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Foreword

The present book aims to give a fairly comprehensive account of the
fundamentals of differential manifolds and differential geometry. The size
of the book influenced where to stop, and there would be enough material
for a second volume (this is not a threat).

At the most basic level, the book gives an introduction to the basic
concepts which are used in differential topology, differential geometry, and
differential equations. In differential topology, one studies for instance
homotopy classes of maps and the possibility of finding suitable differen-
tiable maps in them (immersions, embeddings, isomorphisms, etc.). One
may also use differentiable structures on topological manifolds to deter-
mine the topological structure of the manifold (for example, a la Smale
[Sm 67]). In differential geometry, one puts an additional structure on the
differentiable manifold (a vector field, a spray, a 2-form, a Riemannian
metric, ad lib.) and studies properties connected especially with these
objects. Formally, one may say that one studies properties invariant under
the group of differentiable automorphisms which preserve the additional
structure. In differential equations, one studies vector fields and their in-
tegral curves, singular points, stable and unstable manifolds, etc. A certain
number of concepts are essential for all three, and are so basic and elementary
that it is worthwhile to collect them together so that more advanced expositions
can be given without having to start from the very beginnings.

Those interested in a brief introduction could run through Chapters II,
III, IV, V, VII, and most of Part III on volume forms, Stokes’ theorem,
and integration. They may also assume all manifolds finite dimensional.

Charts and local coordinates. A chart on a manifold is t_:lassically‘ a
representation of an open set of the manifold in some euclidean space.
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vi FOREWORD

Using a chart does not necessarily imply using coordinates. Charts will be
used systematically. It will be observed equally systematically that finite
dimensionality is hereby not used.

It is possible to lay down at no extra cost the foundations (and much
more beyond) for manifolds modeled on Banach or Hilbert spaces rather
than finite dimensional spaces. In fact, it turns out that the exposition
gains considerably from the systematic elimination of the indiscriminate
use of local coordinates xi,...,x, and dxi,...,dx,. These are replaced by
what they stand for, namely isomorphisms of open subsets of the manifold
on open subsets of Banach spaces (local charts), and a local analysis of the
situation which is more powerful and equally easy to use formally. In most
cases, the finite dimensional proof extends at once to an invariant infinite
dimensional proof. Furthermore, in studying differential forms, one needs to
know only the definition of multilinear continuous maps. An abuse of mul-
tilinear algebra in standard treatises arises from an unnecessary double du-
alization and an abusive use of the tensor product.

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when integrating
differential forms, because the dx; A --- A dx,. corresponds to the
dx) - - -dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. I
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

I am aware of a widespread apprehensive reaction the moment some
geometers or students see the words ‘“Banach space” or “Hilbert mani-
fold”. As a possible palliative, I suggest reading the material assuming
from the start that Banach space means finite dimensional space over the
reals, and Hilbert manifold or Riemannian manifold means a finite di-
mensional manifold with a metric, with the local constant model being
ordinary euclidean space. These assumptions will not make any proof
shorter.

One major function of finding proofs valid in the infinite dimensional
case is to provide proofs which are especially natural and simple in the
finite dimensional case. Even for those who want to deal only with finite
dimensional manifolds, I urge them to consider the proofs given in this
book. In many cases, proofs based on coordinate free local representations
in charts are clearer than proofs which are replete with the claws of a
rather unpleasant prying insect such as I“l‘k, Indeed, the bilinear map
associated with a spray (which is the quadratic map corresponding to a
symmetric connection) satisfies quite a nice local formalism in charts. I
think the local representation of the curvature tensor as in Proposition 1.2
of Chapter IX shows the efficiency of this formalism and its superiority over
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local coordinates. Readers may also find it instructive to compare the proof
of Proposition 2.6 of Chapter IX concerning the rate of growth of Jacobi
fields with more classical ones involving coordinates as in {He 78], pp. 71-73.

Applications in Infinite Dimension

It is profitable to deal with infinite dimensional manifolds, modeled on a
Banach space in general, a self-dual Banach space for pseudo Riemannian
geometry, and a Hilbert space for Riemannian geometry. In the standard
pseudo Riemannian and Riemannian theory, readers will note that the
differential theory works in these infinite dimensional cases, with the Hopf—
Rinow theorem as the single exception, but not the Cartan—-Hadamard
theorem and its corollaries. Only when one comes to dealing with volumes and
integration does finite dimensionality play a major role. Even if via the
physicists with their Feynman integration one eventually develops a coherent
analogous theory in the infinite dimensional case, there will still be something
special about the finite dimensional case. :

The failure of Hopf—Rinow in the infinite dimensional case is due to a
phenomenon of positive curvature. The validity of Cartan-Hadamard in the
case of negative curvature is a very significant fact, and it is only recently
being realized as providing a setting for major applications. It is a general
phenomenon that spaces parametrizing certain structures are actually infinite
dimensional Cartan-Hadamard spaces, in many contexts, e.g. Teichmuller
spaces, spaces of Riemannian metrics, spaces of Kdhler metrics, spaces of
connections, spaces associated with certain partial differential equa-
tions, ad lib. Cf. for instance the application to the KdV equation in
[SCTZ 96], and the comments at the end of Chapter XI, §3 concerning
other applications.

Actually, the use of infinite dimensional manifolds in connection with
Teichmuller spaces dates back some time, because as shown by Bers, these
spaces can be embedded as submanifolds of a complex Banach space. Cf.
[Ga 87], [Vi 73]. Viewing these as Cartan-Hadamard manifolds comes
from newer insights.

For further comments on some recent aspects of the use of infinite
dimension, including references to Klingenberg’s book [K1 83/95], see the
introduction to Chapter XIII.

Of course, there are other older applications of the infinite dimensional
case. Some of them are to the calculus of variations and to physics, for
instance as in Abraham—Marsden [AbM 78]. It may also happen that one does
not need formally the infinite dimensional setting, but that it is useful to keep in
mind to motivate the methods and approach taken in various directions. For
instance, by the device of using curves, one can reduce what is a priori an
infinite dimensional question to ordinary calculus in finite dimensional space,
as in the standard variation formulas given in Chapter XI, §1.
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Similarly, the proper domain for the geodesic part of Morse theory is
the loop space (or the space of certain paths), viewed as an infinite di-
mensional manifold, but a substantial part of the theory can be developed
without formally introducing this manifold. The reduction to the finite
dimensional case is of course a very interesting aspect of the situation,
from which one can deduce deep results concerning the finite dimensional
manifold itself, but it stops short of a complete analysis of the loop space.
(Cf. Boot [Bo 60], Milnor [Mi 63].) See also the papers of Palais [Pa 63]
and Smale [Sm 64].

In addition, given two finite dimensional manifolds X, Y it is fruitful to
give the set of differentiable maps from X to Y an infinite dimensional
manifold structure, as was started by Eells [Ee 58], [Ee 59], [Ee 61],
[EeS 64], and [Ee 66]. By so doing, one transcends the purely formal
translation of finite dimensional results getting essentially new ones, which
would in turn affect the finite dimensional case. For other connections
with differential geometry, see [El 67].

Foundations for the geometry of manifolds of mappings are given in
Abraham’s notes of Smale’s lectures [Ab 60] and Palais’s monograph
[Pa 68].

For more recent applications to critical point theory and submanifold
geometry, see [PaT 88].

In the direction of differential equations, the extension of the stable and
unstable manifold theorem to the Banach case, already mentioned as a
possibility in earlier versions of Differential Manifolds, was proved quite
elegantly by Irwin [Ir 70], following the idea of Pugh and Robbin for dealing
with local flows using the implicit mapping theorem in Banach spaces. I have
included the Pugh—Robbin proof, but refer to Irwin’s paper for the stable
manifold theorem which belongs at the very beginning of the theory of
ordinary differential equations. The Pugh—Robbin proof can also be adjusted
to hold for vector fields of class H? (Sobolev spaces), of importance in partial
differential equations, as shown by Ebin and Marsden [EbM 70].

It is a standard remark that the C*-functions on an open subset of a
euclidean space do not form a Banach space. They form a Fréchet space
(denumerably many norms instead of one). On the other hand, the implicit
function theorem and the local existence theorem for differential equations are
not true in the more general case. In order to recover similar results, a much
more sophisticated theory is needed, which is only beginning to be developed.
(Cf. Nash’s paper on Riemannian metrics [Na 56], and subsequent con-
tributions of Schwartz [Sc 60] and Moser [Mo 61].) In particular, some ad-
ditional structure must be added (smoothing operators). Cf. also my Bourbaki
seminar talk on the subject[La 61]. This goes beyond the scope of this book, and
presents an active topic for research.

On the other hand, for some applications, one may complete the C®-
space under a suitable Hilbert space norm, deal with the resulting Hilbert
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manifold, and then use an appropriate regularity theorem to show that
solutions of the equation under study actually are C*®.

I have emphasized differential aspects of differential manifolds rather
than topological ones. I am especially interested in laying down basic
material which may lead to various types of applications which have arisen since
the sixties, vastly expanding the perspective on differential geometry and
analysis. For instance, I expect the books [BGV 92] and [Gi 95] to be only
the first of many to present the accumulated vision from the seventies and
eighties, after the work of Atiyah, Bismut, Bott, Gilkey, McKean, Patodi,
Singer, and many others.

Negative Curvature

Most texts emphasize positive curvature at the expense of negative cur-
vature. I have tried to redress this imbalance. In algebraic geometry, it is
well recognized that negative curvature amounts more or less to “general
type”. For instance, curves of genus 0 are special, curves of genus 1 are
semispecial, and curves of genus = 2 are of general type. Thus I have
devoted an entire chapter to the fundamental example of a space of
negative curvature. Actually, I prefer to work with the Riemann tensor. 1
use “curvature” simply as a code word which is easily recognizable by people in
the field. Furthermore, I include a complete account of the equivalence between
seminegative curvature, the metric increasing property of the exponential map,
and the Bruhat-Tits semiparallelogram law. Third, I emphasize the Cartan—
Hadamard further by giving a version for the normal bundle of a totally
geodesic submanifold. I am indebted to Wu for valuable mathematical and
historical comments on this topic.

There are several current directions whereby spaces of negative cur-
vature are the fundamental building blocks of some theories. They are
quotients of Cartan—Hadamard spaces. I myself got interested in dif-
ferential geometry because of the joint work with Jorgenson, which
naturally led us to such spaces for the construction and theory of certain
zeta functions. Quite generally, we were led to consider spaces which admit
a stratification such that each stratum is a quotient of a Cartan—-Hadamard
space (especially a symmetric space) by a discrete group. That such
stratifications exist very widely is a fact not generally taken into account.
For instance, it is a theorem of Griffiths that given an algebraic variety
over the complex numbers, there exists a proper Zariski closed subset
whose complement is a quotient of a complex bounded domain, so in this
way, every algebraic variety admits a stratification as above, even with
constant negative curvature. Thurston’s approach to 3-manifolds could be
viewed from our perspective also. The general problem then arises how
zeta functions, spectral invariants, homotopy and homology invariants, ad
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lib. behave with respect to stratifications, whether additively or otherwise.
In the Jorgenson—Lang program, we associate a zeta function to each
stratum, and the zeta functions of lower strata are the principal fudge
factors in the functional equation of the zeta function associated to the
main stratum. The spectral expansion of the heat kernel amounts to a
theta relation, and we get the zeta function by taking the Gauss transform
of the theta relation.

From a quite different perspective, certain natural “moduli” spaces for
structures on finite dimensional manifolds have a very strong tendency
to be Cartan-Hadamard spaces, for instance the space of Riemannian
metrics, spaces of Kahler metrics, spaces of connections, etc. which deserve
to be incorporated in a general theory.

In any case, I find the exclusive historical emphasis at the foundational
level on positive curvature, spheres, projective spaces, grassmanians, at the
expense of quotients of Cartan-Hadamard spaces, to be misleading as to
the way manifolds are built up. Time will tell, but I don’t think we’ll have
to wait very long before a radical change of view point becomes prevalent.

New Haven, 1998 SERGE LANG
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. As mentioned in the foreword, Chapter VIII of Dieudonné’s
book or my books on analysis [La 83], {La 93] give a self-contained and
complete treatment for Banach spaces. We summarize certain facts
concerning their properties as topological vector spaces, and then we
summarize differential calculus. The reader can actually skip this chapter
and start immediately with Chapter II if the reader is accustomed to
thinking about the derivative of a map as a linear transformation. (In the
finite dimensional case, when bases have been selected, the entries in the
matrix of this transformation are the partial derivatives of the map.) We
have repeated the proofs for the more important theorems, for the ease of
the reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, topological vector spaces and con-
tinuous linear maps, open subsets of Banach spaces and differentiable
maps, differentiable manifolds and differentiable maps, vector bundles and
vector bundle maps, topological spaces and continuous maps, sets and just
plain maps. In an arbitrary category, maps are called morphisms, and in
fact the category of differentiable manifolds is of such importance in this
book that from Chapter II on, we use the word morphism synonymously
with differentiable map (or p-times differentiable map, to be precise). All -
other morphisms in other categories will be qualified by a prefix to in-
dicate the category to which they belong.



4 DIFFERENTIAL CALCULUS (I, §1]

I, §1. CATEGORIES

A category is a collection of objects {X, Y,...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) - Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X', Y') are disjoint unless
X=X and Y=Y, in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X, Y) are called morphisms, and we write fre-
quently f: X —» Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

A functor 1: A — A’ from a category U into a category A’ is a map
which associates with each object X in U an object A(X) in W, and with
each morphism f: X — Y a morphism A(f): A(X) — A(Y) in A’ such
that, whenever f and g are morphisms in % which can be composed, then
M(fg) = A(f)A(g) and A(idy) = id;y) for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) — A(X) and A(fg) = A(9)A(S))-

In a similar way, one defines functors of many variables, which may be
covariant in some variables and contravariant in others. We shall meet
such functors when we discuss multilinear maps, differential forms, etc.

The functors of the same variance from one category % to another 2’
form themselves the objects of a category Fun(21, A’). Its morphisms will
sometimes be called natural transformations instead of functor morphisms.
They are defined as follows. If 4, 4 are two functors from U to A’ (say
covariant), then a natural transformation #: A — u consists of a collection

of morphisms tyi AX) — p(X)

as X ranges over U, which makes the following diagram commutative for
any morphism f: X — Y in :

AX) — w(X)
Af )l lu(f )
M) — w(®
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In any category U, we say that a morphism f: X — Y is an iso-
morphism if there exists a morphism g: ¥ — X such that fg and gf are
the identities. For instance, an isomorphism in the category of topological
spaces is called a topological isomorphism, or a homeomorphism. In
general, we describe the category to which an isomorphism belongs by
means of a suitable prefix. In the category of sets, a set-isomorphism is
also called a bijection.

If f: X - Y is a morphism, then a section of f is defined to be a
morphism g: Y — X such that fog=idy.

l, §2. TOPOLOGICAL VECTOR SPACES

The proofs of all statements in this section, including the Hahn-Banach
theorem and the closed graph theorem, can be found in [La 93].

A topological vector space E (over the reals R) is a vector space with a
topology such that the operations of addition and scalar multiplication are
continuous. It will be convenient to assume also, as part of the definition,
that the space is Hausdorff, and locally convex. By this we mean that
every neighborhood of 0 contains an open neighborhood U of 0 such that,
if x, yarein U and 0 £ ¢ <1, then tx+ (1 —¢)y also lies in U.

The topological vector spaces form a category, denoted by TVS, if we
let the morphisms be the continuous linear maps (by linear we mean
throughout R-linear). The set of continuous linear maps of one topo-
logical vector space E into F is denoted by L(E,F). The continuous
r-multilinear maps

V: Ex---xE—-F

of E into F will be denoted by L"(E, F). Those which are symmetric (resp.
alternating) will be denoted by LI(E,F) or L[ (E,F) (resp. L (E, F)).
The isomorphisms in the category TVS are called toplinear isomorphisms,
and we write Lis(E, F) and Laut(E) for the toplinear isomorphisms of E
onto F and the toplinear automorphisms of E.

We find it convenient to denote by L(E), L"(E), L!(E), and L(E) the
continuous linear maps of E into R (resp. the continuous, r-multilinear,
symmetric, alternating maps of E into R). Following classical termi-
nology, it is also convenient to call such maps into R forms (of the
corresponding type). If E;,... E, and F are topological vector spaces,
then we denote by L(E;,...,E,;F) the continuous multilinear maps of the
product E; x --- x E, into F. We let:

End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).

The most important type of topological vector space for us is the
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Banachable space (a TVS which is complete, and whose topology can be
defined by a norm). We should say Banach space when we want to put
the norm into the structure. There are of course many norms which can
be used to make a Banachable space into a Banach space, but in prac-
tice, one allows the abuse of language which consists in saying Banach
space for Banachable space (unless it is absolutely necessary to keep the
distinction). Continuous linear maps of Banach spaces are called operators.

For this book, we assume from now on that all our topological vector
spaces are Banach spaces. We shall occasionally make some comments to
indicate where it might be possible to generalize certain results to more
general spaces. We denote our Banach spaces by E, F,....

The next two propositions give two aspects of what is known as the
closed graph theorem.

Proposition 2.1. Every continuous bijective linear map of E onto F is a
toplinear isomorphism.

Proposition 2.2. If E is a Banach space, and Fy, ¥, are two closed
subspaces which are complementary (ie. E=F; + F, and FinF; =0),
then the map of ¥y xF, onto E given by the sum is a toplinear
isomorphism.

We shall frequently encounter a situation as in Proposition 2.2, and if F
is a closed subspace of E such that there exists a closed complement F,
such that E is toplinearly isomorphic to the product of F and F; under the
natural mapping, then we shall say that F splits in E.

Next, we state a weak form of the Hahn-Banach theorem.

Proposition 2.3. Let E be a Banach space and x # 0 an element of E.
Then there exists a continuous linear map A of E into R such that

Ax) #0.

One constructs 4 by Zorn’s lemma, supposing that 4 is defined on some
subspace, and having a bounded norm. One then extends A to the
subspace generated by one additional element, without increasing the
norm.

In particular, every finite dimensional subspace of E splits if E is
complete. More trivially, we observe that a finite codimensional closed
subspace also splits.

We now come to the problem of putting a topology on L(E, F). Let E,
F be Banach spaces, and let

A: E—-F

be a continuous linear map (also called a bounded linear map). We can
then define the norm of A to be the greatest lower bound of all numbers X
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such that
|[Ax| £ K|x|

for all xe E. This norm makes L(E, F) into a Banach space.
In a similar way, we define the topology of L(E,,...,E,;F), which is a
Banach space if we define the norm of a multilinear continuous map

A: Eyx---xE, - F
by the greatest lower bound of all numbers X such that

[A(x1,. ., %) S K|+ %)
We have:

Proposition 2.4. If E,,... K, F are Banach spaces, then the canonical
map

L(E1, L(E,,...,L(E,, F),...)) > L'(Ey,...,E;F)

from the repeated continuous linear maps to the continuous multilinear
maps is a toplinear isomorphism, which is norm-preserving, i.e. a Banach-
isomorphism.

The preceding propositions could be generalized to a wider class of
topological vector spaces. The following one exhibits a property peculiar
to Banach spaces.

Proposition 2.5. Let E, F be two Banach spaces. Then the set of
toplinear isomorphisms Lis(E, F) is open in L(E, F).

The proof is in fact quite simple. If Lis(E, F) is not empty, one is
immediately reduced to proving that Laut(E) is open in L(E, E). We then
remark that if we L(E, E), and |4| < 1, then the series

l+utu?+...

converges. Given any toplinear automorphism w of E, we can find an

open neighborhood by translating the open unit ball multiplicatively from
1 to w.

Again in Banach spaces, we have:

Proposition 2.6. If E, F, G are Banach spaces, then the bilinear maps

L(E, F) x L(F, G) — L(E, G),
L(E,F) xE S F,
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obtained by composition of mappings are continuous, and similarly for
multilinear maps.

Remark. The preceding proposition is false for more general spaces
than Banach spaces, say Fréchet spaces. In that case, one might hope that
the following may be true. Let U be open in a Fréchet space and let

f: U— L(E, F),
g: U— L(F, G),

be continuous. Let y be the composition of maps. Then y(f, g) is
continuous. The same type of question arises later, with differentiable
maps instead, and it is of course essential to know the answer to deal with
the composition of differentiable maps.

I, §3. DERIVATIVES AND COMPOSITION OF MAPS

A real valued function of a real variable, defined on some neighborhood of
0 is said to be o(f) if
lim o(¢)/t=0.

t—0

Let E, F be two topological vector spaces, and ¢ a mapping of a
neighborhood of 0 in E into F. We say that ¢ is tangent to 0 if, given a
neighborhood W of 0 in F, there exists a neighborhood V of 0 in E such
that

o(tV) c o(t) W

for some function o(¢). If both E, F are normed, then this amounts to the
usual condition

lo(x)] < x|y (x)

with lim y(x) =0 as |x| — 0.

Let E, F be two topological vector spaces and U open in E. Let
f+ U — F be a continuous map. We shall say that f is differentiable at a
point xo € U if there exists a continuous linear map A of E into F such
that, if we let

f(xo+y) = fx0) + 4y +o(y)

for small y, then ¢ is tangent to 0. It then follows trivially that A is
uniquely determined, and we say that it is the derivative of f at xo. We
denote the derivative by D f(x) or f'(xo). It is an element of L(E, F). If
f is differentiable at every point of U, then f' is a map

f': U— L(E,F).
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It is easy to verify the chain rule.

Proposition 3.1. If f: U — V is differentiable at xy, if g: V- W is
differentiable at f(x;), then go f is differentiable at x,, and

(90 /) (x0) = g'(f(x0)) o f'(x0).
Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the differential
calculus. All topological vector spaces are assumed to be Banach spaces
(i.e. Banachable). Then L(E, F) is also a Banach space, if E and F are
Banach spaces.

Let U be open in E and let f: U — F be differentiable at each point of
U. If f' is continuous, then we say that f is of class C'. We define maps
of class C? (p = 1) inductively. The p-th derivative D?f is defined as
D(DP-'f) and is itself a map of U into

L(E, L(E,...,L(E, F)--.))

which can be identified with L?(E, F) by Proposition 2.4. A map f is said
to be of class C? if its kth derivative D*f exists for 1 £ k £ p, and is
continuous.

Remark. Let [ be of class CP, on an open set U containing the origin.
Suppose that f is locally homogeneous of degree p near O, that is

f(x) = 7 (x)

for all t and x sufficiently small. Then for all sufficiently small x we
have
1

1) = DS O,

where xP) = (x, x,...,x), p times.
This is easily seen by differentiating p times the two expressions for

f(zx), and then setting ¢ = 0. The differentiation is a trivial application of
the chain rule.

Proposition 3.2. Ler U, V be open in Banach spaces. If f: U — V and
g: V—F are of class CP, then so is go f.

From Proposition 3.2, we can view open subsets of Banach spaces as
the objects of a category, whose morphisms are the continuous maps of



10 DIFFERENTIAL CALCULUS [, §3]

class C?. These will be called C?-morphisms. We say that f is of class
C® if it is of class C? for all integers p = 1. From now on, p is an
integer =0 or co (C° maps being the continuous maps). In practice, we
omit the prefix C? if the p remains fixed. Thus by morphism, throughout
the rest of this book, we mean C?-morphism with p £ co. We shall use
the word morphism also for C?-morphisms of manifolds (to be defined in
the next chapter), but morphisms in any other category will always be
prefixed so as to indicate the category to which they belong (for instance
bundle morphism, continuous linear morphism, etc.).

Proposition 3.3. Let U be open in the Banach space E, and let
f: U—F be a CP-morphism. Then DFf (viewed as an element of
L?(E, F)) is symmetric.

Proposition 3.4. Let U be open inE, and let f;: U —F; (i=1,...,n) be
continuous maps into spaces ¥;. Let f = (fi,..., f») be the map of U
into the product of the ¥;. Then f is of class C? if and only if each f; is
of class CP, and in that case

D?f = (D*fy,...,DPf,).
Let U, V be open in spaces E;, E; and let
f: UxV—>F

be a continuous map into a Banach space. We can introduce the notion of
partial derivative in the usual manner. If (x, y) is in U x ¥ and we keep
y fixed, then as a function of the first variable, we have the derivative as
defined previously. This derivative will be denoted by D;f(x, y). Thus

lei U x V—*L(El,F)

is a map of U x V into L(E;, F). We call it the partial derivative with
respect to the first variable. Similarly, we have D, f, and we could take n
factors instead of 2. The total derivative and the partials are then related
as follows.

Proposition 3.5. Let Uy,..., U, be open in the spaces E,,...,E, and let
f: Uy x - x U, = F be a continuous map. Then f is of class C? if and
only if each partial derivative D;f: Uy x --- U, — L(E;, F) exists and is
of class CP~1. If that is the case, then for x = (x1,...,%a) and

v=(v1,...,0n) €E; X+ X Ep,
we have

Df(x)- (v1,.--,0n) = ZDif(x)'vi-
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The next four propositions are concerned with continuous linear and
multilinear maps.

Proposition 3.6. Let E, F be Banach spaces and f: E — F a continuous
linear map. Then for each x € E we have

flx)y=f.

Proposition 3.7. Let E, F, G be Banach spaces, and U open in E. Let
f: U—F be of class C? and g: F — G continuous and linear. Then
go f is of class CP and

D*(go f)=go Df.
Proposition 3.8. If Ey,...,E, and F are Banach spaces and
f: Elx-'-xE,—>F

a continuous multilinear map, then f is of class C*, and its (r+ 1)-st
derivative is 0. If r = 2, then Df is computed according to the usual rule
Sfor derivative of a product ( first times the derivative of the second plus
derivative of the first times the second).

Proposition 3.9. Let E, F be Banach spaces which are toplinearly iso-
morphic. If u: E — F is a toplinear isomorphism, we denote its inverse

by u™l. Then the map
-1

u—u
from Lis(E, F) to Lis(F, E) is a C®-isomorphism. Its derivative at a
point uy is the linear map of L(E, F) into L(F, E) given by the formula

v ua‘vugl.

Finally, we come to some statements which are of use in the theory of
vector bundles.

Proposition 3.10. Let U be open in the Banach space E and let F, G be
Banach spaces.

(i) If f: U— L(E, F) is a CP-morphism, then the map of U x E into
F given by o
(x, 0) = f(x)v
is a morphism.

@) If f: U—L(E,F) and g: U — L(F, G) are morphzsms then so
is y(f, g) (y being the composition).
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(i) If f: U—R and g: U — L(E, ¥) are morphisms, so is fg (the
value of fg at x is f(x)g(x), ordinary multiplication by scalars).
(iv) If f, g: U — L(E, F) are morphisms, so is f +g.

This proposition concludes our summary of results assumed without
proof.

I, §4. INTEGRATION AND TAYLOR’'S FORMULA

Let E be a Banach space. Let I denote a real, closed interval, say
a<t=<b A step mapping
f: I—-E

is a mapping such that there exists a finite number of disjoint sub-intervals
h,...,I, covering I such that on each interval [;, the mapping has
constant value, say v;. We do not require the intervals I; to be closed.
They may be open, closed, or half-closed.

Given a sequence of mappings f, from I into E, we say that it converges
uniformly if, given a neighborhood W of 0 into E, there exists an integer
ny such that, for all n, m > ny and all ¢ € I, the difference f,(¢) — fm(?) lies
in W. The sequence f, then converges to a mapping f of I into E.

A ruled mapping is a uniform limit of step mappings. We leave to the
reader the proof that every continuous mapping is ruled.

If fis a step mapping as above, we define its integral

jb f= jb £ di=Y ullyw,

a

where u(I;) is the length of the interval I; (its measure in the standard
Lebesgue measure). This integral is independent of the choice of intervals
I; on which f is constant.

If fis ruled and f =limf, (lim being the uniform limit), then the

sequence
b
j i
a

converges in E to an element of E independent of the particular sequence
f» used to approach f uniformly. We denote this limit by

be=rf(t) dt

a a

and call it the integral of /. The integral is linear in f, and satisfies the

B T 1T G it
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b
usual rules concerning changes of intervals. (If b < a then we define J to

a

be minus the integral from b to a.)
As an immediate consequence of the definition, we get:

Proposition 4.1. Let A: E— R be a continuous linear map and let
f: I —E be ruled. Then Af = 2o f is ruled, and

b b
AJ £(9) dt=J Af(e) dt.
a a

Proof. If f, is a sequence of step functions converging uniformly to f;
then Af, is ruled and converges uniformly to 4f. Our formula follows at
once.

Taylor’s Formula. Let E, F be Banach spaces. Let U be open in E. Let
x, y be two points of U such that the segment x+ty lies in U for
0=t Let

f: U—F

be a CP-morphism, and denote by y®) the “vector” (y,...,y) p times.
Then the function DPf(x + ty)- y®) is continuous in t, and we have

-1 (p-1)
St = S0+ DI DTS
1 1 - t)P-—l
i Io ((TTT!D”f (x+ 1) y? d.

Proof. By the Hahn-Banach theorem, it suffices to show that both
sides give the same thing when we apply a functional A (continuous linear
map into R). This follows at once from Proposition 3.7 and 4.1, together
with the known result when F = R. In this case, the proof proceeds by
induction on p, and integration by parts, starting from

1
flx+9) = () = | DS+ 1)y de
The next two corollaries are known as the mean value theorem.

Corollary 4.2. Let E, F be two Banach spaces, U open in E, and x, z two
distinct points of U such that the segment x + t(z — x) (0 £ t £ 1) lies in
U. Let f: U—F be continuous and of class C'. Then

1/ (2) = f(¥)| = |z — x| sup | /(E)],

the sup being taken over & in the segment.
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Proof. This comes from the usual estimations of the integral. Indeed,
for any continuous map g: I — F we have the estimate

Jb 9(6) dz’ < K(b-a)

a

if K is a bound for g on I, and a £ b. This estimate is obvious for step
functions, and therefore follows at once for continuous functions.

Another version of the mean value theorem is frequently used.

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let xo be a
point on the segment between x and z. Then

|f(2) = f£(x) — f'(x0)(z = %)| £ |z~ x]| sup|f'(&) - f'(x0)],
the sup taken over all £ on the segment.

Proof. We apply Corollary 4.2 to the map

g9(x) = f(x) = f'(x0)x.

Finally, let us make some comments on the estimate of the remainder
term in Taylor’s formula. We have assumed that DPf is continuous. There-
fore, DPf(x+ty) can be written

DPf(x +ty) = DPf(x) + ¥(, 1),
where ¥ depends on y, ¢t (and x of course), and for fixed x, we have
lim |y (y, 7){ = 0
as |[y| — 0. Thus we obtain:

Corollary 4.4. Let E, F be two Banach spaces, U open in E, and x a
point of U. Let f: U — F be of class CP, p 2 1. Then for all y such
that the segment x +ty lies in U (0 £t £ 1), we have

Df(x)y

flety) = 70+ 2202y DTRYE ;xgy"”

+0()

with an error term 0(y) satisfying

lim 6(y)/|y|” = 0.
y—0
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1, §5; THE INVERSE MAPPING THEOREM

The inverse function theorem and the existence theorem for differential
equations (of Chapter IV) are based on the next result.

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a
complete metric space, with distance function d, and let f: M — M be a
mapping of M into itself. Assume that there is a constant K, 0 < K < 1,
such that, for any two points x, y in M, we have

d(f(x), f(») £ Kd(x, y).

Then f has a unique fixed point (a point such that f(x) = x). Given any
point xo in M, the fixed point is equal to the limit of f"(xy) (iteration of
f repeated n times) as n tends to infinity.

Proof. This is a trivial exercise in the convergence of the geometric
series, which we leave to the reader.

Theorem 5.2. Let E, F be Banach spaces, U an open subset of E, and let
f: U—F a CP-morphism with p = 1. Assume that for some point
xo € U, the derivative f'(xy): E — F is a toplinear isomorphism. Then f
is a local CP-isomorphism at x,.

(By a local CP-isomorphism at x;, we mean that there exists an open
neighborhood V of xy such that the restriction of f to V establishes a
C?-isomorphism between ¥ and an open subset of E.)

Proof. Since a toplinear isomorphism is a C®-isomorphism, we may
assume without loss of generality that E=F and f’(x;) is the identity
(simply by considering f’ (xo)_1 o f instead of f). After translations, we
may also assume that xo =0 and f(x) =0.

We let g(x) = x — f(x). Then g’(xo) =0 and by continuity there exists
r> 0 such that, if |x| < 2r, we have

1
lg'(x)] <3-

From the mean value theorem, we see that |g(x)| < 1|x| and hence g
maps the closed ball of radius 7, B,(0) into B,/(0). _

We contend: Given y € B,/»(0), there exists a unique element x € B,(0)
such that f(x) = y. We prove this by considering the map

gy(x) = y+x— f(x).

If |y| < r/2 and |x| < r, then |g,(x)| < r and hence g, may be viewed as
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a mapping of the complete metric space B,(0) into itself. The bound of 1
on the derivative together with the mean value theorem shows that g, is a
contracting map, i.e. that

l9y(x1) = gy(x2)] = lg(x1) = g(x2)| £ 311 — xs

for xi, x» € B,(0). By the contraction lemma, it follows that g, has a
unique fixed point. But the fixed point of g, is precisely the solution of the
equation f(x) = y. This proves our contention.

We obtain a local inverse ¢ = f~!. This inverse is continuous, because

et = x2f < 1/ 0a1) =/ (x2)] + lg(x1) — g(2)]

a1 — X2l £ 2/ (1) = f(x2)]-

Furthermore ¢ is differentiable in B,/;(0). Indeed, let y; = f(x1) and
y2 = f(x2) with y,, y, € B,5(0) and x;, x; € B;(0). Then

and hence

(1) = 0(y2) = f162) " (31 = p)l = |1 =32 = f1 () (f (1) = f(2))]-

We operate on the expression inside the norm sign with the identity

id = f'(x2) " ' (x2)-

Estimating and using the continuity of f’, we see that for some constant
A, the preceding expression is bounded by

Al (x2) (1 = x2) = f (1) +f (3x2).

From the differentiability of f, we conclude that this expression is
o(x1 — x3) which is also o(y; — y,) in view of the continuity of ¢ proved
above. This proves that ¢ is differentiable and also that its derivative is
what it should be, namely

o'y = o),

for y e B,;(0). Since the mappings ¢, f’, “inverse” are continuous, it
follows that ¢’ is continuous and thus that ¢ is of class C!. Since taking
inverses is C® and f' is C?7!, it follows inductively that ¢ is C?, as was
to be shown.

Note that this last argument also proves:

Proposition 5.3. If f: U — V is a homeomorphism and is of class C?
with p 2 1, and if f is a C'-isomorphism, then f is a CP-isomorphism.
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In some applications it is necessary to know that if the derivative of a
map is close to the identity, then the image of a ball contains a ball of
only slightly smaller radius. The precise statement follows. In this book,
it will be used only in the proof of the change of variables formula, and
therefore may be omitted until the reader needs it.

Lemma 5.4. Let U be open in E, and let f: U — E be of class C'.
Assume that £(0) =0, f'(0) =1. Let r> 0 and assume that B,(0) = U.
Let 0 <s< 1, and assume that

@)= fx) =5

for all x, ze B.(0). If yeE and |y| £ (1 —s)r, then there exists a
unique x € B,(0) such that f(x)=y.

Proof. The map g, given by g,(x) = x — f(x) + y is defined for |x| < r
and |y| £ (1 —s)r, and maps B,(0) into itself because, from the estimate

|f(x) = x| = f(x) = £(0) = £/(0)x| < |x[ sup|f’(z) = f'(0)| < sr,

we obtain
lgy(x)| S sr+(1-s)r=r.

Furthermore, g, is a shrinking map because, from the mean value theorem,
we get

lgy(x1) — gy(x2)| = |x1 — %2 = (f(31) — f(x2))]
= |x1 — x2 — f'(0)(x1 — x2) +6(x1, x2)|

= Ié(xla x2)|,
where
|6(x1, x2)| £ |x1 — x2| sup|f'(z) = f(0)] £ slx1 — X2

Hence g, has a unique fixed point x € B,(0) which is such that f(x) = y.
This proves the lemma.

We shall now prove some useful corollaries, which will be used in
dealing with immersions and submersions later. We assume that morphism
means CP-morphism with p = 1.

Corollary 5.5. Let U be an open subset of E, and f: U —-F; xF; a
morphism of U into a product of Banach spaces. Let xo € U, suppose
that f(xp) = (0, 0) and that f'(xo) induces a toplinear isomorphism of E
and Fy =F, x 0. Then there exists a local isomorphism g of F1 x F, at
(0, 0) such that

gof: U—F;  xF
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maps an open subset Uy of U into Fy x 0 and induces a local iso-
morphism of Uy at xo on an open neighborhood of 0 in F.

Proof. We may assume without loss of generality that Fi =E
(identify by means of f'(xo)) and xo = 0. We define

p: UxF, - F) xF,
by the formula
o(x, y2) = f(x) + (0, »,)

for xe U and y, € F,. Then ¢(x, 0) = f(x), and
¢’(01 O) = f’(O) + (Oi 1d2)

Since f’(0) is assumed to be a toplinear isomorphism onto F; x 0, it
follows that ¢'(0,0) is also a toplinear isomorphism. Hence by the
theorem, it has a local inverse, say g, which obviously satisfies our
requirements.

Corollary 5.6. Let E, F be Banach spaces, U open in E, and f: U —F
a CP-morphism with p 2 1. Let xo e U. Suppose that f(xo) =0 and
f'(x0) gives a toplinear isomorphism of E on a closed subspace of F
which splits. Then there exists a local isomorphism g: F — F; xF, at 0
and an open subset Uy of U containing xy such that the composite map
go f induces an isomorphism of U, onto an open subset of F.

Considering the splitting assumption, this is a reformulation of
Corollary 5.5.

It is convenient to define the notion of splitting for injections. If E, F
are topological vector spaces, and A: E — F is a continuous linear map,
which is injective, then we shall say that A splits if there exists a toplinear
isomorphism «: F— Fy x F, such that aol induces a toplinear iso-
morphism of E onto ¥} =F; x0. In our corollary, we could have re-
phrased our assumption by saying that f’(xo) is a splitting injection.

For the next corollary, dual to the preceding one, we introduce the
notion of a local projection. Given a product of two open sets of Banach
spaces Vi x V, and a morphism f: V; x ¥, — F, we say that fis a
projection (on the first factor) if f can be factored

V1><V2—->V1-—>F

into an ordinary projection and an isomorphism of ¥; onto an open subset
of F. We say that fis a local projection at (aj, a;) if there exists an open
neighborhood U; x U, of (ai, a;) such that the restriction of f to this
neighborhood is a projection.
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Corollary 5.7. Let U be an open subset of a product of Banach spaces
E, x E; and (a1, a;) a point of U. Let f: U — F be a morphism into a
Banach space, say f(ay, a3) =0, and assume that the partial derivative

Dyf(a1, a3): E —F

is a toplinear isomorphism. Then there exists a local isomorphism h of a
product V) x V, onto an open neighborhood of (a1, a;) contained in U
such that the composite map

V1 X V2 i) U L F
is a projection (on the second factor).

Proof. We may assume (a), a3) = (0, 0) and E; =F. We define

@: E1 XE2—>E1 XE2
by
o(x1, X2) = (x1, f(x1, x2))

locally at (aj, ;). Then ¢’ is represented by the matrix

( id; o )

Dif Dyf

and is therefore a toplinear isomorphism at (ay, a;). By the theorem, it
has a local inverse & which clearly satisfies our requirements.

Corollary 5.8. Let U be an open subset of a Banach space E and
f: U — F a morphism into a Banach space F. Let xq € U and assume
that f'(xo) is surjective, and that its kernel splits. Then there exists an
open subset U' of U containing xo and an isomorphism

h: VixVy,—->U !
such that the composite map f oh is a projection

V1XV2—> V1—>F.

‘ Proof. Again this is essentially a reformulation of the corollary, taking
Into account the splitting assumption.

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets in
Banach spaces E, F respectively, and let

[ UxV—->G
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be a C? mapping. Let (a,b)e U x V, and assume that
Dyf(a,b): F— G
is a toplinear isomorphism. Let f(a,b)=0. Then there exists a

continuous map g: Uy — V defined on an open neighborhood Uy of a
such that g(a) = b and such that

f(x, g(x)) =0

for all xe Uy. If Uy is taken to be a sufficiently small ball, then g is
uniquely determined, and is also of class C?.

Proof. Let A= D,f(a, b). Replacing f by 2'o f we may assume
without loss of generality that D, f(a, b) is the identity. Consider the map

p: UxV —-ExF
given by
o(x, y) = (x, f(x, ))-

Then the derivative of ¢ at (a, b) is immediately computed to be
represented by the matrix

ldE (0] _ . ldE 0]
Dola, b) = (le<a, b) Dfl(a, b)) B (le(a, b) idF)

whence ¢ is locally invertible at (a, b) since the inverse of Dg(a, b) exists

and is the matrix
( idg (0] )
—Dyf(a, b) idp/)

We denote the local inverse of ¢ by . We can write
Y(x, z) = (x, h(x, 2))
where h is some mapping of class C?. We define
g(x) = h(x, 0).
Then certainly g is of class C? and
(x, £(x, 9(x))) = o(x, 9(x)) = p(x, h(x, 0)) = p(¥(x, 0)) = (x, 0).

This proves the existence of a C? map g satisfying our requirements.
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Now for the uniqueness, suppose that g, is a continuous map defined
near a such that go(a) =b and f (x, go(x)) = ¢ for all x near a. Then
go(x) is near b for such x, and hence

9(%, go(x)) = (x, 0).

Since ¢ is invertible near (a, b) it follows that there is a unique point
(x, y) near (a, b) such that ¢(x, y) = (x, 0). Let U, be a small ball on
which g is defined. If go is also defined on Up, then the above argument
shows that g and go coincide on some smaller neighborhood of a. Let
xeUp and let v=x—a. Consider the set of those numbers ¢ with
0 < ¢ = 1 such that g(a + tv) = go(a + tv). This set is not empty. Let s
be its least upper bound. By continuity, we have g(a + sv) = go(a + sv). If
s <1, we can apply the existence and that part of the uniqueness just
proved to show that g and gy are in fact equal in a neighborhood of
a+sv. Hence s=1, and our uniqueness statement is proved, as well as
the theorem.

Note. The particular value f(a, b) =0 in the preceding theorem is
irrelevant. If f(a, b) =c for some ¢ #0, then the above proof goes
through replacing 0 by ¢ everywhere.



CHAPTER I

Manifolds

Starting with open subsets of Banach spaces, one can glue them together
with CP-isomorphisms. The result is called a manifold. We begin by
giving the formal definition. We then make manifolds into a category, and
discuss special types of morphisms. We define the tangent space at each
point, and apply the criteria following the inverse function t'heorem to .get
a local splitting of a manifold when the tangent space splits at a point.

We shall wait until the next chapter to give a manifold structure to the
union of all the tangent spaces.

I, §1. ATLASES, CHARTS, MORPHISMS

Let X be a sét. An atlas of class C? (p=0) on X is a collection'of
pairs (U;, ¢;) (i ranging in some indexing set), satisfying the following
conditions:

AT 1. Each U; is a subset of X and the U; cover X.

AT 2. Each ¢; is a bijection of U; onto an open subset ¢;U; qf some
Banach space E; and for any i, j, 9;(Uin\Uj) is open in K.

AT 3. The map
007" 0(Uin Up) = ¢,(Uin 1))
is a CP-isomorphism for each pair of indices i, j.

It is a trivial exercise in point set topology to prove that one can give X'
a topology in a unique way such that each U; is open, and the ¢; are

bl
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topological isomorphisms. We see no reason to assume that X is
Hausdorff. If we wanted X to be Hausdorff, we would have to place a
separation condition on the covering. This plays no role in the formal
development in Chapters II and III. It is to be understood, however, that
any construction which we perform (like products, tangent bundles, etc.)
would yield Hausdorff spaces if we start with Hausdorff spaces.

Each pair (U;, ¢;) will be called a chart of the atlas. If a point x of X
lies in U;, then we say that (U;, ¢,) is a chart at x.

In condition AT 2, we did not require that the vector spaces be the
same for all indices i, or even that they be toplinearly isomorphic. If they
are all equal to the same space E, then we say that the atlas is an E-atlas.
If two charts (U;, ¢;) and (U}, ¢;) are such that U; and U; have a non-
empty intersection, and if p = 1, then taking the derivative of @0 1 we see
that E; and E; are toplinearly isomorphic. Furthermore, the set of points
x € X for which there exists a chart (U;, ¢;) at x such that E; is toplinearly
isomorphic to a given space E is both open and closed. Consequently, on
each connected component of X, we could assume that we have an E-atlas
for some fixed E.

Suppose that we are given an open subset U of X and a topological
isomorphism ¢: U — U’ onto an open subset of some Banach space E. We
shall say that (U, ¢) is compatible with the atlas {(U,, ¢,)} if each map
997! (defined on a suitable intersection as in AT 3) is a CP-isomorphism.
Two atlases are said to be compatible if each chart of one is compatible
with the other atlas. One verifies immediately that the relation of
compatibility between atlases is an equivalence relation. An equivalence
class of atlases of class C? on X is said to define a structure of C?-
manifold on X. If all the vector spaces E; in some atlas are toplinearly
isomorphic, then we can always find an equivalent atlas for which they are
all equal, say to the vector space E. We then say that X is an E-manifold
or that X is modeled on E.

If E=R" for some fixed n, then we say that the manifold is »-
dimensional. In this case, a chart

p: U—-R"

is given by n coordinate functions g¢,,...,,. If P denotes a point of U,
these functions are often written

x1(P), ..., x,(P),

or simply xi,...,x,. They are called local coordinates on the manifold.
If the integer p (which may also be o) is fixed throughout a discussion,
we also say that X is a manifold.
The collection of C?-manifolds will be denoted by Man?. If we look
only at those modeled on spaces in a category 2 then we. write Man” ().
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Those modeled on a fixed E will be denoted by Man”?(E). We shall make

these into categories by defining morphisms below. o ' ‘
Let X be a manifold, and U an open subset of X. Then it is possible, in

the obvious way, to induce a manifold structure on U, by taking as charts

the intersections
(UinU, 9,|(Ui n U)).

If X is a topological space, covered by open subsets ¥}, and if we are
given on each V; a manifold structure such that for each pair j, j' the
induced structure on ¥; n ¥} coincides, then it is clear that we can give to
X a unique manifold structure inducing the given ones on each V.

Example. Let X be the real line, and for each open interval Uj, let ¢; be
the function g;(r) = £*. Then the p;¢;' are all equal to the identity, and
thus we have defined a C°°-mamfold structure on R!

If X, Y are two manifolds, then one can give the product X X Y a
manifold structure in the obvious way. If {(Ui, ¢,)} and {(V}, y;)} are
atlases for X, Y respectively, then

{(Ui x ¥V}, ¢; x ‘/’,)}

is an atlas for the product, and the product of compatible atlases gives rise
to compatible atlases, so that we do get a well-defined product structure.

Let X, Y be two manifolds. Let f: X — Y be a map. We shall say
that f is a CP-morphism if, given x € X, there exists a chart (U, ¢) at x
and a chart (V, ¢) at f(x) such that f(U) < V, and the map

yofopl U —yV

is a CP-morphism in the sense of Chapter I, §3. One sees then imme-
diately that this same condition holds for any choice of charts (U, ¢) at x
and (V Y) at f(x) such that f(U) < V.

It is clear that the composite of two CP-morphxsms is itself a CP-
morphism (because it is true for open subsets of vector sp.aces) The
C?-manifolds and CP-morphisms form a category. The notion of iso-
morphism is therefore defined, and we observe that in our example of the
real line, the map ¢+ 1> gives an isomorphism between the funny differ-
entiable structure and the usual one. '

If f: X — Y is a morphism, and (U, ¢) is a chart at a point x€ X,
while (V, ) is a chart at f(x), then we shall also denote by

fV,lﬁ oU - yV
the map ¥ fo~l.
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It is also convenient to have a local terminology. Let U be an open
set (of a manifold or a Banach space) containing a point x;. By a local
isomorphism at x, we mean an isomorphism

f: Ul—iV

from some open set U; containing xo (and contained in U) to an open set
V (in some manifold or some Banach space). Thus a local isomorphism is
essentially a change of chart, locally near a given point.

Manifolds of maps. Even starting with a finite dimensional manifold,
the set of maps satisfying various smoothness conditions forms an infinite
dimensional manifold. This story started with Eells [Ee 58], [Ee 59],
(Ee 61]. Palais and Smale used such manifolds of maps in their Morse
theory [Pa 63], [Ab 62], [Sm 64]. For a brief discussion of subsequent
developments, see [Mar 74], p. 67, referring to [Eb 70], [Ee 66], [El 67],
(Kr 72], [Le 67], [Om 70], and [Pa 68]. Two kinds of maps have played a
role: the C” maps of course, with various values of p, but also maps
satisfying Sobolev conditions, and usually denoted by H*. The latter form
Hilbert manifolds (definition to be given later).

ll, §2. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS

Let X be a topological space, and Y a subset of X. We say that Y is
locally closed in X if every point y € Y has an open neighborhood U in X
such that ¥ n U is closed in U. One verifies easily that a locally closed
subset is the intersection of an open set and a closed set. For instance, any
open subset of X is locally closed, and any open interval is locally closed
in the plane.

Let X be a manifold (of class C? with p = 0). Let Y be a subset of X
and assume that for each point y € Y there exists a chart (V, ¥) at y such
that  gives an isomorphism of V with a product ¥; x ¥, where V; is
open in some space E; and V; is open in some space E;, and such that

l/I(Y('\V)=V1>(a2

for some point a; € ¥, (which we could take to be 0). Then it is clear that
Y is locally closed in X. Furthermore, the map y induces a bijection

Y YV = V.
The collection of pairs (Y NV, yr|) obtained in the above manner constitutes

an atlas for Y, of class CP. The verification of this assertion, whose formal
details we leave to the reader, depends on the following obvious fact.
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Lemma 2.1. Let Uy, U, V1, V; be open subsets of Banach spaces, and
g: Uy x Uy — V1 x Vo a CP-morphism. Let as € U, and by eV, and
assume that g maps Uy x ay into Vi x by. Then the induced map

g: Ui — 1

is also a morphism.

Indeed, it is obtained as a composite map
U1—>U1>< U2—> V]X Vz——) V1,

the first map being an inclusion and the third a projection.

We have therefore defined a CP-structure on Y which will be called a
submanifold of X. This structure satisfies a universal mapping property,
which characterizes it, namely:

Given any map f: Z — X from a manifold Z into X such that f (Z) is
contained in Y. Let fy:Z — Y be the induced map. Then f is a
morphism if and only if fy is a morphism.

The proof of this assertion depends on Lemma 2.1, and is trivial.

Finally, we note that the inclusion of Y into X is a mqrphism.
If Y is also a closed subspace of X, then we say that it is a closed

submanifold.

Suppose that X is finite dimensional of dimension », and that Y is a
submanifold of dimension r. Then from the definition we see that the loc?.l
product structure in a neighborhood of a point of Y can be expressed in
terms of local coordinates as follows. Each point P of Y has an open
neighborhood U in X with local coordinates (xi,...,Xn) sgch that the
points of Y in U are precisely those whose last n —r coordinates are 0,
that is, those points having coordinates of type

(xl,...,x,, 0,,0)

Let /: Z — X be a morphism, and let z € Z. We shall say that fis an
immersion at z if there exists an open neighborhood Z; of z in Z such that
the restriction of f to Z; induces an isomorphism of Z; ‘onto a sub-
manifold of X. We say that f is an immersion if it is an immersion at

every point.

Note that there exist injective immersions which are not isomorphisms
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onto submanifolds, as given by the following example:

AT

MAT0003033037, E_E_&*

(The arrow means that the line approaches itself without touching.) An
immersion which does give an isomorphism onto a submanifold is called
an embedding, and it is called a closed embedding if this submanifold is
closed.

A morphism f: X — Y will be called a submersion at a point x € X if
there exists a chart (U, ¢) at x and a chart (V, §) at f(x) such that ¢
gives an isomorphism of U on a products Uy x U, (U; and U, open in
some Banach spaces), and such that the map

Vo =fru: Uix Uy >V

is a projection. One sees then that the image of a submersion is an open
subset (a submersion is in fact an open mapping). We say that f is a
submersion if it is a submersion at every point.

For manifolds modelled on Banach spaces, we have the usual criterion
for immersions and submersions in terms of the derivative.

Proposition 2.2. Let X, Y be manifolds of class C? (p = 1) modeled on
Banach spaces. Let f: X — Y be a CP-morphism. Let xe X. Then:

(i) f is an immersion at x if and only if there exists a chart (U, ¢) at x
and (V,y) at f(x) such that f) ,(px) is injective and splits.
(i) f is a submersion at x if and only if there exists a chart (U, ) at x

and (V, §) at f(x) such that Jv v(ox) is surjective and its kernel
splits.

Proof. This is an immediate consequence of Corollaries 5.4 and 5.6 of
the inverse mapping theorem.

The conditions expressed in (i) and (ii) depend only on the derivative,
and if they hold for one choice of charts (U, ¢) and (V, y) respectively,
then they hold for every choice of such charts. It is therefore convenient
to introduce a terminology in order to deal with such properties.

Let X be a manifold of class C? (p = 1). Let x be a point of X. We
consider triples (U, ¢, v) where (U, o) is a chart at x and v is an element
of the vector space in which U lies. We say that two such triples
(U, ¢, v) and (V, , w) are equivalent if the derivative of Y@~ at px maps
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v on w. The formula reads:

(Wo™) (px)o = w

(obviously an equivalence relation by the chain rule). An equivalence class
of such triples is called a tangent vector of X at x. The set of such tangent
vectors is called the tangent space of X at x and is denoted by Tx(X).
Each chart (U, ¢) determines a bijection of T,(X) on a Banach space,
namely the equivalence class of (U, ¢, v) corresponds to the vector v. By
means of such a bijection it is possible to transport to Ty(X) the structure
of topological vector space given by the chart, and it is immediate that this
structure is independent of the chart selected.

If U, V are open in Banach spaces, then to every morphism of class
C? (p = 1) we can associate its derivative Df(x). If now f: X — Y is a
morphism of one manifold into another, and x a point of X, then by
means of charts we can interpret the derivative of f on each chart at x as a
mapping

df (x) = Txf: Tx(X) = Typx(Y).

Indeed, this map T, f is the unique linear map having the following
property. If (U, ) is a chart at x and (V, ) is a chart at f(x) such that
f(U)<c V and # is a tangent vector at x represented by v in the chart
(U, @), then

T f (5)

is the tangent vector at f(x) represented by Dfy y(x)v. The representation
of T.f on the spaces of charts can be given in the form of a diagram

LX) — E
L.f J lf#.u(x)
Tf(x)(Y) — F

The map Tyf is obviously continuous and linear for the structure of
topological vector space which we have placed on Ty(X) and Ty»(Y).
As a matter of notation, we shall sometimes write f, , instead of 7 f.
The operation T satisfies an obvious functorial property, namely, if
f: X— Y and ¢g: Y — Z are morphisms, then

Ti(go f) = Trx)(9) o Tx(f),
T, (id) = id.

We may reformulate Proposition 2.2:
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Proposition 2.3. Let X, Y be manifolds of class C? (p = 1) modelled on
Banach spaces. Let f: X — Y be a CP-morphism. Let xe X. Then:

(i) f is an immersion at x if and only if the map T,f is injective and
splits.

(il) f is a submersion at x if and only if the map T, f is surjective and
its kernel splits.

Note. If X, Y are finite dimensional, then the condition that T f splits
is superfluous. Every subspace of a finite dimensional vector space splits.

Example. Let E be a (real) Hilbert space, and let {x, y> € R be its
inner product. Then the square of the norm f(x) = {x, x) is obviously of
class C®. The derivative f’(x) is given by the formula

f(x)y =2, y)

and for any given x # 0, it follows that the derivative f'(x) is surjective.
Furthermore, its kernel is the orthogonal complement of the subspace
generated by x, and hence splits. Consequently the unit sphere in Hilbert
space is a submanifold.

If W is a submanifold of a manifold Y of class C? (p = 1), then the
inclusion
i: W—-Y

induces a map
Twi: Tw(W) — T,(Y)

which is in fact an injection. From the definition of a submanifold, one
sees immediately that the image of T splits. It will be convenient to
identify T,,(W) in T,(Y) if no confusion can result.

A morphism f: X — Y will be said to be transversal over the sub-
manifold W of Y if the following condition is satisfied.

Let x € X be such that f(x) e W. Let (V, ) be a chart at f(x) such
that y: ¥V — ¥V} x V3 is an isomorphism on a product, with

Y(f(x)) =(0,0) and Y(WnV)=Vx0.

Then there exists an open neighborhood U of x such that the composite
map

vLyv Ly xv, By,

is a submersion.



30 MANIFOLDS (11, §2]

In particular, if f is transversal over W, then f~'(W) is a submanifold
of X, because the inverse image of 0 by our local composite map

proyof

is equal to the inverse image of WV by y.
As with immersions and submersions, we have a characterization of
transversal maps in terms of tangent spaces.

Proposition 2.4. Let X, Y be manifolds of class C? (p 2 1) modeled on
Banach spaces. Let f: X — Y be a CP-morphism, and W a submanifold
of Y. The map f is transversal over W if and only if for each x € X such
that f(x) lies in W, the composite map

To(X) 5 T,(Y) = T(¥)/TW(W)

with w = f(x) is surjective and its kernel splits.

Proof If f is transversal over W, then for each point x € X such that
f(x) lies in W, we choose charts as in the definition, and reduce the
question to one of maps of open subsets of Banach spaces. In that case,
the conclusion concerning the tangent spaces follows at once from the
assumed direct product decompositions. Conversely, assume our condition
on the tangent map. The question being local, we can assume that ¥ =
V1 x V, is a product of open sets in Banach spaces such that W = V x 0,
and we can also assume that X = U is open in some Banach space, x = 0.
Then we let g: U — V, be the map no f where = is the projection, and
note that our assumption means that g’(0) is surjective and its kernel
splits. Furthermore, g~1(0) = f~!(W). We can then use Corollary 5.7 of
the inverse mapping theorem to conclude the proof.

Remark. In the statement of our proposition, we observe that the
surjectivity of the composite map is equivalent to the fact that T, (Y) is
equal to the sum of the image of T, f and T, (W), that is

T.(Y) = Im(Txf) + Im(T%i),

where i: W — Y is the inclusion. In the finite dimensional case, the other
condition is therefore redundant.

If E is a Banach space, then the diagonal A in E xE is a closed
subspace and splits: Either factor E x 0 or 0 x E is a closed complement.
Consequently, the diagonal is a closed submanifold of E x E. - If X is any
manifold of class CP, p 2 1, then the diagonal is therefore also a sub-
manifold. (It is closed of course if and only if X is Hausdorff.)
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Let f: X - Z and g: Y — Z be two CP-morphisms, p > 1. We say
that they are transversal if the morphism

fxg: XxY—-Zx2Z

is transversal over the diagonal. We remark right away that the sur-
jectivity of the map in Proposition 2.4 can be expressed in two ways.
Given two points x€ X and y € Y such that f(x) = g(y) =z, the con-
dition

m(7xf) +Im(T}g) = T:(Z)

is equivalent to the condition

Im(T(x,y)(f X g)) + T(z,z)(A) = T(z,z)(Z X Z)'

Thus in the finite dimensional case, we could take it as definition of
transversality.

We use transversality as a sufficient condition under which the fiber
product of two morphisms exists. We recall that in any category, the fiber
product of two morphisms f: X — Z and g: Y — Z over Z consists of
an object P and two morphisms

g1 P-X and g P—>Y
such that fog; =gog,, and satisfying the universal mapping property:

Given an object S and two morphisms u;: S — X and uy: S — Y such
that fu; = gu,, there exists a unique morphism u: S — P making the

following diagram commutative:
/ \Y

X

\/

'1_"he triple (P, g1, g2) is uniquely determined, up to a unique isomorphism
(in the obvious sense), and P is also denoted by X xz Y.
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One can view the fiber product unsymmetrically. Given two morphisms
f, g as in the following diagram:

Y

©

X — Z
f

assume that their fiber product exists, so that we can fill in the diagram:

szy—'—’Y

| |

X — Z

We say that g; is the pull back of g by f, and also write it as f™(g).
Similarly, we write X xz Y as f*(Y).

In our category of manifolds, we shall deal only with cases when the
fiber product can be taken to be the set-theoretic fiber product on which a
manifold structure has been defined. (The set-theoretic fiber product is the
set of pairs of points projecting on the same point.) This determines the
fiber product uniquely, and not only up to a unique isomorphism.

Proposition 2.5. Let f: X - Z and g: Y — Z be two CP-morphisms
with p = 1. If they are transversal, then

(f x 9)""(Az),

together with the natural morphisms into X and Y (obtained from the
projections), is a fiber product of f and g over Z.

Proof. QObvious.

To construct a fiber product, it suffices to do it locally. Indeed, let
f: X—>Z and g: Y —» Z be two morphisms. Let {¥;} be an open
covering of Z, and let

S AV -V and gt gT'(V) > Vi

be the restrictions of f and g to the respective inverse images of V;. Let
P=(fxg)"'(Az). Then P consists of the points (x, y) with xe X and
y€ Y such that f(x) =g(y). We view P as a subspace of X x Y (i.e.
with the topology induced by that of X x Y). Similarly, we construct P;
with f; and g;. Then P; is- open in P. The projections on the first and
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second factors give natural maps of P; into f~!(¥;) and ¢g~'(¥;) and of P
into X and Y.

Proposition 2.6. Assume that each P; admits a manifold structure
(compatible with its topology) such that these maps are morphisms,
making P; into a fiber product of f; and g;. Then P, with its natural
projections, is a fiber product of f and g.

To prove the above assertion, we observe that the P; form a covering of
P. Furthermore, the manifold structure on P; n P; induced by that of P;
or P; must be the same, because it is the unique fiber product structure
over V;inV;, for the maps f; and g; (defined on f'viav;) and
g~ ' (Vi V}) respectively). Thus we can give P a manifold structure, in
such a way that the two projections into X and Y are morphisms, and
make P into a fiber product of f and g.

We shall apply the preceding discussion to vector bundles in the next
chapter, and the following local criterion will be useful.

Proposition 2.7. Let f X — Z be a morphism, and g: Z x W — Z be
the projection on the first factor. Then f, g have a fiber product, namely
the product X x W together with the morphisms of the following
diagram:

xxw 9 20w

Jprl

Prll

I, §3. PARTITIONS OF UNITY

Let X be a manifold of class C?. A function on X will be a morphism of
X into R, of class C?, unless otherwise specified. The C? functions form a
ring denoted by F’(X) or Fu?(X). The support of a function f is the
closure of the set of points x such that f(x) # 0.

Let X be a topological space. A covering of X is locally finite if every
point has a neighborhood which intersects only finitely many elements of
the covering. A refinement of a covering of X is a second covering, each
element of which is contained in an element of the first covering. A
topological space is paracompact if it is Hausdorff, and every open
covering has a locally finite open refinement.
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Proposition 3.1. If X is a paracompact space, and if {U;} is an open
covering, then there exists a locally finite open covering {V;} such that
Vi« U; for each i.

Proof. Let {Vi} be a locally finite open refinement of {U;}. For each k
there is an index i(k) such that V; < Uyy). We let W; be the union of
those Vi such that i(k) =i. Then the W; form a locally finite open
covering, because any neighborhood of a point which meets infinitely
many W; must also meet infinitely many V.

Proposition 3.2. If X is paracompact, then X is normal. If, furthermore,
{U;} is a locally finite open covering of X, then there exists a locally
finite open covering {V;} such that V; < U,

Proof. We refer the reader to Bourbaki [Bou 68].

Observe that Proposition 3.1 shows that the insistence that the indexing
set of a refinement be a given one can easily be achieved.

A partition of unity (of class C”) on a manifold X consists of an open
covering {U;} of X and a family of functions

¥;: X >R
satisfying the following conditions:

PU 1. For all xe X we have y;(x) = 0.
PU 2. The support of Y, is contained in U,.
PU 3. The covering is locally finite.

PU 4. For each point x € X we have

Z ¥i(x) = 1.

(The sum is taken over all i, but is in fact finite for any given point x in
view of PU 3.)

We sometimes say that {(U;,¢;)} is a partition of unity.

A manifold X will be said to admit partitions of unity if it is para-
compact, and if, given a locally finite open covering {U;}, there exists a
partition of unity {i;} such that the support of y; is contained in U;.

If {U;} is a covering of X, then we say that a covering {Vi} is
subordinated to {U;} if each Vi is contained in some U;.

It is desirable to give sufficient conditions on a manifold in order to
insure the existence of partitions of unity. There is no difficulty with the
topological aspects of this problem. It is known that a metric space is

(11, §3] PARTITIONS OF UNITY 35

paracompact (cf. Bourbaki [Bou 68], [Ke 55]), and on a paracompact
space, one knows how to construct continuous partitions of unity (loc.
cit.). However, in the case of infinite dimensional manifolds, certain
difficulties arise to construct differentiable ones, and it is known that a
Banach space itself may not admit partitions of unity (say of class C*®).
The construction of differentiable partitions of unity depends on the
construction of a differentiable norm. Readers will find examples, theo-
rems, and counterexamples in [BoF 65], [BoF 66], and [Re 64]. In the
finite dimensional case, the existence will follow from the next theorem.

If E is a Banach space, we denote by B,(a) the open ball of radius r
and center a, and by B,(a) the closed ball of radius r and center a. If
a=0, then we write B, and B, respectively. Two open balls (of finite
radius) are obviously C*-isomorphic. If X is a manifold and (V, ¢) is a
chart at a point x € X, then we say that (¥, ¢) (or simply V) is a ball of
radius r if ¢V is a ball of radius r in the Banach space.

Theorem 3.3. Let X be a manifold which is locally compact, Hausdorff,
and whose topology has a countable base. Given an open covering of X,
then there exists an atlas {(Vi, o)} such that the covering {V;} is
locally finite and subordinated to the given covering, such that ¢, Vy is the
open ball B, and such that the open sets Wi = g;'(B1) cover X.

Proof. Let Uy, Us,... be a basis for the open sets of X such that each
U, is compact. We construct inductively a sequence A4, 45, ... of compact
sets whose union is X, such that A4, is contained in the interior of A;,;.
We let 4; = U,. Suppose we have constructed 4;, We let j be the
smallest integer such that 4; is contained in Uy u --- U U;. We let 4;4; be
the closed and compact set

Uiv - vUju Uy

For each point x € X we can find an arbitrarily small chart (¥, ¢,) at
x such that ¢V, is the ball of radius 3 (so that each V, is contained in
some element of U). We let W, = ¢_!(B;) be the ball of radius 1 in this
chart. We can cover the set

A1 — Int(A,~)

(intuitively the closed annulus) by a finite number of these balls of radius
1, say Wy,..., W,, such that, at the same time, each one of Vi,...,Va 18
contained in the open set Int(4;1,) — 4, ; (intuitively, the open annulus of
the next bigger size). We let B; denote the collection V1,..., V, and let B
be composed of the union of the B;. Then B is locally finite, and we are
done.
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Corollary 3.4. Let X be a manifold which is locally compact Hausdorff,
and whose topology has a countable base. Then X admits partitions of
unity.

Proof. Let {(Vk,9;)} be as in the theorem, and Wy = ¢ (B1). We can
find a function y, of class C? such that 0 <, < 1, such that Y, (x) =1
for x € Wy and Y (x) = 0 for x ¢ V. (The proof is recalled below.) We

now let
Y= Z Vi

(a sum which is finite at each point), and we let y, =, /¥. Then
{(Vik,y)} is the desired partition of unity.

We now recall the argument giving the function y,. First, given two
real numbers r, s with 0 £ r < s, the function defined by

P (ﬁ)

in the open interval r < t < s and 0 outside the interval determines a bell-
shaped C®-function from R into R. Its integral from minus infinity to ¢,
divided by the area under the bell yields a function which lies strictly
between 0 and 1 in the interval r < t <, is equal to 0 for + <r and is
equal to 1 for ¢ =s. (The function is even monotone increasing.)

We can therefore find a real valued function of a real variable, say #(¢),
such that #(¢) =1 for |¢| < 1 and #(¢) = 0 for |¢{ = 1 + 6 with small 4, and
such that 0 < # < 1. If E is a Hilbert space, then 5(|x|?) = ¥(x) gives us a
function which is equal to 1 on the ball of radius 1 and 0 outside the ball
of radius 1+ 4. This function can then be transported to the manifold by
any given chart whose image is the ball of radius 3.

In a similar way, one would construct a function which is >0 on a
given ball and =0 outside this ball.

Partitions of unity constitute the only known means of gluing together
local mappings (into objects having an addition, namely vector bundles,
discussed in the next chapter). It is therefore important, in both the
Banach and Hilbert cases, to determine conditions under which they exist.
In the Banach case, there is the added difficulty that the argument just
given to get a local function which is 1 on B; and 0 outside B, fails if one
cannot find a differentiable function of the norm, or of an equivalent norm
used to define the Banachable structure.

Even though it is not known whether Theorem 3.3 extends to Hilbert
manifolds, it is still possible to construct partitions of unity in that case.
As Eells pointed out to me, Dieudonné’s method of proof showing that
separable metric space is paracompact can be applied for that purpose
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(this is Lemma 3.5 below), and I am indebted to him for the following
exposition.

We need some lemmas. We use the notation °4 for the complement of
a set 4.

Let M be a metric space with distance function d. We can then speak
of open and closed balls. For instance B,(x) denotes the closed ball of
radius a with center x. It consists of all points y with d(y, x) £a. An
open subset ¥ of M will be said to be scalloped if there exist open balls
U,U,...,U, in M such that

V=UnUn--n°0,

A covering {V;} of a subset W of M is said to be locally finite (with
respect to W) if every point x € W has a neighborhood which meets only a
finite number of elements of the covering.

Lemma 3.5. Let M be a metric space and {U;} (i = 1,2,...) a countable
covering of a subset W by open balls. Then there exists a locally finite
open covering {V;} (i=1,2,...) of W such that V; < U; for all i, and
such that V; is scalloped for all i.

Proof. We define V; inductively as follows. Each U; is a ball, say
B, (x;). Let V3 = U;. Having defined V;_y, let

1 1
r;=a —?, ceey Hidli=aig —'l.'
and let

V,' = Ui N CE,“()C]) N N ”B,,,_L,.(xi_l),

it being understood that a ball of negative radius is empty. Then each V;
is scalloped, and is contained in U;. We contend that the ¥; cover W.
Indeed, let x be an element of W. Let j be the smallest index such that
x€ U;. Then x eV}, for otherwise, x would be in the complement of V;
which is equal to the union of °U; and the balls

B, (x1)u v B, (xi-1).

Hence x would lie in some U; with i < j, contradiction.

There remains to be shown that our covering {¥;} is locally finite. Let
xe W. Then x lies in some U,. Let s be such a small number >0 that
the ball B;(x) is contained in U,. Let t = s/2. For all i sufficiently large,
the ball B;(x) is contained in B,,_;/(x,) = B,,(x,) and therefore this ball
does not meet ¥;. We have found a neighborhood of x which meets only
a finite number of members of our covering, which is consequently locally
finite (with respect to W).
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Lemma 3.6. Let U be an open ball in Hibert space E and let
V=UnUn- --nUy

be a scalloped open subset. Then there exists a C®-function : E — R
such that w(x) >0 if xeV and w(x) =0 otherwise.

Proof. For each U; let ¢;: E— R be a function such that

0=p(x)<1 if xe“U;
pi(x)=1 if xeU,.

Let ¢(x) be a function such that ¢(x) >0 on U and ¢(x) = 0 outside U.
Let

o(x) = o(x) [T (1 - ¢:(x))-
Then w(x) satisfies our requirements.

Theorem 3.7. Let Ai,A; be non-void, closed, disjoint subsets of a
separable Hilbert space E. Then there exists a C*-function y: E — R
such that Yy(x) =0 if xe Ay and y(x)=1if xe€ Ay, and 0 S Y(x) £1
for all x.

Proof. By Lindel6f’s theorem, we can find a countable collection of
open balls {U;} (i=1,2,...) covering A4, and such that each U; is
contained in the complement of 4;. Let W be the union of the U;. We
find a locally finite refinement {¥;} as in Lemma 3.5. Using Lemma 3.6,
we find a function w; which is >0 on V; and 0 outside V;. Let w =3} ;
(the sum is finite at each point of W). Then w(x) >0 if xe 4;, and
w(x) =0 if xe A;.

Let U be the open neighborhood of A4 on which w is >0. Then 4,
and ‘U are disjoint closed sets, and we can apply the above construction to
obtain a function ¢: E — R which is >0 on ‘U and =0 on 4;. We let
V¥ = w/{c+ w). Then ¥ satisfies our requirements.

Corollary 3.8. Let X be a paracompact manifold of class C?, modeled on
a separable Hilbert space E. Then X admits partitions of unity (of class
C?).

Proof. 1t is trivially verified that an open ball of finite radius in E is
C*®-isomorphic to E. (We reproduce the formula in Chapter VIL.) Given
any point x € X, and a neighborhood N of x, we can therefore always find
a chart (G, y) at x such that yG=E, and G = N. Hence, given an open
covering of X, we can find an atlas {(G,, y,)} subordinated to the given
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covering, such that y,G, =E. By paracompactness, we can find a re-
finement {U;} of the covering {G,} which is locally finite. Each U; is
contained in some G,(; and we let ; be the restriction of y,; to U;. We
now find open refinements {V;} and then {W;} such that

WicVicVicU,

the bar denoting closure in X. Each ¥; being closed in X, it follows from
our construction that ¢;7; is closed in E, and so is ¢;W,. Using the
theorem, and transporting functions on E to functions on X by means of
the ¢,, we can find for each i a CP-function ¥;: X — R with is 1 on W,
and 0 on X — V;. We let y =3 y; and 6, = ;/¢. Then the collection
{6:} is the desired partition of unity.

I, §4. MANIFOLDS WITH BOUNDARY

Let E be a Banach space, and 1: E — R a continuous linear map into R.
(This will also be called a functional on E.) We denote by Eg the kernel of
4, and by E} (resp. E]) the set of points x € E such that A(x) =0 (resp.

A(x) £0). We call E] a hyperplane and E} or E; a half plane.

If u is another functional and E; = E, then there exists a number ¢ > 0
such that A = cu. This is easily proved. Indeed, we see at once that the
kernels of A and u must be equal. Suppose 1 # 0. Let x; be such that

A(xo) > 0. Then u(xp) > 0 also. The functional

A~ (Ax0) /u(xo)) 1

vanishes on the kernel of A (or u) and also on xp. Therefore it is the 0
functional, and ¢ = A(xg)/u(x0).

Let E, F be Banach spaces, and let E] and F; be two half planes in E
and F respectively. Let U, V be two open subsets of these half planes
respectively. We shall say that a mapping

f: U-V

is a morphism of class C? if the following condition is satisfied. Given a
point x € U, there exists an open neighborhood U; of x in E, an open
neighborhood ¥ of f(x) in F, and a morphism f,: U; — V) (in the sense
of Chapter I) such that the restriction of f; to U n U is equal to f. (We
assume that all morphisms are of class C? with p = 1.)

If our half planes are full planes (i.e. equal to the vector spaces
themselves), then our present definition is the same as the one used
previously.
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If we take as objects the open subsets of half planes in Banach spaces,
and as morphisms the C?-morphisms, then we obtain a category. The
notion of isomorphism is therefore defined, and the definition of manifold
by means of atlases and charts can be used as before. The manifolds of §1
should have been called manifolds without boundary, reserving the name of
manifold for our new globalized objects. However, in most of this book,
we shall deal exclusively with manifolds without boundary for simplicity.
The following remarks will give readers the means of extending any result
they wish (provided it is true) for the case of manifolds without boundaries
to the case manifolds with.

First, concerning the notion of derivative, we have:

Proposition 4.1. Let f: U—>F and g: U — F be two morphisms of
class C? (p 2 1) defined on an open subset U of E. Assume that f and g
have the same restriction to U ~E} for some half plane E}, and let

xe UnE].

Then f'(x) =g'(x).

Proof. After considering the difference of f and g, we may assume
without loss of generality that the restriction of fto U NE} is 0. It is then
obvious that f’(x) = 0.

Proposition 4.2. Let U be open in E. Let y be a non-zero functional on
Fandlet f: U— F;{ be a morphism of class C? with p21. If x is a
point of U such that f(x) lies in F2 then f'(x) maps E into Fg.

Proof. Without loss of generality, we may assume that x =0 and
f(x) =0. Let W be a given neighborhood of 0 in F. Suppose that we can
find a small element v € E such that xf’'(0)v # 0. We can write (for small

1):

f(t) = tf'(0)o + o(t)w,
with some element w, € W. By assumption, f(rv) lies in F;r Applying u
we get

tuf'(0)v + o(t)u(wr) 2 0.

Dividing by ¢, this yields

uf Oz 22 ).

Replacing ¢ by —, we get a similar inequality on the other side. Letting ¢
tend to 0 shows that xf'(0)v =0, a contradiction.
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Let U be open in some half plane E;. We define the boundary of U
(written 0U) to be the intersection of U with Eg, and the interior of U
(written Int(U)) to be the complement of U in U. Then Int(U) is open
in E.

It follows at once from our definition of differentiability that a half
plane is C*-isomorphic with a product

E+zngR+

where R* is the set of real numbers >0, whenever A # 0. The boundary
of Ef in that case is EJ x 0.

Proposition 4.3. Let J be a functional on E and u a functional on F. Let
U be open in Ef and V open in F; and assume U mEg, V A F° are not
empty. Let f: U— V be an isomorphism of class C? (p = 1). Then
A#OQifand only if u#0. If A # 0, then f induces a CP-isomorphism of
Int(U) on Int(V) and of 60U on OV.

Proof. By the functoriality of the derivative, we know that f'(x) is a
toplinear isomorphism for each x € U. Our first assertion follows from the
preceding proposition. We also see that no interior point of U maps on a
boundary point of ¥ and conversely. Thus f induces a bijection of 6U on
dV and a bijection of Int(U) on Int(¥). Since these interiors are open in
their respective spaces, our definition of derivative shows that f induces an
isomorphism between them. As for the boundary, it is a submanifold of
the full space, and locally, our definition of derivative, together with the
product structure, shows that the restriction of f to U must be an
isomorphism on V.

This last proposition shows that the boundary is a differentiable in-
variant, and thus that we can speak of the boundary of a manifold.

We give just two words of warning concerning manifolds with
boundary. First, products do not exist in their category. Indeed, to get
products, we are forced to define manifolds with corners, which would take
us too far afield.

Second, in defining immersions or submanifolds, there is a difference
in kind when we consider a manifold embedded in a manifold without
boundary, or a manifold embedded in another manifold with boundary.
Think of a closed interval embedded in an ordinary half plane. Two cases
arise. The case where the interval lies inside the interior of the half plane
is essentially distinct from the case where the interval has one end point
touching the -hyperplane forming the boundary of the half plane. (For
instance, given two embeddings of the first type, there exists an auto-
morphism of the half plane carrying one into the other, but there cannot
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exist an automorphism of the half plane carrying an embedding of the first
type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro-
position 2.2 shows at once how to get the tangent space functorially.

CHAPTER li

Vector Bundles

The collection of tangent spaces can be glued together to give a manifold
with a natural projection, thus giving rise to the tangent bundle. The
general glueing procedure can be used to construct more general objects
known as vector bundles, which give powerful invariants of a given

‘manifold. (For an interesting theorem see Mazur [Maz 61].) In this

chapter, we develop purely formally certain functorial constructions having
to do with vector bundles. In the chapters on differential forms and
Riemannian metrics, we shall discuss in greater details the constructions
associated with multilinear alternating forms, and symmetric positive
definite forms.

Partitions of unity are an essential tool when considering vector
bundles. They can be used to combine together a random collection of
morphisms into vector bundles, and we shall give a few examples showing
how this can be done (concerning exact sequences of bundles).

lil, §1. DEFINITION, PULL BACKS

Let X be a manifold (of class CP with p=>0) and let n: £E— X be a
morphism. Let E be a Banach space.

Let {U;} be an open covering of X, and for each i, suppose that we are
given a mapping

Ti: ﬂ_l(Ui) s Ui x E

satisfying the following conditions:

A
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VB 1. The map =; is a C? isomorphism commuting with the projection
on Ui, that is, such that the following diagram is commutative:

(U) —> U;xE
U,

In particular, we obtain an isomorphism on each fiber (written
Ti(X) or Ti)
Tix! n“l(x) — {x} xE

VB 2. For each pair of open sets U;, U; the map
Tjx © ‘ti;l :E—>E
is a toplinear isomorphism.
VB 3. If U; and U; are two members of the covering, then the map of
UinU; into L(E,E) (actually Laut(E)) given by

X = (Tjti—l)x

is a morphism.

Then we shall say that {(U;, 7;)} is a trivializing covering for  (or for E
by abuse of language), and that {r;} are its trivalizing maps. If x € U;, we
say that 7; (or U)) trivializes at x. Two trivializing coverings for = are
said to be VB-equivalent if taken together they also satisfy conditions VB 2,
VB 3. An equivalence class of such trivializing coverings is said to determine
a structure of vector bundle on 7 (or on E by abuse of language). We say
that E is the total space of the bundle, and that X is its base space. If we
wish to be very functorial, we shall write E, and X, for these spaces
respectively. The fiber #~!(x) is also denoted by E, or n,. We also say
that the vector bundle has fiber E, or is modeled on E. Note that from
VB 2, the fiber n7!(x) above each point x € X can be given a structure of
Banachable space, simply by transporting the Banach space structure of E
to n~!(x) via 1;. Condition VB 2 insures that using two different
trivializing maps 7;; or 7j will give the same structure of Banachable space
(with equivalent norms, of course not the same norms).

Conversely, we could replace VB 2 by a similar condition as follows.

VB 2'. On each fiber n~'(x) we are given a structure of Banachable
space, and for x € Uj, the trivializing map

Tix! n“l(x) =E, - E

is a toplinear isomorphism.
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Then it follows that 1;; 0 7;l: E— E is a toplinear isomorphism for each
pair of open sets U;, U; and xe U;n U;. o
In the finite dimensional case, condition VB 3 is implied by VB 2.

Proposition 1.1. Let E, F be finite dimensional vector spaces. Let U be
open in some Banach space. Let

f: UXE—-F
be a morphism such that for each x € U, the map
fxi: E—-F

given by f,(v)= f(x,v) is a linear map. Then the map of U into
L(E, F) given by x f; is a morphism.

Proof. We can write F =Ry x --- x R, (n copies of R). Using the fact
that L(E,F) = L(E, R;) x --- x L(E, R,), it will suffice to prove our
assertion when F = R. Similarly, we can assume that E =R also. But in
that case, the function f(x,v) can be written g(x)v for some map
g: U—R. Since f is a morphism, it follows that as a function of qach
argument x, v it is also a morphism. Putting v =1 shows that g is a
morphism and concludes the proof.

Returning to the general definition of a vector bundle, we call the maps

-1
Tjix = Tjx © T
the transition maps associated with the covering. They satisfy what we call
the cocycle condition

Tkjx © Tjix = Tkix-
In particular, 7 =id and 7jx = r;j‘,} o
As with manifolds, we can recover a vector bundle from a trivializing
covering.

Proposition 1.2. Let X be a manifold, and n: E — X a mapping from.
some set E into X. Let {U;} be an open covering of X, and for eacfl i
suppose that we are given a Banach space E and a bijection (commuting
with the projection on Uy;),

Ti: R_I(Ui) -— U,' X E,

such that for each pair i, j and xe U;nU;, the map (grrl), is a
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toplinear isomorphism, and condition VB 3 is satisfied as well as the
cocycle condition. Then there exists a unique structure of manifold on E
such that ©t is a morphism, such that t; is an isomorphism making n into a
vector bundle, and {(U;,t;)} into a trivialising covering.

Proof. By Proposition 3.10 of Chapter I and our condition VB 3, we
conclude that the map

‘L'j‘l'i_lt (Ui('\[]j)XE—')(UjF\U}')XE

is a morphism, and in fact an isomorphism since it has an inverse. From
the definition of atlases, we conclude that E has a unique manifold
structure such that the 7; are isomorphisms. Since = is obtained locally
as a composite of morphisms (namely 7; and the projections of U; x E on
the first factor), it becomes a morphism. On each fiber z71(x), we can
transport the topological vector space structure of any E such that x lies in
Ui, by means of 7,,. The result is independent of the choice of U; since
(rjt;1), is a toplinear isomorphism. Our proposition is proved.

Remark. It is relatively rare that a vector bundle is trivial, i.e. VB-
isomorphic to a product X x E. By definition, it is always trivial locally.
In the finite dimensional case, say when E has dimension n, a trivialization
is equivalent to the existence of sections &y, ..., &, such that for each x, the
vectors &1(x),...,&,(x) form a basis of E,. Such a choice of sections is
called a frame of the bundle, and is used especially with the tangent
bundle, to be defined below. In this book where we give proofs valid in
the infinite dimensional case, frames will therefore not occur until we get
to strictly finite dimensional phenomenon.

The local representation of a vector bundle and
the vector component of a morphism

For arbitrary vector bundles (and especially the tangent bundle to be
defined below), we have a local representation of the bundle as a product
in a chart. For many purposes, and especially the case of a morphism

f: Y>E

of a manifold into the vector bundle, it is more convenient to use U to
denote an open subset of a Banach space, and to let ¢: U — X be an
isomorphism of U with an open subset of X over which E has a
trivialization 7: 7~!(pU) —> U x E called a VB-chart. Suppose V is an

[II1, §1] DEFINITION, PULL BACKS 47

open subset of Y such that f(V) cn~!(pU). We then have the com-
mutative diagram:

v L, 7Y (oU) —— U x E

L

oU — U
The composite 7o f is a morphism of V into U x E, which has two

components
To f = (fUl, fvz)

such that fy;: V — U and fy,: V —E. We call fy, the vector com-
ponent of f in the vector bundle chart U xE over U. Sometimes to
simplify the notation, we omit the subscript, and merely agree that fy =
fu, denotes this vector component; or to simplify the notation further, we
may simply state that f itself denotes this vector component if a discussion
takes place entirely in a chart. In this case, we say that f = f;; represents
the morphism in the vector bundle chart, or in the chart.

Vector bundle morphisms and pull backs
We now make the set of vector bundles into a category.
Let n: E—~ X and n': E' - X’ be two vector bundles. A VB-
morphism 7 — 7’ consists of a pair of morphisms
for X—>X and f:E—E

satisfying the following conditions.

VB Mor 1. The diagram

fo

is commutative, and the induced map for each xe X
fxi Ex = Ef

is a continuous linear map.
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VB Mor 2. For each xo€ X there exist trivializing maps

. n Y (U) » UxE
and

v WU - U xE

at xo and f(xo) respectively, such that f,(U) is contained in
U’, and such that the map of U into L(E, E') given by

! -1
X trmofiot
is a morphism.

As a matter of notation, we shall also use f to denote the VB-
morphism, and thus write f: 7 — 7/. In most applications, f; is the
identity. By Proposition 1.1, we observe that VB Mor 2 is redundant in
the finite dimensional case.

The next proposition is the analogue of Proposition 1.2 for VB-
morphisms.

Proposition 1.3. Let n, n' be two vector bundles over manifolds X, X'
respectively. Let fy: X — X' be a morphism, and suppose that we are
given for each x € X a continuous linear map

fer e — nj'a(x)

such that, for each xo, condition VB Mor 2 is satisfied. Then the map f
Sfrom 7 to 7' defined by f, on each fiber is a VB-morphism.

Proof. One must first check that f is a morphism. This can be done
under the assumption that =, n’ are trivial, say equal to U xE and
U’ x E’ (following the notation of VB Mor 2), with trivialising maps equal
to the identity. Our map f is then given by

(x, ) = (fox, fiv).

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism,
and hence that (fy, f) is a VB-morphism.

It is clear how to compose two VB-morphisms set theoretically. In fact,
the composite of two VB-morphisms is a VB-morphism. There is no
problem verifying condition VB Mor 1, and for VB Mor 2, we look at the
situation locally. We encounter a commutative diagram of the following
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type:

TI—I(U) f nl—l(U!) g nn—l(U")

[t

UXE — U xE — U xE

and use Proposition 3.10 of Chapter I, to show that go f is a VB-
morphism. '
We therefore have a category, denoted by VB or VB?, if we need to
cify explicitly the order of differentiability.
speThZ velc):tor }l;undles over X from a subcategory VB(X ) = VB? (X )
(taking those VB-morphisms for which the map fq is thc? identity). If U is
a category of Banach spaces (for instance finite dimensional space.s),.then
we denote by VB(X, ) those vector bundles over X whose ﬁbf:rs lie in 2.
A morphism from one vector bundle into another can be given locally.
More precisely, suppose that U is an open subset of X and n: E— X a
vector bundle over X. Let Ey = n~!(U) and

nu=7t|EU

be the restriction of = to Ey. Then zny is a vector bundle over U. Let
{U;} be an open covering of the manifold X and let #, ' be two vector
bundles over X. Suppose, given a VB-morphism

!
ﬁl Ty, — 71'Ui

for each i, such that f; and f; agree over U; n U; for each p?.il‘ of indiceg i
j. Then there exists a unique VB-morphism f: = — n’ which agrees with
f; on each U;. The proof is trivial, but the remark will be used frequently

in the sequel. -
Using the discussion at the end of Chapter II, §2 and Proposition 2.7 of

that chapter, we get immediately:

Proposition 1.4. Let n: E — Y be a vector bundle, and f: X — Y a
morphism. Then

£ S B - X

is a vector bundle called the pull-back, and the pair ( f,7*(f)) is a VB-
morphism

e =L E
! *(n)l 17'
X ——»f Y
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In Proposition 1.4, we could take f to be the inclusion of a sub-
manifold. In that case, the pull-back is merely the restriction. As with
open sets, we can then use the usual notation:

Ex =n"1(X) and ny ==n|Ex.

Thus =y = f*(n) in that case.
If X happens to be a point y of Y, then we have the constant map

ny: Ey—>y

which will sometimes be identified with E).

If we identify each fiber (f*E), with Ep itself (a harmless identi-
fication since an element of the fiber at x is simply a pair (x, ¢) with e in
Ef()), then we can describe the pull-back f™* of a vector bundle n: £ — Y
as follows. It is a vector bundle f*n: f*E — X satisfying the following
properties:

PB 1. For each x e X, we have (f*E), = Eyy).

PB 2. We have a commutative diagram

fHE) — E
f‘(n)l l
X —Y

!

the top horizontal map being the identity on each fiber.

PB 3. If E is trivial, equal to Y X E, then f*E = X xE and f*n is the
projection.

PB 4. If V is an open subset of Y and U = f~1(V), then

I (Ev) = (f"E)y,

and we have a commutative diagram :

f*Ey—E,
e /
f*E 1 E
i
U---—- -=V
//
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i, §2. THE TANGENT BUNDLE

Let X be a manifold of class C? with p = 1. We shall define a functor T
from the category of such manifolds into the category of vector bundles of
class CPL.

For each manifold X we let 7(X) be the disjoint union of the tangent
spaces Tx(X). We have a natural projection

n. T(X)—- X

mapping Tx(X) on x. We must make this into a vector bundle. If (U, ¢)
is a chart of X such that U is open in the Banach space E, then from the
definition of the tangent vectors as equivalence classes of triples (U, g, v)
we get immediately a bijection

ty: a7 (U)=T(U)—» UxE
which commutes with the projection on U, that is such that

7 '(U) —> U x E

\/

U

is commutative. Furthermore, if (U;, ¢;) and (U}, ¢;) are two charts, and
if we denote by ¢; the map g,p7! (defined on ¢,(Ui 1 Uj)), then we obtain
a transition mapping

Tji = (‘L’j‘ti_l): (0l~(U,'(\ Uj) xE — ¢]~(Ui('\ U]) x E

by the formula
Tji(xa U) = (¢jixa D(pji(x) ' U)

for xe Uin U; and v e E. Since the derivative Dg; = @ is of class cr1
and is an isomorphism at x, we see immediately that all the conditions of
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby
making T(X) into a vector bundle of class CP~1.

We see that the above construction can also be expressed as follows. If
the manifold X is glued together from open sets {U;} in Banach spaces by
means of transition mappings {¢;}, then we can glue together products
Ui x E by means of transition mappings (g;, Dg;) where the derivative
D(pij can be viewed as a function of two variables (x, v). Thus locally, for
open subsets U of Banach spaces, the tangent bundle can be identified
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with the product U x E. The reader will note that our definition coincides
with the oldest definition employed by geometers, our tangent vectors
being vectors which transform according to a certain rule (namely the
derivative).

If f: X » X' is a CP-morphism, we can define

Tf: T(X) — T(X")

to be simply T, f on each fiber T,(X). In order to verify that Tf is a VB-
morphism (of class Cr-1), it suffices to look at the situation locally, i.e. we
may assume that X and X’ are open in vector spaces E, E’, and that
T.f = f'(x) is simply the derivative. Then the map Tf is given by

Tf (x, v) = (f(x), f'(x)v)

for xe X and ve E. Since f’ is of class CP~! by definition, we can apply
Proposition 3.10 of Chapter I to conclude that Tf is also of class crl,
The functoriality property is trivially satisfied, and we have therefore
defined the functor 7' as promised.

It will sometimes be notationally convenient to write f, instead of Tf
for the induced map, which is also called the tangent map. The bundle
T(X) is called the tangent bundle of X.

Remark. The above definition of the tangent bundle fits with Steenrod’s
point of view [Ste 51]. I don’t understand why many differential geometers
have systematically rejected this point of view, when they take the defini-
tion of a tangent vector as a differential operator.

lll, §3. EXACT SEQUENCES OF BUNDLES
Let X be a manifold. Let n’: E'’ - X and n: E — X be two vector

bundles over X. Let f: n’ — n be a VB-morphism. We shall say that the
sequence

O—»n'irn

is exact if there exists a covering of X by open sets and for each open set
U in this covering there exist trivializations

v E; > UxE and 7. Ey—> UXxE

such that E can be written as a product E = E’ x F, making the following
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diagram commutative: s

B, —L L E,

UxXxE — UxE xF

(The bottom map is the natural one: Identity on U and the injection of E’
on E' x0.)

Let m1: Ey — X be another vector bundle, and let g: 7y — & be a VB-
morphism such that g(E;) is contained in f(E’). Since f establishes a
bijection between E’ and its image f(E’) in E, it follows that there exists
a unique map g;: E; — E’ such that g = f og;. We contend that g, is a
VB-morphism. Indeed, to prove this we can work locally, and in view of
the definition, over an open set U as above, we can write

g1 =r'_loprorog

where pr is the projection of U XE’'xF on U x E’. All the maps on
the right-hand side of our equality are VB-morphisms; this proves our
contention.

Let n: E — X be a vector bundle. A subset S of E will be called a
subbundle if there exists an exact sequence 0 — n’ — n, also written

0-E LE,

such that f(E’) =S. This gives S the structure of a vector bundle, and
the previous remarks show that it is unique. In fact, given another exact
sequence

0-E SE

§uch that g(E;) = S, the natural map f~!g from E, to E' is a VB-
1somorphism.

Let us denote by E/E’ the union of all factor spaces Ex/E,. If we are
dealing with an exact sequence as above, then we can give E/E’ the
structpre of a vector bundle. We proceed as follows. Let {U;} be our
covering, with trivialising maps z; and 7;, We can define for each i a
bijection

n: Ey/Ey — Uy xF

obtained in a natural way from the above commutative diagram. (With-
out loss of generality, we can assume that the vector spaces E’, F are
constant for all i.) We have to prove that these bijections satisfy the
conditions of Proposition 1.2. ’
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Without loss of generality, we may assume that f is an inclusion (of the
total space E’ into E). For each pair i, j and x € U; n U}, the toplinear
automorphism (7;7;!), is represented by a matrix

(hu(x) hlz(x))
ha(x)  hy(x)
operating on the right on a vector (v, w) € E' x F. The map (r}’r{"l)x on
F is induced by this matrix. Since E' =E’ x 0 has to be carried into
itself by the matrix, we have h12(x) = 0. Furthermore, since (z;z7!), has
an inverse, equal to (r,-rj‘l)x, it follows that Ay (x) is a toplinear auto-
morphism of F, and represents (z/z/~!),. Therefore condition VB 3 is
satisfied, and E/E' is a vector bundle.

The canonical map

Ey — Ey/Ey

is a morphism since it can be expressed in terms of 7, the projection, and
7”1, Consequently, we obtain a VB-morphism

g n—on’

in the canonical way (on the total spaces, it is the quotient mapping of E
on E/E'). We shall call z” the factor bundle.

Our map g satisfies the usual universal mapping property of a cokernel.
Indeed, suppose that

Vv: E—~ G

is a VB-morphism such that Y o £ =0 (i.e. ¥, o f, =0 on each fiber E)).
We can then define set theoretically a canonical map

Y,: E/JE' — G,

and we must prove that it is a VB-morphism. This can be done locally.
Using the above notation, we may assume that E = U x E’ x F and that g
is the projection. In that case, Y, is simply the canonical injection of
UxFin UxE' xF followed by ¢, and is therefore a VB-morphism.
We shall therefore call g the cokernel of f.
Dually, let g: n — n” be a given VB-morphism. We shall say that the
sequence

g
o’ —0

is exact if g is surjective, and if there exists a covering of X by open sets,
and for each open set U in this covering there exist spaces E’, F and
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trivializations
1: Ey - UxE' xF and " E, > F
making the following diagram commutative:

g ,
Ey, — E

”

T T

UxE xF —s UxF

(The bottom map is the natural one: Identity on U and the projection of
E'xF on F)

In the same way as before, one sees that the “kernel” of g, that is, the
union of the kernels E, of each g,, can be given a structure of vector
bundle. This union E’ will be called the kernel of g, and satisfies the usual
universal mapping property.

Proposition 3.1. Let X be a manifold and let
fian—-an

be a VB-morphism of vector bundles over X. Assume that, for each
x € X, the continuous linear map

[y E. > Ex
is injective and splits. Then the sequence

O—An’in

is exact.

Proof. We can assume that X is connected and that the fibers of E’
and E are constant, say equal to the Banach spaces E' and E. Let ae X.
Corresponding to the splitting of f, we know that we have a product
decomposition E=E’ x F and that there exists an open set U of X
containing a, together with trivializing maps

. (U)-»UxE and 7': 2"'(U)— UxE
such that the composite map

-1
E“SE % E L E xF

a

maps E’ on E' x 0.
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For any point x in U, we have a map
(tfr™Y,: EE - E xF,
which can be represented by a pair of continuous linear maps

(h11(x), ha1(x)).

h(x): E'xF—SE'xF

(hu(x) 0 )
hy(x) id)’
operating on the right on a vector (v, w) e E’ x F. Then h(x) restricted to
E’ x 0 has the same action as (zf7'7!),. ,

The map x+> A(x) is a morphism of U into L(E, E) and since it is
continuous, it follows that for U small enough around our fixed point g, it

maps U into the group of toplinear automorphisms of E. This proves our
proposition.

We define

by the matrix

Dually to Proposition 3.1, we have:
Proposition 3.2. Let X be a manifold and let
g: n—n"

be a VB-morphism of vector bundles over X. Assume that for each
x € X, the continuous linear map

gx: Ex - E]
is surjective and has a kernel that splits. Then the sequence

g
o’ —0
is exact.

Proof. It is dual to the preceding one and we leave it to the reader.
In general, a sequence of VB-morphisms
0-nLad a0

is said to be exact if both ends are exact, and if the image of f is equal to
the kernel of g. )

(111, §3] EXACT SEQUENCES OF BUNDLES 57

There is an important example of exact sequence. Let f: X — Y be an
immersion. By the universal mapping property of pull backs, we have a
canonical VB-morphism

T*f: T(X) — f*T(Y)

of T(X) into the pull back over X of the tangent bundle of Y. Fur-
thermore, from the manner in which the pull back is obtained locally by
taking products, and the definition of an immersion, one sees that the
sequence

0 7(x) L ()
is exact. The factor bundle

STT(Y)/Im(T7f)

is called the normal bundle of f. It is denoted by N(f), and its total
space by Ny(X) if we wish to distinguish between the two. We sometimes
identify T(X) with its image under 7*f and write

N(f) = f"T(Y)/T(X).

Dually, let f: X - Y be a submersion. Then we have an exact
sequence
Tf .
TX)— f'T(Y)—0

whose kernel could be called the subbundle of f, or the bundle along the
fiber.
There is an interesting case where we can describe the kernel more
precisely. Let
n. E—- X

be a vector bundle. Then we can form the pull back of E over itself, that
is, n*E, and we contend that we have an exact sequence

0 n*E — T(E) > n*T(X) — 0.

To define the map on the left, we look at the subbundle of 7 more closely.
For each x € X we have an inclusion

E,—>E,
whence a natural injection

T(E,) — T(E).
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The local product structure of a bundle shows that the union of the T(E;)
as x ranges over X gives the subbundle set theoretically. On the other
hand, the total space of n*E consists of pairs of vectors (v, w) lying over
the same base point x, that is, the fiber at x of n*E is simply Ex x Ej.
Since T(Ex) has a natural identification with E, x E,, we get for each x a
bijection

(n"E), — T(Ey)

which defines our map from #*E to T(E). Considering the map locally in
terms of the local product structure shows at once that it gives a VB-
isomorphism between 7*E and the subbundle of #, as desired.

ll, §4. OPERATIONS ON VECTOR BUNDLES

We consider subcategories of Banach spaces A, B, € and let
A: UXB -

be a functor in, say, two variables, which is, say, contravariant in the first
and covariant in the second. (Everything we shall do extends in the
obvious manner to functors of several variables, letting 2, B stand for
n-tuples.)

Example. We took a functor in two variables for definiteness, and to
illustrate both variances. However, we could consider a functor in one or
more than two variables. For instance, let us consider the functor

E— L(E, R) = L(E) = E',

which we call the dual. It is a contravariant functor in one variable. On
the other hand, the functor

E~ L(E,F)

of continuous multilinear maps of E x --- x E into a Banach space F is
contravariant in E and covariant in F. The functor E — L’(E, R) gives
rise later to what we call differential forms. We shall treat such forms
systematically in Chapter V, §3.

If f: E' > E and g: F— F’ are two continuous linear maps, with f a
morphism of U and g a morphism of B, then by definition, we have a
map

L(E',E) x L(F, F') — L(A(E, F), A(E’, F')),

assigning A(f, g) to (f, g).
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We shall say that A is of class C? if the following condition is satisfied.
Give a manifold U, and two morphisms

o: U—-L{E,E) and y: U— L(F,F),
then the composite
U — L(E', E) x L(F, F') — L(A(E, F), A(E', F"))
is also a morphism. (One could also say that A is differentiable.)

Theorem 4.1. Let A be a functor as above, of class C?, p 2 0. Then for
each manifold X, there exists a functor Ay, on vector bundles (of class
C?)

Ax: VB(X, %) x VB(X, B) - VB(X, €)

satisfying the following properties. For any bundles a, f in VB(X, ¥)
and VB(X, B) respectively, and VB-morphisms

frod —a and g: p—p
in the respective categories, and for each x € X, we have:

OP 1. Jx(x, B), = Ao, By)-

OP 2. Ax(f, 9), = Afx 9x)-

OP 3. If o is the trivial bundle X X E and B the trivial bundle X x F,
then Ax(a, B) is the trivial bundle X x A(E, F).

OP 4. If h: Y — X is a CP-morphism, then
Ay(h*a, h*B) = h*Ax(a, B).

Proof. We may assume that X is connected, so that all the fibers are
toplinearly isomorphic to a fixed space. For each open subset U of X we
let the total space Ay(E., Eg) of Ay(a, B) be the union of the sets

{x} x Ao, By)

(identified harmlessly throughout with A(x, f,)), as x ranges over U. We
can find a covering {U;} of X with trivializing maps {z;} for «, and {o;}
for B,

Ti: a_l(U,») — U; X E,
ag;: ﬂ_l(Ui) — U; x F.
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We have a bijection
AT, 63): Ay,(Ey, Ep) — Ui x A(E, F)
obtained by taking on each fiber the map
My, ou): Mox, B,) — A(E, F).
We must verify that VB 3 is satisfied. This means looking at the map
X — A(tj‘xl, Ojx) © l(t;cl, a,-x)_l.
The expression on the right is equal to
,l(t,-xrj;l, ajxai;l).
Since A is a functor of class C?, we see that we get a map
U;n U; — L(A(E, F), A(E, F))

which is a C?-morphism. Furthermore, since A is a functor, the transition
mappings are in fact toplinear isomorphism, and VB 2, VB 3 are proved.

The proof of the analogous statement for Ax(f, g), to the effect that
it is a VB-morphism, proceeds in an analogous way, again using the
hypothesis that A is of class CP. Condition OP 3 is obviously satisfied,
and OP 4 follows by localizing. This proves our theorem.

The next theorem gives us the uniqueness of the operation Ay.

Theorem 4.2. If u is another functor of class CP with the same variance

as A, and if we have a natural transformation of functors t: A — u, then

for each X, the mapping

Ix: Ax = py,
defined on each fiber by the map
t(otx, B.): Alax, B,) — u(ox, B,),
is a natural transformation of functors (in the VB-category).

