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Preface 

The original version of this article was written more than live years ago with 
S.Z. Shefel’, a profound and original mathematician who died in 1984. Since then 
the geometry of surfaces has continued to be enriched with ideas and results. 
This has required changes and additions, but has not influenced the character of 
the article, the design of which originated with Shefel’. Without knowing to what 
extent Shefel’ would have approved the changes, I should nevertheless like to 
dedicate this article to his memory. (Yu.D. Burago) 

We are trying to state the qualitative questions of the theory of surfaces in 
Euclidean spaces in the form in which they appear to the authors at present. This 
description does not entirely correspond to the historical development of the 
subject. The theory of surfaces was developed in the first place mainly as the 
theory of surfaces in three-dimensional Euclidean space E3; however, it makes 
sense to begin by considering surfaces F in Euclidean spaces of any dimension 
n > 3. This approach enables us, in particular, to put in a new light some 
unsolved problems of this developed (and in the case of surfaces in E3 fairly 
complete) theory, and in many cases to refer to the connections with the present 
stage of development of the theory of multidimensional submanifolds. 

The leading question of the article is the problem of the connection between 
classes of metrics and classes of surfaces in E”. The first chapter is a brief survey 
of general questions in the theory of surfaces from this point of view. Chapters 
2 and 3 are devoted to a more detailed consideration of convex and saddle 
surfaces respectively. The subject of Chapter 4 consists of classes of metrics not 
associated directly with the condition that the Gaussian curvature has a definite 
sign, and G-stable immersions of them. 

A whole series of important questions in the theory of surfaces remain outside 
the framework of the article. We only touch on questions of the purely extrinsic 
geometry of surfaces. This applies above all to the most developed and complete 
theory of convex surfaces. Thus, the geometric theory of equations (basically 
of Monge-Amp&e type) is only recalled, and there is no description of exis- 
tence and uniqueness theorems for surfaces with given conditional curvatures. 
The reader can become acquainted with these questions from the monographs 
Bakel’man, Verner and Kantor (1973), Pogorelov (1969), Pogorelov (1975). We 
do not consider boundary-value problems of the theory of bending of convex 
surfaces, infinitesimal bendings of high orders, or subtle questions of the bending 
of surfaces in a neighbourhood of an isolated zero of the curvature. For these 
questions see Part III of the present book. 

Chapter 1 
The Geometry of Two-Dimensional Manifolds 

and Surfaces in E” 

3 1. Statement of the Problem 

As the title itself emphasizes, in our article we consider only questions in 
the theory of surfaces in E”, although many of the results recalled carry over 
automatically to surfaces in spaces of constant curvature, and sometimes in 
Riemannian manifolds. Of course, there are aspects that are specific for such 
spaces; we shall not dwell on them, see Pogorelov (1969), Milka (1980), for 
example. 

1.1. Classes of Metrics and Classes of Surfaces. Geometric Groups and Geo- 
metric Properties. It is well known that every (for simplicity, sufficiently smooth) 
surface in E”, considered from the viewpoint of its intrinsic metric, uniquely 
determines a Riemannian manifold. On the other hand, an abstractly defined 
Riemannian manifold can always be isometrically immersed in some E”, but 
such an immersion is not unique, and generally speaking the properties of the 
Riemannian metric do not have an appreciable influence on the geometry of the 
immersed surface. In the natural problem of the connection between properties 
of a surface and properties of its intrinsic metric we shall be mainly interested in 
the following two aspects. 

Firstly, we have the question of which of the intrinsic properties of a surface 
can be guaranteed by some completely determined extrinsic geometrical prop- 
erties of it. (Of course, the answer to this question depends on what one under- 
stands by a “geometric” property of a surface.) Secondly, there is the question of 
the restriction of the class of admissible immersions to “regular” ones, that is, 
immersions for which the properties of the metric have an appreciable influence 
on the extrinsic properties of the surface. The following definition of a geometric 
property of a surface is basic for our later arguments. 

A property of a surface is said to be geometric if it is preserved by transforma- 
tions of E” that belong to some group G. We always assume that G contains the 
group of similarities and is distinct from it. Such groups are called geometric. A 
classification of geometric groups was obtained in G.S. Shefel’ (1984), G.S. Shefel 
(1985). Leaving a detailed discussion of this question to 2.2 of Ch. 4, we note 
that it is meaningful to consider only the group of afine transformations’, the 
pseudogroup of Miibius transformations (generated by similarities and inver- 

‘Since the dimension n of the ambient space is not fixed, it is a question, strictly speaking, of an 
infinite choice of groups A, of affine transformations of E” for all n > 2 and similarly in the other 
cases. 
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sions when Q > 2) and, to rather different ends, the group of all diffeomorphisms 
of fixed smoothness. 

The given definition of a geometric property makes more precise the first of 
the questions posed above and suggests an answer to the second,.Namely by the 
“regularity” of an immersion we shall understand its G-stability. 

Definition. A surface F in E” is called a G-stable immersion of the metric of 
some class %?. if any transformation belonging to the group G takes F into a 
surface whose intrinsic metric also belongs to the class %?. 

Here it is assumed that G is a geometric group (or pseudogroup) of transfor- 
mations in E”. Since the identity transformation id belongs to G, it is obvious 
that the intrinsic metric of the surface F itself belongs to %. In this definition the 
class of metrics x is not necessarily exhausted by Riemannian metrics. Corre- 
spondingly, by an immersion of a metric here we understand a Co-smooth 
(topological) immersion which is an isometry. 

It is essential that the requirement of G-stability of a surface does not impose 
any a priori restrictions on the dimension n of the ambient space. We note that 
G-stable immersions of metrics of some class x (not exhausting all admissible 
metrics) always have a certain general geometric property. Transition from any 
immersions to G-stable ones enables us to establish a dual connection between 
extrinsic and intrinsic properties of surfaces. 

The naturalness of the concept of G-stability is illustrated by the following 
assertions, proved in the most general form in S.Z. Shefel’ (1969), S.Z. Shefel’ 
(1970) Sabitov and S.Z. Shefel’ (1976). The only afline-stable immersions in E”, 
n > 3, for the class of two-dimensional Riemannian metrics of positive curvature 
are locally convex surfaces in some E3 c E”. The class of affine stable immer- 
sions for two-dimensional Riemannian metrics of negative curvature is by no 
means exhausted by surfaces in E3, but all such immersions belong to the class 
of so-called saddle surfaces, that is, surfaces that locally do not admit strictly 
supporting hyperplanes; for the details see 3.1 of Ch. 3. Now suppose that G is 
the group of diffeomorphisms in E” of smoothness C”. Then the only G-stable 
immersions for the class of Riemannian metrics of smoothness Cl,=, 
0 < CI < 1, are surfaces of the same smoothness. 

1 2 2, 

The most attractive situation is that in which the class of metrics ,%?, the 
group G and the class of surfaces J& have the following relations. 

1”. The class of surfaces Jz’ coincides with the class of all G-stable immersions 
of metrics of the corresponding class of metrics z%. 

2”. Every metric of the class x admits an immersion in the form of a surface 
of class 4. 

In this case the class of surfaces ~8 and the class of metrics %/’ are said to be 
G-connected. 

Later we shall also use the concept of G-connectedness “in the small” and 
G-connectedness “in the large”; for details see the next section. 

The given definition admits gradations depending on how we understand the 
terms surface, metric, and immersion of a metric. For example, affme-stable 

immersions in E” of a one-element class of plane metrics on E2 contain all 
cylinders (with rectifiable directrix) or consists only of smooth cylinders, depend- 
ing on whether we understand by a surface any Co-immersion or only a smooth 
one. We must take into account that the fact that a surface and all its images 
under afline transformations have a smooth intrinsic metric does not imply, 
generally speaking, that the surface itself is smooth2. Therefore in 6 2 all metrics, 
surfaces and immersions are a priori assumed to be smooth. In the examination 
of non-regular surfaces and metrics, by isometric immersions we understand 
topological (of smoothness Co) immersions that are isometries. 

Otherwise it is a question of immersions that are stable with respect to the 
group of diffeomorphisms; see 9 5 of Ch. 4. 

02. Smooth Surfaces 

2.1. Types of Points. We assume that F is a smooth surface, that is, an 
immersion of smoothness C’, 1 3 3, of a two-dimensional manifold M in E”, 
n > 3. In differential geometry it is usual to describe surfaces by means of the 
first and second fundamental forms. The first fundamental form specifies the 
intrinsic (induced) metric of the surface - a metric where the distance between 
points is equal to the greatest lower bound of lengths of curves joining these 
points on the surface. The second fundamental form determines at each point of 
the surface a family of osculating paraboloids. Let us explain this. 

Let B be the second fundamental form of a surface F at a fixed point p. If F 
is specified by a vector-valued function Y(u’, u2), then 

B(X, Y) = i El XiYj(rij)“. 

Here Xi and Yj are the coordinates of vectors X and Y tangent to F in the basis 
(rl, r2), where ri = ar/dni, rij = a2r/&‘du’, and the index N denotes projection 
into the normal (that is, orthogonal to T,F) subspace. 

Every projection of the graph I- of the map XH B(X, X) onto the three- 
dimensional space spanned by T,F and some normal v is a paraboloid (or 
degenerates into a cylinder) and is called the osculating paraboloid. In the case 
of degeneracy to a cylinder we shall call the latter a parabolic paraboloid by 
analogy with elliptic and hyperbolic paraboloids. 

We note that the subspace spanned by r is said to osculate F at the point p. 
Its dimension is at most five. For it is spanned in E” by the two-dimensional 
subspace TpF and the vectors (rl l)N, (r12)N, (r22)N. 

In the case of a surface in E3 the family of osculating paraboloids consists of 
one paraboloid. According to the type of osculating paraboloid the points of a 

2A remarkable exception consists of smooth metrics of positive curvature under locally convex 
immersions; see # 3 of Ch. 2. 
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surface in E3 are traditionally divided into elliptic, hyperbolic and parabolic (in 
particular, flat points), which forms the only possible afline classification of 
points of a surface in E3 up to infinitesimals of the second order. The afline 
classification of points coincides with the classification according to the sign of 
the Gaussian curvature. 

When n > 3 the afline classification of points of a smooth surface in E” is 
also determined by the affine-invariant properties of the family of osculating 
paraboloids at a point p and leads to eight different types of points (S.Z. Shefel 
(1985)). Without giving the classification itself here, we note that for two of these 
types the Gaussian curvature3 of the surface at p is zero. Points of these two 
types are called parabolic. For another type of point the Gaussian curvature is 
positive (elliptic point). For three other types of point the Gaussian curvature is 
negative (hyperbolic point), and in two cases the sign of the Gaussian curvature 
is not determined by the type of point (such points are said to be movable). The 
first two of these types - parabolic points - have a common property: among the 
osculating paraboloids there are no elliptic or hyperbolic ones. One type - ellip- 
tic point - is characterized by the fact that among the osculating paraboloids 
there are elliptic but no hyperbolic or non-degenerate parabolic ones. Three 
more types are characterized by the fact that there are hyperbolic paraboloids 
but no elliptic ones (hyperbolic point). Finally, the two remaining types are 
characterized by the fact that at a point there are elliptic, hyperbolic and para- 
bolic paraboloids. 

2.2. Classes of Surfaces. The classification of points enables us to distinguish 
six classes of smooth surfaces. Surfaces of the first three classes M+, M-, M, 
consist, respectively, of only elliptic, hyperbolic or parabolic points. Surfaces of 
class Mi consist only of elliptic and parabolic points, and surfaces of class M; 
consist only of hyperbolic and parabolic points. Finally, the class M is formed 
by all smooth surfaces. 

Surfaces of the class MO+ are called normal surfaces of non-negative curvature, 
and surfaces of the classes M; and M- are called saddle surfaces and strictly 
saddle surfaces respectively. 

Theorem 2.2.1 (S.Z. Shefel’ (1970)). The class M+ in E” consists of locally 
convex sufaces each lying in some E3 c E”. A complete surface of class M+ is a 
complete convex surface (the boundary of a convex body in E3). Normal surfaces 
of non-negative curvature (of class Mz) are characterized by the fact that either 
every point of such a surface has a neighbourhood in the form of a convex surface 

or through this point there passes a rectilinear generator with its ends on the 
boundary of the surface, and the tangent plane along this rectilinear generator is 
stationary. A complete surface of class Mz is either a convex surface in E3 or a 
cylinder in E”. 

3By the Gaussian curvature K of a smooth surface in E” we always have in mind the Gaussian 
(that is, sectional) curvature of its intrinsic metric. By the generalized Gauss theorem 
K = B(X, X)B(E: Y) - B(X, Y)’ when I/X A YII = X2Y2 ~ (X, Y)* = 1. 

Fig. 1 

The class Mc, consists of developable surfaces. The complete surfaces of this 
class are cylinders. 

Saddle surfaces F (the class M;) can be characterized by the property that no 
hyperplane cuts out from F a crust, that is, a region whose closure is compact 
and does not go out to the boundary of F. 

Fig. 1 shows the case when a surface of class Mi in a neighbourhood of a 
point p is neither locally convex nor developable (ab is a rectlinear generator). 
We should emphasize that, in contrast to the class M+, surfaces of the class Ml, 
like all the subsequent classes, can be essentially n-dimensional for any n > 3, 
that is, they do not lie in any proper subspace of E”. 

Thus, the theory of convex surfaces is, by necessity, the theory of surfaces in 
E3, while surfaces of all the remaining classes are naturally regarded as surfaces 
in E” for all n 2 3. 

The reason for such an exceptional position of convex surfaces has a simple 
algebraic nature. Let B be the second fundamental form of a surface F at some 
point p. Consider a linear map L of the normal space to F at p into R3 according 
to the following rule: we fix a basis in TPF and associate with each normal v 
an ordered triple of numbers (a, b, c), the coefficients of the quadratic form 
B’(X, X) := (B(X, X), v), where ( , ) is the scalar product. The type of oscu- 
lating paraboloid corresponding to the normal v (and vectors parallel to it) is 
determined by the sign of the discriminant ac - b 2. In particular, every direction 
for which the osculating paraboloid is elliptic is mapped inside the cone 
ac - b2 > 0, Fig. 2. Therefore all osculating paraboloids can be elliptic or 
degenerate only if q = dim image L < 1. Similarly at a hyperbolic point, where 
there are no elliptic paraboloids, we certainly have q = dim image L < 2. 

If q = 3 at all points, then the immersion (surface) is said to be free. Surfaces 
consisting only of variable points form the closure of the set of free immersions 
in the corresponding topology. In the class of saddle surfaces it is natural to 
regard the situation of general position as that in which q = 2 everywhere (the 
osculating space is four-dimensional), and in the class of convex surfaces q = 1 
(the osculating space is three-dimensional). For convex surfaces the condition 
q = 1 (that is, q # 0) means that the Gaussian curvature does not vanish. 
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Fig. 2 

2.3. Classes of Metrics. According to the sign of the Gaussian curvature it is 
natural to distinguish the following classes of two-dimensional Riemannian 
metrics: the classes K+, K-, K, of Riemannian metrics of positive, negative and 
zero curvature, the classes KA, K, of metrics of non-negative and non-positive 
curvature, and the class K of all Riemannian metrics. The classes of surfaces and 
metrics marked with the same indices will be called corresponding. 

2.4. G-Connectedness. Local properties of smooth surfaces and metrics usu- 
ally reduce to conditions on the surface (or metric) at each point of it. As a rule, 
these conditions describe the behaviour of the surface (metric) in a neighbour- 
hood of a point up to the second order of smallness. Henceforth a geometric 
property of a surface will be called local if it is a property of a point of the 
surface, and its fullilment at some point p of the surface F implies its fulfilment 
at p for any other surface that coincides with F in a neighbourhood of p up to 
infinitesimals of the second order. 

For classes of surfaces and metrics distinguished on the basis of their local 
properties we shall distinguish G-connectedness in the small and G-connectedness 
in the large and correspondingly formulate two problems: in the small and in the 
large. 

The class of surfaces JY and the class of metrics ~$7 are said to be G-connected 
in the small if 1) the class of surfaces &’ coincides with the class of G-stable 
immersions of metrics of X, 2) every metric of X admits a local immersion 
in the form of a surface of &?. The problem in the small consists in looking for 
classes of surfaces and metrics that are G-connected in the small. 

The class 2 of complete surfaces and the class S? of complete metrics are 
said to be G-connected in the large if 1) the class of surfaces J? coincides with the 
class of G-stable immersions of metrics of 2, 2) every metric of Z? admits 
an immersion (in the large) in the form of a surface of 2. The problem in 

the large consists in looking for classes of surfaces and metrics that are G- 
connected in the large. 

In contrast to the problem in the small, here even in those cases when local 
properties are fundamental for the distinction of classes, we need to impose a 
priori conditions of non-local character on classes of complete surfaces and 
metrics that are G-connected in the large. 

This is because the local conditions that distinguish classes of metrics and 
surfaces that are G-connected in the small may lead to topological restrictions 
that are different for surfaces and metrics. For example, on the projective plane 
there are metrics of positive curvature, but none of them admits afhne stable 
immersions in E”. Moreover, in the case of classes of surfaces and metrics defined 
by local conditions that are G-connected in the small there may exist non-local 
obstructions for G-stable isometric immersions that have not only topological 
but also mixed topological-metric character. Thus, on a sphere with three punc- 
tures there are complete Riemannian metrics of non-positive curvature that are 
immersible in E3 and non-immersible as a saddle surface in any E”; see 1.4 of 
Ch. 3. 

In the case of complete metrics of positive curvature, and correspondingly 
complete convex surfaces, the only (purely topological) obstruction is non- 
connectedness. The matter is simple in the case of zero curvature. However, 
finding all obstructions to immersibility of complete metrics of non-positive 
(negative) curvature in the form of complete saddle (strictly saddle) surfaces in 
at least one E” is a difficult problem. (The case of simply-connected surfaces is 
simpler; for them it may be that all obstructions are trivial; see 1.3 of Ch. 3 and 
4.3 of Ch. 4.) 

2.5. Results and Conjectures. In this chapter a fundamental question is that 
of the correspondence of surfaces and metrics in the case of smooth surfaces4 
and for the afline transformation group, as in the general case, it consists of the 
problem in the small and the problem in the large. The problem in the small for 
the classes K+, K-, K,, K has been solved completely; we have the following 
two theorems. 

Theorem 2.5.1. The classes M+, M-, M,, M of smooth surfaces and the 
corresponding classes of metrics are pairwise affine connected in the small. 

Theorem 2.5.2. Zf we restrict ourselves to those classes of smooth surfaces, each 
of which is defined by a local geometric property, then there are no pairs that are 
affine connected in the small other than those listed in Theorem 2.5.1 and possibly 
the pairs K, , M, . 

Theorem 2.5.1 combines the following assertions. 
1 O. Each of the classes of surfaces mentioned above is affine-invariant. 

4 We recall that a smooth surface is always understood to be an immersion of class C’, I > 3. Special 
cases, such as P-smoothness (topological immersion) or C’,’ -smoothness, will be treated specially. 
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2”. The intrinsic metric of a surface of any of these classes belongs to the 
corresponding class of metrics. 

3”. An afline-stable immersion in E” of a metric of any class belongs to the 
corresponding class of surfaces. 

4”. Every metric of any of the classes admits a local immersion in the form of 
a surface of the corresponding class in E”. 

Assertions lo-3” hold for all six classes. The first of them is obvious. The 
second follows from the many-dimensional generalization of Gauss’s theorem. 
The third assertion is proved in S.Z. Shefel’ (1970). The fourth assertion has been 
proved (see Pogorelov (1969), Poznyak and Shikin (1974)) only for the classes 
listed in the theorem. 

Let us proceed to complete metrics and surfaces. 

Theorem 2.5.3. The classes a+, fiO, fi of smooth complete simply-connected 
surfaces and the corresponding classes of Riemannian metrics are affine connected 
in the large5. 

Like Theorem 2.5.1, this theorem combines four assertions. The first three of 
them are the same as in Theorem 2.5.1, and are therefore proved. The fourth 
assertion is as follows: every complete simply-connected Riemannian manifold 
of any of the classes i?+, &,, I? admits an immersion in the form of a (complete) 
surface of the corresponding class. In the case of z0 this is obvious. Also, every 
complete Riemannian metric of positive curvature, defined on a sphere or plane, 
admits an immersion in E3 in the form of a smooth complete convex surface. 
This is the solution of Weyl’s famous problem and its analogue for non-compact 
surfaces; for details see Ch. 2. Therefore in the case of the classes I?’ and k,, 
Theorem 2.5.3 is true. It is also true for the class E (even without the requirement 
of simply-connectedness) by a general theorem of Nash on isometric immersions 
(Nash (1956)). 

Let us state the proposition that the classes I?- and fi- of smooth simply- 
connected surfaces and metrics are afline-connected in the large. This proposi- 
tion combines four parts, of which the first three are the same as in Theorems 
2.5.1 and 2.5.3, and are automatically true. The fourth part can be stated as 
follows. 

Conjecture A6. A complete simply-connected Riemannian metric of negative 
curvature admits an isometric immersion in some E” in theform of a saddle surface. 

Together with Theorem 2.5.3, Conjecture A, when it is true, can be regarded 
as a generalization of Weyl’s problem. In any case all the results about non- 
immersibility, in the first place Hilbert’s classical theorem and the well-known 

5 Here and later a tilde over a letter implies the completeness of the metric or surface. 
6 This conjecture was made in S.Z. Shefel’ (1978) S.Z. Shefel’ (1979) but with superfluous generality, 
without the assumption of simply-connectedness; as we mentioned above, such a generalized conjec- 
ture is false. 

more general theorem of Elimov (see 0 1.1 of Ch. 3) do not contradict our 
conjecture, since here the class of immersions is restricted not by the dimension 
of the space but by a geometric property, the saddle form. 

The class E’ of metrics and the corresponding class of surfaces do not form 
an affine connected pair. It is true that a complete simply-connected Riemannian 
manifold of non-negative curvature admits an immersion in E3 in the form of a 
convex surface, but the smoothness of this surface may turn out to be substan- 
tially lower than the smoothness of the metric at the zeros of the curvature; see 
the example in 1.1 of Ch. 2. Such a lowering of the smoothness also takes place 
when considered locally; it is easy to verify this on the basis of an example from 
Pogorelov (1971). The authors do not have corresponding examples for the 
classes KG and l?; . We observe that in the case of analytic metrics and surfaces 
the classes “K, and “I?; of analytic metrics are afline connected in the small with 
the corresponding classes of surfaces; see Poznyak (1973). 

The fact that not all the classes of surfaces under consideration are afline 
connected with the corresponding classes of metrics is probably stipulated by the 
eclectic character of these classes: they are distinguished simultaneously by 
geometric properties (convexity, saddle form, and so on) and the a priori require- 
ment of smoothness. However, as we mentioned at the end of 5 1, smoothness is 
not an affine stable property in general; for details see $5 of Ch. 4. We can 
therefore hope that in the case of not necessarily smooth surfaces distinguished 
on the basis of just geometric properties there arise only classes that are affine 
connected with the corresponding classes of metrics; see $3 below. 

2.6. The Conformal Group. Let us now dwell on the conformal group of 
transformations. At each point of any smooth surface either 1) all the osculating 
paraboloids are paraboloids of rotation or degenerate, or 2) by a conformal 
transformation we can arrange that the Gaussian curvature of the surface at this 
point takes any value. Hence it follows easily that apart from the class of all 
surfaces and the class of all metrics the only ones that are conformally connected 
in the small are the class of surfaces in E3 locally congruent to a sphere or a 
plane, and the class of metrics of constant curvature. 

If a group of diffeomorphisms that preserves the subgroup of similarities is 
not affine or conformal, then by the action of this group we can achieve any 
value of the Gaussian curvature at some point of the surface (G.S. Shefel’ (1985)). 
Therefore all other groups distinguish only the class of all metrics and the class 
of all surfaces, and consideration of them from these positions is not meaningful. 

The principle of correspondence between classes of surfaces and metrics 
distinguishes classes of surfaces and metrics that play a central role in the theory 
of surfaces and in Riemannian geometry, and this is one of the basic forms of 
connection between intrinsic and extrinsic geometry. Only metrics of constant 
negative curvature have not found their natural place in this scheme. It is 
possible that a similar approach in the case of a pseudo-Euclidean space could 
distinguish such metrics instead of metrics of constant positive curvature. 
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$3. Convex, Saddle and Developable Surfaces with No 
Smoothness Requirement 

3.1. Classes of Non-Smooth Surfaces and Metrics. The classes of surfaces 
considered above, apart from the general class M, admit synthetic definitions 
(that is, purely geometric, not requiring any analytic apparatus). These delini- 
tions, but without any a priori assumption of smoothness, distinguish the wider 
classes J#;, 40, JXO, A+, M- f o generally speaking non-regular surfaces. 
Complete surfaces of the first three classes are complete convex surfaces, com- 
plete saddle surfaces, and cylinders. 

These classes, apart from possibly non-simply-connected saddle surfaces, 
have the compactness property: if compact surfaces Fi, lying in E”, of one of the 
classes have the same topology and their boundaries form a compact family, 
then we can pick out from them a convergent subsequence (it is a question of 
Frechet convergence); see Aleksandrov (1939), G.S. Shefel’ (1984). The classes 
Al, A;, A,, and the corresponding classes 20’) 2;) J?,, are closed7 in the 
sense that a convergent subsequence of surfaces of one class converges to a 
surface of the same class. The classes A+ and A- are not closed and in this 
connection they play a minor role. 

What we have said here about surfaces can largely be repeated for metrics. 
The classes of Riemannian metrics considered above admit a simple synthetic 
description. The classes Ki, K;, K, are c aracterized by the fact that the excess h 
(that is, the difference between the sum of the angles and rc) of any simply- 
connected triangle of shortest curves is respectively non-negative, non-positive 
and equal to zero. (For the classes K’ and K- we need to compare the excess 
with the area of the triangle.) Let us now give up the fact that the metric is 
Riemannian, that is, we shall consider a two-dimensional manifold with an 
intrinsic metric (given directly by distances, and not by means of a quadratic 
form). For precise definitions of a triangle, an angle, and other concepts in such 
a space, we refer the reader to Aleksandrov and Zalgaller (1962). Then, depend- 
ing on the sign of the excesses of triangles, we distinguish live classes of generally 
speaking non-Riemannian metrics. These are the classes X0-, X0-, X0 of metrics 
of non-negative, non-positive and zero curvature (the last class consists merely 
of flat Riemannian metrics), and two more classes X’, Xx- of metrics of strictly 
positive and strictly negative curvature. The classes X0+, X0-, X0 are closed, but 
X+, X- are not closed. Criteria for compactness of these classes are apparently 
not known. 

3.2. Questions of Approximation. Another approach, which leads to non- 
regular surfaces and metrics, is as follows. We complete the classes Mz, M;, M, 

‘Surfaces in a Euclidean space of fixed dimension form a metric space T with a Frtchet metric. This 
space is complete. The fact that a class ‘P is closed means that the set T n P is closed in T. If we 
regard T n Y as a metric space, it is a question of its completeness. 

by adjoining to them surfaces admitting an approximation (in the sense of 
Frechet convergence) by smooth surfaces of the corresponding classes. We de- 
note the new classes, closed with respect to.FrCchet convergence, by a:, Hi, 
M,. 

Similarly we complete the classes Ki, KG, K, of Riemannian metrics by 
limiting elements. The new classes Kg, K;, K, consist of two-dimensional 
manifolds M with intrinsic metrics p that admit an approximation (in the sense 
of uniform convergence) by Riemannian metrics defined on M. 

Along with approximation by smooth objects, we can consider the classes PO’, 
PC, p,, of surfaces and classes i?c, fi;, no of metrics that are the closures of the 
corresponding classes P: , Pi, PO of polyhedra in E” and the classes Z7:, &, ZZ, 
of polyhedral metrics. 

The synthetic approach is more natural from the general geometrical point 
of view and enables us to use direct geometrical constructions. Approximation 
by smooth surfaces and smooth metrics promotes the use of analytical appara- 
tus, and the consideration of polyhedra enables us to simplify the objects of 
consideration and construction. Hence the combination of the synthetic and 
approximative approaches has turned out to be very successful. 

Let us compare the classes of surfaces and metrics obtained by these ap- 
proaches. There is a conjecture that all three approaches lead to the same classes. 

For metrics this has been completely proved; see Aleksandrov and Zalgaller 
(1962) Reshetnyak (1960b). It is easy to see that the classes of surfaces obtained 
approximatively are contained in the corresponding classes constructed synthet- 
ically. Hence the conjecture we have stated can be reformulated as follows. 

Conjecture B. Each surface of the classes A:, A;, A0 can be approximated 
by smooth surfaces (or polyhedra) of the corresponding class. 

For surfaces of classes &J and .&!; this has been proved in the most impor- 
tant cases (see Pogorelov (1956b), S.Z. Shefel’ (1974), Aleksandrov (1948)); the 
methods used in these papers can probably be applied in the general case. 

For saddle surfaces the question is still open, though for approximation by 
polyhedra a partial result was obtained in S.Z. Shefel’ (1964). We need to bear 
in mind that although any smooth saddle surface in E3 can be approximated by 
saddle polyhedra, the converse is not all obvious*. However, the question of the 
coincidence of ii;r,- and F; is now not so acute. 

Along with questions of approximation of general convex and saddle surfaces 
by smooth surfaces or polyhedra of the corresponding class, we mention the 
question of approximation of a (smooth) saddle surface by smooth surfaces that 
are strictly saddle in the sense that all their osculating paraboloids are hyper- 

‘_ bolic. Strictly speaking, the interesting case is n > 3, which has apparently not 

‘It is also not clear whether a saddle surface in E”, n > 3, can be approximated by saddle polyhedra. 
If such an approximation exists, it is not at all “good”; see 3.3 of Chapter 3 and 1.4 of Chapter 4. 
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been solved even on the assumption that the Gaussian curvature of the surface 
is negative everywhere. For convex surfaces the possibility of a similar approxi- 
mation is well known. 

3.3. Results and Conjectures. Let us turn to the central question of this 
chapter about connections between classes of surfaces and metrics. 

Conjecture C. The problem in the large (for the affine group) has the following 
solution. 

The classes A@:~ A?;, iO of c 
classes G&+, 20e, X0 of c 

omplete simply-connected surfaces and the 
omplete simply-connected metrics are pairwise affine 

connected in the large. 

A similar proposition can be stated about the problem in the small; from the 
viewpoint of the difficulties in the path of the solution it apparently differs little 
from the problem in the large. 

For the classes JZ?~, z0 of surfaces and the corresponding classes of metrics 
this conjecture has been completely proved. Since the proof is comparatively 
simple for complete developable surfaces and metrics of zero curvature, we dwell 
in more detail on the case of complete metrics of non-negative curvature. In this 
case the problem reduces to the proof of three assertions: 1. With respect to its 
intrinsic geometry a convex surface is a manifold of non-negative curvature. 2. 
Every complete metric of non-negative curvature specified on a sphere or a plane 
is the metric of a complete convex surface. 3. An affine-stable immersion of a 
complete non-flat metric of non-negative curvature is a convex surface. The 
answer to the first two questions lies in the sources of non-regular geometry and 
forms the main content of a classic book of A.D. Aleksandrov (Aleksandrov 
(1948)). The third assertion was proved in S.Z. Shefel’ (1970). 

Let us turn to saddle surfaces. The question of the aftine connectedness of the 
classes 2; and 20- reduces to two problems. Firstly, does a general saddle 
surface (of class 2;) have an intrinsic metric of non-positive curvature? Here it 
would be sufficient to give a positive answer to the conjecture about approxima- 
tion (even locally and in either the smooth or polyhedral version). Secondly, can 
every simply-connected manifold of non-positive curvature be isometrically 
mapped into some E” as a saddle surface? In contrast to the case of a smooth 
surface, this question has not been solved (and is hardly any simpler) even in the 
local formulation. 

In conclusion, a few words about non-regular surfaces generally. Firstly, in 
the question we are considering of connections between natural classes of two- 
dimensional surfaces and two-dimensional metrics, non-regular surfaces and 
metrics appear as objects of investigation having the same rights as smooth, 
surfaces and metrics. Moreover, in the case when non-regular surfaces are con- 
sidered along with smooth ones, the answers to the questions sound very simple. 
Secondly, the use of non-regular surfaces not only enables us to extend the 
methods of proof, but also leads to new formulations of the problems. 

$4. Surfaces and Metrics of Bounded Curvature 

4.1. Manifolds of Bounded Curvature. Convex and saddle surfaces serve as 
examples of non-regular objects having, in view of their geometrical properties, 
intrinsic metrics that are not Riemannian but preserve the essential features of 
the latter and can be regarded as generalizations of a Riemannian metric of 
non-positive or non-negative curvature. Since the natural formulations some- 
times lead to non-regular surfaces other than convex and saddle surfaces, the 
need for further generalization of Riemannian geometry arises. Such a gener- 
alization consists of two-dimensional manifolds of negative curvature in the 
sense of Aleksandrov (see Aleksandrov and Zalgaller (1962)). The fact that this 
generalization is not only successful but apparently the only possible one is 
emphasized by the result that the three independent approaches, axiomatic, ap- 
proximative and analytic, lead to the same generalization of a two-dimensional 
Riemannian space - a manifold of bounded curvature. 

Let us recall the definition of a manifold of bounded curvature, referring the 
reader for the details to Aleksandrov (1950b), Aleksandrov and Zalgaller (1962). 
In a metric space with an intrinsic metric it is natural to define shortest curves 
and upper angles between curves. A two-dimensional manifold with an intrinsic 
metric p is called a manifold of bounded curvature if for some neighbourhood UP 
of any point p of it the sum of the positive excesses of pairwise non-overlapping 
triangles does not exceed a number C < co that depends only on U,,. We 
understand a triangle as a domain homeomorphic to a disc bounded by three 
shortest curves with pairs of ends in common, and the excess of a triangle T is 
the expression 6(T) = a + p + y - rc, where a, 8, y are the upper angles of the 
triangle. Triangles are assumed to be non-overlapping if their interiors are 
disjoint. 

A characteristic property of manifolds of bounded curvature is the possibility 
of defining in them the concept of the curvature of a set. This is a locally finite 
completely additive Bore1 set function o such that for any triangle T satisfy- 
ing the condition U(CYT) = 0 its value is equal to the excess of the triangle: 
o(T) = 6(T). 

The necessity of the condition o-(8T) = 0 is illustrated in Fig. 3, which shows 
a cylinder with base in the form of a “concave” triangle T; w(int T) = 0, and the 
excess 6(T) is negative. We denote the class of manifolds of bounded curvature 

Fig. 3 
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by K Two-dimensional Riemannian manifolds belong to X, and the curvature 
o(E) = SE KdS, where K is the Gaussian curvature and dS is the element of area. 
Polyhedral metrics also belong to X; in this case the curvature is concentrated 
on the discrete set of vertices and at each vertex it is equal to 271 - 6, where 8 is 
the total angle around the vertex. 

A two-dimensional manifold with an intrinsic metric is a two-dimensional 
manifold of bounded curvature (that is, it belongs to the class X) if and only if 
it admits an approximation (even if just locally) by polyhedral or Riemannian 
metrics whose positive curvatures are bounded in aggregate. (Here we have weak 
convergence of curvatures as set functions; see Aleksandrov and Zalgaller (1962). 

Finally, the analytic approach is based on the application of generalized 
isothermal coordinates. The crux of the matter is that the metric of a manifold 
of bounded curvature can be specified by means of a (non-regular) line element 
ds2 = A(du2 + dv2), where In n(u, v) is the difference between two subharmonic 
functions. Conversely, the metric introduced in this way belongs to X; see 
Reshetnyak (1960b). 

4.2. Surfaces of Bounded Extrinsic Curvature. The question of which extrin- 
sic geometrical properties can distinguish the class of surfaces corresponding 
to the intrinsic concept of the class of manifolds of bounded curvature has 
been discussed by a number of authors, but the character of the correspondence 
has not been clearly expressed. A number of classes of surfaces supporting 
metrics of class X have been suggested, and also some specific connections 
have been traced between extrinsic and intrinsic geometries; see Aleksandrov 
(1949), Aleksandrov (1950a), Bakel’man (1956) Borisov (1958- 1960), Pogorelov 
(1956b), Reshetnyak (1956), Yu.D. Burago (1968b). 

From the point of view of the criteria discussed above, so long as we under- 
stand a geometrical property as an invariant of the transformation group, this 
question is part of the general question of this chapter; it is formulated as follows. 
Is there a class of surfaces G-connected with the class X of metrics, and what 
kind is it? (Here the problems in the small and in the large hardly differ in 
essence.) 

We begin with the afhne group G; we discuss other possibilities below. We 
assume that the class of surfaces afline-connected with the class X of metrics is 
the class A! of surfaces of bounded extrinsic positive curvature defined in this 
section. Let q(v) be the number of points of a surface F in E” at which the surface 
has locally strictly supporting hyperplanes with “outward” normal v. We put 
P+(F) = jsn-lq(v) d cV, where the integration is carried out over the unit sphere. 
To the class J?’ we refer all surfaces with pt < cc that locally have finite area; 
for the details see Ch. 4. 

In contrast to the cases of convex and saddle surfaces the conjecture about 
affine connectedness in the large of the classes X and Jz’ may not depend on a 
priori topological or non-local topological-metric assumptions. The fact is that 
the conditions for a surface to be convex or saddle-shaped have the character of 
an equality: the extrinsic curvature is equal to the intrinsic, while the class JId;e is 

distinguished by an inequality, and for surfaces of this class, for example, the 
extrinsic positive curvature pL+ may be unequal to (greater than) the positive part 
w+ of the curvature of the intrinsic metric. 

In the scheme for confirming the last conjecture not much has been achieved 
so far. This is possibly because it has not proved possible to apply any developed 
apparatus to the solution of similar problems; in this connection any progress 
requires a new original construction; evidently the fact that up to now the main 
attention has been paid to immersions in E3 has played a part. There are no 
publications on the possibility of immersing a metric of class X in the class A. 
It is only known that any metric of class X can be realized on some surface; see 
Yu.D. Burago (1960), Yu.D. Burago (1970). The fact that a surface of class J? 
has a metric of class X has been proved only under additional assumptions; see 
Yu.D. Burago (1968b). 

In contrast to the previous considerations, in the case of manifolds of bounded 
curvature the afftne transformation group is not the only possible one. It may 
be that the class of surfaces connected with X relative to the whole group of 
diffeomorphisms consists of surfaces of class J?’ having finite integral mean 
curvature (understood in the well-known generalized sense; see 2.1 of Ch. 4). The 
fact that a surface preserves a metric of class X under inversions if and only if 
its integral mean curvature is finite (S.Z. Shefel’ (1970)) supports this conjecture; 
see 2.2 of Ch. 4. 

To conclude this chapter we should like to dwell on two points. All the 
contents of the chapter testify to the fact that in the main question of connections 
between the theory of surfaces and the theory of Riemannian manifolds essen- 
tially only two specific problems remain unsolved; the question of an isometric 
immersion of a metric of negative curvature by a saddle surface, and the question 
of approximation of saddle surfaces. 

The general questions considered here for two-dimensional surfaces also arise 
in the multidimensional case. Despite the differences and difficulties, the same 
ideas and concepts can apparently be used successfully in the general case. This 
has played a definite role in the choice of the character of the presentation on 
the basis of the ideas developed in S.Z. Shefel’ (1970), S.Z. Shefel’ (1978) S.Z. 
Shefel’ (1979). 

Chapter 2 
Convex Surfaces 

tj 1. Weyl’s Problem 

1.1. Statement of the Problem. In its original formulation, Weyl’s problem is 

as follows. Suppose we are given a Riemannian metric of positive curvature on 
a sphere. Is there a convex surface (unique up to a motion) with this metric in 
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Euclidean space E3? Recently this problem has been completely solved (both as 
to existence and as to uniqueness and smoothness). 

Theorem 1.1.1. A C’,‘-smooth (2 > 2, 0 < a < 1) two-dimensional Riemannian 
manifold of positive curvature, homeomorphic to a sphere, admits a (unique up to 
a motion) P-smooth isometric immersion in E3 as a convex surface. If the 
Riemannian metric is analytic, then the immersion is also analytic. 

Here the condition that the curvature is strictly positive cannot be discarded, 
as the following example shows: the surface z = (x2 + Y’)~“, x2 + y2 6 1, can be 
completed to a closed convex surface that is C”-smooth and has positive 
Gaussian curvature everywhere except at the origin 0. The metric of the resulting 
surface is C”-smooth (and even analytic in a neighbourhood of 0), but the 
surface is not even C3-smooth at the point 0. By Theorem 5.1.1 on uniqueness, 
this metric cannot be immersed in E3 with greater smoothness’. 

Two approaches to the proof of this theorem are known. In one of them the 
original problem is reduced to the question of the solubility of a non-linear 
partial differential equation of Monge-Amp&e type (the so-called Darboux equa- 
tion)2. The solubility of the latter has been proved in the standard way, by 
continuation with respect to the parameter, but it has not been possible to prove 
Theorem 1.1.1 in this way merely by the methods of the theory of equations: the 
decisive step - obtaining a priori estimates - makes essential use of geometrical 
considerations. Below we dwell in a little more detail on the basic steps of this 
approach. 

In the other approach Theorem 1.1.1 is obtained as a consequence of two 
fundamental results, Theorem 2.2.2 of A.D. Aleksandrov about the existence of 
a convex surface with any metric of non-negative curvature defined on the 
sphere, and Theorem 3.1.1 of Pogorelov on the smoothness of a convex surface 
with Riemannian intrinsic metric of positive curvature. We should emphasize 
that in the first theorem the metric may not be Riemannian, and the second 
theorem has a local character - completeness of the surface is not assumed. 

Such a method, in which we first prove the existence of a generalized solution, 
and .then establish its smoothness, is widely used in the theory of equations. 
However, historically one of its main sources has consisted of problems of the 
existence of convex surfaces with preassigned properties, principally the prob- 
lems of Minkowski (see 7.2 below) and Weyl; see Aleksandrov and Pogorelov 
(1963). 

‘Pogorelov (Pogorelov 1971)) constructed an example of a C ‘, ‘-Riemannian manifold, homeo- 
morphic to a disc, with K > 0 and with strictly convex boundary, that does not admit C’,‘-isometric 
immersions in E3 (however, the zeros of the curvature fill a domain). For C”-smooth metrics with 
K > 0 and n > 10, local immersibility in the form of a C”-‘-smooth convex surface has been proved; 
see Lin (1985). 
‘This equation made its appearance with Weierstrass in 1884. 

1.2. Historical Remarks. Weyl (Weyl(l916)) formulated the analytic case of 
Theorem 1.1.1, suggested a method of solution, and realized it in the case of 
analytic metrics sufficiently close to the metric of a sphere. A complete solution, 
under assumptions of analyticity, was obtained only after 20 years by Lewy; see 
Lewy (1938). As essentially new step was taken by A.D. Aleksandrov; see $2. 
From his results it followed in particular that every Riemannian metric of 
positive curvature on a sphere can be “realized” as the intrinsic metric of a 
convex surface, a priori not necessarily smooth - a “generalized solution”. The 
complete solution of the problem (for classes of smoothness C”) was obtained 
independently and almost at the same time by Nirenberg (Nirenberg (1953)) and 
Pogorelov (Pogorelov (1949b), Pogorelov (1949~)). Nirenberg’s proof followed 
the first of the approaches we have mentioned, and Pogorelov’s proof followed 
the second. Thus, in Pogorelov’s works not only is a solution of Weyl’s problem 
given, but an independent result of fundamental character is obtained - the 
smoothness theorem (see 5 3). 

Pogorelov’s proof of the theorem on smoothness relies on a theorem about 
the uniqueness of a convex surface with given metric. This theorem is very 
difficult, but for the theorem on smoothness a special case of it is suflicient: the 
uniqueness of a convex cap with regular metric. In this case uniqueness is proved 
much more easily; see Pogorelov (1969). A proof of the theorem on smoothness, 
independent of the uniqueness theorm, was obtained much later in Nikolaev and 
Shefel’ (1982), Nikolaev and Shefel’ (1985). Originally the proofs of Nirenberg 
and Pogorelov required increased smoothness assumptions. Later in a number 
of papers these assumptions were weakened; see Heinz (1959), Heinz (1962), 
Pogorelov (1969). For Hiilder classes the solution in the form of Theorem 1.1.1 
was obtained in Sabitov (1976). 

As for the uniqueness of a closed convex surface with a given metric, here the 
first result was Cauchy’s theorem about the non-bendability of a convex closed 
polyhedron. Liebmann and Minkowski in 1899 proved that a sphere is not 
bendable, and later Liebmann proved the impossibility of a continuous bending 
of a closed convex surface. The theorem about the uniqueness of a closed convex 
surface with a given metric was first proved by Cohn-Vossen, originally for 
piecewise-analytic surfaces, and then for C3-smooth surfaces of positive curva- 
ture. His proof was based on an estimate of the sum of the indices of singular 
points of a specially constructed vector field. A simpler proof of the uniqueness 
theorem, based on an integral formula, was proposed by Herglotz (Herglotz 
(1943)) and completed by a number of authors; it was possible to lower the 
smoothness requirements to Cl” (a result of Aleksandrov in Efimov (1948). For 
general convex surfaces without any smoothness assumptions the uniqueness 
theorem was proved by Pogorelov; for more details see $5. As well as this, 
Olovyanishnikov and Pogorelov completely investigated bendings of complete 
@finite convex surfaces, see 6 6. 

1.3. Outline of One of the Proofs. Let us dwell in detail on the basic steps of 
the first approach to Weyl’s problem. The set of C’,‘-smooth Riemannian met- 
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rics on a sphere forms a topological space (with the weak topology induced by 
Co-smoothness). To prove the existence theorem it is sufficient to establish that 
the set of Ct.“-smoothly immersible metrics of this space is (a) open, (b) closed, 
and (c) connected. This approach, which goes back to the research of S.N. 
Bernstein, was proposed by Weyl (Weyl(l916)); at present it is one of the basic 
methods in the theory of partial differential equations. 

The main difficulty in the proof of Theorem 1.1.1, as usual, is part (b); in the 
theory of equations it is justified by means of so-called a priori estimates; in 
the given case the well-known ways of obtaining them require geometrical 
arguments. 

Parts (a) and (c) were essentially proved by Weyl. Part (c) can be verified by 
means of Koebe’s uniformization theorem (see Ahlfors and Sario (1960)) which 
asserts that every Riemannian metric ds2 on a sphere S2 is conformally equiva- 
lent to the standard metric dsi of constant curvature 1, that is, it can be repre- 
sented in the form ds2 = eqds& In our case q E C’,“. A simple calculation shows 
that all metrics dsf = etqdsg, 0 6 t d 1, have positive curvature. 

Assertion (a) is a consequence of a suitable inverse function theorem. To make 
this clearer, let us reformulate our question in the language of differential equa- 
tions. It is well know that Theorem 1.1.1 reduces to the question of the solubility 
of the Darboux equation mentioned above. This is a second-order equation of 
Monge-Ampere type. It can be obtained as follows. 

Suppose that in E3 we have introduced polar coordinates r, q, 0, and that the 
equations r = r(w), cp = q(w), 6 = 0(w), where w E S,“, specify a surface with 
metric ds2. It is not difficult to see (see Kagan (194771948), for example) that if 
we know the function r(w), then from it and ds2 the remaining functions q(w) and 
e(w) can be found uniquely up to a motion on the sphere. In turn, the function 
r(w) must satisfy the Darboux equation, which we obtain if we observe that 
(l/r2)(ds2 - dr2) is the metric of the unit sphere, and equate the Gaussian 
curvature of this metric to one. The converse is also true: if r(w) is a solution of 
the Darboux equation, and q(w), e(w) are found from r(w), as we mentioned 
above, then such functions specify a surface with metric ds2. 

If we put p = )r2 and make certain transformations, the Darboux equation 
reduces to the form 

(EC - F2)-‘(p,,p,, - p,2,) - Ap + K(lgrad pi2 - 2~) + 1 = 0. (1) 

Here K is the Gaussian curvature of the original metric ds2 = Edu2 + 2Fdudv + 
Gdv2, pij are the second covariant derivatives of p, and A and grad are respec- 
tively the Laplace operator and the gradient with respect to the metric ds2. Thus 
the problem of isometric immersion has reduced to the question of the solubility 
of equation (1). Now part (a) - the openness of the set of immersible metrics ~ is 
obtained by applying the inverse function theorem to equation (1). Of course, 
this needs preparatory investigation of the linearized equation. There is a de- 
tailed account of these questions in Nirenberg (1953). 

To prove part (b), and thereby complete the proof of the theorem, it would be 
sufficient to have a priori estimates of the solution of (1) in the norm Cfla in terms 

of suitable norms of its coefficients. Such estimates are still not known3, but a 
simple method enables us to prove that the set of C’,” immersible metrics is 
closed, using well-known (Heinz (1959), Nikalaev and Shefel’ (1985)) estimates 
for the simpler equation 

ZU”Z”” - 2” = (1 + z,” + z;)K(u, v). 

In fact, we shall assume for simplicity that an atlas of finitely many charts is 
fixed on the sphere and the metrics are specified by quadratic forms of class C’,a 
in the corresponding local coordinates. Suppose that the Cl,“-smooth metrics pi 
are the intrinsic metrics of Cl,“-smooth convex surfaces Fi in E3 and converge in 
Cf.” to some metric p. Then the Gaussian curvatures Ki of the metrics pi are 
uniformly bounded, 0 < a2 < K(u, v) < b2 < co, and by Bonnet’s classical theo- 
rem there are numbers 0 < r < R < cc such that every surface Fi contains a ball 
of radius r and is contained in a ball of radius R. We may assume that these balls 
have a common centre Q. Let r = ri(cp, 0) be the equations of the surfaces Fi in 
polar coordinates with centre 0. It follows easily from Sabitov and Shefel’ (1976) 
that the Gaussian curvatures of the surfaces F,, as functions of the parameters cp, 
8, belong to C’-2*a, and the functions ri that specify the Fi belong to C’ga, and 
their CITa-norms are uniformly bounded. Thus there is a subsequence of surfaces 
Fi converging in C’,” to some convex surface that is a C’,‘-smooth immersion of 
the metric p. 

0 2. The Intrinsic Geometry of Convex Surfaces. 
The Generalized Weyl Problem 

It is well known from differential geometry that a sufficiently smooth convex 
surface is a Riemannian manifold of non-negative Gaussian curvature with 
respect to its intrinsic geometry; if the surface is strictly convex (in the special 
sense that at each point of it the osculating paraboloid is non-degenerate), then 
it supports a Riemannian metric of positive Gaussian curvature. By Theorem 
1.1.1 positivity of the Gaussian curvature of a Riemannian metric defined on the 
sphere is a necessary and sufficient condition that this metric is the intrinsic 
metric of some (sufficiently smooth) strictly convex surface. Since convexity is a 
natural geometrical requirement, by its nature not connected with a smoothness 
assumption, Aleksandrov considered the following problem: to characterize the 
intrinsic metrics of general convex surfaces. To this end he constructed a general- 
ization of the concept of a Riemannian manifold of non-negative curvature to 
the case of non-smooth metrics. 

3 It would be interesting to determine whether the required estimates could be obtained in the same 
way as Theorems 1’ and 2’ of Nikolaev and Shefel’ (1985). 
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2.1. Manifolds of Non-Negative Curvature in the Sense of Aleksandrov. Let M 
be a two-dimensional manifold with an intrinsic metric, that is, a metric space 
satisfying two conditions: 1) every point of it has a neighbourhood homeo- 
morphic to a two-dimensional disc; 2) the distance between any two points of M 
is equal to the greatest lower bound of the lengths of curves joining these points. 
The metric space M is locally compact, so any two sufficiently close points of it 
can be joined by a shortest curve. If gl, (TV are curves in M with common origin 
p, then the upper angle E between them is defined as follows. Suppose that x E ol, 
y E rsz, and that y(x, y) is the angle at the vertex corresponding to p of the flat 
triangle with sides respectively equal to the sides of the triangle pxy. Then 

any two shortest curves gl, rsz with common origin p and points x E gl, y E rs2, 
y’ E g2 such that y lies on g2 between p and y’, we have y(x, y’) d y(x, y), that is, 
the angle y does not increase as the points x and y move away from p. For the 
proof it is essential that the convexity condition easily implies that the curvature 
of the metric is non-negative (in fact, these conditions are equivalent, but to 
prove this is not trivial); on the other hand, we can verify that convex polyhedra 
satisfy the convexity condition. Now part 3 (and with it Theorem 2.2.1 also) 
follows from the fact that the convexity condition is easily verified in the case of 
a polyhedral metric of non-negative curvature and, like the property in the large, 
it is preserved on transition to the limit. 

7 

Cc:= hm y(x, y). 
x,y-P 2.2. Solution of the Generalized Weyl Problem 

As we mentioned above, the excess 6(T) of a triangle T is the difference between 
the sum of its upper angles and 7~. A two-dimensional manifold M with an 
intrinsic metric is called a manifold gf non-negative curvature if 1) the excess of 
every (sufficiently small) triangle is non-negative; 2) every point x E M has a 
neighbourhood G with compact closure such that the sum of the excesses of any 
set of pairwise non-overlapping4 triangles contained in G is bounded by some 
constant C(G) < co. 

Theorem 2.2.2 (Aleksandrov (1948)). Every two-dimensional mani,fold ofnon- 
negative curvature homeomorphic to the sphere is isometric to some convex surface. 

It is understood that among convex surfaces we include surfaces that degener- 
ate into a doubly covered convex domain in the plane, for example, two flat discs 
placed one on top of the other and glued along the boundary. 

Theorems 2.2.1 and 2.2.2 establish a one-to-one correspondence between the 
class of metrics of non-negative curvature defined on the sphere and the class of 
all closed convex surfaces. It is essential that these classes are distinguished on 
the basis of simple and natural geometrical criteria, and in the proofs, instead of 
using the theory of partial differential equations, we use direct geometrical 
methods. 

Remark 1. Condition 2) cannot be discarded, as the example of the 
Minkowski plane shows. However, we can give it up if instead of the upper angle 
we use the so-called lower angle, defined not as limX,Y+py(x, y), but in a much 
more complicated way. Originally the construction of the theory of manifolds of 
non-negative curvature in Aleksandrov (1948) relied on the concept of lower 
angle; the approach in terms of the upper angle was developed in Aleksandrov 
and Zalgaller (1962). 

A polyhedral metric is a metric of non-negative curvature if and only if the 
total angle around each vertex (that is, the sum of the angles of the triangles of 
the triangulation adjoining this vertex) is not greater than 271. 

Theorem 2.2.1 (Aleksandrov (1948)). A convex surface is a manifold of non- 
negative curvature with respect to its intrinsic geometry. 

This theorem is a consequence of three facts. 1) A convex polyhedron has an 
intrinsic metric of non-negative curvature. 2) If convex polyhedra converge to a 
convex surface F, then their intrinsic metrics converge to the intrinsic metric of 
F. 3) If atwo-dimensional manifold with an intrinsic metric admits an approxi- 
mation by polyhedral metrics of non-negative curvature, then it is itself a mani- 
fold of non-negative curvature. 

The first two assertions are quite simple. In the proof of the third assertion an 
important role is played by the following condition for convexity of a metric: for 

Theorem 2.2.2 of Aleksandrov differs fundamentally from Theorem 1.1.1 in 
two respects: firstly, as a criterion for the “regularity” of an immersion we take 
not its degree of smoothness, but a geometrical property - convexity. Secondly, 
the problem is considered for the widest class of objects. Such a widening of the 
class made it possible, in particular, to include in it convex polyhedra, which are 
a convenient instrument in the proof. 

The proofs of Theorem 2.2.2 proposed by Aleksandrov in general outline 
consist in the following. By approximating an arbitrary metric of non-negative 
curvature by polyhedra the general case is reduced to the analogous theorem for 
polyhedra. This is proved by means of one of the modifications of the method 
of continuation with respect to the parameter. Since both polyhedral metrics and 
also polyhedra in E3 with a fixed number of vertices can be regarded as elements 
of a finite-dimensional space, the closedness of the set of realizable metrics 
becomes almost obvious, and the centre of gravity of the difficulties (in contrast 
to the situation in the theory of equations) is transferred to the openness of this 
set. Here we make essential use of Cauchy’s theorem on the uniqueness of a 
convex manifold with a given metric, or a rigidity theorem that replaces it. 

4 We have in mind that G is homeomorphic to a disc, so for a triangle contained in G it is natural to 
define its interior. Two triangles are assumed to be non-overlapping if they do not have essential 
intersections (that is, not removable by a small movement). 

2.3. The Gluing Theorem. Consider domains G,, . . . , G,,, in a manifold M of 
non-negative curvature, having compact closures and each bounded by finitely 
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many rectifiable curves. Suppose also that each boundary curve is divided by 
finitely many points (vertices) into parts (we shall call them sides). Suppose that 
each domain Gi is chosen from the manifold M, that is, Gi is considered with the 
metric induced by the inclusion Gi c M, and that the boundaries of the domains 
Gi are glued to each other by identifying the sides in pairs in such a way that the 
gluing maps are isometries, and as a result we obtain a two-dimensional mani- 
fold. It is natural to define an intrinsic metric in this manifold Q. 

Theorem 2.3.1 (Aleksandrov (1948)). I n order that the manifold Q constructed 
above should be a manifold of non-negative curvature it is necessary and sufficient 
that the following two conditions should be satisfied: 

1) The sum of the turns’ of any two identifiable parts of the sides is non- 
negative. 

2) The sum of the angles of the domains Gi that meet at one vertex does not 
exceed 271. 

One of the main methods of investigating bendings of convex surfaces is based 
on the combined application of Theorem 2.2.2 on immersibility and Theorem 
2.3.1 on gluing. Together with the smoothness theorems (see Q 3) it has become 
a method of differential geometry that is very effective both in problems of the 
existence of local isometric immersions and in questions of bending of surfaces 
(see 4.5). The details can be found in Pogorelov (1969). 

0 3. Smoothness of Convex Surfaces 

3.1. Smoothness of Convex Immersions. Convex surfaces with an intrinsic 
metric of positive Gaussian curvature have the remarkable property that the 
smoothness of their intrinsic metric implies the smoothness of the surface itself. 
The first research in this direction was done by Aleksandrov, who proved that 
a convex surface with bounded positive specific curvature6 is Cl-smooth. 

Further progress was made, mainly by Pogorelov. The following theorem 
contains his basic result with some improvements due to Sabitov (Sabitov 
(1976)). 

‘The right turn zI (respectively, left turn TV) of‘ a simple open polygon of shortest curves is defined as 
x,(n - CQ), where zi is the angle of the right (left) sector between the sides of the open polygon 
starting from the vertex i; the sum is taken over all vertices. For a simple arc L by definition 
s,(L) = lim,,= TI(&), Tz(L) = limi,:. TV, where the open polygons Li lie to the right (left) of L, 
they have ends in common with I,, and they converge to L in such a way that the angles betweeIl 
L, and L at the end-points tend to zero. A turn exists if L has definite directions at its ends. For a 
smooth curve its turns are equal to + J k, dl, where k,, is the geodesic curvature, and dl is the ele- 
ment of length. 
6That is, a surface such that for any Bore1 subset E of it such that S(E) > 0 we have 0 < 
o(E)/S(E) < C < co, where w and S are its integral curvature and area respectively. 

Theorem 3.1.1 (Pogorelov (1969), Sabitov (1976)). A convex surface with Cl,“- 
smooth metric, 1 > 2, 0 < o! < 1, and positive Gaussian curvature is C”“-smooth’. 
If the metric is analytic, then the surface is also analytic. 

We should emphasize that this theorem has a local character, that is, it holds 
for any domain on a convex surface. The assertion of the theorem is best 
possible: the intrinsic metric of a Cl,“- smooth surface is Cl,‘-smooth (Sabitov and 
Shefel’ (1976)). The condition that the curvature is positive cannot be dropped, 
as the example of the surface z = (x’ + y ’ ) 3/2 shows; compare with the example 
of 1.1. 

3.2. The Advantage of Isothermal Coordinates. As we know, every two- 
dimensional manifold of bounded (in particular, non-negative) curvature admits 
an atlas of isothermal coordinates, which defines a canonical analytic structure 
on it (see Reshetnyak (1959)). In these coordinates the metric has maximal 
smoothness, that is, if in some coordinates the components of the metric tensor 
have smoothness C’T~, then they have at least this smoothness in isothermal 
coordinates, and so its Gaussian curvature is a Cf-2vn-smooth function of the 
isothermal coordinates. The converse is also true: if the curvature is C’-2*a- 
smooth with respect to isothermal coordinates, then the metric is C’s”-smooth; 
see S.Z. Shefel’ (1970). Hence Theorem 3.1.1 is equivalent to the following 
assertion: a convex surface with Clm2,’ -smooth positive Gaussian curvature is 
CL-‘-smooth. If the curvature is analytic, then the surface is also analytic. 

We mentioned above that Theorem 3.1.1 is local; in fact, even its “point” 
version holds. 

Definition. A function f defined in a domain R c R” has an approximative 
differential of order (1, c() at a point x,, if there is a polynomial s(x) of degree 1 
such that 

I f(x) - P&g 6 Clx - XOll+a. 

Theorem 3.2.1 (Nikolaev and Shefel’ (1985)). If the Gaussian curvature of a 
convex surface F, regarded as a function of the isothermal coordinates, is positive 
at some point p and has an approximative differential of order (1 - 2, a), 1 > 2, 
0 < H < 1, then close to p the surface F is the graph of a function that has an 
approximative differential of order (1, cx) at p. 

Since a function that has an approximative differential of order (1, a) every- 
where is C1,‘-smooth, Theorem 3.1.1 follows from Theorem 3.2.1. 

