomials in the numerator and the denomina-
tor in factorised form, we have
~ (M +3+0V3) (M +3 - 1/3)
It =3B M —3+03) "
The numerical solution will exhibit (exponential) decay for complex A\ =
a + b with negative real part a, a < 0, provided that

Wb+ 3+ /3 +3—1/3) [

(A =3 = 1v/3)(Mh = 3 +0V/3)

Writing p = 3 4 21/3, this can be written as follows:
A +p A +p
Ah—p Ah—p

The expression on the left can be rewritten as

[ABI® + [pI* + 2Re(pAh) [ARJ* + |p|* + 2Re(pAh) _ A+ Re(X) A + Re(X)

|AR|? + |p|? — 2Re(pAh) |AR|? + |p|> — 2Re(pAh) ~ A — Re(X) A — Re(X)

where A = |AR|? + |p|?, and X = 2pAh.

Now,

<1.

2
<1,

A+ Re(X) A+ Re(X)

A—Re(X) A—Re(X)

if, and only if,
2A(Re(X) + Re(X)) < 0.
In our case p =3 +1V/3, A = a +1b, s0
Re(X) = Re(2pAh) = 2h(3a—v/3b), Re(X) = Re(2p\h) = 2h(3a+V/3b)
which means that
Re(X) + Re(X) = 12ha
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As A > 0 and Re(X) + Re(X) = 12ha < 0, we deduce that

A+ Re(X) A+ Re(X)
A —Re(X) A—Re(X)

for all complex A with negative real part. Consequently,

M+ 3+ 0/3)(Me+3—1v/3) [
(A — 3 —1/3)(A\h — 3+ 1V/3)

for all complex A with negative real part. This implies that the method
is A-stable.

<1
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Solution to Exercise 13.1
Expanding y(z+h) and y(z—h) in Taylor series and adding the results
gives
1
6!

where x — h < & < x < & < & + h. Since yV! is continuous, there is an
1 such that

y (&) +yV (&) =2y (), v—h<n<z+h.

y(w+h)+y(r—h) = 2y(w)+h2y”(m)+%h4y’v(:v)+ Wy (E)+y" (&),

The required result is then immediate.
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Solution to Exercise 13.2
The matrix M has elements
2
Mjj = 35 +7i, Mjj1 =M = ~1/h.
Since r(x) > 0 this matrix satisfies the conditions of Theorem 3.6 since
the diagonal elements are positive, the off-diagonal elements are nega-
tive, and in each row the diagonal element is at least as large as the sum
of the magnitudes of the off-diagonal elements. Hence the matrix M is
monotone.

Now define M™* to be a matrix identical to M, except that each diag-
onal element is M7; = 2/h*. Then evidently M* is also monotone, and
since M > M*,

—1 *
1M oo < |IM7*—1|co-

But we know from Exercise 4 that |[M || < &.
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Solution to Exercise 13.3

To determine the local truncation we substitute the values of the exact
solution of the problem y(z;) in place of y; and find the residual in the
difference approximation. Since we are using the exact solution, we may
replace r(x)y(z)— f(x) by y"'(z). Expanding in Taylor series and writing

zj_1 =a — h, xj41 = + h, on assuming y" is continuous we get

Yo =B byl ) - 2(0) = Ry + g h"(E) - " (6]
By (x = h) + Boy"(z) + Bry"(x +h) = (B-1+PBo+P1)y"
+h[=B-1y" (&) + Bry"" (€4)],

from which the first result follows.
(i) In the same way, when 3_; + By + B1 = 1, and assuming y’" is
continuous

Y-y h) -2 = @)+ gt () + ™ ()]
B1y" (@ = h) + Boy" (x) + Bry" (v + h) y" + h[=p-1y" (@) + By (z)]
FR 5" (6) + by (6]

(iii)) When 81 4+ o + 1 = 1, 1 = 1 # 1/12, we get on requiring
that ¥V is continuous

yz—h)+yz+h) — 2@ = b))+ 1—12h4y”(x)

PR+ @)
By (@ —h) + Boy"(x) + fry" (@ +h) = o'+ Bih*y" (2) +

Pty &) + v (€]



(iv) In the same way, when 8_; = 81 = 15

that yV 1! ( is continuous,

y(z —h) +y(z+h) = 2y(z) =

By (x —h) + oy (z) + fry"(z +h) =

from which the last result follows.
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and By = %, now requiring
1
12
h6yVI(:L“)

hy" (x) +
2
6!