Proof. For simplicity of notation, assume that A and g are both
functors of one variable, and both covariant. For each open set U = U; of
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a trivializing covering for f, we have a commutative diagram:

id x ((E)
_—

U x AE) U x u(E)
Alo) o)
Au(B) Hu(B)

U

The vertical maps are trivializing VB-isomorphism, and the top horizontal
map is a VB-morphism. Hence ¢y is a VB-morphism, and our assertion is
proved.

In particular, for 1 = u and ¢ = id we get the uniqueness of our functor
rx.

(In the proof of Theorem 4.2, we do not use again explicitly the
hypotheses that i, x4 are differentiable.)

In practice, we omit the subscript X on 4, and write A for the functor
on vector bundles.

Examples. Let n: E — X be a vector bundle. We take 4 to be the
dual, that is E— EV = L(E, R). Then A(E) is denoted by EY, and is
called the dual bundle. The fiber at each point x € X is the dual space E).
The dual bundle of the tangent bundle is called the cotangent bundle 7VX.

Similarly, instead of taking L(E), we could take L}(E) to be the bundle
of alternating multilinear forms on E. The fiber at each point is the space
L(E,) consisting of all r-multilinear alternating continuous functions on
E,. When E =TX is the tangent bundle, the sections of L(TX) are
called differential forms of degree r. Thus a 1-form is a section of EV.
Differential forms will be treated later in detail.

Recall that End(E) = L(E, E). In the theory of curvature, we shall deal
with both functors

E~ L*E)=L%E,R) and E®+— L?(E, End(E)) = L*(E, L(E, E)).

In fact, if R e L*(E, L(E, E)), then for each pair of elements v, w € E and
ze E, we see that R(v, w) € L(E, E) and R(v, w)z € E, so we get a 3-linear
map

(v, w, z) — R(v, w)z.
We shall apply both functors to the tangent bundle in Chapter IX.

For another type of operation, we have the direct sum (also called the
Whitney sum) of two bundles o, § over X. It is denoted by o @ f, and the
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fiber at a point x is
(a ®:B)x = Ox @ﬂx

Of course, the finite direct sum of vector spaces can be identified with their
finite direct products, but we write the above operation as a direct sum in
order not to confuse it with the following direct product.

Let o: E;, — X and B: Eg— Y be two vector bundles in VB(X) and
VB(Y) respectively. Then the map

axpf: E;xEpg—XxY

is a vector bundle, and it is this operation which we call the direct product
of o and B.

Let X be a manifold, and 1 a functor of class C? with p = 1. The
tensor bundle of type A over X is defined to be iX(T(X )), also denoted by
AT(X) or T)(X). The sections of this bundle are called tensor fields of
type 4, and the set of such sections is denoted by I';(X). Suppose that we
have a trivialization of T(X), say

T(X) =X x E.

Then T;(X)=X x A(E). A section of T;(X) in this representation is
completely described by the projection on the second factor, which is a
morphism

[ X — A(E).

We shall call it the local representation of the tensor field (in the given
trivialization). If £ is the tensor field having f as its local representation,
then

¢(x) = (x, f(x)).

Let f: X — Y be a morphism of class C” (p 2 1). Let w be a tensor
field of type L™ over Y, which could also be called a multilinear tensor
field. For each ye Y, w(y) (also written w,) is a continuous multilinear
function on T,(Y):

wy,: Ty x---xT,—R.
For each x e X, we can define a continuous multilinear map
filw): Tyx---xTy—> R

by the composition of maps (7%f)" and wy(:

Tx><~--XTx—>Tf(x)X-'-XTf(x)—>R.
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We contend that the map x — f} () is a tensor field over X, of the same
type as . To prove this, we may work with local representation. Thus
we can assume that we work with a morphism

f: U=V
of one open set in a Banach space into another, and that
w: V — L'(F)

is a morphism, ¥ being open in F. If U is open in E, then f*(w) (now
denoting a local representation) becomes a mapping of U into L'(E),
given by the formula

[ (@) =L'(f'(x)) -o(f(x)).

Since L': L(E,F) — L(L'(F), L'(E)) is of class C%, it follows that
f*(w) is a morphism of the same class as w. This proves what we want.

Of course, the same argument is valid for the other functors L] and Lj
(symmetric and alternating continuous multilinear maps). Special cases
will be considered in later chapters. If A denotes any one of our three
functors, then we see that we have obtained a mapping (which is in fact

linear)
f* YY) - Ii(x)

which is clearly functorial in f. We use the notation f* instead‘ of t.he
more correct (but clumsy) notation f; or I';(f). No confusion will arise
from this.

ll, §5. SPLITTING OF VECTOR BUNDLES

The next proposition expresses the fact that the VB-morphisms of one
bundle into another (over a fixed morhism) form a module over the ring of
functions.

Proposition 5.1. Let X, Y be manifolds and fy: X — Y a morphism.
Let o, B be vector bundles over X, Y respectively, and let f, g: o — f be
two VB-morphisms over f,. Then the map f + g defined by the formula

(f+g)x=fx+gx

is also a VB-morphism. Furthermore, if Y: Y — R is a function on Y,
then the map yf defined by

W) =¥ (fo(x) 1

is also a VB-morphism.
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Proof. Both assertions are immediate consequences of Proposition 3.10
of Chapter L

We shall consider mostly the situation where X = Y and f; is the
identity, and will use it, together with partitions of unity, to glue VB-
morphisms together.

Let a, B be vector bundles over X and let {(U;, ¥;)} be a partition of
unity on X. Suppose given for each U; a VB-morphism

fir Ui = B U
Each one of the maps y,f; (defined as in Proposition 5.1) is a VB-
morphism. Furthermore, we can extend y,f; to a VB-morphism of « into
f simply by putting
Wifi)y =0
for all x ¢ U;. If we now define

fra—p
£:0) =D ¥u(x) fix ()

by the formula

for all pairs (x, v) with v € o, then the sum is actually finite, at each ponit
x, and again by Proposition 5.1, we see that f is a VB-morphism. We
observe that if each f; is the identity, then f ="y, /; is also the identity.

Proposition 5.2. Let X be a manifold admitting partitions of unity. Let

0>« EA B be an exact sequence of vector bundles over X. Then there
exists a surjective VB-morphism g: f — o« whose kernel splits at each
point, such that go f =id.

Proof. By the definition of exact sequence, there exists a partition of
unity {(U;, ¥;)} on X such that for each i, we can split the sequence over
Ui. In other words, there exists for each i a VB-morphism

gi: PlU; — o|U;

which is surjective, whose kernel splits, and such that g; o f; = id;, We let
g =Y V¥,9;. Then g is a VB-morphism of f§ into a by what we have just

seen, and '
gof=> Wigf=id

It is trivial that g is surjective because g o f =id. The kernel of g, splits
at each point x because it has a closed complement, namely f a,. This
concludes the proof. .
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If y is the kernel of §, then we have f~a @ y.

A vector bundle 7 over X will be said to be of finite type if there exists
a finite trivialization for z (i.e. a trivialization {(Uj, 7;)} such that i ranges
over a finite set). "

If k is an integer > 1 and E a topological vector space, then we denote
by EF the direct product of E with itself k times.

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let
n be a vector bundle of finite type in VB(X, E), where E is a Banach
space. Then there exists an integer k >0 and a vector bundle o in
VB(X, E¥) such that n ® « is trivializable.

Proof We shall prove that there exists an exact sequence

0—>7zl>ﬁ

with Eg= X X E*. Our theorem will follow from the preceding
proposition.

Let {U;, 7;)} be a finite trivialization of n with i=1,...,k. Let
{(U;, y;)} be a partition of unity. We define

f: E, — X xEF
as follows. If xe X and v is in the fiber of E, at x, then

fv) = (x, Y1 ()11 (), - Ya(%)7(0))-

The expression on the right makes sense, because in case x does not lie in
U; then ¢;(x) =0 and we do not have to worry about the expression
7{v). If x lies in U;, then 7;(v) means 7 (v).

Given any point x, there exists some index i such that ¥;(x) >0 and
hence f is injective. Furthermore, for this x and this index i, f, maps E,
onto a closed subspace of EX, which admits a closed complement, namely

Ex:---x0x.--xE

with 0 in the i-th place. This proves our proposition.



CHAPTER IV

Vector Fields and Differential
Equations

In this chapter, we collect a number of results all of which make use of the
notion of differential equation and solutions of differential equations.

Let X be a manifold. A vector field on X assigns to each point x of X a
tangent vector, differentiably. (For the precise definition, see §2.) Given xq
in X, it is then possible to construct a unique curve «(f) starting at xo
(i.e. such that a(0) = xp) whose derivative at each point is the given
vector. It is not always possible to make the curve depend on time ¢ from
—oo to +oo, although it is possible if X is compact.

The structure of these curves presents a fruitful domain of investiga-
tion, from a number of points of view. For instance, one may ask for
topological properties of the curves, that is those which are invariant under
topological automorphisms of the manifold. (Is the curve a closed curve,
is it a spiral, is it dense, etc.?) More generally, following standard pro-
cedures, one may ask for properties which are invariant under any given
interesting group of automorphisms of X (discrete groups, Lie groups,
algebraic groups, Riemannian automorphisms, ad lib.).

We do not go into these theories, each of which proceeds according
to its own flavor. We give merely the elementary facts and definitions
associated with vector fields, and some simple applications of the existence
theorem for their curves.

Throughout this chapter, we assume all manifolds to be Hausdorff, of
class CP with p = 2 from §2 on, and p 2 3 from §3 on. This latter condition
insures that the tangent bundle is of class CP~! with p—12=1 (or 2).

We shall deal with mappings of several variables, say f(t, x, y), the first
of which will be a real variable. We identify D, f(t, x, y) with

lim f(t+h, X, J’)“f(t, X, y).
h—0 h
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IV, §1. EXISTENCE THEOREM FOR
DIFFERENTIAL EQUATIONS

Let E be a Banach space and U an open subset of E. In this section we
consider vector fields locally. The notion will be globalized later, and thus
for the moment, we define (the local representation of) a time-dependent
vector field on U to be a C?-morphism (p = 0)

f: JxU—E,

where J is an open interval containing 0 in R. We think of f as assigning
to each point x in U a vector f(¢, x) in E, depending on time ¢.

Let xo be a point of U. An integral curve for f with initial condition x,
is a mapping of class C’ (r 2 1)

o J()—>U

of an open subinterval of J containing 0, into U, such that «(0) = xo and
such that

o« (1) = f(2, a(r)).
Remark. Let o«: Jo — U be a continuous map satisfying the condition

t

a(t) = xo + J f(u,a(u)) du.

0

Then « is differentiable, and its derivative is f(t, (¢)). Hence a is of class
C!. Furthermore, we can argue recursively, and conclude that if f is of
class C?, then so is a. Conversely, if « is an integral curve for f with initial
condition x,, then it obviously satisfies out integral relation.

Let
f: IxU—=E

be as above, and let xo be a point of U. By a local flow for f at xo we
mean a mapping

a: J()XU()“—*U

where Jy is an open subinterval of J containing 0, and Up is an open
subset of U containing xp, such that for each x in Uy the map

ox(£) = (2, x)

is an integral curve for f with initial condition x (i.e. such that «(0, x) =
X). S
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As a matter of notation, when we have a mapping with two arguments,
say ¢(t, x), then we denote the separate mappings in each argument when
the other is kept fixed by ¢,(¢) and 9,(x). The choice of letters will always
prevent ambiguity.

We shall say that f satisfies a Lipschitz condition on U uniformly with
respect to J if there exists a number K > 0 such that

£ (2, x) = £ (2, »)| < Klx - y|

for all x, yin U and ¢ in J. We call K a Lipschitz constant. If /is of class
Cl, it follows at once from the mean value theorem that f is Lipschitz on

some open neighborhood Jy x Up of a given point (0, xy) of U, and that it
is bounded on some such neighborhood.

We shall now prove that under a Lipschitz condition, local flows exist
and are unique locally. In fact, we prove more, giving a uniformity

property for such flows. If b is real > 0, then we denote by J; the open
interval —b <t < b.

Proposition 1.1. Let J be an open interval of R containing 0, and U open
in the Banach space E. Let xo be a point of U, and a >0, a < 1 a real
number such that the closed ball Bs,(xo) lies in U. Assume that we have
a continuous map

f:JxU—E

which is bounded by a constant L 2 1 on J x U, and satisfies a Lipschitz
condition on U uniformly with _respect to J, with constant K 2 1. If
b < a/LK, then for each x in B,(xo) there exists a unique flow

o Jb X Ba(xo) — U.

If fis of class CP (p 2 1), then so is each integral curve a.

Proof. _Let I, be the closed interval —b <t < b, and let x be a fixed
point in B,(xp). Let M be the set of continuous maps

a: Iy — Bou(xo)

of the closed interval into the closed ball of center x, and radius 2a, such

that «(0) = x. Then M is a complete metric space if we define as usual the
distance between maps a, f to be

sup|a(t) = A(0).
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We shall now define a mapping
S M—- M

of M into itself. For each « in M, we let Su be defined by

t
0

(Sa)(f) = x + J S (u, a(u)) du.

Then S« is certainly continuous, we have Sa(0) = x, anq the distanpe c_>f
any point on Sa from x is bounded by the norm of the integral, which is

bounded by
b sup|f(u, y)| £bL < a.

Thus Sa lies in M. o
We contend that our map S is a shrinking map. Indeed,
|Se — SB| < b sup|f (u, a(w)) — f (u, fW)]|
< bK|a - B,
thereby proving our contention. _
By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique

fixed point o, and by definition, a(t) satisfies the desired integral relation.
Our remark above concludes the proof.

Corollary 1.2. The local flow o in Proposition 1.1 is continuouf.
Furthermore, the map x> oy of Ba(xo) into the space of curves is
continuous, and in fact satisfies a Lipschitz condition.

Proof. The second statement obviously implies the first. So fix x in

B,(x0) and take y close to x in By(xo). We let S,f be the shrinking map of
the theorem, corresponding to the initial condition x. Then

““x - Sy“x“ = HSx“x - Sy“x“ < tx - y‘
Let C=5bK so 0 < C < 1. Then

-1 n
lloe — STatel] < llote — Syotall + 1Syt = Satell + -+ + 185 ex — St
SU+CH+--+C"Hix—yl
Since the limit of S}, is equal to a, as n goes to infinity, the continuity

of the map x + a, follows at once. In fact, the map satisfies a Lipschitz
condition as stated.
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It is easy to formulate a uniqueness theorem for integral curves over
their whole domain of definition.

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let
S U— E be a vector field of class C?, p=1. Let

w0 1 = U and w: o= U

be two integral curves for f with the same initial condition xy. Then a;
and a are equal on Jy N J,.

Proof. Let Q be the set of numbers b such that a;(f) = ay(f) for
0=t<b.

Then Q contains some number b > 0 by the local uniqueness theorem. If
Q is not bounded from above, the equality of «;(¢) and ay(f) for all 1 > 0
follows at once. If Q is bounded from above, let b be its least upper
bound. We must show that b is the right end point of J; nJ;. Suppose
that this is not the case. Define curves §, and f, near 0 by

Bty =(b+1) and  B,(6) = az(b+ ).

Then f; and B, are integral curves of f with the initial conditions «;(b)
and ay(b) respectively. The values f,(¢) and B,(f) are equal for small
negative ¢ because b is the least upper bound of Q. By continuity it
follows that a;(b) = az(b), and finally we see from the local uniqueness

theorem that
Bi(2) = By(2)

for all ¢ in some neighborhood of 0, whence a; and «, are equal in a
neighborhood of b, contradicting the fact that b is a least upper bound of
Q. We can argue the same way towards the left end points, and thus
prove our statement.

For each x e U, let J(x) be the union of all open intervals containing
0 on which integral curves for f are defined, with initial condition equal
to x. The uniqueness statement allows us to define the integral curve
uniquely on all of J(x).

Remark. The choice of 0 as the initial time value is made for con-
venience. From the uniqueness statement one obtains at once (making a
time translation) the analogous statement for an integral curve defined on
any open interval; in other words, if J;, J; do not necessarily contain 0,
and ¢, is a point in J; N J> such that o;(z) = ax(#), and also we have the
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differential equations
af(r)=f(m()) and  o(r) = f(x(),
then oy and oy are equal on J; N Ja.

In practice, one meets vector fields which may be time dependgnt, and
also depend on parameters. We discuss these to show that their study
reduces to the study of the standard case.

Time-dependent vector fields
Let J be an open interval, U open in a Banach space E, and
f: JxU—E

a CP map, which we view as depending on time ¢ € J. Thus for each ¢, the
map x — f(t, x) is a vector field on U. Define

f: JxU—>RxE
by }
fle, x) =1, £, 0),

and view f as a time-independent vector field on J x U. Let & be its flow,
so that _
@'(1, 5, x) = f(a(t, s, x)), &0, s, x) = (s, ).

We note that & has its values in J x U and thus can be express?d iil ‘terms
of two components. In fact, it follows at once that we can write & 1n the
form
at, s, x) = (t+s, &(t, s, x)).
Then &, satisfies the differential equation
DI&Z(t, S, X) =f(t + 3, &Z(t, S, X))
as we see from the definition of f. Let
B(t, x) = &Z(Ia 0, x)'

Then B is a flow for f, that is § satisfies the differential equation

Dif(t, x) = f(t, B(t, x)), B0, x) = x.
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Given x € U, any value of ¢ such that « is defined at (¢, x) is also such that
& is defined at (7, 0, x) because a, and f, are integral curves of the same
vector field, with the same initial condition, hence are equal. Thus the
study of time-dependent vector fields is reduced to the study of time-
independent ones.

Dependence on parameters
Let V be open in some space F and let
g: JxVxU—-E

be a map which we view as a time-dependent vector field on U, also
depending on parameters in V. We define

G: JxVxU=FxE
by

G(ta Z, y) = (07 g(t, Z, y))

for teJ, zeV, and y e U. This is now a time-dependent vector field on
V' x U. A local flow for G depends on three variables, say (¢, z, y), with
initial condition f(0, z, y) = (z, y). The map f has two components, and
it is immediately clear that we can write

ﬁ(ta Z, y) = (Z’ a(t’ Z, y))

for some map « depending on three variables. Consequently o satisfies the
differential equation

Dio(t, 2, y) = g(1, z, a(t, 2,)), (0, z, y) = »,

which gives the flow of our original vector field g depending on the
parameters ze V. This procedure reduces the study of differential
equations depending on parameters to those which are independent of
parameters.

We shall now investigate the behavior of the flow with respect to its
second argument, i.e. with respect to the points of U. We shall give two
methods for this. The first depends on approximation estimates, and the
second on the implicit mapping theorem in function spaces.

Let Jo be an open subinterval of J containing 0, and let

e Jo- U
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be of class C!. We shall say that ¢ is an e-approximate solution of / on J
if /
lo'(0) - f(1, 0(0)| S ¢

for all ¢ in Jy.

Proposition 1.4. Let ¢, and ¢, be two €- and ez-approximafe sqlutio'ns
of f on Jo respectively, and let € = €1 + €. Assume fhat f is Lipschitz
with constant K on U uniformly in Jo, or that D> f exists c{nd is bounded
by K on J x U. Let ty be a point of Jo. Then for any t in Jy, we have

K|t— € Kli—t|
lp1(2) — 92(D)] < I (0) — pa(t0)leX " tge

Proof. By assumption, we have

loi(t) = £ (1, (9)| < &1,

|¢£(t) -7 9,(1)| £ .
From this we get

|0}(6) — 05 + £ (t, 22(0) = f(L, i (D)| S e
Say 72 t, to avoid putting bars around f— fo. Let

¥ () = loi(0) — 921,
o(t) =1 (t e1(1) = (5, 220

Then, after integrating from # to ¢, and using triangle inequalities we

obtain t

W) V0] S elt= ) + | 0w du
Scli- )+ K| 9w
<K j W) + /K] dis
and finally the recurrence relation

Y1) < '//(to) + Kj: [W(u) + ¢/K] du.

On any closed subinterval of Jy, our map ¥ is bounded. If we add ¢/K to
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both sides of this last relation, then we see that our proposition will follow
from the next lemma.

Lemma 1.5. Let g be a positive real valued function on an interval,
bounded by a number L. Let ty be in the interval, say ty < t, and assume
that there are numbers A, K =20 such that

gty £ A+ Kr g(u) du.

%

Then for all integers n = 1 we have

gty SA|V+———+

T vy nl

K(t—t) K"‘l(t—to)"—ljl LK"(t — to)"
Proof. The statement is an assumption for n =1. We proceed by
induction. We integrate from #, to ¢, multiply by K, and use the re-
currence relation. The statement with #+ 1 then drops out of the
statement with n.

Corollary 1.6. Let f: J x U — E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let xy be a point of U. Then
there exists an open subinterval Jy of J containing 0, and an open subset
of U containing xo such that f has a unique flow

o JoXUo-—»U.

We can select Jy and Uy such that o is continuous and satisfies a
Lipschitz condition on Jy x Up.

Proof Given .x, y in Uy we let ¢,(¢) = a(¢, x) and ¢,(f) = a(¢, y), using
Proposition 1.6 to get Jy and U;. Then ¢ =€ =0. For s, f in Jy we
obtain

'a(ta X) - d(S, y)l é |tX(t, .X') - d(t, y)l + la(t, y) - OC(S, y)l
< |x - yle® + |t - sIL,
if we take Jp of small length, and L is a bound for f. Indeed, the term
containing |x — y| comes from Proposition 1.4, and the term containing

|t — 5| comes from the definition of the integral curve by means of an
integral and the bound L for f. This proves our corollary.

Corollary 1.7. Let J be an open interval of R containing 0 and let U be
open in E. Let f: J x U — E be a continuous map, which is Lipschitz
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on U uniformly for every compact subinterval of J. Let ty € J and let ¢,
@, be two morphisms of class C' such that ¢,(t) = ¢,(t0) and satisfying
the relation

¢'(1) = f(1, (1))
for all t in J. Then ¢,(f) = ¢,(2).
Proof. We can take ¢ = 0 in the proposition.

The above corollary gives us another proof for the uniqueness of
integral curves. Given f: Jx U — E as in this corollary, we can define
an integral curve « for f on a maximal open subinterval of J having a
given value a(fp) for a fixed f; in J. Let J be the open interval (a, b) and
let (ao, bo) be the interval on which « is defined. We want to know when
by = b (or ap = a), that is when the integral curve of f can be continued to
the entire interval over which f itself is defined.

There are essentially two reasons why it is possible that the integral
curve cannot be extended to the whole domain of definition J, or cannot
be extended to infinity in case f is independent of time. One possibility is
that the integral curve tends to get out of the open set U, as on the
following picture:

This means that as ¢ approaches by, say, the curve «(t) approaches a point
which does not lie in U. Such an example can actually be constructed
artificially. If we are in a situation when a curve can be extended to
infinity, just remove a point from the open set lying on the curve. Then the
integral curve on the resulting open set cannot be continued to infinity.
The second possibility is that the vector field is unbounded. The next
corollary shows that these possibilities are the only ones. In other words,
if an integral curve does not tend to get out of the open set, and if the
vector field is bounded, then the curve can be continued as far as the
original data will allow a priori.

Corollary 1.8. Let J be the open interval (a, b) and let U be open in E.
Let f: Jx U —E be a continuous map, which is Lipschitz on U,
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uniformly for every compact subset of J. Let a be an integral curve of f,
defined on a maximal open subinterval (ag, bo) of J. Assume:

(i) There exists € > 0 such that oc((bo — €, b)) is contained in U.
(ii) There exists a number B > 0 such that |f(t, a(r))| < B for all t in
(b() — & bO)

Then by = b.

Proof. From the integral expression for o, namely
!
aft) = a(to) +J f(u, u(u)) du,
o
we see that for 71, t, in (by —¢, by) we have
(1) — a(82)] < Blt1 — 2]
From this it follows that the limit

5 0

exists, and is equal to an element xy of U (by hypothesis (i)). Assume that
by # b. By the local existence theorem, there exists an integral curve f§ of
f defined on an open interval containing by such that f(by) = xo and
B'(t) = f(¢, B(¢)). Then B’ =’ on an open interval to the left of bg, and
hence o, f differ by a constant on this interval. Since their limit as ¢ — by
are equal, this constant is 0. Thus we have extended the domain of
definition of « to a larger interval, as was to be shown.

The next proposition describes the solutions of linear differential
equations depending on parameters.

Proposition 1.9. Let J be an open interval of R containing 0, and let V
be an open set in a Banach space. Let E be a Banach space. Let

g: JxV — L(E,E)
be a continuous map. Then there exists a unique map
i I x V— L(EE)
which, for each x €V, is a solution of the differential equation
DhA(t, x) = g(1, )AL, x), A0, x) =id.

This map A is continuous.
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Remark. In the present case of a linear differential equation, it is not
necessary to shrink the domain of definition of its flow. Note that the
differential equation is on the space of continuous linear maps. The
corresponding linear equation on E itself will come out as a corollary.

Proof of Proposition 1.9. Let us first fix x € V. Consider the differential
equation
DiA(t, x) = g(t, x)A(t, x),

with initial condition A(0, x) =id. This is a differential equation on
L(E, E), where f(¢, z) = gx(t)z for z € L(E, E), and we write g,(?) instead
of g(t, x). Let the notation be as in Corollary 1.8. Then hypothesis (i) is
automatically satisfied since the open set U is all of L(E, E). On every
compact subinterval of J, g, is bounded, being continuous. Omitting the
index x for simplicity, we have

t

AMt) =id + L () A(u) du,

whence for ¢ = 0, say
t
) <1 +BJ 1A(u)| .
0

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also
satisfied. Hence the integral curve is defined on all of J.

We shall now prove the continuity of A. Let (fo, xo) € J x V. Let I be
a compact interval contained in J, and containing ¢, and 0. As a function
of 1, A(t, xo) is continuous (even differentiable). Let C > 0 be such that
|A(z, x0)| £ C for all tel. Let V; be an open neighborhood of xp in V'
such that g is bounded by a constant K >0 on I x V.

For (z,x) eI x V; we have

A(2, x) — Alto, x0)| < |A(2, X) — A(t, x0)| + |A(t, X0) — Alto, Xo)|-

The second term on the right is small when ¢ is close to 7. We investigate
the first term on the right, and shall estimate it by viewing A(f, x) and
A, x0) as approximate solutions of the differential equation satisfied by
A‘(ta x). We ﬁnd
,Dll(ta x0) - g(t, x)j'(t’ xO)l
= |Dl'1(t7 xO) - g(tv X)l(l‘, X()) +g_(ta xO)A(A xO) - g(ta X())/i(t, xO)l
< lg(t, x0) — g(t, X AL, x0)) = |g(2, x0) — g(2, x)|C.
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By the usual proof of uniform continuity applied to the compact set
I x {xo} given € > 0, there exists an open nelghborhood Vo of xp con-
tained in V7, such that for all (¢, x) eI x V, we have

lg(t, x) — g(t, x0)| < €/C.

This implies that A(z, xo) is an e-approximate solution of the differential
equation satisfied by A(?, x). We apply Proposition 1.4 to the two curves

oo(t) = At, o) and () = A1, %)
for each x € Vo. We use the fact that 1(0, x) = (0, xp) = id. We then
find
M(t, x) - l(l, X())‘ < €Ky

for some constant K; > 0, thereby proving the continuity of 4 at (to, Xo).

Corollary 1.10. Let the notation be as in Proposition 1.9. For each
xeV and z€ E the curve

B(t, x, z) = AL, x)z

with initial condition B(0, x,z) =z is a solution of the differential
equation

Dlﬁ(t) X, Z) = g(tv X)ﬁ(t, X, Z).
Furthermore, B is continuous in its three variables.

Proof. Obvious.

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval in
R containing 0 and U open in the Banach space E. Let

f:JxU—E

be a CP-morphism with p 21, and let xo € U. There exists a unique
local flow for f at xo. We can select an open subinterval Jo of J
containing 0 and an open subset Uy of U containing xo such that the

unique local flow
o Jo X Uo - U

is of class CP?, and such that D,a satisfies the differential equation

D Dsa(t, x) = Do f (¢, a(t, x))Dya(t, X)

on Jo x Uy with initial condition Dya(0, x) =id
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Proof. Let
g: Jx U — L(E, E)

be given by g(t, x) = D2 f (¢, a(t, x)). Select J; and Up such that « is
bounded and Lipschitz on J; x Uy (by Corollary 1.6), and such that g is
contil?uous and bounded on J; x Up. Let Jy be an open subinterval of J;
containing 0 such that its closure Jy is contained in J;.
) Let A(z, x) be the solution of the differential equation on L(E, E) given
Yy
Di(t, x) = g(t, x)A(t, x), (0, x) =id

as in Proposition 1.9. We contend that D,u exists and is equal to A on
Jo x Up. This will prove that D« is continuous, on Jy x Uj.
Fix xe U,. Let

0(t, h) = a(t, x + h) — «ft, x).

Then
Dy0(t, h) = Dya(t, x + h) — Diaf(t, x)

= 7t alt, x+h)) = £ (2, a(t, x).
By the mean value theorem, we obtain
|D10(t h) - g(t’ x)e(t, h)l
= |7 (t, a(t, x + ) — f(2, a(s, x)) — Daf (¢, alt, x))6(2, h)|
é Ihl sup ,DZf(tv y) - DZf(ta d(l, x))lv

where y ranges over the segment between «(z, x) and a(z, x + k). By the
compactness of Jy it follows that our last expression is bounded by ||y (R)
where y(h) tends to 0 with A, uniformly for ¢ in J,. Hence we obtain

|6°(2, ) — g(1, x)6(t, k)| < |BlY(h),

for all #in Jo. This shows that (¢, k) is an |h|y(h) approximate solution
for the differential equation satisfied by A(s, x)h, namely

D1A(t, x)h — g(t, x)A(t, x)h = 0,

with the initial condition 1(0, x)h = h. We note that (¢, k) has the same

initial condition, 0(0 h) = h. Taking t, = 0 in Proposition 1.4, we obtain
the estimate

|6(2, k) — A(t, x)h| < Ci[h|y(h)
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for all ¢ in Jo. This proves that D,a is equal to 4 on Jy x Uy, and is
therefore continuous on Jy x Up.

We have now proved that Dja and D,a exist and are continuous on
Jo x Up, and hence that a is of class C! on Jy x U.

Furthermore, D,o satisfies the differential equation given in the
statement of our theorem on Jy x Uy. Thus our theorem is proved when

p=1

A flow which satisfies the properties stated in the theorem will be called
locally of class C?. '

Consider now again the linear equation of Proposition 1.9. We re-
formulate it to eliminate formally the parameters, namely we define a

vector field
G: JxV xL(E,E) —» F x L(E, E)

to be the map such that
G(t, x, w) = (0, g(t, x)o)

for w € L(E, E). The flow for this vector field is then given by the map 4
such that
A(t, x, w) = (x, A(t, X)w).

If g is of class C! we can now conclude that the flow A is locally of class
C!, and hence putting @ = id, that A is locally of class C'.

We apply this to the case when g(¢, x) = Do f(t, a(t, x)), and to the
solution D,a of the differential equation

Di(D,a)(t, x) = g(t, x)Daa(t, x)

locally at each point (0, x), xe U. Let p =22 be an integer and assume
out theorem proved up to p — 1, so that we can assume « locally of class
CP1 and f of class CP. Then g is locally of class C?~1, whence Dja is
locally C?~1. From the expression

D]d(l, x) = f(t’ d([, X))
we conclude that Dy« is CP~!, whence « is locally C?.

If fis C, and if we knew that « is of class C? for every integer p on its
domain of definition, then we could conclude that « is C®; in other words,
there is no shrinkage in the inductive application of the local theorem. We
shall do this at the end of the section. .
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We shall now give another proof for the local smoothness of the flow
.whlch depends on a simple application of the implicit mapping theoren;
in Banach spaces, and was found independently by Pugh and Robbin
[Ro 68]. One advantage of this proof is that it extends to H? vector fields
as noted by Ebin and Marsden [EbM 70]. ’

Let Ube openin E and let f: U — E be a C? map. Let b > 0 and let
I, be the closed interval of radius » centered at 0. Let

F=C%I, E)

be the Banach space of continuous maps of I, into E. We let ¥ be the
subset of F consisting of all continuous curves

o: I, - U

mapping I, into our open set U. Then it is clear that V is open in F
because for each curve o the image o(l;) is compact, hence at a finite

distance from the complement of U, so that any curve close to it is also
contained in U.

We define a map

T: UxV SF
by

T(x, 0)=X+J foo—o.
0

Here we omit the dummy variable of integration, and x stands for the

const_ant curve with value x. If we evaluate the curve T(x, o) at ¢, then by
definition we have

t

T(x, 0)(t) = x + J f(o(w) du— a(t).

0
Fem'ma 1.12. The map T is of class CP, and its second partial derivative
is given by the formula
DyT(x, o) =j Dfooc—-1
0

where I is the identity. In terms of t, this reads

D2T(x, a)h(t) = Lt Df (0(u))h(u) du — h(z).



82 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS [Iv, §1]

Proof. It is clear that the first partial derivative D;T exists and is
continuous, in fact C®, being linear in x up to a translation. To determine
the second partial, we apply the definition of the derivative. The deri-
vative of the map ¢ — o is of course the identity. We have to get the
derivative with respect to o of the integral expression. We have for small 4

|

< J \fo(o+h)— foa—(Df oa)hl.
0

H Jofo(a+h)_Lfoa—jo(pfoa)h

We estimate the expression inside the integral at each point u, with u
between 0 and the upper variable of integration. From the mean value
theorem, we get

| £ (o(w) + h(w)) — f(o(u)) ~ Df (o(u))h(u)| < ||A|| sup |Df (z.) — Df (o(w))|

where the sup is taken over all points z, on the segment between () and
o(u) + h(u). Since Df is continuous, and using the fact that the image of
the curve o(l;) is compact, we conclude (as in the case of uniform
continuity) that as ||| — 0, the expression

sup | Df (z,) — Df (a(w))]

also goes to 0. (Put the € and J in yourself.) By definition, this gives us the
derivative of the integral expression in ¢. The derivative of the final term
is obviously the identity, so this proves that D,T is given by the formula
which we wrote down.

This derivative does not depend on x. It is continuous in o. Namely,
we have

DyT(x, 1) — DT (x, 0) = J [Df ot — Df o a].
0

If ¢ is fixed and 7 is close to o, then Df ot — Df oo is small, as one
proves easily from the compactness of a(l;), as in the proof of uniform
continuity. Thus D,T is continuous. By Proposition 3.5 of Chapter I, we
now conclude that T is of class C!.

The derivative of D,T with respect to & can again be computed as
before if Df is itself of class C!, and thus by induction, if fis of class C?
we conclude that D,T is of class CP~! so that by the same reference, we
conclude that T itself is of class CP. This proves our lemma.

We observe that a solution of the equation

T(x,0) =0

[IV, §1] EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS 83

is precisely an integral curve for the vector field, with initial condition
equal to x. Thus we are in a situation where we want to apply the implicit
mapping theorem.

Lemma 1.13. Let xo € U. Let a > 0 be such that Df is bounded, say by
a number Cy > 0, on the ball B,(xo) (we can always find such a since Df
is continuous at xo). Let b < 1/Cy. Then D,T(x, o) is invertible for all
(x, 0) in By(xp) x V.

Proof. We have an estimate

J L Df (o(u))h(u) du| < bCy||h.

This means that
|D2T(x, O') +I| <1,

and hence that D,T(x, o) is invertible, as a continuous linear map, thus
proving Lemma 1.13.

We are ready to reprove the local smoothness theorem by the present
means, when p is an integer, namely:

Theorem 1.14. Let p be a positive integer, and let f: U — E be a C?
vector field. Let xo € U. Then there exist numbers a, b > 0 such that the
local flow

o: Jb X Ba(x()) — U
is of class CP,

Proof. We take a so small and then b so small that the local flow exists
and is uniquely determined by Proposition 1.1. We then take b smaller
and a smaller so as to satisfy the hypotheses of Lemma 1.13. We can then
apply the implicit mapping theorem to conclude that the map x — a, is of
class C?. Of course, we have to consider the flow « and still must show
that « itself is of class C?. It will suffice to prove that Dy« and D,« are of
class1 CP~1, by Proposition 3.5 of Chapter I. We first consider the case
p=1

We could derive the continuity of o from Corollary 1.2 but we can also

get it as an immediate consequence of the continuity of the map x — oy.
Indeed, fixing (s, y) we have

Jo(t, x) — (s, )| < [o(t, %) — (2, )] + Ja(t, ») — (s, )|
< ““x - “y“ + l“y(t) - “,v(s)l-

Since a) is continuous (being differentiable), we get the continuity of «.
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Since

Dia(t, x) = £ (1, %),
we conclude that Dja is a composite of continuous maps, whence

continuous.
Let ¢ be the derivative of the map x — a, so that

9 By(xo) — L(E, C°(I;, E)) = L(E, F)
is of class C?~!. Then
O = tx = QX)W + WY (w),
where y(w) — 0 as w — 0. Evaluating at ¢, we find
alt, x+w) —a(t, x) = (p(x)w) () + Wy (w)(2),
and from this we see that

Daa(t, x)w = (p(x)w)(2).
Then
|Dya(2, x)w — Daa(s, y)w|
< |(p(x)w)(®) = (pOIW) (D] + | (e(1)W) (1) = (9()W) (5)]-

The first term on the right is bounded by

lo(x) — e(n)| Wl
so that
|Dya(t, x) — Daa(t, ¥)| < lo(x) — e(y)|-

We shall prove below that

|(p(y)w) () = (2(»)w)(5)|

is uniformly small with respect to w when s is close to z. This proves the
continuity of D,a, and concludes the proof that « is of class cl.

The following proof that |(p(»)w)(£) — (¢(»)w)(s)| is uniformly small
was shown to me by Professor Yamanaka. We have

4

1) a(t, x) = x+J S (a(u, x)) du.

0
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Replacing x with x+ Aw (we E, 1 #0), we obtain
t

(2) a(t, x +Aw) = x + Aw + J S (a(u, x + Aw)) du.
0

Therefore

a(t, x + Aw) — a(t, x)
© .

=w+ L% [f (a(u, x + Aw)) — f(a(u, x))] du.

On the other hand, we have already seen in the proof of Theorem 1.14
that

(4) alt, x +Aw) — a(t, x) = A(e(x)w) (1) + |4] [wiy (Aw)(2).
Substituting (4) in (3), we obtain:

(p(t)w) (1) + l%“whﬁ(lw)(t) =w+ JI% [f (2w, x + Aw)) — £ ((n, x))] du

0

t gl

= w+J J G(u, A, v) dv du,
0 Jo

where

. G(u, 4, v) = Df (a(u, x) + vey (A)) ((p(x)w)(w) + €2(4))
with

e1(4) = Ap(x)w) () + || Wiy (Aw)(u), e2(2) = I—?W(AW)(u)-

Letting A — 0, we have
(5) (p(x)w)(H) =w+ J(: Df (a(u, x)) (p(x)w)(u) du.
By (5) we have

(o) (0~ (w6 < | ' Df (s, 2)) ((x)w) (1)

= bCilp(x)| - Iw] - |t = s,

from which we immediately obtain the desired uniformity.

Returning to our main concern, the flow, we have

alt, x) = x+ J(:f(oz(u, x)) du.
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We can differentiate under the integral sign with respect to the parameter
x and thus obtain

Dya(t, x) =1+ L; Df (a(u, x)) Daot(u, x) du,

where I is a constant linear map (the identity). Differentiating with respect
to ¢ yields the linear differential equation satisfied by D,a, namely

DyDyu(t, x) = Df (a(t, x))Daa(t, x)

and this differential equation depends on time and parameters. We have
seen earlier how such equations can be reduced to the ordinary case. We
now conclude that locally, by induction, D;a is of class C?~! since Df is
of class CP~!. Since

Dya(t, x) = f(a(t, x)),

we conclude by induction that Dja is CP~!. Hence « is of class C? by
Proposition 3.5 of Chapter I. Note that each time we use induction, the
domain of the flow may shrink. We have proved Theorem 1.14, when p is
an integer.

We now give the arguments needed to globalize the smoothness. We
may limit ourselves to the time-independent case. We have seen that the
time-dependent case reduces to the other.

Let U be open in a Banach space E, and let /: U — E be a C? vector
field. We let J(x) be the domain of the integral curve with initial
condition equal to w.

Let D(f) be the set of all points (¢, x) in R x U such that ¢ lies in
J(x). Then we have a map

a: D) - U

defined on all of D(f), letting «(¢, x) = a.(?) be the integral curve on J(x)
having x as initial condition. We call this the flow determined by f, and
we call D(f) its domain of definition.

Lemma 1.15. Let f: U — E be a C? vector field on the open set U of
E, and let o be its flow. Abbreviate o(t, x) by tx, if (¢, x) is in the
domain of definition of the flow. Let xe€ U. If ty lies in J(x), then

J(tox) = J(x) —to
(translation of J(x) by —t), and we have for all t in J(x) —t:

t(tox) = (t + to)x.
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Proof. The two curves defined by
t—aft, a(ty, x))  and > a(t+ 1, X)

are integral curves of the same vector field, with the same initial condition
tox at t=0. Hence they have the same domain of definition J(fx).
Hence 1, lies in J(fx) if and only if # + ¢ lies in J(x). This proves the
first assertion. The second assertion comes from the uniqueness of the
integral curve having given initial condition, whence the theorem follows.

Theorem 1.16 (Global Smoothness of the Flow). If f is of class C? (with
p = ), then its flow is of class C? on its domain of definition.

Proof. First let p be an integer = 1. We know that the flow is locally
of class C? at each point (0, x), by the local theorem. Let xo € U and let
J(xo) be the maximal interval of definition of the integral curve having xo
as initial condition. Let D(f) be the domain of definition of the flow, and
let « be the flow. Let Q be the set of numbers » > 0 such that for each ¢
with 0 < r < b there exists an open interval J containing ¢ and an open set
V containing x, such that J x V is contained in D{f) and such that o is of
class C? on J x V. Then Q is not empty by the local theorem. If Q is not
bounded from above, then we are done looking toward the right end point
of J(xo). If Q is bounded from above, we let b be its least upper bound.
We must prove that b is the right end point of J(x;). Suppose that this
is not the case. Then a(b, xo) is defined. Let x; = a(b, xo). By the local
theorem, we have a unique local flow at x;, which we denote by f:

/3: Jaxﬂa(xl)ﬁ Ua ﬂ(O’ x)=x,

defined for some open interval J, = (—a, a) and open ball B,(x;) of radius
a centered at x;. Let 0 be so small that whenever b —J < t < b we have

a(t, Xo) € Bya(x1).
We can find such 6 because

ling a(t, xo) = x;

t—

by continuity. Select a point # such that b—6 <1 <b. By the
hypothesis on b, we can select an open interval J; containing ¢, and an
open set U; containing xo so that

a: i x Uy — Ba/z(xl)

maps J; x U; into B,/;(x1). We can do this because o is continuous at
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(t1, xo), being in fact C” at this point. If |t — t1| < a and x € U;, we define

p(t, x) =ﬂ(t -1, a(t, x))
Then

o(t1, x) = B(0, a(ty, x)) = a(ty, x)
and

D1¢(l‘, x) = Dlﬂ(t -1, oz(tl, x))
= f(ﬂ(t -1, a(th X)))
= f((”(t1 x))

Hence both ¢, and «, are integral curves for f with the same value at #.
They coincide on any interval on which they are defined by the uniqueness
theorem. If we take J very small compared to a, say § < a/4, we see that
@ is an extension of a to an open set containing (¢, o), and also
containing (b, xo). Furthermore, ¢ is of class CP, thus contradicting the
fact that b is strictly smaller than the end point of J(xp). Similarly, one
proves the analogous statement on the other side, and we therefore see
that D(f) is open in R x U and that « is of class C? on D(f), as was to
be shown.

The idea of the above proof is very simple geometrically. We go as far
to the right as possible in such a way that the given flow « is of class C?
locally at (¢, xo). At the point (b, xo) we then use the flow f to extend
differentiably the flow « in case b is not the right-hand point of J(xp). The
flow f at a(b, xo) has a fixed local domain of definition, and we simply
take ¢ close enough to b so that f gives an extension of «, as described in
the above proof.

Of course, if fis of class C®, then we have shown that « is of class C?
for each positive integer p, and therefore the flow is also of class C®.

In the next section, we shall see how these arguments globalize even
more to manifolds.

IV, §2. VECTOR FIELDS, CURVES, AND FLOWS

Let X be a manifold of class C? with p = 2. We recall that X is assumed
to be Hausdorff. Let n: T(X) — X be its tangent bundle. Then T(X) is
of class C?~1, p—12>1.

By a (time-independent) vector field on X we mean a cross section of
the tangent bundle, i.e. a morphism (of class CP~!)

& X - T(X)
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such that £(x) lies in the tangent space T,(X) for each x € X, or in other
words, such that #¢ = id.

If T(X) is trivial, and say X is an E-manifold, so that we have a VB-
isomorphism of T(X) with X x E, then the morphism ¢ is completely
determined by its projection on the second factor, and we are essentially in
the situaiton of the preceding paragraph, except for the fact that our
vector field is independent of time. In such a product representation, the
projection of ¢ on the second factor will be called the local representation
of £, It is a CP~!'-morphism

f: X—EKE

and &(x) = (x, f(x)). We shall also say that ¢ is represented by f locally if
we work over an open subset U of X over which the tangent bundle
admits a trivialisation. We then frequently use ¢ itself to denote this local
representation.

Let J be an open interval of R. The tangent bundle of J is then J x R
and we have a canonical section : such that i(f) =1 for all teJ. We
sometimes write z, instead of i(z).

By a curve in X we mean a morphism (always of class = 1 unless
otherwise specified)

o J—- X

from an open interval in R into X. If g: X — Y is a morphism, then g o «
is a curve in Y. From a given curve o, we get an induced map on the
tangent bundles:

J xR — T(X)

b

J — X
«

and a, oz will be denoted by «’ or by da/dt if we take its value at a point
tin J. Thus o’ is a curve in T(X), of class CP7! if « is of class C?.
Unless otherwise specified, it is always understood in the sequel that we
start with enough differentiability to begin with so that we never end up
with maps of class < 1. Thus to be able to take derivatives freely we have
to take X and « of class C? with p = 2.

If g: X — Y is a morphism, then

(go ot)/(t) = g.a'(¢).

This follows at once from the functoriality of the tangent bundle and the
definitions.
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Suppose that J contains 0, and let us consider curves defined on J and
such that «(0) is equal to a fixed point xo. We could say that two such
curves aj, o are tangent at 0 if aj(0) = o5(0). The reader will verify
immediately that there is a natural bijection between tangency classes of
curves with «(0) = xo and the tangent space Ty (X) of X at xo. The
tangent space could therefore have been defined alternatively by taking
equivalence classes of curves through the point.

Let ¢ be a vector field on X and xp a point of X. An integral curve for
the vector field £ with initial condition x;, or starting at xo, is a curve (of
class C771)

o J - X

mapping an open interval J of R containing 0 into X, such that «(0) = xp
and such that

for all teJ. Using a local representation of the vector field, we know
from the preceding section that integral curves exist locally. The next
theorem gives us their global existence and uniqueness.

Theorem 2.1. Let o;: J1 — X and oy: J; — X be two integral curves of
the vector field £ on X, with the same initial condition xy. Then oy and
oy are equal on JyNJy.

Proof. Let J* be the set of points ¢ such that o;(¢) = o(¢). Then J*
certainly contains a neighborhood of 0 by the local uniqueness theorem.
Furthermore, since X is Hausdorff, we see that J* is closed. We must
show that it is open. Let ¢* be in J* and define B8,, f, near 0 by

Bi(r) = (" + 1),
Ba(t) = aa(t* +1).

Then B, and B, are integral curves of ¢ with initial condition «;(z*) and
ax(t*) respectively, so by the local uniqueness theorem, 8, and f, agree in
a neighborhood of 0 and thus a;, oy agree in a neighborhood of ¢*,
thereby proving our theorem.

It follows from Theorem 2.1 that the union of the domains of all
integral curves of & with a given initial condition xp is an open interval
which we denote by J(xp). Its end points are denoted by rt(x¢) and
t~(xp) respectively. (We do not exclude +oo and —o0.)

Let D(£) be the subset of R x X consisting of all points (¢, x) such that

r(x) <t<rt(x).
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A (global) flow for £ is a mapping
a: D) — X,

such that for each x € X, the map a,: J(x) — X given by
ox(t) = a(t, x)

defined on the open interval J(x) is a morphism and is an integral curve
for & with initial condition x. When we select a chart at a point xy of X,
then one sees at once that this definition of flow coincides with the
definition we gave locally in the previous section, for the local repre-
sentation of our vector field.

Given a point x € X and a number ¢, we say that zx is defined if (¢, x) is
in the domain of «, and we denote «(z, x) by #x in that case.

Theorem 2.2. Let & be a vector field on X, and a its flows. Let x be a
point of X. If ty lies in J(x), then

J(tox) = J(x) — 1
(transiation of J(x) by —ty), and we have for all t in J(x) —ty:
t(tox) = (¢ + fo)x.

Proof. Our first assertion follows immediately from the maximality
assumption concerning the domains of the integral curves. The second is
equivalent to saying that the two curves given by the left-hand side and
right-hand side of the last equality are equal. They are both integral
curves for the vector field, with initial condition fyx and must therefore be
equal.

In particular, if #, £, are two numbers such that #x is defined and
t(tix) is also defined, then so is (#; + f)x and they are equal.

Theorem 2.3. Let & be a vector field on X, and x a point of X. Assume
that t*(x) < co. Given a compact set A = X, there exists € > 0 such that
Jor all t > tt(x) — €, the point tx does not lie in A, and similarly for t~.

Proof. Suppose such e does not exist. Then we can find a sequence ¢,
of real numbers approaching ¢*(x) from below, such that t,x lies in 4.
Since A4 is compact, taking a subsequence if necessary, we may assume
that 7,x converges to a point in 4. By the local existence theorem, there
exists a neighborhood U of this point y and a number J > 0 such that
t*(z) > 6 for all ze U. Taking n large, we have

H(x) <o+t
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and t,x is in U. Then by Theorem 2.2,
F(x) =15 (tax) + 1y > 6+ 1y > 7(x)
contradiction.
Corollary 2.4. If X is compact, and & is a vector field on X, then
DE)=RxX.

It is also useful to give one other criterion when D(£) =R x X, even
when X is not compact. Such a criterion must involve some structure
stronger than the differentiable structure (essentially a metric of some sort),
because we can always dig holes in a compact manifold by taking away a
point.

Proposition 2.5. Let E be a Banach space, and X an E-manifold. Let ¢
be a vector field on X. Assume that there exist numbers a >0 and K > 0
such that every point x of X admits a chart (U, ¢) at x such that the
local representation f of the vector field on this chart is bounded by K,
and so is its derivative f'. Assume also that pU contains a ball of radius
a around ¢px. Then D({) =R x X.

Proof. This follows at once from the global continuation theorem, and
the uniformity of Proposition 1.1.

We shall prove finally that D(&) is open and that « is a morphism.

Theorem 2.6. Let & be a vector field of class CP~! on the CP-manifold
X 2= p =< ). Then D(&) is open in R x X, and the flow o for & is a
C?~V\-morphism.

Proof. Let first p be an integer = 2. Let xg € X. Let J* be the set of
points in J(xp) for which there exists a number >0 and an open
neighborhood U of xg such that (¢ — b, t + b) U is contained in D(¢), and
such that the restriction of the flow « to this product is a C?~!-morphism.
Then J* is open in J(xg), and certainly contains 0 by the local theorem.
We must therefore show that J* is closed in J(xp).

Let s be in its closure. By the local theorem, we can select a
neighborhood ¥ of sxg = a{s, xp) so that we have a unique local flow

B: JuxV —-X

for some number a > 0, with initial condition 8(0, x) = x for all xe V,
and such that this local flow g is C?7~1.
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The integral curve with initial condition xo is certainly continuous on
J(xo). Thus xo approaches sxo as ¢ approaches s. Let ¥ be a given
small neighborhood of sxq contained in V. By the definition of J*, we can
find an element #; in J* very close to s, and a small number b (compared
to a) and a small neighborhood U of x¢ such that « maps the product

(h—b,t1 +b)x U

into Vi, and is CP~! on this product. For teJ, +#; and x € U, we define

o(t, x) = Bt — 1, a(t1, x)).
Then ¢(t1, x) = B(0, a(t1, x)) = a(t1, x), and

Dyo(t, x)D1B(t — 11, a(ty, x))
= E(B(t — 11, (11, X))
= f((o(t’ x))

Hence both ¢,, «, are integral curves for &, with the same value at f.
They coincide on any interval on which they are defined, so that ¢, is
a continuation of a, to a bigger interval containing s. Since o is CP-! on
the product (#; —b, t; +b) x U, we conclude that ¢ is also cr1 on
(Ja+ 11) x U. From this we see that D(£) is open in R x X, and that a is
of class CP~! on its full domain D(&). If p=co, then we can now
conclude that o is of class C” for each positive integer r on D(£), and
hence is C®, as desired.

Corollary 2.7. For each teR, the set of xe€ X such that (t, x) is
contained in the domain D(&) is open in X.

Corollary 2.8. The functions t*(x) and t~(x) are upper and lower
Semicontinuous respectively.

Theorem 2.9. Let & be a vector field on X and w its flow. Let D,(&) be
the set of points x of X such that (t, x) lies in D(&). Then D(&) is open
for each t e R, and o, is an isomorphism of (&) onto an open subset of
X. In fact, 0,(D)) =D, and o' = a_,.

Proof. Immediate from the preceding theorem.

Corollary 2.10. If xo is a point of X and t is in J(xo), then there exists
an open neighborhood U of xo such that t lies in J(x) for all xe U, and
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the map
X — Ix

is an isomorphism of U onto an open neighborhood of tx,.

Critical points

Let £ be a vector field. A critical point of ¢ is a point xp such that
&(xp) = 0. Critical points play a significant role in the study of vector
fields, notably in the Morse theory. We don’t go into this here, but just
make a few remarks to show at the basic level how they affect the
behavior of integral curves.

Proposition 2.11. If o is an integral curve of a C' vector field, &, and «
passes through a critical point, then o is constant, that is a(t) = xo for
all t.

Proof. The constant curve through x is an integral curve for the vector
field, and the uniqueness theorem shows that it is the only one.

Some smoothness of the vector field in addition to continuity must be
assumed for the uniqueness. For instance, the following picture illustrates
a situation where the integral curves are not unique. They consist in
translations of the curve y = x> in the plane. The vector field is con-
tinuous but not locally Lipschitz.

Proposition 2.12. Let ¢ be a vector field and o an integral curve for &.
Assume that all t 20 are in the domain of o, and that

lim o(f) = x;
t—0

exists. Then xi is a critical point for &, that is &(x1) = 0.
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Proof. Selecting ¢ large, we may assume that we are dealing with the
local representation f of the vector field near x;. Then for ¢’ > ¢ large, we

have
tl

a(t') —aft) = J S {a(w)) du.

t

Write f(«a(x)) = f(x1) + g(u), where limg(x) =0. Then

IFGen)l | — 1] < Ja(e") — ()| + ' — f| suplg(u)),

where the sup is taken for u large, and hence for small values of g(u).
Dividing by |¢' — ¢| shows that f(x;) is arbitrarily small, hence equal to 0,
as was to be shown.

Proposition 2.13. Suppose on the other hand that xo is not a critical
point of the vector field £. Then there exists a chart at xy such that the
local representation of the vector field on this chart is constant.

Proof. In an arbitrary chart the vector field has a representation as a
morphism
¢&: U—E

near xp. Let o be its flow. We wish to “straighten out” the integral curves
of the vector field according to the next figure.

of7(z), Pz)

In other words, let v = ¢(xp). We want to find a local isomorphism ¢ at
Xo such that

¢'(x)v = &(p(x))-
We inspire ourselves from the picture. Without loss of generality, we may
assume that xo =0. Let A be a functional such that A(v) #0. We de-
compose E as a direct sum

E=FoRy,



96 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS v, §3]

where F is the kernel of A. Let P be the projection on F. We can write
any x near 0 in the form

x = Px + t(x)v,
where
_ Ax)
(x) = m

We then bend the picture on the left to give the picture on the right using
the flow o of &, namely we define

o(x) = a(z(x), Px).

This means that starting at Px, instead of going linearly in the direction of
v for a time 7(x), we follow the flow (integral curve) for this amount of
time. We find that

¢'(x) = Dya(z(x), Px) % + Daa(7(x), Px) P.

Hence ¢'(0) =id, so by the inverse mapping theorem, ¢ is a local iso-
morphism at 0. Furthermore, since Pv =0 by definition, we have

¢’ (x)v = Dya(z(x), Px) = &(p(x)),

thus proving Proposition 2.13.

IV, §3. SPRAYS

Second-order vector fields and differential equations

Let X be a manifold of class C? with p = 3. Then its tangent bundle
T(X) is of class CP~!, and the tangent bundle of the tangent bundle
T(T(x)) is of class CP~2, with p—2 > 1.

Let a: J — X be a curve of class C? (¢ £ p). A lifting of « into T(X)
is a curve f: J — T(X) such that nff = «. We shall always deal with
g = 2 so that a lift will be assumed of class ¢ — 1 = 1. Such lifts always
exist, for instance the curve o’ discussed in the previous section, called the
canonical lifting of «. ,

A second-order vector field over X is a vector field F on the tangent
bundle T(X) (of class CP!) such that, if z: TX — X denotes the canoni-
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cal projection of T(X) on X, then
n.o F =id., thatis #.F(v)=v forallvin T(X).
Observe that the succession of symbols makes sense, because
n: TT(X)— T(X)

maps the double tangent bundle into T(X) itself.

A vector field F on TX is a second-order vector field on X if and only if it
satisfies the following condition: Each integral curve B of F is equal to the
canonical lifting of =i, in other words

(np) = p.

Here, nf is the canonical projection of f on X, and if we put the
argument ¢, then our formula reads

(nB)'(r) = B()

for all ¢ in the domain of B. The proof is immediate from the definitions,
because
(np) =n.p =n.oFop

We then use the fact that given a vector v € TX, there is an integral curve
B =B, with B,(0) = v (initial condition v).

Let a: J — X be a curve in X, defined on an interval J. We define « to
be a geodesic with respect to F if the curve

o T TX

is an integral curve of F. Since na’ = a, that is o’ lies above a in TX, we
can express the geodesic condition equivalently by stating that « satisfies
the relation

o' = F(o').

This relation for curves « in X is called the second-order differential
equation for the curve «, determined by F. Observe that by definition, if 8
is an integral curve of F in TX, then znf is a geodesic for the second order
vector field F.

Next we shall give the representation of the second order vector field
and of the integral curves in a chart.
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Representation in charts

Let U be open in the Banach space E, so that T(U)= U x E, and
T(T(U)) = (U xE) x (ExE). Then n: UxE — U is simply the pro-
jection, and we have a commutative diagram:

(UxE)x(ExE) —*» UxE

| |

UxE — U

n

The map #. on each fiber E x E is constant, and is simply the projection
of E x E on the first factor E, that is

(X, v, u, w) = (x, u).
Any vector field on U x E has a local representation
f: UXE—-EXxE
which has therefore two components, f = (f], f;), each f; mapping U x E
into E. The next statement describes second order vector fields locally in

the chart.

Let U be open in the Banach space E, and let T(U) = U x E be the
tangent bundle. A CP~%-morphism

f: UxE—-EXxE

is the local representation of a second order vector field on U if and

only if
f(xv U) = (l), f2(x7 U))

The above statement is merely making explicit the relation #n,F = id, in
the chart. If we write f = (f, f;), then we see that

f 1 (X, U) =70
We express the above relations in terms of integral curves as follows.

Let B = f(¢) be an integral curve for the vector field F on TX. In the
chart, the curve has two components

B(1) = (x(1), v(t)) € U x E.
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By definition, if f is the local representation of F, we must have

d, dx di
'Zlg: (%7 ;g) = f(xv U) = (U’ fZ(-xa U))

Consequently, our differential equation can be rewritten in the following
manner:
dx

Et_:v(t)a
Px_do_ (v
az @t \V )

which is of course familiar.

()

Sprays

We shall be interested in special kinds of second-order differential
equations. Before we discuss these, we make a few technical remarks.

Let s be a real number, and n: £ — X be a vector bundle. If vis in E,
so in E, for some x in X, then sv is again in E, since E, is a vector
space. We write sg for the mapping of E into itself given by this scalar
multiplication. This maping is in fact a VB-morphism, and even a VB-
isomorphism if s# 0. Then

T(sg) = (sg),: T(E) — T(E)

is the usual induced map on the tangent bundle of E.
Now let E=TX be the tangent bundle itself. Then our map sy
satisfies the property

(STX)* OSTTX = STTYX © (STX)*,

which follows from the linearity of s7y on each fiber, and can also be seen
directly from the representation on charts given below.

We define a spray to be a second-order vector field which satisfies the
homogeneous quadratic condition:

SPR 1. For all seR and ve T(X), we have
F(sv) = (stx) * sF(v).

It is immediate from the conditions defining sprays (second-order vector
field satisfying SPR 1) that sprays form a convex set! Hence if we can
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exhibit sprays over open subsets of Banach spaces, then we can glue them
together by means of partitions of unity, and we obtain at once the
following global existence theorem.

Theorem 3.1. Let X be a manifold of class C? (p 23). If X admits
partitions of unity, then there exists a spray over X.

Representations in a chart
Let U be open in E, so that TU = U x E. Then
TTU = (U xE) x (E xE),

and the representations of syy and (sry), in the chart are given by the
maps

st (x, v) = (x, sv) and (stv),: (%, v, u, w) — (x, sv, u, sw).

Thus

strv o (stu),: (x, v, u, w) — (x, sv, su, szw).

We may now give the local condition for a second-order vector field F
to be a spray.

Proposition 3.2. In a chart UXE for TX, let f: UxE—-ExE

represent F, with f = (f|, f,). Then f represents a spray if and only if,
for all seR we have

fo(x, 5v) = 5% f(x, v).

Proof. The proof follows at once from the definitions and the formula °

giving the chart representation of s(szx),.

Thus we see that the condition SPR 1 (in addition to being a second-
order vector field), simply means that f, is homogeneous of degree 2 in the
variable v. By the remark in Chapter I, §3, it follows that f, is a quadratic
map in its second variable, and specifically, this quadratic map is given by

falx, v) =3 D3 f5(x, 0)(v, v).

Thus the spray is induced by a symmetric bilinear map given at each point
x in a chart by

(2) B(x) = D% f,(x, 0).

IV, §3] SPRAYS 101

Conversely, suppose given a morphism

U— Lszym(E, E) given by x — B(x)
from U into the space of symmetric bilinear maps E x E — E. Thus for
each v, we E the value of B(x) at (v, w) is denoted by B(x; v, w) or
B(x)(v, w). Define fo(x, v) = B(x; v,v). Then f, is quadratic in its
second variable, and the map f defined by

f(x,v) = (v, B(x; v, 0)) = (v, falx, v))

represents a spray over U. We call B the symmetric bilinear map asso-
ciated with the spray. From the local representations in (1) and (2), we
conclude that a curve « is a geodesic if and only if o satisfies the differential
equation

(3) o"() = By (o (1), o/ (1)) for all £.

We recall the trivial fact from linear algebra that the bilinear map B is
determined purely algebraically from the quadratic map, by the formula

B(v, w) =1 [f,(v +w) — fr(v) = /L(W)].

We have suppressed the x from the notation to focus on the relevant
second variable v. Thus the quadratic map and the symmetric bilinear
map determine each other uniquely.

The above discussion has been local, over an open set U in a Banach
space. In Proposition 3.4 and the subsequent discussion of connections, we
show how to globalize the bilinear map B intrinsically on the manifold.

Examples. As a trivial special case, we can always take f,(x, v) = (v, 0)
to represent the second component of a spray in the chart.

In the chapter on Riemannian metrics, we shall see how to construct a
spray in a natural fashion, depending on the metric.

In the chapter on covariant derivatives we show how a spray gives rise
to such derivatives.

Next, let us give the transformation rule for a spray under a change of
charts, i.e. an isomorphism #: U — V. On TU, the map Th is represented
by a morphism (its vector component)

H: UXE—-ExE givenby  H(x, v) = (h(x), h'(x)v).

We then have one further lift to the double tangent bundle 77U, and we
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may represent the diagram of maps symbolically as follows:

(U xE)x ExE ), v xE)x (E x E)

o LA

UxE H=tm} V x E

]

U vV

Then the derivative H'(x, v) is given by the Jacobian matrix operating on
column vectors ‘(u, w) with u, w e E, namely

700 = (g o) 7059(8)= G e ) (2)

Thus the top map on elements in the diagram is given by
(H, H'): (x, v, u, w) — (h(x), k' (x)v, B'(x)u, B" (x)(u, v) + h'(x)w).

For the application, we put u = v because f|(x, v) = v, and w = f; ,(x, v),
where f;; and f, denote the representations of the spray over U and V
respectively. It follows that f,, and fj, are related by the formula

T (h(x), b (x)v) = (' (x)v, B"(x)(v, ©) + H'(x) fy,2(%, D))
Therefore we obtain:

Proposition 3.3. Change of variable formula for the quadratic part of a
spray: ‘

fv2(h(x), B (x)v) = h"(x)(v, v) + B'(x) fy,2(x, V),
By (h(x); ' (x)v, h'(x)w) = h"(x)(v, w) + h'(x)By(x; v, w).

Proposition 3.3 admits a converse:

Proposition 3.4. Suppose we are given a covering of the manifold X by
open sets corresponding to charts U, V,..., and for each U we are given
a morphism

By: U— L} (E,E)
which transforms according to the formula of Proposition 3.3 under an
isomorphism h: U — V. Then there exists a unique spray whose asso-
ciated bilinear map in the chart U is given by By.
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Proof. We leave the verification to the reader.

Remarks. Note that By(x; v, w) does not transform like a tensor of
type L3, (E, E), ie. a section of the bundle L2, (TX, TX). There are
several ways of defining the bilinear map B intrinsically. One of them is
via second order bundles, or bundles of second order jets, and to extend
the terminology we have established previously to such bundles, and even
higher order jet bundles involving higher derivatives, as in [Po 62].
Another way will be done below, via connections. For our immediate
purposes, it suffices to have the above discussion on second-order differ-
ential equations together with Proposition 3.3 and 3.4. Sprays were in-
troduced by Ambrose, Palais, and Singer [APS 60], and I used them (as
recommended by Palais) in the earliest version [La 62]. In [Lo 69] the
bilinear map By is expressed in terms of second order jets. The basics
of differential topology and geometry were being established in the early
sixties. Cf. the bibliographical notes from [Lo 69] at the end of his first
chapter.

Connections

We now show how to define the bilinear map B intrinsically and directly.
Matters will be clearer if we start with an arbitrary vector bundle

p E—X

over a manifold X. As it happens we also need the notion of a fiber
bundle when the fibers are not necessarily vector spaces, so don’t have a
linear structure. Let f: ¥ — X be a morphism. We say that f (or ¥ over
X) is a fiber bundle if f is surjective, and if each point x of X has an open
neighborhood U, and there is some manifold Z and an isomorphism
h: f~Y(U) — U x Z such that the following diagram is commutative:

wy — L uxz
P

Thus locally, f: Y — X looks like the projection from a product space.
The reason why we need a fiber bundle is that the tangent bundle

ng: TE—- F

is a vector bundle over E, but the composite f = pong: TE — X is only
a fiber bundle over X, a fact which is obvious by picking trivializations in
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charts. Indeed, if U is a chart in X, and if U x F — U is a vector bundle
chart for E, with fiber F, and Y = TE, then we have a natural iso-
morphism of fiber bundles over U:

f{U) ———— (U xF)x(ExF)
g Pry2

UxF

AN
pry

U

Note that U being a chart in X implies that U x E — U is a vector bundle
chart for the tangent bundle TU over U.

The tangent bundle TE has two natural maps making it a vector
bundle:

ng: TE — E is a vector bundle over E;

T(p): TE — TX is a vector bundle over TX.

Therefore we have a natural morphism of fiber bundle (not vector bundle)
over X:

(ne, T(p)): TESE®TX  givenby W (ngW, T(p)W)

for We TE. If W e T.E with e € E,, then ngW € E, and T(p)W e T, X.
After these preliminaries, we define a connection to be a morphism of
fiber bundles over X, from the direct sum E@® TX into TE:

H. E®TX - TE
such that

(&, T(p)) o H = idp g 1x,
and such that H is bilinear, in other words H,: E.® T, X — TE is
bilinear.
Consider a chart U as in the above diagram, so
TU=UxE and T(UxF)=(UxF)x(ExF).
Then our map H has a coordinate representation

H(x, e, v) = (x, e, Hi(x, e, v), Hy(x, e, v)) forecFand veE.

The fact that (nz, T(p)) o H = idggrx implies at once that Hy(x, e, v).= v.
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The bilinearity condition implies that for fixed x, the map
(e, v) — Hy(x, e, v)

is bilinear as a map F x E — E. We shall therefore denote this map by
B(x), and we write in the chart

H(x, e, v) = (x, e, v, B(x)(e, v)) or also (x, e, v, B(x, e, v)).

Now take the special case when E = TX. We say that the connection
is symmetric if the bilinear map B is symmetric. Suppose this is the case.
We may define the corresponding quadratic map TX — TTX by letting
fi(x, v) = B(x, v, v). Globally, this amounts to defining a morphism

F: TX - TTX such that F = H o diagonal
where the diagonal is taken in TX @ TX, in each fiber. Thus
F(v) = H(v, v) forve T.X.

Then F is a vector field on TX, and the condition (z,, n,)o H =1id on
TX @ TX implies that F is a second-order vector field on X, in other
words, F defines a spray. It is obvious that all sprays can be obtained in
this fashion. Thus we have shown how to describe geometrically the
bilinear map associated with a spray.

Going back to the general case of a vector bundle E unrelated to TX,
we note that the image of a connection H is a vector subbundle over E.
Let ¥ denote the kernel of the map T(p): TE — TX. We leave it to the
reader to verify in charts that ¥ is a vector subbundle of TE over E, and
that the image of H is a complementary subbundle. One calls V' the
vertical subbundle, canonically defined, and one calls H the horizontal
subbundle determined by the connection. See Chapter X, §4. Also note
that Eliasson [El 67] introduced connections in Banach manifolds, with a
view to applications to manifolds of mappings. Cf. Kobayashi [Ko 57],
Dombrowski [Do 68], and Besse [Be 78] for more basic material on
connections.

IV, §4. THE FLOW OF A SPRAY AND
THE EXPONENTIAL MAP

The condition we have taken to define a spray is equivalent to other
conditions concerning the integral curves of the second-order vector field
F. We shall list these conditions systematically. We shall use the fol-
lowing relation. If a: J — X is a curve, and «a; is the curve defined by
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a1(t) = a(st), then
] (£) = su'(st),

this being the chain rule for differentiation.

If v is a vector in TX, let B, be the unique integral curve of F with
initial condition v (i.e. such that ,(0) = v). In the next three conditions,
the sentence should begin with “for each v in TX”.

SPR 2. A number t is in the domain of B,, if and only if st is in the
domain of B, and then

Bsu(t) = sB,(st).

SPR 3. If s, t are numbers, st is in the domain of B, if and only if s is in
the domain of B,,, and then

B (s) = 7B, (st).

SPR 4. A number t is in the domain of B, if and only if 1 is in the
domain of B,,, and then

B, (1) = nfy(1).
We shall now prove the equivalence between all four conditions.

Assume SPR 1, and let s be fixed. For all ¢ such that sz is in the
domain of f,, the curve f,(st) is defined and we have

% (sB,(s1)) = 5.5B,(st) = s.5F (B,(st)) = F(sB,(st)).

Hence the curve sf,(st) is an integral curve for F, with initial condition
5f,(0) = sv. By uniqueness we must have

5P, (st) = B (1).
This proves SPR 2.

' Assume SPR 2. Since f, is an integral curve of F for each v, with
initial condition v, we have by definition

B (0) = F(sv).

Using our assumption, we also have

Bi(t) = 5 (sB.(s0)) = s.5B1(s0).
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Put ¢ = 0. Then SPR 1 follows because S, and g, are integral curves of F
with initial conditions sv and v respectively.

It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3.
To prove SPR 2, we have

Bolt) = (a8, (0) = 57 (51) = s(B,) (1) = 5B, (s0),

which proves SPR 2.

Assume SPR 4. Then st is in the domain of 8, if and only if 1 is in the
domain of B,,, and s is in the domain of g, if and only if 1 is in the
domain of f,,. This proves the first assertion of SPR 3, and again by
SPR 4, assuming these relations, we get SPR 3.

It is similarly clear that SPR 3 implies SPR 4.

Next we consider further properties of the integral curves of a spray.
Let F be a spray on X. As above, we let B, be the integral curve with
initial condition v. Let D be the set of vectors v in T(X) such that g, is
defined at least on the interval [0, 1]. We know from Corollary 2.7 that ®
is an open set in T(X), and by Theorem 2.6 the map

v By(1)
is a morphism of D into T(X). We now define the exponential map
exp: D= X
exp (v) = 7, (1).
Then exp is a CP~2-morphism. We also call D the domain of the ex-
ponential map (associated with F).

If x € X and 0, denotes the zero vector in T, then from SPR 1, taking
s =0, we see that F(0,) =0. Hence

to be

exp (0x) = x.

Thus our exponential map coincides with = on the zero cross section, and
so induces an isomorphism of the cross section onto X. It will be
convenient to denote the zero cross section of a vector bundle E over X by
Ce(X) or simply (X if the reference to E is clear. Here, E is the tangent
bundle.

We denote by exp, the restriction of exp to the tangent space T. Thus

exp,: Tx — X.



108 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS IV, §4]

Theorem 4.1. Let X be a manifold and F a spray on X. Then
exp,: Ty — X

induces a local isomorphism at 0, and in fact (exp,), is the identity at
0.

Proof. We prove the second assertion first because the main assertion
follows from it by the inverse mapping theorem. Furthermore, since T is
a vector space, it suffices to determine the derivative of exp, on rays, in
other words, to determine the derivative with respect to ¢ of a curve
exp, (tv). This is done by using SPR 3, and we find

d
Enﬂtv = ﬂtu'

Evaluating this at =0 and taking into account that f, has w as initial
condition for any w gives us

(exp,),(0x) = id.
This concludes the proof of Theorem 4.1.

Helgason gave a general formula for the differential of the exponential
map on analytic manifolds [He 61], reproduced in [He 78], Chapter I,
Theorem 6.5. We shall study the differential of the exponential map in
connection with Jacobi fields, in Chapter IX, §2.

Next we describe all geodesics.

Proposition 4.2. The images of straight segments through the origin in

T, under the exponential map exp,, are geodesics. In other words, if
ve T, and we let

(v, 1) = ay(2) = exp, (1),

then «, is a geodesic. Conversely, let a: J — X be a C? geodesic defined
on an interval J containing 0, and such that a(0) = x. Let o'(0) =v.
Then a(t) = exp,(tv).

Proof. The first statement by definition means that «, is an integral
curve of the spray F. Indeed, by the SPR conditions, we know that

(v, 1) = ay(t) = 7B, (1) = 7B, (1),

and (nf,) = B, is indeed an integral curve of the spray. Thus our as-
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sertion that the curves 7+ exp(fv) are geodesics is obvious from the
definition of the exponential map and the SPR conditions.

Conversely, given a geodesic a: J — X, by definition o satisfies the
differential equation

o (1) = F(a'(2)).

The two curves ¢+ a(f) and ¢+ exp,(tv) satisfy the same differential
equation and have the same initial conditions, so the two curves are
equal. This proves the second statement and concludes the proof of the
proposition.

Remark. From the theorem, we note that a C! curve in X is a geodesic
if and only if, after a linear reparametrization of its interval of definition,
it is simply ¢+ exp,(tv) for some x and some o.

We call the map (v, #) — a{v, ¢) the geodesic flow on X. It is defined on
an open subset of TX x R, with a(y, 0) = x if ve T,X. Note that since
n(sB,(f)) = nB,() for se R, we obtain from SPR 2 the property

a(sv, 1) = afv, st)

for the geodesic flow. Precisely, ¢ is in the domain of «, if and only if st is
in the domain of «,, and in that case the formula holds. As a slightly
more precise version of Theorem 4.1 in this light, we obtain:

Corollary 4.3. Let F be a spray on X, and let xo € X. There exists an
open neighborhood U of xy, and an open neighborhood V of 0y, in TX
satisfying the following condition. For every xe U and ve VT, X,
there exists a unique geodesic

oy: (—2,2) > X
such that
w0)=x and  «(0)=v.

Observe that in a chart, we may pick ¥ as a product
V=UxV0)cUxE

where V3(0) is a neighborhood of 0 in E. Then the geodesic flow is
defined on U x V5(0) x J, where J = (-2,2). We picked (-2, 2) for
concreteness. What we really want is that 0 and 1 lie in the interval. Any
bounded interval J containing 0 and 1 could have been selected in the
statement of the corollary. Then of ¢ourse, U and V (or Vz(O)) depend
on J.
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IV, §5. EXISTENCE OF TUBULAR NEIGHBORHOODS
Let X be a submanifold of a manifold ¥. A tubular neighborhood of X in
Y consists of a vector bundle n: E — X over X, an open neighborhood Z
of the zero section {yX in E, and an isomorphism

f:Z-U

of Z onto an open set in Y containing X, which commutes with {:

N

X

Ul

Y

J

We shall call f the tubular map and Z or its image f(Z) the corresponding
tube (in E or Y respectively). The bottom map j is simply the inclusion.
We could obviously assume that it is an embedding and define tubular
neighborhoods for embeddings in the same way. We shall say that our
tubular neighborhood is total if Z = E. In this section, we investigate
conditions under which such neighborhoods exist. We shall consider the
uniqueness problem in the next section.

Theorem 5.1. Let Y be of class C? (p = 3) and admit partitions of unity.
Let X be a closed submanifold. Then there exists a tubular neighborhood
of X in Y, of class CP~2.
Proof. Consider the exact sequence of tangent bundles:
0-TX)—->T(Y)X - NX)—0.
We know that this sequence splits, and thus there exists some splitting
T(Y)|X = T(X) @ N(X)
wher‘e N(X) may be identified with a subbundle of T(Y)|X. Following
Palais, we construct a spray ¢ on T(Y) using Theorem 3.1 and obtain
the corresponding exponential map. We shall use its restriction to N(X),
denoted by exp|N. Thus
exp|lN: DANX)— Y.

We contend that this map is a local isomorphism. To prove this, we may
work locally. Corresponding to the submanifold, we have a product
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decomposition U = U x U,, with X = U; x 0. If U is open in E, then we
may take Uj, U, open in Fy, F, respectively. Then the injection of N(X)
in T(Y)|X may be represented locally by an exact sequence

0— U1XF2£> Ui XF1 XFz,
and the inclusion of T(Y)|X in T(Y) is simply the inclusion
U1 XF1 ><F2—> U1 X UzXFl XF2.

We work at the point (x, 0) in U; x F,. We must compute the derivative
of the composite map

U1XF2—¢—> U1XU2XF1><F22Y

at (x, 0). We can do this by the formula for the partial derivatives. Since
the exponential map coincides with the projection on the zero cross
section, its “horizontal” partial derivative is the identity. By Theorem 4.1
we know that its “vertical” derivative is also the identity. Let

Y = (exp)o

(where @ is simply ¢ followed by the inclusion). Then for any vector
(w1, wp) in Fy x F, we get

Dy (x1, 0) - (w1, w2) = (w1, 0) + 9, (W2),

where ¢, is the linear map given by ¢ on the fiber over x;. By hypothesis,
we know that F; x F; is the direct sum of F; x 0 and of the image of ¢, .
This proves that Dy(xi, 0) is a toplinear isomorphism, and in fact proves
that the exponential map restricted to a normal bundle is a local iso-
morphism on the zero cross section.

We have thus shown that there exists a vector bundle £ — X, an open
neighborhood Z of the zero section in E, and a mapping f: Z— Y
which, for each x in {g, is a local isomorphism at x. We must show that
Z can be shrunk so that f restricts to an isomorphism. To do this we
follow Godement ([God 58], p. 150). We can find a locally finite open
covering of X by open sets U; in Y such that, for each i we have inverse
isomorphisms

fir Zi > U; and gi: Ui— Z;
between U; and open sets Z; in Z, such that each Z; contains a point x of

X, such that f, g; are the identity on X (viewed as a subset of both Z and
Y) and such that f; is the restriction of f to Z;, We now find a locally
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finite covering {¥;} of X by open sets of Y such that V; c U;, and let
V ={JVi.. We let W be the subset of elements y € V" such that, if y lies in
an intersection ¥; NV}, then g;(y) = g;(y). Then W certainly contains X.
We contend that W contains an open subset containing X.

Let xe X. There exists an open neighborhood G, of x in Y which

meets only a finite number of Vi, say V,,,...,V,. Taking G, small enough,
we can assume that x lies in each one of these, and that G, is contained in
each one of the sets U;,...,U;. Since x lies in each ¥,,..., ¥, it is
contained in Uj,..., U, and our maps g;,...,g; take the same value at x,
namely x itself. Using the fact that f,..., f; are restrictions of f, we see
at once that our finite number of maps g;,...,g; must agree on G, if we

take G, small enough.
Let G be the union of the G. Then G is open, and we can define a map

g: G—g(G)cZ

by taking g equal to g; on GnV;. Then g(G) is open in Z, and the
restriction of f to g(G) is an inverse for g. This proves that f, g are inverse
isomorphisms on G and ¢(G), and concludes the proof of the theorem.

A vector bundle E — X will be said to be compressible if, given an
open neighborhood Z of the zero section, there exists an isomorphism

p: E— 7,

of E with an open subset Z; of Z containing the zero section, which
commutes with the projection on X:

E—2 7

NN

It is clear that if a bundle is compressible, and if we have a tubular
neighborhood defined on Z, then we can get a total tubular neighborhood
defined on E. We shall see in the chapter on Riemannian metrics that
certain types of vector bundles are compressible (Hilbert bundles, assuming
that the base manifold admits partitions of unity).

IV, §6. UNIQUENESS OF TUBULAR NEIGHBORHOODS

Let X, Y be two manifolds, and F: R x X —» Y a morphism. We shall
say that F is an isotopy (of embeddings) if it satisfies. the following
conditions. First, for each ¢ € R, the map F, given by F;(x) = F(t, x) is an
embedding. Second, there exist numbers % < #; such that F; = F, for all
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t<to and F,, = F, for all £ > #;. We then say that the interval [f, ;] is a
proper domain for the isotopy, and the constant embeddings on the left
and right will also be denoted by F_,, and F., respectively. We say that
two embeddings f: X — Y and g: X — Y are isotopic if there exists an
isotopy F; as above such that f = F,, and g = F,, (notation as above). We
write f ~ g for f isotopic to g.

Using translations of intervals, and multiplication by scalars, we can
always transform an isotopy to a new one whose proper domain is
contained in the interval (0,1). Furthermore, the relation of isotopy
between embeddings is an equivalence relation. It is obviously symmetric
and reflexive, and for transitivity, suppose f ~¢g and g~ h. We can
choose the ranges of these isotopies so that the first one ends and stays
constant at g before the second starts moving. Thus it is clear how to
compose isotopies in this case.

If sp < 51 are two numbers, and o: R — R is a function (morphism)
such that a(s) = 1, for s < sy and o(s) = #; for s = 51, and ¢ is monotone
increasing, then from a given isotopy F, we obtain another one,
G; = F,;). Such a function o can be used to smooth out a piece of isotopy
given only on a closed interval.

Remark. We shall frequently use the following trivial fact: If
fi: X = Y is an isotopy, and if g: X1 — X and h: Y — Y; are two
embeddings, then the composite map

hf,g: X1 — 1
is also an isotopy.

Let Y be a manifold and X a submanifold. Let z: E — X be a vector
bundle, and Z an open neighborhood of the zero section. An isotopy
fi: Z— Y of open embeddings such that each f, is a tubular neigh-
borhood of X will be called an isotopy of tubular neighborhoods. In what
follows, the domain will usualty be all of E.

Proposition 6.1. Let X be a manifold. Let n: E — X and ny: Ey - X
be two vector bundles over X. Let

f: E— E

be a tubular neighborhood of X in E, (identifying X with its zero section
in E;). Then there exists an isotopy

fir E—> E;

with proper domain [0, 1] such that f; = f and f; is a VB-isomorphism.
(If f, n, m1 are of class CP then f; can be chosen of class CP71)
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Proof. We define F by the formula

Fi(e) = ' f(te)

for 1#0 and ec E. Then F, is an embedding since it is composed
of embeddings (the scalar multiplications by ¢, ! are in fact VB-
isomorphism),

We must investigate what happens at 7 = 0.

Given e E, we find an open neighborhood U; of me over which
E; admits a trivialization U; x E;. We then find a still smaller open
neighborhood U of 7e and an open ball B around 0 in the typical fiber E
of E such that E admits a trivialization U x E over U, and such that the
representation f of f on U x B (contained in U x E) maps U x B into
Uy x E;. This is possible by continuity. On U x B we can represent f by
two morphisms,

f_(xv D) = (w(xa U), '//(xa U))
and ¢(x, 0) = x while y(x, 0) = 0. Observe that for all ¢ sufficiently small,

te is contained in U x B (in the local representation).
We can represent F; locally on U x B as the mapping

Fi(x, v) = (p(x, ), ™ Y(x, w)).

The map ¢ is then a morphism in the three variables x, v, and ¢ even at
t=0. The second component of F, can be written

t(x, w) = ¢! r Dy (x, stv) - (tv) ds
0

and thus r~! cancels ¢ to yield simply

Jl Dy (x, stv) - v ds.
0

This is a morphism in ¢, even at t = 0. Furthermore, for ¢ = 0, we obtain
F_O(x’ U) = (xa DZ'I’(xa O)D)

Since f was originally assumed to be an embedding, it follows that
Dyy(x,0) is a toplinear isomorphism, and therefore F, is a VB-
isomorphism. To get our isotopy in standard form, we can use a function
o: R— R such that () =0 for t <0 and o(¢) =1 for 2 1, and o is
monotone increasing. This proves our proposition.
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Theorem 6.2. Let X be a submanifold of Y. Let
n. E—X and m: B1— X

be two vector bundles, and assume that E is compressible. Let
f: E>Y and g: Ey — Y be two tubular neighborhoods of X in Y.
Then there exists a CP~l-isotopy

fit E=Y

of tubular neighborhoods with proper domain [0, 1] and a VB-isomorphism
A E — Ey such that f; = f and fy= gA.

Proof. We observe that f(E) and g(E;) are open neighborhoods qf X
in Y. Let U= f"'(f(E)ng(E)) and let p: E — U be a compression.
Let ¢ be the composite map

L uly

¥ = (f|U) o 9. Then y is a tubular neighborhood, and ¥/(E) is contained
in g(E)). Therefore g~!'y: E — E; is a tubular neighborhood o_f the same
type considered in the previous proposition. There exists an isotopy of
tubular neighborhoods of X:

G;: E— E;

such that Gy =g 'Y and Gy is a VB-isomorphism. Considering the
isotopy gG;, we find an isotopy of tubular neighborhoods

y,: E—Y

such that ¥, = ¢ and Y, = go where w: E — E; is a VB-isomorphism.
We have thus shown that y and gw are isotopic (by an isotopy of tubular
neighborhoods). Similarly, we see that y and fu are isotopic for some
VB-isomorphism

u E— E.

Consequently, adjusting the proper domains of our isotopies suitably, we
get an isotopy of tubular neighborhoods going from gw to fu, say F:.
Then F,u~' will give us the desired isotopy from gwu~! to f, and we can
put A = wu! to conclude the proof.

(By the way, the uniqueness proof did not use the existence theorem for
differential equations.) ’



CHAPTER V

Operations on Vector Fields
and Differential Forms

'If E— X is a vector bundle, then it is of considerable interest to
investigate the special operation derived from the functor “multilinear
alternating forms.” Applying it to the tangent bundle, we call the sections
of our new bundle differential forms. One can define formally certain
relations between functions, vector fields, and differential forms which lie
at the foundations of differential and Riemannian geometry. We shall give
the basic system surrounding such forms. In order to have at least one
application, we discuss the fundamental 2-form, and in the next chapter
connect it with Riemannian metrics in order to construct canonically the
spray associated with such a metric.

We assume throughout that our manifolds are Hausdorff, and suffi-
ciently differentiable so that all of our statements make sense.

V, §1. VECTOR FIELDS, DIFFERENTIAL OPERA
BRACKETS TORS,

Let X be a manifold of class C? and ¢ a function defined on an open set
U, that is a morphism
¢: U—>R.

Let £ be a vector field of class CP~!. Recall that

Twp: Ty(U) —» To(R) =R

is a continuous linear map. With it, we shall define a new function to be
denoted by &p or ¢-¢, or &(p). (There will be no confusion with this
notation and composition of mappings.)

116
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Proposition 1.1. There exists a unique function &p on U of class cr-l
such that

(€p)(x) = (Txp)¢(x).

If U is open in the Banach space E and £ denotes the local representation
of the vector field on U, then

(Ep)(x) = ¢'(x)¢(x)-

Proof. The first formula certainly defines a mapping of U into R. The
local formula defines a C?~!-morphism on U. It follows at once from
the definitions that the first formula expresses invariantly in terms of the
tangent bundle the same mapping as the second. Thus it allows us to
define &p as a morphism globally, as desired.

Let Fu? denote the ring of functions (of class C?). Then our operation
¢ — &p gives rise to a linear map

de: Fu?(U) — Fu/ l(U), defined by 0O:p = Ep.

A mapping 3 R §

from a ring R into an R-algebra S is called a derivation if it satisfies the
usual formalism: Linearity, and 8(ab) = ad(b) + 0(a)b.

Proposition 1.2. Let X be a manifold and U open in X. Let { be a
vector field over X. If 8; =0, then &(x) =0 for all xe U. Each 0 is a
derivation of Fu?(U) into FuP~1(U).

Proof. Suppose &(x) # 0 for some x. We work with the local rep-
resentations, and take ¢ to be a continuous linear map of E into R such
that @(&(x)) # 0, by Hahn-Banach. Then ¢'(y) = ¢ for all ye U, and we
see that ¢’(x)&(x) #0, thus proving the first assertion. The second is
obvious from the local formula.

From Proposition 1.2 we deduce that if two vector fields induce the
same differential operator on the functions, then they are equal.

Given two vector fields £, 7 on X, we shall now define a new vector
field [£, ], called their bracket product.

Proposition 1.3. Let &, n be two vector fields of class CP~' on X. Then
there exists a unique vector field [£, 3] of class CP~2 such that for each
open set U and function ¢ on U we have

(&, nlo = E(n(e)) — n(E(9)).
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If Uis open in E and &, n are the local representations of the vector
fields, then (&, n) is given by the local formula

€, no(x) = o' (%) (" (x)é(x) — &' (x)n(x)).

Thus the local representation of |, | is given by

(&, n)(x) = n'(x)&(x) — &' (x)n(x).

Proof. By Proposition 1.2, any vector field having the desired effect on
functions is uniquely determined. We check that the local formula gives us
this effect locally. Differentiating formally, we have (using the law for the
derivative of a product):

(19)'¢ — (Co)'n = (p'n)'é — (9'E)n
— ¢/’7lé_i_¢”,7é — ¢15117 _ ¢Ilén‘

The terms involving ¢” must be understood correctly. For instance, the
first such term at a point x is simply ¢”(x)(%(x),&(x)) remembering that
¢"(x) is a bilinear map, and can thus be evaluated at the two vectors 7(x)
and ¢(x). However, we know that ¢”(x) is symmetric. Hence the two
terms involving the second derivative of ¢ cancel, and give us our formula.

Corollary 1.4. The bracket [£, ] is bilinear in both arguments, we have
(&, 1] = —[n, &), and Jacobi’s identity

[& I, Q) = [1& m, &) + [m, [&, ¢])

In other words, for each & the map n — [&, n] is a derivation with respect
to the Lie product (n, () — [n, {].
If ¢ is a function, then

€ onl=Com+ol&,nl, and [0 0] = ol&, 1) - (np)&.

Proof. The first two assertions are obvious. The third comes from the
definition of the bracket. We apply the vector field on the left of the
equality to a function ¢. All the terms cancel out (the reader will write
it out as well or better than the author). The last two formulas are
immediate.

We make some comments concerning the functoriality of vector fields.
Let
f: X->Y

be an isomorphism. Let & be a vector field over X. Then we obtain an
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induced vector field f,& over Y, defined by the formula

(£ () = Tf (¢(x))-
It is the vector field making the following diagram commutative:

TX —»ﬂ TY

I

X — Y
f

We shall also write f* for ('), when applied to a vector field. Thus we
have the formulas

fl=Tfoko f! and fé=Tf1otof.

If f is not an isomorphism, then one cannot in general define the direct
or inverse image of a vector field as done above. However, let ¢ be a
vector field over X, and let # be a vector field over Y. If for each xe X
we have

Tf(¢(x)) =n(f(x)),

then we shall say that f maps £ into #, or that £ and # are f-relateq. If this
is the case, then we may denote by f,& the map from f(X) into TY
defined by the above formula.

Let &, &, be vector fields over X, and let n,, 11, be vector fields over Y. If
& is f-related to n; for i=1, 2 then as maps on f(X) we have

fl&, &) = Im, ma)-

We may write suggestively the formula in the form

L&) = £, £.8)

Of course, this is meaningless in general, since f,£; may not be a vector
field on Y. When fis an isomorphism, then it is a correct formulation of
the other formula. In any case, it suggests the correct formula.

To prove the formula, we work with the local representations, when
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X=UisopeninE, and Y = V is open in F. Then ¢;, #; are maps of U,
V into the spaces E, F respectively. For x € X we have

(£l &) = f'(0) (&3 ()1 (x) — &1 (x)Ea(x)).-

On the other hand, by assumption, we have

'Ii(f(x)) = f'(x)&(x),
so that
[, ml (£ (%) = n3(f())m (f (%)) = 1 (F(x)m2 (f (%)
=1y (f(¥)) L' (X)é1(x) = 1 (£ () f' (X)&x(x)
= (1120 1) (x)&1(x) = (1 © f)' (¥)&2(%)
= f"(x) - &(x) - &1(x) + [ (x)E(x)&1 (x)
= (%) - &%) - &(x) = £/ ()& (x)&2 ()

Since f”(x) is symmetric, two terms cancel, and the remaining two terms
give the same value as (f,[¢1, &])(x), as was to be shown.

The bracket between vector fields gives an infinitesimal criterion for
commutativity in various contexts. We give here one theorem of a general
nature as an example of this phenomenon.

Theorem 1.5. Let &, n be vector fields on X, and assume that [¢, n] = 0.

Let o and B be the flows for & and n respectively. Then for real values t,
s we have

a 0B =fso0ua.
Or in other words, for any x € X we have
a(t, B(s, x)) = B(s, a(t, x)),
in the sense that if for some value of t a value of s is in the domain of one
of these expressions, then it is in the domain of the other and the two
expressions are equal.
Proof. For a fixed value of ¢, the two curves in s given by the right-

and left-hand side of the last formula have the same initial condition,
namely «,(x). The curve on the right

s B(s, a(t, x))
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is by definition the integral curve of #. The curve on the left

s a(t, B(s, x))

is the image under a, of the integral curve for # having initial condition x.
Since x is fixed, let us denote B(s, x) simply by f(s). What we must show
is that the two curves on the right and on the left satisfy the same
differential equation.

B(s, a(t, z))

B(s)

a(l, x)

x

In the above figure, we see that the flow «, shoves the curve on the left to
the curve on the right. We must compute the tangent vectors to the curve
on the right. We have

4 (0 (8(5)) = Das(t, BN
= Daa(t, B(s))n(B(s))-

Now fix s, and denote this last expression by F(f). We must show that if

G(1) = n(a(t, B(s))),

then

We have trivially F(0) = G(0), in other words the curves F and G have the
same initial condition. On the other hand,

F'(1) = & (a(t, B(s))) Daa(t, B(s))n(B(s))
and
G'(1) = n' (a2, B(s)))&(x(2, B(5)))
= &' (a(t, B(5)))n(a(t, B(s))) (because [&, 7] = 0).

Hence we see that our two curves F and G satisfy the same differential
equation, whence they are equal. This proves our theorem.
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Vector fields &, # such that [¢, #] =0 are said to commute. One can
generalize the process of straightening out vector fields to a finite number
of commuting vector fields, using the same method of proof, using
Theorem 1.5. As another application, one can prove that if the Lie
algebra of a connected Lie group is commutative, then the group is
commutative. Cf. the section on Lie groups.

V, §2. LIE DERIVATIVE

Let A be a differentiable functor on Banach spaces. For convenience, take
A to be covariant and in one variable. What we shall say in the rest of this
section would hold in the same way (with slightly more involved notation)
if A had several variables and were covariant in some and contravariant in
others.

Given a manifold X, we can take A(T(X)). It is a vector bundle over
X, which we denote by T;(X) as in Chapter III. Its sections I'y(X) are the
tensor fields of type A.

Let & be a vector field on X, and U open in X. It is then possible to
associate with ¢ a map

ZLe: Ti(U) — Ty(U)

(with a loss of two derivatives). This is done as follows.

Given a point x of U and a local flow « for ¢ at x, we have for each ¢
sufficiently small a local isomorphism «, in a neighborhood of our point
x. Recall that locally, ;! = «_,. If n is a tensor field of type 4, then the
composite mapping 7 o a, has its range in T;(X). Finally, we can take the
tangent map T'(a-,) = (¢_,), to return to T(X) in the fiber above x. We
thus obtain a composite map

(1, %) = (az0), om0 m(x) = (€ )(0),

which is a morphism, locally at x. We take its derivative with respect to ¢
and evaluate it at 0. After looking at the situation locally in a triviali-
zation of T(X) and T;(X) at x, one sees that the map one obtains gives a
section of T;(U), that is a tensor field of type A over U. This is our map
Ze. To summarize,

d
ZLen = % ’=O(a_,)* o700

This map % is called the Lie derivative. We shall determine the Lie
derivative on functions and on vector fields in terms of notions already
discussed.
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First let ¢ be a function. Then by the general definition, the Lie
derivative of this function with respect to the vector field &£ with flow « is
defined to be

Zeo() = lim = o(a(t, %)) ~ 93],

or in other words,

d, .,
=%¢=EWﬂ%ﬂ

Our assertion is then that

Zeop = Lo

To prove this, let
F(t) = o(a(t, x)).
Then
F'(¢) = ¢'(a(t, x))D1a(t, x)
= ¢'(a(t, x))¢(a(t, %)),
because a is a flow for £. Using the initial condition at ¢ = 0, we find that
F'(0) = ¢'(x)¢(x),

which is precisely the value of £p at x, thus proving our assertion.

If &, n are vector fields, then

Zen =&, 7).

As before, let o be a flow for £. The Lie derivative is given by

d .
.?57] = E(“t ’]) t=0-

Letting ¢ and 5 denote the local representations of the vector fields, we
note that the local representation of (a;77)(x) is given by

(an)(x) = F(t) = Dao(—t, Xy (a(t, x)).
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We must therefore compute F’'(f), and then F’(0). Using the chain rule,
the formula for the derivative of a product, and the differential equation
satisfied by D,a, we obtain

F'() = —D1Dya(—1, x)n(a(t, x)) + Dya(—t, x)n’ (a(t, x)) D1a(t, x)
= —&'(a(—t, x))Daa(—t, x)n(a(t, x)) + Daa(—1t,x)n' (a(1, x)).

Putting ¢ = 0 proves our formula, taking into account the initial conditions

(0, x)=x and  Da(0, x) =id.

V, §3. EXTERIOR DERIVATIVE

Let X be a manifold. The functor L] (r-multilinear continuous alternating
forms) extends to arbitrary vector bundles, and in particular, to the
tangent bundle of X. A differential form of degree r, or simply an r-form
on X, is a section of L.(T(X)), that is a tensor field of type L. If X is
of class C?, forms will be assumed to be of a suitable class C* with
1 £5< p—1. The set of differential forms of degree r will be denoted by
&7(X) (o for alternating). It is not only a vector space over R but a
module over the ring of functions on X (of the appropriate order of
differentiability). If w is an r-form, then w(x) is an element of L.(Tx(X)),
and is thus an r-multilinear alternating form of T,(X) into R. We
sometimes denote w(x) by w.

Suppose U is open in the Banach space E. Then L}(T(U)) is equal to
U x LI(E) and a differential form is entirely described by the projection
on the second factor, which we call its local representation, following our

general system (Chapter III, §4). Such a local representation is therefore a

morphism
w: U— L(E).

Let w be in L (E) and vy,...,v, elements of E. We denote the value
o(vy,...,v,) also by
{, vy X -+ X 1,).

Similarly, let &;,...,¢&, be vector fields on an open set U, and let w be an
r-form on X. We denote by
(@, & x - x &)

the mapping from U into R whose value at a point x in U is

(@(x), &1(x) x -+ x &(x))-
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Looking at the situation locally on an open set U such that T(U) is trivial,
we see at once that this mapping is a morphism (i.e. a function on U) of
the same degree of differentiability as w and the ¢,

Proposition 3.1. Let xo be a point of X and w an r-form on X. If

(@, &1 X -+ x &) (x0)

is equal to O for all vector fields &,,...,& at xo (i.e. defined on some
neighborhood of xo), then w(xy) = 0.

Proof. Considering things locally in terms of their local representations,
we see that if w(x) is not 0, then it does not vanish at some r-tuple of
vectors (v1,...,v,). We can take vector fields at x, which take on these
values at xp and from this our assertion is obvious.

It is convenient to agree that a differential form of degree 0 is a
function. In the next proposition, we describe the exterior derivative of an
r-form, and it is convenient to describe this situation separately in the case
of functions.

Therefore let f: X — R be a function. For each x € X, the tangent
map

T.f: T(X) - Try(R) =R

is a continuous linear map, and looking at local representations shows
at once that the collection of such maps defines a 1-form which will be
denoted by df. Furthermore, from the definition of the operation of vector
fields on functions, it is clear that df is the unique 1-form such that for
every vector field £ we have

(df, & =<¢f.
To extend the definition of d to forms of higher degree, we recall that if
o: U— L(E)
is the local representation of an r-form over an open set U of E, then for
each x in U,

o'(x): E— L(E)

is a continuous linear map. Applied to a vector v in E, it therefore gives
rise to an r-form on E.

Proposition 32. Let w be an r-form of class CP™' on X. Then there
exists a unique (r+ 1)-form dw on X of class CP=2 such that, for any
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open set U of X and vector fields &,..., ¢, on U we have
(dw’ éO X /5</ ér)

=i(—l)'§‘(w, 60 X oo X éi X e X ér>

i=0
+ 3 (=)o, [&, Gl x Gy x o x Exe x g x e x ).
i<j
If furthermore U is open in E and w, &,...,¢, are the local repre-

sentations of the form and the vector fields respectively, then at a point x
the value of the expression above is equal to

S D@ ()5, Ealx) X -+ x &) X -+ x E).

i=0

Proof. As before, we observe that the local formula defines a differ-
ential form. If we can prove that it gives the same thing as the first
formulas, which is expressed invariantly, then we can globalize it, and we
are done. Let us denote by S; and S, the two sums occurring in the
invariant expression, and let L be the local expression. We must show that
Sy + S, = L. We consider S, and apply the definition of &; operating on
a function locally, as in Proposition 1.1, at a point x. We obtain

Sy = }r:(—l)i(m, o x o x & x e x &) (%)€i(x)-
i=0

The derivative is perhaps best computed by going back to the definition.
Applying this definition directly, and discarding second order terms, we
find that S; is equal to

S (1) @ (&0, &olx) X -+ x &(x) x -+ x &(x))
+3° T D @), &o(x) x- - X (R)E(x) X+ x E(x) X x &(x))

i i<y
+ 37 S (), &) x - x E(X) x - x GRER) x -+ x & ().
i j<i

Of these there sums, the first one is the local formula L. As for the
other two, permuting j and i in the first, and moving the term éj’ (x)&i(x) to
the first position, we see that they combine to give (symbolically)

S S =), (& — &g x Eox - x & x e x g x e x &)

i i<j
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(evaluated at x). Using Proposition 1.3, we see that this combination is
equal to —S,. This proves that §; + S = L, as desired.

We call dw the exterior derivative of w. Leaving out the order of
differentiability for simplicity, we see that d is an R-linear map

d: or(X)— L™(X).

We now look into the multiplicative properties of d with respect to the
wedge product.

Let o, Y be continuous multilinear alternating forms of degree r and s
respectively on the Banach space E. In multilinear algebra, one defines
their wedge product as an (r + s)-continuous multilinear alternating form,
by the formula

1
(CO A '//)(Ul’ EER) U,-.H) = r|_s|z 6(0)0)(”01’ BEE) Um‘)‘//(va(’+l), EEER) Ua(r+s))

the sum being taken over all permutations ¢ of (l,...,r+s). This
definition extends at once to differential forms on a manifold, if we view it
as giving the value for w A ¥ at a point x. The v; are then elements of the
tangent space T, and considering the local representations shows at once
that the wedge product so defined gives a morphism of the manifold X
into L*(T(X)), and is therefore a differential form.

