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Foreword 

The present book aims to give a fairly comprehensive account of the 
fundamentals of differential manifolds and differential geometry. The size 
of the book influenced where to stop, and there would be enough material 
for a second volume (this is not a threat). 

At the most basic level, the book gives an introduction to the basic 
concepts which are used in differential topology, differential geometry, and 
differential equations. In differential topology, one studies for instance 
homotopy classes of maps and the possibility of finding suitable differen- 
tiable maps in them (immersions, embeddings, isomorphisms, etc.). One 
may also use differentiable structures on topological manifolds to deter- 
mine the topological structure of the manifold (for example, A la Smale 
[Sm 671). In differential geometry, one puts an additional structure on the 
differentiable manifold (a vector field, a spray, a 2-form, a Riemannian 
metric, ad lib.) and studies properties connected especially with these 
objects. Formally, one may say that one studies properties invariant under 
the group of differentiable automorphisms which preserve the additional 
structure. In differential equations, one studies vector fields and their in- 
tegral curves, singular points, stable and unstable manifolds, etc. A certain 
number of concepts are essential for all three, and are so basic and elementary 
that it is worthwhile to collect them together so that more advanced expositions 
can be given without having to start from the very beginnings. 

Those interested in a brief introduction could run through Chapters 11, 
111, IV, V, VII, and most of Part I11 on volume forms, Stokes’ theorem, 
and integration. They may also assume all manifolds finite dimensional. 

Charts and local coordinates. A chart on  a manifold is classically a 
representation of an open set of the manifold in some euclidean space. 

., 
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Using a chart does not necessarily imply using coordinates. Charts will be 
used systematically. It will be observed equally systematically that finite 
dimensionality is hereby not used. 

It is possible to lay down at no extra cost the foundations (and much 
more beyond) for manifolds modeled on Banach or Hilbert spaces rather 
than finite dimensional spaces. In fact, it turns out that the exposition 
gains considerably from the systematic elimination of the indiscriminate 
use of local coordinates X I , .  . . , x, and dxl ,  . . . , dx,. These are replaced by 
what they stand for, namely isomorphisms of open subsets of the manifold 
on open subsets of Banach spaces (local charts), and a local analysis of the 
situation which is more powerful and equally easy to use formally. In most 
cases, the finite dimensional proof extends at once to an invariant infinite 
dimensional proof. Furthermore, in studying differential forms, one needs to 
know only the definition of multilinear continuous maps. An abuse of mul- 
tilinear algebra in standard treatises arises from an unnecessary double du- 
alization and an abusive use of the tensor product. 

I don’t propose, of course, to do away with local coordinates. They 
are useful for computations, and are also especially useful when integrating 
differential forms, because the dxl A ... A dx,. corresponds to the 
d x l .  . . dx, of Lebesgue measure, in oriented charts. Thus we often give 
the local coordinate formulation for such applications. Much of the 
literature is still covered by local coordinates, and I therefore hope that the 
neophyte will thus be helped in getting acquainted with the literature. I 
also hope to convince the expert that nothing is lost, and much is gained, 
by expressing one’s geometric thoughts without hiding them under an ir- 
relevant formalism. 

I am aware of a widespread apprehensive reaction the moment some 
geometers or students see the words “Banach space” or “Hilbert mani- 
fold”. As a possible palliative, I suggest reading the material assuming 
from the start that Banach space means finite dimensional space over the 
reals, and Hilbert manifold or Riemannian manifold means a finite di- 
mensional manifold with a metric, with the local constant model being 
ordinary euclidean space. These assumptions will not make any proof 
shorter. 

One major function of finding proofs valid in the infinite dimensional 
case is to provide proofs which are especially natural and simple in the 
finite dimensional case. Even for those who want to deal only with finite 
dimensional manifolds, I urge them to consider the proofs given in this 
book. In many cases, proofs based on coordinate free local representations 
in charts are clearer than proofs which are replete with the claws of a 
rather unpleasant prying insect such as I&. Indeed, the bilinear map 
associated with a spray (which is the quadratic map corresponding to a 
symmetric connection) satisfies quite a nice local formalism in charts. I 
think the local representation of the curvature tensor as in ~OPosition 1.2 
of Chapter IX shows the efficiency of this formalism and its superiority over 
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local coordinates. Readers may also find it instructive to compare the proof 
of Proposition 2.6 of Chapter IX concerning the rate of growth of Jacobi 
fields with more classical ones involving coordinates as in [He 781, pp. 71-73. 

Applications in Infinite Dimension 

It is profitable to deal with infinite dimensional manifolds, modeled on a 
Banach space in general, a self-dual Banach space for pseudo Riemannian 
geometry, and a Hilbert space for Riemannian geometry. In the standard 
pseudo Riemannian and Riemannian theory, readers will note that the 
differential theory works in these infinite dimensional cases, with the Hopf- 
Rinow theorem as the single exception, but not the Cartan-Hadamard 
theorem and its corollaries. Only when one comes to dealing with volumes and 
integration does finite dimensionality play a major role. Even if via the 
physicists with their Feynman integration one eventually develops a coherent 
analogous theory in the infinite dimensional case, there will still be something 
special about the finite dimensional case. 

The failure of Hopf-Rinow in the infinite dimensional case is due to a 
phenomenon of positive curvature. The validity of Cartan-Hadamard in the 
case of negative curvature is a very significant fact, and it is only recently 
being realized as providing a setting for major applications. It is a general 
phenomenon that spaces parametrizing certain structures are actually infinite 
dimensional Cartan-Hadamard spaces, in many contexts, e.g. Teichmuller 
spaces, spaces of Riemannian metrics, spaces of Kahler metrics, spaces of 
connections, spaces associated with certain partial differential equa- 
tions, ad lib. Cf. for instance the application to the KdV equation in 
[ScTZ 961, and the comments at the end of Chapter XI, $3 concerning 
other applications. 

Actually, the use of infinite dimensional manifolds in connection with 
Teichmuller spaces dates back some time, because as shown by Bers, these 
spaces can be embedded as submanifolds of a complex Banach space. Cf. 
[Ga 871, [vi 731. Viewing these as Cartan-Hadamard manifolds comes 
from newer insights. 

For further comments on some recent aspects of the use of infinite 
dimension, including references to Klingenberg’s book [Kl 83/95], see the 
introduction to Chapter XIII. 

Of course, there are other older applications of the infinite dimensional 
case. Some of them are to the calculus of variations and to physics, for 
instance as in Abraham-Marsden [AbM 781. It may also happen that one does 
not need formally the infinite dimensional setting, but that it is useful to keep in 
mind to motivate the methods and approach taken in various directions. For 
instance, by the device of using curves, one can reduce what is a priori an 
infinite dimensional question to ordinary calculus in finite dimensional space, 
as in the standard variation formulas given in Chapter XI, $1. . 
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Similarly, the proper domain for the geodesic part of Morse theory is 
the loop space (or the space of certain paths), viewed as an infinite di- 
mensional manifold, but a substantial part of the theory can be developed 
without formally introducing this manifold. The reduction to the finite 
dimensional case is of course a very interesting aspect of the situation, 
from which one can deduce deep results concerning the finite dimensional 
manifold itself, but it stops short of a complete analysis of the loop space. 
(Cf. Boot [Bo 601, Milnor [Mi 631.) See also the papers of Palais [Pa 631 
and Smale [Sm 641. 

In addition, given two finite dimensional manifolds X, Y it is fruitful to 
give the set of differentiable maps from X to Y an infinite dimensional 
manifold structure, as was started by Eells [Ee 581, [Ee 591, [Ee 611, 
[EeS 641, and [Ee 661. By so doing, one transcends the purely formal 
translation of finite dimensional results getting essentially new ones, which 
would in turn affect the finite dimensional case. For other connections 
with differential geometry, see [El 671. 

Foundations for the geometry of manifolds of mappings are given in 
Abraham’s notes of Smale’s lectures [Ab 601 and Palais’s monograph 
[Pa 681. 

For more recent applications to critical point theory and submanifold 
geometry, see [PaT 881. 

In the direction of differential equations, the extension of the stable and 
unstable manifold theorem to the Banach case, already mentioned as a 
possibility in earlier versions of Diferentiul Manifolds, was proved quite 
elegantly by Irwin [Ir 701, following the idea of Pugh and Robbin for dealing 
with local flows using the implicit mapping theorem in Banach spaces. I have 
included the Pugh-Robbin proof, but refer to Irwin’s paper for the stable 
manifold theorem which belongs at the very beginning of the theory of 
ordinary differential equations. The Pugh-Robbin proof can also be adjusted 
to hold for vector fields of class H* (Sobolev spaces), of importance in partial 
differential equations, as shown by Ebin and Marsden [EbM 701. 

It is a standard remark that the Cm-functions on an open subset of a 
euclidean space do not form a Banach space. They form a Frkchet space 
(denumerably many norms instead of one). On the other hand, the implicit 
function theorem and the local existence theorem for differential equations are 
not true in the more general case. In order to recover similar results, a much 
more sophisticated theory is needed, which is only beginning to be developed. 
(Cf. Nash’s paper on Riemannian metrics [Na 561, and subsequent con- 
tributions of Schwartz [Sc 601 and Moser [Mo 611.) In particular, some ad- 
ditional structure must be added (smoothing operators). Cf. also my Bourbaki 
seminar talk on the subject [La 611. This goes beyond the scope of this book, and 
presents an active topic for research. 

On the other hand, for some applications, one may complete the Cm- 
space under a suitable Hilbert space norm, deal with the resulting Hilbert 
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manifold, and then use an appropriate regularity theorem to show that 
solutions of the equation under study actually are Cm. 

I have emphasized differential aspects of differential manifolds rather 
than topological ones. I am especially interested in laying down basic 
material which may lead to various types of applications which have arisen since 
the sixties, vastly expanding the perspective on differential geometry and 
analysis. For instance, I expect the books [BGV 921 and [Gi 951 to be only 
the first of many to present the accumulated vision from the seventies and 
eighties, after the work of Atiyah, Bismut, Bott, Gilkey, McKean, Patodi, 
Singer, and many others. 

Negative Curvature 

Most texts emphasize positive curvature at the expense of negative cur- 
vature. I have tried to redress this imbalance. In algebraic geometry, it is 
well recognized that negative curvature amounts more or less to “general 
type”. For instance, curves of genus 0 are special, curves of genus 1 are 
semispecial, and curves of genus 2 2 are of general type. Thus I have 
devoted an entire chapter to the fundamental example of a space of 
negative curvature. Actually, I prefer to work with the Riemann tensor. I 
use “curvature” simply as a code word which is easily recognizable by people in 
the field. Furthermore, I include a complete account of the equivalence between 
seminegative curvature, the metric increasing property of the exponential map, 
and the Bruhat-Tits semiparallelogram law. Third, I emphasize the Cartan- 
Hadamard further by giving a version for the normal bundle of a totally 
geodesic submanifold. I am indebted to Wu for valuable mathematical and 
historical comments on this topic. 

There are several current directions whereby spaces of negative cur- 
vature are the fundamental building blocks of some theories. They are 
quotients of Cartan-Hadamard spaces. I myself got interested in dif- 
ferential geometry because of the joint work with Jorgenson, which 
naturally led us to such spaces for the construction and theory of certain 
zeta functions. Quite generally, we were led to consider spaces which admit 
a stratification such that each stratum is a quotient of a Cartan-Hadamard 
space (especially a symmetric space) by a discrete group. That such 
stratifications exist very widely is a fact not generally taken into account. 
For instance, it is a theorem of GrifEths that given an algebraic variety 
over the complex numbers, there exists a proper Zariski closed subset 
whose complement is a quotient of a complex bounded domain, so in this 
way, every algebraic variety admits a stratification as above, even with 
constant negative curvature. Thurston’s approach to 3-manifolds could be 
viewed from our perspective also. The general problem then arises how 
zeta functions, spectral invariants, homotopy and homology invariants, ad 



X FOREWORD 

lib. behave with respect to stratifications, whether additively or otherwise. 
In the Jorgenson-Lang program, we associate a zeta function to each 
stratum, and the zeta functions of lower strata are the principal fudge 
factors in the functional equation of the zeta function associated to the 
main stratum. The spectral expansion of the heat kernel amounts to a 
theta relation, and we get the zeta function by taking the Gauss transform 
of the theta relation. 

From a quite different perspective, certain natural “moduli” spaces for 
structures on finite dimensional manifolds have a very strong tendency 
to be Cartan-Hadamard spaces, for instance the space of Riemannian 
metrics, spaces of Kahler metrics, spaces of connections, etc. which deserve 
to be incorporated in a general theory. 

In any case, I find the exclusive historical emphasis at the foundational 
level on positive curvature, spheres, projective spaces, grassmanians, at the 
expense of quotients of Cartan-Hadamard spaces, to be misleading as to 
the way manifolds are built up. Time will tell, but I don’t think we’ll have 
to wait very long before a radical change of view point becomes prevalent. 

New Haven, 1998 SERGE LANG 
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CHAPTER I 

Differential Calculus 

We shall recall briefly the notion of derivative and some of its useful 
properties. As mentioned in the foreword, Chapter VIII of DieudonnC’s 
book or my books on analysis [La 831, [La 931 give a self-contained and 
complete treatment for Banach spaces. We summarize certain facts 
concerning their properties as topological vector spaces, and then we 
summarize differential calculus. The reader can actually skip this chapter 
and start immediately with Chapter I1 if the reader is accustomed to 
thinking about the derivative of a map as a linear transformation. (In the 
finite dimensional case, when bases have been selected, the entries in the 
matrix of this transformation are the partial derivatives of the map.) We 
have repeated the proofs for the more important theorems, for the ease of 
the reader. 

It is convenient to use throughout the language of categories. The 
notion of category and morphism (whose definitions we recall in $1) is 
designed to abstract what is common to certain collections of objects and 
maps between them. For instance, topological vector spaces and con- 
tinuous linear maps, open subsets of Banach spaces and differentiable 
maps, differentiable manifolds and differentiable maps, vector bundles and 
vector bundle maps, topological spaces and continuous maps, sets and just 
plain maps. In an arbitrary category, maps are called morphisms, and in 
fact the category of differentiable manifolds is of such importance in this 
book that from Chapter I1 on, we use the word morphism synonymously 
with differentiable map (or p-times differentiable map, to be precise). All 
other morphisms in other categories will be qualified by a prefix to in- 
dicate the category to which they belong. 
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I, 51. CATEGORIES 

A category is a collection of objects { X ,  Y , .  . .} such that for two objects 
X, Y we have a set Mor(X, Y )  and for three objects X ,  Y,  Z a mapping 
(composition law) 

Mor(X, Y )  x Mor( Y ,  2) -+ Mor(X, 2) 

satisfying the following axioms 

CAT 1. Two sets Mor(X, Y )  and Mor(X', Y ' )  are disjoint unless 
X = X'  and Y = Y' ,  in which case they are equal. 

CAT 2. Each Mor(X, X )  has an element idx which acts as a left and 
right identity under the composition law. 

CAT 3. The composition law is associative. 

The elements of Mor(X, Y )  are called morphisms, and we write fre- 
quently f: X - ,  Y for such a morphism. The composition of two 
morphisms f, g is written f g  or f o g .  

A functor 1: '% -t 2l' from a category '% into a category '%' is a map 
which associates with each object X in '% an object 1(X) in '%I,  and with 
each morphism f :  X -t Y a morphism A ( f ) :  1(X) -t A( Y )  in 2l' such 
that, whenever f and g are morphisms in '% which can be composed, then 
1 ( f g )  = 1 ( f ) A ( g )  and l(idx) = idl(x) for all X. This is in fact a covariant 
functor, and a contravariant functor is defined by reversing the arrows 
(so that we have 1(f): 1( Y )  4 1(X) and 1 ( f g )  = 1(g)A( f ) ) .  

In a similar way, one defines functors of many variables, which may be 
covariant in some variables and contravariant in others. We shall meet 
such functors when we discuss multilinear maps, differential forms, etc. 

The functors of the same variance from one category '% to another 2l' 
form themselves the objects of a category Fun('%, a'). Its morphisms will 
sometimes be called natural transformations instead of functor morphisms. 
They are defined as follows. If 1, p are two functors from '% to '%' (say 
covariant), then a natural transformation t :  A -+ p consists of a collection 

as X ranges over '%, which makes the following diagram commutative for 
any morphism f: X - ,  Y in '%: 

W) -% AX) 
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In any category '%, we say that a morphism f :  X -, Y is an iso- 
morphism if there exists a morphism g :  Y -+ X such that f g  and g f  are 
the identities. For instance, an isomorphism in the category of topological 
spaces is called a topological isomorphism, or a homeomorphism. In 
general, we describe the category to which an isomorphism belongs by 
means of a suitable prefix. In the category of sets, a set-isomorphism is 
also called a bijection. 

If f: X - t  Y is a morphism, then a section of f is defined to be a 
morphism g: Y -, X such that f o g  = idy. 

I, 52. TOPOLOGICAL VECTOR SPACES 

The proofs of all statements in this section, including the Hahn-Banach 
theorem and the closed graph theorem, can be found in [La 931. 

A topological vector space E (over the reals R) is a vector space with a 
topology such that the operations of addition and scalar multiplication are 
continuous. It will be convenient to assume also, as part of the definition, 
that the space is Hausdorff, and locally convex. By this we mean that 
every neighborhood of 0 contains an open neighborhood U of 0 such that, 
if x, y are in U and 0 6 t 5 1, then t x + ( l  - t ) y  also lies in U. 

The topological vector spaces form a category, denoted by TVS, if we 
let the morphisms be the continuous linear maps (by linear we mean 
throughout R-linear). The set of continuous linear maps of one topo- 
logical vector space E into F is denoted by L(E, F). The continuous 
r-multilinear maps 

$: E x * - * x E - + F  

of E into F will be denoted by Lr(E, F). Those which are symmetric (resp. 
alternating) will be denoted by L,'(E, F) or Li,(E, F) (resp. LL(E, F)). 
The isomorphisms in the category TVS are called toplinear isomorphisms, 
and we write Lis(E, F) and Laut(E) for the toplinear isomorphisms of E 
onto F and the toplinear automorphisms of E. 

We find it convenient to denote by L(E), L'(E), L,'(E), and LL(E) the 
continuous linear maps of E into R (resp. the continuous, r-multilinear, 
symmetric, alternating maps of E into R). Following classical termi- 
nology, it is also convenient to call such maps into R forms (of the 
corresponding type). If El, .  . . , Er and F are topological vector spaces, 
then we denote by L(E1, . . . , E, ; F) the continuous multilinear maps of the 
product El x . . . x E, into F. We let: 

End(E) = L(E, E), 

Laut(E) = elements of End(E) which are invertible in End(E). 

The most important type of topological vector space foi us is the 
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Banachable space (a TVS which is complete, and whose topology can be 
defined by a norm). We should say Banach space when we want to put 
the norm into the structure. There are of course many norms which can 
be used to make a Banachable space into a Banach space, but in prac- 
tice, one allows the abuse of language which consists in saying Banach 
space for Banachable space (unless it is absolutely necessary to keep the 
distinction). Continuous linear maps of Banach spaces are called operators. 

For this book, we assume from now on that all our topological vector 
spaces are Banach spaces. We shall occasionally make some comments to 
indicate where it might be possible to generalize certain results to more 
general spaces. We denote our Banach spaces by E, F , .  ... 

The next two propositions give two aspects of what is known as the 
closed graph theorem. 

Proposition 2.1. Every continuous bijective linear map of E onto F is a 
toplinear isomorphism. 

Proposition 2.2. If E is a Banach space, and F1, F2 are two closed 
subspaces which are complementary (i.e. E = F1 + F2 and F1 n F2 = 0) ,  
then the map of F1 x F2 onto E given by the sum is a toplinear 
isomorphism. 

We shall frequently encounter a situation as in Proposition 2.2, and if F 
is a closed subspace of E such that there exists a closed complement F1 
such that E is toplinearly isomorphic to the product of F and F1 under the 
natural mapping, then we shall say that F splits in E. 

Next, we state a weak form of the Hahn-Banach theorem. 

Proposition 2.3. Let E be a Banach space and x # 0 an element of E. 
Then there exists a continuous linear map I of E into R such that 
4x1 # 0. 

One constructs I by Zorn's lemma, supposing that I is defined on some 
subspace, and having a bounded norm. One then extends I to the 
subspace generated by one additional element, without increasing the 
norm. 

In particular, every finite dimensional subspace of E splits if E is 
complete. More trivially, we observe that a finite codimensional closed 
subspace also splits. 

We now come to the problem of putting a topology on L(E, F). Let E, 
F be Banach spaces, and let 

A :  E - F  

be a continuous linear map (also called a bounded linear map). We can 
then define the norm of A to be the greatest lower bound of all numbers K 
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such that 
lAxl 5 Klxl 

for all x EE.  This norm makes L(E, F) into a Banach space. 

Banach space if we define the norm of a multilinear continuous map 
In a similar way, we define the topology of L(E1,. . . , Er ; F), which is a 

by the greatest lower bound of all numbers K such that 

Proposition 2.4. If El , .  . . , Er, F are Banach spaces, then the canonical 
map 

L(E1, L(E2,. . . , L(Er, F), . . .)) + L'(E1,. . . ,Er ;F) 

from the repeated continuous linear maps to the continuous multilinear 
maps is a toplinear isomorphism, which is norm-preserving, i.e. a Banach- 
isomorph ism. 

The preceding propositions could be generalized to a wider class of 
topological vector spaces. The following one exhibits a property peculiar 
to Banach spaces. 

Proposition 2.5. Let E, F be two Banach spaces. 
toplinear isomorphisms Lis(E, F) is open in L(E, F). 

Then the set of 

The proof is in fact quite simple. If Lis(E, F) is not empty, one is 
immediately reduced to proving that Laut(E) is open in L(E, E). We then 
remark that if u E L(E, E), and IuI < 1, then the series 

converges. Given any toplinear automorphism w of E, we can find an 
open neighborhood by translating the open unit ball multiplicatively from 
1 to w. 

Again in Banach spaces, we have: 

Proposition 2.6. If E, F, G are Banach spaces, then the bilinear maps 
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obtained by composition of mappings are continuous, and similarly for 
multilinear maps. 

Remark. The preceding proposition is false for more general spaces 
than Banach spaces, say Frechet spaces. In that case, one might hope that 
the following may be true. Let U be open in a Frkchet space and let 

f :  U -+ L(E, F), 

g :  U -+ L(F, G ) ,  

be continuous. Let y be the composition of maps. Then y ( f ,  g )  is 
continuous. The same type of question arises later, with differentiable 
maps instead, and it is of course essential to know the answer to deal with 
the composition of differentiable maps. 

I, 53. DERIVATIVES AND COMPOSITION OF MAPS 

A real valued function of a real variable, defined on some neighborhood of 
0 is said to be o( t )  if 

lim o( t ) / t  = 0. 
1-0 

Let E, F be two topological vector spaces, and ~7 a mapping of a 
neighborhood of 0 in E into F. We say that v, is tangent to 0 if, given a 
neighborhood W of 0 in F, there exists a neighborhood V of 0 in E such 
that 

v,(tV) = o(t)W 

for some function o(t) .  If both E, F are normed, then this amounts to the 
usual condition. 

l v , (X) l  5 I x l b w  

with lim $ ( x )  = 0 as 1x1 -4 0. 
Let E, F be two topological vector spaces and U open in E. Let 

f :  U -+ F be a continuous map. We shall say that f is differentiable at a 
point xo E U if there exists a continuous linear map A of E into F such 
that, if we let 

f (xo + Y )  = f (xo) + AY + V ( Y )  

for small y ,  then v, is tangent to 0. It then follows trivially that A is 
uniquely determined, and we say that it is the derivative of f at X O .  We 
denote the derivative by D f (xo) or f ' (xo) .  It is an element of L(E, F). If 
f is differentiable at every point of U, then f' is a map 

f': U -+ L(E, F). 
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It is easy to verify the chain rule. 

Proposition 3.1. I f f :  U -+ V is diflerentiable at xo, i f g :  V -+ W is 
diflerentiable at f ( x o ) ,  then g o  f is diferentiable at X O ,  and 

ProoJ: We leave it as a simple (and classical) exercise. 

The rest of this section is devoted to the statements of the differential 
calculus. All topological vector spaces are assumed to be Banach spaces 
(i.e. Banachable). Then L(E, F) is also a Banach space, if E and F are 
Banach spaces. 

Let U be open in E and let f :  U -+ F be differentiable at each point of 
U. If f' is continuous, then we say that f is of class C'. We define maps 
of class CP ( p  2 1) inductively. The p-th derivative Dpf is defined as 
D(DP-'f)  and is itself a map of U into 

L(E, L(E, . . . , L(E, F) . . .)) 

which can be identified with LP(E, F) by Proposition 2.4. A map f is said 
to be of class Cp if its kth derivative D k f  exists for 1 5 k 5 p ,  and is 
continuous. 

Remark. Let f be of class Cp, on an open set U containing the origin. 
Suppose that f is locally homogeneous of degree p near 0, that is 

for all t and x sufficiently small. 
have 

Then for all sufficiently small x we 

where x(p) = ( x ,  x ,  . . . , x ) ,  p times. 

This is easily seen by differentiating p times the two expressions for 
f ( t x ) ,  and then setting t = 0. The differentiation is a trivial application of 
the chain rule. 

Proposition 3.2. Let U, V be open in Banach spaces. I f f :  U -+ V and 
g :  V -+ F are of class CP, then so is g o  f .  

From Proposition 3.2, we can view open subsets of Banach spaces as 
the objects of a category, whose morphisms are the contmuous maps of 
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class CP. These will be called CP-morphisms. We say that f is of class 
C"O if it is of class CP for all integers p 2 1. From now on, p is an 
integer 2 0  or co (Co maps being the continuous maps). In practice, we 
omit the prefix CP if the p remains fixed. Thus by morphism, throughout 
the rest of this book, we mean CP-morphism with p 5 co. We shall use 
the word morphism also for CP-morphisms of manifolds (to be defined in 
the next chapter), but morphisms in any other category will always be 
prefixed so as to indicate the category to which they belong (for instance 
bundle morphism, continuous linear morphism, etc.). 

Proposition 3.3. Let U be open in the Banach space E,  and let 
f :  U + F be a CP-morphism. Then DPf (viewed as an element of 
LP(E, F ) )  is symmetric. 

Proposition 3.4. Let U be open in E ,  and letf;:: U + Fi (i = 1 , .  . . , n )  be 
continuous maps into spaces Fi. Let f = (fi, . . . , f n )  be the map of U 
into the product of the Fi. Then f is of class CP if and only if each J is 
of class CP, and in that case 

DPf = (Dpfi , .  . . , Dpf,,). 

Let U, Y be open in spaces El ,  E2 and let 

f :  U x V + F  

be a continuous map into a Banach space. We can introduce the notion of 
partial derivative in the usual manner. If (x ,  y )  is in U x Y and we keep 
y fixed, then as a function of the first variable, we have the derivative as 
defined previously. This derivative will be denoted by D1 f (x ,  y ) .  Thus 

is a map of U x V into L(E1, F ) .  We call it the partial derivative with 
respect to the first variable. Similarly, we have D2 f ,  and we could take n 
factors instead of 2. The total derivative and the partials are then related 
as follows. 

Proposition 3.5. Let U1,. . . , U,, be open in the spaces E l , .  . . ,En and let 
f : U1 x + . . x Un -+ F be a continuous map. Then f is of class CP i f  and 
only i f  each partial derivative Di f :  U1 x . . . U,, + L(Ei ,  F )  exists and is 
of class CP-'. I f  that is the case, then for x = (x i , .  . . , X n )  and 

v = ( ~ 1 , .  . . , ~ n )  E El x ... x En, 
we have 

Df ( x )  . (01, . . . , v,) = c Di f ( x )  . vi. 

DERIVATIVES A N D  COMPOSITION OF MAPS 1 1  

The next four propositions are concerned with continuous linear and 
multilinear maps. 

Proposition 3.6. Let E, F be Banach spaces and f :  E + F a continuous 
linear map. Then for each X E E  we have 

f '(4 = f ,  

Proposition 3.7. Let E ,  F ,  G be Banach spaces, and U open in E. Let 
f :  U + F be of class CP and g :  F -+ G continuous and linear. Then 
g o  f is of class CP and 

Dp(g o f )  = g o  D p f .  

Proposition 3.8. I f  E l , .  . . , E, and F are Banach spaces and 

a continuous multilinear map, then f is of class C-,  and its ( r  + l)-st 
derivative is 0. If r = 2, then Df is computed according to the usual rule 
for derivative of a product (first times the derivative of the second plus 
derivative of the first times the second). 

Proposition 3.9. Let E,  F be Banach spaces which are toplinearly iso- 
morphic. I f  u :  E + F is a toplinear isomorphism, we denote its inverse 
by u-'.  Then the map 

u H u-l 

from Lis(E, F )  to Lis(F, E )  is a C--isomorphism. Its derivative at a 
point uo is the linear map of L ( E ,  F )  into L(F, E )  given by the formula 

v H u,'vu,' 

Finally, we come to some statements which are of use in the theory of 
vector bundles. 

Proposition 3.10. Let U be open in the Banach space E and let F ,  G be 
Banach spaces. 

(i) I f f :  U + L ( E ,  F )  is a CP-morphism, then the map of U x E into 
F given by 

is a morphism. 
Iff: U + L(E, F )  and g :  U + L ( F ,  G)  are morphisms, then so 

(x ,  v)  f (x)v 

is y( f, g )  ( y  being the composition). 
(ii) 

. .  
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(iii) I f  f :  U + R and g :  U -+ L(E ,  F )  are morphisms, so is f g  (the 
value of fg  at x is f ( x ) g ( x ) ,  ordinary mult@lication by scalars). 

(iv) Iff, g :  U + L(E,  F )  are morphisms, so is f + g.  

This proposition concludes our summary of results assumed without 
proof. 

I, 94. INTEGRATION AND TAYLOR’S FORMULA 

Let E be a Banach space. Let I denote a real, closed interval, say 
a 4 t 5 b. A step mapping 

f :  I + E  

is a mapping such that there exists a finite number of disjoint sub-intervals 
11,. . . ,In covering I such that on each interval 4, the mapping has 
constant value, say v,. We do not require the intervals 4 to be closed. 
They may be open, closed, or half-closed. 

Given a sequence of mappingsf, from Z into E, we say that it converges 
uniformly if, given a neighborhood W of 0 into E, there exists an integer 
no such that, for all n, m > no and all t E Z, the difference &(t)  - f m ( t )  lies 
in W. The sequence f n  then converges to a mapping f of I into E. 

A ruled mapping is a uniform limit of step mappings. We leave to the 
reader the proof that every continuous mapping is ruled. 

I f f  is a step mapping as above, we define its integral 

where p ( 4 )  is the length of the interval 4 (its measure in the standard 
Lebesgue measure). This integral is independent of the choice of intervals 
4 on which f is constant. 

If f is ruled and f = lim f n  (lim being the uniform limit), then the 
sequence 

converges in E to an element of E independent of the particular sequence 
fn used to approach f uniformly. We denote this limit by 

and call it the integral of J: The integral is linear in f, and satisfies the 
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usual rules concerning changes of intervals. (If b < a then we define 

be minus the integral from b to a.) 

to I.” 
As an immediate consequence of the definition, we get: 

Proposition 4.1. Let 1: E + R be a continuous linear map and let 
f :  I + E be ruled. Then 1 f = 1 o f is ruled, and 

I f ( t ) d t =  A f ( t )d t .  lab J,“ 
Proof If fn is a sequence of step functions converging uniformly to f, 

then Afn is ruled and converges uniformly to 1 f .  Our formula follows at 
once. 

Taylor’s Formula. Let E, F be Banach spaces. Let U be open in E. Let 
x,  y be two points of U such that the segment x + t y  lies in U for 
O s t s l .  Let 

f :  U + F  

be a CP-morphism, and denote by y@) the “vectot~’ ( y ,  . . . , y )  p times. 
Then the function DPf ( x  + t y )  . y@) is continuous in t, and we have 

( 1  - ty-’ + Dpf ( x  + t y )  y@) dt. 

ProoJ By the Hahn-Banach theorem, it suffices to show that both 
sides give the same thing when we apply a functional 1 (continuous linear 
map into R). This follows at once from Proposition 3.7 and 4.1, together 
with the known result when F = R. In this case, the proof proceeds by 
induction on p,  and integration by parts, starting from 

1 

f ( x  + Y )  - f (4 = J, D f  ( x  + tY)Y dt. 

The next two corollaries are known as the mean value theorem. 

Corollary 4.2. Let E,  F be two Banach spaces, U open in E, and x ,  z two 
distinct points of U such that the segment x + t(z - x )  (0 4 t 5 1 )  lies in 
U. Let f :  U + F be continuous and of class C’. Then 

the sup being taken over in the segment. . .  
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Proof This comes from the usual estimations of the integral. Indeed, 
for any continuous map g :  I + F we have the estimate 

if K is a bound for g on I, and a 5 b. This estimate is obvious for step 
functions, and therefore follows at once for continuous functions. 

Another version of the mean value theorem is frequently used. 

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let xg be a 
point on the segment between x and z. Then 

the sup taken over all < on the segment. 

Proof We apply Corollary 4.2 to the map 

Finally, let us make some comments on the estimate of the remainder 
term in Taylor’s formula. We have assumed that DPf is continuous. There- 
fore, DPf ( x  + t y )  can be written 

where $ depends on y ,  t (and x of course), and for fixed x ,  we have 

as lyl + 0. Thus we obtain: 

Corollary 4.4. Let E,  F be two Banach spaces, U open in E,  and x a 
point of U. Let f :  U + F be of class CP, p 2 1. Then for all y such 
that the segment x + t y  lies in U (0 5 t 5 l), we have 

with an error term O(y) satisfying 

lim e(y) / l  yip = 0. 
Y-+O 
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I, 95. THE INVERSE MAPPING THEOREM 

The inverse function theorem and the existence theorem for differential 
equations (of Chapter IV) are based on the next result. 

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a 
complete metric space, with distance function d, and let f :  M --+ M be a 
mapping of M into itself. Assume that there is a constant K, 0 < K < 1, 
such that, for any two points x, y in M, we have 

Then f has a unique fixed point (a point such that f ( x )  = x).  Given any 
point xg in M ,  the fixed point is equal to the limit o f f  “(xg) (iteration of 
f repeated n times) as n tend to infinity. 

ProoJ This is a trivial exercise in the convergence of the geometric 
series, which we leave to the reader. 

Theorem 5.2. Let E,  F be Banach spaces, U an open subset of E ,  and let 
f :  U + F a CP-morphism with p >= 1. Assume that for some point 
xg E U ,  the derivative f ’(xg) : E + F is a toplinear isomorphism. Then f 
is a local CP-isomorphism at xg. 

(By a local CP-isomorphism at xg, we mean that there exists an open 
neighborhood V of xg such that the restriction off  to V establishes a 
CP-isomorphism between V and an open subset of E.) 

ProoJ Since a toplinear isomorphism is a Cm-isomorphism, we may 
assume without loss of generality that E = F and f ’(xg) is the identity 
(simply by considering f’(xg)-’ o f  instead of f ) .  After translations, we 
may also assume that xg = 0 and f (xg) = 0. 

We let g(x) = x - f (x) .  Then g’(x0) = 0 and by continuity there exists 
r > 0 such that, if 1x1 < 2r, we have 

From the mean value theorem, we see that Ig(x)l 5 f 1x1 and hence g 
maps the closed ball of radius r, Br(0) into Br/2(0). 

We contend: Given y E Br/2(0), there exists a unique element x E &(O) 
such that f ( x )  = y. We prove this by considering the map 

g,(x) = Y + x - f (4. 
If IyI S r/2 and 1x1 5 r, then IgY(x)I 5 r and hence g,, may be viewed as 
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a mapping of the complete metric space &(O) into itself. The bound of 4 
on the derivative together with the mean value theorem shows that g,, is a 
contracting map, i.e. that 

Igy(x1) - gv(x2)I = I d X l )  - g(x2)l 5 41x1 - x2l 

for XI, x2 E &(O). By the contraction lemma, it follows that gy has a 
unique fixed point. But the fixed point of g,, is precisely the solution of the 
equation f (x) = y.  This proves our contention. 

We obtain a local inverse q = f - I .  This inverse is continuous, because 

Furthermore q is differentiable in Br/2(0). Indeed, let y 1  = f(x1) and 
y2 = f(x2) with y l ,  y2  E Br/2(0) and XI, x2 E Br(0). Then 

We operate on the expression inside the norm sign with the identity 

Estimating and using the continuity of f ', we see that for some constant 
A ,  the preceding expression is bounded by 

From the differentiability of f; we conclude that this expression is 
o(xl - x2) which is also o ( y l  - y2) in view of the continuity of v, proved 
above. This proves that v, is differentiable and also that its derivative is 
what it should be, namely 

ul'(Y) = f ' ( v , (Y ) ) - I ,  

for y E Br/2(0).  Since the mappings q, f ', "inverse" are continuous, it 
follows that q' is continuous and thus that v, is of class C' .  Since taking 
inverses is Cm and f'  is CP-', it follows inductively that q is CP, as was 
to be shown. 

Note that this last argument also proves: 

Proposition 5.3. I f f :  U 4 V is a homeomorphism and is of class CP 
with p 2 1, and iff is a C'-isomorphism, then f is a CP-isomorphism. 
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In some applications it is necessary to know that if the derivative of a 
map is close to the identity, then the image of a ball contains a ball of 
only slightly smaller radius. The precise statement follows. In this book, 
it will be used only in the proof of the change of variables formula, and 
therefore may be omitted until the reader needs it. 

Lemma 5.4. Let U be open in E, and let f :  U --+ E be of class C' .  
Assume that f (0) = 0, f '(0) = I .  Let r > 0 and assume that &(O) c U. 
Let 0 < s < 1, and assume that 

If '(4 - f ' (4 I 5 s 

for all x ,  z E &(O). If y E E and IyI 5 (1 - s)r, then there exists a 
unique x E &(O) such that f (x) = y.  

ProoJ: The map g,, given by g,,(x) = x - f ( x )  + y is defined for 1x1 5 r 
and IyI 5 (1 - s)r, and maps Br(0) into itself because, from the estimate 

we obtain 
Ig,,(x)I 5 sr + (1 - s)r = r. 

Hence g,, has a unique fixed point x E &(O) which is such that f (x) = y. 
This proves the lemma. 

We shall now prove some useful corollaries, which will be used in 
dealing with immersions and submersions later. We assume that morphism 
means CP-morphism with p 2 1. 

Corollary 5.5. Let U be an open subset of E, and f :  U + FI x F2 a 
morphism of U into a product of Banach spaces. Let xo E U, suppose 
that f (xo) = (0, 0) and that f '(xo) induces a toplinear isomorphism of E 
and F1 = F1 x 0. Then there exists a local isomorphism g of F1 x F2 at 
(0, 0) such that 

g o  f: U + F 1  x F ~  
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maps an open subset UI of U into F1 x 0 and induces a local iso- 
morphism of UI at xo on an open neighborhood of 0 in F1. 

Proof: We may assume without loss of generality that F1 = E 
(identify by means of f ' (xo)) and xo = 0. We define 

for x E U and y2 E F2. Then ~ ( x ,  0) = f (x) ,  and 

~ ' ( 0 ,  0 )  = f ' (0)  + (0, id2). 

Since f ' ( 0 )  is assumed to be a toplinear isomorphism onto F1 x 0, it 
follows that ~ ' ( 0 ,  0) is also a toplinear isomorphism. Hence by the 
theorem, it has a local inverse, say g ,  which obviously satisfies our 
requirements. 

Corollary 5.6. Let E, F be Banach spaces, U open in E, and f :  U + F 
a CP-morphism with p 2 1. Let xo E U. Suppose that f (xo) = 0 and 
f ' ( x0 )  gives a toplinear isomorphism of E on a closed subspace of F 
which splits. Then there exists a local isomorphism g :  F -+ F1 x F2 at 0 
and an open subset U1 of U containing xo such that the composite map 
g o f induces an isomorphism of U1 onto an open subset of F1. 

Considering the splitting assumption, this is a reformulation of 
Corollary 5.5. 

It is convenient to define the notion of splitting for injections. If E, F 
are topological vector spaces, and 1: E + F is a continuous linear map, 
which is injective, then we shall say that 1 splits if there exists a toplinear 
isomorphism a :  F +  F1 x F2 such that a 0 1  induces a toplinear iso- 
morphism of E onto F1 = F1 x 0. In our corollary, we could have re- 
phrased our assumption by saying that f ' (x0)  is a splitting injection. 

For the next corollary, dual to the preceding one, we introduce the 
notion of a local projection. Given a product of two open sets of Banach 
spaces V1 x V2 and a morphism f :  V1 x V2 -+ F ,  we say that f is a 
projection (on the first factor) iff  can be factored 

into an ordinary projection and an isomorphism of V1 onto an open subset 
of F. We say that f is a local projection at ( a ] ,  a2) if there exists an open 
neighborhood Ul x U;! of (al, a2) such that the restriction o f f  to this 
neighborhood is a projection. 
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Corollary 5.7. Let U be an open subset of a product of Banach spaces 
El x E2 and ( a ] ,  a2) a point of U. Let f :  U + F be a morphism into a 
Banach space, say f (al ,  a2) = 0, and assume that the partial derivative 

is a toplinear isomorphism. Then there exists a local isomorphism h of a 
product V1 x V2 onto an open neighborhood of (al ,  a2) contained in U 
such that the composite map 

h f  V1 x V2+ U + F  

is a projection (on the second factor). 

Proof: We may assume ( a ] ,  a2) = (0, 0)  and E2 = F. We define 

I: El x E2 + E l  x E2 
by 

d X l  , x2) = ( X I  , f ( X I  , x2)) 

locally at ( a ] ,  a2). Then p' is represented by the matrix 

and is therefore a toplinear isomorphism at (a1 , a2). By the theorem, it 
has a local inverse h which clearly satisfies our requirements. 

Corollary 5.8. Let U be an open subset of a Banach space E and 
f :  U -+ F a morphism into a Banach space F. Let xo E U and assume 
that f ' (x0)  is surjective, and that its kernel splits. Then there exists an 
open subset U' of U containing xo and an isomorphism 

such that the composite map f o h  is a projection 

Proof: Again this is essentially a reformulation of the corollary, taking 
into account the splitting assumption. 

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets in 
Banach spaces E,  F respectively, and let 

f :  U x V - , G  
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be a CP mapping. Let (a, b)  E U x V ,  and assume that 

D2 f (a ,  b ) :  F + G 

is a toplinear isomorphism. Let f ( a ,  b) = 0. Then there exists a 
continuous map g :  UO -+ V deJined on an open neighborhood Uo of a 
such that g(a) = b and such that 

for all x E Uo. If UO is taken to be a suficiently small ball, then g is 
uniquely determined, and is also of class Cp. 

Proof: Let 3, = D2 f (a ,  b). Replacing f by I-' o f  we may assume 
without loss of generality that DZ f (a ,  b) is the identity. Consider the map 

Then the derivative of p at (a ,  b )  is immediately computed to be 
represented by the matrix 

whence p is locally invertible at (a ,  b )  since the inverse of Dp(a, b )  exists 
and is the matrix 

We denote the local inverse of p by *. We can write 

where h is some mapping of class CP. We define 

Then certainly g is of class Cp and 
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Now for the uniqueness, suppose that go is a continuous map defined 
near a such that go(a) = b and f ( x ,  go(x)) = c for all x near a. Then 
go(x) is near b for such x, and hence 

Since v, is invertible near (a ,  b )  it follows that there is a unique point 
( x ,  y )  near (a ,  b) such that ~ ( x ,  y )  = ( x ,  0 ) .  Let UO be a small ball on 
which g is defined. If go is also defined on UO, then the above argument 
shows that g and go coincide on some smaller neighborhood of a. Let 
X E  UO and let v = x -  a. Consider the set of those numbers t with 
0 S t 5 1 such that g(a+ tu) = go(a + to). This set is not empty. Let s 
be its least upper bound. By continuity, we have g(a + su) = go(a + su). If 
s < 1 ,  we can apply the existence and that part of the uniqueness just 
proved to show that g and go are in fact equal in a neighborhood of 
a + su. Hence s = 1, and our uniqueness statement is proved, as well as 
the theorem. 

Note. The particular value f ( a ,  b )  = 0 in the preceding theorem is 
irrelevant. If f ( a ,  b) = c for some c # 0, then the above proof goes 
through replacing 0 by c everywhere. 



CHAPTER II 

Manifolds 

Starting with open subsets of Banach spaces, one can glue them together 
with CP-isomorphisms. The result is called a manifold. We begin by 
giving the formal definition. We then make manifolds into a category, and 
discuss special types of morphisms. We define the tangent space at each 
point, and apply the criteria following the inverse function theorem to get 
a local splitting of a manifold when the tangent space splits at a point. 

We shall wait until the next chapter to give a manifold structure to the 
union of all the tangent spaces. 

II, 51. ATLASES, CHARTS, MORPHISMS 

Let X be a e t .  An atlas of class CP ( p  2 0) on X is a collection of 
pairs (Ui,  qi) ( i  ranging in some indexing set), satisfying the following 
conditions: 

AT 1. Each Ui is a subset of X and the Ui cover X. 
AT 2. Each qi is a bijection of Vi onto an open subset qiUi of some 

AT 3. The map 

Banach space Ei and for any i, j ,  qi( Ui n q) is open in Ei. 

q,q;': y i ( U i n  v,) -+ qj(Uin q) 

is a CP-isomorphism for each pair of indices i, j .  

It is a trivial exercise in point set topology to prove that one can give X 
a topology in a unique way such that each Ui is open, and the pi are 
22 
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topological isomorphisms. We see no reason to assume that X is 
HausdorE. If we wanted X to be Hausdorff, we would have to place a 
separation condition on the covering. This plays no role in the formal 
development in Chapters I1 and 111. It is to be understood, however, that 
any construction which we perform (like products, tangent bundles, etc.) 
would yield Hausdorff spaces if we start with HausdorE spaces. 

Each pair (Ui, qi) will be called a chart of the atlas. If a point x of X 
lies in Ui, then we say that (Ui, qi) is a chart at x.  

In condition AT 2, we did not require that the vector spaces be the 
same for all indices i, or even that they be toplinearly isomorphic. If they 
are all equal to the same space E, then we say that the atlas is an E-atlas. 
If two charts (Ui, qi) and (q, q,) are such that Ui and q have a non- 
empty intersection, and if p 2 1, then taking the derivative of q,y;' we see 
that Ei and E, are toplinearly isomorphic. Furthermore, the set of points 
x E X for which there exists a chart (Ui, y i )  at x such that Ei is toplinearly 
isomorphic to a given space E is both open and closed. Consequently, on 
each connected component of X,  we could assume that we have an E-atlas 
for some fixed E. 

Suppose that we are given an open subset U of X and a topological 
isomorphism q:  U 4 U' onto an open subset of some Banach space E. We 
shall say that ( U ,  q) is compatible with the atlas { (Ui, qi)}  if each map 
qiy-l (defined on a suitable intersection as in AT 3) is a Cp-isomorphism. 
Two atlases are said to be compatible if each chart of one is compatible 
with the other atlas. One verifies immediately that the relation of 
compatibility between atlases is an equivalence relation. An equivalence 
class of atlases of class CP on X is said to define a structure of CP- 
manifold on X. If all the vector spaces Ei in some atlas are toplinearly 
isomorphic, then we can always find an equivalent atlas for which they are 
all equal, say to the vector space E. We then say that Xis  an E-manifold 
or that X is modeled on E. 

If E = R" for some fixed n, then we say that the manifold is n- 
dimensional. In this case, a chart 

is given by n coordinate functions q l ,  . . . , qn. 
these functions are often written 

If P denotes a point of U, 

or simply XI,. . . ,xn .  They are called local coordinates on the manifold. 
If the integer p (which may also be co) is fixed throughout a discussion, 

we also say that X is a manifold. 
The collection of CP-manifolds will be denoted by Manp. If we look 

only at those modeled on spaces in a category CU then we write Manp(2l). 
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Those modeled on a fixed E will be denoted by ManP(E). We shall make 
these into categories by defining morphisms below. 

Let X be a manifold, and U an open subset of X. Then it is possible, in 
the obvious way, to induce a manifold structure on U, by taking as charts 
the intersections 

(ui u, qil(ui n u)). 

If X is a topological space, covered by open subsets 5, and if we are 
given on each 5 a manifold structure such that for each pair j ,  j ’  the 
induced structure on 5 n V.;., coincides, then it is clear that we can give to 
X a unique manifold structure inducing the given ones on each 6. 

Example. Let X be the real line, and for each open interval Ui, let qi be 
the function qi ( t )  = t3 .  Then the qjq;l are all equal to the identity, and 
thus we have defined a Cm-manifold structure on R! 

If X, Y are two manifolds, then one can give the product X x Y a 
manifold structure in the obvious way. If { (Ui, q i ) }  and {( 5, $ j ) }  are 
atlases for X,  Y respectively, then 

is an atlas for the product, and the product of compatible atlases gives rise 
to compatible atlases, so that we do get a well-defined product structure. 

Let X, Y be two manifolds. Let f: X + Y be a map. We shall say 
that f is a CP-morphism if, given x E X, there exists a chart ( U ,  q) at x 
and a chart (V, $) at f ( x )  such that f ( U )  c V ,  and the map 

* o  f o q - 1 :  qu+*v 

is a CP-morphism in the sense of Chapter I, 53. One sees then imme- 
diately that this same condition holds for any choice of charts ( U ,  q) at x 
and (V, $) at f (x) such that f ( U )  c V.  

It is clear that the composite of two CP-morphisms is itself a CP- 
morphism (because it is true for open subsets of vector spaces). The 
CP-manifolds and CP-morphisms form a category. The notion of iso- 
morphism is therefore defined, and we observe that in our example of the 
real line, the map t~ t3 gives an isomorphism between the funny differ- 
entiable structure and the usual one. 

If f: X + Y is a morphism, and ( U ,  q) is a chart at a point x E X, 
while (V,  $) is a chart at f (x), then we shall also denote by 
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It is also convenient to have a local terminology. Let U be an open 
set (of a manifold or a Banach space) containing a point xo. By a local 
isomorphism at xo we mean an isomorphism 

f :  U l + V  

from some open set U1 containing xo (and contained in U )  to an open set 
V (in some manifold or some Banach space). Thus a local isomorphism is 
essentially a change of chart, locally near a given point. 

Manifolds of maps. Even starting with a finite dimensional manifold, 
the set of maps satisfying various smoothness conditions forms an infinite 
dimensional manifold. This story started with Eells [Ee 581, [Ee 591, 
[Ee 611. Palais and Smale used such manifolds of maps in their Morse 
theory [Pa 631, [Ab 621, [Sm 641. For a brief discussion of subsequent 
developments, see [Mar 741, p. 67, referring to [Eb 701, [Ee 661, [El 671, 
[Kr 721, [Le 671, [Om 701, and p a  681. Two kinds of maps have played a 
role: the CP maps of course, with various values of p ,  but also maps 
satisfying Sobolev conditions, and usually denoted by HS. The latter form 
Hilbert manifolds (definition to be given later). 

II, 52. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS 

Let X be a topological space, and Y a subset of X.  We say that Y is 
locally closed in X if every point y E Y has an open neighborhood U in X 
such that Y n U is closed in U. One verifies easily that a locally closed 
subset is the intersection of an open set and a closed set. For instance, any 
open subset of X is locally closed, and any open interval is locally closed 
in the plane. 

Let X be a manifold (of class CP with p 10). Let Y be a subset of X 
and assume that for each point y E Y there exists a chart ( V ,  *) at y such 
that II/ gives an isomorphism of V with a product V1 x VZ where V1 is 
open in some space El and V2 is open in some space E2, and such that 

$ ( Y n V ) = V l x a z  

for some point a2 E V2 (which we could take to be 0). Then it is clear that 
Y is locally closed in X. Furthermore, the map $ induces a bijection 

+1: Y n  V-. V1. 

The collection of pairs ( Y  n V ,  t,bl) obtained in the above manner constitutes 
an atlas for Y, of class CP. The verification of this assertion, whose formal 
details we leave to the reader, depends on the following obvious fact. 
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Lemma 2.1. Let U1, U2, V1, V2 be open subsets of Banach spaces, and 
g :  U1 x U2 + V1 x V2 a CP-morphism. Let a2 E U2 and b2 E V2 and 
assume that g maps U1 x a2 into V1 x b2. Then the induced map 

91: UI + Vl 
is also a morphism. 

Indeed, it is obtained as a composite map 

the first map being an inclusion and the third a projection. 
We have therefore defined a CP-structure on Y which will be called a 

submanifold of X. This structure satisfies a universal mapping property, 
which characterizes it, namely: 

Given any map f :  Z + X from a manifold 2 into X such that f (2) is 
contained in Y. Let f y  : Z + Y be the induced map. Then f is a 
morphism if and only if f y  is a morphism. 

The proof of this assertion depends on Lemma 2.1, and is trivial. 

Finally, we note that the inclusion of Y into X is a morphism. 
If Y is also a closed subspace of X ,  then we say that it is a closed 

submanifold. 

Suppose that X is finite dimensional of dimension n, and that Y is a 
submanifold of dimension r. Then from the definition we see that the local 
product structure in a neighborhood of a point of Y can be expressed in 
terms of local coordinates as follows. Each point P of Y has an open 
neighborhood U in X with local coordinates ( X I ,  . . . , xn) such that the 
points of Y in U are precisely those whose last n - r coordinates are 0, 
that is, those points having coordinates of type 

( X I , .  . . , x r ,  0,.  . . ,O). 

Let f: 2 + X be a morphism, and let z E Z .  We shall say that f is an 
immersion at z if there exists an open neighborhood Z1 of z in Z such that 
the restriction of f to Z1 induces an isomorphism of Z1 onto a sub- 
manifold of X. We say that f is an immersion if it is an immersion at 
every point. 

Note that there exist injective immersions which are not isomorphisms 
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onto submanifolds, as given by the following example: 

(The arrow means that the line approaches itself without touching.) An 
immersion which does give an isomorphism onto a submanifold is called 
an embedding, and it is called a closed embedding if this submanifold is 
closed. 

A morphism f: X + Y will be called a submersion at a point x E X if 
there exists a chart ( U ,  p) at x and a chart ( V ,  $) at f ( x )  such that p 
gives an isomorphism of U on a products U1 x U2 (Ul and U2 open in 
some Banach spaces), and such that the map 

is a projection. One sees then that the image of a submersion is an open 
subset (a submersion is in fact an open mapping). We say that f is a 
submersion if it is a submersion at every point. 

For manifolds modelled on Banach spaces, we have the usual criterion 
for immersions and submersions in terms of the derivative. 

Proposition 2.2. Let X ,  Y be manifolds of class CP ( p  2 1) modeled on 
Banach spaces. Let f : X + Y be a CP-morphism. Let x E X .  Then: 

(i) f is an immersion at x ifand only ifthere exists a chart ( U ,  p) at x 
and ( V ,  $) at f ( x )  such that f i  u(px)  is injective and splits. 

(ii) f is a submersion at x if and only 'if there exists a chart ( U ,  p) at x 
and ( V ,  $) at f ( x )  such that f i ,  u(px) is surjective and its kernel 
splits. 

ProoJ This is an immediate consequence of Corollaries 5.4 and 5.6 of 
the inverse mapping theorem. 

The conditions expressed in (i) and (ii) depend only on the derivative, 
and if they hold for one choice of charts ( U ,  p) and ( V ,  $) respectively, 
then they hold for every choice of such charts. It is therefore convenient 
to introduce a terminology in order to deal with such properties. 

Let X be a manifold of class C p  ( p  2 1). Let x be a point of X. We 
consider triples (U, p, v )  where ( U ,  p) is a chart at x and v is an element 
of the vector space in which pU lies. We say that two such triples 
(U, p, v )  and ( V ,  $, w)  are equivalent if the derivative of t,bp-l. at px maps 
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u on w.  The formula reads: 

(obviously an equivalence relation by the chain rule). An equivalence class 
of such triples is called a tangent vector of X at x. The set of such tangent 
vectors is called the tangent space of X at x and is denoted by T, (X) .  
Each chart ( U ,  p) determines a bijection of T , ( X )  on a Banach space, 
namely the equivalence class of ( U ,  p, u)  corresponds to the vector u. By 
means of such a bijection it is possible to transport to T, (X)  the structure 
of topological vector space given by the chart, and it is immediate that this 
structure is independent of the chart selected. 

If U, V are open in Banach spaces, then to every morphism of class 
Cp ( p  2 1) we can associate its derivative Df (x). If now f :  X -+ Y is a 
morphism of one manifold into another, and x a point of X, then by 
means of charts we can interpret the derivative off on each chart at x as a 
mapping 

df (4 = T x f :  Tx(X)  + Tf(X)(Y). 

Indeed, this map T, f  is the unique linear map having the following 
property. If ( U ,  p) is a chart at x and ( V ,  $) is a chart at f (x) such that 
f (U) c V and 0 is a tangent vector at x represented by u in the chart 
( U ,  91, then 

Txf (8) 

is the tangent vector at f ( x )  represented by Dfv, ~ ( x ) u .  The representation 
of T,f on the spaces of charts can be given in the form of a diagram 

The map T, f  is obviously continuous and linear for the structure of 
topological vector space which we have placed on T , ( X )  and Tf(,)( Y ) .  

As a matter of notation, we shall sometimes write f , , ,  instead of T, f .  
The operation T satisfies an obvious functorial property, namely, if 

f :  X + Y and g :  Y + 2 are morphisms, then 

We may reformulate Proposition 2.2: 

[I19 §21 SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS 29 

Proposition 2.3. Let X ,  Y be manifolds of class CP ( p  2 1) modelled on 
Banach spaces. Let f :  X + Y be a CP-morphism. Let x E X .  Then: 

(i) f is an immersion at x if and only if the map T, f is injective and 
splits. 

(ii) f is a submersion at x if and only if the map T, f is surjective and 
its kernel splits. 

Note. If X ,  Y are finite dimensional, then the condition that T, f splits 
is superfluous. Every subspace of a finite dimensional vector space splits. 

Example. Let E be a (real) Hilbert space, and let ( x ,  y )  E R be its 
inner product. Then the square of the norm f (x) = <x, x) is obviously of 
class C m .  The derivative f ' ( x )  is given by the formula 

and for any given x # 0, it follows that the derivative f '(x) is surjective. 
Furthermore, its kernel is the orthogonal complement of the subspace 
generated by x ,  and hence splits. Consequently the unit sphere in Hilbert 
space is a submanifold. 

If W is a submanifold of a manifold Y of class CP ( p  2 l), then the 
inclusion 

i :  W + Y  

induces a map 
T,i: T,( W )  + T,( Y )  

which is in fact an injection. From the definition of a submanifold, one 
sees immediately that the image of T,i splits. It will be convenient to 
identify T , ( W )  in T,(Y) if no confusion can result. 

A morphism f :  X + Y will be said to be transversal over the sub- 
manifold W of Y if the following condition is satisfied. 

Let x E X be such that f ( x )  E W .  Let ( V ,  $) be a chart at f ( x )  such 
that t,b: V + V1 x V2 is an isomorphism on a product, with 

$( f ( x ) )  = (0, 0) and +( W n V )  = V1 x 0.  

Then there exists an open neighborhood U of x such that the composite 
map 

V - + V - - , V , X V 2 - - ' V 2  f ~ Pr 

is a submersion. . .  
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In particular, if f is transversal over W, then f-'( W )  is a submanifold 
of X ,  because the inverse image of 0 by our local composite map 

is equal to the inverse image of W n V by $. 

transversal maps in terms of tangent spaces. 
As with immersions and submersions, we have a characterization of 

Proposition 2.4. Let X, Y be manifolds of class Cp ( p  2 1)  modeled on 
Banach spaces. Let f : X + Y be a CP-morphism, and W a submanifold 
of Y. The map f is transversal over W i f  and only if for each x E X such 
that f (x) lies in W, the composite map 

with w = f (x) is surjective and its kernel splits. 

Proox If f is transversal over W, then for each point x E X such that 
f ( x )  lies in W, we choose charts as in the definition, and reduce the 
question to one of maps of open subsets of Banach spaces. In that case, 
the conclusion concerning the tangent spaces follows at once from the 
assumed direct product decompositions. Conversely, assume our condition 
on the tangent map. The question being local, we can assume that Y = 
V1 x V2 is a product of open sets in Banach spaces such that W = V1 x 0, 
and we can also assume that X = U is open in some Banach space, x = 0. 
Then we let g :  U + V2 be the map 71 o f where 71 is the projection, and 
note that our assumption means that g'(0) is surjective and its kernel 
splits. Furthermore, g- ' (O)  = f - ' (  W ) .  We can then use Corollary 5.7 of 
the inverse mapping theorem to conclude the proof. 

Remark. In the statement of our proposition, we observe that the 
surjectivity of the composite map is equivalent to the fact that TW( Y )  is 
equal to the sum of the image of Txf and TW(W) ,  that is 

T,(Y)  = Im(Txf) +Im(T,i), 

where i :  W + Y is the inclusion. In the finite dimensional case, the other 
condition is therefore redundant. 

If E is a Banach space, then the diagonal A in E x E is a closed 
subspace and splits: Either factor E x 0 or 0 x E is a closed complement. 
Consequently, the diagonal is a closed submanifold of E x E. If X is any 
manifold of class CP, p 2 1, then the diagonal is therefore also a sub- 
manifold. (It is closed of course if and only if X is Hausdorff.) 
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Let f :  X + Z and g :  Y -+ Z be two CP-morphisms, p 2 1. We say 
that they are transversal if the morphism 

f x g :  x x  Y + Z x Z  

is transversal over the diagonal. We remark right away that the sur- 
jectivity of the map in Proposition 2.4 can be expressed in two ways. 
Given two points x E X and y E Y such that f (x) = g ( y )  = z,  the con- 
dition 

Im(Txf + Im(Tyg) = TZ(Z) 

is equivalent to the condition 

Thus in the finite dimensional case, we could take it as definition of 
transversality . 

We use transversality as a sufficient condition under which the fiber 
product of two morphisms exists. We recall that in any category, the fiber 
product of two morphisms f :  X -+ Z and g :  Y -+ Z over Z consists of 
an object P and two morphisms 

91: P +  X and 92: P +  Y 

such that f o g1 = g o 92, and satisfying the universal mapping property: 
Given an object S and two morphisms u1: S + X and u2 : S -+ Y such 
that f u l  = gu2, there exists a unique morphism u :  S -+ P making the 
following diagram commutative : 

S 

Z 

The triple ( P ,  91, 9 2 )  is uniquely determined, up to a unique isomorphism 
(in the obvious sense), and P is also denoted by X x z  .Y. 
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One can view the fiber product unsymmetrically. Given two morphisms 
f ,  g as in the following diagram: 

Y 

l g  
J x-z 

f 
assume that their fiber product exists, so that we can fill in the diagram: 

XX,Y - Y 
Ig x -z 

We say that g1 is the pull back of g by f ,  and also write it as f * ( g ) .  
Similarly, we write X xz  Y as f *( Y ) .  

In our category of manifolds, we shall deal only with cases when the 
fiber product can be taken to be the set-theoretic fiber product on which a 
manifold structure has been defined. (The set-theoretic fiber product is the 
set of pairs of points projecting on the same point.) This determines the 
fiber product uniquely, and not only up to a unique isomorphism. 

Proposition 2.5. Let f :  X -+ Z and g :  Y -+ Z be two CP-morphisms 
with p 2 1. If they are transversal, then 

together with the natural morphisms into X and Y (obtained from the 
projections), is a fiber product o f f  and g over Z. 

ProoJ Obvious. 

To construct a fiber product, it suffices to do it locally. Indeed, let 
f: X --t Z and g :  Y -+ Z be two morphisms. Let { Vi} be an open 
covering of Z ,  and let 

be the restrictions of f and g to the respective inverse images of Vi. Let 
P = ( f  x g)-'(AZ). Then P consists of the points (x, y )  with x E X and 
y E Y such that f (x) = g(y) .  We view P as a subspace of X x Y (i.e. 
with the topology induced by that of X x Y ) .  Similarly, we construct Pi 
with f, and gi. Then Pi is open in P. The projections on the first and 
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second factors give natural maps of Pi into f -' ( Vi) and g-' ( Vi) and of P 
~ into X and Y. 

Proposition 2.6. Assume that each Pi admits a manifold structure 
(compatible with its topology) such that these maps are morphisms, 
making Pi into a fiber product of f, and gi. Then P, with its natural 
projections, is a fiber product o f f  and g. 

To prove the above assertion, we observe that the Pi form a covering of 
P. Furthermore, the manifold structure on P i n  P, induced by that of Pi 
or P, must be the same, because it is the unique fiber product structure 
over Vi n 5, for the maps 4, and gg (defined on f'( Vi n 6)  and 
g-'(Vi n V,)  respectively). Thus we can give P a manifold structure, in 
such a way that the two projections into X and Y are morphisms, and 
make P into a fiber product off  and g. 

We shall apply the preceding discussion to vector bundles in the next 
chapter, and the following local criterion will be useful. 

Proposition 2.7. Let f: X + Z be a morphism, and g :  Z x W + Z be 
the projection on the first factor. Then f, g have a fiber product, namely 
the product X x W together with the morphisms of the following 
diagram : 

f xid xxw-zxw 

II, 53. PARTITIONS OF UNITY 

Let X be a manifold of class Cp. A function on X will be a morphism of 
X into R, of class Cp, unless otherwise specified. The CP functions form a 
ring denoted by gP(X)  or FuP(X). The support of a function f is the 
closure of the set of points x such that f (x) # 0. 

Let X be a topological space. A covering of X is locally finite if every 
point has a neighborhood which intersects only finitely many elements of 
the covering. A refinement of a covering of X is a second covering, each 
element of which is contained in an element of the first covering. A 
topological space is paracompact if it is Hausdorff, and every open 
covering has a locally finite open refinement. 
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Proposition 3.1. If X is a paracompact space, and if { U;} is an open 
covering, then there exists a locally finite open covering { V;} such that 
Vi c Ui for each i.  

Proof: Let { Vk} be a locally finite open refinement of { Ui}. For each k 
there is an index i ( k )  such that Vk c U;(k). We let Wi be the union of 
those Vk such that i ( k )  = i. Then the Wi form a locally finite open 
covering, because any neighborhood of a point which meets infinitely 
many Wi must also meet infinitely many Vk. 

Proposition 3.2. If X is paracompact, then X is normal. If, furthermore, 
{ Ui} is a locally finite open covering of X ,  then there exists a locally 
finite open covering {V; }  such that Vi c Ui. 

Proof: We refer the reader to Bourbaki [Bou 681. 

Observe that Proposition 3.1 shows that the insistence that the indexing 

A partition of unity (of class CP) on a manifold X consists of an open 
set of a refinement be a given one can easily be achieved. 

covering {U;} of X and a family of functions 

I)i: X + R  

satisfying the following conditions : 

PU 1. For all x E X we have I);(X) 2 0. 
PU 2. The support of I)i is contained in U;. 

PU 3. The covering is locally finite. 

PU 4. For each point x E X we have 

(The sum is taken over all i, but is in fact finite for any given point x in 
view of PU 3.) 

We sometimes say that { ( Ui, t j i)}  is a partition of unity. 
A manifold X will be said to admit partitions of unity if it is para- 

compact, and if, given a locally finite open covering { Ui},  there exists a 
partition of unity { I l l i }  such that the support of I ) i  is contained in Ui. 

If {Ui}  is a covering of X ,  then we say that a covering {Vk} is 
subordinated to {Ui}  if each v k  is contained in some U;. 

It is desirable to give sufficient conditions on a manifold in order to 
insure the existence of partitions of unity. There is no difficulty with the 
topological aspects of this problem. It is known that a metric space is 
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paracompact (cf. Bourbaki [Bou 681, [Ke 551)) and on a paracompact 
space, one knows how to construct continuous partitions of unity (loc. 
cit.). However, in the case of infinite dimensional manifolds, certain 
difficulties arise to construct differentiable ones, and it is known that a 
Banach space itself may not admit partitions of unity (say of class Coo). 
The construction of differentiable partitions of unity depends on the 
construction of a differentiable norm. Readers will find examples, theo- 
rems, and counterexamples in [BoF 651, [BoF 661, and [Re 641. In the 
finite dimensional case, the existence will follow from the next theorem. 

If E is a Banach space, we denote by B,(a) the open ball of radius r 
and center a, and by &(a) the closed ball of radius r and center a. If 
a = 0, then we write B, and B r  respectively. Two open balls (of finite 
radius) are obviously Cm-isomorphic. If X is a manifold and ( V ,  p) is a 
chart at a point x E X ,  then we say that ( V ,  p) (or simply V )  is a ball of 
radius r if pV is a ball of radius r in the Banach space. 

Theorem 3.3. Let X be a manifold which is locally compact, Hausdorfi 
and whose topology has a countable base. Given an open covering of X ,  
then there exists an atlas {( V k ,  qk)} such that the covering { Vk} is 
locally finite and subordinated to the given covering, such that qk Vk is the 
open ball B3, and such that the open sets wk = pi'(B1) cover X .  

Proof: Let U I ,  U2,.  . . be a basis for the open sets of X such that each 
ui is compact. We construct inductively a sequence A1 , A2, . . . of compact 
sets whose union is X ,  such that Ai is contained in the interior of Ai+l.  
We let A1 = 01. Suppose we have constructed Ai. We let j be the 
smallest integer such that Ai is contained in Ul u . . . u 4. We let Ai+l be 
the closed and compact set 

u1 u ... u uju ui+l. 

For each point x E X we can find an arbitrarily small chart ( V,, p,) at 
x such that px V, is the ball of radius 3 (so that each V, is contained in 
some element of U) .  We let W, = p i 1  (B1) be the ball of radius 1 in this 
chart. We can cover the set 

Ai+l - Int(Ai) 

(intuitively the closed annulus) by a finite number of these balls of radius 
1, say W I , . .  . , W,,, such that, at the same time, each one of V I , .  . . , V,, is 
contained in the open set Int(A;+2) - (intuitively, the open annulus of 
the next bigger size). We let 23i denote the collection V I ,  . . . , V, and let 23 
be composed of the union of the di. Then 23 is locally finite, and we are 
done. 
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Corollary 3.4. Let X be a manifold which is locally compact Hausdorff, 
and whose topology has a countable base. Then X admits partitions of 
unity. 

Proof: Let {( Vk,pk)}  be as in the theorem, and wk = p i 1 ( & ) .  We can 
find a function $k of class Cp such that 0 5 $k 5 1, such that $k(x)  = 1 
for x E wk and ICrk(x) = 0 for x $ Vk. (The proof is recalled below.) We 
now let 

$ = c $ k  

(a sum which is finite at each point), and we let Yk = $k/$. Then 
{( Vk, yk)} is the desired partition of unity. 

We now recall the argument giving the function $k. First, given two 
real numbers r, s with 0 5 r < s, the function defined by 

in the open interval r < t < s and 0 outside the interval determines a bell- 
shaped Cm-function from R into R. Its integral from minus infinity to t, 
divided by the area under the bell yields a function which lies strictly 
between 0 and 1 in the interval r < t < s, is equal to 0 for t 5 r and is 
equal to 1 for t 2 s. (The function is even monotone increasing.) 

We can therefore find a real valued function of a real variable, say q( t ) ,  
such that q( t )  = 1 for It1 < 1 and q ( t )  = 0 for It1 2 1 + 6  with small 6, and 
such that 0 5 q 5 1. If E is a Hilbert space, then ~ ( 1 x 1 ~ )  = $ ( x )  gives us a 
function which is equal to 1 on the ball of radius 1 and 0 outside the ball 
of radius 1 +6. This function can then be transported to the manifold by 
any given chart whose image is the ball of radius 3. 

In a similar way, one would construct a function which is > O  on a 
given ball and = 0 outside this ball. 

Partitions of unity constitute the only known means of gluing together 
local mappings (into objects having an addition, namely vector bundles, 
discussed in the next chapter). It is therefore important, in both the 
Banach and Hilbert cases, to determine conditions under which they exist. 
In the Banach case, there is the added difficulty that the argument just 
given to get a local function which is 1 on B1 and 0 outside B2 fails if one 
cannot find a differentiable function of the norm, or of an equivalent norm 
used to define the Banachable structure. 

Even though it is not known whether Theorem 3.3 extends to Hilbert 
manifolds, it is still possible to construct partitions of unity in that case. 
As Eells pointed out to me, DieudonnC’s method of proof showing that 
separable metric space is paracompact can be applied for that purpose 
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(this is Lemma 3.5 below), and I am indebted to him for the following 
exposition. 

We need some lemmas. We use the notation C A  for the complement of 
a set A .  

Let M be a metric space with distance function d. We can then speak 
of open and closed balls. For instance &(x) denotes the closed ball of 
radius a with center x.  It consists of all points y with d ( y ,  x )  5 a. An 
open subset V of M will be said to be scalloped if there exist open balls 
U ,  U1,.  . . , Urn in M such that 

A covering { Vi} of a subset W of M is said to be locally finite (with 
respect to W) if every point x E W has a neighborhood which meets only a 
finite number of elements of the covering. 

Lemma 3.5. Let M be a metric space and { Ui} ( i  = 1,2, . . .) a countable 
covering of a subset W by open balls. Then there exists a locally finite 
open covering { c}  ( i  = 1,2,. . .) of W such that Vi c Ui for all i, and 
such that Vi is scalloped for all i. 

Proof: We d e h e  Vi inductively as follows. Each Ui is a ball, say 
&(xi).  Let VI = Ul.  Having defined 6-1, let 

1 1 
rli = a1 - 7 ,  . . . , ri-l,i = ai-1 - 

1 1 
and let 

Vi = Ui n “Br,i(xl)  n . . . n %ri-,,i(xi-l), 

it being understood that a ball of negative radius is empty. Then each Vi 
is scalloped, and is contained in Ui. We contend that the 6 cover W. 
Indeed, let x be an element of W. Let j be the smallest index such that 
X E  V,. Then X E  5, for otherwise, x would be in the complement of 5 
which is equal to the union of “V, and the balls 

Hence x would lie in some Ui with i < j ,  contradiction. 
There remains to be shown that our covering { fi} is locally finite. Let 

x E W .  Then x lies in some U,,. Let s be such a small number > 0 that 
the ball BJx) is contained in U,,. Let t = s/2. For all i sufficiently large, 
the ball Bi(X) is contained in &n-l,i(x,,) = &(x,,) and therefore this ball 
does not meet Vi. We have found a neighborhood of x which meets only 
a h i t e  number of members of our covering, which is consequently locally 
finite (with respect to W ) .  
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Lemma 3.6. Let U be an open ball in Hibert space E and let 

V =  UnCi71n ... n C O m  

be a scalloped open subset. Then there exists a C"O-function w :  E -+ R 
such that w ( x )  > 0 if x E V and w ( x )  = 0 otherwise. 

Proof: For each Ui let qi: E -+ R be a function such that 

o 5 q i ( x )  < 1 if X E  'Dji, 
q i (x )  = 1 if X E  Di. 

Let y ( x )  be a function such that p ( x )  > 0 on U and q(x) = 0 outside U. 
Let 

w(x)  = ~ ( x )  n (1 - PiCx)). 

Then w ( x )  satisfies our requirements. 

Theorem 3.1. Let A1,A2 be non-void, closed, disjoint subsets of a 
separable Hilbert space E. Then there exists a C"O-function $: E -+ R 
such that $ ( x )  = 0 if x E A1 and $ ( x )  = 1 if x E A2, and 0 5 $(x) 5 1 
for all x .  

Proof: By Lindelof's theorem, we can find a countable collection of 
open balls { Ui} ( i  = 1,2 , .  . .) covering A2 and such that each Ui is 
contained in the complement of A1. Let W be the union of the Ui. We 
find a locally finite refinement { V i }  as in Lemma 3.5. Using Lemma 3.6, 
we find a function wi which is > O  on Vi and 0 outside Vi. Let w = C w i  
(the sum is finite at each point of W).  Then w(x)  > 0 if x E A2, and 
w ( x )  = 0 if x E A1. 

Let U be the open neighborhood of A2 on which w is >O. Then A2 
and 'U are disjoint closed sets, and we can apply the above construction to 
obtain a function 0 :  E -+ R which is > O  on "U and = 0 on A2. We let 
$ = w/(o + w). Then $ satisfies our requirements. 

Corollary 3.0. Let X be a paracompact manifold of class CP, modeled on 
a separable Hilbert space E. Then X admits partitions of unity (of class 
CP) . 

Proof: It is trivially verified that an open ball of finite radius in E is 
C"O-isomorphic to E. (We reproduce the formula in Chapter VII.) Given 
any point x E X ,  and a neighborhood N of x, we can therefore always find 
a chart ( G ,  y )  at x such that yG = E, and G c N .  Hence, given an open 
covering of X,  we can find an atlas {(Ga, y a ) }  subordinated to the given 
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covering, such that yaGa = E. By paracompactness, we can find a re- 
finement { Ui}  of the covering {GpO which is locally finite. Each Ui is 
contained in some G+) and we let yi be the restriction of yor(i) to Ui. We 
now find open refinements {Vi}  and then {Wi} such that 

the bar denoting closure in X .  Each 6 being closed in X ,  it follows from 
our construction that qic is closed in E, and so is qiwi. Using the 
theorem, and transporting functions on E to functions on X by means of 
the qi, we can find for each i a CP-function $i: X -+ R with is 1 on mi 
and 0 on X - Via We let $ = C$i and Bi = $i/t,b. Then the collection 
{ B i }  is the desired partition of unity. 

II, 94. MANIFOLDS WITH BOUNDARY 

Let E be a Banach space, and 1: E -+ R a continuous linear map into R. 
(This will also be called a functional on E.) We denote by E; the kernel of 
1, and by Ei (resp. E,) the set of points x E E such that 1(x )  2 0 (resp. 
1(x )  5 0). We call E; a hyperplane and ET or E, a half plane. 

I f p  is another functional and E i  = El ,  then there exists a number c > 0 
such that 1 = cp. This is easily proved. Indeed, we see at once that the 
kernels of 1 and p must be equal. Suppose 1 # 0. Let xo be such that 
1(xo) > 0. Then p(x0) > 0 also. The functional 

vanishes on the kernel of 1 (or p)  and also on xo. Therefore it is the 0 
functional, and c = 1(xo)/p(xo). 

Let E, F be Banach spaces, and let ET and F l  be two half planes in E 
and F respectively. Let U, V be two open subsets of these half planes 
respectively. We shall say that a mapping 

f :  u - b v  
is a morphism of class C* if the following condition is satisfied. Given a 
point X E  U ,  there exists an open neighborhood UI of x in E, an open 
neighborhood VI of f ( x )  in F, and a morphism f l :  U1 -+ V1 (in the sense 
of Chapter I) such that the restriction of f l  to U1 n U is equal to J: (We 
assume that all morphisms are of class CP with p 2 1.) 

If our half planes are full planes (i.e. equal to the vector spaces 
themselves), then our present definition is the same as the one used 
previously. 
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If we take as objects the open subsets of half planes in Banach spaces, 
and as morphisms the CP-morphisms, then we obtain a category. The 
notion of isomorphism is therefore defined, and the definition of manifold 
by means of atlases and charts can be used as before. The manifolds of $1 
should have been called manifolds without boundary, reserving the name of 
manifold for our new globalized objects. However, in most of this book, 
we shall deal exclusively with manifolds without boundary for simplicity. 
The following remarks will give readers the means of extending any result 
they wish (provided it is true) for the case of manifolds without boundaries 
to the case manifolds with. 

First, concerning the notion of derivative, we have : 

Proposition 4.1. Let f :  U + F and g :  U + F be two morphisms of 
class CP ( p  2 1) defined on an open subset U of E. Assume that f and g 
have the same restriction to U n ET for some half plane E l ,  and let 

X E  UnET.  
Then f ’ ( x )  = g’(x) .  

Proof: After considering the difference o f f  and g ,  we may assume 
without loss of generality that the restriction off to U n E l  is 0. It is then 
obvious that f ’(x) = 0. 

Proposition 4.2. Let U be open in E .  Let p be a non-zero functional on 
F and let f : U --$ F l  be a morphism of class CP with p 2 1. If x is a 
point of U such that f ( x )  lies in F,” then f ‘ ( x )  maps E into F,”. 

Proof: Without loss of generality, we may assume that x = 0 and 
f ( x )  = 0. Let W be a given neighborhood of 0 in F. Suppose that we can 
find a small element u E E such that p f ’ ( 0 ) u  # 0. We can write (for small 
t )  : 

f ( t u )  = t f ’ (O)u+o(t)w,  

with some element w, E W. By assumption, f ( tu )  lies in F;. Applying p 
we get 

W f  ’ m u  + o(t)P(wt)  2 0. 

Dividing by t ,  this yields 

Replacing t by 4, we get a similar inequality on the other side. Letting t 
tend to 0 shows that p f ’ ( 0 ) u  = 0, a contradiction. 
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Let U be open in some half plane ET. We define the boundary of U 
(written aU) to be the intersection of U with E:, and the interior of U 
(written Int( U ) )  to be the complement of aU in U. Then Int( U )  is open 
in E. 

It follows at once from our definition of differentiability that a half 
plane is C“O-isomorphic with a product 

E; M E ;  x R+ 

where R+ is the set of real numbers 20,  whenever 1 # 0. The boundary 
of ET in that case is E: x 0. 

Proposition 4.3. Let 1 be a functional on E and p a functional on F. Let 
U be open in E l  and V open in F l  and assume U n Ej, V n F,” are not 
empty. Let f :  U + V be an isomorphism of class CP ( p  2 1). Then 
1 # 0 if and only if p # 0. If 1 # 0, then f induces a CP-isomorphism of 
Int(U) on Int(V) and of dU on aV. 

Prooj By the functoriality of the derivative, we know that f ’ ( x )  is a 
toplinear isomorphism for each x E U .  Our first assertion follows from the 
preceding proposition. We also see that no interior point of U maps on a 
boundary point of V and conversely. Thus f induces a bijection of aU on 
a V  and a bijection of Int( U )  on Int( V). Since these interiors are open in 
their respective spaces, our definition of derivative shows that f induces an 
isomorphism between them. As for the boundary, it is a submanifold of 
the full space, and locally, our definition of derivative, together with the 
product structure, shows that the restriction of f to aU must be an 
isomorphism on aV.  

This last proposition shows that the boundary is a differentiable in- 
variant, and thus that we can speak of the boundary of a manifold. 

We give just two words of warning concerning manifolds with 
boundary. First, products do not exist in their category. Indeed, to get 
products, we are forced to define manifolds with comers, which would take 
us too far afield. 

Second, in defining immersions or submanifolds, there is a difference 
in kind when we consider a manifold embedded in a manifold without 
boundary, or a manifold embedded in another manifold with boundary. 
Think of a closed interval embedded in an ordinary half plane. Two cases 
arise. The case where the interval lies inside the interior of the half plane 
is essentially distinct from the case where the interval has one end point 
touching the hyperplane forming the boundary of the half plane. (For 
instance, given two embeddings of the first type, there exists an auto- 
morphism of the half plane carrying one into the other, but there cannot 
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exist an automorphism of the half plane carrying an embedding of the first 
type into one of the second type.) 

We leave it to the reader to go systematically through the notions of 
tangent space, immersion, embedding (and later, tangent bundle, vector 
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro- 
position 2.2 shows at once how to get the tangent space functorially. 

CHAPTER 1 1 1  

Vector Bundles 

The collection of tangent spaces can be glued together to give a manifold 
with a natural projection, thus giving rise to the tangent bundle. The 
general glueing procedure can be used to construct more general objects 
known as vector bundles, which give powerful invariants of a given 
manifold. (For an interesting theorem see Mazur [ M a  611.) In this 
chapter, we develop purely formally certain functorial constructions having 
to do with vector bundles. In the chapters on differential forms and 
Riemannian metrics, we shall discuss in greater details the constructions 
associated with multilinear alternating forms, and symmetric positive 
definite forms. 

Partitions of unity are an essential tool when considering vector 
bundles. They can be used to combine together a random collection of 
morphisms into vector bundles, and we shall give a few examples showing 
how this can be done (concerning exact sequences of bundles). 

111, 91. DEFINITION, PULL BACKS 

Let X be a manifold (of class CP with p 2 0) and let 71: E --+ X be a 
morphism. Let E be a Banach space. 

Let { Ui} be an open covering of X, and for each i, suppose that we are 
given a mapping 

ri: n-'(Ui) + Ui x E 

satisfying the following conditions: 
A 2  
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VB 1. The map zi is a CP isomorphism commuting with the projection 
on Ui, that is, such that the following diagram is commutative: 

\ /  
ui 

In particular, we obtain an isomorphism on 
t i ( . )  or t i x )  

ziX: .-'(X) -+ {x} x E 

VB 2. For each pair of open sets Ui, V, the map 

- 1  t j x  o tix : E + E 

is a toplinear isomorphism. 

each fiber (written 

VB 3. Ui and V, are two members of the covering, then the map of 
Ui n into L(E, E) (actually Laut(E)) given by 

x - ( t j t f l ) x  

is a morphism. 

Then we shall say that { ( U j ,  t i ) }  is a trivializing covering for n (or for E 
by abuse of language), and that { z i }  are its trivalizing maps. If x E Ui, we 
say that t i  (or Ui) trivializes at x .  Two trivializing coverings for n are 
said to be VBequivalent if taken together they also satisfy conditions VB 2, 
VB 3. An equivalence class of such trivializing coverings is said to determine 
a structure of vector bundle on n (or on E by abuse of language). We say 
that E is the total space of the bundle, and that X is its base space. If we 
wish to be very functorial, we shall write E, and X ,  for these spaces 
respectively. The fiber n-'(x) is also denoted by Ex or nx. We also say 
that the vector bundle has fiber E, or is modeled on E. Note that from 
VB 2, the fiber n-l ( x )  above each point x E X can be given a structure of 
Banachable space, simply by transporting the Banach space structure of E 
to n-'(x) via Zix .  Condition VB 2 insures that using two different 
trivializing maps zix or zjx will give the same structure of Banachable space 
(with equivalent norms, of course not the same norms). 

Conversely, we could replace VB 2 by a similar condition as follows. 

VB 2'. On each fiber n-'(x)  we are given a structure of Banachable 
space, and for x E Ui, the trivializing map 

ziX: z - ' (x )  = Ex + E 

is a toplinear isomorphism. 
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Then it follows that tjx o t;' : E -+ E is a toplinear isomorphism for each 
pair of open sets Ui, V, and x E Ui n L$. 

In the finite dimensional case, condition VB 3 is implied by VB 2. 

Proposition 1.1. Let E, F be finite dimensional vector spaces. Let U be 
open in some Banach space. Let 

f :  U x E + F  

be a morphism such that for each x E U ,  the map 

f x :  E + F  

given by f x ( v )  = f (x, v )  is a linear map. Then the map of U into 
L(E, F) giuen by x H f x  is a morphism. 

Proof: We can write F = R1 x . . . x R, (n  copies of R). Using the fact 
that L(E, F) = L(E, R1) x . . . x L(E, Rn), it will suffice to prove our 
assertion when F = R.  Similarly, we can assume that E = R also. But in 
that case, the function f ( x ,  v )  can be written g(x )v  for some map 
g: U + R. Since f is a morphism, it follows that as a function of each 
argument x ,  u it is also a morphism. Putting v = 1 shows that g is a 
morphism and concludes the proof. 

Returning to the general definition of a vector bundle, we call the maps 

the transition maps associated with the covering. They satisfy what we call 
the cocycle condition 

tkjx 0 t j i x  = zkix. 

In particular, t i i x  = id and tjk = ti;. 

covering. 
As with manifolds, we can recover a vector bundle from a trivializing 

Proposition 1.2. Let X be a manifold, and n: E + X a mapping from 
some set E into X .  Let { Ui} be an open covering of X ,  and for each i 
suppose that we are given a Banach space E and a bijection (commuting 
with the projection on Ui), 

such that for each pair i, j and x E Ui n q, the map ( T j T y ' ) x  is a 
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toplinear isomorphism, and condition VB 3 is satisfied as well as the 
cocycle condition. Then there exists a unique structure of manifold on E 
such that n is a morphism, such that zi is an isomorphism making 7c into a 
vector bundle, and { (Ui, ti)} into a trivialising covering. 

ProoJ: By Proposition 3.10 of Chapter I and our condition VB 3, we 
conclude that the map 

t j t i ' :  (Ui n q) x E + (Ui n q) x E 

is a morphism, and in fact an isomorphism since it has an inverse. From 
the definition of atlases, we conclude that E has a unique manifold 
structure such that the zi are isomorphisms. Since 7c is obtained locally 
as a composite of morphisms (namely zi and the projections of Ui x E on 
the first factor), it becomes a morphism. On each fiber n-'(x) ,  we can 
transport the topological vector space structure of any E such that x lies in 
Ui, by means of tix. The result is independent of the choice of Ui since 
( ~ ~ t r l ) ~  is a toplinear isomorphism. Our proposition is proved. 

Remark. It is relatively rare that a vector bundle is trivial, i.e. VB- 
isomorphic to a product X x E. By definition, it is always trivial locally. 
In the finite dimensional case, say when E has dimension n, a trivialization 
is equivalent to the existence of sections 51 , . . . , 5 ,  such that for each x, the 
vectors 51 ( x ) ,  . . . , &(x) form a basis of Ex. Such a choice of sections is 
called a frame of the bundle, and is used especially with the tangent 
bundle, to be defined below. In this book where we give proofs valid in 
the infinite dimensional case, frames will therefore not occur until we get 
to strictly finite dimensional phenomenon. 

The local representation of a vector bundle and 
the vector component of a morphism 

For arbitrary vector bundles (and especially the tangent bundle to be 
defined below), we have a local representation of the bundle as a product 
in a chart. For many purposes, and especially the case of a morphism 

f :  Y + E  

of a manifold into the vector bundle, it is more convenient to use U to 
denote an open subset of a Banach space, and to let rp: U -+ X be an 
isomorphism of U with an open subset of X over which E has a 
trivialization t: n-'(rpU) ---f U x E called a VB-chart. Suppose V is an 

DEFINITION, PULL BACKS 47 [III, 011 

open subset of Y such that f ( V )  c 7c-'(qU). We then have the com- 
mutative diagram : 

The composite t o f is a morphism of V into U x E, which has two 
components 

z o f  = (fu1, fu2) 

such that f u l  : V --f U and f u 2 :  V -+ E. We call fu2 the vector com- 
ponent of f in the vector bundle chart U x E  over U. Sometimes to 
simplify the notation, we omit the subscript, and merely agree that f u  = 
f v 2  denotes this vector component; or to simplify the notation further, we 
may simply state that f itself denotes this vector component if a discussion 
takes place entirely in a chart. In this case, we say that f = fu represents 
the morphism in the vector bundle chart, or in the chart. 

Vector bundle morphisms and pull backs 

We now make the set of vector bundles into a category. 

morphism n -+ K' consists of a pair of morphisms 
Let A: E --t X and d: E' +XI be two vector bundles. A VB- 

fo: X+X' and f :  E + E '  

satisfying the following conditions. 

VB Mor 1. The diagram 

f E - E' 

is commutative, and the induced map for each x E X 

is a continuous linear map. I 
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VB Mor 2. For each xo E X  there exist trivializing maps 

and 

at xo and f (xo) respectively, such that fo( U )  is contained in 
UI, and such that the map of U into L(El  El) given by 

is a morphism. 

As a matter of notation, we shall also use f to denote the VB- 
morphism, and thus write f :  n + n’. In most applications, fo is the 
identity. By Proposition 1 .1 ,  we observe that VB Mor 2 is redundant in 
the finite dimensional case. 

The next proposition is the analogue of Proposition 1.2 for VB- 
morphisms. 

Proposition 1.3. Let n, n‘ be two vector bundles over manifolds X ,  X’ 
respectively. Let fo: X + X’ be a morphism, and suppose that we are 
given for each x E X a continuous linear map 

such that, for each X O ,  condition VB Mor 2 is satisfied. Then the map f 
fvom n to n’ defined by f ,  on each fiber is a VB-morphism. 

Proof: One must first check that f is a morphism. This can be done 
under the assumption that n, n’ are trivial, say equal to U x E and 
U’ x E’ (following the notation of VB Mor 2), with trivialising maps equal 
to the identity. Our map f is then given by 

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism, 
and hence that (fo, f )  is a VB-morphism. 

It is clear how to compose two VB-morphisms set theoretically. In fact, 
the composite of two VB-morphisms is a VB-morphism. There is no 
problem verifying condition VB Mor 1, and for VB Mor 2, we look at the 
situation locally. We encounter a commutative diagram of the following 
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type : 

U x E  - U ’ x E  - U ” X E  

and use Proposition 3.10 of Chapter I, to show that g o  f is a VB- 
morphism. 

We therefore have a category, denoted by VB or VBP, if we need to 
specify explicitly the order of differentiability. 

The vector bundles over X from a subcategory VB(X) = VBP(X) 
(taking those VB-morphisms for which the map fo is the identity). If 9I is 
a category of Banach spaces (for instance finite dimensional spaces), then 
we denote by VB(X, 9I) those vector bundles over X whose. fibers lie in N. 

A morphism from one vector bundle into another can be given locally. 
More precisely, suppose that U is an open subset of X and n: E + X a 
vector bundle over X .  Let Eu = n-’( U )  and 

= 71 1 Eu 

be the restriction of a to Eu. Then nu is a vector bundle over U .  Let 
{ Ui} be an open covering of the manifold X and let A, n’ be two vector 
bundles over X .  Suppose, given a VB-morphism 

f;: nu, -+a;, 

for each i, such that f; and fj agree over Ui n 4 for each pair of indices i, 
j .  Then there exists a unique VB-morphism f :  n + n’ which agrees with 

on each Ui. The proof is trivial, but the remark will be used frequently 
in the sequel. 

Using the discussion at the end of Chapter 11, 92 and Proposition 2.7 of 
that chapter, we get immediately : 

Proposition 1.4. Let n: E + Y be a vector bundle, and f: X + Y a 
morphism. Then 

f ‘(n): f * ( E )  + X 

is a vector bundle called the pull-back, and the pair (f a*( f)) is a VB- 
morphism 

x*(f 1 
f*(E) - E 

J 4 x - Y  
f 
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In Proposition 1.4, we could take f to be the inclusion of a sub- 
manifold. In that case, the pull-back is merely the restriction. As with 
open sets, we can then use the usual notation: 

EX = .-'(A') and nx = n 1 Ex. 

Thus n x  = f *(n) in that case. 
If X happens to be a point y of Y ,  then we have the constant map 

ny : Ey -+ y 

which will sometimes be identified with Ey. 
If we identify each fiber ( f  *E) ,  with EJ( ,~  itself (a harmless identi- 

fication since an element of the fiber at x is simply a pair (x, e)  with e in 
E J ( ~ ) ) ,  then we can describe the pull-back f * of a vector bundle n: E -+ Y 
as follows. It is a vector bundle f * x :  f * E  + X satisfying the following 
properties : 

PB 1. For each x E X ,  we have ( f  *E) ,  = E'(x). 

PB 2. We have a commutative diagram 

the top horizontal map being the identity on each fiber. 

PB 3. IfEistrivia1,equalto Y x E ,  then f * E = X x E a n d  f * n i s t h e  
projection. 

PB 4. I f  V is an open subset of Y and U = f - ' (  V ) ,  then 

and we have a commutative diagram: 

X * Y  
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111, 92. THE TANGENT BUNDLE 

Let X be a manifold of class CP with p 2 1. We shall define a functor T 
from the category of such manifolds into the category of vector bundles of 
class CP-'. 

For each manifold X we let T ( X )  be the disjoint union of the tangent 
spaces T,(X). We have a natural projection 

n: T ( X ) + X  

mapping T x ( X )  on x. We must make this into a vector bundle. If ( U ,  q) 
is a chart of X such that qU is open in the Banach space E, then from the 
definition of the tangent vectors as equivalence classes of triples ( U ,  q, v )  
we get immediately a bijection 

7.y: n- ' (U) = T ( U )  + U x E 

which commutes with the projection on U ,  that is such that 

is commutative. Furthermore, if ( Ui, pi) and (q, q) are two charts, and 
if we denote by pji the map qjq;' (defined on qi(Ui n V,)), then we obtain 
a transition mapping 

by the formula 
Tji(x1 V )  = (qjixl &ji(x) . v )  

for x E U; n V, and v E E. Since the derivative Dp,; = q;; is of class Cp-' 
and is an isomorphism at x,  we see immediately that all the conditions of 
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby 
making T ( X )  into a vector bundle of class CP-'. 

We see that the above construction can also be expressed as follows. If 
the manifold X is glued together from open sets { Ui} in Banach spaces by 
means of transition mappings {qq},  then we can glue together products 
U; x E by means of transition mappings (qq, DqV) where the derivative 
Dqq can be viewed as a function of two variables (x, v ) .  Thus locally, for 
open subsets U of Banach spaces, the tangent bundle can be identified 
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with the product U x E. The reader will note that our definition coincides 
with the oldest definition employed by geometers, our tangent vectors 
being vectors which transform according to a certain rule (namely the 
derivative). 

If f: X + X’ is a CP-morphism, we can define 

T f :  T ( X )  -+ T ( X ’ )  

to be simply T,f on each fiber T x ( X ) .  In order to verify that Tf is a VB- 
morphism (of class CP-’), it suffices to look at the situation locally, i.e. we 
may assume that X and X’ are open in vector spaces E, E’, and that 
Tx f = f ’ ( x )  is simply the derivative. Then the map Tf is given by 

for x E X and u E E. Since f’ is of class CP-’ by definition, we can apply 
Proposition 3.10 of Chapter I to conclude that Tf is also of class CP-’. 
The functoriality property is trivially satisfied, and we have therefore 
defined the functor T as promised. 

It will sometimes be notationally convenient to write f ,  instead of Tf 
for the induced map, which is also called the tangent map. The bundle 
T ( X )  is called the tangent bundle of X. 

Remark. The above definition of the tangent bundle fits with Steenrod’s 
point of view [Ste 511. I don’t understand why many differential geometers 
have systematically rejected this point of view, when they take the defini- 
tion of a tangent vector as a differential operator. 

111, 53. EXACT SEQUENCES OF BUNDLES 

Let X be a manifold. Let n’: E’ + X and n: E + X be two vector 
bundles over X .  Let f :  n’ -+ n be a VB-morphism. We shall say that the 
sequence 

O+n‘+n f 

is exact if there exists a covering of X by open sets and for each open set 
U in this covering there exist trivializations 

such that E can be written as a product E = E’ x F, making the following 
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f Eu - Eu 
diagram commutative : 

53 

(The bottom map is the natural one : Identity on U and the injection of E’ 
on E’ x 0.) 

Let n l :  El + X be another vector bundle, and let g :  nl + n be a VB- 
morphism such that g(E1) is contained in f ( E ’ ) .  Since f establishes a 
bijection between E’ and its image f ( E ’ )  in E ,  it follows that there exists 
a unique map 91: El + E’ such that g = f o 91. We contend that g1 is a 
VB-morphism. Indeed, to prove this we can work locally, and in view of 
the definition, over an open set U as above, we can write 

g1 = z’-l o pro z o g 

where pr is the projection of U x E’ x F on U x E’. All the maps on 
the right-hand side of our equality are VB-morphisms; this proves our 
contention. 

Let n: E + X be a vector bundle. A subset S of E will be called a 
subbundle if there exists an exact sequence 0 + n’ -+ n, also written 

0 + E’ f E .  

such that f ( E ’ )  = S .  This gives S the structure of a vector bundle, and 
the previous remarks show that it is unique. In fact, given another exact 
sequence 

O - + E i < E  

such that g(E1)  = S, the natural map f - ’ g  from El to E’ is a VB- 
isomorphism. 

Let us denote by EIE’ the union of all factor spaces Ex/E:. If we are 
dealing with an exact sequence as above, then we can give EIE’ the 
structure of a vector bundle. We proceed as follows. Let {Ui} be our 
covering, with trivialising maps z,! and zi. We can define for each i a 
bijection 

n;: E ~ , / E & ,  + ui x F 

obtained in a natural way from the above commutative diagram. (With- 
out loss of generality, we can assume that the vector spaces El, F are 
constant for all i . )  We have to prove that these bijections satisfy the 
conditions of Proposition 1.2. 
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Without loss of generality, we may assume that f is an inclusion (of the 
total space E’ into E ) .  For each pair i, j and x E Ui n q, the toplinear 
automorphism (z jz; ’ ) ,  is represented by a matrix 

operating on the right on a vector ( v ,  w) E E’ x F. The map ($‘T;-’)~ on 
F is induced by this matrix. Since E’ = E’ x 0 has to be carned into 
itself by the matrix, we have h12(x) = 0. Furthermore, since (zjz;’), has 
an inverse, equal to (~iz;’)~, it follows that h22(x) is a toplinear auto- 
morphism of F, and represents (z~z~-’),. Therefore condition VB 3 is 
satisfied, and E / E ‘  is a vector bundle. 

The canonical map 

EU --+ EUlEt, 

is a morphism since it can be expressed in terms of z, the projection, and 
Consequently, we obtain a VB-morphism 

g :  n-. n” 

in the canonical way (on the total spaces, it is the quotient mapping of E 
on EIE’) .  We shall call A’’ the factor bundle. 

Our map g satisfies the usual universal mapping property of a cokernel. 
Indeed, suppose that 

$: E - t G  

is a VB-morphism such that $ o f  = 0 (i.e. $x of, = 0 on each fiber E i ) .  
We can then define set theoretically a canonical map 

$+: EIE’ -+ G, 

and we must prove that it is a VB-morphism. T h s  can be done locally. 
Using the above notation, we may assume that E = U x E’ x F and that g 
is the projection. In that case, $* is simply the canonical injection of 
U x F in U x E’ x F followed by $, and is therefore a VB-morphism. 

We shall therefore call g the cokernel of f. 
Dually, let g: 7c 4 n” be a given VB-morphism. We shall say that the 

sequence 
9 n --+ n“ --+ 0 

is exact if g is surjective, and if there exists a covering of X by open sets, 
and for each open set U in this covering there exist spaces E’, F and 
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I trivializations 
I 

7: Eu--+ U x E ’ x F  and z”: E’;-tF 

~ making the following diagram commutative: 

9 ELI - E; 

55 

(The bottom map is the natural one : Identity on U and the projection of 
E’ x F on F.) 

In the same way as before, one sees that the “kernel” of g, that is, the 
union of the kernels Ei of each gx, can be given a structure of vector 
bundle. This union E’ will be called the kernel of g, and satisfies the usual 
universal mapping property. 

Proposition 3.1. Let X be a manifold and let 

f: n‘+n 

be a VB-morphism of vector bundles over X .  Assume that, for each 
x E X, the continuous linear map ~ 

f,: E:--+E,  

is injective and splits. Then the sequence 

f 
O-+A‘-+7c 

is exact. 

Proof We can assume that X is connected and that the fibers of E’ 
and E are constant, say equal to the Banach spaces E’ and E. Let a E X .  
Corresponding to the splitting of f, we know that we have a product 
decomposition E = E’ x F and that there exists an open set U of X 
containing a, together with trivializing maps 

z: n-’(U) + U x E  and 7’: n’-’(U) --+ U x E ’  

such that the composite map 
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For any point x in U ,  we have a map 

( ~ f z ’ - l ) ~ :  El + E’ x F, 

which can be represented by a pair of continuous linear maps 

operating on the right on a vector (v ,  w )  E E’ x F. Then h(x)  restricted to 
El x 0 has the same action as (zfz’-’),. 

The map x H h(x)  is a morphism of U into L(E, E) and since it is 
continuous, it follows that for U small enough around our fixed point a, it 
maps U into the group of toplinear automorphisms of E. This proves our 
proposition. 

Dually to Proposition 3.1, we have: 

Proposition 3.2. Let X be a manifold and let 

g: n+7cnN 

be a VB-morphism of vector bundles over X. Assume that for each 
x E X ,  the continuous linear map 

gx: Ex -+ E:( 

is surjective and has a kernel that splits. Then the sequence 

9 
7c + 7 r N  + 0 

is exact. 

Proof: It is dual to the preceding one and we leave it to the reader. 