Theorem 3.2.2 (Nikolaev and Shefel’ (1985)). If the specific curvature of a 
convex surface F satisfies the inequalities 

0 < a < o(E)/S(E) < C < co, 

‘In addition, it was established in Pogorelov (1953) that if the metric is @-smooth, then the convex 
surface is C’,“-smooth. 
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28 Yu.D. Burago, S.Z. Shefel I. The Geometry of Surfaces in Euclidean Spaces 29 

then F is C’*’ -smooth, where a depends on a and C, 0 < a < 1, and c1+ 1 as 
a/C + 1. This result covers the assertion mentioned in the footnote to Theorem 
3.1.1. 

3.3. Consequences of the Smoothness Theorems. As we have already men- 
tioned, from Theorems 2.2.2 and 3.1.1 (or 3.2.1, 3.2.2 instead of 3.1.1) there 
follows a solution of Weyl’s problem in the form stated in Theorem 1.1.1. 

The next theorem can serve as a typical example of the application of the 
assertions under consideration. 

Theorem 3.2.3. Every point p of a two-dimensional P-smooth (1 > 2, 
0 < c1 < 1) Riemannian manifold of positive curvature has a neighbourhood that 
admits a C’*“-smooth isometric embedding in E3. 

In fact, by Theorem 2.3.1 on gluing it is not difficult to complement some 
neighbourhood of p to a (possibly not smooth) manifold of negative curvature, 
homeomorphic to a sphere. By Theorem 2.2.2 the latter is isometric to a convex 
surface. The domain on the surface corresponding to the chosen neighbourhood 
of p is a C’,a-smooth surface, by Theorem 3.1.1. 

$4. Bendings of Convex Surfaces 

4.1. Basic Concepts. Let M be a class of surfaces. We say that a surface 
F E ~4’ is uniquely determined by its metric (in the class J@‘) if every surface F’ E J% 
isometric to F is congruent to F. Here surfaces are assumed to be congruent if 
we can make them coincide by a motion, possibly including a reflection. 

A bending of a surface F is a continuous family F, of surfaces isometric to it, 
where F,, = F. If not all the Ft are congruent to F, the bending is said to be 
non-trivial, and the surface F is bendable. If all the surfaces F, belong to some 
smoothness class, we talk about a bending in this smoothness class. A bending 
is said to be smooth (analytic) if surfaces of the family F, depend smoothly 
(respectively, analytically) on t. These two properties are independent of one 
another, so for example it makes sense to talk about an analytic (with respect to 
the parameter) bending in the class of general convex surfaces. 

Remark. In a number of books and articles (see Pogorelov (1969), for ex- 
ample) a different terminology is used; what we have called a bending they 
call a continuous bending, and they call any isometry simply a bending. Then 
unique determination implies the absence of non-trivial bendings (other than a 
congruence). 

Suppose that a surface F is specified by a vector-function r(x); consider the 
family of surfaces F, specified by the equation r(t, x) = r(x) + to(x), where p is a 
continuous vector-function. To a curve y in the domain of the parameters there 
corresponds on each surface F, a curve yr: (r + tp) o y. Let s(t) denote the length 
of yt. A homotopy F,, 0 < t d E, is called an infinitesimal bending of a surface if 

. 

for any rectifiable curve y we have e 
dt t=,, 

= 0, that is, if the lengths of all curves 

are stationary when t = 0. The corresponding vector field p is called the bending 
field. The order of smoothness of an infinitesimal bending is defined as the order 
of smoothness of the field p. An infinitesimal bending is taken as trivial if p is the 
velocity field for some motion of the surface F as a rigid body, that is, p(x) = 
a + b x r(x) for some (constant) vectors a, b; here the x sign denotes the vector 
product. In this case the bending field p is also said to be trivial. 

In cases when it is a question of bendings and infinitesimal bendings simulta- 
neously, in order to emphasize the difference we shall call the first ones finite 
bendings. 

A surface that does not admit non-trivial infinitesimal bendings is said to be 
rigid. The concept of rigidity of a surface is the mathematical expression of the 
idea of stability of the construction. In this connection the theory of infinitesimal 
bendings has numerous applications in mechanics, in the first place in the theory 
of thin shells; see Vekua (1959), Vekua (1982) Rozendorn (1989). 

Let F be a smooth surface with parametrization r(u, v). A smooth vector field 
p(u, v) is a bending field for F if and only if it satisfies the system of equations 

r,p, = 0, rd, = 0, r,p, + r,p, = 0 

or in differentials drdp = 0. 
Generally speaking, it is also allowable to consider non-smooth bending 

fields. In the case of a convex surface, even one not subject to any smoothness 
conditions, a bending field is necessarily locally Lipschitz. In addition, if a 
locally Lipschitz field p satisfies (2) almost everywhere, then it is a bending field 
for a convex surface F with parametrization r(u, v); see Aleksandrov (1942). We 
recall that a convex surface is Lipschitz everywhere, moreover, the second differ- 
ential for it exists almost everywhere; see Aleksandrov (1939). 

Along with infinitesimal bendings (of the first order) infinitesimal bendings of 
higher orders have been studied; however, we shall not dwell on this question, 
referring the reader to the survey Efimov (1949), and to Part III of the present 
book. 

4.2. Smoothness of Bendings. From Theorem 3.1.1 it obviously follows that 
if a surface F is d-‘-smooth, 1 > 2, 0 < LX < 1, (or analytic), and has positive 
Gaussian curvature, then every convex surface isometric to it is also C’,“-smooth 
(analytic); in particular, every bending of F in the class of convex surfaces is a 
bending in the class of C’*“-smooth (analytic) surfaces. A similar assertion holds 
also for infinitesimal bendings: the bending field of a C’sa-smooth (analytic) 
convex surface with positive curvature is C’,“- smooth (analytic); see Pogorelov 
W9). 

4.3. The Existence of Bendings. It is usual to distinguish the following three 
basic questions. 
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(1) For a given surface F of a certain class (in our case, convex) is there a 
surface of this class that is isometric to it but not congruent to it? 

(2) In the class under consideration, are there continuous bendings of the 
surface F? 

(3) Are there infinitesimal bendings of the surface F? 
These three questions are independent; the connection between them will be 

discussed in the next section. 
Considered locally, that is, when it is a question of a sufficiently small (without 

stating the dimensions) neighbourhood of a fixed point p on a smooth surface, 
these questions can be solved comparatively easily and positively so long as the 
curvature K(p) of the surface at the point p is not equal to zero - it is positive in 
the case of interest to us. (However, there are analytic surfaces that do not admit 
continuous bendings in any neighbourhood of a flat point; this is a non-trivial 
result of Elimov (1949), see Part III of the present book.) 

All three problems reduce to questions about solutions in the small for 
differential equations and can be solved on the basis of general theorems. For 
the first two problems this is the Darboux equation (elliptic if K(p) > 0 and 
hyperbolic if K(p) < 0). For infinitesimal bendings this is a linear equation of the 
second order. 

In the case of complete convex surfaces the solution of these equations 
consists of fundamental results in the theory of convex surfaces (basically these 
are theorems about the absence of bendings). They will be presented below in 
#5-6. Here we dwell on compact convex surfaces with non-empty boundary 
and with total curvature less than 47~. The restriction on the curvature is caused 
by the fact that in this case the first two questions are easily solved by a simple 
but elegant application of Aleksandrov’s gluing theorem. 

In fact, let us consider the convex hull of the surface F. Its boundary is a 
closed convex surface consisting of F and a developable surface Q. We shall 
consider F and Q from the viewpoint of their intrinsic metric (for Q it is locally 
Euclidean). Since the total curvature of F is less than 47c, we can choose instead 
of Q a different locally Euclidean domain Q’ so that, as before, the conditions of 
the gluing theorem are satisfied for F and Q’. By Theorem 2.2.2 there is a convex 
surface in E3 isometric to F u Q’. It is not difficult to see that the part F’ of this 
surface corresponding to F is not congruent to F. If instead of Q’ we construct 
a family of “subgluings” Q, that depend continuously on t, then as before we 
obtain a family of surfaces F, isometric to F. By Theorem 5.1.1 (see below) this 
family is continuous with respect to t. 

A complete answer to the third question is apparently still not known, but 
sufficiently smooth surfaces, homeomorphic to a closed disc, with strictly posi- 
tive curvature (less than 47~) are always non-rigid. This follows, for example, from 
the previous work and 4.4. Concerning the existence of infinitesimal bendings of 
general (non-smooth) convex surfaces, the following result is known. 

Theorem 4.3.1 (Pogorelov (1969)). If F is the graph of a function over a 
strictly convex domain Q c R2 and does not have “vertical” planes of support, 

then it admits infinitesimal bendings with great arbitrariness. Namely, for any 
Lipschitz function f, defined on a&?, there is a bending field whose vertical compo- 
nent on X2 coincides with f. If F does not contain flat domains, the bending field 
is unique. 

Vekua in his monograph Vekua (1959) developed another method for investi- 
gating infinitesimal bendings of convex surfaces. This method is connected with 
the reduction of the original problem to a system of linear partial differential 
equations of special form. For the investigation of such systems Vekua developed 
a theory of so-called generalized analytic functions. This approach enabled him 
to study by a purely analytic method the possible infinitesimal bendings of 
convex surfaces for different methods of fixing the boundary of the surface. 

Further development of Vekua’s method proceeded in two directions. Firstly, 
Sabitov, Fomenko and his students, and a number of other mathematicians 
investigated various boundary-value problems in the theory of infinitesimal 
bendings. For a more detailed account, see Part III of the present book. 

Another direction was that of applying Vekua’s methods to non-linear sys- 
tems that describe finite bendings. The first results of this kind were obtained by 
Fomenko; see Fomenko (1964) Fomenko (1965). Although these papers con- 
tained an error, noticed later by Klimentov, they clearly stimulated further 
research into non-linear systems of elliptic type that describe finite bendings of 
surfaces of positive curvature. (It should not be thought that such systems reduce 
to one second-order equation of elliptic type!) More complete results (partially 
formulated below) here are due to Klimentov, see Klimentov (1982), Klimentov 
(1948); they were achieved by introducing new approaches to Vekua’s theory, 
connected with wide use of the methods of functional analysis and the theory of 
infinite-dimensional manifolds. 

The conditions for applicability of Vekua’s methods are not to do with the 
surface being convex, but with its Gaussian curvature being positive. For inli- 
nitesimal bendings this leads only to an extension of the class of objects under 
consideration. However, in the case of finite bendings this means that we are 
concerned only with bending in the class of surfaces of positive Gaussian curva- 
ture (locally convex, but not necessarily convex in the large), even if the original 
surface was convex. 

Without dwelling on numerous results concerning boundary-value (and some 
other) problems in the theory of bending, we formulate here just the following 
theorem of fundamental character. 

Theorem 4.3.2 (Klimentov (1982)). Suppose that the surfaces F, F’, both 
homeomorphic to a closed disc, are isometric and C’,Z-smooth (up to the boundary), 
1 2 4,0 < c( < 1, and have strictly positive Gaussian curvature. Then F is bendable 
(analytically with respect to the parameter) in the class of Cf.‘-smooth surfaces 
either to F’ or to a surface that is the mirror image of it. 

The requirement 1 3 4 is apparently associated only with the method of 
proof. 
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We emphasize that the conditions of smoothness and positivity of the curva- 
ture are assumed to be satisfied up to the boundary, so a surface can be regarded 
as a smooth submanifold with boundary of a “large” C’,a-smooth surface with 
positive curvature. This requirement is essential, since there are actually exam- 
ples of isometric (and arbitrarily close to each other) convex surfaces that are not 
bendable continuously into each other in the class of convex surfaces; see Shor 
(1969). However, in these examples the surfaces do not have even minimal 
smoothness and, which is more important, their specific curvature vanishes on 
the boundary, and the boundary itself has breaks. 

4.4. Connection Between Different Forms of Bendings. There is a general 
result for all two-dimensional surfaces in E3 (Elimov (1948)): if a surface admits 
a non-trival finite bending, analytic with respect to the parameter, then it also 
has a non-trivial infinitesimal bending (it is not rigid). We do not assert that 
such an infinitesimal bending is the starting point for the original continuous 
bending. 

For convex surfaces the converse is also true. Namely, we have the following 
result. 

Theorem 4.4.1 (Isanov (1979a), Isanov (1979b), Klimentov (1984)). Every 
infinitesimal bending of a C’*a-smooth (analytic) surface of positive Gaussian 
curvature can be extended to a (finite) C’Ta-smooth (analytic) bending that is 
analytic with respect to the parameter. 

In Isanov (1979a), Isanov (1979b) this was proved for surfaces that serve as 
the graph of a function when 12 2,0 < c( < 1. In Klimentov (1984) it was proved 
for an arbitrary surface when 1 b 3,0 < c( < 1. 

Despite the fact that this theorem refers to fundamental questions of the 
theory of bendings, it was obtained comparatively recently. 

The smoothness C3,” is probably associated with the method of proof in 
Klimentov (1984), and nothing to do with the essence of the matter. The paper 
Klimentov (1987) also contains similar results for bendings of higher orders. 
Similar assertions under boundary conditions were obtained in Klimentov 
(1986). 

There is also an unexpectedly simple connection between the absence of 
unique determination and infinitesimal bendings. 

Lemma 4.4.2. If the surfaces F, and Fz are isometric, and rl(u, v) and rz(u, v) 
are their parametrizations, under which points corresponding to each other under 
the isometry correspond to the same parameters u, v, then the vector field 
p = rI - r2 is a bending field for the mean surface r(u, v) = $(rl(u, II) + rz(u, v)). 

In fact, ,’ ‘.. 

0 = dr: - dr: = (dr, + dr,)(dr, - dr,) = 2drdp. 

Remark. Generally speaking, the mean surface can have singularities (it is 
not regular), and in the case of convex F,, Fz it may not be convex. However, if 

FI and F, are convex surfaces sufficiently close to each other, then their mean 
surface is also convex. Thus, if F is a convex surface, and if there are isometric 
convex surfaces sufficiently close to it but not congruent to it, then F admits 
non-trivial infinitesimal bendings. 

5 5. Unbendability of Closed Convex Surfaces 

5.1. Unique Determination. We have the following theorem, which is re- 
markable in its generality. 

Theorem 5.1.1 (Pogorelov (1952a)). A closed convex surface in E3 is uniquely 
determined in the class of convex surfaces. 

In other words: if two closed convex surfaces are isometric, then they can be 
made to coincide by a motion in E3 (including a mirror reflection)8. 

Despite the simplicity of the formulation, its proof is very complicated. At 
present three approaches are known. First there is a direct proof; see Pogorelov 
(1952a). Next, Theorem 5.1.1 can be obtained by means of the following theorem 
on rigidity, which is also difficult to prove. 

Theorem 51.2 (Pogorelov (1969)). A closed convex surface is rigid outside flat 
domains. 

Let us explain the connection between Theorems 5.1.1 and 5.1.2. The follow- 
ing lemma is not too difficult. 

Lemma 5.1.3. Let F be a closed convex surface. If there is a convex surface 
isometric but not congruent to it, then there are convex surfaces arbitrarily close 
to F that are isometric but not congruent to it. 

This lemma has no independent interest, because it deals with a non-existent 
object. However, together with Lemma 4.4.2 and the remark following it, 
Lemma 5.1.3 shows that Theorem 5.1.1 follows from Theorem 5.1.2. 

5.2. Stability in Weyl’s Problem. The third approach consists in obtaining 
Theorem 5.1.1 as a direct consequence of a theorem of Yu.A. Volkov on stability 
in Weyl’s problem. Let us state this theorem. 

Consider two closed convex surfaces F, F’ and a homeomorphism f: F -+ F’. 
Let p, p’ be the intrinsic metrics of these surfaces, and d the distance in E3. For 

8 It is obvious that if we give up convexity in Theorem 5.1.1, then it ceases to be true. However, 
apparently up to now there are no examples of closed non-convex surfaces embedded in E3 that 
admit bendings with the smoothness C’ preserved, 1 > 2. In the case of polyhedra things are quite 
different: Connelly (Connelly (1978)) constructed an example of a polyhedron in E3 homeomorphic 
to a sphere (and not having self-intersections!) that is bendable in the class of polyhedra in such a 
way that no breaking of the faces occurs, that is, every face is moved as a rigid body. Bendings of a 
closed surface in the class of Cl-smooth surfaces are always possible; see 3.1 of Ch. 4. 
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any x, y E F we put Mx, Y) = IWlx), f(Y)) - 45 Y)l, 

40, Y) = IP’(f(X), f(Y)) - Pk Y)l. 

Theorem 5.2.1 (Volkov (1968)). For any homeomorphism f: F + F’ of closed 
convex surfaces we have the inequality 

Ad d C(Ap)“. 

Here tl > 0 is an absolute constant; the constant C > 0 depends only on the 
diameters of the surfaces F, F’. For CI we can take 0.04, for example. The largest 
possible value of a is not known, but it cannot exceed l/2; this is shown by 
comparing a doubly covered disc F and the surface F’ obtained from F if one copy 
of the disc is replaced by a conical surface whose vertex projects into the centre of 
the disc and whose height is small. 

A similar theorem is true for convex caps, that is, convex surfaces with 
boundary lying in a plane; in fact, the corresponding assertion for caps (with 
constant CI 2 0.08) was first proved in Verner (1970a), and Theorem 5.2.1 can be 
derived from it. 

Theorem 5.2.1 gives a positive answer to a question posed by Cohn-Vossen 
as long ago as 1936 (Klimentov (1984)). Clearly, it is sufficient to prove this 
theorem for any class that is dense in the space of all closed convex surfaces, for 
example, only for polyhedra or only for analytic surfaces. In Volkov (1968) the 
proof was carried out in the class of polyhedra. It is interesting that this proof 
makes essential use of the theory of mixed volumes of convex bodies. The 
possible geometrical applications of this theory have apparently still not been 
exhausted. 

5.3. Use of the Bending Field. Let us turn to Theorems 5.1.1 and 5.1.2 on the 
unique determination and rigidity of convex surfaces. Geometrical observations, 
which serve as the starting point for the proofs of these theorems, are quite 
simple but not trivial. In the case of sufficiently smooth objects they lead quite 
quickly to the proofs. We cannot present all the key features of the proofs, 
particularly in the non-regular case, so we dwell on certain assertions that 
suggest the path along which these proofs were obtained. 

Lemma 5.3.1 (Pogorelov (1969)). Suppose that a convex surface F, not con- 
taining flat domains, is given by an equation z = f(x, y), and that [ is the compo- 
nent along the z-axis of the bending field of F. Then the equation z = [(x, y) 
specifies a saddle surface. 

From Lemma 5.3.1 it follows that the bending field of a surface is determined 
uniquely (up to a trivial term) by specifying its component [ along the z-axis on 
the boundary of the surface. 

The proof of Theorem 5.1.2 on the basis of Lemma 5.3.1 can be obtained 
comparatively easily. 

The difficult proof of this lemma is based on a subtle approximation of 
general objects by smooth ones. If the surface and the bending field are C2- 

smooth, then the proof becomes very simple. In fact, it is not difficult to show 
that [ satisfies the equation 

fYYSXX - 2fX,iX, +- fXXiYY = 0. (3) 

For this we need to turn to the equations (2) of infinitesimal bendings, and 
putting u = x, v = y, p = (4, y, [), differentiate them with respect to x and y, and 
then eliminate the derivatives of 5 and q from the resulting system. 

Now suppose that a smooth surface z = c(x, y) is not a saddle surface. Then 
in a neighbourhood of some point we have [.JYY - [:, > 0. Since d2f + 0 in this 
neighbourhood, there is a point at which as well as [xx~yY - [&, > 0 we have 
d2f # 0. By a rotation of the axes we may assume that at this point [,, > 0, 

i,, ’ 0, ixy = 0. Then equation (3) takes the form fYYcXX + fXXiYY = 0. Hence 
either fXXfY, < 0, which contradicts the convexity of F, or f,, = f,, = 0. But then, 
again from the convexity of F, we have f,, = 0, which contradicts d2f f 0. 

9 6. Infinite Convex Surfaces 

6.1. Non-Compact Surfaces. By an infinite convex surface we mean a com- 
plete non-compact surface without boundary; such a surface is either homeo- 
morphic to a plane or isometric to a cylinder. The total curvature of an infinite 
convex surface is always at most 27r. There is an essential difference between 
surfaces with curvature 271 and surfaces with curvature strictly less than 2n. 

Theorem 6.1.1 (Pogorelov (1969)). For any complete non-compact two- 
dimensional manifold of non-negative curvature with total curvature w = 271 there 
is a unique (up to congruence) complete convex surface in E3 isometric to it. 

6.2. Description of Bendings. Infinite surfaces F with total curvature o less 
than 271 are bendable. To give a complete description of possible bendings of 
such a surface we need the concept of a limiting cone. 

Let h(p, 1) be a homothety with centre p and coefficient 2. If F is an infinite 
convex surface, then the surfaces h(p, l/n)(F) converge as n + r;! to a cone Q, 
which is called the limiting cone of the surface F. 

The cone Q is defined up to a parallel displacement and may degenerate to a 
doubly covered angle, a ray, or a line (the last only if F is a cylinder). 

Now consider on F a ray y, that is, an infinite geodesic extended on one side 
that is a shortest curve on any finite part of it. As n + CD the curves h(p, l/n)(y) 
converge to some generator of the limiting cone Q, which we denote by R(y). 

-1 

Theorem 6.2.1 (Olovyanishnikov (1946)). Let M be a complete non-compact 
oriented two-dimensional mantfold of non-negative curvature with total curvature 
less than 27~. We fix a ray y in M and let Q be an infinite convex conical surface 
with the same total curvature as M, and 1 a generator of Q. Then there is an infinite 
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convex surface F in E3 and an isometry Ic/ of M onto F preserving the orientation9 
such that Q is the limiting cone of F and R($(y)) = 1. 

Theorem 6.2.2 (Pogorelov (1969)). Thesurface F satisfying the conditions of 
Theorem 6.2.1 is unique. 

5 7. Convex Surfaces with Given Curvatures 

7.1. Hypersurfaces. As a rule, the problems considered above are specific to 
two-dimensional surfaces. In fact, for surfaces in E” with n > 3 even an arbi- 
trarily small neighbourhood of any point at which the Gauss-Kronecker curva- 
ture is non-zero is unbendable. One the other hand, the conditions under which 
a Riemannian manifold M”-’ at least locally admits an isometric immersion in 
E” have at present been obtained only in a form that excludes their geometrical 
applications; see Rozenson (1940- 1943). As for the geometry of submanifolds of 
high codimension, we recall that within the bounds of the criteria adopted here 
there is no natural concept of convexity for them; see S.Z. Shefel’ (1969). 

In this section we dwell essentially on questions of extrinsic geometry. Many 
of them can be generalized in dimension. We shall therefore describe them in the 
natural n-dimensional formulation. The inclusion of these questions in the pre- 
sent article is justified by the generality of Aleksandrov’s school and the methods 
of obtaining the results. 

7.2. Minkowski’s Problem. We recall that the Gauss-Kronecker curvature l? 
(or more briefly Gaussian curvature) at a point p of an oriented C*-smooth 
hypersurface F in E” is the product of the principal curvatures. Suppose that a 
convex surface F in E” has positive Gaussian curvature z. We denote by K the 
Gaussian curvature “carried over” to the sphere s”-’ by means of the spherical 
map v; in other words, K(5) = I?(v-‘(5)) for t E s”-‘. 

According to Gauss’s theorem, 

K(c) = lim 43 
E+< W’(E))’ 

where E are Bore1 subsets of Sn-i, and S and g denote the (n - 1)-dimensional 
areas on F and s”-’ respectively. The equality (4) can serve as a definition of K 
that preserves the sense and does not assume that F is C*-smooth. 

Theorem 7.2.1 (Minkowski (1903)). Zf a positive continuous function K on the 
sphere s”-’ satisfies the condition 

s 
W(5) _ o 

s-1 K(5) ’ 

y The space E3 is assumed to be oriented. 

(3 

where da is the area (n - 1)-form on Sn-‘, then there is a unique (up to parallel 
displacement) closed convex hypersurface F for which K is the Gaussian curvature 
transferred to the sphere. 

The condition (5) is necessary; it expresses the fact that the vector area 
SF v(x) dS, of a closed hypersurface is equal to zero. Since smoothness of F is not 
assumed a priori, the Gaussian curvature here is understood in the sense of 
definition (4), which goes back to Gauss. 

The assumption in Theorem 7.2.1 that the function K is continuous was 
substantially weakened by Aleksandrov (Aleksandrov (1937-1938)) and 
Fenchel and Jessen (Fenchel and Jessen (1938)). For this instead of the point 
function K we introduce a (not normalized) measure on S”-’ - the so-called 
surface function o defined by o(E) = S(v-‘(E)). For a C*-smooth hypersurface 

we have w(E) = 
s 

do (5) 
EKO’ 

In the case of a polyhedron, o is concentrated on a 

finite set of points ti E Sn-i, and o(ci) is the area of the face with normal 5i. 

Theorem 7.2.2 (Aleksandrov (1937-1938)). If the non-negative Bore1 measure 
o on S’-l satisfies the conditions 

1) Jsn-ltdw (5) = 0, 
2) for any unit vector e 

1 141 do (5) > a > 0, 
Jsn-1 

then there is a unique (up to parallel displacement) convex surface F whose surface 
function coincides with w. 

In Theorems 7.2.1 and 7.2.2 the uniqueness of the hypersurface F is a conse- 
quence of Minkowski’s well-known inequality from the theory of mixed vol- 
umes. To prove the existence of a surface with given curvature K a similar 
problem is solved first in the discrete version, for polyhedra, and then a limiting 
process is carried out. 

Minkowski’s problem is equivalent to the question of solutions of a certain 
non-linear second-order equation on the sphere. From this point of view Theo- 
rems 7.2.1 and 7.2.2 guarantee the existence and uniqueness of the generalized 
solution. However, in these theorems there is no mention of the degree of 
smoothness of the solution if the function K is sufficiently smooth. 

Theorem 7.2.3 (Pogorelov (1975)). If under the conditions of Theorem 7.2.1 
the function K is Cm-smooth, m 2 3, then the surface F itself is Cm+l,a-smooth, 
0 < a < li”. 

“This result was re-proved by Cheng and Yau (Cheng and Yau (1976), Cheng and Yau (1977)), who, 
not knowing about the detailed publication Pogorelov (1975), suspected the presence of gaps in the 
proofs announced. 
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For two-dimensional surfaces this result was obtained much earlier than in 
the general case, Pogorelov (1952b), Nirenberg (1953). In addition, for n = 2 
Theorem 7.2.3 can be made precise as follows. 

Theorem 7.2.4 (S.Z. Shefel’ (1977)). If, under the conditions of Theorem 7.2.1, 
n = 2 and K E P”, m > 0,O < CI < 1, then the surface F is Cm+2.a-smooth. If the 
Gaussian curvature K of the surface is bounded (but not necessarily continuous), 
then FE C’9a. 

The assertions of Theorems 7.2.3 and 7.2.4 have a local character, that is, they 
hold also for an incomplete surface. The basis of the proof of Theorem 7.2.3 
consists of a priori estimates for the normal curvatures of a hypersurface and 
their derivatives. These estimates make it possible in the case of a smooth 
function K to obtain the proof of Theorem 7.2.1 by the usual method of continu- 
ation with respect to the parameter, independently of its proof in the general 
case. 

7.3. Stability. Although we do not intend to describe the whole cycle of 
questions connected with Minkowski’s problem, let us state a theorem of Volkov 
on stability. 

Theorem 7.3.1 (Volkov (1963)). Zf the surface functions wA, ws of convex 
bodies A, B in E” are s-close in the sense that ImA - coB( < EON for any 
Bore1 set E c S-l, then the distance 6(A, B) between these bodies satisfies the 
inequality 

6(A, B) 6 C1~1’(n+2)(1 + C,(E)). 

Here &A, B) is the smallest of those numbers T such that each of the bodies A, B 
can be moved by a parallel displacement into the t-neighbourhood of another, the 
constants C,, C2(&) depend on n and the radii of the circumscribed and inscribed. 
balls, and C2(s) + 0 as E + 0. 

This result was strengthened by Diskant to the estimate 

6(A, B) < C&l”’ 

for sufficiently small E > 0. The proof relies on a refinement of the analogues of 
the isoperimetric inequality associated with the coefficients of embeddability of 
one convex body in another; see Diskant (1988). 

7.4. Curvature Functions and Analogues of the Minkowski Problem. The i-th 
order curvature function w of a convex hypersurface F in E” is the i-th ele- 
mentary symmetric function of the principal radii of curvature Si (R,, . , R,-, ), 
regarded as a function of the normal. In other words, Si(R,(r-l(r), . . . , 
R,-,(v-l(t))), where v is the spherical mapping, and Cr E S-l. We naturally 
assume that the hypersurface F is C2-smooth and has positive Gaussian curva- 
ture. Obviously, W,-,(c) = K(t)-‘. 

There arises the question of what functions on the sphere S-i can be curva- 
ture functions of convex hypersurfaces and whether the curvature function w 
determines a hypersurface uniquely (up to parallelism). When i = n - 1, that is, 
in the case of the Minkowski problem, these questions, as we have seen, have a 
definite answer. 

The question of uniqueness has been finally solved in the general case, while 
a complete solution of the existence problem is still not known, except for the 
casesi=landi=n-1. 

Theorem 7.4.1 (Aleksandrov (1937-1938)). I f  for some i, 0 < i < n, the i-th 
order curvature functions of two convex hypersurfaces coincide, then these hyper- 
surfaces can be obtained from each other by a parallel displacement. 

This theorem is a special case of a more general result (Aleksandrov (19377 
1938)) concerned with the theory of mixed volumes and consisting in the follow- 
ing. With a convex compacturn A c E” it is natural to associate the Bore1 
measures oi, i = 1, . . , n - 1, on S-i, which are called curvature measures and 
characterized by the following properties: 

(a) if the boundary A is a C2-smooth hypersurface, then 

o,(E) = 
s 

W(5) WO, 
E 

(b) if the convex compacta A, + A as m + co, then the curvature measures 
w,? corresponding to them converge weakly to wi. 

Theorem 7.4.2 (Aleksandrov (1937-1938)). Zf the convex compacta A, B in E” 
are at least (i + 1)-dimensional and their i-th order curvature measures are equal, 
then the compacta themselves are equal up to a parallel displacement. 

For the last theorem, only in certain special cases have the corresponding 
stability theorems been established; see Diskant (1985). 

For two-dimensional surfaces Theorem 7.4.1 can also be generalized in an- 
other direction. It is a question of the conditions for equality of surfaces such 
that at points with the same normals certain (not necessarily symmetric) func- 
tions of the principal radii of curvature, and possibly of the normal itself, 
coincide; see Aleksandrov (1956- 1958), Pogorelov (1969), Pogorelov (1975). As 
an example let us state the following theorem. 

Theorem 7.4.3. Let f(x, y, 5) be a Cl-smooth function of the variables x, y E [w, 

5 E S-l, 0 < x < y, and suppose that af f > 0. I f  for C3-smooth closed strictly ax ay 
convex surfaces F,, F2 we have f(R:, Ri, 5) = f(Rf, R:, 0 for all 5, where R:, 
Ri and R:, R: are the principal radii of curvature of the surfaces F,, F2 respec- 
tively (where we assume that R: < Rh, R: < R:), then the surfaces F, and F, are 
equal and parallel to each other. 
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Let us turn to existence theorems. For all i, 1 < i < n - 1, the condition 

s 
5wo W5) = 0 (6) 

p-1 

is necessary for the existence of a convex cfosed hypersurface with given curva- 
ture function &. 

However, when i > 1 condition (6) is not sufficient; see Aleksandrov (1937- 
1938). If i = 1 (the Christoffel problem), then (6) is sufficient for the existence of 
a (unique) hypersurface with given curvature function W, (5) = R, + . . . + R,-, , 
but this hypersurface need not be convex. Necessary and sufficient conditions 
for solubility of the Christoffel problem in the class of convex surfaces have been 
obtained by Firey (Firey (1968)). These conditions turn out to be very cumber- 
some. When 1 < i < II - 1 such conditions are not known. The most general 
sufficient (but not necessary) conditions for the existence of a convex hyper- 
surface with a given curvature function of order i, 1 < i < n - 1, have been 
found by Pogorelov (Pogorelov (1975)). 

7.5. Connection with the Monge-Ampbe Equations. As we have already men- 
tioned, the theory of convex surfaces is closely connected with the theory of 
elliptic equations of Monge-Ampere type. In its most explicit form this connec- 
tion appears in the case of the problem of “restoring” a convex surface given by 
the explicit equation z = f(x, y) from its Gaussian curvature, transferred to the 
(x, y)-plane by orthogonal projection. In its analytic formulation this is a ques- 
tion of solutions of the equation 

Lxf,, - (fry)’ = KcG Y)U + w2 + (&J’)“‘“. (7) 

Under a natural substitution the function K(x, y) is defined either in a strictly 
convex bounded domain a or on the whole plane. In the first case it is a question 
of Dirichlet’s problem, when the boundary of the surface is fixed:fl,, = h, where 
h is a given function. We must observe that this problem is not always solu- 
ble; since the total curvature of a surface is at most 2rc, we necessarily have 
In K dx dy < s K dS d 271. The condition Jn K dx dy < 21t is already suhicient 
for the solubility of (7). In the second case, that is, if a = E2, it is natural to 
specify the limiting cone of the surface. 

Questions of this kind have now been well studied. As an example, the 
Dirichlet problem for equation (7) in the case of a strictly convex bounded 
domain Sz and a continuous function h on ZX2 has (on condition that 
jn K dx dy < 27~) exactly two solutions f withfIpn = h: one is convex upwards, 
the other convex downwards, and these solutions are symmetrical if the boun- 
dary lies in a plane. If K is positive and Cl,‘-smooth, 1 3 0, 0 < a < 1, then 
f E C1+2,a. 

It is essential that the same geometrical methods that enable us to obtain 
generalized solutions of (7), and establish their smoothness in the case when K 
is positive and smooth, can be applied to the much wider class of equations of 

Monge-Ampere type. The fact is that the Dirichlet problem for such equations 
can be reformulated as a question of the “construction” of a convex surface with 
given conditional curvatures; in the simplest case the conditional curvature is the 
product of K and a weight function. One can become acquainted with these 
questions and multidimensional generalizations of them in the books Pogorelov 
(1969), Pogorelov (1975), Bakel’man, Verner and Kantor (1973). 

4 8. Individual Questions of the Connection Between the 
Intrinsic and Extrinsic Geometry of Convex Surfacesl’ 

8.1. Properties of Surfaces. The extrinsic properties of convex surfaces (for 
example, the existence of supporting planes, the types of tangent cones, the 
existence almost everywhere of the second differential (Aleksandrov (1939)) and 
so on) are essentially concerned with the theory of convex bodies. 

The generalized Gauss theorem due to Aleksandrov refers to the connections 
between extrinsic and intrinsic properties of a surface: the intrinsic curvature of 
a Bore1 set on a convex surface is equal to the area of its spherical image; see 
Aleksandrov (1948). The questions considered above are: the unique determina- 
tion of a closed convex surface by its metric; an estimate of the extrinsic deforma- 
tion of such a surface in terms of the change of the intrinsic metric; the inevitable 
smoothness of a convex surface of non-zero curvature when its metric is smooth 
also refers to connections between the intrinsic and extrinsic geometry. 

8.2. Properties of Curves. A useful technique of the theory of convex surfaces 
consists of theorems on the connection between extrinsic and intrinsic properties 
of curves on a surface. 

A point p lying outside a convex body @ with boundary F has a unique closest 
point on F; we assume that it is the projection of p on F. As Busemann and Feller 
showed (see Busemann and Feller (1935)), the following result is true. 

Lemma 8.2.1. If two points on a convex surface F are joined in space by a curve 
of length 1 going outside CD, then the length of the projection of this curve on F does 
not exceed 1. 

Using this lemma, Liberman (Liberman (1941)) established the following 
result, which plays an important role. 

Theorem 8.2.2. A shortest curve on a convex surface has one-sided half- 
tangents in space at each of its points. 

\ The existence of a direction in space for a curve L at an initial point of it means 
the existence of a half-tangent, and the existence of a direction in the intrinsic 

‘I This section was written by V.A. Zalgaller 
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geometry means the property of forming a non-zero angle with itself (in the sense 
of Definition 2.2). 

Theorem 8.2.3. An arc L on a convex surface F always either has or does not 
have a direction both in the intrinsic and the extrinsic geometry simultaneously. 

For an arc L on F that has directions at the endpoints, in the footnote to 2.3 
we defined the concept of a right turn z1 and a left turn r2. We naturally define 
the variations var z1 and var r2 of these turns; they may be infinite. On the other 
hand, in space by means of a limiting transition from inscribed open polygons 
we can define the spatial turn x; it may also be infinite. Obviously, var ri d K, 
i = 1,2. 

The following qualitative connection was proved independently by Zalgaller 
(Zalgaller (1950)) and Pogorelov (Pogorelov (1969)). 

Theorem 8.2.4. For an arc L lying on a convex surface F to have restricted 
variations of turns var zl, var z2 it is necessary and sufficient that L should have 
finite turn x < co in space. 

The new proof of this theorem in Usov’s papers (Usov (1976b), Usov (1977)) 
is accompanied by an exact numerical estimate: 

Theorem 8.2.5. If the spherical image v(L) is contained in a disc of radius 
R < 71/2 on S2, then x < (2 + var ti) tan R + var ri, i = 1,2. 

8.3. The Spherical Image of a Shortest Curve. The ends of a shortest curve 1 
on a convex surface F may be conical points, but an open arc 1 cannot be 
extended through a conical point. In this connection Pogorelov (Pogorelov 
(1969)) discussed the following question: is the image v(l) of an open arc of 
a shortest curve a curve on the sphere, and is v(l) rectifiable? 

The answer to the second part of the question turned out to be negative. 
Suitable examples were constructed by Usov in Usov (1976a) and in a number 
of papers by Milka; see Milka (1977). 

An obstacle to answering the first part of the question is the fact that 1 can be 
extended through a ridge point whose spherical image is an arc. Milka (Milka 
(1974a) and Dubrovin (Dubrovin (1974)) proved the following result. 

Theorem 8.3.1. An open arc 1 of a shortest curve on a convex surface can be 
extended through a ridge point only transversally to the direction of the ridge, 
except for the case when 1 is a rectilinear part of the ridge. 

From this we can easily obtain the following result. 

Theorem 8.3.2. The spherical image v(l) of an open arc 1 of a shortest curve is 
always a (continuous) curve on the sphere. 

8.4. The Possibility of Certain Singularities Vanishing Under Bendings. Milka 
(Milka (1977)) showed that non-rectifiability of v(l) can hold even in a neigh- 

bourhood of each point of the curve v(l). Non-rectifiability of v(l) may vanish 
under bendings of F. 

An isolated ridge point on a convex surface has not only an extrinsic but also 
an intrinsic singularity: at such a point the specific curvature is automatically 
infinite. Hence the following result of Pogorelov (Pogorelov (1953)) was rather 
unexpected: an isolated ridge point can lose its ridge property under bendings in 
the class of convex surfaces. 

Chapter 3 
Saddle Surfaces 

0 1. Elimov’s Theorem and Conjectures Associated with It 

1.1. Sufficient Criteria for Non-Immersibility in E3. In the first two sections 
of this chapter we are concerned almost exclusively with smooth surfaces (im- 
mersions of smoothness C”, m 3 2). We recall (see 2.2 of Ch. 1) that a smooth 
surface in E” is called a saddle surface if among its osculating paraboloids there 
are no elliptic ones, and a strictly saddle surface if in addition at each point of it 
there is at least one hyperbolic osculating paraboloid. The Gaussian curvature 
of a saddle surface is non-positive. A surface in E3 is a saddle (strictly saddle) 
surface if and only if its Gaussian curvature is everywhere non-positive (nega- 
tive). For a general definition of a saddle surface that is not connected with 
smoothness assumptions, see 3.1 below. Roughly speaking, a surface is a saddle 
surface if locally it does not have strictly supporting hyperplanes. 

The central problems of the theory of saddle surfaces are the same as for 
convex surfaces. Basically this is the problem of the connection between intrinsic 
and extrinsic geometry for a surface with a Riemannian metric of negative (or 
non-positive) curvature; in the first place it is a question of the possibility of 
(isometrically) immersing such a metric in Euclidean space by a saddle surface. 
Another aspect is the problem of studying the purely extrinsic geometry of 
saddle surfaces. However, in contrast to the theory of convex surfaces, the results 
here are in many respects far from complete. It seems to us that this is connected 
with the fact already mentioned that saddle surfaces have been studied primarily 
in E3. This is due to long tradition, rather than the internal logic of the subject. 
Thus, by no means all simply-connected two-dimensional Riemannian mani- 
folds of negative curvature can be isometrically immersed in E3. The first result 
of this kind is Hilbert’s well-known theorem that in E3 there is no regular surface 
isometric to the whole Lobachevskij plane. Further deep research in this direc- 
tion is due mainly to N.V. Elimov. The best known of his results is the following 
theorem. 
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Theorem 1.1.1 (Elimov (1964)). In E3 there is no P-smoothly immersed com- 
plete surface with negative Gaussian curvature uniformly separated from zero. 

Completeness is understood here in the intrinsic sense. In other words, the 
theorem asserts that a C2-smooth complete Riemannian metric with Gaussian 
curvature K(x) < -c’, where c > 0, does not admit a C2-smooth isometric 
immersion in E3. 

The difficult proof of this theorem was presented in detail by the author and 
restated by Klotz-Milnor (Klotz-Milnor (1972)) with some improvements in the 
presentation. We cannot describe all the steps of the proof here, so we just 
outline below the direction in which it is developed. See also Part II of the 
present book. 

Apart from the fact that the Gaussian curvature is separated from zero, an 
obstacle to the immersibility in E3 of a Riemannian metric of negative curvature 
may be the slow change in the Gaussian curvature from point to point. In this 
direction Etimov obtained a number of results (see Efimov (1964) Etimov (1966), 
Elimov (1968)). Let us give one of them. 

Theorem 1.1.2 (Efimov (1968)). If the Gaussian curvature K of a complete 
surface F, C2-smoothly immersed in E3, is everywhere negative, then 

Igrad KI 
“,t: (- = *. 

We can present the statement of this theorem more clearly if we introduce the 
radius of Gaussian curvature K = (-K)- l/2 Then Theorem 1.1.2 is equivalent to . 
the assertion that a complete two-dimensional Riemannian manifold of negative 
curvature cannot be immersed in E3 (in the class of C2-smooth surfaces) if 
lgrad XI d const < co. 

We say that the change in a function f, defined on a metric space X with 
metric p, admits a linear estimate if there are constants ci, c2 such that for any 
xi, x2 E X we have 1 f(xl) - f(xz)l < c,p(x,, x2) + c2. The next result of Etimov 
takes in both Theorem 1.1 .l and Theorem 1.1.2. 

Theorem 1.1.3 (Efimov (1968)). Zf the Gaussian curvature K of an intrinsically 
complete surface F, C2-smoothly immersed in E3, is everywhere negative, then the 
change in the function x = (- K)-l’= does not admit a linear estimate.’ 

The following example of Rozendorn shows that the conditions of Theorem 
1.1.3 are in some sense close to being necessary. Namely, when m > 1 the metric 
ds= = du2 + (1 + u=)~‘= dv=, --co < u < co, -cc < v < x, cannot be immersed 
in E3 (by Theorem 1.1.3). However, the metric obtained when m = 1 admits the 
following immersion: 

x = ln(u + Jm), y = &TiF cos v, z = JK2 sin v. ’ 

The proofs of Theorems 1.1.1-1.1.3 follow the same plan and are based on 
the study of the spherical mapping of a surface F in a neighbourhood of a 
boundary point of the spherical image. If the Gaussian curvature of a C2-smooth 
surface F in E3 is of constant sign (negative in our case), then the spherical 
mapping of it is an immersion, and so it determines a surface Z Cl-smoothly 
immersed in E3 and lying entirely on the unit sphere S2 (of course, not neces- 
sarily as a single sheet). It is obvious that the surface 2 has an intrinsic metric 
of constant curvature 1. This metric is necessarily not complete, that is, it is 
different from its minimal metric completion c. The difference c\C = aZ is 
called the boundary of Z. A Riemannian manifold is said to be (metrically) convex 
if any two points of it can be joined by a geodesic whose length is equal to the 
distance between its ends. For example, every complete (connected without 
boundary) Riemannian manifold is convex. It is fairly easy to show that a convex 
incomplete two-dimensional Riemannian manifold of constant curvature 1 is 
isometric to a convex domain on the sphere (such a domain always lies in a 
hemisphere). It turns out (this is the basic and most difficult step in the proof) 
that under the conditions of Efimov’s theorems the surface Z is certainly metri- 
cally convex, and so its area does not exceed 271. On the other hand, we can 
calculate that under these conditions the absolute value of the total curvature of 
the surface F, that is, the area of the surface Z, is infinite (in the case of Theorem 
1.1.1 this is obvious). The resulting contradiction proves Theorems l.l.ll1.1.3. 

To prove that C is metrically convex it is sufficient to verify that at no point 
p of the boundary dZ does the surface have “concave support”; Fig. 4 shows 
what we have in mind. At this stage we can limit ourselves to a small neighbour- 
hood of p. This neighbourhood, like the domain on F corresponding to it under 
the spherical mapping, can be projected onto the tangent plane to C at p. Then 
the main assertion about the absence of concave supports for C can be restated 
as follows. 

Basic Lemma. Suppose that a simply-connected domain D of the (x, y)-plane 
contains the set {(x, y)lO < x2 + y2 < r, y2 > cx}, where r and c are positive con- 
stants but (0,O) $ D. We assume that a Cl-smooth immersion f of D into the 

IA deep generalization of this theorem has now been proved by Perel’man (1990a), (1990b) Fig. 4 
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(p, q)-plane satisfies the following conditions: 1) the Jacobian 

d = D(P, 4) > 1 
D(x,j’a2(x,y)’ 

where the function a(x, y) has a change with a linear estimate; 2) 3 = 3 ay ai 
Then the metric induced in D by the immersion f cannot be complete. 

1.2. Sufficient Criteria for Immersibility in E3. Hilbert’s theorem and its 
generalizations obtained by Elimov are assertions “in the large”. On the other 
hand, as Levi proved (Levi (1908)), a Riemannian metric of negative curvature 
locally always admits an immersion in E 3. The fact that significant (in their 
dimensions) domains of a two-dimensional Riemannian manifold of negative 
curvature are actually immersible in E3 was proved comparatively recently by 
Poznyak (Poznyak (1966)). In particular, he established the following result. 

Theorem 1.2.1 (Poznyak (1973)). Every domain with compact closure in a com- 
plete simply-connected C4*” -smooth Riemannian manifold of negative curvature 
admits a C3s”-isometric immersion in E3. 

Subsequently Poznyak and Shikin also distinguished classes of unbounded 
domains in two-dimensional Riemannian manifolds of negative curvature that 
admit regular isometric immersions in E3. For example, any s-neighbourhood 
of a complete geodesic on the Lobachevskij plane can be immersed in E3; also 
any “ideal” (that is, with vertices on the absolute) polygon of the Lobachevskij 
plane can be immersed in E3 (however, a Lobachevskij half-plane cannot be 
immersed in E3; see Elimov (1975)). For comparison we observe that a universal 
covering of a pseudosphere does not contain any s-neighbourhood of a complete 
geodesic. For more complete information about isometric immersions of dif- 
ferent domains of Riemannian 2-manifolds of negative curvature in E3 we refer 
the reader to the surveys Poznyak (1973), Poznyak and Shikin (1974), and also 
to Part II of the present book. 

1.3. Conjecture About a Saddle Immersion in E". Despite the fundamental 
results of Efimov about non-immersibility and significant progress in the theory 
of isometric immersions, at present it is not obvious that there are any general 
properties that distinguish metrics immersible in the large in E3 among all 
two-dimensional complete Riemannian metrics of negative curvature, and we 
can hardly hope for this in the near future. The general arguments expressed in 
Chapter 1 also give no basis for such a hope. Hence one of the most pressing 
questions (Conjecture A of Ch. 1) seems to us to be that of the immersibility 
of every complete simply-connected two-dimensional Riemannian manifold of 
negative curvature in some Euclidean space E” by a saddle surface. In this 

connection we explain how this question can be reduced to the problem of the 
solubility of a certain system of differential equations’. 

Let F be a simply-connected two-dimensional surface in E” with intrinsic 
metric of non-positive curvature. We shall assume for simplicity that a unified 
system of coordinates (u’, u’) has been introduced on F, and that the surface F 

ar 
is specified by a vector-function r(ul, u2). As usual, ri = _ rij = 

ad’ 
& . Along 

F we fix an orthonormal basis of normals e,, . . . , en-2. It is well known that 
the coefficients of the first and second fundamental forms gij = rirj, bk = rije,; 

ae 
i,j=l,2;a=l > . ..> n - 2, and the so-called torsion coefficients pNlik = 2 e ad B 
satisfy the system (l)-(3) consisting of the Gauss equation 

n-2 

the 2(n - 2) Peterson-Codazzi equations 

and the t(n - 2)(n - 3) Ricci equations 

P I&Q - 11,,244 + i sk"(b;,b~k - b;,b!i). (3) a? 
k,p=l 

Assuming that the gij and the Christoffel symbols c$ are known, we regard 
(l)-(3) as a system of equations for the functions b{ and paSk. Then equation (1) 
is algebraic, and (2) and (3) are quasilinear first-order equations. So long as the 
b; and pmSk satisfy (l)-(3), according to Bonnet’s multidimensional theorem (see 
Chen (1973), for example) there is a parametrized surface F in E” and an ortho- 
normal basis of normals to it such that the functions gij, bt and &ak are 
respectively the coefficients of the first and second fundamental forms and the 
torsion coefficients of F with respect to the basis of normals that we have found. 

However, we need to find these functions so that the resulting surface F is 
automatically a saddle surface. For this we specialize the choice of the b$. A 
saddle surface is characterized by the fact that all its points are hyperbolic. In all 
there are three aflinely distinct types of hyperbolic points (see 2.1 of Ch. l), and 
one of them corresponds to the case of general position, and the other two are 

‘I& must observe that the fact that there is at least one complete regular saddle surface with 
Gaussian curvature K < const < 0 in E4 is not self-evident. An example of this kind (which shows 
that Etimov’s theorem cannot be generalized to saddle surfaces in E”, n > 3) was constructed 
recently by Perel’man; see Perel’man (1989). 
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limiting cases of it. In the first basic case the space of osculating paraboloids at 
a point of the surface is two-dimensional, and for the generators we can take any 
two hyperbolic paraboloids for which the asymptotic directions regularly alter- 
nate. Conversely, a linear combination of two hyperbolic paraboloids with 
alternating asymptotic directions is a hyperbolic paraboloid. These arguments 
give a basis for looking for second fundamental forms 

i El bpuj = A”((u’)2 + ClU1U2 - c2(tq2) + Fu1u2. (4) 

Substituting in (l)-(3) the expressions for the b$ in terms of A”, B”, cj obtained 
from (4), we arrive at a system of equations with unknown functions A”, B”, pagk, 
cj, and to each solution of this system there corresponds in E” a saddle surface 
with a given metric. 

We observe that the difference between the number of unknowns and the 
number of equations (which to some extent characterizes the degree of in- 
definiteness of the system) does not change here with the growth of the dimen- 
sion n > 3 of the Euclidean space, in contrast to the case of arbitrary (not saddle) 
immersions, where this difference increases without limit. 

1.4. The Possibility of Non-Immersibility When the Manifold is Not Simply- 
Connected. As we mentioned in 2.4 of Ch. 1, complete non-simply-connected 
two-dimensional Riemannian manifolds of both negative and non-positive cur- 
vature may be non-immersible in any E” as a saddle surface. The simplest 
example of this kind consists of two copies of an “ideal” (that is, with vertices on 
the absolute) triangle of the Lobachevskij plane whose sides are glued together 
in the natural way (by isometry). The non-immersibility of such a manifold 
follows easily from the properties of tapering surfaces; see 2.2 below. Other 
examples can be obtained on the basis of inequality (5) of Ch. 42. Among these 
examples there are no manifolds homeomorphic to an annulus, but there is such 
an example in the class of polyhedra; see 4.3 of Ch. 4. 

5 2. On the Extrinsic Geometry of Saddle Surfaces 

2.1. The Variety of Saddle Surfaces. The extrinsic geometry of saddle surfaces 
has not been studied much, certainly less than in the case of convex surfaces. This 
is explained by a number of circumstances. Firstly, as we have already em- 
phasized, saddle surfaces in contrast to convex surfaces are objects of a finite- 
dimensional Euclidean space of arbitrary dimension, which is not traditional for 
classical differential geometry; even if saddle surfaces are situated in E3, an 
understanding of the more general properties of their extrinsic geometry must 
apparently take this into account. Secondly, although the concept of the saddle 

shape of a surface may be in some sense no less significant than convexity, the 
extrinsic geometry of saddle surfaces is much more varied, in particular, there 
are saddle surfaces of very different topological types. Here an analogy with 
Riemannian metrics suggests itself: while complete metrics of positive and zero 
curvature exist only for finitely many topologically distinct two-dimensional 
manifolds, which are easy to calculate, metrics of negative (even constant) cur- 
vature exist both on any two-dimensional open manifold and on any closed 
manifold with Euler characteristic x < 0. 

Similarly, for any finitely-connected orientable non-compact (without bound- 
ary) two-dimensional manifold there is a saddle surface homeomorphic to it and 
embedded in E3 that is externally complete (that is, the embedding is proper), 
and this surface can be chosen to be C”-smooth and with everywhere negative 
Gaussian curvature. A method of constructing such surfaces was first given by 
Hadamard (Hadamard (1898)). The construction can easily be seen from Fig. 5; 
we first construct a piecewise smooth (with edges) surface that is the boundary 
of the union of bodies bounded by hyperboloids of one sheet; then the edges are 
smoothed out. For the technique of such a smoothing, see Bakel’man, Verner 
and Kantor (1973) and Rozendorn (1966). This construction is not suitable if the 
surface is homeomorphic to a closed surface with a point deleted; however, in 
this case we can modify the construction as shown in Fig. 6: the surface shown 
in Fig. 5 is cut along the curve ab and to the sides of the cut we glue surfaces 
homeomorphic to a half-plane that wind asymptotically onto the hyperboloids 
of one sheet. Less clear is the question of the existence of complete unorientable 
saddle surfaces of different topological types in E”. 

In passing we give an example of a saddle surface in E4 that does not lit into 
any 3-plane. This is the intersection of two hyperbolic cylinders: x3 = x: - x:, 
x4 = x1x2. 

Since in this section we shall be dealing mainly with complete surfaces, we first 
dwell on questions of the connection between the intrinsic and extrinsic com- 

2 Our attention was drawn to this by G.Ya. Perel’man. Fig. 5 
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Fig. 6 

pleteness of a surface. We recall that for a surface immersed in E” it makes sense 
to talk about its intrinsic completeness, that is, about the completeness of the 
induced metric, and about its extrinsic completeness, that is, about the situation 
when the immersion is proper (the inverse image of any compactum is a com- 
pactum). Clearly, extrinsic completeness always implies intrinsic completeness. 
For convex surfaces the converse is also true. However, an intrinsically complete 
saddle surface may not be extrinsically complete. An example is the analytic 
surface of strictly negative curvature given by the equation 

z = x tan y - &any)* sin(tan y), -co<x<co, 2<y<T 
2 2’ 

see Bakel’man, Verner and Kantor (1973). Moreover, in E3 there are intrin- 
sically complete saddle surfaces that are bounded in space. Such examples were 
constructed by Rozendorn (Rozendorn (1961)). The main idea of Rozendorn’s 
construction is described in Part II of the present book and explained there by 
a figure. The surface is constructed from blocks Qi of the same type, it is not 
simply-connected, and in the intrinsic sense it has infinitely many “exits to 
infinity”. Transition to the universal covering gives a similar example of an 
immersed simply-connected surface. We can become acquainted with the details 
of the construction in Rozendorn (1961) Rozendorn (1966). 

We observe that in all examples of this kind constructed up to now there are 
flat points, which are certainly branch points for the spherical mapping3. The 
assumption that there is no C2-smooth surface of strictly negative curvature that 
is intrinsically complete and bounded in E3 is sometimes called Hadamard’s 

3 Rozendorn (Rozendorn (1981)), by lowering the smoothness at individual points, succeeded in 
guaranteeing that the Gaussian curvature of the intrinsic metric is strictly negative; however, this 
does not alter the basic fact that such points continue to be branch points of the spherical mapping. 

h Horn 

Fig. I 

conjecture. It would be interesting to determine whether it is possible to con- 
struct such a surface on the lines of Rozendorn’s example mentioned above, 
using instead of the blocks Qi similar constructions from Vaigant’s example, 
which we deal with in 2.2 below. Such blocks must then be glued together along 
non-convex curves. 

2.2. Tapering Surfaces. Let us dwell on one class of saddle surfaces for which, 
in particular, intrinsic completeness implies extrinsic completeness. These are 
the so-called tapering surfaces. With respect to a number of properties, these 
surfaces occupy the same place in the theory of saddle surfaces as closed surfaces 
in the class of ail convex surfaces. Tapering surfaces are distinguished by purely 
intrinsic properties. Before describing them we give some definitions. 

A complete Riemannian manifold homeomorphic to a disc with the centre 
removed is called a tube. In the case of metrics of non-positive curvature tubes 
are naturally divided into “tapering” (or horns) and “widening” (bowls), see Fig. 
7; a Euclidean half-cylinder belongs to the bowls4. The concepts of horn and 
bowl were introduced by Cohn-Vossen (Cohn-Vossen (1959)). A surface in E” is 
called a tube, a horn or a bowl respectively if it is of this kind with respect to its 
intrinsic geometry. Finally, a horn is said to be pointed if there are arbitrarily 
short loops on it that are not homotopic to zero. 

1,. 4A general definition of a horn and a bowl, not connected with the condition that the curvature is 
non-positive, is as follows, A loop on a tube, homotopic to the boundary of the tube, is called a belt. 

Let CI be the greatest lower bound of the lengths of belts on a tube i? If every sequence of belts yi for 
which the lengths s(y,) + a is divergent, then the tube is called a horn, otherwise a bowl. A bowl is 
said to be proper if it does not contain a horn. In the case of non-positive curvature all bowls are 
proper. A horn can never contain a bowl. 
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An intrinsically complete (without boundary) saddle surface in E”, n > 3, is 
said to be tapering if it admits a partition info a compact surface with boundary 
and finitely many tapering tubes (horns). It is not difficult to see that this 
definition has an intrinsic character. We shall be concerned with sufficiently 
smooth (of class C2) tapering surfaces. 

It is well known that an open Riemannian 2-manifold M satisfies Cohn- 
Vossen’s inequality fM KdS < 271~ (so long as this integral makes sense). Here 
K is the Gaussian curvature, dS is the element of area, and x is the Euler 
characteristic. For tapering manifolds we have equality, that is, the Gauss- 
Bonnet formula is true for them in the same form as for closed manifolds. 
Generally speaking, Cohn-Vossen’s inequality becomes an equality not only 
for tapering complete surfaces (for example, for a cylinder and an elliptic para- 
boloid). But in the class of complete surfaces of non-positive curvature such that 
on each convergent tube there are arbitrarily distant points with negative curva- 
ture, this equality distinguishes precisely the tapering surfaces; see Verner (1968). 

Theorem 2.2.1. Every C3-smooth saddle horn T in E” is unbounded in space. 

This theorem for a non-pointed horn follows from Theorem 1.3.1 of Ch. 4, 
concerned with general surfaces of bounded extrinsic curvature. In the case of a 
pointed horn this theorem can be proved in the same way as Verner’s theorem 
(Verner (1970a)) on a pointed horn in E3. We observe straight away that Theo- 
rem 2.2.1 is obviously true for general surfaces of bounded extrinsic curvature in 
E” (see 1.3 of Ch. 4); for C2-smooth surfaces in E3 this was proved in Burago 
(1984), and for general surfaces in E”, but under additional assumptions, which 
are evidently unconnected with the heart of the matter, in Yu.D. Burago (1968b). 
However, Verner’s proof (Verner (1970a)) is specific for saddle surfaces, while 
D.Yu. Burago’s proof (D.Yu. Burago (1984)) cannot be carried over to surfaces 
in E”, n > 3. 

From Theorem 2.2.1 it follows easily that a saddle horn T has a limiting cone5 
in the form of a ray L; the direction of this ray is called the direction of the horn. 
There is a cylinder with axis parallel to L such that the horn T is entirely 
contained in this cylinder (Verner (1967-1968)). From what we have said it 
follows that a tapering surface is unbounded in E”, and every horn of it exits to 
infinity in a definite direction. If such a tapering surface has no supporting 
hyperplane, that is, it does not tit into any half-space of E”, then there are at least 
n + 1 of these exits to infinity. (If there is a supporting hyperplane, then its 
intersection with the surface “exits to infinity” non-compactly along certain 
horns. Examples of such surfaces are tapering saddle surfaces lying in a subspace 
Ek c E”, 2 < k < n.) In passing we observe that there are orientable tapering 
surfaces with any number N 3 n + 1 of exits to infinity. An example of one of 
them is the algebraic surface given in E3 by the equation 

5The limiting cone of a surface F is the limiting set (as n + zo) of the sequence of surfaces F. obtained 
from F by means of homotheties with coefticients l/n and common centre. 
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Fig. 8 

x2y2 + y2z2 + z2x2 = 3a4. 