Remark. The coefficient 1/r!s! is not universally taken to define the
wedge product. Some people, e.g. [He 78] and [KoN 63], take 1/(r +s) !,
which causes constants to appear later. I have taken the same factor as
[AbM 78] and [GHL 87/93]. I recommend that the reader check out the
case with r=s=1 so r+s=2 to see how a factor 1 comes in. With
either convention, the wedge product between forms is associative, so
with some care, one can carry out a consistent theory with either conven-
tion. I leave the proof of associativity to the reader. It follows by induc-
tion that if w,...,w, are forms of degrees ri,...,r, respectively, and
r=ry+:--+ry then

1
(@1 A - A Om)(vr,...,0) =m;6(0’)9a,
where

Q; = @01(V51, - -, Var, )O2(Vs(r14+1)s - - - » Vo(r1473)) - - - Om{(Va(r—rp41)s - - - 5 Var),

and where the sum is taken over all permutations of (1,...,7).
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If we regard functions on X as differential forms of degree 0, then the
ordinary product of a function by a differential form can be viewed as the
wedge product. Thus if f is a function and w a differential form, then

=f Ao

(The form on the left has the value f(x)ew(x) at x.)
The next proposition gives us more formulas concerning differential
forms.

Proposition 3.3. Let w, § be differential forms on X. Then

EXD 1. d(w A ¥) =do A Y+ (1) A dy.
EXD 2. ddw =0 (with enough differentiability, say p Z 4).

Proof. This is a simple formal exercise in the use of the local formula
for the local representation of the exterior derivative. We leave it to the
reader.

When the manifold is finite dimensional, then one can give a local
representation for differential forms and the exterior derivative in terms of
local coordinates, which are especially useful in integration which fits the
notation better. We shall therefore carry out this local formulation in full.
It dates back to Cartan [Ca 28]. There is in addition a theoretical point
which needs clarifying. We shall use at first the wedge /\ in two senses.
One sense is defined as above, giving rise to Proposition 3.3. Another
sense will come from Theorem A. We shall comment on their relation
after Theorem B.

We recall first two simple results from linear (or rather multilinear)
algebra. We use the notation E”’ =EXE x --- x E, r times.

Theorem A. Let E be a finite dimensional vector space over the reals of
dimension n. For each positive integer r with 1 S r < n there exists a
vector space /\'E and a multilinear alternating map

EQ - A'E

denoted by (u1,...,u,) — uy1 A -+ A u,, having the following property:
If {v1,...,vn} is a basis of E, then the elements

{vi A -+ ALY, i<y <o <y,
form a basis of /\'E.

We recall that alternatmg means that uy A --- Au, =0 if w;=u; for
some i # j. We call /\ E the r-th alternating product (or exterior product)
on E. If r=0, we define A\°E=R. Elements of /\ E which can be
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written in the form uy A --+ A u, are called decomposable. Such elements
generate /\"E. If r > dim E, we define /\"E = {0}.

Theorem B. For each pair of positive integers (r, s), there exists a unique
product (bilinear map)

NEx N'E— AYE
such that if uy,...,u, wi,...,ws€E then
(U A s AU X (WIA o AWg) D ULA - AU AWLA -+ A W,
This product is associative.

The proofs for these two statements can be found, for instance, in my
Linear Algebra.

Let EV be the dual space, EY = L(E, R). If E=R" and 4,,...,4, are
the coordinate functions, then each 4; is an element of the dual space, and
in fact {A1,...,4,} is a basis of this dual space. Let E =R". There is an
isomorphism

NEY S LIE,R)

given in the following manner. If gi,...,9,€EY and v;,...,v, € E, then
the value

det(g:(v)))
is multilinear alternating both as a function of (g1,...,9,) and (v1,...,0,).

Thus it induces a pairing

/\rEV xE"— R
and a map
' /\ EY - L (E,R).

This map is the isomorphism mentioned above. Using bases, it is easy to
verify that it is an isomorphism (at the level of elementary algebra).
Thus in the finite dimensional case, we may identify L}(E, R) with the
alternating product /\'EV, and consequently we may view the local
representation of a differential form of degree r to be a map

w: U— N\'EY

from U into the rth alternating product of EV. We say that the form is of
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class C? if the map is of class C?. (We view /\'E" as a normed vector
space, using any norm. It does not matter which, since all norms on a
finite dimensional vector space are equivalent.) The wedge product as we
gave it, valid in the infinite dimensional case, is compatible with the wedge
product and the isomorphism of /\"E with L/(E, R) given above. If we
had taken a different convention for the wedge product of alternating
forms, then a constant would have appeared in front of the above
determinant to establish the above identification (e.g. the constant % in the
2 x 2 case).

Since {A1,...,4,} is a basis of EY, we can express each differential
form in terms of its coordinate functions with respect to the basis

{Aill\ Aj‘ir}’ (i1<...<ir),

namely for each x e U we have

a)(x) = Zﬁl"'i’('x)}“il A A j'ir’
®

where f; = f;.., is a function on U. Each such function has the same
order of differentiability as w. We call the preceding expression the
standard form of w. We say that a form is decomposable if it can be
written as just one term f(x)A; A --- A 4;. Every differential form is a
sum of decomposable ones.

We agree to the convention that functions are differential forms of
degree 0.

As before, the differential forms on U of given degree r form a vector
space, denoted by " (U).

Let E=R". Let f be a function on U. For each x € U the derivative

f'(x): R”" >R
is a linear map, and thus an element of the dual space. Thus
f': U—EY
represents a differential form of degree 1, which is usually denoted by df.
If fis of class C?, then df is class CP~1.
Let A; be the i-th coordinate function. Then we know that
dii(x) = }.;(x) = li

for each xe U because A'(x) =4 for any continuous linear map A.
Whenever {xi,...,x,} are used systematically for the coordinates. of a
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point in R", it is customary in the literature to use the notation
di,-(x) = dx,-.

This is slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

w=Zf(,-) dxi A --- Adx;
(i)

instead of the correct

o(x) = z:f(,-)(x),l,-1 A A Ay
®

In terms of coordinates, the map df (or f') is given by
df (x) = f'(x) = D1f (x)A1 + - + Dy f (x)n,

where D;f(x) = 0f/0x; is the i-th partial derivative. This is simply a

restatement of the fact that if A= (hy,...,h,) is a vector, then
iy Of of
f (x)h—axlhl +"‘+a_x"hn-

Thus in old notation, we have

0 )
df(x)=a—£ dx1+---+% dx,.

We shall develop the theory of the alternating product and the exterior
derivative directly without assuming Propositions 3.2 or 3.3 in the finite
dimensional case.

Let w and ¢ be forms of degrees r and s respectively, on the open set
U. For each x e U we can then take the alternating product w(x) A ¥(x)
and we define the alternating product w A ¥ by

(@ A ¥)(x) = o(x) A Y(x).

(It is an exercise to verify that this product corresponds to the product
defined previously before Proposition 3.3 under the isomorphism between
L;(E, R) and the r-th alternating product in the finite dimensional case.)
If f is a differential form of degree 0, that is a function, then we have
again

fAo=fo,
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where (fw)(x) = f(x)w(x). By definition, we then have
oA fYy=fony.

We shall now define the exterior derivative dow for any differential form
. We have already done it for functions. We shall do it in general first
in terms of coordinates, and then show that there is a characterization
independent of these coordinates. If

a)=Zf(,~)d,1,-lA <o A dy,
i

we define
do =Y "dfy ndlyn - Adl,.
@

Example. Suppose n =2 and w is a 1-form, given in terms of the two
coordinates (x, y) by

o(x, y) = f(x,y) dx + g(x, y) dy.
Then

do(x, y) = df (x, y) A dx+dg(x, y) A dy

(Zfd +—j;dy) Adx+(g dx+a—dy) A dy

_y %9

=% dy/\dx+axdx/\dy
_(of og

_(ay 6x) dy A dx

because the terms involving dx A dx and dy A dy are equal to 0.
Proposition 3.4. The map d is linear, and satisfies
dloay)=do ay+(-1)oAdy

if r = deg w. The map d is uniquely determined by these properties, and
by the fact that for a function f, we have df = f.

Proof. The linearity of d is obvious. Hence it suffices to prove the
formula for decomposable forms. We note that for any function f we have

d(fw)=df Ao+ fdo.

Indeed, if w is a function g, then from the derivative of a product we get
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d(fg)=fdg+gdf. If
wo=gdl A - AdA,

where g is a function, then

d(fo)=d(fgdiyn --- ~ndd)=d(fg) ndly A -+ Ad,
=(fdg+gdf) ndiyn - Adl,
= fdo+df Ao,

as desired. Now suppose that

o= fdn - Adl; and U=gdin - ANdh
=f(b’ =g‘/;a

with i} <--- <, and jy < --- <J; as usual. If some i, = j,, then from the
definitions we see that the expressions on both sides of the equality in the
theorem are equal to 0. Hence we may assume that the sets of indices
ijy...,ir and jp,...,js; have no element in common. Then d{& A |/;) =0 by
definition, and

dwAY)=d(fgd AY)=d(fg) A A Y
=(gdf +fdg) > A Y
=doAy+fdgndny
=doAy+ (1) fdAdg Ay
=do Ay +(~1)o A dy,

thus proving the desired formula, in the present case. (We used the fact
that dg A @ = (—1)"®@ A dg whose proof is left to the reader.) The
formula in the general case follows because any differential form can be
expressed as a sum of forms of the type just considered, and one can then
use the bilinearity of the product. Finally, d is uniquely determined by the
formula, and its effect on functions, because any differential form is a sum
of forms of type f di;A --- A dA; and the formula gives an expression of
d in terms of its effect on forms of lower degree. By induction, if the value
of d on functions is known, its value can then be determined on forms of
degree =1. This proves our assertion.

Proposition 3.5. Let w be a form of class C2. Then ddw = 0.
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Proof If fis a function, then

n af
df(x) =) = dx;
= 6Xj J

and

n n 2
ddf(x):zz af dxk/\dxj.
=1 k=1

— 0X10x;

Using the fact that the partials commute, and the fact that for any two
positive integers r, s we have dx, A dx; = —dx; A dx,, we see that the
preceding double sum is equal to 0. A similar argument shows that the
theorem is true for 1-forms, of type g(x) dx; where g is a function, and
thus for all 1-forms by linearity. We proceed by induction. It suffices to
prove the formula in general for decomposable forms. Let w be decom-
posable of degree r, and write

w=1nAY,

where deg = 1. Using the formula for the derivative of an alternating
product twice, and the fact that ddyy = 0 and ddn = 0 by induction, we see
at once that ddw =0, as was to be shown.

We conclude this section by giving some properties of the pull-back
of forms. As we saw at the end of Chapter III, 4, if /: X > Y is a
morphism and if @ is a differential form on Y, then we get a differential
form f*(w) on X, which is given at a point x € X by the formula

f*(w)x = W¥(x)© (Txf)ra

if w is of degree r. This holds for r>1. The corresponding local
representation formula reads

(fro(x), &1(x) x -+ x & (%)) = {@(f(x)), £ ()& (x) x -+~ x ()& (%))

if &;,...,¢&, are vector fields.

In the case of a O-form, that is a function, its pull-back is simply the
composite function. In other words, if ¢ is a function on Y, viewed as a
form of degree 0, then

fHo)=9of.

It is clear that the pull-back is linear, and satisfies the following properties.
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Property 1. If w, ¥ are two differential forms on Y, then

@A) = (o) A f7(¥).
Property 2. If w is a differential form on Y, then
(@) = f*(dw).

Property 3. If f: X — Y and g: Y — Z are two morphisms, and o is
a differential form on Z, then

(9" (@) = (g0 f)" ().
Finally, in the case of forms of degree 0:
Property 4. If f: X — Y is a morphism, and g is a function on Y, then
d(go f) = f"(dg)

and at a point x € X, the value of this 1-form is given by

Trmgo Txf = (dg) o Txf.
The verifications are all easy, and even trivial, except possibly for
Property 2. We shall give the proof of Property 2 in the finite dimensional

case and leave the general case to the reader.
For a form of degree 1, say

o(y) = g(y) dy,

with y; = f,(x), we find

(frdw)(x) = (¢'(f(x)) o f'(x)) A dfi(x).

Using the fact that ddf, = 0, together with Proposition 3.4 we get

(df"w)(x) = (d(g o 1)) (x) A dfi(x),

which is equal to the preceding expression. Any 1-form can be expressed
as a linear combination of form g; dy;, so that our assertion is proved for
forms of degree 1.

The general formula can now be proved by induction. Using the
linearity of f™, we may assume that  is expressed as @ = i A 5 where ,
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n have lower degree. We apply Proposition 3.3 and Property 1 to

frdo=fdy An)+ (=) f*(Y A dn)

and we see at once that this is equal to df*w, because by induction,
frdy=df*y and f*dn=df*s. This proves Property 2.

Example 1. Let yy,...,y, be the coordinates on ¥, and let x4 be the
Jjth coordinate function, j=1,...,m, so that y; = u(yy,...,»,). Let

ffU->V
be the map with coordinate functions

¥y =fi(x) = w0 f(x).
If
o(y)=g(y) dyy A -+ A dy,

is a differential form on ¥, then

[fo=(gof)dfn - Adf,.

Indeed, we have for xe U :

(fr0)(x) = g(f()) (g, o S/ (X)) A - A (0 f'(x))
and
fix) = (o ) (x) = 0 f'(x) = dfy(x).
Example 2. Let f: [a, /) —» R? be a map from an interval into the

plane, and let x, y be the coordinates of the plane. Let ¢ be the coordinate
in [a, b]. A differential form in the plane can be written in the form

w(x, y) = g(x, y) dx + h(x, y) dy,
where g, h are functions. Then by definition,
* dx d
o) = g(x(2), y(t))z dt + h(x(2), y(t))d;}t’ ar,

if we write f(¢) = (x(2), y(¢)). Let G =(g, h) be the vector field whose
components are g and h. Then we can write '

fro() = G(f() - f'(0) a1,
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which is essentially the expression which is integrated when defining the
integral of a vector field along a curve.

Example 3. Let U, V be both open sets in n-space, and let f: U — V
be a C? map. If

o(y) =g(y)dynin -+ Ady,
where y; = fi(x) is the j-th coordinate of y, then

dy; = Dy fij(x) dx; + - - - + D, fi(x) dx,

-y .
=i dx1++@ dxn’
ax; 0xy,

and consequently, expanding out the alternating product according to the
usual multilinear and alternating rules, we find that

fro(x) =g(f(x)Ar(x) dxi A -+ A dxy,

where Ar is the determinant of the Jacobian matrix of f.

V, §4. THE POINCARE LEMMA

If w is a differential form on a manifold and is such that dw = 0, then it is
customary to say that w is closed. If there exists a form ¢ such that
o = dy, then one says that w is exact. We shall now prove that locally,
every closed form is exact.
Theorem 4.1 (Poincaré Lemma). Let U be an open ball in E and let »
be a differential form of degree = 1 on U such that dw = 0. Then there
exists a differential form  on U such that dyf = .

Proof. We shall construct a linear map k from the r-forms to the
(r—1)-forms (r 2 1) such that

dk + kd = id.
From this relation, it will follow that whenever dw = 0, then
dkw = w,

thereby proving our proposition. We may assume that the center of the
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ball is the origin. If w is an r-form, then we define kw by the formula
1
((kw),, vy X -+ X v,y) = J " Heo(tx), x x v X -+ X v,_1) dL.
0

We can assume that we deal with local representations and that v; e E.
We have

((dkw),, vy X --- X v)
= zr:( DN (k) (x)s, 01 X -+ X By X -+ X v,)
i=1
—Z( l)'+1j " Heoo(1x), v; X V] X -+ X Dy X -+ X v,) dt
+> (- 1)'+‘J (0" (1X)0;, X X Dy X -+ X By X -+ X 0y) dt.
On the other hand, we also have

{{(kdw)(x), 1) X <+ + X vy

1
=J t"(dw(x), x X vy X -+ X v,) dt
0

1
= j (o' (tx)x, vy X --- X v,) dt
0

(1
+Z(—1)'J {0 (X0, X X V) X --+ X Dy X --- X ) dt.
0

We observe that the second terms in the expressions for kdw and dkw
occur with opposite signs and cancel when we take the sum. As to the
first terms, if we shift v; to the i-th place in the expression for dkew, then

we get an extra coefficient of (—1)"*!. Thus

1
dkw + kdw =J rtHo(tx), vy x -+~ X v,) dt
0

1
+J o' (tx)x, v; x --- X v,) dt.
0

This last integral is simply the integral of the derivative with respect to
t of

(o(tx), v1 X -+ X ,).
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Evaluating this expression between =0 and r=1 yields
{@(x), b1 X -+ X vy)
which proves the theorem.

We observe that we could have taken our open set U to be star-shaped
instead of an open ball. For more information on the relationship between
closed and exact forms, see Chapter XIII, §1.

V, §5. CONTRACTIONS AND LIE DERIVATIVE

Let & be a vector field and let w be an r-form on a manifold X, r = 1.
Then we can define an (r — 1)-form C:w by the formula

(Ce)(x) (02, - .., 0r) = @(E(%), v2,. .., 1),

for vy,...,v, € Ty. Using local representations shows at once that Cew has
the appropriate order of differentiability (the minimum of ® and £). We
call Cro the contraction of w by ¢, and also denote Cew by

wol.

If fis a function, we define C;f = 0. Leaving out the order of differ-
entiability, we see that contraction gives an R-linear map

Ce: A"(X) — AL(X).
This operation of contraction satisfies the following properties.

CON 1. C;oC;=0

CON 2. The association (¢, @) — Czw = w o & is bilinear. It is in fact
bilinear with respect to functions, that is if ¢ is a function, then

Coe=9C:  and  Cepw) = pCro0.
CON 3. If o, ¢ are differential forms and r = deg w, then
Ce(w A ) = (Cew) AY + (=1) @ A Cey.
These three properties follow at once from the definitions.

Example. Let X = R”, and let

wx)=dx A - Adx,
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If ¢ is a vector field on R”, then we have the local representation

@)@ = S () PE) dern - ARG - A dy

i=1

We also have immediately from the definition of the exterior derivative,

dlwo) = Zaé'( X) dxi A -+ A dxp,

o o
letting ¢ = (&,,...,&,) in terms of its components &;.

We can define the Lie derivative of an r-form as we did before for
vector fields. Namely, we shall evaluate the following limit:

(Lew)(x) = [(0c w)(x) — o(x)],
or in other words,

d, .
fnga(cx,w)

t=0
where « is the flow of the vector field £, and we call £, the Lie derivative

again, applied to the differential form . We may rewrite this definition in
terms of the value on vector fields &,...,¢&, as follows:

(L) (& 8) = 5 (@0, wady x -+ x )

t=0

Proposition 5.1. Let & be a vector field and w a differential form of
degree r 2 1. The Lie derivative ¥ is a derivation, in the sense that

gf(w(él’ s aér)) = (gfw)(flr . -aér) + zw(clv- . -”?féiv e ;ér)
i=1

where of course L& = (&, &)).
If & &, w denote the local representations of the vector ﬁelds and
the form respectively, then the Lie derivative Frw has the. local
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representation

(Lew)(x), &1(x) x -+ x £x(x))
= (@' (x)¢(x), &1(x) x -+ x &(x))

£ 3 00, (8) x - x ERER) X - x &),
i=1

Proof. The proof is routine using the definitions. The first assertion
is obvious by the definition of the pull back of a form. For the local
expression we actually derive more, namely we derive a local expression

d . . .
for ajw and zi—ta,*w which are characterized by their values at (&y,...,¢&,).
So we let

(1) F(1) = (7 @)(x), &1(x) x -+ x &(x))
= (w(a(t, x)), Daa(t, x)&1(x) X - -+ x Daa(t, x)&,(x)).

Then the Lie derivative (Z;w)(x) is precisely F'(0), but we obtain also

. d
the local representation for Ea,*w:

@ F)= (Sao0), a6 x - x &) =
(3) (o' (a(t, x))Dra(t, x), Daa(t, X)&(x) X - - - x Daa(t, x)&,(x))

r

+Z(w(“(t, x)), Daa(t, x)&y(x) x - -+ x DyDya(t, x)&(x) x - -+ x Daa(t, x)&(x))

i=1

by the rule for the derivative of a product. Putting =0 and using the
differential equation satisfied by D,a(s, x), we get precisely the local
expression as stated in the proposition. Remember the initial condition
Dza(O, x) =id.

From Proposition 5.1, we conclude that the Lie derivative gives an
R-linear map

L A"(X) > d'(X).

We may use expi'essions (1) and (3) in.-the above proof to derive a formula
which holds even more generally for time-dependent vector fields.
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Proposition 5.2. Let & be a time-dependent vector field, o its flow, and
let w be a differential form. Then

d * * d * *
G0 =G (Few) o 2 (a0) =6 (Lo)
for a time-independent vector field.
Proof. Proposition 5.1 gives us a local expression for (% w)(y), re-

placing x by y because we shall now put y = «(z, x). On the other hand,
from (1) in the proof of Proposition 5.1, we obtain

o (L, 0)(x) = (Lew)(¥), Daa(t, x)&1(x) X -+ x Daa(t, x)&,(x)).

Substituting the local expression for (Z;,w)(y), we get expression (3) from
the proof of Proposition 5.1, thereby proving Proposition 5.2.

Proposition 5.3. As a map on differential forms, the Lie derivative
satisfies the following properties.

LIE 1. s =doCs+ Csod, so ¥:= Cszod on functions.

LIE 2. (0w AY) =ZLro AY +o A LY.

LIE 3. #: commutes with d and Cg.

LIE 4. Py = Lro Ly~ Lyo s

LIE 5. Ci = Lz 0 Gy — Cyo &

LIE 6. L5 = fL:0 +df A Ceww for all forms w and functions f.

Proof. Let &,...,& be vector fields, and @ an r-form. Using the
definition of the contraction and the local formula of Proposition 5.1, we
find that C;dw is given locally by

(Ceda(x), &i(x) x -+ x &(x))
= (@'(x)¢(x), &1(x) x - x &, (x))

+ Z_;(-l)i(w'(x)éf(x), E(X) X E1(X) X -+ x E(X) x -+ &(x)).
On the other hand, dC:w is given by
(dCsa(x), &(x) X -+ x &(x))

= ;(—I)HI ((Cga))’(x)fi(x), E(x) x ---x éx/(;) X one X ér(x»
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To compute (C:w)'(x) is easy, going back to the definition of the
derivative. At vectors vy,...,v,_1, the form Cyw(x) has the value

(o(x), &(x) X v1 X -+ X V).

Differentiating this last expression with respect to x and evaluating at a
vector h we get

(@' (X)h, E(x) X vy X -+ X 1) + (@(x), &' (x)h X vy X -+ X V).

Hence (dCrw(x), &(x) x -+ x &,(x)) is equal to

T ! (), €00 X (8) x -+ x &) X -+ X &)
i=1

—

£ 3" (), G0 X &) x X EG) x -+ x &),
i=1

Shifting &'(x)&;(x) to the i-th place in the second sum contributes a sign of

(1) which gives 1 when multiplied by (~1)"*'. Adding the two local
representations for dC;w and C; dw, we find precisely the expression of
Proposition 5.1, thus proving LIE 1.

As for LIE 2, it consists in using the derivation rule for d and C;
in Proposition 3.3, EXD 1, and CON 3. The corresponding rule for
% follows at once. (Terms will cancel just the right way.) The other
properties are then clear.

V, §6. VECTOR FIELDS AND 1-FORMS
UNDER SELF DUALITY

Let E be a Banach space and let
(v, w) = (v, W)

be a continuous bilinear function of E x E — R. We call such a function
a bilinear form. This form induced a linear map

i: E-EY
which to each v € E associates the functional 4, such that
(W) = (v, W).

We have a similar map on the othér side. If both these mappings are
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toplinear isomorphisms of E and E¥ then we say that the bilinear form is
non-singular. If such a non-singular form exists, then we say that E is self-
dual. For instance, a Hilbert space is self-dual.

If E is finite dimensional, it suffices for a bilinear form to be non-
singular that its kernels on the right and on the left be 0. (The kernels are
the kernels of the associated maps A as above.) However, in the infinite
dimensional case, this condition on the kernels is not sufficient any more.

Let E be a self dual Banach space with respect to the non-singular form
(v, w) — (v, w), and let

Q: ExE—-R
be a continuous bilinear map. There exists a unique operator 4 such that
Qv, w) = (4o, w)
for all v, we E. (An operator is a continuous linear map by definition.)
Remarks. Suppose that the form (v, w) — (v, w) is symmetric, i.e.
(v, w) = (w, v)
for all v, we E. Then Q is symmetric (resp. alternating) if and only if 4 is

symmetric (resp. skew-symmetric). Recall that 4 symmetric (with respect
to (,)) means that

(Av, w) = (v, Aw) forall v, weE.

That 4 is skew-symmetric means that (4v, w) = —(4w, w) for all v, w € E.
For any operator A: E — E there is another operator 4 (the transpose of
A with respect to the non-singular form (, )) such that for all v, w e E we
have

(Av, w) = (v, ‘Aw).

Thus 4 is symmetric (resp. skew-symmetric) if and only if ‘4 = 4 (resp.
"4=-4).

' Th; .above remarks apply to any continuous bilinear form Q. For
invertibility, we have the criterion:

The form Q is non-singular if and only if the operator A representing the
SJorm with respect to (,) is invertible.

The easy verification is left to the reader. Of course, in the ﬁnite di-
mensional case, invertibility or non-singularity can be checked by verifying
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that the matrix representing the linear map with respect to bases has non-
zero determinant. Similarly, the form is also represented by a matrix with
respect to a choice of bases, and its being non-singular is equivalent to the
matrix representing the form being invertible.

We recall that the set of invertible operators in Laut(E) is an open
subset. Alternatively, the set of non-singular bilinear forms on E is an
open subset of L%(E).

We may now globalize these notions to a vector bundle (and eventually
especially to the tangent bundle) as follows.

Let X be a manifold, and n: E — X a vector bundle over X with fibers
which are toplinearly isomorphic to E, or as we shall also say, modeled on
E. Let Q be a tensor field of type L? on E, that is to say, a section of the
bundle L2(E) (or L(r)), or as we shall also say, a bilinear tensor field on
E. Then for each x € X, we have a continuous bilinear form Q, on E,.

If Q, is non-singular for each x € X then we say that Q is non-singular.
If = is trivial, and we have a trivalisation X x E, then the local repre-
sentation of © can be described by a morphism of X into the Banach
space of operators. If Q is non-singular, then the image of this morphism
is contained in the open set of invertible operators. (If Q is a 2-form, this
image is contained in the submanifold of skew-symmetric operators.) For
example, in a chart U, we can represent Q over U by a morphism

A: U—- L(E,E) such that  Q,(v, w) = (4xv, W)

for all v, weE. Here we wrote A, instead of A(x) to simplify the
typography.

A non-singular Q as above can be used to establish a linear
isomorphism

T(E) -»TLY(E), also denoted by T'L(E)orTEY,

between the R-vector spaces of sections I'(E) of E and the 1-forms on E in
the following manner. Let ¢ be a section of E. For each x € X we define
a continuous linear map

. (Qo&),: Ex—R
by the formula
(Qo &), (w) = Qx(¢(x), w).

Looking at local trivialisations of #, we see at once that Qo ¢ is a 1-form
on E.

Conversely, let @ be a given l-form on E. For each xe X, w, is
therefore a. 1-form on E, and since € is non-singular, there exists a unique
element &(x) of E, such that

Q. (&(x), w) = wx(w)
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for all w e E.. In this fashion, we obtain a mapping & of X into E and we
contend that £ is a morphism (and therefore a section).

To prove our contention we can look at the local representations. We
use Q and @ to denote these. They are represented over a suitable open
set U by two morphisms

A: U — Aut(E) and #n: U—E
such that

Q. (v, w) = (A0, w) and  w.(w) = (n(x), w).

From this we see that
&(x) = A7 'n(x),

from which it is clear that & is a morphism. We may summarize our
discussion as follows.

Proposition 6.1. Let X be a manifold and n: E — X a vector bundle
over X modeled on E. Let Q be a non-singular bilinear tensor field on E.
Then Q induces an isomorphism of Fu{X)-modules

I'E-TE".
A section £ corresponds to a 1-form w if and only if Qoé = w.

In many applications, one takes the differential form to be df for some
function f. The vector field corresponding to df is then called the gradient
of f with respect to Q.

Remark. There is no universally accepted notation to denote the
correspondence between a l-form and a vector field under Q as above.
Some authors use sharps and flats, which have two disadvantages. First,
they do not provide a symbols for the mapping, and second they do not
contain the Q in the notation. I would propose the check sign \/,, to
denote either isomorphism

Vq: TL(E) > TE  denoted on elements by —w+— \/qo=0" =¢&,

and also
Vq: TE—TL(E)  denoted on elements by & — \/o&=¢Y = we.
If Q is fixed throughout a discussion and need not be referred to, then it

is useful to write £¥ or 1V in some formulas. We have \/,0\/, =id.
Instead of the sharp and flat superscript, I prefer the single v sign.
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Many important applications of the above duality occur when Q is a
non-singular symmetric bilinear tensor field on the tangent bundle TX.
Such a tensor field is then usually denoted by g. If &, n are vector fields,
we may then define their scalar product to be the function

(& my=4g(& n).

On the other hand, by the duality of Proposition 6.1, if i.e. w, 1 are
1-forms, i.e. sections of the dual bundle TV X, then w" and A" are vector
fields, and we define the scalar product of the 1-forms to be

(@, 1), = (@Y, 1Y)

.
This duality is especially important for Riemannian metrics, as in Chapter
X.

The rest of this section will not be used in the book.

In Proposition 6.1, we dealt with a quite general non-singular bilinear
tensor field on E. We now specialize to the case when E = TX is the
tangent bundle of X, and Q is a 2-form, i.e. Q is alternating. A pair
(X, Q) consisting of a manifold and a non-singular closed 2-form is called
a symplectic manifold. (Recall that closed means dQ =0.)

We denote by &, 5 vector fields over X, and by f, # functions on X,
so that df, dh are 1-forms. We let s be the vector field on X which
corresponds to df under the 2-form Q, according to Proposition 6.1.
Vector fields on X which are of type {4 are called Hamiltonian (with
respect to the 2-form). More generally, we denote by &, the vector field
corresponding to a l-form w. By definition we have the formula

Q1. Qoé,=w so in particular Qoly =df.

In Chapter VII, §6 we shall consider a particularly important example,
when the base manifold is the cotangent bundle; the function is the kinetic
energy
K(v) = 3{v, v),

with respect to the scalar product g of a Riemannian or pseudo Rie-
mannian metric, and the 2-form Q arises canonically from the pseudo
Riemannian metric.

In general, by LIE 1 of Proposition 5.3 formula 1, and the fact that
dQ =0, we find for any 1-form w that:

Q2. ‘ ggmﬂ =dw.

The next proposition reinterprets this formula in terms of the flow when
dw = 0.
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Proposition 6.2. Let o be such that dw =0. Let o be the flow of &,.
Then a;Q = Q for all t (in the domain of the flow).

Proof. By Proposition 5.2,

d

zi—toz;‘ﬂ =0/ % Q=0 byQ2.

Hence a;Q is constant, equal to ajQ =€, as was to be shown.

A special case of Proposition 6.2 in Hamiltonian mechanics is when
@ = dh for some function A. Next by LIE 5, we obtain for any vector
fields &, n:

Ze(Qon) =(LeQ)on+Qo[L, 1]

In particular, since ddf =0, we get
Q3. -754(9 olm)=Qo [fdf, Eanl-
One defines the Poisson bracket between two functions f, 4 to be
{fih}y =Sy -
Then the preceding formula may be rewritten in the form

Q4. (Ears San) = Lagrmy-

It follows immediately from the definitions and the antisymmetry of the
ordinary bracket between vector fields that the Poisson bracket is also

antisymmetric, namely
{f; h} = _{hv f}

In particular, we find that
Sy f=0.

In the case of the cotangent bundle with a symplectic 2-form as in the next
section, physicists think of f as an energy function, and interpret this
formula as a law of conservation of energy. The formula expresses the
property that f is constant on the integral curves of the vector field &,
This property follows at once from the definition of the Lie derivative of a
function. Furthermore:

Proposition 6.3. If £y -h =0 then &y, - f =0.

This is immediate from the antisymmetry of the Poisson bracket. It
is interpreted as conservation of momentum in the physical theory of
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Hamiltonian mechanics, when one deals with the canonical 2-form on the
cotangent bundle, to be defined in the next section.

V, §7. THE CANONICAL 2-FORM

Consider the functor E — L(E) (continuous linear forms). If E — X is a
vector bundle, then L(E) will be called the dual bundle, and will be
denoted by EY. For each x e X, the fiber of the dual bundle is simply
L(E,).

If E = T(X) is the tangent bundle, then its dual is denoted by TV (X)
and is called the cotangent bundle. Its elements are called cotangent
vectors. The fiber of TV (X) over a point x of X is denoted by T, (X).
For each x € X we have a pairing

T xTy—R
given by
(4, u) = A(u)

for Ae T,Y and ue Ty (it is the value of the linear form 4 at u).

We shall now describe how to construct a canonical 1-form on the
cotangent bundle TV (X). For each 4 e T'V(X) we must define a 1-form
on T,(T"(X)).

Let n: TV(X) — X be the canonical projection. Then the induced
tangent map

Tn=m: T(TV(X)) - T(X)

can be applied to an element z of T,(TV (X)) and one sees at once that
mz lies in Ty(X) if A lies in T,Y (X). Thus we can take the pairing

(4, mz) = 0,(2)
to define a map (which is obviously continuous linear):

6,: T,(TY (X)) - R

Proposition 7.1. This map defines a 1-form on TV (X). Let X = U be
open in E and

TY(U)y=UxEY, T(TV(U))=(UxEY)x(ExEY).
If (x, A)e UXE" and (u, ) eE xE", then the local representation

O(x,5) is given by
(0(x,2), (w4, 0)) = A(u).
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Proof. We observe that the projection n: U x EY — U is linear, and
hence that its derivative at each point is constant, equal to the projection
on the first factor. Our formula is then an immediate consequence of the
definition. The local formula shows that # is in fact a 1-form locally, and
therefore globally since it has an invariant description.

Our l-form is called the canonical 1-form on the cotangent bundle. We
define the canonical 2-form Q on the cotangent bundle TV X to be

Q= —dé.
The next proposition gives a local description of Q.

Proposition 7.2. Let U be open in E, and let Q be the local
representation of the canonical 2-form on TYU=UXE". Let
(x, )e UxEY. Let (w1, ) and (uz, @) be elements of ExXE",
Then

(Qx, 2y (11, 1) X (U2, 02)) = (w1, w2) — (2, w1)

= (Dz(ul) - a)l(uz).

Proof. We observe that 6 is linear, and thus that 8’ is constant. We
then apply the local formula for the exterior derivative, given in Pro-
position 3.2. Our assertion becomes obvious.

The canonical 2-form plays a fundamental role in Lagrangian and
Hamiltonian mechanics, cf. [AbM 78], Chapter 3, §3. I have taken the
sign of the canonical 2-form both so that its value is a 2 x 2 determinant,
and so that it fits with, for instance, [LoS 68] and [AbM 78]. We observe
that Q is closed, that is dQ = 0, because Q = —df. Thus (TVX, Q) is a
symplectic manifold, to which the properties listed at the end of the last
section apply.

In particular, let £ be a vector field on X. Then to & is associated a
function called the momentum function

fir TYX >R suchthat  fx(d) = A(&(x))

for A,e TYX. Then df; is a 1-form on TVX. Classical Hamiltonian
mechanics then applies Propositions 6.2 and 6.3 to this situation. We refer
the interested reader to [LoS 68] and [AbM 78] for further information on
this topic. For an important theorem of Marsden—Weinstein [MaW 74]
and applications to vector bundles, see [Ko 87].
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V, §8. DARBOUX'S THEOREM

If E =R" then the usual scalar product establishes the self-duality of R”.
This self-duality arises from other forms, and in this section we are
especially interested in the self-duality arising from alternating forms. If E
is finite dimensional and w is an element of L2(E), that is an alternating
2-form, which is non-singular, then one sees easily that the dimension of E
is even.

Example. An example of such a form on R is the following. Let

U=(V1,- Uy V5., 0p),

w=(Wi,...,Wn, Wi,..., W),

be elements of R?", with components v;, v/, w;, w'.
> 124 > H

Letting
n
(v, w) = Z(viw; — vjw;)

i=1

defines a non-singular 2-form o on R?". It is an exercise of linear algebra
to prove that any non-singular 2-form on R?" is linearly isomorphic to this
particular one in the following sense. If

f: E~F

is a linear isomorphism between two finite dimensional spaces, then it
induces an isomorphism

[ Li(F) - LY(E).

We call forms @ on E and ¢ on F linearly isomorphic if there exists a
linear isomorphism f such that f*¥ = . Thus up to a linear isomor-
phism, there is only one non-singular 2-form on R*". (For a proof, cf. for
instance my book Algebra.)

We are interested in the same question on a manifold locally. Let U be
open in the Banach space E and let xoe U. A 2-form

w: U~ LX(E)

is said to be non-singular if each form w(x) is non-singular. If £ is a vector
field on U, then wo¢ is a 1-form, whose value at (x, w) is given

(@0 )(x)(w) = a(x)(&(x), w).

As a special case of Proposition 6.1, we have:
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Let @ be a non-singular 2-form on an open set U in E. The association
- wol

is a linear isomorphism between the space of vector fields on U and the
space of 1-forms on U.

Let
w: U— LYU)

be a 2-form on an open set U in E. If there exists a local isomorphism f at
a point xo € U, say
[ Uy — 17,

and a 2-form ¥ on V) such that f*y = w (or more accurately, w restricted
to U;), then we say that w is locally isomorphic to i at x,. Observe that
in the case of an isomorphism we can take a direct image of forms, and
we shall also write

fio=y
instead of w = f*y. In other words, f, = (f™!)*.

Example. On R?>" we have the constant form of the previous example.
In terms of local coordinates (xi,...,xn, ¥;,...,¥,), this form has the
local expression

n
w(x, y) = dx; A dy.
i=1

This 2-form will be called the standard 2-form on R%".

The Darboux theorem states that any non-singular closed 2-form in R*
is locally isomorphic to the standard form, that is that in a suitable chart
at a point, it has the standard expression of the above example. A
technique to show that certain forms are isomorphic was used by Moser
[Mo 65], who pointed out that his arguments also prove the classical
Darboux theorem. Moser’s theorem will be given in Chapter XVIII, §2.

Alan Weinstein observed that Moser’s proof applies to the infinite
dimensional case, whose statement is as follows.

Theorem 8.1 (Darboux Theorem). Let E be a self-dual Banach space.
Let
w: U — LX(E)

be a non-singular closed 2-form on an open set of E, and let xo € U. Then
w is locally isomorphic at xy to the constant form w(xy).
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Proof. Let wy = w(xp), and let
w; = wo + t{w — wp), 0t 1.
We wish to find a time-dependent vector field &, locally at O such that if «
denotes its flow, then .
oo = wy.

Then the local isomorphism o satisfies the requirements of the theorem.
By the Poincaré lemma, there exists a 1-form € locally at 0 such that

w— wy = db,

and without loss of generality, we may assume that f(xp) =0. We
contend that the time-dependent vector field &, such that

W © ft = —0,

has the desired property. Let o be its flow. If we shrink the domain of the
vector field near x, sufficiently, and use the fact that 6(x;) = 0, then we
can use the local existence theorem (Proposition 1.1 of Chapter IV) to see
that the flow can be integrated at least to £ =1 for all points x in this
small domain. We shall now verify that

d .

7 (of ) = 0.

This will prove that «;w, is constant. Since we have ajwo = wy because
a(0,x)=x and  Dpa(0, x) =1id,

it will conclude the proof of the theorem.

We compute locally. We use the local formula of Proposition 5.2, and
formula LIE 1, which reduces to

g{,wt = d(wt o 6t),

because dw; =0. We find

d * * d *
E(a, W) =) (Ew,) + a; (L)

d
= tx,* (Ea), + d((l)t [o] ét))
= oy (w — wp — db)
=0.

This proves Darboux’s theorem.
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Remark 1. For the analogous uniqueness statement in the case of a
non-singular symmetric form, see the Morse—Palais lemma of Chapter VII,
§5. Compare also with Theorem 2.2 of Chapter XVIII.

Remark 2. The proof of the Poincaré lemma can also be cast in the
above style. For instance, let ¢,(x) = tx be a retraction of a star shaped

open set around 0. Let &, be the vector field whose flow is ¢,, and let @ be
a closed form. Then

d * * * *
-‘—1—t¢, 0=¢;L;w=¢; dCrw =d¢;C, w.
Since ¢y =0 and ¢, is the identity, we see that
1 d 1
w=¢i‘w—¢5w=] —¢,*wdt=dj ¢, Ce, 0 dt
0 dt 0

is exact, thus concluding a proof of Poincaré’s theorem.

CHAPTER VI

The Theorem of Frobenius

Having acquired the language of vector fields, we return to differential
equations and give a generalization of the local existence theorem known
as the Frobenius theorem, whose proof will be reduced to the standard
case discussed in Chapter IV. We state the theorem in §1. Readers should
note that one needs only to know the definition of the bracket of two vector
fields in order to understand the proof. It is convenient to insert also a
formulation in terms of differential forms, for which the reader needs to
know the local definition of the exterior derivative. However, the con-
dition involving differential forms is proved to be equivalent to the vector
field condition at the very beginning, and does not reappear explicitly
afterwards.

We shall follow essentially the proof given by Dieudonné in his
Foundations of Modern Analysis, allowing for the fact that we use freely
the geometric language of vector bundles, which is easier to grasp.

It is convenient to recall in §2 the statements concerning the existence
theorems for differential equations depending on parameters. The proof of
the Frobenius theorem proper is given in §3. An important application to
Lie groups is given in §5, after formulating the theorem globally.

The present chapter will not be used in the rest of this book.

VI, §1. STATEMENT OF THE THEOREM

Let X be a manifold of class C? (p =2). A subbundle E of its tan-
gent bundle will also be called a tangent subbundle over X. We con-
tend that the following two conditions concerning such a subbundle are
equivalent.

188
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FR 1. For each point z € X and vector fields &, n at z (i.e. defined on an
open neighborhood of z) which lie in E (i.e. such that the image of
each point of X under &, n lies in E), the bracket [&, 5] also lies in
E.

FR 2. For each point z € X and differential form w of degree 1 at z
which vanishes on E, the form dw vanishes on & x n whenever &,
are two vector fields at z which lie in E.

The equivalence is essentially a triviality. Indeed, assume FR 1. Let
vanish to E. Then

(dw, & xn) = —(, [§, 1) - n{w, &) + &, n).

By assumption the right-hand side is 0 when evaluated at z. Conversely,
assume FR 2. Let &, n be two vector fields at z lying in E. If [&, #](z) is
not in E, then we see immediately from a local product representation and
the Hahn-Banach theorem that there exists a differential form w of degree
1 defined on a neighborhood of z which is 0 on E, and non-zero on
[&, 77](2), thereby contradicting the above formula.

We shall now give a third condition equivalent to the above two, and
actually, we shall not refer to FR 2 any more. We remark merely that
in the finite dimensional case, it is easy to prove that when a differential
form w satisfies condition FR 2, then dw can be expressed locally in a
neighborhood of each point as a finite sum

dw=2y,- A ;

where y; and w; are of degree 1 and each w; vanishes on E. We leave this
as an exercise to the reader.

Let E be a tangent subbundle over X. We shall say that E is integrable
at a point xg if there exists a submanifold Y of X containing x, such that
the tangent map of the inclusion

j: Y- X

induces a VB-isomorphism of TY with the subbundle E restricted to Y.
Equivalently, we could say that for each point y € Y, the tangent map

T,j: T,Y - T,X
induces a toplinear isomorphism of T,Y on E,. Note that our condition

defining integrability is local at x,. We say that E is integrable if it is
integrable at every point. .
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Using the functoriality of vector fields, and their relations under tangent
maps and the bracket product, we see at once that if E is integrable, then
it satisfies FR 1. Indeed, locally vector fields having their values in E are
related to vector fields over Y under the inclusion mapping.

Frobenius’ theorem asserts the converse.

Theorem 1.1. Let X be a manifold of class C? (p = 2) and let E be a
tangent subbundle over X. Then E is integrable if and only if E satisfies
condition FR 1.

The proof of Frobenius’ theorem will be carried out by analyzing the
situation locally and reducing it to the standard theorem for ordinary
differential equations. Thus we now analyze the condition FR 1 in terms
of its local representation.

Suppose that we work locally, over a product U x ¥ of open subsets
of Banach spaces E and F. Then the tangent bundle T(U x V) can be
written in a natural way as a direct sum. Indeed, for each point (x, y) in
U x V we have

Tix,»)(U x V) = Tx(U) x T,(V).

One sees at once that the collection of fibers T (U) x 0 (contained in
T«(U) x T,(V)) forms a subbundle which will be denoted by T1(U x V)
and will be called the first factor of the tangent bundle. One could define
T»(U x V) similarly, and

T(U x V) =Ti(U x V)@ TL(U x V).

A subbundle E of T(X) is integrable at a point ze€ X if and only if
there exists an open neighborhood W of z and an isomorphism

p: UxV-W
of a product onto W such that the composition of maps

TV(U x V) 2% (U x v) 22 (W)

induces a VB-isomorphism of T;(U x V) onto E|W (over ¢). Denoting
by ¢, the map of U into W given by ¢,(x) = ¢(x, y), we can also express
the integrability condition by saying that T, should induce a toplinear
isomorphism of E onto E,, , for all (x, y) in U x V. We note that in
terms of our local product structure, Tyxp, is nothing but the partial
derivative Dyg(x, y).

Given a subbundle of 7'(X), and a point in the base space X, we know
from the definition of a subbundle in terms of a local product decom-
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position that we can find a product decomposition of an open neigh-
borhood of this point, say U x ¥, such that the point has coordinates
(x0, o) and such that the subbundle can be written in the form of an
exact sequence

0o UxVXEZ UxVxExF

with the map
S(x0, y0): E->ExF

equal to the canonical embedding of E on E x 0. For a point (x, y) in
U x V the map f(x, y) has two components fi(x, y) and f,(x, y) into E
and F respectively. Taking a suitable VB-automorphism of U x V x E if
necessary, we may assume without loss of generality that fi(x, y) is the
identity. We now write f(x, y) = f5(x, y). Then

f: UxV—L{E,F)

is a morphism (of class CP~1) which describes our subbundle completely.
We shall interpret condition FR 1 in terms of the present situation. If

& UxV—-ExF

is the local representation of a vector field over U x V, we let £; and &, be
its projections on E and F respectively. Then ¢ lies in the image of f if
and only if

&(x, ¥) = f(x, y)i(x, y)

for all (x, y) in U x V¥, or in other words, if and only if £ is of the form

é(x’ y) = (é](X, y)7 f(xa y)él (x7 y))
for some morphism (of class C?71)
&: UxV —-E.

We shall also write the above condition symbolically, namely

(1 E=(&, f-&)

If &, 5 are the local representations of vector fields over U x V, then the
reader will verify at once from the local definition of the bracket
(Proposition 1.3 of Chapter V) that [£, #] lies in the image of f if and only
if

Df(x, y) - &(x, ) -m(x, ¥) = Df(x, y) - n(x, y) - &u(x, ¥)
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or symbolically,
(2) Df-&-m=Df -n-¢&.
We have now expressed all the hypotheses of Theorem 1.1 in terms of

local data, and the heart of the proof will consist in proving the following
result.

Theorem 1.2. Let U, V be open subsets of Banach spaces E, F
respectively. Let

f: UxV — L(E, F)
be a C’-morphism (r 2 1). Assume that if
éom: UxV —E

are two morphisms, and if we let

E=(&, &) and  n=(n, f-m)

then relation (2) above is satisfied. Let (xg, yo) be a point of U x V.
Then there exists open neighborhoods Uy, Vy of xo, y, respectively,
contained in U, V, and a unique morphism o: Uy x Vo — V such that

Dla(x7 y) = f(x’ oc(x, y))
and a(xg, y) =y for all (x,y) in Uy x V.
We shall prove Theorem 1.2 in §3. We now indicate how Theorem 1.1

follows from it. We denote by a, the map a,(x) = a(x, y), viewed as a
map of Uy into V. Then our differential equation can be written

Day(x) = f(x, oy (x)).
We let
9: UyxVy-oUxV

be Fhe map o(x, y) = (x, oy(x)). It is obvious that Dg(xp, y,) is a
toplinear isomorphism, so that ¢ is a local isomorphism at {(x0, ¥o)-
Furthermore, for (4, v) e E x F we have

Dlw(xa y) : (u’ U) = (u7 Day(x) ) u) = (u’ f(x7 ocy(x)) ) u)

which shows that our subbundle is integrable.
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VI, §2. DIFFERENTIAL EQUATIONS DEPENDING
ON A PARAMETER

Proposition 2.1. Let U, V be open sets in Banach spaces E, F
respectively. Let J be an open interval of R containing 0, and let

g: JxUxV—->F

be a morphism of class C" (r21). Let (xo, yy) be a point in U x V.
Then there exists open balls Jo, Uy, Vo centered at 0, xy, y, and
contained J, U, V respectively, and a unique morphism of class C’

ﬂ: J()XU()XV()—?V

such that B(0, x, y) =y and

Dif(t, x, y) = g(t, x, B(t, x, ¥))
Sfor all (t, x, y)eJyx Uy x V.

Proof This follows from the existence and uniqueness of local flows, by
considering the ordinary vector field on U x V

G: JxUxV—->ExF
given by G(1, x, ) = (0, g(1, x, »)). If B(t, x, ») is the local flow for G,
then we let B(¢, x, y) be the projection on the second factor of B(t, x, ).
The reader will verify at once that f satisfies the desired conditions. The
uniqueness is clear.
Let us keep the initial condition y fixed, and write

B(t, x) = B(1, x, y)-

From Chapter IV, §1, we obtain also the differential equation satisfied by
B in its second variable:

Proposition 2.2. Let notation be as in Proposition 2.1, and with y fixed,
let B(t, x) = (¢, x, y). Then D,B(t, x) satisfies the differential equation

DIDZ:B(ta X) = DZQ(tv X, ﬂ(t’ x)) v+ D3g(t7 X, ﬂ(t’ x)) . DZ)B(t’ x) v,

for every veE.
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Proof. Here again, we consider the vector field as in the proof of
Proposition 2.1, and apply the formula for the differential equation
satisfied by D,f as in Chapter IV, §l.

VI, §3. PROOF OF THE THEOREM

In the application of Proposition 2.1 to the proof of Theorem 1.2, we take
our morphism g to be

g(t, z, y)=f(xo+1z,9) -z

with z in a small ball Ey around the origin in E, and y in V. It is
convenient to make a translation, and without loss of generality we can
assume that xo =0 and y, =0. From Proposition 2.1 we then obtain

B: JoxEyxVy—V

with initial condition £(0, z, y) = y for all z € Ey, satisfying the differential
equation
Di(t, z, y) = f(1z, B(1, 2, y)) - 2.

Making a change of variables of type ¢t =as and z=a"!x for a small
positive number a, we see at once that we may assume that Jy contains 1,
provided we take E; sufficiently small. As we shall keep y fixed from now
on, we omit it from the notation, and write (¢, z) instead of f(¢, z, y).
Then our differential equation is

(3) Dlﬂ(ty Z) = f(tz’ ﬂ(t’ z)) "z

We observe that if we knew the existence of « in the statement of
Theorem 1.2, then letting (¢, z) = a(xo + tz) would yield a solution of our
differential equation. Thus the uniqueness of « follows. To prove its
existence, we start with § and contend that the map

a(x) = p(1, x)

has the required properties for small |x|. To prove our contention it will
suffice to prove that

(4) Dyf(t, z) = tf (12, B¢, 2))
because if that relation holds, then
Da(x) = Dzﬁ(l, x) = f(xa B, x)) = f(X, oz(x))

which is precisely what we want.
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From Proposition 2.2, we obtain for any vector ve€E,

D\Dyf(t, z) - v = tD f(tz, B(2, z))-v-z
+ D2 f (12, B(t, 2)) - Daf(t, 2) - v- 2+ f(tz, B(t, 2)) - v.

We now let k(f) = D2f(t, z) - v — tf (tz, B(t, z)) - v. Then one sees at once
that k(0) =0 and we contend that

(5) Dk(t) = Daf (tz, B, 2)) - k(t) - z.

We use the main hypothesis of our theorem, namely relation (2), in which
we take &, and 7, to be the fields v and z respectively. We compute pf
using the formula for the partial derivatives, and apply it to this spe(':lal
case. Then (5) follows immediately. It is a linear differential equation
satisfied by k(f), and by Corollary 1.7 of Chapter IV, we know that the
solution 0 is the unique solution. Thus k(#) =0 and relation (4) is
proved. The theorem also.

VI, §4. THE GLOBAL FORMULATION

Let X be a manifold. Let F be a tangent subbundle. By an integral
manifold for F, we shall mean an injective immersion

[ Y- X
such that at every point y € Y, the tangent map
Tyfi TyY — Tf(y)X

induces a toplinear isomorphism of T, Y on the subspace Fy(, of Ty J’).X .
Thus Tf induces locally an isomorphism of the tangent bundle of Y with
the bundle F over f(Y).

Observe that the image f(Y) itself may not be a submanifold of X. For
instance, if F has dimension 1 (i.e. the fibers of F have dimension 1), an
integral manifold for F is nothing but an integral curve from the theory of
differential equations, and this curve may wind around X in suc}} a way
that its image is dense. A special case of this occurs if we consider the
torus as the quotient of the plane by the subgroup generated by the two
unit vectors. A straight line with irrational slope in the plane gets mapped
on a dense integral curve on the torus. _

If Y is a submanifold of X, then of course the inclusion j: ¥ — X is an
injective immersion, and in this case, the condition that it be an integral
manifold for F simply means that T(Y) = F|Y (F restricted to Y).
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We now have the local uniqueness of integral manifolds, corresponding
to the local uniqueness of integral curves.

Theorem 4.1. Let Y, Z be integral submanifolds of X for the subbundle F
of TX, passing through a point xo. Then there exists an open neigh-
borhood U of xy in X, such that

YnU=2ZnU.

Proof. Let U be an open neighborhood of x; in X such that we have a
chart
U->VxW
with
Xp — (y 0s WO);

and Y corresponds to all points (y, wp), ye V. In other words, Y
corresponds to a factor in the product in the chart. If V is open in F; and
W open in F,, with F; x F; = E, then the subbundle F is represented by
the projection

VxWxF,

VxW

Shrinking Z, we may assume that Z< U. Let h: Z— V x W be the
restriction of the chart to Z, and let & = (h;, h;) be represented by its two
components. By assumption, 4'(x) maps E into F; for every x € Z. Hence
h is constant, so that 4(Z) is contained in the factor ¥ x {wp}. It follows
at once that h(Z) = ¥ x {wo} for some open ¥} in V, and we can shrink
U to a product ¥} x Wy (where W) is a small open set in W containing
wp) to -conclude the proof.

We wish to get a maximal connected integral manifold for an integrable
subbundle F of TX passing through a given point, just as we obtained a
maximal integral curve. For this, it is just as easy to deal with the
nonconnected case, following Chevalley’s treatment in his book on Lie
Groups. (Note the historical curiosity that vector bundles were invented
about a year after Chevalley published his book, so that the language
of vector bundles, or the tangent bundle, is absent from Chevalley’s
presentation. In fact, Chevalley used a terminology which now appears
terribly confusing for the notion of a tangent subbundle, and it will not be
repeated here!)

We give a new manifold structure to X, depending on the integrable
tangent subbundle F, and the manifold thus obtained will be denoted by
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Xp. This manifold has the same set of points as X. Let x€ X. We know
from the local uniqueness theorem that a submanifold ¥ of X which is at
the same time an integral manifold for F is locally uniquely determined. A
chart for this submanifold locally at x is taken to be a chart for Xr. It is
immediately verified that the collection of such charts is an atlas, which
defines our manifold Xr. (We lose one order of differentiability.) The
identity mapping
Ji XrP—> X

is then obviously an injective immersion, satisfying the following universal
properties.

Theorem 4.2. Let F be an integrable tangent subbundle over X. If
f: Y-X

is a morphism such that Tf: TY — TX maps TY into F, then the

induced map £y
ri Y — Xp

(same values as f but viewed as a map into the new manifold Xr) is also a
morphism. Furthermore, if f is an injective immersion, then fy induces an
isomorphism of Y onto an open subset of Xp.

Proof. Using the local product structure as in the proof of the local
uniqueness Theorem 4.1, we see at once that fr is a morphism. In other
words, locally, f maps a neighborhood of each point of Y into a sub-
manifold of X which is tangent to F. If in addition f is an ‘injective
immersion, then from the definition of the charts on Xr, we see that fg
maps Y bijectively onto an open subset of Xr, and is a local isomorphism
at each point. Hence f5 induces an isomorphism of Y with an open
subset of Xr, as was to be shown.

Corollary 4.3. Let Xp(xo) be the connected component of Xr containing
a point xo. If f: Y — X is an integral manifold for F passing through
xo, and Y is connected, then there exists a unique morphism

h: Y — Xp(x0)

making the following diagram commutative:

h
Y —— Xg(xo0)
s j

X

and h induces an isomorphism of Y onto an open subset of Xr(xo).
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Proof. Clear from the preceding discussion.

Note the general functorial behavior of the integral manifold. If
g X—- X

is an isomorphism, and F is an integrable tangent subbundle over X, then
F' = (Tg)(F) = g.F is an integrable bundle over X’. Then the following

diagram is commutative:

X, -2 Xp

I

X — X
g

The map gr is, of course, the map having the same values as g, but viewed
as a map on the manifold Xr.

VI, §5. LIE GROUPS AND SUBGROUPS

It is not our purpose here to delve extensively into Lie groups, but to lay
the groundwork for their theory. For more results, we refer the reader
to texts on Lie groups, differential geometry, and also to the paper by
W. Graeub [Gr 61]. Although seemingly written to apply only to the
finite dimensional case, this paper holds essentially in its entirety for the
Banach case (and Hilbert case when dealing with Riemannian metrics),
and is written on foundations corresponding to those of the present book.

By a group manifold, or a Lie group G, we mean a manifold with a
group structure, that is a law of composition and inverse,

t: GxG—- G and G- G

which are morphisms. Thus each x € G gives rise to a left translation

™ G— G
such that 7%(y) = xy.

When dealing with groups, we shall have to distinguish between iso-
morphisms in the category of manifolds, and isomorphisms in the category
of group manifolds, which are also group homomorphisms. Thus we shall
use_prefixes, and speak of group manifold isomorphism, or manifold iso-
morphism as the case may be. We abbreviate these by GM-isomorphism
or M-isomorphism. We see that left translation is an M-isomorphism, but
not a GM-isomorphism.
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Let e denote the origin (unit element) of G. If ve T,G is a tangent
vector at the origin, then we can translate it, and we obtain a map

(x, v) = tiv=&(x)
which is easily verified to be a VB-isomorphism
G¢xT.G— TG

from the product bundle to the tangent bundle of G. This is done at once
using charts. Recall that 7,G can be viewed as a Banachable space, using
any local trivialization of G at e to get a toplinear isomorphism of 7,.G
with the standard Banachable space on which G is modeled. Thus we see
that the tangent bundle of a Lie group is trivializable.

A vector field ¢ over G is called left invariant if 77¢ = & for all xe G.
Note that the map

x = &y(x)
described above is a left invariant vector field, and that the association
v 6,

obviously establishes a linear isomorphism between 7,G and the vector
space of left invariant vector fields on G. The space of such vector fields
will be denoted by g or I(G), and will be called the Lie algebra of G,
because of the following results.

Proposition 5.1. Ler &, n be left invariant vector fields on G. Then [&, ]
is also left invariant.

Proof This follows from the general functorial formula
1 m) = [o2, winl = &, nl.

Under the linear isomorphism of T,G with I(G), we can view [{G) as a
Banachable space. By a Lie subalgebra of 1(G) we shall mean a closed
subspace b which splits, and having the property that if &, neb, then
[$,n] €} also.

Note. In the finite dimensional case, every subspace is closed and splits,
so that only this last condition about the bracket product need be
mentioned explicitly.

Let G, H be Lie groups. A map

f: H—-G
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will be called a homomorphism if it is a group homomorphism and a
morphism in the category of manifolds. Such a homomorphism induces a
continuous linear map

Tefzf*: TeH_) Ter
and it is clear that it also induces a corresponding linear map
I(H) = 1(G),

also denoted by f,. Namely, if v e T.H and ¢, is the left invariant vector
field on H induced by v, then

Jibo = oo

The general functorial property of related vector fields applies to this case,
and shows that the induced map

f.: (H) = 1(G)
is also a Lie algebra homomorphism, namely for & 7 el(H) we have

L& n =118, funl.

Now suppose that the homomorphism f: H — G is also an immersion
at the origin of H. Then by translation, one sees that it is an immersion at
every point. If in addition it is an injective immersion, then we shall say
that fis a Lie subgroup of G. We see that in this case, finduces a splitting
injection

S H) - 1(G).

The image of I(H) in [(G) is a Lie subalgebra of I(G).
In general, let § be a Lie subalgebra of I(G) and let F, be the corre-
sponding subspace of T.G. For each xe G, let

F,=1]F..

Then F, is a split subspace of TG, and using local charts, it is clear that
the collection F = {F,} is a subbundle of TG, which is left invariant.
Furthermore, if

f: H->G

is a homomorphism which is an injective immersion, and if b is the image
of I(H), then we also see that f is an integral manifold for the subbundle
F. We shall now see that the converse holds, using Frobenius’ theorem.
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Theorem 5.2. Let G be a Lie group, b a Lie subalgebra of I(G), and
let F be the corresponding left invariant subbundle of TG. Then F is
integrable.

Proof. 1 owe the proof to Alan Weinstein. It is based on the following
lemma.

Lemma 5.3. Let X be a manifold, let &, n be vector fields at a point x,
and let F be a subbundle of TX. If &(xo) =0 and ¢ is contained in F,
then [&, n](x) € F.

Prqof We can deal with the local representations, such that X = U is
open in E, and F corresponds to a factor, that is

TX =UxF| xF, and F=UxF.

We may also assume without loss of generality that xp =0. Then
£(0) =0, and &: U — F; may be viewed as a map into F;. We may write

¢(x) = A(x)x,

with a morphism 4: U — L(E, F;). Indeed,

1

£) = j £ty dt - x,

0
1
and A(x) =pr, o L &'(ex) dt, where pry is the projection on F;. Then

[€, 71(X) = n'(x)&(x) — &' (x)n(x)

=n'(x)4(x)x — A'(x) - x - (%) — A(x) - n(x),
whence

£, 7](0) = A4(0)(0).
Since A(0) maps E into F;, we have proved our lemma.

_Back to the proof of the proposition. Let &, # be vector fields at a
pomt' Xp in G, both contained in the invariant subbundle F., There exist
mvanant vector fields &, and 7, and xo such that

&(x0) = &o(x0) and  #(xo) = ny(x0)-
Let

&i=¢-¢ and no=n-—"n
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Then &,, n; vanish at xo and lie in F. We get:

[f, ’7] = Z [fi, '7;']-

ij
The proposition now follows at once from the lemma.

Theorem 5.4. Let G be a Lie group, let § be a Lie subalgebra of 1(G),
and let F be its associated invariant subbundle. Let

j: H—> G

be the maximal connected integral manifold of F passing through e. Then
H is a subgroup of G, and j: H — G is a Lie subgroup of G. The
association between Yy and j: H — G establishes a bijection between Lie
subalgebras of 1(G) and Lie subgroups of G.

Proof. Let xe H. The M-isomorphism 7* induces a VB-isomorphism
of F onto itself, in other words, F is invariant under 7). Furthermore,
since H passes through e, and xe lies in H, it follows that j: H — G is
also the maximal connected integral manifold of F passing through x.
Hence x maps H onto itself. From this we conclude that if y € H, then
xy e H, and there exists some y e H such that xy = e, whence xleH.
Hence H is a subgroup. The other assertions are then clear.

If H is a Lie subgroup of G, belonging to the Lie algebra b, and F is
the associated integrable left invariant tangent subbundle, then the integral
manifold for F passing through a given point x is simply the translation
xH, as one sees from first functorial principles.

When § is 1-dimensional, then it is easy to see that the Lie subgroup is
in fact a homomorphic image of an integral curve

o: R—- G

which is a homomorphism, and such that «’(0) = v is any vector in 7,G
which is the value at e of a non-zero element of ). Changing this vector
merely reparametrizes the curve. The integral curve may coincide with the
subgroup, or it comes back on itself, and then the subgroup is essentially
a circle. Thus the integral curve need not be equal to the subgroup.
However, locally near ¢ =0, they do coincide. Such an integral curve is
called a one-parameter subgroup of G.

Using Theorem 1.5 of Chapter V, it is then easy to see that if the Lie
algebra of a connected Lie group G is commutative, then G itself is
commutative. One first proves this for elements in a neighborhood of the
origin, using 1-parameter subgroups, and then one gets the statement
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globally by expressing G as a union of products
vu.-.-U,

where U is a symmetric connected open neighborhood of the unit element.
All of these statements are easy to prove, and belong to the first chapter
of a book on Lie groups. Our purpose here is merely to lay the general
foundations essentially belonging to general manifold theory.

Warning. The group of differential automorphisms of a finite dimen-
sional manifold is “infinite dimensional” but usually not a Lie group,
because multiplication is usually continuous only in each variable sepa-
rately. For an analysis of this, also in the context of H? (Sobolev) spaces,
cf. Ebin and Marsden [EbM 70].

PART i

Metrics, Covariant
Derivatives, and
Riemannian Geometry



CHAPTER VIl

Metrics

In our discussion of vector bundles, we put no greater structure on the
fibers than that of topological vector space (of the same category as those
used to build up manifolds). One can strengthen the notion so as to
include the metric structure, and we are thus led to consider Hilbert
bundles, whose fibers are Hilbert spaces.

Aside from the definitions, and basic properties, we deal with two
special topics. On the one hand, we complete our uniqueness theorem
on tubular neighborhoods by showing that when a Riemannian metric is
given, a tubular neighborhood can be straightened out to a metric one.
Secondly, we show how a Riemannian metric gives rise in a natural way
to a spray, and thus how one recovers geodesics. The fundamental 2-form
is used to identify the vector fields and 1-forms on the tangent bundle,
identified with the cotangent bundle by the Riemannian metric.

We assume throughout that our manifolds are Hausdorff and are
sufficiently differentiable so that all our statements make sense. (For
instance, when dealing with sprays, we take p = 3.)

Of necessity, we shall use the standard spectral theorem for (bounded)
symmetric operators. A self-contained treatment will be given in the
appendix.

VII, §1. DEFINITION AND FUNCTORIALITY

For Riemannian geometry, we shall deal with a Hilbertable vector space,
that is a topological vector space which is complete, and whose topology
can be defined by the norm associated with a bilinear form, which is
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symmetric and positive definite. All facts needed in the sequel concerning
Hilbert spaces can be found in the Appendix.

It turns out that some basic properties have only to do with a weaker
property of the space E on which a manifold is modeled, namely that the
Banach space E is self dual, via a symmetric non-singular bilinear form.
Thus we only assume this property until more is needed. We recall that
such a form is a continuous bilinear map

(v, w) = (v, w) of ExE—R

such that (v, w) = (w, v) for all v, w e E, and the corresponding map of E
into the dual space L(E) is a topological isomorphism.

Examples. Of course, the standard positive definite scalar product on
Euclidean space provides the easiest (in some sense) example of a self dual
vector space. But the physicists are interested in R* with the scalar
product such that the square of a vector (x, y, z, t) is x? + y? 4z — 2.
This scalar product is non-singular. For one among many nice appli-
cations of the indefinite case, cf. for instance [He 84] and [Gu 91], dealing
with Huygens’ principle.

We consider Lszym(E), the vector space of continuous bilinear forms
At ExE—R

which are symmetric. If x is fixed in E, then the continuous linear form
Ax(¥) = A(x, y) is represented by an element of E which we denote by Ax,
where A4 is a continuous linear map of E into itself. The symmetry of A
implies that 4 is symmetric, that is we have

Ax, ) = (Ax, y) = (x, Ay)

for all x, ye E. Conversely, given a symmetric continuous linear map
A: E — E we can define a continuous bilinear form on E by this formula.
Thus Lszym(E) is in bijection with the set of such operators, and is itself a
Banach space, the norm being the usual operator norm. Suppose E is a
Hilbert space, and in particular, E is self dual.

The subset of Lszym(E) consisting of those forms corresponding to
symmetric positive definite operators (by definition such that 4 = e/ for
some ¢ > 0) will be called the Riemannian of E and be denoted by Ri(E).
Forms A in Ri(E) are called positive definite. The associated operator 4
of such a form is invertible, because its spectrum does not contain 0 and
the continuous function 1/t is invertible on the spectrum.

In general, suppose only that E is self dual. The space Lszym (E) contains
as an open subset the set of non-singular symmetric bilinear forms, which
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we denote by Met(E), and which we call the set of metrics or pseudo
Riemannian metrics. In view of the operations on vector bundles (Chapter
III, §4) we can apply the functor Ls2ynl to any bundle whose fibers are self
dual. Thus if n: E — X is such a bundle, then we can form Lszym(n). A
section of Lszym(n) will be called by definition a symmetric bilinear form
on 7. A (pseudo Riemannian) metric on z (or on E) is defined to be a
symmetric bilinear form on z, whose image lies in the open set of metrics
at each point. We let Met(n) be the set of metrics on n , which we also
call the set of metrics on E, and may denote by Met(E).

If E is a Hilbert space and the image of the section of Lszym(n) lies in
the Riemannian space Ri(zm,) at each point x, in order words, if on the
fiber at each point the non-singular symmetric bilinear form is actually
positive definite, then we call the metric Riemannian. Let us denote a
metric by g, so that g(x) e Met(E,) for each x € X, and lies in Ri(E,) if
the metric is Riemannian. Then g(x) is a non-singular symmetric bilinear
form in general, and in the Riemannian case, it is positive definite in
addition.

A pair (X, g) consisting of a manifold X and a (pseudo Riemannian)
metric g will be called a pseudo Riemannian manifold. It will be called a
Riemannian manifold if the manifold is modeled on a Hilbert space, and
the metric is Riemannian.

Observe that the sections of Lszym(n) form a vector space (abstract) but
that the Riemannian metrics do not. They form a convex cone. Indeed, if
a, b > 0 and g;, g2 are two Riemannian metrics, then ag; + bg, is also a
Riemannian metric.

Suppose we are given a VB-trivialization of 7 over an open subset U of
X, say )

: v (U)— UXxE.

We can transport a given pseudo Riemannian metric g (or rather its
restriction to n~!(U)) to U x E. In the local representation, this means
that for each xe U we can identify g(x) with a symmetric invertible
operator A, giving rise to the metric. The operator A, is positive definite
in the Riemannian case. Furthermore, the map

x— Ay

from U into the Banach space L(E, E) is a morphism.

As a matter of notation, we sometimes write g, instead of g(x). Thus
if v, w are two vectors in E,, then g,(v, w) is a number, and is more
convenient to write than g(x)(v, w). We shall also write (v, w), if the
metric g is fixed once for all.

Proposition 1.1. Let X be a manifold admitting partitions of unity. Let
n: E — X be a vector bundle whose fibers are Hilbertable vector spaces.
Then n admits a Riemannian metric.
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Proof. Find a partition of unity {U;, ¢;} such that #|U; is trivial, that is
such that we have a trivialization

i R—I(Ui) — U; xE

(working over a connected component of X, so that we may assume the
fibers toplinearly isomorphic to a fixed Hilbert space E). We can then find
a Riemannian metric on U; x E in a trivial way. By transport of structure,
there exists a Riemannian metric g; on z|U; and we let

9=>_ g
Then g is a Riemannian metric on x.

Let us investigate the functorial behavior of metrics.
Consider a VB-morphism

Jo

with vector bundles E’ and E over X and Y respectively, whose fibers are
self dual spaces. Let g be a symmetric bilinear form on 7, so that for each
ye Y we have a continuous, bilinear, symmetric map

9(»): Ey x Ey —»R.
Then the composite map
E,xE,— E,xE, - R

with y= f(x) is a symmetric bilinear form on E; and one verifies
immediately that it gives rise to such a form, on the vector bundle 7',
which will be denoted by f*(g). Then f induces a map

Lin(f) = 7 Lim(n) = Lig(n).

Furthermore, if f is injective and splits for each x € X, and g is a metric
(resp. g is a Riemannian metric in the Hilbert case), then obviously so is
f*(g), and we can view f* as mapping Met(n) into Met(n’) (resp. Ri(z)
into Ri(#’) in the Riemannian case).

Let X be a manifold modeled on a Hilbertable space and let T'(X) be
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its tangent bundle. By abuse of language, we call a metric on T(X) also a
metric on X and write Met(X) instead of Met(T(X)). Similarly, we write
Ri(X) instead of Ri(T(X)).

Let f: X — Y be an immersion. Then for each x € X, then linear map

Txf: Tx(X) i Tf(x)(Y)
is injective, and splits, and thus we obtain a contravariant map
ST Ri(Y) — Ri(X),

each Riemannian metric on Y inducing a Riemannian metric on X.

A similar result applies in the pseudo Riemannian case. If (Y, g) is
Riemannian, and f is merely of class C! but not necessarily an immersion,
then the pull back f*(g) is not necessarily positive definite, but is merely
what we call semipositive. In general, if (X, /) is pseudo Riemannian and
h(v, v) 2 0 for all ve T, X, all x, then (X, h) is called semi Riemannian.
Thus the pull back of a semi Riemannian metric is semi Riemannian.

For a major result concerning Riemannian embeddings of manifolds in
Euclidean space, see Nash [Na 56], followed by Moser [Mo 61], as well as
the exposition I gave in [La 61]. Even though dealing a priori with finite
dimensional manifolds, the imbedding problem is essentially concerned
with the infinite dimensional manifold of Riemannian metrics. The
problem partly amounts to obtaining an inverse mapping theorem in a
context more complicated than that of Banach spaces, namely Frechet
spaces, when all C? norms intervene, for p =1,2,.... Newton approxi-
mation is used instead of the shrinking lemma to solve the local iso-
morphism problem in this case.

The next five sections will be devoted to considérations which apply
specifically to the Riemannian case, where positivity plays a central role.

VH, §2. THE HILBERT GROUP

Let E be a Hilbert space. The group of toplinear automorphisms Laut(E)
contains the group Hilb(E) of Hilbert automorphisms, that is those
toplinear automorphisms which preserve the inner product:

(dv, Aw) = (v, w)

for all v, we E. We note that A is Hilbertian if and only if 4*4 = 1.

As usual, we say that a linear continuous map 4: E — E is symmetric
if A* = A4 and that it is skew-symmetric if A* = —4. We have a direct
sum decomposition of the Banach space L(E, E) in terms of the two
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closed subspaces of symmetric and skew-symmetric operators:
A=1(4+A4")+1(4-4%).
We denote by Sym(E) and Sk(E) the Banach spaces of symmetric and

skew;symmetric maps respectively. The word operator will always mean
continuous linear map of E into itself.

Proposition 2.1. For all operators A, the series

A2
exp(A)=1+A+F+...

converges. If A commutes with B, then
exp(A4 + B) = exp(4) exp(B).

For all operators sufficiently close to the identity I, the series

2
log(A):(,41—1)+(A;1)

converges, and if A commutes with B, then
log(AB) = log(A4) + log(B).

Proof. Standard.

We leave it as an exercise to the reader to show that the exponential
function gives a C*-morphism of L(E, E) into itself. Similarly, a function
admitting a development in power series say around 0 can be applied to
the set of operators whose bound is smaller than the radius of convergence
of the series, and gives a C*-morphism.

Proposition 2.2. If A is symmetric (resp. skew-symmetric), then exp(4) is
symmetric positive definite (resp. Hilbertian). If A is toplinear auto-
morphism sufficiently close to I and is positive definite symmetric (resp.
Hilbertian), then log(A) is symmetric (resp. skew-symmetric).

Proof. The proofs are straightforward. As an example, let us carry out
the proof of the last statement. Suppose A is Hilbertian and sufficiently
close to I. Then A*4 =1 and A4* = A~!. Then

(4~ 1)
1

= log(471).

log(A)*z + ...
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If A is close to I, so is A4~1, 5o that these statements make sense. We NOW
conclude by noting that log(4~!) = —log(4). All the other proofs are
carried out in a similar fashion, taking a star operator in series term by
term, under conditions which insure convergence.

The exponential and logarithm functions give inverse C* mappings
between neighborhoods of 0 in L(E, E) and neighborhoods of I in
Laut(E). Furthermore, the direct sum decomposition of L(E, E) into
symmetric and skew-symmetric subspaces is reflected locally in a neigh-
borhood of I by a C*® direct product decomposition into positive definite
and Hilbertian automorphisms. This direct product decomposition can
be translated multiplicatively to any toplinear automorphism, because if
A e Laut(E) and B is close to 4, then

B=AA"'B=A(I-(I-47'B))
and (I — A7'B) is small. This proves:

Proposition 2.3. The Hilbert group of automorphisms of E is a closed
submanifold of Laut(E).

In addition to this local result, we get a global one also:

Proposition 2.4, The exponential map gives a C*-isomorphism from the
space Sym(E) of symmetric endomorphisms of E and the space Pos(E) of
symmetric positive definite automorphisms of E.

Proof. We must construct its inverse, and for this we use the spectral
theorem. Given 4, symmetric positive definite, the analytic function log ¢
is defined on the spectrum of A4, and thus log A4 is symmetric. One verifies
immediately that it is the inverse of the exponential function (which can be
viewed in the same way). We can expand log ¢ around a large positive
number ¢, in a power series uniformly and absolutely convergent in an
interval 0 < € £t < 2¢ — ¢, to achieve our purposes.

Proposition 2.5. The manifold of toplinear automorphisms of the Hilbert
space E is C®-isomorphic to the product of the Hilbert automorphisms
and the positive definite symmetric automorphisms, under the mapping

Hilb(E) x Pos(E) — Laut(E)
given by
(H, P) — HP.

Proof. Our map is induced by a continuous bilinear map of

L(E, E) x L(E, E)
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into L(E, E) and so is C*. We must construct an inverse, or in other
words express any given toplinear automorphism A4 in a unique way as a
product 4 = HP where H is Hilbertian, P is symmetric positive definite,
and both H, P depend C® on A. This is done as follows. First we note
that A*4 is symmetric positive definite (because (A4*A4v, v) = (4v, Av),
and furthermore, 4*4 is a toplinear automorphism, so that 0 cannot be in
its spectrum, and hence 4*4 = eI > O since the spectrum is closed). We
let

P= (A*A)I/Z
and let H= AP~'. Then H is Hilbertian, because
H*H = (Py*4*AP' = I

Both P and H depend differentiably on A4 since all constructions involved
are differentiable.

There remains to be shown that the expression as a product is unique.
If A= H\P; where H;, Py are Hilbertian and symmetric positive definite
respectively, then

H'H = PP},

and we get H, = PPI‘1 for some Hilbertian automorphism H,. By defini-
tion,

1= H;H, = (PP{')y" PP}
and from the fact that P* = P and P} = P;, we find
P> =Pl

Taking the log, we find 2 log P =2 log P;. We now divide by 2 and take
the exponential, thus giving P = P; and finally H = H;. This proves our
proposition.

Vil, §3. REDUCTION TO THE HILBERT GROUP

We define a new category of bundles, namely the Hilbert bundles over
X, denoted by HB(X). As before, we would denote by HB(X, E) or
HB(X, ¥) those Hilbert bundles whose fiber is a Hilbert space E or lies in
a category .

Let n: E — X be a vector bundle over X, and assume that it has a
trivialization {(U;, t;)} with trivializing maps

7: W (U) = Ui x E

RS S e

[VII, §3] REDUCTION TO THE HILBERT GROUP 181

where E is a Hilbert space, such that each toplinear automorphism (z;7;1),
is a Hilbert automorphism. Equivalently, we could also say that t; is
a Hilbert isomorphism. Such a trivialization will be called a Hilbert
trivialization. Two such trivializations are called Hilbert-compatible if their
union is again a Hilbert trivialization. An equivalence class of such
compatible trivializations constitutes what we call a Hilbert bundle over
X. Any such Hilbert bundle determines a unique vector bundle, simply by
taking the VB-equivalence class determined by the trivialization.

Given a Hilbert trivialization {(U;, 7;)} of a vector bundle = over X, we
can define on each fiber z, a Hilbert space structure. Indeed, for each x
we select an open set U; in which x lies, and then transport to 7, the
scalar product in E by means of 7;,. By assumption, this is independent of
the choice of U; in which x lies. Thus in a Hilbert bundle, we can assume
that the fibers are Hilbert spaces, not only Hilbertable.

It is perfectly possible that several distinct Hilbert bundles determine the
same vector bundle.

Any Hilbert bundle determining a given vector bundle = will be said to
be a reduction of 7 to the Hilbert group.

We can make Hilbert bundles into a category, if we take for the HB-
morphisms the VB-morphisms which are injective and split at each point,
and which preserve the metric, again at each point.

Each reduction of a vector bundle to the Hilbert group determines a
Riemannian metric on the bundle. Indeed, defining for each ze X and
v, we n, the scalar product

gx(v, w) = (Tixd, TixW)
with any Hilbert-trivializing map 7, such that x € U;, we get a morphism
X gx

of X into the sections of Lszym(n) which are positive definite. We also have
the converse.

" Theorem 3.1. Let n be a vector bundle over a manifold X, and assume
that the fibers of n are all toplinearly isomorphic to a Hilbert space E.
Then the above map, from reductions of n to the Hilbert group, into the
Riemannian metrics, is a bijection.

Proof. Suppose that we are given an ordinary VB-trivialization
{(U;, 7,)} of . We must construct an HB-trivialization. For each i, let g;
be the Riemannian metric on U; x E transported from #n~!(U;) by means
of t;. Then for each x € U;, we have a positive definite symmetric operator
A, such that

gix(v, w) = (Aixv, W)
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for all v, we E. Let Bj; be the square root of A;,.. We define the
trivialization 4; by the formula

Oix = BixTix

and contend that {(U;, o;)} is a Hilbert trivialization. Indeed, from the
definition of g,,, it suffices to verify that the VB-isomorphism

Bi: Uy xE — U; xE

given by B;, on each fiber, carries g; on the usual metric. But we have, for
v,weE:

<Bixv» Bixw> = <Aixv, W)

since B;, is symmetric, and equal to the square root of A;. This proves
what we want.

At this point, it is convenient to make an additional comment on
normal bundles.

Let «, B be two Hilbert bundles over the manifold X, and let f: a —
be an HB-morphism. Assume that

0—>oc£>ﬂ

is exact. Then by using the Riemannian metric, there is a natural way of
constructing a splitting for this sequence (cf. Chapter III, §5).

Using Theorem 1.2 of the Appendix, we see at once that if F is a
(closed) subspace of a Hilbert space, then E is the direct sum

E=F®F

of F and its orthogonal complement, consisting of all vectors perpendicular
to F.

In our exact sequence, we may view f as an injection. For each x we
let af be the orthogonal complement of «, in §,. Then we shall find an
exact sequence of VB-morphisms

Bi»a——ao

whose kernel is at (set theoretically). In this manner, the collection of
orthogonal complements a; can be given the structure of a Hilbert bundle.
For each x we can write §, = oy @ «r and we define A, to be the
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projection in this direct sum decomposition. This gives us a mapping
h: B — a, and it will suffice to prove that 4 is a VB-morphism. In order
to do this, we may work locally. In that case, after taking suitable VB-
automorphisms over a small open set U of X, we can assume that we deal
with the following situation.

Our vector bundle § is equal to U x E and « is equal to U x F for
some subspace F of E, so that we can writt E=F x Ft. Our HB-
morphism is then represented for each x by an injection f,: F — E:

UxF-L UxE.

By the definition of exact sequences, we can find two VB-isomorphisms 7
and o such that the following diagram is commutative:

UxF—vaxE

UxF — UXxE

and such that the bottom map is simply given by the ordinary inclusion of
F in E. We can transport the Riemannian structure of the bundles on top
to the bundles on the bottom by means of ¢~! and ¢! respectively. We
are therefore reduced to the situation where f is given by the simple
inclusion, and the Riemannian metric on U x E is given by a family 4, of
symmetric positive definite operators on E (x € U). At each point x, we
have (v, w), = (4,v, w). We observe that the map

A: UXxE—-UXxE

given by A4, on each fiber is a VB-automorphism of U x E. Let prg be the
projection of U X E on U x F. It is a VB-morphism. Then the composite

h=prgpoAd
gives us a VB-morphism of U X E on U x F, and the sequence

UxEL UxFo0

is exact. Finally, we note that the kernel of A consists precisely of the
orthogonal complement of U x F in each fiber. This proves what we
wanted.
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VI, §4. HILBERTIAN TUBULAR NEIGHBORHOODS

Let E be a Hilbert space. Then the open ball of radius 1 is isomorphic to
E itself under the mapping

v #

= ——7
1 -1

the inverse mapping being

w

W ————
(1+ )2

If a > 0, then any ball of radius ¢ is isomorphic to the unit ball under
multiplication by the scalar a (or a7 1).

Let X be a manifold, and ¢: X — R a function (morphism) such that
o(x) >0 for all xe X. Let n: E — X be a Hilbert bundle over X. We
denote by E(o) the subset of E consisting of those vectors v such that, if v
lies in E,, then

], < a(x).

Then E(o) is an open neighborhood of the zero section.

Proposition 4.1. Let X be a manifold and n: E — X a Hilbert bundle.
Let 6: X — R be a morphism such that o(x) > 0 for all x. Then the
mapping

o(mw)w

LA MM
(L+ w2
gives dn isomorphism of E onto E(o).

Proof. Obvious. The inverse mapping is constructed in the obvious
way.

Corollary 4.2. Let X be a manifold admitting partitions of unity, and let
n: E— X be a Hilbert bundle over X. Then E is compressible.

Proof. Let Z be an open neighborhood of the zero section. For each
x € X, there exists an open neighborhood ¥, and a number a, > 0 such
that the vectors in #~!(¥,) which are of length < a, lie in Z. We can find
a partition of unity {(U;, ¢;)} on X such that each U; is contained in some
Vi) We let o be the function

Z (i) Pi-
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Then E(o) is contained in Z, and our assertion follows from the
proposition.

Proposition 4.3. Let X be a manifold. Let n: E— X and my: E{ - X
be two Hilbert bundles over X. Let

A E— E;
be a VB-isomorphism. Then there exists an isotopy of VB-isomorphisms
A E— E;
with proper domain [0, 1] such that A, = A and Ay is an HB-isomorphism.
Proof. We find reductions of E and E; to the Hilbert group, with

Hilbert trivializations {(Uj, 7;)} for E and {(U;, p;)} for E;. We can then
factor p;Ar;! as in Proposition 2.5, applied to each fiber map:

UXE — U xE — U;xE

Ti T P

Y (U) T n(U1) -0 27 (U)

and obtain a factorization of A into A =Ayip where Ay is a HB-
isomorphism and Ap is a positive definite symmetric VB-automorphism.
The latter form a convex set, and our isotopy is simply

Ay=Ago (tI +(1+1)p).
(Smooth out the end points if you wish.)

Theorem 4.4. Let X be a submanifold of Y. Let n: E— X and
n1: Ey — X be two Hilbert bundles. Assume that E is compressible. Let
f: E—Y and g: E; — Y be two tubular neighborhoods of X in Y.
Then there exists an isotopy

fir E—Y

of tubular neighborhoods with proper domain (0, 1] and there exists an
HB-isomorphism u: E — E; such that fi = f and fy = gu.

Proof. From Theorem 6.2 of Chapter IV, we know already that there
exists a VB-isomorphism A such that f ~gi. Using the preceding
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proposition, we know that A=~ x4 where u is a HB-isomorphism. Thus
gA ~ gu and by transitivity, f ~ 4, as was to be shown.

Remark. In view of Proposition 4.1, we could of course replace the
condition that E be compressible by the more useful condition (in practice)
that X admit partitions of unity.

VH, §5. THE MORSE-PALAIS LEMMA

Let U be an open set in some (real) Hilbert space E, and let f be a CP+2
function on U, with p 2 1. We say that xy is a critical point for f if
Df(xo) =0. We wish to investigate the behavior of f at a critical point.
After translations, we can assume that xo =0 and that f(xp) =0. We
observe that the second derivative D?f(0) is a continuous bilinear form on
E. Let A= D?f(0), and for each x € E let A, be the functional such that
y+ Alx, y). If the map x — A, is a toplinear isomorphism of E with its
dual space EY, then we say that A is non-singular, and we say that the
critical point is non-degenerate.

We recall that a local CP-isomorphism ¢ at 0 is a CP-invertible map
defined on an open set containing 0.

Theorem 5.1. Let f be a CP*? function defined on an open neighborhood
of 0 in the Hilbert space E, with p 2 1. Assume that f(0) =0, and that
0 is a non-degenerate critical point of f. Then there exists a local CP-
isomorphism at 0, say ¢, and an invertible symmetric operator A such

that
Sf(x) = (do(x), o(x)).
Proof. We may assume that U is a ball around 0. We have
1
169 = 109 - 10) = | Dr(emyx a,
and applying the same formula to Df instead of f, we get

101
f(x)= LJ D2f (stx)tx - x ds dt = g(x)(x, x)
where ’

11
g(x) = Jo jo D?f(stx)t ds dt.

Then g is a C? map into the Banach space of continuous bilinear maps on
E, and even the space of symmetric such maps. We know that this
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Banach space is toplinearly isomorphic to the space of symmetric opera-
tors on E, and thus we can write

f(x) = (4(x)x, x)

where A: U — Sym(E) is a C? map of U into the space of symmetric
operators on E. A straightforward computation shows that

D*f(0)(v, w) = {A(0)v, w).

Since we assumed that D?f(0) is non-singular, this means that A4(0) is

invertible, and hence A4(x) is invertible for all x sufficiently near 0.
Theorem 5.1 is then a consequence of the following result, which

expresses locally the uniqueness of a non-singular symmetric form.

Theorem 5.2. Let A: U — Sym(E) be a C? map of U into the open set
of invertible symmetric operators on E. Then there exists a C? iso-
morphism of an open subset Uj containing 0, of the form
o(x) = C(x)x, witha C? map C: U; — Laut(E)
such that
{(4(x)x, x) = (4(0)p(x), ¢(x)) = (4(0)C(x)x, C(x)x).
Proof We seek a map C such that
C(x)*A(0)C(x) = A(x).
If we let B(x) = 4(0)"'4(x), then B(x) is close to the identity J for small
x. The square root function has a power series expansion near 1, which is

a uniform limit of polynomials, and is C® on a neighborhood of 7, and
we can therefore take the square root of B(x), so that we let

C(x) = B(x)"/%.

We contend that this C(x) does what we want. Indeed, since both 4(0)
and A(x) (or A(x)™') are self-adjoint, we find that

B(x)' = A(x)4(0)™,

Whence B(x)* 4(0) = A(0)B(x).

But C(x) is a power series in I — B(x), and C(x)" is the same power series
in I — B(x)". The preceding relation holds if we replace B(x) by any



188 METRICS [VIL, §5]

power of B(x) (by induction), hence it holds if we replace B(x) by any
polynomial in I — B(x), and hence finally, it holds if we replace B(x) by
C(x), and thus

C(x)* A(0)C(x) = A(0)C(x)C(x) = A(0)B(x) = A(x).

which is the desired relation.

All that remains to be shown is that ¢ is a local C?-isomorphism at 0.
But one verifies that in fact, Dp(0) = C(0), so that what we need follows
I;r?m tl;e 5inzvcrse mapping theorem. This concludes the proof of Theorems

.1 and 5.2.

Corollary 5.3. Let f be a CP*? function near O on the Hilbert space E,
such that 0 is a non-degenerate critical point. Then there exists a local
C?-isomorphism  at 0, and an orthogonal decomposition E =F +F*,
such that if we write Y(x) =y +z with yeF and z e F*, then

fX) =(r, )~z 2).

Proof. On a space where A is positive definite, we can always make the
toplinear isomorphism x —A'2x to get the quadratic form to become the
given hermitian product (, ), and similarly on a space where 4 is negative
dgﬁnite. In general, we use the spectral theorem to decompose E into a
direct orthogonal sum such that the restriction of 4 to the factors is
positive definite and negative definite respectively.

Note. The Morse—Palais lemma was proved originally by Morse in the
finite dimensional case, using the Gram—Schmidt orthogonalization pro-
cess. The elegant generalization and its proof in the Hilbert space case is
due to Palais [Pa 69). It shows (in the language of coordinate systems)
that a function near a critical point can be expressed as a quadratic form
after‘ a suitable change of coordinate system (satisfying requirements
of dlﬁerentiability). It comes up naturally in the calculus of variations.
For instance, one considers a space of paths (of various smoothness)
o: [a,b] - E where E is a Hilbert space. One then defines a length
function (see next section) or the emergy function

b
f@) = [ w0, s ) a,

an.d. one investigates the critical points of this function, especially its
minimum values. These turn out to be the solutions of the variational
problem, by definition of what one means by a variational problem. - Even
%f E is finite dimensional, so a Euclidean space, the space of paths is
infinite dimensional. Cf. [Mi 63] and (Pa 63].
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VIl, §6. THE RIEMANNIAN DISTANCE

Let (X, g) be a Riemannian manifold. For each C! curve

y: la, b = X
we define its length

b b
L) =10) = [ (/0.7 ae= [ ol 4

a

The norm is the one associated with the positive definite scalar product,
i.e. the Hilbert space norm at each point. We can extend the length to
piecewise C! paths by taking the sum over the C! curves constituting the
path. We assume that X is connected, which is equivalent to the property
that any two points can be joined by a piecewise C! path. (If X is
connected, then the set of points which can be joined to a given point
xp by a piecewise C' path is immediately verified to be open and closed,
so equal to X. The converse, that pathwise connectedness implies con-
nectedness, is even more obvious.)

We define the g-distance on X for any two points x, y € X by:
dist,(x, y) =greatest lower bound of L(y) for paths y in X joining x and y.

When g is fixed throughout, we may omit g from the notation and write
simply dist(x, y). It is clear that dist, is a semidistance, namely it is
symmetric in (x, ) and satisfies the triangle inequality. To prove that it is
a distance, we have to show that if x # y then dist,(x, y) > 0. In a chart,
there is a neighborhood U of x which contains a closed ball B(x, r) with
r > 0, and such that y lies outside this closed ball. Then any path between
x and y has to cross the sphere S(x, r). Here we are using the Hilbert
space norm in the chart. We can also take r so small that the norm in the
chart is given by

<U’ w)g(x) = <U7 A(x)w>7

for v, w € E, and x — A(x) is a morphism from U into the set of invertible
symmetric positive definite operators, such that there exist a number
C; > 0 for which

A(x) = I forall xeB(x, r).

We then claim that there exists a constant C > 0 depending only on r,
such that for any piecewise C! path y between x and a point on the sphere
S(x, r) we have

L(y) z Cr.
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T'his will prove that dist,(x, y) = Cr > 0, and will conclude the proof that
dist, is a distance.

By breaking up the path into a sum of C! curves, we may assume
without loss of generality that our path is such a curve. Furthermore. we
may take the interval [a, b} on which y is defined to be such that ’y‘(b)
is the first point such that y(r) lies on S(x, r), and otherwise y(t) € B(x, r)

for te(a, b. Let y(b) =ru, where u is a unit vector. Write E as an
orthogonal direct sum

E=Ru LF,

where F is a closed subspace. Then y(¢) = s(t)u = w(t) with |s(1)| < r
S(d) =0, s(b) =r and W(t) eF. Then , ( )I =

K

b b
£6)= [ Il @t = 60, 460)70) " a

b
2 ¢ [ 0/, ) e

a

b
> cl? J |s'(r)| dt by Pythagoras

> Cll/zr
as was to be shown.

In addition, the above local argument also proves:

Prol?osition 6.1. The distance dist, defines the given topology on X.
Equlvalen{ly, a sequence {x,} in X converges to a point x in the given
topology if and only if disty(x,, x) converges to 0.

We conclude this section with some remarks on reparametrization. Let

y: [a, b]——)X

be a piecewise C! path in X. To reparametrize ¥, we may do so on each
subinterval where y is actually C!, so assume y is C!. Let

¢: e, d] — [a, b]

be a C' map such that ¢(c) = a and ¢(d) = b. Then yog is C!, and is
called a reparametrization of y. The chain rule shows that

L(yog) = L(y).

SRR
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Define the function s: [a, b] — R by

s() = J' @, de,  so s(b)=L=L0).

Then s is monotone and s(a) = 0, while s(b) = L(y). Suppose that there is
only a finite number of values ¢ € [a, b] such that y'(f) = 0. We may then
break up [a, b] into subintervals where »'(z) # 0 except at the end points of
the subintervals. Consider each subinterval separately, and say

a<ay<b <b

with y'(f) # 0 for t € (a1, b1). Let s(a;) be the length of the curve over the
interval [a, a;]. Define

t
s(t) = s(a1) +J ||y’(t)||g dt for ay£t<b.
ai

Then s is strictly increasing, and therefore the inverse function ¢ = ¢(s) is
defined over the interval. Thus we can reparametrize the curve by the
variable s over the interval a; <t < by, with the variable s satisfying

s(a) £ 5 £ 5(b1).

Thus the whole path y on [a, b] is reparametrized by another path
yoe: [0, L] = X

via a piecewise map f: [0, L] — [a, b], such that

[rop)®l,=1 and  Liyoe)=s.
We now define a path y: [a, b] — X to be parametrized by arc length if
l7'(@)[|, =1 for all r&a, b]. We see that starting with any path y, with
the condition that there is only a finite number of points where y'(f) = 0
for convenience, there is a reparametrization of the path by arc length.
Let f: Y — X be a C” map with p 2 1. We shall deal with several
notions of isomorphisms in different categories, so in the C? category,
we may call f a differential morphism. Suppose (X, g) and (Y, k) are
Riemannian manifolds. We say that f is an isometry, or a differential
metric isomorphism if f is a differential isomorphism and f*(g9) = h. If f
is an isometry, then it is immediate that f preserves distances, i.e. that

disty(f(31), f0n)) = dista(y1, y2)  forall yi, €Y.
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Note that there is another circumstance of interest with somewhat weaker
conditions when f: ¥ — X is an immersion, so induces an injection
Tf(y): T)Y — Ty,)X for every ye Y, and we can speak of f being a
metric immersion if f*(g) =h. It may even happen that f is a local
differential isomorphism at each point of y, as for instance if f is covering
map. In such a case, / may be a local isometry, but not a global one,
whereby f may not preserve distances on all of Y, possibly because two
points y; # y» may have the same image f(y1) = f(32).

VI, §7. THE CANONICAL SPRAY

We now come back to the pseudo Riemannian case.

Let X be a pseudo Riemannian manifold, modeled on the self dual
space E. The scalar product (, ) in E identifies E with its dual EV. The
metric on X gives a toplinear isomorphism of each tangent space T(X)
with T, (X). If we work locally with X = U open in E and we make the
identification

T{U)=UxE  and TY(U)y=UXxEY ~T(U)

then the metric gives a VB-isomorphism

h: T(U)— T(U)
by means of a morphism

g: U— L(E, E)
such that A(x, v) = (x,g(x)v). (In the finite dimensional case, with respect
to an orthonormal basis, g(x) is represented by a symmetric matrix
(95(x)), so the notation here fits what’s in other books with their g;.) The
scalar product of the metric at each point x is then given by the formula

(v, w), = (v, g(x)w) = (g(x)v, w) for v,wekE.

For each x € U we note that g’(x) maps E into L(E, E). For xe U and
u,ve E we write

(9'(x)u)(v) = ¢'(x)u- v = ¢’ (x)(u, v).

From the symmetry of g, differentiating the symmetry relatlon of the
scalar product, we find that for all u, v, weE,

(g'(x)u-w, v) = (g'(x)u- v, w).

L A
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So we can interchange the last two arguments in the scalar product
without changing the value.
Observe that locally, the tangent linear map

T(h): T(T(V)) = T(T(V))
is then given by

T(h): (x, v, ur, u2) = (x, g(x)o, w1, g'(X)u1 - v + g(x)2).

If we pull back the canonical 2-form described in Proposition 7.2 of
Chapter V from TV (U)~ T(U) to T(U) by means of h then its de-
scription locally can be written on U x E in the following manner.

(1) Qo) (w1, u2) X (w1, w2)) = (1, g(x)w2) — (uz, g(x)w1)
—{g' (x)uy - v, w1) + (g'(x)w1 - v, u1).

From the simple formula giving our canonical 2-form on the cotangent
bundle in Chapter V, we see at once that it is nonsingular on T'(U). Since
h is a VB-isomorphism, it follows that the pull-back of this 2-form to the
tangent bundle is also non-singular.

We shall now apply the results of the preceding section. To do so,
we construct a 1-form on T(X). Indeed, we have a function (kinetic

energy!) K T(O) ~R
: —

given by K(v)=1(v,v), if v is in T,. Then dK is a l-form. By
Proposition 6.1 of Chapter V, it corresponds to a vector field on T(X),
and we contend:

Theorem 7.1. The vector field F on T(X) corresponding to —dK under
the canonical 2-form is a spray over X, called the canonical spray.

Proof We work locally. We take U open in E and have the double
tangent bundle
(U x E) x (E x E)

UxE
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Our function K can be written
K(x, 0) = (v, ), = (o, g(0)0),
and dK at a point (x, v) is simply the ordinary derivative
DK(x,v): ExE—R.

The derivative DK is completely described by the two partial derivatives,
and we have

DK(x, v) - (w1, wa) = D1 K(x, v) - w; + D2 K(x, v) - w,.
From the definition of derivative, we find

DiK(x, v) - wy = 1{v, g’ (x)w1 - v)

DyK(x, v) - wy = (w3, g(x)v) = (v, g(x)w2).
We use the notation of Proposition 3.2 of Chapter IV. We can represent
the vector field F corresponding to dK under the canonical 2-form Q by

a morphism f: UxE — E xE, which we write in terms of its two
components:

flx,v) = (fi(X, v), f2(x, U)) = (w1, up).

Then by definition:

(2) <Q(x,v)7 (fl(x’ v),fz(x, U)) X (W1, W2)> = <DK(X’ U)? (Wl, W2)>
= D1K(x, v) - wi + (v, g(x)w2).

Comparing expressions (1) to (2), we find that as functions of w, they have
only one term on the right side depending on w,. From the equality of the
two expressions, we conclude that

{i(x, v), g(x)w2) = (v, g(x)w2)

for all wy, and hence that fi(x, v) = v, whence our vector field F is a
second order vector field on X.

Again we compare expression (1) and (2), using the fact just proved
that u) = f1(x, v) = v. Setting the right sides of the two expressions equal
to each other, and using u; = f>(u, v), we obtain:
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Proposition 7.2. In the chart U, let f=(fi,f2): UxE—-EXE
represent F. Then f(x, v) is the unique vector such that for all wi € E
we have:

(falx, v), glx)wi) =3 (g'(x)w1 - v, v) = (g'(x) - v -0, w).

From this one sees that f, is homogeneous of degree 2 in the second
variable v, in other words that it represents a spray. This concludes the
proof of Theorem 7.1.

Remark. Having represented fy »(x, v) in the chart, we could also
represent he associated bilinear map By. We shall give the formula for
By in the context of Theorem 4.2 of Chapter VIIL



CHAPTER Vil

Covariant Derivatives and
Geodesics

Throughout this chapter, by a manifold, we shall mean a C® manifold,
Jor simplicity of language. Vector fields, forms and other objects will also
be assumed to be C* unless otherwise specified. We let X be a manifold.
We denote the R-vector space of vector fields by TT(X). Observe that
I'T(X) is also a module over the ring of functions § = F*(X) = Fu(X).
We let

n: TX - X

be the natural map of the tangent bundle onto X.

VIll, §1. BASIC PROPERTIES

By a covariant derivative D we mean an R-bilinear map
D: TT(X)xI'T(X) - I'T(X),
denoted by (&, 7) — D¢n, satisfying the two conditions:
COVD 1. (a) In the first variable &, Dgy is Fu-linear.
(b) For a function ¢, define Ds¢p = &p = L to be the Lie
derivative of the function. Then in the second variable #,

D¢n is a derivation. Thus (a) and (b) can be written in the
form:

Doen =9Den and  De(gn) = (De@)n + ¢Den.
COVD 2. Diyp — D& = [¢, 7).
196
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Remark. This second condition can be eliminated to give rise to a more
general notion, following the ideas of a connection as described at the end
of Chapter IV, §3. However, we concentrate here on what we need for
some basic results, rather than develop systematically the general theory of
connections.

Having defined D; on functions and vector fields, we may extend the
definition to all differential forms, or even to multilinear tensor fields. Let
o be in TL'(T(X)), ie. @ is a multilinear tensor field on X, not nec-
essarily alternating. We define D:w by giving its value on vector fields
/ICREREY/ P namely

r

(wa)(”li e ly) = gf(w(”h e vﬂr)) - Z w(ny, - .- aDé‘”ja s ly)-
=

The definition of D, is such that D, satisfies the derivation property with
respect to the r+ 1 variables w, 7,,...,7,, that is

r
Df(w(”lv""”r)) = (Dew)(my,-..,1,) + Z w(”lv--"Dénj"'wﬂr)'
J=1

Recall that D: = % on functions, as on the left side of this equation.
Looking in a local chart shows that Dsw is again a muitilinear tensor
field. It is immediate from the definition that if w is alternating, then so is
D:w. In particular, D¢ is a derivation with respect to contractions and it is
also a derivation with respect to the wedge product, that is:

COVD 3. Ds(won;) = (Dew) on + wo Deny.

COVD 4. On the algebra of alternating forms, the covariant derivative
D; is a derivation, in the sense that for two forms  and 7,
we have

De(w A y) = Dew A y+ @ A Dey.