In general, a sequence of VB-morphisms 

f s  0-+2t’-+7T+ nN+O 

is said to be exact if both ends are exact, and if the image off is equal to 
the kernel of g. 
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There is an important example of exact sequence. Let f: X --f Y be an 
immersion. By the universal mapping property of pull backs, we have a 
canonical VB-morphism 

T * f :  T ( X )  + f * T (  Y )  

of T ( X )  into the pull back over X of the tangent bundle of Y. Fur- 
thermore, from the manner in which the pull back is obtained locally by 
taking products, and the definition of an immersion, one sees that the 
sequence 

0 + T ( X )  T’f, f * T (  Y )  

is exact. The factor bundle 

is called the normal bundle of f. It is denoted by N ( f ) ,  and its total 
space by N’(X) if we wish to distinguish between the two. We sometimes 
identify T ( X )  with its image under T * f  and write 

Dually, let f: X + Y be a submersion. Then we have an exact 
sequence 

T ( X )  T’r: f * T (  Y )  + 0 

whose kernel could be called the subbundle o f f ,  or the bundle along the 
fiber. 

There is an interesting case where we can describe the kernel more 
precisely. Let 

7c: E + X  

be a vector bundle. Then we can form the pull back of E over itself, that 
is, z*E,  and we contend that we have an exact sequence 

0 + n*E -+ T ( E )  + 7c*T(X) + 0. 

To define the map on the left, we look at the subbundle of 7c more closely. 
For each x E X we have an inclusion 

Ex + E ,  

whence a natural injection 

T(Ex) + T ( E ) .  
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The local product structure of a bundle shows that the union of the T ( E x )  
as x ranges over X gives the subbundle set theoretically. On the other 
hand, the total space of n*E consists of pairs of vectors ( v ,  w) lying over 
the same base point x, that is, the fiber at x of x * E  is simply Ex x Ex. 
Since T ( E x )  has a natural identification with Ex x Ex, we get for each x a 
bijection 

(x*E) ,  + V X )  

which defines our map from n'E to T ( E ) .  Considering the map locally in 
terms of the local product structure shows at once that it gives a VB- 
isomorphism between x*E and the subbundle of n, as desired. 

111, 54. OPERATIONS ON VECTOR BUNDLES 

We consider subcategories of Banach spaces 'u, 8, C and let 

A: ' u X B + C  

be a functor in, say, two variables, which is, say, contravariant in the first 
and covariant in the second. (Everything we shall do extends in the 
obvious manner to functors of several variables, letting 'u, S stand for 
n-tuples.) 

Example. We took a functor in two variables for definiteness, and to 
illustrate both variances. However, we could consider a functor in one or 
more than two variables. For instance, let us consider the functor 

E I-+ L(E,  R) = L(E)  = E", 

which we call-the dual. It is a contravariant functor in one variable. On 
the other hand, the functor 

E H LL(E, F )  

of continuous multilinear maps of E x ... x E into a Banach space F is 
contravariant in E and covariant in F .  The functor E H LL(E, R) gives 
rise later to what we call differential forms. We shall treat such forms 
systematically in Chapter V ,  53. 

If f: E' -+ E and g :  F -+ F' are two continuous linear maps, with f a 
morphism of '2l and g a morphism of 8, then by definition, we have a 
map 

L(E', E) x L(F, F') -+ L(A(E, F ) ,  A(E', F')), 

1 
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We shall say that A is of class C* if the following condition is satisfied. 
Give a manifold U ,  and two morphisms 

q: U -+ L(E',  E )  and $: U -+ L(F, F ' ) ,  

then the composite 

U + L(E', E) x L(F, F')  + L(A(E, F ) ,  A(E', F ' ) )  

is also a morphism. (One could also say that I is differentiable.) 

Theorem 4.1. Let I be a functor as above, of class CP, p 2 0. Then for 
each manifold X ,  there exists a functor AX, on vector bundles (of class 
C P )  

Ax: VB(X, 'u) x VB(X, 8) --t VB(X, C) 

satisfying the following properties. For any bundles a, /l in VB(X, a) 
and VB(X, S )  respectively, and VB-morphisms 

f: a ' + a  and g :  B - B '  

in the respective categories, and for each x E X ,  we have: 

op 1. A d a ,  B), = 4 a x ,  P x ) .  

op 2. Mf 7 s), = 4fx, sx). 

OP 3. If a is the trivial bundle X x E and B the trivial bundle X x F, 

OP 4. If h: Y 4 X is a CP-morphism, then 

then Ax(a, /l) is the trivial bundle X x A(E, F ) .  

Ai(h*a, h*B) = h*Ax(a, 8). 

Proof We may assume that X is connected, so that all the fibers are 
toplinearly isomorphic to a fixed space. For each open subset U of X we 
let the total space Au(Ea, Ep) of Iu(a,  /l) be the union of the sets 

{X I  x A ( a x ,  B x )  

(identified harmlessly throughout with A(ax, p,)), as x ranges over U .  We 
can find a covering { Ui} of X with trivializing maps {ti} for a, and {oi} 
for B, 
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We have a bijection 

obtained by taking on each fiber the map 

We must verify that VB 3 is satisfied. This means looking at the map 

The expression on the right is equal to 

Since 1 is a functor of class C p ,  we see that we get a map 

Uj n -+ L(I(E,  F), 1(E, F)) 

which is a CP-morphism. Furthermore, since 1 is a functor, the transition 
mappings are in fact toplinear isomorphism, and VB 2, VB 3 are proved. 

The proof of the analogous statement for 1 x ( f ,  g ) ,  to the effect that 
it is a VB-morphism, proceeds in an analogous way, again using the 
hypothesis that L is of class CP. Condition OP 3 is obviously satisfied, 
and OP 4 follows by localizing. This proves our theorem. 

The next theorem gives us the uniqueness of the operation AX. 

Theorem 4.2. Z f p  is another functor of class CP with the same variance 
as 1, and if we have a natural transformation of functors t :  3L -+ p, then 
for each X ,  the mapping 

t x :  Ax + px, 

defined on each fiber by the map 

is a natural transformation of functors (in the VB-category). 

Proof For simplicity of notation, assume that A and p are both 
functors of one variable, and both covariant. For each open set U = Ui of 
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a trivializing covering for 8, we have a commutative diagram: 

id x t(E) 
U x 1(E) - U x p(E) 

t 

The vertical maps are trivialking VB-isomorphism, and the top horizontal 
map is a VB-morphism. Hence tU is a VB-morphism, and our assertion is 
proved. 

In particular, for 1 = p and t = id we get the uniqueness of our functor 
A X .  

hypotheses that 1, ,u are differentiable.) 

on vector bundles. 

(In the proof of Theorem 4.2, we do not use again explicitly the 

In practice, we omit the subscript X on 1, and write 1 for the functor 

Examples. Let R: E --+ X be a vector bundle. We take 1 to be the 
dual, that is E H  EV =L(E, R). Then A(E) is denoted by E", and is 
called the dual bundle. The fiber at each point x E X is the dual space E,". 
The dual bundle of the tangent bundle is called the cotangent bundle T V X .  

Similarly, instead of taking L(E),  we could take Lj:(E) to be the bundle 
of alternating multilinear forms on E. The fiber at each point is the space 
Li(Ex) consisting of all r-multilinear alternating continuous functions on 
Ex. When E = TX is the tangent bundle, the sections of Lj:(TX) are 
called differential forms of degree r. Thus a 1-form is a section of E". 
Differential forms will be treated later in detail. 

Recall that End(E) = L(E, E). In the theory of curvature, we shall deal 
with both functors 

E H L4(E) = L4(E, R) and E3 H L2(E, End(E)) = L2(E, L(E, E)). 

In fact, if R E L2(E, L(E, E)), then for each pair of elements v,  w E E and 
2 E E, we see that R(v,  w)  E L(E, E )  and R(v,  w)z  E E, so we get a 3-linear 
map 

( v ,  w, 2 )  H R(v, w)z .  

I We shall apply both functors to the tangent bundle in Chapter IX. 

For another type of operation, we have the direct sum (also called the 
Whitney sum) of two bundles a, 8 over A'. It is denoted by a OD, and the I 
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fiber at a point x is 
(a  OD), = a x  OD,. 

Of course, the finite direct sum of vector spaces can be identified with their 
finite direct products, but we write the above operation as a direct sum in 
order not to confuse it with the following direct product. 

Let a :  Ea -+ X and 8: Eg -t Y be two vector bundles in V B ( X )  and 
V B ( Y )  respectively. Then the map 

is a vector bundle, and it is this operation which we call the direct product 
of a and D. 

Let X be a manifold, and 1 a functor of class CP with p 2 1. The 
tensor bundle of type I over X is defined to be 1~ ( T ( X ) ) ,  also denoted by 
I T ( X )  or T A ( X ) .  The sections of this bundle are called tensor fields of 
type 1, and the set of such sections is denoted by r A ( X ) .  Suppose that we 
have a trivialization of T ( X ) ,  say 

T ( X )  = X x E. 

Then T i ( X )  = X x 1(E) .  A section of T A ( X )  in this representation is 
completely described by the projection on the second factor, which is a 
morphism 

f: X -t I ( E ) .  

We shall call it the local representation of the tensor field (in the given 
trivialization). If is the tensor field having f as its local representation, 
then 

a4 = (XI f (4). 

Let f: X -t Y be a morphism of class CP (p 2 1). Let o be a tensor 
field of type L' over Y ,  which could also be called a multilinear tensor 
field. For each y E Y ,  w ( y )  (also written oy) is a continuous multilinear 
function on Ty ( Y )  : 

my: Ty x * . .  x Ty --+ R. 

For each x E X ,  we can define a continuous multilinear map 

f:(o): Tx x ... x Tx -t R 

by the composition of maps (Txf)' and of(x) : 
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We contend that the map x H fi(o) is a tensor field over X ,  of the same 
type as o. To prove this, we may work with local representation. Thus 
we can assume that we work with a morphism 

f: u + v  
of one open set in a Banach space into another, and that 

0:  V - t L ' ( F )  

is a morphism, V being open in F. If U is open in E, then f *(w) (now 
denoting a local representation) becomes a mapping of U into L'(E), 
given by the formula 

Since L': L(E,  F) --f L(L'(F),  L'(E)) is of class Cw, it follows that 
f *(o) is a morphism of the same class as o. This proves what we want. 

Of course, the same argument is valid for the other functors L,' and LL 
(symmetric and alternating continuous multilinear maps). Special cases 
will be considered in later chapters. If 1 denotes any one of our three 
functors, then we see that we have obtained a mapping (which is in fact 
linear) 

f * :  I-A(Y) + r m  
which is clearly functorial in f. We use the notation f * instead of the 
more correct (but clumsy) notation fn  or I-A( f). No confusion will arise 
from this. 
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The next proposition expresses the fact that the VB-morphisms of one 
bundle into another (over a fixed morhism) form a module over the ring of 
functions. 

Proposition 5.1. Let X ,  Y be manifolds and fo: X 3 Y a morphism. 
Let a, D be vector bundles over X ,  Y respectively, and let f, g :  a -t D be 
two VB-morphisms over fo. Then the map f + g defined by the formula 

(f + SIX = f x  + 9 x  

is also a VB-morphism. Furthermore, if $: Y -t R is a function on Y, 
then the map $-f defined by 

is also a VB-morphism. 
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Proof: Both assertions are immediate consequences of Proposition 3.10 
of Chapter I. 

We shall consider mostly the situation where X = Y and is the 
identity, and will use it, together with partitions of unity, to glue VB- 
morphisms together. 

Let a, p be vector bundles over X and let {(Ui ,  t+hi)} be a partition of 
unity on X .  Suppose given for each Ui a VB-morphism 

Each one of the maps Jlif;. (defined as in Proposition 5.1) is a VB- 
morphism. Furthermore, we can extend t,biA. to a VB-morphism of a into 
p simply by putting 

( J l i L I x  = 0 

for all x # Uj. If we now define 

for all pairs ( x ,  v )  with v E a,, then the sum is actually finite, at each ponit 
x,  and again by Proposition 5.1, we see that f is a VB-morphism. We 
observe that if each f;: is the identity, then f = C $ih is also the identity. 

Proposition 5.2. Let X be a manifold admitting partitions of unity. Let 
0 + a + /3 be an exact sequence of vector bundles over X. Then there 
exists a surjective VB-morphism g :  p + a whose kernel splits at each 
point, such that g o  f = id. 

f 

Proof: By the definition of exact sequence, there exists a partition of 
unity { (Ui, $ i ) }  on X such that for each i ,  we can split the sequence over 
Ui. In other words, there exists for each i a VB-morphism 

g i :  pIUi --+ alUi 

which is surjective, whose kernel splits, and such that gi o f;: = idi. We let 
g = Ct,higi. Then g is a VB-morphism of p into a by what we have just 
seen, and 

g o  f = t,bigiA = id. 

It is trivial that g is surjective because g o f = id. The kernel of gx splits 
at each point x because it has a closed complement, namely fxu,. This 
concludes the proof. 
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If y is the kernel of p, then we have p M a 0 y. 
A vector bundle n over X will be said to be of finite type if there exists 

a finite trivialization for 7~ (i.e. a trivialization { (Ui, Ti)} such that i ranges 
over a finite set). 

If k is an integer 2 1 and E a topological vector space, then we denote 
by Ek the direct product of E with itself k times. 

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let 
n be a vector bundle of finite type in VB(X, E), where E is a Banach 
space. Then there exists an integer k > 0 and a vector bundle a in 
VB(X, Ek) such that 7c 0 a is trivializable. 

Proof: We shall prove that there exists an exact sequence 

f 0+7c+p 

with Eg = X x Ek. Our theorem will follow from the preceding 
proposition. 

Let { Ui,  q)} be a finite trivialization of n with i = 1,.  . . , k .  Let 
{ (Ui ,  $ J }  be a partition of unity. We define 

f :  E , - + X x E k  

as follows. If x E X and v is in the fiber of En at x, then 

The expression on the right makes sense, because in case x does not lie in 
Ui then t,bi(x) = 0 and we do not have to worry about the expression 
Z i ( V ) .  If x lies in Ui, then zi(v) means Z i x ( V ) .  

Given any point x,  there exists some index i such that $i (x)  > 0 and 
hence f is injective. Furthermore, for this x and this index i, f x  maps Ex 
onto a closed subspace of Ek, which admits a closed complement, namely 

with 0 in the i-th place. This proves our proposition. 



CHAPTER IV 

Vector Fields and Differential 
Equations 

In this chapter, we collect a number of results all of which make use of the 
notion of differential equation and solutions of differential equations. 

Let X be a manifold. A vector field on X assigns to each point x of X a 
tangent vector, differentiably. (For the precise definition, see 52.) Given xo 
in X, it is then possible to construct a unique curve a(?) starting at xo 
(i.e. such that a(0) = X O )  whose derivative at each point is the given 
vector. It is not always possible to make the curve depend on time t from 
-a to +a, although it is possible if X is compact. 

The structure of these curves presents a fruitful domain of investiga- 
tion, from a number of points of view. For instance, one may ask for 
topological properties of the curves, that is those which are invariant under 
topological automorphisms of the manifold. (Is the curve a closed curve, 
is it a spiral, is it dense, etc.?) More generally, following standard pro- 
cedures, one may ask for properties which are invariant under any given 
interesting group of automorphisms of X (discrete groups, Lie groups, 
algebraic groups, Riemannian automorphisms, ad lib.). 

We do not go into these theories, each of which proceeds according 
to its own flavor. We give merely the elementary facts and definitions 
associated with vector fields, and some simple applications of the existence 
theorem for their curves. 

Throughout this chapter, we assume all manifolds to be Hausdor-, of 
class CP with p 2 2 from 52 on, and p 2 3 from 53 on. This latter condition 
insures that the tungent bundle is of class CP-' with p - 1 2 1 (or 2) .  

We shall deal with mappings of several variables, say f ( t ,  x ,  y ) ,  the first 
of which will be a real variable. We identifv D1 f ( t ,  x, y )  with 
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IV, 91. EXISTENCE THEOREM FOR 
DIFFERENTIAL EQUATIONS 

Let E be a Banach space and U an open subset of E. In this section we 
consider vector fields locally. The notion will be globalized later, and thus 
for the moment, we define (the local representation of) a timedependent 
vector field on U to be a Cp-morphism ( p  2 0) 

f: J x U - . E ,  

where J is an open interval containing 0 in R. We think off as assigning 
to each point x in U a vector f ( t ,  x) in E, depending on time t. 

Let xo be a point of U. An integral curve forf with initial condition xo 
is a mapping of class C' (Y 2 1) 

of an open subinterval of J containing 0, into U, such that a(0) = xo and 
such that 

a'(t)  = f ( 4  m). 
Remark. Let a:  JO -+ U be a continuous map satisfying the condition 

Then a is differentiable, and its derivative is f ( t ,  a ( t ) ) .  Hence a is of class 
C'. Furthermore, we can argue recursively, and conclude that iff is of 
class CP, then so is a. Conversely, if a is an integral curve for fwith initial 
condition xo, then it obviously satisfies out integral relation. 

Let 
f :  J x U + E  

be as above, and let xo be a point of U. By a local flow for f at xo we 
mean a mapping 

a :  JO x UO -+ U 

where JO is an open subinterval of J containing 0, and Uo is an open 
subset of U containing XO, such that for each x in UO the map 

is an integral curve for f with initial condition x (i.e. such that a(0, x )  = 

4. 
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As a matter of notation, when we have a mapping with two arguments, 
say y( t ,  x), then we denote the separate mappings in each argument when 
the other is kept fixed by qx(t) and p,(x). The choice of letters will always 
prevent ambiguity. 

We shall say that f satisfies a Lipsehitz condition on U uniformly with 
respect to J if there exists a number K > 0 such that 

for all x, y in U and t in J.  We call K a Lipschitz constant. Iff is of class 
C’, it follows at once from the mean value theorem that f is Lipschitz on 
some open neighborhood JO x UO of a given point (0, XO) of U, and that it 
is bounded on some such neighborhood. 

We shall now prove that under a Lipschitz condition, local flows exist 
and are unique locally. In fact, we prove more, giving a uniformity 
property for such flows. If b is real > 0, then we denote by Jb the open 
interval -b < t < b. 

Proposition 1.1. Let J be an open interval of R containing 0, and U open 
in the Banach space E. Let xo be a point of U, and a > 0, a < 1 a real 
number such that the closed ball &(XO) lies in U. Assume that we have 
a continuous map 

f :  J x U + E  

which is bounded by a constant L >= 1 on J x U ,  and satisfies a Lipschitz 
condition on U uniformly with respect to J ,  with constant K 2 1. I f  
b < a / L K ,  then for each x in Ba(X0) there exists a 

U :  Jb X Ba(Xo) + u. 

Iff is of class CP ( p  2 I), then so is each integral 

unique pow 

curve a,. 

Proox Let zb be the closed interval -b 5 t I b, and let x be a b e d  
point in &(xo). Let M be the set of continuous maps 

of the closed interval into the closed ball of center xo and radius 2a, such 
that a(0) = x.  Then M is a complete metric space if we define as usual the 
distance between maps a, f3 to be 
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We shall now define a mapping 

S :  M + M  

of M into itself. For each a in M ,  we let Sa be defined by 

(Sa) ( t )  = x + 6 f (u, a(#)) du. 

Then Sa is certainly continuous, we have Sci(0) = x, and the distance of 
any point on Sa from x is bounded by the norm of the integral, which is 
bounded by 

b sup) f (u, y)l bL < a. 

Thus Su lies in M. 
We contend that our map S is a shrinking map. Indeed, 

thereby proving our contention. 
By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique 

fixed point a, and by definition, a(t) satisfies the desired integral relation. 
Our remark above concludes the proof. 

Corollary 1.2. The local pow ci in Proposition 1.1 is continuous. 
Furthermore, the map x w a, of Ba(x0) into the space of curves is 
continuous, and in fact satisfies a Lipschitz condition. 

ProoJ The second statement obviously implies the first. So fix x in 
B a ( X 0 )  and take y close to x in &(XO) .  We let S, be the shrinking map of 
the theorem, corresponding to the initial condition x .  Then 

Let C = bK so 0 < C < 1. Then 

Since the limit of Syu, is equal to ci, as n goes to infinity, the continuity 
of the map x H a, follows at once. In fact, the map satisfies a Lipschitz 
condition as stated. 
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It is easy to formulate a uniqueness theorem for integral curves over 
their whole domain of definition. 

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let 
f: U -+ E be a vector jield of class Cp, p 2 1. Let 

a i :  Ji  + U and a2: J2 -+ U 

be two integral curves for f with the same initial condition xo. Then a1 
and a2 are equal on J1 n J2. 

ProoJ Let Q be the set of numbers b such that a l ( t )  = a2(t) for 

O s t t b .  

Then Q contains some number b > 0 by the local uniqueness theorem. If 
Q is not bounded from above, the equality of q ( t )  and a2(t) for all t > 0 
follows at once. If Q is bounded from above, let b be its least upper 
bound. We must show that b is the right end point of J1 n 52. Suppose 
that this is not the case. Define curves PI and P2 near 0 by 

PI ( t )  = (b  + t )  and P2( t )  = a2(b + t ) .  

Then PI and P2 are integral curves off with the initial conditions q ( b )  
and ~ ( b )  respectively. The values P l ( t )  and P2( t )  are equal for small 
negative t because b is the least upper bound of Q. By continuity it 
follows that q ( b )  = a2(b), and finally we see from the local uniqueness 
theorem that 

P l ( 4  = P 2 ( 4  

for all t in some neighborhood of 0, whence a1 and a2 are equal in a 
neighborhood of b, contradicting the fact that b is a least upper bound of 
Q. We can argue the same way towards the left end points, and thus 
prove our statement. 

For each x E U ,  let J(x) be the union of all open intervals containing 
0 on which integral curves for f are defined, with initial condition equal 
to x. The uniqueness statement allows us to define the integral curve 
uniquely on all of J ( x ) .  

Remark. The choice of 0 as the initial time value is made for con- 
venience. From the uniqueness statement one obtains at once (making a 
time translation) the analogous statement for an integral curve. defined on 
any open interval; in other words, if 51, 5 2  do not necessarily contain 0, 
and to is a point in J1 n J2 such that cq(t0) =  to), and also we have the 
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differential equations 

then a1 and a2 are equal on J1 n 5 2 .  

In practice, one meets vector fields which may be time dependent, and 
also depend on parameters. We discuss these to show that their study 
reduces to the study of the standard case. 

Time-dependent vector fields 

Let J be an open interval, U open in a Banach space E, and 

f :  J x U - t E  

a CP map, which we view as depending on time t E J .  Thus for each t, the 
map x H f ( t ,  x )  is a vector field on U. Define 

bY 

and viewf as a time-independent vector field on J x U. Let ii be its flow, 
so that 

ii’(t, s, x )  =f( i i ( t ,  s, x)), z(0, s, x )  = (s, x). 

We note that ii has its values in J x U and thus can be expressed in terms 
of two components. In fact, it follows at once that we can write ii in the 
form 

ii(t, s, x) = ( t + s ,  &(t ,  s, x)). 

I Then ii2 satisfies the differential equation 

0 1 i i 2 ( t ,  s, x) = f ( t + s ,  @2(4 s, 4)  

as we see from the definition of f .  Let 

P(t,  x) = E 2 ( t ,  0, 4. 

Then P is a flow for f, that is /3 satisfies the differential equation 

a 
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Given x E U ,  any value of t such that a is defined at ( t ,  x )  is also such that 
C? is defined at ( t ,  0, x )  because ax and px are integral curves of the same 
vector field, with the same initial condition, hence are equal. Thus the 
study of time-dependent vector fields is reduced to the study of time- 
independent ones. 

Dependence on parameters 

Let V be open in some space F and let 

g :  J X  V X  U - r E  

be a map which we view as a time-dependent vector field on U, also 
depending on parameters in V. We define 

for t E J ,  z E V ,  and y E U .  This is now a time-dependent vector field on 
V x U.  A local flow for G depends on three variables, say B(t, z ,  y ) ,  with 
initial condition B(0, z ,  y )  = ( z ,  y ) .  The map has two components, and 
it is immediately clear that we can write 

for some map a depending on three variables. Consequently a satisfies the 
differential equation 

which gives the flow of our original vector field g depending on the 
parameters Z E  V .  This procedure reduces the study of differential 
equations depending on parameters to those which are independent of 
parameters. 

We shall now investigate the behavior of the flow with respect to its 
second argument, i.e. with respect to the points of U. We shall give two 
methods for this. The first depends on approximation estimates, and the 
second on the implicit mapping theorem in function spaces. 

Let JO be an open subinterval of J containing 0, and let 
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be of class C’ . We shall say that q is an eapproximate solution off on Jo 
if 

lul’(t> - f (1 ,  m) I 5 E 

for all t in Jo. 

Proposition 1.4. Let ql and q2 be two €1- and €2-approximate solutions 
off on JO respectively, and let E = €1 + € 2 .  Assume that f is Lipschitz 
with constant K on U uniformly in Jo, or that D2 f exists and is bounded 
by K on J x U. Let to be a point of Jo. Then for any t in Jo, we have 

Klt-to1 + ~eKl r -201~  K 
l V l ( 4  - v)2(t)l 5 IVI(t0) - v2(to)le 

Say t 2 to to avoid putting bars around t - to. Let 

and finally the recurrence relation 

$( t )  5 $(to) + K j t  20 [$(4 + 4KI du. 

On any closed subinterval of Jo, our map $ is bounded. If we add E / K  to 
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both sides of this last relation, then we see that our proposition will follow 
from the next lemma. 

Lemma 1.5. Let g be a positive real valued function on an interval, 
bounded by a number L. Let to be in the interval, say to S t ,  and assume 
that there are numbers A ,  K 2 0 such that 

r f  

Then for all integers n 2 1 we have 

Proof: The statement is an assumption for n = 1. We proceed by 
induction. We integrate from to to t, multiply by K, and use the re- 
currence relation. The statement with n + 1 then drops out of the 
statement with n. 

Corollary 1.6. Let f: J x U --+ E be continuous, and satisfy a Lipschitz 
condition on U uniformly with respect to J.  Let xo be a point of U. Then 
there exists an open subinterval Jo of J containing 0, and an open subset 
of U containing xo such that f has a unique flow 

We can select JO and UO such that M is continuous and satisfies a 
Lipschitz condition on JO x UO. 

Proof: Given x, y in Uo we let p l ( t )  = a(t ,  x )  and q2(t) = a(t ,  y ) ,  using 
Proposition 1.6 to get JO and 170. Then €1 = €2 = 0. For s, t in JO we 
obtain 

l4t ,  x )  - Y)l 5 la(t, 4 - 4 4  Y)l + 144 Y )  - 4 s ,  Y) l  

5 I X  - yleK + It - S ~ L ,  

if we take JO of small length, and L is a bound for$ Indeed, the term 
containing ( x  - yl comes from Proposition 1.4, and the term containing 
It-sl comes from the definition of the integral curve by means of an 
integral and the bound L for f. This proves our corollary. 

Corollary 1.7. Let J be an open interval of R containing 0 and let U be 
open in E. Let f: J x U -+ E be a continuous map, which is Lipschitz 
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on U uniformly for every compact subinterval of J .  Let to E J and let q1, 
p2 be two morphisms of class C' such that ql(to) = p2( t0 )  and satisfying 
the relation 

v'( t> = f ( 4  V(t>) 

for all t in J. Then p l ( t )  = q2(t) .  

Proof: We can take e = 0 in the proposition. 

The above corollary gives us another proof for the uniqueness of 
integral curves. Given f :  J x U + E as in this corollary, we can define 
an integral curve c1 for f on a maximal open subinterval of J having a 
given value rx(t0) for a fixed to in J. Let J be the open interval (a ,  b )  and 
let (ao, bo) be the interval on which M is defined. We want to know when 
bo = b (or a0 = a),  that is when the integral curve off can be continued to 
the entire interval over which f itself is defined. 

There are essentially two reasons why it is possible that the integral 
curve cannot be extended to the whole domain of definition J, or cannot 
be extended to infinity in case f is independent of time. One possibility is 
that the integral curve tends to get out of the open set U, as on the 
following picture : 

This means that as t approaches bo, say, the curve a(t)  approaches a point 
which does not lie in U. Such an example can actually be constructed 
artificially. If we are in a situation when a curve can be extended to 
infinity, just remove a point from the open set lying on the curve. Then the 
integral curve on the resulting open set cannot be continued to infinity. 
The second possibility is that the vector field is unbounded. The next 
corollary shows that these possibilities are the only ones. In other words, 
if an integral curve does not tend to get out of the open set, and if the 
vector field is bounded, then the curve can be continued as far as the 
original data will allow a priori. 

Corollary 1.8. Let J be the open interval (a ,  b )  and let U be open in E. 
Let f: J x U --+ E be a continuous map, which is Lipschitz on U, 
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uniformly for every compact subset of J. Let a be an integral curve o fJ ;  
defined on a maximal open subinterval (ao, bo) of J .  Assume: 

(i) 
(ii) 

Then bo = b. 

There exists E > 0 such that a((b0 - E ,  bo)) is contained in U. 
There exists a number B > 0 such that 1 f ( t ,  a(t))l 5 B for all t in 
(bo - E ,  bo). 

Prooj From the integral expression for a, namely 
t 

a(t) = a(to> + J f (u ,  a(.)> du, 
to 

we see that for tl ,  t2 in (bo - E ,  bo) we have 

Ja(t1) - a(t2)I 5 Bltl - t21. 

From this it follows that the limit 

lim a( t )  

exists, and is equal to an element xo of U (by hypothesis (i)). Assume that 
bo # b. By the local existence theorem, there exists an integral curve p of 
f defined on an open interval containing bo such that P(b0) = xo and 
p’(t) = f ( t ,  p ( t ) ) .  Then /3’ = a’ on an open interval to the left of bo, and 
hence a, /3 differ by a constant on this interval. Since their limit as t -+ bo 
are equal, this constant is 0. Thus we have extended the domain of 
definition of a to a larger interval, as was to be shown. 

t-+bo 

The next proposition describes the solutions of linear differential 
equations depending on parameters. 

Proposition 1.9. Let J be an open interval of R containing 0, and let V 
be an open set in a Banach space. Let E be a Banach space. Let 

g :  J x V .+ L(E,  E )  

be a continuous map. Then there exists a unique map 

I :  J x V .+ L(E,  E )  

which, for each X E  V ,  is a solution of the difeerential equation 

,D1I(t, X )  = g ( t ,  x)A( t ,  x), I (0 ,  X) = id.  

This map A is continuous. 
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Remark. In the present case of a linear differential equation, it is not 
necessary to shrink the domain of definition of its flow. Note that the 
differential equation is on the space of continuous linear maps. The 
corresponding linear equation on E itself will come out as a corollary. 

Proof of Proposition 1.9. Let us first fix x E V.  Consider the differential 
equation 

D14t,  4 = s ( t ,  x ) I ( t ,  4, 
with initial condition I (0 ,  x )  = id. This is a differential equation on 
L(E,  E) ,  where f ( t ,  z) = gx(t)z for z E L(E ,  E ) ,  and we write gx(t) instead 
of g(t, x) .  Let the notation be as in Corollary 1.8. Then hypothesis (i) is 
automatically satisfied since the open set U is all of L(E ,  E) .  On every 
compact subinterval of J, gx  is bounded, being continuous. Omitting the 
index x for simplicity, we have 

t 
I ( t )  = id + g(u)I(u)  du, 

f o  

whence for t 2 0, say 

t 

II(t)l 5 1 + B IA(u)l du. 
f 0  

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also 
satisfied. Hence the integral curve is defined on all of J. 

We shall now prove the continuity of I .  Let (to, xo) E J x V .  Let I be 
a compact interval contained in J, and containing to and 0. As a function 
of t, I ( t ,  X O )  is continuous (even differentiable). Let C > 0 be such that 
II(t, X O ) ~  C for all t E I. Let V1 be an open neighborhood of xo in V 
such that g is bounded by a constant K > 0 on Z x V1. 

For ( t ,  x )  E I x V1 we have 

The second term on the right is small when t is close to to. We investigate 
the first term on the right, and shall estimate it by viewing I ( t ,  x )  and 
I ( t ,  xo) as approximate solutions of the differential equation satisfied by 
n(t, x). We find 

i 
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By the usual proof of uniform continuity applied to the compact set 
Z x {xo},  given E > 0, there exists an open neighborhood VO of xo con- 
tained in V1, such that for all ( t ,  x )  E I x Vo we have 

Idt ,  x )  - d t ,  .o)l < E/C. 

This implies that A(t, xo) is an €-approximate solution of the differential 
equation satisfied by L(t, x) .  We apply Proposition 1.4 to the two curves 

%(t)  = 4 t ,  X O )  and q,(t) = A(t, x )  

for each x E VO. We use the fact that L(0, x )  = A(0, X O )  = id. We then 

for some constant K1 > 0, thereby proving the continuity of 3, at (to, X O ) .  

Corollary 1.10. Let the notation be as in Proposition 1.9. For each 
X E  V and z E E the curve 

B(t, x ,  4 = 4 t ,  x ) z  

with initial condition B(0, x ,  z )  = z is a solution of the diferential 
equation 

DlB(4 x ,  z )  = g ( t ,  x>B(t,  x ,  4. 

Furthermore, is continuous in its three variables. 

ProoJ: Obvious. 

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval in 
R containing 0 and U open in the Banach space E. Let 

f :  J x  U + E  

be a CP-morphism with p 2 1, and let xo E U .  There exists a unique 
local flow for f at xo. We can select an open subinterval Jo of J 
containing 0 and an open subset UO of U containing xo such that the 
unique local flow 

is of class CP, and such that D2u satisJies the diferential equation 

U :  J o x U O ~ U  

on JO x Uo with initial condition Dza(0, x )  = id. 
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ProoJ: Let 
g :  J x U + L(E,  E )  

be given by g(t, x )  = D2 f ( t ,  u(t, x ) ) .  Select J1 and UO such that a is 
bounded and Lipschitz on J1 x UO (by Corollary 1.6), and such that g is 
continuous and bounded on J1 x UO. Let JO be an open subinterval of J1 
containing 0 such that its closure JO is contained in J1. 

Let A(t, x )  be the solution of the differential equation on L(E, E) given 
by 

Dl l ( t ,  x) = g(t, x)3,(t, x ) ,  A(0, x )  = id, 

as in Proposition 1.9. We contend that D2u exists and is equal to 3, on 
JO x UO. This will prove that D2u is continuous, on JO x UO. 

Fix X E  Uo. Let 

By the mean value theorem, we obtain 

where y ranges over the segment between u(t, x )  and a(t, x + h). By the 
compactness of JO it follows that our last expression is bounded by IhJ$(h) 
where $(h)  tends to 0 with h, uniformly for t in Jo. Hence we obtain 

le’(t, h)  - g(t, XP( t ,  h)l 5 lhl$(h), 

for all t in Jo. This shows that e( t ,  h)  is an Ih)$(h) approximate solution 
for the differential equation satisfied by L(t, x)h, namely 

with the initial condition L(0, x)h = h. We note that e( t ,  h)  has the same 
initial condition, e(0, h)  = h. Taking to = 0 in Proposition 1.4, we obtain 
the estimate 

le(t, h)  - 4 4  x)hl I CllhllCl(h) 
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for all t in Jo. This proves that D2a is equal to Iz  on Jo x UO, and is 
therefore continuous on JO x UO. 

We have now proved that Dla and D2a exist and are continuous on 
JO x UO, and hence that a is of class C' on JO x UO. 

Furthermore, D2a satisfies the differential equation given in the 
statement of our theorem on Jo x UO. Thus our theorem is proved when 
p =  1. 

A flow which satisfies the properties stated in the theorem will be called 
locally of class CP. 

Consider now again the linear equation of Proposition 1.9. We re- 
formulate it to eliminate formally the parameters, namely we define a 
vector field 

G :  J x V x L(E, E) + F x L(E, E) 

to be the map such that 

for 0 E L(E, E). The flow for this vector field is thefi given by the map A 
such that 

A ( t ,  x, 0) = (x, A(t, x)0). 

If g is of class C' we can now conclude that the flow A is locally of class 
C' ,  and hence putting 0 = id, that Iz  is locally of class C ' .  

We apply this to the case when g(t ,  x )  = D2f ( t ,  a( t ,  x)), and to the 
solution D2a of the differential equation 

locally at each point (0, x), x E U .  Let p 2 2 be an integer and assume 
out theorem proved up to p - 1, so that we can assume a locally of class 
Cp-l, and f of class CP. Then g is locally of class CP-', whence D2a is 
locally CP-'. From the expression 

we conclude that Dla is CP-l, whence a is locally CP. 

Iff is C w ,  and if we knew that a is of class CP for every integer p on its 
domain of definition, then we could conclude that a is C"O ; in other words, 
there is no shrinkage in the inductive application of the local theorem. We 
shall do this at the end of the section. 
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We shall now give another proof for the local smoothness of the flow, 
which depends on a simple application of the implicit mapping theorem 
in Banach spaces, and was found independently by Pugh and Robbin 
[Ro 681. One advantage of this proof is that it extends to HP vector fields, 
as noted by Ebin and Marsden [EbM 701. 

Let U be open in E and let f :  U -+ E be a CP map. Let b > 0 and let 
zb be the closed interval of radius b centered at 0. Let 

be the Banach space of continuous maps of zb into E. We let V be the 
subset of F consisting of all continuous curves 

mapping zb into our open set U. Then it is clear that V is open in F 
because for each curve a the image a(zb) is compact, hence at a finite 
distance from the complement of U, so that any curve close to it is also 
contained in U. 

We define a map 
T :  U x V + F  

by 

T ( x ,  0) = x +  f o g - 0 .  
J-0 

Here we omit the dummy variable of integration, and x stands for the 
constant curve with value x. If we evaluate the curve T ( x ,  a) at t ,  then by 
definition we have 

T ( x ,  a ) ( t )  = x + f ( ~ ( u ) )  du - a ( t ) .  f: 
Lemma 1.12. The map T is of class CP, and its second partial derivative 
is given by the formula 

where Z is the identity. Zn terms of t ,  this reads 
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Proof: It is clear that the first partial derivative D1T exists and is 
continuous, in fact Cco, being linear in x up to a translation. To determine 
the second partial, we apply the definition of the derivative. The deri- 
vative of the map a H a is of course the identity. We have to get the 
derivative with respect to a of the integral expression. We have for small h 

I - If o ( a + h ) -  f o a - ( D f o a ) h l .  
J O  

We estimate the expression inside the integral at each point u, with u 
between 0 and the upper variable of integration. From the mean value 
theorem, we get 

where the sup is taken over all points zu on the segment between a(#) and 
a(.) + h(u). Since Df is continuous, and using the fact that the image of 
the curve a(&,) is compact, we conclude (as in the case of uniform 
continuity) that as llhll + 0, the expression 

also goes to 0. (Put the 6 and 6 in yourself.) By definition, this gives us the 
derivative of the integral expression in B. The derivative of the final term 
is obviously the identity, so this proves that D2T is given by the formula 
which we wrote down. 

This derivative does not depend on x.  It is continuous in a. Namely, 
we have 

If a is fixed and T is close to a, then Df o r -  Df o a  is small, as one 
proves easily from the compactness of a(zb), as in the proof of uniform 
continuity. Thus DzT is continuous. By Proposition 3.5 of Chapter I, we 
now conclude that T is of class C'.  

The derivative of DzT with respect to a can again be computed as 
before if Df is itself of class C',  and thus by induction, iff is of class CP 
we conclude that DzT is of class CP-' so that by the same reference, we 
conclude that T itself is of class CP. This proves our lemma. 

We observe that a solution of the equation 

T ( x ,  0)  = 0 
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is precisely an integral curve for the vector field, with initial condition 
equal to x.  Thus we are in a situation where we want to apply the implicit 
mapping theorem. 

Lemma 1.13. Let xo E U .  Let a > 0 be such that Df is bounded, say by 
a number C1 > 0, on the ball Ba(xo) (we can alwaysfind such a since Df 
is continuous at X O ) .  Let b < 1/C1. Then DzT(x,  a) is invertible for all 
( x ,  a) in B,(xo) x V .  

Proof: We have an estimate 

This means that 
ID2T(x, a) + I [  < 1, 

and hence that DzT(x ,  a) is invertible, as a continuous linear map, thus 
proving Lemma 1.13. 

We are ready to reprove the local smoothness theorem by the present 
means, when p is an integer, namely: 

Theorem 1.14. Let p be a positive integer, and let f ;  U -+ E be a CP 
vector field. Let xo E U .  Then there exist numbers a ,  b > 0 such that the 
local flow 

is of class CP. 
a: Jb X B,(Xo) -+ u 

Proof: We take a so small and then b so small that the local flow exists 
and is uniquely determined by Proposition 1.1. We then take b smaller 
and a smaller so as to satisfy the hypotheses of Lemma 1.13. We can then 
apply the implicit mapping theorem to conclude that the map x H a, is of 
class C*. Of course, we have to consider the flow a and still must show 
that a itself is of class CP. It will suffice to prove that Dla and Dzu are of 
class CP-', by Proposition 3.5 of Chapter I. We first consider the case 
p =  1. 

We could derive the continuity of a from Corollary 1.2 but we can also 
get it as an immediate consequence of the continuity of the map x H a,. 
Indeed, fixing (s, y )  we have 

I4t7 x> - 4 x 7  v)l 5 I4t ,  x )  - a(t7 Y)l  + 144 Y )  - Y)l  

5 llax - ayll + la,,(t) - U,,(S)I. 

Since a,, is continuous (being differentiable), we get the continuity of a. I 
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we conclude that D1a is a composite of continuous maps, whence 
continuous. 

Let p be the derivative of the map x H ax, so that 

is of class CP-'. Then 

where $(w) + 0 as w + 0. Evaluating at t, we find 

and from this we see that 

Y 

We shall prove below that 

is uniformly small with respect to w when s is close to t. This proves the 
continuity of &a, and concludes the proof that a is of class C' .  

The following proof that I ( q ( y ) w ) ( t )  - (p(y)w)(s)l is uniformly small 
was shown to me by Professor Yamanaka. We have 

(1)  
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Replacing x with x + 1w (w E E,  1 # 0), we obtain 

(2) a(t, x+1w) =x+1wi 

Therefore 

On the other hand, we have already seen in the proof of Theorem 1.14 
that 

= w + 1' 1' G(u, 1, U) du du, 
0 0  

Letting 1 + 0, we have 

By (5) we have 

from which we immediately obtain the desired uniformity. 

Returning to our main concern, the flow, we have 
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We can differentiate under the integral sign with respect to the parameter 
x and thus obtain 

D2a(t, X )  = I + Of (a(u, x ) ) & ~ ( u ,  X )  du, 1: 
where I is a constant linear map (the identity). Differentiating with respect 
to t yields the linear differential equation satisfied by &a, namely 

and this differential equation depends on time and parameters. We have 
seen earlier how such equations can be reduced to the ordinary case. We 
now conclude that locally, by induction, D2a is of class CP-' since Of is 
of class Cp-'. Since 

DlU(t, 4 = f (44 4)' 

we conclude by induction that Dla is CP-'. Hence a is of class CP by 
Proposition 3.5 of Chapter I. Note that each time we use induction, the 
domain of the flow may shrink. We have proved Theorem 1.14, when p is 
an integer. 

We now give the arguments needed to globalize the smoothness. We 
may limit ourselves to the time-independent case. We have seen that the 
time-dependent case reduces to the other. 

Let U be open in a Banach space E, and let f: U -+ E be a CP vector 
field. We let J ( x )  be the domain of the integral curve with initial 
condition equal to w. 

Let D( f) be the set of all points ( t ,  x )  in R x U such that t lies in 
J ( x ) .  Then we have a map 

a :  B(f) -+ u 

defined on all of D(f), letting a(t ,  x )  = ax( t )  be the integral curve on J ( x )  
having x as initial condition. We call this the flow determined by f, and 
we call D(f) its domain of definition. 

Lemma 1.15. Let f :  U -+ E be a CP vector field on the open set U of 
E, and let a be its flow. Abbreviate ~ ( t ,  x )  by tx, if ( t ,  x )  is in the 
domain of definition of the flow. Let x E U .  If to lies in J ( x ) ,  then 

J(tox) = J ( x )  - to 

(translation of J ( x )  by - to ) ,  and we have for all t in J ( x )  - t o :  

t ( t 0 X )  = ( t  + t 0 ) X .  
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ProoJ The two curves defined by 

t H a( t ,  a(t0, x ) )  and t a( t+  to,  x )  

are integral curves of the same vector field, with the same initial condition 
tox at t = 0. Hence they have the same domain of definition J(t0x).  
Hence tl lies in J(tox) if and only if tl + to lies in J ( x ) .  This proves the 
first assertion. The second assertion comes from the uniqueness of the 
integral curve having given initial condition, whence the theorem follows. 

Theorem 1.16 (Global Smoothness of the Flow). I f f  is of class Cp (with 
p 5 a), then its flow is of class Cp on its domain of dejinition. 

ProoJ First let p be an integer 2 1. We know that the flow is locally 
of class Cp at each point (0, x ) ,  by the local theorem. Let xo E U and let 
J(x0) be the maximal interval of definition of the integral curve having xo 
as initial condition. Let D( f) be the domain of definition of the flow, and 
let a be the flow. Let Q be the set of numbers b > 0 such that for each t 
with 0 5 t < b there exists an open interval J containing t and an open set 
V containing xo such that J x V is contained in B( f) and such that a is of 
class Cp on J x V .  Then Q is not empty by the local theorem. If Q is not 
bounded from above, then we are done looking toward the right end point 
of J(x0).  If Q is bounded from above, we let b be its least upper bound. 
We must prove that b is the right end point of J(x0) .  Suppose that this 
is not the case. Then a(b, X O )  is defined. Let x1 = a(b, X O ) .  By the local 
theorem, we have a unique local flow at X I ,  which we denote by p :  

defined for some open interval Ju = ( - a ,  a )  and open ball & ( X I )  of radius 
a centered at X I .  Let 6 be so small that whenever b - 6 < t < b we have 

We can find such 6 because 

lim a(t, xo) = x1 
t-b 

by continuity. By the 
hypothesis on b, we can select an open interval J1 containing tl and an 
open set Ul containing xo so that 

Select a point tl such that b -6  < tl < b. 

a :  J 1  x Ul ---$ & / 2 ( X 1 )  

maps J1 x U1 into Ba/2(x1). We can do this because a is continuous at 
L 
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( t l ,  xg), being in fact CP at this point. If It - tl I < a and x E 171, we define 

Hence both pA and a, are integral curves for f with the same value at t l .  

They coincide on any interval on which they are defined by the uniqueness 
theorem. If we take 6 very small compared to a, say 6 < a/4,  we see that 
v, is an extension of a to an open set containing ( t l ,  ao), and also 
containing (h,  xo). Furthermore, v is of class Cp, thus contradicting the 
fact that b is strictly smaller than the end point of J(x0).  Similarly, one 
proves the analogous statement on the other side, and we therefore see 
that B(f) is open in R x U and that a is of class Cp on B(f), as was to 
be shown. 

The idea of the above proof is very simple geometrically. We go as far 
to the right as possible in such a way that the given flow a is of class C* 
locally at (t ,  X O ) .  At the point a(b, xg) we then use the flow p to extend 
differentiably the flow a in case b is not the right-hand point of J(x0) .  The 
flow B at a(b, xo) has a h e d  local domain of definition, and we simply 
take t close enough to b so that B gives an extension of a, as described in 
the above proof. 

Of course, iff is of class Cm, then we have shown that a is of class Cp 
for each positive integer p ,  and therefore the flow is also of class C*. 

In the next section, we shall see how these arguments globalize even 
more to manifolds. 

IV, 92. VECTOR FIELDS, CURVES, AND FLOWS 

Let X be a manifold of class Cp with p 2 2. We recall that X is assumed 
to be HausdorfT. Let IL: T ( X )  -+ X be its tangent bundle. Then T ( X )  is 
of class U-’ ,  p -  12 1. 

By a (time-independent) vector field on X we mean a cross section of 
the tangent bundle, i.e. a morphism (of class CP-’) 

r: x 4 T ( X )  
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such that <(x) lies in the tangent space T,.(X) for each x E X, or in other 
words, such that n5 = id. 

If T ( X )  is trivial, and say Xis  an E-manifold, so that we have a VB- 
isomorphism of T ( X )  with X x E, then the morphism is completely 
determined by its projection on the second factor, and we are essentially in 
the situaiton of the preceding paragraph, except for the fact that our 
vector field is independent of time. In such a product representation, the 
projection of 5 on the second factor will be called the local representation 
of <. It is a CP-I-morphism 

f: X + E  

and t(x) = (x, f ( x ) ) .  We shall also say that 5 is represented byflocally if 
we work over an open subset U of X over which the tangent bundle 
admits a trivialisation. We then frequently use 5 itself to denote this local 
representation. 

Let J be an open interval of R. The tangent bundle of J is then J x R 
and we have a canonical section I such that z(t) = 1 for all t E J. We 
sometimes write zt instead of z(t). 

By a curve in X we mean a morphism (always of class 2 1 unless 
otherwise specified) 

a:  J + X  

from an open interval in R into X. If g :  X + Y is a morphism, then g o a 
is a curve in Y. From a given curve a, we get an induced map on the 
tangent bundles : 

J x R -% T ( X )  

I I R  
J d X  

a 

and a* o z will be denoted by a‘ or by da/dt if we take its value at a point 
t in J. Thus a’ is a curve in T ( X ) ,  of class CP-’ if a is of class CP. 
Unless otherwise specified, it is always understood in the sequel that we 
start with enough differentiability to begin with so that we never end up 
with maps of class < 1. Thus to be able to take derivatives freely we have 
to take X and a of class CP with p 2 2. 

If g :  X + Y is a morphism, then 

This follows at once from the functoriality of the tangent bundle and the 
definitions. . 
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Suppose that J contains 0, and let us consider curves defined on J and 
such that u(0) is equal to a fked point X O .  We could say that two such 
curves a ] ,  u2 are tangent at 0 if ui(0) = uI(0) .  The reader will verify 
immediately that there is a natural bijection between tangency classes of 
curves with u(0) = xo and the tangent space Txo(X)  of X at X O .  The 
tangent space could therefore have been defined alternatively by taking 
equivalence classes of curves through the point. 

Let r be a vector field on X and xo a point of X. An integral curve for 
the vector field r with initial condition X O ,  or starting at X O ,  is a curve (of 
class CP-') 

a:  J - + X  

mapping an open interval J of R containing 0 into X, such that u(0) = xo 
and such that 

4 t )  = r(+,) 
for all t E J .  Using a local representation of the vector field, we know 
from the preceding section that integral curves exist locally. The next 
theorem gives us their global existence and uniqueness. 

Theorem 2.1. Let ul : J1 -+ X and u2: J2 -+ X be two integral curves of 
the vector field r on X ,  with the same initial condition X O .  Then u1 and 
u2 are equal on J1 n J2. 

Proof: Let J* be the set of points t such that q ( t )  = u2(t). Then J* 
certainly contains a neighborhood of 0 by the local uniqueness theorem. 
Furthermore, since X is Hausdorff, we see that J*  is closed. We must 
show that it is open. Let t* be in J* and define PI, B2 near 0 by 

Then p 1  and p2 are integral curves of r with initial condition ul( t*)  and 
u2(t*) respectively, so by the local uniqueness theorem, B1 and /I2 agree in 
a neighborhood of 0 and thus a ] ,  u2 agree in a neighborhood of t*, 
thereby proving our theorem. 

It follows from Theorem 2.1 that the union of the domains of all 
integral curves of r with a given initial condition xo is an open interval 
which we denote by J(x0). Its end points are denoted by t f ( xo )  and 
t-(xo) respectively. (We do not exclude +co and -00.) 

Let D(t) be the subset of R x X consisting of all points ( t ,  x) such that 

t - (x )  < t < t f ( x ) .  
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A (global) flow for r is a mapping 

u :  a(<) -+ x, 
such that for each x E X ,  the map u,: J ( x )  -+ X given by 

ux(t) = 4 4  x )  

defined on the open interval J ( x )  is a morphism and is an integral curve 
for r with initial condition x.  When we select a chart at a point xo of X, 
then one sees at once that this definition of flow coincides with the 
definition we gave locally in the previous section, for the local repre- 
sentation of our vector field. 

Given a point x E X and a number t, we say that t x  is defined if ( t ,  x )  is 
in the domain of u, and we denote u(t, x )  by t x  in that case. 

Theorem 2.2. Let 5 be a vector field on X ,  and u its flows. Let x be a 
point of X .  I f  to lies in J ( x ) ,  then 

J(t0X) = J ( x )  - to 

(translation of J ( x )  by -to), and we have for all t in J ( x )  - to: 

t( fox) = ( t  + f 0 ) X .  

Proof: Our first assertion follows immediately from the maximality 
assumption concerning the domains of the integral curves. The second is 
equivalent to saying that the two curves given by the left-hand side and 
right-hand side of the last equality are equal. They are both integral 
curves for the vector field, with initial condition tox and must therefore be 
equal. 

In particular, if tl ,  t2 are two numbers such that t lx  is defined and 
t2(tlx) is also defined, then so is (tl + t2)x and they are equal. 

Theorem 2.3. Let r be a vector field on X ,  and x a point of X .  Assume 
that t'(x) < 00. Given a compact set A c X, there exists E > 0 such that 
for all t > t+(x) - E ,  the point tx  does not lie in A,  and similarly for t-. 

Proof: Suppose such E does not exist. Then we can find a sequence tn 
of real numbers approaching t f ( x )  from below, such that tnx lies in A. 
Since A is compact, taking a subsequence if necessary, we may assume 
that tnx converges to a point in A .  By the local existence theorem, there 
exists a neighborhood U of this point y and a number 6 > 0 such that 
t+(z) > 6 for all Z E  U .  Taking n large, we have 

t ' (X)  < 6 + tn  

t 
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and tnx is in U, Then by Theorem 2.2, 

contradiction. 

Corollary 2.4. If X is compact, and < is a vector field on X ,  then 

a(<) = R x X .  

It is also useful to give one other criterion when a(<) = R x X, even 
when X is not compact. Such a criterion must involve some structure 
stronger than the differentiable structure (essentially a metric of some sort), 
because we can always dig holes in a compact manifold by taking away a 
point. 

Proposition 2.5. Let E be a Banach space, and X an E-manifold. Let < 
be a vector field on X .  Assume that there exist numbers a > 0 and K > 0 
such that every point x of X admits a chart ( U ,  q) at x such that the 
local representation f of the vector field on this chart is bounded by K, 
and so is its derivative f ' .  Assume also that qU contains a ball of radius 
a around qx. Then a(() = R x X .  

ProoJ: This follows at once from the global continuation theorem, and 
the uniformity of Proposition 1.1. 

We shall prove finally that a(() is open and that a is a morphism. 

Theorem 2.6. Let ( be a vector field of class CP-' on the CP-manifold 
X (2 5 p 5 co). Then a(<) is open in R x X, and the Jlow a for < is a 
CP-'-morphism. 

ProoJ Let first p be an integer 2 2. Let xo E X .  Let J *  be the set of 
points in J(x0) for which there exists a number b > 0 and an open 
neighborhood U of xo such that ( t  - b, t + b)  U is contained in a(<), and 
such that the restriction of the flow a to this product is a Cp-'-morphism. 
Then J* is open in J (xo ) ,  and certainly contains 0 by the local theorem. 
We must therefore show that J*  is closed in J(x0). 

Let s be in its closure. By the local theorem, we can select a 
neighborhood V of sxo = a(s, X O )  so that we have a unique local flow 

/3: J a x V - + X  

for some number a > 0, with initial condition p(0, x )  = x for all x E V ,  
and such that this local flow /3 is CP-'. 
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The integral curve with initial condition xo is certainly continuous on 
J(x0). Thus txo approaches sxo as t approaches s. Let VI be a given 
small neighborhood of sxo contained in V. By the definition of J* ,  we can 
find an element tl in J* very close to s, and a small number b (compared 
to a) and a small neighborhood U of xo such that a maps the product 

into V1, and is CP-' on this product. For t E J, + tl and x E U ,  we define 

Hence both q,, a, are integral curves for <, with the same value at t l .  
They coincide on any interval on which they are defined, so that q, is 
a continuation of a, to a bigger interval containing s. Since c1 is  CP-' on 
the product (tl - b, tl + b)  x U ,  we conclude that q is also CP-' on 
(Ja + t l )  x U .  From this we see that a(<) is open in R x X ,  and that a is 
of class CP-' on its full domain a(<). If p = co, then we can now 
conclude that a is of class C' for each positive integer r on a((), and 
hence is C"O, as desired. 

Corollary 2.7. For each t E R, the set of x E X such that ( t ,  x )  is 
contained in the domain a(() is open in X .  

Corollary 2.8. 
semicontinuous respectively. 

The functions t+(x) and t - ( x )  are upper and lower 

Theorem 2.9. Let < be a vector field on X and a its Jlow. Let at(<) be 
the set of points x of X such that ( t ,  x )  lies in a((). Then at(<) is open 
for each t E R, and at is an isomorphism of at(<) onto an open subset of 
X .  In fact, a,(Dt) = apt and a;' = apt. 

Proof: Immediate from the preceding theorem. 

Corollary 2.10. If xo is a point of X and t is in J(xo) ,  then there exists 
an open neighborhood U of xo such that t lies in J ( x )  for all x E U ,  and 

k 
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the map 
x H tx 

is an isomorphism of U onto an open neighborhood of txo. 

Critical points 

Let cf be a vector field. A critical point of is a point xo such that 
cf(x0) = 0. Critical points play a significant role in the study of vector 
fields, notably in the Morse theory. We don’t go into this here, but just 
make a few remarks to show at the basic level how they affect the 
behavior of integral curves. 

Proposition 2.11. If a is an integral curve of a C’ vector field, cf, and a 
passes through a critical point, then a is constant, that is a(t) = xo for 
all t. 

Proof The constant curve through xo is an integral curve for the vector 
field, and the uniqueness theorem shows that it is the only one. 

Some smoothness of the vector field in addition to continuity must be 
assumed for the uniqueness. For instance, the following picture illustrates 
a situation where the integral curves are not unique. They consist in 
translations of the curve y = x3 in the plane. The vector field is con- 
tinuous but not locally Lipschitz. 

Proposition 2.12. Let cf be a vector field and a an integral curve for cf. 
Assume that all t 2 0 are in the domain of a, and that 

lim a(?) = XI 
t-+o 

exists. Then x1 is a critical point for <, that is ((xi) = 0. 
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ProoJ Selecting r large, we may assume that we are dealing with the 
local representation f of the vector field near XI. Then for t’ > t large, we 
have 

Write f (a(.)) = f (XI) + g(u), where limg(u) = 0. Then 

where the sup is taken for u large, and heme for small values of g(u). 
Dividing by It’ - tl shows that f (XI) is arbitrarily small, hence equal to 0, 
as was to be shown. 

Proposition 2.13. Suppose on the other hand that xo is not a critical 
point of the vector field t. Then there exists u chart at xo such that the 
local representation of the vector field on this chart is constant. 

Proof In an arbitrary chart the vector field has a representation as a 
morphism 

<: U + E  

near XO. Let a be its flow. We wish to “straighten out” the integral curves 
of the vector field according to the next figure. 

P @ - F 

Px 

zo 

In other words, let v = <(xo). We want to find a local isomorphism v, at 
Xo such that 

v,’(x>v = cf(P(X)). 

We inspire ourselves from the picture. Without loss of generality, we may 
assume that xo = 0. Let Iz  be a functional such that A ( v )  # 0. We de- 
compose E as a direct sum 

E = F 8 Ru, 

CL 
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where F is the kernel of 1. Let P be the projection on F. We can write 
any x near 0 in the form 

x = Px + z(x)u, 

where 

We then bend the picture on the left to give the picture on the right using 
the flow a of r, namely we define 

This means that starting at Px, instead of going linearly in the direction of 
u for a time z ( x ) ,  we follow the flow (integral curve) for this amount of 
time. We find that 

Hence ~ ’ ( 0 )  = id, so by the inverse mapping theorem, v, is a local iso- 
morphism at 0. Furthermore, since Pu = 0 by definition, we have 

thus proving Proposition 2.13. 
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Second-order vector fields and differential equations 

Let X be a manifold of class CP with p 1 3 .  Then its tangent bundle 
T ( X )  is of class CP-’, and the tangent bundle of the tangent bundle 
T ( T ( x ) )  is of class CP-2, with p - 2 2 1. 

Let a:  J -, X be a curve of class Cq ( q  S p ) .  A lifting of a into T ( X )  
is a curve B: J -+ T ( X )  such that nB = a. We shall always deal with 
q 2 2 so that a lift will be assumed of class q - 1 2 1. Such lifts always 
exist, for instance the curve a’ discussed in the previous section, called the 
canonical lifting of a. 

A second-order vector field over X is a vector field F on the tangent 
bundle T ( X )  (of class CP-’) such that, if n: TX -+ X denotes the canoni- 
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cal projection of T ( X )  on X ,  then 

n* o F = id., that is n*F(u) = u for all u in T ( X ) .  

Observe that the succession of symbols makes sense, because 

n,: T T ( X )  -+ T ( X )  

maps the double tangent bundle into T ( X )  itself. 

A vector field F on T X  is a second-order vector field on X i f  and only if it 
satisfies the following condition : Each integral curue B of F is equal to the 
canonical lifting of $, in other words 

Here, nB is the canonical projection of p on X, and if we put the 
argument t ,  then our formula reads 

for all t in the domain of p. The proof is immediate from the definitions, 
because 

(np)’ = zJ?’ = n, o F o p  

We then use the fact that given a vector u E T X ,  there is an integral curve 
/3 = B, with &(O) = u (initial condition u ) .  

Let a:  J -, X be a curve in X, defined on an interval J. We define a to 
be a geodesic with respect to F if the curve 

a’: J + TX 

is an integral curve of F. Since nu‘ = a, that is a‘ lies above a in TX, we 
can express the geodesic condition equivalently by stating that a satisfies 
the relation 

a’’ = F(u’). 

This relation for curves a in X is called the second-order differential 
equation for the curve a, determined by F. Observe that by definition, if /3 
is an integral curve of F in TX, then nB is a geodesic for the second order 
vector field F. 

Next we shall give the representation of the second order vector field 
and of the integral curves in a chart. 
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Representation in charts 

Let U be open in the Banach space E, so that T ( U )  = U x E, and 
T ( T ( U ) )  = ( U  x E) x (E x E). Then 71: U x E + U is simply the pro- 
jection, and we have a commutative diagram: 

( U x E ) x ( E x E )  2 U x E  

I 
U x E  - u  

x 

The map n, on each fiber E x E is constant, and is simply the projection 
of E x E on the first factor E, that is 

Any vector field on U x E has a local representation 

f: U x E - E x E  

which has therefore two components, f = (fi, &), each f ,  mapping U x E 
into E. The next statement describes second order vector fields locally in 
the chart. 

Let U be open in the Banach space E, and let T ( U )  = U x E be the 
tangent bundle. A CP-2-morphism 

f: U x E + E x E  

is the local representation of a second order vector jield on U if and 
only if 

f ( x ,  0 )  = (0 ,  f2(x,  4). 

The above statement is merely making explicit the relation n,F = id, in 
the chart. If we write f = ( f i ,  f2), then we see that 

We express the above relations in terms of integral curves as follows. 
Let p = P(t)  be an integral curve for the vector field F on TX. In the 
chart, the curve has two components 

P ( t )  = ( x ( f ) ,  ~ ( t ) )  E U x E. 
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By definition, i f f  is the local representation of F, we must have 

9 = (- dx du ) = f ( x ,  u )  = ( u ,  f2(x,  u ) ) .  
dt dt ’ dt 

Consequently, our differential equation can be rewritten in the following 
manner: 

dx 
dt 
- = u(t) ,  

d 2 x  du 
dt2 dt 
-=-= f 2 ( 4  

which is of course familiar. 

Sprays 

We shall be interested in special kinds of second-order differential 
equations. Before we discuss these, we make a few technical remarks. 

Let s be a real number, and n: E -+ X be a vector bundle. If u is in E, 
so in Ex for some x in X ,  then su is again in Ex since Ex is a vector 
space. We write SE for the mapping of E into itself given by this scalar 
multiplication. This maping is in fact a VB-morphism, and even a VB- 
isomorphism if s # 0. Then 

is the usual induced map on the tangent bundle of E. 

satisfies the property 
Now let E = TX be the tangent bundle itself. Then our map s ~ x  

which follows from the linearity of STX on each fiber, and can also be seen 
directly from the representation on charts given below. 

We define a spray to be a second-order vector field which satisfies the 
homogeneous quadratic condition : 

SPR 1. For all s E R and u E T ( X ) ,  we have 

F(su) = (STX) * sF(u) 

It is immediate from the conditions defining sprays (second-order vector 
field satisfying SPR 1) that sprays form a convex set! Hence if we can 
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exhibit sprays over open subsets of Banach spaces, then we can glue them 
together by means of partitions of unity, and we obtain at once the 
following global existence theorem. 

Theorem 3.1. Let X be a manifold of class CP ( p  2 3). If X admits 
partitions of unity, then there exists a spray ouer X .  

Representations in a chart 

Let U be open in E, so that TU = U x E. Then 

T T U  = ( U  x E) x (E x E), 

and the representations of STU and ( S T U ) ,  in the chart are given by the 
maps 

S T U :  ( x ,  u )  H ( x ,  su) and (mu),: ( x ,  u, u, w) ++ ( x ,  su, u, sw). 

We may now give the local condition for a second-order vector field I; 
to be a spray. 

Proposition 3.2. In a chart U x E for  TX, let f :  U x E -+ E x E 
represent F, with f = ( f i ,  f 2 ) .  Then f represents a spray if and only if, 
for all s E R we have 

ProoJ: The proof follows at once from the definitions and the formula 
giving the chart representation of S(STX)*. 

Thus we see that the condition SPR 1 (in addition to being a second- 
order vector field), simply means that f 2  is homogeneous of degree 2 in the 
variable u.  By the remark in Chapter I, 93, it follows that f2 is a quadratic 
map in its second variable, and specifically, this quadratic map is given by 

Thus the spray is induced by a symmetric bilinear map given at each point 
x in a chart by 

B ( x )  = 4 @ f 2 ( X ,  0). 
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Conversely, suppose given a morphism 

U -+ L&(E, E) given by x H B(x)  

from U into the space of symmetric bilinear maps E x E -+ E. Thus for 
each u, w E E the value of B(x)  at (I), w )  is denoted by B ( x ;  u ,  w) or 
B(x)(u, w ) .  Define h ( x ,  u )  = B ( x ;  u,  u ) .  Then f2 is quadratic in its 
second variable, and the map f defined by 

represents a spray over U. We call B the symmetric bilinear map asso- 
ciated with the spray. From the local representations in (1) and (2), we 
conclude that a curue ct is a geodesic i f  and only if a satisfies the differential 
equation 

(3) ct”(t) = ~ @ ( ~ ) ( a ’ ( t ) ,  a’( t ) )  for all t .  

We recall the trivial fact from linear algebra that the bilinear map B is 
determined purely algebraically from the quadratic map, by the formula 

We have suppressed the x from the notation to focus on the relevant 
second variable u. Thus the quadratic map and the symmetric bilinear 
map determine each other uniquely. 

The above discussion has been local, over an open set U in a Banach 
space. In Proposition 3.4 and the subsequent discussion of connections, we 
show how to globalize the bilinear map B intrinsically on the manifold. 

Examples. As a trivial special case, we can always take h ( x ,  u )  = (0, 0) 

In the chapter on Riemannian metrics, we shall see how to construct a 

In the chapter on covariant derivatives we show how a spray gives rise 

to represent the second component of a spray in the chart. 

spray in a natural fashion, depending on the metric. 

to such derivatives. 

Next, let us give the transformation rule for a spray under a change of 
charts, i.e. an isomorphism h: U -+ V .  On TU, the map Th is represented 
by a morphism (its vector component) 

H :  U x E + E x E given by H ( x ,  u )  = (h (x ) ,  h’(x)u) 

We then have one further lift to the double tangent bundle TTU,  and we I 
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may represent the diagram of maps symbolically as follows: 

( H ,  H ’ )  (U x E) x (E x E) - ( V  x E)  x (E x E) 

V x E  H = (h, h’ l  U x E  

I 
V I h U 

Then the derivative H ’ ( x ,  v )  is given by the Jacobian matrix operating on 
column vectors ‘(u, w)  with u, w E E, namely 

h” (x) u h ’( x) 

0 
h ” (x) u h ’ (x) 

H ’ ( x ,  v )  = 

Thus the top map on elements in the diagram is given by 

(HI HI) :  (x, U ,  U, W )  ++ (h (x ) ,  h’(x)u, h’(x)u, h”(x) (u ,  u )  + h ’ ( x ) w ) .  

For the application, we put u = u because f i ( x ,  u )  = v ,  and w = fU ,2 (x ,  u) ,  
where fu and fv denote the representations of the spray over U and V 
respectively. It follows that fU and fv are related by the formula 

Therefore we obtain : 

Proposition 3.3. Change of variable formula for the quadratic part of a 
spray : 

fv ,2(4x) ,  h’(x)u) = h”(X)(V, u )  + h’(X)fU,2(XI v ) ,  

B ~ ( h ( x )  ; h’(x)v, ~ ’ ( x ) w )  = h”(x)(u, W )  + h’ (x )Bu(x;  U ,  w ) .  

Proposition 3.3 admits a converse : 

Proposition 3.4. Suppose we are given a covering of the manifold X by 
open sets corresponding to charts U, V ,  . . . , and for each U we are given 
a morphism 

Bu: U + L&(E, E) 

which transforms according to the formula of Proposition 3.3 under an 
isomorphism h: U + V .  Then there exists a unique spray whose asso- 
ciated bilinear map in the chart U is given by Bu. 
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Proof: We leave the verification to the reader. 

Remarks. Note that B u ( x ;  u,  w )  does not transform like a tensor of 
type Liym(E, E), i.e. a section of the bundle LiY,(TX, T X ) .  There are 
several ways of defining the bilinear map B intrinsically. One of them is 
via second order bundles, or bundles of second order jets, and to extend 
the terminology we have established previously to such bundles, and even 
higher order jet bundles involving higher derivatives, as in [Po 621. 
Another way will be done below, via connections. For our immediate 
purposes, it suffices to have the above discussion on second-order differ- 
ential equations together with Proposition 3.3 and 3.4. Sprays were in- 
troduced by Ambrose, Palais, and Singer [APS 601, and I used them (as 
recommended by Palais) in the earliest version [La 621. In [Lo 691 the 
bilinear map BU is expressed in terms of second order jets. The basics 
of differential topology and geometry were being established in the early 
sixties. Cf. the bibliographical notes from [Lo 691 at the end of his first 
chapter. 

Connections 

We now show how to define the bilinear map B intrinsically and directly. 
Matters will be clearer if we start with an arbitrary vector bundle 

p :  E - t X  

over a manifold X .  As it happens we also need the notion of a fiber 
bundle when the fibers are not necessarily vector spaces, so don’t have a 
linear structure. Let f: Y + X be a morphism. We say that f (or Y over 
X )  is a fiber bundle iff is surjective, and if each point x of X has an open 
neighborhood U, and there is some manifold 2 and an isomorphism 
h :  f-’(U) + U x 2 such that the following diagram is commutative: 

Thus locally, f: Y -+ X looks like the projection from a product space. 
The reason why we need a fiber bundle is that the tangent bundle 

ZE: T E + E  

is a vector bundle over E, but the composite f = p o ZE : TE + X is only 
a fiber bundle over X ,  a fact which is obvious by picking trivializations in 
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charts. Indeed, if U is a chart in X ,  and if U x F -+ U is a vector bundle 
chart for E, with fiber F ,  and Y = TE, then we have a natural iso- 
morphism of fiber bundles over U :  

f - ' ( U )  - (U x F) x (E x F) 

U x F  

Note that U being a chart in X implies that U x E -+ U is a vector bundle 
chart for the tangent bundle TU over U. 

The tangent bundle TE has two natural maps making it a vector 
bundle : 

ZE: TE .+ E is a vector bundle over E ; 

T ( p ) :  TE + ITX is a vector bundle over T X .  

Therefore we have a natural morphism of fiber bundle (not vector bundle) 
over X: 

( z ~ ,  T ( p ) ) :  TE + E 0 TX given by W H (ZE W ,  T ( p )  W )  

for W E TE. If W E T,E with e E Ex, then n~ W E Ex and T ( p )  W E T,X. 
After these preliminaries, we define a connection to be a morphism of 

fiber bundles over X, from the direct sum E 0 TX into TE: 

H :  E O T X - T E  

(ZE, T ( p ) )  OH=idE$TX, 
such that 

and such that H is bilinear, in other words H,: Ex 0 TxX -+ TE is 
bilinear. 

Consider a chart U as in the above diagram, so 

TU = U x E and T ( U  x F )  = ( U  x F) x (E x F). 

Then our map H has a coordinate representation 

H ( x ,  e, u )  = ( x ,  e, H l ( x ,  e ,  u ) ,  H2(x, e, u ) )  for e E F and u E E. 
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The bilinearity condition implies that for k e d  x ,  the map 

is bilinear as a map F x E + E. We shall therefore denote this map by 
B(x) ,  and we write in the chart 

H ( X ,  e, u )  = ( x ,  e, u, B(x) (e ,  u ) )  or also (x ,  e, u, ~ ( x ,  e, 0)). 

Now take the special case when E = TX.  We say that the connection 
is symmetric if the bilinear map B is symmetric. Suppose this is the case. 
We may define the corresponding quadratic map TX -+ TTX by letting 
f 2 ( x ,  u )  = B(x ,  v ,  0). Globally, this amounts to defining a morphkm 

F : TX + T TX such that F = H o diagonal 

where the diagonal is taken in TX 0 TX, in each fiber. Thus 

F(u)  = H(u,  u )  for u E TxX.  

Then F is a vector field on TX, and the condition (II*, II,) o H = id on 
TX 0 TX implies that F is a second-order vector field on X, in other 
words, F defines a spray. It is obvious that all sprays can be obtained in 
this fashion. Thus we have shown how to describe geometrically the 
bilinear map associated with a spray. 

Going back to the general case of a vector bundle E unrelated to TX, 
we note that the image of a connection H is a vector subbundle over E. 
Let V denote the kernel of the map T ( p ) :  TE + TX.  We leave it to the 
reader to verify in charts that V is a vector subbundle of TE over E, and 
that the image of H is a complementary subbundle. One calls V the 
vertical subbundle, canonically defined, and one calls H the horizontal 
subbundle determined by the connection. See Chapter X, $4. Also note 
that Eliasson [El 671 introduced connections in Banach manifolds, with a 
view to applications to manifolds of mappings. Cf. Kobayashi [KO 571, 
Dombrowski [Do 681, and Besse [Be 781 for more basic material on 
connections. 

IV, 54. THE FLOW OF A SPRAY AND 
THE EXPONENTIAL MAP 

The condition we have taken to define a spray is equivalent to other 
conditions concerning the integral curves of the second-order vector field 
F. We shall list these conditions systematically. We shall use the fol- 
lowing relation. If a:  J -+ X is a curve, and a1 is the curve defined by 



106 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS [Iv, $443 

q ( t )  = a(st) ,  then 
ai ( t )  = SCI’(St), 

this being the chain rule for differentiation. 
If u is a vector in TX, let P, be the unique integral curve of F with 

initial condition u (i.e. such that &(O) = u ) .  In the next three conditions, 
the sentence should begin with “for each u in TX”. 

SPR 2. A number t is in the domain of P,, if and only i f  st is in the 
domain of p, and then 

SPR 3. I f s ,  t are numbers, st is in the domain of P, i f  and only i f s  is in 
the domain of Pi,, and then 

SPR 4. A number t is in the domain of j3, if and only i f  1 is in the 
domain of Pi,, and then 

We shall now prove the equivalence between all four conditions. 
Assume SPR 1, and let s be fixed. For all t such that st is in the 

domain of P,, the curve &(st)  is defined and we have 

Hence the curve-sP,(st) is an integral curve for I;, with initial condition 
sP,(O) = su. By uniqueness we must have 

This proves SPR 2. 
Assume SPR 2. Since P, is an integral curve of I; for each u, with 

initial condition u, we have by definition 

&(O) = F(su). 

Using our assumption, we also have 
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Put t = 0. Then SPR 1 follows because P, and P, are integral curves of F 
with initial conditions su and u respectively. 

It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3. 
To prove SPR 2, we have 

which proves SPR 2. 
Assume SPR 4. Then st is in the domain of /3, if and only if 1 is in the 

domain of Psi,, and s is in the domain of Pro if and only if 1 is in the 
domain of Psru. This proves the first assertion of SPR 3, and again by 
SPR 4, assuming these relations, we get SPR 3. 

It is similarly clear that SPR 3 implies SPR 4. 

Next we consider further properties of the integral curves of a spray. 
Let F be a spray on X .  As above, we let P, be the integral curve with 
initial condition u. Let T, be the set of vectors u in T ( X )  such that /3, is 
defined at least on the interval [0, 11. We know from Corollary 2.7 that T, 
is an open set in T ( X ) ,  and by Theorem 2.6 the map 

is a morphism of T, into T ( X ) .  We now define the exponential map 

to be 

Then exp is a CP-2-morphism. We also call T, the domain of the ex- 
ponential map (associated with F ) .  

If x E X and 0, denotes the zero vector in T,, then from SPR 1, taking 
s = 0, we see that F(0,) = 0. Hence 

exp (0,) = x. 

Thus our exponential map coincides with n on the zero cross section, and 
so induces an isomorphism of the cross section onto X.  It will be 
convenient to denote the zero cross section of a vector bundle E over X by 
CE(X) or simply CX if the reference to E is clear. Here, E is the tangent 
bundle. 

We denote by exp, the restriction of exp to the tangent space T,. Thus 

exp,: T x +  X .  I 
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Theorem 4.1. Let X be a manifold and F a spray on X. Then 

exp,: T, + X 

induces a local isomorphism at Ox, and in fact (exp,), is the identity at 
OX. 

ProoJ We prove the second assertion first because the main assertion 
follows from it by the inverse mapping theorem. Furthermore, since T, is 
a vector space, it suffices to determine the derivative of exp, on rays, in 
other words, to determine the derivative with respect to t of a curve 
exp,(tu). This is done by using SPR 3, and we find 

Evaluating this at t = 0 and taking into account that P, has w as initial 
condition for any w gives us 

This concludes the proof of Theorem 4.1. 

Helgason gave a general formula for the differential of the exponential 
map on analytic manifolds [He 611, reproduced in [He 781, Chapter I, 
Theorem 6.5. We shall study the differential of the exponential map in 
connection with Jacobi fields, in Chapter IX, 52. 

Next we describe all geodesics. 

Proposition 4.2. The images of straight segments through the origin in 
T,, under the exponential map exp,, are geodesics. In other words, if 
u E T, and we let 

a(u, t) = cr,(t) = exp,(tu), 

then a, is a geodesic. Conuersely, let a:  J + X be a C2 geodesic defined 
on an interval J containing 0, and such that a(0) = x.  Let a'(0) = u. 
Then a(t) = exp,(tu). 

Prooj The first statement by definition means that a: is an integral 
curve of the spray F. Indeed, by the SPR conditions, we know that 

@(U, t) = au(t) = nBtu(1) = nP"(4, 

and (np,)'=/3, is indeed an integral curve of the spray. Thus our as- 
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sertion that the curves t H exp(tu) are geodesics is obvious from the 
definition of the exponential map and the SPR conditions. 

Conversely, given a geodesic a:  J -+ X, by definition a' satisfies the 
differential equation 

a"(t) = F(a'(t)). 

The two curves t H a(t) and t H expx(tu) satisfy the same differential 
equation and have the same initial conditions, so the two curves are 
equal. This proves the second statement and concludes the proof of the 
proposition. 

Remark. From the theorem, we note that a C' curve in X is a geodesic 
if and only if, after a linear reparametrization of its interval of definition, 
it is simply t H exp,(tu) for some x and some u. 

We call the map (u ,  t) H u(u, t) the geodesic flow on X .  It is defined on 
an open subset of TX x R, with a(u, 0) = x if u E TxX. Note that since 
n(sP,(t)) = q?,(t) for s E R, we obtain from SPR 2 the property 

a(su, t) = a(u, st) 

for the geodesic flow. Precisely, t is in the domain of am if and only if st is 
in the domain of a,, and in that case the formula holds. As a slightly 
more precise version of Theorem 4.1 in this light, we obtain: 

Corollary 4.3. Let F be a spray on X, and let xo E X. There exists an 
open neighborhood U of XO, and an open neighborhood V of 0, in TX 
satisfying the following condition. For every x E U and u E V n T,X, 
there exists a unique geodesic 

a,: (-2, 2) + x 
such that 

aU(0) = x and a:(O) = u. 

Observe that in a chart, we may pick V as a product 

V = U x V2(0) c U x E 

where V2(0) is a neighborhood of 0 in E. Then the geodesic flow is 
defined on U x V2(0) x J ,  where J = (-2, 2). We picked (-2, 2) for 
concreteness. What we really want is that 0 and 1 lie in the interval. Any 
bounded interval J containing 0 and 1 could have been selected in the 
statement of the corollary. Then of course, U and V (or Vz(0)) depend 
on J.  
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IV, 55. EXISTENCE OF TUBULAR NEIGHBORHOODS 

Let X be a submanifold of a manifold Y. A tubular neighborhood of X in 
Y consists of a vector bundle n: E -+ X over X ,  an open neighborhood Z 
of the zero section [EX in E, and an isomorphism 

f :  z + u  

of 2 onto an open set in Y containing X ,  which commutes with [: 

z 

[I\ 
x-Y 

i 
We shall call f the tubular map and 2 or its image f(2) the corresponding 
tube (in E or Y respectively). The bottom map j is simply the inclusion. 
We could obviously assume that it is an embedding and define tubular 
neighborhoods for embeddings in the same way. We shall say that our 
tubular neighborhood is total if 2 = E.  In this section, we investigate 
conditions under which such neighborhoods exist. We shall consider the 
uniqueness problem in the next section. 

Theorem 5.1. Let Y be of class CP ( p  2 3) and admit partitions of unity. 
Let X be a closed submanifold. Then there exists a tubular neighborhood 
of X in Y, of class cpp2 .  

ProoJ: Consider the exact sequence of tangent bundles: 

0 -+ T ( X )  + T (  Y)IX + N ( X )  -+ 0. 

We know that this sequence splits, and thus there exists some splitting 

T (  Y)IX = T ( X )  @ N ( X )  

where N ( X )  may be identified with a subbundle of T(Y)IX. Following 
Palais, we construct a spray < on T (  Y )  using Theorem 3.1 and obtain 
the corresponding exponential map. We shall use its restriction to N ( X ) ,  
denoted by exp(N. Thus 

exp(N: DnN(X)  -+ Y 

We contend that this map is a local isomorphism. To prove this, we may 
work locally. Corresponding to the submanifold, we have a product 
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decomposition U = U1 x U2, with X = Ul x 0. If U is open in E, then we 
may take U1, U2 open in F1, F2 respectively. Then the injection of N ( X )  
in T(Y)IX may be represented locally by an exact sequence 

and the inclusion of T(Y)IX in T ( Y )  is simply the inclusion 

We work at the point (XI, 0) in U1 x F2. We must compute the derivative 
of the composite map 

at ( X I ,  0). We can do this by the formula for the partial derivatives. Since 
the exponential map coincides with the projection on the zero cross 
section, its “horizontal” partial derivative is the identity. By Theorem 4.1 
we know that its “vertical” derivative is also the identity. Let 

$ = O u, 

(where 
(w1, w2) in F1 x F2 we get 

is simply y followed by the inclusion). Then for any vector 

where yx,  is the linear map given by y on the fiber over XI. By hypothesis, 
we know that F1 x F2 is the direct sum of F1 x 0 and of the image of p,,. 
This proves that D$(xl, 0) is a toplinear isomorphism, and in fact proves 
that the exponential map restricted to a normal bundle is a local iso- 
morphism on the zero cross section. 

We have thus shown that there exists a vector bundle E + X ,  an open 
neighborhood 2 of the zero section in E, and a mapping f: 2 + Y 
which, for each x in is a local isomorphism at x. We must show that 
2 can be shrunk so that f restricts to an isomorphism. To do this we 
follow Godement ([God 581, p. 150). We can find a locally finite open 
covering of X by open sets Ui in Y such that, for each i we have inverse 
isomorphisms 

A: Zi + Ui and g i :  U i + Z i  

between Ui and open sets Zi in 2, such that each Z i  contains a point x of 
X ,  such that A, g i  are the identity on X (viewed as a subset of both Z and 
Y )  and such that A is the restriction off to Zi. We now find a locally 



112 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS [IV, $61 

finite covering { 6 )  of X by open sets of Y such that E. c Ui, and let 
Y = u Vi. We let W be the subset of elements y E Y such that, if y lies in 
an intersection E. n 6, then gi(y) = gj(y) .  Then W certainly contains X .  
We contend that W contains an open subset containing X .  

Let X E X .  There exists an open neighborhood G, of x in Y which 
meets only a finite number of E, say El, . . . , E,. Taking G, small enough, 
we can assume that x lies in each one of these, and that G, is contained in 
each one of the sets uil,. . . , oi,. Since x lies in each E.,,. . . , E,, it is 
contained in U i l , .  . . , U ,  and our maps g i l , .  . . , gi, take the same value at x ,  
namely x itself. Using the fact that A,, . . . , Ar are restrictions off, we see 
at once that our finite number of maps g i , ,  . . . , gi, must agree on G, if we 
take G, small enough. 

Let G be the union of the G,. Then G is open, and we can define a map 

g :  G +  g (G)  c Z  

by taking g equal to gi on G n  K. Then g(G) is open in Z, and the 
restriction off to g (  G )  is an inverse for g .  This proves that f, g are inverse 
isomorphisms on G and g(G) ,  and concludes the proof of the theorem. 

A vector bundle E + X will be said to be compressible if, given an 
open neighborhood Z of the zero section, there exists an isomorphism 

p: E+Z1 

of E with an open subset Z1 of Z containing the zero section, which 
commutes with the projection on X :  

A 

It is clear that if a bundle is compressible, and if we have a tubular 
neighborhood defined on Z ,  then we can get a total tubular neighborhood 
defined on E. We shall see in the chapter on Riemannian metrics that 
certain types of vector bundles are compressible (Hilbert bundles, assuming 
that the base manifold admits partitions of unity). 

IV, 56. UNIQUENESS OF TUBULAR NEIGHBORHOODS 

Let X, Y be two manifolds, and F :  R x X -+ Y a morphism. We shall 
say that F is an isotopy (of embeddings) if it satisfies. the following 
conditions. First, for each t E R, the map Ft given by &(x) = F ( t ,  x )  is an 
embedding. Second, there exist numbers to < tl such that Ft = Fto for all 
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t 5 to and F,, = F, for all t 2 t l .  We then say that the interval [to, t l]  is a 
proper domain for the isotopy, and the constant embeddings on the left 
and right will also be denoted by F-, and I;+, respectively. We say that 
two embeddings f :  X + Y and g :  X + Y are isotopic if there exists an 
isotopy Ft as above such that f = Fto and g = F,, (notation as above). We 
write f z g for f isotopic to g .  

Using translations of intervals, and multiplication by scalars, we can 
always transform an isotopy to a new one whose proper domain is 
contained in the interval (0,l). Furthermore, the relation of isotopy 
between embeddings is an equivalence relation. It is obviously symmetric 
and reflexive, and for transitivity, suppose f x g and g % h. We can 
choose the ranges of these isotopies so that the first one ends and stays 
constant at g before the second starts moving. Thus it is clear how to 
compose isotopies in this case. 

If so < s1 are two numbers, and r~ : R -+ R is a function (morphism) 
such that a(s) = to for s 5 SO and ~ ( s )  = tl for s 2 s1, and a is monotone 
increasing, then from a given isotopy Ft we obtain another one, 
G, = F,(,). Such a function r~ can be used to smooth out a piece of isotopy 
given only on a closed interval. 

Remark. We shall frequently use the following trivial fact: If 
f , :  X + Y is an isotopy, and if g :  X I  + X and h: Y + Y1 are two 
embeddings, then the composite map 

hf ,g:  Xl + Yl 
is also an isotopy. 

Let Y be a manifold and X a submanifold. Let z: E + X be a vector 
bundle, and Z an open neighborhood of the zero section. An isotopy 
f , :  Z + Y of open embeddings such that each f, is a tubular neigh- 
borhood of X will be called an isotopy of tubular neighborhoods. In what 
follows, the domain will usually be all of E. 

Proposition 6.1. Let X be a manifold. Let n: E + X and z l :  El + X 
be two vector bundles over X .  Let 

f :  E+E1 

be a tubular neighborhood of X in El (identifying X with its zero section 
in El). Then there exists an isotopy 

f,: E - E l  

with proper domain [0, 11 such that f1 = f and fo is a VB-isomorphism. 
( I f f ,  n, n1 are of class CP then ft can be chosen of class CP-'.) 

c 
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Proof: We define F by the formula 

Ft(e) = t-'f (te) 

for t # O  and eE E. Then Ft is an embedding 
of embeddings (the scalar multiplications by t, 
isomorphism). 

We must investigate what happens at t = 0. 

since it is composed 
t-I are in fact VB- 

Given e E E ,  we find an osn neighborhood Ul of ne over which 
El admits a trivialization Ul x El. We then find a still smaller open 
neighborhood U of ne and an open ball B around 0 in the typical fiber E 
of E such that E admits a trivialization U x E over U, and such that the 
representation f off  on U x B (contained in U x E) maps U x B into 
Ul x El. This is possible by continuity. On U x B we can represent f by 
two morphisms, 

and p(x, 0) = x while $(x, 0) = 0. Observe that for all t sufficiently small, 
te is contained in U x B (in the local representation). 

We can represent F1 locally on U x B as the mapping 

The map v, is then a morphism in the three variables x, u, and t even at 
t=0 .  The second component of Ft can be written 

t- '$(x, tu) = t-I D ~ + ( x ,  stu) . (tv) ds 

and thus t-I cancels t to yield simply 

This is a morphism in t, even at t = 0. Furthermore, for t = 0, we obtain 

Since f was originally assumed to be an embedding, it follows that 
Dq+(x, 0) is a toplinear isomorphism, and therefore FO is a VB- 
isomorphism. To get our isotopy in standard form, we can use a function 
a: R -+ R such that a(t) = 0 for t 5 0 and a( t )  = 1 for t 2 1, and a is 
monotone increasing. This proves our proposition. 
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Theorem 6.2. Let X be a submanifold of Y.  Let 

x :  E-+ X and x1: El -+X 

be two vector bundles, and assume that E is compressible. Let 
f :  E -+ Y and g :  El -+ Y be two tubular neighborhoods of X in Y.  
Then there exists a Cp-'-isotopy 

f,: E + Y  

of tubular neighborhoods with proper domain [0,1] and a VB-isomorphism 
A: E -+ El such that f, = f and fo = gil. 

ProoJ: We observe that f ( E )  and g(E1) are open neighborhoods of X 
in Y. Let U = f - ' (  f ( E )  n g(E1)) and let p: E -+ U be a compression. 
Let $ be the composite map 

$ = ( f  I U )  o p. Then + is a tubular neighborhood, and $(E)  is contained 
in g(El). Therefore g-'$: E -+ El is a tubular neighborhood of the same 
type considered in the previous proposition. There exists an isotopy of 
tubular neighborhoods of X :  

Gt: E -+ El 

such that GI = g-l+ and GO is a VB-isomorphism. Considering the 
isotopy gGt, we find an isotopy of tubular neighborhoods 

$ t :  E- ,  Y 

such that t,b1 = $ and $o = g o  where w :  E -+ El is a VB-isomorphism. 
We have thus shown that $ and gw are isotopic (by an isotopy of tubular 
neighborhoods). Similarly, we see that + and fp are isotopic for some 
VB-isomorphism 

p :  E -+ E. 

Consequently, adjusting the proper domains of our isotopies suitably, we 
get an isotopy of tubular neighborhoods going from g o  to f p ,  say Ft. 
Then Ftp-' will give us the desired isotopy from gwp-' tof,  and we can 
put il = wp-l to conclude the proof. 

(By the way, the uniqueness proof did not use the existence theorem for 
differential equations.) 

i 



CHAPTER V 

Operations on Vector Fields 
and Differential Forms 

If E -+ X is a vector bundle, then it is of considerable interest to 
investigate the special operation derived from the functor “multilinear 
alternating forms.” Applying it to the tangent bundle, we call the sections 
of our new bundle differential forms. One can define formally certain 
relations between functions, vector fields, and differential forms which lie 
at the foundations of differential and Riemannian geometry. We shall give 
the basic system surrounding such forms. In order to have at least one 
application, we discuss the fundamental 2-form, and in the next chapter 
connect it with Riemannian metrics in order to construct canonically the 
spray associated with such a metric. 

We assume throughout that our manifolds are Hausdorff, and suf€i- 
ciently differentiable so that all of our statements make sense. 

V, 91. VECTOR FIELDS, DIFFERENTIAL OPERATORS, 
BRACKETS 

Let X be a manifold of class Cp and v, a function defined on an open set 
U, that is a morphism 

9: U + R .  

Let t be a vector field of class Cp-’. Recall that 

Txp: Tx( U )  + Tx(R) = R 

is a continuous linear map. With it, we shall define a new function to be 
denoted by t v ,  or <.v,, or t(v,). (There will be no confusion with this 
notation and composition of mappings.) 
116 
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Proposition 1.1. There exists a unique function <v, on U of class CP-’ 
such that 

( tv , ) (x)  = ( T X d t ( 4 .  

If U is open in the Banach space E and < denotes the local representation 
of the vector field on U, then 

Proof: The first formula certainly defines a mapping of U into R. The 
local formula defines a Cp-’-morphism on U. It follows at once from 
the definitions that the first formula expresses invariantly in terms of the 
tangent bundle the same mapping as the second. Thus it allows us to 
define tv, as a morphism globally, as desired. 

Let FuP denote the ring of functions (of class Cp). Then our operation 
v, w tv, gives rise to a linear map 

8,: FuP(U) + FuP-’(U), defined by = 59. 

A mapping a:  R + S  

from a ring R into an R-algebra S is called a derivation if it satisfies the 
usual formalism: Linearity, and a(ab) = d ( b )  + a(a)b.  

Proposition 1.2. Let X be a manifold and U open in X .  Let t be a 
vector field over X. If a, = 0, then < ( x )  = 0 for all x E U .  Each a, is a 
derivation of FuP( U )  into FuP-’ ( U ) .  

Proof: Suppose t ( x )  # 0 for some x.  We work with the local rep- 
resentations, and take v, to be a continuous linear map of E into R such 
that v,( t (x))  # 0, by Hahn-Banach. Then v,’(y) = q~ for all y E U ,  and we 
see that v,’(x)<(x) # 0, thus proving the first assertion. The second is 
obvious from the local formula. 

From Proposition 1.2 we deduce that if two vector fields induce the 

Given two vector fields <, r , ~  on X ,  we shall now define a new vector 
same differential operator on the functions, then they are equal. 

field [t, q] ,  called their bracket product. 

Proposition 1.3. Let t, q be two vectorfields of class CP-’ on X. Then 
there exists a unique vector field [t, r , ~ ]  of class CP-* such that for each 
open set U and function v, on U we have 
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If U is open in E and t, 
fields, then [t, 71 is given by the local formula 

are the local representations of the vector 

Thus the local representation of [t, 44 is given by 

Proof: By Proposition 1.2, any vector field having the desired effect on 
functions is uniquely determined. We check that the local formula gives us 
this effect locally. Differentiating formally, we have (using the law for the 
derivative of a product): 

( r d t  - (td‘r = ( V ’ d ’ t  - (4th 
= q’q’t + q/’?/q - q’t’q - q y r .  

The terms involving q” must be understood correctly. For instance, the 
first such term at a point x is simply q ’ ’ ( x ) ( q ( x ) , t ( x ) )  remembering that 
q”(x )  is a bilinear map, and can thus be evaluated at the two vectors ~ ( x )  
and < ( x ) .  However, we know that q”(x )  is symmetric. Hence the two 
terms involving the second derivative of q cancel, and give us our formula. 

Corollary 1.4. The bracket [t, 4 is bilinear in both arguments, we have 
[t, 571 = -[q, <I,  and Jacobi’s identity 

In other words, for each t the map 
to the Lie product (q, r )  H [q, ( 1 .  

- [t, q] is a derivation with respect 

If q is a function, then 

Proof: The first two assertions are obvious. The third comes from the 
definition of the bracket. We apply the vector field on the left of the 
equality to a function q. All the terms cancel out (the reader will write 
it out as well or better than the author). The last two formulas are 
immediate. 

We make some comments concerning the functoriality of vector fields. 
Let 

f :  X - r Y  

be an isomorphism. Let < be a vector field over X.  Then we obtain an 
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induced vector field f * t  over Y, defined by the formula 

It is the vector field making the following diagram commutative: 

‘IY TX d TY 

x - Y  
f 

We shall also write f * for ( f - ’ ) *  when applied to a vector field. Thus we 
have the formulas 

Iff is not an isomorphism, then one cannot in general define the direct 
or inverse image of a vector field as done above. However, let t be a 
vector field over X, and let q be a vector field over Y. If for each x E X 
we have 

T f  (W) = r ( f  (4) 7 

then we shall say that f maps t into 7, or that t and q are f-related. If this 
is the case, then we may denote by f , <  the map from f ( X )  into TY 
defined by the above formula. 

Let tl,  t2 be vector fiela% over X, and let ql,  q2 be vector fields over Y. If 
ti is f-related to qi for i = 1, 2 then as maps on f ( X )  we have 

We may write suggestively the formula in the form 

Of course, this is meaningless in general, since f , t l  may not be a vector 
field on Y. When f is an isomorphism, then it is a correct formulation of 
the other formula. In any case, it suggests the correct formula. 

To prove the formula, we work with the local representations, when 
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X = U is open in E, and Y = V is open in F. Then ti, qi are maps of U, 
V into the spaces E, F respectively. For x E X we have 

On the other hand, by assumption, we have 

Since f''(x) is symmetric, two terms cancel, and the remaining two terms 
give the same value as (2])(x), as was to be shown. 

The bracket between vector fields gives an infinitesimal criterion for 
commutativity in various contexts. We give here one theorem of a general 
nature as an example of this phenomenon. 

Theorem 1.5. Let t, 0 be vector fields on X, and assume that [t, 4 = 0. 
Let a and /3 be the flows for t and 0 respectively. Then for real values t,  
s we have 

at 0Bs = Bs 0 at. 

Or in other words, for any x E X we have 

in the sense that iffor some value o f t  a value of s is in the domain of one 
of these expressions, then it is in the domain of the other and the two 
expressions are equal. 

Proof: For 
and left-hand 
namely at ( x )  . 

a fixed value of t ,  the two curves in s given by the right- 
side of the last formula have the same initial condition, 
The curve on the right 
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is by definition the integral curve of q. The curve on the left 

s a(t ,  B(s, 4) 
is the image under at of the integral curve for 0 having initial condition x. 
Since x is fixed, let us denote B(s, x) simply by b(s ) .  What we must show 
is that the two curves on the right and on the left satisfy the same 
differential equation. 

In the above figure, we see that the flow at shoves the curve on the left to 
the curve on the right. We must compute the tangent vectors to the curve 
on the right. We have 

d 
- cls ( Q t ( B ( 4 ) )  = D2a(t, B(s))B'(s) 

= D 2 4  B ( S > ) 0 ( B ( S ) ) -  

Now fix s, and denote this last expression by F ( t ) .  We must show that if 

then 

We have trivially F(0)  = G(O), in other words the curves F and G have the 
same initial condition. On the other hand, 

Hence we see that our two curves F and G satisfy the same differential 
equation, whence they are equal. This proves our theorem. 
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Vector fields t, q such that [c, q] = 0 are said to commute. One can 
generalize the process of straightening out vector fields to a finite number 
of commuting vector fields, using the same method of proof, using 
Theorem 1.5. As another application, one can prove that if the Lie 
algebra of a connected Lie group is commutative, then the group is 
commutative. Cf. the section on Lie groups. 

V, 92. LIE DERIVATIVE 

Let A be a differentiable functor on Banach spaces. For convenience, take 
I to be covariant and in one variable. What we shall say in the rest of this 
section would hold in the same way (with slightly more involved notation) 
if I had several variables and were covariant in some and contravariant in 
others. 

Given a manifold X, we can take A ( T ( X ) ) .  It is a vector bundle over 
X, which we denote by T l ( X )  as in Chapter 111. Its sections TA(X) are the 
tensor fields of type I .  

Let < be a vector field on X, and U open in X. It is then possible to 
associate with c a map 

(with a loss of two derivatives). This is done as follows. 
Given a point x of U and a local flow a for ( at x, we have for each t 

sufficiently small a local isomorphism at in a neighborhood of our point 
x. Recall that locally, a;’ = a+ If q is a tensor field of type A, then the 
composite mapping q o at has its range in Tl(X) .  Finally, we can take the 
tangent map T(aWt) = (Q), to return to TA(X)  in the fiber above x.  We 
thus obtain a composite map 

which is a morphism, locally at x .  We take its derivative with respect to t 
and evaluate it at 0. After looking at the situation locally in a triviali- 
zation of T ( X )  and T A ( X )  at x, one sees that the map one obtains gives a 
section of Ti( U ) ,  that is a tensor field of type I over U. This is our map 
9t. To summarize, 

This map 9 t  is called the Lie derivative. We shall determine the Lie 
derivative on functions and on vector fields in terms of notions already 
discussed. 

LIE DERIVATIVE 123 [v, @I 

First let q~ be a function. Then by the general definition, the Lie 
derivative of this function with respect to the vector field ( with flow a is 
defined to be 

or in other words, 

Our assertion is then that 

To prove this, let 

Then 

because a is a flow for (. Using the initial condition at t = 0, we find that 

which is precisely the value of ((p at x ,  thus proving our assertion. 

If [, q are vector jiekh, then 

As before, let a be a flow for c. The Lie derivative is given by 

Letting ( and q denote the local representations of the vector fields, we 
note that the local representation of ( a t q ) ( x )  is given by 
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We must therefore compute P ( t ) ,  and then F‘(0) .  Using the chain rule, 
the formula for the derivative of a product, and the differential equation 
satisfied by D2a, we obtain 

Putting t = 0 proves our formula, taking into account the initial conditions 

a(0, x )  = x and D p ( 0 ,  x )  = id. 

V, 93. EXTERIOR DERIVATIVE 

Let X be a manifold. The functor Li (r-multilinear continuous alternating 
forms) extends to arbitrary vector bundles, and in particular, to the 
tangent bundle of X.  A differential form of degree r, or simply an r-form 
on X ,  is a section of LA(T(X)) ,  that is a tensor field of type LA. If X is 
of class CP, forms will be assumed to be of a suitable class Cs with 
1 5 s 5 p - 1. The set of differential forms of degree r will be denoted by 
d r ( X )  (d for alternating). It is not only a vector space over R but a 
module over the ring of functions on X (of the appropriate order of 
differentiability). If o is an r-form, then o ( x )  is an element of Li (Tx(X) ) ,  
and is thus an r-multilinear alternating form of Tx(X)  into R. We 
sometimes denote o ( x )  by ox. 

Suppose U is open in the Banach space E .  Then LA(T( U ) )  is equal to 
U x LA(E) and a differential form is entirely described by the projection 
on the second factor, which we call its local representation, following our 
general system (Chapter 111, $4). Such a local representation is therefore a 
morphism 

o: U+L, ‘ (E) .  

Let o be in LA(E) and u 1 , .  . . , ur elements of E. We denote the value 
o ( u ~ ,  . . . , O r )  also by 

(m,  u1 x . . . x ur) .  

Similarly, let t l , .  . . , tr be vector fields on an open set U, and let w be an 
r-form on X .  We denote by 

(a, tl x * . .  x t r )  

the mapping from U into R whose value at a point x in U is 

( ~ ( x ) ,  tl ( x )  x * * * x t r ( x ) ) -  
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Looking at the situation locally on an open set U such that T(  U )  is trivial, 
we see at once that this mapping is a morphism (i.e. a function on U )  of 
the same degree of differentiability as w and the ti. 

! Proposition 3.1. Let xo be a point of X and o an r-form on X .  If 

is equal to 0 for all vector fiela3 < I , .  . . , t, at xo (i.e. defined on some 
neighborhood of xo), then o(x0)  = 0. 

ProoJ: Considering things locally in terms of their local representations, 

vectors (u1, . . . , O r ) .  We can take vector fields at xo which take on these 
values at xo and from this our assertion is obvious. 

I we see that if o(x0)  is not 0, then it does not vanish at some r-tuple of 

It is convenient to agree that a differential form of degree 0 is a 
function. In the next proposition, we describe the exterior derivative of an 
r-form, and it is convenient to describe this situation separately in the case 
of functions. 