Six of its horns exit along the coordinate axes (Fig. 
curvature 

8), and the Gaussian 

K = -6a4(a4(x2 + y2 + z2) - 3x2y2z2) < o 
(a4(x2 + y2 + 22) + x2y222)2 ’ 

vanishes at the eight points where 1x 1 = 1 y 1 = IzI = a. These points are saddles 
of the third order; see Bakel’man, Verner and Kantor (1973). 

Further investigation of tapering surfaces in E3 consists in studying the 
dependence between the presence (and number) of branch points of the spherical 
mapping of the surface and the behaviour of the surface at infinity. 

For simplicity we shall assume that the spherical mapping v of the surface F 
has only isolated branch points, and outside them v is a local homeomorphism6. 
The spherical mapping of the surface F determines a new surface @, which even 
lies on the sphere S2, but may cover certain domains of the sphere repeatedly 
and is ramified like the Riemann surface of a many-valued function of a complex 
variable. As usual, the surface is endowed with the induced metric, which has 
constant curvature 1 outside the branch points, since it coincides locally with the 
metric of the sphere. We complete the surface @ by its limiting points. The 
completion 3 of the surface is (in the case of a tapering surface F) a compact 

‘The general case reduces to the one we have considered. In fact, let f be the topological space whose 
points are the components of the sets v-‘(x). x E S’, and the topology is induced by the projection 
p: A4 + f, where y = p(x) if x E y. Then Y decomposes uniquely as v = 4 0 p, A4 3 r 5 S’. According 
to Kerekjarto (Kerekjarto (1923)) Tis also a two-dimensional manifold (since the components v-‘(x) 
do not partition M), and the mapping 4 has only isolated branch points. 
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surface with boundary &D consisting of finitely many components yi correspond- 
ing to the exits of F to infinity. Each component yi from the viewpoint of the 
intrinsic geometry of @ is a simple closed geodesic open polygon lying on a great 
circle of the sphere S2, possibly with self-overlappings. 

The following remark, which is important for what comes later, explains why 
the boundary a@ is a geodesic open polygon. With each horn of the surface F 
we associate a circle Oi on S2 perpendicular to the direction of the horn. Then 
the corresponding component yi of a@ lies on Oi and fills either the whole circle 
Oi or an arc not less than a semicircle. The surface @ either has no intersections 
with each polygon P into which U Oi splits S2 or it forms a ramified covering 
over P, so the number of layers is constant over P except at the branch points. 
Since the area of @ is finite (it is equal to 27~x(F)) the number of branch points is 
finite. 

Fig. 9 

The open polygon yi, considered from the viewpoint of the intrinsic geome- 
try of @, has a definite turn zi = z(y,) from the side of @. Verner (Verner (1970b)) 
proved the following result. 

them there are. The structure of such surfaces has been studied by P. Sh. 
Rechevskij and S.Z. Shefel’. 

It turns out that a tapering surface F in E3 with x(F) = -2 has the following 

Theorem 2.2.2. For a tapering surface F in E3 with 1 exits to infinity we have 

AX = x(1 - s(bi)) + & jil zj> I 
where s(bi) is the multiplicity of the branch point bi of the spherical mapping of the 
surface F; the first sum is taken over all such branch points. We always have Zj d 0. 
Equality holds here if and only if for some neighbourhood U c 3 of each open 
polygon yi we have (U\yi) n Oi = 0. 

Suppose that the Gaussian curvature K of a surface F in E3 is negative in a 
neighbourhood of a point p, except possibly for the point itself. Then the tangent 
plane to F at p intersects F close to p in an even number 2m of simple arcs with 
origin at p. The number m is called the order of saddleness of F at p. We always 
have m 3 2. If K(p) < 0, then obviously m = 2. A point with order of saddleness 
m > 2 is a branch point of multiplicity s = m - 1 for the spherical mapping. 

A tapering surface F, regarded as a topological space, can be compactified by 
completing each horn by one point (this is called the point at infinity of the horn). 
The completion is a closed manifold. The order of saddleness of a horn at a point 
at infinity a, is the number m(a;) = - (1/27r)z(y,). Verner (Verner (1970b)) proved 
that if the spherical mapping of a horn in some neighbourhood of a point at 
infinity a is univalent, then m(a) is equal to 0 or + 1. From this and Theorem 
2.2.2 it follows that, for example, if a tapering surface F with Euler characteristic 
x(F) # 2 close to each point at infinity has a one-to-one spherical mapping, then 
on F there are points with Gaussian curvature K = 0 and order of saddleness 
greater than two. 

The simplest tapering surfaces in E3 are those with x = -2. Such a surface 
has four exits to infinity and is homeomorphic to a sphere with four handles. 
However, in this case the formulae (5) are insufficient to establish whether there 
are points on F with order of saddleness greater than two, and how many of 

structure. Generally speaking, it has four points at which the order of saddleness 
is equal to three. Correspondingly, the spherical mapping has four branch 
points. In this general case, close to each point at infinity the spherical mapping 
of F is one-to-one, and each horn is given explicitly by z = f(x, y). The branch 
points of the spherical mapping cannot “stick together”, so for example instead 
of two points with order of saddleness three there cannot be one point with 
order of saddleness four. However, a priori we do not exclude the “limiting” 
cases when the singular points “exit to infinity”, so the spherical mapping has 
branch points on the boundary; see Fig. 9. It is not known whether all possibil- 
ities of this kind can be realized (for example, whether only one singular point 
exits to infinity). The construction of examples of this kind is very difficult. 
However, Vaigant constructed an example of an analytic tapering surface F with 
x(F) = - 2 whose Gaussian curvature is negative everywhere, so all four branch 
points of the spherical mapping lie on its boundary. The surface in question is 
given by the equation 

(z - m2 + Jl+y2)2(8 + JD + dm)2 

- M2[2 - (JG? - l)(JKy2 - l)] = 0, 

where 0 < M < 10m4. 
Figure 10 shows the rough form of this surface; it is essential that its sections 

perpendicular to the directions of the horns are not convex. 
The qualitative description given above is based on the following theorems 

of Rechevskij and Shefel’. We first observe that if a tapering surface F has Euler 
characteristic -2, then the circles Oi (i = 1, 2, 3, 4) on the sphere S2 perpendi- 
cular to the directions of the horns split the sphere into eight triangles q and six 
quadrangles Qk. 

Theorem 2.2.3. The spherical mapping of a tapering surface F in E3 with 
x(F) = -2 satisfies the following condition: in each of the quadrangles Qk the 
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Fig. 11 

Fig. 10 
of a horn and a bowl or two bowls); c) surfaces with x(F) = - 1 consisting of two 
horns and a bowl. 

spherical mapping is bijective; of any two diametrically opposite triangles q one is 
always doubly covered (possibly with a branch point), and the second is empty. The 
points of intersection Oij = Oi n Oj of the circles with i # j do not belong to the 
spherical image of F. 

Theorem 2.2.4. For a tapering surface F in E3 with x(F) = -2 the following 
three conditions are equivalent. 

1. Of any two diametrically opposite points of the set S’\ ui+j Oij at least one 
belongs to the spherical image of F. 

2. The spherical mapping of F has exactly four branch points (of multiplicity 
2), one in each of the triangles. 

3. The spherical mapping of F is one-to-one close to each point at infinity. 
If conditions l-3 are satisfied, then every horn can be given by an explicit 

equation z = f(x, y). 

From Theorems 2.2.2 and 2.2.3 it follows that a tapering surface in E3 cannot 
have a one-to-one spherical mapping. Hence a complete saddle surface with a 
one-to-one spherical mapping contains a bowl. In a series of papers (see Verner 
(1967-1968)) Verner studied the extrinsic geometry of complete regular saddle 
surfaces with a one-to-one spherical mapping, or spherically one-to-one saddle 
surfaces for short. Before stating the results, let us recall one definition. Suppose 
that a surface is a horn. The direction of the horn corresponds to a point p E S2. 
Let us remove from S2 the point p’ diametrically opposite to p. The degree of p 
on S2\p’ with respect to the spherical image of some horn y is the same for all 
horns sufficiently far from the boundary of the horn. This degree is called the 
turn of the horn F. 

Theorem 2.25 For a spherically one-to-one saddle surface we certainly have 
x(F) > - 1. Such surfaces can only be of the following types: a) surfaces homeo- 
morphic to a plane; b) surfaces homeomorphic to a cylinder (these surfaces consist 

However, it is not known whether there is at least one spherically one-to-one 
saddle surface of the last type. 

If a surface consists of a horn and a bowl, then its properties depend strongly 
on whether the horn has non-zero turn. If the turn of the horn is zero, then the 
surface certainly has self-intersections; such surfaces exist: an example is the 
surface given in cylindrical coordinates by the equation 

p = epr 
cos2q - ezz sin2 q 

~0s’ cp + e2’ sin’ cp ’ 

see Fig. 11. The most completely studied are the surfaces with x = 0 having a 
horn with non-zero turn. 

Theorem 2.2.6. If a spherically one-to-one saddle surface F with x(F) = 0 
contains a horn with non-zero turn, then 

1) in some coordinate system x, y, z (with z-axis parallel to the direction of the 
horn) the surface F is given by an equation z = f(x, y) over the domain of the 
(x, y)-plane that is a completion to a closed convex set; 

2) the surface F has a limiting cone consisting of a ray and a convex horn; 
3) the closure of the spherical image of F is obtained from S2 by removing the 

hemisphere corresponding to the horn and some convex domain (possibly empty) of 
the interior of the spherical image of the limiting cone of the bowl. 

5 3. Non-Regular Saddle Surfaces 

3.1. Definitions. Suppose that the surface F is given by a continuous map- 
ping f of a two-dimensional manifold M into E”, n > 2. A non-empty open set 
E c M with compact closure E c int M is called a crust if there is a hyperplane 
P such that E is a component of the set M\f -l(P). In this case we say that the 
hyperplane P cuts off the crust E. The surface F is called a saddle surface if it is 
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Crusts 

Not crusts 
P. 

Fig. 12 

impossible to cut off a crust from it by any hyperplane. We note that a crust is 
not assumed to be simply-connected; Fig. 12 explains the visual meaning of this 
concept. Clearly, a smooth surface in E3 is a saddle surface if and only if its 
Gaussian curvature is non-positive. 

If in the definition of a crust we replace the words “hyperplane P” by “hyper- 
sphere s”-’ “, then we arrive at the definition of a spherical crust. A surface F is 
called an R-saddle surface, 0 < R < co, if it is impossible to cut off a spherical 
crust from it by any hypersphere whose radius is at least R. Finally, a surface is 
called a strictly saddle surface if each point p of it has a neighbourhood in the 
form of an R-saddle surface for some R = R(p). A smooth saddle surface in E3 
is an R-saddle surface if all its principal curvatures are at least R-’ in absolute 
value, and a strictly saddle surface if the Gaussian curvature of its intrinsic 
metric is negative everywhere. 

If the boundaries of compact simply-connected saddle surfaces lying in E” 
form a compact set, then the set of such surfaces itself is compact (in the space 
of surfaces with Frkchet metric) (S.Z. Shefel’ (1967)). Saddle and R-saddle (for 
fixed R) surfaces form closed sets, but the set of strictly saddle surfaces is not 
closed. 

3.2. Intrinsic Geometry. In the theory of non-regular saddle surfaces we 
should like to distinguish questions that seem to us to be fundamental for the 
development of this theory. Although these questions are similar to those that 
arose in the theory of general convex surfaces, their solution is apparently beset 

with much greater difficulties. In accordance with the general principles that we 
discussed in Chapter 1, in the first place two questions arise. Here is the first. Is 
any saddle surface with rectifiable boundary a manifold of non-positive curva- 
ture with respect to its intrinsic geometry? Although in the general case the 
answer to this question has still not been obtained, the following partial result 
is true. 

Theorem 3.2.1 (S.Z. Shefel’ (1964)). Suppose that a saddle surface F in E3 
bounded by a rectifiable curve can be represented as the graph of a function 
z = f(x, y). Then F is a manifold of non-positive curvature with respect to its 
intrinsic geometry. 

It is known that at each point of a surface with finite Lebesgue area there are 
arbitrarily small neighbourhoods bounded by rectifiable curves (Cesari (1956)). 
On the other hand, by the isoperimetric inequality for saddle surfaces (S.Z. 
Shefel’ (1963)) a compact saddle surface with rectifiable boundary has finite area. 
Hence Theorem 3.2.1 can be strengthened as follows. 

Theorem 3.2.2 (S.Z. Shefel’ (1964)). Zf a saddle surface F in E3 has finite 
Lebesgue area (or is compact and has rectifiable boundary) and in a neighbourhood 
of each of its points it can be represented as the graph of a function z = f(x, y), 
then F is a manifold of non-positive curvature with respect to its intrinsic geometry. 

The proof of Theorem 3.2.2 is based on the possibility of approximating a 
saddle surface that is the graph of a function by saddle polyhedra, and on 
a suitable criterion for the curvature to be non-positive due to Reshetnyak 
(Reshetnyak (1960a)). Since the question of the possibility of approximating a 
general saddle surface by saddle polyhedra (or sufficiently smooth saddle sur- 
faces) remains open and has independent interest, we explain briefly how to solve 
it for a surface that is the graph of a function. The essence of the matter is 
that in this case a polyhedron lying in the layer between the surfaces P1: z = 
f(x, y) - h and P2: z = f(x, y) + h can be transformed into a saddle polyhedron 
lying in the same layer. It is sufficient first to remove from the polyhedron the 
crusts E lying over the planes that cut them off for which the flat domain 52 
bounded by dE does not cut off a crust from P,, each time replacing the crust by 
the corresponding domain Q, and then repeating the procedure, but replacing 
P, by P2, cutting off “lower” crusts instead of “upper” crusts. In fact this proce- 
dure is carried out successively for a countable everywhere dense set of “upper” 
(and then “lower”) planes. 

3.3. Problems of Immersibility. The second question is as follows: is every 
metric of non-positive curvature at least locally the intrinsic metric of some 
saddle surface in Euclidean space of some finite dimension? For a Riemannian 
metric this problem, as we explained above, reduces to the question of the 
solubility of a definite system of differential equations. Here we should just like 
to draw attention to the existence of an alternative approach in the case of 
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general metrics of non-positive curvature, which consists in solving the anal- 
ogous problem in the class of polyhedra and then carrying out a limiting process. 

It is rather encouraging here that, as Perel’man recently proved (Perel’man 
(1988b)), every complete simply-connected polyhedral metric of non-positive 
curvature admits an isometric CO-embedding in E3 as a saddle polyhedron (so 
in particular the vertices of this polyhedron are only the images of the existing 
vertices of the metric). Although the set of saddle polyhedra in E” whose metrics 
approximate a certain metric of non-positive curvature on a closed disc is 
compact (on condition that the lengths of the bounding curves are uniformly 
bounded), the convergence of these polyhedra to a limiting surface is not neces- 
sarily too “good” in the sense that the areas of the Grassmann images (the 
analogue of the spherical mapping in E3) of the approximating polyhedra for 
a “typical” saddle surface in E”, u > 3, cannot converge to the area of the 
Grassmann image of the surface itself; for the details see 1.1 and 1.4 of Ch. 4. An 
additional obstacle in this path is the fact that in contrast to the case of convex 
surfaces it is not at all clear under which additional conditions convergence of 
the saddle polyhedra implies convergence of their metrics. 

3.4. Problems of Non-Immersibility. If we turn to surfaces in three- 
dimensional space, then here the question arises first of all of the geometrical 
conditions that replace the requirement of C2-smoothness in Elimov’s theorem 
discussed above. Experience accumulated in the theory of convex surfaces says 
that in the case of geometrically meaningful results smoothness conditions can 
be successfully replaced by assumptions of “geometrical regularity”. The require- 
ment of G-stability can apparently serve as such an assumption here, as in many 
other cases. The class of affmely stable immersions of metrics of negative curva- 
ture is the class of strictly saddle surfaces (see 3.1). This makes the following 
conjecture plausible. A complete Riemannian’ metric with Gaussian curvature 
not exceeding a negative number does not admit immersions in E3 in the class 
of strictly saddle surfaces’. 

Similar conjectures were made by Rozendorn in Rozendorn (1966). In them, 
in contrast to the supposition made here, for the extrinsically geometrical condi- 
tion that compensates for the absence of C*-smoothness we put forward the 
requirement that the order of saddleness of a surface at each point is equal to 
two, and so the spherical mapping does not have branch points. We observe that 
this condition does not guarantee that the surface is strictly saddle-shaped. In 

‘The question of a possible extension of the class of metrics under consideration does not seem to 
us so immediate; in this scheme it is a question. for example, of manifolds with specific curvature not 
exceeding a number c < 0. On the other hand, we should possibly limit ourselves initially to 
C’smooth surfaces. 
a It is possibly advisable to extend the class of strictly saddle surfaces to the class of so-called i.-saddle 
surfaces, 0 < i < 1, introduced by Kozlov (Kozlov (1989)). A surface is called a i-saddle surface at a 
point Y if the null-vector of the normal space at x is contained in an ellipse homothetic to the ellipse 
of normal curvatures (see 1.1 of Ch. 4) with coefficients of homothety 0 < 2. < 1 and with centre of 
homothety at the centre of the ellipse. 

fact, there is an example of a Cl-smooth surface with the following properties: 
1) The surface F is C”“-smooth outside some point a. 2) The surface F has a 
Cm-smooth intrinsic metric of strictly negative curvature. 3) At the point a the 
surface F has order of saddleness equal to two. Nevertheless, in a neighbourhood 
of a point the surface F is not a strictly saddle surface, nor C*-smoothg. 

This example is interesting in another respect. It shows that smoothness of 
the intrinsic metric of a surface and the fact that the curvature of the intrinsic 
metric in the class of saddle surfaces is negative do not imply that the surface is 
smooth (so here again there is no complete analogy with convex surfaces). 

On the other hand, from Theorem B of Rozendorn (1966) we have the 
following result. 

Theorem 3.4.1. A Cl-smooth strictly saddle surface, with Cm-smooth metric of 
negative curvature, that is P-smooth everywhere except possibly for isolated 
points is actually P-smooth everywhere. 

It seems to us that these facts can serve as arguments for using the conjecture 
stated above. 

Generally the question of smoothness of a saddle surface with sufficiently 
smooth metric, except for theorems on removing isolated singularities, has 
hardly been studied. Only the following result is known. 

Theorem 3.4.2 (Rozendorn (1967)). Suppose that a simply-connected surface 
F bounded by a closed curve is C2-smooth and has a Ck-smooth intrinsic metric of 
negative curvature. If F is Ck-smooth in some neighbourhood of a bounding curve, 
then it is Ck-smooth everywhere. 

See also Part II of the present book. 

Chapter 4 
Surfaces of Bounded Extrinsic Curvature 

5 1. Surfaces of Bounded Positive Extrinsic Curvature 

1.1. Extrinsic Curvatures of a Smooth Surface. For surfaces F in E”, n 3 4, 
the concept of spherical mapping can be generalized in two different ways. For 

~*~ 
;T 

simplicity we assume that the surface is oriented (otherwise it is sufftcient to go 

+. 
over to a double covering). Then firstly there is a Grassmann mapping g: F -+ 
G(n, 2) that associates with a point x of the surface the oriented tangent plane to 

9The existence of such a surface follows from Theorems 6, A and B of Rozendorn (1966) and the fact 
that if II(I < c < cc for the surface, and the mean curvature in a neighbourhood of a point a is not 
bounded, then the absolute values of the radii of curvature are not necessarily bounded above. 
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F at this point. Let S,(E) be the area of the Grassmann image of a set E of the 
surface F with respect to the canonical’ metric in G(n, 2). 

Secondly, let W be the subbundle of unit vectors of the normal bundle of a 
surface F in E”. Then in W there are pairs (x, v), where v is the unit normal to F 
at x. The mapping y: W + S-l, where y(x, v) = v, induces in W an (n - l)- 
dimensional measure SY ~ the “area” of the surface (W, y). For a set E c F we put 
S,(E) = $,(p-l(E)), where p is the projection of Won F, p(x, v) = x. The measure 
S,, usually additionally normalized, is called the Chern-Lashof curvature (Chern 
and Lashof (1957)). We choose the normalization by putting S, = (47(/o,-,)S,, 
where w,-i is the (n - 1)-area of the unit sphere S”-‘. 

The space W, other than critical points of the mapping y, splits into subsets 
W+, W-, on which y preserves or reverses the orientation. The extrinsic positive 
and negative total curvatures of F are defined by the equalities’ pL+ = S,(W+), 
,U = S,( W-). The calculations carried out in Chern and Lashof (1957) show that /$(F) = n-2 ss x+(x) da, dS,, 

an-3 F s-= 
(1) 

where x,(x) is the Lipschitz-Killing curvature (that is, the product of the prin- 
cipal curvatures of F at x with respect to the normal v), a+ = max(a, 0), a- = 
max( - a, 0), and dS, and da, are the elements of area of the surface F and the 
sphere Y3 respectively. 

By Gauss’s theorem it follows from (1) that 

P+ - p- = Co, (2) 

where o(E) = SE KdS is the integral curvature of the intrinsic metric of F. Since 
pL+ + p- = S,, it follows from (2) that S, > var o, and in the case of metrics with 
curvature of definite sign, equality holds only for convex and saddle surfaces 
respectively. 

Thus, for saddle surfaces in E”, n > 4, as for any surfaces in E3, the Chern- 
Lashof curvature is completely determined by the intrinsic metric of the surface. 
If the surface does not lie in E3 and is not a saddle surface, then a kind of 
“splitting” of the curvature may take place, for which p’ - p- = o, but S, = 
p+ + ~1~ > var o. (We recall that it is a question of sufficiently smooth surfaces, 
say immersions of class C2.) 

As Hoffman and Osserman showed (Hoffman and Osserman (1982)), we 
always have S, 2 S, 3 var w, and the left inequality may be strict. 

To describe the extrinsic geometry of a surface in E” it is helpful to use also 
the concept of the ellipse of normal curvatures. Consider the geodesics passing 

r That is, invariant with respect to the action of the group O(n) and the normalized metric on the 
homogeneous space G(n, 2) = o(n)/So(n - 2) x O(2). 
*For k-dimensional surfaces in E”, 0 < k i n, S, and S, are defined similarly. In a significant number 
of papers (see Willmore (1982), Kuiper (1970)) the dependence of the topology of k-submanifolds of 
F on S, has been studied, in particular, immersions with the smallest S, allowed by the topology (tight 
immersions). However, when k > 2 separate examination of p+ and p- is apparently less meaningful. 

through a fixed point x of a surface F in E”. Their curvature vectors at x fill an 
ellipse E lying in a two-dimensional plane of the normal space N of F at x. In 
other words, the ellipse of normal curvatures E is the image of the unit circle 
1x1 = 1 of the tangent space under the mapping X H B(X, X), where B is the 
second fundamental form of F with values in N. 

If we choose a basis in N so that the first two unit vectors are parallel to the 
axes of E, and its centre has coordinates (a, fl, y, 0, . . . , 0), then (see Hoffmann 
and Osserman (1982), Aminov (1980)) 

2 = [K’ + 4(c2b2 + /12a2)]“’ 3 \K[, 

where a and b are the semi-axes of E, and K and dS are the Gaussian curvature 
and element of area of F. From (3) it follows that S, 2 var CU. It is not difficult to 
verify that saddle surfaces are characterized by the fact that the null-vector of N 
is contained in the flat domain bounded by E. We also note that the centre of 
the ellipse is the mean curvature vector of F (see 52 below). For surfaces in E3, 
but not only for them, the ellipse of normal curvatures degenerates to an interval. 

1.2. Extrinsic Curvatures of a General Surface. To extend the concept of 
extrinsic curvatures to non-regular surfaces, it is useful to characterize ,u+ and 
,L- by the same method. We fix a point 0 E E” and identify f(x) with the “radius 
vector” Of(x). By Sard’s theorem the function q,(x) = (v, f(x)), where ( , ) is 
the scalar product, has only nondegenerate critical points for almost all v E S”-l. 
For such v we denote by m+(v), m-(v) the number of critical points of (py having 
even (respectively, odd) indices. For two-dimensional surfaces m+(v) is the num- 
ber of local maxima and minima of (py, and m-(v) is the number of saddles of 
index 1. Then 

4rc 

s 
m+(v) do,, 

4n 
P+ =o_ p- = ~ 

n 1 s”-’ s 
m-(v) da,. (4) 

q-1 ,‘p-L 

In the case of a general (not necessarily smooth) surface in E” we determine 
p+ from the first of the inequalities (4) putting m+(v) equal to the number of 
points of the surface at which it has locally a strictly supporting hyperplane with 
outward normal v. (The possibility m+(v) = co is not excluded.) The hyperplane 
P, oriented by the choice of its normal v, is called a strictly supporting hyperplane 
to the parametrized surface (M, f) at a point x E M if f(x) E P and there is a 
neighbourhood U c M of x such that f(U)\f(x) is not empty and lies in the 
open half-space with outward normal3 v. If locally a strictly supporting hyper- 
plane P is moved a little parallel to itself in the direction opposite to its outward 

jSimilarly we can generalize the negative extrinsic curvature p-. However, technical difficulties arise 
here, but thanks to the Gauss-Bonnet formula all the basic questions do not require n- at all (the 
situation here is similar in many respects to the foundations of the intrinsic geometry of non-regular 
surfaces, where it is sufficient to impose conditions only on the positive excesses of triangles; see 
Aleksandrov and Zalgaller (1962)). 
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normal v, then the new surface cuts off a “crust” from F (see the definition in 3.1 
of Ch. 3). Hence it is easy to conclude that m+(v) is equal to the largest number 
of pairwise disjoint crusts that can be cut off by hyperplanes with normal 
directed towards the crust. 

The class of surfaces with p’ < co includes all convex and saddle surfaces. It 
is easy to see that the latter are characterized by the condition p+(F) = 0. For 
C’-smooth surfaces in E3 satisfying the condition p+(F) < co it is probable that 
,u’ = w+, but this has been proved only under certain additional assumptions; 
see Pogorelov (1956b), S.Z. Shefel’ (1974), S.Z. Shefel’ (1975). If a surface F in E3 
is not smooth, then the equality p’ = W+ may be violated independently of the 
degree of smoothness of the metric. As an example it is sufficient to consider the 
surface Q of a convex-concave lens with rim R. A lens of this kind is obtained if 
we cut a standard sphere S* c E3 by some plane P not passing through the 
centre of the sphere, and replace one of the two resulting spherical caps by the 
surface symmetrical to it about P. On the rim R = S2 n P is concentrated the 
non-zero portion of p”+, but the intrinsic curvature w(R) = 0, since Q is isometric 
to S2. If we change the example by gluing together the lens Q from spherical caps 
of different radii, it is obvious that on R there occurs a kind of “splitting” of the 
curvature 

u+(R) - u-(R) = o(R) # 0. 

Apparently such a splitting is a general situation. As we mentioned above, for 
surfaces in E”, n > 3, splitting of the intrinsic curvature into the extrinsic positive 
and negative curvatures is also typical of Cm-smooth immersions. 

The usual concept of a surface according to Frechet does not exclude “exotic” 
cases when for any parametrization f: M + E” of the surface F the space r of 
components of the sets f-‘(x), x E f(M), contains components that separate r. 
In these cases the mapping S does not induce the structure of a manifold. With 
the intention of considering isometric immersions of manifolds of bounded 
curvature, henceforth as a rule we assume that the surface is a Co-immersion. We 
recall that a surface is said to be metrically connected if any two points of it can 
be joined by a rectifiable curve lying on the surface; the intrinsic (induced) metric 
is defined for such a surface F. 

Let @ denote the class of metrically connected surfaces F that are 
Co-immersions and satisfy the condition p+(F) < co. 

The example of a cylinder with a nowhere rectifiable generator shows that a 
connected surface F with u’(F) < co need not be metrically connected. Some 
sufficient criteria for metrical connectedness are contained in Theorems 1.2.1 
and 1.3.2 below. For surfaces of class @ the topology induced by the metric 
coincides with the original topology of the manifold M. 

The choice of the class @ of surfaces of bounded positive extrinsic curva-/ 
ture was connected with the search for a “successful” class of surfaces car- 
responding to the class X of metrics of bounded curvature. In their time dif- 
ferent authors (see Aleksandrov (1949), Aleksandrov (1950a), Bakel’man (1956), 
Pogorelov (1956b), Borisov (195%1960) Yu.D. Burago (1968a)) considered sev- 

era1 classes of surfaces that are manifolds of bounded curvature with respect 
to their intrinsic geometry, but without a clear statement about the character of 
the correspondence between classes of metrics and surfaces. If we start from the 
principle of afline stability, as we did above, then accumulated geometrical 
observations suggest the conjecture, already mentioned in 4.2 of Ch. 1, about the 
affine compatibility between the classes X and @. In the scheme for confirming 
it there is a partial result, which we state now. First of all we observe that for any 
set E on a surface F E @ it is natural to define the extrinsic positive curvature 
u’(E) “concentrated on E”, . on F there arises the (not normalized) Bore1 measure 

lJ+. 

Theorem 1.2.1. Suppose that a compact surface F in E3 with finite positive 
extrinsic curvature bounded by finitely many rectifiable curves admits an explicit 
definition z = f(x, y) and does not contain points x with u+(x) = 21t. Then F is a 
manifold of bounded curvature with respect to its intrinsic geometry. For any Bore1 
set E c F we have o+(E) < u+(E), where w + is the positive curvature of the 
intrinsic metric. 

A certain strengthening of this theorem, under which, in particular, the re- 
quirement of explicit definition is imposed only locally, is given in 1.3 below. It 
is possible that this requirement is quite unnecessary. Difficulties arising in 
attempts to reject it are probably the same as in the case of saddle surfaces; see 
3.2 of Ch. 3. As for the condition p+(x) < 271, it can be discarded if we generalize 
the main result of D.Yu. Burago (1984) to the case of non-regular surfaces. 

1.3. Inequalities. An important property of the inequalities given below be- 
tween the extrinsic and intrinsic characteristics of a surface is that they hold 
without any smoothness assumptions for all surfaces of the class under con- 
sideration, and hence they show that in the class @ the properties of the metric 
have an influence on the extrinsic geometry of a surface in E” for any II. 

Theorem 1.3.1 (Yu.D. Burago (1968b)). Let F be a compact surface in E” 
(closed or with boundary). Then for its (Lebesgue) area S, length L of the boundary 
and radius R of a ball in E” containing F we have 

S < C,((p+ + IxI)R2 + W, (5) 

where x. is the Euler characteristic of F, the constant C, depends only on n, 
and if F is C2-smooth, then it may be replaced by an absolute constant C (see 
Yu.D. Burago and Zalgaller (1980)). 

In particular, a compact surface with finite positive extrinsic curvature and 
bounded by rectifiable curves has finite Lebesgue area. 

Hence the next result follows from Theorems 1.2.1 and 1.3.1. 

Theorem 1.3.2 (Yu.D. Burago (196Xb)). Suppose that a surface F lying in E3 
of bounded positive extrinsic curvature has finite Lebesgue area, or is compact and 
bounded by finitely many rectifiable curves (in particular, is closed). If in addition 
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F in some neighbourhood of each of its points admits an explicit definition and does 
not contain points with u+(x) = 27t, then F is a manifold of negative curvature with 
respect to its intrinsic geometry. 

Suppose that F is an isometric Co-immersion of a manifold of bounded 
curvature, as, for example, in the conditions of Theorems 1.2.1 and 1.3.2. Then 
the Lebesgue area coincides with the area defined by the intrinsic geometry, see 
S.Z. Shefel’ (1970), and inequality (5) enables us to obtain relations between the 
extrinsic characteristics p+ and R, depending on the parameters S and L of the 
intrinsic metric. 

For C2-smooth surfaces in E3, inequality (5) can be somewhat strengthened. 
However, here it is more important that for such surfaces the extrinsic curvature 
pL+ coincides with the positive part of the curvature of the intrinsic metric 
ix+ = j-K+ dS. 

Theorem 1.3.3 (see Yu.D. Burago and Zalgaller (1980)). For a C2-smooth 
closed surface F in E3 we have 

S < 2R2(w+ - nx). (6) 

If a C2-smooth compact surface F in E3 has a non-empty boundary, then 

s < C(o+R= + LR) 

1 

when x(F) = 1, 

C((o’ - 27tx)R2 + LR) when x(F) d 0, (7) 

where C is an absolute constant. 

Inequalities (6) and (7) show that for any two-dimensional Riemannian mani- 
fold M there is an R, = R,(S, L, x, w+) > 0 such that M does not admit a 
C2-smooth isometric immersion f in E3 under which f(M) is contained in a ball 
of radius R,. In particular, this is the basis for some examples of Riemannian 
metrics that do not admit isometric immersions in E3; see Gromov and Rokhlin 
(1970). 

From Theorem 1.3.1 it is not difficult to deduce that a horn (tapering tube) F 
in E”, n > 3, for which m’ < cc and the area S(F) is infinite, is unbounded in E”. 
Apparently the requirement S(F) = cc is caused only by the method of proof, at 
least, it can be omitted in the case of a C2-smooth horn in E3 (see D.Yu. Burago 
(1984)) and a C3-smooth saddle horn in E”; see Theorem 2.2.1 of Ch. 3. 

0 2. The Role of the Mean Curvature 

2.1. The Mean Curvature of a Non-Smooth Surface. Let us recall the defini- 
tion of the mean curvature of a smooth surface in E”. Let F be such a surface, 
specified by a vector-function r(ul, u2), and B(X, Y) its second fundamental form 
at a point p; see 2.1 of Ch. 1. The second fundamental form of a surface F at a 
point p with respect to the normal v is the form B’(X, Y) = (B(X, Y), v), or in 
local coordinates 

B’(x, Y) = i b,‘,X’Yj, 
i, j=l 

where Xi, Yj are the coordinates of the tangent vectors X, Y to F, and 

b:,=(&,v).Here(, jisthescalarproduct. 

There is a unique linear transformation A’ such that B”(X, Y) = - (A’(X), Y). 
In local coordinates the matrix of the transformation A” has the form At = 
xi=1 b;gkj. Th e q uantity H(v) = -i trace A’ is called the mean curvature of F 
with respect to v. In local coordinates H(v) = i ctjE1 bGgij. 

The mean curvature vector H(p) is the mean value of the vector function vH(v) 
on PP3. If vl, .., v,-= is an orthonormal basis of normals, then H(p) = 
2;:; viH(vi). The number /H(p)1 = (xiH(~i)2)1’2 is called the mean curvature of 
the surface at p. 

The Beltrami-Laplace operator of the vector function r(ul, u2) is understood 
to be the vector-function Ar = (Ax’, . . . , Ax”), where Ax’ is the Beltrami-Laplace 
operator of the coordinate function xi(u1,u2) in the intrinsic metric of the 
surface. If F is specified by the vector-function r(u’, u2), then its mean curvature 
vector H = ;Ar. 

The last equality enables us to generalize the concept of mean curvature to 
non-smooth surfaces in the following way. Suppose that some parametrization 
r(u’, u2) of a surface F has first generalized derivatives that are square summable 
on any compactum, that is, r E W:,rloc, and the Laplace operator Ar, understood 
in the sense of the theory of generalized functions, is completely additive on 
the ring of Bore1 sets of a vector-valued set function with finite variation 
var Ar < co. In this case F is called a surface of bounded (or finite) mean 
curvature, and 3 Ar(E) = H(E) is called its mean curvature vector4 on the set E. 

2.2. Surfaces of Bounded Mean Curvature 

Theorem 2.2.1 (S.Z. Shefel’ (1970)). In order that a surface F in E”, n > 3, with 
intrinsic metric of bounded curvature, should be a conformally stable immersion of 
a manifold of bounded curvature, it is necessary and sufficient that F should be a 
surface of bounded mean curvature. 

(We recall that conformal transformations in E”, n > 3, are superpositions of 
finitely many similarities and inversions.) 

Theorem 2.2.2 (S.Z. Shefel’ (1970)). Suppose that a surface F is an isometric 
Co-immersion in E” of a Riemannian metric of smoothness Ckga, k 3 2, 0 < CI < 1. 
Then the following three assertions are equivalent. 

4 We should observe that if F is a surface of bounded mean curvature, then extrinsically-isothermal 

parametrizations, that is, those such that ( ar)‘=($)‘,($,$)=Oalmosteverywhere,are du’ 
\ I  \ I \  

“admissible” in the sense of the definition just given. If F has a metric of bounded curvature, 
then intrinsically-isothermal coordinates are simultaneously extrinsically-isothermal; see S.Z. Shefel 
(1970). 



68 Yu.D. Burago, S.Z. Shefel’ I. The Geometry of Surfaces in Euclidean Spaces 69 

1) The mean curvature of F (understood a priori as a generalized vector- 
function) is a vector-function of class CkmZga: 

2) The image of F under every inversion (with pole outside F) has an intrinsic 
metric of smoothness Ck,a. 

3) The surface F has smoothness Ck,“. 

We recall that a group (or pseudogroup) of transformations of E” is said to 
be geometric if it contains the group of similarities and is distinct from it. 
According to G.S. Shefel’ (1985), geometric groups and pseudogroups of trans- 
formations of smoothness C” are of only three types: 

1) The affine group and the group of afline equiareal transformations. 
2) The conformal pseudogroup (when n 3 3 it is generated by similarities 

and inversions). 
3) The so-called general groups. A general group G is characterized by the 

fact that for any integer 13 2 there is an element g E G that has at some point of 
space any preassigned l-growth of the Taylor series that certainly satisfies the 
condition that the Jacobian is non-singular, and possibly the condition of being 
equiareal. 

It is not difficult to see that there are general groups other than the group of 
all diffeomorphisms. 

Hence for surfaces in E” we can consider three types of stability - afhne, 
conformal, and genera15. 

According to Theorem 2.2.1 conformally stable immersions of metrics of 
bounded curvature are surfaces of bounded mean curvature. In 4.2 of Ch. 1 we 
made the conjecture that affinely stable immersions of metrics of this class are 
surfaces of class @ of bounded positive extrinsic curvature. This conjecture has 
been confirmed in the most important special cases; see Theorem 3.3.2, for 
example. Thus, for manifolds of bounded curvature there are probably two types 
of G-stable immersions ~ conformal and affine. Immersions of these types have, 
so to speak, the smallest possible “regularity”. On the other hand, if a manifold 
of bounded curvature admits an isometric immersion in E” that is stable under 
the whole group of diffeomorphisms D, then such an immersion is maximally 
“regular”. 

‘Instead of groups and pseudogroups of transformations of E” we can consider geometric pseudo- 
groups of local transformations. The classification of them differs very little from that obtained by 
G.S. Shefel’ in G.S. Shefel’ (1985). Namely, such pseudogroups are closed (in a certain natural 
topology), and are of only five types: 1) the atline pseudogroup, 2) the conformal pseudogroup, 3) the 
pseudogroup of local projective transformations, 4) the pseudogroup of transformations that pre- 
serve the ratios of volumes, 5) the pseudogroup of all local transformations. This result, obtained by 
modifications of G.S. Shefel’ (1985), was announced by Kreinovich (Kreinovich (1986)). 

For pseudogroups of local transformations of pseudo-Euclidean space he proved a similar result 
on classification (an essential lemma was proved by E. Golubeva). One of the important cases of 
this general classification was considered much earlier by Borisov and Ogievetskij (Borisov and 
Ogievetskij (1974), Ogievetskij (1973)) m connection with questions of theoretical physics (in fact they 
proved that the algebra generated by infinitesimal affine and conformal transformations is every- 
where dense among local transformations). 

It is known (G.S. Shefel’ (1985)) that a group G generated by similarities and 
non-empty sets of inversions and affine transformations other than similarities 
is general. Hence every diffeomorphism (at any point) can be approximated, 
together with derivatives up to any fixed order 1, by composition of finitely many 
affine transformations and inversions. Hence it is very likely that an immersion 
of a manifold of bounded curvature in E” that is stable under such a group G 
always has “maximal regularity”, that is, it is D-stable. Thus we should expect 
that for manifolds of bounded curvature that are exactly three types of G-stable 
immersions in E” - two independent types with least “regularity” and one with 
the greatest. 

2.3. Mean Curvature as First Variation of the Area. Another approach to the 
generalization of the concept of mean curvature to non-smooth surfaces is as 
follows. Let p be a smooth vector field with compact support supp p in E”, and 
F a surface with finite Lebesgue area, where aF n supp p = a. Consider a 
variation of F of the form F,(x) = F(x) + to(x) and the corresponding variation 
6S(p) of the area of the surface; this is an additive functional on the set of smooth 
vector fields of compact support that admits infinite values. If it is bounded, that 
is, if ISS(p)l < C max,Ip(x)l, C < co, then there is a vector-valued measure 1 
such that X?(p) = sp dA. In the case of a smooth surface WP) = -2 s (H, p> dS, (8) 
where H is the mean curvature vector. 

On this basis we call F a surface of bounded mean curvature if the functional 
6s is bounded, and we call the vector measure $3, the mean curvature of F. We 
can show that the definition of mean curvature given earlier is equivalent to that 
just given. 

There are several important inequalities that include the mean curvature, in 
the first place the simple inequality 

2s d R(L + Q), 

where R is the radius of a ball containing F, Q = s IHl dS, and L is the length of 
the boundary of F, and also the isoperimetric inequality 

S < C(L + Q)2, 

where C is an absolute constant (its exact value is known only in special cases). 
Since the proofs of these inequalities can be obtained on the basis of (8), the 
inequalities are true in the general class of surfaces of bounded mean curvature; 
see Allard (1972), Michael and Simon (1973). 

In conclusion, let us dwell on the connection between surfaces of bounded 
mean curvature and the theory of currents and varifolds. As Federer proved 
(Federer (1961)) to each surface F in E” that has finite Lebesgue area there 
naturally corresponds a (unique) integral current pF. Hence there arises a 
current-valued function ,U that associates with each domain G on F the cor- 



70 Yu.D. Burago, S.Z. Shefel I. The Geometry of Surfaces in Euclidean Spaces 71 

responding current pc. It turns out that var p coincides with the area S of the 
surface F. It is more convenient to state this in the language of varifolds. Every 
current T induces a natural varifold V,. In the given case S is equal to the mass 
of the varifold I$,. Hence the mean curvature of a general surface coincides 
with the first variation of the mass of the corresponding varifold. 

Q 3. Cl-Smooth Surfaces of Bounded Extrinsic Curvature 

3.1. The Role of the Condition of Boundedness of the Extrinsic Curvature. The 
following classic result of Nash (Nash (1956)) is well known. 

Theorem 3.1.1. Every Ck-smooth (k 3 3) n-dimensional Riemannian manifold 
admits a Ck-smooth isometric immersion in a Euclidean space E” of some dimen- 
sion m = m(n) < +n(n - 1) + yn + 5. 

A great deal of attention6 has been paid to improving the upper bound for 
the least admissible value of m(n). However, the main content of the theorem is 
the fundamental fact that the class of Riemannian metrics coincides with the 
class of intrinsic metrics of sufficiently smooth surfaces in Euclidean spaces. 

In Theorem 3.1 .l, as in the majority of theorems about the existence of 
isometric immersions, the class of admissible surfaces is not distinguished by any 
geometrical property. This leads to the fact that the extrinsic geometry of admis- 
sible immersions of a surface “does not correspond” to its intrinsic metric. For 
example, if a Riemannian manifold M” admits an isometric immersion in E”, 
then it can be isometrically imersed in an arbitrarily small ball of the space Em+‘. 
When m 3 n(n + 1)/2 + 3n + 5 any two free C”-isometric immersions of M” in 
E” can be joined by a homotopy of isometric immersions of M” in E”; see 
Gromov and Rokhlin (1970). We can say that here isometric immersions are 
formed with almost the same arbitrariness as topological ones. Although stricter 
limitations on the codimension of the immersion enable us to trace some connec- 
tions between the extrinsic and intrinsic geometries of a surface, the class of 
Riemannian metrics that can be realized in this way decreases sharply, and as a 
rule uncontrollably. 

For Cl-smooth immersions a similar violation of the connections between the 
intrinsic and extrinsic geometries occurs even for small codimension. Namely, 
Nash (Nash (1954)) made the following conjecture and outlined a proof of it, and 
Kuiper (Kuiper (1955)) completely proved it. 

Theorem 3.1.2. Every n-dimensional compact Riemannian manifold M” can be 
Cl-smoothly and isometrically immersed in E2n-1 and embedded in E2”. 

In the case n = 2 of interest to us, Theorem 3.1.2 guarantees the existence of 
an isometric Cl-smooth immersion in E3. Despite the codimension 1, this im- 

mersion can be carried out with just as much arbitrariness as in the case of 
Cm-smooth isometric immersions with large codimension. For example, if M is 
a two-dimensional Riemannian manifold and cp: M + E3 is a so-called short 
immersion, that is, a Cl-smooth immersion such that Idq(X)I < 1x1 for any 
X E TM, then there is a Cl-smooth isometric immersion of M in E3 arbitrarily 
Co-close to cp. (If M is compact, a short immersion cp can be obtained from an 
arbitrary Cl-smooth one by a homothety.) In addition, any smooth surface F in 
E3 can be continuously bent, in the class of surfaces isometric to it, into a surface 
lying in an arbitrarily small ball. In particular, a Cl-smooth surface with an 
analytic intrinsic metric of positive curvature need not be convex. 

Apparently these assertions are not intuitively obvious; rather, they even 
contradict our intuitive ideas. At least in their time they were for many people 
unexpected and served as the starting point for a number of subtle investiga- 
tions, the first of which was the book by Pogorelov (Pogorelov (1956b)); see also 
Borisov (1958- 1960). 

The assertions stated below show that similar phenomena are impossible if 
the positive extrinsic curvature p”+ of the surface is finite, and this is explained by 
the fact that the finiteness of p’ guarantees the affine stability of the correspond- 
ing class of surfaces with a metric having curvature of definite sign. 

3.2. Normal Cl-Smooth Surfaces. A Cl-smooth surface in E3 is called a 
normal surface of non-negative curvature if at least one of the following asser- 
tions is true for each point x of it: (a) x has a neighbourhood in the form of a 
convex surface (in particular, this surface may be a flat domain); (b) through x 
there passes a rectilinear generator along which the tangent plane is stationary’. 

A normal developable surface is a normal surface of non-negative curvature 
that does not have points of strict convexity, that is, it is a saddle surface. 

It is well known that a C2-smooth surface is a normal surface of non-negative 
curvature (a normal developable surface) if and only if its Gaussian curvature is 
not negative (equal to zero). 

It is not difficult to see that if a point of a normal surface of non-negative 
curvature does not have a neighbourhood in the form of a convex surface, then 
the rectilinear generator passing through this point is unique, and no other point 
of this rectilinear generator has such a neighbourhood; this generator can be 
extended to the boundary of the surface. 

A normal surface of non-negative curvature is a manifold of non-negative 
curvature with respect to its intrinsic geometry, and a normal developable 
surface is locally isometric to a plane. 

A complete normal surface of non-negative curvature whose intrinsic curva- 
ture is not equal to zero is a convex surface, and a complete normal developable 
surface is a cylinder. Every crust cut off from a normal surface of non-negative 
curvature by a plane is a convex surface. 

‘See Gromov and Rokhlin (1970). In the case n = 2 the best universal value is m(2) = 6; see Gromov 
(1987). For surfaces homeomorphic to a disc, m’(2) = 4; see Poznyak and Shikin (1974). 

‘A normal surface of non-negative curvature in E”, n > 3, can be defined similarly. Such a surface 
may be essentially n-dimensional, that is, it does not lie in any hyperplane. 
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3.3. The Main Results. Let us recall that we have denoted by Ki, K, , K, the 
classes of two-dimensional manifolds of non-negative, non-positive and zero 
curvature respectively. 

Theorem 3.3.1 (S.Z. Shefel’ (1974)). Suppose that a Cl-smooth surface F in E3 
has finite positive extrinsic curvature u+. If the intrinsic metric of F belongs to 
one of the classes Ki, K,, K,, then F . use lf is a normal surface of non-negative 
curvature, a saddle surface, or a normal developable surface, respectively. 

Remark. If under the conditions of Theorem 3.3.1 the intrinsic metric of a 
surface F has positive specific curvature, then F is a locally convex surface; see 
Borisov and Shefel’ (1971). 

The last assertion becomes false if instead of the specific curvature being 
positive we only assume that the curvature of the intrinsic metric is positive on 
any open subset of the surface. In fact, the surface F shown in Fig. 1 can be 
chosen in such a way that the line 1 that is its axis of symmetry splits F into two 
convex surfaces whose Gaussian curvatures are positive, but tend to zero as 1 is 
approached; see Borisov and Shefel’ (197 1). 

Theorem 3.3.1 follows directly from the next two assertions. 

Theorem 3.3.2 (S.Z. Shefel’ (1974) S.Z. Shefel’ (1975)). Zf a Cl-smooth surface 
F in E3 has finite positive extrinsic curvature and belongs to one of the classes Kz, 
K,, K, with respect to its intrinsic geometry, then the image of F under an affine 
transformation has intrinsic metric of the same class. 

In other words, the theorem asserts that Cl-smooth surfaces of bounded 
positive extrinsic curvature are aflinely stable immersions for the metrics of the 
classes listed in the theorem. 

Theorem 3.3.3 (S.Z. Shefel’ (1974) Shefel’ (1975)). If a Cl-smooth surface F is 
an affinely stable immersion in E3 of a metric of one of the classes Ki. K,, K,, 
then F is a normal surface of non-negative curvature, a saddle surface, or a normal 
developable surface, respectively. 

3.4. Gauss’s Theorem. One of the basic relations between the intrinsic and 
extrinsic geometries of smooth surfaces in E3 is Gauss’s theorem, which says that 
the curvature of the intrinsic metric of a surface is equal to the area of its 
spherical image. Although Gauss’s theorem can be generalized to surfaces in E”, 
n > 3, its role in the theory of such surfaces is incomparably less important than 
for surfaces in E3. 

As we mentioned above, Gauss’s theorem remains true for Cl-smooth normal 
surfaces of non-negative curvature in E 3, but for C’-smooth saddle surfaces in 
E3 (and, more generally, for Cl-smooth surfaces of bounded positive extrinsic 
curvature) its truth has not been proved, apparently. Subtle, but not very con- 
clusive, results on the generalization of Gauss’s theorem were obtained by 
Pogorelov in 1955556. 

He studied the class I7 of so-called Cl-smooth surfaces of bounded extrinsic 
curvature. The author defined this class by the following condition: for any finite 

choice of pairwise disjoint closed sets on a surface F E ZZ, the sum of the areas of 
their spherical images must not exceed some constant C(F) < co. For a surface 
F E 17 we necessarily have CL+ < co, and although formally the class n is nar- 
rower than @, we know of no examples of C’-smooth surfaces in @\l7, for 
example, C’-smooth saddle surfaces not belonging to 17. 

Points of a Cl-smooth surface admit a natural classification into non-regular 
and regular, and the latter into elliptic, hyperbolic, and parabolic; see Elimov 
(1949) Pogorelov (1956b). 

Let E be a Bore1 subset of F and suppose that the complete inverse image of 
a point y E S2 under the spherical mapping restricted to E consists of n,(y) 
points, of which ni (y) are elliptic and ni (y) are hyperbolic (the case n,(y) = co 
is not excluded a priori). It turns out that for a surface of class 17 we have 
n,(y) < cc almost everywhere on S2 and Js2 n,(y) dy < cc. (Properly speaking, 
these two properties can be taken as the definition of the class 17.) The set 
functions a+(E) = lsz nz (y) dy, a-(E) = Jsz n;(y) dy, CJ = o+ - (T-, are called, 
respectively, the positive, negative and total extrinsic curvature of the surface 
F. Pogorelov (Pogorelov (1956b)) proved that Gauss’s theorem, in the form 
a(E) = o(E), is true for closed surfaces, and in the general case it is true for those 
Bore1 subsets E of F that do not contain non-regular points. In addition, we 
always have co’(E) = a+(E), w-(E) 2 o-(E). 

3.5. Cl*“-Smooth Surfaces. The geometrical properties of C’*a-smooth sur- 
faces in E3, 0 < a < 1, depend on the value of ~1. For sufficiently small M > 0 
such surfaces are similar to Cl-smooth surfaces in their properties. Namely, as 
Borisov proved (Borisov (1958-1960)) when 0 < a < l/13 even an analytic 
surface is bendable with large arbitrariness in the class of Cl,‘-smooth surfaces. 
However, as cr increases the picture changes. In any case when c( > l/2 a surface 
of class C’sa has a smooth (of class C 1,2a-1) metric (S.Z. Shefel’ (1982)). In 
addition, for such a surface a parallel displacement along a rectifiable curve can 
be defined both extrinsically and intrinsically, and both methods lead to the 
same result; see Borisov (1958-1960) S.Z. Shefel’ (1982). 

Finally, Borisov succeeded in showing that when cw > 213 the correspondence 
between the extrinsic form of a surface and the sign of the curvature of its 
intrinsic metric, which is inherent in Cz-smooth surfaces, is preserved. Using a 
parallel displacement, he obtained a series of important results in this direction, 
which were later somewhat strengthened and can now be stated in the form of 
the next theorem. 

Theorem 3.5.1 (S.Z. Shefel’ (1975)). Let F be a Cl.@-smooth surface in E3, 
where c1 > 213. If F is a two-dimensional manifold of non-negative, non-positive, 

--l or zero curvature with respect to its intrinsic geometry, then F is respectively a 
normal surface of non-negative curvature, a saddle surface, or a normal developable 
surface. 

This theorem follows immediately from Theorem 3.3.3 and the next assertion, 
which also has independent interest. 
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Theorem 3.5.2 (S.Z. Shefel’ (1975)). 1f a surface F in E3 of smoothness class 
Ctga, CY > 213, belongs to one of the classes Ki,. K,, K, with respect to its intrinsic 
geometry, then its image under an affine transformation has intrinsic metric of the 
same class. 

0 4. Polyhedra 

4.1. The Role of Polyhedra in the General Theory. It is well known that in the 
construction of the theory of convex surfaces an important role was played 
by the possibility of approximating them by convex polyhedra. The place of 
polyhedra in the theory of two-dimensional manifolds of bounded curvature 
is remarkable. Although at present most of the results of these theories can 
be obtained in principle without going over to polyhedra, enlisting the latter 
frequently gives simpler proofs and helps to discover their geometrical pre- 
requisites. In addition, the theory of convex polyhedra, independently of its 
applications to general convex surfaces, is distinguished by great unification, 
completeness, and beauty. 

In the theory of non-regular saddle surfaces (like surfaces of bounded extrinsic 
curvature) polyhedra are also useful in the study of both the intrinsic geometry 
of such surfaces and the connections between the extrinsic and intrinsic curva- 
tures. However, many theorems for saddle polyhedra were obtained later than 
the corresponding resuits for smooth saddle surfaces, by analogy with them, and 
there has still been no promotion of the study of general saddle surfaces. More- 
over, in a number of questions the theory of non-convex polyhedra, particularly 
saddle polyhedra, is less developed than the corresponding branches for smooth 
surfaces. The situation that arises is somewhat similar to the relation between 
the topology of smooth manifolds and the parallel theory of PL-manifolds. 

4.2. Polyhedral Metric and Polyhedral Surface. Let us reline our terminol- 
ogy. By a polyhedral metric we mean a triangulable manifold M with a metric 
p specified on it such that every simplex of some triangulation is isometric to a 
rectilinear simplex of Euclidean space. In the two-dimensional case a polyhedral 
metric is characterized by the following condition: each point p of it has a 
neighbourhood isometric to either a neighbourhood of a vertex of some cone in 
E3 (in particular, this neighhourhood may be a flat domain) or a flat sector if p 
is a point of the boundary. 

A parametrized polyhedral surface is a mapping of a triangulable manifold 
M in E” under which each simplex of some triangulation of M goes into a 
rectilinear simplex of the same dimension in E”. Parametrized polyhedral sur- 
faces in E” can be combined in the usual way into equivalence classes - poly- 
hedral surfaces. 

An isometric polyhedral mapping of a polyhedral metric (M,p), or equiva- 
lently an isometric mapping of it in the form of a polyhedral surface, is a 

polyhedral surface f: M + E” that is simultaneously an isometric mapping. This 
means that for any curve y on M its length s(y) in the metric p is equal to the 
length of the curve f o y in E”. In other words, the metric induced by the mapping 
f coincides with p. 

4.3. Results and Conjectures. It is natural to expect that the class of poly- 
hedral metrics is aflinely connected with the class of polyhedral surfaces in 
Euclidean spaces. This conjecture has still not been proved completely, but the 
following results testify to its usefulness. 

Theorem 4.3.1 (S.Z. Shefel’ (1970) Shefel’ (1978)). Let G be the group of 
piecewise-affine transformations’ in E”. Then every G-stable isometric mapping of 
a polyhedral metric in E” is a polyhedral surface. 

This theorem was proved in S.Z. Shefel’ (1978) directly for k-dimensional 
surfaces in E”, 2 < k < n. As for the existence of isometric polyhedral immersions 
of polyhedral metrics, apparently only the following two results are known. 

Theorem 4.3.2 (Zalgaller (1958)). When k 6 4 every k-dimensional polyhedral 
metric admits an isometric mapping in Ek as a polyhedral surface. 

When k = 2 the proof of this theorem is so simple that we give it here. 
Suppose that a polyhedral metric is specified on a closed manifold M (otherwise 
it is sufficient to glue together two copies of M along the boundary). Let pl, . . . , 
pN be all the vertices of the metric, and Aj a “Voronoi domain”, that is, the set 
of points at a smaller distance from pj than from the other vertices pi, i # j. Such 
a domain Aj is isometric to an open polygon on a cone, and the vertex of the 
cone corresponds to pj. 

We split each domain Aj into triangles with vertex pj, adjacent to each other 
along the sides. The bases of these triangles are the sides of the boundary of Aj. 
Different triangles can have a common base; this is connected with the fact that 
some points of the boundary of Aj may be joined to pj by a non-unique shortest 
curve. To each triangle T of such a partition there corresponds a triangle T’ 
equal to it with the same base, lying either in a polygon adjacent to Aj or directly 
in Aj. We cut out each quadrangle T u T’ from M, “bend” it first along the 
common base of T and T’, and bend the resulting twice covered triangle along 
the bisector of the angle at the vertex opposite to this base. We place the 
resulting figures in the plane E2 so that their vertices pj coincide, and the sides 
of the triangles go along one ray; now we can again carry out gluings along all 
the cuts and obtain an isometric mapping of M in E2. 

1, 
Theorem 4.3.3 (Burago and Zalgaller (1960)). An orientable two-dimensional 

polyhedral metric admits an isometric CO-embedding in E3 as a polyhedral surface. 

‘A piecewise-qffi’ne (or simplicial) transformation is a transformation y of E” that is afline on every 
simplex d, of some triangulation of E”. 
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Fig. 13 

In both theorems we do not exclude the case when the polyhedral surface that 
realizes the given metric may be strongly “corrugated”, with many “superfluous 
vertices”, that is, vertices at which the curvature of the metric is zero. Moreover, 
the proof of these theorems, which have a constructive character, leads to 
“corrugated” polyhedral surfaces. In this connection we note that a polyhedral 
metric may not admit any isometric immersions in E” under which the positive 
extrinsic curvature of the surface is equal to the intrinsic, and obstacles may have 
a metric (and not only topological) character. An example is the polyhedral 
metric homeomorphic to S2 with development shown in Fig. 13, consisting of an 
equilateral and three “narrow” isosceles triangles; the arrows in the figure mark 
the sides to be glued together. 

In the case of complete metrics with curvature of definite sign the situation 
changes. Namely, the class of two-dimensional polyhedral metrics of positive 
curvature (defined on S* or E’) is affinely compatible with the class of complete 
convex polyhedra. This follows from 3.3 of Ch. 1 and mainly Aleksandrov’s 
theorem on the existence of a convex polyhedron with a given development of 
positive curvature (Aleksandrov (1950b)). 

Apparently the class of complete two-dimensional polyhedral metrics of neg- 
ative curvature defined on the plane is afftnely compatible with the class of 
complete saddle polyhedral surfaces. This is a special case of Conjecture A (2.5 
of Ch. l), but for polyhedra it has advanced further than in the general case. 
Namely, Perel’man proved recently (Perel’man (1988a)) that a complete simply- 
connected polyhedral metric of non-positive curvature admits an isometric 
Co-immersion in E3 as a polyhedral surface. However, the possibility of applying 
this result to solve the general conjecture by approximation by polyhedra is 
doubtful. It this work we have investigated the question of isometric immer- 
sibility of a surface with complete polyhedral metric of non-positive curvature 
in E” as a polyhedron homeomorphic to a cylinder. It turns out that if there is a 
closed geodesic on such a surface, then the surface admits an isometric mapping 
in E3, but it may not admit an isometric Co-immersion in any E”. If there is no 
closed geodesic, then the metric may not admit an isometric mapping in any E”. 
Examples of complete polyhedral metrics of non-positive curvature with Euler 

characteristic x < - 1 that do not admit an isometric mapping in any E” are 
simpler than in the case x = 0. 

6 5. Appendix. Smoothness Classes 

In the framework of Holder classes of smoothness Cl,” the question of the 
connection between smoothness classes of Riemannian metrics and surfaces can 
be assumed to be completely solved in Sabitov and Shefel’ (1976), S.Z. Shefel 
(1979). 

Let G’*” denote the group of C’,a- smooth diffeomorphisms’ of E”. The defini- 
tive result is as follows. 

Theorem 5.1.1. The class of m-dimensional Riemannian manifolds of smooth- 
ness Cl,‘, m > 2, 1 > 2, 0 < c1 < 1, is G’x”-compatible with the class of m-dimen- 
sional C’,b-smooth surfaces in Euclidean spaces E”, n > m. 