The proof comes directly from the definition of the wedge product in
Chapter V, §3. In the finite dimensional case, when a form is a sum of
decomposable forms, i.e. wedge products of forms of degree 0 and 1, it
follows that the above definition is the unique extension of D to the
algebra of differential forms. Furthermore, similarly to the formula of
Proposition 5.1 of Chapter V, for the Lie derivative of a form, one has:
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COVD 5. (Zéw)(”lv e 7'7r)

r
= (Déw)(ﬂlv"wﬂr) +Zw(’7],“-aDr],»éa-'-aﬂr)7
i=1

which is an alternative to

gf(w(”lv .. ’”r)) = (wa)(”lv ce ’”r)

+Y oy, Delis - s 1,)-
i=1

COVD 6. (dw)(&, &1,---,¢)

=S (-1 (Do) & s ity Eor Eist -1 &)-

i=0

Proof. One uses the formulas given in propositions of Chapter V,
Proposition 3.2, for dw, and Proposition 5.1 for the Lie derivative. One
replaces brackets [f, y] by Dgy — D,B. The desired formulas drop out.
Note that only COVD 2 has been used in the proof.

Next we give a finite dimensional formula. Recall that a frame of
vector fields ¢&;,...,¢&, is such that for each x, {£(x),...,&,(x)} is a basis
of T, X.

Proposition 1.1. Let {&y,...,&,} be a frame of vector fields. Let
{AL,- .., A} be the dual frame of 1-forms (so Ai(&;) = &;). For any form
we A (X) we have

do = 2": ).,' A Dgiw.

i=1

Proof. Let d'w =73 A A Dyw. Then d’ defines an anti-derivation of
the alternating algebra of forms, that is if ¥ € &/9(x) for any g, then

dwAy)=(do) A+ (-1)oAdy.

Furthermore, d’ =d on functions (as is immediately verified), and we
verify that d’ =d on &/'(X) as follows:

(@'w)(&n) =) (ki A D), )
= [(&)(Dgw, 1) — hi(n)(Dew, &)]
= [(Du@@: 1) — (Dimo, &)]
= (D¢w, ) — (Dy, &)
= (dw)(&, 1) by COVD 6,

S e e
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which concludes the proof for 1-forms. Since 1-forms generate the algebra
of forms in the finite dimensional case, the proposition is proved in
general.

The above finite dimensional formula won’t be used until we meet
strictly finite dimensional results, in connection with volume forms
and integration. We included it here for completeness of the general
formalism. We now return to the general case which may be infinite
dimensional.

We can extend the covariant derivative to TX-valued forms i.e. sections
of the bundle L'(TX, TX). If w is such a section, we define D:w by its
values on vector fields 7,,...,7, to be

r
(Dfa))(”l, s ’”r) = Df(w(”lv' . 7’7r)) - Z w(”l,' . ’Dfnjy' .. ’”r))

Jj=1

so Dy satisfies the derivation property with respect to the r 4 1 variables w,
Ns---,M,- We note that w(ny,...,n,) € T'TX is a vector field, so we know
how to apply the covariant derivative D, (a)(ryl, - ,17,)) instead of
Ze(w(m,...,n,)) for ordinary R-valued forms, in which case w(yy,...,1,)
is a function on X. When w is TX-valued, we have on the other hand

Le(wlm,-..,n,)) =& o, ...,n,)]-

A local formula will be given in Proposition 2.2.

VI, §2. SPRAYS AND COVARIANT DERIVATIVES

Let F be a spray over a manifold X. In a chart U, we index geometric
objects by U to indicate their representatives in the chart. Thus the
representative ¢y of a vector field over U is a morphism

éUZ U—-E.

Similarly, we have the symmetric bilinear map associated with the spray,
and its representative

By(x) =1D}fy ,(x,0),

where fy; , is the second component of the representative for the spray, as
described in Chapter IV, §3.

Theorem 2.1. Given a spray F over X, there exists a unique covariant
derivative D such that in a chart U, the derivative is given by the local
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Jormula
(Dem)y(x) = ny(x)éu(x) — By (x; Ey(x), ny(x))-

Or, suppressing the index U for simplicity, and thus using &, n to denote
the local representatives of the vector fields in the chart, we have

(Den)(x) = n'(x)&(x) — B(x; &(x),n(x))

or simply
Den=n"-&— B¢, n).

Proof. Let us define Dy over U by the formula of the theorem. It is
immediately verified that Dgn is a vector field over U, and that the
association (&, 7) — Dgn is a covariant derivative over U: It is Fu(U)-
linear in the variable &, it is a derivation in the variable » with respect to
multiplication by functions, and we have

Den — Dyé = ¢, 7).

This last property follows from the representation of the bracket in a chart
given by Proposition 1.3 of Chapter V. Thus a spray gives rise to a
covariant derivative in a chart, in a natural fashion.

We now claim that when the spray is given globally, there exists a
unique covariant derivative on the manifold X which has the above
representation in a chart. For this we must verify how the local rep-
resentation changes under a change of chart. Let

h: U->V
be a C®-isomorphism, i.e. a change of chart. Then we claim that the
natural image of D¢, n, under the change of chart is Dg, 7, so that we

may define Dgn for any two vector fields on the manifold via the local
representations.

In other words, we have to verify that
(Dey11y) (h(x)) = h'(x)(Dey11y) (%)-

1y (h(x)) = B (x)ny(x),

whence by the rule for the derivative of a product, we obtain

But we have

(ny 0 h)'(x) = K" (X)ny (x) + k' (xX)ny (%)-

Hence putting v = &y(x), w=ny(x), we get by using the change of
variable formula for a spray in a chart, Proposition 3.3 of Chapter IV,

S e R R

e B e

[VIIL, §2] SPRAYS AND COVARIANT DERIVATIVES 201

together with the fact that A”(x) is a symmetric bilinear map:

(De, 1) (B(x)) = 1 (h(x)) W (x)Eu(x) — By (h(x); B (x)v, K’ (x)w)
= (ny o h) (x)¢u(x) — K" (x)(v, w) — B'(x)Bu(x; v, w)
= H'(x)(w, v) + K ()1 (x)Eu(x)
— ' (x)(v, w) = h'(x)By(x; v, w)
= h'(x) (ny(x)¢u(x) — Bu(x; v, w))
(appreciate the cancellation!)

= ' (x)(Den) y(x),

which proves the change of variable formula, and therefore concludes the
proof of Theorem 2.1.

The covariant derivative defined in Theorem 2.1 will be called the
covariant derivative determined by the spray, or associated with the spray.
As mentioned previously, one could give a similar definition of a covariant
derivative associated to any connection (even without the symmetry
condition on the bilinear map).

There is of course an analogous local representation for differential
forms as follows.

Proposition 2.2. Let welFL"(TX,R) or TL(TX,TX). Let ¢,
M,--- 1, be vector fields over X. If w e TL'(TX,R), then in a chart
U we have the formula

(wa)U(ﬂlUV .. a”rU)

r
= wi/’(éU)(”lU’ s ’”rU) + Z wU(’?an- .- ’BU(éU’ ”jU)v cee ’”rU)‘
j=1

If e TL'(TX, TX), then

(Diw)U(”an v )ﬂrU) = same expression - BU(éU7 wU(”lUy e 1']rU))'

Proof. This comes directly from the definitions in §1. Observe that in
applying the definitions, the sum

r
Z wU(”lU"""I{U &)
j=1

occurs twice, once with a + sign and once with a — sign, so cancels in the
end.
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For the limited purposes of this book, we will not need the proposition.
It has an analogue for lifts of curves, which we shall discuss briefly at the
end of §3.

Converse, from covariant derivatives to sprays

We now wish to discuss the converse of Theorem 2.1, and for this purpose,
we have to make general remarks on localization. Let E be a Banach
space. We say that E admits cut off functions if given two positive real
numbers 0 < r < s, there exists a C*-function (simply called function) ¢
such that ¢ =1 on the ball B,(0) and ¢ = 0 on the complement of B;(0).
Given any point xy € E, we may then find similarly a function which is 1
in the ball B,(x9) and 0 outside By(x). If X is a manifold modeled on
E, then one can then find such cut off functions equal to 1 in a given
neighborhood of a point, and 0 outside a slightly larger neighborhood.
Manifolds modelled on a Hilbert space, and especially finite dimensional
manifolds, admit cut off functions.

Assume that X admits cut off functions. Let E be a vector bundle over
X, and let £ be a section of E. Let xg e X. Let ¢ a cut off function near
xo. Then ¢ is a section of E, having the same values as & in a
neighborhood of x;. Suppose that E = TX and that D is a covariant
derivative. Then

(Den)(x) = (Dyz)(x)

for all x in a sufficiently small neighborhood of xj, because D is Fu-linear
in the first variable. Since ¢ is constant near xo, it follows that

(Zep)(x) =0 for x near xy,

and it therefore follows also that

(De(om)) (x) = (Den)(x)

for all x sufficiently close to xj.

Now given an open neighborhood U of xy corresponding to a chart,
we pick out off functions ¢,  near x; such that the supports of ¢, ¥ are
contained in Up, and ¢, ¥ = 1 on an open neighborhood U of x whose
closure is contained in Uy. Then U also corresponds to a chart, and we
may compute

(Den)(x) = (Dpe(Ym)) (x)  for xeU.

Thus the determination of the values of a covariant derivative can be
carried out locally in a chart. We still need a criterion when the value of

R e
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the covariant derivative at a given point depends only on the value of ¢ at
the given point.

Lemma 2.3. Let E, F be vector bundles over X, with E finite dimensional
and X admitting cut off functions. Let

H: TE—-TF

be a linear map which is Fu(X)-linear, that is H(pf) = pH(&) for
¢ € Fu. Given a point x € X, the value H(&)(x) depends only on the value
¢(x).

Proof. 1t suffices to prove that if &(xp) =0 then H(&)(xp) = 0. There
exists a cut off function ¢ near x; by assumption, so we may give the
proof locally. By assumption, there exists a finite number of sections
el,...,e of E which form a basis for the sections locally, so there exist
functions ¢;,...,¢, such that

E=per+--+oe
locally. Then
H() =g H(er) + - + 0, H(er).

The condition &(xg) = 0 is equivalent with the conditions ¢;(x;) = 0 for all
i. Hence H(&)(xg) =0, thus proving the lemma.

Observe that when we obtain a covariant derivative from a spray, the
value of the covariant derivative at a point x depends only on the value of
the vector field &(x) (a derivative of # however enters). This was clear
from the local formula in Theorem 2.1, because for instance By(x; u, w) is
defined for arbitrary vectors u, w which can then be taken to be the values
¢y(x) and ny(x) respectively.

Conversely, we are now interested in reversing the procedure. Speci-
fically, let D be a covariant derivative. We assume the existence of cut off
functions throughout. In a chart over an open set U in E, define

(Bu) By(x; &, 1) = 1" (x)¢(x) — (Deyny)(%)-

It is immediately verified from the two properties of a covariant derivative
that By(x) is symmetric in &y, 7, by COVD 2, and then By(x) is Fu(U)-
bilinear in &y, #y. Given vectors u, w € E one wants to define

By(x)(u, w) = By (x; &(x), n(x))

for any vector fields ¢, # such that &(x) = u and n(x) = w. At this point,
we need to know that the value on the right of (By) is independent of the
vector fields &, # chosen so that £(x) = v and #(x) =w. By Lemma 2.3 we
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can certainly achieve this in the finite dimensional case, and in that case
we obtain:

Theorem 2.4. Assume X finite dimensional. Then the association of a
covariant derivative to a spray establishes a bijection between sprays over
X and covariant derivatives.

In practice, Theorem 2.4 is not that useful (and it will NOT be used
in this book) because one either starts from a spray to get a covariant
derivative, or if one starts from some natural covariant derivative, and one
needs the spray, the situation provides the tools to show that a spray can
indeed be defined in a natural manner to give the covariant derivative. We
shall see an example of this in §4, when we discuss the Riemannian
covariant derivative. Furthermore, the finite dimensional device used in
Lemma 2.3 has had historically the unfortunate effect of obscuring the
natural bilinear map B, thus obscuring a fundamental structure in ex-
positions of differential geometry. Quite generally, connections on any
vector bundle give rise to covariant derivatives. These are applicable to
many contexts of topology and analysis, see for example [BGV 92],
Chapter I, and also for instance [MokSY 93] for an entirely different
direction.

Viil, §3. DERIVATIVE ALONG A CURVE
AND PARALLELISM

Instead of using vector fields &, # we may carry out a similar construction
of a differentiation dealing only with curves, as follows. (For arbitrary
maps instead of curves, see Eliasson [El 67).) We continue to denote by F
a spray over X. Let n: TX — X be the tangent bundle, and let

a: Jo X

be a C! curve. By a lift y of o to TX we mean a C! curve y: J — TX
such that 7y = «. We then also say that y lies above «. We denote the set
of lifts of « by Lift(x). It is clear that Lift(x) is a vector space over R, and
a module over the ring of functions on J. We wish to define D,y in a way
analogous to the way we defined D7 for vector fields &, 5. This is done
by the next theorem. As in §2, we let By denote the bilinear map asso-
ciated to the spray in a chart U.

Theorem 3.1. There exists a unique linear map

D,:: Lift(x) — Lift(«)

vt e

[VIII, §3] DERIVATIVE ALONG A CURVE AND PARALLELISM 205

which in a chart U has the expression

(Dary)y(t) = yy(2) = Bu(a(t); ay (1), yyu (1)

The map D, satisfies the derivation property for a C' function ¢ on J:
(Do (#9))(2) = 9" ()(Dary) (1) + 0(8) (D y)(2).-

Remark. In the present context, the local representation y; of a curve
in TU = U x E is taken to be the map on the second component, i.e.

yy: J = E.

Thus yy(¢) is the ordinary derivative, with values y,(¢) € E. Note that in
the case of the representation ay: J — U, we have ay(f) € E also. Thus
ay (1), yy(r) and yy(¢) are “vectors.”

Proof of Theorem 3.1. The proof is entirely analogous to the proof for
Theorem 2.1, using the local representation of the bilinear map By asso-
ciated with a spray in charts. We have to verify that the formula of
Theorem 3.1 transforms in the proper way under a change of charts, i.e.
under an isomorphism A: U — V. Note that the local representation y,
of the curve by definition is given by

v () = b (au () yu (1)

Therefore by the rule for the derivative of a product, we find:

(1) = K (au(8)) (s (1), 7y (1)) + B’ (aw (0), ¥y, (8)).

Hence using the transformation rule from By to By, Proposition 3.3 of
Chapter IV, we get

(Dary)y (1) = yy(8) = By (a(t) 5 0y (1), yp (1))
= 1" (au (1) (ayy (), yu () + A (aw(2)) vy (1)
— ' (aw () (ap (1), yu (1))
— k' (ay() Bu («(2), 2y (1), yu(1))
= h'(ay(t))(Day)y(f) (because the A" term cancels!),
which proves the desired transformation formula for (Dg'y)y in charts.
Thus we have proved the existence of D,y as asserted. Its being a

derivation is immediate from the local representation in charts. This
concludes the proof of Theo;em 3.1.
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Corollary 3.2. Let n be a vector field and suppose y(t) = ry(tx(t)), telJ.
Let & be a vector field on X such that o'(10) = &(a(to)) for some to € J.

Then
(Dwy)(to) = (Der) ((t0)).-

Proof. Immediate from the chain rule and the local representation of
Theorem 3.1.

Let a: J — X be a C>-morphism. We say that a lift y: J — TX of o is
o-parallel if D,y =0. In the chart U, this is equivalent to the condition

that
yu(t) = By(au(t); ay(2), vy (1),

which defines a first-order linear differential equation for y;. From
Chapter IV, §3, (3), we conclude:

A curve « is a geodesic for the spray if and only if Dyo’ =0, that is, if
and only if o is a-parallel.

Theorem 3.3. Let o: J — X be a C? curve in X. Let tyeJ. Given
v € Ty X, there exists a unique lift y,: J — TX which is a-paralled and
such that y,(to) = v. Let Par(a) denote the set of a-parallel lifts of o. The
map vy, is a linear isomorphism of T,u)X with Par(a).

Proof. The existence and uniqueness simply comes from the existence
and uniqueness of solutions of differential equations. Note that from the
linearity of the equation, the integral curve y is defined on the whole
interval of definition J by Proposition 1.9 of Chapter IV.

Of course, the notion of parallelism is with respect to the given spray,
which has been left out of the notation. We express the linearity of
Theorem 3.3 another way in the next theorem.

Theorem 3.4. Fix tyeJ. For teJ define the map
Pl =P': Ty)X = TypX by P'(v) =y(t, v),

where t— y(t, v) is the unique curve in TX which is a-parallel and
Y(to, v) =v. Then P' is a linear isomorphism.

Proof. We must verify that
P'(sv) = sP'(v) and P'(v+w) = P'(v) + P'(w) forseR and v,we T, X.

But these properties follow at once from the linearity of the differential
equation satisfied by y, and the uniqueness theorem for its solutions with
given initial conditions.

The map P, is called parallel translation along o.

=
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Multilinear tensor fields

Instead of dealing with vector fields, we may deal with TX-valued
multilinear tensor fields, or R-valued multilinear tensor fields at essentially
no extra cost. Let E denote either TX or R. We extend D, to a linear
map

Dy Lift(e, L'(TX, E)) — Lift(a, L'(TX, E))

as follows. Let w: J — L'(TX, E) be a lift of a: J — X. Letny,...,7,
be lifts of & in TX (sometimes called vector fields along the curve ). We
define D, by its values on (#,...,7,) to be

(Dd’w)(nlv"'vnr):D ( ”la 7”r za)(”h . 0!'77]’ . 7’7r)'
j=1

Thus D, satisfies the Leibniz rule for the derivative of a multifold product
with the r + 1 variables @, 7,,...,7,. Note that if ,,...,, are a-parallel,
s0 Dy =0, then the formula simplifies to

(D @)y, - - 1,) = Do (@1, - -, 1,)).-

We shall obtain a local formula as usual. Given an index j, we define a
linear operator C; g, of TL'(TX, E) into itself by

(ijﬂ,aw)(”li cee a”r) = w(nla ce 7B(a; ala ”j)y' e ,’7r)-

Proposition 3.5 (Local Expression). Let o = wy, #; = 1y €IC. represent
the respective objects in a chart U, omitting the subscript U to simplify
the notation. Then

(Dy@)(ny,---sm,) = My My) — B(a; o, w(r)l,...,n,))éE,TX

+Z 7717

B(a; &', 1), --51,)
or also

r
Dyw = w' - B(a; a', w)éE, Y + Z C',B,aw7
j=1

where Sgry =1 if E=TX and 0 if E=R.

This comes from the definition at the end of §1, and the fact that the
ordinary derivative

(wv(nlva’ . ’”rU)),
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in the chart is obtained by the Leibniz rule (suppressing the index U)
(60(?]1, v aﬂr))l = wl(”h s aﬂr) + Ew(”b R ,77]{’ LR y”r)'

Corollary 3.6. Let E=TX or R as above. Let Q: X — L'(TX, E) be
a section (so a tensor field), and let o(t) = Q(a(r)), teJ. Let tyeJ.
Let & be a vector field such that o'(ty) = &(a(to)). Then

(Dww)(to) = (De)(a(t0))-

Proof. Immediate from the chain rule and the local representation
formula.

A lift y: J - L'(TX, E) is called o-parallel if D,y =0. The local
expression in a chart U shows that the condition D,y =0 is locally
equivalent to the condition

r
y' =B(a; «,9) =Y Cpar-
=

Of course, we have suppressed the subscript U from the notation. Thus
the condition of being a-parallel defines locally an ordinary linear differ-
ential equation, and we obtain from the standard existence and uniqueness
theorems:

Theorem 3.7. Let tyeJ and wo € UL (Tyu)X, Eyyp)). There exists a
unique curve y: J — L'(TX, E) which is a-parallel and such that y(ty) =
wo. Denote this curve by y,,. The map

@o 2 Yo

establishes a linear isomorphism between the Banach space
L'(Ty)X, Eys)) and the space of lifts Lift(a, L'(TX, E))

We have now reached a point where we have the parallelism analogous
to the simplest case of the tangent bundle as in Theorem 3.4.

Theorem 3.8. Let the notation be as in Theorem 3.7. For t € J define the
map
Ptto,a = P;: Lr(Ta(to)X, Eaz(to)) — Lr(Ta(,)X, Ea(;))
by
Py (o) = y(t, wo),

where t — y(t, wo) is the unique a-parallel lift of o with y(0, wg) = wo.

Then P} is a linear isomorphism.
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Proof. This follows at once from the linearity of the differential
equation satisfied by y, and the uniqueness theorem for its solutions with
given initial conditions.

Example. The metric g itself is a symmetric bilinear R-valued tensor to
which the above results can be applied.

VIil, §4. THE METRIC DERIVATIVE

Let (X, g) be a pseudo Riemannian manifold. Let
(v, w>g = (v, w)g(x)

denote the scalar product on the tangent bundle, with v, w € T for some
x. If &, n are vector fields, then (¢, #7), is a function on X, whose value at

a point x is
(f(X), ”('x»g = <€(x)v ”(x))g(x)
If { is a vector field, we denote
UE my =D& My = Ll my

Theorem 4.1. Let (X, g) be a pseudo Riemannian manifold. There exists
a unique covariant derivative D such that for all vector fields &, n, { we
have

MD 1. Den, £)g = (Dem, §) + (1, Del).

This covariant derivative is called the psendo Riemannian derivative, or
metric derivative, or Levi-Civita derivative.

Proof. For the uniqueness, we shall express (D;7, {), entirely in terms
of operations which do not involve the derivative D. To do this, we write
down the first defining property of a connection for a cyclic permutation
of the three variables:

”(C, é)g = <D']C$ é)g + (C’ Dﬂé)g?
L& my = (D&, my, + (& D),

We add the first two relations and subtract the third. Using the second
defining property of a covariant derivative, the following property drops
out:
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MD 2. 2(Den, £), =&, &), + 4L, &), — L& ),
+ (& n, Oy = 1S 8 my, — (I, C), &),

This proves the uniqueness.

As to existence, define (Den, (), to be % of the right side of MD 2. If
we view &, n as fixed, and { as vaniable, then this right side can be checked
in a chart to give a continuous linear functional on vector fields. By
Proposition 6.1 of Chapter V, such a functional can be represented by a
vector, and this vector defines D;n at each point of the manifold. Thus
Den is itself a vector field. Using the basic property of the bracket product
with a function ¢:

[, oml = ol&, nl+ (Cp)n  and  [9¢, 5] = 9lE, 1] — (n@)¢

it is routinely verified that (D7, {), is Fu-linear in its first variable ¢, and
also Fu-linear in the third variable {. One also verifies routinely that
COVD 2 is also satisfied, whence existence follows and the theorem is
proved.

Recall that we defined D for any multilinear tensor w. In particular,
let w =g be the metric. Then the defining property of the metric con-
nection can now be phrased by stating that for all vector fields &,

Dgg =0.

For each vector field # let \/ n or 7V be the 1-form corresponding to %
under the metric, i.e. for all “ector fields & (V,m©) =, 0,

Corollary. For the metric derivative D and all vector fields &, we have the
commutation rule

Do\, =\/,0D; or  Dgn¥)=(Dgm)".

Proof. One line:
(Vo (Dem)) (€) = (Den, &), = De(n, Oy — (1, De)y = De(\,m)(©)

Local representation of the metric derivative

From MD 2, we derive a local formula in a chart U. In the next formula,
we write &, n, {: U — E for the representatives of vector fields in the chart,
instead of the correct &y, ny, {y. Omitting the index U simplifies the

St sl
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notation when U is fixed throughout the discussion. Here
g: U— L(E,E)

denotes the operator defining the metric relative to the given non-singular
form on E, so that

(& my,=(gé m = gn).

Observe that in COVD 2 and MD 2, we took the scalar product in the
tangent space, but in the next formula, the scalar product ( , ) without an
index is the one given by our original non-singular symmetric bilinear
form on E.

MD 3. Locally in a chart U, the metric derivative is determined by the
SJormula:

2(Den, g8) = 2(gl,n" - &) +(m, 9" - 0)
+(& g - (&g L.
Proof. We apply MD 2. We express a g-scalar product in terms of the
standard scalar product, and we use the local representations of the Lie

derivative and the bracket from Chapter V, Proposition 1.1 and Pro-
position 1.3. For instance, we have the local representation

En, Oy = (1, 90)'¢
=&+ g -C-O+(n gl -8
by using the rule for the derivative of a product. This formula is meant to

be evaluated at each point x. Note that ¢’(x): E x E — E is a bilinear
map, which is such that, for instance:

g'(x) - &(x) - E(x) = g'(x) (&(x), ¢(x)).

One can work formally without putting the (x) in the notation. Similarly,

([é, ”]’ C)g = (’7, . é - él -, gC)
={gl,n' - &=& )
=(gC, n' - &) — (gC, & - m).
Thus we can transform each term appearing on the right of MD 2. Then

all the terms involving g (rather than g’) will cancel except two of them
which are equal, and add to yield 2{g{, n’' - &). The remaining terms are
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those which are shown on the right side of MD 3. This concludes the
proof.

Remark. Let us denote by D¢ the covariant derivative associated with
the metric g. Let ce R*. Then cg is also a metric, called a scaling of g,
and it follows immediately from MD 3 that

D% = DY,
i.e. the covariant derivative is invariant under a scaling of the metric.

Observe that the definition of the metric derivative in Theorem 4.1 is
given by a formula, namely MD 2, with its local representation MD 3.
We want to see that the metric derivative is the one associated with a
spray. We recall that quadratic maps and symmetric bilinear maps corre-
spond to each other via the formulas

Q(v)=B(v,v) and  B(v, w) =3[Q(v +w) — Q(v) - Q(w)].
The next theorem summarizes the situation.

Theorem 4.2. Let (X, g) be a pseudo Riemannian manifold. There exists
a unique spray on X satisfying the following two equivalent conditions.

MS 1. In a chart U, the associated bilinear map By satisfies the fol-
lowing formula for all v, w, z€E:

_Z(BU(x; v, W), g(X)Z)
=(g'®) vz, w) +{g'(x) w-2,0) ~ {g'(x) - z-w, v).
Thus if we let

fU,Z(xv U) = BU(x; v, D) and fU('x’ U) = (U, fU,Z(xa U))7
then f, represents the spray on TU = U x E.

MS 2. The covariant derivative associated to the spray is the metric
derivative satisfying Theorem 4.1.

This spray is the same as the canonical spray of Chapter VII, Theorem
7.1.

Proof. First observe that By as defined by the formula is symmetric in
(v, w). The symmetry is built in the sum of the first two terms, and to see
that the third term is symmetric, one differentiates with respect to x the
formula

(9(x)z, v) = (9(x)v, 2),
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which merely expresses the symmetry of g(x) itself. Thus we may form the
quadratic map fy ,(x, v) = By(x; v, v) from the symmetric bilinear map
By(x; v, w). It follows that f}, as defined represents a spray Fy over TU.
At this point, one may argue in two ways to globalize.

Comparing MD 3 with MS 1 we see that the covariant derivative on U
determined by the spray Fy is precisely the metric derivative. Theorem 2.1
shows that if two sprays determine the same covariant derivative on U
then they are equal. If U, V are two charts, then f;; and f} are the local
representatives of sprays Fy and Fy on U and V respectively, which must
therefore coincide on U n V. Hence the family {Fy} defines a spray F on
X. Once again, Theorem 2.1 and MD 3 show that covariant derivative
determined by F is the metric derivative.

Furthermore, if we substitute v = w (and z = w;) in the chart formula
of MS 1, thus giving the quadratic expression fy; ,(x, v), then one sees
that this expression coincides with the chart expression of Proposition 7.2
of Chapter VII, and hence that the spray obtained in a natural way from
the metric derivative is equal to the canonical spray of Chapter VII,
Theorem 7.1.

Another possibility is to admit Theorems 7.1 and 7.2 of Chapter VII,
which already proved the existence of a spray whose quadratic map fy, ; is
obtained from the symmetric bilinear map By as defined in MS 1. This
gives immediately the existence of a unique spray on X having the
representation of MS 1 in a chart U, and this spray is the canonical spray.
That MS 2 is equivalent to MS 1 then follows from MD 3. This
concludes the proof.

The spray of Theorem 4.2 will be called the metric spray. Since it is
equal to the canonical spray, we really don’t need two names for it.

Remark. To connect with other texts, note that in terms of local
coordinates, the metric spray is given by a map f, satisfying the second
order differential equation

d 2x,~ _ v = dx,-
s Tdt
As a function of the variable v, the map f is quadratic, and minus its

coeflicients are functions of x, called the Christoffel symbols, ]k Thus by
definition, the above differential equation is of type

f(x, v) and

d?x; i o dxy dx;
P O s

In terms of the standard basis for R”, the metric is represented by a matrix

(95(x)),
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and we leF (g7 ) be the inverse matrix. Then the formula of Theorem 4.2
can be written in terms of the local coordinates in terms of the Christoffel
symbols, namely

j _1 v (agvk Ogw _ Ogix

T 2; g ox; + Oxy 6xv)

If T gave priority to fit classical notation, I would have written ~I'y
instead of By for the bilinear map associated with the spray. However,
using the letter B suggests bilinearity, whereas using the letter T woulci
suggest the above mess. Besides, using B is more natural for the bilinear
map associated to the quadratic map of the second order differential
equation, and eliminates a minus sign from that equation.

Theorem 4.3. Let a: J — X be a C? curve in a Riemannian manifold

(X, g). For the metric derivative, and curves y, { € Lift(x, TX), we have
the formula

(% c); = (Dal}’, C)g + (7, Da’C)g-
Furthermore, parallel translation is a metric isomorphism. In particular,

lettved. Ify,, y, are the unique a-parallel lifts of a with ,(to) = v and
Yw(to) = w, then for all t,

(1o(8), Yu(1))g = (0, W),
P(oof. The formula is proved in the same way that the computation
proving Theorem 3.1 was parallel to the computation proving Theorem 2.1

(giving the behavior under changes of charts). From the formula, if

D,y ?Dazc =0, it follows that (y, {), is constant, whence the second
assertion follows.

Corollary 4.4. Let ¢ be a C? function on X. Let o be a geodesic for the
metric spray. Then

(o) = (Du(grad p) o a, a'),.
Proof. Taking the first derivative of g o« yields
(90 a)' () = (do) (a(1)) o’ (1) = ((grad )(a(2)), «'(9)),.

Now take the next derivative using Theorem 4.3 and the fact that
Do’ =0. The desired formula drops out.
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VIll, §5. MORE LOCAL RESULTS ON
THE EXPONENTIAL MAP

In this section, we give further results on the exponential map obtained
from a spray. We follow the same notation as in Chapter IV, §4, and at
first we just deal with a spray. We do not need to know whether it comes
from a metric or not.

Throughout the section, we let X be a manifold with a spray F.

Instead of looking at the exponential map restricted to the tangent
space at a given point, we may consider this map in the neighborhood of a
point in the whole tangent bundle. Let 7: TX — X be the projection as
always. Let xo € X, with zero element 0y, € Ty, X. There exists an open
neighborhood ¥ of Oy in TX on which we can define the map

G: Vo> XxX suchthat G(v) = (nv, exp,(v))-

It is sometimes useful to express this map in a different notation. Speci-
fically, if we denote a point in the tangent bundle by a pair (x, v) if
ve T, X, then

G(x, v) = (x, exp,(v)).

Using a pair (x, v) is certainly the way we would write a point in the
tangent bundle as represented in a chart U X E, with xe U and veE.

Proposition 5.1. The map G is a local isomorphism at (xo, 0).

Proof. The Jacobian matrix of G in a chart is given immediately from
Chapter IV, Theorem 4.1 by
(id id)
0 id

which is invertible. The inverse mapping theorem concludes the proof.

For the next local results, it is convenient to express certain uniformities
in a chart, where we can measure distances uniformly in the model Banach
space E, with a given norm. It is irrelevant to know whether this norm
has any smoothness properties or not. It will be used just to describe
neighborhoods of a vector 0 in the tangent bundle. I found [Mi 63] useful.

Let xp € X. For € >0, we let E(¢) denote the open ball of elements
veE with |[v] < e. Arbitrarily small open neighborhoods of (xo, 0) in a
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chart for TX are of the form
Uo X E(E),

where Up is an open neighborhood of xq in X, and e is arbitrarily small.

Corollary 5.2. Given xo € X. Let V be an open neighborhood of (xo, 0)
in TX such that G induces an isomorphism of V with its image, and in a
chart, for some ¢ > 0,

V= Uo X E(E)

Let W be a neighborhood of xy in X such that G(V) > W x W. Then:

(1) Any two points x, y € W are joined by a unique geodesic in X lying
in Uy, and this geodesic depends C™ on the pair (x,y). In other
words, if t— exp,(tv) (0 £t < 1) is the geodesic joining x and y,
with y = exp,(v), then the correspondence

(x, 0) & (x, )
is C*®,
(2) For each x e W the exponential exp, maps the open set in T, X
represented by (x, E(c)) isomorphically onto an open set U(x)
containing W.

Proof. The properties are merely an application of the definitions and
Proposition 5.1.

The pair (¥, W) will be said to constitute a normal neighborhood of x,
in X. Dealing with the pair rather than a single neighborhood is slightly
inelegant, but to eliminate one of the neighborhoods requires a little more
work, which most of the time is not necessary. It has to do with
“convexity” properties, and a theorem of Whitehead [Wh 32]. We shall
do the work at the end of this section for the Riemannian case.

In the Riemannian case, given x € X, by a normal chart at x we mean
an open ball By(x, c¢) such that the exponential map

exp,: By(0x, ¢) — By(x, c)
is an isomorphism. We call B,(x, ¢) a normal ball.
We shall need a lemma which gives us the analogue of the commutation
rule of partial derivatives in the context of covariant derivatives. Let J,

J» be open intervals, and let

o: I xJh,—-X

TR
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be a C? map. For each fixed ¢ e J, we obtain a curve g: J; — X such
that a,(r) = o(r, f). We can then take the ordinary partial derivative

do
dra(r, t) = a;(r) = -

Similarly, we can define 8,(r, f) = do/dt. Observe that for each ¢, the
curves r — d1a(r, t) and r— 02a(r, t) are lifts of r— o(r, £) in TX.

More generally, let Q be a lift of ¢ in TX. Then one may apply the
covariant derivative with respect to functions of the first variable r, with
the various notation

D
(Do )P) = (D1Q)(r, ) =22
Similarly, we have D,Q(r, t).

Lemma 5.3. We have the rules on lifts of o to TX:
(a) D10y = Dy01; and
(b) 62(610', 610'>g = 2<D1520', 610)9.

Proof. Let oy represent o in a chart. Then from Theorem 3.1,
D\dy0y = 01020y — By(ov; 810, 020v).

Since By is symmetric in the last two arguments, this proves (a). As to
(b), we use the metric derivative to yield

62<310', 610'>y = 2(D2610’, ald)g,

and we use (a) to permute the partials variables on the right, to conclude
the proof of (b), and therefore the proof of the lemma.

Let now (X, g) be a pseudo Riemannian manifold. For each x e X we
have the scalar product (v, w), = (v, W), for v, we TxX. Let ¢>0.
The equation

[

(v, v), = c?

defines a submanifold in T,X, which may be empty. If the metric is
Riemannian, the equation defines what we call a sphere. In the case when
the metric is pseudo Riemannian, say indefinite in the finite dimensional
case, then one thinks of the equation as defining something like a hyper-
boloid in the vector space T,X. We can still define the level ‘“hyper-
surface” S,(c) to be the set of solutions of the above equation. Even in
infinite dimension, we can say that the codimension of this hypersurface
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is 1. Note that
Sy(re) = rSy(c) for r>0.

In a neighborhood of the origin 0, in 7, X, the exponential map is defined,
and gives an isomorphism which may be restricted to S,(c) intersected
with this neighborhood. The image of this intersection is then a sub-
manifold of a neighborhood of x in X. We look at the geodesics starting
at x.

Theorem 5.4. Let t — u(t) be a curve in Sy(1). Let 0 <r < b where b is
such that the points ru(t) are in the domain of the exponential exp,.
Define
o(r, t) = exp,(ru())  for 0<r<b.
Then
(010, O10), = (u, u), = 1.
Proof. This is immediate since parallel translation is an isometry by
Theorem 4.3.

Corollary 5.5. Assume (X,g) Riemannian. Let ve T X. Suppose
lloll, =7, with r>0. Also suppose the segment {t} (0<t<1) is
contained in the domain of the exponential. Let o(t) = exp,(tv). Then
L{x) =r.

Proof. Special case of the length formula in Theorem 5.4, followed by
an integration to get the length.

Remark. The corollary is also valid in the pseudo Riemannian case, if
one assume that v? = r? > 0, so the notion of length makes sense for the
curve f e~ exp, ().

Lemma 5.6. Ler X be pseudo Riemannian. Let 6: Jy x J, — X be a C?
map. For each teJ, let a,s)=o(s, t). Assume that each o, is a
geodesic, and that «? is independent of t. Then for each t € J,, the map
5 (010, 020),(s, t) is constant.

Proof. . Let D be the metric derivative. Then D96 = 0 because for
a geodesic «, we know that the metric derivative has the property that
D, a’'=0. Thus we get

01 (ala, 520')9 = (Dlalo', 320'>g + <610’, Dlazo')g
=302(d10, d10), by the above and Lemma 5.3

=0 by hypothesis.

This concludes the proof.
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The next theorem expresses the fact that locally near x, the geodesics
are orthogonal to the images of the level sets S;(c) under the exponential
map.

Theorem 5.7. Let (X, g) be pseudo Riemannian. Let xo € X and let W
be a small open neighborhood of xo, selected as in Corollary 5.2, with €
sufficiently small. Let x € W. Then the geodesics through x are ortho-
gonal to the image of Sy(c) under exp,, for c sufficiently small positive.

Proof For e sufficiently small positive, the exponential map is defined
on S,(r) for 0 <r<e¢ and as we have seen, the level sets S,(r) are
submanifolds of X. Then our assertion amounts to proving that for every
curve u: J — Sy(1) and 0 <r <c, if we define

a(r, t) = exp{ru(t)),
then the two curves

t exp,(ro(u(r)) and  r exp,(ru(to))
are orthogonal for any given value (rg, fp), which amounts to proving that
(010, 020), = 0.

But for r =0, we have o(0, f) = exp,(0) = x, independent of ¢. Hence
026(0, ) = 0. We can apply Lemma 5.6 to conclude the proof.

In the Riemannian case, the theorem is known as Gauss’ lemma.
Helgason [He 61] showed in the analytic case that it is valid in the pseudo
Riemannian case as well. I followed the proof given in [Mi 63}, which I
found applicable to the present context without coordinates, and without
assuming analyticity.

Convexity

We conclude this section with the more systematic study of convexity,

which was bypassed in Corollary 5.2. We shall treat the Riemannian case,

which is slightly simpler. So we assume that (X, g) is Riemannian.
We need to know:

Given x € X, there exists ¢ > 0 such that if 0 < r < ¢, then the geodesic o
such that a(t) = exp, (), with 0=t <1, and |v||,=r, is the shortest

piecewise C' path between x and exp,(v).

This will be proved in Theorems 6.2 and 6.4 of the next section. In
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particular, dist,(x, exp,(v)) =r for r sufficiently small. As usual, we let:

B, (0, r) = open ball in T, X centered at 0y, of radius r;
By(x, r) = open ball in X centered at x, of radius r;
S;(0x, r) = sphere of radius r in T X, centered at O, ;and

Sy(x, r) = sphere of radius r in X, centered at x.

Here we shall deal only with r sufficiently small.

We define an open set U of X to be convex if given x, y € U there exists
a unique geodesic in U joining x to y, and such that the length of tl}e
geodesic is disty(x, y). We shall prove Whitehead’s theorem [Wh 32] in
the form:

Theorem 5.8. Let (X, g) be a Riemannian manifold. Given x € X, there
exists ¢ > 0 such that for all r with 0 <r < c the open neighborhood
By(x, r) = exp, By(0x, r) is convex.

Proof. We need a lemma.

Lemma 5.9. Given x € X, there exists ¢ > 0 such that if r < ¢, and if a is
a geodesic in X, tangent to Sy(x, r) at y = a(to), then o(t) lies outside
Sy(x, r) for t# 1ty in some neighborhood of 1.

Proof We pick c such that the exponential map exp, is a differential
isomorphism on By(0y, r) for all r < c and preserves distances on rays
from 0, to ve Ty X with ||ofl, =r. Without loss of generality, we can
suppose # = 0, so a(0) = y. We shall view y as variable, so we index a by
y. Also we have to look at the other initial condition «’'(0) =u € T,Y, so
we write a, , for the geodesic. Now let

Sya®) =1y, (8.

Ny,u(t) = exp;1 ay,u(t) and

Then Ny is a curve in the fixed Hilbert space T,X, so

f;; u(t) = 2('7;1 u(t)’ ”y,u(t»g(x),
fy u( ) 2’7y u( )2 + 2(”},:,,14(07 ”y,u(t»g(x)‘

Let h(y, u) =f',(0). Then h(x, u) = 2u?, so hy as a function on T.X is
positive deﬁmte Therefore there exists ¢ > 0 such that for 0 < r < ¢ and
Iyll, =r the functlon hy is positive definite on 7Y, and in particular
h(y, u) >0 for u?#0. Under the assumption that a,, is tangent to

s R T
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Sy(x, r) at y, we must have
f3.000=0 and £} (0)=h(y,u) >0,

whence for sufficiently small |f|, we get

Sou(®) > £5,u(0) = (exp;l “y,X(O))Z = (eXP;l(“))z =r,

which proves the lemma.

We can now conclude the proof of Theorem 5.8. Using Corollary 5.2,
we can find ¢; > 0 such that putting W = B,(x, c;) satisfies the condition
of Corollary 5.2. Let ¢ <c;. We show that r £ ¢ implies By(x,r) is
convex. Let y, z€ By(x, r). Then by that corollary, there exists a unique
geodesic a in the neighborhood ¥ of x joining y and z. As in the lemma,
let

f(2) = (exp;! oz(t))z, with a <t <b.

It now suffices to prove that f(¢) < r2. Suppose f(f) = r? for some t, and
let # € [a, b] be the maximum of f on this interval, so f(t) = r2. Then
fy 7é a, b so_f'(ty) =0, whence « is tangent to the sphere S,(x, ro) where
ro = f(t)"%. The lemma now gives a contradiction, which concludes the
proof of Theorem 5.8.

Remark. In the pseudo Riemannian case, with metric g, one has to use
an auxiliary Riemannian metric 4 to apply a similar argument, which
makes the proof slightly longer.

Vill, §6. RIEMANNIAN GEODESIC LENGTH
AND COMPLETENESS

Throughout this section, we let (X, g) be a Riemannian manifold.

We return to the Riemannian case, where we use the positive definiteness
of the metric. In Chapter VII, §6 we defined the length of a piecewise C!
path. We want to compare the length locally with the length of straight
lines in the tangent space at a point, under the exponential map. In the
process, we shall see that locally, a geodesic is the shortest path between
two points.

Thus let xoe X and let (V, W) be a normal neighborhood as in
Corollary 5.2. Let xe W. For each piecewise C! path

y: la, b —» U(x) - {x},
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with U(x) being as in Corollary 5.2(2), we can use the fact that tl}e
exponential map is invertible and so there exists a unique curve ¢ — u(t) in
TyM such that [lu(z)]|, =1 and

p(t) = exp, (r(u(z))  with 0<r() <e

In a chart, the vector r(f)u(z) is obtained by the inverse qf the exponential
map followed by a projection, so in particular, the functions 7 +— r(#) and
t — u(f) on [a, b] are piecewise C'. We call these functions the local polar

coordinates for .

Lemma 6.1. For a piecewise C' curve y: la, bl — U(x) — {x} as above,
we have the inequality

L(y) 2 Ir(6) — r(a)|-

Equality holds only if the function t — r(t) is monotone and the map
t— u(t) is constant.

Proof. Let o(r, t) = exp,(ru(z)). Then y(f) = a(r(1), t). We have

dy 0o , oo
1 —_ = —.
Y =g=5"0+7

By the Gauss Lemma Theorem 5.7, we know that do/dr and 0o/dt are
orthogonal. Since ||do/dr|, =1 by Lemma 54, it follows that

6_0' 2

i =ror+| 5| 2ror

[

with equality holding only if 86/t = 0, or equivalently, du/dt = 0. Hence

b b
Lm=memm;waw;ww—mm

and equality holds only if ¢+ r(f) is monotone and ¢+ u(?) is constant.
This completes the proof.

Theorem 6.2. Let (V, W) constitute a normal neighborhood of a p.oint
xo€X. Leta: [0,1] — V be the geodesic (up to reparametrization) in V
joining two points of W (namely a(0) and a(1)). Let v [0,1] = X be
any other piecewise C! path in X joining these two points. Then

L(x) £ L(y)-
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If equality holds, then the polar component t — v(t) for y is constant, the
Junction t — r(t) is monotone, and a reparametrization of y is equal to «.

Proof. Let x, yeW and let y=exp,(ru) with 0<r<e and
lull, = 1. Then for 6 >0 and 0 <J < r the path y contains a segment
joining the shell Shy(x, §) with the shell Shy(x, r) and lying between the
two shells. By Lemma 6.1, the length of this segment is >r — 4. Letting
¢ tend to 0 shows that L(y) 2 r. The same lemma proves the conditions
on the polar functions as asserted.

Corollary 6.3. Let a: [0, 1] — X be a piecewise C' path, parametrized
by are length. If L(a) < L(y) for all paths from «(0) to a(l) in X, then o
is a geodesic.

Proof. We can find a partition of [0, 1] such that the image under « of
each small interval in the partition is contained in some neighborhood W
as in the theorem, and its length is small so the image of the segment is
contained in a normal neighborhood. By Theorem 6.2, the path restricted
to this segment must be a geodesic. Hence the entire path is a geodesic, as
was to be shown.

Let a: [a, b)) — X be a geodesic. We say that « is a minimal geodesic if
L(x) < L(y) for every path y joining «(a) and «(b) in X. Theorem 6.2
gives us the existence of minimal geodesics locally. We can then formulate
another application. Let x e X. Let dist, be the Riemannian distance.
Let:

BG(OXv r)a Sg(ox’ r)’ Bg(x’ r)’ SG(x’ r)

be the open balls and spheres of radius r, centered at 0, in 7,.X and at x
in X, respectively. We now know enough to show that S,(x, r) is the
image of S;(0x, ) under the exponential map, and similarly for the open
ball, for sufficiently small r.

Theorem 6.4. Let (X, g) be a Riemannian manifold and let xe X.

There exists ¢ > 0 such that for all r < ¢ the map exp, is defined on
B, (04, ¢), gives a differential isomorphism

exp,: By(0x,7) = By(x,r)  forallrwith 0<r<c,
and also a differential isomorphism

expy: Sg(Ox, r) > Sy(x,r) forO<r<ec.

Proof. Immediate from Corollary 5.5 and Theorem 6.2.



[VIIL, §6]

224 COVARIANT DERIVATIVES AND GEODESICS

Next we consider completeness. Since X is a metric space (in the
ordinary sense), with respect to the distance dist,, the notion of X being
complete is standard: every Cauchy sequence for dist, converges. On the
other hand, we can now define another notion of completeness.

We say that (X, g) is geodesically complete if and only if the maximal
interval of definition of every geodesic in X is all of R. Alternatively, we
could say that for each point x € X, the exponential map exp, is defined
on all of T,, because under one normalization of the parametrization of a
geodesic, it is simply the curve ¢+ exp,(t) for some ve TyX. To be
systematic, let us consider the following conditions:

COM 1. As a metric space under dist,, X is complete.

COM 2. All geodesics in X are defined on R.

COM 3. For every x € X, the exponential exp, is defined on all of T, X.
COM 4. For some x € X, the exponential exp, is defined on all of T, X.

Proposition 6.5. Each condition implies the next, ie.

COM1=COM2= COM 3= COM4.

Proof. Assume COM 1. Let a: J — X be a geodesic parametrized
by arc length on some interval, and take J to be maximal in R. By the
existence and uniqueness theorem for differential equations, J is open in R,
and it will suffice to prove that J is closed, or in other words, that J
contains its end points. For t;, t, € J we have

dist(oc(tl), a(tz)) =< |12 - t1|.

Suppose for instance that J is bounded above, and let {#,} be a sequence
in J converging to the right end point of J. Then the sequence {a(f,)} is
Cauchy by the above inequality, so {«(z,)} converges to a point xp by
COM 1. Then for all n sufficiently large, «(z,) lies in a small normal
neighborhood of xp, and there is some € > 0, independent of n, such that
the geodesic can be extended to an interval of length at least ¢ beyond
t,, thus contradicting the maximality of J, and proving COM 2. The
subsequent implications are trivial, so the proposition is proved.

We are now interested when geodesic completeness implies complete-
ness. We shall give two criteria for this. One of them is that the manifold
has finite dimension, and the other one will be important for its appli-
cation to conditions on curvature in Chapter IX. The finite dimensional
case depends on the next result.

T
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Theorem 6.6 (Hopf-Rinow). Assume that (X, g) is finite dimensional
connected geodesically complete at a point p, that is, exp, is defined on
T,X. Then any point in X can be joined to p by a minimal geodesic.

Prooj.f I ff)llow here the variation of the proof given in [Mi 63]. Let y
be a point with p # y. Let W be a normal neighborhood of p containing
tl?e image of a small ball under the exponential map exp,. Let r=
d1st(p3 »), .and let 6 be small < 7. Then the shell Shy(p, d) = Sh(p, d) is
contalped in W. Since Sh(p, d) is the image of the sphere of radius J in
T,X, it follqws t.hat Sh(p, 9) is compact. Hence there exists a point x; on
Sh(p, ) which is at minimal g-distance from y, that is

dist(xg, y) < dist(x, y) for all x e Sh(p, 9).
We can write xo = exp,(du) for some u e T, with lull, = 1. Let a(r) =

expp(ty). We shall prove that exp,(ru) = y. We prove this by “contin-
uous induction” on ¢, as it were. More precisely, we shall prove:

(dist,) We have dist(«(?), y)=r—t for 6<t<r.

Taking ¢ = r will prove the theorem. First we note that (dists) is true.
Indeed, every path from p to y intersects the shell Sh(p, 8), so

(1) dist(p, y) = min (dist(p, x) + dist(x, y))  for xeSh(p, )

=0+ mxin dist(x, y)

= 6 + dist(xo, ),

so (dists) is true. Now “inductively”, assume that (dist,) is true for all
t<r', withd <+ <r. Let r; be the least upper bound of such /. Since
the distance dist, is continuous, it follows that (dist,) is true, and it
suffices to prove that r; =r. Suppose r; < r. Pick J; small so we get as
usual a spherical shell Sh(«(r;), d;) around a(r;), contained in a normal
neighborhood of «(r1). As in (1), there is a point x; on Sh(x(r1), 81) at
minimal distance from y, and we have the relation as in (1), namely

dist(a(r1), y) = 61 + dist(x;, y).
Since (dist;,) is true, we find

(2) dist(x, yY)=r—nr —ér.
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We claim that x; = a(r; +1). To see this, first observe that
dist(p, x1) = dist(p, y) — dist(x1, y) = r1 + 1.

But the path consisting of the two minimal geodesics from p = a(0) to
a(ry) and from a(r1) to x; has length ry + 91, so this path (which is viewed
as a broken geodesic) has minimal length, so it is an unbroken geodesic by
Corollary 6.3. Hence the path is actually equal to a, so a(r; +d1) = xi,
and therefore dist(x;, y) =r— (r1 +61), so (dist, +4,) is true, thus con-
cluding the proof of the continuous induction, and also concluding the
proof the Hopf-Rinow theorem.

Corollary 6.7. In the finite dimensional case the four completeness
conditions COM 1 through COM 4 are equivalent to a fifth:

COM 5. A closed disty-bounded subset of X is compact.

Proof. Assume COM 4 with exp,, defined on T, X. Let S be closed
and bounded in X. Without loss of generality, we may assume xp € S. Let
b be a bound for the diameter of S. Then by Theorem 6.6 (Hopf-Rinow),
every point of S can be joined to xo by a geodesic of length < b, so S is
contained in the image under exp,, of the closed ball of radius & in Ty X,
so S is compact, thus proving COM 5.

Assume COM 5. Let {x,} be a Cauchy sequence in X. Then {x,} lies
in a bounded set, whose closure is compact by assumption, so {x,} has a
point of accumulation which is actually a limit in X. This proves COM 1,
and concludes the proof of the corollary.

Remark. In his thesis [McA 65], McAlpin gave the following example
which shows a divergence of behavior in the case of infinite dimensional
Hilbert manifolds. Let E be a Hilbert space with orthonormal basis
{e,} (n=0). Let T: E—E be the linear map such that for a vector

v=> x,e, €E
T (Z x,,e,,) = Z apXnén

where ap =1 and a,=1+1/2" for n=1. Then
lloll < 17wl < 31lol),

and therefore T is invertible in Laut(E). Let S be the unit sphere in E and
let X = T(S), so X is a submanifold of E, to which we give the induced
metric. Let a be a path joining ep to —eo in S. Then T« is a path joining
ey to —ep in X, and T is length increasing, that is '

L(a) £ L(Ta).

e R
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H;npe the length of any path in X joining e to —ey is = 7, which is the
minimal length of paths between the two points in E. However, let «, be

;{1; half great circle joining the two points in the upper (e, e,)-half plane.
en

L(Ta,) < (141/2")m — 7 = disty(eg, —ep).

Hence thel"e is no minimal path joining the two points in X. Note that
each Ta, is a geodesic in X joining the two points, because

Im(Tap)u — Im(Tay,)

is the fixed point set of the isometry F, defined by
F, (Z xkek) = Xpey + Xpen — Z Xe.

Mc.:Alpin refers to [Gros 64] for results on the distribution of degenerate
points of the exponential map in similar examples.

Next we give another criterion for (X, g) to be complete. We start with
a lemma.

Mma 68. Let f: Y— X be a C' map between Riemannian
manifolds (Y, h) and (X, g). Assume that there is a constant C > 0 such
that for all yeY and we T,Y we have

NTSf (y)wlly = Cllwll-
If y: [a, b] =y is a piecewise C' path in Y, then

L(foy) 2 CL(y).
Proof. We have

b b
L(foy) = j I 0w (0, dt = j 1T ()7 ), do

b
> j Cly' ()], dt
a

= CLx(y),
as was to be shown.

.Let f: Y — X be a C' map of manifolds. We say that f has the
unique path lifting property if given a point x € X, a piecewise C! path « in
X starting from x, and a point y € Y such that f(y) = x, then there exists
a unique piecewise C! path y in ¥ such that foy =« and y starts at .
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Theorem 6.9. Let f: Y — X be a local C' isomorphism of a Rie-
mannian manifold (Y, h) into a Riemannian manifold (X, g). Assume
that (Y, h) is complete, and X is connected. Also assume that there is a
constant C > 0 such that for all ye Y and we T,Y we have

1T (y)wlly = Cliwlly.

Then f is surjective, f is a covering and has the unique path lifting
property, and (X, g) is complete.

Proof. The proof is in three steps. The first step is to prove that f is
surjective and has the unique path lifting property. Let xe X, x = f(y).
Every point in X can be joined to x by a piecewise C'! path. Let
a: [a, b] = X be such a path, joining a(a) = x with a(b). We shall prove
that « can be lifted uniquely to a path in Y starting from y. This will
prove the first step. Let S be the set of elements ¢ € [a, b] such that the
path a restricted to [0, 7] can be lifted uniquely to a path y starting at y.
Without loss of generality, we may assume that a < b. The set S is not
empty because a € S, and it is open because f'is a local isomorphism. So it
remains to show that S is closed. Let {¢,} be a sequence in S increasing to
the least upper bound by of S. Then {«(t,)} converges to a(by), and by
Lemma 6.8 the lengths of the lifted path between y(t,) and y(t,) tend to 0
as m, n tend to infinity, so the sequence {y(t,)} is Cauchy in Y, converging
to some element y, since Y is assumed complete. Then f(y,) = a(bo), so
S is closed, whence S = X by assumption. Therefore f is surjective, and
we have also proved the existence and uniqueness of path liftings.

The next step in the proof is to reduce the theorem to the case when the
map f is a local isometry. We do this as follows. Let g* = f*(g) be the
pull-back of the metric g from X to Y by f. Then for all ye ¥ and
weT,Y we have

1l = ITS Gwly 2 Clwl,

Hence on Y we find that dist;- = Cdist,. We now claim that Y is
complete for the distance dist;.. To see this, first observe that if {y,} is
g*-Cauchy, then {y,} is also A-Cauchy, so {y,} is h-convergent to an
element y,e Y. Then {f(y,)} converges to f(y,). But f induces an
isomorphism from some neighborhood ¥ of y, to an open neighborhoo¢
of f(¥,), and hence for all but a finite number of n, the points f(y,) lie in
f(V), so {y,} is also g*-convergent to y, since g* = f*(g). This proves
that Y is g*-complete. Furthermore, we have the inequality

disty-(y,, y,) 2 disty (f (1), f(12))

In this final step, we prove that f is a covering. Since Y is g*-complete,
this will also prove that (X, g) is complete, and will conclude the proof

for all Yi» V2 € Y.
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of the theorem. By the second step, we may assume without loss of
generality that f is a local isometry, and that

(*) distn(yy, y,) 2 disty (f(y1), f(¥2)) forall y,,y,e?Y.

Let xe X. From Theorem 6.4 we know that
exp,: By(0x, r) — By(x, r)

is an isomorphism for all r sufficiently small, say r < ¢ with ¢ > 0. Let
yef _l(x). Since f is a local isometry, the following diagram is com-
mutative (using (x)):

df(y)

Bh(o)n r) — Bg(o:u r)

exp, exp,

By(y,7) - By(x, 1)

Note that the right vertical arrow is a differential isomorphism because we
have picked r small enough, but so far we have made no such assertion for
the left vertical arrow. For the proof of the theorem, it will suffice to
show that f~'B,(x,r) is the disjoint union of the balls By(y,r) for
ye f~1(x), if r is taken small enough. We take r so small that given
x'" € By(x, r) there is a unique geodesic in By(x, r) joining x to x’ (namely
2xp,(tv) for some v). Then, first, we have f(By(y,r)) < By(x,r), so
‘he union is contained in f ”1Bg(x, r). Conversely, given a point
zef ‘lBg(x, r), we can join f(z) to x by a geodesic of length < r in
By(x, r), and by the path lifting property already proved in step 1, we can
join z to a point y in f~!(x) by a geodesic of the same length, so

S (Bylx, 1) = U Ba(y, 1),
Y

where the union is taken over y € f~!(x). Finally, let y;, y, € f~!(x) and
sippose y; # y,. We claim that B,(y;, r) is disjoint from By(y,, r).
Suppose there is some point z in the intersection. Then z can be joined
to y, by a geodesic o; in By(y;, r), and z can also be joined to y, by a
geodesic a; in By(y,, r), and these geodesics are distinct. Their images
under f are geodesics in B,(x, r) joining x with f(z). By the uniqueness of
path lifting, this would mean we have two distinct geodesics in By(x, r)
joining x and z, and that these geodesics have length < r. This contradicts
the local uniqueness statement, and proves that the balls By(y,, r) and
By(y,, r) are disjoint. This concludes the proof of the theorem.



230 COVARIANT DERIVATIVES AND GEODESICS [VIIL, §6]

Remark. In the next chapter, under a condition of seminegative curva-
ture (to be defined), we shall take Y = T, X, and we shall prove that

f=exp,;: TRX - X

satisfies the hypotheses of Theorem 6.9, and therefore in particular that
geodesic completeness implies completeness. In this manner, we shall be
able to replace the local compactness condition by a curvature condition
to insure the equivalence between the two notions of completeness. The
whole technique goes back to Hadamard [Ha 1898] in the case of surfaces
with seminegative curvature, and Cartan [Ca 28] in the general case, still
in this context of seminegative curvature. The notion of a “covering
space” was not so clear during this early period. Except for a minor
variation, the theorem is apparently due to Ambrose [Am 56], and occurs
in the standard treatments of differential geometry as in [He 62] later
replaced by [He 78], Chapter I, Lemma 13.4; [KoN 63], Chapter IV,
Theorem 4.6 and Chapter VIII, §8, Theorem 8.1 and especially Lemma 1.
The theorem is at the base of the Cartan—-Hadamard theorem, to be
proved later.

CHAPTER IX

Curvature

This chapter is a continuation of the preceding one, and is concerned with
the iteration of covariant derivatives, from a formal point of view, and
also from the point of view of their effect on the geometry of the manifold.

IX, §1. THE RIEMANN TENSOR

Let X be a manifold with a spray, and the covariant derivative D associated
with the spray. If & n, { are vector fields on X, we are concerned with the
operator

DcD,, - D,,Dg - D[é’”]  T'TX — FTX,

which is a linear map of I'TX into itself.

Proposition 1.1. There exists a unique tensor field R, section of
L¥TX, TX), ie. arising from the functor E — L*(E, E) (continuous
trilinear maps of E into itself) such that for all vector fields &, n, { we

have
R(&, 1, {) = DeDyl — DyDel — Dig L.

Proof. The expression on the right-hand side gives a well-defined vector
field on X. To show that this association comes from a tensor field, we
can compute in a chart. To do this, we use the local expression for the
covariant derivative given in Theorem 2.1 of Chapter VIII. So for the rest

of the argument, &, #, { stand for &y, 5y, {y in a chart U. Then, for
example, we have

1) Dyl ={"-n—B(n, ).

~e
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We determine Dg(D,{) by substitution in this formula. Asa first step, we
have to write down the derivative

(D) - E=0"&n+{"n'-&E=B'¢, ()~ B, {'-&) - (B-&)n, £).
Then it follows that
Dy(D,L) =" &+ -n'-E= By - & ) — B, ' &) = B -1, &)
—(B'-&)(n, ) + B(B(n, £), &)-

Permuting ¢ and # gives us the second term. Using the local expression
for the bracket ,
& n)=n"-¢-¢&n

as well as (1) will give us the third term. The reader wil‘l then verif‘y. that
all the expressions containing a derivative cancel, lanlpg only trilinear
expressions involving &, », and {. This proves Proposition 1.1.

In addition, after the cancellation of the terms with derivatives, we
obtain a local expression for R, namely:

Proposition 1.2. Letting &, n, { represent vector fields in a chart:
+ (B -m)(& 0) — (B &) O

Remark. There is no universal convention as to the sign of R. I use ghe
same sign as [KoN 63], [ChE 75], [He 78], and [BGV 92], but the opposite
sign to [BGM 71}, [HGL 87/93], and [Mi 63]. For further comments, see
the discussion after the definition of sectional curvature.

Let v, w, ze T,X. It is customary to write
R(v, w, z) = R(v, w)z = Ry(&(x), n(x), {(x))
= R(¢, 1, {)(x),

if &, n, ¢ are any vector fields such that &(x) = v, n(x) = w, {(x) =z. One

wrtes R(¢, n): TTX - TTX

for the linear map of I'TX into itself, given by

R(¢, n) = DgDy — DyD¢ — Dy g
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As a function of two variables, according to this definition, one may view
R as a section of the bundle L*(TX, L(TX, TX)), which is formed by
applying the functor E* — L2(E, L(E, E)) to the tangent bundle.

Next we list some identities.

Proposition 1.3.
R(v, w) = —R(w, v) (skew-symmetry).
R(v, w, z) + R(w, z, v) + R(z, v, w) = 0 (cyclicity, Bianchi’s identity).

Proof. The first relation is obvious from the definition. The second one
is immediate from the local representation of Proposition 1.2.

For the next two properties, we assume that the spray is the one
associated with a metric, so the covariant derivative is the metric deri-
vative. We let (, ), be the scalar product associated with the metric. Then
we define a function of four variables

R(v, w, z, u) = (R(v, w)z, u), for v, w,z,ueT,X.

Then R is a tensor of type L, that is a section of L*(TX) = L*(TX, R).
We shall call R the Riemann 4-tensor (canonical with respect to g). We
call —R the curvature tensor. The properties of Proposition 1.3 may be
formulated for this 4-tensor, and we shall see in a moment that it also
satisfies two other important properties. Thus it is useful to make a
general definition. A tensor R of type L* is called a tensor of Riemann
type if it satisfies the following four properties:

RIEM 1. R(v, w, z, u) = —R(w, v, z, u)

RIEM 2. R(v, w, z, u) = —R(v, w, u, z)

RIEM 3. R(v, w, z, u) + R(w, z, v, u) + R(z, v, w, u) =0
RIEM 4. R(v, w, z, u) = R(z, u, v, w).

The first two conditions express the property of being alternating in the
first two variables, and also in the last two variables. The third condition
is called the Bianchi identity, and expresses the property that the cyclic
symmetrization of the' tensor is 0. The fourth property states that the
tensor is symmetric in the pairs of variables (v, w) and (z, u). In par-
ticular, we note right away that from RIEM 4, we obtain:

R(v, w, v, u) is symmetric in (w, u), that is R(v, w, v, u) = R(v, u, v, w).

We shall make more comments on these properties after the next
proposition, which justifies the terminology.



234 CURVATURE [IX, §1]

Proposition 1.4. On a pseudo Riemannian manifold, the Riemann tensor
satisfies all the above four properties. Furthermore, RIEM 4 follows from
RIEM 1, 2, 3.

Proof. Properties RIEM 1 and RIEM 3 have been proved in Pro-
position 1.3. Property RIEM 2 amounts to proving that R(v, w, z, z)=0
for all v, w, z; or in terms of vector fields, R(¢, 7, {, {) =0. We will need
to differentiate. Since all the terms with derivatives vanish in the local
formula of Proposition 1.2, we may assume without loss of generality that
(¢, 7] =0. Then

(R(éa n)Ca C)g = (DfDr[C - Dr]DCC) E)gy

and we must show that the right side is symmetric in &, #. But {£, 7] =0
implies that

gﬁgﬂ(é’1 £)g

is symmetric in &, 5. Since we are dealing with the metric covariant
derivative, it follows that

gﬂ((a C)g = 2<D7167 C)g

and therefore

$C$ﬂ<67 C>g = Z(DfD,,C, C)g + 2<D§C’ Dr]()gy

from which it follows at once that (D:D,{, {) g is symmetric in &, 7, thus
proving RIEM 2.

The formula RIEM 4 is a formal consequence of the preceding three
formulas. It is basically an exercise in algebra, which we carry out. In the
cyclic identity RIEM 3, interchange u with z, v, w successively, and add
the resulting three relations. One gets, using RIEM 1 and RIEM 3:

(%) R(u, v, w, z) + R(u, w, z, v) + R(u, z, v, w) = 0.
From cyclicity and RIEM 1, one gets

R(z, v, u, w) = R(u, v, z, w) — R(u, z, v, w) or

R(u, z, v, w) = R(u, v, z, w) — R(z, v, u, w).

We substitute the value on the left in (x), and use RIEM 1 to conclude the
proof of RIEM 4.
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We shall be dealing with a contraction of the canonical 4-tensor. We
defined the canonical 2-tensor R, by

Ry(v, w) = R(v, w, v, w).

Proposition 1.5. The canonical 2-tensor determines the Riemann tensor.
Or similarly, if the canonical tensor R satisfies

Rw,w,o,w)=0  forall v, w,
then R =0,

Proof. Say we prove the second assertion first. From RIEM 4, which
implies that R(v, w, v, z) is symmetric in (w, z), if R(v, w, v, w) = 0 for all
v, w then R(v, w, v, z) = 0 for all v, w, z. From the alternating properties
of RIEM 1 and RIEM 2, it follows that R =0 identically.

To show that the canonical 2-tensor determines the Riemann tensor, we
note that the problem is essentially equivalent to the other statement, but
one may argue directly as when one recovers a symmetric bilinear form
from a quadratic form, namely

2

0
%R(er tz, w+ su, v+ 1z, w + su)

2

—%R(v+lu, w+sz, v+ tu, w4 sz)

= 6R(v, w, z,u).

s=t=0

This proves the proposition.

An important case arises when R; = 0. We define (X, g) to have
seminegative curvature if R; = 0. The following discussion explains this
terminology in terms of its historical development.

Curvature discussion

A large part of the theory we are developing is fundamentally a theory
of commutative rings with certain types of derivation, and possibly scalar
products, in which positivity or negativity plays no role. This theory
contains a number of formulas with precise equality between various
terms. There would be some value in redoing this chapter and the
preceding one completely in such a context of commutative differential
algebra. At some point, for certain applications, the positivity or nega-
tivity properties of the real numbers are used, as in the second statement
of Proposition 2.6 below. For such applications, the question arises as to
what is the natural sign to be used, if indeed there is a natural sign.
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Historically, the theory arose in a geometric context, based on geo-
metric intuition. To each pair of vectors (v, w) in a tangent space T,X,
we define the area square of the parallelogram spanned by these vectors to

be
2

g

Ary(v, w)? = v?w? — (v, w)

As usual, v?> = (v, v),. Then, when Ar,(v, w)2 # 0, we define the sectional

curvature to be

g
R(v, w, v, w)

Secy (v, w) = — Aro W)
g\"»

In the Riemannian case, Ar,(v, w) # 0 if and only if v, w are linearly
independent. If v2 and w? > 0, then the value on the right depends only
on the unit vectors in the direction of v, w respectively; and if v, w are
orthogonal unit vectors, then

Sec,(v, w) = —R(v, w, v, w).

In the Riemannian case, it is immediate that the value of the sectional
curvature on (v, w) depends only on the plane generated by v and w,
because of the skew-symmetry of RIEM 1 and RIEM 2. For the complex
analogue, see [La 87], Chapter V, §3.

Let c e R* be a positive number. The multiple cg is called a scaling of
the metric g. Since the covariant derivative D% is the same as DY, it
follows from the definitions that under scaling, the curvature changes as

Sec,, = ¢! Sec,.
Directly from the definition, we then see in the Riemannian case that:
The sectional - curvature has constant value —1 if and only if
Ry(v, w) = v*w? — (v, w)_; Sforall v, weTX.

Viewing v as fixed, the above expression is quadratic in w, and the
corresponding symmetric bilinear form is

R(v, w, v, z) = v*(w, 2)g — (v, W)y (v, 2) 4

Thus R(v, w)v is given by

2

R(v, w)v = v*w — (v, w),v forall v, we TxX.

Similarly, the sectional curvature has constant value +1 if and only if the
analogous formula holds with a minus sign inserted on one side, so that for
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instance
—R(v, w)v = v*w — (v, W) gv.

In the applications of this book (the rest of this chapter, the Cartan—
Hadamard theorem, the variation formulas of Chapter XI, §1, etc.) what
matters is not the “curvature” as defined above, but the canonical tensor
R itself. Furthermore, formulas in these applications come out much
neater with R than with “curvature” for two reasons:

First, for such formulas, dividing to normalize as in the curvature
quotient is unnatural, partly because the term by which one divides,
algebraically, may be equal to 0 unless extra conditions are imposed.

Second, even for inequalities as distinguished from equalities, the
natural condition which arises is R(v, w, v, w) = 0 rather than curvature
<0. If one takes R with the sign as we have defined it, then only plus
signs occur in all the formulas (cf. Lemma 2.5 and the variation formula,
Theorem 1.3 of Chapter XI, for instance). This universal occurrence of
plus signs is obscured if one introduces minus signs artificially. I regard
this universal occurrence of plus signs as structurally important.

The naturality of R in the real case is similar to the naturality of its
counterpart in the complex case, where formulas involving positivity come
out neatly by using the analogue of R rather than its negative (as already
noted by Griffiths). Cf. [La 87], the comments pp. 136—137 about holo-
morphic sectional curvature. The lesson is that the “curvature” in classical
terminology is minus the natural object R (aside from questions of
normalizing the dilation to the unit sphere).

Classically, starting with surface theory, people wanted some formulas
such as Gauss-Bonnet or formulas relating “curvature” and Betti numbers,
using + R, to come out so that on the sphere, one gets a value of certain
integral to be 47 and not —4n. So they picked the minus sign, and gave
the notion —R (normalized) the name of curvature, which makes the
sphere have positive curvature. The bottom line is that depending on what
applications one makes, both R and —R are “natural.” However, from the
point of view of universal algebraic manipulations, R is the clearest
functorial notion.

One can define two other curvatures, at least. Actually, all we need is
a tensor of curvature type. From such a tensor R, we obtain two other
tensors. First observe that to each pair of vectors v, z € E we can associate
an endomorphism of E, denoted by Ric(v, z), and defined by

Ricg(v, z)w = R(v, w)z.
Thus Ric gives a bilinear map

Ricg: ExXE — L(E, E).
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Applied to the tangent bundle, and the Riemann tensor R itself, Ric is
called the Ricci tensor.
Furthermore, in the finite dimensional case, the trace

tr: L(E,E) = R
is a continuous linear map. Then the composite
Scr = tr o Ricg

is a function of pairs of vectors, which when applied to the tangent bundle
defines what is called the scalar curvature. In the infinite dimensional case,
one has to give an additional structure, assuming that the Ricci tensor is
of “trace class”, or defining the sectional curvature with respect to a given
“trace,” i.e. a continuous functional on L(E, E) which is equal on
products AB and BA. But this now leads far afield.

Suppose we are in the Riemannian case. We can then give an explicit
formula for the scalar curvature. In the neighborhood of a point, we can
find vector fields &;,...,¢&, (with n = dim X) which are orthonormal, by
the usual orthogonalization process. Such a sequence of vector fields is
called an orthonormal frame at the point.

Proposition 1.6. Let {£,,...,¢&,} be an orthonormal frame on an open
set. Then for vector fields &, 1 we have

Scr(¢, 1 Z R &, &).

Proof. This is immediate from the definition of the trace of an endo-
morphism of a finite dimensional vector space.

The conditions RIEM 1 and RIEM 2 express the property of depending
only on the wedge product of each pair of variables v A w and z A u.
Property RIEM 4 is a symmetric property in these pairs of variables. Thus
we may say that the four-variable tensor R defines a symmetric bilinear
form on /\ TX, which we denote by

~ /\ZTX/\/\ZTX—>R, such that R" (v A w, z A u) = R(v, w, z, u).

On the other hand, we also have the pseudo Riemannian metric, which
induces a non-singular scalar product on /\2 TX by the formula

(v, 2), (v, u),

(v Aw, zAu, =det w,2), (wyu), |
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These scalar products are of course evaluated at each point xe X, v, w, z,
ue T,X. The scalar product on /\ TX with respect to the non-singular
symmetric form g then corresponds to a symmetric operator which is
called the curvature operator.

In the infinite dimensional case, from the self duality, each tangent
space can be interpreted as the dual of its dual, and the wedge product is
defined as in Chapter V, §3 so the above notions still make sense.

Readers wanting to pursue the topic of curvature are now referred to
other books on differential geometry, including [BGM 71], [ChE 75,
[doC 92], and [GHL 87/93].

IX, §2. JACOBI LIFTS

Let (X, g) be pseudo Riemannian. We write w2 for (w, w),, and v Lw
for (v, w), =0. We let a: [a, b] = X be a geodesic. Unless otherwise
specified, (X, g) is not necessarily Riemannian.

A lift 7 € Lift(x) to the tangent bundle will be called a Jacobi lift, or
more classically a Jacobi field, if it satisfies the Jacobi differential equation

D2y = R(a', n)o’.

Theorem 3.1 of Chapter VIII and Proposition 1.2 in the preceding section
of the present chapter show that locally, the above equation is a linear
differential equation. Therefore, by the existence and uniqueness theorem
for linear differential equations, we get:

Theorem 2.1. Let (X, g) be pseudo Riemannian, let a: [a, b] — X be a
geodesic. Given vectors z, w € Ty X, there exists a unique Jacobi lift
n="n,, of « to TX such that

n@ =z and  Dyn(a)=w.

In particular, the set of Jacobi lifts of o is a vector space linearly
isomorphic t0 Tyz) X Ty under the map (z, w) = 7,

We denote the space of Jacobi lifts of a by Jac(a).
Let ve Ty and consider the unique geodesic

a(f) = exp, ()

such that 2(0) = x and «’(0) = v, with « defined on an open interval. Let
we TxX and let 7, be the unique Jacobi lift of a such that

7,0 =0 and  Dun,(0) =w.
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Example. Let w =v. Then

7,(2) = 1o/ ().

Proof. One verifies at once that #,(0) = 0, and since Do’ = 0, we also
have
Dy, (ty=a/(f) and D2y, =0= R, «')o.

Remark 1. Defining a Jacobi lift implicitly has the geodesic « in its
definition. If, say, a = 0, this geodesic is uniquely determined by its initial
condition « (O; = v, so the Jacobi lift is also determined by v. Thus one
could write nw for the Jacobi lift. In the present discussions, this won’t be
necessary since we deal systematically with a fixed «

Remark 2. In a chart, the derivative #’(0) can be computed in the naive
way since #: J — TX is defined on an interval. The naive derivative and
the covariant derivative D% differ locally in a chart by a term linear in 7,
which therefore vanishes at 0 if #(0) = 0. Hence the naive derivative and
the covariant derivative have the same value at 0, that is

n'(0) = Dyin(0).

We note that, « being fixed, the association w s 7,, is linear. We now
have the possibility of orthogonalization.

Proposition 2.2. Let (X, g) be pseudo Riemannian. Let a: [a, b] — X
be a geodesic, and let n be a Jacobi lift of «. Then there are numbers c,
d such that

{n, o)y (8) = c(t — @) + d.

In fact, d = (n, o'),(a) and ¢ = (Dyn, ') (a). If #(a) and Dyn(a) are
orthogonal to o'(a), then n(t) is orthogonal to o'(t) for all t.

Proof. Using the metric derivative, and Dy o’ = 0 since a is a geodesic,
we find that 8(y, a'), = (Dyn, o), and then

*(n, «'), = (D2m, «), =R, n, 0, a’)y=0.

Hence (y, o), is a linear function, whose coefficients are immediately
determined to be those written down in the proposition.

Proposition 2.3. As above, let o/(0) =v. Write w=co+w; with
(w1, v) g =0. Then n, has the decomposition

My = CNy + 1, also written  n,,(t) = cta/(t) + 1, (). -

Furthermore 1,, is orthogonal to o, that is (> @) s =0.
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Proof. Immediate from Proposition 2.2.
Next we get the similar orthogonalization of Dy,

Proposition 2.4. Notation as in Proposition 2.3, we have an orthogonal
decomposition

Dy, = Dy, + Dy, also written  Dyn,, (1) = ca'(t) + Dy, (1)

2
In other words, if w; La'(0), then Dyn,, La'. Furthermore (Dyn,)” is
constant.

Proof. For the first assertion, we take the derivative and use Prop-
osition 2.3 to get

0= 6(”w1a a,)g = <Du”7w17 “I)g'
For the second, we then obtain for n =7,,:

a(Da’”, Da’”)g = 2<D§"7’ Da’”>g
= 2<R(alv ”)ala Du’ I)g'

If 7 = 7, so ,(¢) = ta'(¢), then the right side is O because Ry is alternating
in its last two variables. This concludes the proof.

Remark. If 7 =7, with w1 a'(0), then we cannot necessarily conclude
that the derivative is 0.

The next lemma will give us information on the rate of growth of a
Jacobi lift, and the convexity of its square.

Lemma 2.5. Assume (X, g) Riemannian. Let n be a Jacobi lift of «.
Let f(t) = ||n(?)ll. Then at those values of t > 0 such that n(t) # 0, we
have

" = = ” — ((Dam)?n® = (Do, m)g) + 7 ”Rz(“aﬂ)

Proof. Straightforward calculus, using the covariant derivative. The
first derivative f’ is given by

= (")"*(n, Darm), = ( i) g-
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Then f” is computed by using the rule for the derivative of a product. In
the term containing (D27, 7) 4 We replace Din by R(o/,n)a’ (using the
definition of a Jacobi lift) to conclude the proof of the lemma.

In the above lemma, we note that on the right side, the first term is
= 0, and the second term is = 0 if R, = 0.

Proposition 2.6. Let a: [0,b] > X be a geodesic. Let we TypX,
w#0. Let n,=mny, =n be the unique Jacobi lift satisfying

7,00=0 and  Dyn,(0)=w.

If (X, g) is Riemannian and Ry 20 (so (X, g) has seminegative cur-
vature), then for te [0, b] we have

ln()l 2 wlie  and in particular — |ln(1)]| 2 (Wl & b =1.

Proof. Let h(t) = ||n(2)|| — |wllt for 0 £t <b. Then h is continuous,
h(0) = 0, and by Lemma 2.5, 4" = f” 2 0 whenever #(¢) # 0. One cannot
have #(¢) = 0 for arbitrarily small values of ¢ # 0, otherwise D,77(0) would
be 0 (because in a chart U, 7,(0) = Dyn(0)). In fact, we shall prove that
there is no value of r# 0 such that #(¢) = 0. Suppose there is such a
value, and let #, be the smallest value > 0. In the interval (0, ) we have
A" 2 0 by Lemma 2.5, so 4’ in increasing. But the beginning of the Taylor
expansion of # in a chart is

Mo =w+ 0, so L £/ = .

Furthermore, A’(0) exists and is equal to 0, so #' =20 on [0, %), so 4 is
increasing, and there cannot be a value #, > 0 with #(#) = 0. Then the
above argument applies on the whole interval [0, b] to prove the desired
inequality on the whole interval. This concludes the proof of Proposition
2.6.

Remark. These results essentially stem from Cartan [Ca 28]. The above
version without coordinates, which extends to the infinite dimensional case,
comes from [BiC 64]. Readers may find it instructive to compare this
version with the one involving coordinates given in [He 78], pp. 71-73.

Proposition 2.6 is used for the subsequent application to the Cartan—
Hadamard theorem (Theorem 3.7), based on Theorem 6.9 of Chapter
VIII, whose origin is in Hadamard for surfaces [Ha 1898} and Cartan
in general. (Here and at several other places, I rely on Helgason’s very
useful bibliographical comments.)
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Variations of geodesics
By a variation of a curve « one means a2 C?> map
o: |a,b)xJ > X

where J is some interval containing 0, such that o(s, 0) = a(s) for all s.
One then writes
a(s, 1) = ou(s),

and one views {o,} as a family of curves defined on [a, b]. If all curves o,
are geodesics for ¢ € J then one says that ¢ is a variation through geodesics.

Lemma 2.7. Let o: Jy x J, — X be a C? map. Then on lifts of o to the
tangent bundle, we have the equality of operators

D1D2 - D2D1 = R(ala, (720‘).

Proof. The formula can be verified in a chart. It follows directly from
the definitions, especially using the local expression of Proposition 1.2.

Proposition 2.8. Let o: [a, b] x J — X be a variation of a geodesic &
through geodesics. Let

n(s) = 6,0(s, 0).
Then n is a Jacobi lift of o, said to come from ¢ or associated with o.

Proof. Given g, we have

D?0,6 = D1D16,0 = D1D2810 by Lemma 5.3 of Chapter VIII
= D,D1016 + R(d,0, 026)016 by Lemma 2.7.

But D;d;0(s, t) = 0 because a, is a geodesic, whence D25 = R(«, 7)o/, s0
n is a Jacobi lift of «, as was to be shown.

Theorem 2.9 (Variation at the Beginning Point). Let « be a geodesic in
X with initial value a(0) = x. Let z, we TxX. Let B be a curve such
that
BO)=0a(0) and B(0) =1z
Let
{(2) = P p(a'(0) + tw) = Pg (@' (0)) + tPg 5(w),

o(s, t) = expg sC(;).
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Let o,(s) = o(s, t). Then ay = a, ¢ is a variation of o by geodesics {a,},
and o, is the unique geodesic such that

%, (0) = B() and  a;(0) = {(1).
In particular, if w=0, then 2{(0) = P§ 4(o'(0)). Furthermore, let
n(s) = dr0(s, 0).
Then n=m,,, is the unique Jacobi lift of « with initial conditions
n0) =z and Dyn(0) = w.

Proof. The stated values for o,(0) and o (0) are immediate. Then from
the definition of parallel translation,

(%) £(0) = a'(0) and  Dgl(0) = w,

because if y,(t) = Pg 4(v), then Dgy, = 0 and we can use the standard rule

for the derivative of the product tP s(w).
Then o(0, ¢) = B(¢), so we obtain the initial conditions:

7(0) = 020(0, 0) = B'(0) = z;
Dun(0) = D12,5(0, 0) = Dy315(0, 0) by Chapter VIII, Lemma 5.3
= (Dg Texpg(0)¢)(0)
= Dgl(0) =w by (x),

thus concluding the proof.

Example. Constant curvature. Let (X, g) be Riemannian. As an
example, we shall now determine more explicitly the Jacobi lifts when
(X, g) has constant curvature. Since the covariant derivative is invariant
under a scaling of the metric, we may as well assume that the curvature
is 0 or +1. In the next three proposition, we let x € X and we let v e T, X
be a unit vector. As usual, we let « = «, be the geodesic

a(t) = exp, ().

For we T X we let 5, = 1755) be the Jacobi lift of «, satisfying the usual
initial conditions

7,(0)=0 and Dy, (0) =w.
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Finally, we let y, = yfV”) be parallel translation of w along «,, so

7,.(0) =w and Dy, =0.

Proposition 2.10. Assume that the curvature is 0, or equivalently that the
Riemann tensor R is identically 0. Then for all we T X we have

1(2) = 1y,(1).
Proof. The two curves ¢ — 7,(f) and ¢ +— #y,(¢) have the same initial
conditions. Also they satisfy the same differential equation, namely

Dim,=0 and  D2(ty,(1)) =0.

Hence they are equal, thereby proving the proposition.

The next two propositions deal with constant curvature +1. We recall
that we wrote down the Riemann tensor explicitly in those cases in §1. We
may therefore write down the differential equation for a Jacobi lift more
explicitly in those cases, as follows.

Proposition 2.11. Assume that (X, g) has constant curvature —1. Then
the Jacobi differential equation has the form

/

2
(1) Da’”w =Ny = <’7w’ OC/>gO( .
Furthermore, if we orthogonalize w with respect to v, so write

w=cov + c1u With co, ¢; € R and a unit vector u 1 v,

then

(2) 7w(t) = cota’(2) + (sinh £)eyy, (7).

Proof. The orthogonalization of Jacobi lifts comes from Proposition
2.3, so we want to identify the orthogonal components of the Jacobi lift of
&, with scalar multiples of parallel translation. It suffices to do so when
w=v and w=ulv separately. The example following Theorem 2.1
already gives us the v-component, so we may assume w = u. In this case,
the reader will verify that the two curves

t— 5,1 and t — (sinh 1)y, (2)

have the same initial conditions at 0 (for their value, and the value of their
first covariant derivative). They also satisfy the same differential equation,
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namely 5
D M = Mu

and similarly for the other curve, since Dy, = 0. Hence the two curves
are equal, as was to be shown.

Thirdly we deal with constant positive curvature.

Proposition 2.12. Assume X has constant curvature +1. Let xeX.
Then the same formulas hold as in Proposition 2.11, except for a minus
sign on one side in formula (1), and with sinh ¢ replaced by sint in

Sformula (2).

Proof. The arguments are the same. Using sin ¢ instead of sinh ¢ just
guarantees that the differential equation

2
D wfy = Ny
is satisfied, with the minus sign.

This concludes our analysis of the Jacobi lifts in the cases of constant

curvature.

The Jacobi differential equation has at least two main aspects. One of
them will be applied to a study of the differential of the exponential map
in the next section. The other will be applied to variational questions in

Chapter XI, §1.

IX, §3. APPLICATION OF JACOBI LIFTS TO Texp,

We continue to assume that (X, g) is pseudo Riemannian, unless other-
wise specified.

We are interested in Jacobi lifts because they give precise information
concerning the differential of the exponential map, for instance as in the
following result. In the statement, if v € T, then we identify T,Tx with T,
as we usually do for a Banach space.

Theorem 3.1. Let x€ X and ve Ty. Let a (defined on an open interval
containing 0) be the geodesic such that a(0)=x and o'(0)=v. Let
we Ty and let n,,=n,, be the Jacobi lift of o such that

”w(o) =0 and Dd’”w(o) =W

Then for r > 0, in the interval of definition of a, we have the formula

1
Texp,(ro)w = ;ﬂw(")-
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In particular, w lies in the kernel of Tex ; :
’ p.(rv) if and oul -
Furthermore, if we let (o) if nly i 1,,(r) =0.

o(s, t) = exp, (s(v + tw)),
then n,,(s) = 6,0(s, 0).

Proof. The curve o, is a geodesic for each 7, and

50(s) = exp, (sv) = x(s),

SO ¢ 18 a V_ariation of o through geodesics. Let #(s) = 8,a(s, 0). Then 7 is
a Jacobi lift of « by Proposition 2.8. Let f(s, t) = s(v+ tw). Then

020(s, 1) = (Texp,) (f(s, H)(0f/dt) = (Texp,) (f (s, 1)) (sw).

Hence #(0) = 0. Furthermore this same expression yields the formula of
the theorem,

7(r) = (Texp,) (f(r, 0)rw = (Texp,) (rv)rw.

Taking t/he limit as r— 0 in the formula, noting that in a chart
Dyn(0) = n'(0), and using Texp,(0) =id proves that Dyn(0) =w and
concludes the proof of Proposition 3.1.

The Jacobi lifts also allow us to give a more global version of the
Gauss lemma of Chapter VIII, Theorem 5.6.

Propqsition 3.2 (Gauss Lemma, Global). Let (X, g) be pseudo Rie-
mannian. Let x € X and ve T X. Let the exponential map r — exp,(rv)
be defined on an open interval J. Then for all we T X we have

(Texp,(rv)v, Texp,(ro)w), = (v, W)y

Proof Immediate from Proposition 3.1 and the orthogonalization of
Proposition 2.3.

Variation of a geodesic at its end point

Next we shall give another way of constructing Jacobi lifts, which will not
be used until Chapter XV, Proposition 2.5. Readers interested in seeing at
once the application of Jacobi lifts to the Cartan—-Hadamard theorem, say,
may omit the following construction.

Let X, ye€X with x# y be points such that y lies in the exponential
image of a ball centered at Oy in TxX and such that the exponential map
€Xp, is an isomorphism on this ball.
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Thus this ball provides a normal chart at x. Let o be the geodesic
parametrized by arc length joining x to y, so there is a unit vector u € T
such that

a(s) = exp,{su) and y = exp,(ru) for some r > 0.

Thus dist,(x, ) =r. Let e be a unit vector in TyX, and let § be the
geodesic such that

B(0)=y (sopfstartsaty) and p'(0) =e.

We consider an interval of the variable ¢ such that §(7) is contained in the
image of the previous ball around x. For each  we let o, be the unique
geodesic from x to f(f), parametrized by arc length. Then {a,} is a
variation of «, namely o = a, and it is a variation through geodesics,
illustrated on the next figure, drawn when e is perpendicular to «'(r) to
illustrate Proposition 3.3.

B(t)

X

The above variation will be called the variation of « at its end point, in the
direction of e.

Proposition 3.3. Let y = exp,(ru) be in a normal chart at x as above,
with the unit vector u. Let a(s) = exp,(su), and let {o,} be the variation
of o at its end point y in the direction of the unit vector e € T,X. Also
denote this variation by o, and let n(s) = 020(s, 0). Assume that e is
orthogonal to o'(r). Then Dym is orthogonal to o', and 7 is the unique
Jacobi lift of o such that

n0)=0 and y(r)=e.

Proof. First note the uniqueness. If there is another Jacobi lift having
the last stated property, then the difference vanishes at 0 and r, and
by Theorem 3.1 this difference must be 0 since the exponential map is
assumed to be an isomorphism from a ball to its image, which contains

y = exp(ru).
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Next, the variation ¢ is given by the formula
a(s, 1) = a(s) = exp,(su(t))  such that  exp, (s(r)u(r)) = B(s),
where u(r) is a unit vector, and s(f)u(1) is the vector whose exponential is

B(1). Th<.3 polar coordinates s(f) and u(z) depend as smoothly on ¢ as the
exponential map, or its inverse. Then

020(s, t) = Texp, (su(t))su'(z),
so that (since u = u(0)),
1(s) = Texp, (su)su'(0)
= (o) (s),

because from Theorem 3.1, we see that D,(0) = u'(0). Since u(z)? = 1, it

follows that «'(0) is perpendicular to a'(0) = u, so D, is orthogonal to
a’. Furthermore

B'(1) = Texp, (s(O)u(n) (s()u' (1) + s'(Du(r)),

and since s(0) =r, we find

e = f'(0) = Texp,(ru)(ru'(0) + 5"(0)u)
= Texp,(ru)ru’(0) + Texp,(ru)s'(0)u.

Since e is assumed orthogonal to o/(r) = Texp, (ru)u, and u'(0) is also
orthogonal to u, we must have s'(0) = 0, whence the relation

e = Texp, (ru)ru’(0) or Nwo)(r) = e.

This proves the proposition.

Transpose of Texp,
In the next results we are concerned with the differential of the exponential

map at arbitrary points, namely for v € T, such that exp, is defined on the
segment [0, v], we are concerned with

Texp,(v): Tx — T, where y = exp,(v),

especially whether this map is an isomorphism, or what is its kernel.
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Theorem 3.1 describes a condition for an element w to be in the kernel in
terms of a zero for a suitable Jacobi lift. We shall exploit this condition to
see that under some circumstances, there cannot be a non-trivial zero. We
first give a lemma from Ambrose [Am 60].

Lemma 3.4. Let (X, g) be pseudo Riemannian. Let n, { be Jacobi lifts
of a geodesic a. Then

(Dym, £), — (n, Dwl), is constant.

Proof. We differentiate the above expression and expect to get 0. From
the defining property of the covariant derivative, the derivative of the

above expression is equal to

<D§"77 &)+ (Do, Dy () ~ {(Dam, D) — DﬁrQ
= (D}, &) — (D3¢, 1)
= R(O‘I) n, O(/, C) - R(“l, C: ala 77)
=0
by the symmetry property of R. This proves the lemma.

The next lemma, from McAlpin’s thesis [McA 65], describes the adjoint
of the differential of the exponential map.

Lemma 3.5. Let (X, g) be pseudo Riemannian. Let o (defined at least
on [0, 1)) be the geodesic such that u(0) = x and o/(0) =v. Let

z€e Ta(l), we Ta(g),
and let

v* = —a'(1) = — P,
where P is the parallel translation along o'. Then

(Texpy) ()W, 2)y1y = (W, Texpy(1) (") 2)y0)-

Proof. Let { be the Jacobi lift of « such that {(1) =0 and D,{(1) =z
Let 7 be the Jacobi lift as in Theorem 3.1. Then

(Texp,(v)w, z) = (n(1), Dul(1)) = (Du(1), {(1)) + C = C,
where C is the constant of Lemma 3.4. We compute C to be

C = —{D,m(0), LO)) = —{w, L(0)).
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Let rev(a) be the reverse curve, so that rev(a)(t) = a(l — t), and let ¢ be
the unique Jacobi lift of rev(a) such that

£0)=0 and Dy, E(0) = z.

Then in fact &(¢) ={(1 —¢), and applying Theorem 3.1 concludes the
proof.

Seminegative curvature

We apply the above results to the case of seminegative curvature. The
next proposition gives us a criterion for the kernel of the differential of the
exponential to be trivial, and we use Jacobi lifts in the proof.

Theorem 3.6. Let (X, g) be Riemannian. Assume (X, g) has semi-
negative curvature. Then for all xe X and v € Ty, v # 0, such that exp,
is defined on the segment [0, v] in Ty, we have

| Texp (o)wll, 2 lwll,  forall we T, X.

In particular,
Ker Texp,(v) = 0.

Proof. Let n,, be the Jacobi lift as in Proposition 3.1, so that

Texpy(v)w = 7,,(1).

The asserted inequality is then a special case of the inequality found in
Proposition 2.6. This inequality implies that Ker Texp,(v) =0, which
concludes the proof.

Observe that the estimate on the differential of the exponential states
that the inverse Texpx(v)'l is bounded by 1, as a continuous linear map.
Of course, so far, this inverse is defined only on the image of Texp,(v).
In the finite dimensional case, invertibility is immediate. In the infinite
dimensional case, it is in McAlpin’s thesis [McA 65], as follows.

Theorem 3.7 (McAlpin [McA 65]). Let (X,g) be a Riemannian—
Hilbertian manifold with seminegative curvature, and let x € X. Assume
that exp, is defined on all of T, (what we called geodesically complete at
x). Then for all ve Tx the map Texp,(v) is a topological linear iso-
morphism, and in particular, exp, is a local isomorphism.
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and by Theorem 3.6 this inverse satisfies
1Te(z)]l, <1

for all z € X, where the norm is that of a continuous linear map from T,X
to Ty X, with their structures of Hilbert spaces due to g. The inequality
of the corollary is then immediate from the definition of the length of curves.

Corollary 3.11. Suppose that (X, 9) is a Cartan-Hadamard manifold.
Then any two points can be Joined by a unique geodesic whose length is
the g-distance between the two points.

Proof. Immediate from Corollary 3.10, because if x, y are the two
points, then y = exp,(v) for some ve T, X , and the geodesic o such that

(t) = exp,(t) joins the two points, is unique by the Hadamard-Cartan
theorem, and has length [[ofl,.

Remark 1. The above corollary is of course mostly subsumed in the
finite dimensional case by the Hopf-Rinow theorem, but it was noticed in
the Hilbert case in McAlpin’s thesis [McA 65]. Furthermore, McAlpin
observed that one can define on the ball B(2/c) with ¢ > 0 of a Hilbert
space E a bounded seminegative metric, as in the finite dimensional case,
namely for x € B(2/c) and v, w e E we let

4(v, w)
T

Then the ball has curvature —c2. Note that for constant curvature K one

h
o R(v, w)z = K ((z, wyv — (z, v)w).

(v, w), =

Similarly one shows that the sphere has constant positive curvature.
Standard proofs that the only simply connected manifolds with constant
Curvature are all of E, a sphere of finite radius for positive curvature, and
the above example for negative curvature, work in the Hilbert case, and
will be given below.

Remark 2. Proposition 3.2 can be interpreted as implying that the
geodesics which come from rays starting at the origin in the tangent space
are orthogonal to the g-spheres in X. Of course it may happen that the
exponential map is not an injective map of T into X (as on the circle or
2-sphere), so the orthogonality interpretation holds only when it makes
sense. In the particular case of seminegative curvature and completeness
of the Cartan~-Hadamard theorem, the interpretation is valid everywhere.
Note that Proposition 3.2 in the case of seminegative curvature is also a
special case of the “local”” result on orthogonality, Theorem 5.6 of Chapter
VIII, because we have a global chart coming from the Cartan—Hadamard
theorem, and the previous arguments are valid for this chart.
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We now work out as examples the cases of constant curvature.

Theorem 3.12. Let X be Riemannian complete, simply connected. Let
xo e X.

(@) If R=0, ie if X has 0 curvature, then the exponential map

€XPy,: Ty X — X
Is an isometry.
(b) Suppose the curvature is constant, equal to —1. Let Y also be
Riemannian complete, simply connected, and let y,e Y. Let
L: ToX — T, Y be a linear isometry, and let f: X — Y be
defined by

S =exp, oLo exp;o1

so fis a differential isomorphism according to Theorem 3.8. Then f
is an isometry. In other words, up to an isometry, there is only one
complete Riemannian manifold with given constant negative curva-
ture modeled on a given Hilbert space ( finite dimensional or not).

Proof. For (a), we use Theorem 3.1 and Proposition 2.10 which shows
that the exponential map amounts to parallel translation, so is an iso-
metry. For (b), we argue in a similar way, but a bit more complicated.
We have to show that for each x e T, X the map

Tf(x): TXX——) Tf(x)Y

is a linear isometry. Since Texp, (0) = 1id, it follows that Tf(xo) = L, so
Tf(xo) is a linear isometry. Assume x # xo. Let x = exp, (rv) with some
unit vector ve T, X and r > 0. Let #*) denote the map which to each
we Ty, X associates the Jacobi lift #,, of Theorem 3.1. Then

Tf(x) = Texp, (L(rv)) o Lo Texp,, (o)™
= Texp, (rL(v)) o Lo Texp,, (rv)™

1 1 !
— 0w e Lo (190)

r

The map Texp, (rv): Tx, X — T,X is a linear isomorphism. To show that
Tf(x) preserves norms is equivalent to showing that

| Tf(x) o Texp,, (ro)w|| = || Texp,, (ro)w]| forall we T, X.

But we have ‘

| Tf(x) o Texp,, (ro)wl = || Texp,, (rL(v)) L(w)|| forallwe T, X.
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We may now use Proposition 2.11 and Theorem 3.1 which describe Texp
in terms of its components in the v-direction and a direction orthogonal
to v, and parallel translation. Since in Proposition 2.11 the respective
coefficients 1 and (sinh r)/r are the same whether we take Texp, (rv) or
Texp,, (rL(v)) because L is an isometry, preserving orthogonality and
changing unit vectors to unit vectors, it follows that in the notation of
Proposition 2.11,

sinh r\?
ITexpy (ol = 6 + (2] = | Texp,, (L) Lo

thus proving (b), and concluding the proof of the theorem.
We also have the following variation in the case of positive curvature.

Theorem 3.13. Let X be Riemannian, complete, simply connected, with
sectional curvature +1. Then X is isometric to the ordinary sphere of the
same dimension in Hilbert space.

Proof. The proof is similar, except that one cannot deal with the
exponential defined on the whole tangent space 7,,X. For convenience,
we let X be the unit sphere in Hilbert space of a given dimension, and we
let Y be Riemannian, complete simply connected with sectional curvature
+1. We can then define the map f on the open ball of radius #. The same
argument as before, replacing sinh r by sin r, shows that f is a local
isometry. We then pick another point x| # +x. We let

Tf(xl) = L1: Tx1X i Tf(xl) Y.

Just as we defined f = f, from x;, we can define f = f, from x.
Then f'and f, coincide on the intersection of their domain, and thus define
a local isometry X — Y. By Theorem 6.9 of Chapter VIII, this local
isometry is a covering map, and since Y is assumed simply connected it
follows that f is a differential isomorphism, and hence a global isometry,
thus proving the theorem.

Remark. The above theorems may be viewed as fitting a special case of
a theorem of Cartan, ¢f. [BGM 71], Proposition E.IIL2.

IX, §4. CONVEXITY THEOREMS

We begin with a formula for the variation of geodesics, and apply it to get
a convexity theorem.
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Let o =a(s, {) be a variation of geodesics a: [a, b)) — X in a Rie-
mannian manifold, so a,(s) = o(s, £). The geodesics a, are not necessarily
parametrized by arc length. We let

() = L)

be the length, and we put

b
h(s, t) = ||81a(s, D), so that flt) = J h(s, t) ds.
For simplicity, we omit the subscript g and write ||01a(s, #)||. We can
differentiate under the integral sign, so that

b
()= %L(cx,) = J d2h(s, 1) ds,

2 b
7= %L(a,) = J 32h(s, 1) ds.

a

Hence to determine f”(¢) it suffices to determine ;4 and 03h. Having
assumed that every o, is a geodesic simplifies the computation. We note
that

h= (0, d10),%.

Theorem 4.1. We have

(1) Orh = m(mala, 010),;
) oh = —1—3 ((D2816)*(810)* — (D2810,810)])
010l

1
+ ———R,(b0, 010).
o] X202 019)

Proof. The first formula comes directly from the definition of the
metric (Levi-Civita) derivative. The second is obtained at once by using
the rule for the derivative of a product, and setting

D33,6 = Ry(6,0, 610)0,0,

which is the Jacobi equation satisfied by the variation of geodesics. Then
we take the scalar product with d,0 to obtain the term on the far right,
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with the Riemann tensor
Rz(azd, 610’) = <R((320‘, 610‘)620’, 610’>g.
This concludes the proof. It is essentially the same as Lemma 2.5.

Theorem 4.2. Let X be a Riemannian manifold, and let ¢ = o(s, t) be a
variation of geodesics {o,}. Let u be the (varying) unit vector tangent to
these geodesics, namely

u=dia/loroll,.
Let V be the orthogonalization

V= Dz@lo' - <D2810', u)gu.
Then
7’ = (D2610)" = (Dyér0, u); 2 0,

and for the length £(t) = L(x,), we have

b
’ |
/(1) = J Ty 7+ Ra@10:, 220)) s, 1) .

Proof. Immediate from Lemma 4.1 and the definitions.

Remark. From the expression for #”, we see that usually one has the
strict convexity ¢’ > 0. This occurs for instance if R, is strictly positive,
or if #2 is strictly positive. If there is some value of ¢ such that (s, t)2 =0
for all s, then D,0;0 is proportional to u at this value of .

In Chapter X, §1 we won’t assume that each o, is a geodesic, but we
will be interested in another aspect, namely the special value at 7 = 0, that
is £"(0), so we shall carry out the computation in that context.

We define a Hadamard, or Cartan~Hadamard manifold to be a com-
plete Riemannian manifold, simply connected, with seminegative curva-
ture. We formulate the next two theorems locally on a convex set in a
manifold with seminegative curvature. They apply globally as a special
case to Cartan—-Hadamard manifolds, where we can use Corollary 3.11.

Theorem 4.3. Let X be a Riemannian manifold with seminegative
curvature (Ry 2 0), and U a convex open set. Let B, B, be disjoint
geodesics in U, defined on the same interval. Let o,: |a, b] — U be the
geodesic joining f,(t) with B,(t), and let £(¢) = L(«,). Then £”(t) 2 0 for
all t.
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Proof. Immediate from Theorem 4.2 and the hypothesis that Ry = 0.