F Pl )+ T (@)

1
yu + EthIV(m)
1 2
+E ah4yVI(m)
11

12 6!

h4yIV (CE)

+

K[y (&5) + yV T (&4)]
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Solution to Exercise 13.4

Taylor expansion, with integral form of the remainder, gives
1

3 h3ylll (Z’)

1
y(x+h) = y=)+hy'(z)+ 5h2y"(m) +
1 1
Eh4yIV(m)+a

h h— 5
+/ ( 5'8) yV! (x + s5)ds.
0 !

+ hyY (z)

The expansion of y(x — h) is obtained by changing the sign of h, so the
integral term becomes

—h (_ —85 0 85
/0 Eh—s) h5! ) y iz +s)ds = [h (h—g! ) y" ! (z + s)ds.

In the same way we obtain
1

3!h3yv(w)

1
y"(@+h) = y'(@@)+hy'"(2)+ ghzylv(m) +
h 3
h—
/ @y‘”(w + s)ds.
0 3!
The expansion of y"(x — h) is similar, with the integral replaced by

O (h+s)® v,
I

(x + s)ds.

Inserting these expressions into the expression for the truncation error,
only the integral terms are left, and we obtain

h 5
h—
T, = —/ %yVI(CIZ-FS)dS
0 !

0 h 5
- / . %y‘”(w + s)ds

1 " (h—s)?
+Eh2/ %yVI(CIZ-FS)dS
0 .

1 O (h+s)?
+Eh2/h( —:l))—'s) yV ! (x + s)ds.

Hence

h
h*T; = / G(s)y"!(z; + s)ds,
—h
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as required, with G(s) = G(—s). Now G may be written

(h—5)°
360
The factor (h — s)® is non-negative on [0, h]. The quadratic factor has
a minimum at s = h, where the value is —5h2, and it takes the value
—2h? at s = 0. Hence this factor is negative on (0, k). This shows that
G(s) <0 on [—h,h]. The integral mean value theorem then shows that

ther exists a value of n € (—h, h) such that

G(s) = [3(h —s)* =5h%, 0<s<h.

h
BTy = —y¥!(x; +n) / hG(s)ds.

A simple calculation shows that

h h t5 t3 h6
=2  _p2 - _
/,hG(S)dS /0 {5! h 72] ==

which is the required result.
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Solution to Exercise 13.5

The proof follows the same lines as that of Theorem 13.4, but with
two differences.
First, the operator L(y) is now

L(g); = -21= 2,;? 22 %[W—lw—l +10rj05 + 7j110j11]
= —ajpj-1 +bipj — Cir1pit,
where
aj = 1/h®—r; /12
b, = 2/h*+10r;/12
cj = 1/h% —rjii/12.

To apply the maximum principle we require that each of the coefficients
aj,b; and ¢; is non-negative. This requires that h%r(z) < 12 on [a,b].

The other difference is in the algebraic details. With the same defini-
tion of the function ¢ we now find that

L(p)j = =8C + [rj1pj—1 + 1005 + 1j110541/12.

Since r;p; > 0 the same argument still applies. We can define C' = T'/8,
and deduce that |e;j| < T/8. Using the exxpression for T; obtained in
Exercise 4, this gives the required result.



167
Solution to Exercise 13.6

The proof in the text has shown that e; + ¢; <0, for j =0,1,...,n.
There are two final steps in the proof.
First, since C > 0 and D > 0 we see that

p; >2E, j=0,1,...,n.
This means that
—-FE
= Clb-a)*+D(b-a)

IN

€j

_ 1 2 2 1 2
= 3" M~ a)* + £ Ms(b—a).