Therefore let f :  X -t R be a function. For each x E X, the tangent 
map 

Txf :  Tx(X) --+ Tf(x)(R) = R 

is a continuous linear map, and looking at local representations shows 
at once that the collection of such maps defines a 1-form which will be 
denoted by df. Furthermore, from the definition of the operation of vector 
fields on functions, it is clear that df is the unique 1-form such that for 
every vector field t we have 

To extend the definition of d to forms of higher degree, we recall that if 

o: U+LL(E)  

is the local representation of an r-form over an open set U of E, then for 
each x in U, 

o ’ ( x ) :  E + LL(E) 

is a continuous linear map. Applied to a vector u in E,  it therefore gives 
rise to an r-form on E .  

Proposition 3.2. Let o be an r-form of class CP-’ on X .  Then there 
exists a unique ( r+  l)-form do on X of class CP-2 such that, for any 

L 
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If furthermore U is open in E and w, to , .  . . , tr are the local repre- 
sentations of the form and the vector jields respectively, then at a point x 
the value of the expression above is equal to 

Proof: As before, we observe that the local formula defines a differ- 
ential form. If we can prove that it gives the same thing as the first 
formulas, which is expressed invariantly, then we can globalize it, and we 
are done. Let us denote by S1 and S2 the two sums occurring in the 
invariant expression, and let L be the local expression. We must show that 
S1 + S2 = L. We consider S1, and apply the definition of ti operating on 
a function locally, as in Proposition 1.1, at a point x. We obtain 

The derivative is perhaps best computed by going back to the definition. 
Applying this definition directly, and discarding second order terms, we 
find that S1 is equal to 

i j < i  

Of these there sums, the first one is the local formula L. As for the 
other two, permutingj and i in the first, and moving the term { i (x ) t i (x )  to 
the first position, we see that they combine to give (symbolically) 
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(evaluated at x) .  Using Proposition 1.3, we see that this combination is 
equal to 4 2 .  This proves that S1 + S2 = L, as desired. 

We call do the exterior derivative of w. Leaving out the order of 
differentiability for simplicity, we see that d is an R-linear map 

d :  d r ( X )  --t d r + ’ ( X ) .  

We now look into the multiplicative properties of d with respect to the 
wedge product. 

Let o, $ be continuous multilinear alternating forms of degree r and s 
respectively on the Banach space E. In multilinear algebra, one defines 
their wedge product as an (r  + s)-continuous multilinear alternating form, 
by the formula 

the sum being taken over all permutations CJ of ( 1 , .  . . , r + s). This 
definition extends at once to differential forms on a manifold, if we view it 
as giving the value for o A $ at a point x. The ui are then elements of the 
tangent space T,, and considering the local representations shows at once 
that the wedge product so defined gives a morphism of the manifold X 
into L;+’(T(X)), and is therefore a differential form. 

Remark. The coefficient l/r! s! is not universally taken to define the 
wedge product. Some people, e.g. [He 781 and [KoN 631, take l / (r  + s) !, 
which causes constants to appear later. I have taken the same factor as 
[AbM 781 and [GHL 87/93]. I recommend that the reader check out the 
case with r = s = 1 so r + s = 2 to see how a factor 4 comes in. With 
either convention, the wedge product between forms is associative, so 
with some care, one can carry out a consistent theory with either conven- 
tion. I leave the proof of associativity to the reader. It follows by induc- 
tion that if 0 1 , .  . . ,om are forms of degrees r l , .  . . ,rm respectively, and 
r = r1 + . . . + r,, then 

where 

and where the sum is taken over all permutations of (1,. . . , r ) .  
i 
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If we regard functions on X as differential forms of degree 0, then the 
ordinary product of a function by a differential form can be viewed as the 
wedge product. Thus iff  is a function and w a differential form, then 

f w =  f A m .  

(The form on the left has the value f ( x )w(x )  at x.) 

forms. 
The next proposition gives us more formulas concerning differential 

Proposition 3.3. Let w, $ be differential forms on X. Then 

EXD 1. d ( o  A $) = d o  A $ + (-l)deg(o)w A d$. 

EXD 2. d d o  = 0 (with enough differentiability, say p 2 4). 

Proof: This is a simple formal exercise in the use of the local formula 
for the local representation of the exterior derivative. We leave it to the 
reader. 

When the manifold is finite dimensional, then one can give a local 
representation for differential forms and the exterior derivative in terms of 
local coordinates, which are especially useful in integration which fits the 
notation better. We shall therefore carry out this local formulation in full. 
It dates back to Cartan [Ca 281. There is in addition a theoretical point 
which needs clarifying. We shall use at first the wedge A in two senses. 
One sense is defined as above, giving rise to Proposition 3.3. Another 
sense will come from Theorem A. We shall comment on their relation 
after Theorem B. 

We recall first two simple results from linear (or rather multilinear) 
algebra. We use the notation E(') = E x E x ... x E, r times. 

Theorem A. Let E be a finite dimensional vector space over the reals of 
dimension n. For each positive integer r with 1 5 r n there exists a 
vector space A ' E  and a multilinear alternating map 

E(') + A ' E  

denoted by (u1, . . . , u,) H u1 A . . . A ur, having the following property: 
If { V I ,  . . . , v,}  is a basis of E, then the elements 

{vi ,  A . . -  A vi ,} ,  il < i2 < ... < ir, 

form a basis of A ' E .  

We recall that alternating means that u1 A . . . A ur = 0 if ui= uj for 
some i # j .  We call A' E the r-th alternating product (or exterior product) 
on E. If r = 0, we define A" = R. Elements of A ' E  which can be 
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written in the form u1 A . . . A ur are called decomposable. Such elements 
generate A ' E .  If r > dim E, we define A ' E  = (0) .  

Theorem B. For each pair of positive integers (r, s), there exists a unique 
product (bilinear map) 

such that if ~ 1 , .  . . ,ur, W I ,  . . . , W ,  E E then 

This product is associative. 

The proofs for these two statements can be found, for instance, in my 
Linear Algebra. 

Let EV be the dual space, EV = L(E,  R). If E = R" and 11,. . . , I n  are 
the coordinate functions, then each 1i is an element of the dual space, and 
in fact (11, . . . ,A,} is a basis of this dual space. Let E = R". There is an 
isomorphism 

given in the following manner. If 91, . . . , gr E E 
the value 

det (gi  ( v j ) )  

and v 1 , .  . . , v ,  E E, then 

is multilinear alternating both as a function of ( g l , .  . . , 9,) and ( ~ 1 , .  . . ,or). 
Thus it induces a pairing 

A ' E V  x E' + R 

A r E V  + LL(E, R). 
and a map 

This map is the isomorphism mentioned above. Using bases, it is easy to 
verify that it is an isomorphism (at the level of elementary algebra). 

Thus in the finite dimensional case, we may identify L;(E, R) with the 
alternating product A T E V ,  and consequently we may view the local 
representation of a differential form of degree r to be a map 

w :  U + I \ ' E V  

from U into the rth alternating product of EV . We say that the form is of 



130 OPERATIONS ON VECTOR FIELDS 

class CP if the map is of class CP. (We view A r E v  as a normed vector 
space, using any norm. It does not matter which, since all norms on a 
finite dimensional vector space are equivalent.) The wedge product as we 
gave it, valid in the infinite dimensional case, is compatible with the wedge 
product and the isomorphism of A r E  with LL(E, R) given above. If we 
had taken a different convention for the wedge product of alternating 
forms, then a constant would have appeared in front of the above 
determinant to establish the above identification (e.g. the constant 1 in the 
2 x 2 case). 

Since (11 , .  . . , A,} is a basis of EV , we can express each differential 
form in terms of its coordinate functions with respect to the basis 

namely for each X E  U we have 

where hi) = is a function on U. Each such function has the same 
order of differentiability as o. We call the preceding expression the 
standard form of o. We say that a form is decomposable if it can be 
written as just one term f(x)Ai,  A . - .  A Ail .  Every differential form is a 
sum of decomposable ones. 

We agree to the convention that functions are differential forms of 
degree 0. 

As before, the differential forms on U of given degree r form a vector 
space, denoted by d r ( U ) .  

Let E = R". Let f be a function on U. For each x E U the derivative 

f ' ( x ) :  R" + R 

is a linear map, and thus an element of the dual space. Thus 

f': U + E V  

represents a differential form of degree 1, which is usually denoted by df. 
I f f  is of class CP, then df is class CP-'. 

Let Ai be the i-th coordinate function. Then we know that 

for each x E U because A'(x) = A  for any continuous linear map A. 
Whenever {XI,. . . , xn} are used systematically for the coordinates. of a 
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point in R", it is customary in the literature to use the notation 

This is slightly incorrect, but is useful in formal computations. We shall 
also use it in this book on occasions. Similarly, we also write (incorrectly) 

instead of the correct 

In terms of coordinates, the map df (or f') is given by 

where Di f ( x )  = a f / a x i  is the i-th partial derivative. This is simply a 
restatement of the fact that if h = (hl,  . . . , hn) is a vector, then 

Thus in old notation, we have 

We shall develop the theory of the alternating product and the exterior 
derivative directly without assuming Propositions 3.2 or 3.3 in the finite 
dimensional case. 

Let w and $ be forms of degrees r and s respectively, on the open set 
U. For each x E U we can then take the alternating product o ( x )  A $ ( x )  
and we define the alternating product o A $ by 

(It is an exercise to verify that this product corresponds to the product 
defined previously before Proposition 3.3 under the isomorphism between 
L,'(E, R) and the r-th alternating product in the finite dimensional case.) 
I f f  is a differential form of degree 0, that is a function, then we have 
again 

f A m =  fa, 
hi 
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where ( f o ) ( x )  = f ( x ) o ( x ) .  By definition, we then have 

O h  f $ =  f o r \ $ .  

We shall now define the exterior derivative d o  for any differential form 
o. We have already done it for functions. We shall do it in general first 
in terms of coordinates, and then show that there is a characterization 
independent of these coordinates. If 

Example. Suppose n = 2 and o is a 1-form, given in terms of the two 
coordinates (x, y )  by 

=af dy A dx+- ag  dx A dy 
aY ax 

= (g-2) dy A dx 

because the terms involving dx A dx and dy A dy are equal to 0. 

Proposition 3.4. The map d is linear, and satisfies 

d ( o  A $) = d o  A $ + (-l)ro A d$ 

if r = deg o. The map d is uniquely determined by these properties, and 
by the fact that for a function f, we have df = f ' .  

ProoJ: The linearity of d is obvious. Hence it suffices to prove the 
formula for decomposable forms. We note that for any function f we have 

d ( f o )  =d f  A o+ f d o .  

Indeed, if o is a function g, then from the derivative of a product we get 
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where g is a function, then 

d(  f 0) = d( fg  dli, A * * * A dli,) = d(  f g )  A dli, A . . . A dli, 

= ( f  dg + g d f )  A dli, A . . . A dlir 

= f d o + d f  A w l  

as desired. Now suppose that 

w = f dli, A . . . A dAi, and $ = g dl,, A . A dljS 

= fc3, = g$1 

with il < . . . < ir and j1 < . . . < j ,  as usual. If some iv = jp ,  then from the 
definitions we see that the expressions on both sides of the equality in the 
theorem are equal to 0. Hence we may assume that the sets of indices 
ii, . . . , ir and j l ,  . . . , j ,  have no element in common. Then d(c3 A 6) = 0 by 
definition, and 

d ( o  A $) = d(fgc3 A $) = d( fg )  A c3 A $ 
= (gd f  + f dg) A 6 A $ 
= d o  A $+ f dg A 6 A $ 
= d ~ ~ $ + ( - l ) ' f 6 ~ d g ~ $  

= d o  A $ + (-l)ro A d$, 

thus proving the desired formula, in the present case. (We used the fact 
that dg A c3 = (-l)'c3 A dg whose proof is left to the reader.) The 
formula in the general case follows because any differential form can be 
expressed as a sum of forms of the type just considered, and one can then 
use the bilinearity of the product. Finally, d is uniquely determined by the 
formula, and its effect on functions, because any differential form is a sum 
of forms of type f d l i  A . . . A dli, and the formula gives an expression of 
d in terms of its effect on forms of lower degree. By induction, if the value 
of d on functions is known, its value can then be determined on forms of 
degree 2 1. This proves our assertion. 

Proposition 3.5. Let o be a form of class C2. Then ddo = 0. 

L 
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Proof: I f f  is a function, then 

and 

Using the fact that the partials commute, and the fact that for any two 
positive integers r, s we have dx, A dx, = -dx, A dx,, we see that the 
preceding double sum is equal to 0. A similar argument shows that the 
theorem is true for 1-forms, of type g(x)  dxi where g is a function, and 
thus for all 1-forms by linearity. We proceed by induction. It suffices to 
prove the formula in general for decomposable forms. Let w be decom- 
posable of degree r, and write 

where deg $ = 1. Using the formula for the derivative of an alternating 
product twice, and the fact that dd$ = 0 and ddq = 0 by induction, we see 
at once that ddw = 0, as was to be shown. 

We conclude this section by giving some properties of the pull-back 
of forms. As we saw at the end of Chapter 111, $4, if f: X + Y is a 
morphism and if w is a differential form on Y, then we get a differential 
form f*(w) on X, which is given at a point X E  X by the formula 

if w is of degree r. This holds for r 2 1. The corresponding local 
representation formula reads 

if < I , .  . . , t, are vector fields. 
In the case of a 0-form, that is a function, its pull-back is simply the 

composite function. In other words, if v, is a function on Y, viewed as a 
form of degree 0, then 

It is clear that the pull-back is linear, and satisfies the following properties. 
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Property 1. I f w ,  $ are two dixerential forms on Y, then 

Property 2. If w is a differential form on Y, then 

df *(a) = f * ( d w ) .  

Property 3. I f f :  X + Y and g :  Y + Z are two morphisms, and w is 
a differential form on Z, then 

Finally, in the case of forms of degree 0: 

Property 4. I f f :  X + Y is a morphism, and g is a function on Y, then 

and at a point x E X, the value of this l-form is given by 

The verifications are all easy, and even trivial, except possibly for 
Property 2. We shall give the proof of Property 2 in the finite dimensional 
case and leave the general case to the reader. 

For a form of degree 1, say 

4 Y )  = g ( Y )  dYl, 

with y 1  = f l ( x ) ,  we find 

Using the fact that ddfi = 0, together with Proposition 3.4 we get 

which is equal to the preceding expression. Any 1-form can be expressed 
as a linear combination of form gi dyi, so that our assertion is proved for 
forms of degree 1. 

The general formula can now be proved by induction. Using the 
linearity of f *, we may assume that w is expressed as w = $ A 7 where $, 
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y have lower degree. We apply 

O N  VECTOR FIELDS 

Proposition 3.3 and Property 1 to 

f * d o  = f *(d$ A y) + ( - l ) r f  *($ A dy)  

and we see at once that this is equal to d f * o ,  because by induction, 
f * d$ = df *$ and f * dy = df *y. This proves Property 2. 

Example 1. Let y l , .  . . , ym be the coordinates on V, and let pj be the 
jth coordinate function, j = 1,. . . ,m, so that yj  = p j ( y l , .  . . , y m ) .  Let 

f :  U + V  

be the map with coordinate functions 

If 

is a differential form on V, then 

I f * o =  ( g o  f )  dJl A ... A d f .  I 
Indeed, we have for x E U : 

( f * o > ( x )  = g ( f ( x > )  ( ~ j l o  f ’ ( x ) )  A * .  * A (pjs 0 f ’ ( x ) )  

f i ( x )  = (pj 0 f ) ’ ( x )  = pj 0 f ’ ( x )  = dfi(x). 
and 

Example 2. Let f :  [a, b] --+ R2 be a map from an interval into the 
plane, and let x, y be the coordinates of the plane. Let t be the coordinate 
in [a, b]. A differential form in the plane can be written in the form 

where g ,  h are functions. Then by definition, 

if we write f ( t )  = ( x ( t ) ,  y ( t ) ) .  Let G = (9, h)  be the vector field whose 
components are g and h. Then we can write 

137 THE PO IN CAR^ LEMMA [v, Wl 

which is essentially the expression which is integrated when defining the 
integral of a vector field along a curve. 

Example 3. Let U, V be both open sets in n-space, and let f :  U -+ V 
be a CP map. If 

4~) = g(y )  d ~ l  A * * A dyn, 

where yj = f i ( x )  is the j-th coordinate of y ,  then 

and consequently, expanding out the alternating product according to the 
usual multilinear and alternating rules, we find that 

f *o(x)  = g (  f (x ) )Ay(x)  dxl A * * . A dxn, 

where Af  is the determinant of the Jacobian matrix off.  

V, 94. THE POINCARE LEMMA 

If o is a differential form on a manifold and is such that d o  = 0, then it is 
customary to say that o is closed. If there exists a form $ such that 
o = d$, then one says that o is exact. We shall now prove that locally, 
every closed form is exact. 

Theorem 4.1 (PoincarB Lemma). Let U be an open ball in E and let o 
be a diferential form of degree 2 1 on U such that d o  = 0. Then there 
exists a diferential form $ on U such that d$ = o. 

ProoJ We shall construct a linear map k from the r-forms to the 
(r - 1)-forms (r 2 1 )  such that 

dk i kd = id. 

From this relation, it will follow that whenever d o  = 0, then 

d k o  = o, 

thereby proving our proposition. We may assume that the center of the 
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ball is the origin. If w is an r-form, then we define k o  by the formula 

We can assume that we deal with local representations and that ui E E. 
We have 

= C ( - l ) ' + ' ( ( k ~ ) ' ( x ) u j ,  01 x x iji x x 0,) 
i= 1 

+ x ( - l ) i + l  J' t ' (o'(tx)ui,  x x 01 x . x Bi x . .. x u,) dt. 
0 

On the other hand, we also have 

( (kdo)(X) ,  ~1 x x u,) 
r l  

t'(do(X), x x ~1 x * * *  x u,) dt 
= Jo 

We observe that the second terms in the expressions for k d o  and d k o  
occur with opposite signs and cancel when we take the sum. As to the 
first terms, if we shift ui to the i-th place in the expression for dkw, then 
we get an extra coefficient of (-I)'+'. n u s  

rtr-l ( o ( t x ) ,  0 1  x . . . x 0,) dt 

1 + t ' ( w ' ( t X ) X ,  UI x * * *  x u,) dt. 
J O  

This last integral is simply the integral of the derivative with respect to 
t of 

(t 'o(tx),  u1 x . . * x u,). 
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Evaluating this expression between t = 0 and t = 1 yields 

(w(x) ,  u1 x . * '  x u,) 

which proves the theorem. 

We observe that we could have taken our open set U to be star-shaped 
instead of an open ball. For more information on the relationship between 
closed and exact forms, see Chapter XIII, $1. 

V, 95. CONTRACTIONS AND LIE DERIVATIVE 

Let l be a vector field and let o be an r-form on a manifold X ,  r 2 1. 
Then we can define an ( r  - 1)-form C p  by the formula 

(C,o)(x)(v2,...,ur) = o(t(~),  u2,...,ur), 

for u2,  . . . , ur E T,. Using local representations shows at once that C p  has 
the appropriate order of differentiability (the minimum of w and t). We 
call C p  the contraction of w by <, and also denote Ctw by 

Iff is a function, we define C, f = 0. Leaving out the order of differ- 
entiability, we see that contraction gives an R-linear map 

c,: d ' ( X )  --+ d r - l ( X ) .  

This operation of contraction satisfies the following properties. 

CON 1. C ~ O  Cc = 0. 

CON 2. The association (t, o) H C,w = o o < is bilinear. It is in fact 
bilinear with respect to functions, that is $9 is a function, then 

Cvt = qCg and C,(qw) = qCp. 

CON 3. I f  w, $ are differential forms and r = deg w, then 

c,(O A $) = (c$O) A $ + (-1),U A c($. 

These three properties follow at once from the definitions. 

Example. Let X = R", and let 

o(x) = dxl A ... A dx,. 
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If < is a vector field on R”, then we have the local representation 

We also have immediately from the definition of the exterior derivative, 

letting t = ( t l ,  . . . , t,) in terms of its components ti. 

We can define the Lie derivative of an r-form as we did before for 
vector fields. Namely, we shall evaluate the following limit: 

or in other words, 

dt 

where a is the flow of the vector field t, and we call Yt the Lie derivative 
again, applied to the differential form w. We may rewrite this definition in 
terms of the value on vector fields tl, . . . , tr as follows : 

Proposition 5.1. Let < be a vector field and w a diferential form of 
degree r 2 1. The Lie derivative 9 t  is a derivation, in the sense that 

where of course 6e,ti = [t, ti]. 
If t, ti, o denote the local representations of the vector fields and 

the form respectively, then the Lie derivative 9p has the. local 
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representation 

Proof The proof is routine using the definitions. The lirst assertion 
is obvious by the definition of the pull back of a form. For the local 
expression we actually derive more, namely we derive a local expression 

for a:w and - a t o  which are characterized by their values at ( < I ,  . . . , tr). 
So we let 

d 
dt 

Then the Lie derivative ( Y p ) ( x )  is precisely F’(O), but we obtain also 
d 
dt 

the local representation for -atw: 

by the rule for the derivative of a product. Putting t = 0 and using the 
differential equation satisfied by &a(t, x ) ,  we get precisely the local 
expression as stated in the proposition. Remember the initial condition 
D2a(O, x) = id. 

From Proposition 5.1, we conclude that the Lie derivative gives an 
R-linear map 

Yt: d ‘ ( X )  + d ‘ ( X ) .  

We may use expressions ( 1 )  and (3) in the above proof to derive a formula 
which holds even more generally for time-dependent vector fields. 

L 
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Proposition 5.2. Let tt be a time-dependent vector jield, a its $ow, and 
let o be a diferential form. Then 

for a time-independent vector jield. 

Prooj Proposition 5.1 gives us a local expression for (Y t ,o ) (y ) ,  re- 
placing x by y because we shall now put y = a(t ,  x ) .  On the other hand, 
from (1) in the proof of Proposition 5.1, we obtain 

Substituting the local expression for (Y t ,o ) (y ) ,  we get expression (3) from 
the proof of Proposition 5.1, thereby proving Proposition 5.2. 

Proposition 5.3. As a map on diferential forms, the Lie derivative 
satisfies the following properties. 

LIE 1. Yc = d o  Ct + Cc o d, so Yt = Ct o d on functions. 

LIE 2. Y ~ ( c o A $ ) = Y ~ A $ + o A Y ~ $ .  

LIE 3. Yc commutes with d and Ct. 

LIE 4. Y[C,,] = 6"r 0 9, - 9, 0 Yf. 

LIE 5. c[c,v] = Yt 0 c, - c, 0 Yt. 

LIE 6. Yfyo= f - Y t o + d f  A C p  for all forms o and functions f. 

Prooj Let < I , .  . . , <, be vector fields, and o an r-form. Using the 
definition of the contraction and the local formula of Proposition 5.1, we 
find that Ct d o  is given locally by 
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To compute ( C p ) ' ( x )  is easy, going back to the definition of the 
derivative. At vectors vl ,  . . . , vr-l, the form C p ( x )  has the value 

Differentiating this last expression with respect to x and evaluating at a 
vector h we get 

Hence ( d C p ( x ) ,  <1(x) x x t r ( X ) )  is equal to 

Shifting t ' (x)&(x)  to the i-th place in the second sum contributes a sign of 
which gives 1 when multiplied by (-1)"'. Adding the two local 

representations for d C p  and C, do, we find precisely the expression of 
Proposition 5.1, thus proving LIE 1. 

As for LIE 2, it consists in using the derivation rule for d and Ct 
in Proposition 3.3, EXD 1, and CON 3. The corresponding rule for 
2~ follows at once. (Terms will cancel just the right way.) The other 
properties are then clear. 

V, 56. VECTOR FIELDS AND 1-FORMS 
UNDER SELF DUALITY 

Let E be a Banach space and let 

be a continuous bilinear function of E x E --$ R. We call such a function 
a bilinear form. This form induced a linear map 

which to each U E E  associates the functional 1, such that 

We have a similar map on the other side. If both these mappings are 
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toplinear isomorphisms of E and E" then we say that the bilinear form is 
non-singular. If such a non-singular form exists, then we say that E is self- 
dual. For instance, a Hilbert space is self-dual. 

If E is finite dimensional, it suflices for a bilinear form to be non- 
singular that its kernels on the right and on the left be 0. (The kernels are 
the kernels of the associated maps A as above.) However, in the infinite 
dimensional case, this condition on the kernels is not sufficient any more. 

Let E be a self dual Banach space with respect to the non-singular form 
( u ,  w) H (u, w), and let 

R: E x E + R  

be a continuous bilinear map. There exists a unique operator A such that 

R(U, w) = (Au, w) 

for all u, w E E. (An operator is a continuous linear map by definition.) 

Remarks. Suppose that the form (0, w) H (u ,  w) is symmetric, i.e. 

for all u, w E E. Then R is symmetric (resp. alternating) if and only if A is 
symmetric (resp. skew-symmetric). Recall that A symmetric (with respect 
to ( ,  ) )  means that 

(Au, w) = ( u ,  Aw) for all u, w E E. 

That A is skew-symmetric means that (Au, w) = -(Aw, w) for all u, w E E. 
For any operator A:  E -+ E there is another operator 'A (the transpose of 
A with respect to the non-singular form ( , )) such that for all u, w E E we 
have 

(Au, w) = ( u ,  'Aw). 

Thus A is symmetric (resp. skew-symmetric) if and only if 'A = A  (resp. 
'A = -A) .  

The above remarks apply to any continuous bilinear form R. For 
invertibility, we have the criterion : 

The form R is non-singular if and only if the operator A representing the 
form with respect to ( ,  ) is inuertible. 

The easy verification is left to the reader. Of course, in the finite di- 
mensional case, invertibility or non-singularity can be checked by verifying 
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that the matrix representing the linear map with respect to bases has non- 
zero determinant. Similarly, the form is also represented by a matrix with 
respect to a choice of bases, and its being non-singular is equivalent to the 
matrix representing the form being invertible. 

We recall that the set of invertible operators in Laut(E) is an open 
subset. Alternatively, the set of non-singular bilinear forms on E is an 
open subset of L2(E). 

We may now globalize these notions to a vector bundle (and eventually 
especially to the tangent bundle) as follows. 

Let X be a manifold, and a: E --+ X a vector bundle over X with fibers 
which are toplinearly isomorphic to E, or as we shall also say, modeled on 
E. Let R be a tensor field of type L2 on E, that is to say, a section of the 
bundle L2(E)  (or L2(n)) ,  or as we shall also say, a bilinear tensor field on 
E. Then for each X E X ,  we have a continuous bilinear form R, on Ex. 

If R, is non-singular for each x E X then we say that R is non-singular. 
If a is trivial, and we have a trivalisation X x E, then the local repre- 
sentation of R can be described by a morphism of X into the Banach 
space of operators. If R is non-singular, then the image of this morphism 
is contained in the open set of invertible operators. (If R is a 2-form, this 
image is contained in the submanifold of skew-symmetric operators.) For 
example, in a chart U, we can represent R over U by a morphism 

such that A:  U + L(E, E) Rx(u, w )  = (Axu, w )  

for all u, w EE.  Here we wrote A, instead of A ( x )  to simplify the 

A non-singular R as above can be used to establish a linear 
typography. 

isomorphism 

T ( E )  + TL' ( E ) ,  also denoted by TL(E)  or TE" , 

between the R-vector spaces of sections T ( E )  of E and the 1-forms on E in 
the following manner. Let ( be a section of E. For each x E X we define 
a continuous linear map 

Looking at local trivialisations of n, we see at once that R o ( is a 1-form 
on E. 

Conversely, let o be a given 1-form on E. For each XEX, ox is 
therefore a 1-form on Ex and since R is non-singular, there exists a unique 
element t(x) of Ex such that 
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for all w E Ex. In this fashion, we obtain a mapping < of X into E and we 
contend that t is a morphism (and therefore a section). 

To prove our contention we can look at the local representations. We 
use R and co to denote these. They are represented over a suitable open 
set U by two morphisms 

A :  U+Aut(E) and q: U + E  
such that 

&(v, w) = 

From this we see that 

from which it is clear 
discussion as follows. 

t(x) = A;'v(x),  

that 5 is a morphism. We may summarize our 

Proposition 6.1. Let X be a manifold and n: E + X a vector bundle 
over X modeled on E. Let R be a non-singular bilinear tensor jield on E. 
Then R induces an isomorphism of Fu(X)-modules 

T E  --+ TE" 

A section 5 corresponds to a l-form w i f  and only if $2 o 5 = o. 

In many applications, one takes the differential form to be df for some 
function$ The vector field corresponding to df is then called the gradient 
off with respect to R. 

Remark. There is no universally accepted notation to denote the 
correspondence between a 1-form and a vector field under R as above. 
Some authors use sharps and flats, which have two disadvantages. First, 
they do not provide a symbols for the mapping, and second they do not 
contain the R in the notation. I would propose the check sign Vn to 
denote either isomorphism 

Vn: T L ( E )  + T E  

and also 

denoted on elements by o H Vno = w v  = 5, 

Vn: T E  --+ T L ( E )  denoted on elements by 4 H VnT = t" = or. 

If R is fixed throughout a discussion and need not be referred to, then it 
is useful to write t" or 1" in some formulas. We have Vn o Va = id. 
Instead of the sharp and flat superscript, I prefer the single " sign. 
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Many important applications of the above duality occur when R is a 
non-singular symmetric bilinear tensor field on the tangent bundle TX. 
Such a tensor field is then usually denoted by g .  If t, q are vector fields, 
we may then define their scalar product to be the function 

On the other hand, by the duality of Proposition 6.1, if i.e. o, 1 are 
1-forms, i.e. sections of the dual bundle T V  X, then o" and 1" are vector 
fields, and we define the scalar product of the 1-forms to be 

This duality is especially important for Riemannian metrics, as in Chapter 
X. 

The rest of this section will not be used in the book. 
In Proposition 6.1, we dealt with a quite general non-singular bilinear 

tensor field on E. We now specialize to the case when E = TX is the 
tangent bundle of X, and R is a 2-form7 i.e. R is alternating. A pair 
( X ,  R) consisting of a manifold and a non-singular closed 2-form is called 
a symplectic manifold. (Recall that closed means d R  = 0.) 

We denote by t, 7 vector fields over X ,  and by f, h functions on X, 
so that df, dh are 1-forms. We let tdf be the vector field on X which 
corresponds to df under the 2-form R, according to Proposition 6.1. 
Vector fields on X which are of type tdf are called Hamiltonian (with 
respect to the 2-form). More generally, we denote by <, the vector field 
corresponding to a 1-form o. By definition we have the formula 

n 1. R o t, = o so in particular R o tq = d f .  

In Chapter VII, $6 we shall consider a particularly important example, 
when the base manifold is the cotangent bundle; the function is the kinetic 
energy 

K(o)  = ; (0 ,  4 ,  

with respect to the scalar product g of a Riemannian or pseudo Rie- 
mannian metric, and the 2-form R arises canonically from the pseudo 
Riemannian metric. 

In general, by LIE 1 of Proposition 5.3 formula nl, and the fact that 
d R  = 0, we find for any 1-form o that: 

n 2. 9tmC2 = d o .  

The next proposition reinterprets this formula in terms of the flow when 
d o  = 0. 
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Proposition 6.2. Let o be such that d o  = 0. Let u be the flow of t,. 
Then utR = R for all t (in the domain of the flow). 

ProoJ By Proposition 5.2, 

d 
-a:R = ut9tmR = 0 by R 2. dt 

Hence U P S Z  is constant, equal to a,&? = R, as was to be shown. 

A special case of Proposition 6.2 in Hamiltonian mechanics is when 
o = dh for some function h. Next by LIE 5, we obtain for any vector 
fields t, q :  

9dn O tl) = (9@) O v +  O It, tll. 
In particular, since ddf = 0, we get 

One defines the Poisson bracket between two functions f, h to be 

{ f  7 h) = t d f  ' h .  

Then the preceding formula may be rewritten in the form 

It follows immediately from the deftnitions and the antisymmetry of the 
ordinary bracket between vector fields that the Poisson bracket is also 
antisymmetric, namely 

{ f  7 h) = -{h,  f ). 

In particular, we find that 
t d f  ' f = 0. 

In the case of the cotangent bundle with a symplectic 2-form as in the next 
section, physicists think of f as an energy function, and interpret this 
formula as a law of conservation of energy. The formula expresses the 
property that f is constant on the integral curves of the vector field t d f .  
This property follows at once from the deftnition of the Lie derivative of a 
function. Furthermore : 

Proposition 6.3. If (df . h = 0 then tdh . f = 0. 

This is immediate from the antisymmetry of the Poisson bracket. It 
is interpreted as conservation of momentum in the physical theory of 
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Hamiltonian mechanics, when one deals with the canonical 2-form on the 
cotangent bundle, to be defined in the next section. 

V, 57. THE CANONICAL 2-FORM 

Consider the functor E H L(E) (continuous linear forms). If E 4 X is a 
vector bundle, then L(E)  will be called the dual bundle, and will be 
denoted by EV . For each x E X ,  the fiber of the dual bundle is simply 

If E = T ( X )  is the tangent bundle, then its dual is denoted by T" ( X )  
and is called the cotangent bundle. Its elements are called cotangent 
vectors. The fiber of T " ( X )  over a point x of X is denoted by T," ( X ) .  
For each x E X we have a pairing 

L(EX). 

for A E T," and u E T, (it is the value of the linear form A at u).  
We shall now describe how to construct a canonical 1-form on the 

cotangent bundle T " ( X ) .  For each A E T " ( X )  we must define a 1-form 
on Tn(T"(X) ) .  

Let n: T V  ( X )  + X be the canonical projection. Then the induced 
tangent map 

Tn = a: T(T" ( X ) )  + T ( X )  

can be applied to an element z of T,(T" ( X ) )  and one sees at once that 
az lies in T,(X) if A lies in T,"(X).  Thus we can take the pairing 

to define a map (which is obviously continuous linear): 

0,: Tn(T"(X) )  + R. 

Proposition 7.1. This map dejines a l-form on T"  ( X ) .  Let X = U be 
open in E and 

T V ( U )  = U x E " ,  T ( T V ( U ) )  = ( U  x E") x ( E  x E " ) .  

If (x, A) E U x EV and (u, o) E E x E", then the local representation 
B ( , q  is given by 

@ ( X , A ) ,  (u ,w) )  = 44. 
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Proof: We observe that the projection n: U x EV + U is linear, and 
hence that its derivative at each point is constant, equal to the projection 
on the first factor. Our formula is then an immediate consequence of the 
definition. The local formula shows that 8 is in fact a 1-form locally, and 
therefore globally since it has an invariant description. 

Our 1-form is called the canonical 1-form on the cotangent bundle. We 
define the canonical 2-form R on the cotangent bundle T V X  to be 

R = -do. 

The next proposition gives a local description of R, 

Proposition 7.2. Let U be open in E, and let R be the local 
representation of the canonical 2-form on T U = U x EV . Let 
(x, A) E U x E V .  Let (u1, 01)  and (2.42, 02) be elements of E x E". 
Then 

Prooj We observe that 8 is linear, and thus that 8' is constant. We 
then apply the local formula for the exterior derivative, given in Pro- 
position 3.2. Our assertion becomes obvious. 

The canonical 2-form plays a fundamental role in Lagrangian and 
Hamiltonian mechanics, cf. [AbM 781, Chapter 3, $3. I have taken the 
sign of the canonical 2-form both so that its value is a 2 x 2 determinant, 
and so that it fits with, for instance, [LoS 681 and [AbM 781. We observe 
that R is closed, that is d R  = 0, because R = -do. Thus ( T  X ,  R) is a 
symplectic manifold, to which the properties listed at the end of the last 
section apply. 

In particular, let ( be a vector field on X. Then to ( is associated a 
function called the momentum function 

A: T V X  + R such that fi(A,) = n,(((x))  

for A, E T J X .  Then dh is a 1-form on T V X .  Classical Hamiltonian 
mechanics then applies Propositions 6.2 and 6.3 to this situation. We refer 
the interested reader to [LoS 681 and [AbM 781 for further information on 
this topic. For an important theorem of Marsden-Weinstein [Maw 741 
and applications to vector bundles, see [KO 871. 
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V, 58. DARBOUX'S THEOREM 

If E = R" then the usual scalar product establishes the self-duality of R". 
This self-duality arises from other forms, and in this section we are 
especially interested in the self-duality arising from alternating forms. If E 
is finite dimensional and w is an element of LZ(E), that is an alternating 
2-form, which is non-singular, then one sees easily that the dimension of E 
is even. 

Example. An example of such a form on R2" is the following. Let 

u = ( ~ 1 , .  . . , un,  u;, . . . , u;), 
w =  (w1, ..., w,, w; ,.", w;,, 

be elements of R2", with components ui, ui ,  wi, wi. Letting 

n 
w(u, w) = C ( u i w ;  - u;wi) 

i= 1 

defines a non-singular 2-form w on R2". It is an exercise of linear algebra 
to prove that any non-singular 2-form on R2" is linearly isomorphic to this 
particular one in the following sense. If 

f: E + F  

is a linear isomorphism between two finite dimensional spaces, then it 
induces an isomorphism 

f *: L , ~ ( F )  --+ L , ~ ( E ) .  

We call forms w on E and $ on F linearly isomorphic if there exists a 
linear isomorphism f such that f *$ = w. Thus up to a linear isomor- 
phism, there is only one non-singular 2-form on Rh. (For a proof, cf. for 
instance my book Algebra.) 

We are interested in the same question on a manifold locally. Let U be 
open in the Banach space E and let xo E U .  A 2-form 

w :  U-+LZ(E) 

is said to be non-singular if each form w(x)  is non-singular. If ( is a vector 
field on U, then w o ( is a 1-form, whose value at (x, a) is given 

(0 O t)(x)(w) = 4 X ) ( t ( X ) ,  4. 
As a special case of Proposition 6.1, we have: 
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Let w be a non-singular 2-form on an open set U in E. The association 

is a linear isomorphism between the space of vector jields on U and the 
space of 1-forms on U. 

Let 
w :  U + L , 2 ( U )  

be a 2-form on an open set U in E. If there exists a local isomorphism f at 
a point xo E U ,  say 

f: UI + Vl, 

and a 2-form $ on Vl such that f *$ = w (or more accurately, w restricted 
to Ul) ,  then we say that w is locally isomorphic to $ at X O .  Observe that 
in the case of an isomorphism we can take a direct image of forms, and 
we shall also write 

Lo=$ 
instead of w = f *$. In other words, 6 = (f-’)*. 

Example. On RZ” we have the constant form of the previous example. 
In terms of local coordinates (XI,. . . ,x , ,  y , ,  . . . , y,), this form has the 
local expression 

w ( x ,  y )  = dxi A dyi. 
i= 1 

This 2-form will be called the standard 2-form on RZ”. 

The Darboux theorem states that any non-singular closed 2-form in RZ” 
is locally isomorphic to the standard form, that is that in a suitable chart 
at a point, it has the standard expression of the above example. A 
technique to show that certain forms are isomorphic was used by Moser 
[Mo 651, who pointed out that his arguments also prove the classical 
Darboux theorem. Moser’s theorem will be given in Chapter XVIII, 52. 

Alan Weinstein observed that Moser’s proof applies to the i m t e  
dimensional case, whose statement is as follows. 

Theorem 8.1 (Darboux Theorem). Let E be a self-dual Banach space. 
Let 

w :  U - + L : ( E )  

be a non-singular closed 2-form on an open set of E, and let xo E U. Then 
o is locally isomorphic at xo to the constant form w(x0).  
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Proof: Let 00 = ~ ( x o ) ,  and let 

w r = u 0 + t ( W - - o ) ,  O s t s  1. 

We wish to find a time-dependent vector field tr locally at 0 such that if u 
denotes its flow, then 

Then the local isomorphism a1 satisfies the requirements of the theorem. 
By the Poincar6 lemma, there exists a 1-form 8 locally at 0 such that 

a:w, = WO. 

w - wo = do,  

and without loss of generality, we may assume that O(x0) = 0. We 
contend that the time-dependent vector field <t, such that 

wt o r t  = -8, 

has the desired property. Let u be its flow. If we shrink the domain of the 
vector field near xo sufficiently, and use the fact that O(x0) = 0, then we 
can use the local existence theorem (Proposition 1.1 of Chapter IV) to see 
that the flow can be integrated at least to t = 1 for all points x in this 
small domain. We shall now verify that 

This will prove that a t o t  is constant. Since we have a,+, = 00 because 

u(0, x) = x and Dza(0, x )  = id, 

it will conclude the proof of the theorem. 

formula LIE 1, which reduces to 
We compute locally. We use the local formula of Proposition 5.2, and 

because dot  = 0. We find 

= U:(O - 00 - d8)  

= 0. 

This proves Darboux’s theorem. 



154 OPERATIONS ON VECTOR FIELDS IY, 983 

Remark 1. For the analogous uniqueness statement in the case of a 
non-singular symmetric form, see the Morse-Palais lemma of Chapter VII, 
$5. Compare also with Theorem 2.2 of Chapter XVIII. 

Remark 2. The proof of the Poincark lemma can also be cast in the 
above style. For instance, let # t ( ~ )  = tx be a retraction of a star shaped 
open set around 0. Let tt be the vector field whose flow is # t ,  and let o be 
a closed form. Then 

Since #io = 0 and is the identity, we see that 

is exact, thus concluding a proof of Poincark’s theorem. 

CHAPTER VI 

The Theorem of Frobenius 

Having acquired the language of vector fields, we return to differential 
equations and give a generalization of the local existence theorem known 
as the Frobenius theorem, whose proof will be reduced to the standard 
case discussed in Chapter IV. We state the theorem in $1. Readers should 
note that one needs only to know the definition of the bracket of two vector 
fields in order to understand the proof. It is convenient to insert also a 
formulation in terms of differential forms, for which the reader needs to 
know the local definition of the exterior derivative. However, the con- 
dition involving differential forms is proved to be equivalent to the vector 
field condition at the very beginning, and does not reappear explicitly 
afterwards. 

We shall follow essentially the proof given by Dieudonnk in his 
Foundations of Modern Analysis, allowing for the fact that we use freely 
the geometric language of vector bundles, which is easier to grasp. 

It is convenient to recall in $2 the statements concerning the existence 
theorems for differential equations depending on parameters. The proof of 
the Frobenius theorem proper is given in $3. An important application to 
Lie groups is given in $5, after formulating the theorem globally. 

The present chapter will not be used in the rest of this book. 

VI, 51. STATEMENT OF THE THEOREM 

Let X be a manifold of class C p  ( p  1 2 ) .  A subbundle E of its tan- 
gent bundle will also be called a tangent subbundle over X .  We con- 
tend that the following two conditions concerning such a subbundle are 
equivalent. 

1 cc 
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FR 1. For each point z E X and vector fields <, q at z (i.e. defined on an 
open neighborhood of z )  which lie in E (i.e. such that the image of 
each point of X under t, q lies in E ) ,  the bracket [t, q] also lies in 
E. 

FR 2. For each point z E X and diferential form w of degree 1 at z 
which vanishes on E, the form d o  vanishes on < x q whenever <, q 
are two vector fields at z which lie in E. 

The equivalence is essentially a triviality. Indeed, assume FR 1. Let o 
vanish to E. Then 

By assumption the right-hand side is 0 when evaluated at z. Conversely, 
assume FR 2. Let <, q be two vector fields at z lying in E. If [<, q](z )  is 
not in E, then we see immediately from a local product representation and 
the Hahn-Banach theorem that there exists a differential form o of degree 
1 defined on a neighborhood of z which is 0 on E, and non-zero on 
[<, q] ( z ) ,  thereby contradicting the above formula. 

We shall now give a third condition equivalent to the above two, and 
actually, we shall not refer to FR 2 any more. We remark merely that 
in the finite dimensional case, it is easy to prove that when a differential 
form o satisfies condition FR 2, then d o  can be expressed locally in a 
neighborhood of each point as a finite sum 

where yi and o; are of degree 1 and each oi vanishes on E. We leave this 
as an exercise to the reader. 

Let E be a tangent subbundle over X.  We shall say that E is integrable 
at a point xo if there exists a submanifold Y of X containing xo such that 
the tangent map of the inclusion 

j :  Y + X  

induces a VB-isomorphism of TY with the subbundle E restricted to Y .  
Equivalently, we could say that for each point Y E  Y ,  the tangent map 

Tyj:  TyY + TyX 

induces a toplinear isomorphism of TyY on Ey. Note that our condition 
defining integrability is local at XO. We say that E is integrable if it is 
integrable at every point. 
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Using the functoriality of vector fields, and their relations under tangent 
maps and the bracket product, we see at once that if E is integrable, then 
it satisfies FR 1. Indeed, locally vector fields having their values in E are 
related to vector fields over Y under the inclusion mapping. 

Frobenius’ theorem asserts the converse. 

Theorem 1.1. Let X be a manifold of class CP ( p  2 2 )  and let E be a 
tangent subbundle over X .  Then E is integrable if and only i f  E satisfies 
condition FR 1. 

The proof of Frobenius’ theorem will be camed out by analyzing the 
situation locally and reducing it to the standard theorem for ordinary 
differential equations. Thus we now analyze the condition FR 1 in terms 
of its local representation. 

Suppose that we work locally, over a product U x V of open subsets 
of Banach spaces E and F. Then the tangent bundle T ( U  x V )  can be 
written in a natural way as a direct sum. Indeed, for each point (x ,  y )  in 
U x V we have 

T ( x , y ) P  x V )  = T X ( W  x T,(V). 

One sees at once that the collection of fibers T x ( U )  x 0 (contained in 
Tx( U )  x Ty( V ) )  forms a subbundle which will be denoted by 7‘1 ( U  x V )  
and will be called the first factor of the tangent bundle. One could define 
T2( U x V )  similarly, and 

T(U x V )  = Ti (U x V )  @ T2(U x V ) .  

A subbundle E of T ( X )  is integrable at a point z E X if and only if 
there exists an open neighborhood W of z and an isomorphism 

q :  u x  V +  w 

of a product onto W such that the composition of maps 

Tl(U x V )  -% T ( U  x V )  2 T ( W )  

induces a VB-isomorphism of T I (  U x V )  onto El W (over q). Denoting 
by qy the map of U into W given by qJx)  = q(x ,  y ) ,  we can also express 
the integrability condition by saying that Txyy should induce a toplinear 
isomorphism of E onto Ep(x,y) for all (x, y )  in U x V .  We note that in 
terms of our local product structure, Txqy is nothing but the partial 
derivative Dlq(x,  y) .  

Given a subbundle of T ( X ) ,  and a point in the base space X,  we know 
from the definition of a subbundle in terms of a local product decom- 



158 THE THEOREM OF FROBENIUS [VI, 513 
STATEMENT OF THE THEOREM PI, 511 159 

position that we can find a product decomposition of an open neigh- 
borhood of this point, say U x V ,  such that the point has coordinates 
(xo, yo) and such that the subbundle can be written in the form of an 
exact sequence 

f O + U X V X E + U X V X E X F  

f (xo, Y o ) :  E + E x F 
with the map 

equal to the canonical embedding of E on E x 0. For a point (x, y )  in 
U x V the map f ( x ,  y )  has two components f l ( x ,  y )  and f 2 ( x ,  y )  into E 
and F respectively. Taking a suitable VB-automorphism of U x V x E if 
necessary, we may assume without loss of generality that f l ( x ,  y )  is the 
identity. We now write f ( x ,  y )  = f i ( x ,  y ) .  Then 

f :  U x V + L(E, F) 

is a morphism (of class CP-') which describes our subbundle completely. 
We shall interpret condition FR 1 in terms of the present situation. If 

r :  U x V + E x F  

is the local representation of a vector field over U x V ,  we let r l  and (2 be 
its projections on E and F respectively. Then ( lies in the image off if 
and only if 

r2(x, v) = f (x, Y ) t l  (x, Y )  

for all ( x ,  y )  in U x V ,  or in other words, if and only if r is of the form 

for some morphism (of class u-') 

We shall also write the above condition symbolically, namely 

If r,  q are the local representations of vector fields over U x V ,  then the 
reader will verify at once from the local definition of the bracket 
(Proposition 1.3 of Chapter V) that [r, 71 lies in the image off if and only 
if 

Df(X1 Y )  . +, Y )  .71 (XI v) = W x ,  Y )  . ?(XI Y )  . tl(4 Y )  

or symbolically, 

We have now expressed all the hypotheses of Theorem 1.1 in terms of 
local data, and the heart of the proof will consist in proving the following 
result. 

Theorem 1.2. Let U, V be open subsets of Banach spaces E, F 
respectively. Let 

f :  U x V + L(E,  F) 

be a C'-morphism ( r  2 1). Assume that if 

are two morphisms, and if we let 

then relation (2) above is satis$ed. Let (xo, yo) be a point of U x V .  
Then there exists open neighborhoods UO, Vo of xo, yo respectively, 
contained in U, V, and a unique morphism CI: Uo x VO + V such that 

and a(xo, y )  = y for all ( x ,  y )  in UO x Vo. 

We shall prove Theorem 1.2 in 53. We now indicate how Theorem 1.1 
follows from it. We denote by a,, the map a,,(.) = a(x, y ) ,  viewed as a 
map of UO into V. Then our differential equation can be written 

We let 

be the map q(x l  y )  = ( x ,  C I , ( X ) ) .  It is obvious that Dq(x0, yo) is a 
toplinear isomorphism, so that q is a local isomorphism at (xo, yo). 
Furthermore, for (u, v )  E E x F we have 

DlP(X1 Y )  . (u, v )  = (u, D q x )  . .) = (24, f ( x ,  ay(x ) )  . 24)  

which shows that our subbundle is integrable. 
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VI, 92. DIFFERENTIAL EQUATIONS DEPENDING 
ON A PARAMETER 

Proposition 2.1. Let U, V be open sets in Banach spaces E,  F 
respectively. Let J be an open interval of R containing 0, and let 

g :  J x  U x  V + F  

be a morphism of class C' (r 2 1). Let (xo, yo)  be a point in U x V .  
Then there exists open balls Jo, UO, VO centered at 0, xo, yo and 
contained J, U, V respectively, and a unique morphism of class C' 

such that B(0, x ,  y )  = y and 

for all ( t ,  x ,  y )  E . ~ O  x Uo x Vo. 

Proof: This follows from the existence and uniqueness of local flows, by 
considering the ordinary vector field on U x V 

G: J X  U X  V + E X F  

given by G(t, x ,  y )  = (0, g(t, x ,  y ) ) .  If B(t ,  x ,  y )  is the local flow for G, 
then we let B(t, x ,  y )  be the projection on the second factor of B(t ,  x ,  y ) .  
The reader will verify at once that p satisfies the desired conditions. The 
uniqueness is clear. 

Let us keep the initial condition y fixed, and write 

From Chapter IV, $1, we obtain also the differential equation satisfied by 
B in its second variable: 

Proposition 2.2. Let notation be as in Proposition 2.1, and with y $xed, 
let B(t, x )  = B(t, x ,  y ) .  Then D2/3(t, x )  satisfies the diferential equation 

for every v EE. 

PROOF OF THE THEOREM 161 

Proof: Here again, we consider the vector field as in the proof of 
Proposition 2.1, and apply the formula for the differential equation 
satisfied by 028 as in Chapter IV, $1. 

VI, 93. PROOF OF THE THEOREM 

In the application of Proposition 2.1 to the proof of Theorem 1.2, we take 
our morphism g to be 

s(4 z ,  Y )  = f ( x o  + tz, Y )  . z 

with z in a small ball Eo around the origin in E,  and y in V.  It is 
convenient to make a translation, and without loss of generality we can 
assume that xo = 0 and yo = 0. From Proposition 2.1 we then obtain 

B: J O X E O X  Vo+ V 

with initial condition B(0, z ,  y )  = y for all z E Eo, satisfying the differential 
equation 

DlB(t, z ,  Y )  = f (tz ,  P(t, z ,  Y ) )  * 2. 

Making a change of variables of type t = as and z = a-'x for a small 
positive number a, we see at once that we may assume that JO contains 1, 
provided we take Eo sufficiently small. As we shall keep y fixed from now 
on, we omit it from the notation, and write P(t ,  z )  instead of B(t, z ,  y ) .  
Then our differential equation is 

(3) DlB(t, 4 = f (tz, B(t ,  4)  . z .  

We observe that if we knew the existence of a in the statement of 
Theorem 1.2, then letting B(t, z )  = a(x0 + tz)  would yield a solution of our 
differential equation. Thus the uniqueness of a follows. To prove its 
existence, we start with p and contend that the map 

4 x 1  = B ( 1 , X )  

has the required properties for small 1x1. To prove our contention it will 
suffice to prove that 

(4) D2P(t, 2 )  = tf (tz ,  P(t ,  4) 
because if that relation holds, then 
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From Proposition 2.2, we obtain for any vector u E E, 

We now let k ( t )  = D$(t, z )  . u - t f  ( tz ,  P(t, z ) )  . u. Then one sees at once 
that k(0)  = 0 and we contend that 

( 5 )  Dk(t )  = D2f(tZ,  P(t ,  z ) )  . k( t )  . z. 

We use the main hypothesis of our theorem, namely relation (2), in which 
we take tl and ql to be the fields u and z respectively. We compute Df 
using the formula for the partial derivatives, and apply it to this special 
case. Then ( 5 )  follows immediately. It is a linear differential equation 
satisfied by k ( t ) ,  and by Corollary 1.7 of Chapter IV, we know that the 
solution 0 is the unique solution. Thus k ( t )  = 0 and relation (4) is 
proved. The theorem also. 

VI, 54. THE GLOBAL FORMULATION 

Let X be a manifold. Let F be a tangent subbundle. By an integral 
manifold for F, we shall mean an injective immersion 

f: Y - X  

such that at every point Y E  Y ,  the tangent map 

induces a toplinear isomorphism of TyY on the subspace Ff(y) of T J ( ~ ) X .  
Thus Tf induces locally an isomorphism of the tangent bundle of Y with 
the bundle F over f( Y ) .  

Observe that the image f( Y )  itself may not be a submanifold of X. For 
instance, if F has dimension 1 (i.e. the fibers of F have dimension l), an 
integral manifold for F is nothing but an integral curve from the theory of 
differential equations, and this curve may wind around X in such a way 
that its image is dense. A special case of this occurs if we consider the 
torus as the quotient of the plane by the subgroup generated by the two 
unit vectors. A straight line with irrational slope in the plane gets mapped 
on a dense integral curve on the torus. 

If Y is a submanifold of X, then of course the inclusion j :  Y + X is an 
injective immersion, and in this case, the condition that it be an integral 
manifold for F simply means that T (  Y) = FIY (F restricted to Y). 
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We now have the local uniqueness of integral manifolds, corresponding 
to the local uniqueness of integral curves. 

Theorem 4.1. Let Y, Z be integral submanijiolds of X for the subbundle F 
of TX ,  passing through a point X O .  Then there exists an open neigh- 
borhood U of xo in X ,  such that 

Y I 7  u = Z n  u. 

ProoJ Let U be an open neighborhood of xo in X such that we have a 
chart 

with 
u - v x w  

X O H  (Yo,  W o ) ,  

and Y corresponds to all points ( y ,  WO), Y E  V.  In other words, Y 
corresponds to a factor in the product in the chart. If V is open in F1 and 
W open in F2, with F1 x F2 = E, then the subbundle F is represented by 
the projection 

V x W x F ,  

I 
v x  w 

Shrinking Z, we may assume that Z c U.  Let h:  Z --t V x W be the 
restriction of the chart to Z, and let h = (hl ,  h2) be represented by its two 
components. By assumption, h’(x) maps E into F1 for every x E Z. Hence 
h2 is constant, so that h ( Z )  is contained in the factor V x {wo}. It follows 
at once that h ( Z )  = V1 x {WO} for some open VI in V, and we can shrink 
U to a product V1 x W1 (where W1 is a small open set in W containing 
WO) to conclude the proof. 

We wish to get a maximal connected integral manifold for an integrable 
subbundle F of TX passing through a given point, just as we obtained a 
maximal integral curve. For this, it is just as easy to deal with the 
nonconnected case, following Chevalley’s treatment in his book on Lie 
Groups. (Note the historical curiosity that vector bundles were invented 
about a year after Chevalley published his book, so that the language 
of vector bundles, or the tangent bundle, is absent from Chevalley’s 
presentation. In fact, Chevalley used a terminology which now appears 
terribly confusing for the notion of a tangent subbundle, and it will not be 
repeated here !) 

We give a new manifold structure to X ,  depending on the integrable 
tangent subbundle F, and the manifold thus obtained will be denoted by 
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XF. This manifold has the same set of points as X.  Let x E X .  We know 
from the local uniqueness theorem that a submanifold Y of X which is at 
the same time an integral manifold for F is locally uniquely determined. A 
chart for this submanifold locally at x is taken to be a chart for X F .  It is 
immediately verified that the collection of such charts is an atlas, which 
defines our manifold XF.  (We lose one order of differentiability.) The 
identity mapping 

j :  X F + X  

is then obviously an injective immersion, satisfying the following universal 
properties. 

Theorem 4.2. Let F be an integrable tangent subbundle over X .  If 

f :  Y - x  

is a morphism such that T f :  TY + T X  maps T Y  into F, then the 
induced map 

(same values as f but viewed as a map into the new manifold X F )  is also a 
morphism. Furthermore, i f f  is an injective immersion, then fF induces an 
isomorphism of Y onto an open subset of X F .  

f F :  Y - X F  

Prooj Using the local product structure as in the proof of the local 
uniqueness Theorem 4.1, we see at once that fF is a morphism. In other 
words, locally, f maps a neighborhood of each point of Y into a sub- 
manifold of X which is tangent to F. If in addition f is an 'injective 
immersion, then from the definition of the charts on X F ,  we see that fF 
maps Y bijectively onto an open subset of X F ,  and is a local isomorphism 
at each point. Hence fF induces an isomorphism of Y with an open 
subset of X F ,  as was to be shown. 

Corollary 4.3. Let XF(XO)  be the connected component of XF containing 
a point XO. If f : Y - X is an integral manifold for F passing through 
XO, and Y is connected, then there exists a unique morphism 

h:  Y 4 XF(XO) 

making the following diagram commutative ; 

and h induces an isomorphism of Y onto an open subset of X ~ ( x 0 ) .  

[VI, $51 LIE GROUPS AND SUBGROUPS 165 

ProoJ Clear from the preceding discussion. 

Note the general functorial behavior of the integral manifold. If 

g :  X + X '  

is an isomorphism, and F is an integrable tangent subbundle over X ,  then 
F' = (Tg) (F)  = g*F is an integrable bundle over X' .  Then the following 
diagram is commutative : 

gF x, - x;, 
g 

The map g F  is, of course, the map having the same values as g ,  but viewed 
as a map on the manifold XF.  

VI, 55, LIE GROUPS AND SUBGROUPS 

It is not our purpose here to delve extensively into Lie groups, but to lay 
the groundwork for their theory. For more results, we refer the reader 
to texts on Lie groups, differential geometry, and also to the paper by 
W. Graeub [Gr 611. Although seemingly written to apply only to the 
finite dimensional case, this paper holds essentially in its entirety for the 
Banach case (and Hilbert case when dealing with Riemannian metrics), 
and is written on foundations corresponding to those of the present book. 

By a group manifold, or a Lie group G, we mean a manifold with a 
group structure, that is a law of composition and inverse, 

z : G x G + G  and G + - G  

which are morphisms. Thus each x E G gives rise to a left translation 

zx:  G +  G 
such that z x ( y )  = xy .  

When dealing with groups, we shall have to distinguish between iso- 
morphisms in the category of manifolds, and isomorphisms in the category 
of group manifolds, which are also group homomorphisms. Thus we shall 
use-prefixes, and speak of group manifold isomorphism, or manifold iso- 
morphism as the case may be. We abbreviate these by GM-isomorphism 
or M-isomorphism. We see that left translation is an M-isomorphism, but 
not a GM-isomorphism. 
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Let e denote the origin (unit element) of G. If v E TeG is a tangent 
vector at the origin, then we can translate it, and we obtain a map 

(x, u )  z:v = c;v(x) 

which is easily verified to be a VB-isomorphism 

G x  TeG+ TG 

from the product bundle to the tangent bundle of G. This is done at once 
using charts. Recall that TeG can be viewed as a Banachable space, using 
any local trivialization of G at e to get a toplinear isomorphism of T,G 
with the standard Banachable space on which G is modeled. Thus we see 
that the tangent bundle of a Lie group is trivializable. 

A vector field < over G is called left invariant if z:c = for all x E G. 
Note that the map 

x ++ t u b )  

described above is a left invariant vector field, and that the association 

obviously establishes a linear isomorphism between TeG and the vector 
space of left invariant vector fields on G. The space of such vector fields 
will be denoted by g or I(G), and will be called the Lie algebra of G, 
because of the following results. 

Proposition 5.1. Let c, 11 be left invariant vectorjelds on G. Then [c, 111 
is also left invariant. 

Prooj This follows from the general functorial formula 

Under the linear isomorphism of TeG with I( G),  we can view I( G) as a 
Banachable space. By a Lie subalgebra of I(G) we shall mean a closed 
subspace lj which splits, and having the property that if t, 11 E lj, then 
[ t , ~ ]  E JJ also. 

Note. In the finite dimensional case, every subspace is closed and splits, 
so that only this last condition about the bracket product need be 
mentioned explicitly. 

Let G, H be Lie groups. A map 

f: H - + G  
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will be called a homomorphism if it is a group homomorphism and a 
morphism in the category of manifolds. Such a homomorphism induces a 
continuous linear map 

and it is clear that it also induces a corresponding linear map 

also denoted by f * .  Namely, if v E T,H and c, is the left invariant vector 
field on H induced by v ,  then 

f * t v  = rjh. 

The general functorial property of related vector fields applies to this case, 
and shows that the induced map 

is also a Lie algebra homomorphism, namely far c, 11 E I (H) we have 

Now suppose that the homomorphism f: H + G is also an immersion 
at the origin of H. Then by translation, one sees that it is an immersion at 
every point. If in addition it is an injective immersion, then we shall say 
that f is a Lie subgroup of G. We see that in this case, f induces a splitting 
injection 

f , :  I(H) + I(G). 

The image of I (H)  in I(G) is a Lie subalgebra of I(G). 
In general, let Ij be a Lie subalgebra of I(G) and let Fe be the corre- 

sponding subspace of TeG. For each x E G, let 

Fx = z ~ F , .  

Then F, is a split subspace of T,G, and using local charts, it is clear that 
the collection F = {F,} is a subbundle of TG, which is left invariant. 
Furthermore, if 

f: H + G  

is a homomorphism which is an injective immersion, and if lj is the image 
of I (H) ,  then we also see that f is an integral manifold for the subbundle 
F. We shall now see that the converse holds, using Frobenius' theorem. 
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Theorem 5.2. Let G be a Lie group, t, a Lie subalgebra of I(G), and 
let F be the corresponding le3 invariant subbundle of TG. Then F is 
integrable. 

Proof I owe the proof to Alan Weinstein. It is based on the following 
lemma. 

Lemma 5.3. Let X be a manifold, let <, 1 be vector fields at a point xo, 
and let F be a subbundle of TX. If <(xo) = 0 and < is contained in F, 
then [<, rl(x0) E F. 

Proof We can deal with the local representations, such that X = U is 
open in E, and F corresponds to a factor, that is 

T X  = U x F1 x FZ and F = U x F1. 

We may also assume without loss of generality that xo = 0. Then 
t(0) = 0, and <: U -+ F1 may be viewed as a map into F1. We may write 

with a morphism A :  U + L(E,  F1). Indeed, 

and A ( x )  = pr, o <'(tx) dt, where pr, is the projection on F1. Then 

Since A(0)  maps E into F1, we have proved our lemma. 

Back to the proof of the proposition. Let <, 1 be vector fields at a 
point xo in G, both contained in the invariant subbundle F. There exist 
invariant vector fields to and qo and xg such that 

Let 
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Then 11, vanish at xo and lie in F. We get: 

The proposition now follows at once from the lemma. 

Theorem 5.4. Let G be a Lie group, let 
and let F be its associated invariant subbundle. Let 

be a Lie subalgebra of I(G), 

j :  H + G  

be the maximal connected integral manifold of Fpassing through e. Then 
H is a subgroup of G, and j :  H 4 G is a Lie subgroup of G. The 
association between b and j :  H + G establishes a bijection between Lie 
subalgebras of I(G) and Lie subgroups of G. 

Proof Let x E H .  The M-isomorphism zx induces a VB-isomorphism 
of F onto itself, in other words, F is invariant under z:. Furthermore, 
since H passes through e, and xe lies in H ,  it follows that j :  H -+ G is 
also the maximal connected integral manifold of F passing through x.  
Hence x maps H onto itself. From this we conclude that if y E H ,  then 
x y  E H ,  and there exists some y E H such that x y  = e, whence x-l E H .  
Hence H is a subgroup. The other assertions are then clear. 

If H is a Lie subgroup of G, belonging to the Lie algebra 4, and F is 
the associated integrable left invariant tangent subbundle, then the integral 
manifold for F passing through a given point x is simply the translation 
x H ,  as one sees from first functorial principles. 

When E, is l-dimensional, then it is easy to see that the Lie subgroup is 
in fact a homomorphic image of an integral curve 

a:  R + G  

which is a homomorphism, and such that d ( 0 )  = v is any vector in T,G 
which is the value at e of a non-zero element of b. Changing this vector 
merely reparametrizes the curve. The integral curve may coincide with the 
subgroup, or it comes back on itself, and then the subgroup is essentially 
a circle. Thus the integral curve need not be equal to the subgroup. 
However, locally near t = 0, they do coincide. Such an integral curve is 
called a one-parameter subgroup of G. 

Using Theorem 1.5 of Chapter V, it is then easy to see that if the Lie 
algebra of a connected Lie group G is commutative, then G itself is 
commutative. One first proves this for elements in a neighborhood of the 
origin, using l-parameter subgroups, and then one gets the statement 
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globally by expressing G as a union of products 

uu.. . u, 

where U is a symmetric connected open neighborhood of the unit element. 
All of these statements are easy to prove, and belong to the first chapter 
of a book on Lie groups. Our purpose here is merely to lay the general 
foundations essentially belonging to general manifold theory. 

Warning. The group of differential automorphisms of a finite dimen- 
sional manifold is “infinite dimensional” but usually not a Lie group, 
because multiplication is usually continuous only in each variable sepa- 
rately. For an analysis of this, also in the context of H* (Sobolev) spaces, 
cf. Ebin and Marsden [EbM 701. 

~ PART II 

Metrics, Covariant 
Derivatives, and 

Riemannian Geometry 



CHAPTER VII 

Metrics 

In our discussion of vector bundles, we put no greater structure on the 
fibers than that of topological vector space (of the same category as those 
used to build up manifolds). One can strengthen the notion so as to 
include the metric structure, and we are thus led to consider Hilbert 
bundles, whose fibers are Hilbert spaces. 

Aside from the definitions, and basic properties, we deal with two 
special topics. On the one hand, we complete our uniqueness theorem 
on tubular neighborhoods by showing that when a Riemannian metric is 
given, a tubular neighborhood can be straightened out to a metric one. 
Secondly, we show how a Riemannian metric gives rise in a natural way 
to a spray, and thus how one recovers geodesics. The fundamental 2-form 
is used to identify the vector fields and 1-forms on the tangent bundle, 
identified with the cotangent bundle by the Riemannian metric. 

We assume throughout that our manifolds are Hausdorff and are 
sufficiently differentiable so that all our statements make sense. (For 
instance, when dealing with sprays, we take p 2 3.) 

Of necessity, we shall use the standard spectral theorem for (bounded) 
symmetric operators. A self-contained treatment will be given in the 
appendix. 

VII, 91. DEFINITION AND FUNCTORIALITY 

For Riemannian geometry, we shall deal with a Hilbertable vector space, 
that is a topological vector space which is complete, and whose topology 
can be defined by the norm associated with a bilinear form, which is 
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symmetric and positive definite. All facts needed in the sequel concerning 
Hilbert spaces can be found in the Appendix. 

It turns out that some basic properties have only to do with a weaker 
property of the space E on which a manifold is modeled, namely that the 
Banach space E is self dual, via a symmetric non-singular bilinear form. 
Thus we only assume this property until more is needed. We recall that 
such a form is a continuous bilinear map 

(u, W )  (u, W )  of E x E + R 

such that (0, w)  = (w ,  u)  for all u, w E E, and the corresponding map of E 
into the dual space L(E) is a topological isomorphism. 

Examples. Of course, the standard positive definite scalar product on 
Euclidean space provides the easiest (in some sense) example of a self dual 
vector space. But the physicists are interested in R4 with the scalar 
product such that the square of a vector ( x ,  y ,  2, t )  is x2  + y 2  + z2 - t 2 .  
This scalar product is non-singular. For one among many nice appli- 
cations of the indefinite case, cf. for instance [He 841 and [Gu 911, dealing 
with Huygens’ principle. 

We consider L&,(E), the vector space of continuous bilinear forms 

I :  E x E - + R  

which are symmetric. If x is fixed in E, then the continuous linear form 
I , ( y )  = I ( x ,  y )  is represented by an element of E which we denote by Ax, 
where A is a continuous linear map of E into itself. The symmetry of I 
implies that A is symmetric, that is we have 

for all x, y E E. Conversely, given a symmetric continuous linear map 
A :  E -+ E we can define a continuous bilinear form on E by this formula. 
Thus L&(E) is in bijection with the set of such operators, and is itself a 
Banach space, the norm being the usual operator norm. Suppose E is a 
Hilbert space, and in particular, E is self dual. 

The subset of L&,(E) consisting of those forms corresponding to 
symmetric positive definite operators (by definition such that A 2 EZ for 
some 6 > 0) will be called the Riemannian (rf E and be denoted by Ri(E). 
Forms I in Ri(E) are called positive definite. The associated operator A 
of such a form is invertible, because its spectrum does not contain 0 and 
the continuous function l / t  is invertible on the spectrum. 

In general, suppose only that E is self dual. The space L&(E) contains 
as an open subset the set of non-singular symmetric bilinear forms, which 

[VK 911 DEFINITION AND FUNCTORIALITY 175 

we denote by Met(E), and which we call the set of metrics or pseudo 
Riemannian metrics. In view of the operations on vector bundles (Chapter 
111, &I) we can apply the functor Ls’ym to any bundle whose fibers are self 
dual. Thus if 7c: E -+ X is such a bundle, then we can form L:p(7c). A 
section of L,2,(n) will be called by definition a symmetric bilinear form 
on n. A (pseudo Riemannian) metric on n (or on E )  is defined to be a 
symmetric bilinear form on II, whose image lies in the open set of metrics 
at each point. We let Met(n) be the set of metrics on K which we also 
call the set of metrics on E, and may denote by Met(E). 

If E is a Hilbert space and the image of the section of L&(n) lies in 
the Riemannian space Ri(z,) at each point x ,  in order words, if on the 
fiber at each point the non-singular symmetric bilinear form is actually 
positive definite, then we call the metric Riemannian. Let us denote a 
metric by g ,  so that g(x )  E Met(E,) for each x E X ,  and lies in Ri(E,) if 
the metric is Riemannian. Then g(x )  is a non-singular symmetric bilinear 
form in general, and in the Riemannian case, it is positive definite in 
addition. 

A pair ( X ,  g )  consisting of a manifold X and a (pseudo Riemannian) 
metric g will be called a pseudo Riemannian manifold. It will be called a 
Riemannian manifold if the manifold is modeled on a Hilbert space, and 
the metric is Riemannian. 

Observe that the sections of L&,(z) form a vector space (abstract) but 
that the Riemannian metrics do not. They form a convex cone. Indeed, if 
a, b > 0 and 91, 92 are two Riemannian metrics, then agl + bg2 is also a 
Riemannian metric. 

Suppose we are given a VB-trivialization of 7c over an open subset U of 

z: n - l ( U )  + U x E .  

We can transport a given pseudo Riemannian metric g (or rather its 
restriction to n-l ( U ) )  to U x E. In the local representation, this means 
that for each X E  U we can identify g(x )  with a symmetric invertible 
operator A ,  giving rise to the metric. The operator A ,  is positive definite 
in the Riemannian case. Furthermore, the map 

X H  A ,  

from U into the Banach space L(E, E) is a morphism. 
As a matter of notation, we sometimes write g ,  instead of g ( x ) .  Thus 

if u, w are two vectors in Ex, then gx(u ,  w )  is a number, and is more 
convenient to write than g(x)(u, w). We shall also write (u ,  w ) ,  if the 
metric g is fixed once for all. 

Proposition 1.1. Let X be a manfold admitting partitions of unity. Let 
7c: E + X be a vector bundle whoseJibers are Hilbertable vector spaces. 
Then K admits a Riemannian metric. 
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ProoJ Find a partition of unity { Ui, p i }  such that a1 Ui is trivial, that is 
such that we have a trivialization 

(working over a connected component of X ,  so that we may assume the 
fibers toplinearly isomorphic to a fixed Hilbert space E). We can then find 
a Riemannian metric on Ui x E in a trivial way. By transport of structure, 
there exists a Riemannian metric gi on zIUi and we let 

Then g is a Riemannian metric on x .  

Let us investigate the functorial behavior of metrics. 
Consider a VB-morphism 

f E - E  

with vector bundles E’ and E over X and Y respectively, whose fibers are 
self dual spaces. Let g be a symmetric bilinear form on 7t, so that for each 
Y E  Y we have a continuous, bilinear, symmetric map 

g(y) :  Ey x Ey + R. 

Then the composite map 

Ei x El + Ey x Ey + R 

with y = f ( x )  is a symmetric bilinear form on Ei and one verifies 
immediately that it gives rise to such a form, on the vector bundle n’, 
which will be denoted by f * ( g ) .  Then f induces a map 

Furthermore, if f ,  is injective and splits for each x E X ,  and g is a metric 
(resp. g is a Riemannian metric in the Hilbert case), then obviously so is 
f ’ ( g ) ,  and we can view f’ as mapping Met(x) into Met(n’) (resp. Ri(z) 
into Ri(n’) in the Riemannian case). 

Let X be a manifold modeled on a Hilbertable space and let T ( X )  be 

its tangent bundle. By abuse of language, we call a metric on T ( X )  also a 
metric on X and write Met(X) instead of Met(T(X)). Similarly, we write 
Ri(X) instead of Ri(T(X)). 

Let f: X 4 Y be an immersion. Then for each x E X ,  then linear map 

is injective, and splits, and thus we obtain a contravariant map 

f*: Ri( Y )  + Ri(X), 

each Riemannian metric on Y inducing a Riemannian metric on X .  
A similar result applies in the pseudo Riemannian case. If ( Y ,  g) is 

Riemannian, and f is merely of class C’ but not necessarily an immersion, 
then the pull back f ‘(9) is not necessarily positive definite, but is merely 
what we call semipositive. In general, if ( X ,  h)  is pseudo Riemannian and 
h(u, u )  2 0 for all u E TxX,  all x ,  then ( X ,  h)  is called semi Riemannian. 
Thus the pull back of a semi Riemannian metric is semi Riemannian. 

For a major result concerning Riemannian embeddings of manifolds in 
Euclidean space, see Nash [Na 561, followed by Moser [Mo 611, as well as 
the exposition I gave in [La 611. Even though dealing a priori with finite 
dimensional manifolds, the imbedding problem is essentially concerned 
with the infinite dimensional manifold of Riemannian metrics. The 
problem partly amounts to obtaining an inverse mapping theorem in a 
context more complicated than that of Banach spaces, namely Frechet 
spaces, when all CP norms intervene, for p = 1,2,. . . . Newton approxi- 
mation is used instead of the shrinking lemma to solve the local iso- 
morphism problem in this case. 

The next five sections will be devoted to considerations which apply 
specifically to the Riemannian case, where positivity plays a central role. 

VII, 92. THE HILBERT GROUP 

Let E be a Hilbert space. The group of toplinear automorphisms Laut(E) 
contains the group Hilb(E) of Hilbert automorphisms, that is those 
toplinear automorphisms which preserve the inner product : 

(Au, Aw)  = (u ,  W )  

for all U ,  w E E .  We note that A is Hilbertian if and only if A * A  = I .  
As usual, we say that a linear continuous map A :  E + E is symmetric 

if A* = A and that it is skew-symmetric if A* = -A .  We have a direct 
sum decomposition of the Banach space L(E, E) in terms of the two 
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closed subspaces of symmetric and skew-symmetric operators 

A = ; ( A +  A*) + ; (A-  A*). 

We denote by Sym(E) and Sk(E) the Banach spaces of symmetric and 
skew-symmetric maps respectively. The word operator will always mean 
continuous linear map of E into itself. 

Proposition 2.1. For all operators A, the series 

A2 

2! 
exp(A) = I + A + - + . . .  

converges. If A commutes with B, then 

exp(A + B) = exp(A) exp(B). 

For all operators suficiently close to the identity I, the series 

( A - I )  (A-I )2  
+ * *  + 2  

log(A) = - 
1 

converges, and if A commutes with B, then 

log(AB) = log(A) + log(B). 

Proof Standard. 

We leave it as an exercise to the reader to show that the exponential 
function gives a Cm-morphism of L(E, E) into itself. Similarly, a function 
admitting a development in power series say around 0 can be applied to 
the set of operators whose bound is smaller than the radius of convergence 
of the series, and gives a Cm-morphism. 

Proposition 2.2. If A is symmetric (resp. skew-symmetric), then exp(A) is 
symmetric positive definite (resp. Hilbertian). If A is toplinear auto- 
morphism suficiently close to I and is positive definite symmetric (resp. 
Hilbertian), then log(A) is symmetric (resp. skew-symmetric). 

Proof The proofs are straightforward. As an example, let us carry out 
the proof of the last statement. Suppose A is Hilbertian and sufficiently 
close to I .  Then A*A = I  and A *  = A-'.  Then 

= log(A-1). 

If A is close to Z, so is A*], so that these Statements make sense. We now 
conclude by noting that log(A-1) = -log(A). All the other proofs are 
carried out in a similar fashion, taking a star operator in series term by 
term, under conditions which insure convergence. 

The exponential and logarithm functions give inverse C w  mappings 
between neighborhoods of 0 in L(E, E) and neighborhoods of Z in 
Laut(E). Furthermore, the direct sum decomposition of L(E, E) into 
symmetric and skew-symmetric subspaces is reflected locally in a neigh- 
borhood of Z by a Cw direct product decomposition into positive definite 
and Hilbertian automorphisms. This direct product decomposition can 
be translated multiplicatively to any toplinear automorphism, because if 
A E Laut(E) and B is close to A ,  then 

B = AA-'B = A ( I  - (I - A-'B)) 

and (Z - A-'B) is small. This proves: 

Proposition 2.3. The Hilbert group of automorphisms of E is a closed 
submanifold of Laut(E). 

In addition to this local result, we get a global one also 

Proposition 2.4. The exponential map gives a Cm-isomorphism from the 
space Sym(E) of symmetric endomorphisms of E and the space Pos(E) of 
symmetric positive definite automorphisms of E. 

Proof We must construct its inverse, and for this we use the spectral 
theorem. Given A, symmetric positive definite, the analytic function log t 
is defined on the spectrum of A, and thus log A is symmetric. One verifies 
immediately that it is the inverse of the exponential function (which can be 
viewed in the same way). We can expand log t around a large positive 
number c, in a power series uniformly and absolutely convergent in an 
interval 0 < E 5 t 5 2c - E ,  to achieve our purposes. 

Proposition 2.5. The manifold of toplinear automorphisms of the Hilbert 
space E is Cw-isomorphic to the product of the Hilbert automorphisms 
and the positive definite symmetric automorphisms, under the mapping 

Hilb(E) x Pos(E) 4 Laut(E) 
given by 

( H ,  P )  + HP. 

Proof: Our map is induced by a continuous bilinear map of 
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into L(E,  E )  and so is C". We must construct an inverse, or in other 
words express any given toplinear automorphism A in a unique way as a 
product A = HP where H is Hilbertian, P is symmetric positive definite, 
and both H ,  P depend C"O on A .  This is done as follows. First we note 
that A*A is symmetric positive definite (because (A'Au, u)  = (Au, Au), 
and furthermore, A * A  is a toplinear automorphism, so that 0 cannot be in 
its spectrum, and hence A * A  2 EI > 0 since the spectrum is closed). We 
let 

P = (A*A)1'2 

and let H = AP-' .  Then H is Hilbertian, because 

Both P and H depend differentiably on A since all constructions involved 
are differentiable. 

There remains to be shown that the expression as a product is unique. 
If A = HlPl where H I ,  P I  are Hilbertian and symmetric positive definite 
respectively, then 

H - ~ H ,  = PP& 

and we get H2 = PP;' for some Hilbertian automorphism H2. By defini- 
tion, 

I = H;H2 = (PP,')*PP;' 

and from the fact that P* = P and P ;  = P I ,  we find 

P 2  = P; .  

Taking the log, we find 2 log P = 2 log PI. We now divide by 2 and take 
the exponential, thus giving P = P I  and finally H = H I .  This proves our 
proposition. 

VII, 53. REDUCTION TO THE HILBERT GROUP 

We define a new category of bundles, namely the Hilbert bundles over 
X ,  denoted by HB(X). As before, we would denote by HB(X, E )  or 
HB(X, a) those Hilbert bundles whose fiber is a Hilbert space E or lies in 
a category a. 

Let n: E -+ X be a vector bundle over X ,  and assume that it has a 
trivialization { ( Uj,  zi)} with trivializing maps 

REDUCTION TO THE HILBERT GROUP 181 

where E is a Hilbert space, such that each toplinear automorphism (ziz;')x 
is a Hilbert automorphism. Equivalently, we could also say that Zjx is 
a Hilbert isomorphism. Such a trivialization will be called a Hilbert 
tri~alization. Two such trivializations are called Hilbert+ompatible if their 
union is again a Hilbert trivialization. An equivalence class of such 
compatible trivializations constitutes what we call a Hilbert bundle over 
X .  Any such Hilbert bundle determines a unique vector bundle, simply by 
taking the VB-equivalence class determined by the trivialization. 

Given a Hilbert trivialization (( Ui, zi)} of a vector bundle n over X, we 
can define on each fiber nx a Hilbert space structure. Indeed, for each x 
we select an open set Ui in which x lies, and then transport to nx the 
scalar product in E by means of zix. By assumption, this is independent of 
the choice of Ui in which x lies. Thus in a Hilbert bundle, we can assume 
that the fibers are Hilbert spaces, not only Hilbertable. 

It is perfectly possible that several distinct Hilbert bundles determine the 
same vector bundle. 

Any Hilbert bundle determining a given vector bundle n will be said to 
be a reduction of n to the Hilbert group. 

We can make Hilbert bundles into a category, if we take for the HB- 
morphisms the VB-morphisms which are injective and split at each point, 
and which preserve the metric, again at each point. 

Each reduction of a vector bundle to the Hilbert group determines a 
Riemannian metric on the bundle. Indeed, defining for each z E X and 
u, w e n x  the scalar product 

with any Hilbert-trivializing map zjx such that X E  Ui, we get a morphism 

of X into the sections of L&(n) which are positive definite. We also have 
the converse. 

Theorem 3.1. Let n be a vector bundle over a manifold X, and assume 
that the fibers of n are all toplinearly isomorphic to a Hilbert space E. 
Then the above map, from reductions of n to the Hilbert group, into the 
Riemannian metrics, is a bijection. 

Pro05 Suppose that we are given an ordinary VB-triviahation 
{ (Ui, z i ) }  of n. We must construct an HB-trivialization. For each i, let gj  
be the Riemannian metric on Ui x E transported from n-'( Ui)  by means 
of zi. Then for each x E Ui, we have a positive definite symmetric operator 
Aix such that 

Six(!, w) = ( A x u ,  4 
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for all u, w E E .  Let B;, be the square root of A;,. We define the 
trivialization ai by the formula 

and contend that {(Ui,  a;)} is a Hilbert trivialization. Indeed, from the 
definition of g;,, it suffices to verify that the VB-isomorphism 

Bi: Ui x E -+ U; x E 

given by Bix on each fiber, carries g; on the usual metric. But we have, for 
u, w E E :  

(&xu, Bixw) = (Aixv, W )  

since Bi, is symmetric, and equal to the square root of Ai,. This proves 
what we want. 

At this point, it is convenient to make an additional comment on 

Let a, /3 be two Hilbert bundles over the manifold X ,  and let f: a+  p 
normal bundles. 

be an HB-morphism. Assume that 

f 0 - + a + p  

is exact. Then by using the Riemannian metric, there is a natural way of 
constructing a splitting for this sequence (cf. Chapter 111, $5). 

Using Theorem 1.2 of the Appendix, we see at once that if F is a 
(closed) subspace of a Hilbert space, then E is the direct sum 

E = F O F ~  

of F and its orthogonal complement, consisting of all vectors perpendicular 
to F. 

In our exact sequence, we may view f as an injection. For each x we 
let a,' be the orthogonal complement of a, in p,. Then we shall find an 
exact sequence of VB-morphisms 

whose kernel is uL (set theoretically). In this manner, the collection of 
orthogonal complements a,' can be given the structure of a Hilbert bundle. 

For each x we can write px = a, @ u,' and we define h, to be the 
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projection in this direct sum decomposition. This gives us a mapping 
h :  p -+ a, and it will suffice to prove that h is a VB-morphism. In order 
to do this, we may work locally. In that case, after taking suitable VB- 
automorphisms over a small open set U of X ,  we can assume that we deal 
with the following situation. 

Our vector bundle p is equal to U x E and u is equal to U x F for 
some subspace F of E, so that we can write E = F x F'. Our HB- 
morphism is then represented for each x by an injection f,: F -+ E: 

U x F - U x E .  f 

By the definition of exact sequences, we can find two VB-isomorphisms z 
and a such that the following diagram is commutative: 

f U x F  - U x E  

J 
U x F  - U x E  

and such that the bottom map is simply given by the ordinary inclusion of 
F in E. We can transport the Riemannian structure of the bundles on top 
to the bundles on the bottom by means of 0 - l  and 7-l respectively. We 
are therefore reduced to the situation where f is given by the simple 
inclusion, and the Riemannian metric on U x E is given by a family A ,  of 
symmetric positive definite operators on E (XE  U) .  At each point x, we 
have (u ,  w),  = (Axu, w ) .  We observe that the map 

A :  U x E + U x E  

given by A ,  on each fiber is a VB-automorphism of U x E. Let pr, be the 
projection of U x E on U x F. It is a VB-morphism. Then the composite 

h = pr, o A 

gives us a VB-morphism of U x E on U x F, and the sequence 

h U x E - + U x F - + O  

is exact. Finally, we note that the kernel of h consists precisely of the 
orthogonal complement of U x F in each fiber. This proves what we 
wanted. 
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VII, 54. HILBERTIAN TUBULAR NEIGHBORHOODS 

Let E be a Hilbert space. Then the open ball of radius 1 is isomorphic to 
E itself under the mapping 

the inverse mapping being 

If a > 0, then any ball of radius a is isomorphic to the unit ball under 
multiplication by the scalar a (or a-I). 

Let X be a manifold, and a: X + R a function (morphism) such that 
a(x )  > 0 for all x E X .  Let w :  E + X be a Hilbert bundle over X .  We 
denote by E(a)  the subset of E consisting of those vectors v such that, if v 
lies in Ex, then 

IVIX < 44. 
Then E(a)  is an open neighborhood of the zero section. 

Proposition 4.1. Let X be a manifold and w :  E + X a Hilbert bundle. 
Let a: X + R be a morphism such that a(.) > 0 for all x. Then the 
mapping 

gives an isomorphism of E onto E(a) .  

ProoJ: Obvious. The inverse mapping is constructed in the obvious 
way. 

Corollary 4.2. Let X be a manifold admitting partitions of unity, and let 
w :  E + X be a Hilbert bundle over X. Then E is compressible. 

ProoJ: Let Z be an open neighborhood of the zero section. For each 
x E X ,  there exists an open neighborhood Vx and a number a, > 0 such 
that the vectors in w-'(Vx) which are of length < ax lie in Z .  We can find 
a partition of unity { (Ui, qi)} on X such that each Ui is contained in some 
Vx(i). We let a be the function 
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Then E(a)  is contained in Z ,  and our assertion follows from the 
proposition. 

Proposition 4.3. Let X be a manifold. Let w :  E + X and w1 : El + X 
be two Hilbert bundles over X. Let 

be a VB-isomorphism. Then there exists an isotopy of VB-isomorphisms 

with proper domain [0, 11 such that 11 = 1 and 10 is an HB-isomorphism. 

Proof: We find reductions of E and El to the Hilbert group, with 
Hilbert trivializations { (Uj, z i ) }  for E and { (Ui, p i ) }  for El. We can then 
factor pilz;' as in Proposition 2.5, applied to each fiber map: 

U i x E  - U i x E  - U i x E  

and obtain a factorization of 1 into 1 = 1x1~ where AH is a HB- 
isomorphism and 1 p  is a positive definite symmetric VB-automorphism. 
The latter form a convex set, and our isotopy is simply 

& = A H 0  ( tZ+( l+t )Ap) .  

(Smooth out the end points if you wish.) 

Theorem 4.4. Let X be a submanifold of Y. Let w :  E + ' ant 
nl : El + X be two Hilbert bundles. Assume that E is compressible. Let 
f: E -+ Y and g :  El + Y be two tubular neighborhoods of X in Y. 
Then there exists an isotopy 

5 :  E + Y  

of tubular neighborhoods with proper domain [0, 11 and there exists an 
HB-isomorphism p :  E + El such that fi = f and fo = gp. 

ProoJ: From Theorem 6.2 of Chapter IV, we know already that there 
exists a VB-isomorphism 1 such that f z g1. Using the preceding 
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proposition, we know that 1 x p where p is a HB-isomorphism. Thus 
gE. x g p  and by transitivity, f x p, as was to be shown. 

Remark. In view of Proposition 4.1, we could of course replace the 
condition that E be compressible by the more useful condition (in practice) 
that X admit partitions of unity. 

VII, 95. THE MORSE-PALAIS LEMMA 

Let U be an open set in some (real) Hilbert space E, and let f be a CP+2 
function on U ,  with p 2 1. We say that xo is a critical point for f if 
D f ( x 0 )  = 0. We wish to investigate the behavior of f at a critical point. 
After translations, we can assume that xo = 0 and that f (xo) = 0. We 
observe that the second derivative D2 f (0) is a continuous bilinear form on 
E. Let 1 = D2 f (0) ,  and for each x E E let Ax be the functional such that 
y H 1(x, y) .  If the map x H I, is a toplinear isomorphism of E with its 
dual space E V  , then we say that 1 is non-singular, and we say that the 
critical point is nondegenerate. 

We recall that a local CP-isomorphism a, at 0 is a CP-invertible map 
defined on an open set containing 0. 

Theorem 5.1. Let f be a CP+2 function defined on an open neighborhood 
of 0 in the Hilbert space E, with p 2 1. Assume that f (0)  = 0, and that 
0 is a non-degenerate critical point of 5 Then there exists a local CP- 
isomorphism at 0, say a,, and an invertible symmetric operator A such 
that 

f (4 = (Aa,(x), a,(x>). 

Prooj We may assume that U is a ball around 0. We have 

r l  

and applying the same formula to Df instead of f ,  we get 

f ( x )  = J,IJd D2f(stx)tx.  x dr dt = g(x ) (x ,  x )  

where 
1 1  

0 0  
g ( x )  = D2f(stx)t ds dt. 

Then g is a C p  map into the Banach space of continuous bilinear maps on 
E, and even the space of symmetric such maps. We know that this 
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Banach space is toplinearly isomorphic to the space of symmetric opera- 
tors on E, and thus we can write 

where A :  U + Sym(E) is a CP map of U into the space of symmetric 
operators on E. A straightfornard computation shows that 

D2f (O)(U, w )  = (A(O)v, w) .  

Since we assumed that D2f(0)  is non-singular, this means that A(0) is 
invertible, and hence A ( x )  is invertible for all x sufficiently near 0. 

Theorem 5.1 is then a consequence of the following result, which 
expresses locally the uniqueness of a non-singular symmetric form. 

Theorem 5.2. Let A :  U + Sym(E) be a CP map of U into the open set 
of invertible symmetric operators on E. Then there exists a CP iso- 
morphism of an open subset Ul containing 0, of the form 

a,(x) = C(x)x ,  with a CP map C :  U, + Laut(E) 

such that 

ProoJ: We seek a map C such that 

C(x)*A(O)C(x) = A(x) .  

If we let B(x)  = A(O)-'A(x), then B(x )  is close to the identity I for small 
x.  The square root function has a power series expansion near 1, which is 
a uniform limit of polynomials, and is C m  on a neighborhood of I, and 
we can therefore take the square root of B(x) ,  so that we let 

C(x)  = B(x )  1'2. 

We contend that this C ( x )  does what we want. Indeed, since both A(0)  
and A ( x )  (or A @ ) - ' )  are self-adjoint, we find that 

whence 

= A(X)A(O)-',  

B(x)*A(O) = A(O)B(x). 

But C ( x )  is a power series in Z - B(x) ,  and C(x)* is the same power series 
in I - B(x)*. The preceding relation holds if we replace B(x)  by any 
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power of B(x) (by induction), hence it holds if we replace B(x)  by any 
polynomial in I - B(x) ,  and hence finally, it holds if we replace B(x) by 
C(x), and thus 

C(X)*A(O)C(X) = A(O)C(x)C(x) = A(O)B(x) = A(x). 

which is the desired relation. 
All that remains to be shown is that v, is a local CP-isomorphism at 0. 

But one verifies that in fact, Dv,(O) = C(O), so that what we need follows 
from the inverse mapping theorem. This concludes the proof of Theorems 
5.1 and 5.2. 

Corollary 5.3. Let f be a CP+2 function near 0 on the Hilbert space E, 
such that 0 is a non-degenerate critical point. Then there exists a local 
CP-isomorphism II/ at 0, and an orthogonal decomposition E = F + F', 
such that i f  we write $(x) = y + z with y E F and z E F', then 

Prooj On a space where A is positive definite, we can always make the 
toplinear isomorphism x HA'/~x to get the quadratic form to become the 
given hermitian product ( ,), and similarly on a space where A is negative 
definite. In general, we use the spectral theorem to decompose E into a 
direct orthogonal sum such that the restriction of A to the factors is 
positive definite and negative definite respectively. 

Note. The Morse-Palais lemma was proved originally by Morse in the 
finite dimensional case, using the Gram-Schmidt orthogonalization pro- 
cess. The elegant generalization and its proof in the Hilbert space case is 
due to Palais [Pa 691. It shows (in the language of coordinate systems) 
that a function near a critical point can be expressed as a quadratic form 
after a suitable change of coordinate system (satisfying requirements 
of differentiability). It comes up naturally in the calculus of variations. 
For instance, one considers a space of paths (of various smoothness) 
c: [a, b] -, E where E is a Hilbert space. One then defines a length 
function (see next section) or the energy function 

b 
f(4 = J, (a", a'(t>) dt, 

and one investigates the critical points of this function, especially its 
minimum values. These turn out to be the solutions of the variational 
problem, by definition of what one means by a variational problem. Even 
if E is finite dimensional, so a Euclidean space, the space of paths is 
infinite dimensional. Cf. [Mi 631 and [Pa 631. 
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VII, 56. THE RIEMANNIAN DISTANCE 

Let ( X ,  g )  be a Riemannian manifold. For each C' curve 

y :  [a, b] 4 X 
we define its length 

The norm is the one associated with the positive definite scalar product, 
i.e. the Hilbert space norm at each point. We can extend the length to 
piecewise C' paths by taking the sum over the C' curves constituting the 
path. We assume that X is connected, which is equivalent to the property 
that any two points can be joined by a piecewise C' path. (If X is 
connected, then the set of points which can be joined to a given point 
xo by a piecewise C' path is immediately verified to be open and closed, 
so equal to X. The converse, that pathwise connectedness implies con- 
nectedness, is even more obvious.) 

We define the g-distance on X for any two points x, y E X by: 

dist,(x, y )  =greatest lower bound of L(y)  for paths y in X joining x and y .  

When g is fixed throughout, we may omit g from the notation and write 
simply dist(x, y ) .  It is clear that dist, is a semidistance, namely it is 
symmetric in (x, y )  and satisfies the triangle inequality. To prove that it is 
a distance, we have to show that if x # y then dist,(x, y )  > 0. In a chart, 
there is a neighborhood U of x which contains a closed ball B(x, r )  with 
r > 0, and such that y lies outside this closed ball. Then any path between 
x and y has to cross the sphere S(x, r ) .  Here we are using the Hilbert 
space norm in the chart. We can also take r so small that the norm in the 
chart is given by 

( v ,  W)&) = (V '  A(X>W>l 

for v ,  w E E, and x H A(x) is a morphism from U into the set of invertible 
symmetric positive definite operators, such that there exist a number 
C1 > 0 for which 

A ( x )  2 c11 for all x E B(x, r ) .  

We then claim that there exists a constant C > 0 depending only on r, 
such that for any piecewise C' path y between x and a point on the sphere 
S(x, r) we have 

L(Y) I 0- 
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This will prove that dist,(x, y )  2 Cr > 0, and will conclude the proof that 
dist, is a distance. 

By breaking up the path into a sum of C’ curves, we may assume 
without loss of generality that our path is such a curve. Furthermore, we 
may take the interval [a, b] on which y is defined to be such that y(b) 
is the first point such that y ( t )  lies on S(x, r), and otherwise y(t) E B(x, r)  
for t E [a, b]. Let y(b) = ru, where u is a unit vector. Write E as an 
orthogonal direct sum 

E = RU I F, 

Define the function s: [a, b] 3 R by 

Then s is monotone and s(a) = 0, while s(b) = L(y). Suppose that there is 
only a finite number of values t E [a, b] such that y ’ ( t )  = 0. We may then 
break up [a, b] into subintervals where y’(t) # 0 except at the end points of 
the subintervals. Consider each subinterval separately, and say 

a < a l < b l < b  where F is a closed subspace. Then y ( t )  = s(t)u = w(t) with Is(t)l 5 r, 
.(a) = 0, s(b) = r and w(t) E F. Then 

with y ‘ ( t )  # 0 for t E (a’, bl). Let s(a1) be the length of the curve over the 
interval [a, all. Define 

t 

s ( t )  =s(a1) + J,, l lY ’ (~)I l ,  dt for a1 5 t 5 bl. 

Then s is strictly increasing, and therefore the inverse function t = ~ ( s )  is 
defined over the interval. Thus we can reparametrize the curve by the 
variable s over the interval a1 5 t 5 bl, with the variable s satisfying 

b 
2 - C;l2 1 (y’(t), y’( t ) ) ’ /2  dt 

2 - C:l2 / a  Is’( t )  1 dt by Pythagoras 

a 

b 

2 C l  ‘/2 r 
as was to be shown. s(a1) 5 s 5 s(bi) .  

Thus the whole path y on [a, b] is reparametrized by another path In addition, the above local argument also proves: 

y o v :  [O, L] --f x 
Proposition 6.1. The distance dist, defines the given topology on X.  
Equivalently, a sequence {x,,} in X converges to a point x in the given 
topology if and only if dist,(x,, x) converges to 0. via a piecewise map f: [O, L] + [a, b], such that 

We conclude this section with some remarks on reparametrization. Let 

We now define a path y :  [a, b] 4 X to be parametrized by arc length if 
~ ~ . y ’ ( t ) ~ ~ ,  = 1 for all t E [a, b]. We see that starting with any path y, with 
the condition that there is only a finite number of points where y ’ ( t )  = 0 
for convenience, there is a reparametrization of the path by arc length. 

Let f: Y --t X be a C p  map with p 2 1. We shall deal with several 
notions of isomorphisms in different categories, so in the CP category, 
we may call f a differential morphism. Suppose ( X ,  g )  and ( Y ,  h) are 
Riemannian manifolds. We say that f is an isometry, or a differential 
metric isomorphism if f is a differential isomorphism and f * ( g )  = h. If f 
is an isometry, then it is immediate that f preserves distances, i.e. that 

y :  [a, b] -+ X 

be a piecewise C’ path in X. To reparametrize y, we may do so on each 
subinterval where y is actually C’ ,  so assume y is C’. Let 

be a C’ map such that p(c) = a and q(d)  = b. Then y o  q~ is C ’ ,  and is 
called a reparametrization of y. The chain rule shows that 
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Note that there is another circumstance of interest with somewhat weaker 
conditions when f: Y --+ X is an immersion, so induces an injection 
T f ( y )  : Ty Y --+ T Y ( ~ ) X  for every y E Y ,  and we can speak of f being a 
metric immersion if f*(g)  = h. It may even happen that f is a local 
differential isomorphism at each point of y ,  as for instance if f is covering 
map. In such a case, f may be a local isometry, but not a global one, 
whereby f may not preserve distances on all of Y ,  possibly because two 
points yl # y2 may have the same image f ( y 1 )  = f(y2). 

So we can interchange the last two arguments in the scalar product 
without changing the value. 

Observe that locally, the tangent linear map 

VII, 57. THE CANONICAL SPRAY If we pull back the canonical 2-form described in Proposition 7.2 of 
Chapter V from T” ( U )  w T (  U )  to T(  U )  by means of h then its de- 
scription locally can be written on U x E in the following manner. We now come back to the pseudo Riemannian case. 

Let X be a pseudo Riemannian manifold, modeled on the self dual 
space E. The scalar product ( , ) in E identifies E with its dual EV . The 
metric on X gives a toplinear isomorphism of each tangent space T,(X) 
with T l  ( X ) .  If we work locally with X = U open in E and we make the 
identification 

From the simple formula giving our canonical 2-form on the cotangent 
bundle in Chapter V, we see at once that it is nonsingular on T (  U ) .  Since 
h is a VB-isomorphism, it follows that the pull-back of this 2-form to the 
tangent bundle is also non-singular. 

We shall now apply the results of the preceding section. To do so, 
we construct a 1-form on T ( X ) .  Indeed, we have a function (kinetic 
energy !) 

K :  T ( X ) - - + R  

T ( U )  = U x E and T V ( U )  = U x E V  x T ( U )  

then the metric gives a VB-isomorphism 

h: T ( U )  -+ T ( U )  

by means of a morphism 

given by K(u) = h(u,  u),  if u is in T,. Then dK is a 1-form. By 
Proposition 6.1 of Chapter V, it corresponds to a vector field on T ( X ) ,  
and we contend : 

g :  U -L(E, E) 

I such that h(x,  u )  = (x, g(x)u). (In the finite dimensional case, with respect 
to an orthonormal basis, g(x) is represented by a symmetric matrix 
(gg(x)), so the notation here fits what’s in other books with their gg.) The 
scalar product of the metric at each point x is then given by the formula 

Theorem 7.1. The vector field F on T ( X )  corresponding to -dK under 
the canonical 2-form is a spray over X ,  called the canonical spray. 

(u,  w), = (u,  g(x)w) = (g(x)u, w) for u,  w E E. 
ProoJ: We work locally. We take U open in E and have the double 

tangent bundle 
(V x E) x (E x E) 

For each x E U we note that g’(x) maps E into L(E, E). For x E U and 
u, u E E we write s 

I (g’(x)u)(u) = g’(x)u. u = g’(x)(u, u ) .  

From the symmetry of g, differentiating the symmetry relation of the 
scalar product, we find that for all u, u, w E E, 

U k E  

I 
(g’(x)u. w, u )  = (g’(x)u. u, w ) .  U. 
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Our function K can be written 

and dK at a point ( x ,  u )  is simply the ordinary derivative 

D K ( x ,  u ) :  E x E + R. 

The derivative DK is completely described by the two partial derivatives, 
and we have 

From the definition of derivative, we find 

We use the notation of Proposition 3.2 of Chapter IV. We can represent 
the vector field F corresponding to dK under the canonical 2-form SZ by 
a morphism f: U x E -+ E x E, which we write in terms of its two 
components : 

f ( x ,  0) = ( f i ( x ,  u ) , h ( x ,  4) = (u1, u2). 

Comparing expressions (1) to (2), we find that as functions of w2 they have 
only one term on the right side depending on w2. From the equality of the 
two expressions, we conclude that 

for all w2, and hence that f i ( x ,  u)  = v ,  whence our vector field F is a 
second order vector field on X .  

Again we compare expression (1) and (2), using the fact just proved 
that u1 = f i ( x ,  u )  = v .  Setting the right sides of the two expressions equal 
to each other, and using 242 = f i ( u ,  v ) ,  we obtain: 
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Proposition 7.2. In the chart U, let f = (5, f2 ) :  U x E + E x E 
represent F. Then h ( x ,  v )  is the unique vector such that for all w1 E E 
we have : 

From this one sees that A is homogeneous of degree 2 in the second 
variable u, in other words that it represents a spray. This concludes the 
proof of Theorem 7.1. 

Remark. Having represented f u , z ( x ,  u )  in the chart, we could also 
represent he associated bilinear map Bu. We shall give the formula for 
Bu in the context of Theorem 4.2 of Chapter VIII. 