For estimates of /(z), see [BuK 81], 6.6.

Next we consider the special case when f; is constant, i.c. we measure
the distance between a given point and the points on a geodesic which
does not contain the given point. We obtain a strict convexity result as

follows.

Theorem 4.4. Let X have seminegative curvature. Let U be a convex
open subset. Let y be a geodesic in U not containing a point x € U. For
each t at which vy is defined, let o,: [0, 1) — U be the geodesic joining x
with y(t). Let £(t) = L(o;). Then ¢"(t) >0 for all t. In particular, on
an interval (11, t;] where y is defined, the maximum of L(«) for t € [t1, 1]
occurs only at the end points, with t =1 or { = .

Proof. The picture is as follows. We suppose there is a point ¢ such
that ¢"(c) = 0.

As in Theorem 4.2, let o(s, £) = a,(s), put a(s) = a(s, ¢) and let
7(s) = d20(s, c),

so 7 is a Jacobi lift of «. From the integral expression for ¢ "(c), using the
variation formula (2), we conclude from the Schwarz inequality that D,d;0
is proportional to ;0 at t=c. Using the standard fact D;0y = D10,
(Chapter VIII, Lemma 5.3), we conclude that D,# is proportional to o,
i.e. there exists a function ¢ such that

Dy0ya(s, ¢) = ¢(s)010(s, c), thatis Dy = ga'.

We finish the proof using an argument shown to me by Quian. By
Proposition 2.3, we can orthogonalize

77=¢°<’+57

where & is a lift of « orthogonal to o', and y is some function. 'By
Proposition 2.4, we have also an orthogonal decomposition after applying

D,:, that is L
Dalﬂ = lp o + Da/é.

IX, §4] CONVEXITY THEOREMS 259

Since D,# has been shown to be proportional to «’, we conclude that
Dy:& = 0. Since #(0) = 0 it follows that ¢(0) = 0, and & being a Jacobi lift,
it follows that ¢ =0, because a Jacobi lift is determined by initial con-
ditions at a given point. Thus finally we obtain

n(l) = y(Da'(1), that is Y (c) = d20(1, ¢) = y(1)a’'(1).

This means that the geodesic y is tangent to the geodesic « at the point
7(c), and hence these two geodesics coincide since a geodesic is determined
by its initial conditions at a given point. However, we assumed that x
does not lie on y, so we get a contradiction which concludes the proof.

Corollary 4.5. Let X be a Cartan—Hadamard manifold. Then every ball
in X is convex.

Proof. Let x be the center of the ball, and let x;, x; be points in the
ball. If x lies on the geodesic between xo and x; then the Cartan—
Hadamard theorem shows that this geodesic is the ray passing through
the origin of the ball, so lies in the ball. If not, then we can apply
Theorem 4.4.

Note. Concerning Theorem 4.4, readers may find it instructive to
compare the version here with Lemma 5.15 in [ChE 75].

We shall complement the convexity theorem by a geometric description
of the first derivative of the length. The statement is quite general.

Theorem 4.6. Let X be a Riemannian manifold and let x € X. Let U be
a convex open set in X such that

exp,: V—U

is an isomorphism of some convex open set V in Ty containing 0Oy, with
U. Let y be a curve in U not containing x, and let o, be the geodesic
segment from x to y(t). Let 0(t) be the angle between y and a;. Let the
length of o, be

(1) = L(ay).
Then ¢'(2) = ||y'(1)] cos 0(r).

In particular, if ty is such that £(ty) is a local minimum and y'(t) # 0,
then a;, is perpendicular to y at y(t).

Proof. Let us first prove the result in euclidean space. Let ¢t — v(¢) be a
curve in a euclidean space, and let F(r) = ||v(¢)||, with the euclidean norm
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denoted by the double bar. Then

ot + Ml = vl _ |, 1

= Jm T (lote+ )1 = o)1)

lim
h—0+ h

_ 1 — ()2 B) — o(2)|| cos ©,)
—‘hl—l+r(l)’l+2HU(t)||h (|lU(t+h) U(t)” +2HU(Z‘)|| ||U(t+ ) v

where ©, is the euclidean angle from the law of cosines; namely for a
euclidean triangle with sides a, b, ¢ one has

c* = d® + b* + 2ab cos ©®
where © is the angle opposite the side c. But

ot + k) — o(0)||* = O(h?)  for h—0,
SO

Fl(f) — hli)%l+ “U(t + h)l}[ - ”U(I)“ — HU’([)“ cos 0.

This proves the formula in the euclidean case. ‘
For the general case, let r~— v(f) be a curve in V such that

exp, v(f) = y(f). Let
o,(s) = expy (sv(1)), 0<s<,
so that a, is the geodesic between x and y(t) = «(1). Then
al(1) = Texp, (v())v(r) and  y'(1) = Texp, (v(1))0'(1).-
By the global Gauss lemma, Proposition 3.2, we have
(o (1), ¥'(0)g = (0(0), 0" (D) gy
where the scalar product on the left is taken in the tangent space at y(1),

and the scalar product on the right is taken in the tangent space at x. By
definition of the usual formula for scalar products, we obtain

o (D), 117 ()l cos 8(r) = (@)l 1" (D)l cos O

We have ||;(1)]|, = [lo(£)ll, because exp, preserves distance along rays.

Thus we obtain the relation

3) 1" (£)]]4 cos 6() = [0 ()]l cos O
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We apply this to show that ¢/ = F', namely

£'(t) = tim U =40

Pt A (¢(t+h)? = ()%

o
= 2o
= F(t) = /(90 05 ©,

because /() = L(a,) = ||o()]| g(x)» @nd we can apply the euclidean result.
This proves the theorem. The proof more or less follows that of Helgason,
[He 78], Chapter I, Lemma 13.6, but the theorem is valid in greater
generality than stated by Helgason.

Remarks. If the curve y is parametrized by arc length, then the factor
[y'(#)]] disappears from the formula, and we simply get

¢'(t) = cos O(1).

Note that the theorem applies globally to a Cartan—Hadamard manifold,
but curvature considerations were not necessary for the formula to be
true. However, the next theorem provides seminegative conditions under
which Theorem 4.6 can be applied.

Corollary 4.7. Let X be a Cartan-Hadamard manifold. Let x € X and
let y be a geodesic which does not contain x. Then the distance d (x, y(t))
has a unique minimum for some value ty. The geodesic from x to y(t) is
perpendicular to y at y(t).

Proof. That the distance has a minimum comes from the fact that the
geodesic distance goes to infinity as  — +oo. Because the line is locally
compact, there is some minimum, and the convexity Theorem 4.4 shows
that this is the only minimum, with the distance being strictly decreasing
for 1 <ty and strictly increasing for ¢ > ;. Theorem 4.6 concludes the
proof.

Since two distinct points in a Cartan-Hadamard space are joined by a
unique geodesic, it follows that two distinct geodesics can intersect in only
one point.

Next we give an application of the metric increasing property as in
Helgason [He 78], Chapter I, Corollary 13.2.

Theorem 4.8. Let X be a Cartan—Hadamard manifold. Let ABC be a
geodesic triangle whose angles are A, B, C and whose sides are geodesics
of lengths a, b, and c¢. Then:

(i) a®>+b*<c?+2abcos C;
(i) A+B+CZn.
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Proof. Let x be the vertex of angle C. Let exp,(v) and exp,(w) with v,
we T, be the vertices with angles 4, B respectively. Then the geodesic
sides of angle C are a, f§ respectively, with

a(s) = exp,(sv)  and  f(s) = exp,(sw),

and 0 £ s < 1. The picture is as follows.

a = eXp,

(8]
OI b w

We let ® and 0 be the angles as shown, and cos § = cos C by definition.
Actually, we have

4) cos § = cos O.

Indeed,
<O(/(0), ﬁ/(0)>g = <T€pr(0)l), Texpx(o)w>g(x) = <U, W>g(x)'

The left side is equal to [[a’(0)],[8'(0), cos 6, and the right side is equal
to ||v|l,/wl, cos ®. Trivially «’(0) = v and B'(0) = w, so (4) follows. So
far, we have not used seminegative curvature. It comes next.

We have a? + b2 = dist(v, w)* + 2ab cos ©. By the distance increasing
property of the exponential map, the inequality (i) follows.

As for (ii), since each geodesic side of the geodesic triangle has length at
most equal to the sum of the other two sides, it follows that there exists a
euclidean triangle with sides of lengths a, b, ¢. Let ®¢ be the angle of this
euclidean triangle corresponding to C. Then

a® + b* = ¢® + 2ab cos Oc.

By (i) it follows that cos C = cos @¢, and hence ®¢ = C. Similarly,
®42 A4 and ®p = B. But

O4+0p+0c=m.
This proves (ii) and concludes the proof of the theorem.

The moral lesson of the above results is that Cartan—Hadamard
manifolds behave like, or better than, ordinary euclidean space.
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IX, §56. TAYLOR EXPANSIONS

We shall deal systematically with the Taylor expansion of various curves.
We consider a curve in X, say of class C?, not necessarily a geodesic,

o J — X,

and we assume 0 € J, so 0 is an origin. We suppose given a spray on TX,
giving rise to the covariant derivative. For w e T, X we let

yi e (e, w)

be the unique a-parallel curve with initial condition (0, w) =w. Recall
that «-parallel means D,y =0. We denote parallel translation by

Pt = P; = P(t)ya: Ta(o)X - Ta(t)X
Then P! is topological linear isomorphism, as we saw in Chapter VIII, §3.

Proposition 5.1. Let n: J — TX be a lift of « in TX. Then
m . tk 1
n(t) = Pt;Da,n(O)E+ o™y  fort—0;

or alternatively,

m

k
n(t) = ;y(h Dn(0)) % + o™ fort—0.

Proof. The second expression is merely a reformulation of the first,
taking into account the definition of parallel translation. Since ¢ — 0, the
formula is local, and we may prove it in a chart, so we use #, y to denote
the vector components 7, yy in a chart U, suppressing the index U. Let

m k
By = () = 3" 9(t, Dhn(0) 7.

k=0

From the existence and uniqueness of the ordinary Taylor formula, it will
suffice to prove that for the ordinary derivatives of f, we have
*B(0) =p¥(0)=0 for k=0,...,m

By definition, note that B(0) =0. Let wy = DXB(0). Since D,y =0,
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we have
k=i

nr

Di/ﬂ() Dj/’? (1) - é: (T, wi) =

Therefore
D,,B(0) = D;n(0) — (0, w;)

We now need a lemma. We let E be the Banach space on which X is
modeled.

Lemma 5.2. Let f: J — E be the vector component of a lift of a. If
D!,B(0) =0 for 0 < j<m then ¢’f(0)=0 for 0 < j<m.

Proof. By definition,
Dyf =p"— Bla; o, B).
Hence D, f(0) = $'(0). We can proceed by induction. Let us carry out

the case of the second derivative so the reader sees what’s going on.
Hence suppose in addition that D2,(0) = 0. From the definitions, we get

D.p=p"~[01B(a; o, B’ + Blo; o, B) + Bla; o', f)]
— B(a; o', ' — B(a; o', B)).
Since B(0) = B'(0) = D,B(0) = 0 we find that
0 = D2 B(0) = §(0),

thus proving the assertion for m = 2. The inductive proof is the same in
general.

We apply the above considerations to Jacobi lifts.

Proposition 5.3. Suppose that o is a geodesic. Let w € Ty X and let 1,
be the Jacobi lift of o such that n,(0) =0 and Dyn,(0) =w. Then

3
M) = P! {wi+ R(@(0), w, '(0) 5| + O().

Proof. We plug in Proposition 5.1. Since D2p,, = R(«', n,,, ') con-
tains #,, linearly, the evaluation of the second term of the Taylor expan-

R LR
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sion at 0 is 0. As for the third term, we have to use the chain rule. To be
sure we don’t forget anything, we should write more precisely

R, 1, @) = R(o; o, 1, ')
to make explicit the dependence on the extra position variable. But it
turns out that it does not matter in the end, because no matter what, the
chain rule gives
D2y, = R(a, Dy, o') + terms containing #,, linearly,
so D2n,(0) = R(a’(0), w, «’(0)), which proves the proposition.
From Proposition 5.3, we get information on the pull back of the
metric g of a pseudo Riemannian manifold, to the tangent space at a given

point.

Proposition 5.4. Let (X, g) be a pseudo Riemannian manifold, and let
xeX, Fixv, we T, X. Then

exp: (1) (g)(w, w) = w2 + 1 Ra(v, w2 + O(3)  for t = 0.
where we recall that Ry(v, w) = R(v, w, v, w).

Proof. From the theory of Jacobi lifts, applied to a(f) = exp,(tv), we
have the formula

Tna(0) = Texp, (t0)w.

Therefore modulo functions which are O(f%) for ¢+ — 0, we get from
Proposition 5.3

exp; (9)(tv)(w, w)

LI >
" o)

2

( |
<P’ [W+R v, W, v);!] P! [w—i—R(v, W, v )ﬂ >g(a(t>)
(

2 )
w+ R(v, w, v) w+ R(v, w, ) —
3! g(x)

]

31
2

=w +2R2(u w)3',

which proves the proposition.
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The preceding proposition gives us the Taylor expansion of the

mapping
f(v) =expr(g)(v) for ve T, X

along rays through the origin. Observe that

2
f1 ToX — L (T:X)
is a map of the self-dual Banach space 7.X to the space of symmetric
bilinear forms on 7,X (actually the open subset of non-singular forms).
The map f has a Taylor expansion

(+) @)= f0)+ f1(t) + f2(v) + O(p]’)  for [o] >0,

where v — |v| is a Banach norm on T, and where f, and f, are homo-
geneous of degree 1 and 2 respectively. Since the homogeneous terms in
the Taylor expansion are uniquely determined by f, and since we com-
puted their restrictions to rays through the origin in Proposition 5.4, we
now obtain:

Theorem 5.5. Let (X, g) be a pseudo Riemannian manifold. Let xe X.
Forve T, X let q(v) e Lszym(TxX) be the symmetric bilinear function such
that

1
q(U)(WI, w2) :gRX(U, w1, U, WZ)-

Let the metric g be viewed as a tensor in Lszym(TX), and let f be the pull
back of the metric g in a star shaped neighborhood of 0y in T, X where
the exponential map is defined. Then

f(©) = g(x) +4(v) + O(el*)  for [o| = 0.

gt BN v

e

CHAPTER X

Jacobi Lifts and Tensorial
Splitting of the Double
Tangent Bundle

Chapter IX dealt with two related main topics, involving estimates for
the exponential maps via Jacobi lifts, and the Cartan-Hadamard theorem
concerning seminegative curvature. The present chapter goes somewhat
deeper into both topics. In addition, it is instructive to treat systematically
the splitting of the double tangent bundle. A special case is treated ad hoc
in the extension of the Cartan—Hadamard theorem to the normal bundle
of a totally geodesic submanifold in §2, but it is worth while understanding
the fuller structure in general.

Logically, the rest of the book does not depend on this chapter, which
may therefore be omitted by readers interested in the other subsequent
topics. In Chapter XI, we return to manifolds with seminegative curvature
in another context. Chapter XII gives a prototype example for Cartan—
Hadamard manifolds. Thus Chapters IX through XII provide a much
more systematic account of seminegative curvature than is usually found in
differential geometry texts.

X, §1. CONVEXITY OF JACOBI LIFTS

This section complements §2 of Chapter IX. We investigate the convexity
of Jacobi lifts. We compute the second derivative of the square, which turns
out to be semipositive or positive under the condition R; =0 (semi-
negative curvature). This section and the next are based on notes of Wu,
leading up to an extension of the Cartan-Hadamard theorem. I am much
indebted to Wu for his notes and explanations. Cf. also the historical note
in §2.

267
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Lemma 1.1. Let (X, g) be a pseudo-Riemannian manifold and let o be a
geodesic. Let n be a Jacobi lift, and

Then
f/ = 2<D0('77’ ’7>g and f” = 2R2(0(/, ’7) + 2(D0<"7)2'

If X is Riemannian and R, = 0 (seminegative curvature), then f "= 0.

Proof. The first derivative comes from the defining property of the
Levi-Civita (metric) derivative along curves, as in Chapter VIII, Theorem
4.3. This same reference then also yields the second derivative

" =2Dm, n), + 2(Dun, Durp),
= 2(R(e, m)o', 1), + 2(Darm)’

by the Jacobi differential equation. This proves the formulas. The final
statement is then immediate, thus concluding the proof.

Theorem 1.2. Let X be a Riemannian manifold with R, 20 (semi-
negative curvature). Let o be a geodesic and n a Jacobi lift with n(0) =0
but D,n(0) #£0. Let

f(s) =n(s)*.
Then f(0)= f'(0) =0. Furthermore, we have convexity:
f(5)=0  foralls.

Thus f'(s) £0 for s <0 and f'(s) 2 0 for s > 0, with the corresponding
semi-decreasing and semi-increasing properties of f for s <0 and s 20
respectively.

Proof. Immediate from the definitions and assumption on R, taking
Lemma 1.1 into account.

Remark. The quantity Ry(o', &) + (Doué)2 with various lifts & of a will
come up repeatedly in Chapter XI, in several variational contexts. Lemma
1.1 and Theorem 1.2 perhaps give the simplest manifestation of the
phenomenon involved.

Next we consider the situation of Jacobi lifts which are not 0 at the
initial point, but whose covariant derivative may or may not be 0.
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We let o be a geodesic with initial value
a(0)=ye X, so that  a(s) = exp, (sa'(0)).
We let f be a geodesic with initial conditions
p0)=20) and P(0)=zeT,X,

so o and f start at the same point.
We let { be a lift of f in TX, with the same initial value as »’, that is

£(0) = a'(0).

With these data, we define the (-variation of « along 5, or also the (8, {)-
variation of « (at the beginning point) to be

o(s) = a(s, 1) = exppy sL(1).

This is trivially a variation through geodesics, and we have the initial
conditions

(1) %u(0) =p@),  o(0)=L(t) = 0100, 1).

We let 7 be the Jacobi lift of « coming from this variation, that is

(2) n(s) = d20(s, 0), so that 7(0) = z.

The variation and Jacobi lift are designed to investigate the growth of # as

in Proposition 2.6 of Chapter IX, rather than D,.#(0). As in Lemma 1.1,
we let

We shall find an expression for f' different from the one in Lemma 1.1.

Lemma 1.3. Let n be the Jacobi lift of o coming from its (B, {)-variation
at the beginning point. Let f =n?. Then

11(0) = 2(Dy)¢, 7(0)),-
Proof. Starting with the expression in Lemma 1.1, we get

1'(0)

I

2(Dyr0)1, 1) ,(0)
2{Dyoyn, n(0)),
2(Dy0y¢, 1(0)),.
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In this step, we need for the covariant derivatives of curves the analogue
of the formula for the covariant derivative of vector fields, with the
difference being formally equal to {7, {](0). Furthermore, from (1) and (2),
n and ( are obtained as the images under ¢ of the commuting vertical and
horizontal unit vector fields in the (s, #)-plane, so the bracket is equal to
0. We let the reader fill in the details of the above arguments, to conclude

the proof.

We end this section by specializing the situation somewhat with con-
ditions which arise for the application we have in mind in §2.

Let Y be a submanifold of a Riemannian manifold X. We define Y to
be totally geodesic if Y is closed, and if every geodesic in X with initial
conditions in (Y, TY) is contained in Y. It is a simple matter of
foundations, which will be taken care of systematically in Chapter XIV,
§1, especially Theorem 1.4, that a geodesic in Y is also a geodesic in X
The next proposition provides a tool corresponding to Chapter IX,
Proposition 2.6.

Proposition 1.4. Let X be a Riemannian manifold and let Y be a totally
geodesic submanifold. Let o be a geodesic in X, a(0) =y e Y. Let g be
the (B, {)-variation of « defined above. We suppose that f is a geodesic
in Y, so in particular, B'(0) =ze TyY. Let n be the corresponding

b

Jacobi lift of a, and let f =n?.
(i) If ¢ is orthogonal to Y, ie. its values are in NY, then f'(0) =0.

(ii) If in addition X has Ry = 0 (seminegative curvature), then f(s) is
weakly decreasing for s £ 0, weakly increasing for s =0, and

f(sy= f(0)  foralls,
so ||n(s)|| 2 ||n(0)|| for all s.

Proof. Since Y is totally geodesic, the second fundamental form
hi2(n,$)(0) =0 by Theorem 1.4 of Chapter XIV. Then combining
Theorem 1.5 of Chapter XIV and Lemma 1.3 which was just proved, we
obtain f'(0) = 0. The other assertions are immediate from the convexity
f"(0) 2 0 of Lemma 1.1. This concludes the proof.

Remarks. Proposition 1.4 will be used only in the next section. The
foundational material of Chapter XIV occurs in parallel to the consid-
erations of the present chapter, with intersection just at this single point.
Thus I decided in favor of the present organization, with a localized
appeal to Chapter XIV, which will not interfere with the general logical
development. Similarly, in the next section, we shall also appeal to
Chapter XIV for the fact that in a totally geodesic submanifold, parallel
translation is the same as in the ambient manifold.

i
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. Mpre convexity results will be given in §3, but I found it worthwhile to
give immediately an application of Proposition 1.4 in the next section.

X, §2. GLOBAL TUBULAR NEIGHBORHOOD OF A
TOTALLY GEODESIC SUBMANIFOLD

In Chapter IX, we dealt mostly with the exponential map defined on a
fixed tangent space T,.X. We shall now consider systematically the
exponential map on the tangent bundle, and some applications extending
the Cartan-Hadamard theorem. Like the preceding section, the exposition
is based on notes of Wu.

Let X be a Riemannian manifold. We recall that an open subset U of
X is said to be convex if between two points of X there is a unique
geodesic of X lying in U joining the two points, and the length of this
geodesic is the distance between the points. In particular, X itself is an
open set, in which case we may speak of X being convex. For example, a
Cartan-Hadamard manifold is convex by Corollary 3.11 of Chapter IX.
However, some of the formalism to be used is local, and it is appropriate
to formulate it as such, but this involves additional notation to describe
small neighborhoods of points.

We shall again deal with a totally geodesic submanifold ¥, and from
Chapter XIV, Theorem 1.4, we shall invoke that along geodesics in Y,
parallel translation with respect to Y is the same as with respect to X. In
particular, parallel translation in X between two points yo, y in Y maps
Ty, Y on T,Y. Since parallel translation preserves the scalar product, we
conclude that it induces a metric toplinear isomorphism

PY:N, Y —N,Y.

Let X be convex (so in general, we may be dealing with an open subset
of an arbitrary Riemannian manifold). Ler Y be a totally geodesic sub-
manifold. 1f X is complete then we may compose the exponential map
with parallel translation, and for given y,, we may define the mapping

E=E,:YxN, Y- X
by the formula

E(y,v) =exp, P} (v) forveN,,Y.

If X is not .complete, then we may fix v, and let y lie in some open set
where exp, is defined at P) (v). Then E is defined on a product

E:UxV—-X,

where U is a neighborhood of some point y, and ve V.
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Lemma 2.1. Let B be a geodesic in Y with f(0) =y and p'(0) = z. For
veN, Y, let B,(1)=(B(t),v). Let

(Dv(l) = E(ﬁv(t)) = expﬁ(!) ngt)(v)
Then
¢,(0) = TE(y, v)(z, 0).
Proof. This is just the chain rule.

We let y, yo be two points of X, and ve N, Y. We let o be the
geodesic with initial conditions

2(0)=y and  «'(0) =P} (v);
so that
a(s) = exp, sPj (v).

0

We shall now associate a (f, {)-variation of « at its beginning point. Let §
be a geodesic in Y, with initial conditions

(1) BO)=a(0) and  F(0) =z

so o and f§ start at the same point. Let

(2) {r)=PP(v) sothat  {(0)=2'(0),
and

3) as, 1) = expy sC(1).

This (B, {)-variation of « will be called the parallel variation of « along
depending on (yo, ¥).

Proposition 2.2. Let X be convex and let Y be a totally geodesic
submanifold. Let yo, ye Y. Letve N, Y. Let B, { be the curves c.z'eﬁned
in (1) and (2) above, and let n be the Jacobi lift associated with the

variation o defined in (3). Then
n0y=z and  n(l)=TE(y, v)(z, 0).
Proof. Putting s =0 in the definition of o, we obtain
(0, 1) = expg (0) = B(2),

so the value 7(0) = z drops out. For z(1), we just apply Lemma 2.1 to
conclude the proof.

Next we start global considerations.

R
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Theorem 2.3. Let X be a convex complete Riemannian manifold, and let
Y be a totally geodesic submanifold. Then Y is also convex complete.
Let yoe Y and let

Py Y xN, Y - NY
be the map such that for each ye Y and ve N, Y we have
Py (¥, v) = P (v).
Then Py, is a vector bundle isomorphism, trivializing the normal bundle.

Proof. This simply amount to the fact that flows of differential
equations depend smoothly on parameters, and that parallel translation is
invertible by parallel translation along the reverse geodesic.

Given a chart U of Y at yy, it follows that U x T, is a chart at the
corresponding point in NY. Of course, Y itself admits a global chart,
given for instance by its own exponential mapping at y,. So once the
point yy is selected, there is a canonical way of constructing a global chart
for the normal bundle. The next application will be global.

We shall always take ¥ x N, Y with its Riemannian product structure.
Thus Y has the Riemann metric restricted from X, and N,, has its positive
definite scalar product restricted from T}, X, so the “constant” Riemann
metric is on the fiber. At each point, the product has the Hilbert space
product metric satisfying the Pythagoras theorem.

Theorem 2.4 (Wu). Let X be a Cartan—Hadamard manifold. Let Y be a
totally geodesic submanifold. Fix a point yoe Y. Let

E:YxN,Y > X

be defined by E(y, v) = exp, P}, (v) for ve N, Y. Then E is metric semi-
increasing.

Proof. For zeT,Y and v, we N,,Y we have to show that
ITE(y, v)(z, w)|| 2 |l(z, w)||.
The product Hilbert space metric by definition gives
2
Gz, wI* = 1z, 0117 + 110, w)I[* = [l211* + [Iwil*.
The Gauss Lemma 5.6 of Chapter VIII, §5 implies that

ITE(y, v)(z, w)|I* = [ITE(y, v)(z, 0)|> + | TE(», v)(0, w)||*.
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Hence we need only prove separately that

ITE(p, v)(z, 0)Il Z II(z, O)II = liz]|

e ITE(y, v)(0, Wl Z 10, w)[| = [|wll.

The second inequality is simply the metric semi-increasing property of
Chapter IX, Theorem 3.6. As to the first inequality, we may now quote
Proposition 1.4 (ii) and Lemma 2.1 to conclude the proof.

We arrive at the extension of the Cartan-Hadamard theorem, what we
shall call the global tubular neighborhood property.

Theorem 2.5. Let X be a Cartan—Hadamard manifold and let Y be a
totally geodesic submanifold. Let NY = NxY be the normal bundle over

Y. Let
eXpNY: NY — X

be the restriction of the exponential map to the normal bzfndle, so we cqll
expyy the tubular neighborhood map. Then expyy is @ differential
isomorphism, so that Y admits a global tubular neighborhood.

Proof. Fix a point y; € Y. Parallel translation Py, gives a differential
isomorphism from Y x Ny, to NY be Theorem 2.3, gnd we transport thp
product Riemannian metric to NY via this isomorphism. Then eXpyy 18
metric semi-increasing. By Theorem 6.9 of Chapter VIIL it .suﬁ"m':s to
prove that expyy is a local Cl-isomorphism. In the finite dimensional
case, we are done, just as for the ordinary Cartan—Ha.damard theorem. In
the infinite dimensional case, we have to argue a bit Ionger..

We now let v denote an element of NY, say ve N, Y, and. it suffices to
prove that Texpyy(v) is invertible, by the inverse mapping theorem.
Suppose Texpyy(v) is not invertible. Let r > 0 be tl}e smallest value such
that Texpyy(rv) is not invertible. Such a valge exists be‘.:ause eXpyy 18
locally invertible at each point of the zero section, this being the tubular

neighborhood theorem. Let
L(s) = Texpyy(sv) for O0=s=<r.
Then {L(s)} is a family of bounded operators
L(s): E(s) — F(s),

where {E(s)}, {F(s)} are the families of tangent Banach spaces varying
continuously. One has the following trivial lemma.
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Lemma 2.6. Let E, F be Banach spaces. Let {A()} OLs<r) be a
continuous family of bounded operators, such that A(s):E —F is
invertible for 0 < s <r, and there is a uniform lower bound ¢ > 0 such
that
|[A(s)| =2 ¢ for 0ss<r
Then lim,_, A(s)™" exists and is a bounded operator inverse of A(r).
Proof. We write
A(s) =AY = AT A ~ A(s))A(s) 7

Taking the norm, we see that the family {4(s)"'} is Cauchy, so has a
limit, which is the desired inverse by continuity.

Now using charts, there are fixed Banach spaces E and F such that E(s)
and F(s) are isomorphic to E and F respectively, by invertible operators
varying continuously. Theorem 2.5 shows that there is a lower bound
|L(s)| Z ¢ >0 independently of s for 0 <5 <r. The operator L(s) cor-
responds to an operator A(s): E — F in the charts, and we can apply the
lemma to the family {A4(s)}, to yield an invertible limit operator A(r)7L
Going back to the family L(s) concludes the proof.

Example. See Theorem 3.7 of Chapter XII and subsequent comments.

Historical note. A statement equivalent to the map expyy being a
bijection is given by Helgason [He 78], Chapter I, Theorem 14.6, in the
finite dimensional case. Helgason does not mention the normal bundle, and
does not deal with the further item that the map is a local isomorphism.
Helgason saw his theorem “as a generalization of a decomposition theorem
due to Mostow for a semisimple Lie group”, see p. 96 and his Theorem
1.4 of Chapter VI, as well as the historical comment, p. 279, referring to
Mostow [Mo 53]. The differential structure is missing in his and Mostow’s
statements, as when they make the decomposition only “topologically”.
This can be traced back to the way Theorem 14.6 of Chapter I was stated
and proved. A result in this direction, in the context of semisimple Lie
groups and symmetric spaces is given by Loos (Lo 69], pp. 160-161, with
the differentiability property.

We see the fact that expyy is a differential isomorphism as a gen-
eralization of the tubular neighborhood theorem to the global context of
Cartan-Hadamard manifolds. When I wrote to Wu to suggest that
Theorem 2.5 should be valid, he wrote back: “A very good observation.
It will add fuel to your frustration with geometers, however, if 1 tell you
that it is well known, but nobody bothers to write it up. A student here in
the seventies asked me and I wrote it up for her, but of course I didn’t
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dare to publish it.” Wu and others also dealt only with the finite
dimensional case, where it suffices to show that Texpyy has trivial kernel
at each point to prove that expyy is a local differential isomorphism.
Wu’s argument went through with slight difference in wording in the
infinite dimensional case. However, as for the ordinary Cartan—Hadamard
theorem, an additional step has to be carried out. The step I have given
with the family of operators showing that the limit is invertible, replaces
Lemmas 3.4 and 3.5 of Chapter IX. When the submanifold Y is not just
a point, the situation of Chapter IX, Lemma 3.5 is not symmetric, and it
is not clear to me how to formulate a description of the adjoint of the
normal exponential map TE or Texpyy, i how to formulate the
analogue of McAlpin’s lemma.

For further comments, see the end of Chapter XI, §#4.

The next three sections expand the fundamental material on Jacobi lifts
and their convexity properties, as well as returning to the splitting of the
double tangent bundle alluded to in Chapter IV, §3. Readers interested in
seeing at once further considerations about Cartan-Hadamard spaces may
skip the rest of this chapter, and go directly to §1, §2, §3, and $4 of the
next chapter.

X, §3. MORE CONVEXITY AND COMPARISON RESULTS

I am much indebted to Karcher for explaining to me the material of the
present section. Cf. [Ka 89] for more material, especially p. 182.

We continue to let X be a Riemannian manifold, and n a Jacobi lift of a
curve in X. We don’t need a symbol for the projection 7y in X, and we
shall use the notation D, to denote the covariant derivative taken over
this projection, that is Dyt in full notation.

We consider the function

n*(s) _ f(s)

¢(S)= o2 = 2

instead of the function #? as in the previous section. We let J = (0, b) be
an interval on which n is defined and such that n(s) #0 for seJ. For
simplicity we omit the subscript g from the scalar product in the tangent
bundle.

We let

(1) ho(s) =§ and  h(s) :%"L”;’l(s).

We are interested in the growth properties of #, and so in the derivative ¢’.
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Lemma 3.1. Let the notation be as above, with o(s) = f(s)/s*. Then

() = 3n20) (h@)—é) 0 9005 =2(h<s>—§)

and

S L4 670s)

52 53 s
Proof. Ordinary differentiation.

.Ol’aserve that the middle term occurs with a minus sign, and that a
priori, we don’t know where it is positive or negative. Of course, the third
term is 20, and Proposition 1.4 gave some information on the hrst term.

One of our goals is Theorem 3.4. We reach it by some calculus. We
want growth properties of 4, so we shall compute 4’. The orthogonal-
1zation of D.n with respect to # will occur naturally, so we label it, and
define ’

n

Hy = = Dy — (D.p, 1) =

=

Then we define the orthogonal term

©_@a)' D)’ (D, n)

L, >
’72 ”2 ’72 (’72)2 = 0.
Lemma 3.2. Let o =nn. Then
D* 2 2 2
n " (n%)
2 R 1
- /”i_ + 2(:27 ’7) h2.

}?mt‘)f.‘ The ﬁ{st equation for 4’ is immediate from the definition of the
Levi-Civita metric derivative. The second comes from the definition of Ry

and the chobi equation for #, as well as the definition of the orthogonal
term. This concludes the proof.

Since the orthogonal term is >0, we see that we get inequalities

relating 4’ and A, depending on the sign of the term R, i.e. depending on
the curvature. In particular:

(3) If R, 20 then h =-—h.
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In [Ka 89], Karcher views Lemma 3.2 as establishing a Ricatti equation
for h. From such an equation, one obtains an inequality as follows.

Lemma 3.3. Let hy, h be a pair of functions on some interval, satisfying

B, <—h*  and K z-h.

A

Then
((hy — el Y < o,

So if hi(s1) = h(s1) for some s| in the interval, then
hi(s) Z h(s)  for s=s1.

Proof. First note that a constant of integration added to the indefinite
integral in the inequality would not affect the truth of the inequality.
Next, routine differentiation yields

((h — h)ef(’“”‘))’ (B —H R p2yel

The exponential term on the right is > 0, and its coefficient is =0 by
hypothesis, thus concluding the proof of the first inequality. It follows that
the function (hy — k) exp( (A1 +h)) is semi-decreasing. If hi(s1) 2 h(s1)
at some point s1, then this function is = 0 for s < s;, thus concluding the

proof.
Let # be the function defined in (1), and suppose #(0) = 0. Then
h{s) — ass — 0,

as one sees immediately from the Taylor expansion of the covariant
derivative. We are now ready for the main result of this section.

Theorem 3.4. Let X be a Riemannian manifold and n the Jacobi lift
of a curve in X. Assume n(0) =0 bur D.y(0) #0. Suppose R, =0
(seminegative curvature). Let h be as in (1), defined on an interval
J = (0, b) such that n(s) #0 for seJ. Then

é Zhis) forseld.
In other words, the function ¢(s) = n?(s)/s* is semi-increasing on J.

Proof. Suppose ho(s1) > h(sy) for some s; € J. Then for some J > 0,

ho(s1 +6) = h{s1).

X, §4] SPLITTING OF THE DOUBLE TANGENT BUNDLE 279

Let hi(s) =1/(s+0). Then hj=—hf and hi(s;) Z h(s1). We apply
Lemma 33 and let s—0 (so s<s;). Then hi(s) is bounded, but
h(s) — o, a contradiction which proves the inequality 1/s < h(s). By
Lemma 3.1 we conclude that ¢(s) is semi-increasing. This proves the
theorem.

Remmk. The semi-increasing property of #%(s)/s* gives a refinement of
Proposition 2.6 in Chapter IX. Furthermore, Karcher mentions in [Ka 89]
th?lt the case of R, <0 (positive curvature) can also be reduced to a
Blcattl equation, but unfortunately he did not provide the details, which
1nyolve a formula with the second fundamental form. This item, together
with many others, would form a continuation of the present chapter in
ano_tl}er book. (This is not a threat.) Keeping the comparison estimate to
positive or negative inequalities, the result is:

If Rz' <0, t(zen the function ¢(s) = n(s)/s* is semi-decreasing for s e J,
and in particular, ¢(s) £ w? (because ¢ can be extended to the value
9(0) = w? by continuity).

X, §4. SPLITTING OF THE DOUBLE TANGENT BUNDLE

We return to basics concerning covariant derivatives and sprays. In
Chapter IV, Propositions 3.3 and 3.4, we gave the transformation formula
in charts for the bilinear map associated with a spray, and we pointed out
thgt a local object satisfying this transformation formula comes from a
unique spray. Given such a local object, one can also define a covariant
derivative directly without going through the spray, by means of the
transformation formula, that is:

Proposition 4.1. Let X be a differential manifold modeled on a Banach
space E. Suppose that we are given a covering of X by open sets

corresponding to charts U,V,..., and for each U we are given a
morphism

By: U — Lfym(E, E)

satisfying the transformation rule of Chapter IV, Proposition 3.3. In
other words, for each change of chart by a differential isomorphism

h:U—V,
we have for v, w € E representing tangent vectors:

By (h(x); h'(x)v, K (x)w) = h"(x)(v, w) + h’(x)BU(x;‘ v, w).
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Then there exists a unique covariant derivative D such that in a chart U
for vector fields n, & we have

(Dem)y(x) = ny(x)éu(x) — Bu(x; Eu(x), ny(x)).

The proof is routine, just like Proposition 3.4 of Chapter IV.

If one takes a stronger definition of a covariant derivative to incor-
porate the existence of the bilinear map By in each chart U, then there is a
bijection between sprays and covariant derivatives. In the finite dimen-
sional case, Chapter IV, Theorem 2.4, we went through the argument
going backward without using the stronger definition, to connect with
the practice of many differential geometers. Others, like Klingenberg
[K1 83/95], do indeed include the additional structure of the bilinear map
in the definition of a covariant derivative.

From now on, we shall always assume that a covariant derivative is
associated to a spray, or equivalently, that in each chart U there is a
morphism By satisfying the stated transformation law, and such that the
covariant derivative has the expression repeated in Proposition 4.1.

We are ready to describe at greater length the double tangent bundle.
At the end of Chapter IV, §3 we mentioned the possibility of splitting
TTX. We now deal systematically with this splitting, which arose shortly
after Ambrose, Palais, and Singer introduced sprays [APS 60]. A splitting
was given by Dombrowski [Do 61], together with several other results
which we mention below. See also [Wu 65]. On the other hand, Karcher
explained to me another formulation of the splitting in terms of the pull
back of the tangent bundle, and we shall start with this, expressed in
Theorem 4.3. We go into the Dombrowski formulation afterward. Some
important applications are given in Eliasson [El 67].

We start with complements to the basic discussion of Chapter III, §1
concerning the pull back of a vector bundle, and we shall apply it to the
tangent bundle 7 =7ny: TX — X. Quite generally, given a morphism

f:X'—-X
and a vector bundle p: E — X over X, the pull back f*E (or f*(p))
satisfies the universal mapping property for vector bundles over X', so that
a VB morphism E’ — E over f can be factored uniquely through f*E.
This is immediate from Chapter III, §1. In particular, let us take f = n.
We may take the pull back:

= (7)

oTX —— TX

S

TX — X
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In a chart U of X, a point of TU consists of a pair (x, v) with a vector
veE. Then as we said in Chapter 111, §1, we identify the fiber (z*TX )(x’u)
with (TX), = T.X. In any case, the chart U on X, and the vector bundle
chart U x E for TX over U can be complemented with a vector bundle
chart for the pull back

(7*TX)y ——— (U XE) xE

(1v) j j

(TX)U — UxE

so that a point of #*7TX in the chart is a triple
(x,v,z)e (UxE)xE.
In addition, the double tangent bundle TTX has the vector bundle chart
(TTX)y «——— (UXE)xEXE
(2v) l J
(TX)y —— UxE

We have a vector bundle morphism S} = Tz as in the following diagram:

S1=T71

TX TX
(3) ”TXJ jﬂ
TX X

which in a chart gives

(UXE)xExE "2, UxE

(3v) l

UxE —_ U

l with (Tn),(x,v,2z,w) = (x,2).

Indeed, the projection pry: U x E — U is linear, so its derivative at every
point is equal to pr; itself. The pair (z, w) represents a tangent vector at
(x, v) in the tangent vector space E x E.
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The above diagram then gives rise to the factoring map
K1 TTX - n*TX

of the double tangent bundle into the pull back, so we get the diagram of
VB morphisms

TTY — % Ty "y
(4) nTXJ' l Jn with Tn=7n"(n)ox;.
TX TX X
id n

In the chart, these two squares become

(UxE)xExE—ﬂ]——»(UxE)xE—fﬂe UxE

(4U) PHzJ J'Pru JPH

UxE _— UxE s U
id pry
with
K1, u(x, v, z, w) = (x, v, 2) and (7)) y(x,0, z) = (x, 2).

Thus (4y) gives the factorization of (3y) in the vector bundle charts.
So far, these diagrams concern the tangent and double tangent bundle

without any further structure. We now suppose given a spray or covariant

derivative, so that we have the bilinear map By in a chart U.

Lemma 4.2. Given a spray or covariant derivative on X, there is a unique
vector bundle morphism over TX,

K: TTX - n*TX

such that over a chart U, we have
(5v) ko, u(x, v, z, w) = (x, v, w— By(x; v, 2)).

Proof. Let h: U — V be a change of charts, i.e. a differential iso-
morphism. In Chapter IV, §3 we gave the change of chart (2y) of TTX.
Let H = (h, #'). Then the change of chart for (77X), is given by the
map

H)

(UxE)xExE 2%, (y xE)xEXE
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such that
(H, H')(x, v, z, w) = (h(x), h'(x)z, h"(x)(v, z) + B (x)w).

Then
ko, v o (H, H')(x, v, z, w) = (h(x), k' (x)v, B’ (x)w)

because the term 4”(x)(v, z) cancels in the last coordinate on the right.
This proves the lemma.

The next theorem puts together both maps x; and x,.

Theorem 4.3 (Tensorial Splitting Theorem). Given a spray, or covariant
derivative on a differential manifold X, the map

K=k, 12): TTX » *TX @y n*TX
is a vector bundle isomorphism over TX. In the chart

(ITTX)y; =(UXE) xExE

this map is given by
(6y) ky(x, v, z, w) = (x, v, z, w— By(x; v, z)).

Proof. With the notation A, H, (H, H') as in Lemma 4.2, we conclude
that

ky o (H, H')(x, v, z, w) = (h(x), ' (x)v, I’ (x)z, h'(x)w),

so the family {xy} defines a VB morphism over TX. The expression of
the map in a chart shows that over U it is a VB isomorphism, which
concludes the proof. Note that the map xy is represented by a 2 x 2
matrix acting on the last two coordinates, and having the identity on the
diagonal.

Of course, one may phrase a variation of Theorem 4.3 by using the
mappings going all the way to TX instead of the pull back n*7X. More
precisely, let us define

S TTX - TX (i=1,2) by S; = n*(r) o k.

Then: S;=1Tn, so in a chart U, Sju(x, v, z, w) = (x, z);
S, is the unique VB morphism such that in the chart,

S, u(x, v, 2, w) = (x, w — By(x; v, z)).
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Thus we obtain a morphism S = (S;, S3) of vector bundles

Y S-S v o Ty

(7) ﬂrxl l

X ——m— X
V4

whose local representation is actually given by a similar formula as (6¢),
namely

(7U) SU(X’ v, z, W) = (X, zZ, w— BU(x; v, Z))’

which just drops the v coordinate in the term on the right side.

One calls x; or Sy the horizontal component, and x; or S, the vertical
component. The maps S; = 7Trn and S, are in fact the maps used by
Dombrowski [Do 61]. We now go into his formulation of the splitting.

We need to make some remarks about the covariant derivative D acting
on vector fields. Let {, £ denote vector fields over X. We have defined
D;{, but it is also convenient to use D without a subscript. Let VF(X)
denote the R-vector space of vector fields over X. Then we let

D: VF(X) - Hom(VF(X), VF(X))

be the linear map such that D{ e Hom(VF(X), VF(X)) and (D{)¢ = D¢(.
The next lemma gives Dombrowski’s direct description of S; in terms of
the covariant derivative.

Lemma 4.4. Let X be a manifold with a spray or covariant derivative D.
There exists a unique vector bundle morphism (over 7)

K:TTX - TX
such that for all vector fields & { on X, we have
(8) Dl =KoT{o& inother words, D=KoT

as operators on vector fields, so the following diagram is commutative:

™ — ™ 11X

1 |+

X —— TX
Dg&

In fact, K = S,.
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Proof. In a chart U, we let the local representation

KU,(x,v): ExXxE—-E
be given by

(SU) KU,(x,v)(Za W) =w- BU(X; v, Z):
so K = §, satisfies the requirements of the lemma.

Remark. Dombrowski gives invariant definitions, but goes finite
dimensional in his formulas, p. 76, and the footnote: “Here and in the
sequel we apply a non-orthodox usage of summation signs, in order to
make formulas more concise.” As far as making formulas more concise,
the use of the bilinear map By and the chart notation rather than local
coordinates are more effective. And they happen to make the statements
valid in infinite dimensions.

We have accumulated three maps
TTX - TX,

namely the maps S» = K, S} = Tz, and n7y. So far, we have put two of
them together. We shall now put all three together. As observed in
Chapter IV, §3, we view TTX as a fiber bundle over X, in addition to
being a vector bundle over TX.

Theorem 4.5 (Dombrowski Splitting Theorem). Let X be a manifold with
a spray or a covariant derivative. Then the map

(nTX, S], S2)2 ITX — TX@ TX@ TX
is an isomorphism of fiber bundles over X.

Proof. The map is well defined, and the previous chart formulas show
that it is both a bijection and a local differential isomorphism. We let
readers check this out in the charts to conclude the proof.

As Dombrowski remarks, if X is a Riemannian manifold, then one can
use the splitting theorem to define a natural Riemannian metric on T'7X.
Indeed, let g as usual denote the Riemannian metric on X. Let ve TX, so
ve T, X with x=nv. Let Z, We T,TX. We define the splitting metric
Jd = grry by the formula

(Z, Wy; = §(Z, W) = (S1Z, i W), + ($1Z, S; W),
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This metric was first defined in terms of local coordinates by Sasaki
[Sas 58], but the above formula was given by Dombrowski, who also
twists the metric by v/—1, and defines an almost complex structure, thus
obtaining further results for which we refer to his paper. The Dombrowski
splitting was used subsequently by Eliasson [El 67] to define connections in
Banach manifolds, with applications to the manifold of mappings between
two manifolds.

Ambrose—Palais—Singer [APS 60] showed that there is one and only one
torsionless covariant derivative (connection) whose geodesics are the
Jacobi lifts, and that any other connection with the same property differs
from this one by a torsion tensor. Eliasson used the splitting to define
such connections [El 67], Theorem 3.2, p. 178. I regard such matters as
topics for another book.

X, §5. TENSORIAL DERIVATIVE OF A CURVE IN TX
AND OF THE EXPONENTIAL MAP

I am further indebted to Karcher for this section, partly based on his
paper [Ka 77], p. 536. The paper contains more interesting material,
especially Appendix C in connection with present considerations.

We continue to consider a manifold X with a spray, or equivalently
with a covariant derivative. When we first introduced the covariant
derivative, we used vector fields as in §4, and then discussed the analogous
notion for curves. We follow the same pattern here, and we deal with
curves in the present section.

So let { be a curve in TX. In terms of the vector bundle morphism S
defined in §3 (7), we may give the splitting formula for the derived curve ¢’
in TX, that is

(1) - S = (T@Y, Diagyr €) = (@), Dy €,
so S{'= (B, Dy (),

letting f = ={, or equivalently, { is a lift of 8. We call S¢’ the tensorial
derivative of {. It has values in TX @ TX (as vector bundle over X).
We recall from Chapter VIII that in a chart U,

2 (Dgl)y =Ly — Bu(Bu; By, Lu)-

As remarked following Theorem 3.1 of Chapter VIII, the local repre-
sentation {y of a curve in TU = U x E is taken to be the map on the
second component, i.e. {yy: J — E, and {,(¢) is the ordinary derivative with
values {,(¢) e E also. Thus By (?), {y(¢), {y(f) are “vectors”, giving the
local representation of these curves.
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Let U be a chart in X, so that U x E is a chart for TX over U. Let
Py < U x E be the domain of the exponential, which thus has the local
representation

expy: 9v — U.
We think in terms of pairs, so by abuse of notation, we sometimes write
expy: UXE - U,
with the understanding the expy is only defined on 2y. The tangent map
Texp: TTX - TX
then has a local representation at a point (x, v) e U x E given by the
linear map

expy«g(*, v): EXE - E x E.

The following remark is merely a translation of Theorem 4.3 in terms of
curves.

Lemma 5.1. Let X be a manifold with a spray, or equivalently a

covariant derivative. Let B be a curve in X, and let { be a lift of § in
TX. Let

(1) = expg( (1),

so ¢ is a curve in X. Then in a chart U, ¢'(t) has the representation
(Bv) oy(0) = expy (Bu (1), Lu(0) (By (), (Dpl)y(D)),

or suppressing t,

(4v) ¢’U = CXP/U(ﬂUa {v) (ﬂlu, (Dﬂ'C)U)~

Proof. This is immediate from Theorem 4.3, the local expression (2) for
the covariant derivative, and formula (1).

By abuse of notation, one sometimes omits the subscript U, and one
writes

(47) ¢’ = Texp({)(B', DyL).

This way of writing exhibits an identification of TTX with z*TX & =*TX
as in Theorem 3.3, and a further identification of the fibers of n*TX with
the fibers of TX itself. These identifications are not as dangerous as one
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might think, for a variety of reasons. First, they are made routinely in
the calculus of several variables in euclidean space or in Banach spaces,
for that matter. Second, one can give an invariant formulation which is
strictly correct at the cost of additional notation, as follows.
From our spray or covariant derivative, we had the vector bundle
isomorphism
ITY " ' TX © 2*TX  over TX.

The tangent map Texp is a VB morphism
Texp: TTX - TX over exp: TX — X.
We now define the tensorial tangent map or tensorial derivative
Texp: t*TX @ n*TX — n*TX
to be the unique VB morphism such that
n*(n) o Texp o k = Texp.

We shall complement this map by another one going ali the way to TX in
Lemma 5.2.

Let {: J — TX be a curve in TX, lying above its projection f = zn{ in
X. Let y: J — TX be another curve in 7X, defined on the same interval,

such that 7y = n{. Then y has a pull back =y to n*TX, depending on ¢,
and making the following diagram commutative:

J

Then we have the valid formula
(5) m; 9" = Texp({)(n;B', n; D).

On the other hand, instead of pulling back to #*TX and using the map
k = (x1, x2) one may stay on 7X and use the map S = (S, S2). Then we
may define the S-tensorial derivative Tsexp by means of the following
lemma:
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Lemma 5.2. There exists a unigue vector bundle morphism over X,
Tsexp: TXPTX - TX
such that the following diagram commutes:.

Texp

/n*TXGBn*TX——e o TX
TTX\ l Jn:(n)
s TX®TX

The two vertical maps are vector bundle morphisms, the top vector bundle
being over TX and the bottom one over X. The composite map is

TX

Tsexp

Texp: TTX - TX,

so both Texp and Tgsexp represent Texp under the splitting maps.
Proof. Routine verification that everything makes sense.
With these definitions, we are in a position to formulate (4?) without

any identifications. Hypotheses being as in Lemma 5.1, with { a curve in
TX and B = =n{, we have

(6) ¢' = Tsexp(()(B', Dg().
Thus the only thing needed to make (4?) meaningful (and valid) was to

replace the ordinary tangent map by the tensorial map, using the splitting
map S. Things could be worse.

Variations and Jacobi lifts

We now stick an extra parameter s to make up a variation. We let
a(s) = expg) (s£(0)).

We define the (B, {)-variation of a by letting

) a:(s) = a(s, 1) = exp(s{(2)) = expg, (sL(2)).

Note that for each real s (such that s{(¢) is in the domain of the
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exponential), the tangent vector s{(¢) lies in Ty X, so s{ = {, is also a lift
of B. For fixed ¢, the curve o is a usual geodesic, and we have

(8) o (s) = Texpg (sts(D)L(),
with initial conditions
(9) o (0) = B(¢) and  o,(0) =(2).
Indeed, let us put
Z(s, 1) = sC(t) = Zy(s).
Then Z, is a curve in the tangent space Tp(nX = TpX. Then
&1Z(s, 1) = Z{(s)

is now taken to be the ordinary derivative of a curve in a Banach space, so

Z!(s) is also a vector, element of T X.

Next we define the usual Jacobi lift

n,8) = 020(s, t).
We let further

¢s(t) = G'(S, t) = at(s)’

so @, is a curve in X, and ¢, is a curve in TX. Then by definition,

9,(8) = 1,(5)-

We have the initial conditions

(10a) n,(0) = B'(t) = g5 (1)
(10b) (Dyn,)(0) = D18,0(0, 2) = D2010(0, 1) = (Dg:{)(2).
In general,
(11a) 1,(s) = Tsexp(s{(2)) (SL'(1))

=Ts exp(s{(t)) (ﬂl(t)’ Dﬂ’(:) (SC))’
(11b) (Dy 11,)(s) = D1020(s, 1) = Dy010(s, t)-
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X, §6. THE FLOW AND THE TENSORIAL DERIVATIVE

Dombrowski actually defines his map K in terms of the flow, but for the
exposition of this section I again benefited from Karcher’s instructions.
We may complement (10) and (11) in §5 from another point of view. Let
® be the flow of the spray on TX. Thus @ is the global geodesic flow,
and is a function of two variables. For an element v € TX, so v € T, X for
some x, we have by definition

D(s, v) = Dy(v) = % exp(sv) = Texp(sv)v.

Then @, is a differential isomorphism
0. TX - TX,

The tangent map of the flow then fits in a commutative diagram which we
call the tensorial flow diagram, with maps T®; and Ts®, as follows.

TOs .

/‘K T TX @' TX ——— n*TX@n*TX,\
TTX/ j, j /
\ TX®TX ——— TX®TX s

§Ws

7Y

With the notation of §5, t — @,({(7)) is a curve in TX. Directly from
the definitions, we have

1) a;(s) = 05(L(D)).
We may summarize some of the tabulations of §5 in terms of the flow.
Theorem 6.1. Let { be a curve in TX, let
o(s, ty =exp(s(r)) = a(s) and  n,(s) = dao(s, 1).
Then the tensorial derivative of ®so0( is given by

S(@s00)'(1) = (1 Do )(s)-
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Remark on notation. If { is a lift in TX of a curve § in X, we have
used systematically the notation Dg{ for the covariant derivative. We
could also have written D(,,O:C. We used this notation to accompany the
notation when one takes the covariant derivative of vector fields. How-
ever, in the context of curves, the index of D is completely determined by
the curve ¢ in the tangent bundle. Therefore we also write D.(, the *
being forced, namely (n{)'. Then the formula of Theorem 6.1 reads

S(®; 0 C)I(t) = (1, Dun,)(5),

which saves some double indices.

At Karcher’s suggestion, I include an application to a classical Liouville
theorem, formulated in contemporary language. We return to the can-
onical 2-form on the tangent bundle of the Riemannian manifold X, as
defined in Chapter V, Proposition 7.2. Of course, without the Riemannian
structure, the canonical 2-form is on the cotangent bundle, but with the
Riemannian structure, it is transferred to the tangent bundle as in Chapter
VIL, §7, formula (1). The next result gives the representation of the
canonical 2-form in terms of the splitting coordinates. For this purpose, if
(41, B) and (A4, By) are pairs of vectors in 7xX, the formula

Qs((41, By), (42, B2)) = (41, B2}, — (42, B),
defines a 2-form Qg on TX @ TX.

Proposition 6.2. Let X be a Riemannian manifold, and let Q be the
canonical 2-form on the tangent bundle. Let ve TX, Z, W e T,TX.
Write

' SZ = (Al, Bl) and SW = (Az, Bz).
Then the canonical 2-form can be expressed in the form
Q(Z, W) = QS(SZ’ SW) = <A1, BZ)g - <A25 Bl)g'

Proof. This is a routine verification, which nevertheless has to be taken
seriously. We use a chart. Write Z = (z1, z2) and W = (wi, wy) in the
chart, i.e. in E x E. Put together Chapter VI, §7, formula (1) for the
canonical 2-form on the tangent bundle, and Theorem 4.2 of Chapter
VIII, formula MS 1, giving the chart expression for the bilinear map By,
depending on the metric. Keep cool, calm, and collected; there will be
cancellations, due to the symmetry

(g'(x)u-w, v) = (g'(X)u-v, W)
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noted in Chapter VII, §7; you will use 141
iti T doam 3+3=1; and the f
Proposition 6.2 will drop out to concludezthe2 proof. ormula of

In light of iti rge
2-form,g of Proposition 6.2, we call Qg the splitting of the canonical

2Theon'em 6.3. Let X be a Riemannian manifold. Let Q be the canonical
Sorm on TX. Let veTX (so ve T, X for some x), and let Z
WeT,TX. Let ® be the flow of the spray on TX. Let ,

Y(s) = Q(TO,(v)Z, Td,(v) w).
Then  is constant. In other words, Q is invariant under the Sflow.

Proof. We use Proposition 6.2. Let ili
on 6.2. M, 1, be the Jacobi lifts of th
curve s+ ay,(s) = exp(sv) with initial conditions o

7:(00=4; and  D,n,(0) = B;.
Then using Theorem 6.1 and Proposition 6.2, we get
¥ = (m, Duny) — (n, D.y).
Hence using the basic property of the Levi-Civita metric derivative

/
¥' = (m, Do) — (ny, D?yy)

= (n1, R(v, 12)v) — (1, R(v,7,)v) by the Jacobi equation
=0

by one of the fundamental identities of the Ri
' lemann tensor, Ch
§1, RIEM 4. This concludes the proof. prer 1%

Remark. In Chapter XIII we shall investi illi
apt ' gate Killing fields, whose flow
preserves the metric in the Riemannian case. The situation is similar here

with the canonical 2-form, altho th .
Killing field. » ugh the spray is usually not called a



CHAPTER XI

Curvature and
the Variation Formula

This chapter is a direct continuation of Chapter IX, but in a new context,
the variation formula. Given a family of curve {«}, their lengths L(a,)
defines a function, and we are interested in the singular points of this
function on the space of curves especially the relative minima and the
second derivative test. We do not formalize the infinite dimensional space
of curves but work simply with families. We shall see that the Riemann
tensor plays an essential role in the expression for the second derivative,
which allows us to go futher than we did in Chapter IX, and especially in
proving the converse of Theorem 3.6, for which we have to deal with
positive curvature. The variation formula will allow us to estimate
growths of Jacobi lifts more generally than in Chapter IX.

XI, §1. THE INDEX FORM, VARIATIONS, AND
THE SECOND VARIATION FORMULA

We let (X, g) be a pseudo Riemannian manifold, with the corresponding
covariant derivative D. As a matter of notation, if w is vector in a
tangent space, then we write w? = (w, wh, If w2 >0, then we define
1/2
lwll = Gw, wh'™.
We begin by a general discussion concerning the Jacobi expression

defining Jacobi lifts. Let a: [a, b)) — X be a geodesic. Let 7 € Lift(x). We
are interested in the expression

Dgl” - R(a” ”)a,
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and its square. By definition i i lift i
S 5q , 7 15 a Jacobi lift if and only if this
expression 1s equal to 0, and in the Riemannian case, it is equal toyO if and

only if its square is equal to 0. We shal .
Lift(), namely: all also deal with a subspace of

Lifto(«) = vector space of lifts  of « such that

n(@)=0 and #(b) =0.

For 5, y e Lift(x) we define the index

b
I(n,7) = J (Darn, Dury), + RO, 7, o, 9)](s) dis.

b
I(7, 1) = j [(Dam)? + Ra(al, )] (s) ds.
Similarly we define

Jaco(a) = subspace of Jacobi lifts of « lying in Lifty(«), that is
vanishing at the end points. ’

Proposition 1.1. Les a: [a, b)) — X be a ? :
. 1% geodesic. The ind
Lift(«) also has the expression ¢ index form I on

I(n,7) = - J:[(Di»m Vg — R, 1, &, ))(s) ds
+ (Durt, 1)4(8) ~ (Do, ), (a).
In particular, if n is a Jacobi lift, then
I(n, y) = (Derm, y),(b) — (Dorm, ) ,(a);
and if in addition y e Lifty(y), then I (m,7)=0.
Proof. From the defining property of the metric derivative, we know

that

HDutly ¥)g = (D3tl, 1)y + (Do, Dury) .

Then the first formula is clear. If in addition n is a Jacobi lift, then the
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expression under the integral is 0 by definition, so .the second formpla
follows; and if y € Lifto(«) then the expressions belonging to the end points
are equal to 0, so the proposition is proved.

Theorem 1.2. Let n € Lift(x). Then I(n,y) =0 for all ye Lifto(«) if and

only if \
(DZn - R, m)a’)" = 0.

In the Riemannian case, this happens if and only if n is a Jacobi lift.
Proof. If n is a Jacobi lift, then by definition
Dln = R, m)a,

so I(n, y) = 0 for all y € Liftg(«). Conversely, assume this is the case. Let
¢ be a C® function on [a, b] such that ¢(a) = o(b) =0. Let

yy=Dln—R@,no’ and  y=oy.

Then y € Lifty(x) and by Proposition 1.1,

b
0=1I(n,) = j o(s)n1(s)? ds.

This being true for all ¢ as above, it follows that y? =0, whence the

llows. ‘
the"l)"ie;n p:vious discussion belongs to the general_ theory of the chobl
differential equation. Previously, we developed. this theory to get mfgr-
mation about the differential of the exponential map. The differential
equation has another side to it, to which we now turn. We shall be
interested in two functions of paths a: [a, b — X:

The length function

b
le/(s)|l, ds  whenever «'(s)? 2 2.

L) = L@) = |
a
The energy function

b
EX(a) = E(a) = J o (5)? ds.

a

Note that the length does not depend on the parametrization, but the

i i inimizi functions.
energy does. We are interested in minimizing those
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In calculus, one applies the second derivative test at a critical point of
a function, that is a point where the first derivative is 0. The second
derivative then has geometric meaning. One wants to do a similar thing
on function spaces, or the space of paths. Ultimately, one can define a
manifold structure on this space, but there is a simple device which at first
avoids defining such a structure for some specific computations. We are
specifically interested here in the example of the second derivatives

d? d>
gel) and -5 E(w)

at £ = 0. To compute these derivatives, we don’t need to give a differential
structure to the path space, we need only be able to differentiate under the
integral sign in the usual way. The computation of these derivatives is
called the second variation formula, and the end result is as follows, for the
variation of a geodesic. Observe how the index form enters into the result.

Theorem 1.3. Let a:[a, b] — X be a geodesic parametrized by arc
length, that is «'(s)* =1 for all 5. Let o be a variation of a, so that
a(s) = a(s, t). Define

n(s) = 0:0(5,0)  and  v(s) = Dun(s) - (Dun(s), «'(s)),a'(s),

so v(s) is the normal projection of Dyn(s) with respect to the unit vector
o«'(s). Also define a second component along o (s), namely

y2(s) = (Dzazo', 510‘)g(s, 0) = (Dzaza'(s, 0), a'(s))g.
Let Ry(v, w) = R(v, w, v, w) be the canonical 2-tensor. Then

d2
EﬁE (o)

W I(n, 1) + y,(b) - y,(a)

b
= [ 1@ + Ratet, mi9) ds 4 32(8) - 2,(@).
a
As for the length, assuming the variation satisfies /()2 20 for all ¢, s:

‘aEL(“t)

b
L] = 1+ R, mi6) ds +1,08) - (@)

t=0

so this is the same expression as for the energy, except that Dyy(s) is
replaced by the normal projection v(s).
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If the curves t— a(a, 1) and t — o(b, t) are geodesics, then

so the terms involving the end points are equal to 0.

Remark 1. The last assertion is immediate, since for any geodesic y, we
have Dy’ =0.

Remark 2. An example comes from Theorem 4.6 of Chapter IX, where

a, is the geodesic between points f,(), ,Bz(t)., an.d Bi, B, are also geo-
desics. Then indeed, the constant of integration is equal to 0, and

%L(“t) = Jb (v? + Ra(o', m))-

a

t=0

For the proof of Theorem 1.3, we ned a lemma giving some‘expression.s
for the square of the derivative of a family of geodes.ics. This lemma is
independent of the integrals which have just been considered, and we state
it in full. It is similar but more elaborate than the lemmas of Chapter IX,

§4.
Lemma 1.4. Let (X, g) be a pseudo-Riemannian manifold. Let a be a
geodesic (not necessarily parametrized by arc length), and let 6 =0(s, 1)
be a variation of o (not necessarily by geodesics), so o= ag, and
a(s) = o(s, t). Put
e(s, 1) = (810, D10), (s, 1) = oy(s).

Define n(s) = 020(s, 0) and

12(5) = (D220, 910) (s, 0) = (D2d20(s, 0), &' (5))g-

Then
(1) d2e(s, 0) = 2{Dun(s), @'(5))g, i
(2) d2e(s, 0) = 2y5(s) + 2Rz (a'(s), n(5)) + 2(Dorn(s))”.

Proof. We shall keep in mind that from the definitions,

D, n(s) = D1020(s, 0).
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For the first derivative, we have

62e = 52(610', 6la)g
= 2(D,0,0, 0;0) g because D is the metric derivative
= 2(D10,0, 010), by Lemma 5.3 of Chapter VIII.

This proves the first formula. For the second, we continue to differentiate,
and obtain

afe = 02(D10,0, 610)g
(3) = 2(D2D100, &10), + 2(D10,0, D20;0),.
In the first term on the right, we use Lemma 2.7 of Chapter IX to write
D;Dy = DD, — R(6y0, 0,0).

In the second term on the right, we use Lemma 5.3 of Chapter VIII to
write D38, = D16;. Then we find

d3e = 2(D1 D20, 10), — 2(R(810, 020)020, D10), + 2(D160)*
(4) = 2(D1D2620‘, 610'>g + 2R2(510’, (320’) + 2(D1620‘)2.

Finally, we use the metric derivative again to compute:
(5) 61<D2320', 510'>g = <D1D2620’, 510')9 + (Dzazo', D1510’>g.

However, D;010(s, 0) = D1d1a(s) = Dya/(s) = 0, because « is assumed to
be a geodesic. Hence from (4) and (5) we find

6) (s, 0) = 23(s) + 2Ra(d13, 820)(s, 0) + 2(D1d0(s, 0))°.
This proves (2), and concludes the proof of the lemma.

We are now ready to prove Theorem 1.3. We shall compute the second
derivative of the length, which if anything is harder than that of the energy
because of the square root sign. The computation for the energy follows

exactly the same pattern. We begin with the first derivative, also called the
first variation,

d _d 12
a—tL(a,) = EL e(s, )" dt

b
L1 - J %e(s, 0 25se(s, 1) ds.
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Then we take the second derivative

’1 ~1/22 ’1 =32 2
Ee(s, 0 V202e(s, ) ds — | —e(s, )7/ (Dre(s, 1)) ds

E;L(“t) = J .4

dt a

whence using the hypothesis that o is parametrized by arc length,

b1, by 2
= j EaZe(s’ 0) ds — J 2 (82¢(s, 0))~ ds.
=0 Ja

a

d2
L2 FL(“’)

We plug in the value from Lemma 1.4 and use a projection. If w, u are
vectors and u is a unit vector, and v = w — (w - u)u is the orthogonalization
of w with respect to u, then we have trivially

V2 =w?— (w‘u)z.
We apply this to w = Dyn and u=o'. Integrating as in L 2 yields the
asserted answer, and proves the formula for the second derivative of L()

at t=0. As already mentioned, the formula for the energy is easier and
will be left to the reader. This concludes the proof of Theorem 1.3.

Remark 3. For simplicity we limited ourselves to curves rather than
piecewise C? maps. Milnor [Mi 63] gives a thorough discussion of paths
where end-point terms will appear where the path is broken. See for
instance his Theorem 12.2 and Theorem 13.1 of Chapter IIL

Remark 4. Observe how R, comes naturally in the formula. At a
minimum one wants the second derivative to be semipositive, so having all
plus signs in the variation formula is desirable.

Corollary 1.5. Let n be a Jacobi lift of a, and ¢ a variation of o such
that 5(s) = 020(s, 0). Assume that t — o(a, t) and t — a(b, ) are geode-
sics. Then

2
SHEG)| = (Dun(®), 161, ~ Dan@), @)y

In particular, if Dy is perpendicular to o' then this equality also holds if
E is replaced by the length L.

Proof. Immediate from Theorem 1.3 and the alternative expressions of
Proposition 1.1.

Concerning the orthogonality assumption which will recur, we recall
that if a Jacobi lift # of « is such that Dy is orthogonal to &’ at some
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point, then‘l‘)a:n is orthogonal to «’ on the whole interval of definition
See Proposition 2.4 of Chapter IX. .

l"roposition 1.6. Assumptions being as in Theorem 1.3, suppose that D, %
is orthogonal to o'. Then ’

d
d—tL(ot,) — =0.

Proof. This is immediate from Lemma 1.4 (1) and I1.

The next application of Theorem 1.3 gives the semipositivity of the

index. on the subspace of Lifto(x) orthogonal to o', under a natural
condition.

Theorem ‘1.7. Suppose that o is a geodesic whose length is the distance
between its end points. Let { € Lifty(a) be orthogonal to «'. Then

1¢,{) z 0.
Proof. 1 owe the proof to Wu. Define
a(s, 1) = expy) (¢4(s))

with 0; s gb and 0 <t < e For each ¢, g, is a curve, not necessarily a
geodesic, joining the endpoints of «, that is

oi@)=a@) and  o,(b) = a(b),

because of t'he assu.ml.)tion { e Liftg(a). Furthermore, of(s, 0) = a(s), so
{o:} = {w;} is a variation of «, leaving the end points fixed. Note that

020(s, 0) = {(s).

Fipally, t‘he. curves ¢ — a(a, t) and t — o(b, t) are geodesics, and D, ¢ Lo’
(differentiating ({, a’) = 0). Therefore, if we define the function

/(t) = L(a,) = L(O't),
then by Theorem 1.3 we get
£"(0) = I(¢, {).

Since by assumption L(xo) < L(«) (because L(a) is the distance between
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the end points), it follows that the function ¢ has a minimum at ¢t =0,
which proves the theorem.

Remark. The above theorem is a special case of thp Morse index
theorem, but will suffice for our applications. For full index theorems,
cf. Milnor [Mi 63]; Kobayashi-Nomizu [KoN 69], Chapter YIII, §6;
Cheeger—Ebin [ChE 75), Chapter 4; do Carmo [doC 92]; and Klmgenberg
[K1 83/95], Chapter 2, Sections 2.4 and 2.5, yvherp he 'deals w1tl} the
energy functional on the loop space as an infinite dunen§19nal man}fold,
rather than the length. However, in that chapter, the original manifolds
are finite dimensional. I hope to have convinced the reader further about
the irrelevance whether the manifold is finite dimensional or not.

Corollary 1.8. Let n be a Jacobi lift of «, and let £ be any lift of o, with
the same end points as 1, that is

n(0) =¢(0)  and  n(b) = &(b).
Suppose that n— & is orthogonal to o. Then

I(n,n) £ 1(&, &).

Proof. Let { =& —n. By Theorem 1.7 we have I({, {) 20, so by the
bilinearity of the index,

7 I(¢, &) - 21(n, &) +1(n, n) 2 0.
But ,
I, €)= (Das 1, O = | (D2, 1) = (RG, m)t )
= (Dy, 1, f)|£ because 7 is a Jacobi lift (Proposition 1.1)
= (Dy, 1, n)|: by assumption

=1I(n,n) because # is a Jacobi lift.

Hence inequality (1) becomes the inequality asserted in the corollary.

For some applications, one wants to compute .the second deriva.\tlve of a
composite function f (L(cx,)), where fis a f}mctlon of a rt?al variable, for
instance when we determine the Laplacian in polali coordinates later. So
we give here the relevant formula, since it is essentially a corollary of the
above considerations.
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Proposition 1.9. Ler f be a C? function of a real variable. As in
Theorem 1.3, let ¢ be a variation of «, and let n(s) = d20(s, 0). Assume
Dy orthogonal to o'. Then

d2

=/ (L()) W [ (L(20)) [(Dan(b), 1(8)), — (Darm(a), n(a)),].

Proof. Let F(t) = f(L(%)). Then

F/0) = (L) 3 L(w)

and
2
F0 = 1" (1) L) + £ (L)) () 2600,

Then at ¢ =0 the first term on the right is 0 because of Proposition 1.6.
The second term at =0 is the asserted one by Corollary 1.5 and the
orthogonality assumption. This concludes the proof.

Example. Proposition 3.3 of Chapter IX provides an example of the
situation in Proposition 1.9. Both will be used in Chapter XV, §2.

Theorem 1.3, i.e. the second variation formula, also has some topo-
logical applications which we don’t prove in this book, but which we just
mention. If R, is negative, so the curvature is positive, then one has a
theorem of Synge [Sy 36]:

Let X be a compact even dimensional orientable Riemannian manifold
with strictly positive sectional curvature. Then X is simply connected.

The idea is that in each homotopy class one can find a geodesic of
minimal length. By the second derivative test, the expression for the
second derivative of the length is 0 for such a geodesic. One has to prove
that one can choose the variation such that the “orthogonal” term con-
taining the integral of v(s)2 is 0. The boundary term will vanish if one
works with a variation to which we can apply Remark 1. Finally, having
strictly positive curvature will yield a negative term, which gives a con-
tradiction. Details can be found in other texts on Riemannian geometry.

The same ideas and the theorem of Synge lead to a theorem of
Weinstein [We 67]:

Let X be a compact oriented Riemannian manifold of positive sectional
curvature. Let f be an isometry of X preserving the orientation if dim X
is even, and reversing orientation if dim X is odd. Then f has a fixed
point, ie. a point x such that f(x) = x.
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Proofs of both the Synge and the Weinstein theorems are given in
[doC 92]. The Synge theorem is given in [BGM 71] and [GHL 87/93].

This as far as we go in the direction of the calculus of variations. These
are treated more completely in Morse theory, for instance in [Mi 63],
[Pa 63], [Sm 64], and in differential geometry texts such as [KoN 69],
[BGM 71], [ChE 75], [doC 92], [GHL 87/93].

Klingenberg’s book [KIl 83/95] also contains topological applications,
see especially Chapter 2, where Klingenberg uses the energy function
rather than the length function.

INTRODUCTION TO §2

In Chapter IX, §3 we showed that when the Riemann tensor R; is
semipositive (seminegative curvature), then the exponential map is metric
semi-increasing. We now want to prove the converse. In part the
argument is similar, using the Jacobi lift which gives an explicit formula
for the differential of the exponential map. However, at a crucial point the
argument gets somewhat more involved because instead of a straight-
forward convexity computation as in Chapter IX, Lemma 2.5 and
Proposition 2.6, we now have to appeal to the second variation formula,
especially Corollary 1.8. The basic result we are after is an immediate
consequence of the Rauch comparison theorem, which is proved in
standard texts on Riemannian geometry. Essentially they all use the same
proof, which is a simplification by Ambrose of Rauch’s original argu-
ment. See for instance [KoN 69], Vol. I, Chapter VIII, Theorem 4.1;
[K1 83/95]), Chapter II, Lemma 2.7.2 and Corollary 2.7.3; [doC 92],
Chapter X, §2. They all formulate the theorem in finite dimension,
unnecessarily. For our purposes, we need only a special case, describing
the effect of the exponential map on the metric under the curvature
conditions, positive or negative. A presentation of the proof can be given
more simply in this special case, as was shown to me by Wu, to whom I
owe the exposition in the next section. A proof of the full Rauch theorem
will be reproduced in §4.
For an alternative approach to Jacobi lift inequalities, cf. [Ka 89].

Xl, §2. GROWTH OF A JACOBI LIFT

Basic Assumptions. Throughout, we let (X,g) be a Riemannian
manifold. Let x € X and let ue Tx be a unit vector. Let a: [0, b] — X
be the geodesic segment defined by o(s) = exp,(su). Thus a is para-
metrized by arclength, and the segment {su}, 0 < s £ b is assumed to be
in the domain of the exponential.
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We also let we Ty, w# 0 and we let n =1, be the Jacobi lift of «
such that
n(0)=0 and  Dyn(0) =w.

As shown in Chapter IX, Theorem 3.1 and its proof, we have for
O0<r=<h:

(1) Texp, (ruyw = %n(r).
Furthermore, let
o(s, 1) =exp,(s(u+m)) and  o,(s) = a(s).

Then {o;} = {o;} will be called the standard variation of « = o in the
direction of w. We have

() n(s) = 820(s, 0).
Thirdly, by Chapter IX, Proposition 3.2 we have the global Gauss lemma
(3) (Texp,(ru)u, Texp,(ru)w), = (u, w),.

For simplicity, we shall usually omit the subscript g.
If w is a scalar multiple of u, then

ITexp, (rujw||* = [Iw]®

by the Gauss lemma. This is another way of seeing what is also in
Chapter VIII, Corollary 5.5, namely:

Proposition 2.1. The exponential map is metric preserving on rays from
the origin.

Whereas in Chapter IX we considered the norm, we now consider the
square of the norm of the Jacobi lift #, so we let

1) =n(9)* = In()|*

We want to estimate the growth of ||7{|, in other words, the growth of f.
We fix a value r with 0 <r < b, and we let

{(s) = mn(s) for 0<s<r.
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Since Dy&(0) = w # 0, it follows that for all r > 0 sufficiently small, we
have #n(r) #0. Cf. Proposition 2.6 of Chapter IX.

Lemma 2.2. Assume that w L u and that o is contained in a convex open
set. Given r as above, there exists a lift & of a« such that on [0, r], £ # 0,
Ela!, and

~ | —

: 1}1(,) KGOS 1+ | Rl D0

Proof We have directly from the definitions

r

(r) = (Dul(r), L)) = (Du, §) .
=1 ¢)

1f
2f

because { is a Jacobi lift of a, and we use Proposition 1.1.
For the second inequality, let Pj = Pj , be parallel translation along a,
with P =id. Let v be the vector such that
Po(v) = {(r).
Define the lift & by
s
@) &) = P (30).

Note that:

(5) &0 =), &) =l(), Dutls) =P (lv) (see Lemma 2.3).
Thus (Dy&)? =1/r2. By Corollary 1.8, we obtain
I 0= ¢)
= [10ut + Rate
1 r ,
=;+JOR2(a ’6)a

thereby proving the lemma.

In determining D¢ we used the following general lemma, which really
belongs to Chapter VIIL, §3, and which we state in a self-contained way.
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Lemma 2.3. Let X be any manifold with a spray, and let a: [a, b] —» X
be a curve in X. Let B:[a, b] — Tya) be a curve in Ty, let P be
parallel translation along «, and let &(t) = PL(B(f)). Then

Dy&(1) = Po(B'(1))-

Proof. We prove the relation in a chart, where we have the formula
Dy¢=¢ - B(a; o, ).

Let y(t, v) be parallel translation of v € T,(;. Then
&'(2) = dra(t, B()) + d29(r, B))B' (1)
= aly(tv ﬂ(t)) + y(ta )Bl(t))a
because v+ y,(v) is linear, and the derivative of a linear map is equal
to the linear map. The lemma follows from the local definition of the
covariant derivative, and the definition of parallel translation (Theorem 3.3

of Chapter VIII).

Lemma 2.4. Let h(s) = s’°w?. Then
lin& f(s)/h(s) = 1.

Proof This is immediate from the first term of the Taylor expansion
given in Chapter IX, Proposition 5.1.

Theorem 2.5. Under the basic assumptions, assume that w Lu. Let U,
be an open convex neighborhood of x, and Vy an open neighborhood

of Oy such that exp,: Vy — Uy is an isomorphism. We suppose o is
contained in Us. If the curvature is =0 (resp. > 0) on U, then

I, S rliwll - (resp. <rlwll) ~ for 0<r<b.

Proof. By lemma 2.2, for ¢ >0 we find

r r
J fl/f < J h'/h + the Riemann tensor integral.

€

Since by hypothesis, the Riemann tensor integrand is < 0, we obtain

log f(r)/h(r) < log f(€)/h(e),
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and therefore

f . fl9 € — 4.
mgh_(a—d as 0 by Lemma 2.4

Then f(r) £ h(r), which proves the theorem with the weak ine'quality
sign. For the strict inequality case, one takes into account the Rxem?lpn
tensor integral, and the fact that the integrand is < 0, so all inequalities
are strict. This concludes the proof.

Theorem 2.6. Let (X, g) be a Riemannian manifold. Let x € X and let
expy: Vx — Ux be an isomorphism of a neighborhood of 0 with an open
convex neighborhood of x. Suppose g has curvature 20 on Ux. Then
exp, is metric semidecreasing from Vy to Uy. If the curvature is >0 on
Uy, then for ve Vy, v# 0 and w e Tx, w unequal to a scalar multiple of

v, we have
| Texp, (o)w]l < [[wi-

Thus exp, is metric strictly decreasing on Vy, except in the direction of
rays from the origin.

Proof. We let u be the unit vector in the direction of v, v = bu. If w is
orthogonal to u, then the inequality of Theorem 2.5 together with (1)
shows that

I Texp, (ru)wl® < Iwi*.

For arbitrary w, we write w = wp +w; with wo = cu (some ceR), and
wi Lu. Then by the Gauss lemma, Texp,(ru)wo L Texp,(ru)wi, so

||Texpx(ru)w||2 = ||Texpx(ru)wo||2 + || Texp, (ru)wi 1%,

which proves the theorem, in light of Proposition 2.1 and the inequality in

Theorem 2.5. ‘ '
For estimates concerning Jacobi lifts and geodesic constructions, see

Buser and Karcher [BuK 81], especially 6.3 and 6.5.
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Xl, §3. THE SEMI PARALLELOGRAM LAW AND
NEGATIVE CURVATURE

The usual parallelogram law will be semified in two ways: first, we stop
at midpoint of one of the diagonals; and second, we write an inequality
instead of the equality. We can then formulate things as follows.

Let X be a metric space. We say that the semi parallelogram law holds
in X if for any two points x;, x, € X there is a point z which satisfies for
all xe X':

d(x, x2)2 + 4d(x, z)2 < 2d(x, xl)2 + 2d(x, xz)z.

It follows that
d(z, x1) =d(z, x3) = %d(xl, x2).

This is obtained by setting x = x; and x = x; in the semi parallelogram
law to get the inequalities 2d(x, z) < d(x1, x2) and 2d(x,, z) < d(x1, x,).
The opposite inequalities follow from the triangle inequality

d(x1, x2) £ d(x1, z) +d(z, x3).

Note that the point z is uniquely determined by x;, x, because if z’ is
another such point, we put x =z’ in the law to see that z =z’. Thus we
call z the midpoint between x; and x;.

A Bruhat-Tits space is defined to be a complete metric space which
satisfies the semi parallelogram law.

Theorem 3.1 (Serre). Let X be a Bruhat—Tits space. Let S be a bounded
subset of X. Then there exists a unique closed ball B,(x|) in X of
minimal radius containing S.

Proof. We first prove uniqueness. Suppose there are two balls B,(x;)
and B,(x;) of minimal radius containing S, but x, # x;. Let x be any
point of S, so d(x,x;) <r and d(x,x;) <r. Let z be the midpoint
between x; and x;. By the semi parallelogram law, we have

d(x1, x2)* < 4 — 4d(x, z)*.

By definition, for each €¢>0 there is a point xeS such that
d(x,z) 2r—ce. It follows that d(x;, x;) =0, that is x; = x,.

As to existence, let {x,} be a sequence of points which are centers of
balls of radius r, approaching the inf of all such radii such that B, (x,)
contains S. Let r be this inf. If the sequence {x,} is a Cauchy sequence,
then it converges to some point which is the center of a closed ball of the
minimal radius containing S, and we are done. We show this must always
happen. Let z,, be the midpoint between x, and x,. By the minimality
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of r, given ¢ there exists a point x € s such that
d(x, zmm)* 2 1* — €.
We apply the semi parallelogram law with z = z,,. Then

d(xm, xn)2 < 2d(x, x,,,)2 + 2d(x, x,,)2 —4d(x, z,,,,,)2

< e(m, n) + 4e,

where ¢(m, n) — 0, thus proving that {x,} is Cauchy, and concluding the
proof of the theorem.

The center of the ball in Theorem 3.1 is called the circumcenter of the
set S.

Theorem 3.2 (Bruhat-Tits). Let X be a Bruhat-Tits metric space. Let G
be a group of isometries of X, with the action of G denoted by
(g, x) — g-x. Suppose G has a bounded orbit (this occurs if, for
instance, G is compact). Then G has a fixed point, for instance the
circumcenter of the orbit.

Proof. Let pe X and let G- p be the orbit. Let B,(x;) be the unique
closed ball of minimal radius containing this orbit. For any g € G, the
image g - B,(x1) = B.(x2) is a closed ball of the same radius containing the
orbit, and x; = ¢ - x;1, so by the uniqueness of Theorem 3.1, it follows that
x; is a fixed point, thus concluding the proof.

Corollary 3.3. Let G be a topological group, H a closed subgroup. Let
K be a subgroup of G, so that K acts by translation on the coset space
G/H. Suppose G/H has a metric (distance function) such that trans-
lation by elements of K are isometries, G/H is a Bruhat-Tits space, and
one orbit is bounded. Then a conjugate of K is contained in H.

Proof. By Corollary 3.2, the action of K has a fixed point, i.e. there
exists a coset xH such that kxH = xH for all k € K. Then x'KxH < H,
whence x~'Kx — H, as was to be shown.

We shall now discuss one of the roles of the above theorems in dif-
ferential geometry. Unless otherwise specified, manifolds can be infinite
dimensional, and Riemannian manifolds may therefore be Hilbertian.

One question arises: which kinds of spaces have metrics as discussed
above? First we give a sufficient global condition, perhaps the most useful
in practice, the exponential metric increasing property.
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EMI. The space X is a complete Riemannian manifold, and for every
z € X, the exponential map

exp,: I, - X

is a differential isomorphism, is metric preserving along rays from
the origin, and in general is metric semi-increasing.

A complete Riemannian manifold, simply connected, with R, =0
(seminegative curvature) is called a Hadamard, or Cartan—-Hadamard
manifold.

Proposition 3.4. A complete Riemannian manifold satisfying EMI is
a Bruhat-Tits space. A Cartan—Hadamard manifold is a Bruhat—Tits
space.

Proof. On a Hilbert space, we have equality in the parallelogram law.
Using the hypothesis in EMI with z as the midpoint, we see that the left
side in the parallelogram law remains the same under the exponential map,
the right side only increases, and hence the semi parallelogram law falls
out.

Next we give equivalent local conditions. Let X be a Riemannian
manifold. We say that the semi parallelogram law holds locally on X if
every point x has an open convex neighborhood U, with an isomorphism
exp,: Vx — U, of a neighborhood of 0, in T, such that the semi par-
allelogram law holds in U,.

Theorem 3.5. Let X be a Riemannian manifold. The following three
conditions are equivalent:

(a) The curvature is seminegative.
(b) The exponential map is locally metric semi-increasing at every point.
(c) The semi parallelogram law holds locally on X.

Proof. This is merely putting together results which have been proved
individually. Theorem 3.6 of Chapter IX shows that (a) implies (b). That
(b) implies (c) is a local version of Proposition 3.4. Indeed, the paral-
lelogram law holds in the tangent space T,, and if the exponential map at
z is metric semi-increasing, then the semi parallelogram law holds locally
by applying the exponential map. Specifically, given x;, x; in some convex
open set, we let z be the midpoint on the geodesic joining x, and x,, so
that there is some v; € T; such that, putting v; = —vy,

x1 = exp,(v1), X3 = exp,(v2), z = exp,(0,).
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Given x = exp,(v) with ve T, the parallelogram law in T, reads

d(vy, v2)% + 4d(v, 0)* = 2d(v, 1)) + 2d(v, 12)?,

where d(v, w) = |v—w| for v, we T,. Under the exponential map, the
distances on the left side are preserved, and the distances on the right side
are expanded if condition (b) is satisfied, so under the exponential map, we
get

d(x1, x1)% +4d(x, 2)* < 2d(x, x1)* + 2d(x, x2)*,

which is the semi parallelogram law. Finally, to show that (c) implies
(a), we merely follow the same argument with the reverse inequality. So
assume (c). Suppose the curvature is positive at some point, and hence is
positive on a convex open neighborhood of the point, which we denote by
z. We pick a vector ve T, and let v; = —v, v, =v. Welet wlo, w#0.
Then

d(vy, 1) +4d(v+w, 0)2 =2d(v+w, v1)> +2d(v + w, 1y)?,

because this relation is one with the norm in the Hilbert space 7,. Now
we apply the exponential map, that is, we let

x1 = exp,{(v1), Xy = exp,(v2), x = exp,(v + w), z = exp,(0,).

The distances on the left side of the equation are preserved under the
exponential map (taking the norms of », w sufficiently small). By Theorem
2.6, the distances on the right are strictly decreased, contradicting the semi
parallelogram law (actually giving an anti semi parallelogram inequality).
This concludes the proof.

The equivalence of the semi parallelogram law and seminegative
curvature is due to Bruhat-Tits [BrT 72].

In the next chapter we shall give the most important classical example
of a Cartan-Hadamard manifold. We note that of the three equivalent
conditions in Theorem 3.5, the most subtle is the curvature condition,
and the simplest is the semi parallelogram law, which can be formulated
independently of the theory of manifolds. In the example, we show that
the conditions are satisfied by actually proving the metric increasing
property of the exponential map, which is an intermediate condition
establishing a link between the other two. It may be useful to formulate
here a weak variation of Chapter VIII, Theorem 6.9, because it sum-
marizes in an easy way some consequences of the metric increasing
property which we shall prove in a concrete case in the next section.
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Theorem 3.6. Let E be a Hilbert space and X a Riemannian manifold.
Let h:E > X be a differential isomorphism which is metric semi-
increasing, that is

|Th(v)wlsey = Wiz forall weE,

and also such that h is metric preserving on rays from the origin. Then X
is complete. Let veE, v#0. Then

t— h(tv)

is a geodesic passing through h(0) and h(v), and is the unique such
geodesic. If the group of isometries of X operates transitively, then there
is a unique geodesic through two distinct points of X.

Proof. The map A~': X — E is distance semi-decreasing. If {x,} is
Cauchy in X, then {A7!(x,)} is Cauchy in E, converging to some point v,
and by continuity of A, it follows that {x,} converges to A(v), so X is
complete. If « is a geodesic in X between two points x and y, then A~! o a
is a curve in E between A~!(x) and A7'(y). In E, the geodesics with
respect to the Hilbert space norm are just the lines, which minimize
distance. From the property that 4 preserves distances on rays from the
origin, it follows at once that if x = 4(v) and £ is the line segment from 0
(in E) to v, then h o & minimizes the distance between #(0) and A(v), and
so Ao is the unique geodesic between A(0) and A(v). If the group of
isometries of X operates transitively, then the last statement is clear, thus
concluding the proof.

Historical note. The presentation of the above material essentially
follows a path which is the reverse of the historical path. It took almost a
century before certain ideas were given their full generality and simplicity.

Historically, things start at the end of the nineteenth century. Klin-
genberg [K1 83/95] asserts that von Mangoldt essentially proved what is
called today the Cartan-Hadamard theorem for surfaces [vM 1881], 15
years before Hadamard did so [Ha 1896]. Actually, von Mangoldt refers
to previous papers by others before him, Hadamard refers to von
Mangoldt, and Cartan [Ca 28] refers to Hadamard (Cartan dealt with
arbitrary Riemannian manifolds). I am unable to read the original
articles.

Helgason [He 62] gave a proof of Cartan’s fixed point theorem fol-
lowing Cartan’s ideas, see the revised version [He 78], Chapter I, Theorem
13.5, namely: On a Riemannian manifold of seminegative curvature, a
compact group of isometries has a fixed point. Cartan’s immediate
application was to show that all maximal compact subgroups of a
semisimple Lie group are conjugate. Mostow [Mo 53] gave a similar
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exposition, but in a more limited context. See also Kobayashi-Nomizu
[KoN 69], Vol. II, Chapter VIII, Theorems 9.1 and 9.2. They use a center
of mass rather than the circumcenter.

Then Bruhat-Tits [BrT 72] formulated their fixed point theorem,
here stated as Theorem 1.2, setting up the parallelogram law condition
prominently. Serre used a variation of their proof and the formulation of
Theorem 3.1 to reach the currently ultimate result with the very simple
proof we have given. I don’t know that Serre published this, but it is
referred to exactly as we have stated it in Brown [Bro 89], Chapter VI,
Theorem 2 of §5. Thus a line of thoughts which started a century before,
abuts to a basic elementary theorem about metric spaces. The condition
of compactness is replaced by the condition of boundedness, and the more
complicated notion of curvature is replaced by the semi parallelogram law.

In addition, the center of mass which occurred in Cartan’s treatment
(and others following him), is replaced by the circumcenter, following
Bruhat-Tits.

In [K1 83/95], Theorem 1.10.17 (also 1.10.18), Klingenberg formulated
a version of Cartan’s theorem under convexity hypotheses, in the context
of manifolds rather than merely metric spaces. He attributed the idea of
his proof to Eberlein. What Klingenberg proves is actually Theorem 3.1
for compact sets in a differential geometric context, although one has
to analyze the proof to see this in 1.10.17. We note that Theorem 3.1 for
compact sets occurs in [BGS 85], Lemma 1, p. 10.

Bruhat-Tits actually characterized Cartan—-Hadamard spaces by the
semi parallelogram law [BrT 72]. From that point on, a theory of
curvature for metric spaces rather than manifolds developed separately,
with an extensive exposition in Ballman [Ba 95], containing Theorem 3.1.
Ballman refers to Brown for Theorem 3.1, cf. [Ba 95), Theorem 5.1 and
Proposition 5.10 of Chapter I.

Note that in the metric theory which has been developed in parallel, the
geodesic between two points has been obtained as the curve arising by
taking successive midpoints ad infinitum. Helgason has pointed out to me
that this limiting procedure was already used by Cartan [Ca 46], pp. 360-
363!

There remains to say a few more words here about the infinite
dimensional case. The importance of infinite dimensional manifolds was
recognized in the sixties, e.g. for function spaces, for Morse theory, and
for the Nash—Moser theorem on Riemannian metrics. We note that
Klingenberg [K1 83/95] has a nice chapter on the H L.loop space.
However, differential properties of curvature are not fully carried out
in these works. For example, Klingenberg does not do the Cartan—
Hadamard theorem in the infinite dimensional case, and he also defines
symmetric spaces only in the finite dimensional case.

I like Marsden’s book [Ma 74], especially §7 and §9, where he already
suggests infinite dimensional contexts for various notions of differential
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geometry, although his alternation between finite dimensional manifolds
and infinite dimensional manifolds does not present a clear account of
theorems and proofs valid in the infinite dimensional case, as it applies to
Hamiltonian mechanics, quantum mechanics, and relativity, including the
infinite dimensional space of Riemannian metrics, and its differential
geometry.

Garland’s study of loop groups [Ga 80] is another candidate to be
placed in the setting of infinite dimensional Bruhat-Tits spaces. A similar
possibility exists for the article by Atiyah and Pressley [AtP 83].

Other possibilities are spaces having to do with the KdV equation, e.g.
[ScTZ 96}, and “moduli” spaces in a broad sense, e.g. Teichmuller spaces,
spaces of Riemannian metrics as in Ebin [Eb 70] and Fried—Groisser
[FrG 89], spaces of Kahler metrics, spaces of connections, ad lib. Anders
Karlsson has told me that the metric in [Eb 70] has seminegative
curvature. Karlsson has also pointed out that once it is proved that some
Teichmuller space has seminegative curvature and some completeness
properties, then the Bruhat-Tits fixed point theorem can be applied
routinely to establish the so-called Nielsen Realization problem for the
corresponding mapping class group. In the Riemann surface case, this is
due to Kerckhoff [Ker 83], see also Wolpert’s paper [Wo 87].

Once one becomes aware of the possibility of applying the Cartan—
Hadamard theory in infinite dimensions, one realizes that examples
abound. A systematic account of the general theory of symmetric spaces
and their applications in the infinite dimensional case remains to be
worked out.

Xl, §4. TOTALLY GEODESIC SUBMANIFOLDS

The main concrete point of this section is to consider certain submanifolds
of Cartan-Hadamard manifolds which are themselves Cartan—Hadamard.

Let X be a Riemannian manifold and let Y be a closed submanifold.
We define Y to be totally geodesic if every geodesic in X with initial

cogditions in (¥, TY) is contained in Y. There is an alternative condition
which we discuss.

Theorem 4.1. Let X be a Cartan—Hadamard manifold. Let Y be a
totally geodesic submanifold. Then:

(1) Y is a Cartan—Hadamard manifold.
(ii) Given two distinct points of Y, the unique geodesic in X passing
through these points actually lies in Y.

. Proof. Note that from the definition of a totally geodesic submanifold,
it follows that the exponential map on X, restricted to T'Y, is equal to the
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exponential map on Y, or in a formula, for ye Y,

exp,, y = €XPy x restricted to 75, Y.

By hypothesis and the definitions, it follows that exp, y is metric semi-
increasing, so Y has seminegative curvature by Theorem 3.5. By hy-
pothesis, Y is geodesically complete, and hence complete by Corollary 3.9
of Chapter IX. By Theorem 3.8 of Chapter IX, given yeY, the

exponential
exp,: T) Y—-Y

is a covering, and since it is injective because exp,: T,X — X is injective,
it follows that exp,: I,Y — Y is an isomorphism, so Y is simply con-
nected. Thus we have shown that Y is Cartan—-Hadamard. Then (i) is
trivial from (i), because the unique geodesic in Y passing through two
distinct points is the same as the unique geodesic in X passing through
these points. This concludes the proof.

We complement the situation by a general statement, converse of (ii) in
the theorem. It is included for completeness, but will not be used.

Proposition 4.2. Let X be a complete Riemannian manifold, such that
given two distinct points of X, there is a unique geodesic passing through
these two points. Let Y be a closed submanifold. Suppose that locally,
given two distinct points in Y, the unique geodesic segment in X joining
these points actually lies in Y. Then Y is totally geodesic.

Proof. 1 owe the following simple argument to Wu. One has mostly to
prove that a Y-geodesic is an X-geodesic. Let a: [0, ¢) — X be a geodesic
in X having initial conditions in Y, that is

x(0)=yeY and '(0)eT,Y.

Suppose a does not lie in Y. Then there is a largest number b such that
([0, b)) = Y but a(b +¢€) ¢ Y for all small € > 0. Note that b could be 0.
Since «([0, b]) < Y, it follows that a'(b) € Typ)Y. This is true even if
b =0, by assumption. Let

p:lb,b+e —Y

be the geodesic in Y such that g'(b) = o/(b), with sufficiently small ¢, so
that (b + €) lies in a convex X-ball centered at a(b), and also in a convex
Y-ball centered at this same point a(b). Let

y:[b,b+e =X
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be the geodesic segment in X joining B(b) and B(b + ¢). By hypothesis, we
have y.([b, b+e¢]) = Y. But a geodesic of X lying in Y is necessarily a
gegdesm of Y, say by the minimizing characterization of geodesics. By
uniqueness, we have y =/ on [b, b +¢]. But then

y'(b) = §'(b) = o' (b),

and so y is ir} fact the continuation of the restriction of « to [0, 5. Hence
«([b, b+ ¢€]) is contained in ¥, contradiction concluding the proof.

In Chapter X, §2 we proved an extension of the Cartan—-Hadamard
theorem, to the normal bundle. We shall now show how part of the proof
can be replaced by another argument. Specifically, we prove:

Lemma 4.3. Let X be a Cartan—Hadamard manifold. Let Y be a totally
geodesic submanifold. Then the map

expyy: NY - X
is a bijection.

Proof. The argument will follow the same pattern that is used routinely
to show that given a point not in a closed subspace of a Hilbert space
there is a line through the point perpendicular to the subspace. We ﬁrsi
prove that given x € X but x ¢ Y, there exists a point y, € ¥ such that

d(x, yo) =d(x, Y) Z}}Ielf;, d(x, y).

Let {y,} be a sequence in Y such that d(x, y,) approaches r = d(x, y) as
n goes to infinity. We can apply the semi parallelogram law in X exactly
as in the proof of Theorem 3.1. The midpoint in X is on the geodesic
between the two points, and lies in Y because of the assumption that Y is
jtotally geodesic. Then the semi parallelogram law shows at once that {y,}
is Cauchy, and therefore converges to the desired point y,. The unique
geodesic through x and y, is perpendicular to Y at y, by Corollary 4.7 of
Ch.apter IX. Furthermore, this geodesic cannot intersect Y in another
point y;, otherwise the existence of this geodesic and the geodesic in Y
between y, and y, would contradict Corollary 3.11 of Chapter IX. Thus
we conclude that the map E: NY — X is bijective.

The above lemma provides a variation for part of the proof of Chapter
X, Theorem 2.5, avoiding further appeal to the Ambrose Theorem 6.9 of
Chapter VIII. However, an important additional step is still required to
prove the local C!-isomorphism property, unavoidably using some esti-
mates for Jacobi lifts as in proposition 2.6 of Chapter IX. Of course, one
may use at this point Theorem 2.4 and Lemma 2.6 of Chapter X.,
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Xl, §5. RAUCH COMPARISON THEOREM

Because it does not take very long, we shall give the proof of Rauch’s
comparison theorem. I follow the exposition given in [KoN 69], Vol. II,
Chapter VIII, Theorem 4.1; or Cheeger—Ebin [ChE 75], Chapter I, §10.
As already mentioned, it is derived from Ambrose. We first make some
preliminary remarks.

Let (X, gx) and (Y, gy) be Riemannian manifolds. Let

ax:la,b] X and  ay:[a, b =Y

be geodesics, defined on the same interval, and parametrized by arc
length. We have the Riemann tensors Ry x and Ry on X and Y,
respectively, and thus we have their values

Ry x(ex(s)) and Ry y(ar(s)) forall sela b].

We define R, y < Ry vy along (ax, ay) if for each s and every pairs of
orthogonal vectors v, w € T, (X and v/, w' € Ty, (o Y such that v, v’ have
the same length and w, w’' have the same length, we have

Rzyx(v, W) § RzY y(vl, W’).
If K denotes the curvature, this means that
Kx(P) =z Ky(Q)

for every plane P contained in T,,yX and every plane Q contained in
Tyy(s)Y. The Rauch comparison theorem will compare Jacobi lifts of the
two geodesics in terms of the Riemann tensor (curvature, with an opposite
sign).

Theorem 5.1 (Rauch Comparison Theorem). Let (X, gx) and (Y, gy) be
Riemannian manifolds of the same dimension, which may be infinite. Let
ay (resp. ay) be geodesics in X (resp. Y), parametrized by arc length,
and defined on the same interval |a, b). Let ny (resp. ny) be Jacobi lifts
or these geodesics, orthogonal to o} (resp. ay).

Assume:

() ny(a) =ny(a) =0, and nx(r), ny(r) #0 for 0<r=b.
(il) ||Daynx(@)ll = 1Dy, ny(@)ll-
(iiiy The length of ax is the distance between its end points.
(iv) We have Ry x < Ry y along (ax, ay).

Then
@I < llny$)> forall  sela, b).
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‘ Proof. We syall use the definition of the index and Proposition 1.1, that
is, for a Jacobi lift # of « such that 5(a) =0 we have

5

(1) I, ) =j (D) + Ro(o', 1) = (D, 1) (s).

We may index n by X and Y as well. We define
S(6) = Im@I* =n(s)?,  also written 1%(s),
and again we may index f and 7 by X, and also by Y. Define
h(s) = I:(n, n)/n*(s) for O0<s<b.
Thus we have hy and hy. Note that by (1),
f')=2L;(n,n) and  f'/f=2h.
For a < ¢ < b, we get

s

log #*(s) = log n*(c) + 2 J h,

4

whence
log(1(5)/}(5) = log (1 (€)/n}(c)) +2 | (hx — hy).

By asgur.nptions (i) and (ii), and the first term of the Taylor expansion of a
Jacobi lift (Chapter IX, Proposition 5.1), we get

lim log n%(c)/n%(c) = 0.

Hence
log r(s)/}() =lim 2 (hy ~ ).

It' will therefore suffice to prove that hx(s) S hy(s) for a<s<b. Fix r
with a <r < b. It will suffice to prove hx(r) < hy(r). Define

_ 1
O T

so we may index { by X (resp. Y) to get {y and {y. Let W(s) = a'(s)"* be
the orthogonal complement of a/(s), so we have Wyx(s) and Wy(s) in the
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tangent spaces at ax(s) and ay(s), respectively. Let
L,: Wy(r) > Wx(r)
be a linear metric isomorphism such that
L, (Ly(r) = Lx(n).
Such a metric isomorphism exists since X, Y are assumed to have the same

(possibly infinite) dimension. Let Py (resp. Py) be parallel translation
along ay (resp. ay). For each s we obtain a metric linear isomorphism

L;: Wy(s) — Wx(s) defined by L= P} yoL,0Pgy.