The final step is to prove the same inequality for —e;. With the same
definitions it is easy to see that

L*'(—e+j+¢;) <0, j=0,1,...,n—1
The maximum principle then shows that
—ej + ¢; < max(—eo + @o, —€n + ¢, 0);

moreover, e, = ¢, = 0. In the last part of the proof in the text we can
replace e; by —e; throughout, and the argument still holds. This shows
that —ep+@o < 0. Hence —e; < —¢j;,5 =0,1,...,n. As we have shown
that ¢; > E, this means that

—-e; <—-E, j=0,1,n—-1

Putting these two results together we get |e;| < —FE, which is the re-
quired result.
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Solution to Exercise 13.7

The function coshaz evidently satisfy the differential equation. The
factor 1/ cosha then ensures that it also satisfies the boundary condi-
tions. The problem is clearly symmetric about = = 0.

With the given function Y; we see that

Yj 1 —-2Y;+Y;41 coshd(xz; — h) + coshd(z; + h) — 2 coshdz;
h? N h? cosh ¥
_ 2coshdz;(coshdh — 1)
h2 cosh ’
so that Yj is the solution of the difference approximation provided that
_QCoshZ‘zh -1 ta=0

This is equivalent to
¥ = (1/h) cosh™ (1 + 1a’h?).

It is also clear that Yy = Y}, = 1, so the boundary conditions are satisfied.
Expanding in Taylor series we find that
372

h
a 1 sinha + O(h'),

coshd = cosha —

3 h2
a sinh az + O(h%),

cosh ¥z = cosh ax —

coshdz  coshar h?a® coshazsinha — zsinhaz cosha 4
_ + 5 + O(h )
cosh ¥ cosha 24 (cosh(a)

The term in A2 has a maximum when its derivative vanishes. This leads
to either ¢ = 0 or
tanhazr cosha

az asinha — cosha’

Now tanh a < a when a > 0, so the right hand side is negative, but the
left hand side is positive. Hence the only maximum is at z = 0, and
here the term in h? is

ihQa3 sinh a/(cosha)? < a—4h2
24 - 24
since tanha < a and cosha > 1.

The truncation error is
h? h? a* coshax

=3y ©=13

< éhz
cosha — 12
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Theorem 13.4 then shows that

(b —a)® a* 2_“_4 2

. N < =
¥ -yl < S TRt =2

also.
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Solution to Exercise 13.8

The analysis is the same as in the previous exercise, but with a?
replaced by —a?, or with a replaced by ia. The result is

cos ax
y(z) = ——,
L2 3 : . 2
Y, —y(z;) = ﬂh a’(cos ax sina — z sin ax cos a)/(cos a)
+0(Rh*).

Theorem 13.4 cannot be applied to this problem, as it requires that
r(z) > 0; here r(z) = —a? < 0. The analysis requires that cosa # 0;
if cosa = 0 the boundary value problem has no solution. Hence a must
not be an odd multiple of /2.

Note also that it is more difficult to obtain a simple bound on the
term of order h? in this case. In general it may have any number of
maxima and minima in [—1,1], and the largest of them will not be at
z=0.
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Solution to Exercise 13.9

Evidently the function y = sinmnx satisfies the differential equation
—y" = m?r?y, and also satisfies the boundary conditions y(0) = y(1) =
0, when m is an integer.

The numerical approximation Y; = sinmmz; also satisfies the bound-
ary conditions, and

Yio1+ Y41 = sinmm(z; — h)+sinma(x; + h)
= 2sinmnmx; cosmmh
= 2Yjcosmmh.

Hence
62Y; 2cosmmh — 2
Y e e
showing that the difference equations are satisfied, with

_ 2(1 —cosmmh)

12
Expanding in Taylor series gives
2
po= 53 [1(mrh)? — L (mmh)* cos ]

= m2n® - %m‘ln‘lh2 cosé&,
where —mmh < ¢ < mmh. This gives
A= p| < Smiathi
The truncation error of the approximation is
T; = 50%y"Y = La*mirty; + O(h*)
So the error bound in (13.23) gives

172, 4_4

=h*m*rm

Lz 7 Tl [l =1 h2m47r4—|—0(h4),
Yy

A —pl < 12
which agrees with the result just obtained.
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Solution to Exercise 14.1

(z) = </:1-v’(t)dt>2
< [ea [Cpopa
~ @-a) [ WP
< -0 /abw(tn?dt

for all z € [a,b], using the Cauchy—Schwarz inequality. On integrating
both sides,

b b
[ @k < 50-0f [ 1@,

as required.