In other words, the next three theorems are true, the last of which is a 
refinement (in relation to the degree of smoothness) of Nash’s theorem on 
isometric immersions. 

Theorem 5.1.2 (Sabitov and Shefel’ (1976)). Every @-smooth m-dimensional 
surface in E”, 2 < m < n, is a Riemannian manvold of smoothness C1sa, 1 3 2, 
0 < CI < 1, with respect to its intrinsic geometry. 

From the theorem it follows that C’,a-smooth surfaces are G’,“-stable immer- 
sions for the class of Cl,“-smooth Riemannian manifolds. 

We observe that under the conditions of the theorem the usual formulae of 
ar ar 

differential geometry gij = 
( > 

aui, auj guarantee only smoothness C1-lga. 

The theorem is best possible: for example, the metric of the Cl,“-smooth 
surface of revolution z = x2 + y* - (x2 + y2)(1+a)/2 does not belong to C”+” for 
any E > 0. 

Theorem 5.1.3 (Sabitov and Shefel’(1976)). When 1 3 1,0 < tl < 1, euery G’*“- 
stable immersion in E” of an m-dimensional Riemannian manifold of smoothness 
C’,a is a C’xa-smooth m-dimensional surface, 2 < m < n. 

Theorems 5.1.2 and 5.1.3 establish that the class of m-dimensional 
Cl,“-smooth surfaces in E” coincides with the class of G’,“-stable immersions of 
m-dimensional Riemannian metrics of smoothness C’,’ in E”. 

Theorem 5.1.4 (Jacobowitz (1972)). Every C’s’-smooth Riemannian mangold, 
1 > 2, 0 < a < 1, admits a C’,a-smooth isometric immersion in some E”. 

9All the assertions of this section have local character. Hence instead of G’,” we can take the 
pseudogroup of local diffeomorphisms whose domains of definition contain a neighbourhood of the 
chosen point. We can also restrict ourselves to diffeomorphisms of smoothness C”. 
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From Theorem 51.2 it follows that the assertion of Theorem 5.1.4 is best 
possible (for Holder smoothness classes). 

Although these results are true for surfaces of any dimension, the case of 
two-dimensional surfaces has certain peculiarities; in particular, the proofs can 
be simplified. This refers in the first place to Theorem 5.1.3 and substantially to 
Theorem 5.1.2 and is connected with the fact that in the two-dimensional case 
isothermal coordinates always exist and play a fundamental role in our situation 
(see 4.1 of Ch. 1). 

Their advantage is that 
1) in isothermal coordinates a Riemannian manifold M has the greatest 

possible smoothness, that is, if M E C’sa and in isothermal coordinates ds2 = 
L2(du2 + du’), then A E Cl,“; 

2) isothermal coordinates are invariants of the group of conformal transfor- 
mations. 

For example, Theorem 5.1.2 for two-dimensional surfaces follows immedi- 
ately from what we have said: by Gauss’s theorem the Gaussian curvature of a 
surface is equal to the product of its principal curvatures, and so it belongs to 
C’-‘va if the surface has a parametrization of smoothness C’,‘. Then in isother- 
mal coordinates the Gaussian curvature K also has smoothness at least C1-2,a. 
But since d In E, = - 2K& where A is the Laplace operator, by a property of the 
solutions of elliptic equations we obtain 2 E Cl,‘, and the theorem is proved. 

In the general case instead of isothermal coordinates we use the so-called 
harmonic coordinates; for more details see Sabitov and Shefel’ (1976). 

Comments on the References 

The list of references in this article is far from complete. First of all we mention works that contain 
a result that is fundamental (in some sense or other), and references are given more often to 
monographs than to original sources. In the list we also include works required in the course of the 
exposition. The ideas of Chapter 1 are reflected in S.Z. Shefel’ (1985), and the classification of 
geometric groups in G.S. Shefel’ (1984), G.S. Shefel’ (1985). The theory of convex surfaces was last 
summed up in surveys and monographs quite a long time ago; see Cohn-Vossen (1959), Aleksandrov 
(1948) Aleksandrov (1950b), Bakel’man, Verner and Kantor (1973) Pogorelov (1969). We do not 
mention surveys on the theory ofconvex bodies, mixed volumes, and specially convex polyhedra. Of 
the more recent works we note the investigations of smoothness of convex surfaces (Nikolaev and 
Shefel’ (1982), Nikolaev and Shefel’ (1985) Sabitov and Shefel’( 1976) S.Z. Shefel’ (1979)) and bendings 
of locally convex surfaces. For answers to particular questions, see Dubrovin (1974) Milka (1974) 
Usov (1976b), Diskant (1988). The connection with Monge-Ampere equations is developed further 
in Pogorelov (1975) S.Z. Shefel’( 1977). Surveys of the theory of surfaces of negative curvature, Etimov 
(1948) Elimov (1966), Rozendorn (1966) Poznyak and Shikin (1974) Rozendorn (1989) are devoted 
almost exclusively to surfaces in ES; for such surfaces in E” see Perel’man (1988b). In connection with 
Chapter 4 we draw attention to Yu.D. Burago (1968b) and Chapter 5 of the monograph Burago and 
Zalgaller (1988), which are devoted to quantitative connections between extrinsic and intrinsic 
characteristics of surfaces. For possible immersions in various classes, as well as the classic works 
Aleksandrov (1948) Nash (1954) Kuiper (1955), Gromov and Rokhlin (1970) Gromov (1987), we 
mention the works Pogorelov (1956b), Borisov (195881960) Poznyak (1973) S.Z. Shefel’(l970). 
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Preface 

This article is devoted to surfaces of negative Gaussian curvature K < 0 in 
three-dimensional Euclidean space E3 and related problems. These surfaces 
constitute part of the class of saddle surfaces in E N. Hence the article serves as an 
extension of the third chapter of Part I of this book, written by Yu.D. Burago 
and S.Z. Shefel’. At the same time, this article is meant to be read independently, 
and so together with the references to Alekseevskij, Vinogradov and Lychagin 
(1988), Alekseevskij, Vinberg and Solodovnikov (1988), Burago and Shefel’ (1989), 
and Sabitov (1989b), we repeat certain facts in the text that are already reflected 
in these surveys. However, these repetitions are comparatively small. 

We pay most attention to surfaces of negative curvature in E3, because among 
other saddle surfaces (along with tapering surfaces, which are also mentioned in 
Part I) they are the ones that have been most studied. We shall be dealing with 
questions that are connected in one way or another with properties of surfaces 
in the large. The transition from the study of merely local properties to the wider 
and deeper study of connections between local properties of geometric objects 
and their global structure is characteristic of 20th century geometry, especially 
the recent decades. 
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The main object of further consideration will be classes of surfaces that are 
distinguished by inequalities, and so, when surfaces are represented by points of 
a function space, whole regions of it are filled. In this connection it is useful to 
recall that in the 19th century the attention of geometers was concentrated to a 
very large extent on the study of classes of surfaces specified by equalities, so 
from the viewpoint of the function space they form submanifolds of it of positive 
codimension. The transition from the study of such special objects to objects in 
general position (in particular, to surfaces of classes that till regions of function 
spaces) is also characteristic of 20th century mathematics. 

At the same time, one class of surfaces determined by an equality plays a 
special role below - these are surfaces of constant negative curvature. This is 
connected not only with the peculiarities of the historical development of the 
branch of geometry discussed here, but also with the fact that for surfaces of 
constant curvature many properties appear simpler than in the general case, and 
often far simpler, which enables us to use these surfaces in research as a model 
object. Nevertheless, the theory of surfaces of negative curvature, even in three- 
dimensional Euclidean space, is far from complete. 

In the transition from E3 to surfaces in EN in 5 5 below (in contrast to Part I 
and to 9 7 of Ch. 8 of the survey Alekseevskij, Vinogradov and Lychagin (1988)), 
the main attention will be concentrated on questions to do with immersions in 
EN of manifolds of negative curvature and connections known at present be- 
tween their dimension and N, independently of whether there is an immersion 
of the saddle surface or not. 
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9 1. Hilbert’s Theorem 

1.1. Statement of the Problem. Historically the study of surfaces of negative 
curvature in E3 was closely connected with the problem of interpretation of 
non-Euclidean geometry. 

At the end of the 1830s Minding (Minding (1839), Minding (1840)) investi- 
gated certain properties of surfaces having Gaussian curvature 

K = const < 0. (1.1) 

He discovered helical surfaces of constant curvature (1 .l) (Minding (1839)). Dini 
investigated them later (Dini 1965)). Minding (Minding (1839)) obtained, and 
integrated in quadratures, a differential equation for the meridian of a surface of 
revolution having curvature (1.1). He showed that these surfaces of revolution 
can be naturally divided into three types. Two of them are shown in Fig. 1. 
Now they are often called the “Minding bobbin” (Fig. la) and the “Minding top” 
(Fig. lb). In the third type there is (up to similarity) only one surface - the 
pseudosphere (see Fig. 2), studied in more detail by Beltrami (Beltrami (1872)). In 
addition, under the condition (1.1) Minding (Minding (1840)) found a series of 
relations between the sides and angles of triangles formed by geodesic curves, 
drawing attention to the analogy between them and the formulae of spherical 
trigonometry. The fact that the formulae that he found are equivalent to trigono- 
metric relations on the Lobachevskij plane went unnoticed then, apparently, 
in view of the unfortunate chain of circumstances and the general lack of pre- 
paredness of the overwhelming majority of mathematicians of the time to per- 
ceive such an idea. Historians assume that Minding was not interested in the 
problem associated with non-Euclidean geometry, and that these works of his 
only accidentally concerned Lobachevskij (in this connection see Norden (1956), 
and also Galchenkova, Lumiste, Ozhigova and Pogrebysskij (1970)). 

Later, in 1868, that is, more than a quarter of a century after the death of 
Lobachevskij, Beltrami (Beltrami (1868a)), using the results of Minding, showed 
that on surfaces in three-dimensional Euclidean space under condition (1.1) 
Lobachevskij planimetry holds locally if angles are understood in the usual 
sense, and for rectilinear segments we take arcs of geodesic curves. From 
Beltrami (1868a) it is clear, among other things, that Beltrami had already seen 
the difference between the local and global statements of the problem, and 
understood that the question of interpretation of Lobachevskij planimetry in the 
large, that is, for the whole Lobachevskij plane, was then unsolved. It is well 
known that the paper Beltrami (1868a) played an important role in the master- 
ing and popularization of the ideas of non-Euclidean geometry; it is perhaps less 
well known that it served as an important preparatory step in the further 
research of Beltrami himself: in Beltrami (1868b) he constructed an analytic 
model of n-dimensional Lobachevskij space. 

Returning to surfaces in E3, we draw attention to the fact that the pseudo- 
sphere, the surface obtained by rotating about the asymptote the so-called “curve 

Fig. 1 

Fig. 2 

Fig. 3 ’ _ 

of pursuit”, the tractrix (a curve with constant length of subtangent; see Fig. 3) 
has a singular curve, namely a circular edge. It is traced out by the cusp of the 
tractrix. On the edge of the pseudosphere its smoothness is violated and its mean 
curvature becomes infinite. On each of the two smooth’parts of the pseudosphere 
separated by its edge, in the form of a universal covering there is a horocycle, cut 
out from the Lobachevskij plane L*. 

Not only on the pseudosphere, but also on other surfaces of constant curva- 
ture the whole of L* cannot be moved even as a covering - the singular curves 
and points move. 

All the same, can the whole of L* be realized in E3 as a surface without 
singularities? 

Hilbert (Hilbert (1903)) regarded this question as fundamental; he investi- 
gated it and gave a negative answer (Hilbert (1901)). 

Hilbert’s Theorem. In E3 there is no complete analytic surface of constant 
negative Gaussian curvature. 
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We recall that a surface is said to be complete if it is a complete metric space 
in its intrinsic metric. 

Hilbert noted that in the proof he used not analyticity, but sufficiently high 
C-smoothness of the surface in question. He did not determine precisely which 
r is required. 

1.2. Plan of the Proof of Hilbert’s Theorem. Let us suppose that L2 is realized 
in the large in E3 as a surface B and investigate this surface. From (1.1) we can 
deduce that the net of its asymptotic lines is a Chebyshev net. This means that in 
each net quadrangle 9 (generally speaking, curvilinear) the lengths of opposite 
sides are equal, as in a parallelogram in the Euclidean plane. Also from (1.1) we 
have the Hazzidakis formula (Hazzidakis (1879)) 

Cwla = IKI 4% (1.4 

where o is the angle between the asymptotic directions, ~(9) is the area of 9, and 
the symbol [. . .I9 denotes the alternating sum 

C~ls = jio (- uwq 

of values of the angle w at the vertices Xj of the quadrangle 3, numbered in the 
order of going round its contour; see Fig. 4. 

Next, without loss of generality we may assume that K = - 1: under the 
condition (1.1) this can always be achieved by changing the scale in E3. Then, if 
we introduce the so-called asymptotic coordinates, that is, those in which the 
coordinate lines are the asymptotic lines of the surface, and take for u and v the 
natural parameters on two intersecting asymptotic lines, then u and v will serve 
as natural parameters on neighbouring asymptotic lines also, because of the 
Chebyshev property of the net, and the line element takes the form 

ds2 = du2 + 2 cos w du dv + dv’, (1.3) 

Fig. 4 
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but so far we can assert this only locally - in a neighbourhood of each specific 
point on 9. 

We also need to prove (in this connection see Alekseevskij, Vinogradov and 
Lychagin (1988), Ch. 8, 6 6) that in fact the whole surface 9 is covered by one 
chart with asymptotic coordinates (u, v), that is, the net of asymptotic lines on 
F in the large is homeomorphic to a Cartesian net on E2. 

For this we can proceed as in Klotz-Milnor (1972): together with (1.3) by 
means of these coordinates (still local!) we introduce on 9 an auxiliary metric 

A = du2 + dv2 > ids’, (1.4) 

which is obviously locally Euclidean. Then it turns out that the manifold 9 with 
the metric /1 will be isometric in the large to the plane E2, on which (u, v) are the 
usual Cartesian coordinates’. The reader can find the technical details needed 
for an accurate account of this part of the proof in “Application 1” of Klotz- 
Milnor (1972). It is also easy to deduce that on 9 there must exist net quadran- 
gles 9 of arbitrarily large area a(g). But here we have arrived at a contradiction, 
since from (1.2) we have the uniform upper bound ~(9) < 4711 K 1 -I. 

Further investigation shows (Hartman and Wintner (195 l), Klotz-Milnor 
(1972)) that on the plan presented the proof goes through with smaller smooth- 
ness of the surface (F E C’), which ensures the existence on 8 of the Gaussian 
curvature in its usual interpretation, as the product of the principal curvatures. 

Thus we have the following result. 

Theorem A. In E3 there is no C2-smooth surface isometric in the large to the 
Lobachevskij plane L2. 

Hilbert’s theorem, stated in 1.1, is somewhat more general. Hilbert did not 
require in advance that the unknown surface F should be homeomorphic to a 
plane, but only assumed that it is complete. 

Hilbert’s result can be obtained as a consequence of Theorem A; for this we 
need to use the fact that 9 cannot be compact (see 2.3.1 below) and go over 
from 9 to its universal covering 9. For the definition of,universal covering see 
Novikov (1986) or Seifert and Threlfall (1934) for example (a reader who is not 
very familiar with the topological material should first look at #$67 of Part 3 
of the book Novikov and Fomenko (1987)). Efimov mentioned that Hilbert’s 
paper (Hilbert (1901)) was one of the very first mathematical papers in which the 
concept of a universal covering was actually used, although a precise formula- 
tion of it had still not crystallized by then, and this was the cause of the initial 
difficulties in understanding Hilbert’s theorem. 

Slightly changing the plan of the proof presented above, we can manage 
without the auxiliary assertion that the asymptotic net on 9 is homeomorphic 

’ Poznyak mentioned in a lecture (Seminar on geometry in the large (1986)) that the majorization 
(1.4) leads to a contradiction with well-known properties of the Lobachevskij plane, in particular, 
with the rate of growth of the area of a disc in Lz as its radius increases. This gives another way of 
proving the impossibility of an isometric immersions of L2 in E3. 
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in the large to a Cartesian net on E’. In fact, it is sufficient to demonstrate the 
existence of a new quadrangle 9 that is so large that we arrive at a contradiction: 
we obtain (as above) contradictory upper and lower bounds either for its area 
a(g) or for the range of variation of the angle o. The upper bound of the range 
of variation of w is estimated on the basis of the necessary condition 

o<w<71, (1.5) 

and the lower bound, which exceeds n when 9 is sufficiently large, is obtained 
from equation (1.6) discussed below. 

Here we mention that it is not only impossible to realize the whole of L2 as a 
surface of constant curvature in E3, but even the Lobachevskij half-plane (see’ 
Elimov (1975) in Part I), and for the proof, according to Vorob’eva (1976), it is 
also sufficient to assume only C2-smoothness of the unknown surface. 

In consequence of the well-known results of Nash and Kuiper (see Kuiper 
(1955) and Nash (1954) in Part I), Theorem A cannot be extended to the class of 
Cl-smooth surfaces. 

1.3. Connection with the Equations of Mathematical Physics. If condition 
(1.1) is satisfied and B E C4, then the system of three Peterson-Codazzi and 
Gauss equations can be reduced (see Blaschke (1930)) to a form in which one pair 
of equations actually implies that the asymptotic lines form a Chebyshev net, 
and the third equation (under the normalization K = - 1) in asymptotic coordi- 
nates takes the form 

o:l, = sin w, (1.6) 
where U, u are the natural parameters on the asymptotic lines. Equation (1.6) 
was used by Hilbert in Hilbert (1903); it is the two-dimensional special case of 
the “sine-Gordon” equation, now widely known in mathematical physics (see 
Barone, Esposito, Magee and Scott (1971), Barone and PaternZ, (1982), for 
example): 

001 = sin w, 

where 0 is the d’Alembertian. 
More general than (1.6) is the equation o:l, = f(w). It is also of interest in 

theoretical physics (see Kosevich (1972)) and with a specific choice off it has 
been studied in Galeeva and Sokolov (1984a), for example. 

Poznyak proved (Poznyak (1979)) that every solution O(U, u) of (1.6) (except 
o(u, c) = nn, where n is an integer) generates in E3 a surface with Gaussian 
curvature K = - 1 on which w(u, u) is the angle between the asymptotic lines, u 
and u are the natural parameters on them, and the surface has singular points 
where sin w = 0. 

Theorem A shows that there is no solution O(U, v) of (1.6) that is defined on 
the whole (u, u)-plane and satisfies (1.5). Equation (1.6) is used in the theory of 

‘A reference of this kind refers to Part I of this book, that is, the part by Burago and Shefel’ 

superconductivity (see Barone and Patern (1982)), and also in other problems 
of mathematical physics (in this connection see Kosevich (1972), Enz (1964), Lamb 
(1971)). Popov (Popov (1989)) discussed the physical meaning of those regimes 
for which sin o = 0 for problems of so-called self-induced transparency; on the 
surface singular curves correspond to them; see also Poznyak and Popov (1991). 

1.4. Generalizations. In connection with Hilbert’s theorem the following 
questions arise: first of all: 

1) Does the p-dimensional Lobachevskij space Lp admit a realization as a 
surface in EN? 

2) If so, under what relations between p and N? 
A positive answer to the first of these questions follows from the results of 

Nash (see Nash (1956) in Part I); in this connection see Aminov (1982), Poznyak 
and Sokolov (1977), and BlanuSa (1955), and also Gromov and Rokhlin (1970) 
in Part I, Gromov (1987) in Part I, and Alekseevskij, Vinogradov and Lychagin 
(1988), Ch. 8,§ 7. 

For a discussion of the results known at present on the second questiQn see 
4 5 below. 

3) Is the constancy of the curvature essential in Hilbert’s theorem? 
As far as we know, this question was posed by Hilbert himself. Cohn-Vossen 

conjectured (see Cohn-Vossen (1936) in Part I) that in Hilbert’s theorem (1.1) can 
be replaced by the inequality 

K < const < 0. (1.7) 

It is natural to call this conjecture the Hilbert-Cohn-Vossen problem. On 
transition to EN, N > 3, its statement admits various generalizations; some of 
them are discussed in 5 5 below. 

For E3 the Hilbert-Cohn-Vossen problem was solved by Efimov (see Efimov 
(1963)), and he then obtained a more general result (Efimo; (1968)); see Theorem 
B below. To formulate it we need an auxiliary concept. 

Let %lI be a metric space, and p(x, y) the distance in it. 

Definition (Efimov (1968)). A function f(x, y), defined on ‘3X, has a variation 
with linear estimate if there are numbers C, > 0 and C, 3 0 such that 

If(x) - f(Y)1 G ClP(X> Y) + G. (1.8) 

Remark. Any function f, defined and bounded on m, has a variation with 
linear estimate on it, since it satisfies (1.8) with C, = 0 and some C2 > 0. If 
C, = 0 and C, > 0, then (1.8) turns into a Lipschitz condition. 

Suppose, as above, that K is the Gaussian curvature. We put 

R = (Kl-“2. (1.9) 

Sometimes (1.9) is called the radius of Gaussian curvature. 

Theorem B (Efimov (1968)). In E3 there is no complete C2-smooth surface 9 
on which K < 0 und the radius of Gaussian curvature R has u variution with linear 
estimate. 
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Corollary 1. On any complete C2-smooth surface 9 in E3 we have 

sup K > 0. (1.10) 

Thus, Theorem A is a special case of Theorem B. 

Corollary 2. If 9 E C2, it is complete in E3, it has K < 0 and K E C’, then 
on 5 

suplgrad RJ = +co. (1.11) 

Here the gradient is understood in the sense of the intrinsic metric of the surface: 

x E 9, 

a 
~ is the derivative with respect to arc length. 

JS 

To derive Corollary 2 from Theorem B it is sufficient to observe that if the 
quantity on the right-hand side of (1.11) is finite, then R satisfies a Lipschitz 
condition on 9. 

In the theory of surfaces of negative curvature, Theorem B takes a central 
place after Hilbert’s theorem. The plan of proof, presented in a general way in 
Part I (5 1 of Ch. 3) is discussed in more detail in 3.3 below. 

Theorem B is exact from the viewpoint of the regularity class of the surfaces 
in question. Namely, if instead of C2 we require regularity Cl,‘, that is, we 
suppose that the first derivatives of the radius vector are continuous and non- 
collinear on the whole surface, and in each compact part of it they satisfy a 
Lipschitz condition, then we can construct a counterexample - a tapering saddle 
surface having four horns (Fig. 5a). Visually this surface is like a deformed 
tetrahedron whose faces are curved, whose edges are smoothed out, and whose 
vertices are at infinity. C2-smoothness on it is violated only at four separate 
points ~ the centres of the faces of the tetrahedron. The curvature K, understood 

Fig. 5 

in a suitable generalized sense (see 2.1.6), is defined on the whole surface, includ- 
ing the points where C2-smoothness is violated, and satisfies an inequality of the 
form (1.7). The surface has a high degree of arbitrariness in its structure; see 
Rozendorn (1962). By ensuring all the listed properties, we can achieve some- 
what higher smoothness. Namely, we can arrange that the normal curvature 
(that is, the curvature of normal sections) exists at each point of the surface in 
each direction and it is bounded in each compact part of the surface. For this it 
is sufficient to take a cube instead of a tetrahedron as the original figure, 
increasing to eight the number of horns going off to infinity, and to six the 
number of points where @-smoothness is violated (Fig. 5b). The construction 
of such surfaces and other examples connected with them are discussed in more 
detail in 2.18, 2.3.3 and 5.5 below. 

To conclude this section we note that on the three-dimensional pseudo- 
Euclidean space ET with metric form ds 2 = dt2 - dx2 - dy2 the Lobachevskij 
plane L2 is realized in the large as an analytic surface t2 - x2 - y2 = 1, t > 0, 
which in the “superimposed” Euclidean space E 3, that is, in the same afline space 
but with metric dsi = dt2 + dx2 + dy2, is one half of an ordinary hyperboloid 
of revolution of two sheets; in this connection see Alekseevskij, Vinberg and 
Solodovnikov (1988), Ch. 2, and also Dubrovin, Novikov and Fomenko (1979), 
and Novikov and Fomenko (1987). 

Various geometrical problems, still hardly studied, are connected with 
questions concerning immersions of metrics of negative curvature in pseudo- 
Euclidean spaces; for a first acquaintance with them the reader can refer to 
the article Elimov (1984), and for a more detailed acquaintance Galeeva and 
Sokolov (1984a) and the survey Sokolov (1980). 

5 2. Surfaces of Negative Curvature in E3. Examples. 
Intrinsic and Extrinsic Curvature. Hadamard’s Problem 

2.1. Examples of Surfaces of Negative Curvature in E3, and Their Extrinsic 
and Intrinsic Geometry. The curvature K being negative implies that the princi- 
pal curvatures k, and k, of the surface in question are non-zero and of different 
signs, so the osculating paraboloid is hyperbolic, and the surface itself in a small 
neighbourhood of an arbitrary point of it looks like an “ordinary saddle”: two 
ascents and two descents in relation to the tangent plane (Fig. 6). The rectilinear 
generators of the osculating paraboloid specify the asymptotic directions of the 
surface. When K < 0 there are two of them at each point. Correspondingly there 
are two families of asymptotic lines. They are distinguished by the sign of the 
geodesic torsion, whose square is equal to 1 K 1 by the Beltrami-Enneper theorem; 
here we have in mind the torsion of bands of the surface formed along the 
asymptotic lines by tangent planes to the surface. It is the same as the torsion of 
the asymptotic lines when the curvature of the latter is non-zero. This curvature 
in turn is the same (up to the sign) as the geodesic curvature of the asymptotic 
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Fig. 6 

lines. We shall return to the question of the role of the geodesic curvature of the 
asymptotic lines in 5 4. 

The second-order surfaces of negative curvature K < 0 are the hyperbolic 
paraboloid and the hyperboloid of one sheet. Only on these surfaces does the 
net of asymptotic lines consist entirely of two families of rectilinear generators; 
see Finikov (1952) for example. 

2.1.1. Before discussing examples of surfaces of negative curvature, let us fix 
the terminology that we shall use. In the mathematical literature the term 
“surface” is needed in different senses. Visually we associate with this term a thin 
film, the surface of a body or part of it. But here is another example - a front 
propagated in the space of a wave; in the mathematical description of a physical 
process a wave front is naturally regarded as a surface. However, if the source of 
the wave perturbation is not a point, but spread out, or if there are obstacles 
from which the wave is reflected, then the wave front may have self-intersections 
and self-overlappings. 

We need to give a formal definition so as to include these situations, which 
are important in applications. 

Suppose we are given a differentiable manifold ‘$I of dimension p 3 2 and a 
map of it p: 9JI -+ EN, N > p. Let xi, . . ., 
nates in EN, and ul, . . . , 

xN be rectangular Cartesian coordi- 
up local coordinates on 9JI. We require that the func- 

tions xj(ul,. . ,up),j = 1, . . . , 
conditions 

N, that locally specify the map 9 satisfy the two 

and 

Xj(U1,... ) UP) E C’, r31 (2.1) 

(2.2) 

If 9 satisfies (2.1) and (2.2), we say that a p-dimensional P-smooth surface 9 
is specified in EN. The manifold 9JI is specified up to diffeomorphisms, which 
must be regarded here as C-smooth. If s > r, then any Cs-smooth surface 
is C’-smooth. Preserving this definition for classes of surfaces, in the case of 
an individual surface we make the concept of its smoothness more precise. 

Namely, suppose that the surface is Cm-smooth, in symbols 9 E C”. Do we have 
B E cmil, 9 E cm+=, . . . ? The highest value of r > m that we can achieve deter- 
mines the C-smoothness of an individual surface. Here (both for individual 
surfaces and for classes of them) r may be a natural number or co. Finally, a 
surface 9 is assumed to be analytic (briefly 5 E CA) if m is an analytic manifold 
and the functions (1.2)‘are analytic when (2.2) is satisfied. 

Similarly we can define the concepts of C *“-smooth surface (a is the Holder 
index, 0 < CI d 1) and the class of C ‘*‘-smooth surfaces. In the local formulation 
of the question they are discussed in more detail in Part III of the present 
book. In considering a surface in the large we need to distinguish uniform 
C”‘-smoothness, when the Holder constant is the same for the whole surface, 
and “ordinary” C ‘,a-smoothness, when this constant is different for different 
compact parts of the surface. 

Here, when we speak of compactness we are actually touching on the question 
of a topology on the surface. We first need to clarify what we mean by a point on it. 

A point X on a surface 9 is a pair X = {xl, X”}, where X’ E ‘!I& X” = 
9(X’) E EN, understanding by this that in the definition of a surface %II is 
specified up to a diffeomorphism. The space E N is said to be the ambient space 
for the surface F. 

We can approach the definition of a topology on 9 in two ways: we can 
introduce it either by starting from the topology on !IJI and the map p: ))31+ EN, 
or by means of the metric of the ambient EN. For C’-smooth surfaces with r 3 1 
these two approaches lead to the same result. In particular, 9 is compact when 
!III is compact. 

We often consider non-smooth surfaces, supposing that r = 0. Then we assume 
that ‘!IR is a topological manifold specified up to a homeomorphism, and replace 
condition (2.2) by the requirement that the map 9 is locally homeomorphic; 
however, the question of a topology on 9 is then more complicated (see Part I, 
Ch. 4). 

Similarly we define a p-dimensional C-smooth (or analytic) surface in other 
spaces, for example in an N-dimensional sphere SN. When p = N - 1 we require 
the term hypersurface. Sometimes we allow N = p and then we talk of an 
N-dimensional surface in N-dimensional space, or equivalently of a “many- 
sheeted domain”; below we shall see that this is convenient. 

If in the construction we assume that !IIJ is a manifold with boundary, then 
we have a surface with boundary. 

Example. A pseudosphere with its edge forms a non-smooth surface homeo- 
morphic to an open circular annulus or a plane with a point removed. The edge 
splits it into two analytic sufaces. Each of them with the edge of the pseudo- 
sphere adjointed to it is an analytic surface with boundary. 

A compact surface without boundary is called a closed surface (a closed 
hypersurface when N = p + 1). 

The set 4 = $@I) E EN is sometimes called the support of the surface F. 
This terminology is not the same as that in function theory and functional 
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analysis, where, as we know, the support of a function with compact support is 
the closure of the set on which it is non-zero, so it is a subset of the domain of 
definition of the function, but here it is a subset of the range of values of the 
function .F. However, in the theory of surfaces this “non-standard” terminology 
is quite convenient from the intuitive viewpoint: thus, for example, an infinite- 
sheeted covering of half a pseudosphere, which, as we have already mentioned 
in 9: 1, realizes a horocycle cut out from L2, is a surface with self-intersections, 
homeomorphic (and diffeomorphic) to a plane, and the half pseudosphere itself 
is the support of this surface. 

In the non-smooth case we need the map 9 to be locally homeomorphic, and 
in the smooth case this is ensured by condition (2.2). Hence in local questions, 
and also in those cases when it is known that the map 9: !IJI + EN is a homeo- 
morphism in the large (for example, for closed convex surfaces; see Part I), we 
can identify points of the support @ with points of the surface, which is usually 
done; then we arrive at a definition of a surface as a subset of EN, see 2.1 of Ch. 2 
in Alekseevskij, Vinogradov and Lychagin (1988). However, this is only a special 
case of the general definition and in Chapter 8 of Alekseevskij, Vinogradov and 
Lychagin (1988) this is tacitly assumed. The reader should bear in mind the 
relation presented here between the approaches to the definition of a surface “in 
the small” and “in the large”. 

In 4 1, when we discussed Beltrami’s interpretation for Lobachevskij planime- 
try, we spoke of the “realization in E3” of the Lobachevskij plane L2 or part of 
it. This is a special case of the problem of immersion of a Riemannian metric in 
Euclidean space, since the existence in the ambient space of a rule for measuring 
distances leads to the fact that a surface on which points can be joined by 
rectifiable curves is itself a metric space: the distance p(X, Y) between points 
X, Y E 9 is defined as the greatest lower bound of the lengths of paths joining X 
and Y on 9. This is the intrinsic metric of the surface. For a C-smooth surface 
9 with r 3 1 it is Riemannian: 

ds2 = -f dx; = t gij du’ du’. 
i=l i, j=l 

From the last equality it is obvious that 

(2.3) 

Two surfaces that are isomorphic as metric spaces are said to be isometric. 
The totality of properties preserved by isometries of the surface constitute its 
intrinsic geometry. 

If the map J that specifies the surface depends continuously on the parame- 
ter t, we say that there is a d@rmution {%j of the surface 9 = &,; here it is 
implied that the number to belongs to the interval of the number axis over which 
t ranges. If all the surfaces of the family {e} are isometric, we call the deforma- 
tion icy,} a bending. 

Suppose that the p-dimensional manifold m is Riemannian. Then there arises 
the question of whether there is a surface 5 isometric to !JJI in the space EN for 
a given N or more generally for some N >’ p. If the answer is yes, we say that 
there is an immersion (more precisely, an isometric immersion) of the given 
Riemannian manifold 9.R in EN. If, moreover, the map 

is a homeomorphism in the large, we say that it is an isometric embedding. 
Assuming that the metric on 9JI is given in the form (2.3) in each local chart, we 
arrive at an analytic statement of the problem in the form of a system of 
equations (2.4) ~ a non-linear system of partial differential equations on which 
no boundary conditions are imposed, and it is required to find a solution of it 
defined on the whole of $%I and satisfying the additional condition (2.2). TO 
obtain an isometric embedding, we need to ensure that the map (2.5) is homeo- 
morphic for the unknown solution; in the C’-smooth case, r > 1, condition (2.2) 
is necessary for this, but not sufficient. 

From the results of Nash (see Nash (1956) in Part I), later developed by other 
authors (in this connection see Gromov and Rokhlin (1970) in Part I and Ch. 8 
of Alekseevskij, Vinogradov and Lychagin (1988)) there follows the remarkable 
fact that any Riemannian geometry can be realized on p-dimensional surfaces of 
N-dimensional Euclidean space EN for sufficiently large codimension N - p. 

However, if we pose the question of the greatest possible lowering of the 
codimension N - p, then even in the local formulation the problem is far from 
completely solved, and in the global formulation presented above we are only at 
the first steps of the development. “The problem of immersing a Riemannian 
metric in Euclidean space”, said A.D. Aleksandrov in one of his public lectures 
(Moscow State University, May 1970), “is a tangle of non-linear problems”. 

2.1.2. Turning to surfaces in E 3, let us recall that the planes of symmetry of 
the osculating paraboloid, intersecting with the tangent plane to the surface, give 
the directions of the lines of curvature. Hence when K < 0 the lines of curvature 
bisect the angles between the asymptotic directions. 

Among the simplest surfaces in E 3 from the intuitive viewpoint are un- 
doubtedly surfaces of revolution. Let us recall that on them the lines of curvature 
are the meridians and the parallels (Fig. 7), and the inequality K < 0 is satisfied 
where the meridian is convex on the side of the axis of rotation. Using the 
theorems of Euler and Meusnier, well known in the theory of surfaces, it is not 
difficult, when we have a specific surface of revolution, to find its asymptotic lines 
in those regions where K < 0. It is intuitively obvious that each surface of 
revolution 9 with axis 1, has a specific line JZ in space that is an asymptotic line 
for .p: one family of asymptotic lines is obtained from 3 by rotation about 1,, 
and the other family is obtained from the first by mirror symmetry. In Fig. 7, 
and also in Figs. 8810, we show only those parts of the lines that are on the 
visible side of the surface. One family of asymptotic lines is shown by solid lines, 
and the other by dotted lines. The line 2 is distinguished in Fig. 7. If the 
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Fig. I 

meridian of a surface of revolution is P-smooth and has a point of inflexion (as 
in Fig. 7) then the point of inflexion traces out a parabolic parallel. On it we 
have K = 0, and it splits the surface into regions in which the curvature K has 
different signs. In this situation the asymptotic lines go out to the parabolic 
parallel, touching the meridians (see Fig. 7).’ 

On a hyperboloid of revolution of one sheet, as we have already mentioned, 
its rectilinear generators are asymptotic lines. Here we draw attention to the fact 
that the net consisting of them is only homeomorphic to a Cartesian net in the 
small. An extended net quadrangle can be opened up so that one of its vertices 
goes off to infinity, and the sides that should have occurred in it do not intersect; 
see Fig. 8, in which the notation is compatible with Fig. 4, and the vertex X, is 
absent: it has gone off to infinity. Under the conditions of Hilbert’s theorem (6 1) 
opened up quadrangles are excluded, thanks to the Chebyshev property of the 
net. In 54 below we shall see that they are impossible on a simply-connected 
surface and when K E const = 0. But it is only important to understand clearly 
in what sense the approximate equality is admitted. 

On a pseudosphere the asymptotic lines go off to infinity, winding on the 
horn and intersecting one another infinitely often; see Fig. 9a. It is far from 
obvious that when we go through the edge of the pseudosphere an asymptotic. 
line does not lose its smoothness, and the whole of it is an analytic space curve; 
see Gribkov (1977). 

It is not difficult to construct a surface of revolution of negative curvature in 
the form of a non-pointed horn on which the asymptotic lines, as they go off to 

‘In the common case there are other possibilities for the structure of the asymptotic net of a surface 
in a neighbourhood of a point of the parabolic curve; see Arnol’d (1990), section 11. 

Fig. 8 

a 

Fig. 9 

b 

infinity, approximate to the meridians as asymptotes (Fig. 9b). Then the situa- 
tion is like that in Fig. 7, except that the cusps formed by pairs of asymptotic 
lines meeting on the parabolic parallel are at infinity here. 

Among surfaces of revolution we should mention toroidal surfaces with a 
strictly convex meridian, to which the well-known circular torus belongs. If the 
meridian does not intersect the axis of rotation, then such a toroidal surface does 
not have self-intersections; its two bounding parallels, the “upper” and the 
‘“lower”, are parabolic curves and split the surface into two parts, the “external”, 
where K > 0, and the “internal”. Depending on the form of its meridian, the 
asymptotic lines either go out to the parabolic parallel, touching it (Fig. lo), in 
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Fig. 10 

Fig. 11 

the same way as an asymptotic line of half a pseudosphere touches the edge, or 
they wind onto the parabolic parallel as a limit cycle (Fig. 11). 

Looking back at the contents of this subsection, we draw attention to a 
geometrical fact that it is useful to bear in mind later: if we do not count para- 
bolic parallels, then on a tube of revolution there cannot be closed asymptotic 
lines. 

2.1.3. Asymptotic lines and lines of curvature are objects of the extrinsic 
geometry of a surface: under a bending of the surface their position on it changes, 
generally speaking, with the variation of the second fundamental form. At the 
same time, the asymptotic lines play an important role in various questions, for 
example in the study of unique determination and rigidity of surfaces. Thus, 
when K < 0 a complete C3-smooth surface on which the asymptotic net is 
homeomorphic to a Cartesian net in the large is rigid and uniquely determined 
by its metric if two of its complete (that is, infinitely extended) intersecting 
asymptotic lines are fixed in space (see Kantor (1976), Kantor (1978a), and 
Kantor (1981)). Surfaces of this kind are, for example, the hyperbolic paraboloid 
and the right helicoid. 

Next, suppose we are given a C3-smooth surface .Y of curvature K < 0 and 
we mark on it an asymptotic net quadrangle 9. We shall regard 9 together with 
its boundary as as an independent surface with boundary. Let 0 denote one of 
its vertices, and L, and L, two of its sides (arcs of asymptotic lines on F), 
starting from 0. Suppose that 0 and the tangent plane to 9 at 0 are fixed in 
space. Then it follows from Rozendorn (1987) that for rigidity of the surface 9 
it is necessary and sufficient that the projection of the bending field (see Part I, 
4.1 of Ch. 2) on Lj in the direction of the asymptotic lines intersecting Lj, j = 1,2, 
should vanish. A similar problem has been considered in a number of other works, 
for example in Minagawa and Rado (1952), Khineva (1977), and Mikhailovskij 
(1988). Quite an extensive literature has been devoted to the study of infinitesi- 
mal bendings of surfaces of revolution when K < 0 with various fixing condi- 

a b 

Fig. 12 

tions (in particular, Mikhailovskij (1962a), Mikhailovskij (1962b), Mikhailovskij 
(1962c), Mikhailovskij (1962d)). 

As for rigidity and unique determination of non-compact surfaces of negative 
curvature without additional fixing conditions, these questions have been little 
studied (see Galeeva and Sokolov (1984b), Seminar on geometry in the large 
(1986), Ten (1980)). Galeeva proved in 1979 that a smooth half of a pseudosphere 
that is not fixed but completed by an edge is rigid, and later she prove that it is 
uniquely determined. Infinitesimal bendings of a complete hyperboloid of one 
sheet (under various conditions at infinity) were studied in Galeeva and Sokolov 
(1984b). 

Closely connected with the study of rigidity of surfaces are problems of the 
mechanics of thin elastic shells (for more details on this see Goldenveizer (1976), 
Pogorelov (1967), and Vekua (1959) in Part I), and constructions that use sur- 
faces of negative curvature have become more and more widespread. Thus, 
Figure 12 shows schematically two types of roofs on supports, built in the form 
of piecewise smooth surfaces whose smooth parts have K < 0. Some problems 
for thin elastic shells, built in the form of surfaces of negative curvature, were 
considered in Klabukova (1983). 

The best known uses of helicoidal surfaces in engineering are as propellor 
screws, turbine blades, and so on. But in these cases one is using so-called “thick 
shells” - their thickness is not small in comparison with the radii of principal 
curvature and the linear dimensions of the construction. The calculation of them 
is connected to a lesser extent with the geometrical theory of surfaces. However, 
thin shells are used that contain parts of negative curvature: the planks of some 
parts of ships (Fig. 13a) and the wings of certain types of aircraft (Fig. 13b). In 
various countries experimental models of modern airships have been developed, 
and also aircraft that combine the features of an airship and an aeroplane. Such 
“hybrid” aircraft as airships not only have important applications here on Earth, 
but in the future in learning about Venus and its atmosphere, which is much 
denser than ours; there, thanks to the greater lifting force for the same cubic 
content, the advantages of an airship will be more pronounced. Figure 13c 
shows schematically the form of one of these hypothetical aircraft of “hybrid” 
(aeroplane-airship) type - a wing-shaped construction with dropped hulls; a 
significant part of the volume of the wing/and the dropped hulls is tilled with a 
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Fig. 13 

light gas, which constantly creates a real lifting force. In motion there is also 
the aerodynamic lifting force of the wing. Such a construction is a thin shell 
on which a significant part of its area is taken up by parts of negative curvature. 
In passing we note that problems of rigidity of surfaces with curvature of vary- 
ing sign in the analytic formulation lead to equations of mixed type. In this 
connection see Bakievich (1960), and also Ivanova-Karatopraklieva (1983), 
Ivanova-Karatopraklieva (1984a), Ivanova-Karatopraklieva (1984b), Ivanova- 
Karatopraklieva (1985), and Ivanova-Karatopraklieva (1988) in Part III. 

One advantage of convex shells, widely used in practice, is that under load 
they can play the role of supporting elements of the construction. As for the parts 
that have negative curvature, in engineering practice they are usually supported 
by additional struts. For optimization of the construction and the position of the 
struts on these parts of the shell it would be very useful to have a theory of 
surfaces of negative curvature if it were sufficiently far advanced. 

We should bear in mind that the problem of the connection between the 
mechanics of thin shells and the geometry of surfaces in the cases of shells of 
negative curvature and curvature of varying sign is still largely awaiting develop- 
ment. It is known, for example (see Vekua (1959) in Part I), that a strictly convex 
shell can be calculated according to the moment-free theory if it is geometrically 
rigid. More precisely, for strictly convex but gently sloping shells, fixed at the 
boundary, along with the concepts “rigid ~ non-rigid” we should need to have 
concepts in geometry that more delicately and quantitively distinguish the 
amount of non-rigidity of the surface and that adequately reflect the corre- 
sponding properties of mechanical shells. Some approaches in this direction were 
made in Gol’denveizer (1979) and Gol’denveizer, Lidskij and Tovstik (1979). In 
addition, Gol’denveizer drew attention to the following fact: although an ordi- 
nary circular torus is geometrically rigid, a shell in the form of a circular torus 
can be loaded with a system of external forces so that its equilibrium position 
cannot be moment-free. This means that the connection between mechanical 
and geometrical rigidity of shells in the general case is more complicated than 
for strictly convex shells, and needs further investigation. 
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Toroidal surfaces of revolution with convex meridian, discussed in the previ- 
ous subsection, occur in the class of “T-surfaces”, distinguished by Aleksandrov; 
see Aleksandrov (1938). Referring the reader to Aleksandrov (1938) for the exact 
definition, we explain the intuitive crux of the matter. Suppose we are given in 
E3 a closed convex surface on which there is an even number of flat domains. 
Let us cut them out. We join the resulting apertures in pairs by tubes of negative 
curvature, situated inside the original convex body. We obtain a “T-surface”, 
Fig. 14a. We allow the possibility that the tubes of the “T-surface” intersect 
one another (Fig. 14b). In the analytic case Aleksandrov proved the unique 
determination of the “T-surface”. 

Nirenberg studied the non-analytic case; see Nirenberg (1963). He needed to 
impose a series of additional conditions, among them the following: it is required 
that each tube of the “T-surface” contains at most two closed asymptotic lines. 
Of course, this is satisfied it the tubes themselves are surfaces of revolution (see 
2.1.2 above). Some sufficient conditions for the absence of closed asymptotic 
lines on a surface of negative curvature homeomorphic to a circular annulus can 
be found in Kantor (1980), but in the general case the question of the possible 
existence of closed asymptotic lines on the tubes of a “T-surface” remains un- 
solved at present. 

It would be interesting to investigate the unique determination, non- 
bendability and rigidity of tapering surfaces of strictly negative and non-positive 
curvature. No results in this direction are known to.the author. By analogy with 
“T-surfaces” we can expect that in this connection for tapering surfaces ques- 
tions of the structure of their asymptotic net will also arise. The example of 
Vaigant (see part I, p. 55 and Fig. 10) visually demonstrates the non-triviality of 
this problem area. 

2.1.4. Let us continue the discussion of examples. All ruled and all minimal 
surfaces in E3 have K G 0. In passing we mention, without going into details, 
that ruled surfaces, and also surfaces of both constant and variable negative 
curvature, play an important role in the theory of congruences (Finikov (1950)). 
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Fig. 15 

When studying surfaces with K < 0 we need to bear in mind that among them 
there are unorientable ones. Thus, suppose we are given a circle, and through its 
centre 0 we draw the perpendicular AB to its plane; let P be a moving point on 
the circle and suppose that a line MN is drawn through P in the plane PAB. We 
shall assume that the line MN in the plane PAB is uniformly rotated about P 
and the plane PAB is rotated about AB with twice the angular velocity. When 
P completes a full circuit of the circle, the line MN returns to its original position, 
but changing its direction to the opposite. We thus obtain an unorientable 
surface homeomorphic to an infinitely wide Mobius band. The kinematic con- 
struction and a piece of this surface are shown in Fig. 15; the surface is complete; 
simple calculation shows that its curvature K is negative everywhere. 

The well-known right helicoid (Fig. 16) is a complete surface of curvature 
K < 0 that is simultaneously ruled and minimal. One family of asymptotic lines 
on it consists of its rectilinear generators. They are the common binormals of the 
spirals situated on it, which in turn form the second family of asymptotic lines. 
In general, if a ruled surface is formed by the binormals to a space curve with 
non-zero curvature and torsion, then K < 0 at all points of it. At first glance such 
a surface may appear quite complicated, but topologically it can only be one of 
the following three types: a plane, a plane with a point deleted, and an infinitely 
wide Mobius band; thus we assume that the curve itself is homeomorphic to a 
line or a circle, and if it has a self-intersection in space, this means that the 
positions in space of different points of the curve coincide; correspondingly we 
understand a surface according to the definitions presented in 2.1.1. We draw 
attention to the fact that among ruled surfaces formed by binormals there are 
those on which there are closed asymptotic lines. This is easy to understand 
visually. In fact, let us take a circular torus with external radius R formed by 
rotating a circle of radius r, and make a uniform winding on it, in the same way 
as a spiral winds on a circular cylinder (Fig. 17). Let h be the pitch of this 
winding, measured along the greatest external parallel of the torus. First of all 
we need 271R = kh, where k is a natural number. Then after a simple circuit of 

Fig. 16 

Fig. 17 

the torus the winding (let us call it 9) closes and is homeomorphic to a circle. 
Next, for a suitable choice of parameters R, r, h, where 0 < h << r << R = kh/2x, 
the winding 9’ constructed on the torus will have non-zero curvature and 
torsion everywhere. Then the surface formed by its binormals has curvature 
K < 0; 9 itself is an asymptotic line on it. 
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The construction of a surface of negative curvature homeomorphic to a 
circular annulus, which may not be ruled but has a closed asymptotic line, is 
given in Kovaleva (1968). 

In connection with the investigation of properties of “T-surfaces” mentioned 
above, the following more general questions about closed asymptotic lines arise: 

If there is one, can there be another homotopic to it? 
Can there be a family of homotopic closed asymptotic lines? 
Can they completely cover a piece of the surface? 
Can there be closed asymptotic lines on a horn, pointed or not, and can they 

exist on a tube bounded on two sides by parabolic lines? 
In fact such tubes, but not completely arbitrary ones, are part of “T-surfaces”. 
As far as the author knows, none of these questions has been investigated so 

far. 
In E3 there are surfaces of negative curvature, including complete ones, 

with a more complicated topological structure than in the examples consid- 
ered above. Apparently the first to draw attention to this was Hadamard; see 
Hadamard (1898) in Part I. The geometrical constructions that he presented are 
described in Part I, p. 49; see Fig. 5 there. The idea of Hadamard that was 
furthest developed in the work of other authors was that we should first con- 
struct a piecewise smooth surface having negative curvature in its regular parts. 
Then we carry out a smoothing - we construct a surface of the necessary 
smoothness close to the original and having K < 0 everywhere. 

We draw attention to the fact that the possibility or impossibility of carry- 
ing out such a smoothing is by no means always obvious. For example, in 
Hadamard’s construction why not take as the original piecewise smooth surface 
not one formed from two hyperboloids but one formed from a hyperboloid and 
a pseudosphere, as shown in Fig. 18? 

In fact, we take a hyperboloid of revolution of one sheet and a pseudosphere 
situated in such a way that their axes intersect at right angles, and the circular 

Fig. 18 
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edge of the pseudosphere is entirely inside the throat of the hyperboloid. As in 
Hadamard’s construction, from each of these two surfaces we remove those parts 
of it that lie inside the other. It is intuitively quite obvious what “inside” means 
here. There remains a piecewise smooth surface that has two pointed horns, 
from the pseudosphere, and two bowls, from the hyperboloid. We now try to 
“smooth” it so that the resulting surface (schematically shown by a dotted line 
in Fig. 18) coincides with the original surface outside a ball of sufficiently large 
radius, it has smoothness at least C2, and the curvature K is negative every- 
where. It turns out that this is impossible, even though K < 0 on both the 
hyperboloid and the pseudosphere. The proof of impossibility is based on a 
calculation of the index of the fields of asymptotic directions on the horns and 
the bowls of the original piecewise smooth surface. 

2.1.5. Let us discuss another example of a surface with boundary to which we 
shall need to refer below. Bianchi proved (Bianchi (1927)) that in E3 there is a 
surface (with boundary) of constant curvature K = - 1 on which there are two 
intersecting rectilinear generators. Amsler investigated this surface in more de- 
tail in Amsler (1955). In particular, he showed that the angle w0 between its 
rectilinear generators at a point of intersection can be any angle in the inter- 
val 0 < w0 < 71, and the boundary of the surface consists of four components 
homeomorphic to a straight line, and each of the components, as it goes off to 
infinity in E3, coils on a ray of the rectilinear generator. See Fig. 19, borrowed 
from Amsler (1955). 

Now imagine that two copies of the Bianchi-Amsler surface shown in Fig. 19 
are taken, placed one on the other in E3 and glued along the boundary, and 
then air is pumped into the space between them. Suppose that both copies of 
the Bianchi-Amsler surface, glued along the boundary, are deformed, possibly 
changing their intrinsic metric, but so that in a neighbourhood of the gluing 
curve the surface becomes C’-smooth, r 2 2. Then in E3 there is formed a surface 
with four pointed horns whose limiting rays lie in one plane. From Chapter 3 of 
Part I it follows that this cannot be a saddle surface: from it we can certainly cut 
out a crust (see Fig. 12 in Part I). 

However, it is possible to alter the construction: simultaneously with an 
“inflation”, which moves the glued copies apart, we “break” the rectilinear 

Fig. 19 
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Fig. 20 

Fig. 21 

b 

generators at a point of intersection so that each of them turns into sides of an 
obtuse angle close to a straight angle, the planes of these angles are perpendicu- 
lar to the plane in which the rectilinear generators originally lay, and the interior 
regions of the obtuse angles lie on opposite sides of this plane (see Fig. 20). Then 
the limiting rays of the horns will not lie in one plane; hence the obstacle 
connected with the inevitable cutting out of crusts and which does not make it 
possible to ensure universal negative curvature is removed. This makes it possi- 
ble, by considering the specific form of the Bianchi-Amsler surface, to conjecture 
that in this way we can construct an example of a complete tapering surface of 
curvature K < 0 with four pointed horns, similar to Vaigant’s example, see Part 
I, p. 56; however, this conjecture has still not been verified. We discuss the role 
of this hypothetical example in 2.3.4 below. 

2.1.6. Suppose that on a surface @- we are given a triangle T formed by arcs 
of shortest curves, where a(T) is its area and c(, p, y are its internal angles (Fig. 
21a). Then the quantity 

w(T) = ci + p + y - 7~ (2.6) 

is called the excess of the triangle T. From the Gauss-Bonnet formula it follows 
that the ratio w(T)/a(T) tends to the Gaussian curvature K = K(X) of the 
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surface 9 at a point X when the triangle T contracts to X. The usual proof uses 
C3-smoothness of the surface (see Blaschke (1930)), and the standard approxi- 
mation arguments enable us to extend the proof to C2-smooth surfaces; see 
Elimov (1949) in Part I. 

Let a,(T) be the area of the triangle TE on E2 that has sides of the same length 
as T, Fig. 21b. We note that if 9 E C2, then a(T)/a,(T) + 1 as T + X, and the 
limit of the ratio w(T)/cr,(T) (which depends only on the intrinsic metric of the 
surface) can exist with smaller smoothness than C2. According to Aleksandrov 
(see Aleksandrov (1948) in Part I), the intrinsic Gaussian curvature Kin, of the 
surface F at the point X is 

K. I”, (2.7) 

if this limit exists. Aleksandrov proved (see Aleksandrov (1948) in Part I) that if 
the limit (2.7) exists for all points of some domain G c F, then Kint is continuous 
in G. In the multidimensional case the quantity (2.7) found for a specific two- 
dimensional direction is a generalization of the concept of sectional curvature. 

2.1.7. Example. Let us take a hyperbolic paraboloid, which at the point of 
intersection 0 of its planes of symmetry has an angle n/m (m > 3) between the 
rectilinear generators. At 0 we draw the tangent plane P to the paraboloid. Of 
the four parts into which it splits the paraboloid we take the one that is inside 
the angle n/m, and denote it by V,. We pave the plane P around 0 by figures 
congruent to V,, taking 2m of them, and placing them in turn on different sides 
of the plane P. We obtain a Cl,‘- smooth piecewise analytic surface whose C2- 
smoothness is violated at 0 and on all the rays lj (j = 1,. . . ,2m) that separate 
neighbouring figures V, from one another. We can show that on the surface 
obtained by this construction Kint exists at all its points; at 0 and on the rays lj 
the curvature Kint has the same numerical value as the Gaussian curvature K 
had at these points on the paraboloid, so Kint < 0. For m = 3 the surface is 
shown in Fig. 22. Its asymptotic lines, intersecting the rays Ij, form angular 
points. The projection of the asymptotic net on the plane P is shown in Fig. 23a 
(also for m = 3). We note that when m is even every normal section at 0 is either 
a straight line or a parabola, so at 0 the curvature of normal sections exists in 
all directions. We shall use this remark in a later subsection. 

Fig. 22 
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edges (situated in neighbourhoods of the edges of the tetrahedron) are smoothed. 
Then to each component of the boundary we add on a pointed horn, and the 
transition to it is also smoothed. The details of the construction are presented in 
Rozendorn (1962) and Rozendorn (1966) in Part I. In the construction we 
succeed in ensuring not only the existence of Kin, and the fact that an inequality 
of type (1.7) is satisfied, but also the differentiability of Kint on the whole surface. 

To obtain the surface shown in Fig. 5b (which we discussed in 1.4) we need to 
take m = 4, and instead of the tetrahedron to use a cube and carry out similar 
constructions. 

b 

Fig. 23 

Fig. 24 

2.1.8. We can now discuss in more detail the construction of the surface 
shown in Fig. 5a. First of all, for m = 3 we need to take the piecewise analytic 
Cl,‘-smooth surface whose construction was described in the previous subsec- 
tion, and subject it to an additional smoothing in a neighbourhood of the open 
rays lj. We thus succeed in achieving smoothness C” outside 0, preserving 
the previous value K,,,(O) and the inequality Kint < 0. The angular points of 
the asymptotic lines on the rays lj are also smoothed and the asymptotic net 
acquires the structure shown schematically in Fig. 23b. We then take a regular 
tetrahedron, take the plane of a face of it for P, and proceed like this for each of 
its faces. For a suitable position of the “segments” I’,,, after cutting out surplus 
pieces we obtain a non-smooth saddle surface with boundary, homeomorphic to 
a sphere with four holes, shown in Fig. 24. For this surface with boundary its 

2.1.9. Aleksandrov proved (see Aleksandrov (1948) in Part I) that if the quan- 
tity (2.7) exists on a two-dimensional manifold with intrinsic metric, then the 
metric is Riemannian and in polar-geodesic coordinates (p, cp), p > 0, it takes the 
form 

ds= = dp= + B(p, cp)=dq=, (2.8) 

where the function B(p, cp) is twice differentiable with respect to p, it is connected 
with the intrinsic curvature Kint by the differential equation 

B$p + (Ki”,)B = 0 (2.9) 

and when p = 0 it satisfies the initial conditions 

B(O, d = 0, B;(O, cp) = 1. (2.10) 

In particular, for the Lobachevskij plane L2 the intrinsic curvature exists and 
is constant, since excesses of triangles in L2 are proportional to their areas, and 
a( T)/o,(T) -+ 1 when the triangle T contracts to a point. According to (2.8) (2.9) 
and (2.10), the metric on L2 in polar coordinates has the form 

ds2 = dp= + sh= $ &p2, 
0 

where R is the “radius of curvature” and Kin, = - Rp2 = const < 0. 
From (2.11) it is obvious that on L2 the length of a circle and the area of a disc 

increase exponentially as the radius p increases. From (2.8), (2.9) and (2.10) it is 
also obvious that on two-dimensional manifolds whose intrinsic curvature in the 
sense of Aleksandrov exists and satisfies the inequality 

Kin* < const < 0, (2.12) 

the length of a geodesic circle and the area of a geodesic disc have no less than 
exponential growth as p increases. In an attempt to immerse such manifolds 
isometrically in E3 (under the condition that they are complete and the immer- 
sion is C2-smooth) the space E3 turns out to be too tight for them according to 
Theorem B (see 1.4). 

In the more general case, when K d 0, the intrinsic geometry of complete 
surfaces (and also of non-compact two-dimensional Riemannian manifolds) was 
studied by Eberlein (Eberlein (1979)). 
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2.2. Some Remarks on a d-Isometric Embedding of L2 in E3 According to 
Kuiper 

2.2.1. The picture changes significantly if instead of C*-smoothness we re- 
strict ourselves to the assumption of just C’-smoothness. Namely, according to 
Kuiper (1955), to obtain an embedding of a given metric ds* it is sufficient to 
construct first for it a so-called strictly short embedding, that is, a surface F1 whose 
metric ds: satisfies the requirement that the differential quadratic form ds2 - ds: 
is positive definite. As applied to the specific problem of embedding L* in E3 
it is sufficient to take for & the Euclidean plane E2 with polar coordinates 
(r, $) and put r = ip, $ = cp. Then under the parametrization x1 = r cos $, 
x2 = r sin $, x3 = 0 the plane E* is a strictly short embedding in E3 for the 
metric (2.11). Another, also strictly short, embedding in E3 for the same metric 
(2.11) can be taken, for example, as the open disc r < 1 on E2. 

Next, according to Kuiper (1955), we carry out corrugations, as a result of 
which there arises a sequence of surfaces with metrics ds,2 + ds2. In the specific 
example of constructing an embedding for L* we can imagine that the plane 
E2 = g1 is covered by waves, from which shallower waves go out in different 
directions, from them still shallower waves, and so on, as happens on the surface 
of the sea in the presence of ripples and wind. If for the original short embedding 
for L2 we use not the whole plane E2, but the disc r < 1 cut out from it, then these 
waves must be “denser” and “steeper” close to its boundary, the circle r = 1. 

The fact that under corrugations the metric of the original short embedding 
F1 is lengthened is obvious. Much less obvious is the fact that it can be “tight- 
ened” so much that in each compact part in all directions the difference ds2 - ds,2 
tends to zero. If an immersible metric is C”-smooth (as in the example of L2 
under consideration), then all surfaces of the sequence {Fn} can also be made 
C”-smooth. 

Not at all obvious and very unexpected for geometers in its time was the fact 
that in this way we can ensure the existence of a Cl-smooth limiting surface on 
which the ambient space induces a given metric ds*. 