CHAPTER Vlll 

Covariant Derivatives and 
Geodesics 

Throughout this chapter, by a manifold, we shall mean a Cm manifold, 
for simplicity of language. Vector fields, forms and other objects will also 
be assumed to be Cm unless otherwise specijied. We let X be a manifold. 
We denote the R-vector space of vector f ie lh  by I ‘T(X) .  Observe that 
T T ( X )  is also a module over the ring of functions 5 = %“(X) = Fu(X). 
We let 

n: T X - X  

be the natural map of the tangent bundle onto X. 

VIII, 51. BASIC PROPERTIES 

By a covariant derivative D we mean an R-bilinear map 

D :  rqx) x rqx) -+ r T ( q  

denoted by (<, q) H Dcq, satisfying the two conditions: 

COVD 1. (a) In the first variable <, Dcq is Fu-linear. 
(b) For a function p, define Dyp= <p = 2’yp to be the Lie 
derivative of the function. Then in the second variable q, 
Dgq is a derivation. Thus (a) and (b) can be written in the 
form : 

D,Pl= IDPl and Dt(Unl> = (D€l)Tt + IDyll. 

COVD 2. D ~ , I  - D,,( = [c, 71. 
196 
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Remark. This second condition can be eliminated to give rise to a more 
general notion, following the ideas of a connection as described at the end 
of Chapter IV, $3. However, we concentrate here on what we need for 
some basic results, rather than develop systematically the general theory of 
connections. 

Having defined Dr on functions and vector fields, we may extend the 
definition to all differential forms, or even to multilinear tensor fields. Let 
o be in T L r ( T ( X ) ) ,  i.e. o is a multilinear tensor field on X, not nec- 
essarily alternating. We define Dyo by giving its value on vector fields 

* . * qr7 namely 

The definition of Dy is such that Dy satisfies the derivation property with 
respect to the r + 1 variables o, q l , .  . . ,qr ,  that is 

Recall that Dy = 2’y on functions, as on the left side of this equation. 
Looking in a local chart shows that Dyo is again a muitilinear tensor 
field. It is immediate from the definition that if w is alternating, then so is 
Dyo. In particular, Dy is a derivation with respect to contractions and it is 
also a derivation with respect to the wedge product, that is: 

COVD 3. Dy(0  o q l )  = (Dew) o ~1 + o Dyq1. 

COVD 4. On the algebra of alternating forms, the covariant derivative 
Dy is a derivation, in the sense that for two forms w and y, 
we have 

Dc(o  A y )  = Dyo A y+w A Dyy. 

The proof comes directly from the definition of the wedge product in 
Chapter V, $3. In the finite dimensional case, when a form is a sum of 
decomposable forms, i.e. wedge products of forms of degree 0 and 1, it 
follows that the above definition is the unique extension of Dy to the 
algebra of differential forms. Furthermore, similarly to the formula of 
Proposition 5.1 of Chapter V, for the Lie derivative of a form, one has: 
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which concludes the proof for 1-forms. Since 1-forms generate the algebra 
of forms in the finite dimensional case, the proposition is proved in * 
general. 

The above finite dimensional formula won’t be used until we meet 
strictly finite dimensional results, in connection with volume forms 
and integration. We included it here for completeness of the general 
formalism. We now return to the general case which may be in6nite 
dimensional. 

We can extend the covariant derivative to TX-valued forms i.e. sections 
of the bundle Lr(TX, T X ) .  If o is such a section, we define Dtw by its 
values on vector fields ql ,  . . . ,qr to be 

r 

( ~ t o ) ( ~ l l , .  * .  7 V r )  = ~ t ( o ( q 1 ,  . . * , r r > )  - C o ( ~ 1 ,  . . . ,Dtqj, * * * 7 q r ) ,  
j=1 

ProoJ: One uses the formulas given in propositions of Chapter V, 
Proposition 3.2, for d o ,  and Proposition 5.1 for the Lie derivative. One 
replaces brackets [p,  y ]  by Dpy - D,$. The desired formulas drop out. 
Note that only COVD 2 has been used in the proof. 

Next we give a finite dimensional formula. Recall that a frame of 
vector fields e l , .  . . , <, is such that for each x, {tl(x), . . . , t n ( x ) }  is a basis 
of TJ. 

Proposition 1.1. Let {tl,.  . . , en} be a frame of vector fields. Let 
(11,. . . ,An} be the dual frame of l-forms (so A i ( t j )  = 6~). For any form 
~ E & ( X )  we have 

n 

d a  = C l i  A D ~ , o .  
i= 1 

ProoJ: Let d ’ o  = C l i  A Dt ,o .  Then d’ defines an anti-derivation of 
the alternating algebra of forms, that is if I,4 E d q ( x )  for any q, then 

d‘(w A $) = ( d ’ o )  A I,4 + (-l)ro A d’$. 

so Dt satisfies the derivation property with respect to the r + 1 variables o, 
q l , .  . . , qr. We note that w(ql , .  . . ,qr) E TTX is a vector field, so we know 
how to apply the covariant derivative D t ( o ( q l ,  . . . , q,)) instead of 
Yt(o(ql,. . . , q r ) )  for ordinary R-valued forms, in which case o ( q l , .  . . , q,) 
is a function on X. When w is TX-valued, we have on the other hand 

( ~ ( ~ 1 7  . . ., q r ) )  = [t, . ., ?,>I. 
A local formula will be given in Proposition 2.2. 

VIII, 52. SPRAYS AND COVARIANT DERIVATIVES 

Let F be a spray over a manifold X. In a chart U, we index geometric 
objects by U to indicate their representatives in the chart. Thus the 
representative cu of a vector field over U is a morphism 

Similarly, we have the symmetric bilinear map associated with the spray, 
and its representative 

W x )  = $D;fU,dx ,  01, 

where f u , 2  is the second component of the representative for the spray, as 
described in Chapter IV, §3. 

Theorem 2.1. Given a spray F over X,  there exists a unique covariant 
derivative D such that in a chart U, the derivative is given by the local 
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Or, suppressing the index U for simplicity, and thus using (, q to denote 
the local representatives of the vector fields in the chart, we have 

ProoJ: Let us define D c ~  over U by the formula of the theorem. It is 
immediately verified that D~t;l is a vector field over U, and that the 
association (C, 0) H Dtq is a covariant derivative over U: It is Fu(U)- 
linear in the variable t, it is a derivation in the variable q with respect to 
multiplication by functions, and we have 

This last property follows from the representation of the bracket in a chart 
given by Proposition 1.3 of Chapter V. Thus a spray gives rise to a 
covariant derivative in a chart, in a natural fashion. 

We now claim that when the spray is given globally, there exists a 
unique covariant derivative on the manifold X which has the above 
representation in a chart. For this we must verify how the local rep- 
resentation changes under a change of chart. Let 

h: U - V  

be a Cw-isomorphism, i.e. a change of chart. Then we claim that the 
natural image of Dtuvu under the change of chart is Dyvl;lv, so that we 
may define D c ~  for any two vector fields on the manifold via the local 
representations. 

In other words, we have to verify that 

whence by the rule for the derivative of a product, we obtain 

Hence putting v = c u ( x ) ,  w = q u ( x ) ,  we get by using the change of 
variable formula for a spray in a chart, Proposition 3.3 of Chapter IV, 
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The covariant derivative defined in Theorem 2.1 will be called the 
covariant derivative determined by the spray, or associated with the spray. 
As mentioned previously, one could give a similar definition of a covariant 
derivative associated to any connection (even without the symmetry 
condition on the bilinear map). 

There is of course an analogous local representation for differential 
forms as follows. 

Proposition 2.2. Let w E TLr(TX, R) or TLr(TX,  T X ) .  Let (, 
ql,...,qr be vector $el& over X.  Z ~ ~ E T L ’ ( T X ,  R), then in a chart 
U we have the formula 

I f  w E TL‘(TX, TX) ,  then 

ProoJ: This comes directly from the definitions in $1. Observe that in 
applying the definitions, the sum 

occurs twice, once with a + sign and once with a - sign, so cancels in the 
end. 
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For the limited purposes of this book, we will not need the proposition. 
It has an analogue for lifts of curves, which we shall discuss briefly at the 
end of $3. 

Converse, from covariant derivatives to sprays 

We now wish to discuss the converse of Theorem 2.1, and for this purpose, 
we have to make general remarks on localization. Let E be a Banach 
space. We say that E admits cut off functions if given two positive real 
numbers 0 < r < s, there exists a C"-function (simply called function) a, 
such that a, = 1 on the ball B,(O) and a, = 0 on the complement of B,(O). 
Given any point xo E E, we may then find similarly a function which is 1 
in the ball B,(xo) and 0 outside B,(XO). If X is a manifold modeled on 
E, then one can then find such cut off functions equal to 1 in a given 
neighborhood of a point, and 0 outside a slightly larger neighborhood. 
Manifolds modelled on a Hilbert space, and especially finite dimensional 
manifolds, admit cut off functions. 

Assume that X admits cut off functions. Let E be a vector bundle over 
X, and let t be a section of E. Let xo E X .  Let a, a cut off function near 
xo. Then a,( is a section of E, having the same values as < in a 
neighborhood of xo. Suppose that E = T X  and that D is a covariant 
derivative. Then 

Pt?) (4 = (Dvt?) (-4 

for all x in a sufficiently small neighborhood of xo, because D is Fu-linear 
in the first variable. Since a, is constant near xo, it follows that 

(9ta,)(x) = 0 for x near xo, 

and it therefore follows also that 

for all x sufficiently close to xo. 
Now given an open neighborhood UO of xo corresponding to a chart, 

we pick out off functions a,, $ near xo such that the supports of a,, $ are 
contained in UO, and a,, $ = 1 on an open neighborhood U of x whose 
closure is contained in UO. Then U also corresponds to a chart, and we 
may compute 

Thus the determination of the values of a covariant derivative can be 
carried out locally in a chart. We still need a criterion when the value of 
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the covariant derivative at a given point depends only on the value of t at 
the given point. 

Lemma 2.3. Let E, F be vector bundles over X ,  with EJinite dimensional 
and X admitting cut o f  functions. Let 

H :  T E + T F  

be a linear map which is Fu(X)-linear, that is H(a,t) = a,H(t) for 
a, E Fu. Given a point x E X ,  the value H ( t ) ( x )  depends only on the value 
t(4 * 
Prooj It suffices to prove that if t(x0) = 0 then H ( t ) ( x o )  = 0. There 

exists a cut off function a, near xo by assumption, so we may give the 
proof locally. By assumption, there exists a finite number of sections 
e l , .  . . , e, of E which form a basis for the sections locally, so there exist 
functions q I ,  . . . , a,, such that 

t = y1e1 + * . + qrer 
locally. Then 

H(t) = qlH(e1)  + . . . + PrH(er). 

The condition ~ ( x o )  = 0 is equivalent with the conditions qi(x0) = 0 for all 
i .  Hence H ( t ) ( x o )  = 0, thus proving the lemma. 

Observe that when we obtain a covariant derivative from a spray, the 
value of the covariant derivative at a point x depends only on the value of 
the vector field t(x) (a derivative of q however enters). This was clear 
from the local formula in Theorem 2.1, because for instance Bu(x;  u, w) is 
defined for arbitrary vectors u, w which can then be taken to be the values 
tu(x) and q v ( x )  respectively. 

Conversely, we are now interested in reversing the procedure. Speci- 
fically, let D be a covariant derivative. We assume the existence of cut off 
functions throughout. In a chart over an open set U in E, define 

(BU) Bu(x; t, ?> = t t ' ( X ) W  - (Dr,?u)(X). 

It is immediately verified from the two properties of a covariant derivative 
that B v ( x )  is symmetric in tv, qu by COVD 2, and then Bu(x)  is Fu(U)- 
bilinear in tu, vu. Given vectors u, W E E  one wants to define 

Bu(x)(u, w)  = B u ( x ;  t(4, ?(4) 

for any vector fields t, TI such that < ( x )  = u and q(x )  = w. At this point, 
we need to know that the value on the right of (Bu) is independent of the 
vector fields c, 7 chosen SO that t(x) = v and q ( x )  = w. By Lemma 2.3 we 
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can certainly achieve this in the finite dimensional case, and in that case 
we obtain: 

Theorem 2.4. Assume XJinite dimensional. Then the association of a 
covariant derivative to a spray establishes a bijection between sprays over 
X and covariant derivatives. 

In practice, Theorem 2.4 is not that useful (and it will NOT be used 
in this book) because one either starts from a spray to get a covariant 
derivative, or if one starts from some natural covariant derivative, and one 
needs the spray, the situation provides the tools to show that a spray can 
indeed be defined in a natural manner to give the covariant derivative. We 
shall see an example of this in &I, when we discuss the Riemannian 
covariant derivative. Furthermore, the finite dimensional device used in 
Lemma 2.3 has had historically the unfortunate effect of obscuring the 
natural bilinear map B, thus obscuring a fundamental structure in ex- 
positions of differential geometry. Quite generally, connections on any 
vector bundle give rise to covariant derivatives. These are applicable to 
many contexts of topology and analysis, see for example [BGV 921, 
Chapter I, and also for instance [MokSY 931 for an entirely different 

I 

I 

direction, 

VIII, 93. DERIVATIVE ALONG A CURVE 
AND PARALLELISM 

Instead of using vector fields <, 17 we may carry out a similar construction 
of a differentiation dealing only with curves, as follows. (For arbitrary 
maps instead of curves, see Eliasson [El 671.) We continue to denote by F 
a spray over X. Let n: TX -t X be the tangent bundle, and let 
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which in a chart U has the expression 

Remark. In the present context, the local representation yrr  of a curve 
in TU = U x E is taken to be the map on the second component, i.e. 

y,y: J - t E .  

Thus &(t) is the ordinary derivative, with values &(t) E E.  Note that in 
the case of the representation au: J -t U, we have ab(t) E E also. Thus 
a;(‘), yrr( t )  and &(t)  are “vectors.” 

Proof of Theorem 3.1. The proof is entirely analogous to the proof for 
Theorem 2.1, using the local representation of the bilinear map BU asso- 
ciated with a spray in charts. We have to verify that the formula of 
Theorem 3.1 transforms in the proper way under a change of charts, i.e. 
under an isomorphism h: U --f V .  Note that the local representation yv 
of the curve by definition is given by 

Therefore by the rule for the derivative of a product, we find: 

Hence using the transformation rule from BU to Bv, Proposition 3.3 of 
Chapter IV, we get 

be a C’ curve. By a lift y of a to TX we mean a C’ curve y :  J -t T X  
such that ny = a. We then also say that y lies above a. We denote the set 
of lifts of a by Lift(a). It is clear that Lift(a) is a vector space over R, and 
a module over the ring of functions on J .  We wish to define Duty in a way 
analogous to the way we defined Dcq for vector fields t, 17. This is done 
by the next theorem. As in $2, we let B” denote the bilinear map asso- 
ciated to the spray in a chart U. 

Theorem 3.1. There exists a unique linear map 

D,, : Lift(a) -t Lift(a) 

which proves the desired transformation formula for ( D , ~ J ) ,  in charts. 
Thus we have proved the existence of Duty as asserted. Its being a 
derivation is immediate from the local representation in charts. This 
concludes the proof of Theorem 3.1. 
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Corollary 3.2. Let q be a vector field and suppose y( t )  = q ( a ( t ) ) ,  t E J .  
Let 5 be a vector field on X such that a'(t0) = <(a(to)) for some to E J .  
Then 

(Dalr)(to) = (Dtq)  (.(to)). 

ProoJ: Immediate from the chain rule and the local representation of 
Theorem 3.1. 

Let a:  J -+ X be a C2-morphism. We say that a lift y :  J -+ T X  of a is 
a-parallel if D a y  = 0. In the chart U, this is equivalent to the condition 
that 

Y L O )  = B u ( w ( t ) ;  aL(t>, r u ( t ) ) ,  

which defines a first-order linear differential equation for yu. From 
Chapter IV, 53, (3), we conclude: 

A curue a is a geodesic for the spray if and only if D a d  = 0, that is, if 
and only if a' is a-parallel. 

Theorem 3.3. Let a :  J -+ X be a C2 curve in X .  Let to E J .  Giuen 
v E Ta(,)X, there exists a unique lijit y v :  J -+ T X  which is a-paralled and 
such that y,(to) = v. Let Par(a) denote the set of a-parallel lifts of a. The 
map u H yv is a linear isomorphism of Ta(,)X with Par(a). 

ProoJ: The existence and uniqueness simply comes from the existence 
and uniqueness of solutions of differential equations. Note that from the 
linearity of the equation, the integral curve y is defined on the whole 
interval of definition J by Proposition 1.9 of Chapter IV. 

Of course, the notion of parallelism is with respect to the given spray, 
which has been left out of the notation. We express the linearity of 
Theorem 3.3 another way in the next theorem. 

Theorem 3.4. Fix to E J .  For t E J define the map 

where t ++ y(t, v )  is the unique curve in T X  which is a-parallel and 
y ( t o ,  v )  = v. Then P' is a linear isomorphism. 

ProoJ: We must verify that 

P'(su) = sP'(v) and P'(v + w) = P'(v) + P'(w) for s E R and v, w E T,X. 

But these properties follow at once from the linearity of the differential 
equation satisfied by y ,  and the uniqueness theorem for its solutions with 
given initial conditions. 

The map Pr is called parallel translation along a. 
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Multilinear tensor fields 

Instead of dealing with vector fields, we may deal with TX-valued 
multilinear tensor fields, or R-valued multilinear tensor fields at essentially 
no extra cost. Let E denote either T X  or R. We extend D,I to a linear 
map 

Dat: Lift(a, Lr(TX,  E ) )  -+ Lift(a, Lr(TX,  E ) )  

as follows. Let o: J -+ L r ( T X ,  E )  be a lift of a :  J -+ X .  Let q l ,  . . . , qr 
be lifts of a in T X  (sometimes called vector fields along the curve a). We 
define D a m  by its values on (ql,. . . , qr)  to be 

Thus D,, satisfies the Leibniz rule for the derivative of a multifold product 
with the r + 1 variables o, q l ,  . . . , qr. Note that i f q l , .  . . ,qr are a-parallel, 
so Dayj = 0, then the formula simplifies to 

We shall obtain a local formula as usual. Given an index j ,  we define a 
linear operator Cj,~,a of TLr(TX,  E) into itself by 

( q , p , a a ) ( q l ,  . . ., qr) = ~ ( ~ l l ,  . . . ,  B(a ; a', qj), . . 7,). 

Proposition 3.5 (Local Expression). Let w = mu, qj = qju etc. represent 
the respective objects in a chart U, omitting the subscript U to simplify 
the notation. Then 

r 

where BE,Tx = 1 if E = T X  and 0 if E =R. 

This comes from the definition at the end of $1, and the fact that the 
ordinary derivative 

( o u ( ~ l u , .  . * 7 qru))' 



208 COVARIANT DERIVATIVES AND GEODESICS [VIII, $31 

Corollary 3.6. Let E = T X  or R as above. Let R: X + L'(TX,  E )  be 
a section (so a tensor field), and let w( t )  = n ( a ( t ) ) ,  t E J .  Let to E J .  
Let be a vector field such that a'(t0) = t (a( t0)) .  Then 

(DdO)(tO) = (D$> (a(t0)). 

Proof: Immediate from the chain rule and the local representation 
formula. 

A lift y :  J --f L' (TX,  E )  is called a-parallel if D,ly = 0. The local 
expression in a chart U shows that the condition D , I ~  = 0 is locally 
equivalent to the condition 

j= 1 

Of course, we have suppressed the subscript U from the notation. Thus 
the condition of being a-parallel defines locally an ordinary linear differ- 
ential equation, and we obtain from the standard existence and uniqueness 
theorems : 

Theorem 3.7. Let to E J and 00 E TL'(T,(,,)X, Em(,,)). There exists a 
unique curve y :  J L ' (TX,  E )  which is a-parallel and such that y(t0) = 
00. Denote this curve by yw. The map 

establishes a linear isomorphism between the Banach space 
Lr(T,(,)X, 

We have now reached a point where we have the parallelism analogous 

and the space of 18s Lift(a, L' (TX,  E ) ) .  

to the simplest case of the tangent bundle as in Theorem 3.4. 

Theorem 3.8. Let the notation be as in Theorem 3 . 7 .  For t E J deJine the 
map 

p&, = pi: L'(T,(,)X, &( to ) )  + L'(T,(t)X, 
bY 

p:(Oo) = r( t ,  wo), 

where t H y ( t ,  00 )  is the unique a-parallel lijit of a with y(0, 00)  = 00. 

Then P; is a linear isomorphism. 
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ProoJ This follows at once from the linearity of the differential 
equation satisfied by y ,  and the uniqueness theorem for its solutions with 
given initial conditions. 

Example. The metric g itself is a symmetric bilinear R-valued tensor to 
which the above results can be applied. 

VIII, 94. THE METRIC DERIVATIVE 

Let (X, g) be a pseudo Riemannian manifold. Let 

( v ,  4, = ( v ,  W ) g ( x )  

denote the scalar product on the tangent bundle, with v, w E Tx for some 
x.  If t, q are vector fields, then (t, q ) ,  is a function on X, whose value at 
a point x is 

( t ( X ) ,  d 4 ) g  = (W, I I ( X ) ) g ( x ) .  

If 4 is a vector field, we denote 

Theorem 4.1. Let ( X ,  g )  be a pseudo Riemannian manifold. There exists 
a unique covariant derivative D such that for all vectorJields <, q, C we 
have 

This covariant derivative is called the pseudo Riemannian derivative, or 
metric derivative, or Levi-Civita derivative. 

Proof For the uniqueness, we shall express (Dgv, C), entirely in terms 
of operations which do not involve the derivative D. To do this, we write 
down the first defining property of a connection for a cyclic permutation 
of the three variables: 

t(% C), = (Dr% C), + (v ,  wg, 
V K ,  8, = (D,C, 0, + (4 .9  D,t),, 

C(L 111, = (Dct, V ) ,  + (t, Dcv),. 

We add the first two relations and subtract the third. Using the second 
defining property of a covariant derivative, the following property drops 
out : 
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This proves the uniqueness. 

As to existence, define (Dcq, C), to be 4 of the right side of MD 2. If 
we view <, q as fixed, and 4‘ as variable, then this right side can be checked 
in a chart to give a continuous linear functional on vector fields. By 
Proposition 6.1 of Chapter V, such a functional can be represented by a 
vector, and this vector defines Dtq at each point of the manifold. Thus 
Dcq is itself a vector field. Using the basic property of the bracket product 
with a function q :  

it is routinely verified that (Dcq, C), is Fu-linear in its first variable t, and 
also Fu-linear in the third variable C. One also verifies routinely that 
COVD 2 is also satisfied, whence existence follows and the theorem is 
proved. 

Recall that we defined D p  for any multilinear tensor o. In particular, 
let o = g be the metric. Then the defining property of the metric con- 
nection can now be phrased by stating that for all vector fields t, 

Dcg = 0. 

For each vector field q let v, q or q v  be the 1-form corresponding to q 
under the metric, i.e. for all vector fields 6, (V,q)(C) = (q ,  C),. 

Corollary. For the metric derivative D and all vectorfields t, we have the 
commutation rule 

ProoJ: One line: 

Local representation of the metric derivative 

From MD 2, we derive a local formula in a chart U. In the next formula, 
we write t, q, c :  U 4 E for the representatives of vector fields in the chart, 
instead of the correct rcr, qu, ccr. Omitting the index U simplifies the 
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notation when U is fixed throughout the discussion. Here 

g :  U +  L ( E , E )  

denotes the operator defining the metric relative to the given non-singular 
form on E, so that 

(t, 49, = (st, 7) = (t, 959. 

Observe that in COVD 2 and MD 2, we took the scalar product in the 
tangent space, but in the next formula, the scalar product ( , ) without an 
index is the one given by our original non-singular symmetric bilinear 
form on E. 

MD 3. Locally in a chart U, the metric derivative is determined by the 
formula : 

ProoJ We apply MD 2. We express a g-scalar product in terms of the 
standard scalar product, and we use the local representations of the Lie 
derivative and the bracket from Chapter V, Proposition 1.1 and Pro- 
position 1.3. For instance, we have the local representation 

by using the rule for the derivative of a product. This formula is meant to 
be evaluated at each point x. Note that g’ (x) :  E x E -, E is a bilinear 
map, which is such that, for instance: 

One can work formally without putting the (x) in the notation. Similarly, 

Thus we can transform each term appearing on the right of MD 2. Then 
all the terms involving g (rather than 9’) will cancel except two of them 
which are equal, and add to yield 2(gc, q’ . t). The remaining terms are 



212 COVARIANT DERIVATIVES AND GEODESICS WIII, $41 

those which are shown on the right side of MD 3. This concludes the 
proof. 

Remark. Let us denote by Dg the covariant derivative associated with 
the metric g .  Let c E R+. Then cg is also a metric, called a scaling of g ,  
and it follows immediately from MD 3 that 

Dcg = Dg, 

i.e. the covariant derivative is invariant under a scaling of the metric. 

Observe that the definition of the metric derivative in Theorem 4.1 is 
given by a formula, namely MD 2, with its local representation MD 3. 
We want to see that the metric derivative is the one associated with a 
spray. We recall that quadratic maps and symmetric bilinear maps corre- 
spond to each other via the formulas 

Q(v)  = B(u, u )  and B(u, w)  = q [ Q ( u  + w) - Q(v) - Q(w)] .  

The next theorem summarizes the situation. 

Theorem 4.2. Let ( X ,  g )  be a pseudo Riemannian manifold. There exists 
a unique spray on X satisfying the following two equivalent conditions. 

MS 1. In a chart U, the associated bilinear map BU satisfies the fol- 
lowing formula for all v, w, z E E: 

-2(Bu(x;  v, 4 ,  g(x)z)  

= (g’(x) . u * z ,  w) + (g’(x) * w . z,  v) - (g’(x)  . z .  w, u ) .  

Thus if we let 

f U , 2 ( %  0 )  = B u ( x ;  0, 0) and f u b ,  u )  = (0, fu,2(x,  v>>,  

then f u  represents the spray on TU = U x E. 

derivative satisfying Theorem 4.1. 
MS 2. The couariant derivative associated to the spray is the metric 

This spray is the same as the canonical spray of Chapter VII, Theorem 
7.1. 

Proof: First observe that BU as defined by the formula is symmetric in 
(u ,  w ) .  The symmetry is built in the sum of the &st two terms, and to see 
that the third term is symmetric, one differentiates with respect to x the 
formula 

(g(x)z ,  4 = (g(x)u, 4 ,  
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which merely expresses the symmetry of g(x)  itself. Thus we may form the 
quadratic map f u , 2 ( x ,  u )  = B u ( x ;  u, u )  from the symmetric bilinear map 
B u ( x ;  v, w ) .  It follows that f v  as defined represents a spray FU over TU. 
At this point, one may argue in two ways to globalize. 

Comparing MD 3 with MS 1 we see that the covariant derivative on U 
determined by the spray Fu is precisely the metric derivative. Theorem 2.1 
shows that if two sprays determine the same covariant derivative on U 
then they are equal. If U, V are two charts, then f u  and fv are the local 
representatives of sprays FU and FV on U and V respectively, which must 
therefore coincide on U n V. Hence the family {Fu} defines a spray F on 
X. Once again, Theorem 2.1 and MD 3 show that covariant derivative 
determined by F is the metric derivative. 

Furthermore, if we substitute v = w (and z = w1) in the chart formula 
of MS 1, thus giving the quadratic expression f u , 2 ( x ,  u ) ,  then one sees 
that this expression coincides with the chart expression of Proposition 7.2 
of Chapter VII, and hence that the spray obtained in a natural way from 
the metric derivative is equal to the canonical spray of Chapter VII, 
Theorem 7.1. 

Another possibility is to admit Theorems 7.1 and 7.2 of Chapter VII, 
which already proved the existence of a spray whose quadratic map f u , 2  is 
obtained from the symmetric bilinear map BU as defined in MS 1. This 
gives immediately the existence of a unique spray on X having the 
representation of MS 1 in a chart U, and this spray is the canonical spray. 
That MS 2 is equivalent to MS 1 then follows from MD 3. This 
concludes the proof. 

The spray of Theorem 4.2 will be called the metric spray. Since it is 
equal to the canonical spray, we really don’t need two names for it. 

Remark. To connect with other texts, note that in terms of local 
coordinates, the metric spray is given by a map f 2  satisfying the second 
order differential equation 

d2Xi dxi 
- = f 2 ( x ,  v )  and v . -  - dt2 ‘ -  dt * 

As a function of the variable u, the map f is quadratic, and minus its 
coefficients are functions of x,  called the chn’stoffel symbols, r j k .  Thus by 
definition, the above differential equation is of type 

d2Xi . dXk dxj -- - -c l- jk(x)-- .  
dt dt dt2 j , k  

In terms of the standard basis for R”, the metric is represented by a matrix 

( g d x ) ) ,  
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and we let ( g q )  be the inverse matrix. Then the formula of Theorem 4.2 
can be written in terms of the local coordinates in terms of the Christoffel 
symbols, namely 

If I gave priority to fit classical notation, I would have written - T U  
instead of BU for the bilinear map associated with the spray. However, 
using the letter B suggests bilinearity, whereas using the letter r would 
suggest the above mess. Besides, using B is more natural for the bilinear 
map associated to the quadratic map of the second order differential 
equation, and eliminates a minus sign from that equation. 

Theorem 4.3. Let u : J --+ X be a C2 curve in a Riemannian manifold 
( X ,  g ) .  For the metric derivative, and curves y, C E Lift(u, T X ) ,  we have 
the formula 

(Y, C)$ = C)g + (Y, DatC)g. 

Furthermore, parallel translation is a metric isomorphism. In particular, 
let to E J .  If yv, yw are the unique u-parallel lifts of u with yv(to) = v and 
yw(to) = w, then for all t, 

( Y " ( d 9  Y w ( 4 ) g  = ( 0 ,  w)g. 

Prooj The formula is proved in the same way that the computation 
proving Theorem 3.1 was parallel to the computation proving Theorem 2.1 
(giving the behavior under changes of charts). From the formula, if 
Dolly = D,/C = 0, it follows that ( y ,  c), is constant, whence the second 
assertion follows. 

I 

Corollary 4.4. Let p be a C2 function on X. Let u be a geodesic for the 
metric spray. Then 

(p o a)" = (Dat(grad p) o u, u ' ) ~ .  

Prooj Taking the first derivative of p o u yields 

Now take the next derivative using Theorem 4.3 and the fact that 
D,a' = 0. The desired formula drops out. 
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VIII, 55. MORE LOCAL RESULTS ON 
THE EXPONENTIAL MAP 

In this section, we give further results on the exponential map obtained 
from a spray. We follow the same notation as in Chapter IV, &I, and at 
first we just deal with a spray. We do not need to know whether it comes 
from a metric or not. 

Throughout the section, we let X be a manifold with a spray F .  

Instead of looking at the exponential map restricted to the tangent 
space at a given point, we may consider this map in the neighborhood of a 
p i n t  in the whole tangent bundle. Let n: TX --+ X be the projection as 
always. Let xo E X, with zero element 0, E T,X. There exists an open 
neighborhood V of 0, in TX on which we can define the map 

G: V --t X x X such that G(v) = (nu, exp,,(u)). 

It is sometimes useful to express this map in a different notation. Speci- 
fically, if we denote a point in the tangent bundle by a pair (x, u )  if 
u E TxX, then 

G(x, 0) = (x, expx(4). 

Using a pair (x, u )  is certainly the way we would write a point in the 
tangent bundle as represented in a chart U x E, with x E U and u E E. 

Proposition 5.1. The map G is a local isomorphism at (XO, 0) .  

Proof: The Jacobian matrix of G in a chart is given immediately from 
Chapter IV, Theorem 4.1 by 

('b" 2) 
which is invertible. The inverse mapping theorem concludes the proof. 

For the next local results, it is convenient to express certain uniformities 
in a chart, where we can measure distances uniformly in the model Banach 
space E, with a given norm. It is irrelevant to know whether this norm 
has any smoothness properties or not. It will be used just to describe 
neighborhoods of a vector 0 in the tangent bundle. I found [Mi 631 useful. 

Let xo E X. For e > 0, we let E(e) denote the open ball of elements 
u E E with Iu( c e.  Arbitrarily small open neighborhoods of (XO, 0) in a 
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chart for T X  are of the form 

where UO is an open neighborhood of xo in X ,  and E is arbitrarily small. 

Corollary 5.2. Given xo E X .  Let V be an open neighborhood of ( X O ,  0) 
in T X  such that G induces an isomorphism of V with its image, and in a 
chart, for some E > 0, 

V = Uo x E(E). 

Let W be a neighborhood of xo in X such that G( V )  3 W x W .  Then: 

(1) Any two points x,  y E W are joined by a unique geodesic in X lying 
in UO, and this geodesic depends C* on the pair ( x ,  y ) .  In other 
words, if t H exp,(tv) (0 5 t 5 1) is the geodesic joining x and y ,  
with y = exp,(v), then the correspondence 

( x ,  v )  - ( x ,  Y )  
is C*.  
For each X E  W the exponential exp, maps the open set in T,X 
represented by ( x ,  E(E)) isomorphically onto an open set U ( x )  
containing W. 

(2) 

Prooj The properties are merely an application of the definitions and 
Proposition 5.1. 

The pair ( V ,  W )  will be said to constitute a normal neighborhood of xo 
in X .  Dealing with the pair rather than a single neighborhood is slightly 
inelegant, but to eliminate one of the neighborhoods requires a little more 
work, which most of the time is not necessary. It has to do with 
“convexity” properties, and a theorem of Whitehead [Wh 321. We shall 
do the work at the end of this section for the Riemannian case. 

In the Riemannian case, given x E X ,  by a normal chart at x we mean 
an open ball Bg(x,  c )  such that the exponential map 

is an isomorphism. We call Bg(x,  c) a normal ball. 
We shall need a lemma which gives us the analogue of the commutation 

rule of partial derivatives in the context of covariant derivatives. Let J1, 
J2 be open intervals, and let 
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be a C2 map. For each fixed t E J2 we obtain a curve a: J1 -, X such 
that at(r) = a(r, t ) .  We can then take the ordinary partial derivative 

Similarly, we can define &(r, t )  = &/at. Observe that for each t, the 
curves r H &a(r, t )  and r H a2a(r, t )  are lifts of r H a(r, t )  in TX. 

More generally, let Q be a lift of Q in TX. Then one may apply the 
covariant derivative with respect to functions of the first variable r, with 
the various notation 

DQ 
(Da,c,tQt)(r) = (DlQ>(r, t )  = - 1  ar 

Similarly, we have D2Q(r, t ) .  

Lemma 5.3. We have the rules on lifts of Q to TX:  

(a) D1a2 = D2&; and 

(b) a2(810, = 2(D1a2a7 

Prooj Let au represent a in a chart. Then from Theorem 3.1, 

Since BU is symmetric in the last two arguments, this proves (a). As to 
(b), we use the metric derivative to yield 

and we use (a) to permute the partials variables on the right, to conclude 
the proof of (b), and therefore the proof of the lemma. 

Let now ( X ,  g )  be a pseudo Riemannian manifold. For each x E X we 
have the scalar product (u,  w ) ~  = ( v ,  w ) , ( ~ )  for u, w E T x X .  Let c > 0. 
The equation 

(u,  v )g  = c2 

defines a submanifold in TxX,  which may be empty. If the metric is 
Riemannian, the equation defines what we call a sphere. In the case when 
the metric is pseudo Riemannian, say indefinite in the finite dimensional 
case, then one thinks of the equation as defining something like a hyper- 
boloid in the vector space T,X. We can still define the level “hyper- 
surface” Sg(c) to be the set of solutions of the above equation. Even in 
infinite dimension, we can say that the codimension of this hypersurface 
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is 1. Note that 
S,(rc) = rS , (c )  for r > 0. 

In a neighborhood of the origin 0, in T,X, the exponential map is defined, 
and gives an isomorphism which may be restricted to S,(c)  intersected 
with this neighborhood. The image of this intersection is then a sub- 
manifold of a neighborhood of x in X .  We look at the geodesics starting 
at x. 

Theorem 5.4. Let t w u( t )  be a curve in S,(l). Let 0 5 r 5 b where b is 
such that the points ru(t) are in the domain of the exponential exp,. 
Define 

Then 
a(r, t )  = exp,(ru(t)) for 0 5 r 5 b. 

(8 '0,  a'a), = (u, u), = 1. 

Proof: This is immediate since parallel translation is an isometry by 
Theorem 4.3. 

Corollary 5.5. Assume ( X ,  g )  Riemannian. Let u E T,X. Suppose 
1 1 ~ ) ) ~  = r, with r > 0. Also suppose the segment {tv} (0 5 t 5 1) is 
contained in the domain of the exponential. Let a(t)  = exp,(tv). Then 
L ( a )  = r .  

Proof: Special case of the length formula in Theorem 5.4, followed by 
an integration to get the length. 

Remark. The corollary is also valid in the pseudo Riemannian case, if 
one assume that v 2  = r2 > 0, so the notion of length makes sense for the 
curve t H exp, (tu) . 

Lemma 5.6. Let X be pseudo Riemannian. Let a: J1 x J2 -+ X be a C2 
map. For each t E J2 let ctI(s) = ~ ( s ,  t ) .  Assume that each at is a 
geodesic, and that u;' is independent o f t .  Then for each t E J2, the map 
S H  (810, &a),(s, t )  is constant. 

Proof: Let D be the metric derivative. Then D181a = 0 because for 
a geodesic a, we know that the metric derivative has the property that 
Dalu' = 0. Thus we get 

di(a io ,  8 2 4 ,  = ( o i 8 i a ,  8 2 4 ,  + (810, Di82a), 

= 482(4a,  ale), by the above and Lemma 5.3 

= O  by hypothesis. 

This concludes the proof. 
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The next theorem expresses the fact that locally near x, the geodesics 
are orthogonal to the images of the level sets S,(c) under the exponential 
map. 

Theorem 5.7. Let ( X ,  g )  be pseudo Riemannian. Let xo E X and let W 
be a small open neighborhood of X O ,  selected as in Corollary 5.2, with E 

suficiently small. Let X E  W .  Then the geodesics through x are ortho- 
gonal to the image of Sg(c) under exp,, for c suficiently small positiue. 

Proof: For E sufficiently small positive, the exponential map is defined 
on S,(r) for 0 < r 5 E ,  and as we have seen, the level sets Sg(r )  are 
submanifolds of X .  Then our assertion amounts to proving that for every 
curve u :  J -+ S,(1) and 0 < r < c, if we define 

t H exp,(ro(u(t)) and r I+ exp,(ru(to)) 

I 
are orthogonal for any given value (ro,  to), which amounts to proving that 

(810, 824 ,  = 0. 

But for r = 0, we have a(0, t )  = exp,(O) = x, independent of t. Hence 
8240, t )  = 0. We can apply Lemma 5.6 to conclude the proof. 

I 
In the Riemannian case, the theorem is known as Gaess' lemma. 

Helgason [He 611 showed in the analytic case that it is valid in the pseudo 
Riemannian case as well. 1 followed the proof given in [Mi 1631, which I 
found applicable to the present context without coordinates, and without i 

I assuming analyticity. 

Convexity 

We conclude this section with the more systematic study of convexity, 
which was bypassed in Corollary 5.2. We shall treat the Riemannian case, 
which is slightly simpler. So we assume that ( X ,  g )  is Riemannian. 

We need to know: 

Given x E X ,  there exists c > 0 such that i f 0  < r < c, then the geodesic a 
t =< 1, and llvll, = r, is the shortest such that u( t )  = exp,(tv), with 0 

piecewise C' path between x and exp,(v). 

This will be proved in Theorems 6.2 and 6.4 of the next section. In 
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particular, dist,(x, exp,(v)) = r for r sufficiently small. As usual, we let: 

B,(O,, r )  = open ball in T,X centered at Ox, of radius r ; 

Bg(x,  r )  = open ball in X centered at x ,  of radius r ; 

S,(O,, r) = sphere of radius r in T,X, centered at 0, ; and 

Sg(x ,  r )  = sphere of radius r in X, centered at x. 

Here we shall deal only with r saciently small. 
We define an open set U of X to be convex if given x ,  y E U there exists 

a unique geodesic in U joining x to y ,  and such that the length of the 
geodesic is dist,(x, y). We shall prove Whitehead's theorem [Wh 321 in 
the form: 

Theorem 5.8. Let ( X ,  g )  be a Riemannian manifold. Given x E X, there 
exists c > 0 such that for all r with 0 < r < c the open neighborhood 
B,(x, r )  = exp,B,(O,, r )  is convex. 

Proof We need a lemma. 

Lemma 5.9. Given x E X, there exists c > 0 such that if r < c, and if a is 
a geodesic in X ,  tangent to S,(x, r )  at y = a(to), then a(t) lies outside 
Sg(x ,  r )  for t # to in some neighborhood of to. 

Prooj We pick c such that the exponential map exp, is a differential 
isomorphism on B,(O,, r )  for all r < c and preserves distances on rays 
from 0, to u E T,X with llvll, = r. Without loss of generality, we can 
suppose to = 0, so a(0) = y. We shall view y as variable, so we index a by 
y. Also we have to look at the other initial condition a'(0) = u E T, Y ,  so 
we write a,,. for the geodesic. Now let 

Then is a curve in the fixed Hilbert space T,X, so 

f;,u(t) = 2(v;,u(47 v , , u W q ( x ) ,  

f ; , U w  = 2v;,,w2 + 2(v;,u(',,(t), v,,u(t))g(x). 

Let h(y ,  u) = j & ( O ) .  Then h(x,  u) = 2u2, so h, as a function on T,X is 
positive definite. Therefore there exists c > 0 such that for 0 < r < c and 
l l ~ l l ~  = r the function h, is positive definite on T,Y, and in particular 
h ( y ,  u) > 0 for u2 # 0. Under the assumption that is tangent to 
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Sg(x ,  r )  at y ,  we must have 

We can now conclude the proof of Theorem 5.8. Using Corollary 5.2, 
we can find CI > 0 such that putting W = Bg(x,  c1) satisfies the condition 
of Corollary 5.2. Let c < CI. We show that r 5 c implies Bg(x,  r )  is 
convex. Let y ,  z E Bg(x,  r) .  Then by that corollary, there exists a unique 
geodesic u in the neighborhood V of x joining y and z. As in the lemma, 
let 

f ( t )  = (exp;' a(t))' ,  with a 6 t S b. 

It now suffices to prove that f ( t )  < r2.  Suppose f ( t )  2 r2 for some t, and 
let to E [a, b] be the maximum off on this interval, so f (to) 2 r2 .  Then 
to # a, b so f '( t0) = 0, whence a is tangent to the sphere Sg(x ,  ro) where 
ro = f The lemma now gives a contradiction, which concludes the 
proof of Theorem 5.8. 

Remark. In the pseudo Riemannian case, with metric g ,  one has to use 
an auxiliary Riemannian metric h to apply a similar argument, which 
makes the proof slightly longer. 

VIII, 96. RIEMANNIAN GEODESIC LENGTH 
AND COMPLETENESS 

Throughout this section, we let ( X ,  g )  be a Riemannian manifold. 

We return to the Riemannian case, where we use the positive definiteness 
of the metric. In Chapter VII, $6 we defined the length of a piecewise C' 
path. We want to compare the length locally with the length of straight 
lines in the tangent space at a point, under the exponential map. In the 
process, we shall see that locally, a geodesic is the shortest path between 
two points. 

Thus let xo E X and let (V, W )  be a normal neighborhood as in 
Corollary 5.2. Let X E  W .  For each piecewise C' path 
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with V(x) being as in Corollary 5.2(2), we can use the fact that the 
exponential map is invertible and so there exists a unique curve t H u( t )  in 
TxM such that Ilu(t)II, = 1 and 

y ( t )  = exp,(r(t)u(t)) with 0 < r ( t )  < E .  

In a chart, the vector r(t)u(t) is obtained by the inverse of the exponential 
map followed by a projection, so in particular, the functions t H r ( t )  and 
t H u(t) on [a, b] are piecewise C’ .  We call these functions the local polar 
coordinates for y. 

Lemma 6.1. For a piecewise C’ curve y :  [a, b] + V(x) - {x} as aboue, 
we have the inequality 

L(Y) h I @ )  - r(a>l. 

Equality holds only if the function t H r ( t )  is monotone and the map 
t H u(t) is constant. 

Proof: Let o(r, t )  = exp,(ru(t)). Then y(t) = o(r( t ) ,  t ) .  We have 

dy a0  a0 

dt ar y’(t) = - = - r ‘ ( t ) + - - .  at 

By the Gauss Lemma Theorem 5.7, we know that ao/& and ao/at are 
orthogonal. Since Ilao/arll, = 1 by Lemma 5.4, it follows that 

with equality holding only if aa/at = 0, or equivalently, du/dt = 0. Hence 

and equality holds only if t H r ( t )  is monotone and t H u(t )  is constant. 
This completes the proof. 

Theorem 6.2. Let ( V ,  W )  constitute a normal neighborhood of a point 
xo E X .  Let u :  [0, 11 + V be the geodesic (up to reparametrization) in V 
joining two points of W (namely u(0) and a(1)). Let 7: [0, 11 + X be 
any other piecewise C’ path in X joining these two points. Then 
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I f  equality holds, then the polar component t H v ( t )  for y is constant, the 
function t I+ r(t) is monotone, and a reparametrization of y is equal to u. 

Proof: Let x, Y E  W and let y = exp,(ru) with 0 < r < E ,  and 
IIuJ(, = 1. Then for 6 > 0 and 0 < 6 < r the path y contains a segment 
joining the shell Sh,(x, 6) with the shell Sh,(x, r )  and lying between the 
two shells. By Lemma 6.1, the length of this segment is r - 6. Letting 
6 tend to 0 shows that L(y) 2 r.  The same lemma proves the conditions 
on the polar functions as asserted. 

Corollary 6.3. Let a:  [0, 11 --+ X be a piecewise C’ path, parametrized 
by are length. I f  L (a)  5 L(y)  for all pathsfrom a(0) to a( 1) in X,  then a 
is a geodesic. 

Proof: We can find a partition of [0, 11 such that the image under a of 
each small interval in the partition is contained in some neighborhood W 
as in the theorem, and its length is small so the image of the segment is 
contained in a normal neighborhood. By Theorem 6.2, the path restricted 
to this segment must be a geodesic. Hence the entire path is a geodesic, as 
was to be shown. 

Let a:  [a, b] + X be a geodesic. We say that u is a minimal geodesic if 
L(a) 5 L(y) for every path y joining a(.) and a(b) in X. Theorem 6.2 
gives us the existence of minimal geodesics locally. We can then formulate 
another application. Let x E X. Let dist, be the Riemannian distance. 
Let: 

B,(Ox, 4 ,  S,(OX,  r ) ,  Bg(x, 4 ,  Sq(x, r )  

be the open balls and spheres of radius r, centered at 0, in T,X and at x 
in X,  respectively. We now know enough to show that S’,(x, r) is the 
image of S,(O,, r )  under the exponential map, and similarly for the open 
ball, for sufficiently small r. 

Theorem 6.4. Let ( X ,  9 )  be a Riemannian manifold and let x E X .  
There exists c > 0 such that for all r < c the map exp, is defined on 
B,(O,, c), gives a differential isomorphism 

exp,: B,(O,, r )  + Bg(x, r )  for all r with 0 < r < c,  

and also a differential isomorphism 

exp,: S,(O,, r) + Sg(x, r )  for 0 < r < c. 

ProoJ Immediate from Corollary 5.5 and Theorem 6.2. 
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Next we consider completeness. Since X is a metric space (in the 
ordinary sense), with respect to the distance dist,, the notion of X being 
complete is standard: every Cauchy sequence for dist, converges. On the 
other hand, we can now define another notion of completeness. 

We say that (X, g) is geodesically complete if and only if the maximal 
interval of definition of every geodesic in X is all of R. Alternatively, we 
could say that for each point x E X ,  the exponential map exp, is defined 
on all of T,, because under one normalization of the parametrization of a 
geodesic, it is simply the curve t H exp,(tu) for some u E T,X. To be 
systematic, let us consider the following conditions : 

COM 1. As a metric space under dist,, X is complete. 

COM 2. All geodesics in X are defined on R. 
COM 3. For every x E X ,  the exponential exp, is defined on all of T,X. 

COM 4. For some x E X ,  the exponential exp, is defined on all of T,X. 

Proposition 6.5. Each condition implies the next, i.e. 

COM 1 + COM 2 +  COM 3 +  COM 4. 

Proof: Assume COM 1. Let a:  J 4 X be a geodesic parametrized 
by arc length on some interval, and take J to be maximal in R. By the 
existence and uniqueness theorem for differential equations, J is open in R, 
and it will suffice to prove that J is closed, or in other words, that J 
contains its end points. For tl, t2 E J we have 

Suppose for instance that J is bounded above, and let {t,,} be a sequence 
in J converging to the right end point of J. Then the sequence {a(tn)} is 
Cauchy by the above inequality, so {a(&,)} converges to a point xo by 
COM 1. Then for all n sufficiently large, a(t,,) lies in a small normal 
neighborhood of xo, and there is some E > 0, independent of n, such that 
the geodesic can be extended to an interval of length at least E beyond 
tn, thus contradicting the maximality of J, and proving COM 2. The 
subsequent implications are trivial, so the proposition is proved. 

We are now interested when geodesic completeness implies complete- 
ness. We shall give two criteria for this. One of them is that the manifold 
has finite dimension, and the other one will be important for its appli- 
cation to conditions on curvature in Chapter IX. The finite dimensional 
case depends on the next result. 
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Theorem 6.6 (Hopf-Rinow). Assume that (X, g) is finite dimensional 
connected geodesically complete at a point p, that is, exp, is defined on 
TpX. Then any point in X can be joined to p by a minimal geodesic. 

Proof: I follow here the variation of the proof given in [Mi 631. Let y 
be a point with p # y. Let W be a normal neighborhood of p containing 
the image of a small ball under the exponential map exp,. Let r = 
dist(p, y), and let 6 be small < r. Then the shell Sh,(p, 6) = Sh(p, 6)  is 
contained in W. Since Sh(p, 6) is the image of the sphere of radius 6 in 
TpX, it follows that Sh(p, 6) is compact. Hence there exists a point xo on 
Sh(p, 6) which is at minimal g-distance from y, that is 

dist(x0, y) 5 dist(x, y) for all x E Sh(p, 6) .  

We can write xo = expP(6u) for some u E T, with JIull, = 1. Let a(t) = 
exp,(tu). We shall prove that exp,(ru) = y. We prove this by “contin- 
uous induction” on t, as it were. More precisely, we shall prove: 

(dish) We have dist(a(t), y) = r - t for 6 5 t _I r. 

Taking t = r will prove the theorem. First we note that (dists) is true. 
Indeed, every path from p to y intersects the shell Sh(p, 6) ,  so 

(1) dist(p, y) = min (dist(p, x) + dist(x, y)) for x E Sh(p, 6 )  

= 6 + min dist(x, y) 

= 6 + dist(x0, y), 

X 

so (dists) is true. Now “inductively”, assume that (dist,) is true for all 
r < r’, with 6 5 r’ 5 r. Let rl be the least upper bound of such r’. Since 
the distance dist, is continuous, it follows that (dist,,) is true, and it 
suffices to prove that r1 = r. Suppose rl < r. Pick 61 small so we get as 
usual a spherical shell Sh(a(rl), 81) around tl(r1), contained in a normal 
neighborhood of a(r1). As in (l), there is a point x1 on Sh(a(rl), 61) at 
minimal distance from y, and we have the relation as in (l), namely 

Since (dktr,) is true, we find 



226 COVARIANT DERIVATIVES AND GEODESICS [VIII, $61 

We claim that XI = u(r1 + 4 ) .  To see this, first observe that 

dist(p, XI )  2 dist(p, y )  - dist(x1, y )  = rl +&. 

But the path consisting of the two minimal geodesics from p = a(0) to 
u(r1) and from u(r1) to x1 has length rl +&, so this path (which is viewed 
as a broken geodesic) has minimal length, so it is an unbroken geodesic by 
Corollary 6.3. Hence the path is actually equal to a, so a(rl +&) = XI,  

and therefore dist(x1, y )  = r - (rI +&), so (distrl+s,) is true, thus con- 
cluding the proof of the continuous induction, and also concluding the 
proof the Hopf-Rinow theorem. 

Corollary 6.7. In the finite dimensional case the four completeness 
conditions COM 1 through COM 4 are equivalent to a fijih: 

COM 5. A closed dist,-bounded subset of X is compact. 

Prooj Assume COM 4 with exp, defined on TXJ.  Let S be closed 
and bounded in X. Without loss of generality, we may assume xo E S. Let 
b be a bound for the diameter of S. Then by Theorem 6.6 (Hopf-Rinow), 
every point of S can be joined to xo by a geodesic of length 5 b, so S is 
contained in the image under exp, of the closed ball of radius b in TxoX, 
so S is compact, thus proving COM 5. 

Assume COM 5. Let {x , }  be a Cauchy sequence in X. Then {Xn} lies 
in a bounded set, whose closure is compact by assumption, so {x,} has a 
point of accumulation which is actually a limit in X. This proves COM 1, 
and concludes the proof of the corollary. 

Remark. In his thesis [McA 651, McAlpin gave the following example 
which shows a divergence of behavior in the case of infinite dimensional 
Hilbert manifolds. Let E be a Hilbert space with orthonormal basis 
{en} (n 2 0). Let T: E --f E be the linear map such that for a vector 
u = Cx,e, E E 

where a0 = 1 and a, = 1 + 1/2" for n 2 1. Then 

llvll 5 llT4l s ~ I I ~ I I ,  
and therefore T is invertible in Laut(E). Let S be the unit sphere in E and 
let X = T ( S ) ,  so X is a submanifold of E, to which we give the induced 
metric. Let u be a path joining eo to -eo in S. Then Tu is a path joining 
eo to -eo in X ,  and T is length increasing, that is 
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Hence the length of any path in X joining eo to -eo is 2 IC, which is the 
minimal length of paths between the two points in E. However, let a,, be 
the half great circle joining the two points in the upper (eo, en)-half plane. 
Then 

L(Ta,) < (1 + 1/2")w --f IC = distx(e0, -eo). 

Hence there is no minimal path joining the two points in X. Note that 
each Tan is a geodesic in X joining the two points, because 

Im( Ta,)u - Im( Tan) 

is the fixed point set of the isometry F, dehed by 

McAlpin refers to [Gros 641 for results on the distribution of degenerate 
points of the exponential map in similar examples. 

Next we give another criterion for (X, g) to be complete. We start with 
a lemma. 

Lemma 6.8. Let f :  Y + X be a C' map between Riemannian 
manifolds ( Y ,  h) and ( X ,  9). Assume that there is a constant C > 0 such 
that for all y E Y and w E T,Y we have 

If y :  [a, b] + y is a piecewise C' path in Y, then 

L ( f  Or) h CL(Y). 
Proof. We have 

as was to be shown. 

Let f: Y + X be a C' map of manifolds. We say that f has the 
unique path lifting property if given a point x E X, a piecewise C' path u in 
X starting from x,  and a point y E Y such that f( y) = x, then there exists 
a unique piecewise C' path y in Y such that f o y = u and y starts at y. 



228 COVARIANT DERIVATIVES AND GEODESICS [VIII, 661 [VIII, $61 RIEMANNIAN GEODESIC LENGTH AND COMPLETENESS 229 

Theorem 6.9. Let f :  Y + X be a local C' isomorphism of a Rie- 
mannian manifold ( Y ,  h) into a Riemannian manifold (X, 9). Assume 
that (Y,  h) is complete, and X is connected. Also assume that there is a 
constant C > 0 such that for all y E Y and w E Ty Y we have 

Then f is surjective, f is a covering and has the unique path lifting 
property, and ( X ,  g) is complete. 

Proof: The proof is in three steps. The first step is to prove that f is 
surjective and has the unique path lifting property. Let x E X ,  x = f (y). 
Every point in X can be joined to x by a piecewise C' path. Let 
a:  [a, b] + X be such a path, joining a(a )  = x with a(b ) .  We shall prove 
that a can be lifted uniquely to a path in Y starting from y. This will 
prove the first step. Let S be the set of elements t E [a, b] such that the 
path a restricted to [0, t] can be lifted uniquely to a path y starting at y. 
Without loss of generality, we may assume that a < b. The set S is not 
empty because a E S,  and it is open because f is a local isomorphism. So it 
remains to show that S is closed. Let { t,} be a sequence in S increasing to 
the least upper bound bo of S. Then {a ( tn ) }  converges to a(bo), and by 
Lemma 6.8 the lengths of the lifted path between y(t,) and y(tm) tend to 0 
as m, n tend to infinity, so the sequence { y ( t , ) )  is Cauchy in Y, converging 
to some element yo since Y is assumed complete. Then f(yo) = a(bo), so 
S is closed, whence S = X by assumption. Therefore f is surjective, and 
we have also proved the existence and uniqueness of path liftings. 

The next step in the proof is to reduce the theorem to the case when the 
map f is a local isometry. We do this as follows. Let g* = f*(g) be the 
pull-back of the metric g from X to Y by J: Then for all y E Y and 
w E Ty Y we have 

IIwIIg* = llTf ( Y ) W l l ,  2 Cll Wllh.  

Hence on Y we find that dist,. 2 Cdisth. We now claim that Y is 
complete for the distance dist,,. To see this, first observe that if {y,} is 
g*-Cauchy, then {y,} is also h-Cauchy, so {y,} is h-convergent to an 
element yo E Y. Then { f (y,)} converges to f ( yo ) .  But f induces an 
isomorphism from some neighborhood V of yo to an open neighborhooc' 
of f (yo) ,  and hence for all but a finite number of n, the points f (y,) lie in 
f (V), so { y,} is also g*-convergent to yo since g* = f *(g). This proves 
that Y is g*-complete. Furthermore, we have the inequality 

In thisJinal step, we prove that f is a covering. Since Y is g*-complete, 
this will also prove that (X, g) is complete, and will conclude the proof 

I 

of the theorem. By the second step, we may assume without loss of 
generality that f is a local isometry, and that 

Let x E X. From Theorem 6.4 we know that 

is an isomorphism for all r sdciently small, say r < c with c > 0. Let 
y E f-'(x). Since f is a local isometry, the following diagram is com- 
mutative (using (*)) : 

Note that the right vertical arrow is a differential isomorphism because we 
have picked r small enough, but so far we have made no such assertion for 
the left vertical arrow. For the proof of the theorem, it will suflice to 
show that f-'B,(x, r)  is the disjoint union of the balls Bh(y, r )  for 
y E f-'(x), if r is taken small enough. We take r so small that given 
x' E B,(x, r )  there is a unique geodesic in Bg(x,  r )  joining x to x' (namely 
.?xp,(tv) for some v ) .  Then, first, we have f(Bh(y, r ) )  c Bg(x,  r ) ,  so 
',he union is contained in f - 'B, (x ,  r) .  Conversely, given a point 
IE f-'B,(x, r ) ,  we can join f(z) to x by a geodesic of length < r in 
Bg(x,  r ) ,  and by the path lifting property already proved in step 1, we can 
join z to a point y in f-'(x) by a geodesic of the same length, so 

where the union is taken over y E f -' (x). Finally, let y l ,  y2 E f-' ( x )  and 
qyppose yl # y2 .  We claim that Bh(yl,  r)  is disjoint from Bh(y2, r ) .  
Suppose there is some point z in the intersection. Then z can be joined 
to y1 by a geodesic 011 in Bh(yl ,  r ) ,  and z can also be joined to y2  by a 
geodesic a2 in Bh(y2, r ) ,  and these geodesics are distinct. Their images 
under f are geodesics in Bg(x,  r )  joining x with f(z). By the uniqueness of 
path lifting, this would mean we have two distinct geodesics in Bg(x ,  r )  
joining x and z, and that these geodesics have length < r. This contradicts 
the local uniqueness statement, and proves that the balls Bh(yl ,  r)  and 
Bh(y2, r )  are disjoint. This concludes the proof of the theorem. 
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Remark. In the next chapter, under a condition of seminegative curva- 
ture (to be defined), we shall take Y = T,X, and we shall prove that 

f = exp,: T,X -+ X 

satisfies the hypotheses of Theorem 6.9, and therefore in particular that 
geodesic completeness implies completeness. In this manner, we shall be 
able to replace the local compactness condition by a curvature condition 
to insure the equivalence between the two notions of completeness. The 
whole technique goes back to Hadamard [Ha 18981 in the case of surfaces 
with seminegative curvature, and Cartan [Ca 281 in the general case, still 
in this context of seminegative curvature. The notion of a “covering 
space” was not so clear during this early period. Except for a minor 
variation, the theorem is apparently due to Ambrose [Am 561, and occurs 
in the standard treatments of differential geometry as in [He 621 later 
replaced by [He 781, Chapter I, Lemma 13.4; [KoN 631, Chapter IV, 
Theorem 4.6 and Chapter VIII, 58, Theorem 8.1 and especially Lemma 1. 
The theorem is at the base of the Cartan-Hadamard theorem, to be 
proved later. 

CHAPTER IX 

Curvature 

This chapter is a continuation of the preceding one, and is concerned with 
the iteration of covariant derivatives, from a formal point of view, and 
also from the point of view of their effect on the geometry of the manifold. 

IX, 91. THE RIEMANN TENSOR 

Let X be a manifold with a spray, and the covariant derivative D associated 
with the spray. If t, q, C are vector fields on X ,  we are concerned with the 
operator 

DgD, - D,Dy - D[t , , ] :  T T X  -+ T T X ,  

which is a linear map of TTX into itself. 

Proposition 1.1. There exists a unique tensor j e l d  R,  section of 
L 3 ( T X ,  T X ) ,  i.e. arising from the functor E H L 3 ( E ,  E) (continuous 
trilinear maps of E into itself) such that for all vectorjelds 5, q, C we 
have 

R ( t ,  7, C )  = DtD,C - D,QC - D[t,,]C. 

ProoJ: The expression on the right-hand side gives a well-defined vector 
field on X. To show that this association comes from a tensor field, we 
can compute in a chart. To do this, we use the local expression for the 
covariant derivative given in Theorem 2.1 of Chapter VIII. So for the rest 
of the argument, t, q, l stand for tU, qU, CU in a chart U. Then, for 
example, we have 

(1) D,l.= l’ . z7 - B(?, C). 
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We determine Dr(D,C) by substitution in this formula. As a first step, we 
have to write down the derivative 

(DqC)’ . t = Ct’ . t . q + C’ . q’ . t - B(q’t, C )  - B(q, C’ . t) - (B’ . t ) ( q ,  C ) .  

Then it follows that 

Permuting t and q gives us the second term. Using the local expression 
for the bracket 

[t, 771 = q’ . t  - r’ . q 
as well as (1) will give us the third term. The reader will then verify that 
all the expressions containing a derivative cancel, leaving only trilinear 
expressions involving t, q, and C. This proves Proposition 1.1. 

In addition, after the cancellation of the terms with derivatives, we 
obtain a local expression for R, namely: 

Proposition 1.2. Letting t, q, C represent vector fields in a chart: 

Remark. There is no universal convention as to the sign of R. I use the 
same sign as [KoN 631, [ChE 751, [He 781, and [BGV 921, but the opposite 
sign to [BGM 711, [HGL 87/93], and [Mi 631. For further comments, see 
the discussion after the definition of sectional curvature. 

Let u, w, 

if t, rl, C are 
writes 

for the linear map of TTX into itself, given by 

Nt, V )  = DtD, - D,Dr - DK>,1. 
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As a function of two variables, according to this definition, one may view 
R as a section of the bundle L 2 ( T X ,  L ( T X ,  T X ) ) ,  which is formed by 
applying the functor E3 H L2(E,  L(E ,  E ) )  to the tangent bundle. 

is 

, I  - 
Next we list some identities: 

Proposition 1.3. 

R(u, w) = -R(w, u )  (skew-symmetry). 

R(u, w, z )  + R(w, z ,  u )  + R(z, u, w) = 0 (cyclicity, Bianchi’s identity). 

Proof The first relation is obvious from the definition. The second one 
immediate from the local representation of Proposition 1.2. 

For the next two properties, we assume that the spray is the one 
associated with a metric, so the covariant derivative is the metric deri- 
vative. We let ( ,  )g be the scalar product associated with the metric. Then 
we define a function of four variables 

R(u,  w, z ,  u)  = (R(u, w)z,  u ) ~  for u, w, z ,  u E T,X. 

Then R is a tensor of type L4, that is a section of L 4 ( T X )  = L 4 ( T X ,  R). 
We shall call R the Riemann 4-tensor (canonical with respect to 9). We 
call -R the curvature tensor. The properties of Proposition 1.3 may be 
formulated for this 4-tensor, and we shall see in a moment that it also 
satisfies two other important properties. Thus it is useful to make a 
general definition. A tensor R of type L4 is called a tensor of Riemann 
type if it satisfies the following four properties: 

RIEM 1. R(u, W ,  Z, U) = -R(w, V ,  Z,  U) 

RIEM 2. R(u, W ,  Z,  U) = -R(u, W ,  U, Z )  

RIEM 3. R(v,  W ,  Z, U) + R(w, Z,  U, U) + R(z, U, w, U) = 0 

RIEM 4. R(u, W ,  Z, U) = R(z, U, u, w). 

The first two conditions express the property of being alternating in the 
first two variables, and also in the last two variables. The third condition 
is called the Bianchi identity, and expresses the property that the cyclic 
symmetrization of the, tensor is 0. The fourth property states that the 
tensor is symmetric in the pairs of variables (u ,  w) and ( z ,  u) .  In par- 
ticular, we note right away that from RIEM 4, we obtain: 

R(v,  w, u, u) is symmetric in (w, u ) ,  that is R(u, w, u, u )  = R(u, u, u ,  w). 

We shall make more comments on these properties after the next 
proposition, which justifies the terminology. 



234 CURVATURE [IX, 011 

Proposition 1.4. On a pseudo Riemannian manifold, the Riemann tensor 
satisjes all the above four properties. Furthermore, RIEM 4 f o l l o w s  from 
RIEM 1, 2, 3. 

Prooj Properties RIEM 1 and RIEM 3 have been proved in Pro- 
position 1.3. Property RIEM 2 amounts to proving that R(v,  w, z ,  z )  = 0 
for all v ,  w, z; or in terms of vector fields, R(<,  q ,  4, (') = 0. We will need 
to differentiate. Since all the terms with derivatives vanish in the local 
formula of Proposition 1.2, we may assume without loss of generality that [r,  q] = 0. Then 

and we must show that the right side is symmetric in r, q. But [r, q] = 0 
implies that 

Yt%l(C, 0, 
is symmetric in r, q. Since we are dealing with the metric covariant 
derivative, it follows that 

from which it follows at once that (DtDv(', C ) ,  is symmetric in r, q, thus 
proving RIEM 2. 

The formula RIEM 4 is a formal consequence of the preceding three 
formulas. It is basically an exercise in algebra, which we carry out. In the 
cyclic identity RIEM 3, interchange u with z,  v,  w successively, and add 
the resulting three relations. One gets, using RIEM 1 and RIEM 3: 

(*) R(u, V ,  W ,  2) + R(u, W ,  Z, V )  + R(u, Z, V ,  W )  = 0. 

From cyclicity and RIEM 1, one gets 

R(z,  v ,  u, w )  = R(u, v ,  z ,  w )  - R(u, z ,  v ,  w )  

R(u, Z,  U, W )  = R(u, v ,  z, w) - R(z ,  v ,  u, w ) .  

or 

We substitute the value on the left in (*), and use RIEM 1 to conclude the 
proof of RIEM 4. 
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We shall be dealing with a contraction of the canonical 4-tensor. We 
defined the canonical 2-tensor R2 by 

! Proposition 1.5. The canonical 2-tensor determines the Riemann tensor. 
Or similarly, if the canonical tensor R satisfies 

R(v,  w, v ,  w) = 0 for all v ,  w, 
then R = 0. 

Proof Say we prove the second assertion first. From RIEM 4, which 
implies that R(v, w, v ,  z )  is symmetric in (w, z ) ,  if R(u, w, v ,  w) = 0 for all 
v ,  w then R(v, w, u, z )  = 0 for all v,  w, z. From the alternating properties 
of RIEM 1 and RIEM 2, it follows that R = 0 identically. 

To show that the canonical 2-tensor determines the Riemann tensor, we 
note that the problem is essentially equivalent to the other statement, but 
one may argue directly as when one recovers a symmetric bilinear form 
from a quadratic form, namely 

[ & R ( v + t z ,  w + s u ,  v + t z ,  W + S U )  

s=t=O 

" 
R(v + tu, w + sz, v + tu, w + sz) -- 

atas 

= 6R(v, W ,  Z,  u). 

This proves the proposition. 

An important case arises when R2 2 0. We define (X, g) to have 
seminegative curvature if R2 2 0. The following discussion explains this 
terminology in terms of its historical development. 

Curvature discussion 

A large part of the theory we are developing is fundamentally a theory 
of commutative rings with certain types of derivation, and possibly scalar 
products, in which positivity or negativity plays no role. This theory 
contains a number of formulas with precise equality between various 
terms. There would be some value in redoing this chapter and the 
preceding one completely in such a context of commutative differential 
algebra. At some point, for certain applications, the positivity or nega- 
tivity properties of the real numbers are used, as in the second statement 
of Proposition 2.6 below. For such applications, the question arises as to 
what is the natural sign to be used, if indeed there is a natural sign. 
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Historically, the theory arose in a geometric context, based on geo- 
metric intuition. To each pair of vectors (u ,  w) in a tangent space T J ,  
we define the area square of the parallelogram spanned by these vectors to 
be 

2 2 Arg(u, w) = u2w2 - ( v ,  w), .  

As usual, u2 = (u ,  u),. Then, when Ar,(u, w ) ~  # 0, we define the sectional 
curvature to be 

In the Riemannian case, Ar,(u, w) # 0 if and only if u, w are linearly 
independent. If u2 and w 2  > 0, then the value on the right depends only 
on the unit vectors in the direction of u, w respectively; and if u, w are 
orthogonal unit vectors, then 

Sec,(u, w) = -R(u, w, u, w). 

In the Riemannian case, it is immediate that the value of the sectional 
curvature on (u ,  w) depends only on the plane generated by u and w, 
because of the skew-symmetry of RIEM 1 and RIEM 2. For the complex 
analogue, see [La 871, Chapter V, $3. 

Let c E R+ be a positive number. The multiple cg is called a scaling of 
the metric 9.  Since the covariant derivative Dcg is the same as Dg, it 
follows from the definitions that under scaling, the curvature changes as 

Seccg = c-l Sec,. 

Directly from the definition, we then see in the Riemannian case that 

The sectional -curvature has constant value -1 if and only if 

R2(u, w) = u2w2 - (u,  w),” for all u, w E T x X .  

Viewing v as fixed, the above expression is quadratic in w, and the 
corresponding symmetric bilinear form is 

Thus R(u, w)u is given by 

2 R(u, w)u = u w - (0, w),u for all u, w E T x X .  

Similarly, the sectional curvature has constant value + 1 if and only if the 
analogous formula holds with a minus sign inserted on one side, so that for 
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instance 
-R(u, w)u = u 2 w - (u ,  w),u. 

In the applications of this book (the rest of this chapter, the Cartan- 
Hadamard theorem, the variation formulas of Chapter XI, $1, etc.) what 
matters is not the “curvature” as defined above, but the canonical tensor 
R itself. Furthermore, formulas in these applications come out much 
neater with R than with “curvature” for two reasons: 

First, for such formulas, dividing to normalize as in the curvature 
quotient is unnatural, partly because the term by which one divides, 
algebraically, may be equal to 0 unless extra conditions are imposed. 

Second, even for inequalities as distinguished from equalities, the 
natural condition which arises is R(u, w, u,  w) 2 0 rather than curvature 
10. - If one takes R with the sign as we have defined it, then only plus 
signs occur in all the formulas (cf. Lemma 2.5 and the variation formula, 
Theorem 1.3 of Chapter XI, for instance). This universal occurrence of 
plus signs is obscured if one introduces minus signs artificially. I regard 
this universal Occurrence of plus signs as structurally important. 

The naturality of R in the real case is similar to the naturality of its 
counterpart in the complex case, where formulas involving positivity come 
out neatly by using the analogue of R rather than its negative (as already 
noted by Griffiths). Cf. [La 871, the comments pp. 136-137 about holo- 
morphic sectional curvature. The lesson is that the “curvature” in classical 
terminology is minus the natural object R (aside from questions of 
normalizing the dilation to the unit sphere). 

Classically, starting with surface theory, people wanted some formulas 
such as Gauss-Bonnet or formulas relating “curvature” and Betti numbers, 
using +R, to come out so that on the sphere, one gets a value of certain 
integral to be 4n and not -4a. So they picked the minus sign, and gave 
the notion -R (normalized) the name of curvature, which makes the 
sphere have positive curvature. The bottom line is that depending on what 
applications one makes, both R and -R are “natural.” However, from the 
point of view of universal algebraic manipulations, R is the clearest 
functorial notion. 

One can define two other curvatures, at least. Actually, all we need is 
a tensor of curvature type. From such a tensor R, we obtain two other 
tensors. First observe that to each pair of vectors u, z E E we can associate 
an endomorphism of E, denoted by Ric(u, z ) ,  and defined by 

RicR(u, z )w  = R(u, w)z. 

Thus Ric gives a bilinear map 

RicR: E x E -+ L(E, E). 
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Applied to the tangent bundle, and the Riemann tensor R itself, Ric is 
called the Ricci tensor. 

Furthermore, in the finite dimensional case, the trace 

tr: L(E, E) + R 

is a continuous linear map. Then the composite 

SCR = tr o RicR 

is a function of pairs of vectors, which when applied to the tangent bundle 
defines what is called the scalar curvature. In the infinite dimensional case, 
one has to give an additional structure, assuming that the Ricci tensor is 
of “trace class”, or defining the sectional curvature with respect to a given 
trace,” i.e. a continuous functional on L(E, E) which is equal on 

products AB and BA. But this now leads far afield. 
Suppose we are in the Riemannian case. We can then give an explicit 

formula for the scalar curvature. In the neighborhood of a point, we can 
find vector fields tl,  . . . , <, (with n = dim X )  which are orthonormal, by 
the usual orthogonalization process. Such a sequence of vector fields is 
called an orthonormal frame at the point. 

( 6  

Proposition 1.6. Let {tl,. . . , t,} be an orthonormal frame on an open 
set. Then for vector fields <, q we have 

Prooj This is immediate from the definition of the trace of an endo- 
morphsm of a finite dimensional vector space. 

The conditions RIEM 1 and RIEM 2 express the property of depending 
only on the wedge product of each pair of variables v A w and z A u. 
Property RIEM 4 is a symmetric property in these pairs of variables. Thus 
we may say that the four-variable tensor R defines a symmetric bilinear 
form on A ’ T X ,  which we denote by 

R“ : A‘ TX A A ’ T X  + R, such that R A  ( v  A w, z A u)  = R(v, w, z ,  u). 

On the other hand, we also have the pseudo Riemannian metric, which 
induces a non-singular scalar product on A ’ T X  by the formula 
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These scalar products are of course evaluated at each point x E X ,  v, w, z,  
u E T J .  The scalar product on A’ TX with respect to the non-singular 
symmetric form g then corresponds to a symmetric operator which is 
called the curvature operator. 

In the infinite dimensional case, from the self duality, each tangent 
space can be interpreted as the dual of its dual, and the wedge product is 
defined as in Chapter V, $3 so the above notions still make sense. 

Readers wanting to pursue the topic of curvature are now referred to 
other books on differential geometry, including [BGM 711, [ChE 751, 
[doc 921, and [GHL 87/93]. 

IX, 92. JACOB1 LIFTS 

Let ( X ,  g )  be pseudo Riemannian. We write w 2  for (w, w ) ~ ,  and v I w 
for (v,  w ) ~  = 0. We let u :  [a, b] + X be a geodesic. Unless otherwise 
specijied, ( X ,  g )  is not necessarily Riemannian. 

A lift q E Lift(u) to the tangent bundle will be called a Jacobi lift, or 
more classically a Jacobi field, if it satisfies the Jacobi difierential equation 

D$q = R(u’, 7 ) ~ ’ .  

Theorem 3.1 of Chapter VIII and Proposition 1.2 in the preceding section 
of the present chapter show that locally, the above equation is a linear 
differential equation. Therefore, by the existence and uniqueness theorem 
for linear differential equations, we get : 

Theorem 2.1. Let ( X ,  g )  be pseudo Riemannian, let u :  [a, b] + X be a 
geodesic. Given vectors z ,  w E T,(,)X, there exists a unique Jacobi lift 
q = of u to TX such that 

q(a)  = z and D a q ( a )  = w. 

In particular, the set of Jacobi lifts of u is a vector space linearly 
isomorphic to Ta(,,) x Ta(,) under the map ( z ,  w) ++ qzYw. 

We denote the space of Jacobi lifts of u by Jac(u). 
Let v E T, and consider the unique geodesic 

u(t)  = exp,(tv) 

such that u(0) = x and u’(0) = u, with a defined on an open interval. Let 
w E T,X and let qw be the unique Jacobi lift of u such that 

~ ~ ( 0 )  = 0 and Daqw(0)  = w. 
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Example. Let w = v .  Then 

q,(t) = ta’(t). 

D,q,(t) = a’(t) and D,,q, 2 = 0 = R(a‘, a’)a’. 

ProoJ: One verifies at once that q,(O) = 0, and since Dora’ = 0, we also 
have 

Remark 1. Defining a Jacobi lift implicitly has the geodesic a in its 
definition. If, say, a = 0, this geodesic is uniquely determined by its initial 
condition a’(0 = v ,  so the Jacobi lift is also determined by v.  Thus one 
could write q d  for the Jacobi lift. In the present discussions, this won’t be 
necessary since we deal systematically with a fixed a. 

Remark 2. In a chart, the derivative q’(0) can be computed in the naive 
way since q :  J -+ TX is defined on an interval. The naive derivative and 
the covariant derivative D , q  differ locally in a chart by a term linear in q, 
which therefore vanishes at 0 if q(0) = 0. Hence the naive derivative and 
the covariant derivative have the same value at 0, that is 

r’(0) = Du,q(O). 

We note that, a being fixed, the association w H vw is linear. We now 
have the possibility of orthogonalization. 

Proposition 2.2. Let ( X ,  g )  be pseudo Riemannian. Let a :  [a, b] + X 
be a geodesic, and let q be a Jacobi lift of a. Then there are numbers c, 
d such that 

(q, u‘), ( t )  = c(t - a)  + d. 

In fact, d = (7, u’)g(a) and c = (&q, a‘),(a). If q(a) and D,q(a) are 
orthogonal to a’(a), then ~ ( t )  is orthogonal to a’(t) for all t. 

ProoJ: Using the metric derivative, and D,m‘ = 0 since a is a geodesic, 
we find that a(q, a’), = (Da~q ,  a’),, and then 

a 2 (7, a‘), = (D:,q, a’), = R ( d ,  q, a’, a‘) = 0. 

Hence (q, a’), is a linear function, whose coefficients are immediately 
determined to be those written down in the proposition. 

Proposition 2.3. As above, let a’(0) = v.  Write w = cv+ w1 with 
( W I ,  v ) ,  = 0. Then qw has the decomposition 

qw = cq, + qw,, also written q,(t) = cta’(t) + q,, ( t )  

Furthermore qw, is orthogonal to u‘, that is (q,,, a‘), = 0. 

Prooj Immediate from Proposition 2.2. 

I Next we get the similar orthogonalization of Dafvw. 

I 
Proposition 2.4. Notation as in Proposition 2.3, we have an orthogonal 
decomposition 

I In other words, if w1 I u’(O), then D,qW, I a’. Furthermore (Da~qv)2  is 
constant. 

Prooj For the first assertion, we take the derivative and use Prop- 
osition 2.3 to get 

For the second, we then obtain for 1 = 1,: 

If q = q, so q,(t) = ta’(t), then the right side is 0 because & is alternating 
in its last two variables. This concludes the proof. 

Remark. If q = 1, with w I a’(O), then we cannot necessarily conclude 
that the derivative is 0. 

The next lemma will give us idormatiou on the rate of growth of a 
Jacobi lift, and the convexity of its square. 

Lemma 2.5. Assume ( X ,  g )  Riemannian. Let 1 be a Jacobi Igt of a. 
Let f ( t )  = Ilv(t)II. Then at those oalues o f t  > 0 such that q( t )  # 0, we 
have 

Prooj Straightforward calculus, using the covariant derivative. The 
first derivative f’ is given by 

2 -112 1 
(7, Du’tl)g = - ( v ,  Dattljg. llrtll f’ = (1 ) 
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Then f ”  is computed by using the rule for the derivative of a product. In 
the term containing (D$q, v ) ~ ,  we replace Di,q by R(a‘,q)a‘ (using the 
definition of a Jacobi lift) to conclude the proof of the lemma. 

In the above lemma, we note that on the right side, the first term is 
2 0, and the second term is 2 0 if R2 2 0. 

Proposition 2.6. Let a :  [0, b] + X be a geodesic. Let w E T,(o)X, 
w # 0. Let qw = q0,, = q be the unique Jacobi lift satisfying 

I f  ( X ,  g )  is Riemannian and R2 >= 0 (so ( X ,  g )  has seminegative cur- 
vature), then for t E [0, b] we have 

Proof Let h( t )  = Ilq(t)ll - llwllt for 0 5 t 5 b. Then h is continuous, 
h(0)  = 0, and by Lemma 2.5, h” = f ”  2 0 whenever q(t)  # 0. One cannot 
have q( t )  = 0 for arbitrarily small values of t # 0, otherwise D,q(O) would 
be 0 (because in a chart U ,  qL(0)  = D,tq(O)). In fact, we shall prove that 
there is no value of t # 0 such that q( t )  = 0. Suppose there is such a 
value, and let to be the smallest value > 0. In the interval (0, to) we have 
h” 2 0 by Lemma 2.5, so h’ in increasing. But the beginning of the Taylor 
expansion of q in a chart is 

Furthermore, h’(0) exists and is equal to 0, so h’ 2 0 on [0, to), so h is 
increasing, and there cannot be a value to > 0 with q(t0) = 0. Then the 
above argument applies on the whole interval [0, b] to prove the desired 
inequality on the whole interval. This concludes the proof of Proposition 
2.6. 

Remark. These results essentially stem from Cartan [Ca 281. The above 
version without coordinates, which extends to the infinite dimensional case, 
comes from [BiC 641. Readers may find it instructive to compare this 
version with the one involving coordinates given in [He 781, pp. 71-73. 

Proposition 2.6 is used for the subsequent application to the Cartan- 
Hadamard theorem (Theorem 3.7), based on Theorem 6.9 of Chapter 
VIII, whose origin is in Hadamard for surfaces [Ha 18981 and Cartan 
in general. (Here and at several other places, I rely on Helgason’s very 
useful bibliographical comments.) 
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Variations of geodesics 

By a variation of a curve a one means a C2 map 

a: [a, b] x J -+ X 

where J is some interval containing 0, such that a(s, 0) = a(s) for all s. 
One then writes 

t )  = 44, 
and one views { a f }  as a family of curves defined on [a, b]. If all curves at 
are geodesics for t E J then one says that r~ is a variation through geodesics. 

Lemma 2.7. Let a: J1 x J2 + X be a C2  map. Then on lifts of a to the 
tangent bundle, we have the equality of operators 

0 1 0 2  - 0 2 0 1  = R(&a, 820). 

Proof The formula can be verified in a chart. It follows directly from 
the definitions, especially using the local expression of Proposition 1.2. 

Proposition 2.8. Let a: [a, b] x J + X be a variation of a geodesic a 
through geodesics. Let 

q(s) = &a(s, O). 

Then q is a Jacobi lift of a, said to come from a or associated with a. 

Proof Given a, we have 

D?&a = DlD182a = DlD2alo by Lemma 5.3 of Chapter VIII 

= D2Dlala + R(&a, ~ Z O ) & O  by Lemma 2.7. 

But Dl&a(s,  t )  = 0 because at is a geodesic, whence D$q = R(a’, q)a’, so 
q is a Jacobi lift of a, as was to be shown. 

Theorem 2.9 (Variation at the Beginning Point). Let a be a geodesic in 
X with initial value a(0) = x.  Let z, w E TJ .  Let fi  be a curve such 
that 

p(0) = a(0) and p’(0) = z .  

Let 
Ctt) = G,p(a’ (O)  + tw) = p;,g(Q’(o)) + tP;,p(w), 

t )  = exPg(t) sC(4. 
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Let at(s)  = o(s, t ) .  Then a0 = a, o is a variation ofa by geodesics {ai}, 
and at is the unique geodesic such that 

at(0)  = P(t )  and a i (0 )  = [ ( t )  

In particular, if w = 0,  then ~((0) = Ph,B(a’(0)). Furthermore, let 

Then v = vr,, is the unique Jacobi lift of CI with initial conditions 

~ ( 0 )  = z and Da/q(0)  = w. 

Proof: The stated values for ~ ( 0 )  and ~((0)  are immediate. Then from 
the definition of parallel translation, 

because if y,(t) = P{,g(v) ,  then Dpfyv = 0 and we can use the standard rule 
for the derivative of the product tP&(w). 

Then a(0, t )  = P(t ) ,  so we obtain the initial conditions: 

V(0)  = &o(O, 0) = P’(0) = z ;  

= (Dpf TexPg (0) i 1 (0) 

Dalq(0) = Dl&o(O, 0 )  = D281a(O, 0) by Chapter VIII, Lemma 5.3 

= DBr[(O) = w by (*), 

thus concluding the proof. 

Example. Constant curvature. Let ( X ,  g)  be Riemannian. As an 
example, we shall now determine more explicitly the Jacobi lifts when 
( X ,  g )  has constant curvature. Since the covariant derivative is invariant 
under a scaling of the metric, we may as well assume that the curvature 
is 0 or f 1. In the next three proposition, we let x E X and we let u E T x X  
be a unit vector. As usual, we let a = a, be the geodesic 

a( t )  = exp,(tv). 

For w E T,X we let qW = 7:) be the Jacobi lift of a,  satisfying the usual 
initial conditions 
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Finally, we let y, = be parallel translation of w along a,, so 

Proposition 2.10. Assume that the curvature is 0 ,  or equivalently that the 
Riemann tensor R is identically 0. Then for all w E T,X we have 

Proof: The two curves t H V,(t) and t H ty,(t) have the same initial 
conditions. Also they satisfy the same differential equation, namely 

2 Da,q, = 0 and Df, ( tyw( t ) )  = 0. 

Hence they are equal, thereby proving the proposition. 

The next two propositions deal with constant curvature f 1. We recall 
that we wrote down the Riemann tensor explicitly in those cases in $1. We 
may therefore write down the differential equation for a Jacobi lift more 
explicitly in those cases, as follows. 

Proposition 2.11. Assume that ( X ,  g)  has constant curvature -1. Then 
the Jacobi diferential equation has the form 

Furthermore, if we orthogonalize w with respect to u, so write 

w = cou + c1u with C O ,  c1 E R and a unit vector u I v ,  

then 

V,(t) = cota’(t) + (sinh t)cly,(t). (2) 

Proof: The orthogonalization of Jacobi lifts comes from Proposition 
2.3, so we want to identify the orthogonal components of the Jacobi lift of 
a, with scalar multiples of parallel translation. It suffices to do so when 
w = v and w = ulv separately. The example following Theorem 2.1 
already gives us the v-component, so we may assume w = u. In this case, 
the reader will verify that the two curves 

t H V,(t) and t H (sinh t)y,(t) 

have the same initial conditions at 0 (for their value, and the value of their 
first covariant derivative). They also satisfy the same differential equation, 
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namely 2 
D,4U = v u  

and similarly for the other curve, since D,fyu = 0. Hence the two curves 
are equal, as was to be shown. 

Thirdly we deal with constant positive curvature. 

Proposition 2.12. Assume X has constant curvature +l. Let x E X. 
Then the same formulas hold as in Proposition 2.11, except for a minus 
sign on one side in formula ( l) ,  and with sinh t replaced by sin t in 
formula (2). 

Proof The arguments are the same. Using sin t instead of sinh t just 
guarantees that the differential equation 

D h l  = - v u  

is satisfied, with the minus sign. 

This concludes our analysis of the Jacobi lifts in the cases of constant 
curvature. 

The Jacobi differential equation has at least two main aspects. One of 
them will be applied to a study of the differential of the exponential map 
in the next section. The other will be applied to variational questions in 
Chapter XI, $1. 

IX, 53. APPLICATION OF JACOB1 LIFTS TO Texp, 

We continue to assume that ( X ,  g) is pseudo Riemannian, unless other- 
wise speclJied. 

We are interested in Jacobi lifts because they give precise information 
concerning the differential of the exponential map, for instance as in the 
following result. In the statement, if u E T, then we identify T,T, with T,, 
as we usually do for a Banach space. 

Theorem 3.1. Let x E X and v E T,, Let a (defined on an open interval 
containing 0) be the geodesic such that a(0) = x and a'(0) = u.  Let 
w E T, and let vw = qo,w be the Jacobi I@ of a such that 

~ ~ ( 0 )  = 0 and D,rq,(O) = w. 

Then for r > 0, in the interval of definition of a, we have the formula 
1 

Texp,(rv)w = -vw(r). r 
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In particular, w lies in the kernel of Texp,(rv) if and only i f q , J r )  = 0. 
Furthermore, if we let 

~ ( s ,  t) = exp,(s(v + tw)),  

then v w ( s )  = &a(s, 0).  

Proof The curve bt is a geodesic for each t ,  and 

~ ( s )  = exp,(sv) = a(s), 

so a is a variation of a through geodesics. Let ~ ( s )  = &a(s, 0). Then v is 
a Jacobi lift of a by Proposition 2.8. Let f (s, t) = s(v + tw). Then 

Hence ~ ( 0 )  = 0. Furthermore t h s  same expression yields the formula of 
the theorem, 

Taking the limit as r -+ 0 in the formula, noting that in a chart 
D,q(O) = v ' ( O ) ,  and using Texp,(O) = id proves that D,q(O) = w and 
concludes the proof of Proposition 3.1. 

The Jacobi lifts also allow us to give a more global, version of the 
Gauss lemma of Chapter VIII, Theorem 5.6. 

Proposition 3.2 (Gauss Lemma, Global). Let ( X ,  g) be pseudo Rie- 
mannian. Let x E X and v E T,X. Let the exponential map r H exp,(rv) 
be defined on an open interval J. Then for all w E T,X we have 

ProoJ: Immediate from Proposition 3.1 and the orthogonalization of 
Proposition 2.3. 

Variation of a geodesic at its end point 

Next we shall give another way of constructing Jacobi lifts, which will not 
be used until Chapter XV, Proposition 2.5. Readers interested in seeing at 
once the application of Jacobi lifts to the Cartan-Hadamard theorem, say, 
may omit the following construction. 

Let x, y E X with x # y be points such that y lies in the exponential 
image of a ball centered at 0, in T,X and such that the exponential map 
exp, is an isomorphism on this ball. 
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Thus this ball provides a normal chart at x. Let tl be the geodesic 
parametrized by arc length joining x to y, so there is a unit vector u E 7‘’ 
such that 

~ ( s )  = exp,(su) and y = exp,(ru) for some r > 0. 

Thus dist,(x, y) = r. Let e be a unit vector in TyX, and let p be the 
geodesic such that 

p(0) = y (so /3 starts at y) and p’(0) = e. 

We consider an interval of the variable t such that P(t) is contained in the 
image of the previous ball around x. For each t we let at be the unique 
geodesic from x to /3(t), parametrized by arc length. Then {af} is a 
variation of a, namely a0 = a, and it is a variation through geodesics, 
illustrated on the next figure, drawn when e is perpendicular to a’(r) to 
illustrate Proposition 3.3. 

X 

The above variation will be called the variation of a at its end point, in the 
direction of e. 

Proposition 3.3. Let y = exp,(ru) be in a normal chart at x as above, 
with the unit vector u. Let a(s) = expx(su), and let { a t }  be the variation 
of a at its end point y in the direction of the unit vector e E TyX. Also 
denote this Variation by 0, and let ~ ( s )  = &a(s, 0). Assume that e is 
orthogonal to or’(r). Then D a q  is orthogonal to CI’, and rl is the unique 
Jacobi lijit of tl such that 

~ ( 0 )  = 0 and V(r) = e. 

Proof: First note the uniqueness. If there is another Jacobi lift having 
the last stated property, then the difference vanishes at 0 and r, and 
by Theorem 3.1 this difference must be 0 since the exponential map is 
assumed to be an isomorphism from a ball to its image, which contains 
y = exp(ru). 

[IX, 931 APPLICATION OF JACOB1 LIFTS TO Texp, 249 

Next, the variation CJ is given by the formula 

~ ( s ,  t) = at(s) = exp,(su(t)) such that exp,(s(t)u(t)) = P ( t ) ,  

where u(t) is a unit vector, and s(t)u(t) is the vector whose exponential is 
/3(t). The polar coordinates s(t) and u(t) depend as smoothly on t as the 
exponential map, or its inverse. Then 

d20(s, t) = Texp,(su(t))su’(t), 

so that (since u = u(O)),  

~ ( s )  = Texp,(su)su’(O) 

= &yo) (4 ,  
because from Theorem 3.1, we see that D,q(O) = u’(0). Since u(t)2 = 1, it 
follows that u’(0) is perpendicular to “(0) = u, so Da/q is orthogonal to 
tl’. Furthermore 

and since s(0) = r, we find 

e = ~ ’ ( 0 )  = Texp,(ru) (ru’(O) + s’(O)u) 

= Texp,(ru)ru’(O) + Texp,(ru)s’(O)u. 

Since e is assumed orthogonal to a’(r) = Texp,(ru)u, and u’(0) is also 
orthogonal to u, we must have s’(0) = 0, whence the relation 

e = Texp,(ru)ru’(O) or vu,(o)(r) = e. 

This proves the proposition. 

Transpose of Texp, 

In the next results we are concerned with the differential of the exponential 
map at arbitrary points, namely for v E T, such that exp, is defined on the 
segment [O, u ] ,  we are concerned with 

Texp,(v) : T, -+ Ty , where y = exp,( v ) ,  

especially whether this map is an isomorphism, or what is its kernel. 
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Theorem 3.1 describes a condition for an element w to be in the kernel in 
terms of a zero for a suitable Jacobi lift. We shall exploit this condition to 
see that under some circumstances, there cannot be a non-trivial zero. We 
first give a lemma from Ambrose [Am 601. 

Lemma 3.4. Let ( X ,  g )  be pseudo Riemannian. Let yl, i be Jacobi lifts 
of a geodesic a.  Then 

Prooj We differentiate the above expression and expect to get 0. From 
the defining property of the covariant derivative, the derivative of the 
above expression is equal to 

( ~ , 2 r ~ ,  i> + ( ~ a l ~ l ,  Dali) - ( D ~ / v ,  ~ a / t >  - (v ,  o,"li> 
= (o,2fr, i) - ( ~ , 2 r i ,  v ) .  
= R(a ' ,  yl, a', i) - R@', i, E l ,  yl) 

= o  

by the symmetry property of R .  This proves the lemma. 

The next lemma, from McAlpin's thesis [McA 651, describes the adjoint 
of the differential of the exponential map. 

Lemma 3.5. Let ( X ,  g) be pseudo Riemannian. Let a (dejined at least 
on [O, 11) be the geodesic such that a(0)  = x and a'(0) = u. Let 

where P is the parallel translation along a'. Then 

ProoJ: Let [ be the Jacobi lift of a such that (( 1) = 0 and o a f ( (  1) = Z. 

Let yl be the Jacobi lift as in Theorem 3.1. Then 

(Texp,(u)w, z )  = (yl(l), D d ( 1 ) )  = ( D a d l ) ,  r(1)) + c= c, 
where C is the constant of Lemma 3.4. We compute C to be 

c = -(Datq(O), [(O)) = -(w, i(0)). 
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Let rev(a) be the reverse curve, so that rev(a)(t) = a( l  - t ) ,  and let < be 
the unique Jacobi lift of rev(a) such that 

( (0 )  = 0 and Drev(a)/((0) = z.  

Then in fact <(t)  = ((1 - t ) ,  and applying Theorem 3.1 concludes the 
proof. 

Seminegative curvature 

We apply the above results to the case of seminegative curvature. The 
next proposition gives us a criterion for the kernel of the differential of the 
exponential to be trivial, and we use Jacobi lifts in the proof. 

Theorem 3.6. Let ( X ,  g )  be Riemannian. Assume ( X ,  9 )  has semi- 
negative curvature. Then for  all x E X and u E T,, u # 0, such that exp, 
is defined on the segment [0, v]  in T,, we have 

In particular, 
Ker Texp,(v) = 0. 

Proof Let ylw be the Jacobi lift as in Proposition 3.1, so that 

The asserted inequality is then a special case of the inequality found in 
Proposition 2.6. This inequality implies that Ker Texp,(v) = 0, which 
concludes the proof. 

Observe that the estimate on the differential of the exponential states 
that the inverse Texp,(v)-' is bounded by 1, as a continuous linear map. 
Of course, so far, this inverse is defined only on the image of Texp,(u). 
In the finite dimensional case, invertibility is immediate. In the infinite 
dimensional case, it is in McAlpin's thesis [McA 651, as follows. 

Theorem 3.7 (McAlpin WcA 651). Let ( X ,  g) be a Riemannian- 
Hilbertian manifold with seminegative curvature, and let x E X .  Assume 
that exp, is defined on all of Tx (what we called geodesically complete at 
x), Then for  all v E T, the map Texp,(v) is a topological linear iso- 
morphism, and in particular, exp, is a local isomorphism. 
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Proof We have already proved that Texp,(v) is injective and has a 
continuous inverse on its image. Lemma 3.5 shows that we can apply the 
same reasoning to the adjoint (Texp,(v))* = Texp,(v*) for y = exp,(v), 
so this adjoint also has kernel 0. Hence Texp,(v) is surjective, thereby 
concluding the proof of the theorem. (See also Chapter X, $2.) 

The next theorem was proved by Hadamard for surfaces [Ha 18981, by 
Cartan for finite dimensional Riemannian manifolds [Ca 281, and by 
McAlpin in the Hilbertian case [McA 651. 

Theorem 3.8 (Cartan-Hadamard). Let ( X ,  9) be a Riemannian mani- 
fold, connected, and such that exp, is dejned on all of T, for some x E X 
(so geodesically complete). If R2 >= 0 (i.e. X has seminegative curvature), 
then the exponential map exp,: T,X + X is a covering. In particular, i f  
X is simply connected, then exp, is an isomorphism. 

Proof: We have already proved that exp, is a local isomorphism. 
There remains to prove that exp, is surjective, and that it is a covering. 
But all the work has been done, because we simply apply Theorem 6.9 of 
Chapter VIII with Y = T, having the given metric h = g(x), for which Y 
is certainly complete. Theorem 3.6 guarantees that the essential estimate 
hypothesis is satisfied, so that proof is complete. 

Corollary 3.9. Let ( X ,  g )  be a connected Riemannian manifold with 
seminegative curvature. Then ( X ,  9) is complete if and only if the 
exponential map exp, is dejined on all of T, for some x E X ,  and 
therefore for every x E X .  

ProoJ: That ( X ,  g )  complete implies exp, defined on all of T, was 
proved under all circumstances in Proposition 6.5 of Chapter VIII. The 
converse is xiow immediate from Theorem 2.10 and Theorem 6.9 of .~ 

Chapter VIII. 

We define a Cartan-Hadamard manifold to be a Riemannian manifold 
(X, 9) which is complete, simply connected and with R2 2 0, i.e. semi- 
negative curvature. 

Corollary 3.10. Let ( X ,  9) be a Cartan-Hadamard manifold. Let 
x E X .  Then for all v ,  w E T,X we have the inequality 

dist,(exp,(v), exp,(w)) 2 110 - w\Ig. 

Proof: By Theorem 3.8 the exponential map has an inverse 
v :  X -+ T,X 
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and by Theorem 3.6 this inverse satisfies 

for all z E X ,  where the norm is that of a continuous linear map from T,X 
to T p ( z ) X ,  with their structures of Hilbert spaces due to g. The inequality 
of the corollary is then immediate from the definition of the length of curves. 

Corollary 3.11. Suppose that ( X ,  g )  is a Cartan-Hadamard manifold. 
Then any two points can be joined by a unique geodesic whose length is 
the g-distance between the two points. 

Proof: Immediate from Corollary 3.10, because if x, y are the two 
points, then y = exp,(v) for some u E T,X, and the geodesic CI such that 
.(t) = exp,(tv) joins the two points, is unique by the Hadamard-Cartan 
theorem, and has length I(u(( , .  

Remark 1. The above corollary is of course mostly subsumed in the 
finite dimensional case by the Hopf-Rinow theorem, but it was noticed in 
the Hilbert case in McAlpin’s thesis [McA 651. Furthermore, McAlpin 
observed that one can define on the ball B(2/c) with c > 0 of a Hilbert 
space E a bounded seminegative metric, as in the finite dimensional case, 
namely for .x E B(2/c)  and v, w E E we let 

Then the ball has curvature -c2. Note that for constant curvature K one 
has 

R(u, w)z = K ( ( z ,  w)u - ( z ,  u) , ) .  

Similarly one shows that the sphere has constant positive curvature. 
Standard proofs that the only simply connected manifolds with constant 
curvature are all of E, a sphere of finite radius for positive curvature, and 
the above example for negative curvature, work in the Hilbert case, and 
will be given below. 

Remark 2. Proposition 3.2 can be interpreted as implying that the 
geodesics which come from rays starting at the origin in the tangent space 
are orthogonal to the g-spheres in X .  Of course it may happen that the 
exponential map is not an injective map of T, into X (as on the circle or 
2-sphere), so the orthogonality interpretation holds only when it makes 
sense. In the particular case of seminegative curvature and completeness 
of the Carian-Hadamard theorem, the interpretation is valid everywhere. 
Note that Proposition 3.2 in the case of seminegative curvature is also a 
special case of the “local” result on orthogonality, Theorem 5.6 of Chapter 
VIII, because we have a global chart coming from the Cartan-Hadamard 
theorem, and the previous arguments are valid for this chart. 
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We now work out as examples the cases of constant curvature. 

Theorem 3.12. Let X be Riemannian complete, simply connected. Let 
xo E x. 
(a) r f  R = 0, i.e. i f  X has 0 curvature, then the exponential map 

exp,, : Tx0X --+ X 
is an isometry. 

(b) Suppose the curvature is constant, equal to -1. Let Y also be 
Riemannian complete, simply connected, and let yo E Y .  Let 
L: T,,X + Ty0 Y be a linear isometry, and let f : X -+ Y be 
defined by 

f = exp,, o L o expi, 1 

so f is a differential isomorphism according to Theorem 3.8. Then f 
is an isometry. In other words, up to an isometry, there is only one 
complete Riemannian manifold with given constant negative curua- 
ture modeled on a given Hilbert space (finite dimensional or not). 

Proof: For (a), we use Theorem 3.1 and Proposition 2.10 which shows 
that the exponential map amounts to parallel translation, so is an iso- 
metry. For (b), we argue in a similar way, but a bit more complicated. 
We have to show that for each x E T,,X the map 

Tf (x): TXX --+ q ( x )  y 

is a linear isometry. Since Texp,(O) = id, it follows that Tf ( x g )  = L, SO 

Tf (xg) is a linear isometry. Assume x # xo. Let x = exp,,(rv) with some 
unit vector u E T,,X and r > 0. Let q(”) denote the map which to each 
w E T,,X associates the Jacobi lift rw of Theorem 3.1. Then 

Tf(x) = Texp,, (L(rv)) o L o TexpXo(rv)-’ 

= Texp,,(rL(v)) o L o Texp,,(rv)-’ 

The map Texp,,(rv): T,,X --+ T,X is a linear isomorphism. To show that 
Tf(x) preserves norms is equivalent to showing that 

IlTf(x) o Texp,,(rv)wll = IITexpXo(rv)wll for all w E T,X. 

But we have 
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We may now use Proposition 2.11 and Theorem 3.1 which describe Texp 
in terms of its components in the v-direction and a direction orthogonal 
to v, and parallel translation. Since in Proposition 2.11 the respective 
coefficients 1 and (sinh r)/r are the same whether we take Texp,(rv) or 
Texp , (rL(v)) because L is an isometry, preserving orthogonality and 
changing unit vectors to unit vectors, it follows that in the notation of 
Proposition 2.1 1, 

+? 

thus proving (b), and concluding the proof of the theorem. 

We also have the following variation in the case of positive curvature. 