(b)
ol = [ P
= Z/zv(t)v'(t)dt

2 </ |v(t)|2dt> : (/ |v’(t)|2dt> :
2 (/ab |v(t)|2dt> ’ (/ab |v’(t)|2dt> :

2[10llL2(a) 1V llL2(a )

IN

IN

for all z € [a,b], and therefore

max [0(z)[* < 2|[vllL2(a,) [[0']lL2(a) »
z€[a,b]

as required.
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Solution to Exercise 14.2

(a) The weak formulation of the problem is: find v € H}(0, 1) such that
A(u,v) = £(v) for all v in H(0,1), where

1
A(u,v) = /(u'v'+uv)dx,
0
1
Lv) = fudzx .
0

(b) To derive the weak formulation of the problem, multiply the differ-
ential equation by an arbitrary function v € H'(0, 1), and integrate by
parts in the term involving u”v. Then,

1 1
/0 (—u" +u)vder = /0 (u'v' + wo)de — u'v|"=y

/0 (u'v" +uwv)dz — u'(1)v(1) + u'(0)v(0) .

Since we have no information about u'(0), we eliminate this term by
selecting v € H'(0,1) such that v(0) = 0. Let us therefore define

Hg, (0,1) = {v € H'(0,1) : v(0) = 0}.
Hence, noting also that «'(1) = 1, we have that
/01(—u” + u)vdz = /Ol(u'v' + uv)dz — v(1) Vv € H, (0,1),
and therefore
/Ol(u'v' +uv)dz = v(1) + /01 fvdz Vv eHg (0,1).

On observing that u needs to satisfy the same homogeneous boundary
condition at x = 0 as the one we have required for v, we conclude that
the weak formulation of the problem is: find v € Hg, (0,1) such that
A(u,v) = {(v) for all v € HE (0,1), where

1
A(u,v) = / (u'v' + uwv)dz,
0

L(v)

1
v(1)+/0 fudz .

(c) Proceeding in the same way as in part (b), we multiply the differential
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equation by v € H!(0,1) and integrate by parts in the term involving
u''v. This yields

/0 (u'v" +wv)dz —u'(1)v(1) + u'(0)v(0) = /0 fodz

for all v € H'(0,1). As —u/(1) = u(1) — 2 from the boundary condition
at x = 1, we can use this in the identity above; also, since we have no
information about u’(0), again we choose v € H(0, 1) such that v(0) = 0
to eliminate the term involving w'(0). Thus, the weak formulation is:
find u € Hg (0,1) such that A(u,v) = £(v) for all v € Hy, (0,1), where

A(u,v) = u(l)v(1)+/0 (u'v" + uwv)de,

Lv) = 2v(1)+/0 fudz .

Uniqueness of weak solution. In each of the three examples, the weak
formulation of the problem has the same general form: find u € V' such
that A(u,v) = £(v) for all v € V', with a suitable choice of the space V'
(namely, V = Hg(0,1) in (a), and V' = Hy_(0,1) in parts (b) and (c)).

Suppose that there are two weak solutions v and @. Then, on sub-
traction, A(u — @,v) =0 for all v € V. As u— @ is an element of V', we
can take v = u — @, which gives

Alw —i,u —a) =0.
In (a) and (b) this means
/01 (I(w—a)'|* +Ju—af*) dz =0,
and in part (c)
lu(1)* + /01 (Ju=—a)')? + |u—a|*)dz =0,

both of which imply that ©w — @ = 0, i.e., u = @, and hence uniqueness.
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Solution to Exercise 14.3

The proof of Theorem 14.4 is identical to the proof of Theorem 14.1
on replacing u by u”, HL(a,b) by Sk, w € Hi(a,b) by w" € SE, and
v € H}(a,b) by v € S} throughout.