2.2.2. Let us recall (see Vinberg and Shvartsman (1988) or Novikov and 
Fomenko (1987), for example) that by factorizing L* we can obtain compact 
manifolds with a metric of constant negative curvature. The simplest of them is 
obtained from an equilateral octagon in L* having angles of 45” by gluing the 
sides as shown schematically in Fig. 25. Topologically this is a sphere with two 
handles, or a pretzel, as we sometimes say; see Fig. 26. 

A pretzel with a metric of constant negative curvature, like other compact 
orientable two-dimensional Riemannian manifolds, admits a Cl-smooth isomet- 
ric embedding in E3 by Kuiper’s method. We draw attention to the fact that in 
this way in E3 we obtain a closed surface whose intrinsic curvature Kint is defined 
at all its points, and Kint = const < 0. From the visual point of view this surface 
must apparently be represented as a pretzel, like that shown in Fig. 26, but 
covered by shallow waves. 
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Kuiper’s constructions show that Theorems A and B, formulated in 0 1, both 
lose their force in the class of regularity Cl. In this connection it is of interest to 
study classes of surfaces intermediate between C2 and C’. We shall return to this 
question frequently later. 

2.3. Hadamard’s Conjecture 

2.3.1. Theorem. In E3 there are no C*-smooth closed surfaces with a metric of 
non-positive curvature. 

Corollary. Let B be a Cl-smooth Kuiper embedding (or immersion) in E3 of a 
compact (without boundary) two-dimensional Riemannian manifold with metric ds2 
of non-positive curvature K < 0. Suppose also that 9 is obtained as the limit of 
short embeddings (respectively, immersions) (Fj> that are C-smooth surfaces, 
r > 2. Then all the 9, have Gaussian curvature of variable sign. 

Thus, on all the Fn there are points where K > 0, although their metrics dsi 
converge to a metric ds2 of non-positive (or even strictly negative) intrinsic 
curvature. 

The proof of the theorem is by contradiction: suppose such a surface 9 exists. 
We include its support 3 in a sphere of least possible radius. This sphere will 
have a point A in common with @. Parallel to the tangent plane to the sphere 
at A we draw a sufficiently close cutting plane. It cuts off a crust from p-, which 
is impossible, since 9 is a saddle surface. 

This argument is actually due to Hadamard, who assumed (see Hadamard 
(1898) in Part I) that he had proved the following assertion: 

In E3 there are no bounded complete surfaces of negative curvature. 
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This assertion is now often called Hadamard’s conjecture. 
Below we discuss in detail why the argument about the smallest ball contain- 

ing the support of the surface is insufficient to prove the validity of Hadamard’s 
conjecture. 

We first discuss some auxiliary definitions and examples. 

2.3.2. Suppose we are given a surface 9: !lJI + EN, where ‘$I is a manifold of 
dimension p, 2 d p < N (understood up to diffeomorphisms), and X = {X’, X”} 
is an arbitrary point of 9, where X’ E ‘!JJI, X” E EN. Suppose that the surface 9 
is incomplete in its intrinsic metric. In the standard way we complement F to a 
minimal complete metric space F, taking as points of @ classes of equivalent 
fundamental sequences on 8. Then dF = F\F is the metric boundary for 9. 

Having a surface 9 in EN, we can consider a map, which we denote by the 
same letter 9, acting according to the rule 

F-EN, X = {X’, X”} -+ X” E EN. (2.13) 

This map associates with each point X = (X’, X”} of 9 that point of EN where 
X “is found”, that is, the point X” on the support (X” E @ c EN). 

Because distance on the surface is always at least equal to that in the ambient 
space, the map (2.13) can b%extended by continuity from 9 to $? As a replt in 
EN there arises the image 89 of the metric boundary 89. We shall call 89 the 
intrinsic geometric boundary of 9 in EN. 

Example. x,=achtcoscp,x,=achtsincp,x,=bsht;a>O,b>O;Itl<t,, 
--cc < qn < +co. This surface is the universal covering of part of the hyper- 
boloid of revolution of one sheet 

2 2 
Xl x2 x: 2+---&+ 

a2 
(2.14) 

in E3. Its intrinsic geometric boundary consists of two circles x: + xi = 
(a ch t,)‘, x3 = f B, B = b sh t,, lying in parallel planes. The metric boundary 
89 is homeomorphic (and isometric) to a pair of straight lines, which under 
the map (2.13) extended to 5 wind in E3 on these parallel circles. 

Now consider on 9 all possible sequences of points {X,,}, X, = (X;, Xi}, 
that are not convergent on B but for which (Xi} are fundamental in EN. All 
limiting points of such sequences {Xi} form in EN a closed set (possibly empty), 
which we call below the extrinsic geometric boundary of 9 in EN. Clearly, the 
intrinsic geometric boundary is part of the extrinsic geometric boundary. Thus, 
in the previous example the extrinsic geometric boundary fills a whole piece 
lx31 6 B of the hyperboloid (2.14). Of course, the extrinsic geometric and intrinsic 
geometric boundaries may coincide. Thus, for example, if for F we take an open 
disc in E2, both boundaries then coincide with the circle. If 9 = E2, then both 
boundaries (the intrinsic and the extrinsic) are empty. But the extrinsic gAometric 

boundary may be non-empty when 9 is complete (and consequently a9 = a). 
Thus, if we alter the previous example and instead of the condition ItI d t, we 
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allow --co < t < +co, that is, we take for F the universal covering of the whole 
hyperboloid (2.14), then the extrinsic geometric boundary of this covering fills 
the whole hyperboloid (2.14). This is a rather obvious example; here for 9 its 
extrinsic geometric boundary coincides with the support @ because the number 
of sheets of the covering is infinite. However, we can give a rather different but 
also completely visual example, when the extrinsic geometric boundary of 9 is 
not empty and does not intersect 3, and 9 is complete. Namely, in E3 we 
consider the surface 

1 
x3 = sin -, Xl > 0, --co<x,<+co. (2.15) 

Xl 

The surface (2.15) does not have self-intersections, so we can assume that it 
coincides with its own support, and its extrinsic geometric boundary consists of 
a closed strip lx3 I < 1 on the vertical (x2, x,)-plane (see Fig. 27). 

Turning to a discussion of Hadamard’s conjecture, we draw attention to the 
fact that, for a bounded complete surface, by contracting the ball containing it 
we can meet its sphere not at a point of the surface but at a point of its extrinsic 
geometric boundary, and if the ball is contracted further, it may happen that its 
bounding sphere cuts out not spherical crusts but parts of the ‘surface that are 
non-compact in the intrinsic metric. We see a similar picture if in Fig. 27 we take 
in the left half-space x1 < 0 a vertical plane xi = const and start to move it tQ,,P 

the right. When we get to the position x1 = 0, this plane still does not meet 

surface 9 itself, but only its extrinsic geometric boundary, and a further (a 
trarily small) shift of this plane to the right leads to a non-compact part of the 
surface between the plane and the extrinsic geometric boundary. By the way, the 
surface (2.15) is developable and therefore a saddle surface (like any C2-smooth 
developable surface in E3). Of course, in the case (2.15) K = 0, and the Plane in 
the argument above cannot be replaced by a sphere. But before discussing a 
more complicated example, to which the next subsection is specially devoted, let 
US draw attention to the fact that if the argument that justifies the impossibility 
of a closed surface of non-positive curvature K = k,k, < 0 in E3 were also a 
justification of Hadamard’s conjecture, then in Hadamard’s conjecture 

itself 
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Fig. 28 

there would be no need to talk about K being negative: the conjecture would be 
true for any saddle surfaces in E3, and this is certainly not so: see 2.3.3. 

2.3.3. Example. A Bounded Complete Saddle Surface in E3. Let (S,,} be a 
sequence of concentric spheres in E3 with common centre 0 and monotonically 
increasing radii r,, where r,, + Y < +co, so there is a limiting sphere with the 
same centre 0 and radius r. In the sphere S, we inscribe a regular tetrahedron 
A, A, A, A, and draw all the segments OAj. Then from each point Aj we draw 
three segments inside the spherical layer between S, and S,. Fig. 28 shows the 
tetrahedron A, A, A, A,, the segments OA,, j = 1, . . . ,4, and the three segments 
going out from one of the vertices of the tetrahedron inside this spherical layer; 
each of these segments is extended until it meets S,, and from there three more 
branch out, and so on. 

We shall build up the resulting branched spatial open polygon tier by tier, 
making sure that at each point of intersection of the polygon with the spheres S, 
all four segments make obtuse angles with one another. 

In addition, we take care that no self-intersections of the polygon arise. This 
is not difficult to do: segments can only meet each other in one spherical layer, 
and if such intersections occur, they need to be removed by a small displacement 
of the segments before proceeding to the construction of the next tier. 

Elementary calculation shows that if r,,,, - r, = 0(1/n’), then the lengths of 
the segments situated between S, and S,,,, can be made of order 0(1/n). It then 
turns out that all the paths going along the open polygon, more precisely along 
the infinite graph obtained from this polygon as a result of a countable process 
of construction from some point of it to the limiting sphere S, have infinite 
length. In other words, the ambient space E3 induces a metric on this graph in 
which it is a complete metric space. 

The part of the construction described here is elementary. Next, imagine that 
each of the segments occurring in the constructed graph is slightly inflated and 

turns into a tube of negative curvature, and those points where the segments 
meet in fours are also inflated and become surfaces like that shown in Fig. 5a. 
Around the central point 0 and on the first layer, around the points A,, . . . , A, 
shown in Fig. 28, we can use surfaces as in 2.1.8, and for use as fragments of the 
construction on tiers further from the centre 0 we first need to subject them to 
affine transformations chosen in a suitable way. 

As a result we obtain a bounded and at the same time complete saddle surface 
that is Cl-smooth and even Ci*‘- smooth. In addition, since we have used as the 
original material for fragments of the construction the surfaces concerned in 
2.1.8, here also we can ensure the existence of an intrinsic curvature Kint that 
satisfies an inequality of the form (1.7), and the differentiability of Kint. The 
resulting surface is infinitely connected; all its extrinsic geometric boundary is 
concentrated on the limiting sphere S, and any concentric sphere of smaller 
radius cuts off from the surface a non-compact part, although it is impossible to 
cut off a crust by any plane. Part of the surface thus constructed is shown in Fig. 
29. The reader can find details of this construction in Rozendorn (1981) in Part I. 

Thus, if in Hadamard’s conjecture we replace K by Kint and instead of 
C2-smoothness of the surface we assume C’g ’ -smoothness, then the conjecture 
in this form is false. 

2.3.4. In connection with what we have said, let us make some more remarks. 
It is known (see Xavier (1984) for example) that in E3 there are Cm-smooth 
bounded complete surfaces of non-positive Gaussian curvature. Of course, 

Fig. 29 
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tangent plane is never parallel to the tangent plane at X; a surface is said to be 
quasiregular if each point of it is Pogorelov regular. 

Theorem (Efimov (1949) in Part I). The intersection of a Cl-smooth surface 
with the tangent plane at a regular point X of it consists of a sufficiently small 
neighbourhood of it, or of the single point X, or of X and 2m simple arcs starting 
from it. The small neighbourhood can be chosen so that these arcs split it into 
(curvilinear) sectors situated in turn on opposite sides of the tangent plane. 

The proof based on an application of the implicit function theorem. 
The number m = m(X) is called the saddle order of 5 at X. For regular points 

of a Cl-smooth curface in E3 Pogorelov (see Pogorelov (1969) in Part I) sug- 
gested the following classification: a point is elliptic if m = 0, parabolic if m = 1, 
hyperbolic if m = 2, and a flat point if m > 3. We need to bear in mind that this 
classification is not quite the same as the usual classification of points of a 
C2-smooth surface according to the type of osculating paraboloid; however, 
when K < 0 in the C2-smooth case a point is hyperbolic both according to the 
type of osculating paraboloid and according to the saddle order. 

Let G be an arbitrary open domain on p and a*(G) the Lebesgue measure of 
its image Q(G). Here Q(5) must be understood either as a surface in E3 whose 
support is a subset of S2 or as a two-dimensional surface in the two-dimensional 
space S2. This means that c * is defined by taking account of the multiplicity of 
the covering; in contrast to the quantity Q, here we do not take account of the 
orientation: if Q(G) is measurable and has non-zero Lebesgue measure, then 
o*(G) > 0. The extrinsic Gaussian curvature of 9 at a Pogorelov regular point 
X can be defined by the formula 

sup K = 0 on them, by Theorem B of 1.4. In addition, inf K = -co on them, in 
view of the next theorem. 

Theorem (Baikoussis and Koufogiorgos (1980)). A complete Coo-smooth sur- 
face with curvature --co < -a2 < K d 0 in E3 is unbounded. 

This theorem is one of the most powerful results in the problem area con- 
nected with Hadamard’s conjecture. As for Hadamard’s conjecture itself, at 
present (1990) there are no counterexamples to it, but it has not been proved. 
Moreover, arguments were given in Part I that enable us to cast doubt on it. 
Namely, we propose to study the possibility of a construction similar to that in 
the previous subsection by using in the details of the construction the surfaces 
obtained by afline transformations from Vaigant’s example. The difficulty of 
realizing this plan lies in constructing transitional tubes of negative curvature 
between them. It may happen that it is constructively simpler to use parts of 
tapering surfaces constructed on the basis of the Bianchi-Amsler example; see 
2.1.5 above. If these constructions can finally be carried out, making sure that 
the curvature is negative on the whole surface, then Hadamard’s conjecture will 
be disproved. 

2.4. Surfaces of Negative Intrinsic and Bounded Extrinsic Curvature in E 3 

2.4.1. In the theory of surfaces an important role is played by the Gaussian 
spherical map. For a hypersurface 9 in EN it associates with each point of the 
surface a point of the unit sphere SN-’ according to the rule @: F + SN-‘, 
Y = Q(X) E SN-‘, if OY = n(X), where 0 is the centre of the sphere and n = n(X) 
is the unit normal vector to F at the point X. 

For surfaces in E3 by means of a map onto the sphere Gauss (see Gauss 
(1823-l 827)) introduced the total curvature of a surface as the area Q(F) of the 
image Q(F) on S2, found by taking account of the orientation and multiplicity 
of the covering, and the curvature of the surface at a point X as the limit of the 
ratio Q(G)/a(G) when the domain G c 9 is contracted to the point X. Here a(G) 
denotes the area of the domain G on 9. An easy calculation shows than in the 
C2-smooth case this limit exists and is equal to the product of the principal 
curvatures: 

K = t; z = k,k,. (2.16) 

The problems of constructing a surface when we are given information about its 
spherical image are at the very first stage of study when K < 0. Some results in 
this direction for the simplest situations (@ one-to-one, Q(F) is contained in a 
hemisphere) were obtained in Fomicheva (1978), Fomicheva (1979a), Fomicheva 
(1979b). 

2.4.2. Definiton. A point X on a Cl-smooth surface 9 in E3 is said to be 
Pogorelov regular if there is a neighbourhood U c 9 of it such that in U\X the 

a*(G) Kext = n(X) lim -, 
G-X o(G) 

(2.17) 

where n(X) = sgn( 1 - m(X)), if this limit exists. If, besides regularity, we assume 
C2-smoothness, then the quantities (2.17) and (2.16) coincide. For a Pogorelov 
non-regular point, in the C2-smooth case we can take %(X) = 1. Then the classi- 
cal Gauss theorem (for a C2-smooth surface) can be written in the form of the 
equalities 

K = k,k, = K,,, = Ki,t. 

However, K,,, may exist under smaller smoothness than C2. 

(2.18) 

2.4.3. Using the Gaussian spherical map, Pogorelov distinguished and inves- 
tigated the class of surfaces of bounded extrinsic curvature intermediate between 
C2 and C’. 

Suppose we are given in E3 a Cl-smooth surface 9, let H,, . . , H, be closed 
sets on F”, and 6(Hj) the Lebesgue measures on the sphere S2 of the images 
@(Hj), understood there as point sets (that is, as sets of points on the support 
G(F) of the surface Q(F)). 
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Definition. A surface 9 has bounded Pogorelov extrinsic curvature if b(Hj) 
exist and 

i&F-) = sup 1 B(Hj) < +co 
j 

(2.19) 

over all possible finite systems of pairwise disjoint closed sets {Hj} on 9. 

Referring the reader for the details to @ 1, 3 of Ch. 4 and $4 of Ch. 1 of Part 
I, and also to the original source Pogorelov (1956b) in Part I (or the monograph 
Pogorelov (1975) in Part I), we present briefly here the facts concerning surfaces 
with metric of negative curvature and unsolved problems related to them. 

Let W be an arbitrary Bore1 set on a surface F of bounded extrinsic curva- 
ture. Starting from (2.19), we construct a(W). Then we introduce the positive and 
negative extrinsic curvatures Q+(W) and Q-(W) as the values of fi on the 
subsets of elliptic and hyperbolic points in W and the total extrinsic curvature 
Q(W) = Q’(W) - O-(W). It turns out that a(W) = Q+(W) + Q-(W), and the 
subsets of parabolic points, non-regular points and flat points make a zero 
contribution to a, and the set of flat points on any surface of bounded extrinsic 
curvature is no more than countable. For an open set G in the C2-smooth case 
Q(G) = JJG Kda and coincides with the Gauss total curvature (see 2.4.1), a(G) = 
IJc IKI do (da is the element of area on F). For closed and for quasiregular 
surfaces of bounded extrinsic curvature Pogorelov proved the generalized Gauss 
theorem 

Q+(w) = w+(w), C(W) = OF(W), (2.20) 

where w+ and o- are the positive and negative parts of the intrinsic curvature 
(see Aleksandrov and Zalgaller (1962) in Part I), and he proved the first of the 
equalities (2.20) for any surface of bounded extrinsic curvature. 

Pogorelov also proved that if a surface of bounded extrinsic curvature admits 
the cutting out of a crust, then the set of elliptic points on it is so “vast” that 
sZ+ > 0. From this and (2.20) we have the following corollary. 

Corollary. A Kuiper Cl-smooth isometric embedding in E3 of a compact (with- 
out boundary) two-dimensional Riemannian manifold of non-positive Gaussian 
(intrinsic) curvature cannot be a surface of bounded. extrinsic curvature. 

Next, from (2.20) and the Gauss-Bonnet formula for manifolds of bounded 
extrinsic curvature (see Aleksandrov and Zalgaller (1962) in Part I) it follows 
that if on a quasiregular surface of bounded extrinsic curvature K,,, exists at 
each point of some open domain G, or Kin, exists at each point of G, then the 
second of these quantities exists in G, and the generalized Gauss theorem holds 
in a local form: 

Kext(X) = Kint(X), X E G. (2.21) 

In other words, the last equality in (2.18) carries over exactly to the special case 
considered here. This is how things stand in the example analysed in 2.1.7. The 
surfaces shown in Fig. 5, whose construction was discussed in 2.1.8, are also 
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quasiregular surfaces of bounded extrinsic curvature, K,,, exists on them, and 
(2.21) is satisfied. 

The case when one of the two quantities Kint or K,,, exists not in a domain 
but at an isolated point is more complicated. The question of whether the second 
of these quantities then exists and whether (2.21) is true under the original 
assumption that the surface has bounded extrinsic curvature has apparently not 
been investigated. 

Turning to the surfaces shown in Fig. 5, we note that they have flat points in 
the sense of Pogorelov. Namely, a surface with four horns (Fig. 5a) has four of 
them and m = 3 there. The surface in Fig. 5b has six of them (the centres of the 
faces of the original cube) and m = 4 at each of them. These points are important 
in that the locally homeomorphic property of the Gaussian spherical map is 
violated there; in this connection see 3.3 and 4.3 below. 

In the non-compact case it is natural to define surfaces of locally bounded 
extrinsic curvature, requiring that a condition of the form (2.19) holds for each 
domain having compact closure on the surface. Then it is clear that for Bore1 
subsets of such domains the first of the equalities (2.20) holds, and under the 
additional assumption of quasiregularity so does the second. The question of the 
validity of the first of the equalities (2.20) on surfaces of bounded (or locally 
bounded) extrinsic curvature without the assumption of quasiregularity (which 
is apparently unsolved) reduces to the following: can the non-zero negative 
intrinsic curvature o- # 0 be concentrated on the set of non-regular points? 

As an example of a quasiregular surface of locally bounded extrinsic curva- 
ture we can mention the bounded (in E3) complete saddle surface discussed in 
2.3.3. 

To conclude this section we draw attention to one more unsolved question: 
can Theorem A, discussed in 5 1, be extended to the class of surfaces of locally 
bounded extrinsic curvature? 

Let us make some comments on this question. As in 2.1.7, using instead of 
“segments” taken from hyperbolic paraboloids parts of the Bianchi-Amsler 
surface with co0 = z/m, we can construct a surface that is an isometric em- 
bedding in E2 of some open disc of L *. This surface has bounded extrinsic 

curvature, is quasiregular, and is even C r, ‘-smooth and piecewise analytic, and 

at 0, by an isometry corresponding to the centre of the disc, it has a preassigned 
saddle order m > 3. It has a net of asymptotic lines that has the structure shown 
schematically in Fig. 23a. Hence it is obvious that in the given class of surfaces 
the proof according to the plan presented in 5 1 does not go through. 

The well-known proof of the more general Theorem B (see 3.3 below) also 
does not go through here because the locally homeomorphic property of the 
spherical map is violated. 

Using as starting point for further constructions the embedding of a disc of 
L2 in E3 mentioned here, it is tempting to construct a counterexample on the 
plan of 2.1.8, for example. However, the existing lemmas on “smoothing” of 
surfaces and joining parts of them, keeping the curvature negative (see Rozen- 
dorn (1962) and Rozendorn (198 1) in Part I), are insufficient to construct such a 
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counterexample: they do not allow the possibility of ensuring that the intrinsic 
curvature is constant. 

Hence to solve the question of whether Theorem A can be extended to the 
class of surfaces of locally bounded extrinsic curvature we need new approaches. 

9 3. Surfaces of the Form z = f(x, y); Plan of the Proof of 
Efimov’s Theorem 

3.1. Some Results on Surfaces that Project One-to-one on the Plane E’. The 
investigation of surfaces of the form 

z = fk Y) (3.1) 

is at the meeting point of geometry and function theory. In this subsection we 
discuss some results about surfaces of the form (3.1) defined when 
--m<x<+co,-co<y<+co. 

3.1.1. The Theorem of Bernstein and Adel’son-Vel’skij. Suppose that a func- 
tion f(x, y) is defined and continuous on the whole (x, y)-plane, and that 

(3.2) 

If the surface (3.1) is a saddle surface, then it is cylindrical with generators 
parallel to the plane z = 0 (Adel’son-Vel’skij (1945), Bernstein (1960a), Bernstein 
(1960b)). 

The proof relies on the definition of a saddle surface and is based on an 
analysis of its sections by different planes. We first establish that the surface has 
rectilinear generators. Then we prove that they are parallel to one another and 
to the plane z = 0 and cover the whole surface. 

Corollary 1 (Liouville’s theorem for a harmonic function). Suppose that the 
function f(x, y) is harmonic and bounded on the whole (x, y)-plane. Then it is 
constant. 

In fact, the graph of a harmonic function is a saddle surface. From the 
boundedness condition there follows (3.2), so the graph is a cylindrical surface 
with horizontal rectilinear generators. From this and the harmonic property it 
follows that the function is linear, and from the boundedness condition it follows 
that the function is constant. 

Corollary 2. A C*-smooth surface of the form (3.1) of negative curvature 
K < 0, defined for --oo ( x < +co, --co < y < +oo, cannot be situated between 
planes of the form z = const. 

Remarks. 1) The geometrical fact stated here as Corollary 2 can be applied, 
in particular, to the investigation of unique determination of complete convex 
surfaces; see Pogorelov (1952a) in Part I. 
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2) If we take account of the results of Pogorelov (1956b) in Part I, then in the 
statement of Corollary 2 we can replace C2-smoothness and the inequality 
K < 0 by the assumption that the surface is Cl-smooth, but has bounded 
extrinsic and non-positive intrinsic curvature: a < +co, o+ = 0. 

3.1.2. We now present some results about the rigidity of complete surfaces of 
negative curvature in which there is also a connection with function theory, and 
quite an unexpected one. 

A function W = W(3) = U + jV of a hyperbolic complex variable 3 = x + jy, 
where J ” = 1 is said to be h-analytic if in some domain of variation of the 
argument 3 it’is differentiable with respect to 3. For a continuous function W(3) 
a criterion for it to be h-analytic is the system of equations 

u:= v,‘, u; = v;, 

the analogue of the Cauchy-Riemann equations, and as in the case of analytic 
functions it can also be written briefly in the form 

w; = 0. (3.3) 

It is known (see Lavrent’ev and Shabat (1973)) that an h-analytic function can 
be represented in the form 

I 

W = cpdx + y) + v2(x - y) + j(cpl(x + Y) - v2(x - Y)), (3.4) 

where ‘pl and cpz are arbitrary differentiable functions of one argument. 

Definition (Ten (1980)). A complete surface is said to be B-rigid if from the 
fact that its bending field Z is bounded and vanishes at one point it follows that 
Z = 0 identically. 

In other words, B-rigidity of a surface B means that it has no other bounded 
infinitesimal bending fields apart from parallel displacements. Hence for such a 
surface the condition that the bending fields are bounded, which it is sufficient 
to impose only at infinity (that is, outside an arbitrary compact set), replaces the 
condition that it is fixed, which guarantees rigidity. 

On a surface 9 defined in rectangular Cartesian coordinates by an equation 
of the form (3. l), let us consider a bending field Z = { 5, y, [} written in the same 
coordinates (x, y, z), and following Pogorelov (see Pogorelov (1969) in Part I) 
put i = iJ + pi, ,a = q + 41, where 

P = fi(x, Yh 4 = fy’(x, Y)? (3.5) 

and then introduce the function W(3) = 1 - jp, where 3 = x + jy, j2 = 1. Then 
for the special case of the hyperbolic paraboloid f(x, y) = f(x’ - y2) the well- 
known differential equation of infinitesimal bendings dr dZ = 0, where r = 
{x, y, z} is the radius vector of a moving point of the surface, takes the form (3.3). 

Thus, h-analytic functions are connected with infinitesimal bendings of a 
hyperbolic paraboloid and parts of it.J’or comparison we recall (see Vekua 
(1959) in Part I) that ordinary analytic functions are connected with infinitesimal 
bendings of a sphere and parts of it. 
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Using (3.4), by similar arguments we can establish (see Ten and Fomenko in 
Seminar on geometry in the large (1986)) the following two facts. One is geomet- 
rical: a hyperbolic paraboloid is B-rigid. The other is analytic, the analogue of 
Liouville’s theorem for an h-analytic function: if an h-analytic function W(3) is 
defined on the whole a-plane and lim,,, W(3) = A, then W(3) = A. Here we can 
weaken the requirements and suppose that at infinity either Re W = U(3) or 
Im W = V(j) tends to a constant; this is also suflicient for W(3) to be constant 
on the whole s-plane. Examples show that in the usual formulation (constancy, 
which follows from boundedness) Liouville’s theorem is false for an h-analytic 
function. 

Using additional arguments, mainly concerned with the structure of the 
asymptotic net of the surface, we can establish a more general geometrical result. 

Theorem (Ten (1980)). Suppose that a C3-smooth surface 9 of the form (3.1), 
where --oo < x, y < +co, has curvature K < 0, and outside its compact part it 
coincides with a hyperbolic paraboloid. Then 4 is B-rigid. 

We note that the property of B-rigidity cannot be extended to all complete 
surfaces of negative curvature. Thus, for example, a right helicoid is not B-rigid. 

3.2. A Theorem of Efimov and Heinz on the Extent of a One-to-one Projection 
onto the Plane of a Surface with Negative Curvature Separated from Zero. From 
what follows it will be clear that a surface of the form (3.1) for which K satisfies 
the inequality (1.7) cannot be defined for -co <x < +GO, -cc < y < +co. 
However, the region of the plane that covers the one-to-one projection of a 
surface with curvature of the form (1.7) may have infinite extent and infinite area; 
an example is z = eX sin y. On this surface an inequality of the form (1.7) is 
satisfied between parallel planes x = const. 

Under the conditions (1.7) and (3.1) the surface cannot extend far in all 
directions. Namely, suppose that 

K 6 -P’, p = const > 0. (3.6) 
Then we have the following result. 

Theorem (Elimov (1953)). There is a number ci > 0 such that if a C2-smooth 
function f (x, y) is defined on a square with side a, and its graph (3.1) has Gaussian 
curvature (3.6), then a < a/p. 

Corollary. There is a number r̂  > 0 such that if a C2-smooth function f(x, y) is 
defined on a disc of radius r, and its graph (3.1) has Gaussian curvature (3.6), 
then r d $1~ (P < &l&f). 

Let a, = inf ci, r, = inf r*; these are universal positive constants. Heinz proved 
(Heinz (1955)) that 

r. d e J3. (3.7) 
Consequently, a, < 2e$; the original upper bound for a, in Elimov (1953) was 
somewhat rougher. The examples of a hyperbolic paraboloid and a pseudo- 
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sphere give a lower bound: r, , 2. > I The precise values of the constants r, and a, 
are not known. 

The results of Efimov and Heinz can be stated in terms of universal estimates 
for the dimensions of the domains of regularity of solutions of certain non-linear 
partial differential equations and inequalities. Namely, taking account of the 
well-known formula 

K = (z&z;~ - (z;$)(l + (z:)’ + (z;)‘)-’ (34 

for the Gaussian curvature of a surface of the form (3.1), we can assert that the 
differential inequality 

- (z” )’ 
(1 :;y$ + &2)2 < -(p2(& Y) (3.9) 

and the Monge-Ampere hyperbolic equation 

Z:l!ZFY - (z:‘,)’ + (p2(x, y)(l + (z;)’ -t (z;)2)2 = 0 (3.10) 

do not have C2-smooth solutions that are defined on a disc of radius r > ropL-’ 
or on a square with side a > a,p -r if the (continuous) function cp satisfies the 
inequality cp(x, y) >/ p = const > 0. 

These results can be extended to hyperbolic equations and differential in- 
equalities of a more general form than (3.9) and (3.10); see Azov (1983), Azov 
(1984), Brys’ev (1985). In addition, Elimov’s theorem on the square can be 
extended (with a change in the estimates) to the case of a rectangular region of 
the plane (Efimov (1976)), and its analogues hold for hypersurfaces and for 
vector fields; see Aminov (1968), Aminov (1971). 

Let us dwell in a little more detail on an example from geophysics, where we 
meet inequalities of the form (3.9) and equations of the form (3.10). We consider 
the following simplified model of the motion of air in the atmosphere. Suppose 
that air is an ideal gas and moves in the half-space z > 0. The vertical speed of 
motion is assumed to be small, so we neglect it and consider the vector field of 
the horizontal velocity { , }, u v written in Cartesian coordinates (x, y). The magni- 
tude of this velocity is V = Jr%r?. The field (u, v), considered on the isobaric 
surface p = const, where p is the atmospheric pressure, is assumed to be solenoi- 
dal. Then there is a flow function II/ = Ii/(x, y; p, t), 

u = -I);, v = *:, (3.11) 

where t is the time. Below we use the so-called geopotential @ = @(x, y; p, t), the 
potential energy of an experimental unit mass in the gravity force field placed on 
an isobaric surface, found in relation to sea level. Neglecting viscosity and other 
“small” physical effects, under the assumptions we have made we obtain as a 
consequence of the system of thermohydrodynamical equations the so-called 
balance equation for wind and pressure (Bolin (1956)): 

where A is the Laplacian in the variables x, y. 

(3.12) 
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The wind speed occurs in (3.12) through the flow function $, and the scalar 
pressure field through the geopotential @. Equation (3.12) is written with a 
special choice of coordinate axes: the x-axis is directed along a parallel to the 
East, that is, in the direction of rotation of the Earth, and the y-axis along a 
meridian to the North, A(y) is the projection of the angular velocity of the 
Earth’s rotation on the vertical direction, and B(y) its derivative with respect to 
arc length of the meridian. In geophysics the quantities 1= 2A and fi = 2B are 
called respectively the Coriolis parameter and the Rossby parameter. Aerological 
observations show that the assumptions we have made are justified with satisfac- 
tory accuracy for the mean troposphere over a sea or a flat country; for the 
details see Gisina et al (1976). In this model equation (3.12) is satisfied identically 
in p and t, which play the role of parameters in it. For a given right-hand side it 
is the Monge-Amp&e equation for $. 

Let Q be the rotor of the vector field {u, U} for fixed p and t. In meteorology 
Q is called the “relative vorticity of the wind speed”. From (3.11) we have 
Q = AI/J. 

Equation (3.12) enables us to write the expression for the Gaussian curvature 
K,+, of the surface $ = $(x, y), obtained for fixed p and t: 

%I = 
+AQ-A~~+BU 

(1 + V2)2 . 
(3.13) 

If the quantity on the right-hand side of (3.13) is known, then for $ we obtain 
an equation of the form (3.10) and the right-hand side of (3.13) can be negative 
and then it is hyperbolic. This situation occurs for regions of high atmospheric 
pressure - anticyclones - particularly often for anticyclones in tropical and 
subtropical latitudes, where A(y) is small in modulus. The negativity of the 
right-hand side of (3.13) is then ensured by the sign of the Laplacian of the 
geopotential A@, as shown schematically in Fig. 30, where g is the acceleration 
of free fall in the gravitational force field. 

The right-hand side of (3.13) can be assumed to be known in certain problems 
of numerical modelling of atmospheric processes. In real meteorological situa- 
tions U, u and Sz are unknowns together with $, but they can be estimated, 
starting from physical arguments and given serological observations. 

If the right-hand side of (3.13) is bounded above by a negative quantity, we 
obtain an inequality of the form (3.9) and the results of Elimov and Heinz then 

p=consp 
M 22 

Fig. 30 

F 
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enable us to obtain upper bounds for the possible extent of an anticyclone. It is 
interesting that these bounds are roughly only one order greater than the dimen- 
sions of anticyclones actually observed in the Earth’s atmosphere (and not 
millions of times greater, as we might think!). 

In this connection there is additional interest in finding the precise values of 
the constants a, and r,. 

Concerning the relation (3.13) we note that the situation here is apparently 
unusual for physicists: in the denominator the dimensionless quantity unity is 
added to the square of the velocity, that is, to a dimensional physical quantity. 
However, this is not surprising: the surface $ = It/(x, y), constructed in the auxil- 
iary Euclidean space in Cartesian coordinates (x, y, $), is not invariant under 
change of scale of length and time. When these scales are changed the surface 
$ = It/b, Y) d g un er oes an afline transformation, and the numerical values of K,$, 
on it change, but the sign of K,,, is preserved. 

We note that the estimate of Heinz relies on his identity 

s 

2n 

= Z;(P, d2 dq + 2 
ss 

cz:Ixz;y - (ziy)‘) dx dy, (3.14) 
0 X2+y2QpZ 

which has appeared in a different connection in the mathematical literature (see 
Aminov (1968)) under the name of Bernstein’s integral formula. Here z(x, y) is a 
C2-smooth function, and Z(p, cp) = z(p cos cp, p sin cp), where (p, cp) are polar 
coordinates on the (x, y)-plane. 

Suppose that the surface z = z(x, y) satisfies (3.6) when x2 + y2 < R2. Ac- 
cording to Heinz (1955) we can construct an auxiliary function 

I 

s s 

2n 

g(r) = P dp (1 + p-‘~&A (~1~) dq. (3.15) 
0 0 

It is immediately obvious that 

g(0) = 0; g(r) 3 zr2, g’(r) > 0 when 0 < r < R. (3.16) 

Also, by means of (3.14) and (3.6) we can verify that on (0, R) the function g(r) 
satisfies the differential inequality 

g”(r) > 2 r-2g(r)2. 

Suitable estimates show that from (3.16) and (3.17) we have the chain of 
inequalities 

&- 
> g(r)- Ii2 2 g(r)-‘12 - g(3-“2 3 L ln I 

0 J% r 
(3.18) 

if0 < r < f < R. Proceeding to the limit as ?+ R in (3.18) we see that 
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(3.19) 

Suppose that R 3 fi p-l. Then in (3.19) we take Y = ,/? p-l and obtain (3.7). 
We can summarize the estimates presented here: condition (3.6) for the curvature 
implies (3.17), which forces the function g(r) to increase so rapidly that it no 
longer exists when r < rOpP1 < $ ep”-‘. 

We also present the geometrical construction used by Efimov in Efimov (1953) 
to estimate a side of the square, since we shall need to refer to it later. Together 
with the surface (3.1) we consider a map of the form E2 + E2 defined in rectangu- 
lar Cartesian coordinates by (3.5). It is called the normal map for the surface 
(3.1). It is closely connected with the Gaussian spherical map @. The fact is that 
the vector 

n = l-p, -4, l}(l + p2 + q’)-l’* (3.20) 

is the unit normal vector to the surface (3.1) if p and q are as in (3.5). From (3.20) 
it is obvious that we can construct the normal map geometrically. We first set 
up a correspondence between a point (x, y) of the plane E* and the point 
(x, y, z(x, y)) on the surface given by z = z(x, y). We then carry out a spherical 
map @: 9 + S, and after this a central projection from the centre 0 of the sphere 
S onto its tangent plane E: at the “South pole” of the sphere. We assume that the 
Cartesian axes p, q on E: are respectively parallel to (and in the same direction 
as) the x and y axes in E3 1 E*: The composition of these three maps gives the 
normal map (3.5). Its Jacobian is 

A = ah 4) 
~ = (1 + p* + q*)*K. 
ah Y) 

From (3.21) it is obvious that the normal and spherical maps are locally homeo- 
morphic when K # 0. Suppose that 

K= -k2<0. (3.22) 

The asymptotic directions on the surface (3.1) are determined by d*z = 0, from 
which it follows that along the asymptotic lines 

4 I dY z = 4: + qyz = k (1 + p* + q*)k, (3.23) 

where we have the plus sign on one family and the minus sign on the other. 
The equality (3.23) enables us to construct so-called “chains”, namely piecewise 
smooth curves formed on the (x, y)-plane from projections of arcs of asymptotic 
lines chosen in turn from the first and second families in such a way that under 
a motion along the chain in one direction q decreases monotonically. On each 
part of the chain the variation of q in modulus is bounded below by the total 
variation of x on this part, since q is monotonic and (3.23) and (3.6) hold. From 
the intuitive viewpoint the existence of such a bound means that on the surface 
there are paths along which the tangent plane rotates “strongly” in space and 
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“soon” takes up a vertical position, which prevents an extension of the surface 
while preserving the one-to-one property of its projection on the plane z = 0. 

To obtain a quantitative estimate of the extent of the surface we need to 
observe here that we can turn the x and y axes on E* and the p and q axes on 
Ei through the same angle, and then construct new chains. Simultaneous con- 
sideration of the chains and level lines of the functions (3.5) leads to an upper 
bound for the constant a,; see Efimov (1953). 

3.3. Plan of the Proof of Theorem B. We present here the main steps in the 
proof of this theorem (see p. 95 above), bearing in mind the possible further 
development of the given problem area. All the details relating to the proof can 
be found in Elimov (1964), Efimov (1968), and Klotz-Milnor (1972). 

3.3.1. Let us begin with an auxiliary construction. Suppose that on the Eu- 
clidean plane E* or on a two-dimensional sphere S* of fixed radius we are given 
a circle C bounding a disc Q of radius p, where on S* the disc Q must be smaller 
than a hemisphere. Suppose that in Q we take an open sector V with central 
angle y and a concentric circle C’ of radius p’, 0 < p’ < p. We denote the 
intersection of the sector V with the circular annulus between C’ and C by u2! and 
put r, = C’ n V. Suppose that on S2 (or on E2) we are given a domain G with 
metric boundary aG, possibly many-sheeted. In other words, G must be under- 
stood either as a two-dimensional surface in E3 having support G c S2 c E3 
(respectively, G A c E2 c E3) or as a two-dimensional surface in the two-dimen- 
sional ambient space S2 (respectively, E*). 

We say that aG admits concave support at a point N E aG if G contains a figure 
% constructed for certain values of the parameters p, p’, y and situated in such a 
way that N E r, and on r, there are no other points of aG apart from N. 

Definition (Klotz-Milnor (1972)). If aG does not admit concave support at 
any of its points, then G is said to be pseudoconvex. 

Lemma 1 (Elimov (1963), Efimov (1964)). Suppose that a Riemannian metric 
of constant positive curvature is specified in G and that G is homeomorphic to E2 
and is pseudoconvex. Then G is a convex domain in this Riemannian metric. 

Corollary. If under the conditions of Lemma 1 the curvature of the metric 
specified in G is equal to + 1, then G is isometric to a convex domain on a sphere 
S* of unit radius and its area 

a(G) < 27~. (3.24) 

Remark. Lemma 1 is used in the proof of Theorem B formulated in 1.4 in 
connection with the Gaussian spherical map of the surface under investigation. 
In the literature there are different versions of the proof of Lemma 1. One of 
these (see Klotz-Milnor (1972)) uses the local isometry G + S2 and geometrical 
constructions on S* and in E3 2 S 2. Others (see Efimov (1964), Burago and 
Zalgaller (1974)) rely on intrinsic geometric constructions on a manifold with a 
metric of constant positive curvature. Efimov gave preference to an intrinsic 
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geometric version of the proof, assuming that in the course of time someone 
would find a generalization of Theorem B to the case of a surface in Riemannian 
space, where there is no Gaussian spherical map in the classical understanding 
of the term. 

3.3.2. From what follows it will be seen that for the proof of Theorem B it is 
important to obtain a contradiction to the estimate (3.24). Lemmas 2 and 3 given 
below assist in this. Let 9 be a surface of negative curvature K < 0 and let 
k = e = R-‘; see (3.22) and (1.9). Following Efimov (Efimov (1966b), 
Efimov (1968)), together with the original intrinsic metric ds2 we shall consider 
on 9 an auxiliary Riemannian metric d12, where 

dl = kds (3.25) 
and call (3.25) the l-metric, and the lengths of curves in the l-metric their l-lengths 
(similarly, the areas of figures in the I-metric will be called their l-areas, and so 
on). 

Lemma 2. Suppose that a metric ds2 is specified on a plane, it is complete, it 
has negative curvature K < 0, and the radius of curvature R has a variation with 
linear estimate in it. Then the metric (3.25) constructed on the same plane is also 
complete. 

The proof is based on the fact that if a curve has infinite length, then along it 
the integral that expresses its l-length is divergent (under the conditions of 
Lemma 2). 

Remark. The length of an arc of an asymptotic curve in the l-metric is the 
ordinary length of its spherical image. The area in the l-metric of domain U of 
F is equal to the ordinary (unoriented) area of its spherical image G(U). 

Lemma 3 (conditional). If a C2-smooth surface 9 in E3 is complete, its 
curvature K < 0, and the radius of curvature R has a variation with linear estimate 
on F, then the area of the universal covering 9 of the surface 9 in the l-metric is 
infinite. 

C_orollary. Under the conditio_ns of Lemma 3 the area of the spherical image 
Q(F) of the universal covering F of F is infinite: 

0(@(3q) = +a. (3.26) 

The proof of Lemma 3 is based on the construction of @ of the unique 
polar-geodesic coordinate system. In it the l-area is expressed by an integral and 
its divergence is established. 

3.3.3. One of the key steps in the proof of Theorem B (and the special case of 
it when K < const < 0) is the lemma on maps in 9 1 of Ch. 3 of Part I of the 
present book. We shall not state it again here, but instead we single out (as an 
auxiliary statement for Theorem B) ihe assertion stated in the present subsection 
as a “theorem”. It refers to surfaces of negative curvature in E3 and is of 
independent interest. 
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Fig. 31 

Suppose, as above, that n is the unit normal vector to P, that N is a point of 
the metric boundary a@ of the spherical image Q(5) of the surface 9, and that 
0 is the centre of the Gaussian sphere. 

We shall say that a path Z’ on B leads to N if 2 leaves any compact set on 
F that contains its origin, and for a point X E 5Z going along 9 there is a limit 
lim n(X) = ON. Then we have the following result. 

Theorem. Suppose that in E3 we are given a C2-smooth surface B of negative 
curvature K < 0, possibly incomplete, on which the radius of Gaussian curvature 
R has a variation with linear estimate. If on the metric boundary d@ of its spherical 
image Q(9) there is a point N where a@ admits concave support, then on F there 
is a path 9 leading to N whose length is finite in the metric ds2 of the surface 9. 

Example. The spherical image of a smooth half pseudosphere is a hemisphere 
with its pole deleted. a@ consists of two components. One of them - the equator 
of the hemisphere - corresponds to the exit to infinity along the tapering tube of 
the pseudosphere. The other consists of one point and therefore admits concave 
support. This component corresponds to the edge of the pseudosphere. Paths of 
finite length lead to it (Fig. 31). 

3.3.4. We suppose that the boundary a@ of the spherical image of the sur- 
face 9 admits concave support o&o at some point N and give some auxiliary 
constructions. 

We shall assume that N is the North Pole of the Gaussian sphere S2 c E3, 0 
is its centre, and N.+ is the South Pole. We denote the tangent plane to S2 at N* 
by Ei. We take the diameter NN, as z-axis, and direct the x and y axes parallel 

to the axes p and q on Ei. We call E2 the coordinate plane z = 0. We direct the 
p-axis (and the x-axis) parallel to the tangent to the bounding circle of the 
concave support u11, at the point N. Let P: E3 + E2 be an orthogonal projec- 
tion, and P,: S 2 -+ E: the central projection from the centre 0, of the sphere 
S2. Without loss of generality we may suppose that au, is situated in the 
E,-neighbourhood of N on S , 2 where E,, > 0 is chosen to be sufficiently small 
and fixed. Let us put qd,, = P,(%,); see Fig. 32. For sufficiently small c > 0 
and r > 0, J@~* contains the domain 

p2 -t q2 < r2, q < cp2. (3.27) 
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Fig. 32 

To the open domain (3.27) on E: we adjoin its boundary, except for the point 
N*, and call the resulting figure %*. 

We put 

42 = P,-ye*), 9 = @-1(a), G = P(sq, 

and regard G as a two-dimensional surface (with boundary) in E2. Later we shall 
use the restrictions of the maps P and P* to 3 and “%I respectively, keeping the 
previous notation P and P*. The composition 

P,o@oP-‘:G+%, (3.28) 

is the normal map constructed for the part 9 of the surface R Let A = ~ ah 4) 

aby Y) 
be its Jacobian. We draw attention to the fact that the ambient space E2 induces 
on G an intrinsic metric that is locally Euclidean on G\aG and which we can 
write locally (inside G\BG) as dsg = dx2 + dy2; however, in the large this intrin- 
sic metric (we call it the so-metric) is not Euclidean. The fact is that shortest 
curves constructed in it can go along aG, without being rectilinear there. Using 
the fact that R on 9 has a variation with linear estimate, and taking account of 
(3.21) and (3.22) and the position of % on S2, we can specify a function a = a(&‘) 
on G such that 

I) 0 < a(M) < 1; a(M)’ 6 ld(.A’)(, where .A! is a moving point in G; 
II) l/u(A) on G has a variation with linear estimate in the so-metric with 

certain constants C,, C, > 0 (see (1.8)). These constants for l/u(A) differ, in 
general, from those that occur in the linear estimate of the form (1.8) for R on g. 

We denote the map inverse to the normal map (3.28) by II/: 

$1 %Y* -+ G, *=Po@-‘oP;‘. (3.29) 

Let Y be its graph in E4 = E2 x E,, 2. this is a two-dimensional surface with 
boundary. It is obvious from the preceding work that in the (x, y, p, q) coordi- 
nates it is given by 

(x3 Y) = Ic’(P, 4); (PY 4) E a*. 

Instead of considering together two plane figures (G c E2 and %!, c Ei) and 
the map (3.28) we shall consider the graph Y of the map (3.29). We shall carry 
out the auxiliary constructions on the surface Y situated in E4, and follow them 
by means of projections (either on E2 or on E,, ’ whichever is convenient in each 
specific case). 

Let ZZ,: Y + uzd, be the restriction to Y of the orthogonal projection E4 -+ Ei. 
WeputII=$ol&;n:Y-+G. 

We call the Euclidean metric dsi = dp2 + dq2 on E: the s,-metric, and in G 
together with the so-metric we introduce the a-metric by putting da = a(A) ds,. 

Next, by means of the maps ZZ;‘, K’ and 17-l 0 P we carry over the metrics 
ds2 dsi, dCr2 and ds2 introduced above to the surface Y. Using them there, we 
sh*a;l need the terms so-length, E-area, and so on. We shall also assume that the 
function a = u(A) is carried over to Y by the map 17-r. 

3.3.5. For what follows it is important that the cc-area of figures on Y is 
majorized by their s,-area by virtue of the inequality (A 1 2 u2, and the cc-length 
is majorized by the +,-length by virtue of the inequality a < 1. 

Let 5 = x cos 8 + y sin 8, q = p cos 8 + q sin 8. On Y we consider an arbi- 

trary piecewise smooth arc L. We denote by yr the angle on E2 between the 
t-axis and the tangent to 17(L), and by y,, the angle on E: between the q-axis and 
the tangent to n,(L), and introduce the functionals 

S,,<(L) = 
s 

Ices ys(~)I ds, 3 0, 
L 

q(L) = 
s 

a( cos y&@‘)l ds, 3 0 

L 

and 

S,,(L) = 1 /cos y&i%? ds, 2 0; J&z E L. 
JL 

In particular, when f3 = 0 we have sot = soX, and when 0 = 742 we have soy = soy 
and s *q = s*q. 

Clearly, soy, !xr and Sag are majorized by the so-length, the a-length and the 
s,-length respectively. We draw attention to the fact that soX + soy majorizes the 
so-length, and c(, + c(, majorizes the cc-length. In addition, we have the lower 
bound 

c&L) 3 a,(L) [sin 01 - c&L) cos 8 (3.30) 
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Fig. 33 

Lemma 4. Suppose that points A and B on !P are joined by an s,-shortest arc 
L, and a piecewise smooth arc L, without self-intersections; V is the domain on Y 
between L, and L,. Then 

q<L1> G (1 + C,)(q(L,) + Cl%(V))> 
where the symbol a, denotes the M-area. 

(3.31) 

In the special case shown schematically in Fig. 33, when L, and L, have no 
points in common other than their ends A and B, the proof is carried out by 
estimates usual in mathematical analysis (taking account of the linear estimate 
for the variation of the function a(&); see Etimov (1968)). The general case of 
the mutual position of L, and L, reduces to this special case. 

We mention that in the case (1.7) for the proof of Theorem B a simpler 
“comparative lemma” is sufficient, according to which so&L,) < s,<(L,); see 
Efimov (1964), Klotz-Milnor (1972). 

3.3.6. As in 3.2, we shall construct chains in G, and by means of the map 17-i 
carry them over to !P. We have the following facts: 

I) In motion along a chain the coordinate q varies monotonically, so we can 
take as the positive direction on it the direction in which q decreases, for 
example. 

II) A chain starting from a point where q d 0 goes out to the arc r, c a Y on 
which p2 + q2 = r2. 

III) On any part L of a chain we have 

Kx(L) d s*,(L). (3.32) 

IV) A similar inequality holds if the x and y axes on E2 and the p and q axes 
on E: are turned through the same angle 8 and chains are constructed in the 
new position of the axes. 

3.3.7. Definition. We call a curve L, on Y homeomorphic to a closed ray a 
special ray if L, goes out from each part of !P that is compact in the s,-metric 
and contains the origin of L,, and if each part of L, between a pair of its points 
is an so-shortest curve. 

We can show that a special ray goes out from each point on !P and each 
special ray is piecewise smooth, and its C’-smoothness can be violated at two 
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points at most, those that occur on @* at corner points of its boundary under 

the projection Z7,. From the intuitive viewpoint, a special ray is a geodesic in the 
so-metric that goes to an improper point. 

If the so-length of a special ray is infinite, then its a-length is also infinite: from 
the existence of a linear estimate for the variation of the function l/a(&) it 
follows in this case that the integral that expresses its a-length is divergent (like it 
is for l-length in the proof of Lemma 2). 

Lemma 5. Under the conditions of the theorem of 3.3.3 (in the presence of 

concave support) 

%<-w < +a (3.33) 

for any special ray L, on Y. 

We draw attention to the fact that Lemma 5 emphasizes the disparity of the 
directions x and y that arises because of the existence of concave support. 

From Lemma 5 it follows that if the z-length of L, is infinite, then its 
projection n(L,), and together with it the whole domain G, is so elongated along 
the y-axis that 

a,(L,) = +co. (3.34) 

For the proof of Lemma 5 we need to consider different possible a priori 
situations separately. 

I) The x-length of L, is finite. Then we immediately have (3.33), according to 
3.3.5. 

II) The a-length of L, is infinite. This case splits into subcases. 
IIA) There is a circular neighbourhood of the point N* on E: such that the 

part of the projection I&(L,) that falls into it is situated entirely in the half-plane 
q < 0 (Fig. 34a). 

Y’ 

Fig. 34 
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IIB) Condition IIA is not satisfied, but on L, arbitrarily far from its origin 
in the sense of the a-metric there are points M,, M,, . . . , M,, . . . such that 
their projections M,, on ES (r = 1, 2, . . .) can be joined to the p-axis by seg- 
ments for which all the arcs M,Mi on Y that project into these segments have 
x-length not exceeding some fixed number a, > 0 (q = 0 at the points M;). This 
case is shown schematically in Fig. 34b, where the segments Q(MLM,) are 
distinguished. 

IIC) Neither IIA nor IIB is satisfied, although the a-length of a special arc is 
infinite. 

In cases IIA and IIB the proof of Lemma 5 goes through in the same way by 
means of Lemma 4 and the properties of chains listed in 3.3.6 (of course, we need 
to construct suitable chains; property IV of 3.3.6 is not used here). 

Case IIC means (as additional investigation shows) that the projection of Y I 

on E2 is very “extensive” - in G along Z7(L,) we can then mark off an infinite 
sequence of pairwise non-intersecting open domains of a special kind (like discs / 

or half-discs, see Fig. 34~) such that their a-areas admit a uniform lower bound 
of positive value. Then the a-area of G (and hence of Y) is infinite, which is 
impossible, since it is majorized by the Euclidean area of the bounded closed 
domain %.+. 

I 

Remark. In the special case (1.7) instead of Lemma 5 it is sufficient to obtain 
the estimate soX(LO) < +co. Technically this is somewhat simpler, but neverthe- 
less it requires consideration of different cases similar to those listed above. 

3.3.8. Next, for the proof of the theorem of 3.3.3, there is the prospect, by 
making the assumption (3.34), of leading to a contradiction of it. In this we are 
helped by Lemmas 6, 7 and 8 formulated below. To formulate them we need 
further auxiliary concepts and geometrical constructions, which we now present. 

Let MO be the origin of a special ray L,,, and M a moving point of it. We put 
t = c$u MOM), u MOM c L,, and write M = Mt. Under the condition (3.34) 
we have 

O<t<+q (3.35) 

when M, runs through L,. As usual, we denote the ray (3.35) by R,. 
Following Klotz-Milnor (1972), we say that a simple arc T c !P is pre- 

horizontal if its projection Z7(T) on E2 is rectilinear and parallel to the x-axis. 
For what follows it is important that 17(T) cannot contain a ray, that is, the 
situation shown schematically in Fig. 35 is impossible; if it were to hold, then the 
prehorizontal arc T (or part of it) would be a special ray on which soX = GO; then, 
using a linear estimate of the form (1.8) for l/a, we could show that a, = 00 on 
it, which is impossible by Lemma 5. Let Y, be the set of those values t E R, 
for which the tangent to the special ray L, at the point M, either does not 
exist or is orthogonal to the y-axis. Using Sard’s theorem we can show that 
mes Y, = 0. 
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Fig. 35 

Suppose that t E R+\Y,. Through the point M, we draw a prehorizontal arc. 
If M, E d Iv, we draw and extend it on one side ~ inside Y - until it first meets a Y 
again. If M, is an internal point of Y, we extend the prehorizontal arc on both 
sides of M, until it first meets aY again. By what we said above, such meeting 
points must exist, and we obtain a prehorizontal arc homeomorphic to an 
interval, which we denote by T, and call a cross-section, following Elimov (1964). 

A cross-section splits Y into two parts, for one of which its closure in Y is 
non-compact - it contains a sequence of points whose projections on E: con- 
verge to N,; we denote this part by S, and consider its cc-area o,(S,) = a(t). It is 
finite and uniformly bounded with respect to t by virtue of the estimate 

0 < ‘S(t) < o(Z7,(S,)) d o((@*) < 7w2. (3.36) 

We denote the a-length of the cross-section IT; by z(t). 
Let Y, be the set of those values of t for which 17(7;) is an interval tangent to 

aG drawn at the end-point of ZZ(7;). By means of Sard’s theorem we can establish 
that mes Y, = 0. 

Suppose that t E R+\(Y, u Y,). Then the derivative 2I’(t) exists, and it is not 
difficult to find it by geometrical arguments. In fact, 

di!I = -(IT, a2 ds,),dy,, dt = W(t)ldyI 

and so 

W(t) = -a(t)-’ 
s 

a2 ds, = -a(t)-’ 
s 

a dcq (3.37) 
T, T, 

where d(t) is the value of a at the point M, E L, through which we have drawn 
the cross-section T,. The differential d2I is shown conventionally in Fig. 36. The 
part of the figure S, corresponding to it is hatched. 

The boundary aY of the surface Yin E 4 = E2 x E.$ (simultaneously intrinsic 
and extrinsic geometrical) consists of three parts, which we denote by r,, r+ and 
r-: 
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Fig. 36 

p2 + q* = r2 on r,, see above, 3.3.6(11); 

4 = CP2, p < 0 on C; 

4 = CP2, p>Oonr+. 

Under the conditions of the theorem of 3.3.3 Lemmas 6-8 are true. 

Lemma 6. There is a monotonically decreasing function x = X(E) > 0 (E > 0) 
such that tf z(t) < F, then on the cross-section IT; the function a satisfies the 
inequality 

4J4 3 W)X(E), Jt%E IT;. (3.38) 

Lemma 7. The set x c R+\ Y, of those values oft for which z(t) > E has finite 
measure for every .s > 0. 

Lemma 8. ITI, + N* as t + +oo, and for all sufficiently large values t E 
R+\ Y, one of the ends of the cross-section 7; is on r- and the other is on r+. 

Lemma 6 is proved by estimates usual in mathematical analysis, and the 
function X(E) can be written in explicit form, but we do not need it below. The 
proof of Lemma 7 relies on (3.36), (3.37) and Lemma 6. 

Remark. Under the condition (1.7) we can take t = s,,,(u M&f), and for 
z(t) and ‘S(t) we can take the s,-length of the cross-section ?; and the so-area of 
S,; then instead of (3.37) we have the simpler formula ‘W(t) = -z(t). 

The proof of Lemma 8 is carried out by contradiction. The assumption that 
its assertion is false leads to a contradiction with Lemma 5. 

3.3.9. In the proof of the theorem of 3.3.3 we need some more elementary 
facts. Suppose we have drawn the tangents QB- and QBf to the parabola 
y = cx* from the point Q(0, -h); see Fig. 37. Together with the arc of the 
parabola they bound a curvilinear triangle with area 

II. Surfaces of Negative Curvature 

B”- 9 

r- 

\“ 
1 s” 

a 

Fig. 38 

Fig. 31 
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(3.39) 

where b = lB-B+I is the length of the chord of the parabola joining the points 
of contact. Then 

h = +cb*, (3.39’) 

and for the angle /I between the x-axis and the tangent QB+ we have the estimate 

sin /I > tan p cos fi,, > $b (3.40) 

if fl E (0, PO), where 0 < f10 < n/3. 

3.3.10. Let us carry out some auxiliary constructions. Taking LE R+\Y, we 
construct Z7..(S,), and then on the negative q-axis we take a point Q so far down --_ 
that ZZ,(S,) is included in the curvilinear triangle QB+N,fi-, where QB+ and QB 
are tangents to the paraboJa q = cp 2 and &N,i? is an arc of this parabola , 
(Fig. 38a). Then we make Q tend to N* along the q-axis and denote the upper- 

most position of this point for which such an inclusion holds by Q = Q,; we 
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denote the points of contact corresponding to it by Bf = I?: and B- = B; (Fig. 
38b). The figure IZ,(S,) in Fig. 38 is hatched. Also let 

0 = a(t) be the area of the curvilinear triangle bounded by the open polygon 
B-QB+ and the arc B-N, B+ of the parabola; 

h = h(t) be the length of the segment QN,; 
b = b(t) be the length of the chord B-B+; 
/J = p(t) be the acute angle between the p-axis and the tangent QB+ (Fig. 38b). 
Let R = R, be the point on IZ,(T,) having the smallest value of the coordinate 

q and A = A, one of the points of contact of II,(q) with the open polygon 
B-QB+. For definiteness this is shown in Fig. 38b on the right-hand tangent 
QB+. The notation in Figs. 38-41, which illustrate these and subsequent con- 
structions, is chosen so that we can imagine we see a surface (with boundary) Y 
with figures on it from the side of the two-dimensional plane E:. Points and 
figures on Y and their projections on the plane Ez will be denoted by the same 
symbols-this does not cause any ambiguity. 

Using Lemma 8, we choose t, > 0 so large that when t > t,: 
1) the angle /? > 0 is sufficiently small, for example /J < n/3; 
2) dB;QB: is inside the disc p2 + q2 < r2; 
3) one of the ends of the cross-section T is on r- and the other on r+. 
Then T, intersects Q,N, and so at R, the coordinate q is negative. This 

guarantees that the chain starting from R, reaches the arc &. 