Define
&(s) = Ls(CY(S)) = P:,X oL,0 ;,Y(CY(S))-

Then {y and ¢ have the same end points at s = a and s = r. Furthermore
(2) £ =Cy(s)  and  (Dyé)’ = (Daylr)
The first equality follows from the fact that parallel translation is a metric

linear isomorphism. The second follows at once from Lemma 2.3, by
using the curve

B(s)=Plyol(s) in TypX.
Now we find:
Iy Ex) SIIE &) by Corollary 1.8 and assumption (iii)
= Jr(Da,r{é)2 + Ry, x(oy, &) by definition (1)

< J (Day, ¢ v)> + Ry, y(aly, {y) by (2) and by assumption (iv)

a
(3) =I'({y, {y) by definition.
From the definition of {, inequality (3) can be rewritten
Ly, nx)/nk(r) £ L(ny, ny)/n3(r)

which means by definition that Ay (r) < hy(r), and concludes the proof.
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Remark. Instead of inequality (3), one has the precise relation

(4) I;(CX’ CX)=Iar(CY’ CY)“'H;

where

H = j (Rox (@, £) = Ry y(@}, Ly).

a

The mtc‘agran'd on the right gives the precise contribution coming from
assumptlon (1y), gnd sh(?ws that if there is a strict inequality in (iv), then
there is a strict inequality in the conclusion hx(r) < hy(r).



CHAPTER XII

An Example of
Seminegative Curvature

The present chapter gives a prototype for a 'Cartan—Hadamard marlufotlk(;lé
so complete, with seminegative curvature, smply connect.ed, n;me y'on
space of symmetric positive definite ‘real, matrices of a given 1me‘;151 ar;
The example is obtained by “bendmg’ a flat euclidean spalccfb y an
exponential map. The chapter is essentially elgmentarx, and could be re
after the reader is acquainted with Riemanman metrics.

Xll, §1. Pos,(R) AS A RIEMANNIAN MANIFOLD
Let:

Mat,(R) = Space of n x n real matripes; - .
Pos,,n((R))= space of symmetric positive definite » x n matrices v (we
write v > 0); ' o
Sym, (R) = vector space of symmetric n X n real matrices;

GL,(R) = G = group of invertible real n x n matrices.

We usually omit R for simplicity, and write simply. ?os,, and. Symf .tW_e
recall that a matrix p is called positive (or positive definite) if it 1s
symmetric and

(pt, & >0  forall {eR", C#0.
We have the exponential map

exp: Mat, — GL,
%)
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which we shall actually consider on the symmetric matrices

exp: Sym, — Pos,,

given by the usual power series

0 vn
exp(v) = ZF’
n=0 """

The image lies in Pos, because if v is symmetric then p = gq? where
q =exp(v/2) and ¢ is symmetric commuting with D, so positive. From
linear algebra, the exponential map is differential (i.e. C*) isomorphism,
namely it has a C® inverse, which can be called the logarithm. To see
this, let p be a positive matrix. We can diagonalize D, that is there exists a
basis ¢i,...,&, of R” and numbers A,...,4, > 0 such that

p&i = A for i=1,...,n.
Then one defines log p=v to be the linear map represented by the

diagonal matrix
log A1

log 4,

with respect to the basis &;,...,¢,. Similarly, one can define a square root
of p to be the linear map represented by the matrix

Al

21/2

with respect to the basis &;,...,¢&,. The appendix shows how to define the
similar notions on Hilbert space, in a more invariant fashion.

The restriction of exp to lines through 0 is a group isomorphism from
each line to its image, and is called a one-parameter subgroup.

On Sym, we have a natural positive definite scalar product, defined by

(0, W = (v, w) = tr(ow),

where tr is the trace of a matrix. The tangent space at a point p € Pos, is
a translation of Sym,. Without using more sophisticated language, we
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may identify it with Sym,, (as we identify R” with the tangent space at any
point). We then define a positive definite scalar product depending on a
point p € Pos, by letting

- 2 2 1,32
(v, w), = tr(p 'vp~'w)  sothat  |u|s =]v|;, =tr((» 9)%).
The positive definiteness comes from the fact that

tr(p~op~"v) = te(p20p™V2p 2up7I/2) = tr(w?)
with w=p pp~1/2,

and tr(w?) > 0 if v # 0. If ¢+ p(¢) is a curve in Pos,, then the differential
of the length is given by

(ds/di)* = tr(p(t)’lp’(t))2 abbreviated ds? = tr(p~! dp)”.

We call the above metric the trace metric. It defines Pos, as a Riemannian
manifold X. It is equal to a constant times the Killing metric, which the
reader will find in other books.

The group G = GL,(R) acts on Pos,. For each g € G we let [g] be the
map of Pos, into itself defined by

p—gp'g=l4lp, for pePos,.

Indeed, [g]p is positive, because of all £eR”, {# 0 we have

([glp&, &) = (gp'g¢, &) = (p'g¢, 'g&) > 0.

Since, as we have remarked earlier, every positive definite matrix is the
square of a positive matrix, it follows that G acts transitively on Pos,.
In particular, if p = g*> with g € Pos, then p = [gle, where e is the unit
matrix. The appendix shows that all these statements remain valid in
Hilbert space, except that the definition of the scalar product (v, ), by
means of the trace is a finite dimensional phenomenon, so this is one point
where it remains to be seen whether the theory has an extension to the
infinite dimensional case. We shall list the properties we are using
carefully, to make proof analyses easier.

Theorem 1.1. The association g+ |g] is a representation of G in the
group of isometries of Pos,, that is each [g] is an isometry.

Proof. First we note that [g] can also be viewed as a map on the whole
vector space Sym,, and this map is linear as a function of such matrices.
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Hence its derivative is given by

[9]'(p)w =gw'9  forall weSym,.

hNow we verify that [g] preserves the scalar product, or the norm. We
ave:

lla]' ()Wl = tr((lg)p) ' gw'9)?)
=tr((gp'g)"'gw'g)?)
=tr('g7 p g Igw'g'g T p g gw'y)
=tr('g”' plwp T w'g)
= tr((p‘lw)z)

Y
- lw'p
which proves the theorem.

_ Let K = Uni,(R) = O(n) be the group of real unitary matrices. Then K
1s a compact subgroup of G, and a standard elementary fact of linear
algebra asserts that the map

Pos, x K — G givenby (p, k) pk

?s a diffe‘rential (even real analytic) isomorphism. However, we use an
isomorphism of G-homogeneous spaces ¢: G/K — Pos, given by

p: gK — g'g = [gle.

The elements k € K are precisely the elements k € G such that 'k = k-,

Left translation by an element g € G acting on G/K corresponders to [g]
under ¢.

Theorem 1.2. The map exp: Sym,, — Pos, is metric semi-increasing. On
rays from the origin, it is metric preserving. It is equal to the exponential
map associated to the metric, i.e. the curves t — exp(iw) with w e Sym

are geodesics. Thus Pos, satisfies condition EMI, and is a Cartan—'j
Hadamard and Bruhat-Tits space.

The main part of the proof will be given in the next section. Here we
sl}all make some remarks, taking care of the easier aspects of the theorem
First note that the two stated metric properties imply that our naivé
exponential series is actually the exponential map associated to the metric
by applying Theorem 3.6 of Chapter X. ’
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Next, since the action [g] of g € G preserves the metric,_ and hence
preserves distances, and since every element of Pos, can bp written as [ge,
to prove condition EMI, it suffices to do it at the origin, namely at e.

Next, we give a simple self-contained proof that our naive exponential
map preserves the metric along rays from the origin.

Theorem 1.3. The exponential map exp: Sym, — Pos, is metric pre-
serving on a line through the origin.

Proof. Such a line has the form ¢ — v with some v € Sym,, v # 0. We

need to prove ,
0|2 = lexp’ (0)v|p -

Note that
g—t exp(tv) = exp’(tw)v
d t"p"
- dt Z n!
tn—l n

= n—1"

= exp(tv)v.
Hence

lexp’ (10)0]2,p o = tr{((exp 1) (exp t)0)?)
= tr(v?)

2
= |vltr7
which proves the theorem.

As an application, we can determine explicitly the distance between two
points in Pos,, as follows.

Theorem 1.4. Let p, g € Pos,. Let ay,...,a, be the roots of det(tp — q).
Then

dist(p, ¢9) = Z (log a)’.

Proof. Suppose first p = e and g is the diagonal matrix of ay,...,a,.
Let v =log ¢, so v is diagonal with components log aj,...,log a@,. The
theorem is then a consequence of Theorem 1.3, since v? has comppnents
(log a,-)z. We reduce the general case to the above special case. I?lrst we
claim that there exists g € G such that [g]p = e and [g]g = d is diagonal.
Indeed, we first translate p to e, so without loss of generality we may
assume p = e. There exists an orthonormal basis of R” diagonalizing g, slo
there exists a diagonal matrix d and k € K such that g =k d’k =k dk™".
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But e = kk~1, so taking [k]q proves our claim. Finally, from the equations
gp'g=-e and gq'g=d we get p=gl'g7! and g =g"'d'g"!, so

det(tp — q) = det(tg™""g™" — g7 'd’g ")
= det(g) det(te — d).

Since dist(p, g) = dist(e, d), the theorem follows.

The next section contains the main part of the proof for the metric
increasing property of the exponential map, and §3 contains further results
about totally geodesic submanifolds of Pos. Except for a slight axio-
matization, I follow Mostow’s very elegant exposition of Cartan’s work
[Mo 53], in both sections.

Xll, §2. THE METRIC INCREASING PROPERTY OF
THE EXPONENTIAL MAP

We shall need only a few very specific properties of the exponential map,
and the trace scalar product, so we axiomatize them to make the logic
clearer.

We let o/ be a finite dimensional algebra over R, with an anti-involution,
that is a linear automorphism v 'v of order 2 such that '(vw) = 'w'v
Jor all v, we /. We let Sym be the subspace of o consisting of the
symmetric elements, i.e. v such that v="v. We suppose given a trace,
that is a functional

tr: & — R

such that tr(vw) = tr(wv) for all v, w € o/, and we asume that tr(w?) > 0
Jor all weSym, w#0. Thus the functional gives rise to the tr-scalar
product

(0, W) = tr(ow), ol = tr(0?),

which is positive definite on Sym. We shall also assume a Schwarzian
property, see below.

The standard example is when &/ = Mat,(R). Note that we have the
exponential map

exp: of — o given by exp(v) = Z —=e"

We define
Pos = exp(Sym).
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Then every element of Pos has a square root in Pos, namely p = exp(v)
implies p!/2 = exp(v/2).
Let v, we of/. We define

F,(w) = exp(—v/2) exp’(v)w - exp(—v/2) = e™/? exp’ (v)we™"2.
Note that
exp’(v)w = diexp(v + tw)
4 =0
Directly from the definitions, we get
=1
(1) exp’(v)w = Z - Z v wo®.

n=0 n: r+s=n-1

Since powers of an element commute with each other, we note that
exp(—v/2) commutes with powers v”, v*.

Lemma 2.1. The maps F, and exp’(v) are hermitian with respect to the
tr-scalar product on /. If ve Sym, then F, and exp'(v) map Sym into
itself.

Proof. A routine verification gives for u, v, we &

tr(F,(w)u) = Zl' Z tr(exp(—v/2)v"wv® exp(—v/2)u)

n=0 """ r+s=n-1

=YL T o exp-o/2expt-vr2)
n=0

“r+s=n-1
= tr(wF,(v))
because exp(—v/2) commutes with " and v*. This concludes the proof
that F, is hermitian with respect to the tr-scalar product. If v € Sym, then
formula (1) shows that F, maps Sym into itself. The statements about
exp’(v) follow the same pattern of proof.

We define L,: of — & to be left multiplication, L,(w) = vw, and R, is
right multiplication. We let D, =L, — R,, so

D,(w) =vw—wv = [v, w| forall v,we .

Lemma 2.2. Let ve Sym. Then D? is hermitian on Sym.
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Proof. Again this is routine, namely:
D,(w) = vw — wy,
D*(w) = v*w — 2owv + wv?,

(D w)u = v2wu — 2owou + wou,
wD2u = wv’u — 2wouw + wuv®.
Applying tr to these last two expressions and using its basic property
tr(xy) = tr(yx) yields the proof of the lemma.

We recall that a hermitian operator B on Hilbert space is called
semipositive, written B = 0, if we have (Bw, w) =0 for all w# 0 in the
Hilbert space. Then one defines B; = B, if B — B, = 0.

In the proofs that follow, we shall use two basic properties.

Spectral Property. Let M be a symmetric linear map of a finite
dimensional vector space over R, with a positive definite scalar product.
Let b>0. Let fy(t) be a convergent power series such that fy(t) = b
for all t in an interval containing the eigenvalues of M. Then
So(M) 2 b1

Proof. Immediate by diagonalizing the linear map with respect to a
basis. Of course, the Appendix proves the analogous property in Hilbert
space.

We also assume:
Schwarzian Property. For all v, w € Sym,
tr((ow)?) < tr(v?w?).

For the convenience of the reader, we recall the proof in the cases of
matrices. The matrices (linear maps) can be simultaneously diagonalized,
if one of them is positive definite, and in that case the inequality amounts
to the usual Schwartz inequality. If both matrices are singular, then one
can consider a matrix w + ee with the identity matrix e, and ¢ > 0. Then
w + €e is non-singular for all sufficiently small € # 0, and one can then use
the preceding non-singular case, followed by taking a limit as € — 0. This
concludes the proof.

We define a formal power series

1) = i (1/2)* _sinh /2 _ exp(#/2) — exp(—1/2) .

— (2k+ 1) /2 t
=0
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We note that L, and R, commute with each other, and so
exp(D,/2) = exp(L,/2) exp(—R,/2).
We may take f(D,). Since only even powers of D, occur in the power

series for £ it follows that if v € Sym, then f(D,) maps Sym into itself, and
the operator

f(Dy): Sym — Sym
is hermitian for the tr-scalar product.
Lemma 2.3. For any ve s/, we have D,F, = D,f(D,).
Proof. Let t— x(f) be a smooth curve in &/. Then
x(exp x) = (exp x)x.
Differentiating both sides gives
x' expx + x(exp x)’ = (exp x)'x + (exp x)x/,
and therefore
x" expx — (exp x)x’ = (exp x)'x — x(exp x)'.

Multiplying on the left and right by exp(—x/2), and using the fact that x
commutes with exp(—x/2) yields

(2) exp(—x/2)x" exp(x/2) — exp(x/2)x" exp(—x/2)
= exp(—x/2)(exp x)’ exp(—x/2)x
— x exp(—x/2)(exp x)' exp(—x/2).

Since L, and R, commute, we have

exp(Dx/2) = exp(Lx/2) exp(—Rx/2),
so (2) can be written in the form
3) (exp(Dx/2) — exp(~Dx/2))x’ = DyFyx'.

We now take the curve x(¢) = v + tw, and evaluate the preceding identity
at t=0, so x'(0) =w, to conclude the proof of the lemma.
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Theorem 2.4. Let veSym. Then F,= f(D,) on Sym. Hence for
w e Sym, we have

exp’(v)w = exp(v/2) - f(Dy)w - exp(v/2).

Proof. Let h, = F, — f(D,). Then h,: Sym — Sym is hermitian, and its
image is contained in the subspace E = Ker D, nSym. Since Sym is
assumed finite dimensional, it is the direct sum of E and its orthogonal
complement E* in Sym. Since 4, is hermitian, it maps E+ into EL, but 4,
also maps E* into E, so h, =0 on E+. In addition, E is the commutant
of v in Sym, and hence f(D,)=id=E, on E, so h,=0 on E. Hence
h, =0 on Sym, thus concluding the proof of the theorem.

Theorem 2.5. Ler ve Sym. Then D? is semipositive, and f(D,) = I.
Proof. By Lemma 2.2, for we Sym we have
(DXw, w),, = tr(wow — 2owow + v?w?)
=2tr(v*w? — (w)?).

Thus the semipositivity of D2 results from the Schwarzian property of tr.
Now we can write

f() = fo(??)

where f(f) is the obvious power series, which has positive coefficients.
Note that f,(¢#) =1 for all > 0. Therefore by the spectral property of
power series, it follows that

f(Dy) = fo(D}) 2 1.
This concludes the proof.

Theorem 2.6. The exponential map exp is tr-norm semi-increasing on
Sym, that is for all v, we Sym, putting p = exp(v), we have

2

Wi = tr(w?) < tr((p™" exp’(0)w)?) = lexp’ (V)W ¢

Proof. The right side of the above inequality is equal to

tr((p~" exp’(v)w)?) = tr((exp(—v/2) - exp’(v)w - exp(—v/Z))2
= tr(F,(w)?)
= |f(D,,)w|t2r by Theorem 2.4.

Applying Theorem 2.5 now concludes the proof.
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Corollary 2.7. For each v e Sym, the maps
F, and  exp'(v): Sym — Sym
are linear automorphisms,

Proof. Theorem 2.6 shows that Ker exp’(v) = 0, and exp’(v) is a linear
isomorphism. The statement for F, then follows because F, is composed
of exp’(v) and multiplicative translations by invertible elements in Sym.
This concludes the proof.

We note that Theorem 2.6 concludes the proof of Theorem 1.2.

Remark. There is no trace on the full algebra of endomorphisms of an
infinite dimensional Hilbert space, satisfying the conditions listed at the
beginning of the section. There are such traces on some other types of
infinite dimensional algebras with units. Lemmas 2.1, 2.2 and 2.3 don’t
depend on anything more. However, Theorem 2.4 depends on an
additional hilbertian property, namely that there exists a constant C > 0
such that

tr(v?) 2 Clo|>  forall ve Sym,

where |[v| is the original Banach norm. Since all norms on a finite
dimensional vector space are equivalent, this condition is valid in finite
dimension. But as Rieffel has informed me, if this condition is satisfied,
and so makes ./ into a Hilbert space, then necessarily < is finite
dimensional. There remains to be seen whether there are natural infinite
dimensional cases where a weaker condition is still true so that con-
sequences of this property, similar to Theorem 2.5 and 2.6, are valid in
some sense, without & being complete for the Hilbert trace norm.

Xil, §3. TOTALLY GEODESIC AND
SYMMETRIC SUBMANIFOLDS

We continue with the same notation as in the preceding section. We
follow Mostow’s exposition of Cartan’s work, as before [Mo 53]. It can be
shown that all finite dimensional symmetric spaces of non-compact type
are symmetric submanifolds of Pos, for some n, depending on the choice
of a suitable representation. Thus Theorems 3.3, 3.5, 3.7 and 3.9 below
apply quite generally.
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We abbreviate some mappings which occur frequently as follows. For
v € Sym:
J, = exp’(v) (the Jacobian of the exponential map),
Ay=R,+L, where p=expov=e’,
so A, (w) =e"w+ we’.

At the moment, we do not yet know that A4, is a linear isomorphism. To
prove this, we shall use another function besides f, namely we let

g(t) = 2£(#)" cosh(z/2) = t coth(z/2).

Since g(t) —» o0 as t —» t o0, g(t) > 1 as t — 0, and g(¢) > 0 for all zeR,
it follows that g is a continuous function on every closed interval [0, c|,
and is bounded away from 0 and oo on this closed interval. Furthermore,
g(f) = go(t*) where gy satisfies go = ¢ >0 on [0, ¢, for some € > 0.

Theorem 3.1. The Hermitian operator A, is invertible on Sym. Fur-
thermore, we have the formula

Ay = exp'(v)go(D?) on Sym.

Proof. From the definitions and Theorem 2.4, we know that

J, = exp’(v) = exp(L,/2) exp(R,/2)f(D,) on Sym.

Note that exp L, = L, and exp R, = R,. Abbreviate L=L,, R=R,,
D=L~ R. By Corollary 2.7, we find

I, = I eR + eb) = f(D) e L2 R (e 4 eR)
— f(D)—l(e(L—R)/z + e(R—L)/2)
= (D) (¢P2 + 7PP%)
=2/(D)™" cosh(D/2) = ¢(D),
which proves the formula. Now from the fact that go is bounded away

from 0, strictly positive on an interval [0, ¢] such that 0 < D? < cl, we
deduce the invertibility, and conclude the proof of the theorem.

The next considerations will depend on the existence of symmetries, so
the present context may also be viewed as an example of symmetric
spaces, which will be defined in general in Chapter XIII.
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Let p e Pos, and consider the mappings of Pos — Pos given by:
S(x) =x71, B,(x) = pxp, Sp(x) = px~!p, s0 Sj = id.

One calls S, the Cartan symmetry and we have S, = B,0S. We know
that B, is an isometry, and we claim that S is also an isometry. Indeed,
the differentials of S and B, are given by

S'(pyw=—p~'wp™',  Bj(v)w = pwp.

as one verifies directly from the definitions. This is a pure Banach algebra
relation. Then the isometry relation

|S'(p)wly-r = W  for pePos, weSym,

is immediate from the definitions of the trace and the scalar product. It
follows that S, is an isometry, being composed of isometries. In addition,
we note that S,(p) = p, that is, p is a fixed point of S,.

We have S,(p) = —id.
Proof. Immediate from the chain rule S)(p) =B, (S(p))S'(p).

The above properties show that S, is a symmetry in the sense defined
generally in the next chapter.

We shall study submanifolds, both in the Lie vector space Sym and in
the symmetric space Pos = exp Sym. So let V' be a vector subspace of Sym,
and let X = exp(¥). Note that if y = exp(w) € X, then y~! = exp(—w) is
also in X, so X is stable under the map y+— y~!. By a symmetric
submanifold of Pos, we mean a submanifold of the form X = exp(¥) such
that X satisfies the condition

SYM 1. x, y € X implies xyx € X.

In other words, X is stable under the operation (x, y) — xyx. Observe
that this condition is equivalent with the condition that S, leaves X stable
for all xe X, i.e. X is stable under all Cartan symmetries with x € X.

Example. Let Sym, be the standard space of symmetric n x n real
matrices, and let V' be the subspace of matrices with trace 0. Thus
X =exp U consists of the positive definite symmetric matrices with
determinant 1, which is symmetric. As we shall we below, it follows that
X is a totally geodesic submanifold of Pos,, usually denoted by SPos, (the
special positive elements).
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Let X = exp(¥) be a symmetric submanifold. Then for each y e X’ we
have the operator

(y): X > X  defined by [y]x = yxy.

Lemma 3.2. Suppose X =exp(V) symmetric. Given p, g€ X there
exists y € X such that ypy = q. In other words, X acts transitively on
itself.

Proof. The condition ypy = ¢ is equivalent with

1/2.,1/2 1/2

yp'2=p'Pqp'? & (p'Pyp'?)? = p'lgp'7?,
o p2ypl2 = (p\2gpl/2)i/2

pyp'?p

o y=pV2(pl2gpy 212,
which concludes the proof.

Note. A similar proof shows that given p, ¢ € X there exists y € X such
that ypy = ¢! and thus also yqy = p~!. Written in terms of the operator
[v], these read

Mp=¢' and [Ylg=p"

We shall now describe equivalent conditions for a manifold to be
symmetric. First we derive a formal relation about the exponential on

Sym.
For all we &f we have

% exp(tw) = exp’ (tw)w = e™w.

This follows at once from the definition of the differential, and the fact
that all elements with which we operate commute with each other, so one
can take the derivative of exp(tw) in the usual way from ordinary cal-
culus. Now given x = e” and p e Pos, we can define a curve £(f) in Sym
by the formula

exp &(f) = e™ pe™.

Note that £(0) = log p and exp(£(1)) = xpx. Differentiating with respect
to ¢, we obtain
exp’ (£(1))&' (1) = e™wpe™ + e™ pt™w
= Aeny(w)

by the definition of 4, and the first observation in the proof. It follows
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from Theorem 3.1 that

&'(t) = exp’ (6(1)) ™ g (w)
= f(D},/2)™" cosh(De(s/2)(w)
(1) = go(Dé(,))(W)-

Theorem 3.3, Let V be a vector subspace of Sym, and let X = exp(V).
Then X is a symmetric submanifold of Pos if and only if:

SYM 2. The map D? maps V into itself for all ve V.

Proof. Suppose that D2 maps V into itself for all u € V. Note that g is
actually real analytic, and the above equation is an ordinary differential
equation for &(¢) in V. It has a unique solution with initial condition
£(0) = log p, and of course, this solution lies in V, that is £(¢) € V for all
t. Taking ¢ =1 shows that xpx € exp(¥), thus proving one implication.

Conversely, assume that x, p € exp(V) implies xpx € exp(V). Let w be
as before, and also £(¢) as before, with say £(0) = v =log p. We have to
show Df(w) e V. By assumption, ¢ is a curve in ¥, and hence so is &/,
which we computed above, with the power series f of §2. Thus &'(¢) is a
power series in f, whose coefficients lie in V. The coefficient of #* is
directly computed to be

T%Dg(o)(w) ev,
thus completing the proof of the theorem.

Remark 3.4. The condition that V is stable under D? for all ve ¥V is
actually a Lie -algebra condition, because in an arbitrary Lie algebra one
may define D, by

D,(w) = [v, w].

One may then use the following purely Lie algebraic result to get an
equivalent condition.

Lemma 3.5. Let L be a Lie algebra and V a linear subspace. Then V is
stable under D? for all v e V if and only if V is stable under all operators
D,D, with u, ve V.

Proof. Applying the hypothesis that D? leaves V stable to u+v
(polarization) shows that D,D, + D,D, leaves V stable, or in other words,

(%) [, [v,w]] + [v, [u,w]] eV  forall u,v,weV.
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From Dy, = D,D,— D,D,, we see that Dy, , + 2D,D, leaves V stable,
that is

(%) [[u, o], w] +2[v, [u, w]] € V.

Interchanging » and w in (x) shows that [[u, o], w] + [v, [u, w]} € V.
Combining this with (**) proves the lemma. Note that proof is valid for a
Lie algebra over any commutative ring.

A linear subspace of a Lie algebra which satisfies the property that for
all #, v, w in the subspace the element [u, [v, w]] lies in the subspace is
called a Lie triple system. Thus the lemma implies

Theorem 3.6. A submanifold X = exp(V) of Pos is symmetric if and
only if V is a Lie triple system.

The previous theorem established an equivalent between a Lie property
and the symmetry property of the submanifold. The next theorem gives
another equivalent condition in terms of geodesics.

We say that X = exp(V) is a geodesic submanifold if given two points x,
y e X, the geodesic between these two points lies in X.

Theorem 3.7. Let X = exp(V). Then X is a geodesic submanifold if and
only if X satisfies the (equivalent) conditions of Theorem 3.3, e.g. X is a
symmetric submanifold.

Proof. Assume X is symmetric. The image of the line through 0 and an
element v e ¥, v # 0 is a geodesic which is contained in X. Since the maps
x+— yxy (for y e X) leave X stable, and act transitively on X, it follows
that X contains the geodesic between any two of its points. Conversely,
assume X is a geodesic submanifold. Let x € X, ve V. Then S, maps the
geodesic x!/2 exp()x'/2 to x'/? exp(—tv)x!/2, and so this geodesic is
stable under S, (as a submanifold). Hence S, maps X into itself, so X is
symmetric, thus concluding the proof.

Examples. Let o/ = Mat,(R) and Pos = Pos, the space of symmetric
positive definite matrices. Let 4 be the submanifold of diagonal matrices
with positive diagonal components. Then A is totally geodesic, as one sees
by taking ¥ = vector space of all diagonal matrices. The bracket of two
elements in ¥ is 0, so V trivially satisfies the criterion of Theorem 3.6.
One usually denotes ¥ by a. The orthogonal complement of a for the
trace form is immediately determined to be Symf,o) = a, consisting of the
matrices with zero diagonal components. We now obtain an example of
the global tubular neighborhood theorem for Cartan-Hadamard spaces,
by applying Theorem 4.4 of Chapter X to the present case.
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Theorem 3.8. Let A be the group of diagonal n x n matrices with positive
diagonal components, and let a = Lie(A) be the vector space of diagonal
matrices. Let at = Symf,o) be the space of matrices with zero diagonal
components. Then the map

Axat —Pos, givenby (a,v)r [alexp(v)

is a differential isomorphism.

Similarly, instead of 4, one could consider other totally geodesic
submanifolds obtained as follows. Given positive integers n; (i=1,...,m)
such that 3" n; = n, we let V be the subspace of Sym consisting of diagonal
blocks of dimensions nj,...,n,. Then V is a Lie triple system, and
exp(V) is totally geodesic.

Finally, the Riemann tensor R can be described explicitly as follows.

Theorem 3.9. Let R be the Riemann tensor. Then at the unit element e,
with u, v, we T,(Pos) = Sym, we have

R(v, wyu = —{[v, w, 4],
and Ry(v, w) = (R(v, w)v, w),, = 0.

Proof. Assume the formula for the 4-tensor R. Substituting u = v and
taking the tr-scalar product immediately shows that

(R(v, w)v, W) = —2tr((ow)? — v?w?).

Hence the semipositivity of R, comes from the Schwarzian property. So
there remains to prove the formula for R. But this is a special case of a
formula which holds much more generally for Killing fields, since for
symmetric spaces, we know that m, = T, see Chapter XIII, Theorem 5.8
and Theorem 4.6.

CHAPTER XIil

Automorphisms and
Symmetries

By a covariant derivative D on a manifold X we shall always mean a
covariant derivative associated with a spray. Thus for each vector field &,
the association # — D¢ is a tensor, and D could therefore be called a
tensorial derivative. As Wu informed me, Hermann Weyl was the first
to point out the importance of this notion, independently of a metric
[Wey 18]. A pair (X, D) consisting of a manifold and such a covariant
derivative will be called a D-manifold. We also note that D is often called
a connection in the literature, or an affine connection, following Hermann
Weyl.

The curvature involved a second derivative, and we went immediately
into it without stopping to consider the second derivative for its own sake.
We now do so in a first section. The second derivative is even more
important than in ordinary calculus, and we shall see several applications,
both in this chapter and the next. Among other things, it is used to define
the Laplace operator in §1. We also give the formula relating it to the
Riemann tensor.

The second derivative is an operator discovered in certain contexts by
Killing, and Karcher pointed out to me that this operator is tensorial in its
arguments. The Killing operator is defined for two vector fields by

DyD¢ = Dp,¢ = Q(n, §)-

We relate it to D? in §1.

The rest of this chapter deals with the context of D-manifolds and their
automorphisms.

Let (X, DX), (Y, DY) be D-manifolds, which we write more simply
(X, D) and (Y, D). An isomorphism p: X — Y (differential) is said to be

AN
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a D-isomorphism if p*D = D. The pull back p*D is defined by func-
toriality, so by the formula

(p*D),c(p* 1) = p*(De1)

for all vector fields #, { on Y. Recall that for any vector field £ on Y,

(P O)(x) = Tp(x)'¢(p(x)),  ie. pE=Tp™ - (op).

A D-automorphism of X is just an isomorphism (X, D) — (X, D) (same
D). .
)Since a spray is uniquely determined by its associated cova}riant deri-
vative, it follows that a D-automorphism is also an automorphism for the
spray. _ ‘ .
Suppose X is pseudo Riemannian with metric g. Then there is a unique
covariant derivative called the metric or Levi-Civita, or pseudo Rieman-
nian derivative (connection) associated with g. In one important exargple,
many metrics may have the same covariant derivative: any two positive
definite scalar products on a finite dimensional vector space have the same
covariant derivative, namely the ordinary one. A metric automorphlsm
(i.e. an isometry) of X induces a D-automorphism, but the converse is not
necessarily true. A number of properties of metric automorphlsn.ls actu?lly
depend only on their being D-automorphisms, anq 1 think it clarifies
matters considerably to obtain certain results as special cases of thc? more
general results concerning D-automorphisms, and to lay 'the four}dat'lons in
general, especially since some manifolds have a covariant cl.envat}ve .for
which no Riemannian metric exists for which D is the metric derivative.
When such a Riemannian metric exists, then Kobayashi has brought to
my attention some important facts. Let D be the metric derivative associ-
ated to g. Then the two notions of D-automorphism and g-automorphism
coincide in the following cases of finite dimensional manifolds:

When the manifold is compact (due to Yano). .
When the manifold is complete “irreducible” (due to Kobayashi).

Cf. [KoN 63], p. 242. Furthermore, as Kobayashi also infqrmed me, de
Rham’s holonomy decomposition theorem states ’Ehat the u.mversal cover-
ing space of a Riemannian manifold is metrically 1som9rphlc to a prpduct
of a euclidean space and irreducible manifolds. Thus in th.e finite dlan-
sional case, when D is a metric derivative, D-automorphisms are falfly
close to being affine transformations of a euclidean space, combined with
- morphisms.
¢ agifite gnerally, let & be a vector field and let {p,} be its ﬂovy. We
define ¢ to be D-Killing (resp. metric or g-Killing in the pseudo Rieman-
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nian case) if each p,: X — X is a D-automorphism (resp. a metric auto-
morphism). The definition is usually given only in the pseudo Riemannian
case. A D-automorphism has been called an affine transformation.
However, I find it more appropriate to unify and functorialize the ter-
minology. We denote by Killp(x) and Kill,(X) the set of D-Killing fields
and metric Killing fields respectively. Each one will be seen to be a vector
space over the reals, and we have the inclusion

Killp(X) o Killy(X)
if D is the metric derivative associated with g.

For the rest of this chapter, by a Killing field we shall mean a D-Killing
Sield unless otherwise specified.

It turns out that Killing fields can be characterized by a second-order
differential equation due to Killing [Ki 1891], namely

DDl —Dpré=R(n, )¢ forall 4,¢

Helgason gave me the above reference after looking into the literature,
when I expressed interest in the history of this equation. Helgason also
pointed out that the equation was subsequently referred to in Cartan
[Ca 51], Section 5, especially p. 328; and Eisenhart [Ei 26], p. 247, formula
71.1. It has usually been discussed only in the Riemannian context, not
only in the older literature, but more recently in Klingenberg [KI 83/95]
and Sakai [Ca 96]. However, a form of it is given in [KoN 63), Chapter
VI, Proposition 2.6, as was pointed out to me by Kobayashi. I would not
have recognized it otherwise.

In §2, we deal with the characterization of Killing fields by the Killing
equation, and in §3 we discuss the pseudo Riemannian case. In §4, we list
some Lie algebra properties of Killing fields. In §5 we introduce Cartan’s
symmetries, and describe some of their implications for Killing fields. In
§6 we give further properties of symmetric spaces. I originally learned
some of the material from Klingenberg [K1 83/95], whose approach I liked
very much. However, Klingenberg limits himself to the Riemannian case,
whereas we work in the general situation of an arbitrary covariant deri-
vative (connection), since a Riemannian or pseudo Riemannian hypothesis
1s unnecessary for the main results. Klingenberg does a very nice and
beautiful job. He even states in Chapter I: “... we consider manifolds
modelled on Hilbert spaces rather than on finite dimensional spaces. This
will be useful in Chapter 2 and presents no conceptual difficulties anyway,
as was demonstrated by Lang [1].” However, in his Chapter 2, he finks
out, by considering symmetric spaces (for instance) only in the finite
dimensional context. About this, he says in the Preface to the book: “In
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Chapter 2, entitled Curvature and Topology, 1 restrict myself to finite
dimensional manifolds, because the local compactness of the manifold is
needed.” In fact, the hypothesis of local compactness is needed only in
some cases, notably involving positive curvature, but it is definitely not
needed for others. Klingenberg directed his book to certain applications
having to do with the existence of closed geodesics and pinching, and he
gives priority to the Hopf-Rinow theorem, which is the only exception to
the general principle that all basic results of differential geometry hold in
the infinite dimensional case.

Thus Klingenberg makes unnecessary assumptions about finite dimen-
sion when they are not needed, for certain results concerning Killing
fields. What is needed on some occasions is that the exponential map at a
point (or at all points) is surjective. The Hopf-Rinow theorem guarantees
this property in finite dimension, but as an assumption, the surjectivity of
the exponential map is weaker than finite dimension since it includes the
infinite dimensional case of seminegative curvature, when the Cartan—
Hadamard theorem and its corollaries are valid. Thus I found the above
assumption the most natural one to make.

In addition, some results of Klingenberg’s Chapter 2 are given only in
the context of symmetric spaces but they are valid for arbitrary D-
manifolds, without any further assumption concerning the existence of sym-
metries. Furthermore, this validity gave rise to a question by Helgason: to
what extent can the Lie algebra of Killing fields, or the Lie subalgebra
associated with a certain subspace (denoted by b, +m,), be integrated
inside an arbitrary manifold so that a manifold may contain in some sense
a maximal symmetric submanifold (locally at a point p)? Thus a sys-
tematic analysis of proofs in the Riemannian case, and the elimination of
superfluous hypotheses, actually suggested further topics of research.

In any case, a new exposition of the material in this chapter was in
order on several counts, among which: to deal with arbitrary manifolds
with a covariant derivative, not just Riemannian or pseudo Riemannian
manifolds; to include the infinite dimensional case; and to free the general
theory of Killing fields from the context of symmetric spaces.

Xlll, §1. THE TENSORIAL SECOND DERIVATIVE

We begin with some remarks on the first derivative. Let D be a covariant
derivative. We have used D essentially with a subscript, such as D,,
applied to various tensors (vector fields, forms, etc.). However, it will now
be essential to apply D without a subscript. For instance if f is a
function, then Df is a 1-form, defined on a vector field n by

(DY) =Dyf =n-f.
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On a vector field ¢, we have

(D¢)(n) = Dyt
If w is an r-multilinear tensor, R or TX -valued, we have
(Dw)(n) = Dyw;

$0 Dw is an (r + 1)-multilinear tensor. And so forth.
Let (X, D) be a D-manifold. For vector fields 7, { we define the Killing
operator, or second tensorial derivative Q(7, {) to be

Q(n, {) = DyD; — Dp,.

We shall now see that this operator amounts to the second derivative,

and we discuss it systematically on functions, vector fields, and multilinear
tensors.

On Functions. We start with functions. In ordinary calculus on vector
spaces, if f is a C? function on an open set in a Banach space, then the
second derivative f”(x) is a symmetric bilinear form called the Hessian of
S at x. We shall now consider the Hessian, and more generally the second
derivative D? on functions. In this case, we call Q(n, {) the tensorial
Hessian, or D-Hessian, or simply the Hessian. Let f be a function. Then
Df =df is a 1-form. We claim that

(1) (D*)(n, 0) = Q(n, O) f.

To see this, note that if @ is a 1-form, then

(Do), §) = (Dy0)(0) = Dy((0)) — w(D,0)

SO
(D*)(n, §) = D(Df)(m, ) = Dy(Def) — (DF)(Dy L)
=DyDrf — (D) f =01, O)

thus proving the claim.

Let , { denote the representations of the vector fields in a chart, and let
B be the symmetric bilinear map whose quadratic map represents the

s}lzray. Then it follows immediately from the above definition that we have
the

Local Represention. We have

Q. O)f (x) = £"(x) (n(x), L) + f'(x)B(x) (n(x), {(x)),
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or omitting the x,

(2) O, Of =f"-n-L+ f"-Bln, ).

Thus D*f is symmetric, or in other words, Q(n, ) is symmetric in (17,‘{) as
an operator on functions. Warning: it is not necessarily symmetric on

higher degree forms or vector fields, cf. Proposition 1.3.

Representation Along a Geodesic. Let xe X and let ve TyX. Let o be
the geodesic such that a(0) = x and a'(0) =v. Then

2
® DY, ) = (§) £0)

t=0

This simply comes by looking at the Killing operator along the geodesic,

so that
Q(aly fx,) = Dy Dy — DD,ra’-

Since a is a geodesic, it follows that the second term on thg right is 0, gnd
the desired formula comes out, since the covariant derivative on functions

is just the Lie derivative.

In the pseudo Riemannian case, we can give additional information
about the Hessian in terms of the scalar product, as follows.

Theorem 1.1. Suppose X is pseudo Riemannian and D is the metric
derivative. Let gr(p) denote the gradient of a function ¢. Then

D(n, {) = (Dy gx(9), {)-

In particular, (Dygr(p), {) is symmetric in (1, {).

Proof. Let f = (gr(p), {) = Drp. By the definition of the metric deri-

vative,
D, f = (D, gr(p), ) + (gr(e), Dy ()

= (D, gr(9), {) + (Dy {) - 9.
On the other hand, by (1),
Dr/f = Dn(DC(P) = D2¢(’77 {)+ (D']C) - o,

which proves the theorem.
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Example (The Laplacian). Let X be finite dimensional. Let ¢ be a
function on X. We define the Laplacian on functions to be minus the
trace of the Killing operator on functions. Thus if {&,...,&,} is an
orthonormal frame on X, then

A= —;1 0, &)
Applied to ¢, this reads
Ap = —tr(D%) = —Zl Dp(&;, &) = - z_lj Q& &)
@ - —iz:;(l)c,- er(0), &)

by Theorem 1.1.

In Chapter XV, §1 and §2 we shall give another definition of the
Laplacian, and Corollary 2.4 of Chapter XV shows that it coincides with
the definition we are now using.

In the next chapter, we shall give formulas comparing the Laplacian on
submanifolds and in submersions.

On Vector Fields. Let &, #, { represent vector fields in a chart. The
local representation of the Killing operator reads:

(5 QnO¢=¢"-C-n+& B(n, () - B(n, &) — B¢ 1,0

This is analogous to the local expression of the Riemann tensor, cf.
Chapter IX, Proposition 1.2. The proof is routine, following the same
pattern as in that reference. We simply use the local expression for the
iterated derivative D,D; found there.

Proposition 1.2. For each vector field &, Q(n, ()¢ defines a bilinear tensor
as a function of (n, (). Furthermore, just as with functions, we have

(D*&)(n, {) = Qn, L)¢.

Proof. The expression Q(z, {) is well defined at each point of X, and
the local expression shows that it is a section of the vector bundle of
bilinear maps of 7X into 7X. The formula relating it to D? is proved by
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exactly the same argument as (1). Note that by definition, (D&)({) = D¢¢,
$0:

(D*¢)(n, {) = D(DE)(n, ¢)
= (Dy(D&))(©)
= DyD¢& — (DE)(Dyf),
which proves the formula.
Proposition 1.3. For all vector fields 1, { we have
Q(n, {) — Q. n) = R, 0)-
Proof This is a short computation, namely:
Q(n, {) — @, 1) = DyD¢ — D¢Dy = Dp, + Doy
= D,D; — DD, — Dy ¢
=R(n, ).
This concludes the proof.

On Multilinear Tensors. Let w be an r-multilinear tensor, i.e. a sec?tion
of the vector bundle L'(TX, E), where E =R or E = TX. Then Dw is an
(r + 1)-multilinear tensor, defined by the contraction

(Dw) (&) = Deow.

If A is an r-multilinear tensor, we recall the contraction with respect to a
vector field #,, given by

}'(”1)(”2’ oo ’”r) = '1(’71’ Hpy- - 7’7r)'

Thus A(ny) is an (r — 1)-multilinear tensor. We have the analogue of
Proposition 1.2 for an r-multilinear tensor, namely:

Proposition 1.4.
(D?w)(n, §) = Q(n, e

Proof. As before,

(D*w)(n, ) = (Dy(Dw))(§)
= D,Diw — (Dw)(Dy{)
= D,D;» — Dp o,

which proves the proposition.
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I end this section with remarks due to Karcher, from whom I enjoyed
learning some differential geometry. They will not be used in the sequel,
but I thought they might prove useful to familiarize readers with the
tensorial derivative.

Proposition 1.5. Let A be a tensor field of endomorphisms of TX, i.e. a
section of L(TX, TX). As a function of its (n, {) variables, Q(n, )4 is
tensorial. Furthermore, R(n, () is a derivation in the sense that for all
vector fields &,

R(n, {)(AL) = (R(n, {)4)¢ + AR(n, )&.

Proof. This follows directly from Proposition 1.3 and the fact that
D;(An) = (D¢A)n + ADyn, ie. D; is a derivation.

In addition, the tensorial derivative can be extended inductively to
arbitrarily many tensor fields, by the formula

(6) Q"(”m Hae1s- - arll) = Dr],. o Qn-l(”n—h cee s”l)
n—1
- ZQn—l(”n—lv-HvDr/,. '7,-,--',’71)-
=

Applied with n =1 or 2 to functions or vector fields, one recovers the
operators mentioned at the beginning of this section. Furthermore, Q3
can be used to give another proof of the Bianchi identity in the pseudo
Riemannian case. Indeed, using the symmetry of the Hessian, one verifies
that

Q3(€1 1, c)f - Q3("’ C’ é)f = _df ) R(fa n, C)

for every function f. It follows that df -Bianchi(R) =0, whence
Bianchi(R) = 0. Finally, observe that in the pseudo Riemannian case, one
has the expression analogous to Theorem 1.1, namely

(7) Q3(év 1, C)f = <Q2(é’ 77) gradf, C)

Thus the tensorial derivative plays the same role as iterated derivatives in
local charts, with its own theory, Taylor’s formula, etc.

Xlll, §2. ALTERNATIVE DEFINITIONS OF
KILLING FIELDS
Throughout, we let (X, D) be a D-manifold.

We shall give several equivalent conditions defining Killing fields. The first
one states that the flow of the field consists of D-automorphisms.
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Let & be a vector field with flow {p,}. The following properties define ¢
to be a Killing field, i.e. a D-Killing field.

Kill 1. The flow preserves D, that is for all ¢, p; D = D on the open set
where p, is defined. Equivalently, for all vector fields 7, ¢,
locally where defined we have

Tp, - Dy = Drp(dp; - 1)-
Kill 2. For all vector fields #, {:
&, Den] = Dy g + De[¢, )
Kill 3. The vector field ¢ satisfies the Killing differential equation
O, O)¢=R(n, &) for all vector fields #, {.

Concerning Kill 2, we interpret the association ({,#)— D as a
“product” from pairs of vector fields to vector fields. This product is
bilinear with respect to scalar multiplication. The condition Kill 2 asserts
that bracketing with & (i.e. L) is a derivation with respect to this product.
See condition Kill, 2 in §3 for the analogous derivation property in the

metric case.
Before proving the equivalence between the three Killing conditions, we

formulate a general lemma showing how the bracket product is related to
the Killing equation.

Lemma 2.1. For all vector fields &, n, { we have
(€, Den) = Q(¢, m)é — R, &)n+ Dg,qn + De[E, 7).
Proof. This is a short computation as follows:
(¢, Dgn) = DeDen — Dy

= DDen + Dig,qn + R(E, O — Dpy&
= DCDﬂé + DC[é’ '7] + D[é,CW + R(é’ 5)" - DDmi
the first step by the definition of the covariant derivative, the second step

by the definition of the Riemann tensor, and the third step again by the
definition of the covariant derivative. This prove the lemma.

We remark that the lemma gives a natural context for the Killing
equation. It shows how bracketing with ¢ decomposes into two pieces:
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one piece exhibits the derivation property, and the other, the Killing piece
exhlbfit.s the obstruction. As a result, to prove the equivalence of the’
conditions, first observe that Kill 3 is equivalent to Kill 2 in light of the
lemma. For the other equivalence with Kill 1, one proceeds as in Sakai
[Sa 96], taking the Lie derivative, and using the formulas p (&) =¢ and

d i o
s A=p/(ZLeA) for all vector fields A.

We have:

d * *

5P (Den) = p{ [, Denl = [p;&, p; (Dem)] = €, p; (Dem)],
J ,
7 (Loi(Pm) = Dyrie(0}1) + Dyre (o2, 1)

A§suming Kill 1, we put ¢ = 0 to obtain Kill 2. Conversely, assume Kill 2.
Fix xe X, n and {. Define a curve g in T, X by

ﬂ(t) = Tp—t ' de,-c(x)(Tpt : ’7)'

It suffices to prove that #'(¢) = 0. But putting {, = Tp, - ¢ and n="Tp 7
we get: ,

B(1) Bt +5s)

s=0

OTp—t—s ' DTPI+: ’ C(X)(TPH_S ' ’7)
s=i

ds
d
d

=ap-{Z|_1os Dr e 000}

The expression inside { } is 0 essentially because of the computation in
the first part of thg proof, which shows that Kill 2 is the infinitesimal
property corresponding to Kill 1. But now we have obtained

B(1)=Tp_,-0=0,
so B is constant, equal to Dy(xyn which concludes the proof.

‘ Remark 1. Note that conditions Kill 2 and Kill 3 are conditions of
differential algebra over commutative rings. The formulations and proofs
qf most basic results in this and the next section depend only on such
dlﬁrerent.ial algebra, which means they can be transcribed to algebraic
geometric contexts, freed of the real differential geometry.
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Remark 2. In [KoN 63], Kobayashi-Nomizu define an operator
As = % — D; for every vector field {. Then as in their Chapter VI,
Proposition 2.5, one has (when “torsion” is 0 as here) Az = —D,¢ for all
vector fields ¢, #; and in the subsequent Proposition 2.6, one sees that ¢ is
Killing if and only if

D,(Az) = R(&, 1) for all vector fields 7.

Let a be a geodesic of (X, D). If p is a D-automorphism of X, then
poa is a geodesic by first principles, because geodesics like all the rest of
the paraphernalia defined in terms of D behave functorially with respect to
isomorphisms preserving the covariant derivative.

Proposition 2.2. A vector field is a Killing field if and only if its restric-
tion to every geodesic is a Jacobi lift of the geodesic.

Proof. First let « be a geodesic and let ¢ be Killing. We shall give two
proofs that the restriction of ¢ to a is a Jacobi lift of «. We take p = p, to
be the flow of &, and use Kill 1. Put

a(s, t) = p(s, a(t)).
Then o(s, ¢) is a variation of « through geodesics, and
&(a(r)) = 610(0, 1).

Thus &(«(z)) is a Jacobi lift of () by Chapter IX, Proposition 2.8. This
gives one proof. For the second proof, recall the Jacobi equation

D3(Eou) = R, Eo )

This equation comes out directly from condition Kill 3 by setting
n={_=a over a, and inducing ¢ on a. Since D, a’ =0, the term not
involving D2, becomes 0, and the Jacobi equation drops out from the
Killing equation. These proofs are essentially those in [KoN 69] (Vol. II),
p. 66, Proposition 1.3.

Next we give Karcher’s proof for the converse. Let £ be a vector field
whose restriction to every geodesic is a Jacobi lift, and let « be a geodesic.
Then

DZ'(é oa)= R(alv o a)d/ = Q(al) d,)(f o a),
because Dyo’ =0. At a given point x, there is a geodesic « such that

«(0) = x and o/(0) is a given tangent vector. By polarization on the values
«'(0) = v, replacing v by v+ w, we find that for all vector fields #, { we
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have

(*) Qn, O+ Q6 mE = R(n, )L+ R, On.

On the other hand, by Proposition 1.3, we have

V\ée add equations (x) and (xx). The term Q((, #)¢ drops out, and we
obtain

20(n, $)& = R(n, &), — R(&, On — R, n)é
=2R(n, )¢ by the Bianchi identity,

which concludes the proof of the converse, and of the proposition.

Xlil, §3. METRIC KILLING FIELDS

We now turn to properties having specially to do with the pseudo
Riemannian case. The metric is denoted by g. We omit the subscript g in
the scalar product (&, #) for simplicity.

Proposition 3.1. Suppose X is pseudo Riemannian. The following
conditions are equivalent to a vector field & being g-Killing.

Kill, 1. L:g=0.

Kill; 2. % is a derivation with respect to the metric product, that is,
for all vector fields #, { we have

gﬁ(”’ C) = ([é, ’7]’ C) + <’7a [é, C])

Kill; 3. The map (7, {) — (D&, ) is skew-symmetric, or in other
words for all vector fields #,

(qu, n) =0.

Proof (Cf. [O’N 83]). Assume that ¢ is g-Killing. The property Kill, 1
then follows essentially directly from the definition of Lie derivative,

becaqse for all ¢, p/(g) = g, so the Lie derivative of g is 0. The converse is
also immediate, because in general

d * *
275 9) = p;(Zeg).
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Hence assuming Kill, 1, we conclude that the left side is 0, whence p}(g) is
constant, whence equal to g, thus proving that ¢ is g-Killing.

The other two equivalences come from general formulas exhibiting the
obstruction to being a derivation.

Lemma 3.2. For all vector fields &, n, { we have

gf(ﬂ’ €> = (géﬂ’ C) + (", gf() + 3&(9)@, C)
=(Len, {) + (1, ZeL) + (D, {) + (1, Del)-

Proof. The first identity exhibits the fact that £;(g(n, {)) satisfies the
Leibniz derivation product rule, relative to the triple (g, #, {), cf. Chapter
V, Proposition 5.1, which applies to all multilinear forms, not just alter-
nating forms. Thus Kill, 2 is immediately equivalent to Kill, 1. The
second formula follows from the metric derivative property

gd”a C) = (Dﬁ’i, C) + <77a DfC)1

after using Dy = D,&+ (&, 5] and similarly for Dg(.

Remark. Lemma 3.2 plays the same role as Lemma 2.1. The vanishing
of Zi(g) (resp. (D&, L) + (n, D¢&)) is equivalent to .¥; being a deriva-
tion. Both the D-Killing and g-Killing fields are thus characterized as
being derivations with respect to a natural product, as in Kill 2 and
Kill, 2.

Next we give some properties of metric Killing fields. We begin by a
property of all vector fields &, with flow {p}.

(1) d;p(s, x) = &(p(s, x)) = Tpy(x)¢(x).
Proof. We have

dsp(s, x) = 0up(s + 1, X)| 10
= dup(s, p(1, %)) i
= dip,(p(t, X))l1m0
= Tpy(x)8:p(2, x)|,0 = Tps(x)&(x)

as was to be shown.

Let o be a curve in X. Then by the chain rule,

2) 0ps(2(8)) = Tps((1)e' (1)

We then obtain:

[(XIII, §3] METRIC KILLING FIELDS 353

Proposition 3.3. Let ¢ be a g-Killing field.
(i) For any curve «, we have
(E(ps0a), (p0m)) = (£oa, o).

) Equivalently, the left side is independent of s.
(i) If a is a geodesic, then (Eoa, o) is constant.

Proof. The proof of (i) is immediate from (1) and (2). As for (ii), we
take the derivative of the function (£o«, '), and find

(Dy (£ 0a), o)

because Dya’ =0 by definition of a geodesic. By Kill, 3 it follows that
the above expression is 0, thus proving the proposition.

I learned the following two results from Klingenberg [K1 83/95].

Proposition 3.4. Let ¢ be a g-Killing field. As usual let &2 = (£, &).
Then

grad &2 = —2D¢¢.

Proof. Again let o be a curve with a(0)=x, o/(0) =0v=¢(x).
Consider the derivative

h(s, 1) = 0,(0sp(s, a(2)), Osp(s, a(2)))-
Since dsp(s, a(r)) = E(p,((£))), putting f = ¢ we find
k(0, 0) = df (x)v = (grad &2, v).

On the other hand, from a basic property of the Riemannian covariant
derivative, we also have
(s, 1) = 2(0up(s, (1)), Dedup(s, (1))
= 2(0s p(s, a(1)), Dsup(s, (1))

by the usual commutation rule of Chapter VIII, Lemma 5.3,

= 2(¢(p; 0 a(t)), Ds(p, 0 @)’ (1))
= 20,(&(ps 0 4(2)), (ps 0 @)’ (1))

= 2(Ds&(ps 0 a(1)), (py 0 2)'(0))
= =2{Dl(p, 0 (1)), (P 0 9)' (1)
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because p, o« is a geodesic and we apply Proposition 3.3(ii). We then
evaluate at t=0, s=0 to get

h(0, 0) = ~2(Deé(x), 1).

The two expressions for A(0,0) are valid for all v, and hence the
proposition follows.

Corollary 3.5. Let ¢ be a g-Killing field and p = p(s, x) its flow. For

fixed x, the curve s— p(s, x) is a non-constant geodesic if and only if
E(x) # 0 and dE*(x) =

Proof. A curve s— B(s) is a geodesic if and only if Dﬂ:ﬂ' =0. In our

context, with B(s) = p(s, x), this means D;d;p(s, x) =0, and so the
equivalence is clear from the proposition.

Xlll, §4. LIE ALGEBRA PROPERTIES OF
KILLING FIELDS
We continue to assume that (X, D) is a D-manifold.
Proposition 4.1. Killing fields form a Lie subalgebra of all vector fields.
Proof. 1t suffices to prove that if ¢, # satisfy Kill 2, then so does [¢, 7).
This is a special case of the following lemma, formulated in an abstract
context because at this point I want to emphasize the extent to which the

present arguments depend only on Lie algebras over rings.

Lemma 4.2. Let V be a Lie algebra (over a commutative ring). Suppose
given a bilinear map V x V — V, which we denote

(, 2) > yz,

and call the bilinear product. Let W be the submodule of V consisting of
all elements we V such that the map

y = w, ¥
is a derivation for this bilinear product, namely

[Wa yz] = [W, J’]Z +y[w, Z].

Then W is a Lie subalgebra of V.
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Proof. We carry out the short computation in full, but note that having
formulated the result, the computation is forced, and no surprise occurs.
For v, we W we have to show that [v, w] acts as a derivation with respect
to the bilinear product. We shall use the defining property of the bracket
product of a Lie algebra, which says that bracketing with an element is a
derivation with respect to the bracket product. Let y, ze V. Then

[[v, w], yz] = [[v, yz], w] + + [v, [w, yz]]
= [lv, ¥z + ylv, 2], w] + [, [w, Y]z + ylw, z))
= [[v, ], wlz + [v, llz, w] + Iy, wllo, 2] + [[v, 2], w]
+ [o, w, yl]z+ w, ¥, 2] + [, yllw, 2} + o, I, 2]).

The middle terms cancel, and using the bracket derivation property, what
is left is

= [[v, w], y]z + y[[v, W], 2],
which proves the lemma.

As noted at the beginning of §2, we apply the lemma to the bilinear
map

(¢, m) = Den.

We take the real numbers as the ring of coefficients. This concludes the
proof of Proposition 3.1.

The above proposition does not avoid having to give a separate but
similar argument for the analogous property of metric Killing fields.

Proposition 4.3. Suppose D is the metric derivative in the pseudo
Riemannian case. Then the metric Killing fields form a Lie subalgebra of
the Killing fields.

Proof. Property Kill, 2 states that ¢ is Killing if and only if the Lie
derivative %, is a derivation with respect to the metric product. As in
Lemma 4.2, one proves that the set of vector fields which act as a
derivation with respect to such a product is a Lie subalgebra. One uses
the fact that on the space of functions, one has

_7[{,’,] =%o Ly — Ly o L.
The steps essentially follow those of Lemma 4.2 and will be left to the

reader, as well as the possible formulation of an abstract lemma to cover
the situation. On the other hand, one can also argue from Kill, 1, since
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one has the same formula for % ,; acting on the metrics, showing at once
that if Z;(g9) = %(g9) =0 then also Z,(g) =0. Take your pick.

We now come to some very different considerations, fixing a point p on
the manifold. Let Kill(X) be the vector space of Killing fields. We shall
define certain subspaces b, and m,. The following comes from analyzing
the proofs in [KI 83/95], 2.2.18, 2.2.21, and showing that they work in
complete generality, quite independently of the context of symmetric
spaces in which they occur in Klingenberg. Furthermore, they are valid in
infinite dimensions.

We define two subspaces of Kill(X), depending on the choice of point
p, as follows.

b, = vector space of # € Kill(X) such that 7(p) = 0,

m, = vector space of & € Kill(X) such that D;£(p) =0
for all vector fields ¢.

Remark. The above definitions apply in each case, Killp(X) and
Kill,(X), where g denotes the metric. Then we may denote the subspaces
by

. bp(D)) mp(D) and bp(g)) mp(g)

to distinguish the two types of Killing fields. Note that
(1) I)p(g) = b,(D) nKill, and my(g) = my(D) N Killy,
whenever D is the metric derivative in the pseudo Riemannian case.

The following discussion and results apply to each case separately, so
we formulate them by omitting the D and g from the notation. The results
for b,(g) and m,(g) follow from those with D instead of g, in light of (1).

Observe that if £ em, and # is any vector field, then

&, n1(p) = Den(p).

The following proposition gives commutation rules usually listed for
symmetric spaces, but they hold in general.

Proposition 4.4.

(@) [m,, my) < b,.
(b) [bp? bp] < I)p'

(C) [bp’ mp] < mp.

In particular, b, +m, is a Lie subalgebra of Kill(X).
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Proof. For (a), we let £, n € m, and we evaluate at p to get 0, by the
definition of m,. For (b), let , {eb,. Then

[n, {)(p) = Dyl(p) — Den(p) =0

because #(p) =0 and {(p) =0 in the indices, and Dy =0. For (c), let
neb, and £ em,. We use the relation

[7, {] = Dy — Deny.
We have to show that D¢fn, &](p) =0 for all {. It suffices to show that
D;Dyé(p)=0 and  DiDen(p) = 0.

We use an elegant argument of Klingenberg. We have by Kill 3:

(D¢Dy&)(p) = Dpnl(p) + R(E, En(p)
=0,

the first term because ¢ emy,, and the second because #7(p) =0. The
second equation D;D¢n(p) = 0 follows the same way. This concludes the
proof of Proposition 4.4.

Proposition 4.5. Assume that the exponential map exp,: T, — X is
surjective. Then b, nm, = {0}, so b,+m, is a direct sum. More
generally, the map

Kill(X) - T, x End(T,) given by & (&(p), DE(p)
is injective. (By definition, D&(p)(v) = (Dy€)(p) for ve T,.)

Proof. The first assertion is a consequence of the second, so suppose
that £(p) =0 and D¢&(p) =0 for all vector fields {. We restrict & to a
geodesic o with «(0) = p. Then by Proposition 2.2, £o« is the unique
Jacobi lift of o with (0, 0) initial conditions, so éoa =0. By the as-
sumption that the exponential map is surjective, there exists a geodesic
from p to any point of X, so &=0, concluding the proof of the
proposition.

Remark. For more comments on and use of the hypothesis about the
exponential map, see the next section. A question also arises how large is
ny,. In the next section, we give conditions under which m, is isomorphic
to the whole tangent space T,. Such conditions insure the existence of
“enough” isometries. Similarly, b, + m, can be smaller than Kill(X), but
will be shown equal to equal Kill(X) in the symmetric case.
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We conclude this section with a result usually stated on symmetric
spaces. It gives the value of the Riemann tensor at a given point p for
vector fields in m,. Note that the proof is short and uses practically
nothing of what precedes, basically only Kill 3 and Proposition 4.4(a).

Theorem 4.6. Fix a point pe X. For all vector fields &, n, { e m,, we
have

R(E, n)i(p) = D&, n(p) = [¢, & 7]} (p)-
Proof. By Kill 3, using D,{(p) =0 and D;(p) =0, we get
D,D&(p) + R(E, n){(p) =0,
D¢Den(p) + R(n, ()<(p) = 0.

But R(y, {)¢ = DyD¢ — DDy& — Dy, &, and by definition, Dy, 1¢(p) = 0.
Using this, and subtracting the above two relations yields
R(&, m¢(p) = (D Den — DeDyE)(p)
= D¢(Den — Dyé)(p)
= D¢[¢, n](p)
= [¢, 1& m](p),

because putting A = [£, #] we know from Proposition 4.4(a) that 1€},
and
€, A(p) = DrA(p) — Dal(p) = DcA(p),

thus concluding the proof of the theorem.

Xlil, §5. SYMMETRIC SPACES

Throughout this section we let (X, D) be a D-manifold. After giving
appropriate definitions, and more precisely after Proposition 5.2, we
assume that X is a symmetric space, possibly infinite dimensional.

We begin with some remarks on isomorphisms in general. Let
o: (X, D¥) - (v, DY)
be a D-isomorphism. Then ¢ carries all objects defined naturally in terms

of the covariant derivative to similar objects. For instance, if « is a
geodesic in X, then oo« is a geodesic in Y. If y is a lift of « in TX, and
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this lift is a-parallel, that is Dyy = 0, then (To) oy is a (g o a)-parallel lift
of oo in TY. In particular, let x € X and let ve T, X. Say y = (¢, v) is
o-parallel translation of v in X. Then

(TU) (?(t, v)) = (Ta(t)a) (y(t’ U))

is (0 o «)-parallel translation of (7o)(v) along oo a.
We shall need a lemma showing one role of the exponential map.

Lemma 5.1. Let x, ye X. Assume that exp,: Ty — X is surjective.
Given a linear isomorphism L: Ty — T,, there is at most one D-
automorphism f: X — X such that f(x)=y and T,f = L.

Proof. A D-automorphism f maps geodesics to geodesics, and a
geodesic is uniquely determined by its initial conditions, namely the value
at 0 and the derivative at 0. Thus the condition that exp, is surjective is
just what is needed to determine f globally on X from its initial con-
ditions at x.

Next we come to symmetries. By a D-symmetry (resp. g-symmetry, or
mefric symmetry), we mean a D-isomorphism (resp. metric isomorphism)
ox: X — X such that o, leaves x fixed, i.e. o,(x) = x and Tyo, = —id.

Proposition 5.2. Suppose X has a symmetry at every point x € X. Then
X is geodesically complete, that is exp, is defined on T, for all x.

Proof. Let a: [0, c] — X be a geodesic, defined on a finite interval. Let
x =afc). Then T o, maps —a'(c) to «'(c). But g, being a D-isomorphism
maps geodesics to geodesics, and by the uniqueness of geodesics satisfying
initial conditions, it follows that o, maps a(z) with z € [0, c] to a(2¢ — ¢), in
other words, « is defined on the interval [0, 2¢|, whence on R by sym-
metry, thus concluding the proof.

A manifold will be called D-symmetric (resp. g-symmetric) if it has a D-
(resp. g-) symmetry at every point, and if exp,: T, — X is surjective for
all xe X.

Remark. If X is finite dimensional, then the surjectivity is implied by
geodesic completeness because of the Hopf~Rinow theorem. This theorem
may be false in infinite dimension, but it is the only basic theorem which
has this remarkable property. In particular, the Cartan—-Hadamard
theorem is true in infinite dimension, and Hopf-Rinow is true in the case
of seminegative curvature. Hence it is important not to exclude infinite
dimensional symmetric spaces. Klingenberg assumes finite dimensionality
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at this point, unnecessarily so, as will be evident from the rest of this
chapter.

The theory of Riemannian symmetric spaces is originally due to Cartan
[Ca 27}, [Ca 28/46]. Here we follow Klingenberg [KI 83/95], 2.2., except
for going infinite dimensional, and dealing with arbitrary D-manifolds, not
just Riemannian or pseudo Riemannian manifolds.

For the key background on the surjectivity of exp, see Chapter VIII,
Theorem 6.9; and Chapter IX, §3, especially Theorems 3.7 and 3.8 with
its corollaries, which give conditions under which the exponential map is
surjective, notably seminegative curvature.

A symmetric pair (X, D) will also be called a D-symmetric space. We
often leave out the D, and simply speak of a symmetric space.

For the rest of this section, we let (X, D) be a symmetric space.

As a consequence of Lemma 5.1, we note that:

(a) The symmetry oy is the unique D-automorphism of X such that
ox(x) = x and Tyo, = —id.
(b} We have 0)26 =id.

In particular, let «: R — X be a geodesic, with «(0) = x. Then

This is just a special case of the more general formula which already
occurred in Proposition 5.2, namely

(1) Ou(c) (d(t)) = oc(2c - t) or Ou(c) (a(2c - t)) = d(t).

Thus symmetries are just the maps which reverse the geodesics.
For real numbers 4, b we denote parallel translation along o by

Pl Tua) = Tupy-

We may omit the subscript « from the notation when « is fixed throughout
a discussion. We shall use the basic formalism of parallel translation,
including the formulas:

PAR 1. P{, 0P’ =P,

PAR 2. Let B(t) = a(L(f)) be a linear reparametrization of o, with
L(t) = cit + 2, c1 # 0. Suppose a(c) = B(c) for some c. Then

b __ pL(d)
Pop="Pry .
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Proof. We prove the second. Let ve T, )X and let y,(f) = y,(t, v) be
the o-parallel translation of v along a. Let n(f) =y, (L(t)). We want to
show 7 is B-parallel translation of v. We have y,(c) = y4(c) = v, and also
n(c) =v. In a chart, letting B be the bilinear map defining the covariant
derivative, we have

Dy n(t) = n'(2) — Bayy (n(e), B'(1))
= ¢1 [7a(L(2)) — Buyr(y (7a(L(2)), &’ (L(2))]
=0

because Dy, =0. Hence =y, is f-parallel translation of v, with the
prescribed initial condition. Thus we have shown

P ;=P
The general formula then follows from PAR 1.

Proposition 5.3. Let x, ye X. Let a be a non-constant geodesic such
that a(c) = x and a(b) =y. Then

Tyoy = —P};>  on T,X.

Proof. Let ve Ty )X be a tangent vector as above. By the remarks at
the beginning of this section, (Tay))(y(t, v)) is parallel translation of
(To)(v) along g, oa, and we may apply PAR 2 with (t) = a(2c — ).
Note that (T'¢)(v) = —v. Hence

(Tap)0x) (Pf,a(v)) = —Pﬂf”(u).

Putting w=Pl,(v) so ov=P{,w)=-Pry 0P (w) vyields the
proposition.

One may get rid of the flipping and minus sign by defining o-translation,
or translation along o, to be the map

Tes: X = X such that Ta,s = Ou(s/2) © Oa(0)-
Such translations stem from Cartan [Ca 28]. Note that from (1), we get
(2) (s, a(t)) = t4,5(x(2)) = a(t + 3).
Proposition 5.4. Let P[%’: Ty, — Ty be parallel transiation. Then

— pits
Ta(t)ravs - Pt,! .
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In particular, for ve Ty, we have
Tu(o)‘ta's(v) = Paa(v).

Proof. This is immediate from Proposition 5.3, using the chain rule for
the tangent map of a composite mapping, and PAR 1.

Proposition 5.5. Let a be a non-constant geodesic.

(i) Then {15} is the flow of a Killing field, i.e. it is a one-parameter
group of D-automorphisms. In other words, if for x € X we define

éa(x) = aITa(O’ x),

then &, is Killing, and t, is its flow.
(ii) The geodesic o is an integral curve of &,, that is, for all t,

o' (1) = & (a(h)).

If the symmetries are metric symmetries, then t, , is the flow of a metric
Killing field, and &, is metric Killing.

Proof. We first show that 7, ;= 745 0 T for all 5, € R. Both sides
are D-automorphisms. By Lemma 5.1 it suffices to show that they coin-
cide at one point and that their tangent maps coincide at this point. We
can select the point to be, say, a(0), in which case the equality of both
sides at x = «(0) is given by (2). Then the equality of the tangent maps
at «(0) is given by Proposition 5.4, which concludes the proof that {z,} is
a one-parameter group of D-automorphisms. It is then a property of all
one-parameter groups of differential automorphisms, that if one defines
£,(x) as in the formula given in (i), then {z,} is the flow of &,. The proof
is in any case immediate by differentiating 7,(s + ¢, x).

For (ii), we differentiate the equation in (2) with respect to s, and then
set s =0 to obtain the fact that « is an integral curve of &,.

The remark about metric symmetries is immediate, due to the fact that
parallel translation in the metric case is an isometry. This concludes the
proof of the proposition.

Proposition 5.6. Let «, f be non-constant geodesics with
a(0) = B(0) =p.

Let o'(0) = w. Let t, be translation along o as above, and let

n(t) = 017(0, B(1)) = £u(B(D)).
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Then
n0)=w and  Dgn(0)=0.

Thus n is the unique Jacobi lift of B satisfving these initial conditions.

Proof. That 5(0) = «’(0) =w comes from Proposition 5.5(ii), so we
next have to show that Dg#(0) =0. Let v =p'(0). By Proposition 5.4,
we know that Tj7,,= Pj,. Essentially from the definition of parallel
translation, it follows that D,T,7, ((v) =0. (Cf. Chapter VIII, Theorems
3.3 and 3.4.) Let ¢(s, 1) = 4(s, B(2)). Since d29(s, Q) = Tpts,5(v), We get:

0 = D1029(0, 0) = D,0,¢(0, 0) = Dyn(0).

The assertion about Jacobi lifts is merely a reminder of standard properties
of Jacobi lifts, cf. Chapter IX, Theorem 2.1 and Proposition 2.8. This
concludes the proof of Proposition 5.6.

Corollary 5.7. Let o be a non-constant geodesic, and put «(0) = p. Then
&y €y,

Proof. Special case of Proposition 5.6, because given ve T,X we can
find a geodesic # such that $(0) =p and B'(0) = v.

We are now in a position to summarize a number of results into an
exact sequence, which we call the Killing sequence at a point p on a
symmetric space X:

0—5, - Kil(X)=2T, - 0.
The arrow Kill(X) — T, is simply &+ {(p). By definition, b, is the
kernel. Corollary 5.7 allows us to split this sequence as follows. A vector

v e T, determines a geodesic « uniquely such that «(0) = p and «’(0) = v.
This geodesic in turn determines &,, which we may now denote by ¢&,.

Theorem 5.8. The Killing sequence is exact, and is split by the map
v &, The map & &(p) thus induces an isomorphism

m, > T,X
of m, with the tangent space at p. We have a direct sum decomposition
Kill(X) = b, @ m,.

If bemy C#£O0 then E=¢, =&, where o is the geodesic such that
#(0) = p and a'(0) = &(p) = v.
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Proof. That b, is the kernel of & &(p) comes from the definition of
b, The map is surjective, because at the given point p we can find a
geodesic « such that «(0) = p and «’(0) is equal to a given tangent vector
at p. We can then apply Proposition 5.5. The direct sum decomposition
follows from Proposition 4.5. The last statement is merely a rephrasing of
these results, in light of Proposition 5.5. This concludes the proof.

On a symmetric space, there is a complement to Proposition 2.2,

namely every Jacobi field comes from a Killing field by a theorem of
Bott—Samelson [BoS 58].

Examples of symmetric spaces

Let G be a Lie group, possibly infinite dimensional. Let alaé id be an
automorphism of G such that 62 =id. If we put ‘x =¢o(x)” for xe G,
then o(x) = ‘x~! and the “transpose” is an anti automorphism, so one can
work either with ¢ or the transpose, sometimes written as x*. Let:

K = Ggx = the fixed submanifold, which is a closed submanifold;

-1

G, = submanifold of elements of the form xo(x)”", xe G.

We have a differential isomorphism
¢: G/IK5 G, givenby xKw— xo(x)"".
There is a differential representation of G on G, defined by
y: G— -Aut(G,,) such that  Y(x)y = xp'x = xya(x)~L

On the other hand, there is a differential representation of G on G/K by
translation

7: G— Aut(G/K) such that  7(x)yK = xyK.

Under the isomorphism ¢, translation t(x) corresponds to ¥(x).
One also has the Cartan symmetry S, on G, for x € G,

Syt Gy — G, given by Sx(y) = xy7x.
This symmetry gives a morphism (viewed as a non-associative product)

Gs X G; — G5 denoted by S(y) =x-y.
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The corresponding morphism of G/K x G/K — G/K is given by

xK - yK = xa(x)'e(»)K.

All the above assertions are immediately verified.

Loos [Lo 69] was the first to note that the theory of symmetric spaces
could be based on essentially algebraic properties satisfied by the product
(x, ) = x-y. So let us define a Loos space to be a connected manifold X
with a morphism X x X — X denoted (x, y) — x -y, satisfying the fol-
lowing conditions for all x, y, ze X.

LO 1 x-x=x.

LO 2. x-(x-y)=y.

LO3 x-(y-2)=(x-2)-(y-2).

LO 4. x is an isolated fixed point of the morphism y — x-y.

The last property means that there is an open neighborhood U of x such
that for all ye U, if x-y =y then y = x. Loos spaces obviously form a
category.

The spaces G, and G/K (which are differentially isomorphic under @) are
Loos spaces under the above defined products, and ¢ is a Loos iso-
morphism.

The verification is immediate from the definitions.

One may denote the morphism y+— x-y by £,: X — X, and similarly
fc;r the right operation ry: y — y-x. Then, for instance, LO 2 means that
£z =id.

Note that, instead of taking K = Gy, one could take any subgroup
contained in Gg, but containing the connected component of the identity.

In finite dimension (at least) symmetric spaces essentially all come from
the above example. Expositions may start from Lie groups (as in Helga-
son) or from the Riemannian geometry point of view (as in Klingenberg).
The present chapter gives an introduction to both points of view (see also
Chapter XII).

Xill, §6. PARALLELISM AND THE RIEMANN TENSOR
We begin with some basic properties of the Riemann tensor R on an

arbitrary D-manifold (X, D).
Let xe X. For each ue T, X we have a continuous linear operator

Ry: Tx » T, givenby  R,(v) = R(u, v)u.
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In fact, the trilinear map (u, v, w) — R(u, v, w) is continuous on
T, x Ty x Tx. Note that the sign selected here for R, is opposite to the
sign of Klingenberg [K1 83/95], 2.2.9, because the expression R(u, v)u is
the one which occurs in the way we wrote the Jacobi differential equation.
Similarly, if Q is a trilinear tensor field, one defines ,(v) = Q(u, v, u).

If the spray is associated with a pseudo Riemannian metric (, ), then
the standard properties of the Riemann tensor immediately show that R, is
self-adjoint, that is

(Ru(v), w) = (v, Ru(W))-

In other words, it is equal to its transpose on the tangent space. But at the
beginning, we work in greater generality without assuming that the spray
comes from a metric. We let P",’,a be parallel translation along a geodesic
a.

Proposition 6.1. Let Q: X — L3(TX, TX) be a trilinear tensor field on
a D-manifold X. Then D:Q =0 for all ¢ if and only if parallel trans-
lation commutes with Q, that is for every geodesic «,

PZ,O( o] Qa:(a) = Qal(b) o] Ptll),a‘

Proof. 1If D:Q =0 for all vector fields £, then the commutation comes
directly from the definition of D:Q = 0, and, say, the local expression as in
Chapter VIII, 3.5, 3.6, and 3.7. Conversely, for a trilinear tensor field Q
and a geodesic a, we have

PQ - Q,
(Do Q)(a(0)) = lim ’_“(‘);_@)'

The converse (actually the equivalence) follows immediately. The proposi-
tion could have been given in Chapter VIIL

As an example of Proposition 6.1, we have:

Proposition 6.2. Let (X, D) be a symmetric space. Then for all vector
fields & we have

D:R=0.
In other words, the Riemann tensor is parallel.

Proof. At a given point x, we compute Txo, applied to (D,R)(v, w, z)
in two ways, with vectors u, v, w, z€ Tx. First,

T.0% - (D,R)(v, w, z) = —(DuR)(v, W, 2) because T,o, = —id.
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On the other hand, by functoriality, and the fact that o, is a D-
automorphism,

Tiox - (D,R)(v, w, z) = (DTxax-uR)(Txe 0, Txox - w, Tx0y - 2)

= (D_4R)(—=v, —w, —z) = (D,R)(v, w, z).
This proves the proposition.
In light of Propositions 6.2 and 6.1, on a symmetric space we have
P, 0 Ry = Ruy o Py,

The next proposition will also apply to symmetric space, but depends only
on the parallelism of the Riemann tensor. We again follow Klingenberg
[KI 83/95].

Proposition 6.3. Let (X, D) be a D-manifold. Let « be a geodesic,
@(0)=x, «'(0)=u+#0. Let n be the Jacobi lift of a with initial
conditions
n0)=vy and  Dyn(0) =uv;.
Let
2e+1

@ t2k ©

Let P{,‘ « be parallel translation along «, and assume that parallel trans-
lation commutes with the Riemann tensor. Then

n(t) = Py ,A(2).

Proof. Let ny(f) = P§ ,A(t). Trivially, #,(0) =v,. By Chapter IX,
Proposition 5.1, we also see that Dy, (0) = vy because Dy Py, = 0. There
remains to prove that #, satisfies the Jacobi differential equation. Because
of the absolute convertence of the series, it suffices to check what happens
to each term. Let y denote parallel translation along o. Then for
v € Ty X, since Dyy =0, we find:

m-2 tm—2

tm
D231 773 RE)) = o0, REW) = oy Py RE).

By hypotbhesis,

Pé o .Ru o Rllf_l = Ra’(t) OP(ia OR,I:_I,
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Applying the definition R,(wi) = R(w, wi)w, and the definition of the
power series A, the assertion of the proposition drops out.

The assumption that parallel translation commutes with the Riemann
tensor of course applies to a symmetric space, which is our main interest at
this time. In this case, we obtain:

Corollary 6.4. Let (X, D) be a symmetric space. Let n be the Jacobi lift
of a geodesic « such that

n0)=-veT,y and n(t/2)=0.
Then
n(t) = Po o (v)-

CHAPTER XIV

Immersions and Submersions

In this chapter, we investigate systematically the relationships of some of
the differential geometric notions for submanifolds and for submersions.
These involve the covariant derivative, Hessian, and curvature. The
determination of the Hessian can be applied to compare the Laplacian in
both contexts, because we can define the Laplacian as the trace of the
Hessian in the finite dimensional case. The connection with the definition
in terms of the divergence of the gradient will be given in Chapter XV.

The material of this chapter was systematized during the 1960s. Aside
from Kobayashi-Nomizu, readers can consult O’Neill [O’N 66], and
Dombrowski [Do 68].

XIV, §1. THE COVARIANT DERIVATIVE ON A
SUBMANIFOLD

Let X be a Riemannian manifold (not necessarily finite dimensional), and let
Y be a submanifold, with the induced Riemannian structure. We have an
orthogonal decomposition of the tangent space at a point x € ¥ given by

T.X =T,Y + N, Y

where N,Y = (T, Y)" is the orthogonal complement of T,Y in T.X.
Immediately from a chart, we seen that {N,},_, are the fibers of a vector
bundle, called the normal bundle of Y in X, and denoted by Ny Y. We let
prry and pryy be the orthogonal projections from TX to 7Y and NY
respectively.

We have metric derivatives DX on X and DY on Y. This section is

K0
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devoted to comparing them. We can take projections on 7Y or NY inside
TX, and thus we have two orthogonal components. We study each
component separately. Note that we may view the restriction of 7X to ¥
as a vector bundle over Y. This restriction splits as an orthogonal sum

(TX), = TY L NY,

and a section over Y therefore has two components ({, v), where ( is a
vector field on Y, and v is a normal field, that is a section of the normal
bundle. If # is a vector field over Y, then we can summarize the results of

this section in the following theorem.

Theorem 1.1. Let {y, vy be extensions of {, v to X. The covariant
derivatives of {y and vy on Y can be expressed in the form
Dy;Y{X = D,,YC+h12(’7a c)’
D,;va = hyi(n, v) + Vv,
where:
hiy is a symmetric bilinear bundle map TY x TY — NxY.
hyy is a bilinear bundle map TY x NY — TY.

V,v = piyy D;," vy is independent of the extension vy of v, and V is a
metric derivative on NY (to be defined in Proposition 1.6).

We may then define an operator

(1) H,: TTY - INY by the condition H,(&) = ha(n, {),

and then
(2) hy(n, v) = — "Hy(v).

As usual, the transpose is defined by the condition that for all vector
fields & on Y, and normal fields # on Y, we have

b

(Hy(&), 1) = (&, "Hy(n))-
Formula (2) will be proved in Theorem 1.5. Thus we give precise infor-

mation on the four components h; with i, j=1,2. In particular, we see
from (1) and (2) that D,f is represented by the matrix

Y _t
D, Hy acting on ¢ .
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Qn the other hand, there is still another operator commonly used, see
for instance [KoN 69], Chapter VII, §3, defined as follows. For each
normal field 4 on Y there is a linear map

Sy: TTY - TTY
defined by the condition

3) (Su(m), & = (1, ha(n, &)) forall¢, neI'TY.

Note that S, is‘ Fu(Y)-linear. Furthermore, since hj; is symmetric, it
follows that S, is symmetric as a linear operator, that is, for all vector
fields &, # on Y we have

Directly from Theorem 1.1 and the definition we obtain what is called the
Weingarten formula

() hai(n, ) = Su(n) = = Hy(p).

Thus‘ Sﬂ is a representation of the second fundamental form. From the
definitions and Theorem 1.1, we may write

(6) DYvy=V,y+Sn onY.

Finite dimensional case: the trace. Suppose that Y is finite dimensional.
We may then define the trace of A, as follows. Let p=dim Y, and let

({iéfli,...,fp} be an orthonormal frame of vector fields on Y. On Y, we
efine

?
trhp = (&, &).
=1

For each normal field 4 we can take the scalar product with y, and then
the trace is simply the trace of the linear automorphism Sy, at each point
of Y. It is independent of the choice of orthonormal frame on Y.

We now proceed systematically with propositions proving all these
statements. The first proposition determines ;.

Proposition 1.2. Let 7, { be vector fields on Y. Let Ly be a vector field
on X extending { locally one some open set. Then on Y,

Prry DXy =D}t
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Proof. Let V,(y = prry D,;Y {x. Let 575 be an extension of # to a vector
field on an open set in X. Then for xe Y in this open set we have

™ [1x, Cxlx(x) = In, Ly (),

SO
(DY Cx)(x) = D ny(x) = [y, Cxl(x) = [n, ().
Hence
Vilx = Veny = [, {.

Fix # and 5y. At x, D,;Y {x depends only on #(x). Also DCX ny depends
only on {(x). Hence this formula shows that V,{y is independent of the
choice of extension {y of {. Thus we may omit the subscript X, and write
simply V,{. Furthermore, we have proved one of the defining properties
of the covariant derivative.

By Theorem 4.1 of Chapter VII, it will suffice to show that V is a
covariant derivative. Note that V, is Fu(Y)-linear in the variable #, and
satisfies the product rule of a derivative because it is satisfied by D;,Y .
Finally, we verify the metric property. Let £ be another vector field on Y.
Then on 7Y,

E-(n, 8) =&x - (nx, {x)
= (D¥ny, {x) + (nx, DEYCX>
= (prry Dfny, O + (n, prry DFLx)
because for x € Y, the vectors {(x) and #(x) lie in 7,Y, so the normal

component is annihilated in the scalar product. This proves the metric
property, and concludes the proof of the proposition.

Next we look at the normal component. We shall obtain a canonical
symmetric bilinear bundle map

hE¥ = hyy: TY x TY - NY = NyY.

Proposition 1.3. Let xe Y. Let v, we T, Y. Let n, { be sections of TY
on a neighborhood of x such that n(x) = v and {(x) = w. Let ny and (x
be extensions of i, { to local vector fields on X near x. Then we have the
symmetric relation

PIny D,;YCX(X) = PIny D&Xﬂx(x)-

In particular, pryy D,;Y {x(x) is independent of the choice of sections n, {
having the given values v, w at x.
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Proof. By definition of the covariant derivative,
D,;YCX - DEY’IX =y, &xl =, ¢ atx

But #», { being sections of TY, so is [y, {]. Hence the normal bundle
components of (D¥{y)(x) and (D¥7ny)(x) are the same, thus proving the
formula. We know from basic definitions that (D,’X {)(x) is independent of
the choice of #, and (DCX n)(x) is independent of the choice of {. Then the
last assertion follows, thus proving the proposition.

As a matter of notation, we may define
ha(, 1) (x) = pryy D;,YC(X) = D;,YC(X)NY

to denote its normal component. By abuse of notation, we omit the
subscript X on { in light of Proposition 1.3. We may define hyy(v, w) for
v, we T,Y by letting

SFF 1. hiz(v, w) = pryy Dy {(x) = pryy D} {x(x).
Proposition 1.3 shows that this is well defined, and symmetric, that is
hiz(v, w) = hya(w, v).

Thus hj; is a symmetric bilinear vector bundle map.

In light of Propositions 1.2 and 1.3, for every point x € Y, sections #, {
of TY near x, and any extension {y of { near x, we obtain the Gauss
formula:

SFF 2. DY Lx(x) = D) U(x) + hiz (n(x), {(x)).

Before going to a discussion of /;;, we mention the significance of the
condition A1, = 0. One defines Y to be totally geodesic if every geodesic in
X with initial conditions in (Y, TY) is contained in Y.

Corollary 1.4. The submanifold Y is totally geodesic if and only if its
second fundamental form is 0 at every point. Let Y be totally geodesic.
Let o be a geodesic in Y. Then « is also a geodesic in X. Let P, x and
P, y be the corresponding parallel translations. Then

DY=DY and P,y=P,y.
Proof. The condition that a curve « is a geodesic is that Dya’ = 0.

Suppose Y is totally geodesic. Let a be a geodesic in Y with «(0) = x and
@’(0) =ve T;Y. Then by assumption, a is also a geodesic in X, so taking
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the covariant derivatives along «, we get
DY¥a' =D} at,

whence hyy(v, v) =0 for all ve T,Y. Since hy; is symmetric, it follows
that A3, = 0. Conversely, suppose A2 = 0. Let o be a geodesic in X, with,
say, a{a) = ye Y and a'(a) e T, Y. Let § be the geodesic in ¥ with the
same initial condition at y. By SFF 2, for any x on f in a small
neighborhood of y, we have

‘() = DB (x) = 0

Hence B is also a geodesic in X. Since o and § have the same initial
conditions, they are equal, thus concluding the proof of the first state-
ment. The fact that the covariant derivatives and parallel translations are
equal then follows at once from the defininition of Ai; in Theorem 1.1.
This concludes the proof of Theorem 1.4.

We have now concluded the discussion of A3, and we pass to the
discussion of hy;, and to the proof that it is minus the transpose of Ajs.

Let # as before be a vector field on Y but now let 4 be a normal field
on Y. We define

ha(n, u) = prry Dfuy ony,

where as before uy denotes an extension of u locally on X. The formula
immediately shows that the value of A depends only on the value 7(x) at
a point x € ¥, but we have the similar question arising about the depen-
dence on u and its extension u,. This time, the matter is settled by the
next result.

Theorem 1.5. Let 7, & be vector fields on Y and let u be a normal field
on Y. Then on Y,

<D7;Y/‘Xa é) = <h21(77’ :u)) 5) = <:u7 _h12(’7’ é))

Proof. We take DX (Lie derivative) of (£x, uy), evaluated at a point of
Y. The scalar product is taken in TX, of course. To find the derivative at
a point x € Y, one may differentiate along any curve passing through that
point, such that the derivative of the curve is the #(x), and such a curve
may be taken in Y. Therefore at such a point x € Y, we have

0 =DX(uy, &x) = (D ux> &x) + (ux, DYéx)
= (prry Dy ty, &x) + (#xs Pray DYéy)
= (hu(ny, #x), &) + (u, hi2(, £)).
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We omit the subscript X in Aj2 because we know the independence from
the extension to X by Proposition 1.3. This proves the formula of the
theorem, at the same time that it also shows that hy(5y, uy) is inde-
pendent of the extension of #, 4 to X. Similarly, the relation shows that at
the given point x, hy;(n, #)(x) depends only on #(x) and u(x) respectively.
This concludes the proof.

From Theorem 1.5, we see that hj; and 4, determine each other
uniquely, and one is minus the transpose of the other under the metric
product on X. They are both called the second fundamental form, but a
distinction should be made between them.

Theorem 1.5 allows us to write the formula analogous to SFF 1, namely
for xe Y, veT,Y and we N,Y, #(x) =, u(x) =w, we have

SFF 3. hy1(v, w) = prry D,;"y(x).

Note that Theorem 1.5 also concludes the proof of formula (2) in Theorem
1.1

There remains but to deal with the fourth component Ay (#, u), where 7
is a vector field on Y and y is a normal field. For the first time, we have
to deal with the more general notion of a covariant derivative on a vector
bundle. Quite generally, let E be a vector bundle over Y. A derivative on
E relative to 7Y is a mapping

V: I'TY xTE—>TE

denoted by (#, u) — V,u, which is Fu(Y)-linear in #, and is a derivation in
4, that is for any function ¢ on Y,

3

Volou) = (n- p)p + ¢Vyu.

Suppose E has a metric. We say that V is metric if it satisfies the
condition

- {1, v) = (Vput, v) + (1, Vyv)

for all vector fields # on Y, and sections u, v of E. We shall apply this
notion to the normal bundle E = NY.

Proposntlon 1.6. Let uy be an extension of a normal field to X. Then
Prny D Uy Is independent of this extension, so we may denote

Ve = pryy D;;Y Hx-

Furthermore, V is a metric derivative on NY.
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Proof We prove the metric formula first. By definition of the co-
variant derivative on X, we know that on Y, for any normal field v,

n- <1uXa VX> = (D:,Y/lx, VX) + (,UX, D';‘,Vx).

For xe Y, the values uy(x) and vy(x) lie in N,Y, so the covariant
derivatives in the above relation can be replaced by their projections on
the normal bundle NY. The Lie derivative on the left can be computed at
x along curve whose derivative at x is #(x), and this curve can be taken to
liec entirely in Y. Therefore the left side is independent of the extensions
ty, vy of u, v locally near x, so we may write it as #- (4, v). Then we
write

(DY ux) (), v(x)) = (- (1, ) (x) = {u(x), (D7 vx) (%)).

The right side is independent of the extension uy of u, and therefore so
is the left side. Similarly for vy. Thus we have proved simultaneously the
metric formula and the independence which allows us to define V,u. Note
that the Fu(Y)-linearity in # is then immediate from the metric formula.
The derivation property in u follows from that of D,f . This concludes the

proof.

XIV, §2. THE HESSIAN AND LAPLACIAN
ON A SUBMANIFOLD

We continue with a submanifold Y of a Riemannian manifold X. We
remind the reader of the Hessian of a function f on Y. We need here only
formula (1) of Chapter XIII, §1. For vector fields £,  on Y, the Hessian is

Dif(E,n)y=¢-n-f—(Din)- f.

We put Y as a subscript on the left for typographical reasons, involving
the square as a superscript.

Proposition 2.1. Let fy be an extension of f to X. Let &, n be vector
fields on Y. Then on Y, we have

Dy fx(& m) =DV S (& m) — k& m) - fx»
where hiy(¢, 1) = pryy DEny as in §l.
Proof. We have

D} fx(&x, Ex) =& -n- f — (Dfnx) - fx-
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By Theorem 1.1, at points of ¥ we have

D¥ny = (DIn) + ha(&, ),

which concludes the proof by definition of D3.

The tangential component

We can use the normal bundle to obtain a tubular neighborhood of Y.
Loca}lly, we can find a function » > 0 such that, if N,Y denotes the vectors
w with norm ||w|| < r(x) for we N,Y, xe Y, then the exponential map

exp: NY - X given by w — exp, (w) forwe N, Y

giyes an isomorphism of N,Y with an open neighborhood of Y in X.
lee.n a function f on Y, we may extend f to this tubular neighborhood by
making f constant in the normal directions, that is we define

fx(exp () = f(x).

This extension will be called the normal extension of f to a tubular
neighborhood of Y.

Proposition 2.2. Let fy be the normal extension of f to a tubular
neighborhood of Y. Then for vector fields &, n on Y, we have

D3 fx(& n) = DY f (& n).

Proof. This is immediate, because if v is a normal vector field on Y,
then (v- fy)(x) =0 for x € Y, immediately from the definitions. Indeed,
the Lie derivative may be taken along a geodesic from x, along which fis
constant, so its Lie derivative is 0. We can apply Proposition 2.1 with

v=ha(¢, n) to conclude the proof.
Next we look at normal fields on Y.

Proposition 2.3. Let v be a normal field on Y. Let f be a function on Y
and fy its normal extension to a tubular neighborhood of Y. Then on Y,

Dzz\’fX(vv V) =0.

‘ Proof. Let vy be any extension of v to a neighborhood of a point x; in
in Y. Then at Xxo,

(1) D% fx (v, v) =Vx vx - fx — (Dyxo)vx) - fx-
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We select a suitable extension of v. For y e Y near xy, we N, Y and |w|
sufﬁciently small, let oy, be the geodesic in X with a,,(0)=y and

; w(0) = w. Thus exp,(w) = ay(1, w) = ay ,(1). Define the normal exten-
s10n vy be the formula

vx (exp,(w)) = Py, (V(2)-

where P is parallel translation as in Chapter VIII, Theorems 3.3 and 3.4.
Then vy fy = 0, so the first term on the right of (1) is 0. As for the second
term, letting o = ay, ,» with w = v(xp), « is a geodesic so Dy’ = 0, and we
get

(Dv(xo)vX)(xO) = (Dd'al)(xo) =

So having chosen vy suitably, we conclude that both terms are 0, which
proves the proposition.

Theorem 2.4. Let X be a finite dimensional Riemannian manifold, and let
Y be a submanifold. Let f be a function on Y and let fy be its normal
extension to X. Then on Y,

Ayf =Axfx.
Proof. Let {¢1,...,&,} be an orthonormal frame of vector fields locally
on Y, and let {v,...,v,} be an orthonormal frame of normal fields.

Together they form an orthonormal frame of sections of TX restricted to
Y. Then at a point x € Y, we have

Axfy(x) == Difx(& &)=Y _ Difx(w, ) atx.

We may now apply Propositions 2.2 and 2.3 to conclude the proof.

Remark. Readers may compare the above proof with that of Helgason
[He 84], Chapter II, Theorem 3.2. Of course, the theorem on the
Laplacian depends on the manifolds being finite dimensional. However,
the basic result behind it concerns the Hessian, and is independent of this
restrictive condition.

Full decomposition of the Laplacian

We shall now return to the use of Proposition 2.1. The rest of this section
was written with Wu’s collaboration.
For our next purposes, we let f be a function on X and we let fy be its

[XIV, §2] THE HESSIAN AND LAPLACIAN ON A SUBMANIFOLD 379

restriction to the submanifold Y. We let:

{¢1,...,&,} be an orthonormal frame of vector fields on Y;
{v1,...,v4} be an orthonormal frame of normal vector fields.

Thus {vi(x),...,v,(x)} is an orthonormal basis of N, Y for x € Y. Letting

as usual Ay be the Laplacian on X, by the definition of Chapter XII, §I,
and Proposition 2.1, we have

(2) Axf= Z -D%f(&, é,)+Z -D%f (v, )

-

(3) = Z Xfy(én fx + Z hlZ(én éz f+ Z DXf(v]’ vl)

i=1

By Proposition 2.2, the first term on the right is just Ay fy. Note that the
second and third terms involve normal components, and thus it is natural
to define the Y-transversal Laplacian

P q
) Apyf =Y halé, &) £ =Y Dy f(v, v).
i=1 Jj=1

Then using Proposition 2.2, we may reformulate (3) in the form:

Proposition 2.5. Let X be a finite dimensional Riemannian manifold and

Y a submanifold. Let f be a function on X and let fy be its restriction to
Y. Then

Axf=Ayfy+Af yf on?Y.

Thus the Laplacian has been decomposed into a tangential component,
which is the Laplacian on Y, and a transversal component. Note that
Theorem 2.4 describes the special case of the tangential component, for
functions which are constant in the normal direction. For convenience, we
also define the mormal trace

q
(ttw,y DY) S =D DL f (v, ).
=1

Fix a point xo € Y, and let W, be an open ball centered at 0 in the

normal space N, Y. We suppose W, sufficiently small that the expo-
nential map
exp,,: Wy — W

is an isomorphism of W onto its image Wy, which is a submanifold of X
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called the normal submanifold to Y at x,. Let f be a function on .X.
Instead of considering its restriction to ¥, we now consider its restriction
fw, to the normal submanifold Wy. This restriction depends. on tl'.le ch9lce
of point xo in Y. For the moment, we don’t use finite dimensionality.

Proposition 2.6. Let X be a Riemannian manifold, Y a submanifold, and
xo€ Y. Let Wy be the normal submanifold to Y at xo. Let f be a
function on X, and let we Ny, Y. Then D% f(w, w) depends only on the
restriction fy,. More precisely, if « is the geodesic defined by a(t) =
exp,, (tw), then

Dy f(w, w) = (D fw,)(%0)-

Furthermore, for every v e Ty, Y, the value hi3(v, v) - f at xo also depends
only on the restriction fy,.

Proof By the Killing definition of the second tensorial derivative
(Chapter XIII, §1) and Corollary 3.2 of Chapter VIII, §3 we may compute
this derivative along the geodesic, that is

D% f(w, w) = (Du Dy f)(x0) — (Dwa") - f(x0)-
Since o is a geodesic, the second term on the right vanishes, and the first
term depends only on f along the geodesic ¢ — exp, (tw), and so depends
only on the transversal part fy,. This concludes the proof of the first

part. The second statement is even simpler, because the .derivative
hia(v, v) - f at xop may be computed by using the same geodesic

a(t) = exp,, (tw), with w = hy(v, v).
This concludes the proof.
Proposition 2.7. Suppose X finite dimensional. Let Y be a submanifold,

and xo€ Y. Let Wy be the normal submanifold of Y at xo. Let fbea
Sunction on X. Then

((tr h12) - £)(x0) = (tr h12)(xo0) - fw,
and thus finally
Axf(x0) = Ay fy(x0) + (tr h12) - f(x0) — trn,y D} f (o).

Proof Immediate from (4) and Proposition 2.6, using w = w; = vi(x0)
and v = v; = &(x0).
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We note the symmetry between the submanifold Y and its normal
submanifold W, at the given point xo. In Proposition 2.3, when we take
the normal extension of a function on Y, the normal term vanishes.
Similarly, if f} is constant on a neighborhood of x, in Y, then the term
Ay fy(xo) vanishes.

We may now extend the above more globally as follows. Let

. X—-Z

be a submersion. For each z€ Z we let ¥, = n7!(z) be the fiber above z.
Then Y, is a submanifold, to which we can apply Propositions 2.5, 2.6 and
2.7. Furthermore, we can use (4) to define the normal part of the
Laplacian depending on . We had already defined the trace of the second
fundamental form 4. We now define the normal trace try o Dg( in the
similar way, namely for any function f,

q
(v, DY) =D DL f (), ).
j=1

Then we define the transversal part of the Laplacian by the formula
Az = [tr hyp) — try, D%,

where [tr A1p] denotes the Lie derivative %y, to simplify the notation.
Having fixed the submersion, we may omit n from the notation, but the
definition of the normal part depends on the choice of submersion, because
the traces depends on the submersion (the submanifolds Y, and their
normal submanifolds).

Of course, we may give a similar definition for the vertical or tangential
part of the Laplacian Ay, ,, namely for x e Yoy = Y,

(Ay,zf)(x) = Ay fy (%).

Proposition 2.8. Suppose X finite dimensional. Let n: X - Z be a
submersion. Then

AX = AV,n + AT,n-

Proof. This is just a reformulation of Proposition 2.7, taking the
previous definitions into account.

Example 1. Let Y be a submanifold of X and fix a point xo € Y. Let
Vo be an open ball centered at xp in Y. Let W] be a neighborhood of 0 in
the normal space Ny Y. For ¥V, sufficiently small, there exists a unique
geodesic in X from xo to x. For W sufficiently small and w e W, we



382 IMMERSIONS AND SUBMERSIONS X1v, §2]

define the map
p: Vox Wy — X  bythe formula  ¢(x, w) = exp, Py (w),
where P} is parallel translation along the geodesic from xp to x.

Lemma 2.9. The above map ¢ is a local isomorphism at (xo, 0). Its
differential at this point is in fact the identity.

Proof. This is a routine verification left to the reader. Note that the
tangent space of ¥y x W at the point is precisely Ty, Y x Ny, Y, which we
identify with Ty, X. The second statement about the differential implies the
first about the local isomorphism by the inverse mapping theorem.

We note that the lemma provides a local product decomposition. Let
Us = o(Vo x W), so Up is an open neighborhood of xo in X. The
projection

n: p(Vox W) = Uy — W,

is a submersion to which we can apply Proposition 2.8.

Example 2. Let H be a Lie group acting smoothly on X as a group of
metric automorphisms. We say that H acts regularly, or that the action is
regular, if there exists a submersion

n: X -2

such that the fibers are the orbits of H. For instance, the orthogonal
group O(n) = Uniy(R) acts regularly on R” from which the origin is
deleted. Under a regular action, for each x € X the map H — Hx (the
orbit) given by h+— hx gives an embedding of H/H, in X, so gives an
isomorphism with H/H, and the orbit Hx. Fix a point xo € X. The map

H— H/H,,

being a submersion, there exists a local section : ¥V — H defined on an
open neighborhood of the identity coset eHy,, and passing through e, so
o(eHy,) = e. We put Vo =a(Vy). We let Yo be the orbit Hx,. We note
that we have a natural linear isomorphism of tangent spaces

Ty, Vo +— Ty, Yo.

Let W/ be an open neighborhood of 0 in the normal space Ny, Yo, equal
to the orthogonal complement of Ty, Yo in Ty, X, such that the exponential
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ma
P exp: Wy — exp(Wy)

is an isomorphism. Put W;=exp(Wj). We call (e, xp) the origin of
Vo x Wo.

Lemma 2.10. Under a regular action by H, the map
o: Vox Wy - X given by (h, x) — hx
is a local isomorphism at the origin (e, xo).

Proof. This is a simple exercise in computing the differential of the map
at the origin, and showing that it is the identity.

As for Example 1, we may then apply Proposition 2.8 to the sub-
mersion
¢(V0 X Wo) =Uy— Wo.

Example 2 is essentially the one used by Helgason to construct his
transversal part of the Laplacian [He 84], Chapter II, §3, especially
Theorems 3.4 and 3.5. He does not use the second fundamental form, but
uses a construction applicable to all differential operators. This generality
requires some general results, notably his Theorem 1.4 characterizing
differential operators. Such considerations are completely bypassed by the
direct local differential geometric approach used in the present section.

Note that the submersion used in Proposition 2.8 is just that. No other
requirement is made. In the next section, we shall consider a stronger
version, with an additional metric condition.