176

Solution to Exercise 14.4

From Corollary 14.1,

hi\”
— Thull? -t
le = Thully - < max <7T

A

T2

By Ced’s Lemma,

=

lu—w"lla < [Jlu—T"ula < -

2
Pl'+<&> R;
™

h? h?
< (P 5R) WM

n
2
Z ||U’”||L2(zi,1,1‘i)
i=1

B2\ /2
<P+ FR> lw" [l (a,) -
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Solution to Exercise 14.5

The finite element approximation of the boundary value problem is:
find u* € S§ such that

1 1 1
po/ (u™)' (") dz + ro/ uvdr = / fodz Yo" e S
0 0 0

where SP = span{ey,...,¢n_1}. Seek

W(2) = 3 Uy

and choose v = ; fori =1,2,...,n — 1; hence,
n—1 1 n—1 1 1

Do Z Uj/ ©ipidz+ro Z Uj/ pjpida = / foidx, i=1,2,...,n—1.
= 0 = 0 0

For |i — j| > 1 each of the integrals on the left-hand side of this identity
is equal to 0, since the supports of ¢; and ¢; are then disjoint. For
i=7—1,7,7+ 1, after calculating the integrals involved we have
U1 —2U; + U; U1 +4U; + U;
—Do i—1 it z+1+r0h i—1+ i+ i+1
h 6

and we put Uy = 0 and U,, = 0, given that u"(0) = 0 and u"(1) = 0.
Equivalently,

Uiy —2U; + U; Uiy + 4U; + U; 1t
—Do — h2l+ z+1'H“O 1t 62_'_ z+1:ﬁ/ feidz, i=1,2,...,n-1,
0

with Uy =0 and U,, = 0.
Let us expand f into a Taylor series with remainder:

F(2) = Fa)+@—) f @)+ s () f @)+ () £ () + O (a—2)1)

1
=/ foidz, i=1,2,...,n—1,
0

2 6
Hence,
1 Tit1
i / @@ = 3 [ f@eids
1 Tit1 1 Tit1 - \
- E/. fedpi@)de + o | (@ —2:)* f(@i)pi(z)dz + O(hY)

= f(:l?z) + %h?f”(l‘i) + O(h4) .
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The finite difference equations arising from the finite element method
are
oo Ui—1 — thi + Ui o Ui—1 + 4?‘ + Uit

with Uy = 0 and U,, = 0. The truncation error of the scheme is

1
:f@»+ﬁh7%my i=1,2,...,n—1,

i1 — 2u; i i—1 + du; i 1
Ti:_pOUz 1 'L;z+uz+l+rouz 1+ 4u; + Ui _f(mi)__hzf”(mi); i:1,2,...,n—1,
h 6 12
where u; = u(z;) for i = 0,1,...,n. Therefore, after Taylor series
expansion,
1
T; = —po <u”(mi) + Ehzulv(mi) + O(h4)>

+7o (u(xi) + %hzu"(:ci) + O(h“))

1 2 g1
—f(@i) — 12h [ (@)
1 . 1. 1
= —Ethgulv(mi) + ghzrou”(mi) - Ehz (=pou’" (z;) + rou” (z;)) + O(h*)
1
= —hZreu (z;) + O(RY).
12
We define the global error e; = u(z;) — U; = u(z;) — u”(x;). Then,
€i—1 — 2¢e; +ejp1 ei—1 +4e; +ejp
—Po e + 7 6
with eg = 0, e, = 0. As in the proof of Theorem 13.4 we have, with

=Ty, i=12,...,n—1,

T = maxi<i<n |Ti|, that

max |e;] < (1-0)°T

0<i<n

| =

1/1
< —<—h2r0 max |u"(mi)|+0(h4)>

8\ 12 1<i<n—1
_ 1 2 " 4
= %h ro max |u"(z;)| + O(h*)
< MK,

where M is a positive constant, M > 91—6h2r0 maxi<j<n—1 |6 (2;)].
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Solution to Exercise 14.6

The difference equation arising from the finite element method is

n—1 ) i

Ui—1 —2U; + U; Tit1 Tit1 .