Theorem 3.13. Let X be Riemannian, complete, simply connected, with 
sectional curvature + 1. Then X is isometric to the ordinary sphere of the 
same dimension in Hilbert space. 

ProoJ The proof is similar, except that one cannot deal with the 
exponential defined on the whole tangent space T,,X. For convenience, 
we let X be the unit sphere in Hilbert space of a given dimension, and we 
let Y be Riemannian, complete simply connected with sectional curvature 
+l. We can then define the map f on the open ball of radius n. The same 
argument as before, replacing sinh r by sin r, shows that f is a local 
isometry. We then pick another point x1 # +xo. We let 

Just as we defined f = f,, from xg, we can define f l  = f,, from XI. 
Then f and f l  coincide on the intersection of their domain, and thus define 
a local isometry X -+ Y .  By Theorem 6.9 of Chapter VIII, this local 
isometry is a covering map, and since Y is assumed simply connected it 
follows that f is a differential isomorphism, and hence a global isometry, 
thus proving the theorem. 

Remark. The above theorems may be viewed as fitting a special case of 
a theorem of Cartan, cf. [BGM 711, Proposition E.III.2. 

IX, 94. CONVEXITY THEOREMS 

We begin with a formula for the variation of geodesics, and apply it to get 
a convexity theorem. 
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Let o = o(s, t )  be a variation of geodesics a t :  [a, b] 4 X in a Rie- 
mannian manifold, so at(s) = g(s, t ) .  The geodesics at are not necessarily 
parametrized by arc length. We let 

be the length, and we put 

b 

h(s,  t )  = Ilalo(s, t)ll, so that f ( t )  = 1 h(s,  t )  ds. 
a 

For simplicity, we omit the subscript g and write Ilalo(s, t)ll. We can 
differentiate under the integral sign, so that 

d 
dt 

f ’ ( t )  = --L(Q) = 

b d 2  
f ” ( t )  = zL(a t )  = aih(s,  t )  ds. 

Hence to determine f ” ( t )  it suffices to determine a2h and d;h. Having 
assumed that every at is a geodesic simplifies the computation. We note 
that 

h = (810, ~?1g)i’~. 

Theorem 4.1. W e  have 

Prooj The first formula comes directly from the definition of the 
metric (Levi-Civita) derivative. The second is obtained at once by using 
the rule for the derivative of a product, and setting 

which is the Jacobi equation satisfied by the variation of geodesics. Then 
we take the scalar product with &o to obtain the term on the far right, 
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with the Riemann tensor 

R2(820, 310) = (R(d20, di0)820, 

This concludes the proof. It is essentially the same as Lemma 2.5. 

Theorem 4.2. Let X be a Riemannian manifold, and let 0 = ~ ( s ,  t )  be a 
variation of geodesics { a t } .  Let u be the (varying) unit vector tangent to 
these geodesics, namely 

Let i, be the orthogonalization 

and for the length t ( t )  = L(at ) ,  we have 

ProoJ: Immediate from Lemma 4.1 and the definitions. 

Remark. From the expression for t”, we see that usually one has the 
strict convexity t” > 0. This occurs for instance if R2 is strictly positive, 
or if C2 is strictly positive. If there is some value of t such that i,(s, t ) 2  = 0 
for all s, then D2dla is proportional to u at this value of t. 

In Chapter X, 41 we won’t assume that each at is a geodesic, but we 
will be interested in another aspect, namely the special value at t = 0, that 
is [ ” ( O ) ,  so we shall carry out the computation in that context. 

We define a Hadamard, or Cartan-Hadamard manifold to- be a com- 
plete Riemannian manifold, simply connected, with seminegative curva- 
ture. We formulate the next two theorems locally on a convex set in a 
manifold with seminegative curvature. They apply globally as a special 
case to Cartan-Hadamard manifolds, where we can use Corollary 3.1 1. 

Theorem 4.3. Let X be a Riemannian manifold with seminegative 
curvature (R2 2 0), and U a convex open set. Let p l ,  p2 be disjoint 
geodesics in U, defined on the same interval. Let at :  [a, b] U be the 
geodesic joining P l ( t )  with P2(t) ,  and let t ( t )  = L ( a r ) .  Then P ( t )  2 0 for 
all t. 
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ProoJ: Immediate from Theorem 4.2 and the hypothesis that R2 2 0. 

For estimates of t ( t ) ,  see [BuK 811, 6.6. 

Next we consider the special case when p 1  is constant, i.e. we measure 
the distance between a given point and the points on a geodesic which 
does not contain the given point. We obtain a strict convexity result as 
follows. 

Theorem 4.4. Let X have seminegative curvature. Let U be a convex 
open subset. Let y be a geodesic in U not containing a point x E U .  For 
each t at which y is defined, let a,: 10, 11 -+ U be the geodesic joining x 
with y( t ) .  Let L(t)  = L(a,) .  Then L”’(t) > 0 for  all t. In particular, on 
an interval [ t i ,  t2] where y is defined, the maximum of L(a,)  for t E [t l ,  tz] 
occurs only at the end points, with t = tl or t = t2. 

ProoJ: The picture is as follows. We suppose there is a point c such 
that d ” ( c )  = 0. 

As in Theorem 4.2, let ~ ( s ,  t )  = a,(s), put a(s) = o(s, c) and let 

V ( 4  = a24s,  c ) ,  

so q is a Jacobi lift of a. From the integral expression for L”(c), using the 
variation formula (2), we conclude from the Schwarz inequality that D2&0 
is proportional to &o at t = c. Using the standard fact D2al = Dla2 
(Chapter VIII, Lemma 5.3), we conclude that D,q is proportional to a’, 
i.e. there exists a function a, such that 

Dl&o(s, c )  = v ) ( s ) ~ ~ G ( s ,  c ) ,  that is D,tq = qa’. 

We finish the proof using an argument shown to me by Quian. By 
Proposition 2.3, we can orthogonalize 

q = $a’ + r ,  
where ( is a lift of a orthogonal to a’, and $ is some function. By 
Proposition 2.4, we have also an orthogonal decomposition after applying 
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Since DxfV has been shown to be proportional to a’, we conclude that 
D,,< = 0. Since ~ ( 0 )  = 0 it follows that < ( O )  = 0, and 5 being a Jacobi lift, 
it follows that ( =  0, because a Jacobi lift is determined by initial con- 
ditions at a given point. Thus finally we obtain 

~ ( 1 )  = $(l)cd(l), that is y ’ ( c )  = 8241,  c )  = $(l)a’(l). 

This means that the geodesic y is tangent to the geodesic a at the point 
y (c ) ,  and hence these two geodesics coincide since a geodesic is determined 
by its initial conditions at a given point. However, we assumed that x 
does not lie on y ,  so we get a contradiction which concludes the proof. 

Corollary 4.5. Let X be a Cartan-Hadamard manifold, Then every ball 
in X is convex. 

Proof Let x be the center of the ball, and let X O ,  X I  be points in the 
ball. If x lies on the geodesic between xo and X I  then the Cartan- 
Hadamard theorem shows that this geodesic is the ray passing through 
the origin of the ball, so lies in the ball. If not, then we can apply 
Theorem 4.4. 

Note. Concerning Theorem 4.4, readers may find it instructive to 
compare the version here with Lemma 5.15 in [ChE 751. 

We shall complement the convexity theorem by a geometric description 
of the first derivative of the length. The statement is quite general. 

Theorem 4.6. Let X be a Riemannian manifold and let x E X .  Let U be 
a convex open set in X such that 

exp,: V + U 

is an isomorphism of some convex open set V in T, containing Ox, with 
U. Let y be a curve in U not containing x, and let at be the geodesic 
segment ?om x to y(t) .  Let 8( t )  be the angle between y and a,. Let the 
length of at be 

[ ( t )  = L(a,). 

Then L’(t) = Ily’(t)ll cos 8(t) .  

then a,, is perpendicular to y at y(t0). 
In particular, i f  to is such that L(to) is a local minimum and y’(to) # 0, 

Proof Let us first prove the result in euclidean space. Let t ---t v( t )  be a 
curve in a euclidean space, and let F ( t )  = Ilv(t)ll, with the euclidean norm 
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denoted by the double bar. Then 

where Ot is the euclidean angle from the law of cosines; namely for a 
euclidean triangle with sides a, b, c one has 

c2 = a* + b2 + 2ab cos 0 

where 0 is the angle opposite the side c. But 

Ilu(t + h)  - u(t)1I2 = O(h2) for h + 0, 
so 

This proves the formula in the euclidean case. 

exp, v(t)  = y(t) .  Let 
For the general case, let t H v( t )  be a curve in V such that 

at(s) = exp,(sv(t)), 0 5 s 5 1 ,  

so that a, is the geodesic between x and y ( t )  = a t ( l ) .  Then 

ai(1) = Texpx(v( t ) )v( t )  and y ’ ( t )  = Texp,(u(t))u’(t). 

By the global Gauss lemma, Proposition 3.2, we have 

( 4 ( 1 ) ,  r’(t>), = (v ( t ) ,  v’W),(xy 

where the scalar product on the left is taken in the tangent space at y ( t ) ,  
and the scalar product on the right is taken in the tangent space at x.  By 
definition of the usual formula for scalar products, we obtain 

l l ~ ~ ~ ~ ~ l l g l l Y ~ ~ ~ ~ l l g  cos O ( 4  = llv(~)llgllv~(t)llg cos 0,. 

We have llai(l)l\g = Ilv(t)ll, because exp, preserves distance along rays. 
Thus we obtain the relation 
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We apply this to show that 8’ = F‘, namely 

t ’ ( t )  = lim e(t  + h, - e(t)  = lim - 1 ( t ( t  + h)2  - t ( t ) 2 )  
h-O+ h h - ~ +  2 t ( t )h  

= F’W = Il”~t)lls(x) cos at, 
because t ( t )  = L(a,) = Ilu(t)llg(x), and we can apply the euclidean result. 
This proves the theorem. The proof more or less follows that of Helgason, 
[He 781, Chapter I, Lemma 13.6, but the theorem is valid in greater 
generality than stated by Helgason. 

Remarks. If the curve y is parametrized by arc length, then the factor 
Ily’(t)II disappears from the formula, and we simply get 

“( t )  = cos O(t). 

Note that the theorem applies globally to a Cartan-Hadamard manifold, 
but curvature considerations were not necessary for the formula to be 
true. However, the next theorem provides seminegative conditions under 
which Theorem 4.6 can be applied. 

Corollary 4.7. Let X be a Cartan-Hadamard manifold. Let x E X and 
let y be a geodesic which does not contain x. Then the distance d ( x ,  y ( t ) )  
has a unique minimum for some value to. The geodesic from x to y(to) is 
perpendicular to y at y(t0). 

Proox That the distance has a minimum comes from the fact that the 
geodesic distance goes to infinity as t -+ fco.  Because the line is locally 
compact, there is some minimum, and the convexity Theorem 4.4 shows 
that this is the only minimum, with the distance being strictly decreasing 
for t S to and strictly increasing for t 2 to. Theorem 4.6 concludes the 
proof. 

Since two distinct points in a Cartan-Hadamard space are joined by a 
unique geodesic, it follows that two distinct geodesics can intersect in only 
one point. 

Next we give an application of the metric increasing property as in 
Helgason [He 781, Chapter I, Corollary 13.2. 

Theorem 4.8. Let X be a Cartan-Hadamard manifold. Let ABC be a 
geodesic triangle whose angles are A ,  B, C and whose sides are geodesics 
of lengths a, b, and c. Then: 

(i) a2 + b2 S c2 + 2ab cos C ;  
(ii) A + B + C n. 
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ProoJ Let x be the vertex of angle C. Let exp,(v) and exp,(w) with u, 
w E T, be the vertices with angles A ,  B respectively. Then the geodesic 
sides of angle C are a, p respectively, with 

~ ( s )  = exp,(sz;) and p(s)  = expx(.sw), 

and 0 5 s 5 1. The picture is as follows. 

A 

We let 0 and 8 be the angles as shown, and cos 8 = cos C by definition. 
Actually, we have 

cos 8 = cos 0. (4) 

Indeed, 

The left side is equal to ila’(0)llgll~’(O)ll, cos 8, and the right side is equal 
to IIullxllwII, cos 0. Trivially a’(0) = u and /3’(0) = w, so (4) follows. So 
far, we have not used seminegative curvature. It comes next. 

We have a2 + b2 = dist(u, w ) ~  + 2ab cos 0. By the distance increasing 
property of the exponential map, the inequality (i) follows. 

As for (ii), since each geodesic side of the geodesic triangle has length at 
most equal to the sum of the other two sides, it follows that there exists a 
euclidean triangle with sides of lengths a, b, c. Let 0 c  be the angle of this 
euclidean triangle corresponding to C. Then 

a2  + b2 = c2 + 2ab cos 0c .  

By (i) it follows that cos C 2 cos OC, and hence 0 c  2 C. 
@ A  2 A and OB 2 B. But 

Similarly, 

O A + @ B + O C = 7 C .  

This proves (ii) and concludes the proof of the theorem. 

The moral lesson of the above results is that Cartan-Hadamard 
manifolds behave like, or better than, ordinary euclidean space. 
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IX, 95. TAYLOR EXPANSIONS 

We shall deal systematically with the Taylor expansion of various curves. 
We consider a curve in X, say of class C2, not necessarily a geodesic, 

CI: J +  X ,  

and we assume 0 E J, so 0 is an origin. We suppose given a spray on TX,  
giving rise to the covariant derivative. For w E T,(o)X we let 

be the unique a-parallel curve with initial condition y(0, w) = w. Recall 
that a-parallel means D,,y = 0. We denote parallel translation by 

P‘ = Pi  = PA,,: T,(O)X 4 T,(‘)X 

Then P‘ is topological linear isomorphism, as we saw in Chapter VIII, $3. 

Proposition 5.1. Let q:  J + T X  be a lift of a in TX.  Then 

or alternatively, 

Proof The second expression is merely a reformulation of the first, 
taking into account the definition of parallel translation. Since t + 0, the 
formula is local, and we may prove it in a chart, so we use q, y to denote 
the vector components qu, y u  in a chart U, suppressing the index U. Let 

From the existence and uniqueness of the ordinary Taylor formula, it will 
suffice to prove that for the ordinary derivatives of 8, we have 

akp(0) = /3(k)(0) = 0 

By definition, note that p(0) = 0. 

for k = 0 , .  . . ,m. 

Let wk = D$,p(O). Since D,ty = 0, 
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we have 

Therefore 
D:,p(o) = Dk,y(O) - y(0 ,  W j )  

= wj - wj 

= 0. 

We now need a lemma. We let E be the Banach space on which X is 
modeled. 

Lemma 5.2. Let p :  J + E be the vector component of a lift of a. r f  
Dl,p(O) = 0 for  0 5 j 5 m then djp(0)  = 0 for  0 5 j 5 m. 

Proof By definition, 

Ddp = p’ - B ( a ;  a’, p) .  

Hence Dc,tp(0) = p’(0). We can proceed by induction. Let us carry out 
the case of the second derivative so the reader sees what’s going on. 
Hence suppose in addition that D;)p(O) = 0. From the definitions, we get 

D,‘$ = p” - [&B(a ; a’, p)a’ + B(a ; a”,  p) + B(a ; a’, p’)] 
- B ( a ;  a’, p’ - B ( a ;  a’, a)). 

0 = 02, p(0) = B”(O),  

thus proving the assertion for m = 2. The inductive proof is the same in 
general. 

We apply the above considerations to Jacobi lifts. 

Proposition 5.3. Suppose that a is a geodesic. Let w E T,(o)X and let yw 
be the Jacobi liji of a such that q,(O) = 0 and Daly,(0) = w. Then 

r,(t) = P‘ wt + R(a’(O), W ,  a’ (0) )  - + 0 ( t 4 ) .  [ 3!  1 3 1  

Prooj We plug in Proposition 5.1. Since D;,yw = R(a’,  q w ,  a’)  con- 
tains qw linearly, the evaluation of the second term of the Taylor expan- 
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sion at 0 is 0. As for the third term, we have to use the chain rule. To be 
sure we don’t forget anything, we should write more precisely 

to make explicit the dependence on the extra position variable. But it 
turns out that it does not matter in the end, because no matter what, the 
chain rule gives 

~ , ‘ , y ~  = ~ ( a ’ ,  ~ , , q ~ ,  a’) + terms containing qw linearly, 

so D;,q,(O) = R(a’(O),  w, a’(O)), which proves the proposition. 

From Proposition 5.3, we get information on the pull back of the 
metric g of a pseudo Riemannian manifold, to the tangent space at a given 
point. 

Proposition 5.4. Let  ( X ,  g )  be a pseudo Riemannian manifold, and let 
x E X ,  Fix u, w E T x X .  Then 

exp:(tu)(g)(w, w)  = w2 + 3 ~ 2 ( u ,  w)t2 + o ( t 3 )  for t + 0. 

where we recall that R ~ ( u ,  w)  = R(u, W ,  U ,  w) .  

Proof: From the theory of Jacobi lifts, applied to a ( t )  = expx(tu), we 
have the formula 

1 
-qw( t )  t = Texp,(tu)w. 

Therefore modulo functions which are 0 ( t 3 )  for t -+ 0, we get from 
Proposition 5.3 

= ( P ‘ [ w + R ( u ,  w, 

= ( w + R ( u ,  w,  u ) - ,  3!  w + R ( u ,  w ,  
t2 

2 t2  
w + 2 R 2 ( ~ ,  w ) - ,  3! 

which proves the proposition. 
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The preceding proposition gives us the Taylor expansion of the 
mapping 

f ( z )  = exp:(g)(v) for 2; E T,X 

along rays through the origin. Observe that 

is a map of the self-dual Banach space T,X to the space of symmetric 
bilinear forms on T,X (actually the open subset of non-singular forms). 
The map f has a Taylor expansion 

where u H lvI is a Banach norm on T,, and where f l  and f 2  are homo- 
geneous of degree 1 and 2 respectively. Since the homogeneous terms in 
the Taylor expansion are uniquely determined by f, and since we com- 
puted their restrictions to rays through the origin in Proposition 5.4, we 
now obtain: 

Theorem 5.5. Let ( X ,  g )  be a pseudo Riemannian manifold. Let x E X. 
For v E T,X let q ( v )  E L,2,(TXX) be the symmetric bilinear function such 
that 

1 
3 4(U)(Wl, w2) =-Rx(u ,  w1, 0 ,  w2). 

Let the metric g be viewed as a tensor in L:y,(TX), and let f be the pull 
back of the metric g in a star shaped neighborhood of 0, in T,X where 
the exponential map is defined. Then 

CHAPTER X 

Jacobi Lifts and Tensorial 
Splitting of the Double 
Tangent Bundle 

Chapter IX dealt with two related main topics, involving estimates for 
the exponential maps via Jacobi lifts, and the Cartan-Hadamard theorem 
concerning seminegative curvature. The present chapter goes somewhat 
deeper into both topics. In addition, it is instructive to treat systematically 
the splitting of the double tangent bundle. A special case is treated ad hoc 
in the extension of the Cartan-Hadamard theorem to the normal bundle 
of a totally geodesic submanifold in 92, but it is worth while understanding 
the fuller structure in general. 

Logically, the rest of the book does not depend on this chapter, which 
may therefore be omitted by readers interested in the other subsequent 
topics. In Chapter XI, we return to manifolds with seminegative curvature 
in another context. Chapter XI1 gives a prototype example for Cartan- 
Hadamard manifolds. Thus Chapters IX through XI1 provide a much 
more systematic account of seminegative curvature than is usually found in 
differential geometry texts. 

X, 51. CONVEXITY OF JACOB1 LIFTS 

This section complements $2 of Chapter IX. We investigate the convexity 
of Jacobi lifts. We compute the second derivative of the square, which turns 
out to be semipositive or positive under the condition R2 2 0 (semi- 
negative curvature). This section and the next are based on notes of Wu, 
leading up to an extension of the Cartan-Hadamard theorem. I am much 
indebted to Wu for his notes and explanations. Cf. also the hlstorical note 
in 92. 

267 1 
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Lemma 1.1. Let ( X ,  g) be a pseudo-Riemannian manifold and let a be a 
geodesic. Let q be a Jacobi lift, and 

If X is Riemannian and R2 2 0 (seminegative curvature), then f “ 2 0. 

Proof: The first derivative comes from the defining property of the 
Levi-Civita (metric) derivative along curves, as in Chapter VIII, Theorem 
4.3. This same reference then also yields the second derivative 

by the Jacobi differential equation. This proves the formulas. The final 
statement is then immediate, thus concluding the proof. 

Theorem 1.2. Let X be a Riemannian manifold with R2 2 0 (semi- 
negative curvature). Let CI be a geodesic and v a Jacobi lift with ~ ( 0 )  = 0 
but D,y(O) # 0. Let 

f (4 = V ( S I 2 .  

Then f ( 0 )  = f ‘ ( 0 )  = 0. Furthermore, we have convexity 

f ” ( s )  2 0 for all s. 

Thus f ‘(s) 0 for s < 0 and f ‘(s) 2 0 for s > 0, with the corresponding 
semi-decreasing and semi-increasing properties off for s 5 0 and s 2 0 
respectively. 

ProoJ Immediate from the definitions and assumption on R2, taking 
Lemma 1.1 into account. 

Remark. The quantity Rz(a’, 5 )  + with various lifts < of a will 
come up repeatedly in Chapter XI, in several variational contexts. Lemma 
1.1 and Theorem 1.2 perhaps give the simplest manifestation of the 
phenomenon involved. 

Next we consider the situation of Jacobi lifts which are not 0 at the 
initial point, but whose covariant derivative may or may not be 0. 
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We let a be a geodesic with initial value 

a(0)  = y E X, so that a(s) = exp,, (sa’(0)) 

We let p be a geodesic with initial conditions 

p(0) = a(0) and p’(0) = z E T Y X l  

so a and /3 start at the same point. 
W e  let [ be a lift of p in T X ,  with the same initial value as a’, that is 

With these data, we define the [-variation of a along /3, or also the (p, [)- 
variation of CI (at the beginning point) to be 

This is trivially a variation through geodesics, and we have the initial 
conditions 

We let v be the Jacobi lift of CI coming from this variation, that is 

(2) V ( S )  = d2a(s, O) ,  so that ~ ( 0 )  = z.  

The variation and Jacobi lift are designed to investigate the growth of v as 
in Proposition 2.6 of Chapter IX, rather than D,/q(O). As in Lemma 1.1, 
we let 

f ( s )  = V ( 4 *  = ( V ( S ) ,  V ( S ) ) f  

We shall find an expression for f ’  different from the one in Lemma 1.1. 

Lemma 1.3. Let v be the Jacobi lift of a comingfrom its (p, [)-variation 
at the beginning point. Let f = y 2 .  Then 

f ’ M  = 2(Q(O,il V W ) , .  

Proox Starting with the expression in Lemma 1.1, we get 
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In this step, we need for the covariant derivatives of curves the analogue 
of the formula for the covariant derivative of vector fields, with the 
difference being formally equal to [q, lJ(0). Furthermore, from (1) and (2), 
q and ( are obtained as the images under 0 of the commuting vertical and 
horizontal unit vector fields in the (s, t)-plane, so the bracket is equal to 
0. We let the reader fill in the details of the above arguments, to conclude 
the proof. 

We end this section by specializing the situation somewhat with con- 
ditions which arise for the application we have in mind in $2. 

Let Y be a submanifold of a Riemannian manifold X. We define Y to 
be totally geodesic if Y is closed, and if every geodesic in X with initial 
conditions in ( Y ,  T Y )  is contained in Y .  It is a simple matter of 
foundations, which will be taken care of systematically in Chapter XIV, 
$1, especially Theorem 1.4, that a geodesic in Y is also a geodesic in X. 
The next proposition provides a tool corresponding to Chapter IX, 
Proposition 2.6. 

Proposition 1.4. Let X be a Riemannian manifold and let Y be a totally 
geodesic submanifold. Let a be a geodesic in X, a(0) = y E Y .  Let a be 
the (p, [)-variation of a defined above. W e  suppose that p is a geodesic 
in Y,  so in particular, p'(0) = z E Ty Y .  Let q be the corresponding 
Jacobi lift of a ,  and let f = q 2 .  

(i) If ( is orthogonal to Y, i.e. its values are in NY, then f ' ( 0 )  = 0. 
(ii) If in addition X has R2 2 0 (seminegative curvature), then f ( s )  is 

weakly decreasing for s 5 0, weakly increasing for  s 2 0, and 

ProoJ: Since Y is totally geodesic, the second fundamental form 
h12(q, c ) (O)  = 0 by Theorem 1.4 of Chapter XIV. Then combining 
Theorem 1.5 of Chapter XIV and Lemma 1.3 which was just proved, we 
obtain f '(0) = 0. The other assertions are immediate from the convexity 
f "(0) 2 0 of Lemma 1.1. This concludes the proof. 

Remarks. Proposition 1.4 will be used only in the next section. The 
foundational material of Chapter XIV occurs in parallel to the consid- 
erations of the present chapter, with intersection just at this single point. 
Thus I decided in favor of the present organization, with a localized 
appeal to Chapter XIV, which will not interfere with the general logical 
development. Similarly, in the next section, we shall also appeal to 
Chapter XIV for the fact that in a totally geodesic submanifold, parallel 
translation is the same as in the ambient manifold. 
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More convexity results will be given in $3, but I found it worthwhile to 
give immediately an application of Proposition 1.4 in the next section. 

X, 92. GLOBAL TUBULAR NEIGHBORHOOD OF A 
TOTALLY GEODESIC SUBMANIFOLD 

In Chapter IX, we dealt mostly with the exponential map defined on a 
fixed tangent space T,X. We shall now consider systematically the 
exponential map on the tangent bundle, and some applications extending 
the Cartan-Hadamard theorem. Like the preceding section, the exposition 
is based on notes of Wu. 

Let X be a Riemannian manifold. We recall that an open subset U of 
X is said to be convex if between two points of X there is a unique 
geodesic of X lying in U joining the two points, and the length of this 
geodesic is the distance between the points. In particular, X itself is an 
open set, in which case we may speak of X being convex. For example, a 
Cartan-Hadamard manifold is convex by Corollary 3.11 of Chapter IX. 
However, some of the formalism to be used is local, and it is appropriate 
to formulate it as such, but this involves additional notation to describe 
small neighborhoods of points. 

We shall again deal with a totally geodesic submanifold Y ,  and from 
Chapter XIV, Theorem 1.4, we shall invoke that along geodesics in Y ,  
parallel translation with respect to Y is the same as with respect to X .  In 
particular, parallel translation in X between two points yo, y in Y maps 
T,, Y on T, Y .  Since parallel translation preserves the scalar product, we 
conclude that it induces a metric toplinear isomorphism 

P;, : N,, Y --t N, Y .  

Let X be convex (so in general, we may be dealing with an open subset 
of an arbitrary Riemannian manifold). Let Y be a totally geodesic sub- 
manifold. If X is complete then we may compose the exponential map 
with parallel translation, and for given yo,  we may define the mapping 

E = EY,: Y x Ny0Y -+ X 
by the formula 

E ( y ,  v )  = exp, P,Y,(v) for v E N,, Y .  

If X is not complete, then we may fix v,  and let y lie in some open set 
where exp, is defined at P;,(v). Then E is defined on a product 

E :  U x  V - X ,  
where U is a neighborhood of some point y ,  and v E V .  
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Lemma 2.1. Let p be a geodesic in Y with p(0) = y and p’(0) = z .  For 
v E N,,Y, let P,(t) = (P( t ) ,  v ) .  Let 

u)”(t) = E(P,( t ) )  = exPg(,) p ; w .  
Then 

u):(o) = TE(Y1 v) (z ,  0). 

Proof This is just the chain rule. 

We let y ,  yo be two points of X ,  and u E Nya Y .  We let a be the 

~ ( 0 )  = y and a‘(0) = P;n(v); 

~ ( s )  = exp, SP;~(V) .  

We shall now associate a (p,  [)-variation of a at its beginning point. Let p 
be a geodesic in Y ,  with initial conditions 

(1) p(0) = a(0) and p’(0) = z ,  

geodesic with initial conditions 

so that 

so a and p start at the same point. Let 

and 

(3) 4 3 ,  t )  = expa(,) s i ( t ) .  

This (p, [)-variation of c( will be called the parallel variation of a along p 
depending on (yo, y ) .  

Proposition 2.2. Let X be convex and let Y be a totally geodesic 
submanifold. Let yo, y E Y .  Let u E Nyo Y .  Let p, [ be the curves defined 
in ( 1 )  and (2) above, and let v be the Jacobi lift associated with the 
variation o defined in (3). Then 

~ ( 0 )  = z and ~ ( 1 )  = T E ( y ,  v ) ( z ,  0). 

Proof: Putting s = 0 in the definition of 0, we obtain 

401 t )  = exPg(r)(O) = P(01 

so the value ~ ( 0 )  = z drops out. For ~ ( l ) ,  we just apply Lemma 2.1 to 
conclude the proof. 

Next we start global considerations. 
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Theorem 2.3. Let X be a convex complete Riemannian manifold, and let 
Y be a totally geodesic submanifold. Then Y is also convex complete. 
Let yo E Y and let 

Pyo:  Y x NyoY --$ N Y  

be the map such that for each Y E  Y and v E NyoY  we have 

Then P,,, is a vector bundle isomorphism, trivializing the normal bundle. 

Proof: This simply amount to the fact that flows of differential 
equations depend smoothly on parameters, and that parallel translation is 
invertible by parallel translation along the reverse geodesic. 

Given a chart U of Y at yo, it follows that U x Tyo is a chart at the 
corresponding point in N Y .  Of course, Y itself admits a global chart, 
given for instance by its own exponential mapping at yo. So once the 
point yo is selected, there is a canonical way of constructing a global chart 
for the normal bundle. The next application will be global. 

We shall always take Y x Nyo Y with its Riemannian product structure. 
Thus Y has the Riemann metric restricted from X, and N,, has its positive 
definite scalar product restricted from T J ,  so the “constant” Riemann 
metric is on the fiber. At each point, the product has the Hilbert space 
product metric satisfying the Pythagoras theorem. 

Theorem 2.4 (Wu). Let X be a Cartan-Hadamard manifold, Let Y be a 
totally geodesic submanifold. Fix a point yo E Y .  Let 

E :  Y x NyoY --f X 

be defined by E (  y ,  u )  = exp, P,Y,(u) for v E Nyo Y .  Then E is metric semi- 
increasing. 

Proof: For z E Ty Y and v ,  w E Nyo Y we have to show that 

IITE(Y, V ) ( Z l  w>ll 2 II(Z1 w)lI. 

The product Hilbert space metric by definition gives 
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Hence we need only prove separately that 

and 
IlTE(Y, U ) ( O ,  w)ll 2 Il(0,w)Il = llwll. 

The second inequality is simply the metric semi-increasing property of 
Chapter IX, Theorem 3.6. As to the first inequality, we may now quote 
Proposition 1.4 (ii) and Lemma 2.1 to conclude the proof. 

We arrive at the extension of the Cartan-Hadamard theorem, what we 
shall call the global tubular neighborhood property. 

Theorem 2.5. Let X be a Cartan-Hadamard manifold and let Y be a 
totally geodesic submanifold. Let N Y  = N x Y  be the normal bundle over 
Y. Let 

exp,,: N Y  -+ X 

be the restriction of the exponential map to the normal bundle, so we call 
exp,, the tubular neighborhood map. Then expNy is a diferential 
isomorphism, so that Y admits a global tubular neighborhood. 

Proof. Fix a point yo E Y .  Parallel translation Pyo gives a differential 
isomorphism from Y x Nyo to N Y  be Theorem 2.3, and we transport the 
product Riemannian metric to N Y  via this isomorphism. Then exp,, is 
metric semi-increasing. By Theorem 6.9 of Chapter VIII, it suffices to 
prove that exp,, is a local C1-isomorphism. In the finite dimensional 
case, we are done, just as for the ordinary Cartan-Hadamard theorem. In 
the infinite dimensional case, we have to argue a bit longer. 

We now let v denote an element of N Y ,  say v E Ny Y ,  and it suffices to 
prove that Texp,,(v) is invertible, by the inverse mapping theorem. 
Suppose Texp,,(v) is not invertible. Let r > 0 be the smallest value such 
that TexpNy(rv) is not invertible. Such a value exists because exp,, is 
locally invertible at each point of the zero section, this being the tubular 
neighborhood theorem. Let 

L(s) = TexpNy(sv) for 0 5 s S r .  

Then { L ( s ) }  is a family of bounded operators 

L(s )  : E(s) -+ F(s), 

where {E(s)}, {F(s)} are the families of tangent Banach spaces varying 
continuously. One has the following trivial lemma. 
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Lemma 2.6. Let E, F be Banach spaces. Let { A ( s ) }  (0 5 s 5 r )  be a 
continuous family of bounded operators, such that A ( s ) :  E -+ F is 
invertible for 0 5 s < r, and there is a uniform lower bound c > 0 such 
that 

( A ( s ) (  c for 0 5 s  < r. 

Then lims+r A(s)-’  exists and is a bounded operator inverse of A(r ) .  

ProoJ: We write 

A(s)-’  - A(s’)-’ = A(s’)-’  (A(s’)  - A(s) )A(s) - ’  

Taking the norm, we see that the family { A ( s ) - ’ }  is Cauchy, so has a 
limit, which is the desired inverse by continuity. 

Now using charts, there are fixed Banach spaces E and F such that E(s) 
and F(s) are isomorphic to E and F respectively, by invertible operators 
varying continuously. Theorem 2.5 shows that there is a lower bound 
L(s)I 2 c > 0 independently of s for 0 5 s < r.  The operator L(s )  cor- 

responds to an operator A ( s ) :  E -+ F in the charts, and we can apply the 
lemma to the family { A ( s ) } ,  to yield an invertible limit operator A(r)-’. 
Going back to the family L(s) concludes the proof. 

I -  

Example. See Theorem 3.7 of Chapter XI1 and subsequent comments. 

Historical note. A statement equivalent to the map exp,, being a 
bijection is given by Helgason [He 781, Chapter I, Theorem 14.6, in the 
finite dimensional case. Helgason does not mention the normal bundle, and 
does not deal with the further item that the map is a local isomorphism. 
Helgason saw his theorem “as a generalization of a decomposition theorem 
due to Mostow for a semisimple Lie group”, see p. 96 and his Theorem 
1.4 of Chapter VI, as well as the historical comment, p. 279, referring to 
Mostow [Mo 531. The differential structure is missing in his and Mostow’s 
statements, as when they make the decomposition only “topologically”. 
This can be traced back to the way Theorem 14.6 of Chapter I was stated 
and proved. A result in this direction, in the context of semisimple Lie 
groups and symmetric spaces is given by Loos [Lo 691, pp. 160-161, with 
the differentiability property. 

We see the fact that exp,, is a differential isomorphism as a gen- 
eralization of the tubular neighborhood theorem to the global context of 
Cartan-Hadamard manifolds. When I wrote to Wu to suggest that 
Theorem 2.5 should be valid, he wrote back: “A very good observation. 
It will add fuel to your frustration with geometers, however, if I tell you 
that it is well known, but nobody bothers to write it up. A student here in 
the seventies asked me and I wrote it up for her, but of course I didn’t 
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dare to publish it.” Wu and others also dealt only with the finite 
dimensional case, where it suffices to show that TexpNy has trivial kernel 
at each point to prove that exp,, is a local differential isomorphism. 
Wu’s argument went through with slight difference in wording in the 
infinite dimensional case. However, as for the ordinary Cartan-Hadamard 
theorem, an additional step has to be carried out. The step I have given 
with the family of operators showing that the limit is invertible, replaces 
Lemmas 3.4 and 3.5 of Chapter IX. When the submanifold Y is not just 
a point, the situation of Chapter IX, Lemma 3.5 is not symmetric, and it 
is not clear to me how to formulate a description of the adjoint of the 
normal exponential map TE or TexpNy, i.e. how to formulate the 
analogue of McAlpin’s lemma. 

For further comments, see the end of Chapter XI, $4. 
The next three sections expand the fundamental material on Jacobi lifts 

and their convexity properties, as well as returning to the splitting of the 
double tangent bundle alluded to in Chapter IV, 93. Readers interested in 
seeing at once further considerations about Cartan-Hadamard spaces may 
skip the rest of this chapter, and go directly to 91, 92, 93, and $4 of the 
next chapter. 

X, 53. MORE CONVEXITY AND COMPARISON RESULTS 

I am much indebted to Karcher for explaining to me the material of the 
present section. Cf. [Ka 891 for more material, especially p. 182. 

We continue to let X be a Riemannian manifold, and 1;1 a Jacobi I@ of a 
curve in X .  We don’t need a symbol for the projection zq in X, and we 
shall use the notation D,q to denote the covariant derivative taken over 
this projection, that is D(,,),q in full notation. 

We consider the function 

instead of the function v2 as in the previous section. We let J = (0,  b )  be 
an interval on which v is defined and such that ~ ( s )  # 0 for s E J .  For 
simplicity we omit the subscript g from the scalar product in the tangent 
bundle. 

We let 

We are interested in the growth properties of v ,  and so in the derivative q‘. 
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Lemma 3.1. Let the notation be as above, with q(s) = f ( s ) / s 2 .  Then 

and 

Proof Ordinary differentiation. 

Observe that the middle term occurs with a minus sign, and that a 
priori, we don’t know where it is positive or negative. Of course, the third 
term is 20 ,  and Proposition 1.4 gave some information on the first term. 

One of our goals is Theorem 3.4. We reach it by some calculus. We 
want growth properties of h, so we shall compute h’. The orthogonal- 
ization of D,v with respect to q will occur naturally, so we label it, and 
define 

Then we define the orthogonal term 

Lemma 3.2. Let a =  zq. Then 

Pro05 The first equation for h’ is immediate from the definition of the 
Levi-Civita metric derivative. The second comes from the definition of RZ 
and the Jacobi equation for v, as well as the definition of the orthogonal 
term. This concludes the proof. 

Since the orthogonal term is 2 0, we see that we get inequalities 
relating h‘ and h, depending on the sign of the term R2,  i.e. depending on 
the curvature. In particular : 

(3) r f  R2 2 0 then h’ 2 - - h 2 .  
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In [Ka 891, Karcher views Lemma 3.2 as establishing a Ricatti equation 
for h. From such an equation, one obtains an inequality as follows. 

Lemma 3.3. Let hl, h be a pair of functions on some interval, satisfying 

2 hi 5 -h :  and h‘ 2 - h  . 
Then 

((hl  - h)eSQ1+h))’ 5 0. 

So if hl(s1) 2 h(s1) for some s1 in the interval, then 

h l ( s )  2 h(s) for s 5 s1. 

Proof First note that a constant of integration added to the indefinite 
integral in the inequality would not affect the truth of the inequality. 
Next, routine differentiation yields 

The exponential term on the right is > 0, and its coefficient is 5 0 by 
hypothesis, thus concluding the proof of the first inequality. It follows that 
the function (hl - h )  exp( J(h1 + h ) )  is semi-decreasing. If hl(s1) 2 h(s1) 
at some point s1, then this function is 2 0 for s 5 s1, thus concluding the 
proof. 

Let h be the function defined in (1 ) )  and suppose ~ ( 0 )  = 0. Then 

h(s) -+ co a s s  -+ 0, 

as one sees immediately from the Taylor expansion of the covariant 
derivative. We are now ready for the main result of this section. 

Theorem 3.4. Let X be a Riemannian manifold and rl the Jacobi lift 
of a curve in X .  Assume ~ ( 0 )  = 0 but D,v(O) # 0. Suppose R2 2 0 
(seminegative curvature). Let h be as in ( 1 ) )  deJined on an interval 
J = (0, b)  such that ~ ( s )  # 0 for s E J .  Then 

for s E J. 1 
- 5 h(s)  
S 

In other words, the function p(s) = q 2 ( s ) / s 2  is semi-increasing on J.  

ProoJ Suppose ho(s1) > h(s1) for some s1 E J .  Then for some 6 > 0, 
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Let hl(s)  = l/(s+6). Then hi = -hf and hl(s1) 2 h(s1). We apply 
Lemma 3.3 and let s + 0 (so s 5 s1). Then hl(s)  is bounded, but 
h(s) -+ co, a contradiction which proves the inequality 1/s 5 h(s).  By 
Lemma 3.1 we conclude that p(s) is semi-increasing. This proves the 
theorem. 

Remark. The semi-increasing property of r2 ( s ) / s2  gives a refinement of 
Proposition 2.6 in Chapter IX. Furthermore, Karcher mentions in [Ka 891 
that the case of R2 5 0 (positive curvature) can also be reduced to a 
Ricatti equation, but unfortunately he did not provide the details, which 
involve a formula with the second fundamental form. This item, together 
with many others, would form a continuation of the present chapter in 
another book. (This is not a threat.) Keeping the comparison estimate to 
positive or negative inequalities, the result is : 

If R2 5 0, then the function p(s) = q i ( s ) / s 2  is semi-decreasing for s E J ,  
and in particular, p(s) 5 w2 (because p can be extended to the value 
p(0) = w2 by continuity). 

X, 54. SPLITTING OF THE DOUBLE TANGENT BUNDLE 

We return to basics concerning covariant derivatives and sprays. In 
Chapter IV, Propositions 3.3 and 3.4, we gave the transformation formula 
in charts for the bilinear map associated with a spray, and we pointed out 
that a local object satisfying this transformation formula comes from a 
unique spray. Given such a local object, one can also define a covariant 
derivative directly without going through the spray, by means of the 
transformation formula, that is : 

Proposition 4.1. Let X be a diflerential manifold modeled on a Banach 
space E. Suppose that we are given a covering of X by open sets 
corresponding to charts U ,  V , .  . . , and for each U we are given a 
morphism 

B ~ :  u + L : ~ ( E ,  E) 

satisfying the transformation rule of Chapter IV, Proposition 3.3. In 
other words, for each change of chart by a diflerential isomorphism 

h :  U + V ,  

we have for v, w E E representing tangent vectors: 
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Then there exists a unique covariant derivative D such that in a chart U 
for vector fields q, t we have 

(Dev)u(x)  = ZlXx)tu(x) -&(xi t v ( x ) ,  Z l U ( X ) ) .  

The proof is routine, just like Proposition 3.4 of Chapter IV. 
If one takes a stronger definition of a covariant derivative to incor- 

porate the existence of the bilinear map Bu in each chart U ,  then there is a 
bijection between sprays and covariant derivatives. In the finite dimen- 
sional case, Chapter IV, Theorem 2.4, we went through the argument 
going backward without using the stronger definition, to connect with 
the practice of many differential geometers. Others, like Klingenberg 
[Kl 83/95], do indeed include the additional structure of the bilinear map 
in the definition of a covariant derivative. 

From now on, we shall always assume that a covariant derivative is 
associated to a spray, or equivalently, that in each chart U there is a 
morphism BU satisfying the stated transformation law, and such that the 
covariant derivative has the expression repeated in Proposition 4.1. 

We are ready to describe at greater length the double tangent bundle. 
At the end of Chapter IV, $3 we mentioned the possibility of splitting 
TTX.  We now deal systematically with this splitting, which arose shortly 
after Ambrose, Palais, and Singer introduced sprays [APS 601. A splitting 
was given by Dombrowski [Do 611, together with several other results 
which we mention below. See also [wu 651. On the other hand, Karcher 
explained to me another formulation of the splitting in terms of the pull 
back of the tangent bundle, and we shall start with this, expressed in 
Theorem 4.3. We go into the Dombrowski formulation afterward. Some 
important applications are given in Eliasson [El 671. 

We start with complements to the basic discussion of Chapter 111, $1 
concerning the pull back of a vector bundle, and we shall apply it to the 
tangent bundle n = nx: T X  + X .  Quite generally, given a morphism 

f : X ’ + X  

and a vector bundle p :  E -+ X over X ,  the pull back f * E  (or f * ( p ) )  
satisfies the universal mapping property for vector bundles over X’, so that 
a VB morphism E’ -+ E over f can be factored uniquely through f * E .  
This is immediate from Chapter 111, $1. In particular, let us take f = n. 
We may take the pull back: 

J. 
T X  - X 

II 
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In a chart U of X ,  a point of TU consists of a pair (x ,  v )  with a vector 
u E E .  Then as we said in Chapter 111, $1, we identify the fiber (n*TX)(,.+) 
with ( T X ) ,  = T,X. In any case, the chart U on X, and the vector bundle 
chart U x E for TX over U can be complemented with a vector bundle 
chart for the pull back 

(n*TX).  ( U  x E) x E 

J. J. 

( T X ) ,  c-----1 U x E  

so that a point of n*TX in the chart is a triple 

(x ,  u,  z )  E ( U  x E )  x E .  

In addition, the double tangent bundle TTX has the vector bundle chart 

( T T X ) ,  c--) (U  x E )  x E X E 

! ! 
We have a vector bundle morphism S1 = Tn as in the following diagram: 

SI=TII T T X  - TX 

(3) 

TX - X 
II 

which in a chart gives 

(W,  ( U x E ) x E x E -  U x E  

with ( T ~ ) ~ ( x , u , z ,  w) = ( x , z ) .  I 
- u  

I (3u) 

U x E  

Indeed, the projection pr,: U x E 4 U is linear, so its derivative at every 
point is equal to pr, itself. The pair ( z ,  w) represents a tangent vector at 
(x, v )  in the tangent vector space E x E. 
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The above diagram then gives rise to the factoring map 

I C ~ :  TTX + n*TX 

of the double tangent bundle into the pull back, so we get the diagram of 
VB morphisms 

(4) K with Tz = rc*(z) o I C ~  . 1 
T X  - TX - X 

Id R 

In the chart, these two squares become 

I 

U x E  U 
id Pr I 

U x E  

with 

K ~ , u ( x ,  v ,  z,  w) = (x, u ,  z) and z*(n),(x, v,  z )  = ( x ,  z ) .  

Thus (4,) gives the factorization of (3,) in the vector bundle charts. 
So far, these diagrams concern the tangent and double tangent bundle 

without any further structure. We now suppose given a spray or covariant 
derivative, so that we have the bilinear map B ,  in a chart U.  

Lemma 4.2. Given a spray or covariant derivative on X, there is a unique 
vector bundle morphism over TX, 

such that over a chart U, we have 

Prooj Let h:  U -+ V be a change of charts, i.e. a differential iso- 
morphism. In Chapter IV, $3 we gave the change of chart (2,) of TTX. 
Let H = (h,  h’).  Then the change of chart for (TTX), is given by the 
map 

( H ,  H ‘ )  ( U X E ) X E X E - ( V X E ) X E X E  
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such that 

( H ,  H ’ ) ( x ,  U ,  Z, W )  = (h (x ) ,  h’(x)z ,  ~ ” ( x ) ( v ,  Z )  + h’(x)W). 

Then 
~ 2 ,  v 0 ( H ,  H’)(x,  u, Z,  w) = (h (x ) ,  h ’ ( x ) ~ ,  h’(x)w) 

because the term h”(x ) (v ,  z )  cancels in the last coordinate on the right. 
This proves the lemma. 

The next theorem puts together both maps I C ~  and ~ 2 .  

Theorem 4.3 (Tensorial Splitting Theorem). Given a spray, or covariant 
derivative on a diferential manifold X ,  the map 

is a vector bundle isomorphism over TX. In the chart 

(TTX), = ( U  x E) x E x E 

this map is given by 

Prooj With the notation h, H ,  ( H ,  H’) as in Lemma 4.2, we conclude 
that 

KV 0 ( H ,  H’)(x, V ,  Z ,  W )  = (h (x ) ,  h’(x)v, h’(x)z ,  h ’ (x )w) ,  

so the family { K U }  defines a VB morphism over TX.  The expression of 
the map in a chart shows that over U it is a VB isomorphism, which 
concludes the proof. Note that the map K U  is represented by a 2 x 2 
matrix acting on the last two coordinates, and having the identity on the 
diagonal. 

Of course, one may phrase a variation of Theorem 4.3 by using the 
mappings going all the way to TX instead of the pull back n*TX. More 
precisely, let us define 

Si: TTX --$ TX ( i  = 1, 2 )  by Si = n*(rc) 0 Ki. 

Then: S1 = Trc, so in a chart U ,  Sl,,(x, v ,  z ,  w) = (x, z);  
S2 is the unique VB morphism such that in the chart, 
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Thus we obtain a morphism S = (Sl, S2) of vector bundles 

( 7 )  
J- J- 

TX - X 
77 

whose local representation is actually given by a similar formula as ( 6 ~ ) )  
namely 

(713.) Su(x ,  v ,  z, w) = ( x ,  z ,  w - B u b ;  0 ,  z ) ) ,  

which just drops the v coordinate in the term on the right side. 
One calls I C ~  or S1 the horizontal component, and 1c2 or S2 the vertical 

component. The maps S1 = T n  and S2 are in fact the maps used by 
Dombrowski [Do 611. We now go into his formulation of the splitting. 

We need to make some remarks about the covariant derivative D acting 
on vector fields. Let C, < denote vector fields over X .  We have defined 
or{, but it is also convenient to use D without a subscript. Let V F ( X )  
denote the R-vector space of vector fields over X .  Then we let 

D :  V F ( X )  Hom( V F ( X ) ,  V F ( X ) )  

be the linear map such that D{ E Hom( V F ( X ) ,  VF(X)) and (or)< = DeC. 
The next lemma gives Dombrowski’s direct description of S2 in terms of 
the covariant derivative. 

Lemma 4.4. Let X be a manifold with a spray or covariant derivative D. 
There exists a unique vector bundle morphism (over n) 

K :  TTX + TX 

such that for all vector fields <, C on X ,  we have 

(8 ) 

as operators on vector fields, so the following diagram is commutative: 

DrT = K o T [ o (, in other words, D = K o T 

-.. 
1 5  TX - TTX 

X - TX 
DC5 

In fact, K = S2. 
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Prooj In a chart U ,  we let the local representation 

so K = S2 satisfies the requirements of the lemma. 

Remark. Dombrowski gives invariant definitions, but goes finite 
dimensional in his formulas, p. 76, and the footnote: “Here and in the 
sequel we apply a non-orthodox usage of summation signs, in order to 
make formulas more concise.” As far as making formulas more concise, 
the use of the bilinear map BU and the chart notation rather than local 
coordinates are more effective. And they happen to make the statements 
valid in infinite dimensions. 

We have accumulated three maps 

TTX -+ T X ,  

namely the maps S2 = K ,  S1 = Tn, and Z T X .  So far, we have put two of 
them together. We shall now put all three together. As observed in 
Chapter IV, $3, we view T T X  as a fiber bundle over X ,  in addition to 
being a vector bundle over TX. 

Theorem 4.5 (Dombrowski Splitting Theorem). Let X be a manifold with 
a spray or a covariant derivative. Then the map 

is an isomorphism of fiber bundles over X .  

ProoJ The map is well defined, and the previous chart formulas show 
that it is both a bijection and a local differential isomorphism. We let 
readers check this out in the charts to conclude the proof. 

As Dombrowski remarks, if X is a Riemannian manifold, then one can 
use the splitting theorem to define a natural Riemannian metric on T T X .  
Indeed, let g as usual denote the Riemannian metric on X .  Let v E T X ,  so 
v E TxX with x = nu. Let 2, W E TuTX. We define the splitting metric 
S = gTTX by the formula 
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This metric was first defined in terms of local coordinates by Sasaki 
[Sas 581, but the above formula was given by Dombrowski, who also 
twists the metric by G, and defines an almost complex structure, thus 
obtaining further results for which we refer to his paper. The Dombrowski 
splitting was used subsequently by Eliasson [El 671 to define connections in 
Banach manifolds, with applications to the manifold of mappings between 
two manifolds. 

Ambrose-Palais-Singer [APS 601 showed that there is one and only one 
torsionless covariant derivative (connection) whose geodesics are the 
Jacobi lifts, and that any other connection with the same property differs 
from this one by a torsion tensor. Eliasson used the splitting to define 
such connections [El 671, Theorem 3.2, p. 178. I regard such matters as 
topics for another book. 

X, 55. TENSORIAL DERIVATIVE OF A CURVE IN TX 
AND OF THE EXPONENTIAL MAP 

I am further indebted to Karcher for this section, partly based on his 
paper [Ka 771, p. 536. The paper contains more interesting material, 
especially Appendix C in connection with present considerations. 

We continue to consider a manifold X with a spray, or equivalently 
with a covariant derivative. When we first introduced the covariant 
derivative, we used vector fields as in &I, and then discussed the analogous 
notion for curves. We follow the same pattern here, and we deal with 
curves in the present section. 

So let (‘ be a curve in TX.  In terms of the vector bundle morphism S 
defined in $3 (7), we may give the splitting formula for the derived curve [’ 
in TX, that is 

letting /3 = w [ ,  or equivalently, 4‘ is a lift of /3. We call SY’ the tensorial 
derivative of r. It has values in TX 0 TX (as vector bundle over X ) .  

We recall from Chapter VIII that in a chart U ,  

As remarked following Theorem 3.1 of Chapter VIII, the local repre- 
sentation c, of a curve in TU = U x E is taken to be the map on the 
second component, i.e. cu:  J --+ E, and c b ( t )  is the ordinary derivative with 
values cb(t)  E E  also. Thus Pb( t ) ,  c , ( t ) ,  cb(t) are “vectors”, giving the 
local representation of these curves. 
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Let U be a chart in X ,  so that U x E is a chart for TX over U .  Let 
9, c U x E be the domain of the exponential, which thus has the local 
representation 

exp,: 9, + U. 

We think in terms of pairs, so by abuse of notation, we sometimes write 

exp,: U x E + U ,  

with the understanding the exp, is only defined on 9,. The tangent map 

Texp: TTX --t TX 

then has a local representation at a point ( x ,  v)  E U x E given by the 
linear map 

expbxE(x, v ) :  E x E + E x E. 

The following remark is merely a translation of Theorem 4.3 in terms of 
curves. 

Lemma 5.1. Let X be a manifold with a spray, or equivalently a 
covariant derivative. Let /3 be a curve in X ,  and let 5 be a lift of in 
TX. Let 

= exPg(t)C(t), 

so v, is a curve in X .  Then in a chart U, q’( t )  has the representation 

or suppressing t, 

ProoJ This is immediate from Theorem 4.3, the local expression (2) for 
the covariant derivative, and formula (1). 

By abuse of notation, one sometimes omits the subscript U ,  and one 
writes 

This way of writing exhibits an identification of TTX with w’TX 8 z*TX 
as in Theorem 3.3, and a further identification of the fibers of w*TX with 
the fibers of TX itself. These identifications are not as dangerous as one 
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might think, for a variety of reasons. First, they are made routinely in 
the calculus of several variables in euclidean space or in Banach spaces, 
for that matter. Second, one can give an invariant formulation which is 
strictly correct at the cost of additional notation, as follows. 

From our spray or covariant derivative, we had the vector bundle 
isomorphism 

TTX 5 n*TX 0 n*TX over TX. 

The tangent map Texp is a VB morphism 

Texp: TTX -+ TX over exp: TX -+ X 

We now define the tensorial tangent map or tensorial derivative 

Texp: n*TX 0 n*TX + n*TX 

to be the unique VB morphism such that 

n*(n) o Texp o K = Texp. 

We shall complement this map by another one going all the way to TX in 
Lemma 5.2. 

Let 4': J 4 TX be a curve in TX, lying above its projection p = n[ in 
X. Let y :  J -+ TX be another curve in TX, defined on the same interval, 
such that ny = nr. Then y has a pull back n;y to n*TX, depending on [, 
and making the following diagram commutative : 

J 

n* TX 

c ! 
J-TX-X 

H 

Then we have the valid formula 

( 5 )  n;q' = Texp(()(n;p', n;DBt(). 

On the other hand, instead of pulling back to n*TX and using the map 
K = ( ~ 1 ,  K Z )  one may stay on TX and use the map S = (Sl, S2). Then we 
may define the S-tensorial derivative Tsexp by means of the following 
lemma : 
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Lemma 5.2. There exists a unique vector bundle morphism over X, 

Tsexp: TX €I3 TX --$ TX 

such that the following diagram commutes: 

The two vertical maps are vector bundle morphisms, the top vector bundle 
being over TX and the bottom one over X. The composite map is 

Texp: TTX --$ T X ,  

so both Texp and Tsexp represent Texp under the splitting maps. 

Proof: Routine verification that everything makes sense. 

With these definitions, we are in a position to formulate (4?) without 
any identifications. Hypotheses being as in Lemma 5.1, with [ a curve in 
TX and /I= n[, we have 

Thus the only thinE needed to make (4?) meaningful (and valid) was to 
replace the ordinary tangent map by the tensorial map, using the splitting 
map S. Things coulti'be worse. 

Variations and Jacobi lifts 

We now stick an extra parameter s to make up a variation. We let 

Note that for each real s (such that sC(t) is in the domain of the 
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exponential), the tangent vector sC(t) lies in Tp(,$, so sC = [, is also a lift 
of /3. For fixed t, the curve at is a usual geodesic, and we have 

with initial conditions 

(9) a,(O) = /3(t) and cri(0) = C(t). 

Indeed, let us put 

Z(s,  t) = sC(t) = Zt(s) .  

Then Z,  is a curve in the tangent space Tn,+Y = TB(~)X. Then 

alz(s, t )  = z;(s) 

is now taken to be the ordinary derivative of a curve in a Banach space, so 
Z:(s) is also a vector, element of Tp(,)X. 

Next we define the usual Jacobi lift 

so rp, is a curve in X, and q( is a curve in TX. Then by definition, 

We have the initial conditions 
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X, 96. THE FLOW AND THE TENSORIAL DERIVATIVE 

Dombrowski actually defines his map K in terms of the flow, but for the 
exposition of this section I again benefited from Karcher's instructions. 
We may complement (10) and (1 1) in $5 from another point of view. Let 

is the global geodesic flow, 
and is a function of two variables. For an element v E TX, so v E T,X for 
some x ,  we have by definition 

be the flow of the spray on TX. Thus 

@(s, v )  = cD,(v) = - d exp(sv) = Texp(sv)v. 
ds 

Then @, is a differential isomorphism 

a,: TX + TX, 

The tangent map of the flow then fits in a commutative diagram which we 
call the tensorial flow diagram, with maps TQ and Ts@ as follows. 

With the notation of $5, t w Os(C(t)) is a curve in TX. Directly from 
the definitions, we have 

We may summarize some of the tabulations of 55 in terms of the flow. 

Theorem 6.1. Let C be a curve in TX, let 

a(s, t) = exp(sC(t)) = at(s) and vt (s )  = &a(s, t). 

Then the tensorial derivative of QS o C is given by 
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Remark on notation. If [ is a lift in TX of a curve /? in X, we have 
used systematically the notation Dst[ for the covariant derivative. We 
could also have written D(zr,& We used this notation to accompany the 
notation when one takes the covariant derivative of vector fields. How- 
ever, in the context of curves, the index of D is completely determined by 
the curve in the tangent bundle. Therefore we also write D,(, the * 
being forced, namely (d)'. Then the formula of Theorem 6.1 reads 

which saves some double indices. 

At Karcher's suggestion, I include an application to a classical Liouville 
theorem, formulated in contemporary language. We return to the can- 
onical 2-form on the tangent bundle of the Riemannian manifold X, as 
defined in Chapter V, Proposition 7.2. Of course, without the Riemannian 
structure, the canonical 2-form is on the cotangent bundle, but with the 
Riemannian structure, it is transferred to the tangent bundle as in Chapter 
VII, $7, formula (1). The next result gives the representation of the 
canonical 2-form in terms of the splitting coordinates. For this purpose, if 
( A l ,  B1) and (A2, B2) are pairs of vectors in TxX,  the formula 

defines a 2-form Rs on TX CB T X .  

Proposition 6.2. Let X be a Riemannian manifold, and let R be the 
canonical 2-form on the tangent bundle. Let u E T X ,  Z ,  W E  TvTX.  
Write 

SZ = ( A l ,  B1) and S W  = (A2, B2). 

Then the canonical 2-form can be expressed in the form 

Proof: This is a routine verification, which nevertheless has to be taken 
seriously. We use a chart. Write Z = (z1, z2) and W = ( W I ,  w2) in the 
chart, i.e. in E x E. Put together Chapter VII, $7, formula (1) for the 
canonical 2-form on the tangent bundle, and Theorem 4.2 of Chapter 
VIII, formula MS 1, giving the chart expression for the bilinear map Bv, 
depending on the metric. Keep cool, calm, and collected; there will be 
cancellations, due to the symmetry 

(g ' (x )u .  w,  v )  = ( g ' ( x ) u .  u, w )  
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noted in Chapter VII, $7; you will use i + j =  1; and the formula of 
Proposition 6.2 will drop out to conclude the proof. 

In light of Proposition 6.2, we call Rs the splitting of the canonical 
2-form. 

Theorem 6.3. Let X be a Riemannian manifold. Let R be the canonical 
2-form on TX. Let U E  TX  (so U E  TxX for some x), and let Z ,  
W E  TvTX.  Let @ be the flow of the spray on TX. Let 

Then $ is constant. In other worh,  R is invariant under the flow. 

Proof: We use Proposition 6.2. Let q l ,  q2 be the Jacobi lifts of the 
curve s H a&) = exp(sv) with initial conditions 

~ j ( 0 )  = Ai and Dvqi(0) = Bi. 

Then using Theorem 6.1 and Proposition 6.2, we get 

$ = (471, D*472) - (472,D*471). 

Hence using the basic property of the Levi-Civita metric derivative, 

= ( q l ,  R(v, q2)u)  - (q2, R(v, z;ll)v) by the Jacobi equation 
= O  

by one of the fundamental identities of the Riemann tensor, Chapter IX, 
$1, RIEM 4. This concludes the proof. 

Remark. In Chapter XI11 we shall investigate Killing fields, whose flow 
preserves the metric in the Riemannian case. The situation is similar here 
with the canonical 2-form, although the spray is usually not called a 
Killing field. 



CHAPTER XI 

Curvature and 
the Variation Formula 

This chapter is a direct continuation of Chapter IX, but in a new context, 
the variation formula. Given a family of curve {a t } ,  their lengths L(at)  
defines a function, and we are interested in the singular points of this 
function on the space of curves especially the relative minima and the 
second derivative test. We do not formalize the infinite dimensional space 
of curves but work simply with families. We shall see that the Riemann 
tensor plays an essential role in the expression for the second derivative, 
which allows us to go futher than we did in Chapter IX, and especially in 
proving the converse of Theorem 3.6, for which we have to deal with 
positive curvature. The variation formula will allow us to estimate 
growths of Jacobi lifts more generally than in Chapter M. 

XI, 51. THE INDEX FORM, VARIATIONS, AND 
THE SECOND VARIATION FORMULA 

We let ( X ,  g )  be a pseudo Riemannian manifold, with the corresponding 
covariant derivative D .  As a matter of notation, i f  w is vector in a 
tangent space, then we write w2 = (w,  w),. I f  w2 2 0, then we dejine 

IIWII = (w, w);’2. 

We begin by a general discussion concerning the Jacobi expression 
dehing Jacobi lifts. Let u :  [a, b] + X be a geodesic. Let q E Lift(a). We 
are interested in the expression 

0,2,q - ~ ( u ’ ,  q)a’ 
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and its square. By definition, q is a Jacobi lift if and only if this 
expression is equal to 0, and in the Riemannian case, it is equal to 0 if and 
only if its square is equal to 0. We shall also deal with a subspace of 
Lift(a), namely : 

Lifh(a) = vector space of lifts q of u such that 

r(a> = 0 and q(b)  = 0. 

For q, y E Lift(a) we define the index 

Then Z is a symmetric bilinear form on Lift(a), whose corresponding 
quadratic form is 

Similarly we define 

Jaco(a) = subspace of Jacobi lifts of u lying in Lifb(u), that is, 
vanishing at the end points. 

Proposition 1.1. Let u :  [a, b] + X be a geodesic. The index form I on 
Lift(a) also has the expression 

In particular, if q is a Jacobi lift, then 

and if in addition y E Lifh(y), then Z(r, y )  = 0. 

ProoJ From the defining property of the metric derivative, we know 
that 

wax% Y), = (0,24, r), + (Da% Dav),. 

Then the first formula is clear. If in addition q is a Jacobi lift, then the 
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expression under the integral is 0 by definition, so the second formula 
follows; and if y E Lifto(tl) then the expressions belonging to the end points 
are equal to 0, so the proposition is proved. 

Theorem 1.2. Let q E Lift(a). Then I(q, y )  = 0 for all y E Lifto(a) if and 
only i f  

(D2,q - R(a’, = 0. 

In the Riemannian case, this happens i f  and only i f  q is a Jacobi lift. 

Prooc If q is a Jacobi lift, then by definition 

D2,q = R(a’, q)tl‘, 

so Z ( q ,  y )  = 0 for all y E Lifto(tl). Conversely, assume this is the case. Let 
v, be a Cm function on [a, b] such that v,(a) = q(b) = 0. Let 

y1 = D2,q - R(a’, ?)a’ and y = qy1.  

Then y E Lifh(a) and by Proposition 1.1, 

This being true for all v, as above, it follows that y: = 0, whence the 
theorem follows. 

The previous discussion belongs to the general theory of the Jacobi 
differential equation. Previously, we developed this theory to get infor- 
mation about the differential of the exponential map. The differential 
equation has another side to it, to which we now turn. We shall be 
interested in two functions of paths tl: [a, b] + X : 

The length function 

b 

L,b(a) = L(a)  = 1 a Ila’(s)(Jg dr whenever ~ ’ ( s ) ~  2 2 .  

The energy function 
b 

E,b(u) = E(a)  = j a  ~ ’ ( s ) ~  ds. 

Note that the length does not depend on the parametrization, but the 
energy does. We are interested in minimizing those functions. 
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In calculus, one applies the second derivative test at a critical point of 
a function, that is a point where the first derivative is 0. The second 
derivative then has geometric meaning. One wants to do a similar thing 
on function spaces, or the space of paths. Ultimately, one can define a 
manifold structure on this space, but there is a simple device which at first 
avoids defining such a structure for some specific computations. We are 
specifically interested here in the example of the second derivatives 

at t = 0. To compute these derivatives, we don’t need to give a differential 
structure to the path space, we need only be able to differentiate under the 
integral sign in the usual way. The computation of these derivatives is 
called the second variation formula, and the end result is as follows, for the 
variation of a geodesic. Observe how the index form enters into the result. 

Theorem 1.3. Let u :  [a, b] -+ X be a geodesic parametrized by arc 
length, that is ~ ’ ( s ) ~  = 1 for all s. Let a be a variation of u, so that 
a&) = ~ ( s ,  t ) .  Define 

so v(s) is the normal projection of Daq(s)  with respect to the unit vector 
~’(s). Also define a second component along u’(s), namely 

Y 2 ( 4  = (02820, &a),(s, 0) = (D282a(s, 01, a’(s))g. 

Let R2(v, w) = R(v, w, v ,  w) be the canonical 2-tensor. Then 

As for the length, assuming the variation satisfies U ; ( S ) ~  2 0 for all t, s :  

so this is the same expression as for the energy, except that Da,q(s) is 
replaced by the normal projection v(s). 
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If the curves t w a(a, t )  and t H a(b, t )  are geodesics, then 

so the terms involving the end points are equal to 0. 

Remark 1. The last assertion is immediate, since for any geodesic y ,  we 
have D,, y‘ = 0. 

Remark 2. An example comes from Theorem 4.6 of Chapter IX, where 
at is the geodesic between points &(t ) ,  P2(t), and pi, p2 are also geo- 
desics. Then indeed, the constant of integration is equal to 0, and 

For the proof of Theorem 1.3, we ned a lemma giving some expressions 
for the square of the derivative of a family of geodesics. This lemma is 
independent of the integrals which have just been considered, and we state 
it in full. It is similar but more elaborate than the lemmas of Chapter IX, 
w- 

Lemma 1.4. Let ( X ,  g )  be a pseudo-Riemannian manifold. Let a be a 
geodesic (not necessarily parametrized by arc length), and let a = a(s, t )  
be a variation of a (not necessarily by geodesics), so a = ao, and 
a&) = a(s, t ) .  Put 

2 e(s, t )  = (810, dlo),(s, t )  = ui(s) I 

DeJine q(s) = &o(s, 0 )  and 

Then 

Proof: We shall keep in mind that from the definitions, 
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For the first derivative, we have 

a2e = 82(81a, a P ) ,  
= 2(D2&a, &a), because D is the metric derivative 

= 2(D1&a, &a), by Lemma 5.3 of Chapter VIII. 

This proves the first formula. For the second, we continue to differentiate, 
and obtain 

8:e = 82(~1820,  ala), 

(3) 

In the fist term on the right, we use Lemma 2.7 of Chapter IX to write 

D2Di = D1D2 - R(&a, ale). 

In the second term on the right, we use Lemma 5.3 of Chapter VIII to 
write D2131 = Dl&. Then we find 

= 2(D2D1&~, &a), + 2 ( D i a 2 ~ ,  D2814,. 

Finally, we use the metric derivative again to compute: 

However, Dl&a(s, 0) = Dl&u(s) = D , d ( s )  = 0, because tl is assumed to 
be a geodesic. Hence from (4) and (5) we find 

This proves (2), and concludes the proof of the lemma. 

We are now ready to prove Theorem 1.3. We shall compute the second 
derivative of the length, which if anything is harder than that of the energy 
because of the square root sign. The computation for the energy follows 
exactly the same pattern. We begin with the first derivative, also called the 
first variation, 

L 1. 
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Then we take the second derivative 

whence using the hypothesis that u is parametrized by arc length, 

We plug in the value from Lemma 1.4 and use a projection. If w, u are 
vectors and u is a unit vector, and v = w - (we u)u is the orthogonalization 
of w with respect to u, then we have trivially 

2 2 v 2 = w  - ( w . u )  . 

We apply this to w = Datq and u = u'. Integrating as in L 2 yields the 
asserted answer, and proves the formula for the second derivative of L(ut) 
at t = 0. As already mentioned, the formula for the energy is easier and 
will be left to the reader. This concludes the proof of Theorem 1.3. 

Remark 3. For simplicity we limited ourselves to curves rather than 
piecewise C2 maps. Milnor [Mi 631 gives a thorough discussion of paths 
where end-point terms will appear where the path is broken. See for 
instance his Theorem 12.2 and Theorem 13.1 of Chapter 111. 

Remark 4. Observe how R2 comes naturally in the formula. At a 
minimum one wants the second derivative to be semipositive, so having all 
plus signs in the variation formula is desirable. 

Corollary 1.5. Let q be a Jacobi lift of u, and a a variation of u such 
that ~ ( s )  = &a(s, 0). Assume that t H a(a, t )  and t H a(b, t )  are geode- 
sics. Then 

Zn particular, if Day is perpendicular to u' then this equality also holh  if 
E is replaced by the length L.  

Proof: Immediate from Theorem 1.3 and the alternative expressions of 
Proposition 1.1. 

Concerning the orthogonality assumption which will recur, we recall 
that if a Jacobi lift q of u is such that Daq is orthogonal to u' at some 
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point, then D , q  is orthogonal to a' on the whole interval of definition. 
See Proposition 2.4 of Chapter IX. 

Proposition 1.6. Assumptions being as in Theorem 1.3, suppose that Datq 
is orthogonal to u'. Then 

Proof: This is immediate from Lemma 1.4 (1) and 11. 

The next application of Theorem 1.3 gives the semipositivity of the 
index on the subspace of Lifb(u) orthogonal to u', under a natural 
condition. 

Theorem 1.7. Suppose that u is a geodesic whose length is the distance 
between its end points. Let [ E Lifb(a) be orthogonal to u'. Then 

Proof: I owe the proof to Wu. Define 

~ ( s ,  t )  = expa(,) (tC(s)) 

with 0 5 s 5 b and 0 5 t 6 c. For each t ,  
geodesic, joining the endpoints of u, that is 

is a curve, not necessarily a 

al(a) = .(a) and a f ( b )  = u(b),  

because of the assumption 5 E Lifb(a). Furthermore, a(s, 0) = u(s), so 
{at} = {a t }  is a variation of u, leaving the end points fixed. Note that 

a2+ 0) = C(s). 

Finally, the curves t 
(differentiating (C, a') = 0). Therefore, if we define the function 

a(a, t) and t H a(b,  t) are geodesics, and Date I a' 

then by Theorem 1.3 we get 

Since by assumption L(Q) 4 L(u,) (because L(u) is the distance between 



302 CURVATURE AND THE VARIATION FORMULA P I ,  $11 

the end points), it follows that the function t has a minimum at t = 0, 
which proves the theorem. 

Remark. The above theorem is a special case of the Morse index 
theorem, but will suffice for our applications. For full index theorems, 
cf. Milnor [Mi 631; Kobayashi-Nomizu [KoN 691, Chapter VIII, $6; 
Cheeger-Ebin [ChE 751, Chapter 4; do Carmo [doc 921; and Klingenberg 
[Kl 83/95], Chapter 2, Sections 2.4 and 2.5, where he deals with the 
energy functional on the loop space as an infinite dimensional manifold, 
rather than the length. However, in that chapter, the original manifolds 
are finite dimensional. I hope to have convinced the reader further about 
the irrelevance whether the manifold is finite dimensional or not. 

Corollary 1.8. Let q be a Jacobi l f t  of a, and let r be any l f t  of a, with 
the same end points as q, that is 

Suppose that q - ( is orthogonal to a’. Then 

Proof Let (‘ = g - q. By Theorem 1.7 we have I((‘, (‘) 2 0, so by the 
bilinearity of the index, 

Hence inequality (1) becomes the inequality asserted in the corollary. 

For some applications, one wants to compute the second derivative of a 
composite function f ( L ( a t ) ) ,  where f is a function of a real variable, for 
instance when we determine the Laplacian in polar coordinates later. So 
we give here the relevant formula, since it is essentially a corollary of the 
above considerations. 
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Proposition 1.9. Let f be a C2 function of a real variable. As in 
Theorem 1.3, let a be a variation of a, and let q(s) = &a(s, 0). Assume 
D a y  orthogonal to a’. Then 

- f ( L ( a t ) )  d 2  1 = f ’ ( L ( a 0 ) )  [(Datq(b), q (b) ) ,  - (Daltr(a), q (a) )g] .  dt t=O 

Proof Let F ( t )  = f (L(a , ) ) .  Then 

and 

Then at t = 0 the first term on the right is 0 because of Proposition 1.6. 
The second term at t = 0 is the asserted one by Corollary 1.5 and the 
orthogonality assumption. This concludes the proof. 

Example. Proposition 3.3 of Chapter IX provides an example of the 
situation in Proposition 1.9. Both will be used in Chapter XV, $2. 

Theorem 1.3, i.e. the second variation formula, also has some topo- 
logical applications which we don’t prove in this book, but which we just 
mention. If R2 is negative, so the curvature is positive, then one has a 
theorem of Synge [Sy 361: 

Let X be a compact even dimensional orientable Riemannian manifold 
with strictly positive sectional curvature. Then X is simply connected. 

The idea is that in each homotopy class one can find a geodesic of 
minimal length. By the second derivative test, the expression for the 
second derivative of the length is 0 for such a geodesic. One has to prove 
that one can choose the variation such that the “orthogonal” term con- 
taining the integral of v(s)~ is 0. The boundary term will vanish if one 
works with a variation to which we can apply Remark 1. Finally, having 
strictly positive curvature will yield a negative term, which gives a con- 
tradiction. Details can be found in other texts on Riemannian geometry. 

The same ideas and the theorem of Synge lead to a theorem of 
Weinstein [We 671: 

Let X be a compact oriented Riemannian manifold of positive sectional 
curvature. Let f be an isometry of X preserving the orientation i f  dim X 
is even, and reversing orientation if dim X is odd. Then f has a $xed 
point, i.e. a point x such that f ( x )  = x. 
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Proofs of both the Synge and the Weinstein theorems are given in 
[doc 921. The Synge theorem is given in [BGM 711 and [GHL 87/93]. 

This as far as we go in the direction of the calculus of variations. These 
are treated more completely in Morse theory, for instance in [Mi 631, 
[Pa 631, [Sm 641, and in differential geometry texts such as [KoN 691, 
[BGM 711, [ChE 751, [doc 921, [GHL 87/93]. 

Klingenberg's book [Kl 83/95] also contains topological applications, 
see especially Chapter 2, where Klingenberg uses the energy function 
rather than the length function. 

INTRODUCTION TO 92 

In Chapter IX, $3 we showed that when the Riemann tensor R2 is 
semipositive (seminegative curvature), then the exponential map is metric 
semi-increasing. We now want to prove the converse. In part the 
argument is similar, using the Jacobi lift which gives an explicit formula 
for the differential of the exponential map. However, at a crucial point the 
argument gets somewhat more involved because instead of a straight- 
forward convexity computation as in Chapter IX, Lemma 2.5 and 
Proposition 2.6, we now have to appeal to the second variation formula, 
especially Corollary 1.8. The basic result we are after is an immediate 
consequence of the Rauch comparison theorem, which is proved in 
standard texts on Riemannian geometry. Essentially they all use the same 
proof, which is a simplification by Ambrose of Rauch's original argu- 
ment. See for instance [KoN 691, Vol. 11, Chapter VIII, Theorem 4.1 ; 
[Kl 83/95], Chapter 11, Lemma 2.7.2 and Corollary 2.7.3; [doc 921, 
Chapter X, $2. They all formulate the theorem in finite dimension, 
unnecessarily. For our purposes, we need only a special case, describing 
the effect of the exponential map on the metric under the curvature 
conditions, positive or negative. A presentation of the proof can be given 
more simply in this special case, as was shown to me by Wu, to whom I 
owe the exposition in the next section. A proof of the full Rauch theorem 
will be reproduced in §4. 

For an alternative approach to Jacobi lift inequalities, cf. [Ka 891. 

XI, 92. GROWTH OF A JACOB1 LIFT 

Basic Assumptions. Throughout, we let ( X ,  g )  be a Riemannian 
manifold. Let x E X and let u E Tx be a unit vector. Let a :  [0, b] + X 
be the geodesic segment defined by a(s) = exp,(su). Thus a is para- 
metrized by arclength, and the segment {su}, 0 5 s 5 b is assumed to be 
in the domain of the exponential. 
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We also let w E Tx, w # 0 and we let q = qw be the Jacobi lift of a 
such that 

~ ( 0 )  = 0 and Dorq(0)  = w. 

As shown in Chapter IX, Theorem 3.1 and its proof, we have for 
O < r S b :  

Texp,(ru)w = -q ( r ) .  1 
r 

Furthermore, let 

o(s, t )  = exp,(s(u + tu)) and ot(s) = at(s>. 

Then {or} = { a t }  will be called the standard variation of a = a0 in the 
direction of w. We have 

Thirdly, by Chapter IX, Proposition 3.2 we have the global Gauss lemma 

(3) 

For simplicity, we shall usually omit the subscript g .  
If w is a scalar multiple of u, then 

by the Gauss lemma. This is another way of seeing what is also in 
Chapter VIII, Corollary 5.5,  namely: 

Proposition 2.1. The exponential map is metric preserving on rays from 
the origin. 

Whereas in Chapter IX we considered the norm, we now consider the 
square of the norm of the Jacobi lift V ,  so we let 

We want to estimate the growth of 1 1 ~ ; 1 1 1 ,  in other words, the growth off. 
We fk a value r with 0 < r 5 b, and we let 

for 0 5 s = <  r. 
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Since Dal((0) = w # 0, it follows that for all r > 0 sufficiently small, we 
have q(r)  # 0. Cf. Proposition 2.6 of Chapter IX. 

Lemma 2.2. Assume that w I u and that a is contained in a convex open 
set. Given r as above, there exists a lift ( of a such that on [0, r], ( # 0, 
( L a ‘ ,  and 

Proof: We have directly from the definitions 

because 5 is a Jacobi lift of a, and we use Proposition 1.1. 

with Po0 = id. Let u be the vector such that 
For the second inequality, let P: = P:, t( be parallel translation along a, 

Define the lift ( by 

(4) ((s) = Pi (; v )  . 

Note that: 

( 5 )  ((0) = [(O), ( ( r )  = C(r), Dat((s) = P i ( : v )  (see Lemma 2.3). 

Thus (Dat()2 = l/r2. By Corollary 1.8, we obtain 

z;(C, C) I z(Xt, 0 

= J ~ [ ( o . ~ c ) ~  + M U ’ ,  (11 
r r  

thereby proving the lemma. 

In determining D,tC we used the following general lemma, which really 
belongs to Chapter VIII, $3, and which we state in a self-contained way. 
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Lemma 2.3. Let X be any manifold with a spray, and let a :  [a, b] -+ X 
be a curve in X .  Let P: [a, b] -+ Ta(,) be a curve in Ta(,), let P be 
parallel translation along a, and let <(t) = PL(P(t)). Then 

Proof: We prove the relation in a chart, where we have the formula 

Let y(t, v )  be parallel translation of u E Tat,,. Then 

because v H y,(u)  is linear, and the derivative of a linear map is equal 
to the linear map. The lemma follows from the local definition of the 
covariant derivative, and the definition of parallel translation (Theorem 3.3 
of Chapter VIII). 

Lemma 2.4. Let h(s) = s2w2. Then 

lim f ( s ) / h ( s )  = 1. 
s-0 

Proof: This is immediate from the first term of the Taylor expansion 
given in Chapter IX, Proposition 5.1. 

Theorem 2.5. Under the basic assumptions, assume that w l u .  Let U, 
be an open convex neighborhood of x ,  and V, an open neighborhood 
of 0, such that exp,: V, + U, is an isomorphism. We suppose a is 
contained in U,. Zf the curvature is 2 0 (resp. > 0) on U, then 

Proof: By lemma 2.2, for E > 0 we lind 

1: f ’ / f  S jr h’/h + the Riemann tensor integral. 
€ 

Since by hypothesis, the Riemann tensor integrand is S 0, we obtain 
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and therefore 

Then f (r) 5 h(r), which proves the theorem with the weak inequality 
sign. For the strict inequality case, one takes into account the Riemann 
tensor integral, and the fact that the integrand is < 0, so all inequalities 
are strict. This concludes the proof. 

Theorem 2.6. Let ( X ,  g )  be a Riemannian manifold. Let x E X and let 
exp,: V, + U, be an isomorphism of a neighborhood of 0, with an open 
convex neighborhood of x. Suppose g has curvature 2 0 on U,. Then 
exp, is metric semidecreasing from V, to U,. If the curvature is > 0 on 
U,, then for v E V,, v # 0 and w E T,, w unequal to a scalar multiple of 
v, we have 

IITexPx(U)wll < IIwll. 

Thus exp, is metric strictly decreasing on V,, except in the direction of 
rays from the origin. 

ProoJ: We let u be the unit vector in the direction of v, v = bu. If w is 
orthogonal to u, then the inequality of Theorem 2.5 together with (1) 
shows that 

IlTexPx(ru)wl12 < 1 1 ~ 1 1 2 ~  

For arbitrary w, we write w = wo + w1 with wo = cu (some c E R), and 
w1 I u. Then by the Gauss lemma, Texp,(ru)wo I Texp,(ru)wl, so 

which proves the theorem, in light of Proposition 2.1 and the inequality in 
Theorem 2.5. 

For estimates concerning Jacobi lifts and geodesic constructions, see 
Buser and Karcher [BuK 811, especially 6.3 and 6.5. 
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XI, 93. THE SEMI PARALLELOGRAM LAW AND 
N EG ATlVE CURVATURE 

The usual parallelogram law will be semified in two ways: first, we stop 
at midpoint of one of the diagonals; and second, we write an inequality 
instead of the equality. We can then formulate things as follows. 

Let X be a metric space. We say that the semi parallelogram law holds 
in X if for any two points X I ,  x2 E X there is a point z which satisfies for 
all x E X: 

d(x1, ~ 2 ) ~  + 4d(x,  z ) ~  5 2d(x, + 2d(x, ~ 2 )  2 . 

This is obtained by setting x = x1 and x = x2 in the semi parallelogram 
law to get the inequalities 2d(xl, z )  5 d(x1, x2) and 2d(x2, z)  5 d(x1, x2). 
The opposite inequalities follow from the triangle inequality 

4x1 , x2) 5 d(xi  , Z )  + d(z ,  ~ 2 ) .  

Note that the point z is uniquely determined by X I ,  x2 because if z’ is 
another such point, we put x = z‘ in the law to see that z = z’. Thus we 
call z the midpoint between x1 and x2. 

A Bruhat-Tits space is defined to be a complete metric space which 
satisfies the semi parallelogram law. 

Theorem 3.1 (Serre). Let X be a Bruhat-Tits space. Let S be a bounded 
subset of X. Then there exists a unique closed ball Br(x1) in X of 
minimal radius containing S. 

Proof: We first prove uniqueness. Suppose there are two balls B,(xl) 
and B,(x2) of minimal radius containing S, but x2 # X I .  Let x be any 
point of S, so d(x ,  x2) 5 r and d ( x , x l )  5 r. Let z be the midpoint 
between x1 and x2. By the semi parallelogram law, we have 

d(x1, ~ 2 ) ~  5 4r2 - 4d(x,  z ) ~ .  

By definition, for each 6 > 0 there is a point X E S  such that 
d(x ,  z )  2 r - E .  It follows that d(x1, x2) = 0, that is x1 = x2. 

As to existence, let {x,,} be a sequence of points which are centers of 
balls of radius r, approaching the inf of all such radii such that Brn(xn) 
contains S. Let r be this inf. If the sequence {x,}  is a Cauchy sequence, 
then it converges to some point which is the center of a closed ball of the 
minimal radius containing S, and we are done. We show this must always 
happen. Let Zm, be the midpoint between x,, and xm. By the minimality 
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of r,  given E there exists a point X E S  such that 

2 2  d ( x ,  zmfl)  2 r - 6 ,  

We apply the semi parallelogram law with z = zmn. Then 

where c(ml n) -+ 0, thus proving that {xn} is Cauchy, and concluding the 
proof of the theorem. 

The center of the ball in Theorem 3.1 is called the circumcenter of the 
set S. 

Theorem 3.2 (Bruhat-Tits). Let X be a Bruhat-Tits metric space. Let G 
be a group of isometries of X ,  with the action of G denoted by 
( g l  x )  H g . x. Suppose G has a bounded orbit (this occurs if, for 
instance, G is compact). Then G has a fixed point, for instance the 
circumcenter of the orbit. 

Proof: Let p E X and let G . p  be the orbit. Let B,(xl) be the unique 
closed ball of minimal radius containing this orbit. For any g E G, the 
image g . B,(xl)  = Br(x2) is a closed ball of the same radius containing the 
orbit, and x2 = g . XI, so by the uniqueness of Theorem 3.1, it follows that 
x1 is a fixed point, thus concluding the proof. 

Corollary 3.3. Let G be a topological group, H a closed subgroup. Let 
K be a subgroup of G, so that K acts by translation on the coset space 
GIH.  Suppose GIH has a metric (distance function) such that trans- 
lation by elements of K are isometries, GIH is a Bruhat-Tits space, and 
one orbit is bounded, Then a conjugate of K is contained in H.  

Proox By Corollary 3.2, the action of K has a fixed point, i.e. there 
exists a coset x H  such that kxH = x H  for all k E K .  Then x - ~  KxH c H ,  
whence x-'Kx c H ,  as was to be shown. 

We shall now discuss one of the roles of the above theorems in dif- 
ferential geometry. Unless otherwise specified, manifolds can be infinite 
dimensional, and Riemannian manifolds may therefore be Hilbertian. 

One question arises: which lunds of spaces have metrics as discussed 
above? First we give a sufficient global condition, perhaps the most useful 
in practice, the exponential metric increasing property. 
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EMI. The space X is a complete Riemannian manifold, and for every 
z E X, the exponential map 

exp,: T, -+ X 

is a differential isomorphism, is metric preserving along rays from 
the origin, and in general is metric semi-increasing. 

A complete Riemannian manifold, simply connected, with R2 2 0 
(seminegative curvature) is called a Hadamard, or Cartan-Hadamard 
manifold. 

Proposition 3.4. A complete Riemannian manifold satisfying EM1 is 
a Bruhat-Tits space. A Cartan-Hadamard manifold is a Bruhat-Tits 
space. 

Proof: On a Hilbert space, we have equality in the parallelogram law. 
Using the hypothesis in EM1 with z as the midpoint, we see that the left 
side in the parallelogram law remains the same under the exponential map, 
the right side only increases, and hence the semi parallelogram law falls 
out. 

Next we give equivalent local conditions. Let X be a Riemannian 
manifold. We say that the semi parallelogram law holds locally on X if 
every point x has an open convex neighborhood U, with an isomorphism 
exp,: V, -+ U, of a neighborhood of 0, in T,, such that the semi par- 
allelogram law holds in U,. 

Theorem 3.5. Let X be a Riemannian manifold. The following three 
conditions are equivalent : 

(a) The curvature is seminegative. 
(b) 
(c) 

The exponential map is locally metric semi-increasing at every point. 
The semi parallelogram law holds locally on X. 

Proof: This is merely putting together results which have been proved 
individually. Theorem 3.6 of Chapter IX shows that (a) implies (b). That 
(b) implies (c) is a local version of Proposition 3.4. Indeed, the paral- 
lelogram law holds in the tangent space T,, and if the exponential map at 
z is metric semi-increasing, then the semi parallelogram law holds locally 
by applying the exponential map. Specifically, given X I ,  x2 in some convex 
open set, we let z be the midpoint on the geodesic joining x2 and x2, so 
that there is some v1 E T, such that, putting v2 = -v1, 

xi = exp,(vi), x2 = exp,(vz), z = exp,(O,). 



312 CURVATURE AND THE VARIATION FORMULA [XI, 431 

Given x = exp,(u) with u E T, the parallelogram law in T, reads 

d(U1, ~ 2 ) ~  + 4d(u, 0 ) 2  = 2d(u, ~ 1 ) ~  + 2d(u, Q ) ~ ,  

where d(u, w)  = 1 0  - wI for u, w E T,. Under the exponential map, the 
distances on the left side are preserved, and the distances on the right side 
are expanded if condition (b) is satisfied, so under the exponential map, we 
get 

which is the semi parallelogram law. Finally, to show that (c) implies 
(a), we merely follow the same argument with the reverse inequality. So 
assume (c). Suppose the curvature is positive at some point, and hence is 
positive on a convex open neighborhood of the point, which we denote by 
z. We pick a vector u E T,, and let 0 1  = -0, v2 = v .  We let w I u, w # 0. 
Then 

d(v1, ~ 2 ) ~  + 4 d ( ~  + W ,  0 ) 2  = 2 d ( ~  + W ,  ~ 1 ) ~  + 2d(v + W ,  t 1 2 ) ~ ,  

because this relation is one with the norm in the Hilbert space T,. Now 
we apply the exponential map, that is, we let 

X I  = eXpz(ul), x2 = expz(u2), x = exp,(v + w), z = exp,(O,). 

The distances on the left side of the equation are preserved under the 
exponential map (taking the norms of v ,  w sufficiently small). By Theorem 
2.6, the distances on the right are strictly decreased, contradicting the semi 
parallelogram law (actually giving an anti semi parallelogram inequality). 
This concludes the proof. 

The equivalence of the semi parallelogram law and seminegative 
curvature is due to Bruhat-Tits [BrT 721. 

In the next chapter we shall give the most important classical example 
of a Cartan-Hadamard manifold. We note that of the three equivalent 
conditions in Theorem 3.5, the most subtle is the curvature condition, 
and the simplest is the semi parallelogram law, which can be formulated 
independently of the theory of manifolds. In the example, we show that 
the conditions are satisfied by actually proving the metric increasing 
property of the exponential map, which is an intermediate condition 
establishing a link between the other two. It may be useful to formulate 
here a weak variation of Chapter VIII, Theorem 6.9, because it sum- 
marizes in an easy way some consequences of the metric increasing 
property which we shall prove in a concrete case in the next section. 
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Theorem 3.6. Let E be a Hilbert space and X a Riemannian manifold. 
Let h :  E + X be a diferential isomorphism which is metric semi- 
increasing, that is 

ITh(v)wl;(") 2 IWIi for all w E E, 

and also such that h is metric preserving on raysfrom the origin. Then X 
is complete. Let v E E, v # 0. Then 

t H h(tv) 

is a geodesic passing through h(0)  and h(v) ,  and is the unique such 
geodesic. If the group of isometries of X operates transitively, then there 
is a unique geodesic through two distinct points of X .  

ProoJ: The map h-': X + E is distance semi-decreasing. If { x n }  is 
Cauchy in X ,  then {h - ' (x f l ) }  is Cauchy in E, converging to some point v ,  
and by continuity of h, it follows that { x n }  converges to h(v) ,  so X is 
complete. If c1 is a geodesic in X between two points x and y ,  then h-' o M: 
is a curve in E between h-'(x) and h-'(y). In E, the geodesics with 
respect to the Hilbert space norm are just the lines, which minimize 
distance. From the property that h preserves distances on rays from the 
origin, it follows at once that if x = h(v) and [ is the line segment from 0 
(in E )  to u, then h o 5 minimizes the distance between h(0) and h(u), and 
so h o 5 is the unique geodesic between h(0) and h(v).  If the group of 
isometries of X operates transitively, then the last statement is clear, thus 
concluding the proof. 

Historical note. The presentation of the above material essentially 
follows a path which is the reverse of the historical path. It took almost a 
century before certain ideas were given their full generality and simplicity. 

Historically, things start at the end of the nineteenth century. Klin- 
genberg [Kl 83/95] asserts that von Mangoldt essentially proved what is 
called today the Cartan-Hadamard theorem for surfaces [vM 18811, 15 
years before Hadamard did so [Ha 18961. Actually, von Mangoldt refers 
to previous papers by others before him, Hadamard refers to von 
Mangoldt, and Cartan [Ca 281 refers to Hadamard (Cartan dealt with 
arbitrary Riemannian manifolds). I am unable to read the original 
articles. 

Helgason [He 621 gave a proof of Cartan's fixed point theorem fol- 
lowing Cartan's ideas, see the revised version [He 781, Chapter I, Theorem 
13.5, namely: On a Riemannian manifold of seminegative curvature, a 
compact group of isometries has a fixed point. Cartan's immediate 
application was to show that all maximal compact subgroups of a 
semisimple Lie group are conjugate. Mostow [Mo 531 gave a similar 
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exposition, but in a more limited context. See also Kobayashi-Nomizu 
[KoN 691, Vol. 11, Chapter VIII, Theorems 9.1 and 9.2. They use a center 
of mass rather than the circumcenter. 

Then Bruhat-Tits [BrT 721 formulated their fixed point theorem, 
here stated as Theorem 1.2, setting up the parallelogram law condition 
prominently. Serre used a variation of their proof and the formulation of 
Theorem 3.1 to reach the currently ultimate result with the very simple 
proof we have given. I don’t know that Serre published this, but it is 
referred to exactly as we have stated it in Brown [Bro 891, Chapter VI, 
Theorem 2 of $5. Thus a line of thoughts which started a century before, 
abuts to a basic elementary theorem about metric spaces. The condition 
of compactness is replaced by the condition of boundedness, and the more 
complicated notion of curvature is replaced by the semi parallelogram law. 

In addition, the center of mass which occurred in Cartan’s treatment 
(and others following him), is replaced by the circumcenter, following 
Bruhat-Tits. 

In [Kl 83/95], Theorem 1.10.17 (also 1.10.18), Klingenberg formulated 
a version of Cartan’s theorem under convexity hypotheses, in the context 
of manifolds rather than merely metric spaces. He attributed the idea of 
his proof to Eberlein. What Klingenberg proves is actually Theorem 3.1 
for compact sets in a differential geometric context, although one has 
to analyze the proof to see this in 1.10.17. We note that Theorem 3.1 for 
compact sets occurs in [BGS 851, Lemma 1, p. 10. 

Bruhat-Tits actually characterized Cartan-Hadamard spaces by the 
semi parallelogram law [BrT 721. From that point on, a theory of 
curvature for metric spaces rather than manifolds developed separately, 
with an extensive exposition in Ballman [Ba 951, containing Theorem 3.1. 
Ballman refers to Brown for Theorem 3.1, cf. [Ba 951, Theorem 5.1 and 
Proposition 5.10 of Chapter I. 

Note that in the metric theory which has been developed in parallel, the 
geodesic between two points has been obtained as the curve arising by 
taking successive midpoints ad infinitum. Helgason has pointed out to me 
that this limiting procedure was already used by Cartan [Ca 461, pp. 360- 
363 ! 

There remains to say a few more words here about the infinite 
dimensional case. The importance of infinite dimensional manifolds was 
recognized in the sixties, e.g. for function spaces, for Morse theory, and 
for the Nash-Moser theorem on Riemannian metrics. We note that 
Klingenberg [Kl 83/95] has a nice chapter on the H’-loop space. 
However, differential properties of curvature are not fully carried out 
in these works. For example, Klingenberg does not do the Cartan- 
Hadamard theorem in the infinite dimensional case, and he also defines 
symmetric spaces only in the finite dimensional case. 

I like Marsden’s book [Ma 741, especially $7 and $9, where he already 
suggests infinite dimensional contexts for various notions of differential 
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geometry, although his alternation between finite dimensional manifolds 
and infinite dimensional manifolds does not present a clear account of 
theorems and proofs valid in the infinite dimensional case, as it applies to 
Hamiltonian mechanics, quantum mechanics, and relativity, including the 
infinite dimensional space of Riemannian metrics, and its differential 
geometry. 

Garland’s study of loop groups [Ga 801 is another candidate to be 
placed in the setting of infinite dimensional Bruhat-Tits spaces. A similar 
possibility exists for the article by Atiyah and Pressley [AtP 831. 

Other possibilities are spaces having to do with the KdV equation, e.g. 
[ScTZ 961, and “moduli” spaces in a broad sense, e.g. Teichmuller spaces, 
spaces of Riemannian metrics as in Ebin [Eb 701 and Fried-Groisser 
[FrG 891, spaces of Kahler metrics, spaces of connections, ad lib. Anders 
Karlsson has told me that the metric in [Eb 701 has seminegative 
curvature. Karlsson has also pointed out that once it is proved that some 
Teichmuller space has seminegative curvature and some completeness 
properties, then the Bruhat-Tits fixed point theorem can be applied 
routinely to establish the so-called Nielsen Realization problem for the 
corresponding mapping class group. In the Riemann surface case, this is 
due to Kerckhoff [Ker 831, see also Wolpert’s paper [wo 871. 

Once one becomes aware of the possibility of applying the Cartan- 
Hadamard theory in infinite dimensions, one realizes that examples 
abound. A systematic account of the general theory of symmetric spaces 
and their applications in the infinite dimensional case remains to be 
worked out. 

XI, 94. TOTALLY GEODESIC SUBMANIFOLDS 

The main concrete point of this section is to consider certain submanifolds 
of Cartan-Hadamard manifolds which are themselves Cartan-Hadamard. 

Let X be a Riemannian manifold and let Y be a closed submanifold. 
We define Y to be totally geodesic if every geodesic in X with initial 
conditions in ( Y ,  T Y )  is contained in Y. There is an alternative condition 
which we discuss. 

Theorem 4.1. Let X be a Cartan-Hadamard manifold. Let Y be a 
totally geodesic submanifold. Then : 

(i) 
(ii) 

Y is a Cartan-Hadamard manifold. 
Given two distinct points of Y, the unique geodesic in X passing 
through these points actually lies in Y. 

Proof: Note that from the definition of a totally geodesic submanifold, 
it follows that the exponential map on X, restricted to T Y ,  is equal to the 
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exponential map on Y, or in a formula, for y E Y, 

exp,, = exp,,x restricted to T, Y. 

By hypothesis and the definitions, it follows that exp,,, is metric semi- 
increasing, so Y has seminegative curvature by Theorem 3.5. By hy- 
pothesis, Y is geodesically complete, and hence complete by Corollary 3.9 
of Chapter IX. By Theorem 3.8 of Chapter IX, given Y E  Y, the 
exponential 

exp,,: T, Y -+ Y 

is a covering, and since it is injective because exp,: T,X -+ X is injective, 
it follows that exp,: T,Y -+ Y is an isomorphism, so Y is simply con- 
nected. Thus we have shown that Y is Cartan-Hadamard. Then (ii) is 
trivial from (i), because the unique geodesic in Y passing through two 
distinct points is the same as the unique geodesic in X passing through 
these points. This concludes the proof. 

We complement the situation by a general statement, converse of (ii) in 
the theorem. It is included for completeness, but will not be used. 

Proposition 4.2. Let X be a complete Riemannian manifold, such that 
given two distinct points of X ,  there is a unique geodesic passing through 
these two points. Let Y be a closed submanifold. Suppose that locally, 
given two distinct points in Y, the unique geodesic segment in X joining 
these points actually lies in Y. Then Y is totally geodesic. 

Proof: I owe the following simple argument to Wu. One has mostly to 
prove that a Y-geodesic is an X-geodesic. Let a:  [0, c)  + X be a geodesic 
in X having initial conditions in Y, that is 

a(0) = Y E  Y and a’(0) E T,Y. 

Suppose a does not lie in Y. Then there is a largest number b such that 
a([O, b ] )  c Y but a(b + c) 4 Y for all small E > 0. Note that b could be 0. 
Since a([O, b ] )  c Y, it follows that a’(b) E Tol(b) Y. This is true even if 
b = 0, by assumption. Let 

/3: [b, b + E ]  -+ Y 

be the geodesic in Y such that /l’(b) = a’(b),  with sufficiently small E ,  so 
that /3(b + E )  lies in a convex X-ball centered at a(b), and also in a convex 
Y-ball centered at this same point a(b). Let 

y :  [b, b + €1 -+ X 
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be the geodesic segment in Xjoining P(b) and P(b + 6). By hypothesis, we 
have y([b,  b +  € 1 )  c Y. But a geodesic of X lying in Y is necessarily a 
geodesic of Y, say by the minimizing characterization of geodesics. By 
uniqueness, we have y =/3 on [b, b + €1. But then 

y’(b) = P’(b) = a’(b),  

and so y is in fact the continuation of the restriction of a to [0, b] .  Hence 
a([b,  b + € 1 )  is contained in Y, contradiction concluding the proof. 

In Chapter X, 52 we proved an extension of the Cartan-Hadamard 
theorem, to the normal bundle. We shall now show how part of the proof 
can be replaced by another argument. Specifically, we prove: 

Lemma 4.3. Let X be a Cartan-Hadamard manifold. Let Y be a totally 
geodesic submanifold. Then the map 

expNy: NY + X 
is a bijection. 

Proof: The argument will follow the same pattern that is used routinely 
to show that given a point not in a closed subspace of a Hilbert space, 
there is a line through the point perpendicular to the subspace. We first 
prove that given x E X but x # Y, there exists a point yo E Y such that 

d ( x ,  y o )  = d ( x ,  Y) = inf d ( x ,  y ) .  
Y C Y  

Let { y , }  be a sequence in Y such that d ( x ,  y , )  approaches r = d(x,  y )  as 
n goes to infinity. We can apply the semi parallelogram law in X exactly 
as in the proof of Theorem 3.1. The midpoint in X is on the geodesic 
between the two points, and lies in Y because of the assumption that Y is 
totally geodesic. Then the semi parallelogram law shows at once that {y , }  
is Cauchy, and therefore converges to the desired point yo.  The unique 
geodesic through x and yo is perpendicular to Y at yo by Corollary 4.7 of 
Chapter IX. Furthermore, this geodesic cannot intersect Y in another 
point y l ,  otherwise the existence of this geodesic and the geodesic in Y 
between yo and y l  would contradict Corollary 3.1 1 of Chapter IX. Thus 
we conclude that the map E :  NY --f X is bijective. 

The above lemma provides a variation for part of the proof of Chapter 
X, Theorem 2.5, avoiding further appeal to the Ambrose Theorem 6.9 of 
Chapter VIII. However, an important additional step is still required to 
prove the local C’-isomorphism property, unavoidably using some esti- 
mates for Jacobi lifts as in proposition 2.6 of Chapter IX. Of course, one 
may use at this point Theorem 2.4 and Lemma 2.6 of Chapter X. 
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XI, 55. RAUCH COMPARISON THEOREM 

Because it does not take very long, we shall give the proof of Rauch’s 
comparison theorem. I follow the exposition given in [KoN 691, Vol. 11, 
Chapter VIII, Theorem 4.1 ; or Cheeger-Ebin [ChE 751, Chapter I, $10. 
As already mentioned, it is derived from Ambrose. We first make some 
preliminary remarks. 

Let ( X ,  g x )  and ( Y ,  g y )  be Riemannian manifolds. Let 

ax: [a, b] --+ X and 

be geodesics, defined on the same interval, and parametrized by arc 
length. We have the Riemann tensors R ~ , x  and R z , ~  on X and Y, 
respectively, and thus we have their values 

ay:  [a, b] --+ Y 

R z , x ( ~ x ( s ) )  and R ~ , Y ( ~ Y ( s ) )  for all S E  [a, b1. 