3.3.11. Next we need constructions carried out for two different values t = 
t, > t, and t = t, > t, For simplicity and greater clarity we proceed as follows. 
When t = ti (i = 1,2) the values of the functions and the points are marked with 
the index i instead of ti. The constants C, and C, in (3.31) are re-denoted by 
C, = C,, 1 + C, = C,,. As well as the original coordinates (x, y) on E2 and (p, q) 
on Ei, we need the coordinates obtained from them by rotation through an 
angle b = _+B (the plus sign if A, E Q,Bl, the minus sign if A, E Q2B;). Corre- 
spondingly, on E2 we shall have a new abscissa 5 = ((0) when 19 = p, and on E: 
a new ordinate q = ~(6) when 8 = B + 7c/2, which will be used in estimates of the 
form (3.30) and (3.31). 

Having constructed the cross-section TI and T2, from the points R, and A, 
we produce chains, the first in the original position of the coordinate systems, 
and the second for the coordinates rotated through an angle a. We extend both 
of them until they first meet Tl (Fig. 39). Then the part of the first of these chains 
from the point R, to its meeting with T,, which we denote by & is inside the 
triangle bounded by the open polygon B;QB: and the p-axis. The part of the 
second chain from A, to its meeting with Tl is denoted by p. We extend that 
tangent Q2 B: on which A, lies to its intersections at P- and P+ with Q1 B; and 
Q1 B:. We observe that p c LIQIP-Pf, and the heights of the two triangles 
concerned here, dropped from the vertex Q1, do not exceed h, (see Figs. 39-41). 
Taking account of (3.32) and (3.39’) we have 

(3.41) 

Fig. 39 

Fig. 40 

Fig. 41 

Suppose that Y < i. We can arrange this in advance in constructing the figure 
OX!*. Then b(t) < 1 when t > t,, and from (3.39) we obtain the estimate 

o(t) < &cb(t)’ when t > to. (3.42) 

Next, let dL be the part M, M2 of the special ray Lo. Then by the definition 
of the quantity t we have 
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a,(AL) = t, - t,. (3.43) 

We join the ends M, and M, of the arc AL by two different piecewise smooth 
curves. We form one of them from the chain 2 and parts of the cross-sections Ti 
and T,. We form the other from parts of the same cross-sections and the chain 
p. Fig. 39 shows both these piecewise smooth curves, and also the arc AL of the 
ray L,. Let us estimate the quantities a,(AL) and cc&AL), applying Lemma 4. 
Taking account of (3.41) and (3.42), we find that 

QAL) d C,,(z, + cQJ + z2 + C,911) 
q(AL,) d C,,(z, + K&) + zz + C,&) 

< C,,(z, + z2 + i(l + fC,)&). 

(3.44) 

In addition, using (3.30) and (3.40), we estimate cr<(AL) from below: 

a<(AL) 3 +cb,cr,(AL) - QAL). (3.45) 

The two-sided estimate for t+AL) in which cr,(AL) takes part is one of the 
most important features of the proof of the theorem in 3.3.3. It enables us, having 
used the form of concave support and having “shaken” the coordinate system 
(Fig. 40), to look at the special ray L, from a different angle and finally to 
obtain an upper bound for a,(L,). However, for this we need some additional 
arguments. 

3.3.12. Below we need the auxiliary function 

u(t) = yiqij > 0. 

Using it, we can conveniently write the modulus of a’(t) as 

I%‘(t)1 = 3u(t)21u’(t)l. 

Taking account of (3.36) and (3.39), we have 

(3.46) 

u(t) < Cob(t), where C, = (c/12)‘j3. (3.47) 

Our final goal is to find an upper bound for the right-hand side of (3.44) in terms 
of a quantity of order G(bf). So far the possibility of large values of Iv’(t)1 and z(t) 
appearing has prevented this. Geometrically this is connected with the possibil- 
ity of long cross-sections 7; appearing. They need to be excluded from consider- 
ation. Elimov called this part of the auxiliary constructions “cutting-back of 
boughs”. 

Let Y, denote the set of those values t E R, for which /u’(t)1 > 1. The function 
u(t) is positive and monotonically non-decreasing, so mes Y, < +co. Let us fix 
s1 > 0; using Lemma 7 and the fact that mes Y, = mes Y, = 0 we construct a 
closed set Y c R, of finite measure such that 

Y, u Y, u [O, to] u Ye, u Y” c Y. 

Its complement W = R+\ Y is open and 

mes W= +co, (3.48) 

II. Surfaces of Negative Curvature 147 

because of (3.34) and (3.35). From (3.37), (3.38) and (3.46) we see that 

z(t) < X(El)-l I%‘(t)1 .< 3X(EJ1u(t)2 (3.49) 

on W. Hence, assuming that t,, t, E Wand taking account of the fact that u(t) is 
monotonic, from (3.47) and (3.49) we find that 

z1 + z2 < 6C,$&J1b:. (3.50) 

3.3.13. Now there is one more step-a rather unexpected one. 

Lemma 9. Suppose that on a positive ray of the t-axis we are given an open set 
W on which there is specified a monotonically decreasing function g(t) > 0 such 
that 

(t - t,Mt) d cdto)2 (3.51) 

for any t,, t E Wand t > t, for some C = const > 0. Then W has finite measure. 

Apparently Lemma 9 was first proved by Elimov, in connection with the 
solution of a problem of Hilbert and Cohn-Vossen. But it is undoubtedly of 
independent interest for mathematical analysis, and the proof of it admits an 
intuitive geometrical interpretation. 

Proof of Lemma 9. Let B$ be the constituent intervals of the set W. We shift 
all the I$ to the left close to each other together with the parts of the graph 
y = g(t). We denote the set W, its constituent intervals y and the function g after 
this transformation by @, R and g, and let w be the closure of @ on the ray 
t > 0. At all points of discontinuity and at the ends of the intervals I$ we redefine 
g(t) by left continuity. After this we complement the graph y = g(t) at points of 
discontinuity by vertical segments joining the left and right limiting values of this 
function; see Fig. 42. The curve obtained in this way, sloping downward and to 
the right relative to the t-axis, we call L. We draw attention to the fact that for 
the coordinates of points (t, y) E L an inequality of the form (3.51) also holds. 
We take an arbitrary q E (0, 1) and a point t, E I?r. We put y, = gj(tl) and 
construct a sequence {t,,, y,} according to the following rules: t,+l = t, + At,,, 

Fig. 42 
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n31 ; if t, E w, then (t,, y,) E L, and dt, = Cq-‘y, 
? for some n 3 2, we put At, = 0 and yP = 0 

,; if fi is bounded and t, > 
sup 1 for all p > n. A calculation, 
using (3.51), then shows that yn --t 0 as n + co. The domain of definition of the 
function g(t) > 0 cannot extend further to the right than the point that is ap- 
proached as y,, + 0. Hence mes W is bounded above by the sum of the series 
consisting of the At,. Using (3.51) again, we discover that it converges: 
mes W d t, + ~~zl At,, < +co. 

Remark. Lemma 9 can be generalized. For example, we can take Cg(t,,)l+’ 
with E > 0 on the right-hand side of (3.51) instead of Cg(t,)‘. Then only the 
choice of At,, changes, otherwise the proof goes though in the same way. 

3.3.14. From (3.43)-(3.45) and (3.50) we conclude that the function b(t), the 
length of the chord B;B: in Fig. 38b, satisfies the conditions of Lemma 9, so 
mes W < +co, which contradicts (3.48). 

Consequently, (3.34) is impossible. Thus, 

ci,(L,) < +a. (3.52) 

From (3.33) and (3.52) it follows that the a-length of the special ray L, is finite, 
and so are its so-length and s-length. The fact is that the part .% of the surface B 
lies “almost horizontally” in E3 and s < sO,/‘m on 3, and from the fact that 
the so-length is infinite, as we remarked above, it follows that the a-length is 
infinite. 

Thus, on P there is a path 2 = P-’ 0 I7(L,) of finite length that leads to N. 

3.3.15. Turning to Theorem B (in 1.4) we now see the following. 
a) Either there is a point N E &ZJ where d@ admits concave support, but then 

we arrive at a contradiction with the theorem of 3.3.3, by virtue of which the 
surface is incomplete. 

b) Or there is no concave support. Then by the corollary of Lemma 1 the area 
of the spherical image CJ(@) < 271. We note in passing that for a hyperbolic 
paraboloid its spherical image is an open hemisphere, so the equality CJ(@) = 271 
for the convex spherical image of a complete surface of negative curvature must 
be attained. However, under the conditions of Theorem B we again arrive at a 
contradiction, now between (3.24) and (3.26).3 

Concluding Remark. Elimov emphasized that in the proof of this theorem we 
were unable to construct the spherical and normal maps, and all the consider- 
ations were carried out on 9 by introducing suitable auxiliary metrics. Thus, 
the surface 9 on which we take as the metric form the third fundamental form 
dn’, well known in differential geometry, is exactly that Riemannian manifold Q 
whose metric boundary a@ was investigated in the topic of concave supports. 
Also, the auxiliary surface Y can be useful in generalizing Theorem B to classes 

3 Using analogous methods Perel’man has established the non-immersibility in E3 of a more exten- 
sive class of complete metrics and even of some incomplete metrics with K < 0; see Perel’man (1990a) 
in Part I. 
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of surfaces of smaller smoothness than C2. Namely, we can hope that then we 
can “well” approximate the surface Yin E4, possibly non-smooth, by a smoother 
two-dimensional surface 9, and then carry out constructions and estimates 
similar to those presented above on 9. In connection with the assumptions 
made here, see 4.7.4 below. 

3.4. Sufficient Local Conditions for Plane Maps to be Homeomorphic in the 
Large. From 3.3 it is obvious that in the proof of Theorem B a large part of the 
auxiliary material refers not to surfaces, but to maps of the form 

F: E2 -+ E2. (3.53) 

As above we shall mark the second of these planes by an asterisk. 
The map given by formulae of the form 

Q = F(X), X = (x, y) E E2, Q = (P, 4) E -% (3.54) 

which was considered in 3.3, was a potential map, that is, it had the special form 
(3.5). However, the approaches presented there can be used to study wider 
classes of maps. Namely, in this way we obtain the following result. 

Theorem (Elimov (1968)). Suppose that on E2 we are given a Cl-smooth map 
m 4) 

(3.54) where A = a(x, y) < 0, and that there is a function a = a(X) > 0 such that 

l/a(X) has variation with linear estimate on E2 and 

IA(X)l > 4X)IJW)I + 4V2, X E E2, (3.55) 

where J = q: - p; = rot{p, q}. Then F is a homeomorphism in the large, and 
F(E2) is a convex domain on E:. 

The proof in Efimov (1968) is based on geometrical constructions using 
chains, a special ray and concave support. The arguments presented in Klotz- 
Milnor (1972) show that the requirement A < 0 can be weakened and we can 
state sufficient conditions for a map of the form (3.54) to be homeomorphic in 
terms of the eigenvalues. 

Special Case. We can guarantee that the map (3.54) is homeomorphic in the 
large if there are numbers A, and A, such that 

A(X) d A, < 0, IJWI d A,. 
(3.56) 

We draw attention to the fact that conditions (3.56), which are local, guaran- 
tee that the map is homeomorphic in the large. Under the conditions (3.56) we 
can establish a stronger assertion than (3.55); see Elimov (1968): F(E’) can only 
be either the whole plane, or a half-plane, or a strip between parallel lines. 

Let D = p; + q; = div(p, q} = tr(F’) and r = Jm. Very recently new 
progress has been attained in this problem area. 

Theorem (Aleksandrov (1990)). Suppose we are giuen a function I: [0, + 00) -+ 
(0, +oo) such that jn +ao l(t) dt = +co for any CI > 0 and a Cl-smooth map satisfying 
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the conditions 
Id( Z l(r)lJ(X)l + l(r)’ 

PW 6 4% X E E2. 
(3.57) 

Then F is a homeomorphism, and F(E2) is the whole plane, 

The proof in Aleksandrov (1990) is carried out by analytic methods: it relies 
on an analogue of John’s theorem (John (1968)) on homeomorphism of Banach 
spaces and results of Pourciau (1988). There is another way of reasoning which 
uses Miller’s method for proving the existence of a global inverse function 
(Miller (1984)) and a theorem of Wintner on the extendability of solutions of a 
system of ordinary differential equations (Wintner (1945)) side by side with John 
(1968). In connection with the questions considered in 3.4, see also Geisberg 
(1970) and Kantor (1978a). 

0 4. Surfaces with Slowly Varying Curvature. 
Immersion of Metrics of Negative Curvature in E3. 

The Influence of the Metric on the Regularity of a Surface 

4.1. Analytic Apparatus 

4.1.1. The main analytic means of investigating and solving the problems 
discussed in this section is the system of Gauss-Peterson-Codazzi equations, 
written in special ways that are convenient when K < 0; however, we shall also 
discuss here situations in which the a priori smoothness of the surface is less than 
C4, and then we shall have to invoke various additional arguments. We recall 
that this system connects the coefficients of the first and second fundamental 
forms of the surface 

I = ds2 = Edu’ + 2Fdudv + Gdv’ 

II = (nd’r) = -(dn, dr) = Ldu’ + 2Mdudv + Ndo2. 

It contains the Gauss equation-a non-linear algebraic equation 

LN - M2 = (EG - F’)K, (4.1) 
where K = Kin, is expressed in terms of E, F, G and their first and second order 
derivatives according to the well-known Gauss formula (see Finikov (1952) or 
Blaschke (1930), for example), and the two Peterson-Codazzi equations, which 

E F 
for a given metric tensor gij = F 

( 1 
G are linear first-order partial differential 

equations in L, M, N. 
When K < 0 we can eliminate one of the three functions L, M, N, using (4.1); 

we then obtain a hyperbolic quasilinear system of two first-order equations, 
which after reduction to the so-called Riemann invariants r(u, u), s(u, v) (see 
Rozhdestvenskij and Yanenko (1978)) takes the form 
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r: + sr: = P(r, s), s: + rs: = P(s, r), (4.2) 

where .?? is a polynomial of the third degree in the new unknown functions r and 
s, whose coefficients are linear combinations of the Christoffel symbols and the 
quantities 

Q = iln k, Qi,, Qi, (4.3) 

(see Rozhdestvenskij (1962) and Poznyak (1966), and also Poznyak and Shikin 
(1986) and Poznyak (1973) in Part I); k = Jm. The system of equations (4.2) 
is equivalent to the original Gauss-Peterson-Codazzi system with the additional 
condition 

r # s. (4.4) 

If it is satisfied, then L, M, N can be expressed algebraically in terms of r and s. 
We note that r and s have a simple geometrical meaning: they are the slopes 
of the images of the asymptotic lines of the unknown surface on the plane of 
the parameters (u, u). The asymptotic lines serve as characteristics of the quasi- 
linear system (4.2), so condition (4.4) signifies the requirement that the system is 
non-degenerate on a given solution of it. 

4.1.2. Following Elimov (1966b), in asymptotic coordinates we shall write 
E = e2, G = g2; then F = eg cos w, where o is the angle between the asymptotic 
lines on the surface. In these coordinates L = N = 0 identically, and if we 
introduce the normalized coefficients of II, dividing L, M, N by dm, 
and putting m = (EG - F2)-l12M, then the Gauss equation takes the form m2 = 
Kin*. However, if the curvature Kint is variable, and we discuss the question of 
an immersion of the given metric in E3, then in asymptotic coordinates we 
cannot regard E = e2, F = eg cos w, G = g2 and Kin, as known functions, since 
the asymptotic lines themselves are an object of the extrinsic geometry of the 
surface. Nevertheless, as we shall see below, the equations of surface theory, 
written in asymptotic coordinates, play an important role. In these coordinates 
the Peterson-Codazzi equations take the form 

(Ek)” + Fk; = 0, 

Fk: + (Gk): = 0. 
(4.5) 

Regarding as the first family of asymptotic lines the one that has right- 
handed screw torsion, we go over in (4.5) from derivatives with respect to u, D to 

derivatives $ with respect to arc length of asymptotic lines of the i-th family 
I 

a 
and to derivatives ~ 

as* 
with respect to arc length of curves orthogonal to them; 

then (4.5) can be reduced to the form (see Efimov and Poznyak (1961)) 

8 ln(ek) dQ . 

as, = ast sm w* 
d ln(dd aQ 

as, = -8s; sm w. (4.6) 
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Next, from the Gauss-Bonnet formula, applied to a quadrangle 9 of the 
asymptotic net, after certain transformations and a limiting process when 9 
contracts to a point, we obtain an equation of the form 

Zl(92(w)) = d sin w (4.7) 

for the angle o, where -rP, and YZ are quasilinear first-order differential opera- 
tors. For the specific form of them and an expression for the multiplier &, see 
Elimov (1966b). When k = 1 (4.7) goes over to (1.6). 

From (4.7) by means of (4.6), introducing the auxiliary quantities 

^wi- = (-I)‘+’ (($x+ i”“)k’> (4.8) 

where the symbol 
a2 

( ) Z.. . denotes the second-order derivative with respect to 
r 

arc length of the geodesic touching an asymptotic line of the i-th family, we can 
obtain the following relations for the derivatives of the geodesic curvatures Xi of 
the asymptotic lines: 

The right-hand sides of (4.6) and the quantities (4.8) admit estimates in terms 
of the intrinsic metric of the surface. Hence, in equations (4.6)-(4.7) (or (4.6) and 
(4.9)) there is revealed a connection between the intrinsic and extrinsic geo- 
metries of the surface: these equations, together with the Beltrami-Enneper 
theorem on the torsion of the asymptotic lines, gives information about the 
influence of the intrinsic Gaussian curvature on the asymptotic net of the surface, 
and hence on the possibility of positioning the surface in space, since a surface 
of negative curvature is woven from its asymptotic lines. 

4.1.3. The classical derivation of the Gauss-Peterson-Codazzi equations is 
based on the equality of mixed third-order derivatives (r-i:, = r$,, and so on) and 
so it assumes that Y is C3-smooth as a function of u and 0. However, in specific 
cases when the coordinate lines are constructed on the basis of certain geomet- 
rical requirements, a higher smoothness of the surface itself is sometimes needed. 
Thus, for example, on transition from arbitrary coordinates to asymptotic coor- 
dinates, there is, generally speaking, a loss of smoothness of the vector-function 
r. This loss may be two units (from C” to Cne2, see Hartman and Wintner (1953)), 
so to derive equations (4.5)-(4.7) and (4.9) it was originally necessary (Elimov 
and Poznyak (1961)) to assume that F E C’; see also Efimov (1966b). How- 
ever, there is another way of deriving them, in which we need significantly less 
smoothness of the surface. Before presenting it, we mention certain facts. 
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Suppose that the metric ds2 is considered in semigeodesic coordinates 5, r~, in 
which the geodesics are the curves q = 0 and 4 = const; then it can be written 
like (2.8) but with p and cp replaced by 4 and q with the additional condition 

NO, 4 = 1, B,i(O, r/) = 0. (4.10) 

Such coordinates (5, q) are uniquely determined by the choice of the initial point 
< = v = 0 and the direction at this point of one of the coordinate curves, say the 
r-curve. We can prove (see Rozendorn (1966)) that the order of smoothness of 
Kint(& q) is invariant under transition from one coordinate system (5, ‘I) to 
another similar one. 

Below, when we speak about the C-smoothness of Kint, we shall have in mind 
the intrinsic curvature Kint = K, specified in semigeodesic coordinates 5, r~ sat- 
isfying (4.10). 

We shall say that a surface F belongs to the class ‘?I”, n = 2, 3, . . . , co, if on 
9 there is a no more than countable set (possibly empty) of points { Oj} isolated 
in its intrinsic metric and such that Y\ u Oj E c”, and 9 E C’ in the large. If, 
moreover, each point Oj on 9 has a neighbourhood in which the mean curvature 
H = +(k, + k2) b 1s ounded, we shall say that 9 E 23”. We have the following 
inclusions of these classes: 

1 
t!I” c 2I”, ‘iv c w when m > n 3 2; 

!  

c” c !233” c ‘ill” when n > 3; (4.11) 

c2 c 232 c cl,‘; !B2 c aI2 c c’. 

Example. The surfaces of which we spoke in 2.1.8 and 2.3.3 (see Figs. 5 and 
29) can be constructed so that they belong to the class ‘%J3”. This tells us that 
Theorem B (see 1.4) not only cannot be extended from the class C2 to the class 
Cl,‘, but even to the narrower class 23’. 

We can prove that equations (4.5) and (4.6) remain true if 9 E VI’, K < 0, 
K E C’. The plan of the proof is as follows. First, on the assumption that @’ E C2, 
K < 0, K E C’, on the basis of an analysis of the relations between the ele- 
ments of an infinitely small net quadrangle 9 we can establish the existence in 
asymptotic coordinates of a mixed derivative of the radius vector r, understood 
as the limit 

(4.12) 

where the symbol [. . .lu, just as in (1.2), denotes the alternating sum. After this 
we can establish the equality 

r & = kegn sin w - (Q:rd + Qhr:). (4.13) 

With higher smoothness of the surface, when 9 E C4, (4.13) is none other than 
the well-known Gauss derivational formula for the mixed derivative riti, written 
in asymptotic coordinates. From (4.13) by identity transformations, without 
additional dfferentiations, we obtain the equalities (4.5), and from them (4.6). 
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Next we carry out an investigation of the structure of the asymptotic net in a 
neighborhood of the points Oj and establish that (4.13), (4.5) and (4.6) can also be 
extended to these points. 

The equalities (4.9) and (4.7) are valid if F E 213, K < 0, K E C2. They were 
also first established by means of an analysis of the relations between elements 
in 9 on the assumption of higher smoothness: B E C3 when K < 0, K E C2, and 
then by a limiting process they were extended to the points C$. 

Simultaneously with the deduction of the formulae (4.5), (4.6), (4.9) and (4.7) 
the existence of all the derivatives occurring in them can be established. For the 
details see Rozendorn (1966) and Rozendorn (1966) in Part I. 

4.2. (h, A)-Metrics. In this and the next section we consider the classes singled 
out by Elimov (Elimov (1966b)) of surfaces for which K varies so slowly from 
point to point that the properties appear to be similar to those of surfaces of 
constant curvature. 

One of these classes (a more restricted one) is defined as follows. Suppose we 
are given numbers h and A such that 

A > 0, hE(O, l), hA2 >$ (4.14) 

and suppose that 

I(ln R)‘I < 11, (JR)” < (1 - h)IK/3’4, (4.15) 

where (as above) R = (KI-“2, and primes denote derivatives with respect to the 
arc length of an arbitrary geodesic. 

Definition (Etimov (1966b)). The surface of negative curvature (1.7) has an 
(h, A)-metric if the inequalities (4.14))(4.15) are satisfied under the normalization 
Kd-1. 

Definition (Eftmov (1966b)). A domain D on a plane (or on a surface homeo- 
morphic to a plane) with a metric specified in it is called a simple zone if 
its completion @ in this metric is non-compact, and the metrical boundary 
8% = @\% is either empty or consists of at most two non-compact connected 
components. 

Examples. The branches of a hyperbola divide E2 into three simple zones. L2 
in its metric and a half-plane of L2 are simple zones, and the conditions (4.15) on 
L2 are satisfied for any A > 0 and h E (0, 1). 

Theorem (Efimov (1966b)). A simple zone with (h, A)-metric that is isometri- 
cally and regularly immersed in E3 cannot contain more than one complete 
asymptotic line of each of two of its families. 

The plan of the proof is as follows. If a simple zone q contains two complete 
asymptotic lines, then they bound a simple zone @i c ?L It can be established 
that au, contains a simple zone e2 homeomorphic to a half-plane whose bound- 
ary a%2 has a special structure: a%, = 1_ v 1, u I,, where I-, l,, 1, are arcs of 
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asymptotic lines, and 1, is homeomorphic to an interval and belongs to one 
family of asymptotic lines, and I- and 1, are homeomorphic to a ray and 
belong to another family; in addition, on 1, the geodesic curvature 2t f 0 and it 
has a sign such that I, is converted to q2 by its “convexity”, Fig. 43. Ir asymp- 
totic coordinates (u, o) we carry out a two-sided estimate of the integral 

I= 
ss 

sin w du dv, sin w > 0. (4.16) 
‘l2 

In addition we discover the following contradiction: according to the upper 
estimate the integral (4.16) converges, I < +cc, and according to the lower 
estimate it diverges, I = + m; for the details see Elimov (1966b). In the proof one 
uses the conditions (4.14))(4.15) and the analytic apparatus considered in 4.1.2- 
4.1.3. The proof goes through when K E C2, 9 E 913. 

Theorem A (see 1.2) can be obtained as a corollary of the theorem about a 
simple zone. 

On surfaces in E3 there occur simple zones with (k, A)-metric and even with 
constant curvature that contain a complete asymptotic line. As an example we 
can mention the Bianchi-Amsler surface; see 2.1.5 and Fig. 19 above. 

4.3. q-Metrics. A surface has a q-metric if on it 

IR’I d q < +a, (4.17) 

where 4 > 0; this term was introduced in Efimov (1966b). 
Special cases of q-metrics are the (h, A)-metrics: they have 4 = l/A if K G - 1. 

When q = 0 we obtain a metric of constant curvature. 
On a surface with a q-metric the asymptotic net has the generalized 

Chebyshev property. Namely, the difference of the lengths of the opposite sides 
of the net quadrangle 9, measured in the I-metric (3.25), is estimated above by 
half the product of the number q and the area of the quadrangle G$ measured in 
the same l-metric (Efimov (1966b)). 

An asymptotic quadrant is a simple zone on a surface of negative curvature, 
homeomorphic to a half-plane and bounded by the arcs of two asymptotic 
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and a “flabby” pseudosphere have forced us to assume that compact domains of 
two-dimensional metrics with curvature of the form (1.7) are immersible in E3, 
but for a long time this problem has not yielded a solution. Success here was 
attained by Poznyak (Poznyak (1966)), who constructed an immersion of a 
geodesic disc of arbitrarily large radius with any negative variable curvature of 
the form (1.7). This paper served as a stimulus for the development of research 
on immersibility in the form of surfaces with a boundary of incomplete but 
non-compact metrics and negative curvature. This problem is closely connected 
with the theory of Monge-Ampere hyperbolic equations and quasilinear sys- 
tems. An important contribution to this was made by Shikin: he obtained a series 
of results about immersibility in E3 when K < 0 of non-compact manifolds 
with boundary and extended the methods he developed to certain cases of the 
vanishing of the curvature, which corresponds to hyperbolic equations with 
degeneration. 

Referring an interested reader to the details in the surveys Aminov (1982), 
Poznyak and Shikin (1974), Poznyak and Sokolov (1977) and Poznyak (1973) in 
Part I and the papers Shikin (1975, 1980, 1982), we mention two concrete results 
which can be formulated particularly transparently. 

4.4.2. Theorem (Poznyak (1977b)). Any proper polygon in L2 admits a C”- 
smooth isometric immersion into E3. 

We recall (Alekseevskij, Vinberg and Solodovnikov (1988)) that a proper 
polygon in L2 can have both ordinary and infinitely distant vertices, but it does 
not contain any half-plane. In Fig. 44 in the conformal model of L2 on a disc 
there is represented a proper polygon J& with five vertices, of which four are 
infinitely distant. 

The proof of the theorem is based on the fact that the compact part of a 
polygon admits an immersion in E3 with great arbitrariness, and this arbitrari- 
ness can be used so that then to the compact part we “add” in E3 immersed 
neighbourhoods of each of the infinitely distant vertices, preserving the neces- 
sary smoothness of the whole surface. 

4.4.3. Let w(q) be a positive continuous function, specified on the whole q-axis. 
We denote by Z&, the simple zone on the &plane specified by the inequalities 

lines of different families, starting from one point and indefinitely extended, 
each on one side (Elimov (1966b)). 

Asymptotic quadrants exist on surfaces with a q-metric in E3, for example, on 
the universal covering of a smooth half of a pseudosphere. The generalized 
Chebyshev property of a net makes it possible to establish (Elimov (1966b)) that 
if q < ,/‘2, then the net of asymptotic lines is regular in the large in a whole 
asymptotic quadrant, that is, it is homeomorphic to a Cartesian net in an 
ordinary quadrant on E’. The simultaneous use of the structure of an asymptotic 
net in quadrants, the methods of arguments with concave supports and the 
additional investigation of the spherical image of a geodesic curve make it 
possible to prove the following theorem. 

Theorem (Perel’man (1988b) in Part I). There exists a q,, > 0 such that when 
q E [0, qO] a half-plane with q-metric does not admit a Cm-smooth isometric immer- 
sion in E3. 

Here we understand a half-plane as a simple zone whose boundary is a 
geodesic curve. Hence the result of Efimov (Elimov (1975) in Part I) about the 
non-immersibility of a Lobachevskij half-plane in E3 is generalized to a q-metric 
with small q. 

As to complete q-metrics, for any q 3 0 they are non-immersible into E3 in 
the class of C2-smooth surfaces according to Corollary 2 of Theorem B (see 1.4). 

Although Theorem B itself cannot be extended to the class ?ZJ2, the assertion 
of its Corollary 2 remains in force in the classes !Bz and a2. The point is that the 
application of the analytic apparatus that was in question in 4.1.3 enables us to 
carry out such an investigation of an asymptotic net in the neighbourhood of 
isolated points of violation of C2-smoothness of a surface, which shows that at 
these points there cannot arise a saddle order m > 2 so long as the intrinsic 
metric of the surface is a q-metric; see Rozendorn (1966) in Part I. Hence there 
follows the local homeomorphism of the Gaussian spherical map. This in turn 
makes it possible (Rozendorn (1972)) to apply the methods of arguments with 
concave supports and to extend to the class ‘$I2 the theorem of 3.3.3 under the 
additional assumption that K E C’, and also the result about non-immersibility 
of a complete q-metric in E3. 

4.4. Immersion of Metrics of Negative Curvature in E3 

4.4.1. The local aspect of the given question is considered in detail in Part III, 
so we discuss here problems connected with geometry in the large. 

Examples of well-known surfaces such as the helicoid, hyperbolic paraboloid, 
catenoid, hyperboloid of one sheet, show that under a rapid decrease of K at 
infinity many complete metrics of negative curvature are immersible in E3, but 
general theorems of this type are so far unknown.4 Examples of a pseudosphere 

4Shikin (see Shikin (1990)) and Perel’man (see Perel’man (1990a) in Part I) have obtained some 
sufficient conditions for immersibility in E3 for a metric of a rotation of the form (5.7) (see above) 
with K < 0. 

M CT9 
Fig. 44 
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Fig. 45 I 

151 < w(r), -co<q<+co. 

Suppose that in Z7, there is specified a C4-smooth metric 

(4.18) I 

ds2 = dt2 + B([, q)* di+, K = -B-‘B;< < 0 

and that (4.10) is satisfied. The following theorem holds. 

(4.19) 

Theorem (Tunitskij (1987)). The simple zone U, with metric (4.10), (4.19) can 
be isometrically immersed in E3 in the form of a C3-smooth surface. 

Hence it follows, in particular, that in E3 there are C3-smooth surfaces of 
constant negative curvature on which there are distributed two non-intersecting 
horocycles of L2. This geometrical fact was unknown until quite recently, al- 
though surfaces of constant negative curvature had been the subject of much 
research (see, in particular, the survey in Steuerwald (1936)), and independently 
of Tunitskij’s theorem it was established in Kaidasov and Shikin (1986). A convex 
simple zone Z& c L2 which according to the theorem in Tunitskij (1987) admits 
an immersion in E3 and contains two horocycles is schematically shown in Fig. 
45 and on it is marked a hatching, and on the horocycles a double hatching. 

The proof of the theorem is analytic, and is based on the methods of 
the theory of differential equations (see Bellman and Kalaba (1965) and 
Rozhdestvenskij and Yanenko (1978)). By means of auxiliary methods, which 
can be shown to be artificial, in the whole simple zone (4.18) one can construct 
a solution of the system (4.2) that satisfies the requirement (4.4), so it follows that 
the metric (4.19) specified in Z&, can be immersed in E3. In this proof there is a 
geometric background that goes back to the paper of Poznyak (1966): the 
solution of the posed problem about immersion is sought in the form of a surface 
contracted into a narrow roll&narrower than a simple zone which is widened 
rapidly in its metric ds* as r] -+ fco. 

4.5. Study of the Boundary of a Surface. From Theorem B formulated in 1.4 
it follows that there are no complete C2-smooth surfaces in E3 with negative 
curvature separated from zero. Therefore there naturally arises the question of 
studying the boundary of a C”-smooth surface with curvature as in (1.7) n 3 2. 

For this we need to assume that the surface under consideration is inextensible 
over its intrinsic geometric boundary, preserving its former C”-smoothness and 
the fact that K is negative. Clearly, if inextensibility over the boundary is not 
required, then the diversity of singularities that can appear on the boundary 
becomes boundless. 

Amsler proved in Amsler (1955) that an inextensible surface in E3 of curvature 
as in (1.1) has a smooth arc in the structure of its intrinsic-geometric boundary. 
In addition he assumed that the surface is either analytic or C3-smooth with the 
additional condition that the set of its branch points is empty or finite. The fact 
that there can be branch points was shown in the same paper (Amsler (1955)). 
The importance of the requirement that the set of branch points is finite was 
shown by Wissler (Wissler (1972)): he gave a construction of a surface with 
constant curvature K = - 1 whose intrinsic-geometric boundary contains a 
countable set of branch points and does not contain any smooth arc. 

Amsler’s result on the existence of a smooth arc of the boundary in the 
case of (h, d)-metrics of variable curvature was extended by Vinogradskij 
(Vinogradskij (1970)), who imposed additional conditions on the behaviour of 
asymptotic lines close to the boundary. 

Without additional requirements on the derivatives of the curvature the result 
is certainly incorrect. This can be seen from the example of the surface shown in 
Fig. 5a and repeatedly discussed above: its Cm-smooth part represents a surface 
with a boundary consisting of four points. 

4.6. Surfaces with Slowly Varying Curvature in a Riemannian Space 

4.6.1. So as not to divert attention to additional questions about smoothness, 
we shall assume here that all the objects belong to the class C”. On a two- 
dimensional surface 9 in a three-dimensional Riemannian space m3 there are 
defined the intrinsic curvature Kin, according to (2.7), and the extrinsic curvature 
Kext as the ratio of the discriminants of the second and first quadratic forms 
analogous to (4.1). They are not equal to each other, and Gauss’s theorem 
instead of (2.18) takes the form of the equality 

Kint = Kext + KTOI~, (4.20) 

where K y,Z is the curvature of the space m3 in the direction of two-dimensional 
area element tangent to 9 at a given point of it; it is also defined by analogy 
with (2.7). 

The following analogue of Hilbert’s theorem is known (Spivak (1975)). In a 
three-dimensional space of constant curvature there are no complete regular 
surfaces with constant negative intrinsic and extrinsic curvatures. 

Of course, constancy and negativity of just the intrinsic curvature is insufti- 
cient, since in L3 there are planes L2. Constancy and negativity of the extrinsic 
curvature is also insufficient: in three-dimensional elliptic space there is the 
Clifford torus with locally Euclidean intrinsic metric and therefore, according to 
(4.20), constant negative extrinsic curvature. 
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4.6.2. Surfaces with slowly varying negative curvature in a three-dimensional 
Riemannian space of negative curvature have been studied by Brandt. He 
showed that the situation is more complicated there than in the Euclidean case: 
the generalized Chebyshev property and the regularity of the structure in the 
large of an asymptotic net is ensured by the smallness of a quantity that depends 
not only on the rapidity of the change from point to point of the curvature of 
the intrinsic metric of the surface itself, but also on the curvature of the ambient 
space at points of the surface; see Brandt (1970a), Brandt (1970b); see also 
Poznyak (1991). 

4.7. Influence of the Metric on the Regularity of a Surface 

4.7.1. The problem of immersion in E3 of a metric of positive curvature K > 0 
is elliptic, and therefore the high regularity of the metric necessarily implies the 
high regularity of the surface; see Pogorelov (1969) in Part I. When K < 0 the 
situation is very different because the problem is hyperbolic (Holmgren (1902)). 
As an illustration it is again convenient to take surfaces of constant curvature. 
Locally they can be obtained by solving Darboux’s problem for the equation 
(1.6). The regularity of the solution w(u, u), and together with it the regularity of 
the surface, will depend on the boundary conditions-the data of Darboux’s 
problem-although the metric is analytic. 

However, if we impose additional conditions of regularity of boundary type, 
then from the smoothness of the metric we can obtain deductions about the 
smoothness of the surface when K < 0. 

Let 3 be a domain homeomorphic to a disc on a surface of the class Bz, and 
let %Ye be a subdomain of it homeomorphic to a circular ring and consisting of 
those points of it that are at a distance less than E from its boundary 8% (Fig. 
46). Then if F is an immersion in E3 of the metric with negative C’-smooth 
curvature (1 < Y d +co) and 9 E Cr+’ in gc’,, then 9 g c*+l everywhere inside Y. 

If 9 = 9 is a quadrangle of an asymptotic net, then instead of conditions in 
gE it is sufficient to assume that of two adjacent sides of the quadrangle $@ their 
curvature as curves in E3 is a C*-‘-smooth function of arc length, 2 < r < +co. 

The proofs (see Rozendorn (1967) in Part I) rely on the analytic apparatus 
described in 4.1. The a priori smoothness of Bz cannot be reduced to that of ‘u2, 
as examples constructed by Cohn-Vossen show (Cohn-Vossen (1928)). 

Corollary. Let B be a P-smooth surface in E3 homeomorphic to a closed disc 
and hatting curvature K < 0. We assume that 9 is bendable (see $6 of Part III) 
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and it is subjected to a bending under which its C2-smoothness is preserved and its 
P-smoothness in some domain S$ situated along its boundary a.9 and homeo- 
morphic to a circular ring is preserved too. Then on the bent surface its C”- 
smoothness is preserved everywhere. 

4.7.2. We continue the discussion of questions touching on the regularity of 
a surface of negative curvature. We recall that from Aleksandrov’s theorem 
on the smoothness of a convex surface with bounded specific curvature (see 
Aleksandrov (1942) and Aleksandrov (1948), both in Part I) it follows that an 
edge, that is, a curve of violation of Cl-smoothness, if it exists on such a surface, 
must go out to its boundary (in particular, on a closed convex surface with 
bounded specific curvature an edge cannot exist). We consider an example which 
shows that when K < 0 there can exist a singular curve that does not violate the 
Cl-smoothness of a surface even if the intrinsic metric of the surface is analytic. 

Example. We take the Bianchi-Amsler surface (see 2.1.5 and Fig. 19) with 
curvature K = - 1 and such that its rectilinear generator L is intersected on 
some interval by asymptotic lines of another family at an angle o # n/2 (this 
can certainly be done, Amsler (1955)). An arbitrary point of this interval can be 
taken as the centre of a geodesic disc of sufficiently small radius p > 0. Clearly 
the rectilinear generator splits a geodesic disc with centre P E L into two semi- 
discs. We denote one of them by V, joining its boundary to it (Fig. 47a). Let V’ 
be the image of the geodesic semidisc V under symmetry in E3 with respect to 
the line L. Then the surface Vu V’ (with boundary) represents an isometric 
Cl,‘-smooth piecewise-analytic embedding in E3 of a closed disc (of radius p) 
taken from L2. On a diameter of it the C2-smoothness of the surface is violated. 
The fact is that there occurs here a break of the asymptotic lines that intersect 
a diameter I c L (Fig. 47b). 

As is obvious from what follows, the interval I c L in this example can be 
regarded as an analogue of the edge in the theorem of Aleksandrov: here the 
intrinsic metric has high smoothness, and the singular curve I goes out to the 
boundary of the surface fl = Vu V’ at its ends. 

4.7.3. We can continue the analogy in question in 4.7.2. On an ovaloid an 
edge is possible of course (Fig. 48), but by Aleksandrov’s theorem in a neighbour- 

a b 

Fig. 46 Fig. 47 
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Fig. 48 

Fig. 49 

hood of each of the end-points of the edge the specific curvature is unbounded, 
and so the loss of high smoothness of the intrinsic metric is inevitable. On a 
surface of negative curvature such a singular arc 1 is also possible, which does 
not go out to the boundary of the surface F under consideration, and on I the 
C’-smoothness of the surface and the local homeomorphism of its spherical 
image are preserved, and at all points of the curve 1, there exists Kint < 0 but 
the C2-smoothness of the surface is violated. Such an arc together with the 
asymptotic lines intersecting it is shown schematically in Fig. 49. In addition, 
S\i can have arbitrarily high smoothness. Surfaces with the described singu- 
larity on an arc exist in E3 in an arbitrarily small neighbourhood of an arbitrary 
Cm-smooth surface of negative curvature (Rozendorn (1985)). By analogy with 
convex surfaces, here it is also natural to pose the problem of the loss of 
smoothness of the intrinsic metric at the ends of a singular arc %. The answer to 
this (at least, a partial one) is presented in 4.7.4. 

4.7.4. Suppose we are given in E3 a surface B (with boundary a@) homeo- 
morphic to a closed disc and on it a simple arc 2” (1” c F), and the following 
conditions are satisfied. 

a) F E Cl, F\n E C”, 3 < n < a. 
b) The Gaussian spherical map on the surface 9 is a local homeomorphism. 
c) 1, E C2 and as a curve in E3 it has bounded curvature. 
d) On S\ll the mean curvature H of the surface under consideration and the 

geodesic curvatures lcj of its asymptotic lines are bounded. 
Then we have the following result. 

Theorem (Rozendorn (1988)). If under the conditions a, b, c, d the surface 9 
has Kin, E C”, 2 < m < n - 1, Kint < 0, then either both ends of the arc 1 are 
situated on the boundary of the surface (81 c 89) or 9 E Cm+‘. 

Remarks. 1. In the example in 4.7.2 all the conditions a, b, c, d are satisfied, 
i = I, n =. co. In the examples of Rozendorn (1985) mentioned in 4.7.3 we can 
also ensure that all the conditions a, b, c, d are satisfied. 

2. If we assume that the admissible singularity is one-point (supposing that 
9 E ZY’), then the removability of the singularity is guaranteed under much 
weaker conditions; see Rozendorn (1966) in Part I. 

The proof of the theorem in 4.7.4 (published in detail in the Transactions of 
the Moscow Mathematical Society) uses as auxiliary means the analytic appara- 
tus from 4.1, the result on regularity of a surface inside an asymptotic quadrangle 
formulated in 4.7.1, and relies on approximation of the normal map of the 
surface 9 in a neighbourhood of a supposed end-point of the arc 1 by some 
special C2-smooth non-potential maps. 

5 5. On Surfaces with a Metric of Negative Curvature in 
Multidimensional Euclidean Spaces 

5.1. Bieherbach’s Theorem. In connection with Hilbert’s theorem discussed 
in 4 1, it is natural to pose the question of isometric immersions of Lp in EN. A 
local embedding of Lp in E2p-’ was constructed by Schur (Schur (1886)), and in 
E2p-2 it is impossible to embed Lp even locally: see Cartan (1919-1920) and 
Liber (1938). 

The first global result about the immersibility of L2 in EN, but when N = 03, 
was obtained by Bieberbach (Bieberbach (1932)): he constructed an analytic 
embedding of L2 in a Hilbert space. This embedding is given by explicit for- 
mulae. Before writing them out, we introduce an auxiliary notation, which will 
be useful in what follows. Let F,(z) be a finite or infinite collection of functions 
of the complex argument z = u + iu, possibly not analytic. We put 

x~,,-~ = Re F,,,(z), x2,,, = Im F,,,(z), m = 1, . . ..p. (5.1) 

assuming that xj are Cartesian coordinates in EN, N 3 2p. 
Bieberbach’s construction seems very simple: in (5.1) we take F,,,(z) = m-li2zm, 

p = N = co. Calculation shows that as a result when p = /z/ < 1 we obtain an 
embedding in E” of the metric ds2 = (1 - p2)-2(du2 + du2), and this, as we 
know (Alekseevskij, Vinberg and Solodovnikov (1988)), is one of the forms of 
writing the metric of L2. In addition, xl = U, x2 = u, (2.2) is satisfied, and the 
surface is projected one-to-one onto a disc p < 1 of the x1 x,-plane. 

Bieberbach proved that the surface of the form (5.1) that he constructed does 
not lie in any subspace of finite dimension and has the following interesting 
property: the whole group of motions is induced on it by motions of the ambient 
space. In the same paper (Bieberbach (1932)) he presented the proof due to 
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Schmidt of the fact that in EN (N < co) on an immersed L2 the group of all its 
motions cannot be induced by motions of EN, although it was not known then 
whether such immersions were possible. In this connection see also Kadomtsev 
(1978). 

5.2. Embedding and Immersion of Lp in EN. An isometric embedding of Lp, 
p > 3, in E” was constructed by BlanuSa (Blanusa (1953)). The first embeddings 
of Lp in EN for finite N were also constructed by him (BlanuSa (1955)). Thus a 
result of Beltrami was generalized: not only for p = 2, but also for any p 3 3, the 
geometry of a p-dimensional Lobachevskij space is realized in the form of the 
intrinsic geometry of some surfaces of Euclidean space of sufficiently large 
dimension. In BlanuSa (1955) 

N = 6p - 5 for p 3 3, N = 6 for p = 2, (5.2) 

and the embeddings are C”-smooth and given by explicit formulae. We note that 
the general constructions of Nash and Gromov for an isometric embedding in 
EN of a non-compact Riemannian manifold MP require dimensions N = N(p) 
considerably higher than (5.2); see Nash (1956), Gromov and Rokhlin (1970) and 
Gromov (1987), all in Part I. 

We consider the embedding found by Blanusa in detail for p = 2, N = 6, in 
order to illustrate in this special case the methods that he developed. An impor- 
tant role in his construction is played by two pairs of auxiliary functions. One 
of them we denote below by qj = cpj(u) 3 0 (j = 1, 2); these are Cm-smooth 
functions. The other one is $j(u) > 0; these are step functions (that is, piecewise- 
constant functions). 

For what follows it is important that the step functions on parts of constancy 
for differentiation behave as constants, but in the large on the number axis as 
u + fat, they can increase arbitrarily quickly. 

The functions qj are subject to the following conditions: (pl(u)* + ‘Pan = 1 
and each of the qj has zeros of infinite order at points of discontinuity of the 
function $j, j = 1, 2. Clearly, qj with such properties can be chosen with great 
arbitrariness. In addition, we use one auxiliary function f = f(u) E C”, f > 0, 
whose concrete form will be stated below and depends on the metric ds2 that is 
to be embedded in E6. From these functions we compose the products 

SjC") = ~j(")-'cPj(u)S(u)~ (5.3) 

and the expression g = (g;)2 + (g;)2 = g(u) > 0. 
For fixed f and ‘pj the step functions $j are chosen so that 

g(u) < 1 - E (E > 0) when -co < u < +o, (5.4) 

and then in (5.1) we take 

F, = gm(u)eiU”“““, m = 1,2, (5.5) 

and put 

II. Surfaces of Negative Curvature 165 

x5= “dldq 
s 

x6=u. 
0 

(5.6) 

Thanks to the fact that the jumps of the step functions tij are as it were “can- 
celled” by the zeros of the functions ‘pj, all the xj(u, u), 1 < j < 5, are continuous 
here. The additional research in Blanusa (1955) shows that their partial deriva- 
tives of all orders are also continuous. The condition (2.2) is ensured on account 
of (5.4) and (5.6). Thus the resulting surface turns out to be Cm-smooth (but 
certainly not analytic!), and it is projected one-to-one on the x,x,-plane. 

Where both the $j are constants we have 

ds2 = du2 + By du2, (5.7) 

where B(u) = Jm”. At those points where the $j are discontinuous, the 
metric (5.7) preserves continuity. In particular, if we take f(u) = sh u, then the 
formulae (5.1), (5.5) and (5.6) give a C”-smooth embedding of L2 in E6. 

By analogy with 2.2 we can assume that here the x,x,-plane plays the role of 
a short embedding, which then undergoes a corrugation. In addition, the range 
of the dimension of the ambient space enables us to manage with a unique 
corrugation described by the formulae (5.5) and straight away in all directions 
at all points with tightening the metric of the short embedding to the necessary 
value. 

In this construction, for a given B(u) E C”, n 3 2, B(u) 3 1, we can take 
,f(u) = JB(u)2-1, obtaining C”-smooth embeddings of metrics of the form (5.7) 
in E6. 

We can modify the construction, substituting f(u) = B(u) in (5.6) and also 
putting x6 = 0. Then self-intersections arise in the surface, and the dimension of 
the ambient space is reduced by one. The form of the metric (5.7) is preserved. 
In particular, in this way, when f(u) = ch u, and also when f(u) = e’“, we obtain 
Y-smooth immersions of L2 in E5. 

The last construction can be generalized in dimension and gives a C”-smooth 
immersion of Lp in EN when N = 4p - 3 (Henke (1981)). 

As for embeddings, using BlanuSa’s methods, his result (5.2) in dimension N 
when p > 2 has recently been improved by Azov (Azov (1985)). He established 
that Lp admits a Cm-smooth embedding in EN for 

N= 5p-3 

i 

whenp=21+1, 
5p - 4 when p = 21. 

(5.8) 

It is not known up to now whether we can further improve the result (5.8). 
Immersions of domains from Lp to EN, where N > 2p - 1, have been studied 

by Aminov; see Aminov (1980), (1983), (1988). He showed (Aminov (1983)) that 
when p = 3, N = 5 with such immersions there is associated a system of equa- 
tions that generalizes the equations known in mechanics for the motion of a rigid 
body with a fixed point, and when p = 4, N = 7 with an immersion there is 
associated a tensor field (see Aminov (1988)) analogous to the tensor of an 
electromagnetic field, known in relativistic electrodynamics. 
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Xavier stated a supposition in Xavier (1985) about the non-immersibility of 
Lp in the large in Ezp-’ and in the same paper for some special class of complete 
Riemannian manifolds of constant negative curvature obtained by factorizing Lp 
he proved their non-immersibility in Ezp-‘. 

5.3. Piecewise-Analytic Immersion of L2 in .!?. We now give up the require- 
ment of smoothness of the surface and consider a somewhat more general 
problem than in the title of this section: we shall look for an immersion in E4 of 
the metric of a rotation of the form (5.7), assuming that B(u) 3 0, -co < u < 
+co. The construction presented here is due to Sabitov (Sabitov (1989a)). Fol- 
lowing Sabitov (1989a) we take in (5.1) F, = P,,Ju)~~~~@,‘), m = 1, 2, putting 

%I = $,(u)u + pm(u), where II/, are step functions, as in BlanuSa’s method. Put- 
ting ds2 equal to (5.7), calculated from (5. l), we obtain the system of equations 

(5.9) 

Here and below derivatives with respect to the argument u are denoted by a 
prime. 

Next we apply an artificial method: we put 

1 
p1 = GB cos 0, p2 = LB sin 0 

*2 

and 

0; = LA sin’ 0, 
1 

*2 
/3; = -KA cos2 0, (5.11) 

where A = A(u) and 0 = O(U) are new unknown functions. By (5.10) and (5.11) 
the last two of the equations (5.9) are satisfied identically. For what follows it is 
convenient to introduce one more auxiliary function: 

Q(u) = (t,bl t+h2)-‘(A sin 0 cos 0)2, (5.12) 
so that 

A=?&@. (5.13) 

In addition, we put b = (In B)‘. Then, taking account of (5.12), the first equation 
of the system (5.9) takes the form 

Q(u) = 1 - (b cos 0 - @‘sin O)‘$;’ - (b sin 0 + 0’ cos O)2$;2. (5.14) 

The subsequent plan of action is as follows. For 0 = O(U) we take an arbi- 
trary continuous monotonic piecewise-analytic function, specified on the whole 
axis -cc < u < co, admitting discontinuities of the first kind in its first order 
derivative at those points where 0 = mz/2, m being an integer. Then we con- 
struct step functions &(u) > 0 so that 

11. Surfaces of Negative Curvature 167 

the discontinuities of $r(u) fall at the zeros of cos O(u); 

the discontinuities of I,!I*(u) fall at the zeros of sin O(U); 

as u + fee the functions &(u) increase so rapidly that in (5.14) the inequality 
Q(u) > 0 is guaranteed. 

At the points of discontinuity the functions tjk(u) are defined either by right 
continuity or by left continuity - for what follows it makes no difference. 

After this from (5.10) the functions Pi are defined uniquely, and from (5.13) 
and (5.11) the functions &(u) are defined to within constants of integration; as a 
result we obtain the unknown immersion. The constants of integration in /& in 
fact turn out as piecewise-constant functions of the argument U, but they have 
no effect on the metric ds2. The vector function r(u, u) is continuous, and its 
Cl-smoothness is violated only where $,Ju) or 0’ are discontinuous; everywhere 
where they are continuous, the condition (2.2) is satisfied when p = 2. The 
derivatives p;(u) are bounded in each compact part of the u-axis. Generally 
speaking, the derivatives B(u) are unbounded, but in the expression for rb they 
do not occur, and in r: they occur only in the composition of products 

p,p; = B$ sin 0, p2p2 = - Bfi cos 0. (5.15) 

A simple calculation shows that on any finite interval of the u-axis the quantities 
(5.15) are bounded, so r E C ‘,I Further investigation shows that on singular . 
curves, which are possible when 0 = mn/2, local homeomorphism of the immer- 
sion is also satisfied. 

5.4. Some Results on Non-Immersibility in the Multidimensional Case. The 
Riemannian manifolds considered in this and the following subsection and their 
immersions are assumed for simplicity of formulation to be C”-smooth. 

5.4.1. The problem of Hilbert and Cohn-Vossen discussed in 1.4 admits 
various generalizations under transition to the multidimensional case. First of 
all, we can pose the question of the smallest dimension N for which in EN an 
isometric immersion of a complete non-compact Riemannian manifold ‘%Rp is 
possible, for which at all points in all two-dimensional directions the sectional 
curvature is negative (such Riemannian spaces under the condition of simple 
connectedness are an important special case of Hadamard manifolds (see 
Eberlein (1985) and Shiga (1984)), which requires additionally that it is uniformly 
separated from zero. A more special problem is to prove for %Rp = Lp that 

N > 2p - 1 (as Xavier assumed in Xavier (1985), see above at the end of section 
5.2). From what was stated above it is obvious that for Lp we obtain what is SO 
far only a two-sided estimate of N(p). The lower estimate N 3 2p - 1 is based 
only on local arguments (see Liber (1938), Cartan (19199 1920) and Schur (1886)) 
and the upper estimate N < 4p - 3 is based on the presentation of concrete 
immesions (Henke (1981)). A deeper investigation of this problem is a matter for 
the future, and it is natural to expect that in the case of Hadamard manifolds the 
unknown N may depend not only on their dimension p, but also on other 
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properties, particularly if on the immersions we impose additional conditions, 
for example the requirement of saddle-shape; in this connection see Chapter 3 of 
Part I. 

However, we can pose the problem differently: assume that the sectional 
curvature on %Rp is negative and separted from zero not in all directions but 
only on certain families of submanifolds on which !lJJp is fibered. In this direction 
there are interesting results. The point is that in Riemannian geometry there 
are known conditions under which an isometric immersion F: Yip + EN of a 
Riemannian product 

!JJl=!JJP=mox!JJltx~~~xm, (5.16) 

in a Euclidean space EN represents a product of immersions, that is, 

(5.17) 

and EN is the direct sum of its pairwise orthogonal subspaces E”j. Therefore 
under suitable additional requirements on the factors in (5.16) and the dimension 
N from here we can extract results about non-immersibility, using Theorem B 
for example (see 1.4). 

Let us formulate one of these conditions. Suppose that in the decomposition 
(5.16): 

(A) YJI, is a connected flat Riemannian manifold of dimension p. > 0; 
(B) YRj, 1 < j d I, are connected Riemannian manifolds of dimension pj 2 2 

on each of which the set of those of its points where one of the sectional 
curvatures vanishes does not have interior points in YJJj. Then the following 
result holds. 

Theorem (Moore (1976)). Zf 

(5.18) 
j=l 

and conditions (A) and (B) are satisfied, then any isometric immersion of the 
Riemannian manijold (5.16) in EN represents a product of immersions of the form 
(5.17). 

Corollary. Suppose that the Riemannian space ‘%I is a product of the form 
(5.16), and that conditions (A) and (B) are satisfied and there is a number i, 
1 d i d 1, such that the dimension pi = 2, and the two-dimensional factor pi 
is a complete space and its intrinsic metric has negative curvature satisfying the 
conditions of Theorem B (p. 95). Then the Riemannian product of m in the large 
is non-immersible in a Euclidean space whose dimension does not exceed the 
quantity (5.18). 

For a proof and other details we refer the reader to the papers Alexander and 
Maltz (1976) and Moore (1971). 
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5.4.2. Apart from what we have said, there is another way of generalizing the 
problem of Hilbert and Cohn-Vossen to the multidimensional case. Namely, as 
an analogue of the intrinsic Gaussian curvature Kint when p 3 3 we can take the 
Ricci curvature. In this way we obtain the following result. 

Theorem (Smyth and Xavier (1987)). Suppose that a complete p-dimensional 
Riemannian manifold ‘9X, with negative Ricci curvature is immersed in EN in the 
form of a hypersurface (N = p + 1). Then the upper bound of the Ricci curvature 
on !DIp is equal to zero 

a) if p = 3, or 
b) if p > 3, and the sectional curvatures on Wp take not all real values. 

In its proof, by the way, the investigation of the properties of the spherical 
map of the hypersurface under consideration plays an essential role. 

5.5. On Closed Surfaces of Negative Curvature. The result about the impos- 
sibility in E3 of a closed surface of non-positive Gaussian curvature can be 
generalized in dimension. Namely, we have the following result. 

Theorem (Chern and Kuiper). A compact p-dimensional Riemannian manifold 
of non-positive sectional curvature does not admit an isometric immersion in E2p-’ 
(Chern and Kuiper (1952)). 

Of course, from this and Moore’s theorem we can also extract corollaries 
about the non-immersibility of Riemannian products. The problems connected 
with further development of the result of Chern and Kuiper are reflected in the 
surveys Aminov (1982) and Poznyak and Sokolov (1977). Here we return to the 
case p = 2. It is known that any compact two-dimensional Riemannian manifold 
(including one of negative curvature) can be isometrically immersed in E6; see 
Gromov (1987) in Part I. Thus, between the lower and upper estimates for N 
there remains the interval 4 < N < 6, and the theorem of Chern and Kuiper 
does not prohibit the existence of two-dimensional closed surfaces of negative 
intrinsic curvature even in E4. Examples show that they really exist there. From 
a visual point of view their construction seems fairly simple. Regarding E3 as a 
hyperplane in E4, we take in E3 the surface constructed in 2.1.8 and shown in 
Fig. 5a, denoting it by gl. We then take a second copy F2 of the same surface, 
obtained from p1 by a parallel translation in E4 in the direction orthogonal to 
the original E3. We then bend towards each other the narrowed tubes of the 
surfaces F1 and p2, smoothing the edges arising at their meeting place. After 
this we cut out on F1 and on F2 the neighbourhoods of their singular points 
(those where C2-smoothness is violated, and the saddle order m = 3). Suitable 
calculation shows (see Rozendorn (1962)) that the boundaries of the perforations 
thus formed can also be joined to each other in E4 by “tubes” of negative 
curvature. As a result we obtain an unknown closed surface, a topological sphere 
with seven handles, whose intrinsic metric has negative curvature. The construc- 
tion can be carried out SO that this surface has smoothness C”. One of the 
intermediate stages of its construction is shown schematically in Fig. 50. In view 



170 

E4 

E.R. Rozendorn 

Fig. 50 

of the compactness its curvature is separated from zero and the supremum in 
(1.11) is finite, so its intrinsic metric ds* is a q-metric. In this connection Efimov 
stated the supposition, at present not confirmed but also not disproved, that this 
surface can be deformed, preserving the sign of its curvature and reducing the 
value of q to zero, and we obtain in the limit a closed two-dimensional surface 
situated in E4 of constant negative curvature. 

Commentary on the References 

The most important steps in setting up and developing the theory of surfaces of negative curvature 
were taken in the papers Beltrami (1868a), Hilbert (1901), Bieberbach (1932) and Efimov (1964) and 
are closely connected with the problem of interpreting non-Euclidean geometry. 

The methods developed in the study of surfaces of negative curvature have been applied in the 
theory of mappings (Efimov (1964), Klotz-Milnor (1972). Elimov (1968)) and in the investigation of 
non-linear hyperbolic partial differential equations; in this connection see Efimov (1976) Geisberg 
(1970) Azov (1983), Azov (1984), Brys’ev (1985), Shikin (1980) and also Hartman and Wintner (1952), 
Backlund (1905) Steuerwald (1936) Galeeva and Sokolov (1984a), Gribkov (1977) Kantor (1981), 
Poznyak (1979), Popov (1989) and Tenenblat and Terng (1980), Terng (1980). 

The equation z:~ = sin z, which appeared and was first used in the geometrical papers Chebyshev 
(1878), Hazzidakis (1879) and Hilbert (1901). turned out to be one of the typical representatives of 
non-linear equations of mathematical physics (see Barone, Esposito, Magee and Scott (1971)), and 
many current problems are connected with it. One can become acquainted with them in Barone and 
Paternb (1982), Enz (1964) Kosevich (1972) and Lamb (1971) and in Barone and Paterno (1982) the 
reader will find an extensive bibliography. 
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The theory of surfaces plays a major role in mechanics in the study of the properties and the 
calculation of thin elastic shells (see Gol’denveizer (1976), Vekua (1982), Pogorelov (1967), and also 
Gol’denveizer (1979) and Gol’denveizer, Lidskij and Tovstik (1979)). However, the application of 
specific properties of surfaces of negative Gaussian curvature to these questions is still only in its 
initial stages (Klabukova (1983)). 