_pp izt U H—l—H'oZUj/ %widx:/ foidz, i=1,2,....n—1,
Ti—1 Ti—1

i—

j=1

with Uy = 0, U,, = 0. Now, using the trapezium rule,

Tit1 x; Tit1 1 1
/ Yi+t1pider = / @iil‘Pidx“‘/ Yit1pide ~ §h(0+0)+§h(0+0) =0.
x Ti—1 x

i—1 i i

Similarly,

Tit1 T Tit1 1 1
/ <p3dx:/ np?da:—f—/ pidr ~ —h(0+ 1)+ =h(1+0) = h,
€T €T 1 €T 2 2

i—1 i— i
and
Tit1 1 1
| feida e 0+ f@) + Gh( () +0) = 1 ().
Ti_1
The difference scheme therefore becomes
Uis1 —2Ui + Uia
—Po
h
with Up = 0 and U,, = 0. Equivalently,
Uic1 —2Ui + Ui
—Po 72
with Up = 0 and U,, = 0, which is identical to the central difference
approximation from Chapter 13. From Theorem 13.4, and noting that
U; = u"(z;), we then have that

+rohU; = hf(z;), i=1,2,...,n—1,

+roU; = f(z;), i=1,2,...,n—1,

1
N (] < 2 _ 2y
org%xnm(ml) u"(x;)| < _96h My = O(h*)
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Solution to Exercise 14.7

To establish the weak formulation, we multiply the differential equa-
tion by a function v € H'(a,b) and integrate by parts in the term in-
volving (pu')'v; hence,

b b
/ (pu'v" + ruv)dz — p(:c)u'(:c)v(:c)ﬁzz = / fvdz Vv € H'(a,b).

Replacing p(a)u’(a) by au(a) — A and p(b)u’(b) by B — fu(b), we have

b b
/ (pu'v' +ruv)dz+au(a)v(a)+pu(b)v(b) = Av(a)+Bv(b)—|—/ fvdz Vv € H'(a,b).
We thus define

b
A(w,v) = / (pw'v" + rwv)dz + aw(a)v(a) + Bw(b)v(b)

b
Lv) = Av(a)—l—Bv(b)—l—/ fodzx.

The weak formulation of the problem is: find u € H'(a,b) such that
A(u,v) = £(v) for all v € H(a, b).

The finite element approximation of the boundary value problem is:
find u" € S" such that A(u”,v") = £(v") for all v* € S*, where Sh =
span{po, - .-, Pn}-

Writing u(z) = Y7_ Ujp;(x) and choosing v = ¢;, i = 0,1,...,n,
we get a system of n + 1 linear equations for the n + 1 unknowns
Uo,Uy,...,Up.

Uniqueness follows by noting that

b
A", 0") =/ p@)|(@")'* +r(@)" Pdz + alo"(a)|* + Blu" (b)] .

Thus, if A(v",v") = 0 then v = 0 on [a, b]. Hence, if u" and @" are both
solutions of the finite element approximation, then A(u”" — @, v") = 0
for all v € S*. With v = u"—@" we have that A(u”—a", u"—a") = 0,
and therefore u”" — @" = 0 on [a, b).

Let us now write down the system of linear equations. The (¢, j) entry
M;; of the matrix M of the linear system is

Tit1

M;; = Algj, 01) = / (p(@)g! 0} + r(@)ps 1)

Ti—1
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fori,j=1,...,n—1. Fori =0,

Z1
Mo; = A(p;, ¢0) 2/0 (p(x)Pjpotr(x)pjp0)datap;(a), j=0,1,...,n.

Note that ¢;(a) = 0 unless j = 0.
For i = n,

Tn
My; = Alpj, ¢n) =/ (p(@)@fentr(@)pjpn)dat+Bp;(b), j=0,1,...,n.
Tn—1

We note that ¢;(b) = 0 unless j = n.
The matrix M is tridiagonal. Since, A(g;, ¢;) = A(pj, ¢i), the matrix
M is symmetric.
Let v/ () = Y1, Vigi(z) and V = (Vo, ..., V,,)T. Then,
% n n
VIMV = (Vo,...,V)"M |0 | =303 Aley, 00)ViVi = A", o)

v, §=0 i=0
= /0 (p(2)|(")')* + ()" *)dz + afo" (a)* + Blo" (B)]* > 0

unless v, = 0, 4.e., V = 0 in R*"!. Therefore, the matrix M of the
linear system is positive definite.
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Solution to Exercise 14.8

The weak formulation of the boundary value problem is: find u €
Hy (0,1) = {v € H'(0,1) : v(0) = 0} such that

A(u,v) = /0 (u'v" + wv)dx + au(l)v(l) = /0 fudz = £(v)

for all v € Hy, (0, 1).