We define R2,x 5 R2, y along (ax,  cry) if for each s and every pairs of 
orthogonal vectors u, w E Tax(+X and u‘, w’ E Tay(s) Y such that v ,  u‘ have 
the same length and w, w’ have the same length, we have 

If K denotes the curvature, this means that 

for every plane P contained in Tax(,)X and every plane Q contained in 
Tay(s)Y.  The Rauch comparison theorem will compare Jacobi lifts of the 
two geodesics in terms of the Riemann tensor (curvature, with an opposite 
sign). 

Theorem 5.1 (Rauch Comparison Theorem). Let ( X ,  gx) and ( Y ,  g y) be 
Riemannian manifolds of the same dimension, which may be infinite. Let 
ax (resp. a y )  be geodesics in X (resp. Y ) ,  parametrized by arc length, 
and defined on the same interual [a, b]. Let qx (resp. qr) be Jacobi lifts 
or these geodesics, orthogonal to ah  (resp. a;). 
Assume : 

(i) qx(a) = qy(a)  = 0, and qx(r), qy ( r )  # 0 for 0 < r 5 b. 
(ii) l l D a ~ ~ ~ ( a ) l l  = IIDa;tlY(a)II- 
(Z) 
(iv) 
Then 

The length of ax is the distance between its end points. 
We have R2,x 5 R2, y along (ax, a y ) .  

IItlx(s)I12 5 Iltlr(s)l12 for all S E  [a, 4. 
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ProoJ We shall use the definition of the index and Proposition 1.1, that 
is, for a Jacobi lift q of a such that ?(a) = 0 we have 

(1 )  ~ : ( q ,  7) = S’(Da!qI2 + ~ 2 ( a ’ ,  = (Darq, q)(s). 

We may index q by X and Y as well. We define 

f ( s )  = l lq(s)11~ = ~ ( s ) ~ ,  also written q’(s>, 

and again we may index f and q by X, and also by Y. Define 

h(s) = I:(q, q) /q2(s)  for 0 < s 5 b. 

Thus we have hx and hy. Note that by (I) ,  

f ’(s) = 2I,(q, q) and f ’/ f = 2h. 

For a < c < b, we get 

log q2(s) = log $(c)  + 2 

whence 

By assumptions (i) and (ii), and the first term of the Taylor expansion of a 
Jacobi lift (Chapter IX, Proposition 5.1), we get 

lim log &(c)/&(c) = 0. 
c 4 a  

Hence 

log &(s) /&(s)  = lim 2 
c-a 

It will therefore sate to prove that hx(s)  5 hy(s)  for a < s 5 b. Fix r 
with a < r < b. It will suffice to prove hx(r)  S hy(r). Define 

so we may index by X(resp. Y) to get [x and C Y .  Let W(s)  = a’(s)’ be 
the orthogonal complement of a’(s), so we have WX(S) and Wy(s) in the 
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tangent spaces at ax(.) and ay(s) ,  respectively. Let 

be a linear metric isomorphism such that 

Such a metric isomorphism exists since X, Yare assumed to have the same 
(possibly infinite) dimension. Let Px (resp. P y )  be parallel translation 
along ax (resp. q ) .  For each s we obtain a metric linear isomorphism 

L,: W y ( s )  + WX(S) defined by L, = P;',x o L, 0 P l , y .  

Then Cx and t; have the same end points at s = a and s = r .  Furthermore 

The first equality follows from the fact that parallel translation is a metric 
linear isomorphism. The second follows at once from Lemma 2.3, by 
using the curve 

Now we find: 

Z ; ( C p ,  Cx) 5 Z;(t;, t;) by Corollary 1.8 and assumption (iii) 

(3) = ZL(Cy, C y )  by definition. 

From the definition of C, inequality (3) can be rewritten 

which means by definition that hx(r)  I hy(r), and concludes the proof. 
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Remark. Instead of inequality (3), one has the precise relation 

m r 9  Cx) = Z,'(CY, Cr) + H,' (4) 

where 

The integrand on the right gives the precise contribution coming from 
assumption (iv), and shows that if there is a strict inequality in (iv), then 
there is a strict inequality in the conclusion hx(r)  < h y ( r ) .  



CHAPTER XI1 

An Example of 
Semi negative C u rvat u re 

The present chapter gives a prototype for a Cartan-Hadamard manifold, 
so complete, with seminegative curvature, simply connected, namely the 
space of symmetric positive definite real matrices of a given dimension. 
The example is obtained by “bending” a flat euclidean space by an 
exponential map. The chapter is essentially elementary, and could be read 
after the reader is acquainted with Riemannian metrics. 

XII, 91. Pos,(R) AS A RIEMANNIAN MANIFOLD 

Let : 

Mat,(R) = space of n x n real matrices; 
Pos,(R) =space of symmetric positive definite n x n matrices u (we 

Sym,(R) =vector space of symmetric n x n real matrices; 
GL,(R) = G = group of invertible real n x n matrices. 

write u > 0 ) ;  

We usually omit R for simplicity, and write simply POS, and Sym,. We 
recall that a matrix p is called positive (or positive definite) if it is 
symmetric and 

( p t ,  t) > 0 for all ~ E R ” ,  t # 0. 

We have the exponential map 

exp: Mat,, + GL, 
233 
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which we shall actually consider on the symmetric matrices 

exp: Sym, + Pos,, 

given by the usual power series 

The image lies in Pos, because if v is symmetric then p = q2 where 
q = exp(u/2) and q is symmetric commuting with p, so positive. From 
linear algebra, the exponential map is differential (i.e. Cm) isomorphism, 
namely it has a Cm inverse, which can be called the logarithm. To see 
this, let p be a positive matrix. We can diagonalize p, that is there exists a 
basis cl, .  . . ,t,, of R” and numbers 11,. . . ,A, > 0 such that 

p r i  = Airi for i = 1, . . . , n. 

Then one defines log p = u to be the linear map represented by the 
diagonal matrix 

with respect to the basis (1,. . . , &,. Similarly, one can define a square root 
of p to be the linear map represented by the matrix 

with respect to the basis tl,. . . , t,. The appendix shows how to define the 
similar notions on Hilbert space, in a more invariant fashion. 

The restriction of exp to lines through 0 is a group isomorphism from 
each line to its image, and is called a one-parameter subgroup. 

On Sym, we have a natural positive definite scalar product, defined by 

(0 ,  w ) ~ ~  = ( v ,  w) = tr(ow), 

where tr is the trace of a matrix. The tangent space at a point p E Pos, is 
a translation of Sym,,. Without using more sophisticated language, we 
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may identify it with Sym, (as we identify R" with the tangent space at any 
point). We then define a positive definite scalar product depending on a 
point p E Pos, by letting 

2 
(u ,  w),, = tr(p-'up-'w) so that lulp = = tr((p-'u)2). 

The positive definiteness comes from the fact that 

and tr(w2) > 0 if u # 0. If t H p(t) is a curve in Pos,, then the differential 
of the length is given by 

(dsldt)' = tr(p(t)-'p'(t))2 abbreviated ds2 = tr(p-' dp)2. 

We call the above metric the trace metric. It defines POS, as a Riemannian 
manifold X. It is equal to a constant times the Killing metric, which the 
reader will find in other books. 

The group G = GL,(R) acts on POS,. For each g E G we let [g] be the 
map of POS, into itself defined by 

Indeed, [g]p is positive, because of all t E R", t # 0 we have 

([glpt, t) = (gp'gt, t) = (P'Qt, 'st) > 0. 

Since, as we have remarked earlier, every positive definite matrix is the 
square of a positive matrix, it follows that G acts transitively on Pos,. 
In particular, if p = g2 with g E POS, then p = [gle, where e is the unit 
matrix. The appendix shows that all these statements remain valid in 
Hilbert space, except that the definition of the scalar product ( u ,  w),, by 
means of the trace is a finite dimensional phenomenon, so this is one point 
where it remains to be seen whether the theory has an extension to the 
infinite dimensional case. We shall list the properties we are using 
carefully, to make proof analyses easier. 

Theorem 1.1. The association g H [g] is a representation of G in the 
group of isometries of Pos,, that is each [g] is an isometry. 

ProoJ: First we note that [g] can also be viewed as a map on the whole 
vector space Sym,, and this map is linear as a function of such matrices. 
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Hence its derivative is given by 

[g]'(p)w = gw'g for all w E sym,. 

Now we verify that [g] preserves the scalar product, or the norm. We 
have : 

I [gl '(PI 4 ;b = tr (( Is1 PI -' gw 'g) 2, 

= tr((gPrg)-'gw'9)2) 

= tr('g-'p-'g-'gw'g'g-'p-'g-'gw'~) 

= tr('g-'p-'wp-'w'g) 

= tr( (p-' w12) 

= lwlp 
2 

which proves the theorem. 

Let K = Uni,(R) = O(n) be the group of real unitary matrices. Then K 
is a compact subgroup of G, and a standard elementary fact of linear 
algebra asserts that the map 

POS, x K + G given by (p, k) pk 

is a differential (even real analytic) isomorphism. However, we use an 
isomorphism of G-homogeneous spaces p: G/K + POS" given by 

I: gK H g'g = [gle. 

The elements k E K are precisely the elements k E G such that 'k = k-'. 
Left translation by an element g E G acting on G/K corresponders to [g] 
under p. 

Theorem 1.2. The map exp: Sym, + POS, is metric semi-increasing. On 
rays from the origin, it is metric preserving. I t  is equal to the exponential 
map associated to the metric, i.e. the curves t H exp(tw) with w E Sym, 
are geodesics. Thus POS, satisfies condition EMI, and is a Cartan- 
Hadamard and Bruhat-Tits space. 

The main part of the proof will be given in the next section. Here we 
shall make some remarks, taking care of the easier aspects of the theorem. 
First note that the two stated metric properties imply that our naive 
exponential series is actually the exponential map associated to the metric, 
by applying Theorem 3.6 of Chapter X. 
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Next, since the action [g] of g E G preserves the metric, and hence 
preserves distances, and since every element of POS, can be written as [gle, 
to prove condition EMI, it suffices to do it at the origin, namely at e. 

Next, we give a simple self-contained proof that our naive exponential 
map preserves the metric along rays from the origin. 

Theorem 1.3. The exponential map exp: Sym, -+ POS, is metric pre- 
serving on a line through the origin. 

Proof: Such a line has the form t H tv with some u E Sym,, v # 0. We 
need to prove 

Note that 

2 2 
bItr = leXP'(tV)vl,p ID' 

d - exp(tv) = exp'(tv)v 
dt 

d t"v" =zcx 

= exp(tv)v. 
Hence 

lexp'(tv)vl,2,, tv = tr(((exp tv)-'(exp tv)vl2) 

= tr(v2) 
2 

= lvltrr 

which proves the theorem. 

As an application, we can determine explicitly the distance between two 
points in POS,, as follows. 

Theorem 1.4. Let p, q E Pos,. Let a ] , .  . . ,a ,  be the roots of det(tp - q). 
Then 

dist(p, q)  = C (log ai)2. 

Prooj Suppose first p = e and q is the diagonal matrix of a1 , .. . ,a,. 
Let u = log q, so v is diagonal with components log a', . . . , log a,. The 
theorem is then a consequence of Theorem 1.3, since v2 has components 
(log ai)2. We reduce the general case to the above special case. First we 
claim that there exists g E G such that [glp = e and [g]q = d is diagonal. 
Indeed, we first translate p to e, so without loss of generality we may 
assume p = e. There exists an orthonormal basis of R" diagonalizing q, so 
there exists a diagonal matrix d and k E K such that q = k d'k = k dk-'. 
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But e = kk-', so taking [k]q proves our claim. Finally, from the equations 
gpfg = e and gqfg = d we get p = g-"g-' and q = g-ld'g-', so 

det(tp - q) = det(tg-"g-' - g-ld'g-') 

= det(g)-2det(te - d). 

Since dist(p, q) = dist(e, d), the theorem follows. 

The next section contains the main part of the proof for the metric 
increasing property of the exponential map, and $3 contains further results 
about totally geodesic submanifolds of Pos. Except for a slight axio- 
matization, I follow Mostow's very elegant exposition of Cartan's work 
[Mo 531, in both sections. 

XII, 52. THE METRIC INCREASING PROPERTY OF 
THE EXPONENTIAL MAP 

We shall need only a few very specific properties of the exponential map, 
and the trace scalar product, so we axiomatize them to make the logic 
clearer. 

We let d be a finite dimensional algebra over R, with an anti-involution, 
that is a linear automorphism v H 'v of order 2 such that '(vw) = IW'V 

for all v, w E d. We let Sym be the subspace of d consisting of the 
symmetric elements, i.e. v such that v = Iv. We suppose given a trace, 
that is a functional 

tr: d + R 

such that tr(vw) = tr(wv) for all u, w E d, and we asume that tr(w2) > 0 
for all w E Sym, w # 0. Thus the functional gives rise to the tr-scalar 
product 

(0 ,  w), = tr(uw), 

which is positive definite on Sym. We shall also assume a Schwarzian 
property, see below. 

lvl; = tr(u2), 

The standard example is when d = Mat,(R). Note that we have the 
exponential map 

exp: d -+ d given by exp(v) = - U" = e'. 
n! 

We define 
Pos = exp( Sym) . 
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Then every element of Pos has a square root in Pos, namely p = exp(u) 
implies p1I2 = exp(u/2). 

Let u, W E & .  We define 

Note that 
d 
dt exp’(u)w = -exp(u + tw) 

Directly from the definitions, we get 

n=O ’*’ r+s=n-1 

Since powers of an element commute with each other, we note that 
exp(-u/2) commutes with powers u‘, us. 

Lemma 2.1. The maps F, and exp’(u) are hermitian with respect to the 
tr-scalar product on d. If u E Sym, then F, and exp’(u) map Sym into 
itself. 

ProoJ: A routine verification gives for u, u, w E d :  

tr(F,(w)u) = 2 A C tr(exp(-u/2)urwus exp(-u/2)u) 
n=O ”’ r+s=n- 1 

= tr (w~,(u)) 

because exp(-u/2) commutes with u r  and us. This concludes the proof 
that F, is hermitian with respect to the tr-scalar product. If u E Sym, then 
formula (1) shows that F, maps Sym into itself. The statements about 
exp’(u) follow the same pattern of proof. 

We define L,: d + d to be left multiplication, L,(w) = uw, and R, is 
right multiplication. We let D, = L, - R,, so 

D,(w) = uw - wu = [u, w] for all u, w E a?. 

Lemma 2.2. Let u E Sym. Then 0: is hermitian on Sym. 
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ProoJ: Again this is routine, namely: 

D,(w) = uw - wu, 

D,2(w) = u2w - 2uwu + wu2, 

(D,2w)u = u2wu - 2uwvu + wu2u, 

2 2 wD,u = wu u - ~ W U U U  + wuu’. 

Applying tr to these last two expressions and using its basic property 
tr(xy) = tr(yx) yields the proof of the lemma. 

We recall that a hermitian operator B on Hilbert space is called 
semipositive, written B 2 0, if we have (Bw, w) 2 0 for all w # 0 in the 
Hilbert space. Then one defines B1 2 B2 if B1 - B2 2 0. 

In the proofs that follow, we shall use two basic properties. 

Spectral Property. Let M be a symmetric linear map of a finite 
dimensional vector space over R, with a positive definite scalar product. 
Let b 2 0. Let fo( t )  be a convergent power series such that fo(t) 2 b 
for all t in an interval containing the eigenualues of M. Then 
f o ( W  L bI. 

ProoJ: Immediate by diagonalizing the linear map with respect to a 
basis. Of course, the Appendix proves the analogous property in Hilbert 
space. 

We also assume: 

Schwarzian Property. For all u, w E Sym, 

For the convenience of the reader, we recall the proof in the cases of 
matrices. The matrices (linear maps) can be simultaneously diagonalized, 
if one of them is positive definite, and in that case the inequality amounts 
to the usual Schwartz inequality. If both matrices are singular, then one 
can consider a matrix w + Ee with the identity matrix e, and E > 0. Then 
w + Ee is non-singular for all sufficiently small E # 0, and one can then use 
the preceding non-singular case, followed by taking a limit as E + 0. This 
concludes the proof. 

We define a formal power series 

(t/2)2k sinh t/2 exp(t/2) - exp(-t/2) - --= 
f ( t )  = c k=O (2k + l)! t/2 t 
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We note that L, and R, commute with each other, and so 

exp(D,/2) = exp(L,/2) exp(-RU/2). 

We may take f(D,). Since only even powers of D, occur in the power 
series for J; it follows that if v E Sym, then f (D,) maps Sym into itself, and 
the operator 

f(Du): sym --f sym 

is hermitian for the tr-scalar product. 

Lemma 2.3. For any v E d,  we have D,F, = D, f (D,). 

ProoJ: Let t H x(t) be a smooth curve in d. Then 

x(exp x) = (exp x)x. 

Differentiating both sides gives 

x’ expx + x(exp x)’ = (exp x)’x + (exp x)x’, 

and therefore 

x’ expx - (exp x)x’ = (exp x)’x - x(exp x)’. 

Multiplying on the left and right by exp(-x/2), and using the fact that x 
commutes with exp( -x/2) yields 

(2) exp(-x/2)x’ exp(x/2) - exp(x/2)x’ exp(-x/2) 

= exp(-x/2)(exp x)’ exp(-x/2)x 

- x exp(-x/2)(exp x)‘ exp(-x/2). 

Since L, and R, commute, we have 

exp(D,/2) = exp(Lx/2) exp(-RX/2), 

so (2) can be written in the form 

(3) (exp(D,/2) - exp(-DX/2))x‘ = DxFxx’. 

We now take the curve x(r) = v + tw, and evaluate the preceding identity 
at r = 0, so x’(0) = w, to conclude the proof of the lemma. 
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Theorem 2.4. Let v E Sym. Then F, = f(D,,) on Sym. Hence for 
w ~ S y m ,  we have 

exp‘(v)w = exp(v/2) . f (D,)w. exp(v/2). 

ProoJ: Let h, = F, - f (D,). Then h,: Sym --f Sym is hermitian, and its 
image is contained in the subspace E = Ker D, n Sym. Since Sym is 
assumed finite dimensional, it is the direct sum of E and its orthogonal 
complement E l  in Sym. Since h, is hermitian, it maps E l  into E l ,  but h, 
also maps E l  into E, so h, = 0 on E l .  In addition, E is the commutant 
of v in Sym, and hence f (0,) = id = E, on E, so h, = 0 on E. Hence 
h, = 0 on Sym, thus concluding the proof of the theorem. 

Theorem 2.5. Let v E Sym. Then DZ is semipositive, and f (0,) 2 I. 

ProoJ: By Lemma 2.2, for w E Sym we have 

(D:w, w ) ~ ~  = tr(wv 2 w - 2vwvw + v 2 2  w ) 

= 2tr(v2w2 - (vw)’). 

Thus the semipositivity of 0,’ results from the Schwarzian property of tr. 
Now we can write 

f (t) = fo(t2) 
where fo(t)  is the obvious power series, which has positive coefficients. 
Note that fo(t) 2 1 for all t 2 0. Therefore by the spectral property of 
power series, it follows that 

This concludes the proof. 

Theorem 2.6. The exponential map exp is tr-norm semi-increasing on 
Sym, that is for all v,  w E Sym, putting p = exp(v), we have 

ProoJ: The right side of the above inequality is equal to 

tr((p-1 exp’(v)wl2) = tr((exp(-v/2) . exp‘(v)w. exp(-v/21)~ 

= tr (F, (w) ’) 
= If(D,)wli by Theorem 2.4. 

Applying Theorem 2.5 now concludes the proof. 
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Corollary 2.7. For each u ~ S y m ,  the maps 

F, and exp'(u): Sym + Sym 

are linear automorphisms. 

Proof Theorem 2.6 shows that Ker exp'(u) = 0, and exp'(u) is a linear 
isomorphism. The statement for F, then follows because F, is composed 
of exp'(u) and multiplicative translations by invertible elements in Sym. 
This concludes the proof. 

We note that Theorem 2.6 concludes the proof of Theorem 1.2. 

Remark. There is no trace on the full algebra of endomorphisms of an 
infinite dimensional Hilbert space, satisfying the conditions listed at the 
beginning of the section. There are such traces on some other types of 
infinite dimensional algebras with units. Lemmas 2.1, 2.2 and 2.3 don't 
depend on anything more. However, Theorem 2.4 depends on an 
additional hilbertian property, namely that there exists a constant C > 0 
such that 

tr(u2) 2 clu12 for all u E ~ y m ,  

where JuI is the original Banach norm. Since all norms on a finite 
dimensional vector space are equivalent, this condition is valid in finite 
dimension. But as Rieffel has informed me, if this condition is satisfied, 
and so makes d into a Hilbert space, then necessarily d is finite 
dimensional. There remains to be seen whether there are natural infinite 
dimensional cases where a weaker condition is still true so that con- 
sequences of this property, similar to Theorem 2.5 and 2.6, are valid in 
some sense, without d being complete for the Hilbert trace norm. 

XII, 93. TOTALLY GEODESIC AND 
SYMMETRIC SUBMANIFOLDS 

We continue with the same notation as in the preceding section. We 
follow Mostow's exposition of Cartan's work, as before [Mo 531. It can be 
shown that all finite dimensional symmetric spaces of non-compact type 
are symmetric submanifolds of Pos, for some n, depending on the choice 
of a suitable representation. Thus Theorems 3.3, 3.5, 3.7 and 3.9 below 
apply quite generally. 
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We abbreviate some mappings which occur frequently as follows. For 
U E S y m :  

J, = exp'(u) 

A ,  = Rp + Lp 

(the Jacobian of the exponential map), 

where p = exp u = eu,  

so A,(w) = e'w + weu. 

At the moment, we do not yet know that A ,  is a linear isomorphism. To 
prove this, we shall use another function besides f, namely we let 

g(t)  = 2 f (t)-' ~0sh(t/2) = t ~0th(t/2). 

Since g( t )  + co as t --f k co, g(t)  + 1 as t + 0, and g(t)  > 0 for all t E R, 
it follows that g is a continuous function on every closed interval [0, c] ,  
and is bounded away from 0 and co on this closed interval. Furthermore, 
g(t)  = g0(t2) where go satisfies go 2 E > 0 on [0, c] ,  for some E > 0. 

Theorem 3.1. The Hermitian operator A ,  is invertible on Sym. Fur- 
thermore, we have the formula 

A ,  = exp'(u)go(D:) on Sym. 

Proof From the definitions and Theorem 2.4, we know that 

Ju = exp'(o) = exp(L,/2) exp(R,/2) f (Du) on Sym. 

Note that exp L, = Lp and exp R, = Rp. Abbreviate L = L,, R = R,, 
D = L - R. By Corollary 2.7, we find 

which proves the formula. Now from the fact that go is bounded away 
from 0, strictly positive on an interval [0, c] such that 0 S 0: 5 c l ,  we 
deduce the invertibility, and conclude the proof of the theorem. 

The next considerations will depend on the existence of symmetries, so 
the present context may also be viewed as an example of symmetric 
spaces, which will be defined in general in Chapter XIII. 
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Let p E Pos, and consider the mappings of Pos + Pos given by: 

S ( x )  = x-  , Bp(x)  = pxp ,  S,(x) = px- lp ,  so Sp' = id. 1 

One calls S, the Cartan symmetry and we have S, = B, o S.  We know 
that B, is an isometry, and we claim that S is also an isometry. Indeed, 
the differentials of S and B, are given by 

S'(P)W = -p-'wp-', B;(v)w = pwp.  

as one verifies directly from the definitions. This is a pure Banach algebra 
relation. Then the isometry relation 

is immediate from the definitions of the trace and the scalar product. It 
follows that S, is an isometry, being composed of isometries. In addition, 
we note that S,(p) = p ,  that is, p is a fixed point of S,. 

We have S i ( p )  = -id. 

Proof: Immediate from the chain rule S j ( p )  = B i ( S ( p ) ) S ' ( p ) .  

The above properties show that S, is a symmetry in the sense defined 
generally in the next chapter. 

We shall study submanifolds, both in the Lie vector space Sym and in 
the symmetric space Pos = exp Sym. So let V be a vector subspace of Sym, 
and let X = exp( V ) .  Note that if y = exp(w) E X, then y-' = exp(-w) is 
also in X, so X is stable under the map y H y-'. By a symmetric 
submanifold of Pos, we mean a submanifold of the form X = exp( V) such 
that X satisfies the condition 

SYM 1. x ,  y E X implies x y x  E X. 

In other words, X is stable under the operation (x, y )  H xyx .  Observe 
that this condition is equivalent with the condition that S, leaves X stable 
for all X E  X, i.e. X is stable under all Cartan symmetries with x E X. 

Example. Let Sym, be the standard space of symmetric n x n real 
matrices, and let V be the subspace of matrices with trace 0. Thus 
X = exp U consists of the positive definite symmetric matrices with 
determinant 1, which is symmetric. As we shall we below, it follows that 
X is a totally geodesic submanifold of Pos,, usually denoted by SPos, (the 
special positive elements). 
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Let X = exp( V )  be a symmetric submanifold. Then for each y E X we 
have the operator 

[ y ] :  X + X defined by [ylx = y x y .  

Lemma 3.2. Suppose X = exp( V) symmetric. Given p ,  q E X there 
exists y E X such that y p y  = q. In other words, X acts transitively on 
itself. 

ProoJ The condition y p y  = q is equivalent with 

Note. A similar proof shows that given p ,  q E X there exists y E X such 
that y p y  = q-' and thus also y q y  = p-' .  Written in terms of the operator 
[ y ] ,  these read 

[ y ] p  = q-l and [ylq = p - l .  

We shall now describe equivalent conditions for a manifold to be 
symmetric. First we derive a formal relation about the exponential on 
SYm- 

For all w ~ d  we have 

d - exp(tw) = exp'(tw)w = etww. 
dt 

This follows at once from the definition of the differential, and the fact 
that all elements with which we operate commute with each other, so one 
can take the derivative of exp(tw) in the usual way from ordinary cal- 
culus. Now given x = ew and p E Pos, we can define a curve { ( t )  in Sym 
by the formula 

exp { ( t )  = e-pe'". 

Note that t(0) = log p and exp({( 1)) = xpx.  Differentiating with respect 
to t ,  we obtain 

exp'({(t))t'(t) = e"wpeW + ehYptmw 

= At(') ( w )  

by the definition of A, and the first observation in the proof. It follows 
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(1) 

Theorem 

[XII, 031 

et V be a vector subspace of Sym, anc, .,I = exp( 
Then X is a symmetric submanifold of Pos if and only if: 

SYM 2. The map 0; maps V into itself for all u E V .  

Proof Suppose that D: maps V into itself for all u E V. Note that go is 
actually real analytic, and the above equation is an ordinary differential 
equation for ( ( t )  in V. It has a unique solution with initial condition 
((0) = log p ,  and of course, this solution lies in V, that is t ( t )  E V for all 
t .  Taking t = 1 shows that xpx E exp( V ) ,  thus proving one implication. 

Conversely, assume that x, p E exp( V )  implies xpx E exp( V ) .  Let w be 
as before, and also t ( t )  as before, with say t(0) = u = log p .  We have to 
show D:(w) E V. By assumption, ( is a curve in V, and hence so is t', 
which we computed above, with the power seriesfof 02. Thus f ( t )  is a 
power series in t, whose coefficients lie in V. The coefficient of t2 is 
directly computed to be 

thus completing the proof of the theorem. 

Remark 3.4. The condition that V is stable under 0,' for all u E V is 
actually a Lie -algebra condition, because in an arbitrary Lie algebra one 
may define D, by 

a ( w )  = [v ,  WI. 

One may then use the following purely Lie algebraic result to get an 
equivalent condition. 

Lemma 3.5. Let L be a Lie algebra and V a linear subspace. Then V is 
stable under D: for all u E V if and only if V is stable under all operators 
DUD, with u, U E  V .  

ProoJ Applying the hypothesis that D: leaves V stable to u + u  
(polarization) shows that DUD, + DUD, leaves V stable, or in other words, 

(*> [u, [u, w]] + [u, [u, w]] E v for all u, u, w E v 
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From D[,,] = DUD, - DUDu, we see that D[u,v~ + 2D,Du leaves V stable, 
that is 

Interchanging u and w in (*) shows that [[u, u], w] + [u, [u, w]] E V. 
Combining this with (**) proves the lemma. Note that proof is valid for a 
Lie algebra over any commutative ring. 

A linear subspace of a Lie algebra which satisfies the property that for 
all u, u, w in the subspace the element [u, [u, w]] lies in the subspace is 
called a Lie triple system. Thus the lemma implies 

Theorem 3.6. A submanifold X = exp( V) of Pos is symmetric if and 
only if V is a Lie triple system. 

The previous theorem established an equivalent between a Lie property 
and the symmetry property of the submanifold. The next theorem gives 
another equivalent condition in terms of geodesics. 

We say that X = exp( V) is a geodesic submanifold if given two points x,  
Y E X ,  the geodesic between these two points lies in X. 

Theorem 3.7. Let X = exp( V). Then X is a geodesic submanifold if and 
only if X satisjes the (equiualent) conditions of Theorem 3.3, e.g. X is a 
symmetric submanifold. 

Proof Assume Xis symmetric. The image of the line through 0 and an 
element u E V, u # 0 is a geodesic which is contained in X .  Since the maps 
x H y x y  (for y E X) leave X stable, and act transitively on X,  it follows 
that X contains the geodesic between any two of its points. Conversely, 
assume X is a geodesic submanifold. Let x E X, u E V. Then S, maps the 
geodesic x1/2 exp(tv)x1/2 to x1l2 exp(-tu)x1/2, and so this geodesic is 
stable under S, (as a submanifold). Hence S, maps X into itself, so X is 
symmetric, thus concluding the proof. 

Examples. Let d = Mat,,(R) and Pos = POS, the space of symmetric 
positive definite matrices. Let A be the submanifold of diagonal matrices 
with positive diagonal components. Then A is totally geodesic, as one sees 
by taking V = vector space of all diagonal matrices. The bracket of two 
elements in V is 0, so V trivially satisfies the criterion of Theorem 3.6. 
One usually denotes V by a. The orthogonal complement of a for the 
trace form is immediately determined to be Symi') = a l ,  consisting of the 
matrices with zero diagonal components. We now obtain an example of 
the global tubular neighborhood theorem for Cartan-Hadamard spaces, 
by applying Theorem 4.4 of Chapter X to the present case. 
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Theorem 3.8. Let A be the group of diagonal n x n matrices with positive 
diagonal components, and let a = Lie(A) be the vector space of diagonal 
matrices. Let aL = Sym!? be the space of matrices with zero diagonal 
components. Then the map 

is a diferential isomorphism. 

Similarly, instead of A, one could consider other totally geodesic 
submanifolds obtained as follows. Given positive integers ni ( i  = 1, . . . , m) 
such that C ni = n, we let V be the subspace of Sym consisting of diagonal 
blocks of dimensions nl,  . . . , n,. Then V is a Lie triple system, and 
exp( V) is totally geodesic. 

Finally, the Riemann tensor R can be described explicitly as follows. 

Theorem 3.9. Let R be the Riemann tensor. Then at the unit element e, 
with u, u, w E Te(Pos) = Sym, we have 

and R2(u, w )  = (R(u, w)u,  wjtr 2 0. 

ProoJ Assume the formula for the 4-tensor R. Substituting u = u and 
taking the tr-scalar product immediately shows that 

( ~ ( u ,  w)u, w ) ~  = -2tr((uw) 2 - u 2 2  w ). 

Hence the semipositivity of R2 comes from the Schwarzian property. So 
there remains to prove the formula for R.  But this is a special case of a 
formula which holds much more generally for Killing fields, since for 
symmetric spaces, we know that me = T,, see Chapter XIII, Theorem 5.8 
and Theorem 4.6. 

CHAPTER Xlll 

Automorphisms and 
Symmetries 

By a covariant derivative D on a manifold X we shall always mean a 
covariant derivative associated with a spray. Thus for each vector field C;, 
the association q H D,,< is a tensor, and D could therefore be called a 
tensorial derivative. As Wu informed me, Hermann Weyl was the first 
to point out the importance of this notion, independently of a metric 
[wey 181. A pair (X, D) consisting of a manifold and such a covariant 
derivative will be called a D-manifold. We also note that D is often called 
a connection in the literature, or an allbe connection, following Hermann 
Weyl. 

The curvature involved a second derivative, and we went immediately 
into it without stopping to consider the second derivative for its own sake. 
We now do so in a first section. The second derivative is even more 
important than in ordinary calculus, and we shall see several applications, 
both in this chapter and the next. Among other things, it is used to define 
the Laplace operator in $1. We also give the formula relating it to the 
Riemann tensor. 

The second derivative is an operator discovered in certain contexts by 
Killing, and Karcher pointed out to me that this operator is tensorial in its 
arguments. The Killing operator is defined for two vector fields by 

We relate it to D2 in $1. 
The rest of this chapter deals with the context of D-manifolds and their 

automorphisms. 
Let (X, Ox), (Y, 0') be D-manifolds, which we write more simply 

(X, 0) and (Y, 0). An isomorphism p :  X -, Y (differential) is said to be 
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a D-isomorphism if p+D = D. The pull back p’D is defined by func- 
toriality, so by the formula 

for all vector fields q, [ on Y. Recall that for any vector field t on Y, 

A D-automorphism of X is just an isomorphism (X, D) + (X, D) (same 

Since a spray is uniquely determined by its associated covariant deri- 
vative, it follows that a D-automorphism is also an automorphism for the 
spray. 

Suppose X is pseudo Riemannian with metric 9. Then there is a unique 
covariant derivative called the metric or Levi-Civita, or pseudo Rieman- 
nian derivative (connection) associated with g. In one important example, 
many metrics may have the same covariant derivative: any two positive 
definite scalar products on a finite dimensional vector space have the same 
covariant derivative, namely the ordinary one. A metric automorphism 
(i.e. an isometry) of X induces a D-automorphism, but the converse is not 
necessarily true. A number of properties of metric automorphisms actually 
depend only on their being D-automorphisms, and I think it clarifies 
matters considerably to obtain certain results as special cases of the more 
general results concerning D-automorphisms, and to lay the foundations in 
general, especially since some manifolds have a covariant derivative for 
which no Riemannian metric exists for which D is the metric derivative. 

When such a Riemannian metric exists, then Kobayashi has brought to 
my attention some important facts. Let D be the metric derivative associ- 
ated to g. Then the two notions of D-automorphism and g-automorphism 
coincide in the following cases of finite dimensional manifolds : 

D). 

When the manifold is compact (due to Yano). 
When the manifold is complete “irreducible” (due to Kobayashi). 

Cf. [KoN 631, p. 242. Furthermore, as Kobayashi also informed me, de 
Rham’s holonomy decomposition theorem states that the universal cover- 
ing space of a Riemannian manifold is metrically isomorphic to a product 
of a euclidean space and irreducible manifolds. Thus in the finite dimen- 
sional case, when D is a metric derivative, D-automorphisms are fairly 
close to being affine transformations of a euclidean space, combined with 
g-automorphisms. 

Quite generally, let t be a vector field and let {p,} be its flow. We 
define t to be D-Killing (resp. metric or g-Killing in the pseudo Rieman- 
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nian case) if each pt:  X --+ X is a D-automorphism (resp. a metric auto- 
morphism). The definition is usually given only in the pseudo Riemannian 
case. A D-automorphism has been called an affine transformation. 
However, I fmd it more appropriate to unify and functorialize the ter- 
minology. We denote by KillD(x) and Kill,(X) the set of D-Killing fields 
and metric Killing fields respectively. Each one will be seen to be a vector 
space over the reals, and we have the inclusion 

Kill&) 3 Kill,(X) 

if D is the metric derivative associated with g. 

For the rest of this chapter, by a Killing field we shall mean a D-Killing 
field unless otherwise specijied. 

It turns out that Killing fields can be characterized by a second-order 
differential equation due to Killing [Ki 18911, namely 

Helgason gave me the above reference after looking into the literature, 
when I expressed interest in the history of this equation. Helgason also 
pointed out that the equation was subsequently referred to in Cartan 
[Ca 511, Section 5,  especially p. 328; and Eisenhart [Ei 261, p. 247, formula 
71.1. It has usually been discussed only in the Riemannian context, not 
only in the older literature, but more recently in Klingenberg [Kl 83/95] 
and Sakai [Ca 961. However, a form of it is given in [KoN 631, Chapter 
VI, Proposition 2.6, as was pointed out to me by Kobayashi. I would not 
have recognized it otherwise. 

In $2, we deal with the characterization of Killing fields by the Killing 
equation, and in $3 we discuss the pseudo Riemannian case. In $4, we list 
some Lie algebra properties of Killing fields. In $5 we introduce Cartan’s 
symmetries, and describe some of their implications for Killing fields. In 
$6 we give further properties of symmetric spaces. I originally learned 
some of the material from Klingenberg [Kl 83/95], whose approach I liked 
very much. However, Klingenberg limits himself to the Riemannian case, 
whereas we work in the general situation of an arbitrary covariant deri- 
vative (connection), since a Riemannian or pseudo Riemannian hypothesis 
is unnecessary for the main results. Klingenberg does a very nice and 
beautiful job. He even states in Chapter I: “. . . we consider manifolds 
modelled on Hilbert spaces rather than on finite dimensional spaces. This 
will be useful in Chapter 2 and presents no conceptual difficulties anyway, 
as was demonstrated by Lang El].” However, in his Chapter 2, he l i n k s  
out, by considering symmetric spaces (for instance) only in the finite 
dimensional context. About this, he says in the Preface to the book: “In 
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Chapter 2, entitled Curvature and Topology, I restrict myself to finite 
dimensional manifolds, because the local compactness of the manifold is 
needed.” In fact, the hypothesis of local compactness is needed only in 
some cases, notably involving positive curvature, but it is definitely not 
needed for others. Klingenberg directed his book to certain applications 
having to do with the existence of closed geodesics and pinching, and he 
gives priority to the Hopf-Rinow theorem, which is the only exception to 
the general principle that all basic results of differential geometry hold in 
the infinite dimensional case. 

Thus Klingenberg makes unnecessary assumptions about finite dimen- 
sion when they are not needed, for certain results concerning Killing 
fields. What is needed on some occasions is that the exponential map at a 
point (or at all points) is surjective. The Hopf-Rinow theorem guarantees 
this property in finite dimension, but as an assumption, the surjectivity of 
the exponential map is weaker than finite dimension since it includes the 
infinite dimensional case of seminegative curvature, when the Cartan- 
Hadamard theorem and its corollaries are valid. Thus I found the above 
assumption the most natural one to make. 

In addition, some results of Klingenberg’s Chapter 2 are given only in 
the context of symmetric spaces but they are valid for arbitrary D- 
manifolds, without any further assumption concerning the existence of sym- 
metries. Furthermore, this validity gave rise to a question by Helgason: to 
what extent can the Lie algebra of Killing fields, or the Lie subalgebra 
associated with a certain subspace (denoted by lJp + mP), be integrated 
inside an arbitrary manifold so that a manifold may contain in some sense 
a maximal symmetric submanifold (locally at a point p)? Thus a sys- 
tematic analysis of proofs in the Riemannian case, and the elimination of 
superfluous hypotheses, actually suggested further topics of research. 

In any case, a new exposition of the material in this chapter was in 
order on several counts, among which: to deal with arbitrary manifolds 
with a covariant derivative, not just Riemannian or pseudo Riemannian 
manifolds; to include the infinite dimensional case; and to free the general 
theory of Killing fields from the context of symmetric spaces. 

XIII, 91. THE TENSORIAL SECOND DERIVATIVE 

We begin with some remarks on the first derivative. Let D be a covariant 
derivative. We have used D essentially with a subscript, such as D,, 
applied to various tensors (vector fields, forms, etc.). However, it will now 
be essential to apply D without a subscript. For instance if f is a 
function, then Df is a 1-form, defined on a vector field q by 
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On a vector field <, we have 

If o is an r-multilinear tensor, R or TX-valued, we have 

so D o  is an ( r +  1)-multilinear tensor. And so forth. 

operator, or second tensorial derivative Q(q, C)  to be 
Let (X, D) be a D-manifold. For vector fields v ,  C we define the Killing 

We shall now see that this operator amounts to the second derivative, 
and we discuss it systematically on functions, vector fields, and multilinear 
tensors. 

On Functions. We start with functions. In ordinary calculus on vector 
spaces, i f f  is a C2 function on an open set in a Banach space, then the 
second derivativef”(x) is a symmetric bilinear form called the Hessian of 
f at x. We shall now consider the Hessian, and more generally the second 
derivative D2 on functions. In this case, we call Q(v, C )  the tensorial 
Hessian, or D-Hessian, or simply the Hessian. Let f be a function. Then 
Df = df is a 1-form. We claim that 

To see this, note that if o is a 1-form, then 

(Dw)(II, C> = (D,U)(C) = D,(o(C)) - o(D,C) 

(D2f>(% C> = D(Df ) (v ,  C> = D,(Dlf - (Df)(D, C )  
so 

= D&f - (DqC) . f = Q(v,  C)f , 
thus proving the claim. 

Let v ,  C denote the representations of the vector fields in a chart, and let 
B be the symmetric bilinear map whose quadratic map represents the 
spray. Then it follows immediately from the above definition that we have 
the 

Local Represention. We have 
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or omitting the x, 

Thus D’f is symmetric, or in other words, Q(q, r )  is symmetric in (q, r )  as 
an operator on functions. Warning: it is not necessarily symmetric on 
higher degree forms or vector fields, cf. Proposition 1.3. 

Representation Along a Geodesic. Let x E X and let v E T J .  Let a be 
the geodesic such that a(0) = x and a’(0) = v. Then 

(3) 

This simply comes by looking at the Killing operator along the geodesic, 
so that 

Q ( d ,  a’) = DufDuf - D D , , ~ ! .  

Since a is a geodesic, it follows that the second term on the right is 0, and 
the desired formula comes out, since the covariant derivative on functions 
is just the Lie derivative. 

In the pseudo Riemannian case, we can give additional information 
about the Hessian in terms of the scalar product, as follows. 

Theorem 1.1. Suppose X is pseudo Riemannian and D is the metric 
derivative. Let gr(q) denote the gradient of a function q. Then 

In particular, (Dqgr(q), 4‘) is symmetric in (q, C ) .  

Proof Let f = (gr(q), c )  = D p .  By the defhition of the metric deri- 
vative, 

Dqf = (Dq gr(yl), r> + (gr(a,), 4 0  
= (Dq gr(q), r> + (4 r> . I- 

On the other hand, by (l), 

which proves the theorem. 
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Example (The Laplacian). Let X be finite dimensional. Let a, be a 
function on X. We define the Laplacian on functions to be minus the 
trace of the Killing operator on functions. Thus if {tl,.  . . , t,} is an 
orthonormal frame on X, then 

Applied to a,, this reads 

(4) 
i= 1 

by Theorem 1.1. 

In Chapter XV, 91 and 42 we shall give another definition of the 
Laplacian, and Corollary 2.4 of Chapter XV shows that it coincides with 
the definition we are now using. 

In the next chapter, we shall give formulas comparing the Laplacian on 
submanifolds and in submersions. 

On Vector Fields. Let t, q, r represent vector fields in a chart. The 
local representation of the Killing operator reads : 

( 5 )  Q(v, C ) t  = t” .4‘ . v + t’ * B(v, C) - B(q1 t’ . r )  - B(t’ . q, C)  

- ( B ’ .  C)(% t) - B(B(% r ) ,  t) + B(B(% 0, r ) .  
This is analogous to the local expression of the Riemann tensor, cf. 
Chapter IX, Proposition 1.2. The proof is routine, following the same 
pattern as in that reference. We simply use the local expression for the 
iterated derivative DqDc found there. 

Proposition 1.2. For each vectorfield t, Q(q, [)t defines a bilinear tensor 
as a function of (q, C). Furthermore, just as with functions, we have 

Proof The expression Q(v, C )  is well defined at each point of X, and 
the local expression shows that it is a section of the vector bundle of 
bilinear maps of TX into TX. The formula relating it to D2 is proved by 
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exactly the same argument as (1). Note that by definition, (Dt)(C) = D&, 
so : 

(D2t>(1 ,  C) = D(Dt) (? ,  C) 
= (4 ( D O )  (C) 
= DqDd - ( D t W q O ,  

which proves the formula. 

Proposition 1.3. For all vector jields q ,  C we have 

Q(v, C> - Q(C, 1) = R(?, C). 
Proof: This is a short computation, namely: 

Q(1, C) - Q(C, 1) = DqDC - DID, - DDnC DDcq 

= 44 - D c 4  - DMI 

= R(1, C). 
This concludes the proof. 

On Multilinear Tensors. Let w be an r-multilinear tensor, i.e. a section 
of the vector bundle Lr(TX,  E), where E = R or E = TX. Then D o  is an 
( r  + 1)-multilinear tensor, defined by the contraction 

( D w ) ( t )  = D p .  

If il is an r-multilinear tensor, we recall the contraction with respect to a 
vector field q l ,  given by 

411)(12, * .  . , % I  = 411, 12,. . .,?,I. 
Thus il(1,) is an (r - 1)-multilinear tensor. We have the analogue of 
Proposition 1.2 for an r-multilinear tensor, namely : 

Proposition 1.4. 

(D2w) ( r ,  C) = Q(v, C b .  
Proof: As before, 

( D 2 4 ( r ,  C) = (D?/(Dw))  (0 
= D ~ D P  - ( D o )  (DqC) 

= D,Dco - DDJO, 

which proves the proposition. 
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I end this section with remarks due to Karcher, from whom I enjoyed 
learning some differential geometry. They will not be used in the sequel, 
but I thought they might prove useful to familiarize readers with the 
tensorial derivative. 

Proposition 1.5. Let A be a tensor field of endomorphisms of TX, i.e. a 
section of L(TX, TX) .  As a function of its (q ,  4') variables, Q(1, C)A is 
tensorial. Furthermore, R(q, C) is a derivation in the sense that for all 
vector fields t, 

R(1, C>(At) = (%, W ) t  + C)t. 
Proof: This follows directly from Proposition 1.3 and the fact that 

Dc(Aq) = (DlA)q +AD(?, i.e. DC is a derivation. 

In addition, the tensorial derivative can be extended inductively to 
arbitrarily many tensor fields, by the formula 

(6) Q n ( ~ n ,  qn-1, . . * 7 ~ 1 )  = Dqn 0 Qn-1 ( ~ n - 1 ,  . . ., 1 1 )  

Applied with n = 1 or 2 to functions or vector fields, one recovers the 
operators mentioned at the beginning of this section. Furthermore, Q3 
can be used to give another proof of the Bianchi identity in the pseudo 
Riemannian case. Indeed, using the symmetry of the Hessian, one verifies 
that 

Q3(t7  V ,  Of - Q3(1, C,  O f  = -4. R(t ,  V ,  C) 
for every function f. It follows that df . Bianchi(R) = 0, whence 
Bianchi(R) = 0. Finally, observe that in the pseudo Riemannian case, one 
has the expression analogous to Theorem 1.1, namely 

(7) Q3(t ,  tl, C ) f  = < Q 2 ( t ,  tl) gradf,  C). 
Thus the tensorial derivative plays the same role as iterated derivatives in 
local charts, with its own theory, Taylor's formula, etc. 

XIII, 92. ALTERNATIVE DEFINITIONS OF 
KILLING FIELDS 

Throughout, we let ( X ,  D)  be a D-manifold. 

We shall give several equivalent conditions delining Killing fields. The 6rst 
one states that the flow of the field consists of D-automorphisms. 
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Let ( be a vector field with flow {p,}. The following properties define < 
to be a Killing field, i.e. a D-Killing field. 

Kill 1. The flow preserves D, that is for all t ,  pfD = D on the open set 
where p, is defined. Equivalently, for all vector fields q, C, 
locally where defined we have 

Kill 2. For all vector fields q, 5: 

Kill 3. The vector field < satisfies the Killing differential equation 

Q(q, C)< = R(q, <)C‘ for all vector fields q, i. 

Concerning Kill 2, we interpret the association (C, q )  H Drq as a 
“product” from pairs of vector fields to vector fields. This product is 
bilinear with respect to scalar multiplication. The condition Kill 2 asserts 
that bracketing with ( (i.e. 9,) is a derivation with respect to this product. 
See condition Kill, 2 in $3 for the analogous derivation property in the 
metric case. 

Before proving the equivalence between the three Killing conditions, we 
formulate a general lemma showing how the bracket product is related to 
the Killing equation. 

Lemma 2.1. For all vector fields <, q, C we have 

ProoJ This is a short computation as follows: 

the first step by the definition of the covariant derivative, the second step 
by the definition of the Riemann tensor, and the third step again by the 
definition of the covariant derivative. This prove the lemma. 

We remark that the lemma gives a natural context for the Killing 
equation. It shows how bracketing with cf decomposes into two pieces: 
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one piece exhibits the derivation property, and the other, the Killing piece, 
exhibits the obstruction. As a result, to prove the equivalence of the 
conditions, first observe that Kill 3 is equivalent to Kill 2 in light of the 
lemma. For the other equivalence with Kill 1, one proceeds as in Sakai 
[Sa 961, taking the Lie derivative, and using the formulas p f ( l )  = < and 

-p t1  d = pt (Yt .1 )  for all vector fields 1. dt 

We have : 

Assuming Kill 1, we put t = 0 to obtain Kill 2. Conversely, assume Kill 2. 
Fix x E X ,  q and C. Define a curve jl in TxX by 

It suffices to prove that jl’(t) = 0. But putting 5, = Tp, . C and qi = Tp, .q, 
we get: 

The expression inside { } is 0 essentially because of the computation in 
the first part of the proof, which shows that Kill 2 is the infinitesimal 
property corresponding to Kill 1. But now we have obtained 

so jl is constant, equal to D c ( ~ ) ~  which concludes the proof. 

Remark 1. Note that conditions Kill 2 and Kill 3 are conditions of 
differential algebra over commutative rings. The formulations and proofs 
of most basic results in this and the next section depend only on such 
differential algebra, which means they can be transcribed to algebraic 
geometric contexts, freed of the real differential geometry. 
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Remark 2. In [KoN 631, Kobayashi-Nomizu define an operator 
At = 9 t  - Dt for every vector field t. Then as in their Chapter VI, 
Proposition 2.5, one has (when “torsion” is 0 as here) At7 = -D,,t for all 
vector fields t, q ;  and in the subsequent Proposition 2.6, one sees that t is 
Killing if and only if 

D,(At)  = R(<,  t;r) for all vector fields q. 

Let a be a geodesic of ( X ,  0). If p is a D-automorphism of X ,  then 
p o a is a geodesic by first principles, because geodesics like all the rest of 
the paraphernalia defined in terms of D behave functorially with respect to 
isomorphisms preserving the covariant derivative. 

Proposition 2.2. A vector field is a Killing field if and only if its restric- 
tion to every geodesic is a Jacobi lift of the geodesic. 

Prooj First let a be a geodesic and let ( be Killing. We shall give two 
proofs that the restriction of t to a is a Jacobi lift of a. We take p = ps to 
be the flow of a, and use Kill 1. Put 

Then o(s, t )  is a variation of a through geodesics, and 

Thus t ( a ( t ) )  is a Jacobi lift of a(t)  by Chapter IX, Proposition 2.8. This 
gives one proof. For the second proof, recall the Jacobi equation 

D: , ( t  o a) = R(a’,  t o  a)a’ 

This equation comes out directly from condition Kill 3 by setting 
q = C = a’ over a, and inducing < on a. Since D,I a’ = 0, the term not 
involving D:, becomes 0, and the Jacobi equation drops out from the 
Killing equation. These proofs are essentially those in [KoN 691 (Vol. 11), 
p. 66, Proposition 1.3. 

Next we give Karcher’s proof for the converse. Let t be a vector field 
whose restriction to every geodesic is a Jacobi lift, and let a be a geodesic. 
Then 

D t , ( t  o a) = R(a’, ( o a)a’ = Q(a’, a ‘ ) ( t  o a),  

because Data‘ = 0. At a given point x, there is a geodesic a such that 
a(0) = x and a’(0) is a given tangent vector. By polarization on the values 
a’(0) = v, replacing v by v + w, we find that for all vector fields r, 5 we 
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have 

On the other hand, by Proposition 1.3, we have 

We add equations (*) and (**). The term Q(C, q ) t  drops out, and we 
obtain 

2Q(r, C)t = R(v,  t)C - R ( t ,  C)V - R(C, ~ ) t  
= 2R(q, t)C by the Bianchi identity, 

which concludes the proof of the converse, and of the proposition. 

XIII, 53. METRIC KILLING FIELDS 

We now turn to properties having specially to do with the pseudo 
Riemannian case. The metric is denoted by g .  We omit the subscript g in 
the scalar product (t, r )  for simplicity. 

Proposition 3.1. Suppose X is pseudo Riemannian. The following 
conditions are equivalent to a vector field t being g-Killing. 

Kill, 1. 9 t g  = 0. 

Kill, 2. 2’~ is a derivation with respect to the metric product, that is, 
for all vector fields q, C we have 

Kill, 3. The map (r,  C) H (D&, C) is skew-symmetric, or in other 
words for all vector fields q, 

Proof (Cf. [O’N 831). Assume that t is g-Killing. The property Kill, 1 
then follows essentially directly from the definition of Lie derivative, 
because for all t, p f ( g )  = g ,  so the Lie derivative of g is 0. The converse is 
also immediate, because in general 
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Hence assuming Kill, 1, we conclude that the left side is 0, whence pf(g) is 
constant, whence equal to g, thus proving that t is g-Killing. 

The other two equivalences come from general formulas exhibiting the 
obstruction to being a derivation. 

Lemma 3.2. For all vector fields t, q, C we have 

.%(% 0 = (Yt% C) + (6 %C) + gt(g)(?, C )  
= W€1, C )  + (tl, %C) + (D&, C )  + (%DCt). 

Proof: The first identity exhibits the fact that 5?t(g(q, C ) )  satisfies the 
Leibniz derivation product rule, relative to the triple (g, 7, C),  cf. Chapter 
V, Proposition 5.1, which applies to all multilinear forms, not just alter- 
nating forms. Thus Kill, 2 is immediately equivalent to Kill, 1. The 
second formula follows from the metric derivative property 

Remark. Lemma 3.2 plays the same role as Lemma 2.1. The vanishing 
of YC(g) (resp. (D&, C )  + (7, or<)) is equivalent to LYt being a deriva- 
tion. Both the D-Killing and g-Killing fields are thus characterized as 
being derivations with respect to a natural product, as in Kill 2 and 
Kill, 2. 

property of all vector fields t, with flow {pJ.  
Next we give some properties of metric Killing fields. We begin by a 

(1) &Pb,  4 = t ( P ( S ,  4)  = T P , ( X ) t ( X ) .  

ProoJ We have 
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Proposition 3.3. Let t be a g-Killing field. 

353 

For any curve a, we have 

( t ( P ,  O a>, (P, O 4’) = (t O a, a‘). 

Equivalently, the left side is independent of s. 
If a is a geodesic, then ( t o  a, a’) is constant. 

Proof: The proof of (i) is immediate from (1) and (2). As for (ii), we 
take the derivative of the function ( t o  a, a’), and find 

(Dd (t 0 a>, a‘) 

because Dam’ = 0 by definition of a geodesic. By Kill, 3 it follows that 
the above expression is 0, thus proving the proposition. 

I learned the following two results from Klingenberg [Kl 83/95]. 

Proposition 3.4. Let t be a g-Killing field. As usual let t2 = (t, t). 
Then 

gradt2 = -2Dt;t. 

Proof: Again let a be a curve with a(0) = x ,  a’(0) = v = t(x). 
Consider the derivative 

k(0, 0) = df (x)v = (gradt2, v ) .  

On the other hand, from a basic property of the Riemannian covariant 
derivative, we also have 

by the usual commutation rule of Chapter VIII, Lemma 5.3, 
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because p,oa is a geodesic and we apply Proposition 3.3(ii). We then 
evaluate at t = 0, s = 0 to get 

The two expressions for h(0, 0) are valid for all u, and hence the 
proposition follows. 

Corollary 3.5. Let r be a g-Killing field and p = p(s, x) its flow. For 
fixed x, the curue s H p(s, x )  is a non-constant geodesic if and only if 
r ( x )  # 0 and dr2(x)  = 0. 

Proof: A curve s H b ( s )  is a geodesic if and only if D,yP' = 0. In our 
context, with P(s )  = p(s, x ) ,  this means D,&p(s, x )  = 0, and so the 
equivalence is clear from the proposition. 

XIII, 94. LIE ALGEBRA PROPERTIES OF 
KILLING FIELDS 

We continue to assume that ( X ,  D )  is a D-manifold. 

Proposition 4.1. Killing fields form a Lie subalgebra of all vector fields. 

Proof It suffices to prove that if r, q satisfy Kill 2, then so does [r, 571. 

This is a special case of the following lemma, formulated in an abstract 
context because at this point I want to emphasize the extent to which the 
present arguments depend only on Lie algebras over rings. 

Lemma 4.2. Let V be a Lie algebra (over a commutative ring). Suppose 
given a bilinear map V x V -+ V ,  which we denote 

and call the bilinear product. Let W be the submodule of V consisting of 
all elements w E V such that the map 

Y [w, Y1 

is a derivation for this bilinear product, namely 

Then W is a Lie subalgebra of V 
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Proof We carry out the short computation in full, but note that having 
formulated the result, the computation is forced, and no surprise occurs. 
For v,  w E W we have to show that [u, w] acts as a derivation with respect 
to the bilinear product. We shall use the defining property of the bracket 
product of a Lie algebra, which says that bracketing with an element is a 
derivation with respect to the bracket product. Let y ,  z E V .  Then 

The middle terms cancel, and using the bracket derivation property, what 
is left is 

= "v ,  4, v]z+v"v ,  4, 4, 
which proves the lemma. 

As noted at the beginning of $2, we apply the lemma to the bilinear 
map 

( ( 9  57) R?. 
We take the real numbers as the ring of coefficients. This concludes the 
proof of Proposition 3.1. 

The above proposition does not avoid having to give a separate but 
similar argument for the analogous property of metric Killing fields. 

Proposition 4.3. Suppose D is the metric derivative in the pseudo 
Riemannian case. Then the metric Killing$elds form a Lie subalgebra of 
the Killing jields. 

Proof Property Kill, 2 states that r is Killing if and only if the Lie 
derivative 9~ is a derivation with respect to the metric product. As in 
Lemma 4.2, one proves that the set of vector fields which act as a 
derivation with respect to such a product is a Lie subalgebra. One uses 
the fact that on the space of functions, one has 

The steps essentially follow those of Lemma 4.2 and will be left to the 
reader, as well as the possible formulation of an abstract lemma to cover 
the situation. On the other hand, one can also argue from Kill, 1, since 
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one has the same formula for 9[[,,1 acting on the metrics, showing at once 
that if 9 t ( g )  = LYV(g) = 0 then also Y[t , , j (g)  = 0. Take your pick. 

We now come to some very different considerations, k i n g  a point p on 
the manifold. Let Kill(X) be the vector space of Killing fields. We shall 
define certain subspaces Qp and m,. The following comes from analyzing 
the proofs in [Kl 83/95], 2.2.18, 2.2.21, and showing that they work in 
complete generality, quite independently of the context of symmetric 
spaces in which they occur in Klingenberg. Furthermore, they are valid in 
infinite dimensions. 

We define two subspaces of Kill(X), depending on the choice of point 
p ,  as follows. 

bP = vector space of g E Kill(X) such that g ( p )  = 0, 

mp = vector space of t E Kill(X) such that D&p) = 0 
for all vector fields C. 

Remark. The above definitions apply in each case, Kill~(X) and 
Kil&(X), where g denotes the metric. Then we may denote the subspaces 
bY 

b p ( n  mp(D) and b p m  mp(d 

to distinguish the two types of Killing fields. Note that 

whenever D is the metric derivative in the pseudo Riemannian case. 

The following discussion and results apply to each case separately, so 
we formulate them by omitting the D and g from the notation. The results 
for Qp(g)  and mp(g) follow from those with D instead of g ,  in light of (1). 

Observe that if t e m p  and g is any vector field, then 

The following proposition gives commutation rules usually listed for 
symmetric spaces, but they hold in general. 

Proposition 4.4. 

(a) [mp, mpI = 4. 
(b) [ b p ,  bpl = bp. 

(c) [b,, mpl = mp. 

In particular, Q,, + mp is a Lie subalgebra of Kill(X). 
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Proof For (a), we let t, q E mp and we evaluate at p to get 0, by the 
definition of mp. For (b), let g, C E Q ~ .  Then 

because g ( p )  = 0 and c ( p )  = 0 in the indices, and DO = 0. For (c), let 
g E T J ~  and < E m,. We use the relation 

[v, tl = D?/< - Dtg. 

We have to show that Dc[g, ( ] ( p )  = 0 for all C. It suffices to show that 

DcD,t(p) = 0 and DcDcg(p) = 0. 

We use an elegant argument of Klingenberg. We have by Kill 3: 

the first term because ( E mp, and the second because g(p)  = 0. The 
second equation DcDt;q(p) = 0 follows the same way. This concludes the 
proof of Proposition 4.4. 

Proposition 4.5. Assume that the exponential map exp,: Tp + X is 
surjective. Then bp n m p  = {0}, so Q,, + m p  is a direct sum. More 
generally, the map 

is injective. (By definition, D ( ( p ) ( v )  = ( D , t ) ( p )  for u E Tp.) 

Prooj The first assertion is a consequence of the second, so suppose 
that ( ( p )  = 0 and D&p) = 0 for all vector fields C. We restrict t to a 
geodesic a with a(0) = p .  Then by Proposition 2.2, ( o a is the unique 
Jacobi lift of a with (0, 0) initial conditions, so t o a = 0. By the as- 
sumption that the exponential map is surjective, there exists a geodesic 
from p to any point of X ,  so t = 0, concluding the proof of the 
proposition. 

Remark. For more comments on and use of the hypothesis about the 
exponential map, see the next section. A question also arises how large is 
mp. In the next section, we give conditions under which mp is isomorphic 
to the whole tangent space T,. Such conditions insure the existence of 
“enough” isometrics. Similarly, + mp can be smaller than Kill(X), but 
will be shown equal to equal Kill(X) in the symmetric case. 
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We conclude this section with a result usually stated on symmetric 
spaces. It gives the value of the Riemann tensor at a given point p for 
vector fields in mp. Note that the proof is short and uses practically 
nothing of what precedes, basically only Kill 3 and Proposition 4.4(a). 

Theorem 4.6. Fix a point p E X. For all vector fields t, V, 4‘ E mp, we 
have 

R(t ,  V)C(P) = Wt, Vl(P) = [L [t, 711 (PI. 

ProoJ: By Kill 3, using D,C(p) = 0 and Dcr(p) = 0, we get 

But R(q, [)t = D,D& - DcD,,t - D[,,& and by definition, D[,,al(p) = 0. 
Using this, and subtracting the above two relations yields 

because putting I = [t, 771 we know from Proposition 4.4(a) that I E I$, 
and 

[L U P )  = DcI(P) - DIC(P) = Dc4P), 

thus concluding the proof of the theorem. 

XIII, 55. SYMMETRIC SPACES 

Throughout this section we let (X, D) be a D-manifold. After giving 
appropriate definitions, and more precisely after Proposition 5.2, we 
assume that X is a symmetric space, possibly infinite dimensional. 

We begin with some remarks on isomorphisms in general. Let 

a: (X, Ox) + (Y ,  0‘) 

be a D-isomorphism. Then a carries all objects defined naturally in terms 
of the covariant derivative to similar objects. For instance, if a is a 
geodesic in X ,  then a o a is a geodesic in Y. If y is a lift of a in TX, and 
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this lift is a-parallel, that is Dary = 0, then (Ta) o y is a (a o @)-parallel lift 
of a o a in TY.  In particular, let x E X and let v E T,X. Say y = y(t, v) is 
a-parallel translation of v in X. Then 

is (a o a)-parallel translation of (Ta)(v) along D O  a. 
We shall need a lemma showing one role of the exponential map. 

Lemma 5.1. Let x, y E X. Assume that exp,: T, --t X is surjective. 
Given a linear isomorphism L: T, -+ T,, there is at most one D- 
automorphism f: X + X such that f (x) = y and T, f = L. 

Proof A D-automorphism f maps geodesics to geodesics, and a 
geodesic is uniquely determined by its initial conditions, namely the value 
at 0 and the derivative at 0. Thus the condition that exp, is surjective is 
just what is needed to determine f globally on X from its initial con- 
ditions at x. 

Next we come to symmetries. By a D-symmetry (resp. g-symmetry, or 
metric symmetry), we mean a D-isomorphism (resp. metric isomorphism) 
a,: X -+ X such that a, leaves x fixed, i.e. ax(.) = x and Txax = -id. 

Proposition 5.2. Suppose X has a symmetry at every point x E X. Then 
X is geodesically complete, that is exp, is defined on T, for all x. 

ProoJ: Let ct: [O, c] -+ X be a geodesic, defined on a finite interval. Let 
x = a(c). Then Txax maps -a’(c) to a’(c). But a, being a D-isomorphism 
maps geodesics to geodesics, and by the uniqueness of geodesics satisfying 
initial conditions, it follows that a, maps a(t) with t E [0, c] to a(2c - t), in 
other words, a is defined on the interval [0, 24, whence on R by sym- 
metry, thus concluding the proof. 

A manifold will be called D-symmetric (resp. g-symmetric) if it has a D- 
(resp. g-) symmetry at every point, and if exp,: T, -+ X is surjective for 
all x E X. 

Remark. If X is finite dimensional, then the surjectivity is implied by 
geodesic completeness because of the Hopf-Rinow theorem. This theorem 
may be false in infinite dimension, but it is the only basic theorem which 
has this remarkable property. In particular, the Cartan-Hadamard 
theorem is true in infinite dimension, and Hopf-Rinow is true in the case 
of seminegative curvature. Hence it is important not to exclude in6nite 
dimensional symmetric spaces. Klingenberg assumes finite dimensionality 
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at this point, unnecessarily so, as will be evident from the rest of this 
chapter. 

The theory of Riemannian symmetric spaces is originally due to Cartan 
[Ca 271, [Ca 28/46]. Here we follow Klingenberg [Kl 83/95], 2.2., except 
for going inhite dimensional, and dealing with arbitrary D-manifolds, not 
just Riemannian or pseudo Riemannian manifolds. 

For the key background on the surjectivity of exp, see Chapter VIII, 
Theorem 6.9; and Chapter IX, $3, especially Theorems 3.7 and 3.8 with 
its corollaries, which give conditions under which the exponential map is 
surjective, notably seminegative curvature. 

A symmetric pair (X, D) will also be called a D-symmetric space. We 
often leave out the D, and simply speak of a symmetric space. 

For the rest of this section, we let ( X ,  D) be a symmetric space. 

As a consequence of Lemma 5.1, we note that: 

(a) 

(b) 

The symmetry a, is the unique D-automorphism of X such that 
ax(x) = x and T,a, = -id. 
We have a: = id. 

In particular, let a :  R 4 X be a geodesic, with a(0) = x. Then 

a x ( a ( t ) )  = a(- t ) .  

This is just a special case of the more general formula which already 
occurred in Proposition 5.2, namely 

Thus symmetries are just the maps which reverse the geodesics. 
For real numbers a, b we denote parallel translation along a by 

b Pa,@: Ta(a) Ta(b). 

We may omit the subscript a from the notation when a is fixed throughout 
a discussion. We shall use the basic formalism of parallel translation, 
including the formulas : 

PAR 2. Let B ( t )  = a(L( t ) )  be a linear reparametrization of a, with 
L( t )  = clt+c2, c1 # 0. Suppose a(c) =/?(c) for some c. Then 

P:, p = pi::;, a * 
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ProoJ: We prove the second. Let u E Ta(,)X and let ya(t) = ya(t, u) be 
the a-parallel translation of u along a. Let q(t)  = ya(L(t)) .  We want to 
show r,~ is /3-parallel translation of u. We have ya(c) = ys(c) = u, and also 
~ ( c )  = u. In a chart, letting B be the bilinear map defining the covariant 
derivative, we have 

Dpl rr(4 = a'O> - Bscr, (rr(t>, B'(t)) 

= ~1 [ d ( ~ ( t ) )  - Ba(L(t))(ya(L(t)), a'(L(t>>] 

= o  

because Da,ya = 0. Hence q = yp is b-parallel translation of u, with the 
prescribed initial condition. Thus we have shown 

p' = p W *  
c,B c ,a  

The general formula then follows from PAR 1. 

Proposition 5.3. Let x, y E X .  Let a be a non-constant geodesic such 
that a(c) = x and a(b) = y .  Then 

T Y a X - - -p2c-b b,a on TyX.  

ProoJ: Let u E Ta(,)X be a tangent vector as above. By the remarks at 
the beginning of this section, (Ta,(,))(y(t, u ) )  is parallel translation of 
(Ta)(u) along na(,) o a, and we may apply PAR 2 with B(t) = a(2c - t ) .  
Note that (Ta)(u) = -u. Hence 

(Ta(b)Cx) (P:,a(u)) = -pt&"'(u)* 

Putting w = Pta(u)  so u = P;,,(w) = -P:ib) o P;,,(w) yields the 
proposition. 

One may get rid of the flipping and minus sign by defining a-translation, 
or translation along a, to be the map 

Such translations stem from Cartan [Ca 281. Note that from (l), we get 

Propodtion 5.4. Let P;,?: Ta(') -+ Ta(*+,) be parallel translation. Then 

Ta(r)ra,s = P:,:. 
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In particular, for u E T,(o), we have 

Prooj This is immediate from Proposition 5.3, using the chain rule for 
the tangent map of a composite mapping, and PAR 1. 

Proposition 5.5. Let a be a non-constant geodesic. 

(i) Then {z,,~} is the flow of a Killing field, i.e. it is a one-parameter 
group of D-automorphisms. In other words, if for x E X we dejine 

then 5, is Killing, and z, is its flow. 
The geodesic a is an integral curve of t,, that is, for all t, (ii) 

If the symmetries are metric symmetries, then z,,~ is the flow of a metric 
Killing field, and t, is metric Killing. 

Prooj We first show that z,,$+~ = z,,~ o t , , r  for all s, t E R. Both sides 
are D-automorphisms. By Lemma 5.1 it suffices to show that they coin- 
cide at one point and that their tangent maps coincide at this point. We 
can select the point to be, say, a(O), in which case the equality of both 
sides at x = a(0) is given by (2). Then the equality of the tangent maps 
at a(0) is given by Proposition 5.4, which concludes the proof that {T,,~} is 
a one-parameter group of D-automorphisms. It is then a property of all 
one-parameter groups of differential automorphisms, that if one defines 
&(x)  as in the formula given in (i), then {z,} is the flow of 5,. The proof 
is in any case immediate by differentiating z,(s + t ,  x) .  

For (ii), we differentiate the equation in (2) with respect to s, and then 
set s = 0 to obtain the fact that a is an integral curve of 5,. 

The remark about metric symmetries is immediate, due to the fact that 
parallel translation in the metric case is an isometry. This concludes the 
proof of the proposition. 

Proposition 5.6. Let a, p be non-constant geodesics with 

a(0) = p(0) = p. 

Let a’(0) = w. Let z, be translation along u as aboue, and let 
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Then 
~ ( 0 )  = w and Dpq(0) = 0. 

Thus is the unique Jacobi lyt of /3 satisfying these initial conditions. 

ProoJ That ~ ( 0 )  = a’(0) = w comes from Proposition 5.5(ii), so we 
next have to show that Dpq(0) = 0. Let u = p’(0). By Proposition 5.4, 
we know that Tpz,,s = Pi,,. Essentially from the definition of parallel 
translation, it follows that DsTpzu,,(u) = 0. (Cf. Chapter VIII, Theorems 
3.3 and 3.4.) Let q(s, t )  = t,(s, p( t ) ) .  Since d2q(s, Q )  = Tpzu,s(v), we get: 

The assertion about Jacobi lifts is merely a reminder of standard properties 
of Jacobi lifts, cf. Chapter IX, Theorem 2.1 and Proposition 2.8. This 
concludes the proof of Proposition 5.6. 

Corollary 5.7. Let a be a non-constant geodesic, andput a(0) =p.  Then 
t u  E mp. 

Prooj Special case of Proposition 5.6, because given V E  TpX we can 
find a geodesic p such that p(0) = p  and p’(0) = u. 

We are now in a position to summarize a number of results into an 
exact sequence, which we call the Killing sequence at a point p on a 
symmetric space X : 

0 + ljp + Kill(X) Tp + 0. 

The arrow Kill(X) + Tp is simply 5 H t ( p ) .  By definition, l j p  is the 
kernel. Corollary 5.7 allows us to split this sequence as follows. A vector 
u E Tp determines a geodesic a uniquely such that a(0) = p and a’(0) = u. 
This geodesic in turn determines t,, which we may now denote by t,. 

Theorem 5.8. The Killing sequence is exact, and is split by the map 
zi H 5,. The map 5 H <(p) thus induces an isomorphism 

mp 5 T ~ X  

Kill(X) = Ijp 0 mp. 

of mp with the tangent space at p .  We have a direct sum decomposition 

If t e m p ,  t # 0 then c = <, = t,, where a is the geodesic such that 
a(O) = p  and a’(0) = t ( p )  = v.  
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Proof That I& is the kernel of ( H ( ( p )  comes from the definition of 
4. The map is surjective, because at the given point p we can find a 
geodesic a such that a(0) = p  and a’(0) is equal to a given tangent vector 
at p .  We can then apply Proposition 5.5. The direct s u m  decomposition 
follows from Proposition 4.5. The last statement is merely a rephrasing of 
these results, in light of Proposition 5.5. This concludes the proof. 

On a symmetric space, there is a complement to Proposition 2.2, 
namely every Jacobi field comes from a Killing field by a theorem of 
Bott-Samelson [BoS 581. 

Examples of symmetric spaces 

Let G be a Lie group, possibly infinite dimensional. Let 0 #id be an 
automorphism of G such that a2 = id. If we put t~ = a(x)-’ for x E G, 
then ~ ( x )  = ‘x- l  and the “transpose” is an anti automorphism, so one can 
work either with a or the transpose, sometimes written as x* .  Let: 

K = Gf, = the fixed submanifold, which is a closed submanifold; 

G, = submanifold of elements of the form xa(x ) - l ,  x E G. 

We have a differential isomorphism 

q:  GIK 1 G, given by xK H xa(x)-’. 

There is a differential representation of G on Go defined by 

$: G + Aut(G,) such that $(x)y  = xy‘x = xya(x)- ’ .  

On the other hand, there is a differential representation of G on G I K  by 
translation 

t: G + Aut(G/K) such that t ( x ) y K  = xyK. 

Under the isomorphism q, translation t ( x )  corresponds to $(x ) .  
One also has the Cartan symmetry S, on G, for x E G,, 

S,: G, + G, given by Sx(y) = xy-’x. 

This symmetry gives a morphism (viewed as a non-associative product) 

G, x Gb -+ G, denoted by S,(y) = x . y .  
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The corresponding morphism of GIK x GIK ---t GIK is given by 

x K  .yK = xa(x) - ’a (y)K.  

All the above assertions are immediately verified. 
Loos [Lo 691 was the first to note that the theory of symmetric spaces 

could be based on essentially algebraic properties satisfied by the product 
( x ,  y )  H x . y.  So let us define a Loos space to be a connected manifold X 
with a morphism X x X --t X denoted ( x ,  y )  H x . y ,  satisfying the fol- 
lowing conditions for all x ,  y ,  z E X. 

LO 1. x - x = x .  
LO 2. x * ( x  . y )  = y.  
LO 3. x -  ( y  . z) = ( x  * z) . ( y  . z). 
LO 4. x is an isolated fixed point of the morphism y H x . y .  

The last property means that there is an open neighborhood U of x such 
that for all y E U, if x . y = y then y = x. Loos spaces obviously form a 
category. 

The spaces,G, and GIK (which are diflerentially isomorphic under q) are 
Loos spaces under the above defined products, and q is a Loos iso- 
morphism. 

The verification is immediate from the definitions. 
One may denote the morphism y H x . y by 8,: X + X ,  and similarly 

for the right operation r x :  y + y - x. Then, for instance, LO 2 means that 
t!: = id. 

Note that, instead of taking K = Gf,, one could take any subgroup 
contained in Gfm but containing the connected component of the identity. 

In finite dimension (at least) symmetric spaces essentially all come from 
the above example. Expositions may start from Lie groups (as in Helga- 
son) or from the Riemannian geometry point of view (as in Klingenberg). 
The present chapter gives an introduction to both points of view (see also 
Chapter XII). 

XIII, 96. PARALLELISM AND THE RIEMANN TENSOR 

We begin with some basic properties of the Riemann tensor R on an 
arbitrary D-manifold ( X ,  D ) .  

Let x E X .  For each u E T,X we have a continuous linear operator 

R,: T, + T, given by R,(v) = R(u, u)u. 
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In fact, the trilinear map (u, u, w )  H R(u,  u, w )  is continuous on 
T,  x T, x T,. Note that the sign selected here for R, is opposite to the 
sign of Klingenberg [Kl 83/95], 2.2.9, because the expression R(u, u)u is 
the one which occurs in the way we wrote the Jacobi differential equation. 
Similarly, if R is a trilinear tensor field, one defines n,(u) = R(u,  u, u). 

If the spray is associated with a pseudo Riemannian metric ( , ), then 
the standard properties of the Riemann tensor immediately show that R, is 
self-adjoint, that is 

(Ru(u), w )  = (v ,  R A W ) ) .  

In other words, it is equal to its transpose on the tangent space. But at the 
beginning, we work in greater generality without assuming that the spray 
comes from a metric. We let P& be parallel translation along a geodesic 
U. 

Proposition 6.1. Let S Z :  X -t L 3 ( T X ,  T X )  be a trilinear tensorfield on 
a D-manifold X. Then DcR = 0 for all ( i f  and only i f  parallel trans- 
lation commutes with R, that is for every geodesic a, 

Proof: If DeR = 0 for all vector fields (, then the commutation comes 
directly from the definition of Den = 0, and, say, the local expression as in 
Chapter VIII, 3.5, 3.6, and 3.7. Conversely, for a trilinear tensor field R 
and a geodesic u, we have 

The converse (actually the equivalence) follows immediately. The proposi- 
tion could have been given in Chapter VIII. 

As an example of Proposition 6.1, we have: 

Proposition 6.2. Let ( X ,  D)  be a symmetric space. Then for all vector 
fiela3 ( we have 

DcR = 0. 

In other wordr, the Riemann tensor is parallel. 

Proof: At a given point x, we compute Txax applied to (D,R)(u, w, z )  
in two ways, with vectors u, u, w, z E T,. First, 

Txax .  (D,R)(u, w, z) = -(D,R)(u, w, z )  because Txax = -id. 
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On the other hand, by functoriality, and the fact that ax is a D- 
automorphism, 

This proves the proposition. 

In light of Propositions 6.2 and 6.1, on a symmetric space we have 

The next proposition will also apply to symmetric space, but detxnds onlv 
on the parallelism of the Riemann- tensor. We again follow klingenberi 
[Kl 83/95]. 

Proposition 6.3. Let ( X ,  D)  be a D-manifold. Let u be a geodesic, 
u(0) = x, ~ ' ( 0 )  = u # 0. Let v be the Jacobi lift of u with initial 
conditions 

Let 
~ ( 0 )  = uo and Duq(0)  = u1. 

Let 
lation commutes with the Riemann tensor. Then 

be parallel translation along a, and assume that parallel trans- 

Proof: Let q l ( t )  = P;,,A(t). Trivially, ql(0) = uo. By Chapter IX, 
Proposition 5.1, we also see that Duql(0)  = u1 because DasPo,a = 0. There 
remains to prove that ql satisfies the Jacobi differential equation. Because 
of the absolute convertence of the series, it sates to check what happens 
to each term. Let y denote parallel translation along u. Then for 
u E Ta(o)X, since D u ~ y  = 0, we find: 

By hypothesis, 
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Applying the definition R,(wl) = R(w, w ~ ) w ,  and the definition of the 
power series A,  the assertion of the proposition drops out. 

The assumption that parallel translation commutes with the Riemann 
tensor of course applies to a symmetric space, which is our main interest at 
this time. In this case, we obtain: 

Corollary 6.4. Let ( X ,  D )  be a symmetric space. Let q be the Jacobi lift 
of a geodesic a such that 

q(0) = -u E T,(q and q ( t /2 )  = 0. 
Then 

?(t> = p;,or(u). 

CHAPTER XIV 

Immersions and Submersions 

In this chapter, we investigate systematically the relationships of some of 
the differential geometric notions for submanifolds and for submersions. 
These involve the covariant derivative, Hessian, and curvature. The 
determination of the Hessian can be applied to compare the Laplacian in 
both contexts, because we can define the Laplacian as the trace of the 
Hessian in the finite dimensional case. The connection with the definition 
in terms of the divergence of the gradient will be given in Chapter XV. 

The material of this chapter was systematized during the 1960s. Aside 
from Kobayashi-Nomizu, readers can consult O'Neill [O'N 661, and 
Dombrowski [Do 681. 

XIV, 91. THE COVARIANT DERIVATIVE ON A 
SUBMANIFOLD 

Let X be a Riemannian manifold (not necessarily finite dimensional), and let 
Y be a submanifold, with the induced Riemannian structure. We have an 
orthogonal decomposition of the tangent space at a point X E  Y given by 

TxX = TxY +N,Y  

where NxY = (TxY)' is the orthogonal complement of T,Y in TxX.  
Immediately from a chart, we seen that { N x } x e y  are the fibers of a vector 
bundle, called the normal bundle of Y in X ,  and denoted by NxY.  We let 
pr,, and pr,, be the orthogonal projections from TX to TY and N Y  
respectively. 

we have metric derivatives Dx on X and D y  on Y. This section is 
?/;Q 
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devoted to comparing them. We can take projections on TY or NY inside 
TX, and thus we have two orthogonal components. We study each 
component separately. Note that we may view the restriction of TX to Y 
as a vector bundle over Y. This restriction splits as an orthogonal sum 

( T X ) , = T Y I N Y ,  

and a section over Y therefore has two components (C, v), where < is a 
vector field on Y, and v is a normal field, that is a section of the normal 
bundle. If q is a vector field over Y, then we can summarize the results of 
this section in the following theorem. 

Theorem 1.1. Let rx, vx be extensions of 5, v to X .  The covariant 
derivatives of Cx and vx on Y can be expressed in the form 

where : 

h12 is a symmetric bilinear bundle map TY x TY 4 NxY.  

h21 is a bilinear bundle map TY x NY -+ T Y .  

V,v = pr,, D ~ V X  is independent of the extension vx of v, and V is a 
metric derivative on NY (to be defined in Proposition 1.6). 

We may then define an operator 

(1) H,,: TTY 4 TNY by the condition H,,(C) = h12(q, C), 

and then 

(4 h21(r, v) = - tH,,(y). 

As usual, the transpose is defined by the condition that for all vector 
fields < on Y, and normal fields p on Y, we have 

Formula (2) will be proved in Theorem 1.5. Thus we give precise infor- 
mation on the four components hij with i, j = 1,2.  In particular, we see 
from (1) and (2) that D f  is represented by the matrix 

(2: -;:> acting on (i) 
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On the other hand, there is still another operator commonly used, see 
for instance [KoN 691, Chapter VII, $3, defined as follows. For each 
normal field p on Y there is a linear map 

S,: T T Y + T T Y  

defined by the condition 

Note that S, is Fu(Y)-linear. Furthermore, since h12 is symmetric, it 
follows that S, is symmetric as a linear operator, that is, for all vector 
fields <, q on Y we have 

Directly from Theorem 1.1 and the definition we obtain what is called the 
Weingarten formula 

Thus S, is a representation of the second fundamental form. From the 
definitions and Theorem 1.1, we may write 

Finite dimensional case: the trace. Suppose that Y is finite dimensional. 
We may then define the trace of h12 as follows. Let p = dim Y ,  and let 
{ < I , .  . . , tP} be an orthonormal frame of vector fields on Y. On Y, we 
define 

D 

i= 1 

For each normal field p we can take the scalar product with p, and then 
the trace is simply the trace of the linear automorphism S,, at each point 
of Y. It is independent of the choice of orthonormal frame on Y. 

We now proceed systematically with propositions proving all these 
statements. The first proposition determines hll . 

Proposition 1.2. Let 7, C be vector fields on Y. Let Cx be a vector field 
on X extending C locally one some open set. Then on Y, 
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Proof: Let V,Cx = pr,, D:cx. Let qx be an extension of 7 to a vector 
field on an open set in X. Then for X E  Y in this open set we have 

Fix and qx. At x,  D:CX depends only on q ( x ) .  Also D f q x  depends 
only on [ ( x ) .  Hence this formula shows that V,Cx is independent of the 
choice of extension rx of C. Thus we may omit the subscript X ,  and write 
simply V,C. Furthermore, we have proved one of the defining properties 
of the covariant derivative. 

By Theorem 4.1 of Chapter VII, it will suffice to show that V is a 
covariant derivative. Note that V, is Fu( Y)-linear in the variable q, and 
satisfies the product rule of a derivative because it is satisfied by D f .  
Finally, we verify the metric property. Let l be another vector field on Y. 
Then on Y, 

because for x E Y ,  the vectors C(x) and ~ ( x )  lie in TxY,  so the normal 
component is annihilated in the scalar product. This proves the metric 
property, and concludes the proof of the proposition. 

Next we look at the normal component. We shall obtain a canonical 
symmetric bilinear bundle map 

h z X  = h12: TY x T Y  3 N Y  = N x Y .  

Proposition 1.3. Let x E Y .  Let v ,  w E T x Y .  Let q, C be sections of TY 
on a neighborhood of x such that ~ ( x )  = v and [(x) = w. Let qx and Cx 
be extensions of q, C to local vector$elds on X near x .  Then we have the 
symmetric relation 

PrNY D:CX(x) = PrNY D:?X(x) .  

In particular, prNY D,Xcx(x) is independent of the choice of sections q, [ 
having the given values v, w at X .  
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Proof: By definition of the covariant derivative, 

D,xCX - Dyxrx = [rx, CXI = 1% rl at x .  

But r, C being sections of TY, so is [r, C]. Hence the normal bundle 
components of (D:CX)(x) and (D:rx)(x)  are the same, thus proving the 
formula. We know from basic definitions that ( D f C ) ( x )  is independent of 
the choice of 7, and ( D F r ) ( x )  is independent of the choice of C. Then the 
last assertion follows, thus proving the proposition. 

As a matter of notation, we may define 

h12(C, q ) ( x )  = prNY D , x C ( x )  = D,XC(x)NY 

to denote its normal component. By abuse of notation, we omit the 
subscript X on C in light of Proposition 1.3. We may define h12(v, w) for 
0, w E TxY by letting 

Proposition 1.3 shows that this is well defined, and symmetric, that is 

Thus h12 is a symmetric bilinear vector bundle map. 
In light of Propositions 1.2 and 1.3, for every point x E Y ,  sections 7, C 

of T Y  near x ,  and any extension [ X  of C near x, we obtain the Gauss 
formula : 

Before going to a discussion of h21, we mention the significance of the 
condition h12 = 0. One defines Y to be totally geodesic if every geodesic in 
X with initial conditions in ( Y ,  T Y )  is contained in Y. 

Corollary 1.4. The submanifold Y is totally geodesic i f  and only i f  its 
second fundamental form is 0 at every point. Let Y be totally geodesic. 
Let a be a geodesic in Y .  Then a is also a geodesic in X .  Let P,J and 
P,, y be the corresponding parallel translations. Then 

D: = D: and Pa,x = P,> y. 

Prooj The condition that a curve a is a geodesic is that Data' = 0. 
Suppose Y is totally geodesic. Let a be a geodesic in Y with a(0) = x and 
"(0) = D E TxY.  Then by assumption, a is also a geodesic in X ,  so taking 
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the covariant derivatives along a, we get 

D$a' = Dza'  at 0, 

whence h12(v, u )  = 0 for all u E T , Y .  Since h12 is symmetric, it follows 
that h12 = 0. Conversely, suppose h12 = 0. Let a be a geodesic in X ,  with, 
say, .(a) = y E Y and a'(a) E T y Y .  Let /? be the geodesic in Y with the 
same initial condition at y .  By SFF 2, for any x on p in a small 
neighborhood of y ,  we have 

Hence p is also a geodesic in X .  Since a and p have the same initial 
conditions, they are equal, thus concluding the proof of the first state- 
ment. The fact that the covariant derivatives and parallel translations are 
equal then follows at once from the defininition of h12 in Theorem 1.1. 
This concludes the proof of Theorem 1.4. 

We have now concluded the discussion of h12, and we pass to the 
discussion of h21, and to the proof that it is minus the transpose of h12. 

Let q as before be a vector field on Y but now let p be a normal field 
on Y. We define 

h21(r, P )  = PrTY DfPX on y ,  

where as before px denotes an extension of p locally on X.  The formula 
immediately shows that the value of hZ1 depends only on the value q ( x )  at 
a point X E  Y ,  but we have the similar question arising about the depen- 
dence on p and its extension px. This time, the matter is settled by the 
next result. 

Theorem 1.5. Let q, 5 be vector fields on Y and let p be a normal field 
on Y.  Then on Y, 

(D,xPx, t) = (h21(v, P I ,  t) = ( P ,  -h12(% t)). 

ProoJ We take D f  (Lie derivative) of (tx, px), evaluated at a point of 
Y. The scalar product is taken in TX,  of course. To find the derivative at 
a point x E Y ,  one may differentiate along any curve passing through that 
point, such that the derivative of the curve is the ~ ( x ) ,  and such a curve 
may be taken in Y. Therefore at such a point X E  Y ,  we have 
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We omit the subscript X in h12 because we know the independence from 
the extension to X by Proposition 1.3. This proves the formula of the 
theorem, at the same time that it also shows that h21(qx, px) is inde- 
pendent of the extension of q, p to X. Similarly, the relation shows that at 
the given point x,  h21 (q, p ) ( x )  depends only on q(x) and p ( x )  respectively. 
This concludes the proof. 

From Theorem 1.5, we see that h12 and h21 determine each other 
uniquely, and one is minus the transpose of the other under the metric 
product on X. They are both called the second fundamental form, but a 
distinction should be made between them. 

Theorem 1.5 allows us to write the formula analogous to SFF 1, namely 
for X E  Y ,  u E T,Y and w E N , Y ,  q(x )  = u, p ( x )  = w, we have 

SFF 3. 

Note that Theorem 1.5 also concludes the proof of formula (2) in Theorem 
1.1. 

There remains but to deal with the fourth component h22(q, p), where q 
is a vector field on Y and p is a normal field. For the first time, we have 
to deal with the more general notion of a covariant derivative on a vector 
bundle. Quite generally, let E be a vector bundle over Y. A derivative on 
E relative to T Y  is a mapping 

denoted by (q, p) +-+ V,p, which is Fu( Y)-linear in q, and is a derivation in 
p, that is for any function q on Y, 

Suppose E has a metric. We say that V is metric if it satisfies the 
condition 

zl. ( P ,  4 = P,P> v) + V,V) 

for all vector fields q on Y, and sections p, v of E. We shall apply this 
notion to the normal bundle E = N Y .  

Proposition 1.6. Let px be an extension of a normal field to X. Then 
pr,, D f p x  is independent of this extension, so we may denote 

Furthermore, V is a metric derivative on NY.  
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Proof: We prove the metric formula first. By definition of the co- 
variant derivative on X ,  we know that on Y, for any normal field v, 

r . (Px, v x )  = (D,xPx, v x )  + (Px, D,xvx).  

For x E Y ,  the values p x ( x )  and v x ( x )  lie in NxY, so the covariant 
derivatives in the above relation can be replaced by their projections on 
the normal bundle NY. The Lie derivative on the left can be computed at 
x along curve whose derivative at x is ~ ( x ) ,  and this curve can be taken to 
lie entirely in Y. Therefore the left side is independent of the extensions 
px, vx of p, v locally near x,  so we may write it as r .  ( p ,  v) .  Then we 
write 

The right side is independent of the extension px of p, and therefore so 
is the left side. Similarly for vx.  Thus we have proved simultaneously the 
metric formula and the independence which allows us to define V,p. Note 
that the Fu( Y)-linearity in is then immediate from the metric formula. 
The derivation property in p follows from that of Df. This concludes the 
proof. 

XIV, 52. THE HESSIAN AND LAPLACIAN 
ON A SUBMANIFOLD 

We continue with a submanifold Y of a Riemannian manifold X .  We 
remind the reader of the Hessian of a function f on Y. We need here only 
formula (1) of Chapter XIII, $1. For vector fields t, 7 on Y, the Hessian is 

We put Y as a subscript on the left for typographical reasons, involving 
the square as a superscript. 

Proposition 2.1. Let f x  be an extension o f f  to X.  Let t, 7 be vector 
fields on .Y. Then on Y, we have 

D$fx(t, r )  = D’,f (t, r )  - h12(t, r )  . f x ,  

where h12(t, r )  = pr,, D%rx as in 01. 

Proof: We have 
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By Theorem 1.1, at points of Y we have 

Dprx = (DSyr) + h12(t, r ) ,  
which concludes the proof by definition of 0;. 

The tangential component 

We can use the normal bundle to obtain a tubular neighborhood of Y. 
Locally, we can find a function r > 0 such that, if N,Y denotes the vectors 
w with norm llwll < r (x )  for w E NxY, x E Y, then the exponential map 

exp: NY + X given by w H expx(w) for w E NxY 

gives an isomorphism of N,Y with an open neighborhood of Y in X.  
Given a function f on Y, we may extend f to this tubular neighborhood by 
making f constan! in the normal directions, that is we define 

This extension will be called the normal extension of f to a tubular 
neighborhood of Y. 

Proposition 2.2. Let f x  be the normal extension o f f  to a tubular 
neighborhood of Y. Then for vector fields t, q on Y, we have 

Proof: This is immediate, because if v is a normal vector field on Y, 
then ( v  . f x ) ( x )  = 0 for x E Y, immediately from the definitions. Indeed, 
the Lie derivative may be taken along a geodesic from x, along which f is 
constant, so its Lie derivative is 0. We can apply Proposition 2.1 with 
v = h12(t, a) to conclude the proof. 

Next we look at normal fields on Y. 

Proposition 2.3. Let v be a normal field on Y. Let f be a function on Y 
and f x  its normal extension to a tubular neighborhood of Y. Then on Y, 

D$ f x ( v ,  v)  = 0. 

Proof: Let vx be any extension of v to a neighborhood of a point xo in 
in Y. Then at X O ,  

D x f x ( v ,  2 v )  = , vx  * vx . fx - (D”(,)VX) . fx. (1) 
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is an isomorphism of W, onto its image WO, which is a submanifold of X 
i 

We select a suitable extension of v. For y E Y near xo, w E N, Y and IwI 
sufficiently small, let be the geodesic in X with C L ~ , ~ ( O )  = y and 
E ; , ~ ( O )  = w. Thus exp,(w) = ~ ~ ( 1 ,  w )  = aY,,,,(l). Define the normal exten- 
sion vx be the formula 

where P is parallel translation as in Chapter VIII, Theorems 3.3 and 3.4. 
Then vx f x  = 0, so the first term on the right of (1) is 0. As for the second 
term, letting a = axe,,,, with w = ~ ( x o ) ,  a is a geodesic so &a’ = 0, and we 
get 

(~v (xo )vx ) (xo )  = (DCda’)(xo> = 0. 

So having chosen vx suitably, we conclude that both terms are 0, which 
proves the proposition. 

Theorem 2.4. Let X be aJinite dimensional Riemannian manifold, and let 
Y be a submanifold. Let f be a function on Y and let f x  be its normal 
extension to X. Then on Y, 

AY f  = A x f x .  

ProoJ: Let { t l ,  . . . , tp} be an orthonormal frame of vector fields locally 
on Y, and let { v l ,  . . . , vq} be an orthonormal frame of normal fields. 
Together they form an orthonormal frame of sections of TX restricted to 
Y. Then at a point X E  Y ,  we have 

We may now apply Propositions 2.2 and 2.3 to conclude the proof. 

Remark. Readers may compare the above proof with that of Helgason 
[He 841, Chapter 11, Theorem 3.2. Of course, the theorem on the 
Laplacian depends on the manifolds being finite dimensional. However, 
the basic result behind it concerns the Hessian, and is independent of this 
restrictive condition. 

Full decomposition of the Laplacian 

We shall now return to the use of Proposition 2.1. The rest of this section 
was written with Wu’s collaboration. 

For our next purposes, we let f be a function on X and we let f r  be its 
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restriction to the submanifold Y. We let: 

{tl,. . . , tp} be an orthonormal frame of vector fields on Y ;  
{ V I  , .. . , vq} be an orthonormal frame of normal vector fields. 

Thus {v1 ( x ) ,  . . . , vq(x)} is an orthonormal basis of Nx Y for x E Y .  Letting 
as usual AX be the Laplacian on X, by the definition of Chapter XII, $1, 
and Proposition 2.1, we have 

By Proposition 2.2, the first term on the right is just A y  f y .  Note that the 
second and third terms involve normal components, and thus it is natural 
to deiine the Y-transversal Laplacian 

D a 

(4) 
i= 1 j =  1 

Then using Proposition 2.2, we may reformulate (3) in the form: 

Proposition 2.5. Let X be a finite dimensional Riemannian manifold and 
Y a submanifold. Let f be a function on X and let f y  be its restriction to 
Y. Then 

A x f  = A y f Y + A i q y f  on Y .  

Thus the Laplacian has been decomposed into a tangential component, 
which is the Laplacian on Y, and a transversal component. Note that 
Theorem 2.4 describes the special case of the tangential component, for 
functions which are constant in the normal direction. For convenience, we 
also define the normal trace 
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called the normal submanifold to Y at X O .  Let f be a function on X. 
Instead of considering its restriction to Y, we now consider its restriction 
fwo to the normal submanifold WO. This restriction depends on the choice 
of point xo in Y. For the moment, we don’t use finite dimensionality. 

Proposition 2.6. Let X be a Riemannian manifold, Y a submanifold, and 
xo E Y .  Let Wo be the normal submanifold to Y at xo. Let f be a 
function on X, and let w E Nx, Y .  Then D i  f (w, w) depends only on the 
restriction fw,. More precisely, if a is the geodesic defined by a( t )  = 
exp, ( tw) , then 

0;f (w, w) = ( ~ , 2 ~ f W O ) ( X O ) .  

Furthermore, for every u E Txo Y ,  the value h12(u, u )  . f at xo also depends 
only on the restriction fw, .  

Proof By the Killing definition of the second tensorial derivative 
(Chapter XIII, $1) and Corollary 3.2 of Chapter VIII, $3 we may compute 
this derivative along the geodesic, that is 

Since a is a geodesic, the second term on the right vanishes, and the first 
term depends only on f along the geodesic t H exp,(tw), and so depends 
only on the transversal part fw,. This concludes the proof of the first 
part. The second statement is even simpler, because the derivative 
hl2(u, u )  . f at xo may be computed by using the same geodesic 

a(t)  = exp,(tw), with w = h12(u, u ) .  

This concludes the proof. 

Proposition 2.7. Suppose X finite dimensional. Let Y be a submanifold, 
and xo E Y .  Let WO be the normal submanifold of Y at X O .  Let f be a 
function on X. Then 

and thus jinally 

A x f ( x o )  = AyfY(xo)  + (tr h12) ’ f ( x 0 )  - t r ~ ,  Y %f  (Xd.  

Proof: Immediate from (4) and Proposition 2.6, using w = wj = V j ( X 0 )  

and u = ui = t i ( X 0 ) .  
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We note the symmetry between the submanifold Y and its normal 
submanifold WO at the given point X O .  In Proposition 2.3, when we take 
the normal extension of a function on Y, the normal term vanishes. 
Similarly, if f y  is constant on a neighborhood of xo in Y, then the term 
Ay f y ( x o )  vanishes. 

We may now extend the above more globally as follows. Let 

n: x+z 
be a submersion. For each z E Z we let Y, = x-l (z)  be the fiber above z. 
Then Y, is a submanifold, to which we can apply Propositions 2.5, 2.6 and 
2.7. Furthermore, we can use (4) to define the normal part of the 
Laplacian depending on x.  We had already defined the trace of the second 
fundamental form h12. We now define the normal trace trN,n D i  in the 
similar way, namely for any function f, 

Then we define the transversal part of the Laplacian by the formula 

where [tr h12] denotes the Lie derivative 2 t r h , 2  to simplify the notation. 
Having fixed the submersion, we may omit n from the notation, but the 
definition of the normal part depends on the choice of submersion, because 
the traces depends on the submersion (the submanifolds Y, and their 
normal submanifolds) . 

Of course, we may give a similar definition for the vertical or tangential 
part of the Laplacian A v , ~ ,  namely for x E Y,(,) = Y ,  

Proposition 2.8. Suppose X finite dimensional. Let x :  X + Z be a 
submersion. Then 

Ax = A v , ~   AT,^. 

Proof This is just a reformulation of Proposition 2.7, taking the 
previous definitions into account. 

Example 1. Let Y be a submanifold of X and fix a point xo E Y .  Let 
VO be an open ball centered at xo in Y. Let Wd be a neighborhood of 0 in 
the normal space Nx, Y .  For VO sufficiently small, there exists a unique 
geodesic in X from xo to x.  For Wd sufficiently small and w E Wd, we 
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define the map 

q: VO x W,' -+ X by the formula q(x, w )  = exp, P,o(w), 

where Pco is parallel translation along the geodesic from xo to x. 

Lemma 2.9. The above map q is a local isomorphism at (xo, 0). Its 
diferential at this point is in fact the identity. 

Proof: This is a routine verification left to the reader. Note that the 
tangent space of VO x Wd at the point is precisely Txo Y x N Y, which we ? 
identify with TxoX. The second statement about the differential implies the 
first about the local isomorphism by the inverse mapping theorem. 

We note that the lemma provides a local product decomposition. Let 
Uo = q(V0 x Wi),  so UO is an open neighborhood of xo in X .  The 
projection 

A :  q(V0 x W,') = vo + W,' 

is a submersion to which we can apply Proposition 2.8. 

Example 2. Let H be a Lie group acting smoothly on X as a group of 
metric automorphisms. We say that H acts regularly, or that the action is 
regular, if there exists a submersion 

n: X + Z  

such that the fibers are the orbits of H .  For instance, the orthogonal 
group O(n) = Uni,(R) acts regularly on R" from which the origin is 
deleted. Under a regular action, for each x E X the map H 4 Hx (the 
orbit) given by h H hx gives an embedding of H / H x  in X ,  so gives an 
isomorphism with H / H x  and the orbit Hx.  Fix a point xo E X. The map 

being a submersion, there exists a local section 0: Vd + H defined on an 
open neighborhood of the identity coset eHxo, and passing through e, so 
a(eHxo) = e. We put VO = r ~ (  Vd). We let YO be the orbit Hxo. We note 
that we have a natural linear isomorphism of tangent spaces 

Txo vo 4% Txo Yo. 

Let Wd be an open neighborhood of 0 in the normal space Nxo YO, equal 
to the orthogonal complement of Txo YO in TxoX, such that the exponential 
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exp: w,' 4 exp( W,') 

is an isomorphism. Put WO = exp( Wd). We call (e ,  xo) the origin of 
vo x W,. 

Lemma 2.10. Under a regular action by H,  the map 

p: Vo x WO + X  given by (h, x) H hx 

is a local isomorphism at the origin (el xo). 

Proof: This is a simple exercise in computing the differential of the map 
at the origin, and showing that it is the identity. 

As for Example 1, we may then apply Proposition 2.8 to the sub- 
mersion 

q(V0 x Wo) = uo --t w,. 
Example 2 is essentially the one used by Helgason to construct his 

transversal part of the Laplacian [He 841, Chapter 11, $3, especially 
Theorems 3.4 and 3.5. He does not use the second fundamental form, but 
uses a construction applicable to all differential operators. This generality 
requires some general results, notably his Theorem 1.4 characterizing 
differential operators. Such considerations are completely bypassed by the 
direct local differential geometric approach used in the present section. 

Note that the submersion used in Proposition 2.8 is just that. No other 
requirement is made. In the next section, we shall consider a stronger 
version, with an additional metric condition. 

Example 3. In Chapter XV, Theorem 3.8, we shall describe the polar 
decomposition of the Laplacian, in a normal chart, namely let 
exp,: B,(O,) + B,(x) be a differential isomorphism for some c > 0. After 
deleting the origin, the ball is isomorphic to a product Sl(x) x (0, c), 
projecting on the open interval (0, c) .  The submanifolds are the spheres 
S,(x), 0 < r < c. The transversal part is called the radial part in this case. 