Example 3. In Chapter XV, Theorem 3.8, we shall describe the polar
decomposition of the Laplacian, in a normal chart, namely let
exp,: B;(0,) — B.(x) be a differential isomorphism for some ¢ > 0. After
deleting the origin, the ball is isomorphic to a product S;(x) x (0, ¢),
projecting on the open interval (0, ¢). The submanifolds are the spheres
S:(x), 0 < r < c. The transversal part is called the radial part in this case.

Xlv, §3. THE COVARIANT DERIVATIVE ON
A RIEMANNIAN SUBMERSION

Let X, Z be Riemannian manifolds, and let
n: X - Z

be a submersion. We assume that n is Riemannian, meaning that for each
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x € X, the differential

Tr(x): TxX — ThyZ
is an orthogonal projection. For each zeZ we let Y, =7n"'(z) be the
fiber. Then Y, is a submanifold of X, and the kernel of T7(x) is T Y(y).
We also have the normal bundle N,Y,, and normal sections. By
definition, Tx(x) induces a linear metric isomorphism

T = TTZ(X)Z Ny Yn(x) - TN(X)Z'

I am indebted to Wu for his explanation of the behavior of the Laplacian
in submersions, which led to the exposition of this section.

Lemma 3.1. Let x € Yy be a point in a fiber. Let f be a function on
Z. Then for we N,Yyx) we have

(Dur’f)(x) = (D f)(n(x)),

or in different notation, if v is a normal field at x, then
(v )x) = (@) - ) (n(x)).
On the other hand, if v e TxYyy, then
(Don’f)(x) = 0.

Proof One may prove the formulas in a chart, in which case both
merely come from the chain rule

(f om)'(x) = f'(a(x)) Tn(x),
applied to any vector in T, X = Ty Y,(x) + Ny Y. So the lemma is clear.

The tangent bundle TX has an orthogonal sum decomposition into two
subbundles

TX=F 1 E,
where at a point x, F, = Ty Y, is the tangent space to the fiber, and
E, = N, Yy is the space normal to the fiber. One also calls F the vertical

subbundle and E the horizontal subbundle. The differential Tn gives a
metric isomorphism at each point

Tr(x): Ex — TxZ.
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A vector field 4 on Z lifts uniquely to a horizontal field uy, i.e. a vector
field such that

ur(x) € By = NiYay  and  Tr(xuy(x) = u(n(x),

at each point x € X. We call uy the horizontal lifting of 4. On the other
hand, a vector field on X having values in F is called a vertical field. Both
notions are of course relative to the submersion z, and one could write
F(n) and E(m) to bring = into the notation. But # is now fixed, so we
omit it from the notation.

Next we have some formulas for the lifting to normal fields. First,

(1) iy, vx] = (1, V).

The proof is immediate no matter what, and can be verified in a chart.
We also have the tangential component, i.e. for any vertical field ¢,

(2) ([/‘Xa VX]’ &) = (/‘X, Dvxé> - (vx, Dﬂxé)~
In particular, the value of the vertical component of [uy, vx| at a point

x depends only on uy(x), vx(x). To prove (2), we first write the defining
formula

([ﬂXv VX]? é) = <D#XVX - DVX"‘X’ é)
We use the fact that (vx, &) = (uy, £) =0. We apply D,, and D,,,
respectively, to these equalities, and use the defining property of the metric

derivative. Then (2) falls out.

We shall use the formula giving the metric derivative explicitly, namely
MD 2 of Chapter VIII, §4. For any vector field £ on X, we have

(3)  2(Dyyvx, &) = py - (vx, &) +vx - {ux, &) — & (ux, vx)
+ ([/"X& vX]7 é) - ([/’th é]’ vX) - <[VX7 é]a /‘X)'

Proposition 3.2, Let u, v be vector fields on Z, and py, vy their
horizontal liftings to X. Then

Pre(Dy,vx) = (Duv)y,
or equivalently, for every horizontal field Ay,

(Duyvx, Ax) = (Dyv, 4).
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Proof. The expression (D, vy, Axy) coming from (3) involves only the
Lie derivative, scalar product of vector fields and brackets. The scalar
product is preserved under lifting, by definition of a Riemannian sub-
mersion. Formula (1) gives the preservation of the bracket. The Lie
derivative is also preserved under lifting by Lemma 3.1. This concludes
the proof.

The rest of this section will not be used until §6.

Proposition 3.3. Let u, v, A, { be vector fields on Z. Then

Ay - (‘DVXAXa CX) =n (/’4 ' (Dv}v, C))
Proof. Again, direct consequence of (3) and Proposition 3.2.

Next we determine the vertical component. If # is a vector field on X,
we define its vertical component be

n” =prp n where F is the vertical subbundle of TX.

Proposition 3.4. Let u, v be vector fields on Z. Then
Dyvx =34lpx, vxl” + (D)

Proof. The horizontal component was already determined in Propo-
sition 3.2, which gives the second term on the right of the equation. As
for the vertical component, we use (3) with a vertical field £. Since
{uy, vx) = {u, v), if & is vertical, we have - (uy, vx) = 0. The first two
terms and the last two terms of (3) on the right vanish by (1). The value
for the vertical component then drops out, thus proving the proposition.

Proposition 3.5. Let «: [a, b] — Z be a curve such that o'(t) #0 for
all t. '

(i) Let y€ Yya. There exists a unique lifting A = A, of a in X which
is horizontal, i.e. such that A'(t) lies in the horizontal subbundle for
all t, and with the given initial condition A{a) = y.

(ii) The curve a is a geodesic if and only if A is a geodesic.

(iii) For each y, define F(y, t)= A,(t), and let F(y) = Ay(t). Then
Fi: Yya4 — Yy is a differential isomorphism.

Proof. The existence and uniqueness of the lifting are elementary, at
the level of the existence and uniqueness of solutions of a differential
equation. We give the details. The global assertion is a consequence of
local existence and uniqueness, so we may suppose that there is a vector
field v locally on Z such that v(«(r)) = o/(¢) for all ¢, i.e. v extends «’. For
simplicity of notation, shrinking Z if necessary to some open subset, we
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suppose v is defined on all of Z. Let y e X. By the fundamental theorem
on differential equations, there exists a unique curve 4: [a, b) - X such
that A'(z) = vy (A(?)) for all z. We claim that A lifts «, that is A(f) e Yy
(the fiber above a(f)). Indeed,

(mo 4)'(1) = Ta(4() A4'(t) = Tr(A(0) v (4(1),

and vy(A(f)) € Eqp). Let f=noA. Then f satisfies the differential
equation f'(z) = v(B(r)), with the same initial conditions as «, so f = a,
and thus A lifts . As for uniqueness, suppose v;, v, are two extensions of
o’ to local vector fields on Z. Let 4, 4, be the liftings of « corresponding
to these two vector fields. Then they satisfy A{(¢) = A;(¢) for all ¢, and so
they are equal, thus proving the first part of the proposition. For the
geodesic property, we put x4 = v in Proposition 3.4. Then the bracket term
on the right is 0. We evaluate along o’. Then (ii) follows from the
characterization of a geodesic by the condition D o’ = 0.

Finally (iii) is now essentially formal. Say for ¢ = b, we consider the
reverse curve of «, and its lift from 4(b) which is necessarily the reverse
curve of 4 by uniqueness. Hence F, has an inverse mapping. This
concludes the proof of Proposition 3.5.

In Proposition 3.2 we considered horizontal fields. The next proposition
gives a similar result for differentiation with respect to a vertical field.

Proposition 3.6. Let & be a vertical field. Then

<Df:uX7 Vx> = ~'%([:uXv VX]Vv é)

Proof. By the metric derivative formula (3) and Proposition 3.4, we
obtain
<DfiuXa vX) = (Duxéj VX> + <[év /"X]s VX)

= _<Duva1 f)
= _%<[.uX3 VXL é)
= _%<[/‘Xv VX]V’ é);

thereby proving the proposition.

XIV, §4. THE HESSIAN AND LAPLACIAN ON
A RIEMANNIAN SUBMERSION

We continue with a Riemannian submersion

n. X -2
as in §3, but we shall use only Lemma 3.1 and Proposition 3.2. We shall
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deal with the Hessian. As in §3, we let F and E be the vertical and
horizontal subbundles respectively, giving rise. to the two or.tho'gonsl
projections prp and prg. We may apply these in the way we did in the
previous sections, along each fiber Yy(y).

Proposition 4.1. Let &, n be vertical fields on X. Then for every function
f on Z, we have

(D,zx’n*f)(év ’7) = _hIZ(éa ’7) ' ﬂ*f
= _Tcthu(é, n) - f

Proof. We have
D*wf(&, ) =¢- (n-n'f) — (Den) - w'f
= Den) - 7S,

because 7 - n*f = 0 since m*f is constant on the fibers and # - #*f can be
computed along a curve contained in the fiber Y. Furthermore, the
constancy of f on a fiber also yields

(Den) - o'f = pre(Den) - 7f -
Then Lemma 3.1 and Proposition 2.1 conclude the proof.
Suppose that the fibers are finite dimensional, of dimension p. Let

&, ..., &, be an orthonormal frame of vertical fields locally on X. Recall
th;t in §1, we defined the trace of the second fundamental form to be

p
tr hyy = Zhu(fn &)
=1

Proposition 4.2. With a vertical orthonormal frame &,...,&,, and a
function f on Z, we have

f:(Dgzn*f)(éi, &) = —(tr hy) - ¥ = ~mtr by - f.
i1

Next we go to horizontal fields.

Proposition 4.3. Let u, v be vector fields on Z, with horizontal liftings
Uy, vx. Then

Din*f (py, vx) = D5f (1, v).
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Proof. We have

DLf(m,v)y=p-v-f—(Duw)-f,

and the similar expression on X with subscript X. The vertical component
of D, vy annihilates n*f because 7'/ is constant on fibers. For the
horizontal component, Proposition 3.2 shows that the last terms on the
right on X and on Z give the same value. As to the first term on the right,
Lemma 3.1 shows that

v ewf =a' (- f),

so doing the same thing with u; shows that the first terms on the right of
the equation on X and Z give the same value. This concludes the proof.

We shall give the relation between the Laplacians as an application. I
am indebted to Wu for the next theorems.

Theorem 4.4. Assume that X, and hence Z, are finite dimensional. Then
Jor all functions f on Z we have

Axm’f =" Az f + (tr hpp) - 7*f.

Proof. Let {{,...,&,} be an orthonormal frame of local sections of
the vertical bundle F, and let {y,..., #,} be an orthonormal frame of

sections on Z. Let {y, X1+ -1 Mgy} be their lifts to the horizontal bundle.
Then

{flv‘“;épa rule-'nqu}

is a local orthonormal frame on X. We get:

Axm'f ==Y Dymf(&, &) = Y Din'f (uy, wix)
i J
= (tr hp) - = = > D3 f(w;, 1)
J

by Propositions 4.2 and 4.3 respectively. This proves the theorem.

The trace of the second fundamental form is defined on X. Under some
homogeneity condition that we shall now describe, we can descend it to Z.

Let o be a metric automorphism of X, preserving the fibers, that is o
induces a differential metric automorphism of each fiber Ya(x for all x.
Then

MOOC =T SO Tl © Oy = Ty.
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Let x1, x3 € Yy(x) be points in the same fiber, and suppose ox; = xz. Let
&, n be vertical fields on X. Then

0. (h12(&, n)(x1)) = ha(0:&, ou1)(x2).

With a vertical frame {&},...,&,} as above, we can then define the trace of
hiz on Z, by the formula

A1

trz hip=m. tr by sofor xeX, (trz hlZ)(x)=Z e (h2(&5, &)(x))-

i=1

Suppose that there is a group of metric automorphisms of X, preserving
the fibers, and acting transitively on the fibers. Then given any two points
x1, x2 in the same fiber Yy, it follows that

trz h12(X1) =trz h12(x2)a

and therefore we may view trz hj» as a vector field on Z, which we call
the trace of the second fundamental form on Z. Then Theorem 4.4 can be
formulated as follows.

Theorem 4.5. Suppose that X, and hence Z, are finite dimensional.
Suppose also that there is a group of isometries of X, preserving the fibers
and acting transitively on each fiber. Let trz his be the trace of the
second fundamental form on Z. Then for all functions f on Z, we have

Axn'f = n*(Azf + (trz o) - f).
Remark. Readers may compare the above version with Helgason
[He 84], Chapter II, Theorem 3.7. To obtain the version in Helgason,
there remains to identify the trace of the second fundamental form with

the gradient of the appropriate function, which we shall do in Chapter
XV, §6 and §8.

X1V, §5. THE RIEMANN TENSOR ON SUBMANIFOLDS

Let Y be a submanifold of a Riemannian manifold X. Then we have the
two Riemann tensors Ry and Ry, which we wish to compare on Y.

Theorem 5.1 (Gauss Equation). For v; (i=1,2,3,4) in T,Y, we have

Rx(vy, v2, v3, vs) = Ry(v1, 02, V3, Va)

+ (h12(v2, v3), h12(v1 - va)) — (h12(v2 - va), h12(v1, 03)).
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Or, if &, n, {, © are vector fields on Y,

>

Ry(&m &, 0)=Ry(&n, ¢, 1)
+ (ha(m, £), hia(E, 7)) — (o, ©), hia(E, 0)).

Proof. The proof is routine, and forced. We h
SFE 2 51 ave by Theorem 1.1, or

D= DXy + ha(n, £);

SO iterating,

D D;/¢ = prry (DF DY L + D (hna(n, O)y) ).
We interchange ¢ and # and subtract. We also note that
(&, n]-{=prry[lx, ny]-{x on Y.
Hence by the definition of the Riemann tensor, for all vector fields 7 on Y,
(Ry (S, m¢, ©) = (Rx(&, m)¢, 7)
— (D (ma(&, O)x), 7 + (D (hia(n, 0) ), 7).
Applying Theorem 1.4 concludes the proof.

Fgr the next theore'm, we define Vehy;, following the general principle in
deﬁpmg covariant derivatives of tensors to be derivatives in all variables.
So it is defined on Y by the equation

Ve(ha(n, $)) = (Vehra)(m, £) + hia(Den, {) + hia(n, Dec).
Theorem 5.2 (Codazzi Equation). For vector fields &, 5, { on ¥,
Pryy Rx(&, 7, §) = (Vehia)(n, £) — (Vyhia)(&, {).
Proof. We start again with

DY{x = DY+ sy, ¢)
SO

DEDFx = DF((DY )y + DX (hya(n, 0)y
=D D,/ ¢+ ma(&, DY) ~ He(hia(n, ) + Ve (hia(r, 0)).
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Since 'H; is TY-valued, it is killed by pryy, and we obtain

pryy DEDX{x = ha(é, D,/ O) + Ve(hua(n, 0)
We interchange ¢ and # and subtract. We use the definition of Ry to get:

pryy R(& n){ =V (h12(’7, C)) -V, (hlz(f, C))
+ hia(é, DY) — hua(n, DFL) = pray D yilx-

= i tion of thlz
But pryy D¥ i(x = hi2([¢, 7], {). We use the defining equa
and sirﬁ,larl[ff’”lvith &, 7 interchanged, which we subtract. Note that

hlZ(Dcﬂa C) - hlZ(Dﬂéa C) = hlZ([é’ ’7]; C)

Then we get cancellations, from which the Codazzi equation follows, thus
proving the theorem.

The formalism can go on. We define the normal Riemann tensor on Y
by
Rny(m, §) = VoVe = ViV = Vi

so for vector fields #, { on Y

RNy(ﬂ, C) TNY - TNY

is an operator on normal fields. As with Ry we may form the tensors in
three and four variables with normal fields g, v:

RNY(", C),U = RNY(”a C’ #)a
RNY(”a Cv i, V) = (RNY(”’ C)I‘v V).

We recall the operator S, for a normal field p, giving a representation of
the second fundamental form in §1, (3), (4), (5). As usual, we may form
the bracket

[Slh Sv] = Sy o Sv - Sv o} Sﬂ'
Theorem 5.3 (Ricci Equation). We have

RX(&: n, Ky V) = RNY(&; n, K V) - ([S,u, SV]é‘l '7>-
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Proof. More of the same type of computation. We use (6) in §1 twice
to get

Rx(¢, mu=DEDFu—DFDFu~ D
= Ryy (&, m) + Svun + Dy(Su&) + hia (4,8, 1)
- SV,,,ué - Df(sll”) - h12(€a Suﬂ) + Sﬂ[é, ?7]

We take the scalar product with v, and use formula (3) to find:
<RX(éa ’7)”7 V) = (RNY(éa ”)ﬂ7 V> + (hIZ(S/léa ’7)1 V) - <h12(éa Sp’?)» V)

= (RNY(fy ’I)ﬂ, v) - <(SllSv - SvSﬂ)fv 77)
= <RNY(éa ’7):”7 V) - ([Sll’ Sv]év ’7>a

which concludes the proof.

Xiv, §6. THE RIEMANN TENSOR ON A
RIEMANNIAN SUBMERSION

We return to a Riemannian submersion

. X > Z
as in §3 and §4, and use the same notation. This section is due to O’Neill
[O’N 66], some of whose results have been reproduced in various differ-
ential geometry texts, e.g. [ChE 75] and [KI 83/95]. We let Ry and Rz
denote the Riemann tensors on X and Z respectively. If u is a vector field

on Z, we let uy (as in §3 and §4) be its horizontal lifting to X.

Theorem 6.1. Let u, v, A, { be vector fields on Z. Then

RX(.”X? Vx, j'Xv CX) =RZ(‘H, Vs j'y {) + VR(/uXa Vx, A’X’ gX)
where Vg denotes the vertical component,
VR(.“X; Vx, j'Xv CX) =% [ﬂX: )“X] V, [VX, CX]V>_%<[VX’ AX]Va [IuXv CX] V>
+ 30, &7, L ve) ).

Proof. The Riemann tensor involves second derivatives, but all the
formulas needed to perform the iteration easily have been proved in §3.
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So we forge ahead. First, by Propositions 3.3, 3.5, and 3.6, we find

(1) (Du,Dy,Ax, {x) = iy - {Dvyhx, {x) — (DyyAx, Dy, Cx)
=Hu- (va'y C) - <Dv'1, DﬂC) _%<[VX, lX]a [:uXa CX])
= <DﬂDV)“’ C) _%<[VX7 )“X]Vv [/‘X’ CX] V)'

Decomposing [y, vx| into horizontal and vertical component and using
Proposition 3.6, we get

(2) (D{/IX,V,\']}'X’ CX) = (D[/z,v]}', C> _%<[;LX, CX] V? [luX’ VX] V)'
By (1) and (2), and the definition of the Riemann tensor
R(/t, v) = D#DV - DvDﬂ - D[”Yv]

and similarly with the subscript X, the formula of Theorem 6.1 falls out,
and the proof is concluded.

Corollary 6.2. For the tensor R, such that Ry(v, w) = R(v, w, v, w), we
get

2
Rox(py, vx) = Roz(p, v) + 3 [y, vx]Il™.
In particular, the tensor R, decreases under submersions.
Proof. This is immediate from the definition and Theorem 6.1.

For the curvature, which is minus R,, Corollary 6.2 means that
curvature increases under submersions.

Remark. In O’Neill [O’N 66], he defines two operators, and formulates
his results in terms of these operators. The first result amounts to
Theorem 6.1, and is the analogue of the Gauss formula for submersions.
The other is the analogue of the Codazzi formula, which I omit. Note
that an expression

%[,uXv VX]

should probably receive a name, as a single item, to make the coeflicients
1/2, 1/4, or 3/4 more structural. It remains to be seen what is the best
convention to adopt about these expressions.

PART 1lI

Volume Forms and
Integration
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CHAPTER XV

Volume Forms

For the first time we meet a strictly finite dimensional phenomenon: If X
is of finite dimension n, then the n-forms &/"(X) play a distinguished role
whose extension to the infinite dimensional case is not evident. So this
chapter is devoted to these forms of maximal degree. In the next chapter,
we shall study how to integrate them, so the present chapter also provides
a transition from the differential theory to the integration theory.

Although for organization and reference purposes it is convenient to
place together here a number of results on volume forms, only the first
section giving a basic definition will be used in the next three chapters, so
the other sections may be skipped by a reader wanting to get immediately
into integration.

XV, §1. VOLUME FORMS AND THE DIVERGENCE

Let V be a finite dimensional vector space over R, of dimension n. We
assume given a positive definite symmetric scalar product g, denoted by

(v, w) > (v, w), = g(v, W) forv,weV.

The space A"V has dimension 1. If {e,...,e,} and {u),...,u,} are
orthonormal bases of V, then

ey A - Aep=U A - AUy

Two such orthonormal bases are said to have the same orientation, or to
be orientation equivalent, if the plus sign occurs in the above relation. A
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choice of an equivalence class of orthonormal bases having the same
orientation is defined to be an orientation of V. Thus an orientation
determines a basis for the one-dimensional space A"V over R. Such a
basis will be called a volume. There exists a unique n-form Q on V
(alternating), also denoted by voly, such that for every oriented ortho-
normal basis {ej,...,e,} we have

Qfer,...,eq) =1

Conversely, given a non-zero n-form Q on ¥, all orthonormal bases
{e1,...,en} such that Q(ey,...,e,) > 0 are orientation equivalent, and on
such bases Q has a constant value.

Let (X, g) be a Riemannian manifold. By an orientation of (X, g) we
mean a choice of a volume form Q, and an orientation of each tangent
space T,X (x€ X) such that for any oriented orthonormal basis
{ei1,...,es} of TX we have

Qx(elﬁ"':en) =1

The form gives a coherent way of making the orientations at different
points compatible. It is an exercise to show that if (X, g) has such an
orientation, and X is connected, then (X, g) has exactly two orientations.

In Chapter XVI, we shall give a variation of this definition. By an

oriented chart, with coordinates xi,...,x, in R”, we mean a chart such
that with respect to these coordinates, the form has the representation

Q(x) =g(x)dxi A --- Adxy

with a function ¢ which is positive at every point of the chart. We call Q
the Riemannian volume form, and also denote it by vol,, so

voly(x) = Q(x) = Q.

We return to our vector space V, with positive definite metric g, and
oriented.

Proposition 1.1. Let Q=vol,. Then for all n-tuples of vectors
{v1,...,0,} and {w1,...,wa} in V, we have

Qv .., Un)Q(wy, . .., wp) = det(vs, wj) -

In particular,
Q(U], CER) vn)z = det(vi’ ”J’>g'

Proof The determinant on the right side of the first formula is
multilinear and alternating in each n-tuple {v),...,v,} and {wi,...,ws}.
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Hence there exists a number ¢ € R such that
det(vs, w;), = cQ(v1,...,vn)QW1,..., Wy)

for all such n-tuples. Evaluating on an oriented orthonormal basis shows
that ¢ = 1, thus proving the proposition.

Applying Proposition 1.1 to an oriented Riemannian manifold yields:

Proposition 1.2. Let (X, g) be an oriented Riemannian manifold. Let

22=volg. For all vector fields {&y,...,¢,} and {n,,...,n,} on X, we
ave

Q(éla cee 7§n)Q(7717 R ’ﬂn) = det(é:i’ ”j)g'

In particular,

Q(&y,..., &) = det(¢, e

szrthermore, if {7 denotes the one-form dual to ¢ (characterized by
EV{(n) = (¢, n), for all vector fields n), then

Q(éb?én)gzél\//\ Aé]:/

This last formula is merely an application of the definition of the wedge
product of forms, taking into account the preceding formulas concerning
the determinant.

At a point,‘the space of n-forms is 1-dimensional. Hence any n-form
on a'Rlemanman manifold can be written as a product pQ where ¢ is a
function and Q is the Riemannian volume form.

If é is a vector field, then Q o ¢ is an (n — 1)-form, and so there exists a
function ¢ such that

d(Qo ) = pQ.

We call ¢ the divergence of & with respect to Q, or with respect to the

Riemannian metric. We denote it by divg & or simply div ¢. Thus by
definition,

d(Q o &) = (div Q.
Example. Looking back at Chapter V, §3 we see that if
Q(x) =dx; A --- A dx,

is the canonical form on R” and ¢ is a vector field, & = 3" gu; where
{u1,...,un} are the standard unmit vectors, and @; are the coordinate
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functions, then

For the formula with a general metric, see Proposition 1.5.

We shall study the divergence from a differential point of Yiew in the
next section, and from the point of view of Stokes’ theorem in Chapter
XVIIL

On l-forms, we define the operator

dar: Y X) - LX)

by duality, that is if ¥ denotes the vector field corresponding to 4 under
the Riemannian metric, then we define

d*A = —div 1".
Let us define the Laplacian or Laplace operator on functions by the
formula

A =d*d = —div o grad.

In Corollary 2.4, we shall prove the equivalence of this definition with that
of Chapter XII, §1.

Proposition 1.3. For functions ¢, Y we have
Alpy) = oAy + YAp — 2{dg, dy),.
Proof. The routine gives:

A(py) = d*d(py) = d*(y dp + ¢ d¥)
= —div(yLy,) — div(play)
=~y div &g — (d)eap — ¢ div Loy — (d@)Say
= YAg + gAY — 2(dp, di),

as was to be shown.

Recall that
(dp, Ay, = (grad ¢, grad ¥),,

so there is an alternative expression for the last term in the formula.
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We shall tabulate some formulas concerning the gradient. For sim-
plicity of notation, we shall omit the subscript g in the scalar product,
because we now fix g. We shall also write simply gr i instead of grad, g.

gr 1. For functions ¢, ¥ we have

gr(oy) = ¢ gr(¥) + ¥ gr(p).
gr 2. The map ¢ — (gr(p))/¢ = ¢! gr(p) is a homomorphism, from

the multiplicative group of functions never 0, to the additive
group of functions. In particular, for a positive function ¢,

207172 gr(9p'?) = ¢~ gr(p) = grlog ¢
because d log ¢ = ¢! dp.
gr3. gr(p) ¥ =gr(¥) - ¢ = (gx(e), gr(¥)),.

We use these formulas to give two versions of certain operators which
arise in practice. For any function ¢, we write for the Lie derivative

(81 9] = L.
Corollary 1.4. Let § be a positive function. Then
A — [grlog 8] = 67V2A 0 612 ~ 5712A(5/2).
Proof. For a function ¥, by Proposition 1.3,
(Ao 8" %)y = A" 2y)
= 012Ay + YA(6/?) - 2(gr 6'7%) - y.
We apply the right side of the equality to be proved to a function . We

use the formula just derived, mutliplied by 6712, The term 6~V/2A(6"/%)y
cancels, and we obtain

(right side)(y) = Ay — 26712 (gr 6'/2) - y.

We use gr 2 to conclude the proof.

Remark. In Helgason [He 84a), Chapter II, Theorem 3.7, he uses the
identity of Corollary 1.4. The difference in sign comes from the fact that
we take the Laplacian to be the positive one, and his Laplacian is
negative, as an operator.



402 VOLUME FORMS XV, §1]

More formulas concerning the Laplacian will be given in the next
section, using the covariant derivative and the variation formula. For
applications of such formulas and theory to the heat kernel, cf. [Cha 84],
especially Chapters II and III, in addition to [BGM 71].

The remainder of this section will go more systematically into the general
theory of the divergence. It will not be used in the sequel except in §6
and §8. Hence readers may proceed immediately to §2.

General definition of the divergence

Although the most important case of the divergence is on a Riemannian
manifold, some properties are most clearly expressed in a more general
case which we now describe. Let T be a vector space of finite dimension n
over R. Then /\"T is of dimension 1, and will be called the determinant of
T, so by definition,

det T= \™'T=N\'T.

Observe that we also have det TV. A non-zero element of det TV will be
called a volume form on T.

The vector space of sections of /AT VX on a manifold X of dimension n
is also a module over the ring of functions. By a volume form on X we
mean section which is nowhere 0, so a volume form is a basis for this
space over the ring of functions. Instead of saying that Q is a volume
form, one may also say that Q is non-singular. If ¥ is any n-form on X,
then there exists a function f such that ¥ = fQ. So let Q be a volume
form. Let & be a vector field on X. We define the divergence of { with
respect to Q just as we did for the Riemannian volume form, namely
divg(¢) is defined by the property

DIV 1. d(Q o &) = (diva(&))Q.

From Chapter V, Proposition 5.3, LIE 1, we also have the equivalent
defining property

DIV 2. Z:Q = (diva(£))Q.
Directly from DIV 2 and LIE 2, we get for any functions ¢, f:
DIV 3. diva(pe) = ¢ diva($) + £ - 9.

DIV 4. df A (Qo &)= (& NA.
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Proof. First we have Z¢(fQ) = (¢- f)Q+ f diva(¢)Q, and second,

Z(fQ=d(fQol)=df A (Qol)+/fd(Qo¢)
=df A (Qo )+ f divg(é)Q.

Then DIV 4 follows from these two expressions.

One can define an orientation on the general vector space T depending
on the non-singular form Q. Of course in general, we don’t have the
notion of orthogonality. But we say that a basis {v1,...,0n} of T is
positively oriented, or simply oriented, with respect to Q if Q(vy, . .., Uy) > 0.
Let Q, ¥ be volume forms. We say that they have the same orienta-
tion, or that they are positive with respect to each other, if there exists a
positive function 4 such that Q = A¥. Forms with the same orientation
deﬁne.the same orientation on bases. A manifold which admits a volume
form is said to be orientable, and the class of volume forms having the
same orientation is said to define the orientation.

Let J be a positive function on X, and let ¥ be a volume form. Then:
DIV 5, divsg (&) = (& - log d) + dive(&).
Proof. By Proposition 5.3 of Chapter V, LIE 1, we have
d(@¥ o &) = L:(6F) = (£-0)07'0¥ + 6.L:(F)
= (- log 6)(0¥) + 4 dive(¢)¥,

which proves the formula.

The divergence in a chart

Next we obtain an expression for the divergence in a chart. Let U be
an open get of a chart for X in R” with its standard unit vectors u;, . .. s Un.
There exists a function 6 never 0 on U such that in this chart,

Q=0ddx; A - Adx,.

Suppose U is connected. Then we have 6 > 0 on U or 6 < 0 on U since Q
1s assumed non-singular. For simplicity, assume & > 0.

Example. If Q = Q, is the Riemannian volume form, then

8 = (det g)/%.
In other words,

Qy(x) = (det g(x))l/2 dxi A -+ A dxp.
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Here g(x) denotes the matrix representing g with respect to the standard
basis of R".

We write ¢ in the chart U as a linear combination

E=> pm

with coordinate functions ¢,...,p,. We let d; be the i-th partial deri-
vative. We write the coordinate vector of ¢ vertically, that is

12
b= (I)é =
@n
We let ‘Dq be the row vector of operators
‘Do = (01 + 01 log B, ..., 0, + 0, log 6).
Proposition 1.5.
diva £ =071 _ 6:(69;)

= Z 6;¢,- + Z (at log 6)%'

In matrix form,
divg & ='Do®; oralse  divg=4"'"Dod.
Proof We have

(Qo&)(ut, ..., iiy- .. tn) = Q(E, ULy ... By Uy)
= (—l)i_IQ(ul,...,é,...,u,,)

= (-)"dg;
Hence

(Q°f)=2(—1)i_l5¢,- dxi A oo AdXi A oo A dXg,
and since ddx; =0 for all j, we obtain

d@o&) = (~1)10:(0p) dxi A dxi A - Adx A o A dxy
=Za,-(5¢,.) dxy A - Adx,
=41 Z 0i(0p:)Q.

This proves the proposition.
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We return to the gradient, for which we give an expression in local
coordinates, with an application to the Laplacian.

Proposition 1.6. Let gr(y) => ou;. Let g(x) be the nxn matrix
representing the metric at a point x. Then the coordinate vector of gr(y)

A
41 oy
o=|: |[=g(x"

@n O
In other words,

o= g_la'//7

where 0 is the vector differential operator such that '0 = (0i,...,0,).
Proof. By definition,

(8r(¥), w), = (d¥) () = 3.

The left side is equal to (gr(y), g(x)u;) at a point x. Note that here the
scalar product is the usual dot product on R”, without the subscript g.
The formula of the proposition then follows at once.

Proposition 1.7. Let f and \ be function, and let gr(y) = > gu; as in
Proposition 1.6. Then

gW) -1 =3 @)

j=1
Proof. Since u;- f = 0;f, the formula is clear.

From Propositions 1.5 and 1.6, we obtain the coordinate representation
of the Laplacian via a matrix:

Proposition 1.8. On an open set of R", with metric matrix g, 6 =
(det g)l/ 2 and Laplacian Ay, we have

—A, = div, gr, = 'Dyg™'8
_ s—1 tags-1
=47 04, 0.
Here, D, abbreviates Dq,, and div, abbreviates divg,.

Putting all the indices in, we get

R A =E1Y (az gffa,-f)
i J
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where in classical notation, g~!(x) is the matrix (g¥(x)) for x e R". Using
the rule for the derivative of a product, we write (1) in the form

() A f = g0, f + Lyf,

i, j=1

where L, is a first-order differential operator, that is a linear combination
of the partials 8y,...,0, with coefficients which are functions, depending
on g. From this expression, we see that the matrix g~! = (g¥) is the
matrix of the second-order term, quadratic in the partials d;, ;. Hence we
obtain:

Theorem 1.9. Let X be a Riemannian manifold. Then the Laplacian
determines the metric, i.e. if two Riemannian metrics have the same
Laplacian, they are equal. If F: X — Y is a differential isomorphism of
Riemannian manifolds, and F maps Ay on Ay, that is F commutes with
the Laplacians, then F is an isometry.

Note that the second statement about the differential isomorphism is just a
piece of functorial abstract nonsense, in light of the first statement. Indeed,
F maps the metric gy to a metric F,gy on Y, and similarly for the
Laplacian. By assumption, F,Ay = Ay. Hence Ay is the Laplacian of gy
and of F,gy, so gy = F.gy by the first statement in the theorem.

Example. Let A =R x --- x R be the product of positive multiplica-
tive groups, taken » times, so we view 4 as an open subset of R”. We let
a denote the variable in 4, so a = ‘(ay,...,a,) with a; > 0. We identify
the tangent space T, 4 = T, with R", so a vector ve T, is an ordinary
n-tuple,

v="(c1,...,Cn) with c;eR.

Let g be the metric on A4 defined by the formula
n

(v, v), =Y c}/al.

i=1

Then g is represented by the diagonal matrix g(a) = diag(a;?,...,a;2),
that is
(v, v), = (v, g(a)v),

where the scalar product without indices denotes the standard scalar
product on R”. Then

8(a) = det g(a)'? = ]’n[a,.—l =d(a)~"
i=1
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where d(a) =a;---a, is the product of the coordinates. Thus for a
function ¥ on A4, we have the explicit determination for the gradient,

1 (Brq ¥)(@) = g(@)~'00 = (@}ory,..., az0u¥) (a).
The Laplacian A4 from Proposition 1.8 is seen to be

n n
(2) —Ay = Z a;0; + Z a,za,z

i=1 i=1

This comes from matrix multiplication,

d(a)”lafal
d(a)(d1,...,0n)
d(a)_laﬁa,,

XV, §2. COVARIANT DERIVATIVES

In this section, we gather together a number of results on the covariant
derivative in connection with volume forms on the oriented Riemannian
manifold (X, g) of dimension n.

We begin by some remarks extending the formalism of the covariant
derivative to volume forms. First, we recall from multilinear algebra that
the metric g induces a natural metric on the dual space, i.e. the cotangent
space, identified with the tangent space via g. In other words, for two
vector fields &, n we have

(€Y, 0" )y =& my

Then we get a scalar product on differential forms of all degree. This is
just a matter of punctual multilinear algebra. On p-forms which are
decomposable, the scalar product is defined by the determinant,

G A A A Ay, = det(EY,m )y = det(Es, 7).

Let D be the metric covariant derivative. Its characterizing property for
the scalar product of two vector fields extends at once to forms, and
specifically to 1-forms, and then for p-forms, w, ¥ of any degree, and any
vector field £, we have

(1) ¢ (@, ¥); = (Dew, ¥), + (@, Deys),.

This applies in particular to volume forms Q and P.
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The proof for 1-forms comes directly from the metric property of D.
For forms of higher degree, it comes also at once from the multilinearity
of the determinant as a function of columns and rows, and from the fact
that the derivative of a product satisfies the standard rule. One applies this
rule both to the determinant viewed as a product of p column variables,
and the scalar products ({;, 7;),. The reader can write all this down faster
than I could.

We recall that a sequence {&),...,&,} of vector fields is called an
orthonormal frame (on some open subset of X) if they are orthonormal for

the metric g, that is
1 ifi=j,

Given a point x€ X, such an orthonormal frame always exists in a
neighborhood of x.

Theorem 2.1. Let D be the metric covariant derivative. Then

D¢ vol; =0
for all vector fields .

Proof. Let Q = vol, be the Riemannian volume form. If {&,...,&,} is
an orthonormal frame, then Q= +&'A---A ¢ and (Q, Q) =1
Taking the Lie derivative with ¢ yields 0, and also yields

0=2(D;Q, Q),.

But D:Q = ¢Q for some function ¢, so 0= 2¢p(Q, Q),, whence ¢ =0,
which proves the proposition.

Remark. The above result remains true suitably formulated in the non-
oriented case, because the theorem is local, and locally, the absolute value
of the form differs by +1 from the itself.

The next theorem will give an application of Theorem 2.1.

The metric derivative D operates on vector fields and also on r-forms
for all r, especially r =1 and r = n. For any vector field ¢ we let D be
the endomorphism of I'TX such that

(DE)n = Dy¢.
At each point x € X we have the operator

(D&),: TxX - TxX such that (D&),(v) = (D&)(x),

iy im—

o —

G L o P R B T s A o

H
!
3

COVARIANT DERIVATIVES 409

XV, §2]

on the finite dimensional vector space T, X. This allows us to take the
trace tr(D¢) of this operator at each point, so to take tr(D¢&),. The trace
can be computed as usual by using an orthonormal basis.

Similarly, we can define D for a 1-form Ae #'(X), whereby

DA: TTX - T'TYX  is such that (DA)(&) = DgA.

Thus for each x € X, (DA), may be viewed as a linear map
(DA),: TxX - T/X,

whose trace can be computed by using duality, namely

tr(DA) = Z (De,A, &)

1

On the right side, we use the convenient notation (4, &) = A(¢) for a
1-form A and a vector field £. In such a case, there is no subscript g on
the scalar bilinear pairing between functionals and vectors.

Theorem 2.2. Let &,,...,&, be an orthonormal frame of vector fields,
and let ¢ be a vector field. Then

div & =) (Deg, &), = tr(DQ).
i=1

In particular, for A€ o#'(X) we have
div AY =tr(DA).

Proof. Let Q =vol; be the volume form. By COVD 6 of Chapter
VIII, §1, and Proposition 2.1, we get

dQo &) &) = g(—l)i_lD¢i(Q°é)(él,...,E,-,---,é..)
_ iz";(-l)"-l(gong,.é)(cl,...,éi,...,én)
= g Q(&y,..., D, 0 8)
and since D¢ has the Fourier expression Deé =Y, (Det, &) &),

= Z (D{,é, éi)g Q(fla s 76'1)‘
i=1
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But also d(Qo¢&)(&y,...,&,) = (div &)voly(&y, ..., &,). Hence
div é = Z <D§,é, éi>g7
i=1

which proves the first formula. The second is a mere rephrasing, applied
to the vector field 1.

Directly from the definition of the operator d* in the preceding section,
we now obtain:

Corollary 2.3. On a l-form A, we have d*A = —tr(DA).
We can then apply this to the Laplacian, to get:

Corollary 2.4, Let &,...,&, be an orthonormal frame as in Theorem
2.2. Let ¢ be a function. Then

Ap = —tr(D dg) = Z (D dg, &) == (Dg(grad p), &),

i=1

If {u1,...,un} is an orthonormal basis of the tangent space T.X at some
point x€ X, and o; is the geodesic with a;(0) = x and a[(0) = u;, then

n

Ap(x) == (poa)'(0).

i=1

Proof. The first assertion comes from applying Theorem 2.2 to A = dy.
The second assertion then follows by using Corollary 4.4 of Chapter VIII.

From the preceding corollary, we can obtain an expression for the
Laplacian in polar coordinates. I follow [BGM 71]. We pick a point
x € X as an origin, with its tangent space T, X. We let Uy be an open ball
centered at 0, on which exp, induces an isomorphism to its image, and we
let ye U,. We want to determine Ap(y) for a function ¢ which depends
only on the Riemannian distance from x, say

o(y) = f(r(y))  where r(y)=disty(x, »),

and f is a C?* function of a real variable.

Proposition 2.5. Let a = oy be the unique geodesic from x to y # x,
parametrized by arc length, and let e; = a'(r)e T,X. Let e,,...,e, be
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unit vectors in TX such that {ei,...,e,} is an orthonormal basis of
T,X. Let n; (i= .,n) be the Jacobi lift of o such that

7,(0)=0 and n,(r) =e;.
Then

Ao(3) = ~£"() = ') S (Dermi(r), mi(P),

i=2
Proof. Let B; (i=1,...,n) be the geodesic from y such that
B(0)y=y and  B/(0) =e.

Observe that §,(f) = a;(r + ¢) for small ¢, by the uniqueness of the integral
curve of the corresponding differential equation. We apply Corollary 2.4
to the Laplacian at y, and the geodesics §;(i=1,...,n) to get

Ag(y) = Z((o o £,)"(0).
Since f(t) = a1(r +¢), we can split off the first term, to obtain

Ag(y) = —f"(r Z (9o B)"(0).

i=2

Let a;, be the unique geodesic from x to f,(¢) (for small ¢), parametrized
by arc length. Thus o;, is what we called the variation of « at its end
point, in the direction of e;, for i = 2,...,n. Then by Propositions 3.3 of
Chapter IX, Proposition 1.9 of Chapter XI, and the fact that

(9o B)() = f(L(o,1)),

we obtain

(90 B:)"(0) = f'(r)(Darmy(r), (1)),
which proves our proposition.

The trace tr(D¢&) in a chart

Just as we ended the last section with formulas in a chart U, we end the
present section with the corresponding formula. Again we let @ be the
coordinate vector of &, so '‘® = (¢;,...,p,) is the coordinate vector of
¢ with respect to the basis {u;,...,u,}. We let By be the bilinear map
occurring in the definition of the covariant derivative, so the chart repre-
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sentation of D,¢ is

Dy¢ = &Eyn — Bu(n, &).
Then:

Proposition 2.6. Ler 6 = (det g)\/2. For each j we have

Ojlogd = —Z By(uj, u),
k

and

div & =tr(DE) = 0, — Y, 9:{Bului, we), )
i ik
=" dpi— Y Bulé, w).
i k

Proof. The second formula for the trace comes from the definition of
the trace and the definition of D¢&. The first formula then follows
componentwise from Proposition 1.4. This concludes the proof.

XV, §3. THE JACOBIAN DETERMINANT OF
THE EXPONENTIAL MAP

We continue to consider a Riemannian manifold (X, g). We let xe X,
and we let By be an open ball in T, X centered at O, such that exp, gives
an isomorphism of By with its image in X. Thus without loss of gene-
rality, we may assume X oriented, and we let vol, be the volume form on
X. We call B, a normal chart at x. For yecexp,(B,). We write
y = exp,(vy), so v, =log,(y), as it were.

We note that the differential
T exp,(vy): Tx = Ty

is a linear isomorphism, and both T, and T, have the positive definite
scalar products of the Riemannian metric, so we may define the absolute
value of the determinant of (Texp,)(v,). One simply picks orthonormal
bases in each one of these vector spaces, and the determinant of the matrix
representing (Texp,)(v,) with respect to these bases. Picking oriented
bases actually makes the determinant positive, so we don’t need to take an
absolute value. We let J denote the Jacobian determinant, so

exp! vol, = J volee  oralso  expy voly(v) = J(v) voleuc(v),

where voley is the euclidean volume on T,X, determined by the positive
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definite metric g(x), and v is the vector variable in T, X. We shall express
J in polar coordinates.
Let S(1) be the unit sphere in T, X. Any vector v e T,X, v # 0, can be
written uniquely in the form
v =ru,

where u is a unit vector in the direction of v, and r > 0. We call (r, u)
the polar coordinates of v. Then the euclidean volume has the usual
decomposition

vOlewo(r, u) = r"~! dr du(u),
where du(u) is the usual spherical measure (d6 in dimension 2). Then
(expy voly)(ru) = J(r, wyr*! dr du(u).
Proposition 3.1. Let u be a unit vector in T, X and let « be the geodesic
parametrized by arc length such that 0(0) = x and «’(0) = u. Put u=w,
and let {u, wy,...,w,} be a basis of T.X such that w; Lu for i=
2,...,n. Let n; (i=2,...,n) be the Jacobi lift of a such that

7{0)=0 and  Dyni{0) =w;.
Then

.- _ det(n,(r), ..., n(r)) _ det'(n,(r), 1;(r))
I ) = det?wz,...,w,,) T det(wy,... ,]Wn) g

The determinant on the right is taken for i, j=2,...,n.
Proof. Observe that we may also use #;, which is such that
7 (¢) = ta/(¢t). The equality between the two expressions on the right of

the equality sign follows from Proposition 1.1. Let f =exp,. Then for
any vectors wy,...,w, € T,X we have

(expy vOly)(v)(wi, ..., wn) = volg (Tf (v)wy, ..., Tf (v)wn)
= det(Tf (v)wi, ..., Tf (v)wn)
= J(v) det(wy, ..., wp).

We put v =rw; =ru. By Theorem 3.1 of Chapter IX we know that

1
T exp, (ru)w; = ;’7;’(")-

Then for i =1, 5,(r)/r = &/(r), which is a unit vector perpendicular to the
others. Thus to compute the volume of the parallelotope in euclidean
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n-space, we may disregard this vector, and simply compute the volume of
the projection on (n— 1)-space, and thus we may compute only the
(n—1) x (n— 1) determinant of the vectors

Qet(1(1) /. /1) = =g det(ma0), - (1),

from which the proposition falls out.
Proposition 3.1 is applied in several cases.

Corollary 3.2. If in Proposition 3.1 all the vectors w; are unit vectors u;
such that {uy,...,un} is an orthonormal basis of T:X, and u = uy, then

we have simply
"I (r, u) = det' 2 (n,(r), 1,(r)),-

From this case and the asymptotic expansion for the Jacobi lifts, we
obtain:

Corollary 3.3. Again with an orthonormal basis {uy, ..., u,} of TxX, let
u=u and
n
Ric(u,u) = Y Ro(u, w)-
i=2
Then

2
exp; voly(ru) = [1 + Ric(u, u) ;_i + 0(r3)] Voleyc(rv)  forr— 0.

Proof. By Corollary 3.2, J(r, u) is det'?(n,(r)/r, n;(r)/r), xyith the
determinant taken for i, j=1,...,n or {',‘j=2,...,n. Using the
asymptotic expansion of Chapter IX, Proposition 5.4 and the orthonor-

mality, one gets that
n r2 1/2 3
J(r, u) = H(l + 2R (u, w;) ;) +0(r’) forr — 0,
i=2

which is immediately expanded to yield the corollary.

Example. Suppose dim X = 2. Then Ric(u, u) = Ry(u, uz) = Ra(uy, u2).
Putting u; = u’, we get

2
J(r, u) =1+ Ra(u, u');-i + 0(r*) for r — 0.
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If we keep u fixed, and use A in polar coordinates, A = —63 —r719,, then
we see that

Ro(u, u') = —3AJ(0).

Compare with {He 78], Chapter I, Lemma 12.1 and Theorem 12.2.

For the further asymptotic expansion of the volume, see [Gray 73], as
well as applications referred to in the bibliography of this paper.

On the other hand, we shall also meet a situation where {w1,...,wn}
is not an orthonormal basis as in the next corollary. Cf. Chapter IX,
Proposition 3.3.

Corollary 34. Let exp,: B, — X be the normal chart in X as at the
beginning of the section, and y = exp, (ru) with ru e By, and some unit
vector u. Let a(s) = exp,(su) and let e; = o'(r). Complete e; to an
orthonormal basis {ei,...,e,} of T, X, and let n; be the Jacobi lift of «
(depending on y, or r if uy is viewed as fixed), such that

7:(00=0 and n(r)=e fori=2,...,n
Let J'(s, u) = 01J (s, u). Then

n

71900+ L= 3 (D), mo),,
=2

Proof. In the present case, D,#;(0) =w; is whatever it is, but we
observe that the determinant det(w»,...,w,) is constant, so disappears in
taking the logarithmic derivative of the expression in Proposition 3.1. We
also observe that in the present case,

(’Ii(r)’ ”j(r»g = éijv

so the matrix formed with these scalar products is the unit matrix. Taking
the logarithmic derivative of one side, we obtain

J' I, u) + (n—=1)/r.

Let hy = (n;, n;),, and let H = (hy). On the other side, we obtain the
logarithmic derivative

1 (det HY'
2 detH -
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Let Ha,...,H, be the columns of H. By Leibniz’s rule, we know that

n

(det HY = det(Ha, ..., H],..., Hy).

=2

Observe that
(M, 1Yy = (Dartliy ) + (s Dol
and in particular,
(m;, ’1:'); = 2(Dym;, ’Ii>g~

What we want follows from a purely algebraic property of determinants,
namely:

Lemma 3.5. Let A= (Al,...,A™) be a non-singular m x m matrix over
a field, where A', ..., A™ are the columns of A. Let B = (B,...,B™) be
any m x m matrix over the field. Then

3 det(d',...,B',...,4™) = (det 4) tr(4~1B).

Proof. Let X = (x;) be the matrix such that
xpd' + -+ xmd™ =B  for i=1,...,m.
By Cramer’s rule,
x; det(A4) = det(4',..., B, ..., 4A™).
But AX = B so X = A~!'B, and the lemma follows.

We apply the lemma to the case when 4 = H(r) is the unit matrix and
B/ = Hj(r) to conclude the proof.

Corollary 3.6. Let ¢ be a C? function on a normal ball centered at the
point x € X. Suppose that ¢ depends only on the g-distance r from x, say
o(y) = f(r(»)). Let y = exp(ru), with a unit vector u. Then

n—1

803) = ")~ 1O (13,0 + 71,

Proof. Combine Corollary 3.4 with Proposition 2.5.
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The formulas in Proposition 2.5 and Corollary 3.6 apply to a function
which is constant on the spheres centered at the point x. However, it is
only a formal matter to obtain the more general formula for any func-
tion. We rely on a general lemma about the exponential. Consider a
normal ball B centered at a point x € X as in Chapter VIIL, §5. Thus the
exponential

exp,: B— B
gives an isomorphism of a ball B in T, X centered at 0,, with the
Riemannian ball B in X, centered at x. For y # x in the ball B, let n(y)
be the unit normal vector to the sphere S,(x) with r = dist,(x, y). Then
y+—n(y) is a vector field on the punctured ball, normal to each sphere,
and called the unit radial field from x.

Lemma 3.7. Let u be a unit vector in TyX. Let ¢ be a C* function on a
normal ball centered at x, and define the function f, by

fu(r) = p(exp,(ru)).
Su(r) = (Dup) (expy(ru))

£(r) = (Do) (exp,(ru)).

Then

and

Proof. Let y = exp,(ru) with some unit vector u € T, X. Let o be the
geodesic defined by a(f) = exp,(tu). Then

1 (r) = (To)(y) Texp,(ru)u = (To)(y)o'(r).

By the global Gauss lemma of Chapter IX, Proposition 3.2, a/(r) is
precisely the unit normal vector n(y). Hence the right side of the above
equation is the Lie derivative of ¢ in the direction of this unit normal
vector, which is none other than (Dyp)(y). This proves the first formula.
The second comes by iterating the first, thereby completing the proof.

Theorem 3.8. Let ¢ be a C? function on a normal ball centered at the
point xe X. Let S,(x) for r >0 be the Riemannian sphere of radius r
centered at x, and contained in the ball. Let As denoted the Laplacian
on S = S,(x). Let n be the unit radial field from x, let u be a unit vector
in TyX. Then for y = exp,{ru) we have

Ax00) = (s99)0) = (i) ~ (77 DuI ) + 251 (Dur) ).

Proof. We apply Proposition 2.5 of Chapter XIV, which decomposes
the Laplacian into a tangential part relative to a submanifold, which we
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now take to be the sphere ¥ = §; and a transversal part. The tangential
part gives precisely the term Asgg at y. For the transversal part, we apply
Proposition 2.6 of Chapter XIV, which tells us that the value depends only
on the restriction of ¢ to the normal manifold. But then, we can apply
Lemma 3.7 and the formula which we found in Corollary 3.6 to conclude
the proof.

For further applications of Jacobi lifts to volumes, cf. for instance
(GHL 87/93], Chapter 3H.

XV, §4. THE HODGE STAR ON FORMS

We already touched on the star operation on functions, and we defined d*
on 1-forms. We now deal systematically with the star operation on alter-
nating forms. I shall follow Koszul’s formalism in formulas S 1 through
S 8 [Ko 57], which is quite elegant. A direct very brief treatment of just
what is needed to get the global duality and adjointness of d, d* using
Stokes’ theorem, will be done in a self-contained way ad hoc in Chapter
XVIIIL, so that the reader need not go through the systematic formalism
just to understand that particular application of Stokes’ theorem.

Until further notice, we don’t differentiate, and the theory is punctual,
80:

We let T be a finite dimensional vector space over R, of dimension n, with
r-forms @, Y in L(T), and with vectors ve T. We suppose that T has a
positive definite scalar product g, and is oriented so we have a volume
Sform Q, =Q. We let vV be the 1-form dual to v under g.

S 1. There exists a unique isomorphism x: LI(T) — Li™"(T) such that
Jor all vy,...,0n—, €T and ¢ € LI(T) we have

v

(x@)(v1,..., ) Q=0 AV A AL

Proof. Given g, the right side of the above equation is a multilinear
alternating function of vy,...,v,-, into the 1-dimensional space of n-forms,
so having chosen Q as a basis for this space, we get a real-valued form,
which constitutes the coefficient of Q on the left side. The association

@ —*p
is obviously linear.

S 2. We have *Q =1 and *1 = Q, and for a function f, +(fQ) = f.

Proof. Immediate from the definition S 1 and Proposition 1.1.
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S 3. For pe L)(T) and v,...,v,_, € T we have

(@)1, s Uppy = (P A DY A - A v,.,)

Proof. Using S 2 and S 1, we find:

*(@Aoy Ao AD)Y )= *[(x@) (01 A -+ A 0,,)Q]
= (*¢)(v1,...,0n-r)(3Q)
= (x@)(v1,. .., Uny).
S 4. For pe L(T) and ve T we have

*(g AvY) = (xp) o0
Proof. Indeed,

(x(@ A D)) (01, 0ncpe1) =4 (@ A DY ADY A - A Unr—1)
= (*@)(v, v1,..., Upreq)

= ((*p) 0 0)(v1, - .., Vpey_y).

Eor the next property we need a lemma independently of the star opera-
tion.

Lemma 4.1. For pe Li(T), and v, vy,...,05_pi1 € T, we have
) N N A
n—r+1
— +i v
= Z D™V, 0@ Aoy Ao ADY A - A U 141)-
i=1

Proof. 'The basic.: formalism of forms tells us that the contraction with
a vector 1s an anti-derivation on the algebra of forms {(Chapter V, §5,

(()T’Ovl: Zgn dSince gAY Ao Av) ., has degree n+ 1 and so is equal to

O=(paoy A Avl )0
=(¢ov) /\vlv A o Avr:/—r+1
n—r+1
r+i—1
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We observe that
v ov = (v, v), = (v, vi), = (v, v3),
to conclude the proof of the lemma.
S 5. For any form g9 e LL(T) and ve T we have
*(pov) = (=1)"""(x¢) A v".
Proof. First, for all vy,...,v,.,€ T we have
(1) (x(@ov))(v1, ... tnrr) =x((00) ADY A - AB4).
On the other hand,

(1) (xg) A 0¥ = (=1)T0¥ A %o
Hence

(=1)" (%) A 0¥) (01, -, Uno141)

= (_1)r+l(vv A *¢)(Ul, (RS Dn_r+])
n—r+1 .
= Z (—1)r+1<vv ) U,‘) ((*¢)(U], ceey Uiy aUn—r+1)
i=1
n—r+1

= Z (=D Y o) @ A vy A A oy A ADY )
i=1
Using Lemma 4.1 and (1) concludes the proof.
We can do an induction on S 5, and also get a corollary:
S 6. For pe LI(T), *x = (-1)"""" and

(x@) Avy Ao A DY =(—1)'("_1)*(¢ov1o~~-ovr).

Proof. We have

(**(P)(Ul,-.-,l)r)=*((*(p) /\Ulv A e /\U,,V),

[applying S 5 repeatedly] = (—1)’("'1) x (*(povy,0--0p,)).

Since for any function f we have *f = f*1 and *xf = * fQ = f, property
S 6 follows.

XV, §4] THE HODGE STAR ON FORMS 421

S 7. Let S denote the x operation. Then S: LI(T)— L''(T) is an
isomorphism.

This is immediate, but is stated for the record.
S 8 Let 9, ye L(T). Then
P AXY =Y Axp.

Proof. The pairings of ¢, Y given by the expressions on the left and
right are bilinear, so it suffices to verify the equality when

p=v A - ADY and V=w' A - Aw

r r°

In this case, we obtain

oA xp = (1" xp) A g

= (=1 (W) A o A wYAW A A
[by S 6] = (1) =1) ™ Da[w) A - AwY)ono-00,]
[by S 2] = det(w;, v;) Q.

But det(w:, v;), = det(v;, w;),, from which S 8 follows.

The next formula proves that the star operation is given in a simple-
minded way on natural basis elements for the wedge products. We shall
use this property in Chapter XVIIL, §, in a self-contained way to make
the results on integration independent of the general star formalism, but
the next formula won’t be used in the rest of this section or the next.

Proposition 4.2. Let {v,...,v,} be an orthonormal basis of T. Let
w1,...,0n be the dual basis of 1-forms. Let I=(i,...,i,) with
i1 < <i and let J = (jy,...,j,_,) with j; <---j._, be the comple-
mentary set such that {1,...,n} is a permutation of (I,J). Let (I, J)
be the sign of the permutation. Assume vy,...,v, oriented. Let

@ =5 A -0 AW and  wj=wj A - A,

Then
*xor = (I, J)wy.

Proof. Directly from the definition of Q = Q, we have that

v
Qy=w1 A - Awp=0v A - AD).
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At first, let J be an arbitrary sequence of n — r indices among (1,...,n).
Then by S 3,
(*CO])(UJ'“ faay an_r) = *(wl A Cl)]),

which is # 0 if and only if J is the complementary set, ie. (I, J) is a
permutation of (1,...,n). In this case, the right side of the abox_'e expres-
sion is simply e(I, J) * Q = ¢(I, J). Alternatively, one may write

Wy = E(I,J)(D],
if (1, J) is a permutation of (1,...,n), from which Proposition 4.2 follows.

We are now through with the punctual theory, and we pass to a Rie-
mannian manifold (X, g), where the vector space T is replaced by the
tangent bundle TX, and vectors are replaced by vector fields. We let D be
the metric covariant derivative as usual. Also

o"(X) =TL(TX).
Proposition 4.3. The star operation commutes with every Dy, i.e. for any
vector field ¢ and 9 e S7(X), we have
*Dep = Dexo.

Proof. For 0-forms (functions) and n-forms (functions times the volume
form) the assertion is immediate by using Proposition 2.1, to the effect that
D; vol, =0. Now let pe TL}(TX). Then:

(D§*¢)(él, cee 7§n—r) + Z (*w)(él’ X aDééia R én—r)
i=1
= D§ ((*¢)(§17 ey én-r))
—Dgxlpa &Y A AE)  [byS3
= (*De)(@ A EY A - AEY)  [by the proposition for n-forms]

[because D is a derivation)]

=*(De@NEY A -+ /\é,,v_,)+z_: $(@AEY A - ADEEY Ao NE)
i=1
= (*D§¢)(él, s ’én—r) + Z (*¢)(él? . "Dféia v aén—r)»
i=1

which proves the proposition.

We now define d* in general to be
d* = (=)™ xdx  on #"(X).
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In Chapter XIII, §3 we shall define a scalar product on forms with
compact support for which d* will be seen to be the adjoint of d. For the
moment, we continue with an essentially differential algebraic theory.

Proposition 4.4. For ¢, y € /" (X) we have
do A ¥ =@ A (xd™Y) +d(p A *Y).

Proof. Immediate from the definition of d*, S 6, and the basic formula
for d of a wedge product (a graded derivation).

Proposition 4.5. Let ¢&,...,&, be a frame of vector fields, and let
Ly r &y be the dual frame, that is (&), &)y = 0. Then for any form
pe AL (X) we have

n
d*p=> " (Dgp)o ¢
i=1

Proof. Proposition 1.1. of Chapter VIII gives us an expression for
d(+p) in terms of the frame. The dual frame is such that 1’ = ¢/. Then
the formula of Proposition 4.4 is an immediate consequence of S 5.

Remark. If the frame ¢y, ..., &, is orthonormal, then of course & = ¢&;.

We define the Laplacian associated with the Riemannian manifold
(X, g) to be

A =dd* +d*d, operating on each o/"(X).

On Euclidean space R" with its standard positive definite scalar product,
the Laplacian on functions is the usual operator (with the minus sign)

a=-% ()

As a more general example illustrating the role of Ricci curvature, we give
the one higher dimensional version of Corollary 2.4. Let 1 e «'(X). With
the Ricci curvature in mind, we define Ric(4) to be the scalar valued form

such that, with respect to an orthonormal frame &, .. .,¢,, and any vector
field ¢ we have

Ric(2)(€) = > ((DeDy, — DeDe)A, &),

where we denote by (4, &) the value of a 1-form A on a vector field ¢.
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Proposition 4.6. Let &,.. ,f,, be an orthonormal frame. As an operator
on 1-forms, A: 1 (X) — o (X) is given by

- Z Dgi — Ric.

Written in terms of the variables, this means

(Ad, &) = = (DeDgd, &) ~ D _((DeDe — DeDe)ds &)

i i
Proof. By Proposition 4.5, we have

d*i=- (DeA)(&)

and so by a general formula on covariant derivatives we get a value for
dd*, namely

(dd*A, &) = Z(Debc.z &).

On the other hand, to get d*dA, we first note that by COVD 6 of Chapter
VIII, §1,
(@A)(&, m) = (Deh, n) — (Dy, &)-

Again by Proposition 4.5,

(@*dA, &) = (DeDed, &) =Y (DeDe s €).

Adding the two expressions yields the formula of the proposition.

XV, §5. HODGE DECOMPOSITION OF
DIFFERENTIAL FORMS

In this section we carry out a bit of pure algebra, applicable to the
situation of the previous section, and also applicable to other situations,
especially in the complex case. See for instance [Wel 80}, pp. 147—148. and
[GriH 76], Chapter 0, §6. We work axiomatically. To prove the axioms
H 1 and H 2 below requires more extensive analytical tools than we use in
this book, and specifically it requires the basic theory of elliptic operators.
What is needed is carried out in the above references, and the essential is
done in a self-contained way in Appendix 4 of [La 75]

Since the algebraic set up which follows applies to other differential
operators besides the d we have been using, I use a more neutral letter D,
which in the complex theory is taken to be the so-called 0 operator.
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None of this section will be used in the rest of the book. It is included
here only for the convenience of a reader wanting to see how the theory
further develops, and to isolate clearly what is purely algebraic from what
demands more differential analysis.

Let 4 be a vector space of dimension n over R, with a positive definite
scalar product (,) and corresponding norm | ||; or alternatively, the
vector space may be over C, with a positive definite hermitian product. Let

D: 4A— A4
be a linear map which has an adjoint (algebraic) D*, that is
(Du, v) = (u, D*u) all u, ve 4.
and such that DD = 0. We define the Laplacian of D to be
Ap =A=DD*+ D*D.

We define Hp = H = ker A to be the D-harmonic space. We assume the
Hodge Conditions:

H 1. The kernel H = ker A is finite dimensional.
H 2. We have H' = AA.

We then prove further properties as follows.

Since H is assumed finite dimensional, there is an orthogonal projection
of A4 on H, which we denote also by H if necessary, that is H(u) is the
orthogonal projection of # on H.

Theorem 5.1. Under the above two Hodge conditions, we have

H' =DA+D*4,
and an orthogonal decomposition
A=H1AA=H1DA1D*A.
The restriction of A to H* is invertible, and
Ker D=H + DA.

Proof. By orthogonalization and H 2, given u e A we have

u=Hu+ Av=Hu+ DD*v + D*Dv
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with some ve 4. Hence A4 is contained in H+ DA+ D*4, so we get
equality. Furthermore

(Au, u) = [|Dul® + | D*u] >
Hence Au =0 if and only if Du = D*u=0. (Each implication is imme-
diate.) The adjointness relation then shows that DA, D*A4 are orthogonal

to H, and D? =0 implies the DA is orthogonal to D*4, so we get the
orthogonal decomposition

A=H1DAL1D*A,
and Ad=DA+D*4 by H 2. Since AH =0 it follows that
A: DA+D*A— DA+ D*A4
is surjective, and so is an isomorphism, and thus A is invertible on H*.
Finally H + DA is contained in the kernel of D, and D is injective on D*A4

because
DD*u=0 = (DD*u,u) =0 = ||D*ul|*=0.

This proves the theorem.
Remark 1. As a special case of the last formula, suppose u € 4 and u is
perpendicular to Ker A. If u is D-closed, that is Du = 0, then u = Dv for

some v € A, that is u is D-exact.

Remark 2. If we denote by H(A) the homology Ker D[Im D then we get
an isomorphism of the homology with the harmonic space

H ~ H(A).
We let
G: A—H'=A4
be equal to 0 on H, and be the inverse of A on A4. Then by definition,

GA = AG and I=AG+H.
Furthermore:

G and A commute with D and D*.

Proof. We have

AD = (DD* + D*D)D = DD*D and DA = D(DD* + D*D) = DD*D
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so D commutes with A. Similarly for D*. The commutation of D and D*
with G then follows since G= A"! on AA.

Graded structure
Suppose that in addition that 4 is graded,
n
A=@EP 4?,

p=0

that 47 is orthogonal to A7 for g # p, and that '
DP =D: AP — g*t!

raises degrees by 1, so D*: 4”7 — AP~! lowers degrees by 1.

Under the above assumptions, we can define the homology of D in
degree p to be

H?(4) = Ker D?/Im D!,

where D? is D viewed as map from AP to 4P*!. Immediately from
Theorem 5.1 we obtain:

Theorem 5.2. Let H” = Hn H?(4). Then
n
H=] W’
p=0

and HP(A) ~ H?, that is every class in Ker D’ mod Im D! has a
unique representative in the harmonic space H?.

The star operator

We suppose given an automorphism S: 4 — 4 which is an isomorphism
S: A7 — A"7P,

We assume:

S 1. On A? we have §? = (—1)?""Y,
S 2. D* = (1) op 4P,

Proposition 5.3. Under these assumptions, D = SD*S and H, A, G
commute with S.
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Proof. We give the proof when 7 is even for simplicity. For u € 4?7, we
have:

SD*Su = —S*DS%u = —S*D(~1)"u
= —(-1)"(-1)**' Du

= Du,
so D = SD*S.
For the commutation of S with A, we write, using the above,

SA = —-SDSDS — SSDSD,
AS = —-DSDSS — SDSDS.
On 47, 8§ = (-1)?, so it is immediate that SS commutes with DSD, thus
showing that S commutes with A.
Since S commutes with A, it follows that
S:H—-H

induces an automorphism of H with itself. For ue 4 we have:

Su — HSu € H by definition of the orthogonal projection; and
Su — SHu = SAGu = ASGu since A commutes with S.

Then

Su — SHu 1 H since it lies in A4.
Subtracting shows that HSu — SHu is both orthogonal to H, and also lies

in H, so must be 0, whence H commutes with S. Since G = A~! on H* it
follows that G also commutes with S, thus proving the proposition.

XV, §6. VOLUME FORMS IN A SUBMERSION
In this section we return to volume forms in general, in a way which leads
naturally into the considerations of the next chapter on integration.

We begin by recalling some simple facts of multilinear algebra. Con-
sider an exact sequence of finite dimensional real vector spaces

(1) 0T, > Tx—T,—0,

with dim 7, =p, dim Ty =n, and dim T, =g, so p+q=n. Then we
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have the dual sequence of dual spaces (homs into the scalars)
(2 0T ->T;, - T, —0.

The surjection on the right gives rise to a surjective linear map by
restriction:

3) NTY /\pTy" -0,
and the injection on the left gives rise to an injective linear map
“ 0 N'TY - N'TY.
Lemma 6.1. There is a canonical isomorphism
NT @ NT; - N'TY

defined as follows. For we N'T) andne NV Ty, letie T, map on
n in sequence (3). The map

mo)-irew
is independent of the choice of #, and defines the isomorphism.

Proof. Routine algebraic verification. The above lemma is sometimes
stated in the form

det(T,’) = det(T7,’) ® det(T,").
By a non-singular or volume form in /\" T, we simply mean a non-zero

form, so a basis for /\" T,. Of course this is merely the definition we have
given previously, in case the manifold is a point.

As a consequence of Lemma 6.1, given a volume form Qe /\" T, and
a volume form we AT, there is a unique 7 € N T, such that

Q=1Q w,
or in other words, for any pre-image 7,
Q=1%o
The above discussion was punctual. It applies to the case when x, z are

points in a submersion
n: X~ Z,
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with n(x) =z. We let Y = Yy, be a fiber, with the natural injection
j: Y > X, and we let ye Y, x = j(y). Then (1) is the exact sequence of
tangent spaces

0-T,Y » T X = Tp»yZ — 0.

Let Q, w be volume forms on X, Z respectively. For each y € X there is a
volume form #, on T,Y such that

Q, = Ny & Wn(y)-

Lemma 6.2. Let n: X — Z be a submersion. Suppose X is orientable.
Then every fiber Y, is orientable. If Q and w are volume forms on X, Z
respectively, then there exists a p-form #j on X whose restriction to each
fiber Yy, as above is the form n, such that Q, =1, ® wy,). For any
such #, we have

Q=7 Ao

Proof. The orientability comes from the existence of the family of
forms {,}, which is verified to be C* in terms of coordinates. The local
existence of # is immediate. The global existence follows by using a
partition of unity.

A p-form on X whose restriction to all fibers is 0 will be called fiber
null. Two p-forms ¥, ¥, are thus called fiber equivalent if their difference
¥, - ¥, is fiber null. Two forms #; and 7, which restrict to the same
forms on the fibers in Lemma 6.2 are thus fiber equivalent.

Riemannian submersions

Next we deal with the Riemannian case. We start with punctual remarks.
Let T,, Ty, T, be finite dimensional real vector spaces, with the exact
sequence

0——->Ty—+Tx—>Tz—>0.

We suppose in addition that T, T, have positive definite scalar products,
and that T, — T is metric, in the sense that it induces a linear isometry
Tyl - T,

Lemma 6.3. Under the above assumptions, let Q, and ; be metric
volume forms on Ty and T, (so they determine an orientation). Then one
of the possible (up to sign) metric volume forms Q, on T, satisfies the
relation

Q,=Q,0Q.
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Proof. let {e,...,e,} be an orthonormal basis for 7, and

{€p+1,... €544} an orthonormal basis for Tyl. Together they form an
orthonormal basis for T,. The metric dual bases {e) y--s€y } and
{e)415---,€,,,} form an orthonormal basis of the dual space, and with the
appropriate orientation of {e;,...,ep},

Qe=e’ A nej Al A e,
Note that el;;l,...,ep‘;q are the images of an orthonormal basis of T,

under the natural injection
0T ->T. .
Then the lemma is an immediate consequence of the definitions.
The lemma applies to the case of a Riemannian submersion
n: X —Z.

If ye X, we apply the lemma by putting T, =T,Y, Ty =T,X, and
T, = Tyy)Z. Then we get:

Proposition 6.4. Let n: X — Z be a Riemannian submersion. Suppose
X, Z oriented, so Y, is oriented for each z. Let Qx, Qz be the
Riemannian volume forms on X, Z respectively. Then for each z € Z, the
Riemannian volume form Qy, (with the determined orientation of Y,)

satisfies
Qx(y) = Qr,(») ® Qz(2).

The relation of Proposition 6.4 is punctual. However, the individual
volume forms on the fibers locally are the restriction of a form on an open
set of X itself. Indeed, if {{),...,¢,} is an orthonormal frame of vertical
vector fields on X, suitably oriented, then

Qy=¢& A - /\ép".

Then Qy restricted to each fiber ¥, is the Riemannian volume form on
Y;. We call Qy the vertical metric volume form, which is independent of
the choice of vertical orthonormal frame, with the orientation determined
by that of X and Z. In general, by a vertical volume form we mean a form
equal to a positive function times Qy, or equivalently, a form which can
be expressed locally as a wedge product &| A --- A &, where {,...,¢,}
is a suitably oriented orthogonal frame of vertical vector fields, and
{&1,..-,&;} is the dual frame (in the sense of dual basis of vector spaces)
vanishing on horizontal fields. Any two such forms differ by a function
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nowhere 0. Note that if {¢;,...,¢,} is a vertical orthonormal frame, then
&Y =¢ fori=1,...,p.

Let ¥ be a p-form, and let v be a horizontal vector field. We define ¥
to be v-constant over the fibers if the Lie derivative %, W is fiber null, i.e.
restricted to every fiber is 0. An important example of this condition when
v = vy is lifted from a vector field on Z will be given in §8. For now, we
have a general result.

Proposition 6.5. Let n: X — Z be a Riemannian submersion. Let Qy
and Qz be Riemannian volume forms on X, Z respectively. Let v be a
vector field on Z, and vy its horizontal lift to X. Abbreviate divy for
divg,, and similarly for Z. Let Qy be the vertical metric volume form,
and let ¢ be the function such that

(ZvXQy) A Qz = ¢Qx.
Then
divy(vy) = n*divz(v) + .

If one can write Qy = (n*8)¥Y with some positive function J, and a form
¥ which is vy-constant over the fibers, then

divy(vy) = n*divz(v) + n*(v - log §).

Proof. The first formula comes from definition DIV 2 of the divergence,
and the fact that the Lie derivative is a derivation for the wedge product,
by Chapter V, Proposition 5.3, LIE 2, namely

gvx(QX) = gvXQY AQz+Qy A g‘,xﬂz
= 9Qx + Qy A n*divz(v)Qz.

The second condition is then immediate, because %,, ¥ is a form 0, in the
notation of Lemma 6.1. This concludes the proof.

Remark. One doesn’t really need to assume that the function J is
positive, but then one must put the absolute value sign in the formula,
with log |6|. In any case, if a function J exists, positive or negative, one
can change the orientation to make it positive.

Next we give a result of Wu, tying together the trace of the second
fundamental form, and the volume forms on fibers of the Riemannian
submersion. This result will not be used later, but is included for its
intrinsic interest. It shows directly how the divergence is related to the
second fundamental form.
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Theorem 6.6 (Wu). Let n: X — Z be a Riemannian submersion, with X,
Z connected. Let Qy be the vertical metric volume form. Let v be a
horizontal vector field. Let hyy be the second fundamental form. Then:

(a) The restriction of %,Qy + (it hyy, v)ng to each fiber is 0.
(b) Let ¥ be a vertical volume form on X, v-constant over the fibers,
and & the function on X defined by Qy =30¥. Then

v (log 6) = —(tr A1z, v),.

In particular, if o denotes the horizontal component of a vector field £,
and ¥ is v-constant over the fibers for all v, then

(gr log 6)yor = —tr hpa.

Before going into the proof proper, we make some remarks concerning
an operator which has already come up, but which now intervenes in a
more systematic way.

Let X be a Riemannian manifold, with metric covariant derivative D.
For any vector field », we define

Since [, &] = Dy& — Den, it follows immediately that for any vector fields
&, n we have

A2 A,,f = —-Déﬂ.

We can extend 4, to a derivation on tensor fields, especially multilinear
forms, since both the Lie and covariant derivatives extend, as in Chapters
V, Proposition 5.3, LIE 2; and Chapter VIII, §1, COVD 4.

Now we come to the proof proper. The theorem is local, so we argue
locally. Let {&;,...,&,} be an orthonormal frame of vertical vector fields,
and {v,...,v,} an orthonormal frame of horizontal ones. We let

{&1-- 2 & Vs sV}

be the dual frame (in the sense of dual bases of algebra). Let f; be the
functions and 4; the horizontal field such that

(1) D& =) fuli+u
j
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Thus y; is a linear combination of vi,...,v,. Note that f; = —f;;, because
Ji = (D&, 'fj>g =v- (&, fj)g — (&, vaﬁg
= —{&, Dyg),  because (§;, &), = by
= —Jj-

In particular,

) fi=0 and > fi=0.
We now claim that
3) D =Y fi +u
j
where 4 is a linear combination of vj,...,v,. To see this, write

D& =Y ¢y +u.
Then
P = (Dyé:)(éj) = "‘6,{(Dv§j) = _ﬁi =ﬁj’

thus proving the claim.
Third, we claim that

@ AL =Y Yy + A with gy =—(n Dgéi,
J

!

where A is a linear combination of vi,...,v;. To see this, we have

Vi = (AEN(E) = ~Ei(A8) = — (48, &),
= (ngv, éi)g = —<va Dijéi>g’

thus proving the claim. In particular,
(5) > i = ={tr bz, v),
i
We now prove Theorem 6.6(a). We have, using (3), (4):
LQy = L(EA - Af;,)=§:¢{ A A Dyt A)E A AE

=Y UG A AG I G A A ) A A G

(6) = —(tr h2, v),Qy + second term, using (2), (5).
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The restriction of the second term to the fibers is 0 because each vj,..., v,
restricts to 0 on the fibers, and u/, A; are linear combinations of these
horizontal dual fields. This concludes the proof of (a).

Next suppose that ¥ is vertical and v-constant over the fibers. Let
Qy =6¥. Then

(7 LQy = (v-0)¥ + (L Y)

=v-(logd)Qy +dLVY.
From (6) and (7) we conclude that the restriction of the function
v- (log d) + (tr h1z, v), to each fiber is 0, whence it is the zero function,

thus proving (b). The last assertion is immediate from the definition of the
gradient, thus concluding the proof.

XV, §7. VOLUME FORMS ON LIE GROUPS AND
HOMOGENEOUS SPACES

Let G be a finite dimensional Lie group of dimension n, with unit element
e. We denote L,, R, left and right translations by an element a € G, so

L,(x)=ax and  R,(x)= xa.
For an clement x € G, we define conjugation ¢, or c(x) by
cx(y) = xyx~! sothat ¢,: G— G isa Lie group automorphism.

Note that ¢, = Lyo R;! = R;' o L, (left and right translation commute).
We define the Lie conjugation c;,.(x) by an element x e G by the functorial
effect, that is

CLie (x) = Tcx(e) s

o |cLie(x)| is the Jacobian of conjugation at the origin.

Remark. Suppose G is given as a Lie subgroup of GLy(R) for some
N. Then T,GLy(R) = Maty(R) is the space of N x N matrices, and 7,G
is a subspace of Maty(R). Then it is immediate that for g e G,

cLie(g)v = gvg™!

is actually conjugation in the ordinary sense of the word. Hence it does no
harm to think of cgi(x) as such a conjugation. In any case, the map

X — ClLije (x)

is a representation of G in the group of linear automorphisms of 7,G =
Lie(G). This representation will be called the comjugation representation
of G.
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Proposition 7.1. The exponential commutes with conjugation, namely for
ve T.G, we have

exp cLie(X)v = ¢x(exp v) = x exp(v)x~".

Proof. This is actually a special case of the general fact that if
f: G— G’ is a Lie group homomorphism, and v e T.G, then

f(exp v) = exp(Tf(e)v).

We apply this formula to f =c,. As to the general formula, one notes
that a(z) = f(exp(tv)) defines a 1-parameter subgroup « of G', and that
«/(0) = Tf(e)v by the chain rule, so a(f) = exp(Tf(e)tv) for all ¢, con-
cluding the proof.

Left and right translations induce maps on vector fields and forms.
Note that on contravariant objects such as a function ¢, we have

(Lap)(x) =p(a'x)  and  (Rap)(x) = p(xa™),

because we want ¢(x) = (Ls9)(Lax), and similarly with R,.
Let f: X — Y be a differential morphism of manifolds. For each
p-form @ on Y we can take its pull back f*w given by the formula

(f* o), (01, -, 0p) = @) (TF(X)015 . . -, TS (X)p).

If f is a differential isomorphism, and Q is a volume form on Y, then f*Q
is a volume form on X, and we also have the direct image f, such that
f~''= f*. We apply these to the two translations L, and R,.

Suppose Q is a volume form on G. For simplicity of notation we omit
the star, and write the transformation formula as

(LaQ)(LaV) = Qu(V)  where Ve N\'T.=det T

Of course by L,V we mean (det TLy(x))(V), where

det TLy(x) = N'TLo(x): N' Tx = N\ Tax

is the induced linear map on A'Tx.

Suppose Q is a volume form on G, invariant under left translation, that
is L,Q = Q for all ae G. Then Q is uniquely determined by its value at
the origin e, that is by €., and the form Q, at a point x is obtained by
translating Q. to x via L,. Conversely, given a volume form on T.G, i.e.
a non-singular form of maximal degree on the tangent space at the origin,
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we can translate it to obtain an invariant volume form on G. Hence the
left‘ mvapant volume forms on G constitute the non-zero elements of a
1-dimensional vector space over R.

. Le't Q be a left invariant volume form on G. Then R,Q is also left
invariant, and hence there exists a real number y(a) # 0 such that

R = x(a)Q.
The 'number x(a) does not depend on Q, and is immediately seen to be a
continuous homomorphism x: G — R* (multiplicative group of non-zero
elements). If G is connected, then y(G) < R*. We say that G is strictly
unimodular if y = 1, that is y is trivial, and unimodular if || is trivial, this
corresponding to the standard terminology. A compact group is unimodu-

lar: For a connected group, the two notions of strictly unimodular and
unimodular coincide.

Proposition 7.2. We have y(a) = det cpi(a) for ac G.

Proof. We use ¢, = Lso R;', and abbreviate ¢,V = det ¢;;(a)V. Then
for V £0,

Q(V) = (caQ),(caV) = (R;-1Q),((det epie(a) V)
= det cLie(a)(R1Q), (V) = det cpic(a)y(a)”'Q(V).
Cancelling Q(V) concludes the proof of the proposition.

Proposition 7.3. Let Q be a left invariant volume form on G. Then yQ is
right invariant, i.e. is a right Haar form.

Proof. We have
R(xQ) = Ra(x)Ra() = x(a Nxx(a)Q = 1,
thus proving the proposition.

Let X pe a homogeneous space for G. For each x € X, the isotropy
group Gy is the closed subgroup of elements g € G such that gx = x. Thus
Gx is a Lie subgroup. We have a G-homogeneous space isomorphism

G/G, - X given by g — gx.

If x, y are two elements of X, and a€ G, ax = y, then

G, = aGea™l.
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In other words, the isotropy groups of the two points are conjugate in a
natural way.

Let us look more closely at the standard model X = G/H for a homo-
geneous space, with a Lie subgroup H. We denote by eg, ey, and eg/y
or e(G/H) the unit element in G, H and G/H respectively. By definition,
the unit element of G/H is the coset eH of H in the space of cosets.
Conjugation by an element g € G induces a differential homogeneous space
isomorphism

¢;: G/H — G/cy,(H) = G/gHg™.

Thus we have the tangent map T¢,(eg/x), Which is a linear isomorphism
on the tangent space at eg/y. If he H, then

Tch(eG/H): T.(G/H) — T(G/H)

is a linear automorphism of the tangent space of G/H at its natural
origin. Of course, we also have conjugation both on H and on G, that is

Tc;,(e(;): TeG - TeG and Tc;,(eH): TeH — TeH.

We may then take the determinant of the previous three linear maps,
namely detg/g, detg and dety, although we shall omit the subscript from
det, since the reference to the ambient space is made clear by the points at
which the maps are evaluated, that is eg/y, ec and ey respectively.

Proposition 7.4. For he H, we have
det T'cy(eg) = det Tex(egn) - det Ten(en)-

More generally, let n: X — Z be a submersion, with a differential
automorphism f: X — X commuting with n. Let y € X be a fixed point
of f, and Y the fiber containing y. Then f = fx induces differential
automorphisms fy and fz of the fiber and of Z; and

det Tfx(y) = (det Tfy(y)) (det TS (n(»)))-

Proof Let T, =T,Y, Ty = T,X and T, = Ty,)Z, so we have the exact

sequence
0Ty, T, —T,—0.

The map f induces tangent linear maps on each of those spaces, and we
denote these by L,, Lx, L;, s0

L,=Tfi(), Ly=Tfr(y) and L,=Tfz(z)
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If ¥V is a finite dimensional vector space of dimension p, we let det ¥V =
/\p V be its maximal exterior product with itself. Similarly to Lemma 6.1,
we have a natural isomorphism

det Ty = (det Ty) ® (det T7).

Concretely, if {vy,...,v,} is a basis of T}, and {w1,...,w,} is a basis of T,,
with representatives {Wi,...,W,} in Ty, then
VIA - AUp AWLA - AWy

is a basis of det Ty = /\p +qTx. The scaling effect of det L, is then equal to
the product of the scaling effect on each factor, (det L,)(det L,), which
proves the general formula. The special case first stated in Proposition 7.4
occurs with f =c¢; (he H). This concludes the proof.

We define G/H to be strictly unimodular if y; =y, on H. If X is a
homogeneous space for G, and H is one of the isotropy groups, so X is
G-homogeneous space isomorphic to G/H, we say that X is strictly
unimodular if G/H is strictly unimodular. We make the similar definition
for G/H being unimodular, using x| instead of y. The next result gives
the first significant application of strict modularity.

Proposition 7.5. Let X be a homogeneous space for G. If X is strictly
unimodular, then there exists a left G-invariant volume form on X, unique
up to a constant multiple.

Proof. We want to define the invariant form on G/H by translating a
given volume form w, on T.(G/H). On G/H, the left translation L; is
induced by conjugation ¢; on G. By Proposition 7.4 and the hypothesis,
we have

det TL;,(eg/H) = det Tch(eG/H) =1.

Hence Lyw,(G/H) = w. /), that is w,g/m) is invariant under transla-
tions by elements of H. Then for any ge G we define

worr = Lywe(G/H).

The value on the right is independent of the coset representative g, and it
is then clear that translation yields the desired G-invariant volume form
on G/H. The uniqueness up to a constant factor follows because the
invariant forms are determined linearly from their values at the origin, and
the forms at the origin constitute a 1-dimensional space. This concludes
the proof.
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Remark. If both G and H are unimodular, then so is G/H. If H is
compact, then H is unimodular. If G is unimodular in addition, so is
G/H. The same goes for strict unimodularity. When one applies the
above considerations to Haar measures and integration, what matters is
modularity, not the strict modularity. Cf. Chapter XVI, Theorem 4.3, and
Chapter X VI, §5 for a derivation of some of these results in the context of
Haar measure. Of course, the existence of an invariant volume form on
Lie groups was known at the end of nineteenth century. At the time, into
the twentieth century, it was a problem whether an invariant measure
could be found on any locally compact group, and this problem was
solved by Haar, whence the name Haar measure. In the next section, we
shall accordingly define Haar forms, to fit into the psychology which has
developed since Haar’s result, even though invariant forms were known
long before this result.

I found dealing with the Haar forms rather than Haar measure to
provide additional flexibility. Then one has to make a distinction between
modularity and strict modularity, but it isn’t at all serious for local results.
In all examples I know, the number of components is finite, and local
results can be reduced to the case when the groups are connected,
sometimes by passing to finite covering.

XV, §8. HOMOGENEOUSLY FIBERED SUBMERSIONS

In [He 72], Helgason obtained a formula for the Laplacian in a Riemannin
submersion admitting horizontal metric sections. The result was repro-
duced in his book [He 84], Chapter II, Theorem 3.7, and concerns the case
when there is a homogeneity condition on the fibers of the submersion.
The present section developed from the attempt by Wu and myself to
understand Helgason’s situation better, from the point of view of local
Riemannian geometry. The results of §6 were developed with this goal in
mind, and will thus have their first application here, together with an
important fact due to Wu.

We start without a Riemannian structure. For the first two basic
properties, we don’t need finite dimensionality. So let X, Z be connected
possibly infinite dimensional manifolds, and let

n. X -2

be a submersion. We shall say that the submersion is homogeneously
fibered if it satisfies the following condition.

HF Condition. There is a possibly infinite dimensional Lie group H
acting as a group of differential automorphisms on X, preserving the
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Jibers, such that at each point x, we have a differential isomorphism
H[Hy — Yy = 17 (n(x))
of H/H,-principal homogeneous space given by h v hx.

Note that a submersion always admits local differential sections, but in
general these do not need to be metric. Furthermore, the submersion need
not admit a global section. The next proposition applies to local sections
when the need arises, but we shall not use it in this book.

Proposition 8.1. Suppose there is a section a: Z — X of a homoge-
neously fibered submersion. Define

v HXZ—->X by  y(h, z) = ho(z).
Then y is a submersion.

Proof. The tangent map Ty(h, z) is a surjective homomorphism of
tangent spaces at each point. In fact, if we let y,(0(2)) = h(oz) = y(h, 2),
then Ty, (o(z)) gives a linear isomorphism of the tangent spaces to the
fiber. On the other hand, To gives a linear isomorphism of the tangent
space T.Z to a subspace of T, X, and we have the direct sum decom-
position at the point x = a(z),

T,)X = Tx(Hx) @ 0. T, Z.
This concludes the proof.

Suppose in addition that #: X — Z is a Riemannian submersion, and
H acts isometrically. We then say that n: X — Z is a metrically homo-
.geneougly fibered submersion. We suppose this is the case from now on. An
immediate question which arises about the isotropy groups H, is the extent

;)/ which they can vary (up to conjugation). I owe the next key result to
u.

Theorem 8.2 (Wu). Let n: X —» Z be a metrically homogeneously
fibered submersion. For any two points x, y € X, the isotropy groups H,,
Hy are conjugate in H. In fact, let x, y be points of X which can be
Joined by the horizontal lift of a curve in Z. Then H, = Hy, and the flow
of the horizontal lift induces an H-homogeneous space isomorphism
between the fibers at x and at y.

Proof. We recall that the horizontal lift was defined in Chapter XIV,
§3. Suppose first that x, ¥y can be joined by a horizontal lift 4. Let
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he H,. Since H acts isometrically on X, 4o 4 is the unique horizontal lift
from hx = x to hy. But & o A has the same initial conditions as 4, and so
coincides with 4 by the uniqueness of solutions of differential equations.
Hence hy =y, and he H,. The reverse inclusion H, < H, follows by
symmetry, so Hy = H,. Next, for arbitrary points x, y € X, consider any
curve in Z between n(x) and n(y). Then the horizontal lift of this curve in
X joins x to a point y’ in the same fiber as y, and the isotropy groups of y
and y’ are conjugate. Finally, let F be the flow of horizontal lifts, that is
Fi(x) = Ax(f), where A, is the horizontal lift of a curve o) with initial
condition 7(x) on Z. Then ¢~ F,(hx) and 7+ hA,(t) are horizontal lifts
with the same initial conditions, and so are equal. This concludes the
proof.

We now assume finite dimensionality, so we have volume forms. In
addition, we assume that the fibers are strictly unimodular, i.e. H/H, is
strictly unimodular for all x, in which case we say that the homogeneous
fibration is strictly unimodular.

We then select a fixed Haar form on one of the coset spaces H/H, with
one of the isotropy groups. Then conjugation transforms this Haar form
to a Haar form Haary g, for all xe X.

Let Y, be a fiber of the submersion, with z = (x), so we obtain a
homogeneous space isomorphism H/H, — Y; = Y. Selecting two
different points in the fiber above z give rise to different isomorphisms, but
the unimodularity condition implies that the Haar form on H/H, corre-
sponds to a Haar form on Y, independent of the choice of point x in the
fiber. We denote this Haar form by Haary,.

Let Qy, Q2 be the Riemannian volume forms on X (resp. Z). Then
there is a function & on Z such that for each z, and y € Y, we have

Qy,(y) = 6(2) Haary, ().

It is immediate that § is C® (say from a local coordinate representation).
We call  the Riemannian Haar density. The Haar form ¥ on X is defined
to be the p-form (p = fiber dimension) whose restriction to each fiber is
the Haar form as above, and which is 0 on decomposable elements
containing a horizontal field. Equivalently, let {£),...,&,} be a frame of
vertical fields on some open subset of X, and {uj,...,4,} a frame of
horizontal fields. Then there exists a function ¢ such that with the dual
frame {&],...,¢&,, ui,--- 4y} we have

\}l=¢£; A o A ;,

and the restriction of ¥ to each fiber is the Haar form on the fiber. Thus
in terms of the natural basis for p-forms arising from a choice of vector
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field frames, the Haar form has only a vertical component. If we denote
by 7, the Haar form on Y7, then in the notation of §6, we see that W is
one of the possible choices for 7. Any other choice when expressed as a
linear combination of decomposable p-forms would contain some factor u/
in each term other than the above expression for ¥. Such terms restrict t(l)
0 on the fibers.

” Reca;l{l that if v is a vector field on Z, we let vy be its unique horizontal
ift in X.

Theorem 8.3. Let n: X — Z be a metrically homogeneously fibered
strictly unimodular submersion. Let v be a vector field on Z. Then the
Haar form ¥ is vy-constant over the fibers. If 6 is the Riemannian Haar
density, then

divy(vy) = n* divz(v) + n*(v - log é).

' Proof. Let a be an integral curve of v in Z and let 4 be its horizontal
lift, so vy restricts to A’ on the curve. By Theorem 8.2, the flow F; gives a
homogeneous space isomorphism Yy0) = Yy of the fibers. Let ¥, be
the Haar form restricted to the fiber. By the unimodularity condition,
F¥ ;) = Wy, which is constant. We now use frames as in the remarks
preceding the theorem. In taking F*(¥), we note that each term F*(¢))
may have a horizontal component, so that in a neighborhood (in X) of la
point of the fiber Y,

F'(¥)=¥+®,

where @, contains a horizontal factor. The restriction of ®, to the fiber
Yy0) is 0, so the restriction of %, ¥ to the fiber Yy is 0. Hence ¥ is vx-
constant over the fibers. We can then apply Proposition 6.5 to conclude
the proof.

Theo.rem 8.4 (Helgason). Let n: X — Z be a Riemannian submersion
m.etrzcally homogeneously fibered, and unimodular. Let  be the Rieman-
nian Haar density. Let Ay, Az be the Laplacians. Then for a function
on Z, we have

Ax(ny) = n*((Az¥) — (grz log d) - ¥).

Proof. All tl}e' work has been done, and the statement merely puts
togethqr Proposition 6.5 via Theorem 8.3, and the definition of the
Laplacian as minus the divergence of the gradient.

Remark. Agtually, Theorem 8.4 as stated above somewhat refines
Helgason’s original statement. In the original paper [He 72] the isotropy
groups are compact in Theorem 3.2. Helgason normalizes the Haar
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measures on them to have total measure 1, and from a fixed Haar
measure on H, he can then normalize the measures on the homo-
geneous spaces H/H, with varying x. Here, we are able to use another
normalization which stems from Wu’s theorem that all the isotropy groups
are in fact conjugate. The compactness condition is relaxed in Theorem
3.3, but other conditions intervene.

In addition, Helgason assumed the existence of local horizontal sec-
tions. He gave a semiglobal proof for his theorem, using the symmetry of
the Laplace operator vis-a-vis the scalar product defined by integration.
Helgason’s argument is very nice, but it is completely bypassed here with a
direct analysis based on local differential geometric considerations.

Finally, the minus sign differs from Helgason because he uses the
negative Laplacian and we use the positive Laplacian.

Appendix. Direct Image of Differential Operators

In the preceding chapter and the present chapter we have been principally
concerned with the behavior of differential geometric invariants under
immersions and submersions, especially the Laplacian which we analyzed
directly. It may be instructive to the reader to see how a somewhat more
general object behaves, namely an arbitrary differential operator, which we
now discuss briefly.

Let X be a finite dimensional manifold. By a differential operator on X
we mean a linear map on the space of C* functions on X,

D: Fu(X) — Fu(X)

such that given a point in X, there is a chart U at that point with
coordinates' (x) = (x1,...,X,) such that in terms of these coordinates, D
can be written in the form

Dy =3 9x) (%l)ﬁ' - <6i,,)j"’

with coefficient functions ¢ ; which are C*, and the sum is taken over a
finite number of n-tuples (j) = (ji,---,jn) of integers 2 0. If f: U — Vis
a differential isomorphism, so a change of charts, then it is immediately
verified from the chain rule that D has a similar expression Dy on V.

Furthermore, at a given point a in U, let

Pa(Tl, eeey Tn) = Z ¢(1)(a)T.l]1 e T'.{n_

XV, §8] HOMOGENEOUSLY FIBERED SUBMERSIONS 445

We call P the polynomial representing D in the chart at . Then from the
chain rule, it is immediate that the polynomial representing D in V at f(a)
has degree at most equal to the degree of the polynomial representing D
in U at a. Hence these degrees are equal, and define the degree of the
differential operator at a point (independently of the chart).

We denote the set of differential operators on X by DO(X). It is clear
that DO(X) is an R-algebra.

Suppose given a submanifold ¥ of X and an open subset S of X
containing Y, together with a submersion

n. S->Y

'which_ is the identity on Y. Thus locally in a chart, = is a projection and ¥
itself is a section of the submersion. Given these data, we define the direct
image

n.: DO(X) — DO(Y)

as follows. Given a function f on ¥, we consider the composite function
Som, apply D, and restrict the resulting function to Y, so by definition

b

(mD)f = D(f om)y,

the subscript denoting restriction to Y. The operator #.D is a linear
operator on functions. It is in fact a differential operator. One sees this
by picking a chart such that in this chart, z is a projection

m WxV-oV,

with V" a chart in Y. Let the coordinates be (w, y) with ye ¥ and we W.
Then D is represented in the chart W x V as a sum

D=3 o;w, »)of ---8" + E(w, y),

wher.e r=dim Y, 6; = 8/d,,, and E(y, w) is a differential operator in the
left ideal generated by 8/d,,,...,8/d,, (s=dim W). For any function
f='f'(y) on V, the function foz given by (fon)(w, )= f(y) is
annihilated by E(w, y). If be W and the charts are chosen such that the

section Y is (b, Y) in the chart, then the above sum decomposition for D
shows that

D(fom)(y) = oy(b, y) & --- o,

so m,D is a differential operator.

We have two basic examples which arise in practice, for instance
[He 84a], Chapter II, §5.
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Example 1. Let X be a Riemannian manifold, and Y a submanifold
with normal bundle NY. Let S be a tubular neighborhood of Y obtained
from the exponential map on a neighborhood of the zero section, which
we identify with Y. Let z: S — Y be the orthogonal projection, which
projects a point to Y along the normal geodesic in S. We can always pick
the neighborhood of the zero section in NY so that there is a unique such
normal geodesic locally. Then we are in the situation discussed above, and
the direct image #,: DO(X) — DO(Y) is called the normal projection of
differential operators on Y.

Example 2. Let z: X — Z be a homogeneously fibered submersion, as
defined at the beginning of §8. By Proposition 8.1, we can always find
locally a section in the neighborhood of a given point of Z. Then the map
» defined in Proposition 8.1, is a submersion, and we may identify ¥ =
o(Z) with (e, Z) (letting e be the unit element of H). We cannot define

#,: DO(X) — DO(Z).

in general, but we can define 7, in a natural way on a subset of DO(X).
Indeed, an element of the group H acting on X also acts on any object
functorially associated with X, especially on DO(X). By definition, given
heH, let [h]D for D e DO(X) be defined by

(WD) f) = (D(f o L)) o Lj!
where L, is left translation by A, so that for xe X,

(((BD)f)(x) = D(f o Ly)(h™'x).

We say that D is H-invariant if [h]D =D for all he H. The set of H-
invariant differential operators is a subalgebra of DO(X'), which we denote
by DO(X)?. We can then define

m: DO(X)® — DO(Z)
as follows. For a function, f on Z, we let
(n.D)f = D(f om)z.
This means that D(f o) is constant on the fibers of =, that is D(f o)
is an H-invariant function, which therefore factors through a function on

Z. We denote this function by inserting the subscript Z. To verify that
D(f o) is constant on fibers, put F = f o=, so that F is a function on X,
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constant on fibers. For he H, let [hF = FoL;!. Then

[K(DF) = ([HID) (IAIF) = (IID)(F o L;")
= DF,

because we assumed D € DO(X)”. Thus D(f o m) is constant on orbits of
H.. Hence (7.D)f = D(f o), defines a linear map DO(X)? — DO(Z).
This map is a differential operator. One can see this either as a special
case (?f the general discussion, using the section of Proposition 8.1, or one
can simply rewrite the local formula for the differential operator on the
submersion, and use the H-invariance to see that the coefficient functions

9(;)(w, x) are H-invariant, that is ¢ ,(hw, x) = @ (w, x) for he H
we W as before. ) ) =0 x) € H and

There is even a more jazzed up way of seeing that a linear operator on
the space of functions is a differential operator, namely:

Theorem (Peetre—Carleson). Let X be a manifold, and let
L: Fu(X) — Fu(X)
be a linear map which decreases supports, that is
supp(Lf) < supp(f)
Jor all functions f e Fu(X). Then L is a differential operator.
The proof takes about two pages. Cf. for instance [Nar 68], whose

proof is reproduced in Helgason [He 84], Chapter II, Theorem 1.4. See
also [GHL 87/93], pp. 40 and 191, and further references therein.



CHAPTER XVI

Integration of Differential
Forms

The material of this chapter is also contained in my book on real analysis
[La 93], but it may be useful to the reader to have it also here in a rathgr
self contained way, based only on standard properties of integration in
Euclidean space.

Throughout this chapter, p is Lebesgue measure on R".
If A is a subset of R", we write LY(A) instead of £'(4, p, C).
All manifolds are assumed finite dimensional.

They may have a boundary.

XVl, §1. SETS OF MEASURE 0

We recall that a set has measure 0 in R” if and only if, given ¢, there
exists a covering of the set by a sequence of rectangles {R;} such that
S u(R;) < €. We denote by R; the closed rectangles, and we may .always
assume that the interiors R]‘-) cover the set, at the cost of increasing the
lengths of the sides of our rectangles very slightly (an ¢/2" argument). 'We
shall prove here some criteria for a set to have measure 0. We leave it Fo
the reader to verify that instead of rectangles, we could have used cubes in
our characterization of a set of a measure 0 (a cube being a rectangle all

of whose sides have the same length). .
We recall that a map f satisfies a Lipschitz condition on a set A4 if there

exists a number C such that

|f(x) = fF(P)| = Clx — ¥l

AACO
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for all x, ye A. Any C! map f satisfies locally at each point a Lipschitz
condition, because its derivative is bounded in a neighborhood of each
point, and we can then use the mean value estimate,

|f7(e) = f(3)] = Ix — ¥l suplf'(2)],

the sup being taken for z on the segment between x and y. We can take
the neighborhood of the point to be a ball, say, so that the segment
between any two points is contained in the neighborhood.

Lemma 1.1. Let A have measure 0 in R” and let f: A — R” satisfy a
Lipschitz condition. Then f(A) has measure 0.

Proof. Let C be a Lipschitz constant for f. Let {R;} be a sequence of
cubes covering 4 such that ) u(R;) < e. Let r; be the length of the side of
R;. Then for each j we see that f(4 N S)) is contained in a cube R whose
sides have length < 2Cr;. Hence

y(R]f) < 2”C"r;' =2"C"u(R;).
Our lemma follows.

Lemma 1.2. Ler U be open in R" and let f: U — R" be a C! map. Let
Z be a set of measure 0 in U. Then f(Z) has measure 0.

Proof. For each x € U there exists a rectangle R, contained in U such
that the family {R%} of interiors covers Z. Since U is separable, there
exists a denumerable subfamily covering Z, say {R;}. It suffices to prove
that f(Z N R;) has measure 0 for each j. But f satisfies a Lipschitz
condition on R; since R; is compact and f’ is bounded on R;, being
continuous. Our lemma follows from Lemma 1.1.

Lemma 1.3. Let A be a subset of R™. Assume that m <n. Let
f: A—-R"
satisfy a Lipschitz condition. Then f(A) has measure 0.
Proof. We view R™ as embedded in R” on the space of the first m

coordinates. Then R™ has measure 0 in R”, so that 4 has also »-

dimensional measure 0. Lemma 1.3 is therefore a consequence of Lemma
1.1.

Note. All three lemmas may be viewed as stating that certain para-
metrized sets have measure 0. Lemma 1.3 shows that parametrizing a set
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by strictly lower dimensional spaces always yields an image having
measure 0. The other two lemmas deal with a map from one space into
another of the same dimension. Observe that Lemma 1.3 would be false if
f is only assumed to be continuous (Peano curves).

The next theorem will be used later only in the proof of the residue
theorem, but it is worthwhile inserting it at this point.

Let f: X — Y be a morphism of class C?, with p 21, and assume
throughout this section that X, Y are finite dimensional. A point x € X is
called a critical point of f if f is not a submersion at x. This means that

T.f: ToX — TynY

is not surjective, according to our differrential criterion for a submersion.

Assume that a manifold X has a countable base for its charts. Then we
can say that a set has measure 0 in X if its intersection with each chart has
measure 0.

Theorem 1.4 (Sard’s Theorem). Let f: X — Y be a C® morphism of
finite dimensional manifolds having a countable base. Let Z be the set of
critical points of f in X. Then f(Z) has measure 0 in Y.