Let Sgo = span{®i,...,¢n}. The finite element approximation of the
boundary value problem is: find v € Sf_such that A(u",v") = ((v")
for all v in S . Let us write u"(z) = Z?Zl Ujp;(z) and take v = ¢;,
i=1,2,...,n. Then, for the case of @« =0 and f(z) =1, we obtain the
following difference equations: Uy = 0,

Ui —2Ui + Ui +Ui71 +4Ui + Ui _ % /xz-+1 pi(z)dz, i
Ti—1

h? 6

and, for ¢ = n, we have

Tn

Un—lA(‘Pn—la (Pn) + UnA(QOn: ‘Pn) = / ‘Pn(x)dx

Tn—1
Therefore, Uy = 0,
Ui1 = 2U; + U1 Ui +4U; + Ui

B 2 - 6 =b

1 1 1 1 1

For n = 3, we have h = 1/3 and 1/h? = 9 and therefore,
(184 2) U+ (-9+ 5) U2 =

(-9+H U+ (18+3) U2+ (-9+3)Us =
(o+btt (0430 =

Solving this yields U; = 0.2039, U> = 0.3177, Us = 0.3543, together
with Uy = 0.

i=1,2,....n—1,

and

T e

=1,2,...
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Solution to Exercise 14.9

The energy norm || - || 4 is defined by

[olla = (/Olp(m)|v'|2 + T($)|v|2d:p>

By Ced’s Lemma, ||u — u"||4 < ||u — Z"u|| 4. Therefore,

1/2

1 1 1
co/ |(u—u")|Pde < P/ |(u — Z"u)'|dz + R/ lu — Thu|?dz .
0 0 0

This yields

' hy\1|2 h2 h4 "2
Co/o |(u— ") |Pdz < (PF +RF> " lIE20,1y >
that is,
1 hario 2 h2 5
! "
[ = ypae < 2 (PR ) 1R

By the Poincaré-Friedrichs inequality [cf. Exercise 1],

1
/ [(u — uh)|2dm <
0

By adding the last two inequalities, we have

3h2 h? .
llu —u"[IF 0,1y < PYCIN (P+ Rﬁ) 12 0.1 -

h? h?
s (P Rz ) I e

Therefore,

u = wMlis 01) < Callu”llzgoy

1 /3 1
=—4/— | P — |-
Ch 7]_\/200 < +Rﬂ_2>

Let us now bound |[u"||r2(0,1) by [|fllL2(0,1)- Multiplying the differen-
tial equation by u, integrating by parts and using the boundary condi-
tions u(0) = 0 and u(1) = 0 yields

where

/O(p(:c)lul + r(z)|ul )dxz/o f(z)u(z)dz .

Therefore, by the Cauchy—Schwarz inequality,

CO||UI||%2(0,1) < ||f||L2(071)||u||L2(071) .
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According to the Poincare—Friedrichs inequality,
]‘ !
llullLz(0,1) < EHU IlL2(0,1) -
Hence,
, 1
llu'|L2(0,1) < CO—\/§||f||L2(071) )
which then yields

1
llullLz(0,1) < 2—60||f||L2(071)-

Summing the squares of the last two inequalities and taking the square—
root, gives
V3

llwllaz(o,1) = (||U'||i2(o,1) + ||U||i2(0,1))1/2 < 2—00||f||L2(0,1) .

Now we use this to bound ||u"||L2(0,1). First, observe that from the
differential equation,

/
"= p—u'+—u—i
p p p
Therefore,
" P ’ r 1
a2 < I llsollw’llLzgo,0) + (1= loollullLzgo,n) + [1=IoollfllL2 (0,1
p p p
P T2 e 2 2 1/2 1
< <||_||oo+||_||oo> (1l 2(0,1) + NellZao,1)"* + 1= ool FllL2(0,1)
p p p
1/2
2 T V3 1
< 2 - A _
< ((||p||oo+||p||oo) R
Letting

1/2

p' r V3 1

Cy = <||_||2o + ||_||2o> 2o T2l
p p Co p

we then deduce that
v lL20,1) < CollfllLz(o,1) -
Hence,
llu — Uh”Hl(o,l) < Chl fllz0,) 5

with C = C1Cy and C; an C5 as defined above.
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In the special case when p(z) =1, r(z) =0, and f(z) = 1, we have

1
01:_\/§ and Cy =1,
Ty 2

3
[l —u"|lgr 0,1y < V3

which yields

With h = 1073, we then have
1073 /3

llu — Uh||H1(071) <

5"
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Solution to Exercise 14.10

When the trapezium rule is used to approximate the integral fol fotdz
in the finite element method, the method becomes: find u” € Sk such
that

Al o) = /01((uh)'(vh)'+uhvh)da: = /OIZh(fvh)dm ="y, o"esk.