XIV, 93. THE COVARIANT DERIVATIVE ON 
A RIEMANNIAN SUBMERSION 

Let X, Z be Riemannian manifolds, and let 

be a submersion. We assume that w is Riemannian, meaning that for each 

I 
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x E X ,  the diferential 

T I I ( x ) :  T,X 4 T,(,)Z 

is an orthogonal projection. For each z E Z we let Y, = II- '(z)  be the 
fiber. Then Y, is a submanifold of X ,  and the kernel of Tn(x)  is TxY,(x). 
We also have the normal bundle N?Y,.(,), and normal sections. By 
definition, TII (X)  induces a linear metm isomorphism 

I am indebted to Wu for his explanation of the behavior of the Laplacian 
in submersions, which led to the exposition of this section. 

Lemma 3.1. Let x E Y,(,) be a point in a fiber. Let f be a function on 
Z .  Then for w E N,Y,(,) we have 

or in diferent notation, if v is a normal field at x,  then 

On the other hand, if v E TXY,(,), then 

(D"II*f)(X) = 0. 

ProoJ One may prove the formulas in a chart, in which case both 
merely come from the chain rule 

applied to any vector in T,X = T, Y,(,) + N, Y,(,). So the lemma is clear. 

The tangent bundle TX has an orthogonal sum decomposition into two 
subbundles 

T X = F I E ,  

where at a point x, F, = T,Y,(,) is the tangent space to the fiber, and 
Ex = N, Y,(,) is the space normal to the fiber. One also calls F the vertical 
subbundle and E the horizontal subbundle. The differential TII  gives a 
metric isomorphism at each point 

T x ( x ) :  Ex 4 T,Z. 
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A vector field p on Z lifts uniquely to a horizontal field p,, i.e. a vector 
field such that 

at each point x E X. We call px the horizontal lifting of p. On the other 
hand, a vector field on X having values in F is called a vertical field. Both 
notions are of course relative to the submersion II, and one could write 
F ( I I )  and E(n) to bring II into the notation. But II is now fixed, so we 
omit it from the notation. 

Next we have some formulas for the lifting to normal fields. First, 

The proof is immediate no matter what, and can be verified in a chart. 
We also have the tangential component, i.e. for any vertical field (, 

In particular, the value of the vertical component of [ ,ux, vx] at a point 
x depends only on px(x ) ,  V X ( X ) .  To prove (2 ) ,  we first write the defining 
formula 

( [ P x ,  vxl, <) = (D,,VX - DvxPx, r>. 
We use the fact that (vx, <) = (px ,  t) = 0. We apply DFx and Dvx, 
respectively, to these equalities, and use the defining property of the metric 
derivative. Then (2) falls out. 

We shall use the formula giving the metric derivative explicitly, namely 
MD 2 of Chapter VIII, &I. For any vector field ( on X ,  we have 

Proposition 3.2. Let ,u, v be vector fields on Z ,  and ,ux, vx their 
horizontal lifings to X .  Then 

or equivalently, for every horizontal field Ax, 
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ProoJ: The expression (Dp(,vX, AX) coming from (3) involves only the 
Lie derivative, scalar product of vector fields and brackets. The scalar 
product is preserved under lifting, by definition of a Riemannian sub- 
mersion. Formula (1) gives the preservation of the bracket. The Lie 
derivative is also preserved under lifting by Lemma 3.1. This concludes 
the proof. 

The rest of this section will not be used until 56. 

Proposition 3.3. Let p, v,  A, [ be vector jields on 2. Then 

P X  . ( D V d X ,  C X )  = n* ( p  . (DVA, 0). 
ProoJ: Again, direct consequence of (3) and Proposition 3.2. 

Next we determine the vertical component. If q is a vector field on X, 
we define its vertical component be 

r;lv = pr, q where F is the vertical subbundle of T X .  

Proposition 3.4. Let p, v be vector fields on 2. Then 

Dp,VX = $ [Px, V X I  + (D,V)X. 

ProoJ: The horizontal component was already determined in Propo- 
sition 3.2, which gives the second term on the right of the equation. As 
for the vertical component, we use (3) with a vertical field <. Since 
( p X ,  V X )  = ( p ,  v), if < is vertical, we have 5 .  ( p X ,  V X )  = 0. The first two 
terms and the last two terms of (3) on the right vanish by (1). The value 
for the vertical component then drops out, thus proving the proposition. 

Proposition 3.5. Let a:  [a, b] -+ 2 be a curve such that a’(t) # 0 for  
all t. 

(i) Let y E Yo,(,). There exists a unique lifting A = A, of a in X which 
is horizontal, i.e. such that A’(t) lies in the horizontal subbundle for 
all t, and with the given initial condition A(a )  = y.  

(ii) The curve a is a geodesic i f  and only if A is a geodesic. 
(iii) For each y ,  define F ( y ,  t )  = A,(t), and let F,(y) = A,(t). Then 

F,: Ya(,) 3 Ya(n is a differential isomorphism. 

Prooj The existence and uniqueness of the lifting are elementary, at 
the level of the existence and uniqueness of solutions of a differential 
equation. We give the details. The global assertion is a consequence of 
local existence and uniqueness, so we may suppose that there is a vector 
field v locally on 2 such that v(a( t ) )  = a’(t) for all t ,  i.e. v extends u’. For 
simplicity of notation, shrinking 2 if necessary to some open subset, we 
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suppose v is defined on all of 2. Let y E X. By the fundamental theorem 
on differential equations, there exists a unique curve A :  [a, b] 4 X such 
that A’(t) = vX(A(t))  for all t. We claim that A lifts a, that is A ( t )  E Ya(tl 
(the fiber above cl(t)). Indeed, 

(Z 0 A)’(t) = Tn(A( t ) )A’( t )  = Tn(A( t ) )v ,y (A( t ) ) ,  

and v x ( A ( t ) )  E E A ( ~ ) .  Let p = n o A .  Then p satisfies the differential 
equation /3’(t) = v(/3(t)), with the same initial conditions as a, so p = a, 
and thus A lifts u. As for uniqueness, suppose v1, v2 are two extensions of 
a’ to local vector fields on 2. Let A1, A2 be the liftings of a corresponding 
to these two vector fields. Then they satisfy Ai ( t )  = Ai ( t )  for all t, and so 
they are equal, thus proving the first part of the proposition. For the 
geodesic property, we put p = v in Proposition 3.4. Then the bracket term 
on the right is 0. We evaluate along a’. Then (ii) follows from the 
characterization of a geodesic by the condition Data’ = 0. 

Finally (iii) is now essentially formal. Say for t = b, we consider the 
reverse curve of a, and its lift from A(b)  which is necessarily the reverse 
curve of A by uniqueness. Hence Fb has an inverse mapping. This 
concludes the proof of Proposition 3.5. 

In Proposition 3.2 we considered horizontal fields. The next proposition 
gives a similar result for differentiation with respect to a vertical field. 

Proposition 3.6. Let < be a vertical field. Then 

(DYP,, V X >  = -$([lux, VXI  V 7 8. 

(DYPX, V X )  = P p x &  V X )  + G 7  PXl, vx )  

= -(D,,Vx, 0 
= - i ( [ P X >  V X I ,  <) 
= - j ( [ P x ,  V X I  V , <), 

Prooj By the metric derivative formula (3) and Proposition 3.4, we 
obtain 

thereby proving the proposition. 

XIV, 54. THE HESSIAN AND LAPLACIAN ON 
A RIEMANNIAN SUBMERSION 

We continue with a Riemannian submersion 

71: x - + z  
as in $3, but we shall use only Lemma 3.1 and Proposition 3.2. We shall 
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deal with the Hessian. As in 53, we let F and E be the vertical and 
horizontal subbundles respectively, giving rise to the two orthogonal 
projections pr, and pr,. We may apply these in the way we did in the 
previous sections, along each fiber Y,,,). 

Proposition 4.1. Let r, ~7 be verticalJields on X .  Then for every function 
f on Z ,  we have 

Proox We have 

because r.n*f = 0 since n*f is constant on the fibers and q-n*f  can be 
computed along a curve contained in the fiber Y+). Furthermore, the 
constancy o f f  on a fiber also yields 

(DtZI) . n'f = pr,(DtZI) . n*f* 

Then Lemma 3.1 and Proposition 2.1 conclude the proof. 

Suppose that the fibers are finite dimensional, of dimension p .  Let r l , .  . . , rp be an orthonormal frame of vertical fields locally on X .  Recall 
that in $1, we defined the trace of the second fundamental form to be 

Proposition 4.2. With a vertical orthonormal frame < I ,  . . . , tP, and a 
function f on 2, we have 

P 
x ( D ; ~ * f ) ( < ~ ,  t i )  = -(tr h12) . n'f = -n,tr h12. f. 
i= 1 

Next we go to horizontal fields. 

Proposition 4.3. Let ,u, v be vector Jields on Z ,  with horizontal liftings 
px, v x .  Then 

D p m X ,  v x )  = &f(P, v). 
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Proof We have 

and the similar expression on X with subscript X .  The vertical component 
of DpXvx annihilates n*f because n*f is constant on fibers. For the 
horizontal component, Proposition 3.2 shows that the last terms on the 
right on X and on 2 give the same value. As to the first term on the right, 
Lemma 3.1 shows that 

so doing the same thing with px shows that the first terms on the right of 
the equation on X and 2 give the same value. This concludes the proof. 

We shall give the relation between the Laplacians as an application. I 
am indebted to Wu for the next theorems. 

Theorem 4.4. Assume that X, and hence Z ,  areJinite dimensional. Then 
for all functions f on Z we have 

Axn*f = n*Az f + (tr h12) . n*f. 

Proof Let {(I,.  . . , rp} be an orthonormal frame of local sections of 
the vertical bundle F, and let {pl , .  . . ,pq} be an orthonormal frame of 
sections on Z .  Let {pix,. . . ,pqx} be their lifts to the horizontal bundle. 
Then 

{ t 1 , . . . , r p  , PlX , . . . , Pqx } 

is a local orthonormal frame on X .  We get: 

by Propositions 4.2 and 4.3 respectively. This proves the theorem. 

The trace of the second fundamental form is defined on X .  Under some 
homogeneity condition that we shall now describe, we can descend it to Z. 

Let c be a metric automorphism of X, preserving the fibers, that is CT 

induces a differential metric automorphism of each fiber YzCx) for all x. 
Then 

n o c =  n so n, 0 CT* = n,. 
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Let X I ,  x2 E Y,(,) be points in the same fiber, and suppose 0x1 = x2. Let 
(, q be vertical fields on X.  Then 

With a vertical frame {t l ,  . . . , tp} as above, we can then define the trace of 
hl2 on 2, by the formula 

Suppose that there is a group of metric automorphisms of X, preserving 
the fibers, and acting transitively on the fibers. Then given any two points 
X I ,  x2 in the same fiber Y,,,,, it follows that 

and therefore we may view trz h12 as a vector field on 2, which we call 
the trace of the second fundamental form on Z. Then Theorem 4.4 can be 
formulated as follows. 

Theorem 4.5. Suppose that X ,  and hence Z, are finite dimensional. 
Suppose also that there is a group of isometries of X ,  preserving thejbers 
and acting transitively on each fiber. Let trz h12 be the trace of the 
second fundamental form on 2. Then for all functions f on Z ,  we have 

Axn*f = .*(Az f + (trz h12) . f ) .  

Remark. Readers may compare the above version with Helgason 
[He 841, Chapter 11, Theorem 3.7. To obtain the version in Helgason, 
there remains to identify the trace of the second fundamental form with 
the gradient of the appropriate function, which we shall do in Chapter 
XV, $6 and $8. 

XIV, 55. THE RIEMANN TENSOR ON SUBMANIFOLDS 

Let Y be a submanifold of a Riemannian manifold X.  Then we have the 
two Riemann tensors Ry and Rx, which we wish to compare on Y. 

Theorem 5.1 (Gauss Equation). For ui ( i  = 1 ,  2, 3 ,  4) in T,Y, we have 
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Or, i f  (, q, C, z are vector fields on Y, 

R x ( L  r ,  C, = RY(t, r ,  C, .) 
+ (h12(1, C), h12(t> 7)) - (hl2(% T I ,  h12(t, 0). 

Proox The proof is routine, and forced. We have by Theorem 1.1, or 
SFF 2 in $1, on Y :  

so iterating, 

We interchange ( and q and subtract. We also note that 

[<, q1 ' C = prTY [ t X  7 q X 1  ' CX on y .  

Hence by the definition of the Riemann tensor, for all vector fields z on Y, 

(RY(t, v)C, z) = (Rx(5,  r)C, 7) 
- ( q ( h 1 2 ( r ,  C>x),  .> + (D:(h12(v, C,,), 4. 

Applying Theorem 1.4 concludes the proof. 

For the next theorem, we define Vrh12 following the general principle in 
defining covariant derivatives of tensors to be derivatives in all variables. 
So it is defined on Y by the equation 
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Since 'H, is TY-valued, it is killed by pr,,, and we obtain 

prNY D ~ D ~ C X  = h12(<, D;C) + V t ( h 1 2 ( ~ ,  C)). 

We interchange < and and subtract, We use the definition of Rx to get: 

P r ~ y  R(<, V ) C  = v t  (h12(V, C)) - v, (h12(<i C)) 
+ h12(<, D;C) - h12(V, DryC) - PrNY Dt,,]CX. 

But prNY DivlCx = h12([<, 471, C). We use the defining equation of Vch12 
and similarly with <, interchanged, which we subtract. Note that 

h12(Dr~, C) - h ( D , < ,  C) = h12([<, VI, C). 

Then we get cancellations, from which the Codazzi equation follows, thus 
proving the theorem. 

The formalism can go on. We define the normal Riemann tensor on Y 
bY 

RNY (6'7 C) = VqVI - VCV, - v[,,C] , 

so for vector fields q, C on Y 

R,,(?, r ) :  r-zw 4 r N Y  

is an operator on normal fields. As with R y  we may form the tensors in 
three and four variables with normal fields p, v :  

RNY(V, C)P = RNY(?, C, P ) ,  

RNY(V,  C, P ,  v) = (RNY(v,  C)P, v ) .  

We recall the operator S, for a normal field p, giving a representation of 
the second fundamental form in $1, (3), (4), (5). As usual, we may form 
the bracket 

[S,, S,] = s, 0 s, - s, 0 s,. 
Theorem 5.3 (Ricci Equation). We have 

R x ( t ,  q ,  p, v) = RNY(S, 7, V )  - ( [ S p ,  S V ] ~ ,  7). 
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ProoJ More of the same type of computation. We use (6) in $1 twice 
to get 

We take the scalar product with v, and use formula (3) to find: 

which concludes the proof. 

XIV, 86. THE RIEMANN TENSOR ON A 
RIEMANNIAN SUBMERSION 

We return to a Riemannian submersion 

71: x - t z  
as in 93 and $4, and use the same notation. This section is due to O'Neill 
[O'N 661, some of whose results have been reproduced in various differ- 
ential geometry texts, e.g. [ChE 751 and [Kl 83/95]. We let Rx and RZ 
denote the Riemann tensors on X and 2 respectively. If p is a vector field 
on 2, we let ,ux (as in 93 and &I) be its horizontal lifting to X. 

Theorem 6.1. Let p, v, A, (' be vector fields on 2. Then 

where VR denotes the vertical component, 

ProoJ: The Riemann tensor involves second derivatives, but all the 
formulas needed to perform the iteration easily have been proved in (53. 
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So we forge ahead. First, by Propositions 3.3, 3.5, and 3.6, we find 

Decomposing [ px, V X ]  into horizontal and vertical component and using 
Proposition 3.6, we get 

By (1) and (2), and the definition of the Riemann tensor 

and similarly with the subscript X, the formula of Theorem 6.1 falls out, 
and the proof is concluded. 

Corollary 6.2. For the tensor R2 such that R2(u, w) = R(u, w, u, w), we 
get 

R 2 X ( P X ,  V X )  = R 2 Z ( P ,  v )  +3ll[P,, vxI1l2. 

In particular, the tensor R2 decreases under submersions. 

ProoJ: This is immediate from the definition and Theorem 6.1. 

For the curvature, which is minus R2, Corollary 6.2 means that 
curvature increases under submersions. 

Remark. In O’Neill [O’N 661, he defines two operators, and formulates 
his results in terms of these operators. The first result amounts to 
Theorem 6.1, and is the analogue of the Gauss formula for submersions. 
The other is the analogue of the Codazzi formula, which I omit. Note 
that an expression 

1 dPx7 .XI 

should probably receive a name, as a single item, to make the coefficients 
1/2, 1/4, or 3/4 more structural. It remains to be seen what is the best 
convention to adopt about these expressions. 

PART 111 

Volume Forms and 
Integration 



CHAPTER XV 

Volume Forms 

For the first time we meet a strictly fhite dimensional phenomenon: If X 
is of finite dimension n, then the n-forms d " ( X )  play a distinguished role 
whose extension to the infinite dimensional case is not evident. So this 
chapter is devoted to these forms of maximal degree. In the next chapter, 
we shall study how to integrate them, so the present chapter also provides 
a transition from the differential theory to the integration theory. 

Although for organization and reference purposes it is convenient to 
place together here a number of results on volume forms, only the first 
section giving a basic definition will be used in the next three chapters, so 
the other sections may be skipped by a reader wanting to get immediately 
into integration. 

XV, 91. VOLUME FORMS AND THE DIVERGENCE 

Let V be a finite dimensional vector space over R, of dimension n. We 
assume given a positive definite symmetric scalar product g, denoted by I 

(u,  w) H (u,  w ) ~  = g(u, w) for u, w E V .  

The space A" V has dimension 1. If {el,. . . , e n }  and {U,, . . . ,un} are 
orthonormal bases of V, then I 

el A ... A en = f u l  A A u,. 

Two such orthonormal bases are said to have the same orientation, or to 
be orientation equivalent, if the plus sign occurs in the above relation. A 
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choice of an equivalence class of orthonormal bases having the same 
orientation is defined to be an orientation of V. Thus an orientation 
determines a basis for the one-dimensional space A" V over R .  Such a 
basis will be called a volume. There exists a unique n-form R on V 
(alternating), also denoted by volg, such that for every oriented ortho- 
normal basis { e l ,  . . . , en}  we have 

R(e1, ..., en)  = 1. 

Conversely, given a non-zero n-form R on V, all orthonormal bases 
{ e l , .  . . , e n }  such that R ( e l , .  . . , en)  > 0 are orientation equivalent, and on 
such bases R has a constant value. 

Let ( X ,  g) be a Riemannian manifold. By an orientation of (X, g) we 
mean a choice of a volume form R, and an orientation of each tangent 
space TxX (XE  X )  such that for any oriented orthonormal basis 
{ e l ,  ..., en} of TxX we have 

Rx(e l ,  ..., en) = 1. 

The form gives a coherent way of making the orientations at different 
points compatible. It is an exercise to show that if ( X ,  g) has such an 
orientation, and X is connected, then (X, g) has exactly two orientations. 
In Chapter XVI, we shall give a variation of this definition. By an 
oriented chart, with coordinates X I , .  . . , x,  in R", we mean a chart such 
that with respect to these coordinates, the form has the representation 

Q(x) = v,(x) dxl A ... A dx, 

with a function v, which is positive at every point of the chart. We call R 
the Riemannian volume form, and also denote it by vol,, so 

vol,(x) = R(x) = R,. 

We return to our vector space V, with positive definite metric g, and 
oriented. 

Proposition 1.1. Let R=vol,. Then for all n-tuples of vectors 
{ v l ,  . . . , v,} and ( ~ 1 , .  . . , w,} in V, we have 

R ( u ~ ,  . . . , ~ , ) Q ( w l ,  . . . , w,) = det(oi, wj),. 

In particular, 
R ( u ~ ,  . . . , u , ) ~  = det(vi, uj),.  

ProoJ: The determinant on the right side of the first formula is 
multilinear and alternating in each n-tuple { u1, . . . , u,} and { w 1, . . . , w,}. 
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Hence there exists a number C E R  such that 

det(vi, wj), = cR(v1,.  . . , v , )R(wl , .  . . , w,) 

for all such n-tuples. Evaluating on an oriented orthonormal basis shows 
that c = 1, thus proving the proposition. 

Applying Proposition 1.1 to an oriented Riemannian manifold yields : 

Proposition 1.2. Let ( X ,  g )  be an oriented Riemannian manifold. Let 
R = vol,. For all vector fields (51 ,..., t,} and {q l  ,..., q,} on X, we 
have 

~ ( C I  7 .  * ., tn)R(ql , .  * . > v,) = det(ti, q j ) g *  

Furthermore, if t" denotes the one-form dual to t (characterized by 
t" (q)  = (t, q) ,  for all vector fields q) ,  then 

This last formula is merely an application of the definition of the wedge 
product of forms, taking into account the preceding formulas concerning 
the determinant. 

At a point, the space of n-forms is I-dimensional. Hence any n-form 
on a Riemannian manifold can be written as a product $2 where v, is a 
function and R is the Riemannian volume form. 

If 5 is a vector field, then R o t is an (n - 1)-form, and so there exists a 
function v, such that 

d ( R  o t) = v,R. 

We call v, the divergence of < with respect to R, or with respect to the 
Riemannian metric. We denote it by diva t or simply div t. Thus by 
definition, 

d ( n  o t) = (div <)a. 

Example. Looking back at Chapter V, $3 we see that if 

R ( x )  = dxl A ... A dx, 

is the canonical form on R" and t is a vector field, < = Cpiiui where 
{u l ,  . . . , u,} are the standard unit vectors, and q+ are the coordinate 
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functions, then 

For the formula with a general metric, see Proposition 1.5. 

We shall study the divergence from a differential point of view in the 
next section, and from the point of view of Stokes' theorem in Chapter 
XVIII. 

On l-forms, we define the operator 

d*: d ' ( X )  - d o ( X )  

by duality, that is if A" denotes the vector field corresponding to A under 
the Riemannian metric, then we define 

d * l  = -div A". 

Let us define the Laplacian or Laplace operator on functions by the 
formula 

A = d'd = -div o grad. 

In Corollary 2.4, we shall prove the equivalence of this definition with that 
of Chapter XII, $1. 

Proposition 1.3. For functions v,, $ we have 

Proof: The routine gives: 

as was to be shown. 

so there is an alternative expression for the last term in the formula. 

401 VOLUME FORMS AND THE DIVERGENCE w, 011 

We shall tabulate some formulas concerning the gradient. For sim- 
plicity of notation, we shall omit the subscript g in the scalar product, 
because we now fix g. We shall also write simply gr $ instead of grad, v,. 

gr 1. For functions v,, $ we have 

gr(v,$) = v, gr($) + * gr(v,>. 

gr 2. The map v, H (gr(q))/v, = I-' gr(v,) is a homomorphism, from 
the multiplicative group of functions never 0, to the additive 
group of functions. In particular, for a positive function v,, 

because d log v, = p-l dv,. 

We use these formulas to give two versions of certain operators which 
arise in practice. For any function v,, we write for the Lie derivative 

Corollary 1.4. Let 6 be a positive function. Then 

Proof: For a function $, by Proposition 1.3, 

(A oS'/')$ = A(S1/21c/) 

= + - 2(gr ii1/2) . $. 

We apply the right side of the equality to be proved to a function $. We 
use the formula just derived, mutliplied by 6-1/2. The term ~ 5 - ~ / * A ( 6 ~ / ~ ) $  
cancels, and we obtain 

(right side)($) = A$ - 2ii-1/2(gr61/2) . $. 

We use gr 2 to conclude the proof. 

Remark. In Helgason [He 84a], Chapter IT, Theorem 3.7, he uses the 
identity of Corollary 1.4. The difference in sign comes from the fact that 
we take the Laplacian to be the positive one, and his Laplacian is 
negative, as an operator. 
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More formulas concerning the Laplacian will be given in the next 
section, using the covariant derivative and the variation formula. For 
applications of such formulas and theory to the heat kernel, cf. [Cha 841, 
especially Chapters I1 and 111, in addition to [BGM 711. 

The remainder of this section will go more systematically into the general 
theory of the diuergence. It will not be used in the sequel except in $6 
and $8. Hence readers may proceed immediately to $2. 

General definition of the divergence 

Although the most important case of the divergence is on a Riemannian 
manifold, some properties are most clearly expressed in a more general 
case which we now describe. Let T be a vector space of finite dimension n 
over R.  Then AnT is of dimension 1, and will be called the determinant of 
T, so by definition, 

Observe that we also have det T V  . A non-zero element of det TV will be 
called a volume form on T. 

The vector space of sections of A" T vX on a manifold X of dimension n 
is also a module over the ring of functions. By a volume form on X we 
mean section which is nowhere 0, so a volume form is a basis for this 
space over the ring of functions. Instead of saying that R is a volume 
form, one may also say that R is non-singular. If Y is any n-form on A', 
then there exists a function f such that Y = f a .  So let R be a volume 
form. Let < be a vector field on X. We define the divergence of < with 
respect to R just as we did for the Riemannian volume form, namely 
diva(<) is defined by the property 

From Chapter V, Proposition 5.3, LIE 1, we also have the equivalent 
defining property 

DIV 2. 9'tR = (divn(<))R. 

Directly from D N  2 and LIE 2, we get for any functions I, f: 

DIV 3. diva(&) = Q, dim(<) + < .  I. 

DIV 4. df A ( ~ o < ) = ( < * f ) ~ .  
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Prooj First we have Yt(fR) = (C + f )R + f divn(r)R, and second, 

Tt(f0) = d ( f R  0 r )  = df A (a 0 r )  +fd(R 0 t) 
= df A (R o t) + f divn(()Q. 

Then DIV 4 follows from these two expressions. 

One can define an orientation on the general vector space T c :pending 
on the non-singular form R. Of course in general, we don't have the 
notion of orthogonality. But we say that a basis ( ~ 1 , .  . . , u,} of T is 
positively oriented, or simply oriented, with respect to R if Q ( u l ,  . . . , u,) > 0. 
Let 0, Y be volume forms. We say that they have the same orienta- 
tion, or that they are positive with respect to each other, if there exists a 
positive function h such that R = hY. Forms with the same orientation 
define the same orientation on bases. A manifold which admits a volume 
form is said to be orientable, and the class of volume forms having the 
same orientation is said to define the Orientation. 

Let 6 be a positive function on X, and let Y be a volume form. Then: 

DIV 5. diVsY'(<) = (t . log 6)  + divy(t). 

Prooj By Proposition 5.3 of Chapter V, LIE 1, we have 

The divergence in a chart 

Next we obtain an expression for the divergence in a chart. Let U be 
an open set of a chart for X in R" with its standard unit vectors u1, . . . , u,. 
There exists a function 6 never 0 on U such that in this chart, 

R = 6 dxl A . . . A dx,. 

Suppose U is connected. Then we have 6 > 0 on U or 6 < 0 on U since IR 
is assumed non-singular. For simplicity, assume 6 > 0. 

Example. If R = R, is the Riemannian volume form, then 

6 = (det g)1'2. 
In other words, 

Q,(x)  = (det g(x) )1 '2  dxl A . - .  A dx,. 
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Here g(x) denotes the matrix representing g with respect to the standard 
basis of R". 

We write < in the chart U as a linear combination 

with coordinate functions ql ,  . . . , q,,. We let ai be the i-th partial deri- 
vative. We write the coordinate vector of 4 vertically, that is 

a=@<= ( 7 ) .  
V n  

We let 'Da be the row vector of operators 

' D ~  = (al + al log 6,. . . , a, + a, log 6 ) .  

diva < = 'Dn@r or also diva = 6-' 'D o 6.  

Prooj: We have 

and since ddxj = 0 for all j, we obtain 
h 

d ( a o < )  = E(-l)i-1ai(6qi) dxi A dxl A ... A dxi A ... A dxn 

A . . . A dXn = C ai(sqi) 
= 6-l C ai(spi)a. 

This proves the proposition. 
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We return to the gradient, for which we give an expression in local 
coordinates, with an application to the Laplacian. 

Proposition 1.6. Let gr($) = C p i u i .  Let g(x) be the n x n matrix 
representing the metric at a point x. Then the coordinate vector of gr($) 
is 

Q,= 

In other words, 

where a is the vector differential operator such that 'a = (at,. . . ,an). 
Q, = g-la$, 

Prooj: B y  definition, 

(gr($), U j ) ,  = (d$)(uj) = aj$. 
The left side is equal to (gr($), g(x)uj )  at a point x. Note that here: the 
scalar product is the usual dot product on R", without the subscript g. 
The formula of the proposition then follows at once. 

Proposition 1.7. Let f and $ be function, and let gr($) = Cqju j  as in 
Proposition 1.6. Then 

n 

j= l  

ProoJ Since uj . f = aj f, the formula is clear. 

From Propositions 1.5 and 1.6, we obtain the coordinate representation 
of the Laplacian via a matrix: 

Proposition 1.8. On yln open set of R", with metric matrix g, 6 = 
(det g)l'*, and Laplacian A,, we have 

-A, = div, gr, = 'D,g-'a 

=6-l 'asila. 
Here, D, abbreviates D q ,  and div, abbreviates diva,. 

Putting all the indices in, we get 
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where in classical notation, g- ' (x)  is the matrix (gV(x)) for x E R". Using 
the rule for the derivative of a product, we write (1) in the form 

n 

i, j = l  

where L, is a first-order differential operator, that is a linear combination 
of the partials al , . . . , a, with coefficients which are functions, depending 
on g .  From this expression, we see that the matrix g-' = ( g q )  is the 
matrix of the second-order term, quadratic in the partials ai, a,. Hence we 
obtain : 

Theorem 1.9. Let X be a Riemannian manifold. Then the Laplacian 
determines the metric, i.e. i f  two Riemannian metrics have the same 
Laplacian, they are equal. Ij" F :  X + Y is a differential isomorphism of 
Riemannian manifolds, and F maps Ax on A y ,  that is F commutes with 
the Laplacians, then F is an isometry. 

Note that the second statement about the differential isomorphism is just a 
piece of functorial abstract nonsense, in light of the first statement. Indeed, 
F maps the metric gx to a metric F,gx on Y, and similarly for the 
Laplacian. By assumption, F,Ax = b y .  Hence A y  is the Laplacian of g y  
and of F,gx, so g y  = F,gx by the first statement in the theorem. 

Example. Let A = R+ x . . . x R+ be the product of positive multiplica- 
tive groups, taken n times, so we view A as an open subset of R". We let 
a denote the variable in A, so a = ' ( a l , .  . . , a,) with ai > 0. We identify 
the tangent space T, A = T, with R", so a vector v E T, is an ordinary 
n-tuple, 

v =  ' ( c l , . . . , c n )  with ~ E R .  

Let g be the metric on A defined by the formula 

Then g is represented by the diagonal matrix g(a )  = diag(ay2,. . . , a i2 ) ,  
that is 

(0, v ) a  = (0, g(a)v) ,  

where the scalar product without indices denotes the standard scalar 
product on R". Then 

i=l 
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where d(a )  = a1 . .a, is the product of the coordinates. Thus for a 
function J/ on A, we have the explicit determination for the gradient, 

n n 

i= 1 i= 1 

This comes from matrix multiplication, 

XV, 52. COVARIANT DERIVATIVES 

In this section, we gather together a number of results on the covariant 
derivative in connection with volume forms on the oriented Riemannian 
manifold (X, g )  of dimension n. 

We begin by some remarks extending the formalism of the covariant 
derivative to volume forms. First, we recall from multilinear algebra that 
the metric g induces a natural metric on the dual space, i.e. the cotangent 
space, identified with the tangent space via g. In other words, for two 
vector fields t, q we have 

Then we get a scalar product on differential forms of all degree. This is 
just a matter of punctual multilinear algebra. On p-forms which are 
decomposable, the scalar product is defined by the determinant, 

Let D be the metric covariant derivative. Its characterizing property for 
the scalar product of two vector fields extends at once to forms, and 
specifically to 1-forms, and then for p-forms, o, J/ of any degree, and any 
vector field t, we have 

This applies in particular to volume forms S2 and Y. 
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The proof for 1-forms comes directly from the metric property of D. 
For forms of higher degree, it comes also at once from the multilinearity 
of the determinant as a function of columns and rows, and from the fact 
that the derivative of a product satisfies the standard rule. One applies this 
rule both to the determinant viewed as a product of p column variables, 
and the scalar products (ti, qj),. The reader can write all this down faster 
than I could. 

We recall that a sequence {g l , .  . . , rn} of vector fields is called an 
orthonormal frame (on some open subset of X) if they are orthonormal for 
the metric g, that is 

1 if i = j ,  
(ti, t j ) g  = { 0 i f i # j .  

Given a point X E X ,  such an orthonormal frame always exists in a 
neighborhood of x. 

Theorem 2.1. Let D be the metric covariant derivative. Then 

Dg VO~,  = 0 
for all vector jields 5. 

ProoJ: Let R = vol, be the Riemannian volume form. If {tl,. . . , &} is 
an orthonormal frame, then R = _+t," A . . . A t," and (R, R), = 1. 
Taking the Lie derivative with 5 yields 0, and also yields 

0 = 2(DgR, R),. 

But DgR = v,R for some function v,, so 0 = 2v,(R, a),, whence v, = 0, 
which proves the proposition. 

Remark. The above result remains true suitably formulated in the non- 
oriented case, because the theorem is local, and locally, the absolute value 
of the form differs by & 1 from the itself. 

The next theorem will give an application of Theorem 2.1. 
The metric derivative D operates on vector fields and also on r-forms 

for all r, especially r = 1 and r = n. For any vector field t we let D t  be 
the endomorphism of TTX such that 

At each point X E X  we have the operator 
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on the finite dimensional vector space T,X. This allows us to take the 
trace tr(D<) of this operator at each point, so to take tr(Dt)x. The trace 
can be computed as usual by using an orthonormal basis. 

Similarly, we can define D I  for a 1-form A E d l ( X ) ,  whereby 

DI: TTX + T T " X  is such that (on)(<) = DcI. 

Thus for each X E X ,  (DI), may be viewed as a linear map 

(Dd),: TxX 4 TCX, 

whose trace can be computed by using duality, namely 

On the right side, we use the convenient notation (A, t) = A([) for a 
1-form 1 and a vector field t. In such a case, there is no subscript g on 
the scalar bilinear pairing between functionals and vectors. 

Theorem 2.2. Let r l ,  . . . , rn be an orthonormal frame of vector Jields, 
and let t be a vector jield. Then 

In particular, for d E d ' ( X )  we have 

div 1" = tr(DI). 

ProoJ: Let R = vol, be the volume form. By COVD 6 of Chapter 
VIII, $1, and Proposition 2.1, we get 

n 

i= 1 

and since Dti( has the Fourier expression Dci5 = cj (Deit, < j ) g t j ,  

i= 1 
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But also d(Q o ()((I , .  . . , tn) = (div t)volg(cl, . . . , &). Hence 

which proves the first formula. The second is a mere rephrasing, applied 
to the vector field 1”. 

Directly from the definition of the operator d* in the preceding section, 
we now obtain: 

Corollary 2.3. On a l-form 1, we have d*L= -tr(D1). 

We can then apply this to the Laplacian, to get: 

Corollary 2.4. Let cl, .  . . , tn be an orthonormal frame as in Theorem 
2.2. Let q be a function. Then 

If ( ~ 1 , .  . . , u,} is an orthonormal basis of the tangent space T,X at some 
point x E X, and ai is the geodesic with ai(0) = x and aI(0) = ui, then 

Proof: The first assertion comes from applying Theorem 2.2 to L = dq. 
The second assertion then follows by using Corollary 4.4 of Chapter VIII. 

From the preceding corollary, we can obtain an expression for the 
Laplacian in polar coordinates. I follow [BGM 711. We pick a point 
x E X as an origin, with its tangent space T,X. We let U, be an open ball 
centered at 0, on which exp, induces an isomorphism to its image, and we 
let y E U,. We want to determine Ap(y)  for a function a, which depends 
only on the Riemannian distance from x, say 

and f is a C2 function of a real variable. 

Proposition 2.5. Let a = a1 be the unique geodesic from x to y # x, 
parametrized by arc length, and let el = a’(r) E TyX.  Let e2,. . , ,en be 
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unit vectors in TyX such that {e l , .  . . ,en} is an orthonormal basis of 
TyX.  Let vi ( i  = 2 , .  . . ,n )  be the Jacobi lift of a such that 

~ ~ ( 0 )  = 0 and qi(r) = ei. 
Then 

Proof: Let pi  (i = 1 , . . . , n)  be the geodesic from y such that 

pi(0) = y and &(O) = ei. 

Observe that PI ( t )  = a1 (r + t )  for small t, by the uniqueness of the integral 
curve of the corresponding differential equation. We apply Corollary 2.4 
to the Laplacian at y ,  and the geodesics pi ( i  = 1 , . . . , n)  to get 

Since &(t) = al (r  + t ) ,  we can split off the first term, to obtain 

Let ai,t be the unique geodesic from x to Pi(t) (for small t ) ,  parametrized 
by arc length. Thus ai,r is what we called the variation of a at its end 
point, in the direction of el, for i = 2,. . . ,n. Then by Propositions 3.3 of 
Chapter IX, Proposition 1.9 of Chapter XI, and the fact that 

which proves our proposition. 

The trace tr(Dt) in a chart 

Just as we ended the last section with formulas in a chart U, we end the 
present section with the corresponding formula. Again we let C€I be the 
coordinate vector of t, so ‘C€I = ( q l , .  . . , pn) is the coordinate vector of 
t with respect to the basis (u1 , .. . , Un}. We let Bo be the bilinear map 
occurring in the definition of the covariant derivative, so the chart repre- 
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sentation of D,& is 

Then: 
Dqt = tbfl - B d r ,  0 

Proposition 2.6. Let 6 = (det g)ll2. For each j we haue 

and 

Proof: The second formula for the trace comes from the definition of 
the trace and the definition of Dr. The first formula then follows 
componentwise from Proposition 1.4. This concludes the proof. 

XV, 53. THE JACOBIAN DETERMINANT OF 
THE EXPONENTIAL MAP 

We continue to consider a Riemannian manifold (X, 9). We let x E X ,  
and we let B, be an open ball in T,X centered at Ox, such that exp, gives 
an isomorphism of B, with its image in X. Thus without loss of gene- 
rality, we may assume X oriented, and we let vol, be the volume form on 
X .  We call B, a normal chart at x. For y E exp,(B,). We write 
y = expx(uy), so uy = log,(y), as it were. 

We note that the differential 

T expx(uy) : T, -+ Ty 

is a linear isomorphism, and both T, and Ty have the positive definite 
scalar products of the Riemannian metric, so we may define the absolute 
value of the determinant of (Texp,) ( u y ) .  One simply picks orthonormal 
bases in each one of these vector spaces, and the determinant of the matrix 
representing (Texp,) ( uy ) with respect to these bases. Picking oriented 
bases actually makes the determinant positive, so we don't need to take an 
absolute value. We let J denote the Jacobian determinant, so 

exp: vol, = J voLc or also exp: vol,(u) = J(u)  voleuc(u), 

where voleuc is the euclidean volume on T,X, determined by the positive 
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definite metric g(x), and u is the vector variable in T,X. We shall express 
J in polar coordinates. 

Let S(l) be the unit sphere in TxX. Any vector u E T,X, u # 0, can be 
written uniquely in the form 

u = ru, 

where u is a unit vector in the direction of u, and r > 0. We call (r, u) 
the polar coordinates of u. Then the euclidean volume has the usual 
decomposition 

vo&uc(r, u) = F1 dr dp(u), 

where dp(u) is the usual spherical measure (do in dimension 2). Then 

(exp: vol,)(ru) = J(r ,  u)r"-l dr dp(u). 

Proposition 3.1. Let u be a unit vector in T,X and let a be the geodesic 
parametrized by arc length such that a(0) = x and a'(0) = u. Put u = w1 
and let {u, w2,. . . , w,} be a basis of TxX such that wi l u  for i = 
2 ,..., n. Let qi ( i= 2 ,..., n) be the Jacobi lift of a such that 

~ ~ ( 0 )  = 0 and Daqi(0) = wi. 
Then 

The determinant on the right is taken for i, j = 2,. , . ,n. 

ProoJ Observe that we may also use ql,  which is such that 
ql(t) = ta'(t). The equality between the two expressions on the right of 
the equality sign follows from Proposition 1.1. Let f = exp,. Then for 
any vectors w1,. . . , w, E T,X we have 

(exp: volg)(u)(wl,. . . , w,) = vol,(Tf (u)wi,. . . , Tf (0)wn) 

= det(Tf (u)w1,. . . , Tf (u)w,) 

= J ( o )  det(w1,. . . , w,). 

We put u = rw1 = ru. By Theorem 3.1 of Chapter IX we know that 

1 
r 

T exp,(ru)wi = -qi(r). 

Then for i = 1, ql(r)/r = a'(r), which is a unit vector perpendicular to the 
others. Thus to compute the volume of the parallelotope in euclidean 
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n-space, we may disregard this vector, and simply compute the volume of 
the projection on (n  - 1)-space, and thus we may compute only the 
(n  - 1) x (n  - 1) determinant of the vectors 

1 
det(~2(r)/r ,*** 7qn(r/r)  = 7 det(~2(r),*. .  7 1 l n ( r ) ) ,  

from which the proposition falls out. 

Proposition 3.1 is applied in several cases. 

Corollary 3.2. I f  in Proposition 3.1 all the vectors Wj  are unit vectors Ui 

such that {ul ,  . . . ,un} is an orthonormal basis of T,X, und u = u1, then 
we have simply 

rn-’J(r,  u)  = det’12(qi(r), qj(r))g. 

From this case and the asymptotic expansion for the Jacobi lifts, we 
obtain : 

Corollary 3.3. Again with an orthonormal basis {UI, . . . , U n }  of T,X, let 
u =  u1 and 

n 
Ric(u, U) = C R ~ ( u ,  U i ) .  

i=2 

Then 

1 r2 
3! 1 + Ric(u, u)  - + O(r3) vobuc(ru) for r + 0. 

Proof By Corollary 3.2, J(r ,  u) is det112(qi(r)/r, qj(r)/r)g with the 
determinant taken for i, j = 1,.  . . ,n  or i, j = 2,. . . ,n. Using the 
asymptotic expansion of Chapter M, Proposition 5.4 and the orthonor- 
mality, one gets that 

1/2 
1 + 2R2(~, Ui);) +O(r3)  for r + 0, 

i=2 

which is immediately expanded to yield the corollary. 

Example, Suppose dim X = 2. Then Ric(u7 u)  = &(u, u2) = Rz(u1, 242). 

Putting u2 = u’, we get 
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If we keep u fixed, and use A in polar coordinates, A = -8; - r-lar, then 
we see that 

R ~ ( u ,  u’) = -$AJ(o) .  

Compare with [He 781, Chapter I, Lemma 12.1 and Theorem 12.2. 

For the further asymptotic expansion of the volume, see [Gray 731, as 
well as applications referred to in the bibliography of this paper. 

On the other hand, we shall also meet a situation where { W I , ,  . . , wn} 
is not an orthonormal basis as in the next corollary. Cf. Chapter M, 
Proposition 3.3. 

Corollary 3.4. Let exp,: B, --+ X be the normal chart in X as at the 
beginning of the section, and y = exp,(ru) with ru E B,, and some unit 
vector u. Let a(s) = exp,(su) and let el = a’(r). Complete el to an 
orthonormal basis {e l , .  . . ,en} of T,X, and let qi be the Jacobi lift of tl 
(depending on y ,  or r if u1 is viewed as jixed), such that 

~ ~ ( 0 )  = 0 and qi(r) = ei for i = 2,. . . ,n. 

Let J‘(s, u)  = 81 J(s ,  u).  Then 

Proof In the present case, D,qi(0) = wi is whatever it is, but we 
observe that the determinant det(w2,. . . , W n )  is constant, so disappears in 
taking the logarithmic derivative of the expression in Proposition 3.1. We 
also observe that in the present case, 

so the matrix formed with these scalar products is the unit matrix. Taking 
the logarithmic derivative of one side, we obtain 

J’/J(r, u) + (n  - 1)/r. 

Let hii = (Vi ,  V j ! g ,  and let H = (hg). On the other side, we obtain the 
logarithmic denvative 

1 (det H)’ 
2 det H ‘ 
-- 
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Let H2,. . . , Hn be the columns of H.  By Leibniz's rule, we know that 

n 
(det H)' = det(H2,. . . ,H; ,  . . . ,Hn). 

i=2 

Observe that 

What we want follows from a purely algebraic property o 
namely : 

determinants, 

Lemma 3.5. Let A = (A', . . . , A m )  be a non-singular m x m matrix over 
afield, where A',  . . . , A m  are the columns of A. Let B = (B' ,  . . . , B") be 
any m x m matrix over the field. Then 

det(A', . . . , B', . . . , A m )  = (det A)  tr(A-'B). 
i 

ProoJ Let X = (xv) be the matrix such that 

x l j A ' + * . * + ~ ~ i A ~ = B ~  for i =  1, ..., m, 

By Cramer's rule, 

Xji det(A) = det(A', . . . , B', . . . ,A").  

But AX = B so X = A-'B, and the lemma follows. 

We apply the lemma to the case when A = H ( r )  is the unit matrix and 
Bl = Hi)(') to conclude the proof. 

Corollary 3.6. Let p, be a C2 function on a normal ball centered at the 
point x E X .  Suppose that p, depends only on the g-distance r from x, say 
p,(y) = f ( r (y ) ) .  Let y = exp(ru), with a unit vector u. Then 

Proof: Combine Corollary 3.4 with Proposition 2.5. 
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The formulas in Proposition 2.5 and Corollary 3.6 apply to a function 
which is constant on the spheres centered at the point x. However, it is 
only a formal matter to obtain the more general formula for any func- 
tion. We rely on a general lemma about the exponential. Consider a 
normal ball B centered at a point x E X as in Chapter VIII, $5. Thus the 
exponential 

exp,: B + B 

gives an isomorphism of a ball B in T,X centered at Ox, with the 
Riemannian ball B in X, centered at x. For y # x in the ball B, let n(y )  
be the unit normal vector to the sphere S,(x) with r = dist,(x, y). Then 
y w n ( y )  is a vector field on the punctured ball, normal to each sphere, 
and called the unit radial field from x. 

Lemma 3.7. Let u be a unit vector in T,X. Let p, be a C2 function on a 
normal ball centered at x, and define the function fu by 

Proof Let y = exp,(ru) with some unit vector u E T,X. Let a be the 
geodesic deiined by a(t) = exp,(tu). Then 

By the global Gauss lemma of Chapter IX, Proposition 3.2, a'(r) is 
precisely the unit normal vector n( y ) .  Hence the right side of the above 
equation is the Lie derivative of p, in the direction of this unit normal 
vector, which is none other than (DnP)(y). This proves the first formula. 
The second comes by iterating the first, thereby completing the proof. 

Theorem 3.8. Let p, be a C2 function on a normal ball centered at the 
point x E X .  Let S,(x) for r > 0 be the Riemannian sphere of radius r 
centered at x, and contained in the ball. Let AS denoted the Laplacian 
on S = S,(x). Let n be the unit radial field from x, let u be a unit vector 
in T,X. Then for y = exp,(ru) we have 

Proof: We apply Proposition 2.5 of Chapter XIV, which decomposes 
the Laplacian into a tangential part relative to a submanifold, which we 
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now take to be the sphere Y = S; and a transversal part. The tangential 
part gives precisely the term Asps at y .  For the transversal part, we apply 
Proposition 2.6 of Chapter XIV, which tells us that the value depends only 
on the restriction of p to the normal manifold. But then, we can apply 
Lemma 3.7 and the formula which we found in Corollary 3.6 to conclude 
the proof. 

For further applications of Jacobi lifts to volumes, cf. for instance 
[GHL 87/93], Chapter 3H. 

XV, 54. THE HODGE STAR ON FORMS 

We already touched on the star operation on functions, and we defined d* 
on l-forms. We now deal systematically with the star operation on alter- 
nating forms. I shall follow Koszul's formalism in formulas S 1 through 
S 8 [KO 571, which is quite elegant. A direct very brief treatment of just 
what is needed to get the global duality and adjointness of d, d* using 
Stokes' theorem, will be done in a self-contained way ad hoc in Chapter 
XVIII, so that the reader need not go through the systematic formalism 
just to understand that particular application of Stokes' theorem. 

Until further notice, we don't differentiate, and the theory is punctual, 
so : 

We let T be aJinite dimensional vector space over R, of dimension n, with 
r-forms p, $ in LL(T), and with vectors u E T .  We suppose that T has a 
positive definite scalar product g, and is oriented so we have a volume 
form R, = R. We let u v  be the I$orm dual to u under g. 

S 1. There exists a unique isomorphism *: Li (T)  + L,"-'(T) such that 
for all- v1 ,  . . , , vn+ E T and p E LL( T )  we have 

( *p ) (U l , .  . . , Un-r)n = p A U [  A . - .  A Ui-,.. 

Proof Given p, the right side of the above equation is a multilinear 
alternating function of v1, . . . , vn-r into the l-dimensional space of n-forms, 
so having chosen R as a basis for this space, we get a real-valued form, 
which constitutes the coefficient of R on the left side. The association 

a,H*Q, 

is obviously linear. 

S 2. we  have *R = 1 and *1 = Q, and for a function f, *(fa) = f .  

Proof: Immediate from the definition S 1 and Proposition 1.1. 
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S 3. For q E LL(T) and u1, .  . . ,v,-, E T we have 

ProoJ: Using S 2 and S 1, we find: 

S 4. For q E LL(T) and v E T we have 

Proof Indeed, 

For the next property we need a lemma independently of the star opera- 
tion. 

Lemma 4.1. For Q, E LL(T), and v,  U I ,  . . . , Un-r+l E T ,  we have 

n-r+l 

Proof: The basic formalism of forms tells us that the contraction with 
a vector is an anti-derivation on the algebra of forms (Chapter V, $5, 
CON 3). Since p A u," A has degree n + 1 and so is equal to 
0, we find 

A 
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We observe that 

to conclude the proof of the lemma. 

S 5. For any form p E LL(T) and u E T we have 

*(p o U) = (-l)n-l(*p) A U". 

Proof: First, for all u1, . . . , u,,-~ E T we have 

On the other hand, 

(-l)n-l(*p) A U " - - ( - l ) r + l U v  A *(p. 

Hence 

((-1)"-'(*p) A uV)(vi , .  . . , un-1+1) 

= ( - l ) r + l ( U v  A *p)(Ul,. . . , O n - , + ] )  

n-r+l 

= C ( - I ) ~ + ' ( U ~  ui)((*p)(ul, 1 . .  fii, * * ,  Vn-r+1)  
i= 1 

n-r+l h 

= C *(- l ) r f l (Uv ,  U i ) ( p  A U[ A A U y  A ... A U l - r + l ) .  

i= 1 

Using Lemma 4.1 and (1) concludes the proof. 

We can do an induction on S 5, and also get a corollary: 

S 6. For Q ) E  L;(T) ,  ** = ( -1)  r(n-1) and 

ProoJ We have 

(**p)(Vl, ..., U r ) = * ( ( * p ) A U ;  A ... A V Y ) ,  

[applying S 5 repeatedly] = (- 1) * (* (p o 01, o . . . O  u,))  , 

Since for any function f we have * f = f * 1 and * * f = * f R = f, property 
S 6 follows. 
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S 7. Let S denote the * operation. Then S :  LL(T) + L:-r(T) is an 
isomorphism. 

This is immediate, but is stated for the record. 

S 8. Let p, $ E L,'(T). Then 

ProoJ The pairings of p, $ given by the expressions on the left and 
right are bilinear, so it sufiices to verify the equality when 

In this case, we obtain 

But det(wi, U j ) ,  = det(ui, wj)g ,  from which S 8 follows. 

The next formula proves that the star operation is given in a simple- 
minded way on natural basis elements for the wedge products. We shall 
use this property in Chapter XVIII, &I, in a self-contained way to make 
the results on integration independent of the general star formalism, but 
the next formula won't be used in the rest of this section or the next. 

Proposition 4.2. Let (u1, . . . , V n }  be an orthonormal basis of T. Let 
01, .  ..,con be the dual basis of l-forms. Let Z = ( i l , . .  . , ir) with 
il < ' . . < ir and let J = (jl, . . . , jn+) with j l  < . . . j,,+ be the comple- 
mentary set such that (1 , .  . . ,n} is a permutation of ( I ,  J ) .  Let € ( I ,  J )  
be the sign of the permutation. Assume u1, . , . , u, oriented. Let 

Then 
*WI = €(Z, J)oJ. 

ProoJ Directly from the definition of R = Rg we have that 
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At first, let J be an arbitrary sequence of n - r indices among (1, . . . , n) .  
Then by S 3, 

which is # 0 if and only if J is the complementary set, i.e. (I, J )  is a 
permutation of (1, . . . , n) .  In this case, the right side of the above expres- 
sion is simply € ( I ,  J )  * !2 = €(I, J). Alternatively, one may write 

( * o I ) ( v j , ,  * * 7 vjn-r) = *(UI  A W J ) ,  

*UI = € ( I , J ) W J ,  

if (I, J) is a permutation of (1,. . . , n) ,  from which Proposition 4.2 follows. 

We are now through with the punctual theory, and we pass to a Rie- 
mannian manifold ( X ,  g ) ,  where the vector space T is replaced by the 
tangent bundle TX,  and vectors are replaced by vector fields. We let D be 
the metric covariant derivative as usual. Also 

d y x )  = rqm). 
Proposition 4.3. The star operation commutes with every Dg, i.e. for any 
vector field t and a, E d r ( X ) ,  we have 

ProoJ: For 0-forms (functions) and n-forms (functions times the volume 
form) the assertion is immediate by using Proposition 2.1, to the effect that 
Dg vol, = 0. Now let a, E TL; (TX) .  Then: 

which proves the proposition. 

We now define d* in general to be 
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In Chapter XIII, $3 we shall define a scalar product on forms with 
compact support for which d* will be seen to be the adjoint of d. For the 
moment, we continue with an essentially differential algebraic theory. 

Proposition 4.4. For a,, $ E & ( X )  we have 

da, A *$ = a, A (*d*$) +d(a, A *$). 

ProoJ: Immediate from the definition of d*,  S 6, and the basic formula 
for d of a wedge product (a graded derivation). 

Proposition 4.5. Let t l ,  . . . , tn be a frame of vector fields, and let 
ti,. . . ,<A be the dual frame, that is (t;, ti), = 6 ~ .  Then for any form 
a, E d r ( X )  we have 

n 

i=l 

Prooj Proposition 1.1. of Chapter VIII gives us an expression for 
d(*q) in terms of the frame. The dual frame is such that 1; = t;. Then 
the formula of Proposition 4.4 is an immediate consequence of S 5. 

Remark. If the frame t l , ,  . . , tn is orthonormal, then of course <: = ti. 

We define the Laplacian associated with the Riemannian manifold 
( X ,  s) to be 

A = dd* + d*d, operating on each d r ( X ) .  

On Euclidean space Rn with its standard positive definite scalar product, 
the Laplacian on functions is the usual operator (with the minus sign) 

As a more general example illustrating the role of Ricci curvature, we give 
the one higher dimensional version of Corollary 2.4. Let 1 E d ' ( X ) .  With 
the Ricci curvature in mind, we define Ric(1) to be the scalar valued form 
such that, with respect to an orthonormal frame t l , .  . . , 6, and any vector 
field t we have 

where we denote by (A ,  t) the value of a 1-form 1 on a vector field t. 
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Proposition 4.6. Let tl,  . . . , t,, be an orthonormal frame. As an operator 
on l-forms, A :  d l ( X )  +&'(A') is given by 

A = - Dji - Ric. 

Written in terms of the variables, this means 

ProoJ By Proposition 4.5, we have 

and so by a general formula on covariant derivatives we get a value for 
dd*l .  namely 

On the other hand, to get d'dl, we first note that by COVD 6 of Chapter 
VIII, $1, 

( d U t ,  d )  = (W, d )  - ( D d ,  8 .  

Again by Proposition 4.5, 

Adding the two expressions yields the formula of the proposition. 

XV, 55. HODGE DECOMPOSITION OF 
DIFFERENTIAL FORMS 

In this section we carry out a bit of pure algebra, applicable to the 
situation of the previous section, and also applicable to other situations, 
especially in the complex case. See for instance [We1 SO],  pp. 147-148 and 
[GriH 761, Chapter 0, $6. We work axiomatically. To prove the axioms 
H 1 and H 2 below requires more extensive analytical tools than we use in 
this book, and specifically it requires the basic theory of elliptic operators. 
What is needed is carried out in the above references, and the essential is 
done in a self-contained way in Appendix 4 of [La 751. 

Since the algebraic set up which follows applies to other differential 
operators besides the d we have been using, I use a more neutral letter D, 
which in the complex theory is taken to be the so-called 8 operator. 
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None of this section will be used in the rest of the book. It is included 
here only for the convenience of a reader wanting to see how the theory 
further develops, and to isolate clearly what is purely algebraic from what 
demands more differential analysis. 

Let A be a vector space of dimension n over R, with a positive definite 
scalar product ( , ) and corresponding norm 1) 1); or alternatively, the 
vector space may be over C, with a positive definite hermitian product. Let 

D :  A + A  

be a linear map which has an adjoint (algebraic) D*,  that is 

(Du, v )  = (u, D*u) all u, v E A .  

and such that DD = 0. We define the Laplacian of D to be 

AD = A = DD* -I- D*D. 

We define HD = H = ker A to be the D-harmonic space. We assume the 
Hodge Conditions : 

H 1. The kernel H = ker A is jinite dimensional. 

H 2. We have HI = AA. 

We then prove further properties as follows. 
Since H is assumed finite dimensional, there is an orthogonal projection 

of A on H, which we denote also by H if necessary, that is H(u) is the 
orthogonal projection of u on H .  

Theorem 5.1. Under the above two Hodge conditions, we have 

H1 = DA + D*A, 

and an orthogonal decomposition 

A = H I A A  = H I  DA I D*A. 

The restriction of A to HI is invertible, and 

Ker D = H +  DA. 

ProoJ By orthogonalization and H 2, given u E A we have 

u = Hu+ AU = HU i- DD*v i- D*Dv 
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with some v E A. Hence A is contained in H + DA + D*A, so we get 
equality. Furthermore 

Hence Au = 0 if and only if Du = D*u = 0. (Each implication is imme- 
diate.) The adjointness relation then shows that DA, D*A are orthogonal 
to H, and D2 = 0 implies the DA is orthogonal to D*A, so we get the 
orthogonal decomposition 

A = H I  DA I D*A, 

and AA = DA + D*A by H 2. Since AH = 0 it follows that 

A:  DA + D*A + DA + D*A 

is surjective, and so is an isomorphism, and thus A is invertible on H I .  
Finally H + DA is contained in the kernel of D, and D is injective on D*A 
because 

DD*u = 0 + (DD'u, u) = 0 + (ID*uII~ = 0. 

This proves the theorem. 

Remark 1. As a special case of the last formula, suppose u E A and u is 
perpendicular to Ker A. If u is D-closed, that is Du = 0, then u = Dv for 
some v E A,  that is u is D-exact. 

Remark 2. If we denote by H ( A )  the homology Ker D/Im D then we get 
an isomorphism of the homology with the harmonic space 

We let 
H x H ( A ) .  

G: A + H ' = A A  

be equal to 0 on H,  and be the inverse of A on AA. Then by definition, 

GA=AG and I = A G + H  
Furthermore : 

G and A commute with D and D*. 

ProoJ: We have 

AD = (DD* + D*D)D = DD*D and DA = D(DD* + 0.0) = DD*D 
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so D commutes with A. Similarly for D*. The commutation of D and D* 
with G then follows since G = A-' on AA. 

Graded structure 

Suppose that in addition that A is graded, 

n 
A = 0 AP, 

p=o 

that AP is orthogonal to A4 for q # p ,  and that 

raises degrees by 1 ,  so D": A* + Ap-' lowers degrees by 1 .  

degree p to be 
Under the above assumptions, we can define the homology of D in 

H p ( A )  = Ker DP/Im Dp-', 

where DP is D viewed as map from AP to AP+'. Immediately from 
Theorem 5.1 we obtain : 

Theorem 5.2. Let Hp  = H n HP(A). Then 

n 
H = @ H P  

p=o 

and Hp(A) x HP, that is every class in Ker DP mod Im DP-' has a 
unique representative in the harmonic space HP. 

The star operator 

We suppose given an automorphism S : A + A which is an isomorphism 

S :  AP + A"-P. 

We assume: 

S 1. On AP we have S2 = (-l)p(n-').  

S 2. D* = (-l)np+n+' on AP. 

Proposition 5.3. 
commute with S. 

Under these assumptions, D = SD*S and H ,  A, G 
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ProoJ We give the proof when n is even for simplicity. For u E AP, we 
have : 

SD'SU = -S2DS2~ = -S2D(-1)pu 

= -(-I)'( - 1)"' DU 

= Du, 
SO D = SD*S. 

For the commutation of S with A, we write, using the above, 

S A  = -SDSDS - SSDSD, 

AS = -DSDSS - SDSDS. 

On AP, SS = (-l)p, so it is immediate that SS commutes with DSD, thus 
showing that S commutes with A. 

Since S commutes with A, it follows that 

S :  H + H  

induces an automorphism of H with itself. For u E A we have: 

Su - HSu E H by definition of the orthogonal projection; and 

Su - SHu = SAGu = ASGu since A commutes with S. 

Then 

Su - SHu IH since it lies in AA. 

Subtracting shows that HSu - SHu is both orthogonal to H, and also lies 
in H, so must be 0, whence H commutes with S. Since G = A-' on HI it 
follows that G also commutes with S, thus proving the proposition. 

XV, 56. VOLUME FORMS IN A SUBMERSION 

In this section we return to volume forms in general, in a way which leads 
naturally into the considerations of the next chapter on integration. 

We begin by recalling some simple facts of multilinear algebra. Con- 
sider an exact sequence of finite dimensional real vector spaces 

with dim Ty = p ,  dim Tx = n, and dim T, = q, so p + q = n. Then we 
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have the dual sequence of dual spaces (homs into the scalars) 

0 + T; + T," + T; + 0. 

The surjection on the right gives rise to a surjective linear map by 
restriction : 

(2) 

and the injection on the left gives rise to an injective linear map 

Lemma 6.1. There is a canonical isomorphism 

defined as follows. For w E AqT,V and q E APT;, let ts E APT; map on 
q in sequence (3).  The map 

is independent of the choice of ij, and defines the isomorphism. 

ProoJ Routine algebraic verification. The above lemma is sometimes 
stated in the form 

det( T," ) = det( T; ) @ det( T; ). 

By a non-singular or volume form in A" T, we simply mean a non-zero 
form, so a basis for A" T,. Of course this is merely the definition we have 
given previously, in case the manifold is a point. 

As a consequence of Lemma 6.1, given a volume form SZ E A"T,V and 
a volume form w E AqTJ, there is a unique q E APT; such that 

Q = q 8 w W ,  

or in other words, for any pre-image ij, 

The above discussion was punctual. It applies to the case when x, z are 
points in a submersion 

w :  x4z,  
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with x ( x )  = z. We let Y = Y,(,) be a fiber, with the natural injection 
j :  Y -+ X ,  and we let y E Y, x = j ( y ) .  Then (1) is the exact sequence of 
tangent spaces 

0 -+ TyY -+ T,X + T,(,)Z + 0.  

Let R, o be volume forms on X ,  2 respectively. For each y E X there is a 
volume form qy on TyY such that 

Lemma 6.2. Let x :  X -+ Z be a submersion. Suppose X is orientable. 
Then every fiber Y, is orientable. If R and o are volume forms on X ,  Z 
respectively, then there exists a p-form i j  on X whose restriction to each 
fiber Y,b) as above is the form 7, such that Ry = vy 0 conk). For any 
such i j ,  we have 

R = ( i A 0 .  

ProoJ: The orientability comes from the existence of the family of 
forms {vy } ,  which is verified to be C“O in terms of coordinates. The local 
existence of i j  is immediate. The global existence follows by using a 
partition of unity. 

A p-form on X whose restriction to all fibers is 0 will be called fiber 
null. Two p-forms Y 1, “2 are thus called fiber equivalent if their difference 
‘PI - ‘P2 is fiber null. Two forms (il and i j2  which restrict to the same 
forms on the fibers in Lemma 6.2 are thus fiber equivalent. 

Riemannian submersions 

Next we deal with the Riemannian case. We start with punctual remarks. 
Let Ty, T,, T, be finite dimensional real vector spaces, with the exact 
sequence 

0 -+ Ty + T, -+ T, + 0.  

We suppose in addition that T,, T, have positive definite scalar products, 
and that T, -+ T, is metric, in the sense that it induces a linear isometry 
Ty’ T,. 

Lemma 6.3. Under the above assumptions, let R, and R, be metric 
volume forms on T,  and T, (so they determine an orientation). Then one 
of the possible (up to sign) metric volume forms RY on Ty satisfies the 
relation 

0, = ny 0 n,. 
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Prooj Let { e l , .  . . , e p }  be an orthonormal basis for Ty, and 
{e,+l,. . . , e,+,} an orthonormal basis for T i .  Together they form an 
orthonormal basis for T,. The metric dual bases { e : , .  . . , e ; }  and 
{e,V,, , . . . , e;+,} form an orthonormal basis of the dual space, and with the 
appropriate orientation of { e l ,  . . . , e,}, 

Q x = e ; (  A ... A ep” A A ... ep”+q- 

Note that ei+,,  . . . , e;+, are the images of an orthonormal basis of T; 
under the natural injection 

O +  T,” + T,”. 

Then the lemma is an immediate consequence of the definitions. 

The lemma applies to the case of a Riemannian submersion 

x :  x + z .  
If y E X ,  we apply the lemma by putting Ty = TyY,  T, = T y X ,  and 
T, = T,b)Z. Then we get: 

Proposition 6.4. Let x :  X + Z be a Riemannian submersion. Suppose 
X ,  Z oriented, so Y, is oriented for each z. Let Rx, RZ be the 
Riemannian volume forms on X, Z respectively. Then for each z E Z ,  the 
Riemannian volume form RY, (with the determined orientation of Y,) 
satisfies 

~ x b >  = nYzb) €3 RZ(Z>. 

The relation of Proposition 6.4 is punctual. However, the individual 
volume forms on the fibers locally are the restriction of a form on an open 
set of X itself. Indeed, if { t l , .  . . , t,} is an orthonormal frame of vertical 
vector fields on X, suitably oriented, then 

n y = t ; (  A * * -  A tp”. 

Then R y  restricted to each fiber Y, is the Riemannian volume form on 
Y,. We call R y  the vertical metric volume form, which is independent of 
the choice of vertical orthonormal frame, with the orientation determined 
by that of X and Z. In general, by a vertical volume form we mean a form 
equal to a positive function times R y ,  or equivalently, a form which can 
be expressed locally as a wedge product ti A . . . A t;, where {tl , . . . , t,} 
is a suitably oriented orthogonal frame of vertical vector fields, and {rl, . . . , ti} is the dual frame (in the sense of dual basis of vector spaces) 
vanishing on horizontal fields. Any two such forms differ by a function 
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nowhere 0. Note that if {tl,.  . . , t,} is a vertical orthonormal frame, then 
&" = <: for i =  I ,  . . . ,p .  

Let Y be a p-form, and let v be a horizontal vector field. We define Y 
to be v-constant over the fibers if the Lie derivative YvY is fiber null, i.e. 
restricted to every fiber is 0. An important example of this condition when 
v = vx is lifted from a vector field on Z will be given in $8. For now, we 
have a general result. 

Proposition 6.5. Let K: X -+ Z be a Riemannian submersion. Let Rx 
and RZ be Riemannian volume forms on X ,  Z respectively. Let v be a 
vector field on Z, and vx its horizontal I$ to X. Abbreviate divx for 
divn,, and similarly for Z. Let R y  be the vertical metric volume form, 
and let p be the function such that 

( Y v , ~ ~ Y )  A RZ = pnx. 
Then 

divx(vx) = z*divZ(v) + p. 

If one can write R y  = (n*6)Y with some positive function 6, and a form 
Y which is vx-constant over the fibers, then 

divx(vx) = K*divz(v) + K * ( v .  log 6) .  

ProoJ: The first formula comes from definition DIV 2 of the divergence, 
and the fact that the Lie derivative is a derivation for the wedge product, 
by Chapter V, Proposition 5.3, LIE 2, namely 

The second condition is then immediate, because Yv,Y is a form 6, in the 
notation of Lemma 6.1. This concludes the proof. 

Remark. One doesn't really need to assume that the function 6 is 
positive, but then one must put the absolute value sign in the formula, 
with log 161. In any case, if a function 6 exists, positive or negative, one 
can change the orientation to make it positive. 

Next we give a result of Wu, tying together the trace of the second 
fundamental form, and the volume forms on fibers of the Riemannian 
submersion. This result will not be used later, but is included for its 
intrinsic interest. It shows directly how the divergence is related to the 
second fundamental form. 
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Theorem 6.6 (Wu). Let K: X + Z be a Riemannian submersion, with X, 
Z connected. Let R y  be the vertical metric volume form. Let v be a 
horizontal vector field. Let h12 be the second fundamental form. Then: 

(a) 
(b) 

The restriction of 9 J 2 y  + (tr h12, v),Ry to each fiber is 0. 
Let Y be a vertical volume form on X, v-constant over the fibers, 
and 6 the function on X defined by R y  = 6Y. Then 

v (log 6) = -(tr h12, v),. 

In particular, if &or denotes the horizontal component of a vector field t, 
and 'P is v-constant over the fibers for all v, then 

(gr log 6)hor = -tr h12. 

Before going into the proof proper, we make some remarks concerning 
an operator which has already come up, but which now intervenes in a 
more systematic way. 

Let X be a Riemannian manifold, with metric covariant derivative D. 
For any vector field q,  we define 

Since [v, t] = D,,t - Dyv, it follows immediately that for any vector fields 
<, q we have 

We can extend A, to a derivation on tensor fields, especially multilinear 
forms, since both the Lie and covariant derivatives extend, as in Chapters 
V, Proposition 5.3, LIE 2; and Chapter VIII, $1, C O W  4. 

Now we come to the proof proper. The theorem is local, so we argue 
locally. Let {tl, . . . , &,} be an orthonormal frame of vertical vector fields, 
and { V I ,  . . . , vq} an orthonormal frame of horizontal ones. We let 

be the dual frame (in the sense of dual bases of algebra). Let $j be the 
functions and pi the horizontal field such that 
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Thus pi is a h e a r  combination of v1, . . . , vq. Note that J j  = -Ai, because 

fii = (Dvti, 

= -5j. 

= V .  (ti, t j ) g  - (ti, Dvtj)g 

= -(ti, Dvtj)g because (ti, t,)g = dg 

In particular, 

(2) f i  = O  and Cfi = 0. 

We now claim that 

(3) 

where ,uI is a linear combination of v;, . . . , vi. 

a t (  = c pjjc; + pi. 
Then 

= (Dvt i ) ( t j )  = - t ( ( o v t j >  = 

thus proving the claim. 
Third, we claim that 

(4) 

where A; is a linear combination of vi, . . . , vi. 

To see this, write 

thus proving the claim. In particular, 

We now prove Theorem 6.6(a). We have, using (3), (4): 
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The restriction of the second term to the fibers is 0 because each vi, . . . , v i  
restricts to 0 on the fibers, and pi, I (  are linear combinations of these 
horizontal dual fields. This concludes the proof of (a). 

Next suppose that Y is vertical and v-constant over the fibers. Let 
Ry = dY. Then 

(7) 9 " a Y  = (v.d)Y +B(9"Y) 

= v . (log d)Ry + d9"Y. 

From (6) and (7) we conclude that the restriction of the function 
v. (log6) + (tr h12, v ) ~  to each fiber is 0, whence it is the zero function, 
thus proving (b). The last assertion is immediate from the definition of the 
gradient, thus concluding the proof. 

XV, 97. VOLUME FORMS ON LIE GROUPS AND 
HOMOGENEOUS SPACES 

Let G be a finite dimensional Lie group of dimension n, with unit element 
e. We denote L,, Ra left and right translations by an element u E G, so 

La(x) = ax and R,(x) = xu. 

For an element x E G, we define conjugation c, or c(x) by 

c,(y) = xyx-' so that c,: G -+ G is a Lie group automorphism. 

Note that c, = L, o R i l  = R;* o L, (left and right translation commute). 
We define the Lie conjugation CL;~(X) by an element x E G by the functorial 
effect, that is 

cLie(x) = Tcx(e), 

so I C L ; ~ ( X ) (  is the Jacobian of conjugation at the origin. 

Remark. Suppose G is given as a Lie subgroup of GLN(R) for some 
N .  Then T,GLN(R) = MatN(R) is the space of N x N matrices, and TeG 
is a subspace of MatN(R). Then it is immediate that for g E G, 

is actually conjugation in the ordinary sense of the word. Hence it does no 
harm to think of CLje(X) as such a conjugation. In any case, the map 

x ++ CLie (x) 

is a representation of G in the group of linear automorphisms of TeG = 
Lie( G). This representation will be called the conjugation representation 
of G. 
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Proposition 7.1. The exponential commutes with conjugation, namely for 
u E TeG, we have 

Proof: This is actually a special case of the general fact that if 
f :  G --+ G' is a Lie group homomorphism, and u E TeG, then 

We apply this formula to f = c,. As to the general formula, one notes 
that a(t) = f (exp(tu)) defines a 1-parameter subgroup a of G', and that 
a'(0) = Tf(e)u by the chain rule, so a(t) = exp(Tf(e)tu) for all t, con- 
cluding the proof. 

Left and right translations induce maps on vector fields and forms. 
Note that on contravariant objects such as a function q, we have 

because we want q ( x )  = (Laq)(Lax), and similarly with &. 

p-form w on Y we can take its pull back f*w given by the formula 
Let f :  X --+ Y be a differential morphism of manifolds. For each 

Iff is a differential isomorphism, and R is a volume form on Y, then f *R 
is a volume form on X, and we also have the direct image f, such that 
f;' = f *. We apply these to the two translations La and Ra. 

Suppose R is a volume form on G. For simplicity of notation we omit 
the star, and write the transformation formula as 

(LaR)ax(LaV) = ax( V )  where V E AnTx = det T,. 

Of course by LaV we mean (det TL,(x))(V), where 

is the induced linear map on A"T,. 
Suppose R is a volume form on G, invariant under left translation, that 

is LaR = R for all a E G. Then R is uniquely determined by its value at 
the origin e, that is by Re, and the form rZ, at a point x is obtained by 
translating rZ, to x via L,. Conversely, given a volume form on TeG, i.e. 
a non-singular form of maximal degree on the tangent space at the origin, 
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we can translate it to obtain an invariant volume form on G. Hence the 
left invariant volume forms on G constitute the non-zero elements of a 
1 -dimensional vector space over R. 

Let R be a left invariant volume form on G. Then Ran is also left 
invariant, and hence there exists a real number x(a) # 0 such that 

&R = x(a)Q. 

The number x(a) does not depend on R, and is immediately seen to be a 
continuous homomorphism x :  G t R* (multiplicative group of non-zero 
elements). If G is connected, then x(G) c R+. We say that G is strictly 
unimodular if x = 1, that is x is trivial, and unimodular if 1x1 is trivial, this 
corresponding to the standard terminology. A compact group is unimodu- 
lar. For a connected group, the two notions of strictly unimodular and 
unimodular coincide. 

Proposition 7.2. We have x(a) = det cLie(a) for a E G. 

ProoJ: We use ca = La o R;', and abbreviate caV = det CLie(a) V. Then 
for V # 0, 

Cancelling R( V )  concludes the proof of the proposition. 

Proposition 7.3. Let R be a left inuariant volume form on G. Then XR is 
right invariant, i.e. is a right Haar form. 

Proof: We have 

thus proving the proposition. 

Let X be a homogeneous space for G. For each X E X ,  the isotropy 
group G, is the closed subgroup of elements g E G such that gx = x. Thus 
G, is a Lie subgroup. We have a G-homogeneous space isomorphism 

GIGx 3 X given by g H gx. 

If x, y are two elements of X,  and a E G, ax = y, then 

G, = aG,a-'. 
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In other words, the isotropy groups of the two points are conjugate in a 
natural way. 

Let us look more closely at the standard model X = G/H for a homo- 
geneous space, with a Lie subgroup H. We denote by eG, e H ,  and eG/H 

or e (G/H)  the unit element in G, H and G/H respectively. By definition, 
the unit element of G/H is the coset eH of H in the space of cosets. 
Conjugation by an element g E G induces a differential homogeneous space 
isomorphism 

C g :  G/H + G/c,(H) = G/gHg-' 

Thus we have the tangent map Tcg(eGlH), which is a linear isomorphism 
on the tangent space at eGIH. If h E H ,  then 

TCh(eG/H): Te(G/H) 4 Te(G/H) 

is a linear automorphism of the tangent space of G/H at its natural 
origin. Of course, we also have conjugation both on H and on G, that is 

We may then take the determinant of the previous three linear maps, 
namely detGlH, detG and detH, although we shall omit the subscript from 
det, since the reference to the ambient space is made clear by the points at 
which the maps are evaluated, that is eG/H, eG and eH respectively. 

Proposition 7.4. For h E H ,  we have 

More generally, let R: X + Z be a submersion, with a diferential 
automorphism f :  X + X commuting with A. Let y E X be ajxedpoint 
o f f ;  and Y the fiber containing y. Then f = f x  induces diferential 
automorphisms f y  and f z  of the jber  and of Z ;  and 

Proof: Let Ty = T y Y ,  T, = TyX and T, = T+)Z, so we have the exact 
sequence 

0 --+ Ty + T, + T, + 0. 

The map f induces tangent linear maps on each of those spaces, and we 
denote these by L,, L,, Lz, so 

L x  = T~x(Y), Ly = T ~ Y ( Y )  and Lz = Tfi(z)* 
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If V is a finite dimensional vector space of dimension p ,  we let det V = 
Ap V be its maximal exterior product with itself. Similarly to Lemma 6.1, 
we have a natural isomorphism 

det T, = (det Ty)  8 (det Tz) .  

Concretely, if { V I ,  . . . , u p }  is a basis of Ty and { W I ,  . . . , wq} is a basis of T,, 
with representatives {GI, . . . , Gq} in T,, then 

is a basis of det T, = Ap+'T,. The scaling effect of det L, is then equal to 
the product of the scaling effect on each factor, (det Ly)(det L,), which 
proves the general formula. The special case first stated in Proposition 7.4 
occurs with f = Ch (h  E H ) .  This concludes the proof. 

We define GIH to be strictly unimodular if xG =xH on H. If X is a 
homogeneous space for G, and H is one of the isotropy groups, so X is 
G-homogeneous space isomorphic to G/H,  we say that X is strictly 
unimodular if G/H is strictly unimodular. We make the similar definition 
for GIH being unimodular, using 1x1 instead of x. The next result gives 
the first significant application of strict modularity. 

Proposition 7.5. Let X be a homogeneous space for G. If X is strictly 
unimodular, then there exists a left G-invariant volume form on X ,  unique 
up to a constant multiple. 

Proof: We want to define the invariant form on GIH by translating a 
given volume form we on Te(G/H) .  On G / H ,  the left translation Lh is 
induced by conjugation ch on G. By Proposition 7.4 and the hypothesis, 
we have 

det TLh(eG/H) = det TCh(eG/H) = 1. 

Hence Lhwe(G/H) = w,(G/H), that is we(G/H) is invariant under transla- 
tions by elements of H. Then for any g E G we d e h e  

The value on the right is independent of the coset representative g ,  and it 
is then clear that translation yields the desired G-invariant volume form 
on G/H.  The uniqueness up to a constant factor follows because the 
invariant forms are determined linearly from their values at the origin, and 
the forms at the origin constitute a 1-dimensional space. This concludes 
the proof. 
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Remark. If both G and H are unimodular, then so is G / H .  If H is 
compact, then H is unimodular. If G is unimodular in addition, so is 
G / H .  The same goes for strict unimodularity. When one applies the 
above considerations to Haar measures and integration, what matters is 
modularity, not the strict modularity. Cf. Chapter XVI, Theorem 4.3, and 
Chapter XVI, $5 for a derivation of some of these results in the context of 
Haar measure. Of course, the existence of an invariant volume form on 
Lie groups was known at the end of nineteenth century. At the time, into 
the twentieth century, it was a problem whether an invariant measure 
could be found on any locally compact group, and this problem was 
solved by Haar, whence the name Haar measure. In the next section, we 
shall accordingly define Haar forms, to fit into the psychology which has 
developed since Haar’s result, even though invariant forms were known 
long before this result. 

I found dealing with the Haar forms rather than Haar measure to 
provide additional flexibility. Then one has to make a distinction between 
modularity and strict modularity, but it isn’t at all serious for local results. 
In all examples I know, the number of components is finite, and local 
results can be reduced to the case when the groups are connected, 
sometimes by passing to finite covering. 

XV, 58. HOMOGENEOUSLY FIBERED SUBMERSIONS 

In [He 721, Helgason obtained a formula for the Laplacian in a Riemannin 
submersion admitting horizontal metric sections. The result was repro- 
duced in his book [He 841, Chapter 11, Theorem 3.7, and concerns the case 
when there is a homogeneity condition on the fibers of the submersion. 
The present section developed from the attempt by Wu and myself to 
understand Helgason’s situation better, from the point of view of local 
Riemannian geometry. The results of $6 were developed with this goal in 
mind, and will thus have their first application here, together with an 
important fact due to Wu. 

We start without a Riemannian structure. For the first two basic 
properties, we don’t need finite dimensionality. So let X ,  Z be connected 
possibly injinite dimensional manifolds, and let 

n: x + z  

be a submersion. We shall say that the submersion is homogeneously 
fibered if it satisfies the following condition. 

HF Condition. There is a possibly inJnite dimensional Lie group H 
acting as a group of differential automorphisms on X ,  preserving the 
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jibers, such that at each point x, we have a differential isomorphism 

of H/H,-principal homogeneous space given by h ++ hx. 

Note that a submersion always admits local differential sections, but in 
general these do not need to be metric. Furthermore, the submersion need 
not admit a global section. The next proposition applies to local sections 
when the need arises, but we shall not use it in this book. 

Proposition 8.1. Suppose there is a section g: Z + X of a homoge- 
neously jibered submersion. Define 

y :  H x 2 + X by y(h, Z) = ho(z).  

Then y is a submersion. 

ProoJ The tangent map Ty(h, z )  is a surjective homomorphism of 
tangent spaces at each point. In fact, if we let yh(o(z)) = h ( m )  = y(h, z), 
then Tyb(o(z)) gives a linear isomorphism of the tangent spaces to the 
fiber. On the other hand, To gives a linear isomorphism of the tangent 
space T,Z to a subspace of T & Y ,  and we have the direct sum decom- 
position at the point x = a(z), 

This concludes the proof. 

Suppose in addition that K :  X + Z is a Riemannian submersion, and 
H acts isometrically. We then say that n: X + 2 is a metrically homo- 
geneously fibered submersion. We suppose this is the case from now on. An 
immediate question which arises about the isotropy groups H, is the extent 
to which they can vary (up to conjugation). I owe the next key result to 
wu. 

Theorem 8.2 (Wu). Let K: X + Z be a metrically homogeneously 
jibered submersion. For any two points x, y E X ,  the isotropy groups H,, 
H, are conjugate in H .  In fact, let x,  y be points of X which can be 
joined by the horizontal lijit of a curve in Z .  Then Hx = Hy, and the flow 
of the horizontal lijit induces an H-homogeneous space isomorphism 
between the jibers at x and at y .  

Prooj We recall that the horizontal lift was defined in Chapter XIV, 
$3. Suppose fist that x, y can be joined by a horizontal lift A .  Let 
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h E H,. Since H acts isometrically on X, h o A is the unique horizontal lift 
from hx = x to hy. But h o A has the same initial conditions as A ,  and so 
coincides with A by the uniqueness of solutions of differential equations. 
Hence hy = y ,  and h E Hy. The reverse inclusion Hy c H, follows by 
symmetry, so H, = Hy. Next, for arbitrary points x, y E X ,  consider any 
curve in 2 between X ( X )  and ~ ( y ) .  Then the horizontal lift of this curve in 
X joins x to a point y’ in the same fiber as y ,  and the isotropy groups of y 
and y’ are conjugate. Finally, let F be the flow of horizontal lifts, that is 
F,(x) = A,(t) ,  where A ,  is the horizontal lift of a curve with initial 
condition ~ ( x )  on 2. Then t H F,(hx) and t H hA,(t) are horizontal lifts 
with the same initial conditions, and so are equal. This concludes the 
proof. 

We now assume jinite dimensionality, so we have volume forms. In 
addition, we assume that the jibers are strictly unimodular, i.e. H / H x  is 
strictly unimodular for all x, in which case we say that the homogeneous 
jibration is strictly unimodular. 

We then select a fixed Haar form on one of the coset spaces H / H o  with 
one of the isotropy groups. Then conjugation transforms this Haar form 
to a Haar form HaarHIHx for all X E  X .  

Let Y, be a fiber of the submersion, with z = n(x) ,  so we obtain a 
homogeneous space isomorphism H / H x  3 Y, = Yz(,]. Selecting two 
different points in the fiber above z give rise to different isomorphisms, but 
the unimodularity condition implies that the Haar form on H / H x  corre- 
sponds to a Haar form on Y, independent of the choice of point x in the 
fiber. We denote this Haar form by Haaryz. 

Let OX,  Rz be the Riemannian volume forms on X (resp. Z ) .  Then 
there is a function 6 on 2 such that for each z,  and y~ Y, we have 

It is immediate that 6 is Cm (say from a local coordinate representation). 
We call 6 the Riemannian Haar density. The Haar form Y on X is defined 
to be the p-form ( p  = fiber dimension) whose restriction to each fiber is 
the Haar form as above, and which is 0 on decomposable elements 
containing a horizontal field. Equivalently, let {tl, . . . , l,,} be a frame of 
vertical fields on some open subset of X, and { p l , .  . . ,pq}  a frame of 
horizontal fields. Then there exists a function q such that with the dual 
frame {ti,. . . , tj, pi,. . . ,pi} we have 

and the restriction of Y to each fiber is the Haar form on the fiber. Thus 
in terms of the natural basis for p-forms arising from a choice of vector 
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field frames, the Haar form has only a vertical component. If we denote 
by rl, the Haar form on Y,, then in the notation of $6, we see that Y is 
one of the possible choices for f .  Any other choice when expressed as a 
linear combination of decomposable p-forms would contain some factor pj 
in each term other than the above expression for Y. Such terms restrict to 
0 on the fibers. 

Recall that if v is a vector field on Z,  we let vx be its unique horizontal 
lift in X. 

Theorem 8.3. Let II: X --f 2 be a metrically homogeneously jibered 
strictly unimodular submersion. Let v be a vector field on Z .  Then the 
Haar form Y is vx-constant over the fibers. I f S  is the Riemannian Haar 
density, then 

divX(vx) = z* divz(v) +n*(v.logd). 

Proof Let a be an integral curve of v in 2 and let A be its horizontal 
lift, so vx restricts to A’ on the curve. By Theorem 8.2, the flow Ft gives a 
homogeneous space isomorphism Y,(o) .--* Ya(t) of the fibers. Let Y,!,). be 
the Haar form restricted to the fiber. By the unimodularity condition, 
F:Ya(t) = Ya(o), which is constant. We now use frames as in the remarks 
preceding the theorem. In taking F:(Y), we note that each term F;(l() 
may have a horizontal component, so that in a neighborhood (in X) of a 
point of the fiber Y,(o), 

where ar contains a horizontal factor. The restriction of Qr to the fiber 
Y,(o) is 0, so the restriction of YVxY to the fiber Y,(o) is 0. Hence Y is VX- 
constant over the fibers. We can then apply Proposition 6.5 to conclude 
the proof. 

Theorem 8.4 (Helgason). Let X :  X -+ Z be a Riemannian submersion 
metrically homogeneously jibered, and unimodular. Let 6 be the Rieman- 
nian Haar density. Let Ax, Az be the Laplacians. Then for a function t,b 
on Z ,  we have 

ProoJ: All the work has been done, and the statement merely puts 
together Proposition 6.5 via Theorem 8.3, and the dehition of the 
Laplacian as minus the divergence of the gradient. 

Remark. Actually, Theorem 8.4 as stated above somewhat refmes 
Helgason’s original statement. In the original paper [He 721 the isotropy 
groups are compact in Theorem 3.2. Helgason normalizes the Haar 
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measures on them to have total measure 1, and from a fixed Haar 
measure on H, he can then normalize the measures on the homo- 
geneous spaces H / H x  with varying x. Here, we are able to use another 
normalization which stems from Wu’s theorem that all the isotropy groups 
are in fact conjugate. The compactness condition is relaxed in Theorem 
3.3, but other conditions intervene. 

In addition, Helgason assumed the existence of local horizontal sec- 
tions. He gave a semiglobal proof for his theorem, using the symmetry of 
the Laplace operator vis-a-vis the scalar product defined by integration. 
Helgason’s argument is very nice, but it is completely bypassed here with a 
direct analysis based on local differential geometric considerations. 

Finally, the minus sign differs from Helgason because he uses the 
negative Laplacian and we use the positive Laplacian. 

Appendix. Direct Image of Differential Operators 

In the preceding chapter and the present chapter we have been principally 
concerned with the behavior of differential geometric invariants under 
immersions and submersions, especially the Laplacian which we analyzed 
directly. It may be instructive to the reader to see how a somewhat more 
general object behaves, namely an arbitrary differential operator, which we 
now discuss briefly. 

Let X be a finite dimensional manifold. By a differential operator on X 
we mean a linear map on the space of Cm functions on X ,  

D: Fu(X) -+ Fu(X) 

such that given a point in X ,  there is a chart U at that point with 
coordinates (x) = (XI,. . . , x,,) such that in terms of these coordinates, D 
can be written in the form 

with coefficient functions qn which are C“O, and the sum is taken over a 
finite number of n-tuples (j) = ( j l ,  . . . ,jn) of integers 2 0. Iff:  U -+ V is 
a differential isomorphism, so a change of charts, then it is immediately 
verified from the chain rule that D has a similar expression DV on V. 
Furthermore, at a given point a in U, let 

, T,,) = q(i) (a)  Tf * . . T i .  
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We call P the polynomiai representing D in the chart at a. Then from the 
chain rule, it is immediate that the polynomial representing D in V at f ( a )  
has degree at most equal to the degree of the polynomial representing D 
in U at a. Hence these degrees are equal, and define the degree of the 
differential operator at a point (independently of the chart). 

We denote the set of differential operators on X by DO(X). It is clear 
that DO(X) is an R-algebra. 

Suppose given a submanifold Y of X and an open subset S of X 
containing Y, together with a submersion 

n: s - Y  

which is the identity on Y. Thus locally in a chart, n is a projection and Y 
itself is a section of the submersion. Given these data, we define the direct 
image 

n,: DO(X) + DO( Y )  

as follows. Given a function f on Y, we consider the composite function 
f on, apply D, and restrict the resulting function to Y, so by definition 

the subscript denoting restriction to Y. The operator n,D is a linear 
operator on functions. It is in fact a differential operator. One sees this 
by picking a chart such that in this chart, n is a projection 

n: wx V +  V ,  

with V a chart in Y. Let the coordinates be (w, y )  with y E V and w E W. 
Then D is represented in the chart W x V as a sum 

where r = dim Y, ai = a/a,,,, and E(y ,  w )  is a differential operator in the 
left ideal generated by a/&, , . . . , a/a, (s = dim W ) .  For any function 
f = f ( y )  on V, the function f o  a given by (f o n)(w, y )  = f ( y )  is 
annihilated by E(w, y) .  If b E W and the charts are chosen such that the 
section Y is (b, Y) in the chart, then the above sum decomposition for D 
shows that 

so z,D is a differential operator. 

[He 84a], Chapter 11, $5. 
We have two basic examples which arise in practice, for instance 
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Example 1. Let X be a Riemannian manifold, and Y a submanifold 

with normal bundle NY. Let S be a tubular neighborhood of Y obtained 
from the exponential map on a neighborhood of the zero section, which 
we identify with Y. Let n: S -t Y be the orthogonal projection, which 
projects a point to Y along the normal geodesic in S. We can always pick 
the neighborhood of the zero section in NY so that there is a unique such 
normal geodesic locally. Then we are in the situation discussed above, and 
the direct image n,: DO(X) -t DO( Y )  is called the normal projection of 
differential operators on Y. 

Example 2. Let n: X -, 2 be a homogeneously fibered submersion, as 
defined at the beginning of $8. By Proposition 8.1, we can always find 
locally a section in the neighborhood of a given point of 2. Then the map 
y defined in Proposition 8.1, is a submersion, and we may identify Y = 
cr(2) with (e ,  2) (letting e be the unit element of H ) .  We cannot define 

n*: DO(X) -+ DO(2). 

in general, but we can define n, in a natural way on a subset of DO(X). 
Indeed, an element of the group H acting on X also acts on any object 
functorially associated with X ,  especially on DO(X). By definition, given 
hE H, let [h]D for DEDO(X) be defined by 

(([h]D) f )  = (D(f OLh)) Lk’ 

where Lh is left translation by h, so that for .xEX, 

We say that D is H-invariant if [h]D = D for all h E H .  The set of H- 
invariant differential operators is a subalgebra of DO(X), which we denote 
by DO(X)H.  We can then define 

n*: DO(X)H + DO(2) 

as follows. For a function, f on 2, we let 

(n*D)f = D(f 0 .)z. 

This means that D( f o n) is constant on the fibers of n, that is D(f o n) 
is an H-invariant function, which therefore factors through a function on 
2. We denote this function by inserting the subscript 2. To verify that 
D ( f  o n) is constant on fibers, put F = f o n, so that F is a function on X ,  
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constant on fibers. For h E H, let [h]F = F o L;’. Then 

because we assumed D E D O ( X ) H .  Thus D( f o n) is constant on orbits of 
H. Hence (n,D) f = D( f o n), defines a linear map DO(X)H -t DO(2). 
This map is a differential operator. One can see this either as a special 
case of the general discussion, using the section of Proposition 8.1, or one 
can simply rewrite the local formula for the differential operator on the 
submersion, and use the H-invariance to see that the coefficient functions 
q j ) ( w ,  x )  are H-invariant, that is q j ) ( h w ,  x )  = q j ) ( w ,  x )  for h E H and 
w E W as before. 

There is even a more jazzed up way of seeing that a linear operator on 
the space of functions is a differential operator, namely: 

Theorem (Peetre-Carleson). Let X be a manifold, and let 

L: Fu(X) -+ Fu(X) 

be a linear map which decreases supports, that is 

SUPP(Lf 1 = SUPP(f 1 
for all functions f E Fu(X). Then L is a diferential operator. 

The proof takes about two pages. Cf. for instance p a r  681, whose 
proof is reproduced in Helgason [He 841, Chapter 11, Theorem 1.4. See 
also [GHL 87/93], pp. 40 and 191, and further references therein. 



CHAPTER XVI 

Integration of Differential 
Forms 

The material of this chapter is also contained in my book on real analysis 
[La 931, but it may be useful to the reader to have it also here in a rather 
self contained way, based only on standard properties of integration in 
Euclidean space. 

Throughout this chapter, p is Lebesgue measure on R". 
If A is a subset of R", we write Y ' ( A )  instead of Y ' ( A ,  p, C ) .  

All manifolds are assumed finite dimensional. 
They may have a boundary. 

XVI, 51. SETS OF MEASURE 0 

We recall that a set has measure 0 in R" if and only if, given E, there 
exists a covering of the set by a sequence of rectangles { R j }  such that 
C p ( R , )  < E .  We denote by Rj the closed rectangles, and we may always 
assume that the interiors R; cover the set, at the cost of increasing the 
lengths of the sides of our rectangles very slightly (an 42" argument). We 
shall prove here some criteria for a set to have measure 0. We leave it to 
the reader to verify that instead of rectangles, we could have used cubes in 
our characterization of a set of a measure 0 (a cube being a rectangle all 
of whose sides have the same length). 

We recall that a map f satisfies a Lipschib: condition on a set A if there 
exists a number C such that 

A A O  
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for all x, y E A.  Any C' map f satisfies locally at each point a Lipschitz 
condition, because its derivative is bounded in a neighborhood of each 
point, and we can then use the mean value estimate, 

I f ( X ) - f ( Y ) I  s lx-YlsuPlf'(z)l, 

the sup being taken for z on the segment between x and y .  We can take 
the neighborhood of the point to be a ball, say, so that the segment 
between any two points is contained in the neighborhood. 

Lemma 1.1. Let A have measure 0 in R" and let f :  A -+ R" satisfy a 
Lipschitz condition. Then f ( A )  has measure 0. 

ProoJ Let C be a Lipschitz constant for$ Let {R,} be a sequence of 
cubes covering A such that C p ( R j )  < E. Let rj be the length of the side of 
Rj. Then for each j we see that f ( A  n $) is contained in a cube R,! whose 
sides have length 5 2Crj. Hence 

Our lemma follows. 

Lemma 1.2. Let U be open in R" and let f :  U -+ R" be a C' map. Let 
Z be a set of measure 0 in U. Then f ( Z )  has measure 0. 

ProoJ For each x E U there exists a rectangle R, contained in U such 
that the family {R:}  of interiors covers Z .  Since U is separable, there 
exists a denumerable subfamily covering 2, say {R,}. It suffices to prove 
that f ( Z n  R,) has measure 0 for each j. But f satisfies a Lipschitz 
condition on Rj since Rj is compact and f '  is bounded on Rj, being 
continuous. Our lemma follows from Lemma 1.1. 

Lemma 1.3. Let A be a subset of R". Assume that m < n. Let 

f :  A + R "  

satisfy a Lipschitz condition. Then f ( A )  has measure 0. 

Prooj We view R" as embedded in R" on the space of the fist m 
coordinates. Then R" has measure 0 in R", so that A has also n- 
dimensional measure 0. Lemma 1.3 is therefore a consequence of Lemma 
1.1. 

Note. All three lemmas may be viewed as stating that certain para- 
metrized sets have measure 0. Lemma 1.3 shows that parametrizing a set 
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by strictly lower dimensional spaces always yields an image having 
measure 0. The other two lemmas deal with a map from one space into 
another of the same dimension. Observe that Lemma 1.3 would be false if 
f is only assumed to be continuous (Peano curves). 

The next theorem will be used later only in the proof of the residue 
theorem, but it is worthwhile inserting it at this point. 

Let f :  X -+ Y be a morphism of class Cp, with p 2 1, and assume 
throughout this section that X, Y are finite dimensional. A point x E X is 
called a critical point off iff is not a submersion at x.  This means that 

is not surjective, according to our differrential criterion for a submersion. 
Assume that a manifold X has a countable base for its charts. Then we 

can say that a set has measure 0 in X if its intersection with each chart has 
measure 0. 

Theorem 1.4 (Sard's Theorem). Let f :  X + Y be a Cm morphism of 
finite dimensional manifolds having a countable base. Let Z be the set of 
critical points o f f  in X. Then f (2) has measure 0 in Y. 

ProoJ (Due to DieudonnC.) By induction on the dimension n of X. 
The assertion is trivial if n = 0. Assume n 2 1. It will suffice to prove the 
theorem locally in the neighborhood of a point in 2. We may assume that 
X = U is open in R" and 

f :  U + R p  

can be expressed in terms of coordinate functions, 

We let us usual 

be a differential operator, and call la1 = a1 + - .  . + an its order. We let 
Zo = Z and for m 2 1 we let 2, be the set of points x E Z such that 

Dafi(x) = 0 

for all j = 1,. . . , p  and all a with 1 5 la( 5 m. We shall prove: 
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(1) For each m 2 0 the set f (Zm - Zm+l) has measure 0. 

(2) If m >= n/p ,  then f (Zm) has measure 0. 

This will obviously prove Sard's theorem. 

Proof of (1). Let a E Z ,  - Z m + l .  Suppose first that m = 0. Then for 
some coordinate function, say j = 1, and after a renumbering of the 
variables if necessary, we have 

obviously has an invertible derivative at x =  a, and hence is a local 
isomorphism at a. Considering f o g-' instead of f ,  we are reduced to the 
case where f is given by 

where h is the projection of f on the last p - 1 coordinates and is 
therefore a morphism h: V -, RP-' defined on some open V containing a. 
Then 

From this it is clear that x is a critical point for f if and only if x is a 
critical point for h, and it follows that h(Z n V) has measure 0 in RP-'. 
Since f ( Z )  is contained in R' x h(Z) ,  we conclude that f ( Z )  has measure 
0 in Rp as desired. 

Next suppose that m 2 1. Then for some a with la1 = m + 1, and say 
j =  1, we have 

D"fi(.> # 0. 

Again after a renumbering of the indices, we may write 

for some function 91, and we observe that g l ( x )  = 0 for all x E Zm, in a 
neighborhood of a. The map 

9: x H (g1(x), x2, .  . . , x * )  

is then a local isomorphism at a, say on an open set Vcontaining a, and 
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we see that 
g(Zm n V )  c (0) x R"-' 

We view g as a change of charts, and considering f o g-' instead of f, 
together with the invariance of critical points under changes of charts, we 
may view f as defined on an open subset of R"-'. We can then apply 
induction again to conclude the proof of our first assertion. 

Proof of (2). Again we work locally, and we may view f as defined on 
the closed n-cube of radius r centered at some point a. We denote this 
cube by C,(a). For m 2 n / p ,  it will suf€ice to prove that 

has measure 0. For large N, we cut up each side of the cube into N equal 
segments, thus obtaining a decomposition of the cube into N" small 
cubes. By Taylor's formula, if a small cube contains a critical point 
x E Z,, then for any point y of this small cube we have 

where K is a bound for the derivatives of f up to order m + 1, and we use 
the sup norm. Hence the image of 2, contained in small cube is itself 
contained in a cube whose radius is given by the right-hand side, and 
whose volume in RP is therefore bounded by 

We have at most N" such images to consider and we therefore see that 

is contained in a union of cubes in RP, the sum of whose volumes is 
bounded by 

Since m 2 n / p ,  we see that the right-hand side of this estimate behaves 
like 1/N as N becomes large, and hence that the union of the cubes in RP 
has arbitrarily small measure, thereby proving Sard's theorem. 

Sard's theorem is harder to prove in the case f is CP with finite p [29], 
but p = 00 already is quite useful. 
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XVI, 92. CHANGE OF VARIABLES FORMULA 

We first deal with the simplest of cases. We consider vectors U I ,  . . . , u, in 
R" and we define the block B spanned by these vectors to be the set of 
points 

t l U l  + . * + tnUn 

with 0 5 ti S 1. We say that the block is degenerate (in R") if the vectors 
u 1 , .  . . , Vn are linearly dependent. Otherwise, we say that the block is non- 
degenerate, or is a proper block in R". 

We see that a block in R2 is nothing but a parallelogram, and a block in 
R3 is nothing but a parallelepiped (when not degenerate). 

We shall sometimes use the word volume instead of measure when 
applied to blocks or their images under maps, for the sake of geometry. 

We denote by Vol(u1,. . . , Un) the volume of the block B spanned by 
u1, . . . , Un. We define the oriented volume 

taking the + sign if Det(u1,. . . ,on) > 0 and the - sign if 

Det(u1,. . . , Un) < 0. 

The determinant is viewed as the determinant of the matrix whose column 
vectors are UI,. . . ,on, in that order. 

We recall the following characterization of determinants. Suppose that 
we have a product 

which to each n-tuple of vectors associates a number, such that the product 
is multilinear, alternating, and such that 
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if el,. . . ,en are the unit vectors. Then this product is necessarily the 
determinant, that is, it is uniquely determined. “Alternating” means that if 
ui = u, for some i # j ,  then 

The uniqueness is easily proved, and we recall this short proof. We can 
write 

ui = ailel + . . . + ai,e, 

for suitable numbers ay, and then 

The sum is taken over all maps c: { 1,. . . , n} { 1,.  . . , n}, but because 
of the alternating property, whenever c is not a permutation the term 
corresponding to c is equal to 0. Hence the sum may be taken only over 
all permutations. Since 

where ~ ( c )  = 1 or -1 is a sign depending only on 0, it follows that the 
alternating product is completely determined by its value el A ... A en, 
and in particular is the determinant if this value is equal to 1. 

Proposition 2.1. We have 

Vol0(q,. . . ,u,)  = Det(u1,. . . ,u,)  

vol(u1,. . . ,u,) = IDet(u1,. . . , un)l. 
and 

ProoJ: If q ,  . . . , u, are linearly dependent, then the determinant is equal 
to 0, and the volume is also equal to 0, for instance by Lemma 1.3. So 
our formula holds in the case. It is clear that 

To show that Volo satisfies the characteristic properties of the determinant, 
all we have to do now is to show that it is linear in each variable, say the 

BVI, §21 CHANGE OF VARIABLES FORMULA 455 

first. In other words, we must prove 

(*> 

(**) 

Volo(cv, u 2 , .  . . , u,) = cvolo(u, u 2 , .  . . , I),> for c E R, 
V0l0(u + w, u 2 , .  . . , u,) = V0l0(u, u 2 , .  . . , u,) + V0l0(w, u2, .  . . , u,). 