Proof. (Due to Dieudonné.) By induction on the dimension n of X.
The assertion is trivial if n = 0. Assume n = 1. Tt will suffice to prove the
theorem locally in the neighborhood of a point in Z. We may assume that
X =U is open in R” and

fr U-R

can be expressed in terms of coordinate functions,

=0, h)-

We let us usual

D*=D{...D¥

be a differential operator, and call |a| = oy +--- + a, its order. We let
Zy=Z and for m21 we let Z, be the set of points x € Z such that

D*i(x) =0

for all j=1,...,p and all « with 1 < |a] £m. We shall prove:
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(1) For each m 20 the set f(Zy — Zm+1) has measure 0.
Q) If mzn/p, then f(Z,) has measure 0.

This will obviously prove Sard’s theorem.

Proof of (1). Let ae Z,, — Z,,.,. Suppose first that m = 0. Then for
some coordinate function, say j=1, and after a renumbering of the
variables if necessary, we have

Dy fi(a) # 0.
The map

g: xX— (fl(x)v x2a-":xp)

obviously has an invertible derivative at x =a, and hence is a local
isomorphism at a. Considering f o g~! instead of f, we are reduced to the
case where f is given by

f(X) = (X1, f2(x)’ tee 7f1'7(x)) = (xl, h(x)),

where h is the projection of f on the last p — 1 coordinates and is
therefore a morphism A: ¥ — RP~! defined on some open ¥ containing a.

Then
2=, i)

From this it is clear that x is a critical point for f if and only if x is a
critical point for h, and it follows that A(Z n V) has measure 0 in R?~!.
Since f(Z) is contained in R! x 4(Z), we conclude that f(Z) has measure
0 in R” as desired.

Next suppose that m > 1. Then for some « with |a| =m + 1, and say
Jj=1, we have

D*fi(a) #0.
Again after a renumbering of the indices, we may write
D°fi = Dig

for some function g;, and we observe that g,(x) =0 for all x€ Z,, in a
neighborhood of a. The map

g: Xm— (gl(x)v X2, .., Xn)

is then a local isomorphism at g, say on an open set ¥ containing a, and
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we see that
9(Znn V) < {0} x R 1.

We view g as a change of charts, and considering f o g~! instead of f,
together with the invariance of critical points under changes of charts, we
may view f as defined on an open subset of R™!. We can then apply
induction again to conclude the proof of our first assertion.

Proof of (2). Again we work locally, and we may view f as defined on

the closed n-cube of radius r centered at some point a. We denote this
cube by C.(a). For m=n/p, it will suffice to prove that

f (Zm N Cr(a))
has measure 0. For large N, we cut up each side of the cube into N equal
segments, thus obtaining a decomposition of the cube into N” small

cubes. By Taylor’s formula, if a small cube contains a critical point
x € Zn, then for any point y of this small cube we have

If () = f)| < Klx — p™! < K@r/N)™,
where K is a bound for the derivatives of f up to order m + 1, and we use
the sup norm. Hence the image of Z, contained in small cube is itself

contained in a cube whose radius is given by the right-hand side, and
whose volume in R? is therefore bounded by

KP(2r/N)PeHD),
We have at most N” such images to consider and we therefore see that

f(Znn Cia))

is contained in a union of cubes in R?, the sum of whose volumes is
bounded by

KPN™(2r/ N)p(mH) < KP(2r)P(”‘+1) NA-Plmtl)
Since m = n/p, we see that the right-hand side of this estimate behaves
like 1/N as N becomes large, and hence that the union of the cubes in R”

has arbitrarily small measure, thereby proving Sard’s theorem.

Sard’s theorem is harder to prove in the case f is C? with finite p [29],
but p = co already is quite useful.
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XVI, §2. CHANGE OF VARIABLES FORMULA

We first deal with the simplest of cases. We consider vectors vy,...,v, in

R" and we define the block B spanned by these vectors to be the set of
points

Hoy+ -+« +tyy

with 0 < ; £ 1. We say that the block is degenerate (in R") if the vectors
v1,...,0, are linearly dependent. Otherwise, we say that the block is non-
degenerate, or is a proper block in R”.

We see that a block in R? is nothing but a parallelogram, and a block in
R? is nothing but a parallelepiped (when not degenerate).
We shall sometimes use the word volume instead of measure when
applied to blocks or their images under maps, for the sake of geometry.
We denote by Vol(vy,...,v,) the volume of the block B spanned by
v1,...,0,. We define the oriented volume

Vol®(vy,...,0,) = £ Vol(vy, ..., 0,),
taking the + sign if Det(v;,...,v,) > 0 and the — sign if
Det(v1,...,0,) < 0.
The determinant is viewed as the determinant of the matrix whose column

vectors are vj,...,0,, in that order.

We recall the following characterization of determinants. Suppose that
we have a product

(011"-,vn)'_')v1 ADIA - AUy

which to each n-tuple of vectors associates a number, such that the product
is multilinear, alternating, and such that

el A - Aep=1
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if ej,...,e, are the unit vectors. Then this product is necessarily the
determinant, that is, it is uniquely determined. “Alternating’” means that if
v; = v; for some i # j, then

VIA - Avp=0.

The uniqueness is easily proved, and we recall this short proof. We can
write
v = ajje1 + -+ ainén

for suitable numbers a;, and then
DIA o Avs=(auer+-- +aimen) A A (aner+ o+ dmen)
=D Aomes) A 0 A n ool
g

= Z ay,6(1) ** An,a(m)€a(1) N " A Eg(n)-

The sum is taken over all maps o: {1,...,n} — {1,...,n}, but because
of the alternating property, whenever ¢ is not a permutation the term
corresponding to ¢ is equal to 0. Hence the sum may be taken only over
all permutations. Since

€1y A *1* A g(n) =e(gley A -+ Aey

where €(g) =1 or —1 is a sign depending only on o, it follows that the
alternating product is completely determined by its value e; A --+ A ep,
and in particular is the determinant if this value is equal to 1.

Proposition 2.1. We have

Vol%(vy,...,v,) = Det(vy,...,0n)
and
vol(vy, . ..,v,) = |Det(vy, ..., va)].

Proof. If vy,...,v, are linearly dependent, then the determinant is equal

to 0, and the volume is also equal to 0, for instance by Lemma 1.3. So
our formula holds in the case. It is clear that

Vol’(ey,...,e,) = 1.

To show that Vol satisfies the characteristic properties of the determinant,
all we have to do now is to show that it is linear in each variable, say the
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first. In other words, we must prove

(*) Vol'(ev, v,...,08) = cVol’(v, vy,...,0,) for ceR,

(%) Volo(v +w, va,...,0,) = Vol° (v, vs,.. . 0n) + Vol (w, vy, .. vy Un)

As to the first assertion, suppose first that ¢ is some positive integer k. Let
B be the block spanned by v,v,,...,v,. We may assume without loss of
generality that v,v,,...,v, are linearly independent (otherwise, the relation
is obviously true, both sides being equal to 0). We verify at once from the
definition that if B(v, v;,...,v,) denotes the block spanned by v,vs,...,0,
then B(kv, v,...,v,) is the union of the two sets

B((k-1)v,v,...,v,) and  B(v, vz,...,05) + (k= 1)p

which have only a set of measure 0 in common, as one verifies at once
from the definitions.

Therefore, we find that

Vol(kv, v3,...,0s) = Vol((k — 1)v, va,...,vs) + Vol(v, v, ..., 0n)
= (k—1) Vol(v, v3,...,0,) + Vol(v, v3,...,0,)
=k Vol(v, va,...,0,),

as was to be shown.
Now let

v=vl/k

for a positive integer k. Then applying what we have just proved shows
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that

1 1
Vol(zul, vz,...,v,,) =EVol(vl,...,v,,).

Writing a positive rational number in the form m/k =m-1/k, we con-
clude that the first relation holds when ¢ is a positive rational number. If r
is a positive real number, we find positive rational numbers ¢, ¢’ such that
c<r<c’. Since

B(cv, va,...,05) < B(rv, va,...,v,) € B(c'v, va,...,0n),
we conclude that
c Vol(v, v3,...,0,) £ Vol(rv, va,...,0,) S ¢’ Vol(v, va,...,0,).

Letting ¢, ¢’ approach r as a limit, we conclude that for any real number
r =20 we have

Vol(ry, va,...,0,) =1 Vol(v, va,...,0,).
Finally, we note that B(—v, v3,...,v,) is the translation of
B(v, v2,...,0n)

by —v so that these two blocks have the same volume. This proves the
first assertion.

As for the second, we look at the geometry of the situation, which is
made clear by the following picture in case v = v, w= ;.

The block spanned by v1,v,,... consists of two “triangles” T, T’ having
only a set of measure zero in common. The block spanned by v; + v; and
v, consists of T' and the translation T +v,. It follows that these two
blocks have the same volume. We conclude that for any number c,

Vol®(vy + vz, v2,...,05) = Vol°(vl, 02,...,0n)-
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Indeed, if ¢ = 0 this is obvious, and if ¢ # 0 then

c Volo(vl +cvy, 1) = Volo(vl + cvy, cva)

= Vol°(v1 +en)=c Volo(vl, v2).

We can then cancel ¢ to get our conclusion.

To prove the linearity of Vol® with respect to its first variable, we may
assume that vs,...,v, are linearly independent, otherwise both sides of
(*x) are equal to 0. Let v; be so chosen that {vy,...,v,} is a basis of R".
Then by induction, and what has been proved above,

Volo(cwl + oo+ Cpln, U2y...,0p)
= Volo(clvl + 4 CpotUn1, U250y Un)
= Volo(clvl, V2y. .., Up)
= Volo(vl,...,v,,).

From this the linearity follows at once, and the theorem is proved.

Corollary 2.2. Let S be the unit cube spanned by the unit vectors in R”.
Let 2: R” — R” be a linear map. Then

Vol A(S) = |Det(4)].

Proof. If vy,...,v, are the images of ey, ..., e, under A, then A(S) is the
block spanned by vy,...,v,. If we represent A by the matrix 4 = (ay),
then

vi = ayey + - - - + anien,
and hence Det(vy,...,v,) = Det(4) = Det(4). This proves the corollary.

Corollary 2.3. If R is any rectangle in R" and A: R" — R” is a linear

map, then

Vol A(R) = |Det(4)|Vol(R).

Proof. After a translation, we can assume that the rectangle is a block.
If R = 4,(S) where S is the unit cube, then

A(R) = Ao A1(S),
whence by Corollary 2.2,

Vol A(R) = |Det(A o A;)| = |Det(4) Det(4,)| = [Det(4)] Vol(R).
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The next theorem extends Corollary 2.3 to the more general case where
the linear map A is replaced by an arbitrary C!-invertible map. The proof
then consists of replacing the linear map by its derivative and estimat-
ing the error thus introduced. For this purpose, we have the Jacobian
determinant

As(x) = Det Jy(x) = Det f'(x),

where Jy(x) is the Jacobian matrix, and f'(x) is the derivative of the map
f: U-> R~

Proposition 2.4. Let R be a rectangle in R", contained in some open set
U. Let f: U— R" be a C! map, which is C'-invertible on U. Then

W(rR) = | 18/ de

Proof. When f is linear, this is nothing but Corollary 2.3 of the
preceding theorem. We shall prove the general case by approximating f
by its derivative. Let us first assume that R is a cube for simplicity. Given
¢, let P be a partition of R, obtained by dividing each side of R into N
equal segments for large N. Then R is partitioned into N” subcubes which
we denote by S; (j=1,...,N"). We let g; be the center of S;.

We have

Vol f(R) = Vol £(5))
J

because the images f(S;) have only sets of measure 0 in common. We
investigate f(S;) for each j. The derivative f” is uniformly continuous on
R. Given ¢, we assume that N has been taken so large that for x € S; we
have

f(x) = fla) + X(x — a) + o(x — @),
where 4; = f'(a;) and
lo(x — a))] < |x — ajle.

To determine Vol f(S;) we must therefore investigate f(S) where S is a
cube centered at the origin, and f has the form

f(x)=Ax+o(x), lo(x)| < |xle.

on the cube S. (We have made suitable translations which don’t affect
volumes.) We have

Ao f(x) = x+ A o p(x),
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so that A~! o f is nearly the identity map. For some constant C, we have
for xe S

471 o p(x)| £ Ce.

From the lemma after the proof of the inverse mapping theorem, we
conclude that A~! o £(S) contains a cube of radius

(1 — Ce)(radius S),
and trivial estimates show that 1! o £(S) is contained in a cube of radius
(1 + Ce)(radius S).

We apply A to these cubes, and determine their volumes. Putting indices j
on everything, we find that

IDet f'(a)| Vol(S;) ~ eCyVol(s))
< Vol £(S)) = [Det f'(a)] Vol(S)) + eCVol(s))

with some fixed constant C;. Summing over j and estimating |As|, we see
that our theorem follows at once.

Remark. We assumed for simplicity that R was a cube. Actually, by
changing the norm on each side, multiplying by a suitable constant, and
taking the sup of the adjusting norms, we see that this involves no loss of
generality. Alternatively, we can approximate a given rectangle by cubes.

Corollary 2.5. If g is continuous on f(R), then
J gdu=J (g0 f)lAy| dp.
f(R) R

Proof. The functions g and (go f)|As| are uniformly continuous on
S(R) and R respectively. Let us take a partition of R and let {S;} be the
subrectangles of this partition. If J is the maximum length of the sides of
the subrectangles of the partition, then f(S;) is contained in a rectangle
whose sides have length < Cé for some constant C. We have

gdu= J gdu.
Jf(R) z,: 7(5))

The sup and inf of g of f(S;) differ only by € if § is taken sufficiently
small. Using the theorem, applied to each Sj, and replacing g by its
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minimum m; and maximum M; on S;, we see that the corollary follows at
once.

Theorem 2.6 (Change of Variables Formula). Ler U be open in R" and
let f: U—R" be a C' map, which is C' invertible on U. Let g be in
LY(f(U)). Then (go f)|As| is in LY (U) and we have

j gdu=j (9o £l di.
f(U) U

Proof. Let R be a closed rectangle contained in U. We shall first prove
that the restriction of (go f)|As| to Ris in & 1(R), and that the formu}a
holds when U is replaced by R. We know that C.(f(U)) is L‘-der{se in
Z'(f(U)), by [La 93], Theorem 3.1 of Chapter IX. Hence there exists a
sequence {gx} in C.(f(U)) which in L'-convergent to g. Using [La 93],
Theorem 5.2 of Chapter VI, we may assume that {g} converges pointwise
to g except on a set Z of measure 0 in f(U). By Lemma 1.2, we know
that f~}(Z) has measure 0. .

Let g; = (gko f)|As|. Each function g; is continuous on R. The
sequence {g;} converges almost everywhere to (g o f)|As| restricted to R.
It is in fact an L!-Cauchy sequence in #!(R). To see this, we have by the
result for rectangles and continuous functions (corollary of the preceding
theorem):

J |9k — Gml A1 = J gk = gm| d,
R f(R)

so the Cauchy nature of the sequence {g;} is clear from tl}at of {gr}. It
follows that the restriction of (g0 f)|As| to R is the L'-limit of {g;}, and
is in Z!(R). It also follows that the formula of the theorem holds for R,
that is »

J gdﬂ=J (g0 N)Ar] du
£(4) 4

when 4 = R.

The theorem is now seen to hold for any measurable subset 4 of R,
since f(A4) is measurable, and since a function g in Lf (A)) can be
extended to a function in £'(f(R)) by giving it the value 0 outside f(4).
From this it follows that the theorem holds if A is a finite union of
rectangles contained in U. We can find a sequence of rectangles {R."’}
contained in U whose union is equal to U, because U is separable. Taking
the usual stepwise complementation, we can find a disjoint sequence of
measurable sets

Am=Rm—-(R1U URm_l)

[XVI, §3] ORIENTATION 461

whose union is U, and such that our theorem holds if 4 = 4,,. Let
hm = Gran) = Gpay  and By = (hmo f)|Af].

Then 3 h, converges to g and A converges to (go f )|Ar|. Our
theorem follows from Corollary 5.13 of the dominated convergence
theorem in [La 93].

Note. In dealing with polar coordinates or the like, one sometimes
meets a map f which is invertible except on a set of measure 0, e.g. the
polar coordinate map. It is now trivial to recover a result covering this
type of situation.

Corollary 2.7. Let U be open in R" and let f: U — R" be a C' map.
Let A be a measurable subset of U such that the boundary of A has
measure 0, and such that f is C' invertible on the interior of A. Let g be
in L1(f(4)). Then (go f)|As| is in L'(A) and

| gdu=[ @onialan
f(4) A

Proof. Let Uy be the interior of 4. The sets f(4) and f(Up) differ
only by a set of measure 0, namely f(04). Also the sets 4, Uy differ only
by a set of measure 0. Consequently we can replace the domains of
integration f(4) and A4 by f(U;) and Uy, respectively. The theorem
applies to conclude the proof of the corollary.

XVI, §3. ORIENTATION

Let U, V be open sets in half spaces of R” and let ¢: U — ¥V be a C!
isomorphism. We shall say that ¢ is orientation preserving if the Jacobian
determinant A,(x) is >0, all xe U. If the Jacobian determinant is
negative, then we say that ¢ is orientation reversing.

Let X be a C? manifold, p > 1, and let {(U,, ¢;)} be an atlas. We say
that this atlas is oriented if all transition maps ; og;! are orientation
preserving. Two atlases {(U;, 9;)} and {(V,, ¥,)} are said to define the
same orientation, or to be orientation equivalent, if their union is oriented.
We can also define locally a chart (¥, y) to be orientation compatible with
the oriented atlas {(U;, ¢,)} if all transiton maps ¢,0¢~' (defined
whenever U; n V is not empty) are orientation preserving. An orientation
equivalence class of oriented atlases is said to define an oriented manifold,
or to be an orientation of the manifold. It is a simple exercise to verify

that if a connected manifold has an orientation, then it has two distinct
orientations.
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The standard examples of the Moebius strip or projective plane show
that not all manifolds admit orientations. We shall now see that the
boundary of an oriented manifold with boundary can be given a natural
orientation.

Let p: U — R" be an oriented chart at a boundary point of X, such that:

(1) if (x1,...,%Xn) are the local coordinates of the chart, then the
boundary points correspond to those points in R" satisfying x, = 0;

and
(2) the points of U not in the boundary have coordinates satisfying

x; < 0.

Then (x3,...,X,) are the local coordinates for a chart of the boundary,
namely the restriction of ¢ to X n U, and the picture is as follows.

(zg, .1 2n)

zy

We may say that we have considered a chart ¢ such that the manifold lies
to the left of its boundary. If the reader thinks of a domain in R?, having
a smooth curve for its boundary, as on the following picture, the reader
will see that our choice of chart corresponds to what is usually visualized
as ‘“‘counterclockwise” orientation.

The collection of all pairs (U n8X,p|(U naX)), chosen according to
the criteria described above, is obviously an atlas for the boundary 0X,
and we contend that it is an oriented atlas.

We prove this easily as follows. If
(xl,...,x,,)=x and (}’h---;)’n)=y

are coordinate systems at a boundary point corresponding to choices of
charts made according to our specifications, then we can write y = f (x)
where f = (fi,...,f,) is the transition mapping. Since we deal with
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oriented charts for X, we know that As(x) > 0 for all x. Since f maps
boundary into boundary, we have

S1(0, x2,...,%,) =0

for all x;,...,x,. Consequently the Jacobian matrix of f at a point
(0, x2,...,x,) is equal to

D1fi(0, xz,...,%,) 0----. 0

*
" A(n—l) ’

*

where A;”‘l) is the Jacobian matrix of the transition map g induced by f
on the boundary, and given by

h = f2(07 X2,...,xn),

Yn = fn(o, x2"":xn)'
However, we have

D1f1(0, xz,...,x,,)=}lin;1) 7 y

tgking the? limit with # < 0 since by prescription, points of X have coor-
dinates with x; < 0. Furthermore, for the same reason we have

fl(h> XZ,...,X,,) <0.

Consequently
D1f1(0, X2y ,x,,) > 0.
From this it follows that Aé"‘l)(xz, ...y %) > 0, thus proving our assertion

that the atlas we have defined for 4X is oriented.

From now on, when we deal with an oriented manifold, it is understood
that its boundary is taken with orientation described above, and called the
induced orientation.

XVl, §4. THE MEASURE ASSOCIATED WITH
A DIFFERENTIAL FORM

Let X be a manifold of class CP with p 2 1. We assume from now on
that 'X is Hausdorff and has a countable base. Then we know that X
admits C? partitions of unity, subordinated to any given open covering.
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(Actually, instead of the conditions we assumed, we could just as well
have assumed the existence of C? partitions of unity, which is the precise
condition to be used in the sequel.)

We can define the support of a differential form as we defined the
support of a function. It is the closure of the set of all x € X such that
w(x) #£0. If  is a form of class C? and « is a C? function on X, then we
can form the product aw, which is the form whose value at x is a(x)w(x).
If « has compact support, then aw has compact support. Later, we shall
study the integration of forms, and reduce this to a local problem by
means of partitions of unity, in which we multiply a form by functions.

We assume that the reader is familiar with the correspondence between
certain functionals on continuous functions with compact support and
measures. Cf. [La 93] for this. We just recall some terminology.

We denote by C.(X) the vector space of continuous functions on X
with compact support (i.e. vanishing outside a compact set). We write
C.(X,R) or C.(X,C) if we wish to distinguish between the real or
complex valued functions.

We denote by Cx(X) the subspace of C.(X) consisting of those
functions which vanish outside K. (Same notation Cs(X) for those
functions which are 0 outside any subset S of X. Most of the time, the
useful subsets in this context are the compact subsets K.)

A linear map A of C,(X) into the complex numbers (or into a normed
vector space, for that matter) is said to be bounded if there exists some
C = 0 such that we have

lAf1 = CIAIl

for all f e C,(X). Thus 4 is bounded if and only if 4 is continuous for the

norm topology.
A linear map A of C.(X) into the complex numbers is said to be
positive if we have Af = 0 whenever f is real and = 0.

Lemma 4.1. Let A: C.(X) — C be a positive linear map. Then A is
bounded on Ck(X) for any compact K.

Proof. By the corollary of Urysohn’s lemma, there exists a continuous
real function g =0 on X which is 1 on K has compact support. If
feCg(X), let b=|f|. Say f is real. Then bg + f =0, whence

Abg) £ Af 20
and |Af| < bA(g). Thus Ag is our desired bound.

A complex valued linear map on C.(X) which is bounded on each
subspace Cx(X) for every compact K will be called a C.-functional on
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CC(X ), or more simply, a functional. A functional on C.(X) which is also
continuous for the sup norm will be called a bounded functional. It is clear
that a bounded functional is also a C.-functional.

Lemma 4.2. Let {W,} be an open covering of X. For each index o, let
Ao be a functional on C.(W,). Assume that for each pair of indices o, B
the functionals A, and A are equal on C.(W, N Wpg). Then there exists a
unique functional A on X whose restriction to each C,(W,) is equal to A,.
If each A, is positive, then so is A. ’

P@of. Let f € C.(X) and let K be the support of f. Let {#;} be a
partition of unity over K subordinated to a covering of K by a finite

number of the open sets W,. Then each A;f has support in some W,
and we define "0

Af = Z Aa(iy (Bif).

We contend that this sum is independent of the choice of a(i), and also of
the choice of partition of unity. Once this is proved, it is then obvious
Fhat 4 is a functional which satisfies our requirements. We now prove this
}ndependence. First note that if W, is another one of the open sets W,
in whicl} the support of h;f is contained, then A;f has support in the
mntersection W,; N Wy.(;), and our assumption concerning our functionals
Aa s‘hows that the corresponding term in the sum does not depend on the
choice of index a(i). Next, let {g;} be another partition of unity over K

subordinated to some covering of K by a finite number of the open sets
W, Then for each i,

hif =) gehif,
3

Z la(,') (hif) = Z Z j'm(i) (gk hif)'
i i k

If the support of gk.hi S is in some W,, then the value A,(gih;f) is inde-
pendent of the choice of index a. The expression on the right is then

;yﬁlmetric with respect to our two partitions of unity, whence our theorem
ollows.

whence

Themtem 43 Let dim X = n and let w be an n-form on X of class C°,
that is continuous. Then there exists a unique positive functional A on
Cc(X) having the following property. If (U, ¢) is a chart and

o(x) = f(x)dx1 A --- A dx,

is the local representation of w in this chart, then for any g € C.(X) with
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support in U, we have
1) ja= [ alfeold
9

where g, represents g in the chart [i.e. go(x) = g(971(x))], and dx is
Lebesgue measure.

Proof. The integral in (1) defines a positive functional on C.(U). The
change of variables formula shows that if (U, ¢) and (V, Y) are two
charts, and if g has support in U n V, then the value of the functional is
independent of the choice of charts. Thus we get a positive functional by
the general localization lemma for functionals.

The positive measure corresponding to the functional in Theorem 43
will be called the measure associated with ||, and can be denoted by y,,.
Theorem 4.3 does not need any orientability assumption. With such
an assumption, we have a similar theorem, obtained without taking the

absolute value.

Theorem 4.4. Let dim X = n and assume that X is oriented. Let w be
an n-form on X of class C°. Then there exists a unique functional A on
C.(X) having the following property. If (U, ¢) is an oriented chart and

w(x) = f(x)dxi, A -+ A dxn

is the local representation of w in this chart, then for any g € C(X) with
support in U, we have

19 =j 0o f (x) dx,
U

where g, represents g in the chart, and dx is Lebesgue measure.

Proof. Since the Jacobian determinant of transition maps belonging to
oriented charts is positive, we see that Theorem 4.4 follows like Theorem
4.3 from the change of variables formula (in which the absolute value sign
now becomes unnecessary) and the existence of partitions of unity.

If 4 is the functional of Theorem 4.4, we shall call it the functional
associated with w. For any function g € C.(X), we define

[ gw = Ag.
b'e
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If in particular w has compact support, we can also proceed directly as
follows. Let {o;} be a partition of unity over X such that each o; has
compact support. We define

.[Xw - ELaiw,

i

?ll, but a finite number of terms in this sum being equal to 0. As usual, it
is 1rr}1pediately verified that this sum is in fact independent of the choice, of
partition of unity, and in fact, we could just as well use only a partition
of unity over the support of w. Alternatively, if « is a function in C,(X)
which is equal to 1 on the support of w, then we could also define

o

It is clea'r that these two possible definitions are equivalent. In particular
we obtain the following variation of Theorem 4.4. ’

Theorem 4.5. Let X be an oriented manifold of dimension n. Let of J(X)

be .the R-space of differential forms with compact support. There exists a
unigue linear map

wHLw of ANX)—>R

such that, if w has support in an oriented chart U with coordinates
X1y.-y % and w(x) = f(x)dx; A --- A dx, in this chart, then

wa=JU f(x) dxy - - dx,.

Let X be an oriented manifold. By a volume form Q2 we mean a form
such that in every oriented chart, the form can be written as

Q(x) = f(x)dx; A -+ A dx,

with f(x) >0 for all x. In the next section, we shall see how to get a
vqlume form from a Riemannian metric. Here, we shall consider the non-
oriented case to get the notion of density.

Ev.en when a manifold is not orientable, one may often reduce certain
questions to the orientable case, because of the following result. We
assume that readers are acquainted with basic facts about coverings.
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Proposition 4.6. Let X be a connected C' manifold. If X is not ori-
entable, then there exists a covering X' — X of degree 2 such that X' is
orientable.

Sketch of Proof. Suppose first that X is simply connected. Let x € X.
Fix a chart (Up, ¢y) at x such that the image of the chart is an open ball
in euclidean space. Let y be any point of X, and let a: [a, b] — X be a
piecewise C! path from x to y. We select a sufficiently fine partition

[a; b] = [t[), h,.. -,tn],

and open sets U; containing a([t;, #;+1]), such that U; has an isomorphism
; onto an open ball in euclidean space, and such that the charts ¢, and
9,41 have the same orientation. It is easy to verify that if two paths are
homotopic, then the charts which we obtain at y by “continuation” as
above along the two paths are orientation equivalent. This is done first for
paths which are “close together,” and then extended to homotopic paths,
according to the standard technique which already appears in analytic
continuation. Thus fixing one orientation in the neighborhood of a give
point determines an orientation on all of X when X is simply connected.

Now suppose X not simply connected, and let X be its universal
covering space. Let T be the fundamental group. Then the subgroup of
elements y € T’ which preserve an orientation of X is of index 2, and the
covering corresponding to this subgroups has degree 2 over X and can be
given an orientation by using charts which lift to oriented charts in the
universal covering space. This concludes the proof.

Densities

The rest of this section will not be used, especially not for Stokes’ theorem
in the next chapter. However, Theorem 4.3 for the non-orientable case is
important for other applications, and we make further comments about
this other context.

Let s be a real number. Let E be a finite dimensional vector space over
R, of dimension n. We denote by E* the set of non-zero elements of E,

and by /\" E* the set of non-zero elements of /\" E. By an s-density on E
we mean a function

5: N'E* -»Ryzo  suchthat  d(cw) = |c|*0(w)

for all c#0 in R and we /\" E*. Equivalently, we could say that there
exists an n-form w e L*(E, R) such that for v; e E we have

(1 A oo A ) = (V1,0
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We let den’(E) denote the set of densities of E. An element of den’(E)
amounts to picking a basis of /\"E, up to a factor +1, and assigning a
number to this basis.

Let U be an open subset of E. By a C? density on U we mean a C?
morphjsm 0: U — den’(E). Note that den’(E) is an open half line, so a
density on U amounts to selecting a differential form of class C? on a
neighborhood of each point of U, such that the absolute values of these
forms coincide on intersections of these neighborhoods.

Let f: U— ¥V be a C? isomorphism. Then f induces a map on
densities, by the change of variable formula on forms with the Jacobian
determinant, and then taking absolute values to the s-power. Thus we
may form the bundle (not vector bundle) of densities, with charts

U x den’(E)

over U, and density-bundle morphisms just as we did with differential
forms. For example let E =R", with coordinates x,...,x,. Then

|dxy A <<+ A doxy| = dxy -+ dx,

defines a 1-density, and |dx; A -+ A dx,|’ defines an s-density, denoted
by |dx|.

Observe that s-densities form a cone, i.e. if §;, J, are s-densities on a
manifold X, and a;, a; eR* (the set of positive real numbers), then
a101 + axd; is also an s-density. In particular, continuing to assume that
X admits continuous partitions of unity, we can reformulate and prove
Theorem 4.3 for densities. Indeed, the differential form in Theorem 4.3
need not be globally defined, because one needs only its absolute value to

define the integral. Thus with the language of densities, Theorem 4.3 reads
as follows.

Theorem 4.7. Let 5 be a C° density on X, i.e. a continuous density.
Then there is a positive functional A on C.(X) having the following
property. If U is a chart and O is represented by the density

Lf (x) dx1 A -+ A dx,| on this chart, then for any function ¢ € C.(U) we
ave

Ap) = j RGOS

wher:e dxi - -~ dxy is the usual symbol for ordinary integration on R", and
@y is the representation of ¢ in the chart.

Examples. We have already given the example of integration with
respect to |dx; A --- A dx,| in euclidean space. Here is a less trivial
example. Let X be a Riemannian manifold of finite dimension n, with
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Riemannian metric g. Locally in a chart U, we view g as a morphism
g: U— L(E, E),

with E having a fixed positive definite scalar product. With respect to an
orthonormal basis, we have a linear metric isomorphism E ~ R", and g(x)
at each point x can be represented by a matrix (gy(x)). If we put

8%(x) = |det g;i(x)| dx; - - dxy

then 62 defines a density, called the Riemannian square density; and
8(x) = |det gy(x)|"/* dxy - - - dx

defines the Riemannian density.

Remark. Locally, a manifold is always orientable. Hence a formula or
result which is local, and is proved in the orientable case, also applies to
densities, sometimes by inserting an absolute value sign. For example,
Proposition 1.2 of Chapter XV applies after inserting absolute value signs,
but Proposition 2.1 of Chapter XV applies as stated for the Riemannian
density instead of the Riemannian volume.

Integration on a submersion

Let m: X — Z be a submersion. In Chapter XV, §6 we discussed the
relationship between volume forms on X, Z and the fibers, and we use the
same notation as before. We now derive the consequences of this relation
for integration.

Theorem 4.8. Let n: X — Z be a submersion. Let Q be a volume form
on X and w a volume form on Z. Let Q =n ® w. Let fj be a form on X,
of the same degree as 1, restricting to n on the fibers. Then for all
f e C(X), we have

| ra=] (jy SO) k)

Proof. The proposition is local, since by using a partition of unity, we
are reduced to the case when the support of f is in a given neighborhood
of a point. Then the submersion is represented in a chart as a projection
U x W — W, where U, W are open in R? and RY respectively, U being a
chart on X and W a chart on Z. On U x W we have the coordinate
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representation

SR vuw(y, 2) = f(y, Doy, 2) dyy A -+ A dy, Ap(z)dzi A - A dz,

where yi,..., y, are the coordinate functions on U, zi,...,z, are the
coordinate functions on W,

1.(»)=e(y,2)dy; A -+ A dy, and  w(z)=p(z)dzy A - A dz,.

Then the proposition merely amounts to Fubini’s theorem, which con-
cludes the proof.

XVl, §5. HOMOGENEOUS SPACES

For the convenience of the reader, we reproduce some results on locally
compact groups, corresponding to the results on volume forms in Chapter
XV, §7. When dealing with manifolds, the results of §7 provide a more
natural setting, but it is worthwhile to develop the results dealing just with
Haar measure on locally compact groups, so here goes. See also [La 93],
Chapter XII, Theorem 4.3.

Let G be a locally compact group. Let Ag be the so-called modular
function on G, relating right and left Haar measure. Thus by definition,
for f e C.(G) and left Haar measure dx on G, we have

MOD 1. JG f(xy)dx = A(y) JG f(x) dx.

Then A: G — R" is a continuous homomorphism.
For f e C.(G), we have

MOD 2, JG FxHA(x) dx = JG f(x) dx.

Proof. First we show that the functional on C.(G) defined by the left
side of the equation is left G-invariant. Applying it to the left translate of
f by an element a € G, and putting g(u) = f(u~")A(u), we get

|, (ar o)) ax = [ Fla ' x")Ax) dx
G

NA(xa)A(a) ™ dx

I

g(x) dx,

Jrte
J g(xa)A(a)
-]
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thus proving the left G-invariance. Hence there exists a constant ¢ such
that for all f,

Jf(x_l)A(x) dx=c Jf(x) dx.

To see that ¢ = 1, let f(x) = ¢(x)A(x), where ¢ is an even function = 0,
o(x) = ¢(x71) for all x, ¢ has support close to the unit element e, and

JG p(x)dx=1.

Since A is continuous, it follows that A(x) is close to 1 for x near e. We
let the support of ¢ come closer and closer to e. From the formula

1= J(o(x) dx = cj(p(x)A(x) dx,

letting the support of ¢ tend to e, we conclude that ¢ =1, thus proving
MOD 2.

The functional A(x) dx is right invariant, and in fact, for all y € G, we
have

MOD 3. J Flxy)Ax) dx = J £ dx = j F(XA) dx.

Proof. Let g(u) = f(u™!) and h(u) = g(y'u). Then using MOD 2, we
get '

J‘f(xy)A(x)i dx = Jg(y’lx'l)A(x) dx = Jh(x‘l)A(x) dx
= Jh(x) dx = Jg(y‘lx) dx = Jg(x) dx = Jf(x‘l) dx,

which proves the first equality. The second is only a special case with
y=e.

Let H be a closed subgroup of G, with corresponding function Ag.

Theorem 5.1. Suppose that Ag = Ag on H. Then there exists a unique
G-invariant positive functional on C.(G/H), so a unique G-invariant
positive a-regular measure on G/H. “Uniqueness” is up to a positive
constant multiple.
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Proof. For f e C,(G), we define
10 = | run) an
H

It is standard that f — /¥ maps C,(G) onto C,(G/H), cf. for instance
[La 93}, Chapter XII, Theorem 4.1. The map f — f H also preserves
positivity. Given f € C.(G/H), to define its invariant integral on G/H,
we let f*e C,(G) be such that (Y = f. We want to define

) | s as= j () dx.
G/H G

The problem is to show that this definition is independent of the choice of
f*. This is settled by the following lemma.

Lemma 5.2. Let fe C.(G). If fH =0, that is

j f(xhydh =0
H
for all x e G, then

JG f(x)dx=0.

Proof. For all p e C.(G), we have:

JG o(x) (JH F(ch) dh) dx = JG ( PH o(x) £ (ch) dh) dx
{
(

r

_ JH ( 00 ek dx) dh
(

[ ey f(x) dx) dh
G

m

[ Au(Wo(eh) dh) £(x) dx
H

Je \J

-1, (J'H o(xh) dh) 7(x) dx.

By the surjectivity C.(G) — C.(G/H) we can find ¢ such that ¢¥ =1 on
the support of f. Since by assumption the left side of the equation is 0,
this concludes the proof of the lemma.
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Now knowing that (1) is well defined, it is immediate that the functional
fo J F(&) dx
G/H

is G-invariant, and positive, so we have proved the existence of the desired
functional. Uniqueness is proved by reducing it to uniqueness for Haar
measure, since we have the repeated integral formula on G, H, G/H,
namely

JG F(x) dx = JG/H ( jH (k) dh) di.

This concludes the proof of the theorem.

A G-invariant measure on G/H will be called a Haar measure, as for
groups.

A group G is called unimodular if Ag =1, so right and left Haar
measures are equal. Suppose this is the case. In particular, if a € G and ¢,
is conjugation,

ca(x) = axa™!,

then ¢, preserves a given Haar measure, i.e. ¢, is a measure preserving
group isomorphism. Suppose K is a compact subgroup. Then Ag = Ag
on K, since both functions provide continuous homomorphisms of X into
R7, so both functions are trivial on K. Thus we always have a G-invariant
measure on the coset space G/K. For a € G we have an isomorphism of
G-homogeneous spaces

¢: G/K — ¢,(G)/ca(K) = G/c (K).

Fix the Haar measure on G. Fix the Haar measures on K and c,(X) to
have total measure 1, which is possible since K is compact. Then these
measures determine uniquely the Haar measure on G/K. Since ¢, pre-
serves the fixed Haar measure on G, it follows that it also preserves the
Haar measure on the homogeneous space G/K, to satisfy the repeated
integral formula on G, K, G/K.

CHAPTER XVl

Stokes’ Theorem

Throughout the chapter, all manifolds are assumed finite
dimensional. They may have a boundary.

XVIil, §1. STOKES’ THEOREM FOR A
RECTANGULAR SIMPLEX

If X is a manifold and Y a submanifold, then any differential form on X
induces a form on Y. We can view this as a very special case of the
inverse image of a form, under the embedding (injection) map

id: ¥ — X.
In particular, if Y has dimension n — 1, and if (x,...,x,) is a system of
coordinates for X at some point of Y such that the points of Y corre-

spond to those coordinates satisfying x; = ¢ for some fixed number ¢, and
index j, and if the form on X is given in terms of these coordinates by

o(x) = f(x1,...,xn) dxi A -+ A dxy,

then the restriction of @w to Y (or the form induced on Y) has the
representation

flxt,e 6oy xn)dxy A -+ /\J;j A e A dxy.

We should denote this induced form by wy, although occasionally we omit

ATK
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the subscript Y. We shall use such an induced form especially when Y is
the boundary of a manifold X.

Let
R=ay, b] x -+ X [an, by]

be a rectangle in n-space, that is a product of n closed intervals. The set
theoretic boundary of R consists of the union over all i=1,...,n of the
pieces

R?:[ahbl])(---)({aj}X"'x{an,bn},

Rl =la, bi] x - x {b;} x -+ X [ay, bn].
If
(X1, .y Xn) = f(X1,. 00, Xn) dXp A - /\dij A o Adxy,

is an (n — 1)-form, and the roof over anything means that this thing is to
be omitted, then we define

b b; by —~
J cu=J J J fa, @i x0) dxy - dxg - dxy,
RO Qn

a; a;

if i=j, and 0 otherwise. And similarly for the integral over R!. We
define the integral over the oriented boundary to be

L= S]]

i

Stokes’ Theorem for Rectangles. Let R be a rectangle in an open set U
in n-space. Let w be an (n— 1)-form on U. Then

J dw =J w.
R 2R

Proof. In two dimensions, the picture looks like this:

1
~k

bz——

as1+

3B
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It suffices to prove the assertion when w is a decomposable form, say
w(x)zf(XI,...,Xn)dxl AR /\C;)?j AN /\dx,,.

We then evaluate the integral over the boundary of R. If i #j, then it is

clear that
J w=0= J ,
RY R}

so that

J w -
°R

b b b .
(—1)"[ J J (X1, sy Xn) = Xty s by, X)) dXy - - dxg - - - dxp.
au,_,

a) a

On the other hand, from the definitions we find that

do(x) = (g? dx1+~-+g dx,,) Adxy A - /\J;j A e Adxy

= (~1)f_1-§§ dx; A -+ A dx,.
i

(The (—1)j ~! comes from interchanging dx; with dx;,...,dx;_1. All other
terms disappear by the alternating rule.)

Integrating dw over R, we may use repeated integration and integrate
df /0x; with respect to x; first. Then the fundamental theorem of calculus
for one variable yields

b; p
J al dxj = f(x1,...,bj,. .., %) — f(x1,...,a5,..., Xn).
aj Xj

We then integrate with respect to the other variables, and multiply by
(——1)"1. This yields precisely the value found for the integral of w over
the oriented boundary d°R, and proves the theorem.

Remark. Stokes’ theorem for a rectangle extends at once to a version in
which we parametrize a subset of some space by a rectangle. Indeed, if
o: R— Vis a C! map of a rectangle of dimension » into an open set V
in R¥, and if  is an (n— 1)-form in ¥, we may define

J do = J c*dw.
Jo R
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One can define

J w:J o',
oo R

and then we have a formula

J dw:J w,
o il

In the next section, we prove a somewhat less formal result.

XVll, §2. STOKES’ THEOREM ON A MANIFOLD

Theorem 2.1. Let X be an oriented manifold of class C?, dimension n,
and let @ be an (n— 1)-form on X, of class C'. Assume that o has
compact support. Then

J dw:J .

X ox

Proof. Let {a;},.; be a partition of unity, of class C2. Then

E o= w,

iel

and this sum has only a finite number of non-zero terms since the support
of w is compact. Using the additivity of the operation d, and that of the

integral, we find
do = J d(o; ).
[, o= 2], deo

iel

Suppose that o; has compact support in some open set V; of X and that
we can prove
J d(o; ) =J oo,
Vi VindX

in other words we can prove Stokes’ theorem locally in ¥;. We can write

J o= J o; @,
VindX X
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and similarly

JV,. d(o; ) = JX (o).

Using the additivity of the integral once more, we get

Lda): ZJ d(o; o) = Zjaxoc,-w = wa,

iel iel

which yields Stokes’ theorem on the whole manifold. Thus our argument
with partitions of unity reduces Stokes’ theorem to the local case, namely
it suffices to prove that for each point of X these exists an open
neighborhood ¥ such that if @ has compact support in V, then Stokes’
theorem holds with X replaced by V. We now do this.

If the point is not a boundary point, we take an oriented chart (U, ¢)
at the point, containing an open neighborhood ¥ of the point, satisfying
the following conditions: ¢U is an open ball, and ¢V is the interior of
a rectangle, whose closure is contained in pU. If w has compact support
in V, then its local representation in ¢U has compact support in ¢V.
Applying Stokes’ theorem for rectangles as proved in the preceding
section, we find that the two integrals occurring in Stokes’ formula are
equal to 0 in this case (the integral over an empty boundary being equal to
0 by convention).

Now suppose that we deal with a boundary point. We take an oriented
chart (U, ¢) at the point, having the following properties. First, pU is
described by the following inequalities in terms of local coordinates
(xl,...,x,,):

-2<x =21 and -2<x<2 for j=2,...,n

Next, the given point has coordinates (1,0,...,0), and that part of U on
the boundary of X, namely U n X, is given in terms of these coordinates
by the equation x; = 1. We then let V consist of those points whose local
coordinates satisfy

0<x =1 and -l<x<1 for j=2,...,n

If w has compact support in ¥, then w is equal to 0 on the boundary of
the rectangle R equal to the closure of ¢V, except on the face given by
x1; = 1, which defines that part of the rectangle corresponding to X n V.
Thus the support of w looks like the shaded portion of the following
picture.
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In the sum giving the integral over the boundary of a rectangle as in the
previous section, only one term will give a non-zero contribution, corre-

sponding to i = 1, which is
J w—J o,
R} R}

Furthermore, the integral over R? will also be 0, and in the contribution of
the integral over R}, the two minus signs will cancel, and yield the integral
of w over the part of the boundary lying in ¥, because our charts are
so chosen that (x,...,x,) is an oriented system of coordinates for the
boundary. Thus we find

(=1

[to=], o
| 4 VAdX

which proves Stokes’ theorem locally in this case, and concludes the proof
of Theorem 2.7.

Corollary 2.2, Suppose X is an oriented manifold without boundary, and
® has compact support. Then

J do=0.
X

For any number of reasons, some of which we consider in the next
section, it is useful to formulate conditions under which Stokes’ theorem
holds even when the form @ does not have compact support. We shall say
that w has almost compact support if there exists a decreasing sequence of
open sets {Ur} in X such that the intersection

8

Uk
k

i

1
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is empty, and a sequence of C! functions {gx}, having the following
properties:

AC 1. We have 0 < gx £ 1, g = 1 outside Uy, and grw has compact
support.

AC 2. If p, is the measure associated with |dgy A | on X, then
lim w4, (Uy) =0.
k—o0

We then have the following application of Stokes’ theorem.

Corollary 2.3. Let X be a C? oriented manifold, of dimension n, and let
@ be an (n—1)-form on X, of class C'. Assume that o has almost
compact support, and that the measures associated with |dw| on X and
|w| on X are finite. Then

j dw=[ .
e ox

Proof. By our standard form of Stokes’ theorem we have

J gkcozj d(gkw)=J dgk/\co+J gk dw.
ax b X b
We estimate the left-hand side by

J (1 —gk)wy < Yo (U 0 0X).
ax

J CU—J gk @
ox ax

Since the intersection of the sets U, is empty, it follows for a purely
measure-theoretic reason that

limJ gkw=J .
k- Jax 3x

lim J gkdco=J do.
X X

k— o0

Similarly,

The integral of dgi A w over X approaches 0 as kK — co by assumption,
and the fact that dgx A @ is equal to 0 on the complement of Uy since gi
is constant on this complement. This proves our corollary.

The above proof shows that the second condition AC 2 is a very
natural one to reduce the integral of an arbitrary form to that of a form
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with compact support. In the next section, we relate this condition to a
question of singularities when the manifold is embedded in some bigger
space.

XVIl, §3. STOKES’ THEOREM WITH SINGULARITIES

If X is a compact manifold, then of course every differential form on X
has compact support. However, the version of Stokes’ theorem which we
have given is useful in contexts when we start with an object which is not
a manifold, say as a subset of R”, but is such that when we remove a
portion of it, what remains is a manifold. For instance, consider a cone
(say the solid cone) as illustrated in the next picture.

The vertex and the circle surrounding the base disc prevent the cone from
being a submanifold of R®. However, if we delete the vertex and this
circle, what remains is a submanifold with boundary embedded in R>.
The boundary consists of the conical shell, and of the base disc (without
its surrounding circle). Another example is given by polyhedra, as on the
following figure.

The idea is to approximate a given form by a form with compact
support, to which we can apply Theorem 2.1, and then take the limit. We
shall indicate one possible technique to do this.

The word “boundary” has been used in two senses: The sense of point
set topology, and the sense of boundary of a manifold. Up to now, they
were used in different contexts so no confusion could arise. We must now
make a distinction, and therefore use the word boundary only in its
manifold sense. If X is a subset of R", we denote its closure by X as
usual. We call the set-theoretic difference X — X the frontier of X in RY,
and denote it by fr(X).

[XVII, §3] STOKES’ THEOREM WITH SINGULARITIES 483

Let X be a submanifold without boundary of R”, of dimension n. We
know that this means that at each point of X there exists a chart for an
open neighborhood of this point in RY such that the points of X in this
chart correspond to a factor in a product. A point P of X — X will be
called a regular frontier point of X if there exists a chart at P in R" with
local coordinates (xi,...,xy) such that P has coordinates (0,...,0); the
points of X are those with coordinates

Xpr1=-+=xy=0 and X, <0;

and the points of the frontier of X which lie in the chart are those with
coordinates satisfying

Xn =Xpy1 = =xy =0.

The set of all regular frontier points of X will be denoted by 8X, and will
be called the boundary of X. We may say that X U dX is a submanifold
of R¥, possibly with boundary.

A point of the frontier of X which is not regular will be called singular.
It is clear that the set of singular points is closed in RY. We now
formulate a version of Theorem 2.1 when w does not necessarily have
compact support in X U8X. Let S be a subset of RY. By a fundamental
sequence of open neighborhoods of S we shall mean a sequence {U;} of
open sets containing S such that, if W is an open set containing S, then
Uy <« W for all sufficiently large k.

Let S be the set of singular frontier points of X and let w be a form
defined on an open neighborhood of X, and having compact support. The
intersection of supp  with (X U8X) need not be compact, so that we
cannot apply Theorem 2.1 as it stands. The idea is to find a fundamental
sequence of neighborhods {Ui} of S, and a function g which is 0 on a
neighborhood of S and 1 outside Uy so that gy differs from w only inside
Ux. We can then apply Theorem 2.1 to g and we hope that taking the
limit yields Stokes’ theorem for w itself. However, we have

J d(gkco)=J dgk/\ca+J i do.
X X X

Thus we have an extra term on the right, which should go to 0 as k — «©
if we wish to apply this method. In view of this, we make the following
definition.

Let S be a closed subset of R¥. We shall say that S is negligible for X
if there exists an open neighborhood U of § in RY, a fundamental
sequence of open neighborhoods {Ux} of S in U, with Uy < U, and a
sequence of C! functions {g;}, having the following properties.
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NEG 1. We have 0 < gy < 1. Also, gi(x) =0 for x in some open
neighborhood of S, and gi(x) =1 for x ¢ Uy.

. - 1 U, and p, is the measure
NEG 2. If w is an (n — 1)-form of class C* on U, Y IS |
c{;sociated with |dgy A | on U X, then  is finite for large

k, and
lim p,(UnX)=0.
k—w

From our first condition, we see that giw vanishes on an open
neighborhood of S. Since g =1 on the complement of l{;f, we hel1_ve
dgi = 0 on this complement, and therefore our second c_ondltlon implies
that the measures induced on X near the sn'1gular'front1er by |dgx A @
(For k=1,2,...), are concentrated on shrinking neighborhoods and tend

to 0 as k — 0.

ith Si iti Let X be an oriented,
Theorem 3.1 (Stokes’ Theorem with Smgulantles)..
C3 submanifold without boundary of RY. Let dim X =n L;t w be an
(n — )-form of class C! on an open neighborhood of X in R”, and with

compact support. Assume that:
(i) If S is the set of singular points in the frontier of X, then

S nsupp w is negligible for X. '
(i) The measures associated with |dw| on X, and |w| on 80X, are finite.

Then

J dw=J w.
X X

Proof. Let U, {Ui}, and {gi} satisfy conditions NEG l.and NEG 2.
Then gre is 0 on an open neighborhood of S, and since w is assumed to
have compact support, one verifies immediately that

s g

(supp gk @) N (X U 0X)

is compact. Thus Theorem 2.1 is applicable, and we get

J gsz-[ d(gkw):J dgk/\w+J’gkdw.
ox X X X
We have

<], 0- a0)o)

oo
). 4 2.4

A

J 1 d/l|w| = ﬂ|w|(Uk al ﬁX)
UkﬁaX

Since the intersection of all sets Ux n 90X is empty, it follows from purely
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measure-theoretic reasons that the limit of the right-hand side is 0 as
k — oo. Thus

For similar reasons, we have

lim J 9k dCO:J dw.
k— o0 X x

Our second assumption NEG 2 guarantees that the integral of dgr A @
over X approaches 0. This proves our theorem.

Criterion 1. Let S, T be compact negligible sets for a submanifold X of
RY (assuming X without boundary). Then the union S U T is negligible
Jor X.

Proof. Let U, {Us}, {gx} and V, {V4}, {M} be triples associated with
S and T respectively as in condition NEG 1 and NEG 2 (with V replacing
U and h replacing g when T replaces S). Let
WZUUV, Wk=UkUVk, and fk=gkhk.
Then the open sets {W;} form a fundamental sequence of open neigh-
borhoods of SU T in W, and NEG 1 is trivially satisfied. As for NEG 2,
we have

d(grhi) A w=hpdge A 0+ gp diy A w,
so that NEG 2 is also trivially satisfied, thus proving our criterion.

Criterion 2. Let X be an open set, and let S be a compact subset in R".
Assume that there exists a closed rectangle R of dimension m < n — 2 and
a C' map 6: R— R" such that S = 6(R). Then S is negligible for X.

Before giving the proof, we make a couple of simple remarks. First, we
could always take m = n — 2, since any parametrization by a rectangle of
dimension <n — 2 can be extended to a parametrization by a rectangle of
dimension n — 2 simply by projecting away coordinates. Second, by our
first criterion, we see that a finite union of sets as described above, that is
parametrized smoothly by rectangles of codimension > 2, are negligible.
Third, our Criterion 2, combined with the first criterion, shows that
negligibility in this case is local, that is we can subdivide a rectangle into
small pieces.

We now prove Criterion 2. Composing ¢ with a suitable linear map,
we may assume that R is a unit cube. We cut up each side of the cube
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into k equal segments and thus get k™ small cubes. Since the Qerivativ'e of
o is bounded on a compact set, the image of each small cube is contained
in an n-cube in R¥ of radius < C/k (by the mean value theoren}), whose
n-dimensional volume is < (2C)"/k". Thus we can cover the image by
small cubes such that the sum of their n-dimensional volumes is

< 20)"/k"™ < (20)" /K.

Lemma 3.2. Let S be a compact subset of R". Let Uy be tl'ze open set 0]\];
points x such that d(x, S) < 2/k. There exists a C® function gi on R
which is equal to 0 in some open neighborhood of S, equal to 1 outside
Uk, 0 < gr £ 1, and such that all partial derivatives of gi are bounded by
C 1k, where Cy is a constant depending only on n.

Proof. Let ¢ be a C* function such that 0<p<1, and

(x)

x) =0 it 0 |x <1,
p(x) =1

it 1< |x.

We use || || for the sup norm in R". The graph of ¢ looks like this:

NS

L1 1
-l =3 3 !

For each positive integer k, let g (x) = p(kx). Then each partial deri-
vative D;p, satisfies the bound

| Digi |l < k|| Dol

which is thus bounded by a constant times k. Let L denote tl}e lattice of
integral points in R". For each /e L, we consider the function

l
x'—*¢k(X“ﬁ).

This function has the same shape as ¢, but is translated to the point //2k.

Consider the product
/
gr(x) = H(Uk <x - EE)
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taken over all / € L such that d(//2k, S) < 1/k. If x is a point of R” such
that d(x, §) < 1/4k, then we pick an / such that

d(x, 1)2k) < 1/2k.

For this I we have d(l/2, S) < 1/k, so that this / occurs in the product,
and

or(x—1/2k) = 0.

Therefore g is equal to 0 in an open neighborhood of S. If, on the other
hand, we have d(x, S) >2/k and if / occurs in the product, that is

d(l/2k, S) £ 1/k,
then
d(x, 1/2k) > 1/k,

and hence gi(x) =1. The partial derivatives of g; the bounded in the
desired manner. This is easily seen, for if xo is a point where g; is not
identically 1 in a neighborhood of xo, then {|xo — lp/2k|| < 1/k for some
lp. All other factors ¢, (x —1/2k) will be identically 1 near x, unless
lxo — 1/2k|| < 1/k. But then ||/ — k|| £ 4 whence the number of such / is
bounded as a function of n (in fact by 9%). Thus when we take the
derivative, we get a sum of a most 9" terms, each one having a derivative
bounded by Ck for some constant C;. This proves our lemma.

We return to the proof of Criterion 2. We observe that when an
(n—1)-form w is expressed n terms of its coordinates,

w(x)=2fj(X)dx1 A ee /\ij A e A dx,

then the coefficients f; are bounded on a compact neighborhood of S. We
take U, as in the lemma. Then for k large, each function

x = fi(x) Djgr(x)

is bounded on Uy by a bound Gk, where C, depends on a bound for ,
and on the constant of the lemma. The Lebesgue measure of Uy is
bounded by C;/k?, as we saw previously. Hence the measure of U
associated with |dgy A w| is bounded by Cy/k, and tends to 0 as k — oo.
This proves our criterion.

As an example, we now state a simpler version of Stokes’ theorem,
applying our criteria.
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Theorem 3.3. Let X be an open subset of R". Let S be the set of
singular points in the closure of X, and assume that S is the finite union
of C! images of m-rectangles with m <n—2. Let be an (n — 1)-form
defined on an open neighborhood of X. Assume that w has compact
support, and that the measure associated with || on 0X and with |dw| on

X are finite. Then
X ox

Proof Immediate from our two criteria and Theorem 3.2.

We can apply Theorem 3.3 when, for instance, X is the interior of a
polyhedron, whose interior is open in R". When we deal with a sub-
manifold X of dimension »n, embedded in a higher dimensional space RY,
then one can reduce the analysis of the singular set to Criterion 2 provided
that there exists a finite number of charts for X near this singular set on
which the given form o is bounded. This would for instance be the case
with the surface of our cone mentioned at the beginning of the section.
Criterion 2 is also the natural one when dealing with manifolds defined by
algebraic inequalities. By using Hironaka’s resolution of singularities, one
can parametrize a compact set of algebraic singularities as in Criterion 2.

Finally, we note that the condition that » have compact support in an
open neighborhood of X is a very mild condition. If for instance X is a
bounded open subset of R”, then X is compact. If w is any form on some
open set containing X, then we can find another form # which is equal to
@ on some open neighborhood of X and which has compact support. The
integrals of # entering into Stokes’ formula will be the same as those of w.
To find #, we simply multiply w with a suitable C*® function which is 1 in
a neighborhood of X and vanishes a little further away. Thus Theorem
3.3 provides a reasonably useful version of Stokes’ theorem which can be
applied easily to all the cases likely to arise naturally.

CHAPTER XVl

Applications of Stokes’
Theorem

In this 'chapter we give a survey of applications of Stokes’ theorem
concerning many situations. Some come just from the differential theory’
such as the computation of the maximal de Rham cohomology (the spacé
of all forms of maximal degree modulo the subspace of exact forms); some
come from Riemannian geometry; and some come from complex ’mam'-
folds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope
that the selection of topics will give readers an outlook conducive for
further expansion of perspectives. The sections of this chapter are logically
independent of each other, so the reader can pick and choose according to
taste or need.

XViil, §1. THE MAXIMAL DE RHAM COHOMOLOGY

Let X be a manifold of dimension n without boundary. Let r be an
integer = 0. We let &#"(X) be the R-vector space of differential forms on
X of degree r. Thus #"(X)=0if r>n If weo"(X), we define the
support of w to be the closure of the set of points x e X such that
o(x) # 0.

Examples. If w(x) = Sf(x)dxy A --- Adx, on some open subset of R”,
then the support of w is the closure of the set of x such that f(x) #0.

We d.enote the support of a form w by supp(w). By definition, the
support is closed in X. We are interested in the space of maximal de,:gree
forms «/"(X). Every form w e &/"(X) is such that dw = 0. On the other
hand, «#/"(X) contains the subspace of exact forms, which are defined to

ann
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be those forms equal to dn for some 1€ & n~1(X). The factor space is
defined to be the de Rham cohomology H"(X) = H"(X, R). The main
theorem of this section can then be formulated.

Theorem 1.1. Assume that X is compact, orientable, and connected.
Then the map

w»—»Jw
X

induces an isomorphism of H"(X) with R itself. In particular, if wis in
A"(X) then there exists 1 € #" Y (X) such that dn = if and only if

J w=0.
b's

Actually the hypothesis of compactness on X is not needed. What is
needed is compactness on the support of the differential forms. Thus we
are led to define «/7(X) to be the vector space of n-forms with compact
support. We call a form compactly exact if it is equal to dn for some
ne LX), We let

H?(X) = factor space &fC"(X)/dM:'_I(X).
Then we have the more general version:

Theorem 1.2. Let X be a manifold without boundary, of dimension n.
Suppose that X is orientable and connected. Then the map

o J )
x
induces an isomorphism of H"(X) with R itself.

Proof. By Stokes’ theorem (Chapter XVII, Corollary 2.2) the integral
vanishes on exact forms (with compact support), and hence induces an
R-linear map of H”(X) into R. The theorem amounts to proving the

converse statement: if
J w=0,
X

then there exists some 77 € dc’"l(X ) such that @ = dn. For this, we first
have to prove the result locally in R", which we now do.
As a matter of notation, we let

"=, 1)"

be the open n-cube in R”. What we want is:

£
s
%
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};‘er;lma 1.3. Let w be an n-form on I", with compact support, and such
a
J w=0.

Then there exists a form n € £ 1(I""1) with compact support, such that
o =dn.

in v&tr?ll prove Lemma 1.3 by induction, but it is necessary to load to

nduction to carry it out. So we need to prove a st i
ronger ver

Lemma 1.3 as follows. : son of

Lemma 14. Let w be an (n— 1)-form on I} 7
; - whose co 1
Junction of n variables (xi,...,x,) so “fhcient is a

CO(X) =f(x17"-7xn) dXI/\ /\dxn—l-

(Of course, all functions, like forms, are assumed C®.) Suppose that @
has compact support in I""'. Assume that

J w=0.
Jn-1

Then there exisfs an (n— 1)-form n, whose coefficients are C* functions
of x1,...,x, with compact support such that

CU(X], sy Xn—1; Xn) = dn—l ﬂ(XI, vy X1 xn).

The symbol d,_, here means the usual exterior derivative taken with
respect to the first n — 1 variables.

Proof. By induction. We first prove the theorem when n — 1 = 1. First

we carry out the proof leaving out the extra vari j
. able, just ’
going on. So let st fo see what's

o(x) = f(x) dx,

where f has compact support in the o i i

‘ pen interval (0, 1). This means
there exists € > 0 such that f(x) =0if0<x<eandif l —e<x<1. We
assume T

J(: f(x)dx=0.



492 APPLICATIONS OF STOKES’ THEOREM [XVIII, §1]

Let

Then g(x) =0if0<x<e¢ andalsoif 1 —eSx =1, because for instance
if 1-eg<xg1, then

Then f(x) dx = dg(x), and the lemma is proved in this case. Note that we
could have carried out the proof with the extra variable x;, starting from

o(x) = f(x1, x2) dx1,
so that

1
g(x1, x2) = Jo f(t, xp) dt.

We can differentiate under the integral sign to verify that g is C® in the

pair of variables (x1, x3).
Now let 7 = 3 and assume that theorem proved for n — 1 by induction.
To simplify the notation, let us omit the extra variable x,,1, and write

a)(x) = jn(xla"' rxn) ‘ixl AN f\tixn,

with compact support in I". Then there exists ¢ > 0 such that the support
of f is contained in the closed cube

I'(e)=le, 1 — €™

The following figure illustrates this support in dimension 2.

1—&

1 —_—
|
|

Let ¥ be an (n— 1)-form on I}, Y(x) = Y(x1,...,%s—1) such that

Jv=t
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and ¥ has compact support. Let

g(%n) =J SOX1 oy X1 Xn) dxi A - AdXpy
In—l

= Jl_n_l()f(xl,...,x,,_l 3 Xn) dxyp A - Adx,_y.

I\tlote Illire that we do have the parameter x, coming in at the inductive
step. t

:u(-x) = f(x) dXy A «o- Adxy_y — g(xn)W(xly ooy Xnot),
(*)  u(x) A dxn = w(x) — g% )W (x) A dx,.

[, 5= ) = gt =0

Fur?hermc')re, since f hgs compact support, so does g (look at the figure).
By 1nduct19n, there exists an (n — 1)-form #, of the first n — 1 variables
but depending on the parameter x,, that is ,

n(x) = n(x1,...,Xn-1; Xn)

such that

B(XLy -y Xno15 Xn) = Gt (X1, .y Xn1 5 X).

Here d,_; denotes the exterior derivati i
; ative with respect to the fir -
variables. Then trivially, 7 ot

H(Xts ey Xne 15 Xn) A oy = d_y (X1, o, X1 5 Xn) A dy

= dn(x),

whc?re dn is now the exterior derivative taken with respect to all n
variables. Hence finally from equation (%) we obtain

(**) C()(X) = d”(x) + g(xn)‘l’(xl, . ;xn—l) A dxn‘

To conclude thse proof of Lemma 1.3, it suffices to show that the second
term on the right of (¥x) is exact. We are back to a one-variable
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problem. Let

hx) = jo o(1) db.

Then dh(x,) = g{(xn)dxn, and h has compact support in the interval (0, 1),
just as in the start of the induction. Then

d(h(xn)Y(x1,- -, Xn-1)) = dh(Xn) A Y(x1,. -5 Xn1)
= (=1)" g (X1, - - - Xno1) A dXn

because dyy =0. Of course we could have carried along the extra
parameter all the way through. This concludes the proof of Lemma 1.3.

We formulate an immediate consequence of Lemma 1.3 directly on the
manifold.

Lemma 1.5. Let U be an open subset of X, isomorphic to I". Let
Y e & (U) be such that

=

Let we (U). Then there exists ceR and ne A" YUY such that

w—cy=dn.
Proof. We take c =J W / J ¢ and apply Lemma 1.3 to o — cy.
U U

Observe that the hypothesis of connectedness has not yet entered the
picture. The preceding lemmas were purely local. We now globalize.

Lemma 1.6. Assume that X is connected and oriented. Let U,  be as in
Lemma 1.5. Let V be the set of points x € X having the following
property. There exists a neighborhood U(x) of x isomorphic to I" such
that for every we s(U(x)) there exist ceR and n e "1 (X) such
that

w -y =dn.
Then V = X.

Proof Lemma 1.5 asserts that ¥V > U. Since X is connected, it suffices
to prove that ¥V is both open and closed. It is immediate from the
definition of V that V is open, so there remains to prove its closure. Let z
be in the closure of V. Let W be a neighborhood of z isomorphic to I”.
There exists a point x € ¥ n W. There exists a neighborhood U(x) as in
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the definition of ¥ such that U(x) ¢ W. For instance, we may take
U(x) ~ (a1, b1) x -+ X (an, by) = I"

with g; sufficiently close to 0 and b; sufficiently close to 1, and of course
0<a;<b fori=1,...,n Lety, € (U(x)) be such that

J l//l = 1.
U(x)

Let we &7(W). By the definition of V, there exist ¢; e R and
m € &(X) such that

Yy — iy = dn,.

By Lemma 1.5, there exists c; e R and 7, € &7(X) such that

 — CZQ//I = dﬂz
Then

 ~ a1y = d(n, + camy),

thus concluding the proof of Lemma 1.6.

We have now reached the final step in the proof of Theorem 5.2, namely

we first fix a form ¢ € &7(U) with U ~ I" and J ¥ #0. Let w e &(X).
X

It suffices to prove that there exist ce R and 7 e & !(X) such that

o — oy =dy.

Le‘t K be the compact support of w. Cover K by a finite number of open
neighborhoods U(x;),..., U(xy) satisfying the property of Lemma 1.6.
Let {¢;} be a partition of unity subordinated to this covering, so that we

can write
w= Z ?;0.

Then each form ¢, has support in some U(x;). Hence by Lemma 5.6,
there exist ¢; e R and 7, € &/ 1(X) such that

90— Cil/l = d’]i)

whence w — ey =dn, with ¢=3"¢; and n =3 #,. This concludes the
proof of Theorems 1.1 and 1.2.
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XVill, §2. MOSER’S THEOREM

We return here to the techniques of proof in Chapter V, as for Poincaré’s
lemma, Theorem 5.1 and Darboux’s Theorem 7.3 of that chapter. How-
ever, we now have a similar theorem in the context of integration.

We first make the general comment, similar to the one we made
previously, for general forms. Let E be a Banach space, and let w be an r-
multilinear alternating form on E (so R-valued). We say that w is non-
singular if for each vector v € E, defining w, by

@y: (U1,...,00-1) & (0, 0Y,...,0,1),

the map v+ w, is a toplinear isomorphism between E and L!~!(E). We
previously considered bilinear forms, in Chapter V, §6.

We can globalize the notion to a manifold, so a form we «"(X) is
called non-singular if (x) is non-singular for each x. It is clear that in the
finite dimensional case, a volume form is non-singular. With this globali-
zation, we obtain:

Proposition 2.1. Let w be a non-singular r-form on X. Given a form
ne Y (X), there exists a unique vector field & such that
woé =y

We could also write the relation with the contraction notation, i.e.
Cgco =7n.
We now come to Moser’s theorem [Mo 65].

Theorem 2.2. Let X be a compact, connected oriented manifold of
dimension n.. Let o, Y € &"(X) (= (X)) be volume forms such that

el

Then there exists an automorphism f: X — X of X such that o = ™.

Proof. Let
w;=(1—-sw+sy for 0Zs= 1.
Then w; is a volume form for each s, and in particular is non-singular. By
Theorem 1.1, there exists # € " 1(X) such that ¥ — w = dy. Note also

that  — w = dw,/ds. Since w; is non-singular, there exists a unique vector
field &; such that

wso0 & = —1.
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Let o, be the flow of &,. Then oy is defined on R x X by Corollary 2.4 of
Chapter IV. Then we get:

d +at dows
wes o\ ds

. d, .
_dTS‘ ((Xs COS) = —d-; (auws)
=a} d(ws0 &) +a;(y —w) by Proposition 5.2 of Chapter V

= —aydn + a;dn
=0.
Therefore aw; is constant as a function of 5, so we find
w=oojwp = ajwr = fY, with [ = o,

thereby proving the theorem.

XVIll, §3. THE DIVERGENCE THEOREM

Let X be an oriented manifold of dimension n possibly with boundary, and
let Q be an n-form on X. Let & be a vector field on X. Then dQ =0, and
hence the basic formula for the Lie derivative (Chapter V, Proposition 5.3)
shows that

LeQ=d(Qo¢).
Consequently in this case, Stokes’ theorem yields:

Theorem 3.1 (Divergence Theorem).

JX$¢Q=J Qoc.

[2.:¢

Remark. Even if the manifold is not orientable, it is possible to use the
notion of density to formulate a Stokes theorem for densities. Cf. Loomis—
Sternberg [Los 68] for the formulation, due to Rasala. However, this
formulation reduces at once to a local question (using partitions of unity
on densities). Since locally every manifold is orientable, and a density
then amounts to a differential form, this more general formulation again
reduces to the standard one on an orientable manifold.

Suppose that (X, g) is a Riemannian manifold, assumed oriented for
simplicity. We let Q or vol, be the volume form defined in Chapter XV,
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§1. Let w be the canonical Riemannian volume form on dX for the metric
induced by g on the boundary. Let n, be a unit vector in the tangent
space Tx(X) such that u is perpendicular to T,(dX). Such a unit vector
is determined up to sign. Denote by n; its dual functional, i.e. the
component on the projection along ny. We select ny, with the sign such that

n A o(x) = Q(x).

We then shall call n, the unit outward normal vector to the boundary at x.
In an oriented chart, it looks like this.

Then by formula CON 3 of Chapter V, §5 we find
Qoé=(n,w—nY A(wod),
and the restriction of this form to 0X is simply (n, {)w. Thus we get:

Theorem 3.2 (Gauss Theorem). Let X be a Riemannian manifold. Let o
be the canonical Riemannian volume form on 0X and let € be the
canonical Riemannian volume form on X itself. Let n be the unit outward
normal vector field to the boundary, and let & be a C! vector field on X,
with compact support. Then

| @aoo=] @0

The next thing is to show that the map d* from Chapter XV, §l1 is the
adjoint for a scalar product defined by integration. First we expand
slightly the formalism of d* for this application. Recall that for any vector
field &, the divergence of & is defined by the property

(1) d(voly o &) = (div&)vol,.

Note the trivial derivation formula for a function ¢:

) div(pc) = ¢ div & + (dp) (&)
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If A is a l-form, ie. in TLY(TX) = «/!(X), we have the corresponding
vector field é;, = A uniquely determined by the condition that

(&, m) g = Aly) for all vector fields 7.
For a 1-form A, we define the operator
d*: 1 (X)— Z°%X)=Fu(X) by d*'A=-div{y,
so by (1),
(3) (d*A) voly = d(vol; 0 &;).
We get a formula analogous to (2) for d*, namely
4) d*(ph) = pd*A — (dg, 4).

Indeed, d*(pA) = —div ¢y = —div(ps;) = —pdivEy — (de)(ca) by (2),
which proves the formula.

Let A, we ' (TX). We define the scalar product via duality
(4, @)y = (& Loy
Then for a function ¢ we have the formula
(5) (dp, A),voly = (pd"2) voly — d(voly o ¢&;).
Indeed,

(dg, A),vol, = [pd*A — d*(pA)]vol, by (4)
= (pd*2) voly — d(voly 0 p&;) by (3)

thus proving (5). Note that the congruence of the two forms (dg, 4), vol,
and (pd*1)vol, modulo exact forms is significant, and is designed for
Proposition 3.3 below.

Observe that the scalar product between two forms above is a function,
which when multiplied by the volume form vol, may be integrated over
X. Thus we define the global scalar product on 1-forms with compact
support to be

{4, w)(x, 9= (Aw)y = Jx(l, w), vol,.

Applying Stokes’ theorem, we then find:
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Proposition 3.3. Let (X, g) be a Riemannian manifold, oriented and
without boundary. Then d* is the adjoint of d with respect to the global
scalar product, i.e.

<d¢’ A)X = (% d*'l>X’

We define the Laplacian (operating on functions) to be the operator
A=d"d.

For the Laplacian operating on higher degree forms, we shall give the
expression d*d + dd* in the next section, but here for functions, the second
term disappears.

For a manifold with boundary, we define the normal derivative of a
function ¢ to be the function on the boundary given by

aan = <ll, édqz)g = <n7 gradg ¢>g'

Theorem 3.4 (Green’s Formula). Let (X, g) be an oriented Riemannian
manifold possibly with boundary, and let ¢, y be functions on X with
compact support. Let o be the canonical volume form associated with the
induced metric on the boundary. Then

J (pAY — YAg)vol, = — J (9Ou Yy — YOn 9.
X ox
Proof. From formula (4) we get

d*(¢ dy) = pAY — (dp, dy),,
whence .

oAy — YAy = d*(p dyr) — d* (Y dy)
= —div(gp dy) + div(y dp).

We apply Theorem 3.2 to conclude the proof.

Remark. Of course, if X has no boundary in Theorem 3.7, then the
integral on the left side is equal to 0.

Corollary 3.5 (E. Hopf). Let X be a Riemannian manifold without
boundary, and let f be a C? function on X with compact support, such
that Af Z 0. Then f is constant. In particular, every harmonic function
with compact support is constant.
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Proof. We first give the proof assuming that X is oriented. By Green’s
formula we get

J Af vol; =0.
X

Since Af =0, it follows that in fact Af =0, so we are reduced to the
harmonic case. We now apply Green’s formula to f 2 and get

0= J Af?vol, = J 2fAf vol, -J 2(grad £)2vol,.
X X X

Hence (grad f)* =0 because Af =0, and finally grad f =0, so df =0
and f is constant, thus proving the corollary in the oriented case. For the
non-oriented case, by Proposition 4.6 of Chapter XVI, there exists a
covering of degree 2 of X which is oriented, and then one can pull back
all the objects from X to this covering to conclude the proof in this case.

XVIil, §4. THE ADJOINT OF d FOR
HIGHER DEGREE FORMS

We extend the results of the preceding section to arbitrary forms. Given
the vector space ¥ of dimension n over R, with a positive definite scalar
product g, we note that the exterior powers A" V are self dual, with a
positive definite scalar product such that

(U1 A - AT, WEA - AWp) > det(os, W),

We defined the notion of orientation on V in Chapter XV, §1, and we now
assume that V is oriented.

Proposition 4.1. Given 1 <r < n, there exists a unique isomorphism

e NV NT v
such that for o, ye NV we have

<¢a ‘/l>gVOIg = (0 A ¥ !l/

Proof. The proof will give an explicit determination of the isomorphism
on the usual for A" V. Let I =[iy < i, <--- <1/ be an ordered set of r
indices. We let

e =@€y N - N¢g;.
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If I is another such ordered set with n—r elements, and Tul' =
{1,...,n} then we let ¢; be the sign of the permutation (I, J) of (1,...,n).
We then define

xer = €rey,

and extend this operation by linearity to all of A"V. Then directly from
the definition, we see that if J is an ordered set of r indices, then

er nxey = (er, ej)eL A -+ Aey
=dr5e1 A -+ Aep,.
Thus on the standard basis elements of A"V the desired relation of the
proposition is satisfied. The same relation is therefore satisfied for all
elements of A"V, as desired.
We define the operator w on the direct sum (), A"V to have the effect

w=(-1)""  on /\r V.

Proposition 4.2, We have «w =wx. If n is even, then w= (—1)" on
N V. Furthermore, x* = w.

Proof. Direct, simple computations.

We now apply the above to a Riemannian manifold X of dimension n,
and to real differential forms. We let

o (X)

be the space of C* differential forms of degree r, with compact support
on the manifold. At each point x € X, we use the space V = T,Y (the dual
space of the tangent space). The usual operator

d: [(X) — LX)

is R-linear. By Stokes’ theorem, if w has compact support, then

J dw =0.
b's

We shall give an application of this fact in a Riemannian context. We
have the volume form vol, (which does not necessarily have compact
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support) and we define a scalar product on «&//(X) by the formula

(0, ¥)x,, = (0, ¥)x = L P A Y= JX(% ¥), volg,

where we usually omit the index g and merely write X as in (g, ¥)y.

Proposition 4.3. The exterior derivative d has an adjoint d* with respect
to the scalar product (, )y, namely for g € A7V X) and e L[(X) we

have
{do, W)y = {p, d"V¥)x.

Furthermore, the adjoint is given by the explicit formula

d* = (=1)""sdx  on AI(X).

= —xd* if nis even.

Proof. By Stokes’ theorem, we have:
J do A w:j d(p A ¥) — (-1)"‘] A dxy
b X b'e

= (—1)'JX¢ A dxy.

Now
(=1)p Adxy = (=1)p A *xwdxy

= (—1)"p A Wk(xd*)y
= (=)o A x(xd¥)Y,

which proves the proposition.

XVIl, §5. CAUCHY’'S THEOREM

It is possible to define a complex analytic (analytic, for short) rganifold,
using open sets in C” and charts such that the transition mappings are
analytic. Since analytic amps are C*, we see that we get a C* manifold,
but with an additional structure, and we call such a manifold complex
analytic. It is verified at once that the analytic charts of such a manifold
define an orientation. Indeed, under a complex analytic change of charts,
the Jacobian changes by a complex number times its complex conjugate,
so changes by a positive real number.
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If z1,...,2z, are the complex coordinates of C”", then
(Zl,...,Z,,, 21,...,2,,)

can be used a C® local coordinates, viewing C" as R?. If z; = xi + iyk,
then

dzy = dxp + i dyy and dzZy = dxy — i dyy.
Differential forms can then be expressed in terms of wedge products of the
dz;, and dz,. For instance

dzi A dZp = 2i dyy A dxy.

The complex standard expression for a differential form is then

w(z) = Z(p(i,j)(z) dziy A -+ Adzi, AdZ; A - AdE.
(i)

Under an analytic change of coordinates, one sees that the numbers r and
s remain unchanged, and that if s = 0 in one analytic chart, then s =0 in
any other analytic chart. Similarly for ». Thus we can speak of a form of
type (r, s). A form is said to be amalytic if s =0, that is if it is of type
(r, 0).

We can decompose the exterior derivative d into two components.
Namely, we note that if w is of type (r, 5), then dw is a sum of forms of
type (r+1,s) and (r, s+ 1), say

do = (dw) 4,y + (dw), o11-
We define

0w = (da))(,ﬂ’s) and dw = (dco)(r, s41)-

In terms of local coordinates, it is then easy to verify that if w is decom-
posable, and is expressed as

©(z) = p(z)dzi, A --- Adz;, A dzj A -+ AdZ;, = 9,
then

and

In particular, we have

o _1(0 _-_‘3_) and 2 _1(8 . ,9
ozr 2 \0xx o 3z, 2\oxx ' om)

;
3
f;‘;
3
k
2
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(Warning: Note the position of the plus and minus signs in these
expressions.)

Thus we have

d=0+0,

and operating with & or @ follows rules similar to the rules for operating

with d. o o
Note that f is analytic if and only if ¢f = 0. Similarly, we say that a

differential form is analytic if in its standard expression, the functions ¢; ;
are analytic and the form is of type (r, 0), that is there are 1o dz; present.
Equivalently, this amounts to saying that dw = 0. The follgwmg extension
of Cauchy’s theorem to several variables is due to Martinelli.

We let |z| be the euclidean norm,

Iz} = (z121 + -+ +ann)1/2.

Theorem 5.1 (Cauchy’s Theorem). Let f be analytic on an open set in c”
containing the closed ball of radius R centered at a point {. Let

wp(z) =dzi A - Adzg AdZLA - AdZg A - AdZy

and n
w(z) = Z(— 1) zewr(z).
k=1

Let Sy be the sphere of radius R centered at {. Then

N T C I
S (&) =eln) (2mi)" LR |z — {]2" (=0

where e(n) = (1)t

Proof. We may assume { = 0. First note that
doo(z) = 3 (—1)*dzk A anlz) = (=1)™'ndz A dz,
k=1

where dz = dz; A - -+ Adz, and similarly for dz. Next, observe that if

wa=§%w@,

then
dy = 0.
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This is easily seen. On the one hand, dy =0 because w already has
dzy A -+ Adz,, and any further dz; wedged with this gives 0. On the other

hand, since f is analytic, we find that
= = {o(2)
0Md=f@5((h>=0

by the rule for differentiating a product and a trivial computation.
Therefore, by Stokes’ theorem, applied to the annulus between two

spheres, for any r with 0 <r < R we get

LRIP-—L’#/:O,

or in other words,

06 [ 1y2)
JSR F@ = L F@

r

= | f@e.

r

Using Stokes’ theorem once more, and the fact that dw = 0, we see that
this is |

1 - _
= ;Z_n JBr a(fco) = m JBr f(')w

We can write f(z) = f(0) + g(z), where g(z) tends to 0 as z tends to 0.
Thus in taking the limit as  — 0, we may replace f by f(0). Hence our
last expression has the same limit as

f(o)“l‘JB dw= f(O);Z;L (-1)"'ndz A dz.

rn

But
dz A dz = (=1)"""D2 2" dy A dxy A o Ady A .

Interchanging dy; and dx; to get the proper orientation gives another

contribution of (—1)", together with the form giving Lebesgue measure.
Hence our expression is equal to

£ "m0 V(B

where V(B,) is the Lebesgue volume of the ball of radius r in R, and is
classically known to be equal to n"r? /n!. Thus finally we see that our
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expression is equal to

n(n+1)/2 (27i) "
roy-ty e 2

This proves Cauchy’s theorem.

XVIil, §6. THE RESIDUE THEOREM

Let f be an analytic function in an open set U of C". The set of zeros of
fis called a divisor, which we denote by ¥ = V. In the neighborhood of
a regular point a, that is a point where f(a) = 0 but some complex partial
derivative of f is not zero, the set V' is a complex submanifold of U. In
fact, if, say, D, f(a) # 0, then the map

(Z],...,Zn) — (217---,Zn—1yf(z))

gives a local analytic chart (analytic isomorphism) in a neighborhood of
a. Thus we may use f as the last coordinate, and locally ¥ is simply
obtained by the projection on the set f = 0. This is a special case of the
complex analytic inverse function theorem.

It is always true that the function log | f] is locally in #!. We give the
proof only in the neighborhood of a regular point a. In this case, we can
change f by a chart (which is known as a change-of-variable formula),
and we may therefore assume that f(z) = z,. Then log|f| = log |z,|, and
the Lebesgue integral decomposes into a simple product integral, which
reduces our problem to the case of one variable, that is to the fact that
log|z] is locally integrable near 0 in the ordinary complex plane. Writing
z=re'% our assertion is obvious since the function rlogr is locally
integrable near 0 on the real line.

Note. In a neighborhood of a singular point the fastest way and
formally clearest, is to invoke Hironaka’s resolution of singularities, which
reduces the question to the non-singular case.

For the next theorem, it is convenient to let

_ 1

df =
47

(@ — 5).
Note that

i =
¢ .
dd _27166'

The advantage of dealing with d and d¢ is that they are real operators.
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The next theorem, whose proof consists of repeated applications of
Stokes’ theorem, is due to Poincaré. It relates integration in ¥ and U by a

suitable kernel.

Theorem 6.1 (Residue Theorem). Let f be analytic on an open set U of
C” and let V be its divisor of zeros in U. Let y be a C* form with
compact support in U, of degree 2n —2 and type (n—1,n—1). Then

| w=] rogirray.

(As usual, the integral on the left is the integral of the restriction of Y to
V, and by definition, it is taken over the regular points of V.)

2

Proof. Since ¥ and ddy have compact support, the theorem is local
(using partitions of unity). We give the proof only in the neighborhood of
a regular point. Therefore we may assume that U is selected sufficiently
small so that every point of the divisor of fin U is regular, and such that,
for small ¢, the set of points

UEZ{ZE Ua If(z)l 26}

is a submanifold with boundary in U. The boundary of U, is then the set
of points z such that |f(z)] = €. (Actually to make this set a submanifold
we only need to select e to be a regular value, which can be done for
arbitrarily small ¢ by Sard’s theorem.) For convenience we let S. be the
boundary of U,, that is the set of points z such that |f(z)| =e.

Since log |f| is locally in &, it follows that

J log | f| ddy = lim J log | f] dd“y.
U. e—0 U.
Using the trivial identity
d(log |f| d“y) = d log |f| A d°Y +log | f| dd*Y,
we conclude by Stokes’ theorem that this limit is equal to
limU log |f|d°l//—J dlog|f| ndY].
e—0 S. U.

The first integral under the limit sign approaches 0. Indeed, we may
assume hat f(z) = z, = re'’. On S. we have |f(z)| = ¢, so log | f| =loge.
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There exist forms v, ¥, in the first # — 1 variables such that
dY =Yy A dzy+ ) A dZ,,
and the restriction of dz, to S. is equal to
cie'® 46,

with a similar expression for dz,. Hence our boundary integral is of type

€ log eJ ,
Se

where o is a bounded form. From this it is clear that the limit is 0.

Now we compute the second integral. Since ¥ is assumed to be of type
(n—1,n—1) it follows that for any function g,

0g A dYy=0 and dg A By = 0.

Replacing d and d° by their values in terms of & and J, it follows that

—JUd10g|f|/\dcz//=J d°log |f]| A dy.
€ UC
We have

d(d“log |f| A ¥) =dd"log |f]| Ay —dlog |f] A dy.

Furthermore dd° is a constant times 89, and dd¢ log | f|> = 0 i
2 frenent a
set where f # 0, because g/l n any open

80 log |f|* = dd (log f +logf) =0

since 0 log S =0and dlog f =0 by the local analyticity of log f. Hence
we obtain the following values for the second integral by Stokes:

| actog 1 nay = [ @ roglrav.
U, Se

Since

@“log |/]" =~ 4 (0~ B)(log f +log.f)
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(always assuming f(z) = za), we conclude that if z, = re'?, then the
restriction of d¢log |f|* to Se is given by

ress, d° log f = g
Now write  in the form
Y=y +¥,
where ¥, contains only dz;, dz; for j = 1,...,n—1 and ¥, contains dz, or

dz,. Then the restriction of ¥, to S, contains 46, and consequently

‘ 2y %
Lcd log | f1 /\l//—Le27c A (W1 ] Se)-

The integral over S, decomposes into a product integral, we respect to the
first 7 — 1 variables, and with respect to d6. Let

(n—1)
j Ui (2) | Se = g(z)-

Then simply by the continuity of g we get

NI
lim Zgjo g(ee'®) d6 = g(0).

Hence

. do
lim L}ﬂ AWy Se) = L=0 78

e—0

But the restriction of ¥/, to the set z, = 0 (which is precisely V) is the same
as the restriction of ¥ to V. This proves the residue theorem.

APPENDIX

The Spectral Theorem

’lI‘;lseOfollowing is a set of notes from a seminar of Von Neumann around

APP,, §1. HILBERT SPACE

Let E be a vector space over C (The real theory follows exactly the same
pattern.) By an inner product on E we mean an R-bilinear pairing
(x, y) e C of E X E into C such that, for all complex numbers o, we have:

(“x’ y) = a(x, y)v (x1 y) = <y’ x)’

(x, x) 20 and equals 0 if and only if x = 0.
We have the Schwartz inequality :

(x, )1 < (x, x)(p, »)

whose proof is as follows. For all a, f complex,

0 < (ax+ By, ax + By) = ad(x, x) + Ba(x, y) + oaf(x, y) + BB(y, »).

We let o= (y, y) and f = —(x, y). The inequality drops out.

We define the norm of a vector x to be (x, x)l/ 2 and denote it by |x]
Usmg the Schwartz inequality, one sees that |x| defines a metric on E thé
distance b'etween x and y being |x — y|. The norm is continuous. ’

We write x Ly and say that x is perpendicular to y if {x, y) = 0.

The following identities are useful and trivially proved. ,
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' 2 2

Parallelogram Law. |x + Y2+ x - y|2 =20x% +2|y]*
2 2
Pythagoras Theorem. If x Ly, then |x+ yI* = x* + |y%

A Hilbert space is an inner product space which is complete under the
induced metric. For the rest of this appendix, a subspgce will always mean
a closed subspace, with its structure of Hilbert space induced by that of E.

Lemma 1.1. Let F be a subspace of E, let xe€E, and let
a = inf}x — |

the inf taken over all y € F. Then there exists an element y, € F such
that a = |x — y,|.

Proof Let y, be a sequence in F such that |y, — x| tends to a. We
must show that y, is Cauchy. By the parallelogram law,

241 2
|yn_ym|2=2|yn—x|2+2|ym—x| _4|§(yn+ym) Xl
= 2|yn - x|2 + 2|ym - x!2 - 4(12

which shows that y, is Cauchy, converging to some vector y,. The lemma
follows by continuity.

Theorem 1.2. If F is a subspace properly contained in E, then there exists
a vector z in E which is perpendicular to F (and #0).

Proof Let xeE and x¢F. Let y, be an element pf F which is
at minimal distance from x (use Lemma 1.1). Let a be this distance and
let z= y, — x. .After a translation, we may assume that z = x, so that
|| = a. For any complex number o and yeF we have |[x+oay| = a,
whence o

(x+ay, x +ay) = |x|* + &(x, y) +alx, y) +oal|

= a’.

Put o = #(x, y). We get a contradiction for small values of t.

APP., §2. FUNCTIONALS AND OPERATORS

A linear map 4 from a Hilbert space E to a Hilbert space H is bounded if
there exists a positive real number « such that

|Ax| < ox]|
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for all xeE. The norm of A, denoted by |4| is the inf of all
such a.

Proposition 2.1. A linear map is bounded if and only if it maps the unit
sphere on a bounded subset, if and only if it is continuous.

Proof. Clear.

A functional is a continuous linear map into C. Functionals are
bounded. We have the fundamental:

Representation Theorem. A linear map A: E — C is bounded if and only
if there exists y € E such that A(x) = (x, y) for all xeE. If such a y
exists, it is unique.

Proof. If A(x) = (x, y) then the Schwartz inequality shows that it is
bounded, with bound |y|. It is obvious that y is unique.

Conversely, let A be bounded. Let F be the kernel of A. Then F is a
subspace. If E =F then everything is trivial. If E # F, then there exists
zeE, z¢F such that z is perpendicular to F by Theorem 1.2. We contend
that some multiple y = az does it. A necessary condition on « is that

(z, az) = az|*.

This is also sufficient. Namely, x — (A(x)/A(z))z lies in F. Put a=
A(z)/)z]>. Then one sees at once that A{x) = (x, y) as was to be shown.

By an operator we shall always mean a continuous linear map of a
space into itself. It is straightforward to show that operators form a
Banach space, and in fact a normed ring. In other words, in addition to
the Banach space property, we have

|4B| < |4]|B.
We adopt the convention that a ring also has a unit element, which the
algebra of operators does have. A Banach algebra is a Banach space, with

a bilinear multiplication which is continuous. In our examples, it will also
be a normed ring.

Proposition 2.2. If A is an operator and (Ax, x) =0 for all x, then
A=0.

Proof. This follows from the polarization identity,

(A(x+y), (x+ ) = (A(x = ), (x = )) = 2[(4x, y) + (dy, x)].
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Replace x by ix. Then we get
{dx, y) +(Ay, x) =0,
i(Ax, y) — i(Ay, x) =0,
for all x, y whence (4Ax, y) =0 and 4 = 0.
The above proposition is valid only in the complex case.

In the real case, we shall need it only when 4 is symmet.ric (see below),
in which case it is equally clear. A similar remark applies to the next

result.

Lemma 2.3. Let A be an operator, and ¢ a number such that
|(dx, x)| < clx|?
for all xeE. Then for all x, y we have
|{dx, )|+ |(x, Ap)| < 2¢lx]| [¥]-
Proof. By the polarization identity,
20(dx, ¥) + (Ay,0)] < clx+ I + el — yI* = 2e(1xl* + 1)

Hence )
(4%, ») + {4y, )| £ c(|%* +11%).

F\A

We multiply y by ¢ and thus get on the left-hand side

le=(Ax, y) +e?(dy, x)|.

The right-hand side remains unchanged, and for suitable 8, the left-hand

side becomes
[(Ax, y)| + [{4y, x)|.

(In other words, we are lining up two complex numbers by rotating one
by 0 and the other by —6.) Next we replace x by x and y by y/‘t for ¢
real and ¢> 0. Then the left-hand side remains unchanged, while the

k-
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right-hand side becomes
22, 1 2
g(1) = t°|x| +all™

The point at which g'(r) = 0 is the unique minimum, and at this point #,
we find that

g(t0) = |x||yl.
This proves our lemma.

In our applications, we need the lemma only when 4 is self-adjoint (i.e.
symmetric, see below), in which case it is even more trivial.

For fixed y, the function of x given by (4x, y) is a functional (bounded
because of the Schwartz inequality). Hence by the representation theorem,
there exists an element y* such that (4x, y) = (x, y*) for all x. We define
A*, the adjoint of 4, by letting A*y = y*. Since y* is unique, we see that
A* is the unique operator such that

(4x, y) = (x, 4" y)
for all x, y in E.

Theorem 2.4. We have:

(A+B)*=A*+B", A" =4,
(ad)* = @A™, 4% = |A|,
(A4B)* = B*A*,  |44*|=|4)~
and the mapping A — A* is continuous.

Proof. Exercise for the reader.

APP., §3. HERMITIAN OPERATORS

We shall say that an operator 4 is symmetric (or hermitian) if 4 = 4*.

Proposition 3.1. A4 is hermitian if and only if (Ax, x) is real for all x.

Proof. Let A be hermitian. Then (Ax, x) = (x, Ax} = (4x, x). Con-
versely, (4x, x) = (Ax, x) = (x, Ax) = (4*x, x) implies that

(A—A4%)x,x)=0

whence 4 = 4* by polarization.
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Proposition 3.2. Let A be a hermitian operator. Then |A| is the greatest
lower bound of all values ¢ such that

[(Ax, x)| < e|x

for all x, or equivalently, the sup of all values |(Ax, x)| taken for x on the
unit sphere in E.

Proof. When 4 is hermitian we obtain
[{(4x, y)| < clx| |yl

for all x, y € E, so that we get |4| £ ¢ in Lemma 2.3. On the other hand,
¢ = |4| is certainly a possible value for ¢ by the Schwartz inequality. This
proves our proposition.

Proposition 3.2 allows us to define an ordering in the space of hermitian
operators. If 4 is hermitian, we define A= O and say that 4 is semi-
positive if (4x, x) = 0 for all xe E. If A, B are hermitian we define 4 = B
if 4 — B = 0. This is indeed an ordering; the usual rules hold: If 4; = B;
and A, 2 B,, then

Ay + A2 2 By + B.

If ¢ is a real number =0 and 4 = O, then c4 = O. So far, however, we
say nothing about a product of semipositive hermitian operators AB, even
if AB= BA. We shall deal with this question later.

Let ¢ be a bound for 4. Then [{4x, x)| < c|x|* and consequently

—cI Al
If we let
a = inf (Ax, X) and B = sup (4x, x),
Ix|=1 |x|=1
then we have
ol £ A4 LBI,

and from Proposition 3.1,
|4| = max(jal, |B1).

Let p be a polynomial with real coefficients, and let 4 be a hermitian
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operator. Write
p(t) =ant" + -+ aq.
We define ’
p(d) =a,A" + -+ apl.

We let R[A4] be the algebra generated over R by 4, that is the algebra of
all operators p(A), where p(t) € R[f]. We wish to investigate the closure of
R[4] in the (real) Banach space of all operators. We shall show how t

represent this closure as a ring of continuous functions on some com 2
subset of the reals. First, we observe that the hermitian operators forlx):ca

closed subspace of L(E, E), and that R[4] is
, E), a closed sub:
space of hermitian operators. A Fubspace of the
We can find real numbers «, f such that

of <A< BI

Vlt’e §hall prove that if p is a real polynomial which takes on values > 0 on
the interval [x, f], then p(A4) is a semipositive operator. B
The fundamental theorem is the following.

Theorem' 3.3. L'et « B be real and ol S A< PI. Let p be a real
polynomial, semipositive in the interval a <t < p. Then p(4) is a
semipositive operator. -

Proof. We shall need the following obvious facts.

If A, B are hermitian, 4 commutes wi
f 4, ! , s with B, and 4 > 2
semipositive. A2 O then 4TS

If p() is quadratic, of type p(t) = > + ar + b and has imaginary roots,

then
p(t) = (z +§)2+ (b - %2)

is a sum of squares.

If p(¢) has a root y in our interval, then the multiplicity of y is even.

Our theorem i i
o now follows from the following purely algebraic

L.et ag t § B 'be a real interval, and p(t) a real polynomial which is
semipositive in this interval. Then p(t) can be written:

P =c[3 0+ (- 00 + 3 (8- 00}

2 .
where Q° just denotes the square of some polynomial and ¢ is a number > 0.
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In order to prove this, we split p(f) over the real numbers into linear
and quadratic factors. If a root y is < «, then we write
(t-p)=@-a)+(a=7)
and note that (a—y) is a square. If a root y is = f, then we write
-0=0-p+E-1

with (y —B) a square. We can then write, after expanding out the
factorization of p(t),

p) =[S0+ S -m)QE + 3B~ 0GE+ Y (- (B~ 0]

with some constant ¢ and Q? standing for the square of some polynomial.
Note that ¢ is = 0 since p(¢) is semipositive on the interval. Our last step
reduces the bad last term to the preceding ones by means of the identity

— )8 - —a)(f — 1)
e S s

Corollary 3.4. Suppose that ol < A < pI. If a < p(t) < b in the interval,

then
al £ p(4) bl

If p(¢) is a real polynomial, we define as usual

llpll = sup |p(2)]

with ¢ ranging over the interval.

Corollary 3.5. Let ol < A < BI. Let p(t) be a real polynomial. Then
lp(4)] < llpll-

Proof. Let q(t) = ||p|l £ p(f). Then g(f) is =0 on the interval. Hence
g(A) = O and our assertion follows at once.

As usual, we consider the continuous functions on the interval as a
Banach space. If fis any continuous function on the interval, then by the
Weierstrass approximation theorem, we can find a sequence of poly-
nomials {p,} approaching f uniformly on this interval. We define f(4)
as the limit of p,(4). From Corollary 3.5 we deduce that {ps(4)} is a
Cauchy sequence, and that its limit does not depend on the choice of the
sequence {p,}. Furthermore, by continuity, our corollary generalizes to
continuous functions, so that |f(4)| < |[f]-
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We see that the map f — f(4) is a continuous homomorphism from
the Banach algebra of continuous functions on the interval into the closure
of the subalgebra generated by A.

Proposition 3.6. Let A be a semipositive operator. Then there exists an
oléerator B in the closure of the algebra generated by A such that
B =4,

Proof. The continuous function /2 maps on A4!/2.

Corollary 3.7. The product of two semipositive, commuting hermitian
operators is again semipositive.

; 6Proof Let 4, C be hermitian and AC = CA. If B is as in Proposition
.6, then

(ACx, x) = (B*Cx, x) = (BCx, Bx) = (CBx, Bx) > 0.

The kernel of our homomorphism from the continuous functions to the

operators is a closed ideal. Its zeros form a closed set called the spectrum
of 4 and denoted by a(4).

Lemma 3.8. Let X be a compact set, R the ring of continuous functions
on X, and a a closed ideal of R, a # R. Let C be the closed set of zeros
of a. Then C is not empty and if a function f € R vanishes on C, then

fea

Proof. Given ¢, let U be the open set where |f] <e. Then X — U is
closed. lf‘or eaqh point te€ X — U there exists a function g € a such that
g(t) # 0 in a neighborhood of r. These neighborhoods cover X — U, and
so does a finite number of them, with functions g;,...,g,. Let g=

2 2 . . . il
gi +--+g-. Then gea. Our function g has a minimum on X — U and
for n large, the function

ng
f1+ng

is close to fon X — U and is < € on U, which proves what we wanted.

We now redefine the norm of a continuous function f to be

I/1la= sup [f(D)I.
tea(A)
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Theorem 3.9. The map
f(&) — f(A)

induces a Banach-isomorphism (i.e. norm-preserving) of the Banach alge-
bra of continuous functions on o(A) onto the closure of the algebra
generated by A.

Proof We have already proved that our map is an agebraic iso-
morphism and that | f(4)| < ||f]l,. In order to get the reverse inequality,
we shall prove:

If f(4) Z O, then () 2 0 on the spectrum of A. Indeed, if f(c) <0
for some c € a(4), we let g(7) be a function which is 0 outside a small
neighborhood of ¢, is 20 everywhere, and is >0 at c. Then g(4) and
g(A)f(4) are both 20 by Corollary 3.7. But —g()f(z) 20 gives
—g(A)f(4) = O whence g(4)f(4) = 0. Since g(t)f(¢) is not 0 on the
spectrum of 4, we get a contradiction.

Let now s=]|f(4)|. Then sI — f(4) = O implies that s~ f(£) 20,
which proves the theorem.

From now on, the norm on continuous functions will refer to the
spectrum. All that remains to do is identify our spectrum with what can
be called the general spectrum, that is those complex values ¢ such that
A — ¢ is not invertible. (By invertible, we mean having an inverse which is
an operator.)

Theorem 3.10. The general spectrum is compact, and in fact, if & is in it,
then || S |A|. If A is hermitian, then the general spectrum is equal to
a(A).

Proof. The complement of the general spectrum is open, because if
A — &, is invertible, and £ is close to &, then (4 — &) (4 - &) is close to
I, hence invertible, and hence 4 — ¢ is also invertible. Furthermore, if
&> |A|, then |4/¢] <1 and hence I — (4/&) is invertible (by the power
series argument). So is 4 — & and we are done. Finally, suppose that £ is
in the general spectrum. Then ¢ is real. Otherwise, let

g(t) = (1= &)= &).

Then g(7) # 0 on o(4) and h(t) = 1/g(?) is its inverse. From this we see
that 4 — £ is invertible.

Suppose ¢ is not in the spectrum. Then ¢ — ¢ is invertible and so is
A-¢&.

Suppose ¢ is in the spectrum. After a translation, we may suppose that
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0 is in the spectrum. Consider the function g(r) as follows:

(1, Mz,
g(’)‘{N, 1 < 1/,

(g is positive and has a peak at 0.) If 4 is invertible, B4 = I, then from
ltg(t)] £ 1 we get |4g(4)| <1 and hence |g(4)| < |B|. But g(4) becomes
arbitrarily large as we take N large. Contradiction.

Theorem 3.11. Let S be a set of operators of the Hilbert space E, leaving
no closed subspace invariant except 0 and E itself. Let A be a Hermitian
operator such that AB= BA for all Be S. Then A = Al for some real
number A.

Proof. Tt will suffice to prove that there is only one element in the
spectrum of 4. Suppose there are two, A; # A;. There exist continuous
functions f, g on the spectrum such that neither is 0 on the spectrum, but
fg is 0 on the spectrum. For instance, one may take for f, g the functions
whose graph is indicated on the next diagram.

L i
A 1

M Az

We have f(A)B = Bf(A) for all Be S (because B commutes with real
polynomials in A, hence with their limits). Hence f(4)E is invariant
under S because

Bf(A)E = f(A)BE < f(A)E.

Let F be the closure of f(A)E. Then F # 0 because f(4) # O. Further-
more, F #E because g(4)f(4)E =0 and hence g(4)F = 0. Since F is
obviously invariant under S, we have a contradiction.

Corollary 3.12. Let S be a set of operators of the Hilbert space E,
leaving no closed subspace invariant except 0 and E itself. Let A be
an operator such that AA* = A*A, AB= BA, and A*B = BA* for all
BeS. Then A=Al for some complex number A.

Proof. Write A = Ay +iA, where A;, A, are hermitian and commute
(e.g. 41 = (4+ A*)/2). Apply the theorem to each one of 4; and 4, to
get the result.
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