The argument now proceeds in much the same way as discussed in Sec-
tion 14.5 in the case when the integral £(v") = fol fvldz is computed
exactly. We define the dual problem

" tz=u—u", z€(0,1), z(0)=0, =z(1)=0.
Hence,
lumwBagyy = (u—ut,—2"+2)
= Al —uz2)=Alu—u" 2z -T"2) + A(u —u", T"z)
= A(u—u" z—T"2) + [0(T"2) — " (T"2)]
1
= A(u—ul z—1"z2) +/ [f(Z"z2) — T"(fT"2)]dx
0
= T1 +T2 .

Term T; is bounded in exactly the same way as shown in Section 14.5:

N 1/2
Tl S KO (Z h?HR(uh)“iz(xl_l,xl)) ||U’ - uh||L2(071) )

i—1
where Ko = 2/72.
As for Ts,
2

(T)? < ( / Ife) —Ih(fI”Z)Idw>

1
< [l -1z P
0
~ h‘-1 h \I11]12
< ZT‘_—ZH(]CZ z) ||L2(xi—17$i)
i=1
" h} 1 (7h "Th )2
_ Zﬂ-_zl”f (I z) +2f (I Z) ||L2(wi_1,$i)
i=1

n h4 2
<38 (a1 sy + 2 (I Do
i=1

[wi1,@: TE[wi_1,2:
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IN

Ly ‘ ‘
Z;Z( max |f"]*+4 max ]|f'|2>
i=1

TE[Tio1,T:] T€[Ti_1,2;

% (120 ) + N2 o)

h4
’< max |f’]?+4 max ]|f'|2>

ax -y
1<i<n T \z€[zi—1,2:] r€[@i—1,;

IN

n
X Z ||Ih2||i2(zi71’zi) + ||(Ihz)l||iz(zifl,.1}i)
i=1

= K§||Ih2||12{1(0,1):

where

12 1/2
Ky, = max—f( max |f"?+4 max ]|f’|2> .

T€[Ti—1,T:] TE€[w; _1,T;

Now,

1Z%2 — 2 + 2|l 0,1) < NZ"2 = 2llmio,1) + [zl (0,1)

B N
< E(:HF) 12" llez0,1) + Nl=llm 0,1 -

I1Z" 2|11 0,1

However, —z" + z = u — u", and therefore

12" [t2(0,1) < Il2llez(o,1) + lu = u*[lLz(o,) -
As

||ZI||I2_,2(071) + ||Z||iz(071) =(u-— Uhaz> <luw-— Uh||L2(071)||Z||L2(0,1) )
we conclude that
l2llL2g0,1) < llu—u*{lL2(0,1)

and then also,

||Z,||i2(0,1) + ||Z||i2(0,1) <lw-— “h||i2(071) .
Hence

||Z”||L2(0,1) < 2fju - Uh||L2(0,1) )

and so

2h h2\ 1/
||Zh2||H1(0,1) < l— <1 + F) +1] [Ju— Uh||L2(0,1) .

™
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Consequently,

Ty < Kol|Z"2|lw1(0,1) < Ko llu — w201y -

2 2 1/2
LN SO R
T 2

Therefore,
1/2
Ty < K; max h? a M2 4 4 a "2 _.h
2= ki <zef£fzi]|f | zeﬁi,’fm]'f' lu=u®ll20,1y

where

| 3 llu = u"lL2(0,1) -

1 2\ 1/2
K, = [% <1+h—> +1
Y

Using the estimates of T; and Ts yields the required a posteriori error
bound.

Given a positive tolerance TOL, the mesh adaptation algorithm pro-
ceeds as discussed in Section 14.5.