In recent years new interesting connections have been revealed between geometrical problems 
concerned with surfaces of negative curvature and various questions of mechanics and physics. In 
this connection, see in particular Aminov (1971), Aminov (1983) Aminov (1988), Rozendorn 
(1980) and Poznyak and Popov (1991). 

Despite the fact that in recent decades the theory of surfaces of negative curvature has been 
significantly developed and has actually become an independent branch of geometry, in the current 
world literature there is not a single monograph specially devoted to it. 

There are the well-known surveys Efimov (1966a) and Poznyak and Shikin (1974). In addition, 
there are the quite detailed (partly survey) journal articles Elimov (1966b), Klotz-Milnor (1972) 
Shikin (1975), Eberlein (1979), Hartman and Wintner (1951), and also Rozendorn (1966) in Part I, 
and the surveys Poznyak (1977a), Poznyak and Shikin (1980) and Poznyak and Shikin (1986) are 
devoted to various aspects of the problem. Here we can refer to the last chapter of the monograph 
Bakel’man, Verner and Kantor (1973) in Part I. In addition, a number of questions relating to the 
geometry of surfaces ofnegative curvature are elucidated in the surveys Aminov (1982) Poznyak and 
Sokolov (1977) and Poznyak (1973) in Part I. 

The bibliography given below does not cover all journal articles on surfaces of negative curvature. 
However, it enables us to trace the main directions of this branch of geometry and its interconnections 
with other branches of mathematics and its applications. The reader can find additional references 
in the surveys listed here. 
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Preface 

The origin of the theory of bendings as one of the basic problems of metrical 
geometry is associated with the names of Euler, Lagrange, Legendre, Cauchy 
and Gauss. After it was discovered that on surfaces there is an “intrinsic geome- 
try” that does not depend on the external form of the surface, there naturally 
arose the question of the possibility of deforming the surface, preserving its 
intrinsic geometry. Consideration of isometric immersions (or, as we say, 
realizations) of abstractly given Riemannian metrics also leads to the problem 
of bendings of surfaces as to some problem about the uniqueness or non- 
uniqueness of an immersion. 

In this article we are concerned mainly with local questions of the theory of 
bendings of two-dimensional surfaces in three-dimensional Euclidean space. The 
main complication of the problem turns out to be connected with the question 
of whether the point for which we wish to study the bendings of its neighbour- 
hood is singular. The specific meaning of singular points is well known in many 
branches of mathematics, and geometry, of course, is no exception ~ the question 
is only which points should be regarded as singular, and which are generic points 
or, in another way, are points of general position. In the problem of bendings of 
surfaces “in the small”, which we consider, the singular points are the so-called 
flat points, at which the surface has contact with its tangent plane of more than 
the first order. In complete correspondence with the well-known thought of the 
great sage Tolstoy “All happy families resemble one another, but each unhappy 
family is unhappy in its own way” it turns out that in a neighbourhood of points 
of general position all surfaces resemble each other - they are all bendable, and 
the arbitrariness of their bendings, or in other words the character of non- 
uniqueness of surfaces with a given metric, can be described quite precisely, while 
in a neighbourhood of flat points the bendability of a surface is in some sense an 
individual property of it, which depends on many parameters that characterize 
the behaviour of the surface near the flat point. 

In the historical setting of the 20th century the most active period for the 
study of local questions of the theory of bendings occurred in the 40s. After the 
comparative “calm” in the 50s and 6Os, from the beginning of the 70s there again 
began to appear papers in which there were proposed new statements and new 
methods of solving problems of the local theory of bendings. In this survey we 
attempt to set forth with sufficient completeness the main results involved here, 
not forgetting to mention unsolved questions. 
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automatically a diffeomorphism if the metrics ds2 and ds*2 are sufficiently regu- 
lar. Namely, if the coefficients of both metrics belong to the Holder class c”,“, 
IZ 3 0, 0 < 01 d 1, n + CI # 0 or 1, then h E c”+‘,“; see Reshetnyak (1982) Ch. 6, 
and Calabi and Hartman (1970). 

Consequently, the composition F = f * 0 h enables us to express the coordi- 
nates of points on S* = f*(D*) . m t erms of functions of (u, u), and points on S 
and S* that correspond to each other under the isometry g will have identical 
intrinsic coordinates (u, v), and in addition we shall have df* = dF*, that is, 
isometric surfaces of class C1,a, CI > 0, can be regarded as given by various maps 
of the form (1) with general metric of the form (2). 

This fact naturally leads to another way of approaching the study of isometric 
maps of surfaces into each other. Suppose that in the disc D: U* + v2 < R* there 
is given a metric (2) with known coefficients E, F, G. If a map f of the form (1) 
defines a surface S on which the metric induced by the space E3 coincides with 
the metric (2) already existing in D, that is, the equalities (3) are satisfied, we say 
that the map f: D + E3 gives an isometric immersion in E3 of the disc D with 
metric (2), or as we said earlier, the metric (2) is realized in E3 (on the surface S). 
Hence two isometric surfaces S and S* from the previous discussion are none 
other than two isometric immersions f and F of the disc D with metric (2). 

fj 1. Definitions and Terminologies 

1.1. A Surface and Its Metric. Since in this article discussions will be 
conducted only “in the small”, in a neighbourhood of a marked point, in the 
definitions we restrict ourselves to the case of simply-connected surfaces. Fur- 
thermore, all surfaces and their deformations will be assumed to be in a suffi- 
ciently regular class; each time the precise class of their smoothness will be 
indicated, but they will all have smoothness at least Cr. 

By a C*,%mooth, n 3 1,0 < CI 6 1, (P-smooth and P-smooth or analytic) 
surface we shall understand a Pa-smooth (respectively, P-smooth and CA- 
smooth) map f of the disc D: u* + u2 < R* into a three-dimensional Euclidean 
space E3, and we shall assume that df # 0, which guarantees the local injective- 
ness of the map J We shall denote the pair (D, f) defining a surface by one letter 
S; obviously, in our conditions S can be identified locally with f(D) c E3, that 
is, we can assume that S = f(D), not forgetting, however, that each point M E S 
has coordinates (x, y, z) defined by the map f with components 

x = x(u, u), y = y(u, v), z = z(u, v); (u, u) E D. (1) 
The parameters (u, v) ae called the intrinsic coordinates of points of the surface. 
Curves on S are defined as images of curves in D under the map f. 

The ambient Euclidean Space E3 induces on S a rule for measuring the 

lengths s = s Jdx2+dyz + dz2 of curves x = x(t), y = y(t), z = z(t) (here x(t) = 
x(u(t), v(t)) and so on), which leads to the appearance on the disc D of the 
Riemannian metric 

where 
ds* = E du2 + 2F du dv + G dv2, 

E = x,’ + y,’ + z,2, 

(2) 

F = x,x, + Y,Y, + zuzor (3) 

G = x,’ + y,2 + zf. 

Having the lengths of curves, we can convert S in a known way to a metric space, 
taking as the distance between points on S the lower bound of lengths of curves 
that join these points. 

1.2. Isometric Surfaces and Isometric Immersions. Now let f*: D* -+ E3 be 
another surface S* with metric ds*2, where D*: Use + Vet < R*2. We say that the 
surfaces S and S* are isometric, or that S* is obtained by an isometric transforma- 
tion of S, if there is an isometry g: S + S* (as between metric spaces). Obviously, 
g preserves the lengths of all rectifiable curves, that is, any rectifiable curve y on 
S must go over, under the isometry g, to some curve y* on S* with the same 
length as ‘/ on S. In terms of metrics this means that between the discs D and D* 
there is established a homeomorphism h = f*-’ o g o f that preserves the lengths 
of curves, measured in the metrics ds* and ds*2 respectively. One comparatively 
recent result of the theory of isometric maps is that the homeomorphism h is 

Remark 1. A homeomorphism g between isometric surfaces S and S* of class 
C’ or between Riemannian manifolds with metric of class Co need not belong to 
the class C’ (but only to the Soboleu class WP1 with any 1 d p < co, or more 
simply to the Lipschitz class Co, ’ ; see the example in Reshetnyak (1982) and 
Calabi and Hartman (1970)). Therefore, if S and S* are two Cl-smooth isometric 
surfaces, then the establishment of an isometry between them by the equality of 
intrinsic coordinates, that is, the representation of S and S* as two isometric 
immersions of one domain in E3, say of a disc D with metric (2), can lead to the 
fact that one of these maps is not of class C’ (but its image as before is a 
Cl-smooth surface!); similarly there is an observation of Borisov in Zalgaller 
(1962): a Cl-smooth surface can be the image of a non-Cl-smooth isometric 
immersion of a continuous metric (2). An example of Calabi and Hartman (1970) 
gives precisely this situation: a certain locally Euclidean continuous metric of the 
form (2) under a non-Cl-smooth map x = x(u, u), y = y(u, v), z = 0 is isometri- 
cally immersed in E3 by an analytic surface (plane) S*: z = 0, which can simulta- 
neously be regarded as an immersion S = S* of the metric ds2 = dx2 + dy2. An 
example with different S and S* can be constructed as follows: the locally 
Euclidean continuous metric ds *2 in Calabi and Hartman (1970) which cannot 
be mapped C’-smoothly onto the metric ds2 = dx2 + dy2, can be immersed 
isometrically in E3 by a Cl-smooth map in the form of some surface S* 
according to Kuiper (Kuiper (1955)). Then S* and S = (x, y)-plane are isometric, 
but the establishment of isometry between them by the equality of intrinsic 
coordinates leads to violation of Cl-smoothness of one of the maps that deter- 
mine S and S* in common coordinates. Consequently, the method frequently 
encountered in academic literature of reducing isometric surfaces to general 
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intrinsic coordinates (“isometry by the equality of intrinsic coordinates”) holds 
only in the class of surfaces of smoothness Cl,‘, CI > 0. 

Among surfaces S* isometric to S there are surfaces congruent to S, that is, 
obtainable from S by a motion of it in E3 (without the inclusion of a mirror 
reflection!) and called trivially isometric to S. If an isometry between surfaces 
does not reduce to a motion, then it is called non-trivial, and the corresponding 
surfaces are called non-trivially isometric. Consequently, non-trivially isometric 
surfaces are either mirror symmetric or have different external forms but with a 
common metric. 

In order to exclude from consideration surfaces trivially isometric to a given 
surface S, on all surfaces isometric to S we fix the position of some specific point, 
say the image of the point (0,O) E D, the tangent plane to the surface, and the 
directions of the tangent vectors to images of the curves u = 0 and v = 0 passing 
through this point. In turn, applying an afline transformation of the plane of 
intrinsic coordinates and contracting the neighbourhood of the point (0,O) if 
necessary, we can assume that for coefficients of the form (2) given in D we have 
E(0, 0) = G(0, 0) = 1, F(0, 0) = 0; such a specification of the metric will be called 
standard. Then by a choice of the axes x, y, z in E3 we can arrange that the 
equations of S and all the surfaces isometric to it have the form 

x = 24 + o(r), y = v + o(r), z = o(r), 

r2 = u2 + v2 + 0. 
(4) 

If the equation of some surface has the form (4), we shall say that the surface 
is correctly situated. Thus, if two correctly situated surfaces are isometric, then 
the isometry between them is either identical or non-trivial (just because in the 
set of correctly situated surfaces two mirror symmetric surfaces have different 
equations (4), we do not suppose that such surfaces are trivially isometric; if, as 
is usually done, we suppose they are trivially isometric, then almost every time 
it will be necessary to make special stipulations or refinements, since in many 
bending problems mirror symmetric surfaces occur as non-identifiable objects; 
bearing in mind that such surfaces are usually supposed to be trivially isometric, 
maybe we ought to use the term “non-triviality in a wide sense of the word”). 

Thus, the study of a set of non-trivially isometric surfaces reduces to the study 
of the structure of the set !JJI of all correctly situated surfaces with a given 
standard metric (2) common to them all. Since we are interested only in local 
questions of isometry, in 9JI we can consider the following variants of the 
introduction of topology. 

1) We restrict ourselves to the consideration of a subset of W consisting of 
isometric maps f of the form (4) of the disc 0,: u2 + v2 < e2 < R2 in E3 be- 
longing to a given smoothness class C”*“, C” or CA; such a subset will be denoted 
by !&, and the topology in it can be introduced differently depending on the 
specific statement of the problem, for example, starting from the pointwise con- 
vergence of maps together with their derivatives up to a certain order, and so on. 

2) We can consider the set !I?Z8 of isometric immersions of a closed disc 
0, in E3 of a given smoothness class; the topology in !I%, can be introduced, 
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for example, as in the set of maps of a compactum, taking account of the 
corresponding smoothness, of course. 

3) In ‘%JIm, it is natural to introduce the following equivalence relation: two 
maps fi and f2 from !IJZmE are regarded as equivalent, fi N f2, if there is a disc 
Da: u2 + v2 < h2, 6 6 E, in which fi and f2 coincide identically. The set obtained 
from !IRn, by factorization (identification) of elements with respect to a stated 
equivalence relation is denoted by %I$‘; the topology in it is induced by the usual 
rules from the topology in ‘9JIm, (that is, in !@ we introduce the so-called factor 
topology). Speaking differently, YJIm,O is the set of germs at the point (0,O) of 
isometric maps f: D, + E3. 

In the more general statement of the problem the set ‘9X consists of all 
isometric immersions in E3 of a neighbourhood of the point (0,O) of D, and 
since this neighbourhood is not fixed in advance, the topology in !JJI must be 
introduced as in the set of germs of maps of the form (4) defined in open neigh- 
bourhoods of the point (0,O) and having each time a specifically stated smooth- 
ness class. In this topology the set !IJI is naturally denoted by ‘9.X:; the structure 
of the set ?BI has not been studied either in the form YJI: or in the form @‘. 

1.3. Bendings of Surfaces. If for any E > 0 the set %I& of immersions of a given 
smoothness class consists only of S(E), the restriction of S to D, (and its mirror 
image), we say that the surface S is locally uniquely determined by its metric (in 
a given smoothness class). If S(E) for some E > 0 enters into a linearly connected 
component %c of the set m,, we say that S is locally bendable, and any continu- 
ous path in ‘!lJ2, beginning in S(E) determines a local bending of S. Speaking 
differently, a bending of a surface S is a continuous deformation of it under which 
the lengths of curves on the surface remain constant. If a deformation of S is 
symbolically denoted by 

s + St, 

then for bendings the family of surfaces S, is continuous with respect to the 
deformation parameter t, t E [0, l), with S, = S. Since henceforth it will always 
be a question of local bendings, that is, bendings of a surface S(E) with some small 
E > 0, henceforth we shall obviously not point to the dependence of S, ‘9JI and 8 
on E. 

If the isometric surfaces S and S* belong to one connected component 
fn c 9X, they are called applicable to each other, and the process of application 
itself can be represented as a bending S,, t E [0, 11, with S,, = S and S, = S*. If 
the surface S is applicable either to S* or to S*, the mirror image of S*, we shall 
say that S is applicable to S* in a wide sense. 

Any motion of the surface S in E3, 

s -+ St = A(t)S + B(t) (symbolic notation), (5) 

where A(t) is an orthogonal matrix (with determinant + 1) and B(t) is a transla- 
tion vector depending continuously on t with A(0) = E, B(0) = 0, determines a 
bending S,, which is called trivial. Obviously, if the bending S, # S takes place in 
a family of correctly situated surfaces, it is necessarily non-trivial. A surface that 
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admits only trivial bendings is called non-bendable. A connected component of 
a locally non-bendable surface S in any %R, consists only of the surface S itself. 

Remark 2. Sometimes in the literature the term “bending” is understood to 
mean any isometric correspondence between two surfaces, and a “bending” in 
the sense applicable in the given article is used in combination with the word 
“continuous”. We prefer to include the property of continuity in the concept of 
bending itself as intuitively corresponding to the conventional meaning of the 
word “bending” not as a mathematical term, but as a word of the living Russian 
language (as to the terminology in English, see Spivak (1979), Ch. 12). 

In the topological terminology a bending of a surface S = f(D) with f: 
D -+ E3 is defined as a homotopy f,: D x I + E3, t E I = [0, 11, of the map 
f = f0 with the condition that every mapf, with fixed t is an isometric immersion 
of D in E3. Henceforth on the whole we shall need to be concerned with bendings 
for which smoothness classes of surfaces involved in the homotopy and the 
smoothness of the homotopy with respect to the deformation parameter will be 
essentially different and independent of each other, for example, bendings can 
take place in the class of analytic surfaces only with continuous dependence of 
them on a parameter, or vice versa the surfaces themselves can be only Cl- 
smooth, and the dependence on the parameter is analytic. Therefore we shall 
describe the smoothness of bendings in a special notation. Generalizing the 
delinitions of Elimov (1948b), let us agree to say that bendings take place in a 
smoothness class or bendings have a smoothness class Ci;; (Cc,, or C&J, where 
0 < k < n (k < co), 0 < m < co or m = A, if: 

1) a bendable surface S is included in a family of surfaces S,, t E T, where T is 
some interval [a, b] containing the point t = 0, for which S, = S; 

2) each surface S, is a C”,” (Coo or CA)-smooth isometric immersion f, of the 
form (4) of some disc D,: u2 + v2 < s2 in E3, all of whose derivatives (when 
m< co) 

are continuous with respect to (u, v) E D, for each fixed t E T and continuous with 
respect to t at each fixed point (u, v) E 0,; when m = A the derivatives in (6) with 
any j < co are continuous with respect to (u, v) E 0, for each fixed t E T and 
analytic with respect to t at each point (u, a) E 0,. 

In relation to the set !JJI the class of bendings we have introduced has the 
following meaning: we consider the space 9X, of isometric immersions f: 0, + E3 
of the form (4) and of smoothness C”,” (C” or C”) with topology of pointwise 
convergence of position vectors of surfaces and their derivatives up to order 
k d n, and in this space we seek a path S, of smoothness Cm, beginning in the 
surface S = S, or passing through it. 

Further, we shall say that bendings have uniform smoothness of class Cz;i 
(~,$,or&,),O~k~n(O,(k<co),O,<m<coorm=A,if 

1) the bendable surface S is included in a family of surfaces S,, t E T, where T 
is an interval [a, b] containing the point t = 0 for which S, = S; 
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2) each surface S, is a P” (C” or CA)-smooth isometric immersion f, of the 
form (4) of the closed disc 0,: n2 + v2 f s2 < R2 in E3, and all the derivatives 
(when m d co) in (6) are continuous with respect to (u, v) for each fixed t E T and 
are continuous with respect to t uniformly with respect to (u, v) E 0,; when 
m = A the derivatives in (6) with any j < co are continuous with respect to (u, v) 
for each fixed t E T and analytic with respect to t uniformly with respect to 
(u, v) E o,, that is, for radii of convergence of series with centre at an arbitrary 
point t E T there is a positive lower estimate that does not depend on (u, v) E 0, 
(we observe that when we speak of maps f, of class CA of a closed disc 0, in E3 
we have in mind that the f, are analytic in the open disc 0, and belong at least 
to the class Ck in 0,). 

In relation to the set YJI the class of bendings we have introduced has the 
following meaning: we consider the set !& of isometric immersions 0, in E3 of 
smoothness c”,” (Cc0 or C*(D,) n Ck(D,)) with topology of uniform convergence 
in the class Ck(D,) and in this space we seek a path S, of smoothness Cm, 

I 
beginning in S = S, or passing through it. 

In certain cases the metric in !I& is taken with respect to the norm of the space 
Ck,P(DJ; then bendings of the class C&;m (q = n, c( or co or A, 0 f m < A) will 
signify that the path S, in !& c Cq(D,) has Cm-smoothness in the metric Ck,a(DJ. 

Finally, bendings of the class CiiA signify that the maps f,: 0, + E3 are 
analytic as functions of three arguments, and in this case T is assumed to be an 
open interval. 

With some complication of the topology in ‘9J18 or in ‘@ we can introduce 
bendings of the classes Cz;,, Ci;,, and so on, 0 d m d co or m = A, but we shall 
not consider such bendings. 

Remark 3. In all situations that we know the component 9I is an open set in 
the sense that a bendable surface S can be included as an internal point in the 
family of bendings S,, -6 < t < 6, where S = S,; speaking differently, in !R there 
is a path passing through S. It is easy to give examples when bendings of the 
surface S for -6 < t < 0 and 0 < t < 6 have different smoothness, but it is not 
known whether it can happen that any bendings of the given surface S constitute 
a family S,, -6 < t < 6, S = S,, which is piecewise smooth on the whole with 
respect to t and smooth separately in (- 6,0] and [0, 6) or there is generally only 
one path beginning in S so that S is, as it were, an end-point at which there 
“comes to a stop” any bending of S, for which S = lim,,,, S,; in other words, 
it is not known whether the set ‘% can be homeomorphic in some small 
neighbourhood of S to the half-segment [0,6) or, more generally, whether S can 
be a boundary point of the set ‘!R (for polyhedra this situation does not occur; 
see 9 9). 

Remark 4. The concept of a bending “in the small” can be extended as 
follows: a surface S is assumed to be included in some family of isometric surfaces 
S, for which continuity with respect to the parameter t of the maps f, and/or their 
derivatives up to some order is assumed to occur only at the point (0,O). In this 
general formulation the bendability of surfaces has not been studied in detail; we 
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note, however, that some theorems in this formulation are true in Hopf and 
Schilt (1938), also in Elimov (1948b). 

1.4. Infinitesimal Bendings of Surfaces. We now consider deformations of a 
surface when on it there is admitted a variation of lengths of curves, but this 
variation in some sense is small in comparison with the variation of spatial 
distances between points of the surface. Namely, suppose that the deformation 
has the form 

f, = f + tz, + ... + tnz, + o(P), t-0 

.L zi E c’(D), l<i<<. 
(7) 

We call the deformation (7) an infinitesimal bending of order n of the surface S 
with position vector f if 

ds,2 - ds2 = dh2 - df2 = o(t”), t -+ 0. (8) 

Consequently, for infinitesimal bendings of order n the spatial distances between 
points of the surface vary, generally speaking, by order O(t), and the lengths of 
curves on the surface vary by order o(P), t + 0. The vector-valued functions zi 
that determine the infinitesimal bending (7) will be called fields of infinitesimal 
bendings of the corresponding order. The smoothness of an infinitesimal bending 
is defined as the smallest smoothness of the fields zi(u, v), 1 < i Q n. 

If in the motion (5) the matrices A(t) and B(t) have derivatives up to order n 
inclusive at the point t = 0, then replacing A(t) and B(t) by their Taylor polyno- 
mials of degree n we obtain a deformation of the form (7) for which (8) is satisfied; 
such infinitesimal bendings, which can be regarded as induced by initial Taylor 
expansions of some sufficiently smooth motion, are called trivial infinitesimal 
bendings. Under trivial infinitesimal bendings of order n the spatial distances 
between points of a surface also vary by order o(P). The converse is also true: if 
under some deformation of the form (7) the spatial distances between points of 
a surface (not containing a plane domain) vary by order o(t”), then this deforma- 
tion can be represented as a Taylor expansion of some motion of smoothness 
C”. Therefore trivial infinitesimal bendings (7) of order n can be characterized by 
the condition of varying spatial distances (consequently also lengths of curves 
on the surface) by order o(P). A surface that admits only trivial infinitesimal 
bendings of order n is called rigid with respect to infinitesimal bendings of order n. 

An infinitesimal bending (7) non-trivial as a whole, can contain an initial part 
of a trivial infinitesimal bending of some order less than n. In order to exclude 
from consideration trivial components of infinitesimal bendings, we introduce a 
certain normalization of them. For this we observe that a composition with the 
infinitesimal bending (7) of the motion (5) of smoothness c” again leads to a 
certain infinitesimal bending of order n. If in (7) the initial terms up to order 
k - 1 < n inclusive represent a trivial infinitesimal bending of order k - 1, then 
by applying the corresponding motion to (7) we can arrange that the infinitesimal 
bending takes the form 
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f, = f + tkz, + . . . + tnz, + o(t”), 

of course with zi other than in (7). 

t + 0, (9) 

If k - 1 = n, then the infinitesimal bending (7) is trivial as a whole and then 
in (9) we have f, = f + o(t”). If k d n, then again by applying some motion with 
matrix of the form A = E + tkAk + . . we can arrange that the non-trivial 
infinitesimal bending (7) has components of the form 

zi = o(r), r2 = u2 + v2 + 0, kbi<n (9’) 

(that is, in order that the deformed surfaces should also be in correct situation). 
Conversely, if at the very beginning we assume that in (7) the deformed surfaces 
are correctly situated, that is, zi = o(r), r + 0, then k is equal to the number of 
the first field zi not identically equal to zero. 

Thus, normalized infinitesimal bendings of order n have the form (9) with zi of 
the form (9’). We observe that the definition of a non-trivial infinitesimal bending 
of order n mentioned here differs from the usually adopted condition of non- 
triviality in which it is assumed that a deformation begins with a non-trivial field 
z1 (see Etimov (1948a), for example). Therefore, generally speaking, we need 
some refinements in the definitions. We call the infinitesimal bending (7) (k, n)- 
non-trivial, 1 < k < n, if it contains a maximal trivial initial part of infinitesimal 
bendings of order k - 1 > 0; the normalized representation of such an infinites- 
imal bending has the form (9), where the zi have the form (9’). For a (k, n)-non- 
trivial infinitesimal bending the spatial distances between points of the surface 
vary by the precise order O(t”), while distances on the surface vary by order o(t”), 
t + 0. We note that a (1, n)-non-trivial infinitesimal bending coincides with a 
non-trivial (in the sense of Efimov (1948a)) infinitesimal bending of order n, and 
the definition of a (k, n)-non-trivial infinitesimal bending given here is close to 
other versions of the definition of n-th order rigidity mentioned in Efimov (1952) 
in a footnote. The class of deformations defined according to (9) as non-trivial 
infinitesimal bendings is wider than non-trivial infinitesimal bendings in the 
“usual” sense; for example, if a surface has m linearly independent fields of 
infinitesimal bendings of the 1st order zl, . . , z,, then the deformation 

f, = f + tkz, + “. + t”Z,-k+l, n c 2k, n<m+k-1, 

is an infinitesimal bending of order (k, n), but it is not an infinitesimal bending 
of any high order in the classical sense. 

Suppose that in a (k, m)-non-trivial infinitesimal bending 

f, = f + tkz, + ... + t”z, + tn+lz,+l + ... + tmz, + o(P) (10) 

the fields zi, k < i < n, are the same as in (9). We then say that the infinitesimal 
bending (9) of order (k, n) is extended to the infinitesimal bending (10) of order 
(k, m). Any (k, n)-non-trivial infinitesimal bending is an extension of each “trun- 
cated” initial (k, n/)-field of it, k < n’ < n. 

Not every field of an infinitesimal bending of some order can be extended to 
an infinitesimal bending of higher order. In a non-local situation an example of 
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such an infinitesimal bending is constructed as follows. Suppose that a surface S 
is a flat plate (membrane) with a fixed boundary, situated on the (x, y)-plane in 
the form of a domain w; then the deformation f, = (x, y, 0) + t(0, 0, h(x, y)), 
hip, = 0 is an infinitesimal bending of order (1, l), but there is no infinitesimal 
bending of order (1,2) of the form 

f, = (x, Y, 0) + m 0, WG Y)) + t2(5k Y), vl(x, Y), ax, Y)). 

In a local setting an example of a non-extendable field of infinitesimal bendings 
of the 1st order will be given in 9 8. 

If a surface is bent in the class C:;,, then any initial part of the expansion of 
the bending f, in a Taylor series with respect to the parameter t is a non-trivial 
infinitesimal bending of some order (k, n). This fact is one of the motivations for 
introducing the concept of an infinitesimal bending of order (k, n): it is naturally 
required that any initial part of a bending which is analytic in the parameter can 
be regarded as a deformation that does not preserve but slowly changes the 
lengths of curves on the surface, and if the expansion of an analytic bending 
begins with a term tk, k > 1, then the usual definition of a non-trivial infinites- 
imal bending does not enable us to consider the part of the expansion from tk to 
t”, n > k, as some non-trivial infinitesimal bending. 

1.5. Bendings of Surfaces and the Theory of Elastic Shells. The choice of the 
term rigidity has a real physical meaning: in the theory of thin elastic shells it has 
been proved that a rigid surface (relative to infinitesimal bendings of the 1st 
order) in the above-mentioned geometrical sense represents a stable form of 
equilibrium of a shell under the action of internal stress forces caused by a given 
load. For non-rigid surfaces their infinitesimal bendings (of the 1st order) have 
the following mechanical interpretation: the shifts of a median surface under its 
infinitesimal bendings represent its virtual movements for the system of external 
forces, under the action of which in the shell there is realized a momentless stress 
state of equilibrium, and at least for convex shells the converse is also true: if for 
a given system of external forces any infinitesimal bending of the median surface 
can be interpreted as a virtual movement of the shell, admissible under these 
forces, then under the action of these forces in the shell there is realized a 
momentless stress state of equilibrium; see the monographs Vekua (1959), Vekua 
(1982). More clearly this can be represented as follows: a non-rigid surface 
(closed or with fixed boundary) reacts to an exterior load by the appearance of 
internal stresses that give to the shell an unstable form of equilibrium. In the 
mathematical scheme it turns out that a system of equations of momentless 
stress state of equilibrium of the shell is closely connected with a system of 
equations of infinitesimal bendings of the median surface of the shell: under one 
choice of fundamental characteristics of the stress state of a shell and field of 
infinitesimal bendings these systems coincide, and for other choices of such 
characteristics the solutions of the corresponding systems are in some sense 
mutually determined: see Vekua (1959), Vekua (1982) and other references in 
these books. Isometric deformations of a surface can also be associated with 
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forms of equilibrium of a thin elastic shell admitted by it under the action of 
various loads; see Pogorelov (1967), Pogorelov (1986). In particular, a bendable 
surface represents an unstable form of equilibrium of a shell and under the 
influence of external loads it changes its form (it is bent), tending to minimize the 
internal stresses; and if the surface is non-bendable, then under the influence of 
external loads that exceed some critical value it can sharply “with a flick” change 
its form, remaining isometric to the original form, but forming, as a rule, an edge 
contributing to its resistance to the increasing load. Starting from what we have 
said, in principle one can assert that any theorem on the theory of bendings has 
some analogue or some interpretation in the theory of elastic shells, at least in 
the case of convex surfaces. 

For shells that have parts of negative curvature or substantial thickness the 
connections between mechanical and geometrical rigidity are more complicated 
than for thin convex shells. Some indications of the situations that arise here can 
be found in Part II of this book by Rozendorn (see p. 105). 

1.6. Area1 Deformations. Of other questions close to the theory of bendings 
and infinitesimal bendings we mention the investigation of deformations under 
which the element of area of a surface either does not vary (the so-called 
equiareal or A-deformations) or varies by order o(Y), t + 0, under deformations 
of the form (7) (the so-called A-deformations of the n-th order). The class of 
A-deformations is wider than the class of isometric deformations. It turns out, 
however, that the equations of A-deformations of the n-th order are closely 
connected with the equations of infinitesimal bendings of order (1, n). 

The papers Boudet (1961) and Vincensini (1962) were apparently the first in 
which A-deformations were defined and studied; for modern results and litera- 
ture see the survey Sinyukov (1986). 

8 2. Statement of Problems 

The detailed list of problems of the local theory of bendings would be appar- 
ently very impressive, so we restrict ourselves to the enumeration of problems of 
fundamental character. 

1) Does a given surface admit non-trivial isometric transformations? 
We shall see that in all known cases a surface has another surface non-trivially 

isometric to it, so as an addition to 1) there appears the problem: 
1’) Is there a surface locally uniquely determined by its metric in a given 

smoothness class? 
Similar questions can be posed for bendings: 
2) Does a given surface admit non-trivial bendings? 
2’) Is there a locally non-bendable surface? 
3) Does a surface admit infinitesimal bendings of given order (k, n)? 
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3’) Is there a surface that is locally rigid with respect to infinitesimal bendings 
of a given order (k, n)? 

In 1.2 we saw that in local questions there is sometimes a sense of identifying 
surfaces that coincide in some neighbourhood of the point under consideration. 
Then it is natural to pose the following question: 

4) Suppose that two isometric immersions fi: De + E3 and fi: D, --f E3 coin- 
cide in some disc Da c 0,. Will they coincide in the whole of D,? In other words, 
in the notation of 1.2 the question is formulated as follows: do the spaces 9JIn, and 
YJIm,O coincide? 

Finally, there are questions touching on connections between all deforma- 
tions of a surface that we have introduced: 

5) Suppose that two surfaces are isometric to each other. Are they applicable 
to each other, or, in other words, do the properties of the two surfaces of being 
isometric and being applicable to each other coincide? 

6) To describe the set of connected components in the set of all isometric 
transformations of a given surface - is this set finite, and by which characteristics 
are the surfaces of each component determined? 

7) To describe a connected component, or in other words the configuration 
space of a given surface under all possible bendings of it. In particular, for such 
surfaces is their configuration space finite-dimensional? See also Remark 3 at the 
end of 1.3. 

8) What is the connection between bendings and infinitesimal bendings or 
between the non-bendability of a surface and its rigidity of order (k, n)? For 
example, can a given (k, n)-non-trivial infinitesimal bending be extended to an 
infinitesimal bending of higher order (k, m) and, in particular, to a bending ana- 
lytic with respect to the parameter? 

A pair consisting of a surface and the field of its infinitesimal bendings of 
order (1, 1) has a number of interesting properties not of differential but rather 
of algebraic character: projective invariance, symmetry and so on. We shall 
therefore formulate this circle of questions separately as: 

9) Algebraic properties of fields of infinitesimal bendings. 
Answers to all these questions depend on which smoothness class the surfaces 

under consideration and their deformations belong to; in addition, there emerges 
the dependence on the behaviour of the curvature of the surface in a neighbour- 
hood of a given point. Therefore the answer to each question is not settled by 
one theorem, and it is necessary to examine many different cases. 

Later in the text the order of presentation is the following: first in 53 we 
discuss the questions 8) and 9), in 3 6 questions 4), 5), 6) for the cases of curvature 
K > 0 and K < 0, with a simultaneous positive answer to question 2), in $7 these 
same questions in a neighbourhood of a point with K = 0, and in the same place 
there is information on the question 4), and 0 8 is devoted to questions of rigidity 
and/or non-rigidity of surfaces with respect to infinitesimal bendings. The gen- 
eral answer to question 1) is given in the same place as it is formulated, the 
answer to question 1’) in the class C’ is negative (see $4), and in smoothness 
classes Cz and higher it is not known. 
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Since a series of results of the theory of bendings is obtained with the use of 
infinitesimal bendings, we begin with question 8) from 4 2. In turn, this question 
requires “works” with a system of equations defining infinitesimal bendings of 
order (k, n). 

3.1. General Equations of Infinitesimal Bendings of Arbitrary Order. Repre- 
senting infinitesimal bendings of order (k, n) in the form of a deformation 

f, = f + 2tkz, + .‘. + 2t”z,, (9”) 

we have the following equations from condition (8): 

df dz, = 0, 

df fzk+l = 0, 

. . . . . . . . 

df dz,,-, = 0. 

4 dZ,k + dz,2 = 0, 

dfh+, + 2dz, dz,,, = 0, 

. . . . . . . . . . . . . . 

(11) 

df dz,, + 2dz, dz2i-k + ... + 2dzi-l dzi+l + dz? = 0, 

df dzzi+l + 2dzk dz*i-k+l + ... + 2dzi dzi+l = 0, 

. . . . . . . . . . . . . . . . . . . . . . 

(2i and 2i + 1 < n) 

This system can be replaced by the following: there are vectors yi(U, u) such that 

dz, = bk x df I, (vector product) 

dZk+l = bk+l X dfl, 
. . . . . . . . . . 

dZ,,-, = bZk-I X df I, 

‘hi = b,, X df 1 + bk x dzkl, 

. . . . . . . . . . . . . . . 

(11’) 

dz,i = C.Y,i X 4”l + [yk X dZZipk] + “’ + [y2i-k X dz,l, 

dz,i+l = CYzi+l X dfl + [yk X dz,i-k+ll + “. + [yZi+l-k X dz,l, 
.,., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Hence it follows in particular that trivial infinitesimal bendings of order (k, n) 
have the form (we regard the point (0, 0,O) as fixed) 

i-k 

Zi = [Yi X f], k d i < 2k, Zi = [yi X f] + C [yj X Zi-j], 2k ~ i ~ n, 
j=k 

where yj are constant vectors, k d j < n. 

3.2. Transition from Infinitesimal Bendings of High Order to Infinitesimal 
Bendings of Low Order. This question, in this or a different form, was discussed 
long ago and by Cohn-Vossen (Cohn-Vossen (1936)), for example, it was formu- 
lated as the question of the relation between non-bendability and infinitesimal 
rigidity. 

The meaning of the general answer to the question is that if we do not make 
the smoothness class of deformations more precise, then these properties of 
surfaces are different, generally speaking - there are surfaces that are non- 
bendable but non-infinitesimally rigid, and bendable but infinitesimally rigid. 
But nevertheless between them there are very close general interconnections; the 
starting point for searches of such connections is the following observation: the 
initial speed of a smooth (with respect to t) bending can be interpreted as the 
field of an infinitesimal bending of the 1st order. In fact, if df,’ = df’, then 

,dr(df,‘) = 0, in particular, when t = 0 we have 2df dz = 0, where z = i(J), 

t = 0. Consequently, infinitesimal bendings appear as the result of “lineariza- 
tion” of the problem of determining bendings, which is essentially a non-linear 
problem. However, here there is a certain complication, which consists in the fact 
that the infinitesimal bending determined by the field z = f,‘(O) can be trivial. 
Nevertheless, under very general assumptions, with bendings we can associate a 
certain non-trivial infinitesimal bending of the 1st and even the 2nd order. 

Theorem 3.1 (compare Elimov (1948a), p. 121). Suppose that the surface S 
admits a non-trivial infinitesimal bending (9”) of order (k, n), k > 1. Then it admits 
non-trivial infinitesimal bendings of order (1, l), and when n > 2k, of order (1, 2), 
of the same smoothness as the fields zk and zzk in (9”). This is true if S admits a 
bending analytic with respect to the parameter t. 

The proof is short and so we give it. By hypothesis, there is a deformation (9”) 
that is an infinitesimal bending of order (k, n), and the fields zi, k d i < n, satisfy 
the equations (11). If a deformation is a bending of at least class C:;,, then the 
initial part of the expansion of this deformation in the degrees oft also satisfies 
the same equations (11). Among them we have two equations 

df dz, = 0, 

df% + dz; = 0 (when n 3 2k), 

of which it is clear that the deformations 

f, = f + h, and f, = f + 2rz, + 2~~2,~ 
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give respectively infinitesimal bendings of the order (1, 1) and (1, 2) of smooth- 
ness asserted in the theorem. 

Corollary 3.2. If a surface S E C1 has Cl-rigidity of the 1st or 2nd order, then 
it is non-bendable in the class of C:,,-smooth deformations (that is, in the class of 
Cl-smooth surfaces with analytic dependence on t of the first derivatives of the 
position vector of the surface) and is rigid with respect to C’-smooth infinitesimal 
bendings of any order (k, n), k 3 1, or of order (k, n), n > 2k > 2, respectively. 

Thus we can say that between bendings and infinitesimal bendings of the 1st 
and 2nd orders some connection is established. Let us go over to infinitesimal 
bendings of higher order. The unconditional influence of analytic bendability or 
non-rigidity of high order (k, n), 1 < k < n, on the availability of non-rigidity of 
order (1, m), 1 < 1 < k, m < n, has not been established up to now. Of course, 
there are trivial cases when, say, the initial degrees in the expansion of the 
deformation f with respect to t are proportional to one number: 

f, = f + P’Zl + ... + +z, + ... ) 

k, = pl,, . . . . k, = pl,, . . . 

then the substitution z = tP gives a representation of the same deformation in 
the form f, = f + zf’zl + . . . + rlnz,,, that is, as an infinitesimal bending of order 
(11, 1,). In the general case, generally speaking, the statement of the problem 
requires a substantial refinement, since several versions of the original informa- 
tion and the required answer are possible. For example, suppose that for a sur- 
face there is known the existence of a non-trivial infinitesimal bending of a given 
high order (k, n) (or an analytic bending); we need to investigate the non-rigidity 
with respect to infinitesimal bendings of low orders, and for the required fields of 
infinitesimal bendings of low orders we can require or establish only the fact of 
their existence (“qualitative” statement of the question) or it is necessary to find 
these fields, indicating methods for constructing them depending or conversely 
not depending on the specific form of the original field of infinitesimal bendings 
of high order (“quantitative” or “constructive” statement of the problem). In the 
latter case we can make the following assertion (see Sabitov (1987)), which is a 
generalization of a result of Efimov in Efimov (1952). 

Theorem 3.3. Suppose that all the P-smooth infinitesimal bendings of the 1st 
order of a non-planar Cl-smooth surface S are parallel to one field of infinitesimal 
bendings zy and that S admits bendings of class C(IGA with some n, 1 < n < A. Then 
S has P-non-rigidity of any order (1, m). This is still true if S admits C”-smooth 
infinitesimal bendings of order (k, I), where k > 1, km < 1. 

The idea of the proof consists in introducing a new parameter with respect to 
which the initial part of a given deformation f, can be represented as an inlinites- 
imal bending of order (1, m), and for the field z1 we take the first (by order) 
derivative off, with respect to t that is non-zero at the point t = 0. 

We see that in the general case the field z = z(u, v) that determines a non- 
trivial infinitesimal bending of the 1st order does not have to be the field of initial 
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speeds of some bending that generates it. Moreover, if we are given some 
bending field without the assumption that it is analytic with respect to the 
parameter, then in the general case it is impossible to connect with it some field 
of an infinitesimal bending: 1) for example, all smooth surfaces are bendable in 
the class of Cl-smooth surfaces (see 44) but there are examples of Cm-smooth 
surfaces that are rigid with respect to Cl-smooth infinitesimal bendings of the 
1st order, see Sabitov (1973); 2) for surfaces of positive curvature and any 
smoothness Cq, 3 d 4 d A, we can find a bending of smoothness Cj;,,, p d q, 
that is not the extension of any infinitesimal bending of order (k, n); for an 
example see Klimentov (1984) (but of course there are infinitesimal bendings of 
any order that are in no way connected with the given bending). 

Nevertheless we can state some connection of a general form between the 
bendability of a surface and its non-rigidity of order (1, m) in the form of the 
following assertion. 

Theorem 3.4. Suppose that a surface S E C”, 1 < n < A, admits non-trivial 
bendings S, in the smoothness class Ct,, 1 < m < 00, 1 < k < n, 1 < co. Then in 
the family of isometric surfaces S,, 0 < t d 1, arbitrarily close to S = S, there is a 
surface that admits non-trivial C’-smooth infinitesimal bendings of order (1, m). 

We give the proof that we need for future discussion. If the surfaces S,: f, = 
f + U(u, v; t) in correct situation are obtained by a bending of the surface 
S,: f. = f, then the field z(u, v; z) = U(u, v; t) - U(u, v; to), z = t - t,, gives a 

bending of the surface St,. Since g 
at t=fo 

cannot be identically equal to zero (with 

respect to U, v) for all to close to t = 0, there is a value t = t, arbitrarily close to 
az 

t = 0 for which - 
aT r=. 

# 0. Hence the segment of the Taylor polynomial of the 

field z E C’(U, v) with respect to z from z to rm is a non-trivial infinitesimal 
bending of order (1, m) for SZO. 

From the reasoning above we can observe that bendings of surfaces take 
place “in the main” in the set % of non-rigid surfaces with the field of an 

infinitesimal bending z, = aa V; t) 
at . Consequently, we can regard the trajectory 

S, of an isometric C:; ,-smooth deformation of the surface S, as an integral curve 
of the “vector” field of infinitesimal bendings z(S) defined at each point S E % 
(the surface S, itself may not occur in ‘% or it may be that z,, = 0). 

Here it is relevant to set up the converse question: given some trajectory in !X 
beginning at S, E mm; in which case is it a bending of the surface S,? The answer 
is as follows: suppose that the family f, = f + F(u, v; t) E Ci;, consists of non- 
rigid surfaces so that there is a field z, with df, dz, = 0; then in order that the 

deformation f, should be a bending it is sufficient that z, = $ and this condition 

is necessary if f, has a unique field of an infinitesimal bending of the 1st order 
(here this is most likely, and is the first cause of the condition of finiteness of the 
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number of fields of an infinitesimal bending of the 1st order, which ensures 
that their surfaces of rotation are non-rigid of the 2nd order; see Poznyak 
(1959)). 

Thus, by Theorem 3.4 we can say that if a surface S is bent in the class C:;,, 
m > 1, then it is either non-rigid or the limit of non-rigid surfaces S,. In the case 
of the presence of an analytic bending (with respect to the parameter) the surface 
is necessarily non-rigid; apparently a more general fact is true: a surface that 
admits Ci; ,-smooth bendings is non-rigid with respect to infinitesimal bendings 
of the 1st order, although the field of its non-trivial infinitesimal bendings is not 
necessarily the initial speed of the given bending. 

As to the influence of non-bendability of a surface “in the small” on its rigidity 
of some order, here there is not one result known to us. In this connection we 
mention that the proof, which is available for polyhedra, of the assertion that 
from the non-bendability of a polyhedron there follows its rigidity of some order 
(k, n), see $9, cannot be extended to smooth surfaces, since the problem of 
investigating the rigidity of a polyhedron reduces to the solution of some linear 
algebraic system, and in the smooth (analytic!) case, although we can represent 
the corresponding system of differential equations formally in the form of an 
analytic functional equation, all the same there remains the problem of the 
feasibility of differential relations between the components of the solution 
obtained in the form of a formal power series. 

3.3. Transition from Infinitesimal Bendings of Low Order to Infinitesimal 
Bendings of High Order. There is no simple answer to the possibility of 
extending infinitesimal bendings of low order to infinitesimal bendings of higher 
order in the general case - there are examples where a surface locally has a 
field of an infinitesimal bending of the 1st order that is not extendable to an 
infinitesimal bending of the 2nd order, see Sabitov (1979a) (consequently, it is 
not extendable to an infinitesimal bending of any high order, in particular, to an 
analytic bending with respect to the parameter), and conversely, there are sur- 
faces for which each non-trivial infinitesimal bending of any order (1, n) can be 
extended to an infinitesimal bending of any order (1, m), m > n, and even into an 
analytic bending with respect to the parameter. This assertion holds for surfaces 
of positive curvature and it has been proved in an article of Isanov (Isanov 
(1977)) for surfaces and deformations of class Cl,‘, 1 3 2, in the case n = 1. For 
another version of the proof, for any n, see Klimentov (1984); the method of this 
paper of Klimentov gives an example of the use of a representation of a family 
S, of bendings as “curves” touching fields of infinitesimal bendings at each point 
S,: infinitesimal bendings are regarded in Klimentov (1984) as jets of a map that 
assigns a bending of the surface S. 

3.4. Algebraic Properties of Fields of Infinitesimal Bendings of the 1st 
Order. Besides properties that depend on the specific form of a surface, inlini- 
tesimal bendings have a series of properties of algebraic geometry nature, valid 
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for infinitesimal bendings of all surfaces and based on formal operations over 
fields of infinitesimal bendings. 

3.4.1. Darboux Surfaces. The field zr of an infinitesimal bending of the 1st 
order of a surface F1 with position vector fi: D -+ E3 satisfies the equation 

dfl dz, = 0. (12) 

The equation (12) is symmetric with respect to fi and z1 : we can assume that the 
field fi determines an infinitesimal bending of a surface Z, with position vector 
zl: D + E3, called the diagram of bendings. This symmetry between Fl and Z, 
leads to an unusually elegant construction known by the name of Darboux 
wreath; see Darboux (1986), Ch. 3. 

First of all, having the condition (12), we can show that there is a field z,(x, y) 
such that 

dz, = [zZ x dfl]. 

The field z2 is called the rotation field for the field of infinitesimal bendings zi, 
and the surface Z, with position vector z 2: D + E3 is called the diagram of 
rotations. 

We now construct the field fi = z1 - [z2 x fi]. It is easy to verify that 
df2 dz, = 0, so by analogy with (12) there is a field z3 such that 

dz, = [z3 x dfJ. 

We again construct the field f3 = z2 - [z3 x fi], and so on. Extending this 
process by the formulae 

dzi dfi = 0, dzi = CZi+l X dfil, A+1 = zi - lIzi+ ’ Ll, 
we discover that z7 = zi, f, = fi! Fig. 1 shows schematically the connections 
between the resulting 12 Darboux surfaces Fi and Zi with the position vectors A 

Fig. 1 
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and zi respectively, 1 < i d 6. The arrows between Fi and Zi show their equal 
status, since df dzi = 0 and each surface determines the field of infinitesimal 
bendings of the other. The arrow from Zi to Z,+i shows that Zi+i is the diagram 
of rotations for Zi, regarded as the diagram of bendings for Fi; the arrow from 
Fi to Fiml shows that Fiml is the diagram of rotations for Fi, regarded as the 
diagram of bendings for Zi. 

Apart from the relations just mentioned, between Darboux surfaces there is 
still a series of algebraic geometry connections, for example, the surfaces Fi and 
Zi+2 are in polar correspondence, Fi and Z,+i have parallel tangent planes at 
corresponding points; for these and other connections see Voitsekhovskij (1979) 
and the literature mentioned there. 

Differential geometry properties of Darboux surfaces depend mainly on the 
sign of the curvature of the original bendable surface F,; they have been studied 
in detail only for the case when F, has positive curvature; see Sabitov (1965a), 
Sabitov (1965b). The diagram of rotations turned out to be more interesting and 
useful; by means of it two shorter proofs of the rigidity of regular ovaloids (closed 
surfaces of positive curvature) were given. We give one of them: we first establish 
that the diagram of rotations at an internal point does not have locally 
supporting planes (see Sabitov (1965a)), but for a closed surface Z, there must 
be a supporting plane - a contradiction! 

In Sabitov (1965a) and Sabitov (1965b) there is a series of other tests for 
rigidity of surfaces of positive curvature, based on local properties of the 
Darboux surfaces Z,, Z, and so on; see also Kann (1970). 

The diagram of rotations for infinitesimal bendings of domains on a sphere 
represents a minimal surface, and conversely, with each minimal surface we can 
associate some infinitesimal bending of a spherical domain. This fact was already 
known to Liebmann in 1919; for a new proof and details see Sabitov (1967). In 
the general case of surfaces of positive curvature the diagrams of rotation for 
their inlinitesimal bendings represent surfaces of negative curvature with iso- 
lated branch points; these surfaces, associated by W. Siisse in the 20s and 30s 
with so-called relative minimal surfaces, have many properties in common with 
minimal surfaces, and they give an excellent real example of immersions with 
branches, studied in Gulliver, Osserman and Royden (1973). 

3.4.2. Projective Invariance of Infinitesimal Bendings. The property of projec- 
tive invariance of infinitesimal bendings is that under projective transformations 
of space a non-rigid surface goes over to a non-rigid surface, and the field cf 
infinitesimal bendings of the 1st order of the transformed surface is obtained 
explicitly in terms of the field of infinitesimal bendings of the 1st order of the 
original surface. The proof of this assertion, which is known as the Darboux- 
Sauer theorem (Darboux (1896) Sauer (1935)), is obtained as the composition of 
the following two easily verifiable relations (see Yanenko (1954) also for the 
multidimensional case): 

1) if the transformation of space is afhne: 

T=xXA+B, x = (Xl, x2, x3), r7 = (11, K,, a,) (13) 
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and S is a non-rigid surface with a field of infinitesimal bending of the 1st order 

Zl 
z= z2 , 

I; z3 

then after the transformation (13) S goes over to some surface s” with a field of 
infinitesimal bending 

2 zz A-‘Z; 

2) if the transformation of space is projective of special form 

(14) 

then after the transfomation (14) the non-rigid 
3 with a field of infinitesimal bending 

surface S goes over to a surface 

Zl Z1=-, z2 2, f3 = - XlZl + x2.22 + x323 

x3 x3 x3 

The main applications of the property of projective invariance of infinitesimal 
bendings are known not in the local but the global theory, and they consist of 
the following. 

1) Many properties of infinitesimal bendings of the 1st order are true on 
surfaces of the form z = f(x, y), that is, projected one-to-one onto some plane, 
and are untrue without this property; for the use of such properties the applica- 
tion of a projective transformation of the form (14) enables us to transfer a closed 
surface S to an infinite surface s” of the form z = f(x, y), and then, obtaining the 
corresponding information for ,!?, we can make deductions about infinitesimal 
bendings of the original surface S. In such a way there were obtained, for 
example, proofs of the infinitesimal rigidity of closed convex surfaces: regular 
and of strictly positive curvature in Vekua (1959), with isolated zeros of the 
curvature in Kann (1970), and the general case in Pogorelov (1969). In the same 
way, assertions about infinitesimal bendings, true with respect to surfaces of the 
form z = f(x, y), were carried over to surfaces that are star-shaped with respect 
to some point separated from the surface by a plane. 

2) In boundary-value problems conditions of a relation of infinitesimal bend- 
ings with respect to a point by a projective transformation can be carried over 
to conditions of a connection with respect to a plane, or conversely. 

The extension of the results of these two sections to infinitesimal bendings of 
order (k, n), 1 < k < n < 2k, is obvious. For an infinitesimal bending of order 
(k, n), n 3 2k, we see from (11’) that there are fields y,, y, and so on that are 
analogues of rotation fields, but it is not known which fields can be connected 
with them to obtain an analogue of the Darboux wreath. 
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Under projective transformations there naturally takes place a corresponding 
change of Darboux surfaces; for the algebraic geometry interconnections be- 
tween Darboux surfaces that arise here see Bol(1955) and Sauer (1948). 

3.4.3. Algebraic Properties of the Set of Solutions of Equations of Infinitesimal 
Bendings. The definition of infinitesimal bendings of order (k, n) in 1.4 relies on 
the representation of a deformation of a surface in the form (9); we call the vector 
functions zk(u, u), . . . , z,(u, v) fields defining the given infinitesimal bending. If we 
make a substitution of the parameter t = t(r) E C” with 

t=a,T+a2T2+~~~+a,T”+o(T”), a1 zo, 

then with respect to r the deformation (9) takes the form 

fr = f + Tklk + ... + r”Zn + O(T”), T + 0. 

This deformation is also an infinitesimal bending of order (k, n), however the 
vector functions that determine it are now different: 

.Fk = a:z,, Fk+l = ka,a:-‘z, + a:+l~~+~, . . . , 

2” = Gzn + Pn-l,nZn-1 + “’ + Pk,nZk, (15) 

where pi,j are certain numerical coefficients. Obviously we need to assume that 
the deformations f, andx determine the same infinitesimal bending. This identifi- 
cation means that in the correspondence between solutions of the system (11) 
and the infinitesimal bendings determined by them we also need to introduce 
necessary refinements, namely, in the set of solutions of the system (11) we need 
to introduce the condition of equivalence of solutions. So far, from the represen- 
tation of the fields Zi in terms of zi it follows that if we know some solution 

(z k,. . . , z,) of the system (1 l), then there is a collection of functions (zk, . . , &) 
expressible linearly in terms of zk, . . . , z, by the formulae (15), which is also a 
solution of the system (11) and gives an infinitesimal bending equivalent to the 
infinitesimal bending determined by the fields zk, . . . , z,. Starting from this, it is 
natural to raise the following questions: 

1) Letz’=(z,0,..., zf) be a solution of the system (11). Which are the linear 
transformations A for which AZ’ is also a solution of the system (1 l)? 

2) When do the two solutions (zh’), . . . , zb”) and (zi2), . . , ~a)) of the system 
(11) determine one infinitesimal bending in the sense described above? 

3) From the solution z = (zk, . . . , z,) of the system (11) can we “construct” 
by some linear transformation AZ a field (z,, . . . , z,) that determines an intini- 
tesimal bending of order (2, m), 1 < k? 

All these questions are still unsolved. The discussion of Theorem 3.4 shows 
that the properties of the set of solutions of the system (11) depend essentially on 
whether the field of infinitesimal bendings of the 1st order is unique or not. In 
particular, on this there depends the uniqueness of an extension of infinitesimal 
bendings of low orders to infinitesimal bendings of high order. 
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$4. Bendings of Surfaces in the Class C1 

One of the unexpected discoveries in the theory of immersions of metrics and 
bendings of surfaces was the establishment of the fact that any metric (2) with 
continuous coefficients is isometrically immersed in E3 in the form of a Cl- 
smooth surface and the freedom of the immersions is such that they constitute 
a C:,,-smooth family; quite astonishing here was the bendability in the class 
C:;, of analytic surfaces “in the large”, for example spheres, even without pre- 
serving the orientation: Gromov and Rokhlin (1970) Kuiper (1955), Nash (1954). 

Subsequently in the paper Borisov (1965) the following extension of the 
smoothness class of bendings was proposed: an analytic surface of positive 
curvature that is homeomorphic to a disc is bendable in the class C:;; with 
CI < l/7 and there the hypothesis was stated that this is true with cy < l/5. Of 
course, in the process of such a bending, on the surfaces we lose well-known 
classical connections between extrinsic and intrinsic geometry, for example, 
although these surfaces have positive intrinsic curvature, nevertheless at any 
point they are not locally convex. In the same way, we can bend a plane in a 
family of surfaces of smoothness Ci;t, CI < l/7, and the resulting surfaces of 
intrinsic curvature K = 0 will not contain rectilinear generators. However, the 
possibility of the existence of a surface isometric to a plane but not containing 
rectilinear generators was established by Lebesgue (Lebesgue (1902)), but the 
surfaces there were only smooth almost everywhere. 

But we should say that here there are no sufficiently simple descriptive or 
analytic representations of such surfaces (like, say, for continuous but nowhere 
differentiable curves), and so it was interesting to study algorithmic approaches 
to the construction or description of such surfaces (with the possible use of a 
computer). 

The best estimate of the values of those a under which bendability “in the 
small” exists for any surface of classical smoothness C”, 2 < n d A, is not known 
to the author, but it is known (Borisov (1965)) that when M > 2/3 classical 
extrinsic geometry holds on surfaces of positive curvature. Together with this 
we see in 48 that there are C”-smooth surfaces, locally rigid in the class of 
Cl-smooth infinitesimal bendings of the 1st order; hence we should expect that 
in the class C:; i there is not always bendability. 

It was shown in Pogorelov (1969) that if the spherical image of a smooth 
surface has bounded absolute variation (or bounded area taking account of the 
multiplicity of the covering ~ the so-called surfaces of bounded extrinsic curuu- 
We), then on such surfaces there remain the classical connections between their 
extrinsic and intrinsic geometries. Therefore, bearing in mind certain general 
properties of maps with small smoothness, for example the impossibility of filling 
a square by a Peano curve of class Co,” when o! > l/2 and the possibility of such 
a tilling when CI < l/2, and also special properties of a spherical map itself, we 
can expect that the border between universal “exotic” bendability and bendabil- 
ity depending on the local structure of the surface goes through to class C1,1/2. 

In Rozendorn’s article II in the present volume we can find a more detailed 
description of the idea of immersing metrics in E3 in the form of a surface of 
small smoothness; see also 5 3 of Ch. 4 in the article I of Burago and Shefel’. 

0 5. Auxiliary Information: Classification and Integral 
Characteristics of Points of a Surface; Equations of 

Immersion and Bending 

5.1. Four Types of Points on a Surface. In the smoothness classes C2 and 
above, local bendability of a surface depends essentially on the structure of the 
surface near the point under consideration. We recall various characteristics of 
a “marked” point of a surface. First of all, one of the important characteristics 
of a point is the order of contact of the surface with its tangent plane at that 
point. Suppose there is a correctly situated surface S: z = f(x, y) E Ck, k b 2; we 
have f(0, 0) = f,(O, 0) = f,(O, 0) = 0. Let n (2 d n < k) be the first number for 
which at least one of the n-th order partial derivatives of f(x, y) is non-zero at 
the point (0,O). Then from the local Taylor formula we have 

2 = j”yx 2 y) + R(x y) 2 > R = o(F), r2 = x2 + y2 + 0, (16) 

where f(“) is a homogeneous form of degree n in x and y. The number p = n - 1 
is called the order of contact of the surface with the tangent plane at the point 
M,(O, 0,O) E S. When p = 1, with respect to the discriminant d(M,) of the 
second fundamental form of the surface we have the following known classifica- 
tion of points of the surface: 

a) A > 0 - the point is elliptic o the Gaussian curvature K(0, 0) > 0. 
b) A < 0 - the point is hyperbolic o K(0, 0) < 0. 
c) A = 0 - the point is parabolic o K(0, 0) = 0 (we draw attention to the fact 

that in the definition of a parabolic point adopted here at least one of the 
coefficients of the second fundamental form is non-zero). The points of these 
three types will be called points of general position. 

When p > 1 the point MO E S is called a flat (or planar) point, and the number 
q = p - 1 = n - 2 is called the order of flattening. At a flat point K = 0, and in 
addition all the coefficients of the second fundamental form are zero. Points in 
general position will sometimes be called points with flattening of zero order. 

If f(x, y) has smoothness Ck and f = o(rk), then obviously one cannot deter- 
mine the order of flattening in the general case, and in specific problems for the 
function f(x, y) and its derivatives up to some order we need to assume the 
existence of a representation as in (16) with R = o(lf”‘l) and with additional 
refinement of the form of the principal part f(“), for example, as we need to do 
for a description of flattenings of exponential order. 

5.2. Arithmetic Characteristics of a Regular Point of a Surface. In Efimov 
(1948b) further details of the structure of a surface in a neighbourhood of a 
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marked point were given. If a point Me E S has some neighbourhood in which 
there are no normals to S parallel to the normal n(M,), then the point M, is 
called regular, and the corresponding neighbourhood of the point is called 
canonical. Suppose that the surface S: z = f(x, y) is given in correct situation; 
then if the point M,(O, 0,O) E S is regular, in its canonical neighbourhood the 
field grad f(x, y) has an isolated singular point (0,O). The index of this vector 
field is called the index of the point M, and denoted by ind(M,). 