As to the first assertion, suppose first that c is some positive integer k. Let 
B be the block spanned by u, u2 , .  . . , u,,. We may assume without loss of 
generality that u, 25,. . . , u,, are linearly independent (otherwise, the relation 
is obviously true, both sides being equal to 0). We verify at once from the 
delinition that if B(u, u 2 , .  . . , u,) denotes the block spanned by u, 02 , .  . . ,on 
then B(kq 29,. . . ,u , , )  is the union of the two sets 

which have only a set of measure 0 in common, as one verifies at once 
from the definitions. 

Therefore, we find that 

Vol(kv, v 2 , .  . . , u,) = Vol((k - 1 ) u ,  02 , .  . . ,on) + Vol(u, u2, .  . . , u,) 

= (k - 1) Vol(0, ~ 2 , .  . . ,u,) + Vol(u, ~ 2 , .  . . , u,) 
= k VOl(0, ~ 2 , .  . . , u,), 

as was to be shown. 
Now let 

for a positive integer k. Then applying what we have just proved shows 
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that 

Vol -u1, u 2 , .  . . (k 
Writing a positive rational number in the form m/k = m . l/k, we con- 
clude that the first relation holds when c is a positive rational number. If r 
is a positive real number, we find positive rational numbers c, c' such that 
c 6 r 2 c'. Since 

we conclude that 

c Vol(v, ~ 2 , .  . . , u") 5 Vol(ru, ~ 2 , .  . . , u") 5 C' VOl(0, ~ 2 , .  . . , un). 

Letting c, c' approach r as a limit, we conclude that for any real number 
r >= 0 we have 

Finally, we note that B(-u, u2 , .  . . , un) is the translation of 

by -u so that these two blocks have the same volume. This proves the 
first assertion. 

As for the second, we look at the geometry of the situation, which is 
made clear by the following picture in case u = U I ,  w = 02. 

The block spanned by u l ,  u 2 , .  . . consists of two "triangles" T, TI having 
only a set of measure zero in common. The block spanned by 01 + u2 and 
u2 consists of T' and the translation T + u2. It follows that these two 
blocks have the same volume. We conclude that for any number c, 

V0l0(Ul + cu2, u 2 , .  . . , U") = VOlO(Ul, u2 , .  . . ,on). 
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Indeed, if c = 0 this is obvious, and if c # 0 then 

c V0l0(Ul + cu2, 02)  = V0l0(Ol + cu2, cu2) 

= V0l0(Ul + cu2) = c V0l0(Ul, u2). 

We can then cancel c to get our conclusion. 
To prove the linearity of Volo with respect to its first variable, we may 

assume that u2, .  . . , un are linearly independent, otherwise both sides of 
(**) are equal to 0. Let u1 be so chosen that (01, . . . , u,,} is a basis of R". 
Then by induction, and what has been proved above, 

From this the linearity follows at once, and the theorem is proved. 

Corollary 2.2. Let S be the unit cube spanned by the unit vectors in R". 
Let A: R" + R" be a linear map. Then 

Vol A(S) = IDet(A)J. 

PruuJ If 01,. . . , u n  are the images of el,.  . . ,en under 1, then A(S) is the 
block spanned by u1, .  . . , u,,. If we represent A by the matrix A = (ag), 
then 

ui = + . . . + a,,ie,,, 

and hence Det(u1,. . . , un) = Det(A) = Det(A). This proves the corollary. 

Corollary 2.3. If R is any rectangle in R" and 1: R" --$ R" is a linear 
map, then 

Vol A(R) = IDet(A)lVol(R). 

ProoJ After a translation, we can assume that the rectangle is a block. 
If R = Al(S) where S is the unit cube, then 

A(R) = A 0  Al(S), 

whence by Corollary 2.2, 

Vol L(R) = IDet(1 o 1l)l = (Det(1) Det(11)I = IDet(1)I Vol(R). 
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The next theorem extends Corollary 2.3 to the more general case where 
the linear map 1 is replaced by an arbitrary C’-invertible map. The proof 
then consists of replacing the linear map by its derivative and estimat- 
ing the error thus introduced. For this purpose, we have the Jacobian 
determinant 

A f ( x )  = Det J f ( x )  = Det f ‘ ( x ) ,  

where J f ( x )  is the Jacobian matrix, and f ’ ( x )  is the derivative of the map 
f: U-,R”.  

Proposition 2.4. Let R be a rectangle in R“, contained in some open set 
U. Let f: U -+ R“ be a C’ map, which is C’-invertible on U. Then 

Proof: When f is linear, this is nothing b’ut Corollary 2.3 of the 
preceding theorem. We shall prove the general case by approximating f 
by its derivative. Let us first assume that R is a cube for simplicity. Given 
E ,  let P be a partition of R, obtained by dividing each side of R into N 
equal segments for large N .  Then R is partitioned into N” subcubes which 
we denote by Sj ( j  = 1, .  . . , N ” ) .  We let aj be the center of Sj. 

We have 
V O ~  Y ( R )  = C VOI f ( S j )  

i 

because the images f(q) have only sets of measure 0 in common. We 
investigate f ( S j )  for each j .  The derivative f’ is uniformly continuous on 
R. Given E ,  we assume that N has been taken so large that for x E Sj we 
have 

f (x)  = f (a j>  + J j ( X  - aj) + d x  - aj), 

where 1, = f ’ (a , )  and 

To determine Vol f(Sj) we must therefore investigate f ( S )  where S is a 
cube centered at the origin, and f has the form 

f ( 4  = Ax + d x ) ,  I&4l 5 H E .  

on the cube S.  (We have made suitable translations which don’t affect 
volumes.) We have 

I-’ 0 f ( x )  = x + A-’ 0 q ( x ) ,  
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so that 1-’ of is nearly the identity map. For some constant C, we have 
for x E S 

11-’ 0 q(x)l s CE. 

From the lemma after the proof of the inverse mapping theorem, we 
conclude that 1-’ o f ( S )  contains a cube of radius 

(1 - &)(radius S ) ,  

and trivial estimates show that 1-’ o f ( S )  is contained in a cube of radius 

(1  + CE)  (radius S) ,  

We apply 1 to these cubes, and determine their volumes. Putting indices j 
on everything, we h d  that 

JDet f’(aj)I Vol(q) - dlVol($) 

5 Vol f ( S j )  S lDet f’(aj)l Vol(q) + EC1Vol(5)) 

with some fixed constant C1. Summing over j and estimating lAfl, we see 
that our theorem follows at once. 

Remark. We assumed for simplicity that R was a cube. Actually, by 
changing the norm on each side, multiplying by a suitable constant, and 
taking the sup of the adjusting norms, we see that this involves no loss of 
generality. Alternatively, we can approximate a given rectangle by cubes. 

Corollary 2.5. I f g  is continuous on f ( R ) ,  then 

ProoJ The functions g and ( g o  f)lAfl are uniformly continuous on 
f ( R )  and R respectively. Let us take a partition of R and let {S j }  be the 
subrectangles of this partition. If 6 is the maximum length of the sides of 
the subrectangles of the partition, then f (S’)  is contained in a rectangle 
whose sides have length 5 C6 for some constant C. We have 

The sup and inf of g of f ( q )  differ only by E if 6 is taken sufficiently 
small. Using the theorem, applied to each Sj, and replacing g by its 



460 INTEGRATION OF DIFFERENTIAL FORMS W I ,  §21 

minimum m, and maximum Mj on S', we see that the corollary follows at 
once. 

Theorem 2.6 (Change of Variables Formula). Let U be open in R" and 
let f :  U -+ R" be a C' map, which is C' invertible on U. Let g be in 
Y ' ( f ( U ) ) .  Then ( g o  f ) lAf l  is in U ' ( U )  and we have 

Proof: Let R be a closed rectangle contained in U. We shall first prove 
that the restriction of (gof)lAfLfl to R is in Y ' ( R ) ,  and that the formula 
holds when U is replaced by R. We know that Cc( f ( U ) )  is L'-dense in 
Y' ( f  ( U ) ) ,  by [La 931, Theorem 3.1 of Chapter M. Hence there exists a 
sequence {gk} in C c ( f ( U ) )  which in Ll-convergent to g .  Using [La 931, 
Theorem 5.2 of Chapter VI, we may assume that {gk} converges pointwise 
to g except on a set 2 of measure 0 in f ( U ) .  By Lemma 1.2, we know 
that f - ' ( Z )  has measure 0. 

Let g; = ( g k  o f)lAfLfl. Each function g; is continuous on R. The 
sequence {g ; }  converges almost everywhere to ( g  o f ) lAf l  restricted to R. 
It is in fact an L'-Cauchy sequence in Y ' ( R ) .  To see this, we have by the 
result for rectangles and continuous functions (corollary of the preceding 
theorem) : 

r r 

so the Cauchy nature of the sequence { g ; }  is clear from that of {gk} .  It 
follows that the restriction of ( g o  f ) lAf l  to R is the L'-limit of {g;} ,  and 
is in Y ' ( R ) .  It also follows that the formula of the theorem holds for R, 
that is 

Jf(,) g dp = J, (9  0 f > l ~  dp  

when A = R. 
The theorem is now seen to hold for any measurable subset A of R, 

since f ( A )  is measurable, and since a function g in Y 1 ( f ( A ) )  can be 
extended to a function in 9' ( f ( R ) )  by giving it the value 0 outside f (A). 
From this it follows that the theorem holds if A is a finite union of 
rectangles contained in U. We can find a sequence of rectangles {Rm} 
contained in U whose union is equal to U, because U is separable. Taking 
the usual stepwise complementation, we can find a disjoint sequence of 
measurable sets 

Am = Rm - (R1 u ... v Rm-l) 
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whose union is U, and such that our theorem holds if A = Am. Let 

hm = Sf(,,,,) = gXf(Arn)  and h i  = (hm 0 f ) l A f l .  

Then C h ,  converges to g and C h k  converges to ( g o  f)lAffl. Our 
theorem follows from Corollary 5.13 of the dominated convergence 
theorem in [La 931. 

Note. In dealing with polar coordinates or the like, one sometimes 
meets a map f which is invertible except on a set of measure 0, e.g. the 
polar coordinate map. It is now trivial to recover a result covering this 
type of situation. 

Corollary 2.7. Let U be open in R" and let f :  U + R" be a C' map. 
Let A be a measurable subset of U such that the boundary of A has 
measure 0, and such that f is C' invertible on the interior of A .  Let g be 
in Y ' ( f ( A ) ) .  Then ( g o  f)LflAffl is in 5?'(A) and 

ProoJ: Let UO be the interior of A .  The sets f ( A )  and f ( U 0 )  differ 
only by a set of measure 0, namely f (dA).  Also the sets A,  Uo differ only 
by a set of measure 0. Consequently we can replace the domains of 
integration f ( A )  and A by f ( U 0 )  and UO, respectively. The theorem 
applies to conclude the proof of the corollary. 

XVI, 93. ORIENTATION 

Let U, V be open sets in half spaces of R" and let p: U + V be a C' 
isomorphism. We shall say that p is orientation preserving if the Jacobian 
determinant Ac(x)  is > 0, all x E U.  If the Jacobian determinant is 
negative, then we say that p is orientation reversing. 

Let X be a Cp manifold, p 2 1, and let { (Ui, pi)} be an atlas. We say 
that this atlas is oriented if all transition maps pj op;' are orientation 
preserving. Two atlases {(Ui, pi)} and {(Va, $ a ) }  are said to define the 
same orientation, or to be orientation equivalent, if their union is oriented. 
We can also define locally a chart (V, $) to be orientation compatible with 
the oriented atlas {( Ui, pi)} if all transition maps pi o p-' (defined 
whenever Ui n V is not empty) are orientation preserving. An orientation 
equivalence class of oriented atlases is said to define an oriented manifold, 
or to be an orientation of the manifold. It is a simple exercise to verify 
that if a connected manifold has an orientation, then it has two distinct 
orientations. 
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The standard examples of the Moebius strip or projective plane show 
that not all manifolds admit orientations. We shall now see that the 
boundary of an oriented manifold with boundary can be given a natural 
orientation. 

Let v,: U --+ R” be an oriented chart at a boundary point of X, such that: 

(1) if (XI,. . . , x,) are the local coordinates of the chart, then the 
boundary points correspond to those points in R” satisfying x1 = 0 ;  
and 
the points of U not in the boundary have coordinates satisfying 
x1 < 0. 

Then (x2,. . . , x,,) are the local coordinates for a chart of the boundary, 
namely the restriction of v, to ax n U, and the picture is as follows. 

(2) 

We may say that we have considered a chart v, such that the manifold lies 
to the left of its boundary. If the reader thinks of a domain in R2, having 
a smooth curve for its boundary, as on the following picture, the reader 
will see that our choice of chart corresponds to what is usually visualized 
as “counterclockwise” orientation. 

The collection of all pairs ( U  n ax, v,l ( U  n ax)), chosen according to 
the criteria described above, is obviously an atlas for the boundary ax, 
and we contend that it is an oriented atlas. 

We prove this easily as follows. If 

( X I , .  . . , xn) = x and ( ~ 1 , .  . ., yn) = Y 

are coordinate systems at a boundary point corresponding to choices of 
charts made according to our specifications, then we can write y = f ( x )  
where f = (fi, . . . , f,,) is the transition mapping. Since we deal with 
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oriented charts for X,  we know that Af(x) > 0 for all x. Since f maps 
boundary into boundary, we have 

h(0, x2,*..,xn) = O  

for all x2,. . . , x,,. Consequently the Jacobian matrix of f at a point 
(0, x2,. . . , x n )  is equal to 

where A!-’) is the Jacobian matrix of the transition map g induced by f 
on the boundary, and given by 

taking the limit with h < 0 since by prescription, points of X have coor- 
dinates with x1 < 0. Furthermore, for the same reason we have 

From this it follows that AF-1)(x2,. . . ,xn) > 0, thus proving our assertion 
that the atlas we have defined for ax is oriented. 

From now on, when we deal with an oriented manifold, it is understood 
that its boundary is taken with orientation described above, and called the 
induced orientation. 

XVI, 94. THE MEASURE ASSOCIATED WITH 
A DIFFERENTIAL FORM 

Let X be a manifold of class CP with p 2 1. We assume from now on 
that X is Hausdorf and has a countable base. Then we know that X 
admits CP partitions of unity, subordinated to any given open covering. 
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(Actually, instead of the conditions we assumed, we could just as well 
have assumed the existence of CP partitions of unity, which is the precise 
condition to be used in the sequel.) 

We can define the support of a differential form as we defined the 
support of a function. It is the closure of the set of all x E X such that 
o ( x )  # 0. If o is a form of class Cp and a is a Cq function on X, then we 
can form the product a o ,  which is the form whose value at x is a ( x ) o ( x ) .  
If a has compact support, then a o  has compact support. Later, we shall 
study the integration of forms, and reduce this to a local problem by 
means of partitions of unity, in which we multiply a form by functions. 

We assume that the reader is familiar with the correspondence between 
certain functionals on continuous functions with compact support and 
measures. Cf. [La 931 for this. We just recall some terminology. 

We denote by C c ( X )  the vector space of continuous functions on X 
with compact support (i.e. vanishing outside a compact set). We write 
C c ( X ,  R) or C c ( X ,  C) if we wish to distinguish between the real or 
complex valued functions. 

We denote by CK(X) the subspace of C c ( X )  consisting of those 
functions which vanish outside K. (Same notation Cs(X) for those 
functions which are 0 outside any subset S of X. Most of the time, the 
useful subsets in this context are the compact subsets K.) 

A linear map 1 of Cc(X)  into the complex numbers (or into a normed 
vector space, for that matter) is said to be bounded if there exists some 
C 2 0 such that we have 

for all f E Cc(X) .  Thus 1 is bounded if and only if 1 is continuous for the 
norm topology. 

A linear map 1 of C c ( X )  into the complex numbers is said to be 
positive if we have I f  2 0 whenever f is real and 2 0. 

Lemma 4.1. Let 1: Cc(X)  -, C be a positive linear map. Then I is 
bounded on CK(X) for any compact K.  

Proof: By the corollary of Urysohn's lemma, there exists a continuous 
real function g 2 0 on X which is 1 on K has compact support. If 
f E CK(X), let b = 1 1  f 11. Say f is real. Then bg L f 2 0 ,  whence 

and I1f I b l ( g ) .  Thus 1 g  is our desired bound. 

A complex valued linear map on C c ( X )  which is bounded on each 
subspace CK(X) for every compact K will be called a C,-functional on 
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Cc(X) ,  or more simply, a functional. A functional on Cc(X)  which is also 
continuous for the sup norm will be called a bounded functional. It is clear 
that a bounded functional is also a C,-functional. 

Lemma 4.2. Let { W,} be an open covering of X. For each index u, let 
1, be a functional on Cc( W,). Assume that for each pair of indices a, /3 
the functionals 1, and 1p are equal on Cc( W ,  n Wp). Then there exists a 
unique functional 1 on X whose restriction to each Cc( W,) is equal to 1,. 
If each 2, is positive, then so is 1. 

Proof: Let f E Cc(X)  and let K be the support of f .  Let {hi} be a 
partition of unity over K subordinated to a covering of K by a finite 
number of the open sets W,. Then each hif has support in some W,(i) 
and we define 

n f  = C Ju( i )  ( h i f ) .  
i 

We contend that this sum is independent of the choice of u(i) ,  and also of 
the choice of partition of unity. Once this is proved, it is then obvious 
that 1 is a functional which satisfies our requirements. We now prove this 
independence. First note that if Wul(i) is another one of the open sets W ,  
in which the support of hif is contained, then hif has support in the 
intersection W,(i) n W,l(i) ,  and our assumption concerning our functionals 
2, shows that the corresponding term in the sum does not depend on the 
choice of index a(i) .  Next, let { g k }  be another partition of unity over K 
subordinated to some covering of K by a finite number of the open sets 
W,. Then for each i, 

whence 

If the support of gkhi f is in some W,, then the value I,(gkhi f )  is inde- 
pendent of the choice of index u. The expression on the right is then 
symmetric with respect to our two partitions of unity, whence our theorem 
follows. 

Theorem 4.3. Let dim X = n and let w be an n-form on X of class Co, 
that is continuous. Then there exists a unique positive functional 1 on 
Cc(X)  having the following property. If (U, p) is a chart and 

o(x) = f ( x )  dxl A ... A dx,, 

is the local representation of o in this chart, then for any g E Cc(X)  with 
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support in U, we have 

where gq represents g in the chart [i.e. g,(x) = g(p- ' (x ) )] ,  and dx is 
Lebesgue measure. 

Proof: The integral in (1) defines a positive functional on Cc( U ) .  The 
change of variables formula shows that if ( U ,  p) and ( V ,  $I) are two 
charts, and if g has support in U n  V ,  then the value of the functional is 
independent of the choice of charts. Thus we get a positive functional by 
the general localization lemma for functionals. 

The positive measure corresponding to the functional in Theorem 4.3 
will be called the measure associated with IwI, and can be denoted by plwl. 

Theorem 4.3 does not need any orientability assumption. With such 
an assumption, we have a similar theorem, obtained Without taking the 
absolute value. 

Theorem 4.4. Let dim X = n and assume that X is oriented. Let o be 
an n-form on X of class Co. Then there exists a unique functional 1 on 
C c ( X )  having the following property. If ( U ,  p) is an oriented chart and 

o ( x )  = f ( x )  dxl, A ... A dxn 

is the local representation of w in this chart, then for any g E C c ( X )  with 
support in U,  we have 

where go, represents g in the chart, and dx is Lebesgue measure. 

Proof: Since the Jacobian determinant of transition maps belonging to 
oriented charts is positive, we see that Theorem 4.4 follows like Theorem 
4.3 from the change of variables formula (in which the absolute value sign 
now becomes unnecessary) and the existence of partitions of unity. 

If A is the functional of Theorem 4.4, we shall call it the functional 
associated with o. For any function g E C c ( X ) ,  we define 

go = Is. L 
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If in particular o has compact support, we can also proceed directly as 
follows. Let {ai} be a partition of unity over X such that each ai has 
compact support. We define 

all but a finite number of terms in this sum being equal to 0. As usual, it 
is immediately verified that this sum is in fact independent of the choice of 
partition of unity, and in fact, we could just as well use only a partition 
of unity over the support of o. Alternatively, if a is a function in C c ( X )  
which is equal to 1 on the support of o, then we could also define 

J, o = J, a o .  

It is clear that these two possible definitions are equivalent. In particular, 
we obtain the following variation of Theorem 4.4. 

Theorem 4.5. Let X be an oriented manifold of dimension n. Let &,"(A') 
be the R-space of direrential forms with compact support. There exists a 
unique linear map 

such that, if o has support in an oriented chart U with coordinates 
X I , .  . . , x,, and w(x )  = f ( x )  dxl A . . . A dxn in this chart, then 

r P 

Let X be an oriented manifold. By a volume form R we mean a form 
such that in every oriented chart, the form can be written as 

n ( x )  = f ( x )  dxl A A dxn 

with f ( x )  > 0 for all x. In the next section, we shall see how to get a 
volume form from a Riemannian metric. Here, we shall consider the non- 
oriented case to get the notion of density. 

Even when a manifold is not orientable, one may often reduce certain 
questions to the orientable case, because of the following result. We 
assume that readers are acquainted with basic facts about coverings. 



468 INTEGRATION OF DIFFERENTIAL FORMS [XVI,  §41 

Proposition 4.6. Let X be a connected C' manifold. If X is not ori- 
entable, then there exists a covering X'  --t X of degree 2 such that X'  is 
orientable. 

Sketch of Proof Suppose first that X is simply connected. Let x E X .  
Fix a chart ( UO, qo) at x such that the image of the chart is an open ball 
in euclidean space. Let y be any point of X ,  and let u :  [a, b] --+ X be a 
piecewise C' path from x to y .  We select a sufficiently fine partition 

and open sets Ui containing u([t i ,  t i+]]),  such that Ui has an isomorphism 
qi onto an open ball in euclidean space, and such that the charts qi and 
pi+] have the same orientation. It is easy to verify that if two paths are 
homotopic, then the charts which we obtain at y by "continuation" as 
above along the two paths are orientation equivalent. This is done first for 
paths which are "close together," and then extended to homotopic paths, 
according to the standard technique which already appears in analytic 
continuation. Thus k i n g  one orientation in the neighborhood of a give 
point determines an orientation on all of X when X is simply connected. 

Now suppose X not simply connected, and let 2 be its universal 
covering space. Let r be the fundamental group. Then the subgroup of 
elements y E r which preserve an orientation of 2 is of index 2, and the 
covering corresponding to this subgroups has degree 2 over X and can be 
given an orientation by using charts which lift to oriented charts in the 
universal covering space. This concludes the proof. 

Densities 

The rest of this section will not be used, especially not for Stokes' theorem 
in the next chapter. However, Theorem 4.3 for the non-orientable case is 
important for other applications, and we make further comments about 
this other context. 

Let s be a real number. Let E be a finite dimensional vector space over 
R, of dimension n. We denote by E* the set of non-zero elements of E, 
and by A" E* the set of non-zero elements of A" E.  By an s-density on E 
we mean a function 

6: A"E* --+ R ~ o  such that ~ ( c w )  = Icls6(w) 

for all c # 0 in R and w E A" E * .  Equivalently, we could say that there 
exists an n-form o E L,"(E, R) such that for tri E E we have 

6(Vl A - . .  A 0") = I O ( 0 1 , . . . , V n ) l s .  
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We let denS(E) denote the set of densities of E. An element of denS(E) 
amounts to picking a basis of A" E, up to a factor 5 1, and assigning a 
number to this basis. 

Let U be an open subset of E. By a C p  density on U we mean a C* 
morphism 6 :  U -t denS(E). Note that denS(E) is an open half line, so a 
density on U amounts to selecting a differential form of class Cp on a 
neighborhood of each point of U, such that the absolute values of these 
forms coincide on intersections of these neighborhoods. 

Let f: U - t  V be a Cp isomorphism. Then f induces a map on 
densities, by the change of variable formula on forms with the Jacobian 
determinant, and then taking absolute values to the s-power. Thus we 
may form the bundle (not vector bundle) of densities, with charts 

U x denS(E) 

over U, and density-bundle morphisms just as we did with differential 
forms. For example let E = R", with coordinates X I , .  . . , x,,. Then 

defines a 1-density, and Jdxl A ... A dxnls defines an s-density, denoted 
by Idxl". 

Observe that s-densities form a cone, i.e. if 61, 62 are s-densities on a 
manifold X ,  and a ] ,  a2 E R+ (the set of positive real numbers), then 
a161 + a262 is also an s-density. In particular, continuing to assume that 
X admits continuous partitions of unity, we can reformulate and prove 
Theorem 4.3 for densities. Indeed, the differential form in Theorem 4.3 
need not be globally defined, because one needs only its absolute value to 
define the integral. Thus with the language of densities, Theorem 4.3 reads 
as follows. 

Theorem 4.7. Let 6 be a Co density on X, i.e. a continuous density. 
Then there is a positive functional 1 on C c ( X )  having the following 
property. If U is a chart and 6 is represented by the density 

1 f ( x )  dxl A * .  . A dxn( on this chart, then for any function q E Cc( U) we 
have 

where d x l .  . . dx,, is the usual symbol for ordinary integration on R", and 
qu is the representation of 9 in the chart. 

Examples. We have already given the example of integration with 
respect to Jdxt A . . -  A dx,l in euclidean space. Here is a less trivial 
example. Let X be a Riemannian manifold of finite dimension n, with 
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Riemannian metric g .  Locally in a chart U, we view g as a morphism 

g :  U + L ( E ,  E), 

with E having a fixed positive definite scalar product. With respect to an 
orthonormal basis, we have a linear metric isomorphism E z R", and g(x)  
at each point x can be represented by a matrix (gu(x)). If we put 

then S2 defines a density, called the Riemannian square density; and 

defines the Riemannian density. 

Remark. Locally, a manifold is always orientable. Hence a formula or 
result which is local, and is proved in the orientable case, also applies to 
densities, sometimes by inserting an absolute value sign. For example, 
Proposition 1.2 of Chapter XV applies after inserting absolute value signs, 
but Proposition 2.1 of Chapter XV applies as stated for the Riemannian 
density instead of the Riemannian volume. 

Integration on a submersion 

Let n: X + Z be a submersion. In Chapter XV, 56 we discussed the 
relationship between volume forms on X, Z and the fibers, and we use the 
same notation as before. We now derive the consequences of this relation 
for integration. 

Theorem 4.0. Let z: X + Z be a submersion. Let SZ be a volume form 
on X and w a volume form on Z .  Let SZ = 7 0 a. Let 4 be a form on X, 
of the same degree as q, restricting to 7 on the fibers. Then for all 
f E Cc(X) ,  we have 

ProoJ The proposition is local, since by using a partition of unity, we 
are reduced to the case when the support off is in a given neighborhood 
of a point. Then the submersion is represented in a chart as a projection 
U x W -+ W ,  where U, W are open in RP and Rq respectively, U being a 
chart on X and W a chart on 2. On U x W we have the coordinate 
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representation 

( f f i ) . . , (Y ,  4 = f ( Y ,  Z ) Y l ( Y ,  z )  4, A ... A dYp A P ( Z >  dZl A . . .  A dz,, 

where y l , . .  . , y p  are the coordinate functions on U, z1, ..., z,  are the 
coordinate functions on W, 

(i,(y) = ~ ( y ,  z )  d y ,  A . . .  A dyP w(z) = p ( z )  dzl A . . .  A dz,. 

Then the proposition merely amounts to Fubini's theorem, which con- 
cludes the proof. 

and 

XVI, 95. HOMOGENEOUS SPACES 

For the convenience of the reader, we reproduce some results on locally 
compact groups, corresponding to the results on volume forms in Chapter 
XV, 57. When dealing with manifolds, the results of 57 provide a more 
natural setting, but it is worthwhile to develop the results dealing just with 
Haar measure on locally compact groups, so here goes. See also [La 931, 
Chapter XII, Theorem 4.3. 

Let G be a locally compact group. Let AG be the so-called modular 
function on G, relating right and left Haar measure. Thus by definition, 
for f E Cc(G) and left Haar measure dx on G, we have 

f ( X Y )  dx = A(Y) f (4 dx. 
J G  J ,  MOD 1. 

Then A :  G --t R+ is a continuous homomorphsm. 
For f E C J G ) ,  we have 

MOD 2. f (x- ' )A(x)  dx = J f ( x )  dx. 
G G 

ProoJ: First we show that the functional on C,(G) defined by the left 
side of the equation is left G-invariant. Applying it to the left translate of 
f by an element a E G, and putting g(u)  = f (u-')A(u), we get 

(to f ) ( x - ' ) A ( x )  dx = f (a-'x-')A(x) dx 

f ((xa)-')A(xu)A(a)-'  dx 

JG J 
= J  
= lg(xa)A(a)- '  dx 
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thus proving the left G-invariance. Hence there exists a constant c such 
that for all 

f ( -' A X )  dx = c f ( x )  dx. 

To see that c = 1, let f ( x )  = p(x)A(x),  where p is an even function >= 0, 
p(x) = v,(x-') for all x ,  p has support close to the unit element e, and 

J X I (  J 

1, p(x) dx = 1. 

Since A is continuous, it follows that A(.) is close to 1 for x near e. We 
let the support of v, come closer and closer to e. From the formula 

1 = p(x) dx = c p(x)A(x) dx, J J 
letting the support of p tend to e, we conclude that c = 1, thus proving 
MOD 2. 

The functional A(x)  dx is right invariant, and in fact, for all y E G, we 
have 

J f ( x y ) ~ ( x )  dx = f ( x - ' )  dx = f (x )A(x)  dx. J J MOD 3. 

Proof: Let g(u) = f (u- ' )  and h(u) = g(y-'u). Then using MOD 2, we 
get 

J f ( x y ) A ( x )  dx = Jg(y- 'x- ')A(x) dx = h(x-')A(x) dx J 
= / h ( x )  dx = / g (y - ' x )  dx = g(x) dx = f ( x - ' )  dx, J J  

which proves the first equality. The second is only a special case with 
y = e. 

Let H be a closed subgroup of G, with corresponding function AH. 

Theorem 5.1. Suppose that AG = AH on H. Then there exists a unique 
G-invariant positive functional on Cc( G I H ) ,  so a unique Ginvariant 
positive a-regular measure on GIH. "Uniqueness" is up to a positive 
constant multiple. 

HOMOGENEOUS SPACES WI, $51 

ProoJ For f E Cc(G), we define 

473 

It is standard that f H f H  maps Cc(G) onto Cc(G/H), cf. for instance 
[La 931, Chapter XII, Theorem 4.1. The map f H f also preserves 
positivity. Given f E Cc(G/H), to define its invariant integral on GIH, 
we let f E Cc(G) be such that ( f  n, = f .  We want to define 

f ( x )  d i  = j f # (x )  dx. 
G 

The problem is to show that this definition is independent of the choice of 
f n .  This is settled by the following lemma. 

Lemma 5.2. Let f E Cc(G). If f = 0, that is 

JH f (xh) dh = 0 

for all x E G, then 

1, f ( x )  dx = 0. 

ProoJ: For all p E Cc(G), we have: 

By the surjectivity CJG) -, Cc(G/H) we can find p such that p H  = 1 on 
the support of$ Since by assumption the left side of the equation is 0, 
this concludes the proof of the lemma. 
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Now knowing that (1) is well defined, it is immediate that the functional 

is G-invariant, and positive, so we have proved the existence of the desired 
functional. Uniqueness is proved by reducing it to uniqueness for Haar 
measure, since we have the repeated integral formula on G, H ,  GIH, 
namely 

This concludes the proof of the theorem. 

A G-invariant measure on G/H will be called a Haar measure, as for 
groups. 

A group G is called unimodular if AG = 1, so right and left Haar 
measures are equal. Suppose this is the case. In particular, if a E G and c, 
is conjugation, 

ca(x) = axa-1, 

then c, preserves a given Haar measure, i.e. c, is a measure preserving 
group isomorphism. Suppose K is a compact subgroup. Then AG = Ax 
on K, since both functions provide continuous homomorphisms of K into 
R+, so both functions are trivial on K.  Thus we always have a G-invariant 
measure on the coset space G/K. For a E G we have an isomorphism of 
G-homogeneous spaces 

Fix the Haar measure on G. Fix the Haar measures on K and c,(K) to 
have total measure 1, which is possible since K is compact. Then these 
measures determine uniquely the Haar measure on G/K. Since c, pre- 
serves the fixed Haar measure on G, it follows that it also preserves the 
Haar measure on the homogeneous space GIK, to satisfy the repeated 
integral formula on G, K, G/K. 

CHAPTER XVll 

Stokes’ Theorem 

Throughout the chapter, all manifolds are assumed finite 
dimensional. They may have a boundary. 

XVII, 51. STOKES’ THEOREM FOR A 
RECTANGULAR SIMPLEX 

If X is a manifold and Y a submanifold, then any differential form on X 
induces a form on Y .  We can view this as a very special case of the 
inverse image of a form, under the embedding (injection) map 

id: Y + X  

In particular, if Y has dimension n - 1, and if (XI,.  . . , x,) is a system of 
coordinates for X at some point of Y such that the points of Y corre- 
spond to those coordinates satisfying xi c for some fixed number c, and 
index j ,  and if the form on X is given in terms of these coordinates by 

then the restriction of o to Y (or the form induced on Y )  has the 
representation 

f ( x 1 , .  . . , c , .  . . ,xn) dxl A ... A dx, A ... A dx,. 

We should denote this induced form by my, although occasionally we omit 
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the subscript Y .  We shall use such an induced form especially when Y is 
the boundary of a manifold X. 

Let 
R = [a1 bl] x . . . x [a,, bn] 

be a rectangle in n-space, that is a product of n closed intervals. The set 
theoretic boundary of R consists of the union over all i = 1,. . . n of the 
pieces 

0 R, = [all bl] x ... x {ai} x ... x {a,, b, 

R! = [al ,  bl] x ... x {bi} x ... x [a,, b,] 

h 

If 
W ( X I  ,..., x,) = f ( x l l  ..., xn) dxl A . . .  A dxj A . 

1 

.. A dx, 

is an (n  - 1)-form, and the roof over anything means that this thing is to 
be omitted, then we define 

if i = j ,  and 0 otherwise. And similarly for the integral over R,!. We 
define the integral over the oriented boundary to be 

Stokes’ Theorem for Rectangles. Let R be a rectangle in an open set U 
in n-space. Let co be an ( n  - l)-forrn on U. Then 

ProoJ: In two dimensions, the picture looks like this: 
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It suffices to prove the assertion when o is a decomposable form, say 

h 

W ( X )  = f ( x 1 ,  . . . , x,,) dxl A . . . A dx, A . . . A dx,. 

We then evaluate the integral over the boundary of R. If i # j ,  then it is 
clear that 

so that 

On the other hand, from the definitions we find that 

h 

A dxl A ... A dxj A ... A dx, 

= (-1) j - 1  - af dxl A . . .  A dx,. 
axj 

(The (- 1)j-l comes from interchanging dxj with dxl . . . , dxj-l. All other 
terms disappear by the alternating rule.) 

Integrating d o  over R, we may use repeated integration and integrate 
af/axj  with respect to xi first. Then the fundamental theorem of calculus 
for one variable yields 

We then integrate with respect to the other variables, and multiply by 
( - 1 ) j - ’ .  This yields precisely the value found for the integral of co over 
the oriented boundary aoR, and proves the theorem. 

Remark. Stokes’ theorem for a rectangle extends at once to a version in 
which we parametrize a subset of some space by a rectangle. Indeed, if 
v :  R .+ V is a C’ map of a rectangle of dimension n into an open set V 
in RN, and if o is an (n  - 1)-form in V ,  we may define 
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One can define 

and then we have a formula 

In the next section, we prove a somewhat less formal result. 

XVII, 52. STOKES’ THEOREM ON A MANIFOLD 

Theorem 2.1. Let X be an oriented manifold of class C2, dimension n, 
and let o be an (n  - l)-$orm on X ,  of class C ’ .  Assume that w has 
compact support. Then 

ProoJ: Let {tli}iEI be a partition of unity, of class C2. Then 

and this sum has only a finite number of non-zero terms since the support 
of o is compact. Using the additivity of the operation d ,  and that of the 
integral, we find 

Suppose that ai has compact support in some open set Vi of X and that 
we can prove 

in other words we can prove Stokes’ theorem locally in Vi. We can write 
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and similarly 

Using the additivity of the integral once more, we get 

which yields Stokes’ theorem on the whole manifold. Thus our argument 
with partitions of unity reduces Stokes’ theorem to the local case, namely 
it suffices to prove that for each point of X these exists an open 
neighborhood V such that if o has compact support in V ,  then Stokes’ 
theorem holds with X replaced by V .  We now do this. 

If the point is not a boundary point, we take an oriented chart ( U ,  q) 
at the point, containing an open neighborhood V of the point, satisfying 
the following conditions: qU is an open ball, and qV is the interior of 
a rectangle, whose closure is contained in qU. If w has compact support 
in V ,  then its local representation in qU has compact support in q V .  
Applying Stokes’ theorem for rectangles as proved in the preceding 
section, we find that the two integrals occurring in Stokes’ formula are 
equal to 0 in this case (the integral over an empty boundary being equal to 
0 by convention). 

Now suppose that we deal with a boundary point. We take an oriented 
chart ( U ,  q) at the point, having the following properties. First, qU is 
described by the following inequalities in terms of local coordinates 
( X l , .  . . ,xn): 

- 2 < x l $ 1  and - 2 < x i < 2  for j = 2 ,  ..., n. 

Next, the given point has coordinates (1, 0, . . . , 0), and that part of U on 
the boundary of X ,  namely U n ax, is given in terms of these coordinates 
by the equation x1 = 1. We then let V consist of those points whose local 
coordinates satisfy 

0 < x1 5 1 and - 1  <xi < 1 for j =  2, ..., n. 

If o has compact support in V ,  then o is equal to 0 on the boundary of 
the rectangle R equal to the closure of qV,  except on the face given by 
XI = 1, which defines that part of the rectangle corresponding to ax n V .  
Thus the support of o looks like the shaded portion of the following 
picture. 
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1 I 

- 1  

In the sum giving the integral over the boundary of a rectangle as in the 
previous section, only one term will give a non-zero contribution, corre- 
sponding to i = 1, which is 

Furthermore, the integral over RY will also be 0, and in the contribution of 
the integral over Ri, the two minus signs will cancel, and yield the integral 
of o over the part of the boundary lying in V ,  because our charts are 
so chosen that ( ~ 2 , .  . . , xn) is an oriented system of coordinates for the 
boundary. Thus we find 

which proves Stokes’ theorem locally in this case, and concludes the proof 
of Theorem 2.7. 

Corollary 2.2. Suppose X is an oriented manifold without boundary, and 
o has compact support. Then 

I x d w  = 0. 

For any number of reasons, some of which we consider in the next 
section, it is useful to formulate conditions under which Stokes’ theorem 
holds even when the form o does not have compact support. We shall say 
that o has almost compact support if there exists a decreasing sequence of 
open sets {Uk} in X such that the intersection 

{ uk 
k=l 
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is empty, and a sequence of C’ functions {gk}, having the following 
properties : 

AC 1. w e  have 0 5 gk 5 1 ,  gk = 1 outside u k ,  and gkw has compact 

AC 2. If & is the measure associated with ldgk A 01 on X, then 

support. 

We then have the following application of Stokes’ theorem. 

Corollary 2.3. Let X be a C2 oriented manifold, of dimension n, and let 
o be an (n - l)-form on X ,  of class C’.  Assume that o has almost 
compact support, and that the measures associated with Idol on X and 
1011 on ax are jni te .  Then 

Proof: By our standard form of Stokes’ theorem we have 

We estimate the left-hand side by 

Since the intersection of the sets uk is empty, it follows for a purely 
measure-theoretic reason that 

The integral of dgk A o over X approaches 0 as k + co by assumption, 
and the fact that dgk A o is equal to 0 on the complement of u k  since gk 
is constant on this complement. This proves our corollary. 

The above proof shows that the second condition AC 2 is a very 
natural one to reduce the integral of an arbitrary form to that of a form 
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with compact support. In the next section, we relate this condition to a 
question of singularities when the manifold is embedded in some bigger 
space. 

XVII, 53. STOKES’ THEOREM WITH SlNGULARlTlES 

If X is a compact manifold, then of course every differential form on X 
has compact support. However, the version of Stokes’ theorem which we 
have given is useful in contexts when we start with an object which is not 
a manifold, say as a subset of Rn, but is such that when we remove a 
portion of it, what remains is a manifold. For instance, consider a cone 
(say the solid cone) as illustrated in the next picture. 

The vertex and the circle surrounding the base disc prevent the cone from 
being a submanifold of R3.  However, if we delete the vertex and this 
circle, what remains is a submanifold with boundary embedded in R3. 
The boundary consists of the conical shell, and of the base disc (without 
its surrounding circle). Another example is given by polyhedra, as on the 
following figure. 

The idea is to approximate a given form by a form with compact 
support, to which we can apply Theorem 2.1, and then take the limit. We 
shall indicate one possible technique to do this. 

The word “boundary” has been used in two senses: The sense of point 
set topology, and the sense of boundary of a manifold. Up to now, they 
were used in different contexts so no confusion could arise. We must now 
make a distinction, and therefore use the word boundary only in its 
manifold sense. If X is a subset of R N ,  we denote its closure by x as 
usual. We call the set-theoretic difference - X the frontier of X in RN, 
and denote it by fr(X). 
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Let X be a submanifold without boundary of RN, of dimension n. We 
know that this means that at each point of X there exists a chart for an 
open neighborhood of this point in RN such that the points of X in this 
chart correspond to a factor in a product. A point P of 8 - X will be 
called a regular frontier point of X if there exists a chart at P in RN with 
local coordinates ( X I , .  . . , X N )  such that P has coordinates (0, . . . , 0) ; the 
points of X are those with coordinates 

x,+i = . . . = X N  = 0 and x,, < 0 ; 

and the points of the frontier of X which lie in the chart are those with 
coordinates satisfying 

The set of all regular frontier points of X will be denoted by dX, and will 
be called the boundary of X. We may say that X u dX is a submanifold 
of R N ,  possibly with boundary. 

A point of the frontier of X which is not regular will be called singular. 
It is clear that the set of singular points is closed in RN. We now 
formulate a version of Theorem 2.1 when o does not necessarily have 
compact support in X u dX. Let S be a subset of RN.  By a fundamental 
sequence of open neighborhoods of S we shall mean a sequence { u k }  of 
open sets containing S such that, if W is an open set containing S ,  then 
u k  t W for all sufficiently large k.  

Let S be the set of singular frontier points of X and let o be a form 
defined on an open neighborhood of a, and having compact support. The 
intersection of supp w with ( X u d X )  need not be compact, so that we 
cannot apply Theorem 2.1 as it stands. The idea is to find a fundamental 
sequence of neighborhods { uk} of S ,  and a function g k  which is 0 on a 
neighborhood of S and 1 outside U k  so that gkw differs from o only inside 
u k .  We can then apply Theorem 2.1 to g k 0  and we hope that taking the 
limit yields Stokes’ theorem for o itself. However, we have 

Thus we have an extra term on the right, which should go to 0 as k ---f co 
if we wish to apply this method. In view of this, we make the following 
definition. 

Let S be a closed subset of R N .  We shall say that S is negligible for X 
if there exists an open neighborhood U of S in R N ,  a fundamental 
sequence of open neighborhoods {uk} of S in U ,  with u k  c U ,  and a 
sequence of C’ functions {gk}, having the following properties. 
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NEG 1. We have 0 5 gk 5 1 .  Also, g k ( X )  = 0 for x in some open 
neighborhood of S, and g k ( X )  = 1 for x $ u k .  

NEG 2. I f w  is an (n  - 1)-form of class c' on u, and ,uk is the measure 
associated with ldgk A 01 on U n X, then p k  is jinite for large 
k, and 

lim ,uk( U n X )  = 0. 
k- m 

From our first condition, we see that gkW vanishes on an open 
neighborhood of S .  Since gk = 1 on the complement of u k ,  we have 
dgk = 0 on this complement, and therefore our second condition implies 
that the measures induced on X near the singular frontier by ldgk A 0 1  
(for k = 1 , 2,. . .), are concentrated on shrinking neighborhoods and tend 
t o  0 as k + c o .  

Theorem 3.1 (Stokes' Theorem with Singularities). Let X be an oriented, 
C3 submanifold without boundary of RN. Let dim X = n. Let o be an 
(n  - l)-form of class C' on an open neighborhood of 8 in RN, and with 
compact support. Assume that: 

(i) If S is the set of singular points in the frontier of X, then 
S n supp o is negligible for X. 

(ii) The measures associated with Idol on X, and 101 on 8X, are$nite. 

Then 

Proo$ Let U ,  { u k } ,  and {gk} satisfy conditions NEG 1 and NEG 2. 
Then g k o  is 0 on an open neighborhood of S,  and since o is assumed to 
have compact support, one verifies immediately that 

(SUPP gk 0) n (X u 8x1 

is  compact. Thus Theorem 2.1 is applicable, and we get 

We have 

Since the intersection of all sets uk n ax is empty, it follows from purely 
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measure-theoretic reasons that the limit of the right-hand side is 0 as 
k - ,  co. Thus 

Liz f a x  gk @ = lax 0, 

For similar reasons, we have 

Our second assumption NEG 2 guarantees that the integral of dgk A o 
over X approaches 0. This proves our theorem. 

Criterion 1. Let S, T be compact negligible sets for a submanifold X of 
RN (assuming X without boundary). Then the union S u T is negligible 
for X. 

Proof: Let U ,  { u k } ,  { g k }  and V ,  { vk}, {hk} be triples associated with 
S and T respectively as in condition NEG 1 and NEG 2 (with V replacing 
U and h replacing g when T replaces S).  Let 

w = u V v, wk = u k  V vk, and f k  = gk hk. 

Then the open sets {Wk} form a fundamental sequence of open neigh- 
borhoods of S u T in W ,  and NEG 1 is trivially satisfied. As for NEG 2, 
we have 

d(gkhk) A 0 = hk dgk A 0 4- gk dhk A 0, 

so that NEG 2 is also trivially satisfied, thus proving our criterion. 

Criterion 2. Let X be an open set, and let S be a compact subset in R". 
Assume that there exists a closed rectangle R of dimension m 5 n - 2 and 
a C' map 0:  R 4 R" such that S = o(R). Then S is negligible for X. 

Before giving the proof, we make a couple of simple remarks. First, we 
could always take m = n - 2, since any parametrization by a rectangle of 
dimension <n - 2 can be extended to a parametrization by a rectangle of 
dimension n - 2 simply by projecting away coordinates. Second, by our 
first criterion, we see that a finite union of sets as described above, that is 
parametrized smoothly by rectangles of codimension 2 2, are negligible. 
Third, our Criterion 2, combined with the first criterion, shows that 
negligibility in this case is local, that is we can subdivide a rectangle into 
small pieces. 

We now prove Criterion 2. Composing 0 with a suitable linear map, 
we may assume that R is a unit cube. We cut up each side of the cube 
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into k equal segments and thus get k" small cubes. Since the derivative of 
0 is bounded on a compact set, the image of each small cube is contained 
in an n-cube in R N  of radius 5 C / k  (by the mean value theorem), whose 
n-dimensional volume is 5 (2C)"/k".  Thus we can cover the image by 
small cubes such that the sum of their n-dimensional volumes is 

5 (2C)"/kn-m 5 (2C)"/k2 .  

Lemma 3.2. Let S be a compact subset of R". Let uk be the open set of 
points x such that d ( x ,  S )  < 2/k .  There exists a Cm function gk on RN 
which is equal to 0 in some open neighborhood of S, equal to 1 outside 
u k ,  0 5 g k  5 1 ,  and such that all partial derivatives of g k  are bounded by 
Clk, where C1 is a constant depending only on n. 

Proof: Let a, be a Cm function such that 0 5 a, 5 1 ,  and 

We use 1) 1) for the sup norm in R". The graph of a, looks like this: 

For each positive integer k, let f&(x) = a,(kx). Then each partial deri- 
vative Dif& satisfies the bound 

IIDia,kll s k l l D i d l i  

which is thus bounded by a constant times k. Let L denote the lattice of 
integral points in R". For each 1 E L,  we consider the function 

This function has the same shape as V)k but is translated to the point 1/2k. 
Consider the product 
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taken over all I E L such that d(1/2k, S )  5 l / k .  If x is a point of R" such 
that d ( x ,  S )  < 1/4k, then we pick an I such that 

d ( x ,  1/2k) 5 1/2k. 

For this I we have d(2/2,  S )  < l / k ,  so that this I occurs in the product, 
and 

vk(x - 1/2k) = 0. 

Therefore gk is equal to 0 in an open neighborhood of S .  If, on the other 
hand, we have d ( x ,  S )  > 2 / k  and if I occurs in the product, that is 

then 
d(1/2k1 S )  l / k ,  

d ( x ,  1/2k) > l / k ,  

and hence & ( X )  = 1 .  The partial derivatives of g k  the bounded in the 
desired manner. This is easily seen, for if xo is a point where gk is not 
identically 1 in a neighborhood of X O ,  then jlxo - lo/2k[l 5 l / k  for some 
lo. All other factors P k ( X -  1/2k) will be identically 1 near xo unless 
11x0 - 1/2k(l 5 Ilk.  But then ( ( I  - 1011 5 4 whence the number of such I is 
bounded as a function of n (in fact by 9"). Thus when we take the 
derivative, we get a sum of a most 9" terms, each one having a derivative 
bounded by Clk for some constant C1. This proves our lemma. 

We return to the proof of Criterion 2.  We observe that when an 
(n - 1)-form o is expressed n terms of its coordinates, 

h 

A dxj A ... 

then the coefficients 4 are bounded on a compact neighborhood of S .  We 
take u k  as in the lemma. Then for k large, each function 

is bounded on u k  by a bound Czk, where CZ depends on a bound for o, 
and on the constant of the lemma. The Lebesgue measure of u k  is 
bounded by C3/k2, as we saw previously. Hence the measure of u k  
associated with ldgk A o) is bounded by C4/k, and tends to 0 as k 4 00. 

This proves our criterion. 

As an example, we now state a simpler version of Stokes' theorem, 
applying our criteria. 
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Theorem 3.3. Let X be an open subset of R". Let S be the set of 
singular points in the closure of X, and assume that S is the finite union 
of C' images of m-rectangles with m 5 n - 2. Let o be an (n  - l)-form 
defined on an open neighborhood of 8. Assume that o has compact 
support, and that the measure associated with 101 on ax and with Idol on 
X are finite. Then 

Prooj Immediate from our two criteria and Theorem 3.2. 

We can apply Theorem 3.3 when, for instance, X is the interior of a 
polyhedron, whose interior is open in R". When we deal with a sub- 
manifold X of dimension n, embedded in a higher dimensional space RN, 
then one can reduce the analysis of the singular set to Criterion 2 provided 
that there exists a finite number of charts for X near this singular set on 
which the given form o is bounded. This would for instance be the case 
with the surface of our cone mentioned at the beginning of the section. 
Criterion 2 is also the natural one when dealing with manifolds defined by 
algebraic inequalities. By using Hironaka's resolution of singularities, one 
can parametrize a compact set of algebraic singularities as in Criterion 2. 

Finally, we note that the condition that o have compact support in an 
open neighborhood of 8 is a very mild condition. If for instance X is a 
bounded open subset of R", then 8 is compact. If o is any form on some 
open set containing 8, then we can find another form q which is equal to 
o on some open neighborhood of 8 and which has compact support. The 
integrals of q entering into Stokes' formula will be the same as those of o. 
To find q, we simply multiply o with a suitable C"O function which is 1 in 
a neighborhood of 8 and vanishes a little further away. Thus Theorem 
3.3 provides a reasonably useful version of Stokes' theorem which can be 
applied easily to all the cases likely to arise naturally. 

CHAPTER XVlll 

Applications of Stokes' 
Theorem 

In this chapter we give a survey of applications of Stokes' theorem, 
concerning many situations. Some come just from the differential theory, 
such as the computation of the maximal de Rham cohomology (the space 
of all forms of maximal degree modulo the subspace of exact forms) ; some 
come from Riemannian geometry; and some come from complex mani- 
folds, as in Cauchy's theorem and the PoincarC residue theorem. I hope 
that the selection of topics will give readers an outlook conducive for 
further expansion of perspectives. The sections of this chapter are logically 
independent of each other, so the reader can pick and choose according to 
taste or need. 

XVIII, 91. THE MAXIMAL DE RHAM COHOMOLOGY 

Let X be a manifold of dimension n without boundary. Let r be an 
integer 2 0. We let d ' ( X )  be the R-vector space of differential forms on 
X of degree r. Thus d ' ( X )  = 0 if r > n. If w E d ' ( X ) ,  we d e h e  the 
support of w to be the closure of the set of points x E X such that 
4 4  # 0. 

Examples. If o ( x )  = f ( x )  dxl A . - .  ~ d x , ,  on some open subset of R", 
then the support of o is the closure of the set of x such that f ( x )  # 0. 

We denote the support of a form w by supp(w). By definition, the 
support is closed in X. We are interested in the space of maximal degree 
forms d " ( X ) .  Every form w E d " ( X )  is such that d o  = 0. On the other 
hand, d " ( X )  contains the subspace of exact forms, which are defined to 

.^^ 
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be those forms equal to d y  for some q E d " - I ( X ) .  The factor space is 
defined to be the de Rham cohomology H " ( X )  = H " ( X ,  R). The main 
theorem of this section can then be formulated. 

Theorem 1.1. Assume that X is compact, orientable, and connected. 
Then the map 

w H  s,o 
Jxw = 0. 

induces an isomorphism of H " ( X )  with R itself. In particular, i f w  is in 
d " ( X )  then there exists q E d " - ' ( X )  such that dy = w if and only i f  

Actually the hypothesis of compactness on X is not needed. What is 
needed is compactness on the support of the differential forms. Thus we 
are led to define d:(X) to be the vector space of n-forms with compact 
support. We call a form compactly exact if it is equal to dy for some 
q E &:-'(x). We let 

H,"(X) = factor space d ; ( X ) / d d , " - ' ( X ) .  

Then we have the more general version: 

Theorem 1.2. Let X be a manifold without boundary, of dimension n. 
Suppose that X is orientable and connected. Then the map 

induces an isomorphism of H,"(X) with R itself. 

Proo$ By Stokes' theorem (Chapter XVII, Corollary 2.2) the integral 
vanishes on exact forms (with compact support), and hence induces an 
R-linear map of H,"(X) into R. The theorem amounts to proving the 
converse statement : if 

0 = 0, J, 
then there exists some y E d ; - ' ( X )  such that w = dq. For this, we first 
have to prove the result locally in R", which we now do. 

As a matter of notation, we let 

I" = (0, 1)" 

be the open n-cube in R". What we want is: 
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Lemma 1.3. Let w be an n-form on I" ,  
that 

49 1 

with compact support, and such 

COHOMOLOGY 

0 = 0. 
/ I .  

Then there exists a form q E (I"-') with compact support, such that 

o = dq. 

We will prove Lemma 1.3 by induction, but it is necessary to load to 
induction to carry it out. So we need to prove a stronger version of 
Lemma 1.3 as follows. 

Lemma 1.4. Let w be an (n - l)-form on In-' whose coeficient is a 
function of n variables ( X I ,  . . . , xn) so 

(Of course, all functions, like forms, are assumed P.) Suppose that o 
has compact support in I"-'. Assume that 

w = 0. 
L - 1  

Then there exists an (n - l)-form 7, whose coeficients are Cw functions 
of X I , .  . . , x ,  with compact support such that 

w ( x ~ , - . . , x n - l ;  xn) =&-I ~ ( x l , . . . , x n - l ;  xn). 

The symbol dn-1 here means the usual exterior derivative taken with 
respect to the first n - 1 variables. 

Proof: By induction. We first prove the theorem when n - 1 = 1. First 
we carry out the proof leaving out the extra variable, just to see what's 
going on. So let 

4 4  = f (4 dx, 

where f has compact support in the open interval (0, 1). This means 
there exists E > 0 such that f ( x )  = 0 if 0 < x E and if 1 - E 5 x S 1. We 
assume 

jo f ( x )  dx = 0. 
1 
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Let 

Then g(x) = 0 if 0 < x 5 E ,  and also if 1 - E 5 x 5 1, because for instance 
if 1 - E 5 x 5 1, then 

1 

g(x) = f ( t )  dt = 0. Jo 
Then f ( x )  dx = dg(x), and the lemma is proved in this case. Note that we 
could have carried out the proof with the extra variable x2, starting from 

We can differentiate under the integral sign to verify that g is C"O in the 
pair of variables (XI, x2). 

Now let n 2 3 and assume that theorem proved for n - 1 by induction. 
To simplify the notation, let us omit the extra variable xn+l, and write 

o(x) = f ( x 1 , .  . . , x,) dxl A . . . A dxnr 

with compact support in I" .  Then there exists e > 0 such that the support 
of f is contained in the closed cube 

I"(E) = [ E ,  1 - €1". 
The following figure illustrates this support in dimension 2. 

I 

I 1-1. 1 

Let $ be an (n - 1)-form on I"-1, $(x) = $(xi,.  . . ,xn- l )  such that 

[XVIII, $11 THE MAXIMAL DE RHAM COHOMOLOGY 

and + has compact support. Let 

493 

Note here that we do have the parameter x,, coming in at the inductive 
step. Let 

Furthermore, since f has compact support, so does g (look at the figure). 
By induction, there exists an (n - 1)-form q, of the first n - 1 variables, 
but depending on the parameter x,, that is 

Here dn-l denotes the exterior derivative with respect to the first n - 1 
variables. Then trivially, 

where dq is now the exterior derivative taken with respect to all n 
variables. Hence finally from equation (*) we obtain 

To conclude the proof of Lemma 1.3, it suffices to show that the second 
term on the right of (**).is exact. We are back to a one-variable 
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Then dh(xn) = q(x,)dx,, and h has compact support in the interval (0, l) ,  
just as in the start of the induction. Then 

because d$ = 0. Of course we could have carried along the extra 
parameter all the way through. This concludes the proof of Lemma 1.3. 

We formulate an immediate consequence of Lemma 1.3 directly on the 
manifold. 

Lemma 1.5. Let U be an open subset of X, isomorphic to I". Let 
$ E d:( U )  be such that 

/ * # O ,  
(I 

Let o E d:( U ) .  Then there exists c E R and q E d:-'( U )  such that 

o - C$ = dq. 

Proof We take c = o/ $ and apply Lemma 1.3 to w - c$. 

Observe that the hypothesis of connectedness has not yet entered the 
picture. The preceding lemmas were purely local. We now globalize. 

Lemma 1.6. Assume that X is connected and oriented. Let U, $ be as in 
Lemma 1.5. Let V be the set of points x E X having the following 
property. There exists a neighborhood U ( x )  of x isomorphic to I" such 
that for every o E d: ( U ( x ) )  there exist c E R and q E d : - ' ( X )  such 
that 

Then V = X .  
o - C$ = d?. 

Proof Lemma 1.5 asserts that V 3 U. Since X is connected, it suffices 
to prove that V is both open and closed. It is immediate from the 
definition of Y that V is open, so there remains to prove its closure. Let z 
be in the closure of V. Let W be a neighborhood of z isomorphic to In. 
There exists a point x E V n W. There exists a neighborhood V ( x )  as in 
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the definition of V such that U ( x )  c W. For instance, we may take 

U ( x )  x (a l ,  b l )  x . . . x (a,, b,) x I" 

with ai sufficiently close to 0 and bi sufficiently close to 1, and of course 
0 < ai < bi for i = 1,. . . , n. Let $1 E d:( U ( x ) )  be such that 

= 1. J,,, 
Let w E d:(W). By the definition of V ,  there exist c1 E R and 
q1 E d:(X) such that 

$ 1  - Cl* = d?,. 

By Lemma 1.5, there exists c2 E R and q2 E d:(X) such that 

Then 

thus concluding the proof of Lemma 1.6. 

We have now reached the final step in the proof of Theorem 5.2, namely 

we first fix a form $ E d:( U )  with U w I" and $ # 0. Let o E d : ( X ) .  

It suffices to prove that there exist c E R and r,~ E d : - ' ( X )  such that 

Let K be the compact support of w. Cover K by a finite number of open 
neighborhoods U ( x l ) ,  . . . U(x,)  satisfying the property of Lemma 1.6. 
Let {q i }  be a partition of unity subordinated to this covering, so that we 
can write 

0 = c q i w .  

Then each form qio has support in some U(x j ) .  Hence by Lemma 5.6, 
there exist ci E R and qi E d : - - ' ( X )  such that 

whence w - cI// = dq, with c = C ci and q = C qi.  This concludes the 
proof of Theorems 1.1 and 1.2. 
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XVIII, 52. MOSER'S THEOREM 

We return here to the techniques of proof in Chapter V, as for PoincarC's 
lemma, Theorem 5.1 and Darboux's Theorem 7.3 of that chapter. How- 
ever, we now have a similar theorem in the context of integration. 

We first make the general comment, similar to the one we made 
previously, for general forms. Let E be a Banach space, and let o be an r- 
multilinear alternating form on E (so R-valued). We say that o is non- 
singular if for each vector u E E, defining o, by 

the map u H ov is a toplinear isomorphism between E and L;-'(E). We 
previously considered bilinear forms, in Chapter V, 56. 

We can globalize the notion to a manifold, so a form o E d r ( X )  is 
called non-singular if o(x) is non-singular for each x. It is clear that in the 
finite dimensional case, a volume form is non-singular. With this globali- 
zation, we obtain : 

Proposition 2.1. Let o be a non-singular r-form on X.  Given a form 
q E d r - ' ( X ) ,  there exists a unique vector field < such that 

We could also write the relation with the contraction notation, i.e. 

We now come to Moser's theorem [Mo 651. 
C p  = q.  

Theorem 2.2. Let X be a compact, connected oriented manifold of 
dimension n. Let o, $ E d " ( X )  (= d : ( X ) )  be volume forms such that 

Then there exists an automorphism f :  X + X of X such that o = f *$. 

Prooj Let 
o,=(l-s)o+s$ for O s s s l  

Then o, is a volume form for each s, and in particular is non-singular. By 
Theorem 1.1, there exists q E d " - ' ( X )  such that $ - w = dq. Note also 
that $ - o = do,/&. Since as is non-singular, there exists a unique vector 
field 4, such that 

o s o  4, = -1. 
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Let as be the flow of r,. Then as is defined on R x X by Corollary 2.4 of 
Chapter IV. Then we get: 

= as+ d ( o ,  o (,) + as*($ - o) by Proposition 5.2 of Chapter V 

= -a,'dq + azdq 

= 0 .  

Therefore u,*os is constant as a function of s, so we find 

with f = al,  o = a,*oo = a;ol = f *$, 

thereby proving the theorem. 

XVIII, 53. THE DIVERGENCE THEOREM 

Let X be an oriented manifold of dimension n possibly with boundary, and 
let R be an n-form on X .  Let < be a uector field on X. Then d R  = 0, and 
hence the basic formula for the Lie derivative (Chapter V, Proposition 5.3) 
shows that 

9545 R = d(R o (). 

Consequently in this case, Stokes' theorem yields : 

Theorem 3.1 (Divergence Theorem). 

Remark. Even if the manifold is not orientable, it is possible to use the 
notion of density to formulate a Stokes theorem for densities. Cf. Loomis- 
Sternberg [Los 681 for the formulation, due to Rasala. However, this 
formulation reduces at once to a local question (using partitions of Unity 
on densities). Since locally every manifold is orientable, and a density 
then amounts to a differential form, this more general formulation again 
reduces to the standard one on an orientable manifold. 

Suppose that (X, g) is a Riemannian manifold, assumed oriented for 
simplicity. We let SZ or vol, be the volume form defined in Chapter XV, 
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$1. Let w be the canonical Riemannian volume form on ax for the metric 
induced by g on the boundary. Let n, be a unit vector in the tangent 
space T,(X) such that u is perpendicular to T,(aX).  Such a unit vector 
is determined up to sign. Denote by n: its dual functional, i.e. the 
component on the projection along n,. We select n, with the sign such that 

n,V A w ( x )  = n(x). 

We then shall call n, the unit outward normal vector to the boundary at x. 
In an oriented chart, it looks like this. 

Then by formula CON 3 of Chapter V, $5 we find 

and the restriction of this form to dX is simply (n, <)a. Thus we get: 

Theorem 3.2 (Gauss Theorem). Let X be a Riemannian manifold. Let o 
be the canonical Riemannian volume form on ax and let R be the 
canonical Riemannian volume form on X itself. Let n be the unit outward 
normal vectorjield to the boundary, and let < be a C’ vectorjield on X, 
with compact support. Then 

The next thing is to show that the map d* from Chapter XV, $1 is the 
adjoint for a scalar product defined by integration. First we expand 
slightly the formalism of d* for this application. Recall that for any vector 
field <, the divergence of [ is defined by the property 

Note the trivial derivation formula for a function v,: 
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If 1 is a 1-form, i.e. in T L 1 ( T X )  = d * ( X ) ,  we have the corresponding 
vector field & = 1” uniquely determined by the condition that 

(tA, q), = 1(q) for all vector fields q. 

For a 1-form 1, we define the operator 

d * :  d l ( X )  4 d o ( X )  = Fu(X) by d * 1  = -div <A, 

We get a formula analogous to (2) for d * ,  namely 

(4) d * ( @ )  = pd*1 - (dp,  A) 

Indeed, d*(p1) = -div = -div(p&) = -p div (1 - (dp)(&) by (2), 
which proves the formula. 

Let 1, w E d’(TX). We define the scalar product via duality 

Then for a function p we have the formula 

( 5 )  (dp,  A), V O ~ ,  = (pd*1) V O ~ ,  - d(v01g o &A). 

Indeed, 
(dp, A), VO~, = [u, d * 1  - d*(p1)]  VOlg by (4) 

= ( p d * l )  VO~,  - d(v01, o &A) by (3) 

thus proving ( 5 ) .  Note that the congruence of the two forms (dp,  1),vol, 
and (pd*A)vol, modulo exact forms is significant, and is designed for 
Proposition 3.3 below. 

Observe that the scalar product between two forms above is a function, 
which when multiplied by the volume form vol, may be integrated over 
X. Thus we define the global scalar product on 1-forms with compact 
support to be 
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Proposition 3.3. Let ( X ,  g )  be a Riemannian manifold, oriented and 
without boundary. Then d* is the adjoint of d with respect to the global 
scalar product, i.e. 

(da, 4, = (a, d*&. 

We define the Laplacian (operating on functions) to be the operator 

A = d*d. 

For the Laplacian operating on higher degree forms, we shall give the 
expression d*d + dd* in the next section, but here for functions, the second 
term disappears. 

For a manifold with boundary, we define the normal derivative of a 
function (p to be the function on the boundary given by 

Theorem 3.4 (Green's Formula). Let ( X ,  g)  be an oriented Riemannian 
manifold possibly with boundary, and let a, $ be functions on X with 
compact support. Let o be the canonical volume form associated with the 
induced metric on the boundary. Then 

Proof. From formula (4) we get 

We apply Theorem 3.2 to conclude the proof. 

Remark. Of course, if X has no boundary in Theorem 3.7, then the 
integral on the left side is equal to 0. 

Corollary 3.5 (E. Hopf).  Let X be a Riemannian manifold without 
boundary, and let f be a C2 function on X with compact support, such 
that A f 2 0. Then f is constant. Zn particular, every harmonic function 
with compact support is constant. 
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Proof. We first give the proof assuming that X is oriented. By Green's 
formula we get 1, A f vol, = 0. 

Since A f  2 0, it follows that in fact A f = 0, so we are reduced to the 
harmonic case. We now apply Green's formula to f 2 ,  and get 

Hence (grad f )2  = 0 because A f = 0, and finally grad f = 0, so df = 0 
and f is constant, thus proving the corollary in the oriented case. For the 
non-oriented case, by Proposition 4.6 of Chapter XVI, there exists a 
covering of degree 2 of X which is oriented, and then one can pull back 
all the objects from X to this covering to conclude the proof in this case. 

XVIII, 94. THE ADJOINT OF d FOR 
HIGHER DEGREE FORMS 

We extend the results of the preceding section to arbitrary forms. Given 
the vector space V of dimension n over R, with a positive definite scalar 
product g, we note that the exterior powers A' V are self dual, with a 
positive definite scalar product such that 

We defined the notion of orientation on V in Chapter XV, $1, and we now 
assume that V is oriented. 

Proposition 4.1. Given 1 2 r 2 n, there exists a unique isomorphism 

such that for a, I) E A' V we have 

Proof. The proof will give an explicit determination of the isomorphism 
on the usual for A' V .  Let Z = [il < i2 < .. . < ir] be an ordered set of r 
indices. We let 

eI = ei, A . . . A ei,. 
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If I' is another such ordered set with n - r elements, and Z u I' = 
{ 1,. . . , n} then we let EI be the sign of the permutation ( I ,  J) of (1,. . . , n).  
We then define 

*eI = q e p ,  

and extend this operation by linearity to all of A' V .  Then directly from 
the definition, we see that if J is an ordered set of r indices, then 

Thus on the standard basis elements of A'V the desired relation of the 
proposition is satisfied. The same relation is therefore satisfied for all 
elements of A'V, as desired. 

We define the operator w on the direct sum 0, A' V to have the effect 

w = (--1)"'+' on A' V. 

Proposition 4.2. We have *w = w*. If n is even, then w = (-l)r on 
A' V. Furthermore, ** = w. 

Proof: Direct, simple computations. 

We now apply the above to a Riemannian manifold X of dimension n, 
and to real differential forms. We let 

be the space of Cm differential forms of degree r, with compact support 
on the manifold. At each point x E X, we use the space V = T," (the dual 
space of the tangent space). The usual operator 
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support) and we define a scalar product on d:(X) by the formula 

where we usually omit the index g and merely write X as in (9, $)x. 

Proposition 4.3. The exterior derivative d has an adjoint d* with respect 
to the scalar product ( ,  )x, namely for v, E d:-'(X) and $ E &:(I) we 
have 

(dv,, Icl)x = (9, d*4% 

Furthermore, the adjoint is given by the explicit formula 

d*  = (-1) nr+n+ 1 * d *  on &:(A'). 
i f  n is even. = - * d *  

ProoJ By Stokes' theorem, we have: 

JX d q A  *$ = J, d(VA *$) - (-l)'-' 

= (-1)'j X v, A d*$. 

Now 
(-1)'q A d*$ = ( - 1 ) ' ~  A **w d*$ 

= (-1)'q A w*(*d*)$ 

= (-l)nr+n+lv, A *(*d*)$, 

which proves the proposition. 

XVIII, 55. CAUCHY'S THEOREM 

is R-linear. By Stokes' theorem, if o has compact support, then 

jx d o  = 0.  

We shall give an application of this fact in a Riemannian context. We 
have the volume form vol, (which does not necessarily have compact 

It is possible to define a complex analytic (analytic, for short) manifold, 
using open sets in C" and charts such that the transition mappings are 
analytic. Since analytic amps are C", we see that we get a C" manifold, 
but with an additional structure, and we call such a manifold complex 
analytic. It is verified at once that the analytic charts of such a manifold 
define an orientation. Indeed, under a complex analytic change of charts, 
the Jacobian changes by a complex number times its complex conjugate, 
so changes by a positive real number. 
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If z1,. . . , Zn are the complex coordinates of C”, then 

( ~ 1 , .  .. ,zn, 21, * .  . 72”) 

can be used a C”O local coordinates, viewing C” as Rh. If Zk = X k  + iyk, 
then 

dZk = dXk i dyk and dfk  = dXk - i dyk. 

Differential forms can then be expressed in terms of wedge products of the 
dzk and dZk. For instance 

The complex standard expression for a differential form is then 

Under an analytic change of coordinates, one sees that the numbers r and 
s remain unchanged, and that if s = 0 in one analytic chart, then s = 0 in 
any other analytic chart. Similarly for r. Thus we can speak of a form of 
type ( r ,  s). A form is said to be analytic if s = 0, that is if it is of type 

We can decompose the exterior derivative d into two components. 
Namely, we note that if o is of type (r,  s), then d o  is a sum of forms of 
type ( r +  1 ,  s) and ( r ,  s +  l ) ,  say 

(I, 0). 

d o  = (do)(r+l, s) + (do)(r ,  s+l). 
We deiine 

am = (da)(r+l, 3) and = ( d o ) ( ,  s+l)’ 

In terms of local coordinates, it is then easy to verify that if o is decom- 
posable, and is expressed as 

and 

In particular, we have 

a i a  a i a  _-  _ -  -- 
a 4  - i (a , ,+i$)*  azk 2 (axk i&) and -- 
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(Warning: Note the position of the plus and minus signs in these 
expressions.) 

Thus we have 
d = a + &  

and operating with a or 8 follows rules similar to the rules for operating 
with d. 

Note that f is analytic if and only if 8f = 0. Similarly, we say that a 
differential form is analytic if in its standard expression, the functions qi,n 
are analytic and the form is of type ( r ,  0), that is there are no dZj present. 
Equivalently, this amounts to saying that 8co = 0. The following extension 
of Cauchy’s theorem to several variables is due to Martinelli. 

We let IzI be the euclidean norm, 

J Z J  = ( Z l Z 1  + . . . + Z,Z”)”2. 

Theorem 5.1 (Cauchy’s Theorem). Let f be analytic on an open set in C” 
containing the closed ball of radius R centered at a point c. Let 

h 

ak( z )  = dzl A . . A dz, A d?l A . . . A dZk A . . . h dZn 

and n 

k=l 

Let SR be the sphere of radius R centered at c. Then 

n(n+1)/2 where E(n) = ( - 1 )  

Proof: We may assume c = 0. First note that 

where dz = dzl A . . . ~ d z ,  and similarly for dz. Next, observe that if 

then 
d$ = , O .  
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This is easily seen. On the one hand, a$ = 0 because w already has 
dzl A . . . A dz,, and any further dz,  wedged with this gives 0. On the other 
hand, since f is analytic, we find that 

by the rule for differentiating a product and a trivial computation. 

spheres, for any r with 0 < r 5 R we get 
Therefore, by Stokes' theorem, applied to the annulus between two 

or in other words, 

Using Stokes' theorem once more, and the fact that (am = 0, we see that 
this is 

We can write f ( z )  = f ( 0 )  + g(z) ,  where g(z)  tends to 0 as z tends to 0. 
Thus in taking the limit as r -+ 0, we may replace f by f ( 0 ) .  Hence our 
last expression has the same limit as 

But 
i"2" dyl A dxl A . . .  Adyn A dx,. n(n-1) /2  dz A d.? = (-1) 

Interchanging dyk and dxk to get the proper orientation gives another 
contribution of (- l)", together with the form giving Lebesgue measure. 
Hence our expression is equal to 

1 
1) " ("+l)'2n ( 2 9  " r2" V (  B,) , 

where V(B,) is the Lebesgue volume of the ball of radius r in RZn, and is 
classically known to be equal to rr"r2"/n!. Thus finally we see that our 
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expression is equal to 
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I 
F 

This proves Cauchy's theorem. 

XVIII, 56. THE RESIDUE THEOREM 

Let f be an analytic function in an open set U of C". The set of zeros of 
f is called a divisor, which we denote by V = Vf .  In the neighborhood of 
a regular point a, that is a point where f ( a )  = 0 but some complex partial 
derivative off is not zero, the set V is a complex submanifold of U .  In 
fact, if, say, D,f(a)  # 0, then the map 

gives a local analytic chart (analytic isomorphism) in a neighborhood of 
a. Thus we may use f as the last coordinate, and locally V is simply 
obtained by the projection on the set f = 0. This is a special case of the 
complex analytic inverse function theorem. 

It is always true that the function log I f 1  is locally in Y1.  We give the 
proof only in the neighborhood of a regular point a. In this case, we can 
change f by a chart (which is known as a change-of-variable formula), 
and we may therefore assume that f ( z )  = z,. Then log(f( = log (zn( ,  and 
the Lebesgue integral decomposes into a simple product integral, which 
reduces our problem to the case of one variable, that is to the fact that 
loglzl is locally integrable near 0 in the ordinary complex plane. Writing 
z = re", our assertion is obvious since the function rlogr is locally 
integrable near 0 on the real line. 

Note. In a neighborhood of a singular point the fastest way and 
formally clearest, is to invoke Hironaka's resolution of singularities, which 
reduces the question to the non-singular case. 

For the next theorem, it is convenient to let 

Note that 

1 
4ni 

dC = -((a - a). 
i 

2rr 
ddc = -32. 

a 

The advantage of dealing with d and d' is that they are real operators. 
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The next theorem, whose proof consists of repeated applications of 
Stokes' theorem, is due to PoincarC. It relates integration in V and U by a 
suitable kernel. 

Theorem 6.1 (Residue Theorem). Let f be analytic on an open set U of 
C" and let V be its divisor of zeros in U. Let $ be a C"O form with 
compact support in U, of degree 2n - 2 and type (n  - 1 ,  n - 1 ) .  Then 

(As usual, the integral on the leji is the integral of the restriction of $ to 
V, and by dejnition, it is taken over the regular points of V.) 

Proof: Since $ and dd'$ have compact support, the theorem is local 
(using partitions of unity). We give the proof only in the neighborhood of 
a regular point. Therefore we may assume that U is selected sufficiently 
small so that every point of the divisor o f f  in U is regular, and such that, 
for small E ,  the set of points 

is a submanifold with boundary in U .  The boundary of U, is then the set 
of points z such that 1 f (.)I = E .  (Actually to make this set a submanifold 
we only need to select E to be a regular value, which can be done for 
arbitrarily small E by Sard's theorem.) For convenience we let S, be the 
boundary of U,, that is the set of points z such that If (.)I = E .  

Since log If I is locally in Y1, it follows that 

log I f 1  dd'$ = lim 

Using the trivial identity 

we conclude by Stokes' theorem that this limit is equal to 

The first integral under the limit sign approaches 0. Indeed, we may 
assume hat f ( z )  = zn = reie. On S, we have If (.)I = E ,  so log If I = log E .  
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There exist forms $2 in the first n - 1 variables such that 

d'$ = $1 A dzn + $2 A dZ,,, 

and the restriction of dz,, to S, is equal to 

cieie do, 

with a similar expression for dZn. Hence our boundary integral is of type 

where o is a bounded form. From this it is clear that the limit is 0. 

(n - 1, n - 1) it follows that for any function g ,  
Now we compute the second integral. Since $ is assumed to be of type 

ag A a$ = 0 and 8 g  A 81) = 0. 

Replacing d and d" by their values in terms of a and 8, it follows that 

d log I f  1 A dC$ = d' log 1 f 1 A d$. I, 
We have 

d(d' log 1 f I A $) = dd" log 1 f I A $ - d" log If I A d$. 

Furthermore dd' is a constant times 88, and dd' log l f I2  = 0 in any open 
set where f # 0, because 

since a l ogs  = 0 and 8 log f = 0 by the local analyticity of log f .  Hence 
we obtain the following values for the second integral by Stokes : 
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(always assuming f ( z )  = zn) ,  we conclude that if zn = re", then the 
restriction of d c  log lfI2 to S, is given by 

db' 
ress, d" log f = - . 2n 

Now write $ in the form 

$ = $1 + $2 

where $l contains only dzj, di;. for j = 1, . . . , n - 1 and $2 contains dzn or 
dZ,. Then the restriction of $z to S, contains db', and consequently 

The integral over S, decomposes into a product integral, we respect to the 
first n - 1 variables, and with respect to db'. Let 

Then simply by the continuity of g we get 

g(ceie) db' = g(0). 

Hence 

But the restriction of $1 to the set zn = 0 (which is precisely V )  is the same 
as the restriction of $ to V .  This proves the residue theorem. 

APPENDIX 

The Spectral Theorem 

The following is a set of notes from a seminar of Von Neumann around 
1950. 

APP., 91. HILBERT SPACE 

Let E be a vector space over C (The real theory follows exactly the same 
pattern.) By an inner product on E we mean an R-bilinear pairing 
(x, y )  E C of E x E into C such that, for all complex numbers a, we have: 

( x ,  x) 2 0 and equals 0 if and only if x = 0. 
We have the Schwartz inequality: 

whose proof is as follows. For all a, B complex, 

We let a = (y ,  y )  and B = -(x, y). The inequality drops out. 
We define the norm of a vector x to be (x ,  x)'I2 and denote it by 1x1. 

Using the Schwartz inequality, one sees that 1x1 defines a metric on E, the 
distance between x and y being Ix - yJ.  The norm is continuous. 

We write x l y and say that x is perpendicular to y if (x ,  y )  = 0. 
The following identities are useful and trivially proved. 

-. . 
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2 
Parallelogram Law. 1x + y12 + 1x - y12 = 2 1 x 1 ~  + 2 1 ~ 1  . 
Pythagoras Theorem. I f  x l y ,  then Ix+ yI2 = lxI2 + 1 ~ 1  . 

A Hilbert space is an inner product space which is complete under the 
induced metric. For the rest of this appendix, a subspace will always mean 
a closed subspace, with its structure of Hilbert space induced by that of E. 

Lemma 1.1. Let F be a subspace of E, let ~ E E ,  and let 

a = infix - yJ 

the inf taken over all y E F.  Then there exists an element yo E F such 
that a = Ix - yol. 

Proof: Let y,  be a sequence in F such that Iy, - x )  tends to a. We 
must show that yn is Cauchy. By the parallelogram law, 

2 2 2 I Y ,  - yml = 21y, - xI2 + ~ I Y ,  - X I  - 41 4 ( Y ,  + v,) - X I  
2 5 2ly, - xi2 + 21y, - X I  - 4a2 

which shows that yn is Cauchy, converging to some vector yo. The lemma 
follows by continuity. 

Theorem 1.2. I f  F is a subspace properly contained in E, then there exists 
a vector z in E which is perpendicular to F (and # O ) .  

Proof: Let X E E  and x $ F .  Let yo be an element of F which is 
at minimal distance from x (use Lemma 1.1). Let a be this distance and 
let z = yo - x. After a translation, we may assume that z = x, so that 
1x1 = a .  For any complex number a and y E F we have Ix+ ayl 1 a, 
whence 

(x + ay, x + ay )  = lx12 + q x ,  y )  + a(x,  v) + aaly12 

2 a2. 

Put a = t ( x ,  y ) .  We get a contradiction for small values of t. 

APP., 52. FUNCTIONALS AND OPERATORS 

A linear map A from a Hilbert space E to a Hilbert space H is bounded if 
there exists a positive real number a such that 

JAxl 5 4x1 
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for all x E E. 
such a. 

The norm of A, denoted by [ A (  is the inf of all 

Proposition 2.1. A linear map is bounded if and only if it maps the unit 
sphere on a bounded subset, if and only if it is continuous. 

Proof: Clear. 

A functional is a continuous linear map into C. Functionals are 
bounded. We have the fundamental : 

Representation Theorem. A linear map A :  E -+ C is bounded if and only 
if there exists ~ E E  such that A(x) = (x ,  y )  for all X E E .  I f  such a y 
exists, it is unique. 

Proof: If A(x) = ( x ,  y )  then the Schwartz inequality shows that it is 
bounded, with bound Iy(.  It is obvious that y is unique. 

Conversely, let A be bounded. Let F be the kernel of A. Then F is a 
subspace. If E = F then everything is trivial. If E # F, then there exists 
z E E, z$F such that z is perpendicular to F by Theorem 1.2. We contend 
that some multiple y = az does it. A necessary condition on a is that 

2 ( z ,  CIZ) = cllzl . 

This is also sufficient. Namely, x-  (A(x) /A(z))z  lies in F. Put a = 
A(z)/Iz12. Then one sees at once that A(.) = (x, y )  as was to be shown. 

By an operator we shall always mean a continuous linear map of a 
space into itself. It is straightforward to show that operators form a 
Banach space, and in fact a normed ring. In other words, in addition to 
the Banach space property, we have 

We adopt the convention that a ring also has a unit element, which the 
algebra of operators does have. A Banach algebra is a Banach space, with 
a bilinear multiplication which is continuous. In our examples, it will also 
be a normed ring. 

Proposition 2.2. If A is an operator and (Ax, x) = 0 for all x, then 
A = 0. 

ProoJ This follows from the polarization identity, 
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Replace x by ix. Then we get 

for all x ,  y whence ( A x ,  y )  = 0 and A = 0. 
The above proposition is valid only in the complex case. 
In the real case, we shall need it only when A is symmetric (see below), 

in which case it is equally clear. A similar remark applies to the next 
result. 

Lemma 2.3. Let A be an operator, and c a number such that 

for all X E E .  Then for all x ,  y we have 

Proof: By the polarization identity, 

21(Ax, y )  + (Ay ,x)I  5 CIX + yI2 + C J X  - y12 = 2C(1Xl2 + Iv12>. 

We multiply y by e" and thus get on the left-hand side 

le-ie(lgx, y )  + eie(Ay, x ) ~ .  

The right-hand side remains unchanged, and for suitable 0, the left-hand 
side becomes 

I P x ,  Y)l + I(Ay, 41. 

(In other words, we are lining up two complex numbers by rotating one 
by 0 and the other by -0.) Next we replace x by tx and y by y / t  for t 
real and t > 0. Then the left-hand side remains unchanged, while the 

r 
Y 
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right-hand side becomes 

The point at which g'(t) = 0 is the unique minimum, and at this point to 
we find that 

This proves our lemma. 
dtO> = 1x1 IYI. 

In our applications, we need the lemma only when A is self-adjoint (i.e. 
symmetric, see below), in which case it is even more trivial. 

For fixed y, the function of x given by (Ax ,  y )  is a functional (bounded 
because of the Schwartz inequality). Hence by the representation theorem, 
there exists an element y* such that (Ax ,  y )  = ( x ,  y * )  for all x .  We define 
A * ,  the adjoint of A, by letting A * y  = y* .  Since y* is unique, we see that 
A* is the unique operator such that 

Theorem 2.4. We have: 

( A  + B)* = A* + B*,  

(crA)* = a*, 
A** = A ,  

IA*( = IAI, 

(AB)* = B*A*, IAA*J = (A12. 

and the mapping A H A *  is continuous. 

Proof: Exercise for the reader. 

APP., $3. HERMITIAN OPERATORS 

We shall say that an operator A is symmetric (or hermitian) if A = A*. 

Proposition 3.1. A is hermitian i f  and only if (Ax ,  x )  is real for all x .  

ProoJ Let A be hermitian. Then (Ax ,  x )  = ( x ,  A x )  = (Ax ,  x ) .  Con- -- 
versely, ( A x ,  x )  = ( A x ,  x )  = ( x ,  A x )  = (A*x ,  x )  implies that 

( ( A  - A * ) x ,  X )  = 0 

whence A = A* by polarization. 
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Proposition 3.2. Let A be a hermitian operator. Then ) A )  is the greatest 
lower bound of all values c such that 

for all x, or equivalently, the sup of all values ) (Ax ,  x)l taken for x on the 
unit sphere in E. 

Prooj When A is hermitian we obtain 

I(Ax, Y)l  5 clxl IYI 

for all x, y E E, so that we get IAl 5 c in Lemma 2.3. On the other hand, 
c = [A(  is certainly a possible value for c by the Schwartz inequality. This 
proves our proposition. 

Proposition 3.2 allows us to define an ordering in the space of hermitian 
operators. If A is hermitian, we define A 2 0 and say that A is semi- 
positive if (Ax ,  x) 2 0 for all x E E. If A,  B are hermitian we define A 2 B 
if A - B 2 0. This is indeed an ordering; the usual rules hold: If A1 2 B1 
and A2 2 B2, then 

A1 + A2 2 B1+ B2. 

If c is a real number 2 0  and A 2 0, then cA 2 0. So far, however, we 
say nothing about a product of semipositive hermitian operators AB, even 
if AB = BA. We shall deal with this question later. 

Let c be a bound for A. Then [ (Ax ,  x)l 5 ~ 1 x 1 ~  and consequently 

-cI 5 A 5 cI. 

If we let 

u = inf (Ax ,  x) and B = sup (Ax ,  x), 
Ixl=l (xl=l 

then we have 
uI 5 A 5 P I ,  

and from Proposition 3.1, 
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operator. Write 

We define 
p( t )  = ant" + . * .  + ao. 

p ( A )  = a,A" + . . . + aoI. 

We let R[A] be the algebra generated over R by A, that is the algebra of 
all operators p(A) ,  where p( t )  E R[t]. We wish to investigate the closure of 
R[A] in the (real) Banach space of all operators. We shall show how to 
represent this closure as a ring of continuous functions on some compact 
subset of the reals. First, we observe that the hermitian operators form a 

space of hermitian operators. 

closed subspace of L ( E ,  E), and that - R[A] is a closed subspace of the 

We can find real numbers a, /? such that 

uI 5 A S P I .  

We shall prove that i fp  is a real polynomial which takes on values 2 0 on 
the interval [u, PI, then p(A)  is a semipositive operator. 

The fundamental theorem is the following. 

Theorem 3.3. Let u, P be real and uI 6 A S PI. Let p be a real 
polynomial, semipositive in the interval a 5 t B. Then p ( A )  is a 
semipositive operator. 

Proof We shall need the following obvious facts. 
If A, B are hermitian, A commutes with B, and A 2 0, then AB2 is 

semipositive. 
If p( t )  is quadratic, of type p( t )  = t2 + at + b and has imaginary roots, 

then 

is a sum of squares. 

commute). 
A sum of squares times a sum of squares is a sum of squares (if they 

If p( t )  has a root y in our interval, then the multiplicity of y is even. 
Our theorem now follows from the following purely algebraic 

statement. 

Let a 5 t 5 B be a real interval, and p(t> a real polynomial which is 
semipositive in this interval. Then p( t )  can be written: 
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In order to prove this, we split p( t )  over the real numbers into linear 
and quadratic factors. If a root y is 5 a, then we write 

( t  - y )  = ( t  - a) + (a  - y )  

(7 - t )  = (7 - P )  + (P - 1) 

and note that ( a - y )  is a square. If a root y is 2P, then we write 

with ( y  - P )  a square. We can then write, after expanding out the 
factorization of p( t ) ,  

with some constant c and Q2 standing for the square of some polynomial. 
Note that c is 2 0 since p( t )  is semipositive on the interval. Our last step 
reduces the bad last term to the preceding ones by means of the identity 

( t  - Lx)2(P - t )  + ( t  - a)@ - t )2  
( t  - a)(P - t )  = 

P - a  

Corollary 3.4. Suppose that aI 5 A 5 PI. I f a  5 p( t )  5 b in the interval, 
then 

aI s p ( A )  5 bI. 

If p( t )  is a real polynomial, we define as usual 

llPll = SUP IP(t)l 

with t ranging. over the interval. 

Corollary 3.5. Let aI 5 A 5 PI. Let p ( t )  be a real polynomial. Then 
IP(A)I 5 IIPII. 

Proof: Let q(t) = llpll -kp( t ) .  Then q( t )  is >= 0 on the interval. Hence 
q(A) 2 0 and our assertion follows at once. 

As usual, we consider the continuous functions on the interval as a 
Banach space. Iff is any continuous function on the interval, then by the 
Weierstrass approximation theorem, we can find a sequence of poly- 
nomials {pn} approaching f uniformly on this interval. We define f ( A )  
as the limit of pn(A). From Corollary 3.5 we deduce that {pn(A)} is a 
Cauchy sequence, and that its limit does not depend on the choice of the 
sequence { p n } .  Furthermore, by continuity, our corollary generalizes to 
continuous functions, so that If(A)I 5 I l f l l .  
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We see that the map f f ( A )  is a continuous homomorphism from 
the Banach algebra of continuous functions on the interval into the closure 
of the subalgebra generated by A. 

Proposition 3.6. Let A be a semipositive operator. Then there exists an 
operator B in the closure of the algebra generated by A such that 
B2 = A. 

ProoJ The continuous function t1I2 maps on A'/*.  

Corollary 3.7. The product of two semipositive, commuting hermitian 
operators is again semipositive. 

ProoJ Let A, C be hermitian and AC = CA. If B is as in Proposition 
3.6, then 

(ACx, X )  = (B2Cx, X) = (BCX, Bx) = (CBx, Bx) 2 0. 

The kernel of our homomorphism from the continuous functions to the 
operators is a closed ideal. Its zeros form a closed set called the spectrum 
of A and denoted by a(A) .  

Lemma 3.8. Let X be a compact set, R the ring of continuous functions 
on X ,  and a a closed ideal of R, a # R. Let C be the closed set of zeros 
of a. Then C is not empty and if a function f E R vanishes on C, then 
f E a. 

Proof Given E ,  let U be the open set where 1 f I < E .  Then X - U is 
closed. For each point t E X - U there exists a function g E a such that 
g(t) # 0 in a neighborhood of t. These neighborhoods cover X - U ,  and 
so does a finite number of them, with functions 91,. . . , gr. Let g = 
g t  + . . . + g;. Then g E a. Our function g has a minimum on X - U and 
for n large, the function 

is close to f on X - U and is < E on U, which proves what we wanted. 

We now redefine the norm of a continuous function f to be 
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Theorem 3.9. The map 

induces a Banach-isomorphism (i. e. norm-preserving) of the Banach alge- 
bra of continuous functions on o ( A )  onto the closure of the algebra 
generated by A. 

Proof: We have already proved that our map is an agebraic iso- 
morphism and that If ( A ) [  5 11 f ! I A .  In order to get the reverse inequality, 
we shall prove: 

If f ( A )  2 0, then f ( t )  2 0 on the spectrum of A. Indeed, if f (c) < 0 
for some c E o(A) ,  we let g(t) be a function which is 0 outside a small 
neighborhood of c, is 2 0  everywhere, and is > 0 at c. Then g(A) and 
g(A) f ( A )  are both 2 0  by Corollary 3.7. But -g(t) f ( t )  2 0 gives 
-g(A) f ( A )  2 0 whence g(A) f ( A )  = 0. Since g(t) f ( t )  is not 0 on the 
spectrum of A, we get a contradiction. 

Let now s = I f ( A ) I .  Then sZ - f ( A )  2 0 implies that s - f ( t )  2 0, 
which proves the theorem. 
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0 is in the spectrum. Consider the function g(t) as follows: 

( g  is positive and has a peak at 0.) If A is invertible, BA = Z, then from 
Itg(t)l S 1 we get IAg(A)I S 1 and hence Ig(A)I 5 IBJ. But g(A) becomes 
arbitrarily large as we take N large. Contradiction. 

Theorem 3.11. Let S be a set of operators of the Hilbert space E, leaving 
no closed subspace invariant except 0 and E itself: Let A be a Hermitian 
operator such that AB = BA for all B E S. Then A = IZ for some real 
number I .  

Proof: It will suffice to prove that there is only one element in the 
spectrum of A. Suppose there are two, I1 # 22. There exist continuous 
functionsf, g on the spectrum such that neither is 0 on the spectrum, but 
fg  is 0 on the spectrum. For instance, one may take forf, g the functions 
whose graph is indicated on the next diagram. 

From now on, the norm on continuous functions will refer to the 
spectrum. All that remains to do is identify our spectrum with what can 
be called the general spectrum, that is those complex values < such that 
A - < is not invertible. (By invertible, we mean having an inverse which is 
an operator.) 

Theorem 3.10. The general spectrum is compact, and in fact, i f <  is in it, 
then [(I 5 IAl. If A is hermitian, then the general spectrum is equal to 
4 A ) .  

Proof: The complement of the general spectrum is open, because if 
A - to is invertible, and < is close to to, then ( A  - ro)- '(A - () is close to 
Z, hence invertible, and hence A - < is also invertible. Furthermore, if 
< > IAI, then [A/<[ < 1 and hence I - (A /<)  is invertible (by the power 
series argument). So is A - and we are done. Finally, suppose that < is 
in the general spectrum. Then < is real. Otherwise, let 

g(t) = ( t  - <)( t  - 4 ) .  
Then g(t) # 0 on o(A)  and h(t)  = l / g ( t )  is its inverse. From this we see 
that A - < is invertible. 

Suppose < is not in the spectrum. Then t - < is invertible and so is 

Suppose ( is in the spectrum. After a translation, we may suppose that 
A - <. 

We have f ( A ) B  = B f ( A )  for all B E S (because B commutes with real 
polynomials in A, hence with their limits). Hence f ( A ) E  is invariant 
under S because 

B f  (A)E = f (A)BE c f (A)E. 

Let F be the closure of f (A)E. Then F # 0 because f ( A )  # 0. Further- 
more, F # E because g(A) f (A)E = 0 and hence g(A)F = 0. Since F is 
obviously invariant under S, we have a contradiction. 

Corollary 3.12. Let S be a set of operators of the Hilbert space E ,  
leaving no closed subspace invariant except 0 and E itself: Let A be 
an operator such that AA' = A*A, AB = BA, and A*B = BA* for all 
B E  S. Then A = I I  for some complex number I .  

ProoJ: Write A = A1 + iA2 where Al ,  A2 are hermitian and commute 
(e.g. A1 = ( A  + A*) /2 ) .  Apply the theorem to each one of A1 and A2 to 
get the result. 
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half plane 39 
Hamiltonian 147 
harmonic function 425, 500 
HB-morphism 18 1 
Helgason theorem on Laplacian 
hermitian operator 515 
Hilbert bundle 180 
Hilbert group 179, 181 
Hilbert space 512 
Hilbert trivialization 18 1 
Hodge conditions 425 
Hodge decomposition 425 
Hodge star 418, 427 
Hodge theorem 425 
homogeneously fibered 440 
homomorphism 167 
Hopf theorem 500 
Hopf-Rinow theorem 225 
horizontal component 284 
horizontal lifting 385 
horizontal subbundle 105, 384 
hyperplane 39 
hypersurface 2 1 7 

I 

immersion 26 
implicit mapping theorem 19 
index form 295 
initial condition 67, 90 
inner product 5 1 1 
integrable vector bundle 156 
integral 12 
integral curve 67, 90 
integral manifold 162 
integration of density 469 
integration of forms 466 
integration on submersion 470 
interior 41 
isometry 191, 208 
isomorphism 5, 15, 16, 191 
isotopic 112, 113 
isotopy of tubular neighborhood 

113, 185 
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Jacobian determinant 458 
Jacobian of exponential map 413 

K 

Karcher splitting 283 
kernel 55 

443 Killing field 340, 348 
Killing operator 339, 343 
Killing sequence 363 
kinetic energy 147, 193 
Koszul’s formalism 418 

L 

Laplace operator 345, 378, 379, 381, 

Laut 5 
left invariant 166 
length 189, 218, 296 
level hypersurface 21 7 
Levi-Civita derivative 209 
lie above 204 
Lie algebra 166 
Lie derivative 122, 140 
Lie group 165 
Lie subalgebra 166 
Lie subgroup 167 
lifting 96, 204 
linear differential equation 76 
Lipschitz condition 68, 448 
Lipschitz constant 68 
Lis 5 
local coordinates 23 
local flow 67 
local isomorphism 15, 25, 11 1, 152 
local projection 18 
local representation 47, 62, 89, 98, 

400, 405, 416, 417, 443 

100, 124, 149, 193, 196, 205, 207, 
210 

local smoothness 78, 80 
locally closed 25 
locally convex 5 
locally finite 33 
logarithm 323 

112, Loos space 365 

M 

manifold 23 J 
manifolds of maps 25 

Jacobi differential equation 239 manifold with boundary 40, 462 
Jacobi field or lift 239, 268 McAlpin theorem 251 
Jacobi identity 118 mean value theorem 13 
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measure associated with a form 466 
measure 0 448 
metric 175 
metric derivative 209, 375 
metric increasing 3 1 1 
metric isomorphism 191, 214, 218 
metric Killing 340, 351 
metric spray 212, 213 
metrically homogeneous fibration 441 
minimal geodesic 223 
modeled 23, 44, 145 
modular function 471 
momentum 150 
morphism 4, 10, 24 
Morse-Palais lemma 186 
Moser’s theorem 496 
multilinear tensor field 62 

N 

natural transformation 4 
negligible 483 
non-degenerate 186 
non-singular 144, 151, 186, 402, 496 
norm 6, 511 
norm of operator 6 
normal bundle 57, 100, 369 
normal chart 216 
normal derivative 500 
normal extension 377 
normal field 370 
normal neighborhood 216 
normal Riemann tensor 392 
normal submanifold 380 
normal trace 379, 381 

0 

one-parameter subgroup 169 
operation on vector bundles 59 
operation on vector field 116 
operator 6, 144, 174, 178 
orientable 403 
orientation 397, 403, 461 
oriented basis 403 
oriented chart 398 
oriented volume 453 
orthonormal frame 238, 408 

P 

paracompact 33 
parallel 206, 208 
parallel translation 206 

parallel variation 272 
parameter 72, 160 
parametrized by arc length 191 
partial derivative 10 
partition of unity 34 
path lifting 227 
perpendicular 5 1 1 
Poincark lemma 137, 154 
Poisson bracket 148 
polar coordinates 222, 413 
Pos,, 322 
positive definite 174 
positive functional 464 
projection 18 
proper domain of isotopy 
pseudo Riemannian derivative 209 
pseudo Riemannian manifold 175 
pseudo Riemannian metric 175 
pull back 32, 49, 134 

11 3 

R 

R 231 
R2 235 
Rauch comparison 318 
reduction to Hilbert group 181 
refinement 33 
regular 483 
regular action 382 
related vector fields 119 
reparametrization 190 
representation 47, 89 

see local representation 

S 

Sard theorem 450 
scalar curvature 238 
scaling 236 
scalloped 37 
Schwanian property 329 
second fundamental form 370, 375, 

second-order differential equation 97 
second-order vector field 96 
second tensorial derivative 343 
second variation 297 
section 5 
sectional curvature 236 
self dual 144 
semi parallelogram law 309, 310 
semi Riemannian 177 
seminegative curvature 235, 251, 311, 

390 

329, 516 

INDEX 

semipositive 348, 177 
shrinking lemma 15, 69 
singular 186 
singular point 483 
skew symmetric 177 
smoothness of flow 87 
spectral property 329 
spectral theorem 519 
spectrum 519 
sphere 217 
split (injection) 18 
split subspace 6 
splitting metric 285 
splitting 2-form 293 
spray 99, 105, 191, 197, 199, 201, 208 
standard form 130 
standard 2-form 152 
standard variation 305 
star operator 418, 427 
step mapping 12 
Stokes’ theorem for rectangles 476 
Stokes’ theorem on a manifold 478 
Stokes’ theorem with singularities 484 
strictly unimodular 437, 439, 442 
subbundle 53, 54, 155 
submanifold 26 
submersion 27, 384, 393, 470 
support 33, 464, 489 
symmetric 105, 144, 177 
symmetric bilinear form on vector 

symmetric space 360, 364 
symmetry 359 
symplectic manifold 147 

bundle 144 

T 

tangent bundle 52 
tangent curves 90 
tangent map 52 
tangent space 28 
tangent subbundle 155 
tangent to 0 8 
tangent vector 28 
tangential Laplacian 381 
Taylor expansion 13, 263 
tensor bundle 62 
tensor field 62 
tensorial derivative 286, 288, 343 
tensorial flow 291 
tensorial Hessian 343 
tensorial splitting 283 
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time dependent 67, 71 
toplinear isomorphism 5 
topological vector space 5 
total space 44 
total tubular neighborhood 11 0 
totally geodesic 270, 315, 373 
trace 371 
trace metric 324 
trace of second fundamental form 390 
transition map 44 
translation 361 
transpose of Texp, 249 
transversal 29, 31 
trivial vector bundle, 46 
trivializable 44, 45, 46, 65 
trivializing covering 44 
tube 110 
tubular map 110 
tubular neighborhood 

274, 338 
110, 184, 271, 

U 

unimodular 437, 474 
Uniqueness theorem 70 

V 

variation formula 297 
variation of a curve 243, 269, 289 
variation at end points 243, 248 
variation through geodesics 243 
VB (vector bundle) equivalent 44 
VB chart 46, 47 
VB morphism 47 
vector bundle 44, 59 
vector field 88, 116 
vector field along curve 207 
vector subbundle 105 
vertical component 284, 386 
vertical field 385 
vertical Laplacian 381 
vertical subbundle 105, 384 
vertical volume form 431 
volume form 398, 402, 467, 428 

W 

wedge product 127 
Whitney sum 61 
Wu theorems 273, 433, 441 