Let us consider the section of the surface S by the tangent plane 17: z = 0. It 
has been proved (on the assumption only that S E C’!) that in a small canonical 
neighbourhood U of the point M, the intersection of S and ZZ consists either of 
just the point M, or of an even number of curves 4, 1 < i < 1, of smoothness C’ 
dividing U into 1 domains, just as on a plane 1 rays starting from the point (0,O) 
divide a neighbourhood of this point into sectors, but in the general case it is 
impossible to guarantee some regularity of the appearance of & at M,, for 
example, with a definite direction. The number m = Z/2 is called the order of 
saddleness of the surface at M,. 

The numbers p(M,), the order of contact of S with the tangent plane, ind(M,) 
and m(M,) are connected by the relations 

ind(M,) = 1 - m(M,), 

m(Mo) d 1 + P&M. 
(17) 

Elliptic and hyperbolic points on S are always regular; for them we have m = 0 
and m = 2 respectively (see Figs. 2 and 3). Parabolic points and flat points can 
be both regular and non-regular. If, for example, the curvature in a deleted 
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neighbourhood of a point is of constant sign, then the point M, is regular, and 
when K > 0 we again have m = 0, but when K < 0 the order of saddleness 
can be any integer 2 2, taking account of (17), of course. For the case of curva- 
ture of variable sign in the analytic class there is the following criterion (Elimov 
(1948b)): a point is non-regular if and only if through it there passes an arc of the 
curve K = 0 along which the surface has a stationary tangent plane. Such, for 
example, is each point of the parabolic curve on a circular torus. 

Examples of surfaces with a regular parabolic point. 
1) s: z = y2 + ax”, n 2 3. Here for even n = 2k, a > 0 we have K - 

n(n - 1)ax” 2 0. The intersection of S with the tangent plane Z7: z = 0 consists 
of one point M,, so m = 0; when n = 2k, a < 0 we have K d 0; S n 17 consists 
of four arcs with equations y = + ,/( - a)~,, so m = 2; if n = 2k + 1, then K is of 
variable sign for any a # 0 and S n 17 consists of two arcs with equations 
y = +J( -ax)xk, ax < 0, so m = 1. We see that for a parabolic point there are 
realized all the possible cases m = 0, 1,2 that follow from the inequality (17) with 
p= 1. 

2) S: z = y2 + a(~“’ + yzn)x2, n > 1, a # 0. This example is interesting in 
that the curvature K = 4a(y2” + (n + 1)(2n + 1)x’“) is of constant sign in a 
deleted neighbourhood of the point M,. Here we have m = 0 when a > 0 and 
m = 2 when a < 0. 

3) S: z = y2 + 2a Re(x + iy)“+2, n 3 1. The curvature K - a(n + 1) x 
(n + 2) Re(x + iy)” is of variable sign and it vanishes on 2n arcs that go into (0,O) 
with definite directions. If n = 2k, a > 0, then m = 0. If n = 2k, a < 0, then m = 1. 
Hence we see that the number of curves K = 0 is not connected with the order 
of saddleness. 

Examples of surfaces with a regular flat point. 
1) S: z = (x2 + y2)n, n > 2. Here K > 0, p = 2n - 1, m = 0. 
2) For the case K < 0 a typical example of a surface with a flat point is the 

graph of a harmonic function (see Fig. 22 in the article by Rozendorn in this 
volume). Suppose, for example, that z = Re w”, w  = x + iy, n > 3. We have 
p = n - 1, m = n. Obviously equality in (17) is attained for any given p or m. 

3) S: z = (WE)” Re wk. Here m = k, p = 2n + k - 1, and the curvature is neg- 
ative when k2 > 2n + k and of variable sign when k2 < 2n + k. Hence for any m 
and p that have opposite parity and satisfy (17) there is an analytic surface that 
realizes m and p. Another more complicated example shows that m and p can be 
also of the same parity. We note that under the additional condition K < 0 such 
a surface may or may not exist (for example, we can show that when m = 2 and 
p = 2 there is no such surface). A description of all pairs (p, m) with the condition 
(17) for which there is a surface with curvature K < 0 that realizes them does not 
occur in the literature, and apparently nobody has formulated it as a meaningful 
problem. It is also not known whether there are surfaces with a flattening of 
infinite order at a point and with negative curvature in a deleted neighbourhood 
of the point (consequently, with finite order of saddleness). We recall that condi- 
tion (17) connects m and p only in the analytic case, and in classes of finite 
smoothness this condition may be meaningless because of the non-existence of 
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p (but on a Ck-surface for which p 6 k and m exist, (17) is valid). Interest in the 
order of flattening of a surface z = f(x, y) under negative curvature of this 
surface in a neighbourhood of a flat point has been further induced by the 
following circumstance: many surfaces of negative curvature are obtained as 
solutions of elliptic equations of a definite class (with possible degeneracy at a 
point), consequently, if it is established that with the sign K < 0 there is no 
flattening of infinite order, then by the same token we shall obtain an assertion 
about the finiteness of the order of decrease of solutions of certain classes of 
elliptic equations in a neighbourhood of critical points of the solution. 

As we shall see later, the sign of the curvature and the order of its vanishing 
will have an important significance for the structure of the set ‘9X. 

5.3. Stability and Instability of Arithmetic Characteristics of a Point of a 
Surface. An arithmetic characteristic of the point under consideration is called 
stable (unstable) with respect to a given class of deformations if it is not changed 
(it is changed) under the indicated deformations of the surface. Here we are 
interested, of course, in the stability of the order of flattening and the index of a 
point under bendings and infinitesimal bendings of the surface. 

Theorem 5.1. a) For the instability (under bendings) of the order of flattening 
q = n - 2 at the point (0,O) of the surface 

z = f@%, Y) + w, Y), n 3 3, 

it is necessary that the Hessian of the form f @), 
f@' + 0, (18) 

H( f  (“)) = f;;‘f,l”’ - f;;j2, 

is either identically zero or it contains a multiple linear factor.(ax + by). 
b) Suppose that the curvature K of a surface has the Taylor expansion 

K = KCk’(x, y) + R(x, y), k> 1. 

Then for q to be stable it is sufficient that one of the following three conditions 
should be satisfied: 

1) k = 1, 
2) k = 2 and KCk) does not have the form f (ax + by)‘, 
3) k > 2 and KCk) is a form of definite sign. 
c) For q to be stable at the point (0,O) of the surface (18) it is sufficient that 

n 2 4 and the form fCn) does not contain a multiple linear factor (ax + by). 
d) The index of a point in a deleted neighbourhood of which the curvature of 

the surface is of constant sign is stable with respect to bendings. 

The first two assertions of the theorem were proved in Hopf and Schilt (1938) 
and the rest in Elimov (1948b). The idea of the proof of a)-c) consists in a careful 
investigation of the connections between the coefficients of the initial forms in 
the expansions off, the Hessian H(f) and K by the Taylor formula and so these 
items are actually true in classes of surfaces and their bendings of some finite 
smoothness. Item d) is the result of a difficult lemma on the structure of the set 
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of level curves of a function in a neighbourhood of a regular point, and it is true 
in the class of bendings of smoothness e:;,. 

5.4. Equations of an Immersion and a Bending of a Surface. In equation (3) 
there are derivatives of only the first order, and so in them there is not detected 
the type of problem that depends on the sign of the curvature of the metric. In 
smoothness classes C2 and above we can propose other equations of an immer- 
sion, and if their solutions are determined by some continuously variable condi- 
tions (for example, a variable boundary condition, a condition of Cauchy type, 
and so on), then the continuous totality of solutions of the equations gives a 
bending of the surface that enters into this totality. 

A linear variation of the equations of an immersion leads to an equation of 
infinitesimal bendings of the 1 st order; variations of higher orders give equations 
of infinitesimal bendings of the corresponding order (1, n) (Belousova (1961), 
Klimentov (1984)). 

The form of all these equations depends essentially on the choice of the system 
of intrinsic coordinates and basic unknown functions that determine a surface 
to be immersed. Here we give a series of specific forms of the equations of an 
immersion. 

5.4.1. The Darboux Equation. Suppose that the metric (2) is immersed in E3 
by the surface (1). Since the metric ds2 - dz2 = dx2 + dy2 is locally Euclidean, 
this happens if and only if its Gaussian curvature is equal to zero, which gives 
for z(u, v) the so-called Darboux equation 

where 

ZllZ22 - i;, = K(EG - F2 - Ez; + 2Fz,z, - Gz,~), (19) 

Zll = zuu - Ghl- ~:lz”, 

212 = Z!J” - r;2z, - G22zln 

222 = &I, - ri2z, - r;2zv, 

and 45 are the Christoffel symbols of the metric (2). If z = z(u, v) is a solution of 
equation (19) with the condition z,(O, 0) = ~“(0, 0) = 0, then in a small neigh- 
bourhood of the point (0,O) the form ds2 - dz2 will be positive definite, and then 
the maps x = x(u, v), y = y(u, u) that reduce the form ds2 - dz2 to the standard 
form dx2 + dy2 are found from the coefficients of this form by quadratures; an 
explicit form of this reduction can be found, for example, in Hartman and 
Wintner (1951) or in Sabitov (1988). 

In questions of local bendings of a given surface z = f  (x, y) it is helpful to use 
the following form of the Darboux equation, composed on the basis of the metric 
of the surface x = u, y = u, z = f(u, v): 

(Z”“Z”” - z&)(1 + P2 + q2) - b-z,, - 2sz,, + tzvv)(pz, + 44 

= (rt - s’)(l - z,’ - z,2), (19’) 

where p = f,, q = fO, r = f,,, s = f,,, t = f,,, and z(u, v) is the required solution. 
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5.4.2. Fundamental Equations of the Theory of Surfaces. Suppose that the 
required surface is determined by the coefficients L, M, N of its second funda- 
mental form; then, as we know, the following equations for them are satisfied 
(the case of a surface of class C3): 

L, - M,, = (I& - r;,)M + l-,:L - l-:, N, 

M,- N, = (r,", - r,',, M + r&L - T:,N, (20) 

LN - M2 = K(EG - F’). (21) 

If the system (20), (21) is solved with respect to L, M, N, then from its solution 
the surface S in correct situation is uniquely restored. For S E C2 the system (20) 
needs to be replaced by its integral analogue; general coordinates are inconve- 
nient for the work, but if we choose a system of isothermal coordinates, in which 
E = G = A’, F = 0, we obtain a quite “efficient” integral equation in a domain 
D of change of coordinates (u, V) or w = u + io: 

L-N-2iM= -2 ss HA2 

(iy ss 
AHAcd( dy + F(w), (20’) ~ 

n i-w 
D D 

where F(w) .is an arbitrary function holomorphic in D, and H is the mean 
curvature. 

Equations for infinitesimal bendings will be described in 5 8. 

5 6. Bendings of Surfaces in a Neighbourhood of a Point of 
General Position 

6.1. Analytic Case. With respect to bendings of smoothness CA in a neigh- 
bourhood of a point of general position all the surfaces behave identically (that 
is, as in another extreme case of smoothness - in bendings of class C’). Namely, 
the following theorem is true. 

Theorem 6.1. a) The analytic metric (2) is locally realized in E3 in the form of 
an analytic surface without a flat point, and any such realization is bendable in the 
analytic class. 

b) Let S and S* be two analytic realizations of the analytic metric (2), lying in 
correct situation, for which the point M,(O, 0, 0) is a point of general position. 
Then there is a bending of class CfGA, with a possible addition of mirror reflection, 
of some neighbourhood of the point M, on S into the corresponding neighbourhood 
of the point M, on S*. 

Part a) is a consequence of the applicability to (19) of the Cauchy- 
Kovalevskaya theorem (the assertion about the existence of a local realization 
of an analytic metric has been known for a long time; for the history and current 
state of this question see Gromov and Rokhlin (1970), Jacobowitz (1972a), 
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Spivak (1979)); part b) with K # 0 was proved by Levi in 1908, see for example 
Elimov (1948b), and in the case K(M,) = 0 by Schilt (Schilt (1937)). The necessity 
of a mirror reflection in Theorem 6.1 depends, as it turns out, on the type of 
point, and correspondingly it is necessary to consider three cases, for which we 
can additionally make certain refinements on the order of smoothness of the 
bendings. 

6.2. Surfaces of Positive Curvature. For a description of the set of regular 
isometric immersions of a given metric (2) with positive curvature we consider 
separately the Gauss equation (21). Introducing the functions 

X=& y= L-N L+N 

qE’ 
Z=- 

2JdK’ 
A=EG-F* 

we obtain 

z2 = 1 + x2 + Y2. (22) 

Consequently, in the space of the variables (X, Y, Z) we obtain for S the map 

h: S -+ E3 = (X, r, Z), (23) 

which transforms S to some domain on a hyperboloid of two sheets. We note 
that to surfaces that are mirror symmetric with respect to the plane z = 0 after 
the map h there correspond domains on the hyperboloid that are centrally 
symmetric with respect to (0, 0,O). Therefore we can expect that the set of 
surfaces isometric to a given surface of positive curvature consists of two con- 
nected components. In fact, we have the following theorem. 

Theorem 6.2. Suppose that the metric (2) has smoothness of class Pa, n 2 2, 
0 < a < 1, and that the curvature of the metric at the point (0,O) is positive. Next 
suppose that M is an arbitrarily given point on the hyperboloid of two sheets r 
with equation (22). Then for the point (0, 0) E D there exist a neighbourhood U c D 
and a map f: U + E3 that gives an isometric immersion of the metric (2) in E3 in 
the form of a correctly situated surface S and such that under the map (23) the point 
M,(O, 0,O) goes into a point M E r. 

The connection between the different immersions S and S* of the metric (2) is 
given by the following theorem. 

Theorem 6.3. Suppose that the metric (2) of smoothness P”, n 3 2,0 < CI < 1, 
and with curvature K > 0 is immersed in E3 by two maps f: D + E3, f *: D + E3, 
that give two surfaces in correct situation. Let M, and M, be points on one sheet 
of the hyperboloid of two sheets r with equation (22), obtained from the point 
M,(O, 0,O) by maps (23) corresponding to S and S*, and let y: [0, l] + r be a path 
on rjoining M, and M,, y(O) = M,, y(l) = M,, and y E Cm, 0 < m d A. Then 
there is a disc 0, in the limits of which the surface S can be applied to S* 
by bendings St, 0 < t < 1, of smoothness c;i with S, = S, S, = S*, and with 

MM,) = r(t). 
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In other words, S can be bent into S* by the family S, so that the image of the 
point (0, 0,O) E S, on the hyperboloid r is moved on the earlier specified curve 
y(t) with ends at M, and M,. 

A conjecture about the bendability of surfaces of positive curvature was made 
by Liebmann in 1920 in the following form: if from an ovaloid (a closed regular 
surface of positive curvature) we remove an arbitrarily small domain, then the 
remaining part of the ovaloid will admit non-trivial bendings. In the case of a 
general convex surface this conjecture was proved by A.D. Aleksandrov in 1946, 
of which we give a few details below (see Remark 5 on p. 211). Let us return to 
the smooth case. In 1955 Hellwig (Hellwig (1955)) proved that if the boundary 
of a simply-connected surface of positive curvature satisfies certain conditions of 
a geometric character, then in the class C4va the corresponding system (20)-(21) 
admits a continuous family of solutions that includes the required surface (in fact 
in Hellwig (1955) bendings of class 2,“;: were constructed); surfaces with such a 
boundary can also be constructed for the domains mentioned in Liebmann’s 
conjecture, and for a neighbourhood of a given point, and that gives a positive 
solution of both problems ~ Liebmann’s conjecture and the problem of bend- 
ability “in the small”. The general case - bendability of a simply-connected 
surface of positive curvature with a sufficiently smooth boundary - was con- 
sidered by Fomenko (Fomenko (1965)) for surfaces and deformations of smooth- 
ness C3*“; in Klimentov (1982) it was shown that any two such identically 
oriented isometric surfaces can be applied to each other by bendings of class 
Cz;>; the embeddedness of isometric surfaces is not assumed or asserted either 
at the initial moment or in the course of their bending. 

The specification in Theorem 6.2 of the path y(t) on which the bending of S 
“goes” is equivalent to the specification of the so-called “bending” function of 
the surface at a given point, Klimentov (1982), Fomenko (1965). Therefore in the 
smoothness class C”,“, n 3 3, Theorem 6.2 can be regarded as proved in these 
papers. For the smoothness that we have indicated the proof is obtained by the 
construction by successive approximations of the corresponding family of local 
solutions of the system (20’)(21). 

For a proper understanding of Theorem 6.2 we need to bear in mind that the 
specification of a point M E r as the image of M,, E S under the map (23) does 
not determine the surface S uniquely, so it is impossible to identify Z-either with 
“, the set of all local correctly situated isometric immersions (2) in E3, or with 
!JJIIJz,, the set of isometric immersions in E3 of a disc of fixed radius E > 0 with 
metric (2) (and one sheet of Tis not identified with the configuration space of the 
surface S under its bending). An approach to the description of the topological 
structure of the space ‘@ is based on the following simple heuristic argument - 
when K > 0 the system (20)-(21) in the first (linear) approximation is reduced to 
the generalized Cauchy-Riemann system, each solution of which determines 
some holomorphic function, and conversely each holomorphic function deter- 
mines some solution of the system (Vekua (1959)); consequently, in the non- 
linear (more precisely, quasilinear) case we can expect that between holomorphic 
functions and solutions of the system (20)-(21) there is some mutually defining 
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relation. In fact, following the general idea of Vekua, in Fomenko (1962) (proof in 
Fomenko (1965)) formulae were derived that give a one-to-one correspondence 
between surfaces from one component of ‘@ and the set of functions holomor- 
phic in a disc. Klimentov (Klimentov (1982)) gave a critical analysis of the proof 
from Fomenko (1965) and in turn established a theorem that confirms the 
general arguments about connections between ajl, and the set of functions holo- 
morphic in a disc. It turns out that in the smoothness class c”,“, n > 3, the set 
‘@ can be represented as an analytic submanifold of the Banach space C”,‘(nE) 
modelled in the Banach space of functions of class Cn,a(oJ holomorphic in D. 

Thus, for the case of surfaces of positive curvature the topological structure 
of the set !& is known: it consists of two infinite-dimensional connected compo- 
nents, and any two surfaces of one component can be applied to each other by 
a bending that is analytic in the parameter. 

Remark 5. Along with analytic methods for investigating immersions and 
bendings of convex surfaces other methods have been developed, which go back 
to the general approach of A.D. Aleksandrov to the theory of convex surfaces 
(Aleksandrov (1948)). In particular, on the basis of Aleksandrov’s theorems 
about pasting together and realizing convex metrics it was found that a convex 
surface is locally not uniquely determined by its metric; see Aleksandrov (1948) 
and also Elimov (1948a), 5 16, and Pogorelov (1969), Ch. 2. Liebman’s conjecture 
is proved here in the following version: if from a general convex closed surface 
we remove a domain of positive integral curvature, then the remaining part 
admits non-trivial isometric transformations; see Pogorelov (1969) Ch. 2. Local 
bendability of a convex surface follows from its local warpability and from the 
fact that any two isometric and identically oriented general convex surfaces can 
be applied to each other under the assumption only that the rotation of the 
boundary (or the geodesic curvature in the smooth case) is of constant sign, see 
Milka (1973); the bendings can be realized in the class of convex surfaces, but the 
smoothness of the bending with respect to the parameter is not guaranteed. 

Remark 6. Equation (19) in the case of metrics of positive curvature is an 
equation of elliptic type, so from general properties of solutions of elliptic 
equations it follows that if two of its solutions, defined in some disc De, coincide 
in a smaller disc, then they also coincide in 0,. Hence for surfaces of positive 
curvature the answer to question 4) in 9 2 is: for them %Rm, = ‘iJ.JI~. 

6.3. Surfaces of Negative Curvature. Applying the substitution 

y= L-N 

2J-dK’ 
z= L+N 

2&z?’ 
A = EG - F2, 

we find that a map of the form (23) transforms S into some domain on a 
hyperboloid of one sheet r 

z2 =x2 + Y2 - 1. (24) 
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The immersibility in E3 of a metric (2) of negative curvature was proved in 
Hartman and Wintner (1952) under the following assumptions of smoothness 
(maybe they are best possible): ds2 is in C”+’ and S is in C”, n > 2. Application 
of the methods of their paper enables us to prove the following analogue of 
Theorems 6.2 and 6.3. 

Theorem 6.4. a) Let M be a point of a hyperboloid of one sheet r with equation 
(24). Then for the metric (2) of smoothness C”+‘, n > 2, and with curvature K > 0 
there is a neighbourhood of the point (0,O) that admits an isometric immersion in 
E3 in the form of a surface S of smoothness C” for which the map h in (23) 
transforms the point M,(O, 0,O) E S into the point M E r. 

b) Let M, and M, be two points on r joined by a curve y: [0, l] -+ r of class 
C”, 0 6 m d co, or A, and let S, and S, be two immersions of the metric (2) in E3 
(smoothness as in a)) with an implied correspondence of the points Mi on r with 
the point M, on Si, i = 1, 2. Then there is a neighbourhood U(0, 0) c D on which 
S, and S, can be included in a family of bendings S(t) of smoothness cl,,,, with 
S(0) = S,, S(1) = S,, and the point M, E S, is transformed by the map h into the 
point y(t) on lY In particular, a surface is bendable onto a mirror image of itself. 

Thus, for the case of negative curvature the set 9JI consists of one connected 
component. Here we should also bear in mind that the choice of the point M E r 
does not uniquely determine the corresponding immersion (2) in E3; the arbi- 
trariness in the immersion, according to Hartman and Wintner (1952), is deter- 
mined by the choice of four functions of one argument, with some restrictions at 
the point (0,O). 

Remark 7. The methods of constructing solutions of equation (19) in Hartman 
and Wintner (1952) in the case of metrics of negative curvature are such that two 
of its solutions that coincide in some disc do not necessarily coincide on their 
extension beyond the disc. Hence for surfaces of negative curvature the sets ‘$I, 
and !lJlnz,O are distinct. 

6.4. Neighhourhood of a Parabolic Point. By Theorem 6.1 any surface of class 
CA in a neighbourhood of its parabolic point is bendable and there is applicabil- 
ity (in a wide sense) of two isometric surfaces with parabolic points correspond- 
ing to each other. But even in the analytic class of this theorem the question of 
the structure of the set W has not been solved, since firstly the metric (2) with 
K(0, 0) = 0 can be immersed both in the form of a surface with a parabolic point 
and as a surface with a flat point, and Theorem 6.1 does not give the applicability 
of such surfaces to each other; secondly there remains open the question of the 
applicability of mirror reflected surfaces with a parabolic point. We discuss the 
first question in the section on surfaces with a flat point, and with respect to the 
second question we have the following theorem. 

Theorem 6.5. A neighbourhood of a parabolic point with stable (zero) order of 
flattening is not applicable to a mirror reflection of itself(Hopfand Schilt (1938)). 
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Criteria for stability are known (Theorem 5.1), for example the surface for 
Example 2 in 5 5 is not bendable to its mirror image. This example is interesting 
in that the curvature of the surface when a K 0 is negative, that is, Theorem 6.4 
about the connectedness of YJI is false if the condition K < 0 is violated at the 
same point M,. Next it is obvious that a neighbourhood of a parabolic point 
cannot be bent into its mirror image in the case when in any neighbourhood of 
it there are points with positive curvature. Hence for the applicability to the 
mirror image it is necessary that in a neighbourhood of a parabolic point we 
have K < 0 with compulsory presence of the curve K = 0, and in the course of 
such a bending there must inevitably be a situation where the surface has a 
flattening at the point M,,. Examples of the transition of a parabolic point to 
a flat point in the course of bending are known (Efimov (1948a) or Hopf and 
Schilt (1938)), and from them we can obtain an example of the applicability of a 
surface to its mirror reflection in a piecewise analytic (in the parameter) class of 
bendings. 

Thus, if we restrict ourselves to regular immersions of smoothness CA and 
remain in the class of surfaces with a parabolic point, we find that the 
corresponding subset ‘%I’ c %X consists of two connected components. 

Using the concept of regularity of a point (that is, the presence of a canonical 
neighbourhood), we can obtain a further refinement of the structure of the set 
‘$I; for the details see Efimov (1948b). From the results obtained there we recall 
only the fact that the index of a parabolic point is unstable under certain 
conditions on the character of variation of the sign of the curvature of the 
surface. 

We note that for a long time there were no publications on immersions and 
bendings in the smoothness class C”, n < co, with K(0, 0) = 0, but in the recently 
published works Hong and Zuily (1987), Lin (1985), Lin (1986), and Nakamura 
and Maeda (1986) local immersibility in E3 has been obtained in the form of 
a surface with a parabolic point of metrics (2) with the following conditions: 
1) metrics with finite smoothness and with curvature K > 0: if ds2 E C”, n > 10, 
then there is a local immersion in the form of a convex surface S E CnV6 (Lin 
(1985)); 2) metrics with infinite smoothness and with K 2 0: if ds2 E C” and K 
has finite order of zero at the point (0,O) or the curve K = 0 consists of finitely 
many curves of Cl-smoothness, then there is a convex immersion of S E C” 
(Hong and Zuily (1987)); 3) metrics with curvature of variable sign: if K(0, 0) = 0 
and grad K(0, 0) # 0, then there is an immersion of S E c”-3 on condition that 
K E c”, n > 6 (Lin (1986)); 4) if the curvature K E C” is zero at the point (0, 0), 
and in a neighbourhood of it the Hessian of K (as a form) is negative definite 
(hence K < 0), then such a metric admits a local immersion in E3 in the form of 
a surface of smoothness C” (Nakamura and Maeda (1985)). The proofs are 
based on the construction of solutions of the corresponding Darboux equation 
by special iterations that converge for sufficiently small values of some numerical 
parameter, so all the resulting surfaces are bendable. But so far there is no 
complete description of all local immersions and investigation of the connected- 
ness of the set YJI for one of the classes of metrics mentioned above. 
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5 7. Bendability of Surfaces with a Flat Point 

The diversity in the picture of bendability planned for surfaces in a neigh- 
bourhood of a parabolic point becomes in truth an indescribable realm of the 
manifold of different possibilities under transition to surfaces with a flat point. 

7.1. Non-Applicable Isometric Surfaces. In the cases considered up to now 
any two isometric surfaces were applicable to each other (at least in the wide 
sense of the word). But meanwhile Voss in 1895 raised the question formulated 
in 92 as No. 5: can an isometry always be realized by application? It turns out 
that for surfaces with a flat point these two concepts - isometry and applicability 
~ are distinct, generally speaking. Namely, the following theorem is true. 

Theorem 7.1. There are non-trivially isometric surfaces S and S* of class CA 
with points M E S and M* E S* corresponding by an isometry, where M is a flat 
point on S, such that no neighbourhood of the point M on S can be applied by a 
bending of class CFiO to a neighbourhood of the point M* on S* or on S*, where 
S* is the mirror image of S*. 

In the class of bendings of smoothness C?& this theorem was proved in Schilt 
(1937), and in the form mentioned here in Elimov (1948b). The idea of the proof 
is the same - for the surface S we take an analytic surface with a flat point and 
with negative curvature close to a flat point, and as S* we consider an analytic 
immersion of the metric of the surface S in the form of a surface without a flat 
point (such an immersion always exists by Theorem 6.1). The surface S can be 
chosen so that the index of the point M on S is equal to - 2 (for example we can 
take the surface z = xy2 + yx2); by (17) the index of the corresponding point M* 
on S* is equal to -1, so by the property of stability of the index of a point 
(Theorem 5.1 d) a bending of S to S* is impossible. Such an argument goes 
through if for S we take a surface with stable order of flattening (in particular, a 
convex surface with positive curvature round a flat point), but here we need, 
generally speaking, additional investigations on the refinement of the order of 
smoothness of the bendings under consideration. 

7.2. On the Realization of Metrics by Surfaces with a Flat Point. As we see, 
in all the examples constructed for Theorem 7.1 of surfaces that are isometric but 
not applicable to each other, one of the surfaces does not have a flat point. In 
this connection there naturally arises the following question - is this fact regular 
or is it fortuitous? Apparently in some sense this is a general situation ~ in any 
case in the analytic class. Many results refer to the use of this assumption (see 
Hijesli (1950), Hopf and Schilt (1938)). 

Theorem 7.2. a) Zf the curvature of the metric (2) in a deleted neighbourhood 
of the point (0, 0) is of constant sign, with Taylor expansion 

K = Kck’(x 2 y) + R(x, y) (Kck’ is of constant sign), 
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then any realization of such a metric in the form of a surface with a flat point has 
a flattening of order q = k/2, that is, the surface has the form 

z = f'"'k Y) + w, Y), n = 2 + k/2. 

b) There are metrics (2) with K(0, 0) = 0 that do not admit a realization in E3 
in the form of a surface with a flat point. 

c) There are metrics that have a unique realization in E” in the form of a surface 
with a flat point; to this we can add that there are metrics for which this unique 
realization with a flattening turns out to be non-bendable. 

A conjecture of Hiiesli (see Hiiesli (1950)) is that parts b) and c) of this theorem 
together cover the “majority” of analytic metrics, that is, for the majority of 
metrics their analytic realizations with a flat point either do not exist at all or 
such a realization reduces to a pair of mirror symmetric surfaces. This conjecture 
was formulated in 1951, but up to now it has not been proved; on the other hand, 
we know examples of metrics that have two or more realizations with different 
(non-zero) orders of flattening, see also Hiiesli (1950). 

Such complexity and actual lack of solution of the question about the descrip- 
tion of the whole set !JJI forces us to restrict ourselves to the investigation of 
bendability or non-bendability of a given specific surface with flattening. Here 
the most complete results were obtained by Elimov in a series of papers summa- 
rized in the monograph Efimov (1948b) (a survey in Elimov (1958)) and new 
results have appeared very recently, see Sabitov (1986). 

7.3. Non-Bendable Surfaces with a Flattening. Suppose that the surface 
S: z = f(x, y) has a representation of the form (16). Following Efimov (1948b), 
we introduce an integer parameter N that can be defined as follows.. Let us 
consider the equation 

fy(yn’Fg!’ - 2f;;‘Fg + f;!‘F;ym’ = 0, (25) 

where Pm) is a desired form of degree m > n; then N > n denotes the upper 
bound of those numbers h for which equation (25) has only a zero solution for 
m < n + h. Under the condition of preserving the initial term f(“’ in (16) in the 
course of bending, the number N has the following meaning: the surface S can 
be bent only so that in expansions of the form (16) in the process of bending we 
preserve all terms of degree from n up to n + N and there do not appear degrees 
less than n; in other words, the osculating paraboloid of order n + N is pre- 
served. Thus, if N = co, then there are no bendings at all. Hence it remains to 
find the condition that ensures the invariance of the initial term under bendings, 
which turns out to be satisfied under the conditions of the following theorem 
(Elimov (1948b)). 

Theorem 7.3. Zf the form f (“‘(x, y) in (16) does not have multiple real zero 
directions and N = a, then the analytic surface S with equation of the form (16) 
is non-bendable in the class of deformations of smoothness C&. 



216 I.Kh. Sabitov 

Consequently, the main difficulty now reduces to the verification of the 
condition N = co. If f(“)(x, y) has the form 

pyx, y) = aoxn + a,xn-‘y + ... + anyn, 

then the solubility of each equation (25) when m > n is equivalent to the solubil- 
ity of some linear system of equations that leads to the corresponding conditions 
on the rank of the matrix of the system. These conditions in total are expressed 
as an infinite system of non-identical algebraic equations for the coefficients a,, 
. . . , a, of the form f(“). Hence, if with each form f’“’ we associate the point in E”+l 
with coordinates (a,, . . . , a,), then it turns out that when n > 5 for almost all 
points in En+’ we shall have N = co for the corresponding forms f(“). This result 
(see Elimov (1948b), Makarova (1953), Tartakovskij (1953)) shows that almost 
all surfaces with a flattening are non-bendable. As to specific examples of non- 
bendability, according to Tartakovskij (1953) for all n 3 5 we can propose such 

.a surface 

j”yx, y) = px” + AXn-2y2 + p-4 4 Y + Y”, (26) 

where (2, p) is a so-called transcendental point, at which no polynomial P(x, y) 
with integer coefficients vanishes (in reality the set of admissible pairs (A, p) is 
greater, for example, in the case n = 5 we can take even a non-transcendental 
point (2, ,n), where 2 is a transcendental and p an integer number). We observe, 
however, that even in small degrees the proof that N = co requires large calcula- 
tions and a complicated technique of analysis, so the discovery of effective 
methods of verifying the property N = co remains a very interesting problem; 
without a solution of this problem the verification of the non-bendability of a 
specific surface of the form (16) with the use of Theorem 7.3 is impossible. 

One of the main features of the proof of Theorem 7.3 is the establishment of 
the stability of the order of flattening of the surface under consideration. If we 
use the criterion of stability of the index of a flat point (see Theorem 5.1) then 
the fact of the existence of locally non-bendable surfaces can be established in 
the class of deformations of smoothness e;i;, (Elimov (1948b), 3 56). 

Thus, for flattenings of order q > 3 almost all analytic surfaces are non- 
bendable. We shall see below that non-bendable surfaces exist for flattenings of 
order q = 2, and the case q = 1 still remains in question. 

For the proof of Theorem 7.3 and its analogues the assumption of analyticity 
is essential, since the main arguments are conducted with the use of expansions 
in Taylor series. The condition of analyticity has not been removed up to now, 
and in general the investigation of the non-linear equation (19) in the singular 
case (degeneracy or change of type) remains an unsolved problem of geometry 
and differential equations (recently in the papers Hong and Zuily (1987), Lin 
(1985), Lin (1986) new approaches have been suggested in the cases of degener- 
acy of elliptic type or change of type along curves). 

7.4. Bendable Surfaces with a Flattening. The conditions of Theorem 7.3 are 
sufficient for non-bendability, but not at all necessary. Therefore surfaces that 
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do not satisfy these conditions can nevertheless be quite non-bendable, and 
hence there naturally arises the question: do bendable surfaces exist at all? It 
turns out that such surfaces do exist. With the use of an equation of the form 
(19’) the following theorem was proved in Dorfman (1957). 

Theorem 7.4. Suppose that an analytic surface S: z = f(x, y) satisfies one of the 
conditions f,, = 0 or f,, = 0. Then it admits analytic bendings that preserve the 
osculating paraboloid of any preassigned order. 

We note that in the conditions of Theorem 7.4 the surface has curvature that 
vanishes on at least one of the coordinate axes, x = 0 or y = 0. This suggests the 
proposition that under the condition that the curvature is of constant sign a 
neighbourhood of a flat point will always be non-bendable. 

7.5. Surfaces of Revolution with Flattening at a Pole. Consideration of sur- 
faces of revolution gives some confirmation to the proposition just stated. Here 
the proof of non-bendability goes along another path, namely through the use 
of connections between bendings and infinitesimal bendings (Corollary 3.2). We 
shall see (Q 8) that almost all surfaces of revolution have rigidity of the 1st or 2nd 
order, so they are non-bendable in the class of deformations that are analytic in 
the parameter. 

Non-bendability of a given surface does not mean, however, that surfaces 
isometric to it are necessarily situated far from it: there can exist surfaces that 
are non-bendable but limiting for the set of isometric surfaces. In the non-local 
case such examples were constructed by Shor (Shor (1962)), but for general 
(non-smooth) convex surfaces. Let us consider the local case. Suppose that the 
meridian L of a surface of revolution S has at points of some denumerable set X 
(we can consider the more general case of an infinite nowhere dense set) tangents 
perpendicular to the axis of revolution, with contact of infinite order (Fig. 4). Let 
M E L be one such point with abscissa X~ E X. The tangent plane IIM to S at 
this point is perpendicular to the axis of revolution and touches S along a 
parallel. Making a mirror reflection with respect to the plane IIM of the part of 

Fig. 4 
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the surface S with xM > x, we obtain a new surface S, isometric to S. For this 
surface S, we can again consider a new surface obtained by a mirror reflection 
of part of it with respect to some tangent plane. Repeating this operation with 
an arbitrary choice of points of X, we obtain a set of C”-smooth isometric 
surfaces of the power of the continuum, among which there are surfaces arbi- 
trarily close to S, which, however, is non-bendable in the class C:;, for a definite 
structure of the set X (Sabitov (1973)). Consequently, giving up analyticity in the 
smoothness of the surface at once essentially complicates the investigation of 
isometric transformations of a surface. 

Remark 8. This example shows that for surfaces with curvature of variable 
sign the answer to question 4 in $2 is negative: the spaces 9JImB and 9.R: are 
different for them. 

0 8. Infinitesimal Bendings of Surfaces “in the small” 

8.1. Equations of Infinitesimal Bendings. Suppose that a surface S: z = 
f(x, y) E C’ has a field of infinitesimal bending U E Cl. Then the components 
5, II, i of the field U must satisfy the system 

4, + Pi, = 0, 

4, + v, + Pi, + 45, = 0, 

vy + 41, = 0, (P = .L 4 = fy,. 

Eliminating t and q from here, for f, [ E C2 we obtain the 2nd order equation 

&Lxx - XyLy + .Lxiyy = 0. (27) 

Equation (27) is fundamental in the following sense: when a solution [(x, y) of 
equation (27) is known, the components 4 and q are determined by quadratures 
and, in particular, if f and [ belong to the class C”, II 3 2, then 4, r~ E C” also. 

8.2. Rigidity “in the small” of Analytic Surfaces. The existence of surfaces 
that are rigid “in the small” was first established in a paper by Elimov (Etimov 
(1948~)). The idea of investigation here goes back to the method used in the proof 
of existence of non-bendable surfaces: in the analytic case for surfaces of the form 
z = f(“)(x, y) equation (27) reduces to an infinite totality of equations among 
which there are equations of the form (25), but beginning with m = 2. The 
condition of solubility of each equation (25) leads to some (its own for each m) 
algebraic equation for the coefficients of the form f(“)(x, y) and in this way we 
prove that if for some form f$’ none of these equations is satisfied in an identical 
way, then almost all surfaces z = f’“‘(x, y) + . . . are rigid. In Efimov (1948~) this 
was established for II = 9, so almost all surfaces z = ft9’(x, y) + ... are rigid in 
the analytic class of infinitesimal bendings. Starting from example (26) for n = 5, 
we can show that the corresponding equation (25) does not have solutions for 

m = 2, 3,4,5. Hence the surface 

z = x5 + lx3y2 + xy4 + y5, A.is a transcendental number, 

is rigid. On the other hand, it is known that the surfaces z = fc3’(x, y) and 
z = fc4’(x, y) are non-rigid (Berri (1952)) so the smallest degree of a rigid surface 
of the form z = f(“)(x, y) is equal to 5. But with respect to the smallest degree of 
rigid surfaces of the form z = f(“)(x, y) + ... it is difficult to state any proposi- 
tions; we can only affirm that n > 3, since in the parabolic case an analytic 
surface is bendable in the analytic class and by Theorem 3.1 it is non-rigid. 

8.3. Analytic Surfaces of Revolution with Flattening at a Pole. The study of 
infinitesimal bendings has been advanced mostly for surfaces of revolution, since 
for them the finding of infinitesimal bendings can be reduced to the solution of 
ordinary equations (Cohn-Vossen (1929 . This is done as follows. 

Suppose that the surface z = cp( 1L x2 + y’) is obtained by rotation about the 
z-axis of the curve z = q(p), 0 < p < E, q’(O) = 0. Introducing the moving vector 
e(d) = i cos 8 + j sin 6’ and seeking the field of infinitesimal bendings in the form 
cc(p, B)k + /?(p, 0)e + y(p, Qe’, we obtain the system 

m2 
a:, = -a, + 

m2 - 1 
-P 

P P(P’ In’ 
P-9 

B, = -imy,, 

where c1,, b,,, and ym are the Fourier coefficients of the functions CI, b and y. In the 
smoothness class C2 and higher, we can reduce the system (28) to one equation 

pq’ciz + pq”ak - m2$c(, = 0. 

Non-trivial infinitesimal bendings are obtained for the values m 3 2. 
In the case of an analytic surface, when 

q(p) = a,p2k + ulp2k+2 + ... ) a, # 0 

(29) 

the well-known Fuchs theory can be applied to equation (29), and we find that 
equation (29) has solutions of the form 

urn = P”” Jo AjP2j, A0 Z 0, 

v,,, = 1 - k + m2(2k - 1) + (k - 1)2. 
(30) 

The requirement that the function cr(p, 0) = a,,,(p)eime is analytic leads to the 
condition V~ = m + 21, where 1 is a natural number, which in turn gives a 
connection between x = v,,, + k - 1 and y = m in the form of the following 
Diophantine equation (the so-called Pell equation) 

x2 - (2k - l)y2 = (k - 1)‘. 

It turns out that this equation always has a solution with y 3 2 (except for the 
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case k = 5). Therefore we find that all surfaces of revolution, except those having 
a flattening of order 4 = 8, are non-rigid (Sabitov (1986)). 

8.4. Rigid and Non-Bendable “in the large” Surfaces of Revolution. In the 
analytic case a peculiarity of infinitesimal bendings of surfaces of revolution is 
that for a given k # 5 not all harmonics cr,(p)eime exist (when 2k - 1 = n2 there 
are generally only finitely many of them), which gives the possibility of obtaining 
criteria for rigidity “in the large”. Namely, suppose that on a closed surface of 
revolution homeomorphic to a sphere the two poles have flattening of order 
2k, - 2 and 2k, - 2 respectively; we call the orders of the flattenings consistent 
if the neighbourhoods of the poles have infinitesimal bendings with a common 
number of non-trivial harmonics, and inconsistent otherwise. 

Lemma 8.1. There are surfaces of revolution with inconsistent orders of flat- 
tening at the poles (Sabitov (1986)). 

As a corollary we find that such surfaces of revolution are rigid “in the large”. 
More interesting, however, is another corollary. 

Corollary 8.2. Surfaces of revolution with inconsistent orders of flattening at 
the poles are non-bendable in the class of deformations of smoothness Cz,. 

The point is that up to now only two classes of closed surfaces non-bendable 
“in the large” have been known - these are ovaloids or closed convex surfaces 
and the so-called surfaces of type T, on which the region with curvature K > 0 
as a whole has integral curvature 4rt (for example, a circular torus; for the general 
definition and the analytic case see Aleksandrov (1938); for the case of class C3 
see Nirenberg (1963)). Hence in the analytic class by Corollary 8.2 we can 
determine closed and non-convex surfaces that are non-bendable “in the large”. 

8.5. Non-Analytic Surfaces. In contrast to the non-linear theory of bendings, 
in the linear problem in a number of cases we can get rid of the requirement that 
the surface and the field of (infinitesimal) bendings of it are analytic. 

8.5.1. Surfaces of Positive Curvature with an Isolated Flat Point. In the funda- 
mental well-studied case such surfaces have the form 

z = r”fh Y), r2 = x2 + y2, n > 2, (31) 

where f(x, y) is a sufficiently smooth function and f(0, 0) # 0. Since the previous 
methods are unsuitable here, we need to describe at least “in two words” the 
process of solving the problem. The main features are the following: firstly, by 
the choice of the special so-called adjoint isothermal coordinates (t, q) the deter- 
mination of infinitesimal bendings reduces to the solution of the system 

au WUzO --__ 
a4 2c ’ 

i = 5 + iv, 

where 

(32) 
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U(i) = [2K1’4(LJ(i5M + iSL), 
a 1 a .a 
z=T $f+k& ? 

( ) 
b(c) is a function that can be explicitly written out, in particular 

b(0) = n - 2 7, 
2Jn-1 

and 6L = 6N and 6M are variations of the coefficients of the second fundamen- 
tal form of the surface S in adjoint isothermal coordinates (in which L = N, 
M = 0); secondly, for a solution of the system (32) one first investigates sepa- 
rately the case of the “model” surface (31) when f = 1, for which the system (32) 
has the form 

au n-2 U -- 
at 4Jn--1Tc0 

(33) 

and finally, by taking account of the connection between solutions of the systems 
(32) and (33) we obtain information about the rigidity or non-rigidity of the 
surface S. This scheme of investigation, established in a series of papers by 
Usmanov (a survey of them can be found in Usmanov (1984)), in its first part 
goes back to Vekua (Vekua (1959)), who studied in this way infinitesimal bend- 
ings of surfaces of strictly positive curvature; but in the presence of flattening 
both the introduction of adjoint isothermal coordinates itself and the solution 
of the system (32) require “works” with degenerate elliptic systems. The second 
part, the investigation of the “model” surface z = (x2 + Y~)“‘~, was carried out in 
Elimov and Usmanov (1973). In this paper they were the first to trace the 
possible connection between the order of flattening of a surface and the “degree” 
of its non-rigidity in deformations of a given smoothness class (but we must 
elaborate that the smoothness of not all components of the field of infinitesimal 
bendings has been studied, but only the vertical component of it, which, gener- 
ally speaking, without taking account of the smoothness of the surface itself, is 
insufficient for the corresponding conclusions of the smoothness of the whole 
field). It turned out that with an increase in the required smoothness the bending 
field decreases asymptotically to zero, and as a result not in the class CA but in 
C” does there arise the appearance of rigidity of the surface. Let us report the 
precise formulations of certain theorems. 

For each k 3 3 we denote by Nk the finite set of rational numbers n deter- 
mined by the formula 

n=2+4q k+q 
k2 - k - 2q 

q= I,,,...,V- 1 

Let N = Up=3 Nk. We split all the surfaces z = rn into two classes: S, if n E N, 
andS,ifn$N. 

Theorem 8.3. a) All surfaces S, are locally non-rigid in any smoothness class 
C’, 1 < 00. b) Surfaces from So are locally non-rigid in the class CA. c) For surfaces 
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from S, an infinitesimal bending of the class Cp, p > 2, is a small quantity charac- 
terized by the uniform estimate 

[(x, y) = O(rY1+k”.p), 

where 

“1 +k,,p 

and the integers k,,, are determined from the inequalities 

Corollary 8.4. Surfaces from S, are locally rigid with respect to infinitesimal 
bendings of smoothness C”. 

As we have already said, the general surface (31) is investigated with the 
use of an explicitly determined homeomorphism between the solutions of the 
systems (32) and (33). In particular, if in (31) the function f E C” and n E N, then 
such surfaces are locally rigid in the class C” (Usmanov (1984)). 

Surfaces of a more general form than in (31) have not actually been studied, 
and any advance here requires preliminary substantial progress in the investiga- 
tion of generalized Cauchy-Riemann systems with a singular coefficient. 

8.5.2. Local Rigidity in the C’-Class. Generally speaking, the result of 8.5.1 
on Cm-rigidity of the surfaces (31) has not been represented quite correctly, since 
we require here for the bending field a smoothness greater than the smoothness 
of the surface itself (in this respect the result from 8.3 on the Cm-rigidity of the 
analytic surface z = (x’ + y’)’ is correct). This remark shows that in the non- 
analytic case, imposing some requirement on the smoothness of the bending 
field, we need to take care of the consistency of this requirement with the given 
smoothness of the surface. In non-singular cases this consistency follows from 
the corresponding theorems on smoothness of solutions of the elliptic (when 
K > 0) or hyperbolic (when K < 0) equation (27) (it is true that here we need to 
make an important remark: if in the general elliptic case the problem is solved 
more or less completely, on each convex surface any field U of infinitesimal 
bendings of it belongs to the Lipschitz class C Osl (Aleksandrov (1937)), and the 
surface is non-rigid (Pogorelov (1969)) and under the additional condition 
s E P”, n 3 2, 0 < a < 1, K > 0, the field U E C”,” (Pogorelov (1969)) then in 
the hyperbolic case ~ even with the strict condition K < 0 - we can draw 
some conclusions about the existence and degree of regularity of the field of 
infinitesimal bendings only under the a priori assumption U E C’). But if K = 0 
at the point under consideration, then even here there is no regular theory, and 
depending on additional properties of the surface we can encounter very differ- 
ent possibilities. In particular, we have the following theorem. 

Theorem 8.5. For any n, 1 < n < 00, there is a surface of class C” that is 
Cl-rigid in a neighbourhood of a marked fZat point (Sabitov (1973)). 
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A typical surface of this kind is the surface of revolution 

1 z = e-‘/‘sin -, 
r 

r=JX2+y2, 

It is useful to compare this theorem with the fact that any surface is bendable 
in the class of Cl-smooth deformations: the linear problem in the Cl-class - the 
determination of infinitesimal bendings of the 1st order - is sometimes “worse” 
to solve than the non-linear one! Hence it follows, in particular, that the bend- 
ings of surfaces from Theorem 8.5 in the class C’ cannot depend analytically on 
the parameter of deformation. 

8.5.3. Flattenings of Infinite Order. In Theorem 8.5 by virtue of the conden- 
sation of the zeros of K to the point (0,O) we have a flattening of infinite order 
at the pole. Another investigated case of a flattening of infinite order is a surface 
of revolution with meridian z = cp(r) satisfying the condition 

s ’ v(t) dt 0 cp’(tb 2 < co, 
where 

cp(r) E c”CO, 4, l<ndco; 

cp’(O) = 0, cp’(r) Z 0, r # 0. 

For these surfaces we have cp(r) < exp( - C/P) and for them we can state neces- 
sary and sufficient conditions for non-rigidity in the classes C’ and C2 (see 
Sabitov (1979b)), and it turns out that if the flattening is very strong, then these 
conditions of non-rigidity are satisfied. As a result we have the following qualita- 
tive picture: a power flattening leads to the possibility of Cm-rigidity, but leaves 
non-rigidity in finite smocthness classes; a flattening of infinite order can give 
rigidity even in the class C’ (at the same time, in the convex case there is always 
Cl-non-rigidity, but there may be C2-rigidity); finally, for very strong flattenings 
of infinite order there again arises non-rigidity in finite smoothness classes - the 
influence of the flat point “weakens”, and a neighbourhood of it becomes close 
to a domain on the plane. 

8.6. Inlinitesimal Bendings of the 2nd Order. Although for surfaces “in the 
large” there are significantly many papers on infinitesimal bendings of the 2nd 
order of them, in the local formulation the study of this question has just begun. 
Non-rigidity of the 2nd order of surfaces in a neighbourhood of a point with 
K # 0 follows from Theorems 6.2,6.3 and 3.1. In a neighbourhood of a parabolic 
point and a point with a flattening there are only isolated results about intini- 
tesimal bendings of the 2nd order. In Ivanova-Karatopraklieva and Sabitov 
(1989) for surfaces of revolution we studied the connection between the order of 
flattening of a pole and the numbers of non-trivial harmonics of infinitesimal 
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bendings of the 1st order extendable to infinitesimal bendings of the 2nd order, 
and in Sabitov (1979a) there is given a theorem on Cl-rigidity of the 2nd order of 
a neighbourhood of a pole of a surface of revolution with meridian of the form 
(34) (however, the proof of the theorem in the form stated in Sabitov (1979a) 
turned out to be erroneous, but the theorem remains true under the additional 
assumption that the surface is convex; the analysis of the general case is hindered 
by the lack of knowledge of a uniform estimate with respect to small p as n + 00 

of the solution of the following system with small parameter: 

1 
&Y’(P) = 4p)y + yz, A(p) = ‘- cp 

P cp’(P) P m 

&Z’(P) = -~2(P)P2cp’(p)y - A(p)z, 
1 

E=--0; 
n2 - 1 

here the characteristic polynomial has one double root i = 0, to which there 
corresponds only one eigenvector of the matrix of the system, and this is just a 
singular case in the general theory of equations with a small parameter, which 
requires additional assumptions (Vasil’eva and Butuzov (1978)). 

A very complete investigation of infinitesimal bendings of the 2nd order can 
also be carried out for a neighbourhood of a pole of an analytic surface of 
revolution; here, in particular, it turns out that for the majority of orders of 
flattening the infinitesimal bendings of the 1st order are not extendable to 
analytic infinitesimal bendings of the 2nd order, and to determine surfaces with 
non-rigidity of the 2nd order we can state an algorithm based on the solution of 
some Diophantine system of equations. The main interest in assertions about 
the rigidity of the 2nd order is connected, of course, with a deduction about the 
non-bendability of such surfaces. 

Among the questions of general character not solved here we mention the 
absence of some interpretation of infinitesimal bendings of the 2nd order from 
the point of view of the theory of shells. 

Works on local infinitesimal bendings of the third and higher orders have 
begun to appear only very recently; see Ivanova-Karatopraklieva (1987/X8) and 
(1990). 

8.7. Bendings of Troughs. There is still one class of problems that are re- 
garded as intermediate problems between bendings of surfaces “in the small” 
and “in the large” ~ these are bendings of so-called troughs. These surfaces are 
thought of as a ring-shaped band containing inside it a planar closed curve with 
K = 0, along which the tangent plane to the surface is stationary. The band can 
be arbitrarily narrow - in it there is “smallness” of the surface. For such surfaces, 
particularly for troughs of revolution, there exists a series of complete results, 
giving criteria for their non-rigidity of the 1st order; with respect to infinitesimal 
bendings of the 2nd order the troughs in all the cases studied turn out to be rigid; 
for citations see Sabitov (1979b). 
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$9. Supplement. Bendings and Infinitesimal 
Bendings of Polyhedra 

9.1. Introduction. The questions of bendings and infinitesimal bendings of 
polyhedra are an inexhaustible theme of research by many geometers, and 
interest in them has intensified recently, which in the last instance is apparently 
explained by new perspectives discovered with the possibilities of wide applica- 
tion of computers for the solution of theoretical and applied problems in this 
domain (for example, the journal Structural Topology, published by Montreal 
University, specially declared questions of bendings of polyhedra to be one of 
the main important directions of its general themes devoted to the study of 
spatial forms from the viewpoint of mathematics, architecture and the mechanics 
of engineering constructions). The results obtained and the new ideas in the 
theory of bendings of polyhedra would be sufficient for a special detailed survey, 
so we are forced to restrict ourselves to a rather shortened account of the main 
achievements and analysis of their possible development.’ 

First of all, in the theory of bendings of polyhedra there are two differences 
from the case of smooth surfaces: firstly, here there is no local theory in the 
proper sense of the word, that is, there are no properties that depend on the 
smallness of the neighbourhood under consideration, secondly, there is no outlet 
to differential equations - in the analytic scheme the theory of bendings of 
polyhedra is concerned with algebraic equations, and the theory of infinitesimal 
bendings (of the 1st order) is even concerned with linear equations. In addition, 
here, of course, far more extensively than in the smooth theory, direct descriptive- 
geometric and combinatorial considerations are employed. 

By a polyhedron in E3 we shall understand a piecewise linear (continuous in 
the large and linear on faces) map f: X -+ E3 of some locally finite simplicial 
complex X, whose body is homeomorphic to a domain on a two-dimensional 
manifold; we can regard a piecewise Euclidean metric on X as specified or 
induced from E3 by the map J As usual, the map f can be identified with 
its image, not forgetting, however, that if there are self-intersections or self- 
coverings in the image, then points of the image that have different preimages in 
X are assumed to be different. If in the definition of a polyhedron we start from a 
complex X with possible non-triangular cells, then this case can be reduced to 
a polyhedron with triangular faces by splitting the faces into triangles by means 
of diagonals. This does not change the metric on X, since in the theory of 
bendings of polyhedra it is assumed that the faces are rigid, so the distances 
between the vertices of the polyhedron on one face are preserved in the course 
of bending. But, generally speaking, the properties of bendability can change, 
namely, if a new polyhedron (with additional edges) is non-bendable or rigid (the 
exact definitions will be given a little later), then the original polyhedron with 
non-triangular faces will be the same; if the resulting polyhedron with triangular 

’ In fact there are now several surveys on this topic; see, for example, Connelly (1992) and Ivanova- 
Karatopraklieva and Sabitov (1992). 
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faces is bendable or non-rigid, then the original polyhedron can turn out to be 
non-bendable or rigid. In other words, the addition of new edges to the faces 
“weakens” the polyhedron (there arises the additional possibility of curving a 
face along a “new” edge). 

9.2. Polyhedral Metrics and Their Isometric Immersions. If a metric specified 
on X is Euclidean on each face, then it is called polyhedral (for general questions 
of introducing a piecewise linear metric on -X, see Aleksandrov (1950), Gluck, 
Krigelman and Singer (1974)). In this case it is required that the map f: X -+ E3 
is isometric. If such a map exists, then by the terminology of Aleksandrov (1950) 
about a polyhedron we say that it is specified by its development 3” (in the 
general case the faces of the development are not at all required to be faces of 
the polyhedron, and the faces are not required to be triangles, Aleksandrov 
(1950)). Intuitively the specification of the development means that we have 
triangular faces of the polyhedron of a natural size with an indication of the rule 
for identifying edges or pasting together triangular faces along common edges. 

Hence, if a metric is specified in advance on X, then before we talk about 
bendings of the polyhedron we first need to verify the existence of an isometric 
immersion of 2” in E3. Not every development can be isometrically immersed in 
E3; for example, if a development R consists of two equal triangles with pairwise 
identified edges (it is true that this development R is not formally a simplicial 
complex, but it can easily be converted into a complex by adding an interior 
vertex to one of the copies of a triangle), then an isometric map of R in E3 gives 
a doubly covered triangle, which is not an immersion. We can indicate develop- 
ments that cannot generally be isometrically mapped into E3. An example of 
such a development is shown in Fig. 5. On it we indicate a development of four 
triangles ABC, ABO,, BCO,, CAO, with identification of the edges AO, and 
AO,, BO, and BO,, CO, and CO, and of all the vertices 0,) O,, 0, into one 
vertex. 

We note, however, that if we permit an additional triangulation of the faces 
of the development, then under a sufficient refinement of the triangulation any 
(orientable) development admits an isometric embedding in E3, see Burago and 
Zalgaller (1960). For example, a twice covered regular triangle can be isometri- 
cally embedded in E3 in the form of an octahedron if to each copy of the triangle t? 

A 01 02 

03 

A C 

Fig. 5 
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we add a vertex (Fig. 6) - the centre of the triangle - a point N in the triangle 
A, B, C,, a point S in the other copy A, B, C,, and then embed the four triangles 
A, NB,, B, ND,, D, NC, and C, NA, (B, D, = D, C,) in the form of the lateral 
surface of a pyramid with planar base ABDC (the other triangle is isometrically 
embedded in E3 as the mirror symmetric image of this pyramid). This result of 
Burago and Zalgaller is analogous to the theorem of Kuiper mentioned in $4 
about the isometric embeddability in E3 of any two-dimensional Riemannian 
manifold: as in the smooth case, the embeddability of a polyhedral metric in E3 
is achieved by means of a line “corrugation” of the surface. From the viewpoint 
of bendings such polyhedral immersions have not been studied in practice. For 
example, can we find such an immersion of a given development with an addi- 
tional triangulation so that it is bendable? It is assumed that this is improbable, 
but it would be interesting to investigate isometric transformations of such 
polyhedra, in particular, to construct the chain of an isometric transition from 
a convex polyhedron to its mirror image. 

Of the general results about immersions of polyhedral metrics the best known 
is Aleksandrov’s theorem about the realization of any complete convex poly- 
hedral metric in E3 in the form of a convex polyhedron, Aleksandrov (1950). 
Henceforth we assume that the metric on X is induced from E3 by some map 
f: X + E3, so we shall not be concerned with special questions of an isometric 
immersion in E3 of a priori specified polyhedral metrics on X. 

9.3. Bendings of Polyhedra. Configuration Spaces of Polyhedra. Suppose that 
a map f: X + E3 determines a polyhedron M; then a polyhedral metric is 
induced on X. According to the general scheme of 5 1, we consider the set )132 of 
all polyhedra obtained by isometric maps of .X in E3 (a priori we do not require 
that the map is an embedding or an immersion). In contrast to the smooth case, 
9.X is always a finite-dimensional set. In fact, since the faces of the complex 3” 
are triangular, the map of X in E3 is completely determined if we know the 
images of the vertices. In turn, if we know the vertices pl, . . . , pV (where I/ is the 
number of vertices) of the polyhedron, then we can associate with it a point 
m E E3” with coordinates (x,, y,, zl,. . . , xv, yv, z,), where xi, yi, zi are the 
coordinates of the point pi, 1 d i d V, in E 3. Conversely, with each point m of 
E3” we can obviously associate I/ points pl, . . , pv of E3. Consequently, with the 
set 9.R there is associated in a one-to-one way some set in E3”. Intuitively the set 
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9.R can be interpreted as the set of positions of the polyhedron M in E3 under all 
possible isometric maps of X in E3, so !JJI is naturally called the configuration 
space of the polyhedron M. Since !JJI is represented by some set of points in E3”, 
the topology on YJI can be regarded as induced from the Euclidean topology in 
E3’. Now, as in the general case, we define a bending of the polyhedron M as a 
path in a connected component ‘$I c 9Jt, beginning at M E %. In order to exclude 
from consideration polyhedra congruent to M, we shall assume that one face on 
M is fixed; then M as a rigid body admits only a mirror reflection with respect 
to the plane of the fixed face, so any bending of the polyhedron M, if it exists, is 
necessarily non-trivial. 

The metric of a polyhedron with triangular faces is completely determined by 
the lengths of the edges. Let Iij be the length of the edge joining the vertices with 
numbers i andj. In this case all isometric polyhedra of !DI have vertices p1 , . . . , pv 
satisfying the conditions 

IPi - Pjl = lij9 (6 j) E I”, (35) 

where r” is the set of pairs (i, j) of numbers of the vertices joined by edges. 
Consequently, in E3V, by the association described above, to the set 9JI there 
corresponds some algebraic variety. Assuming, as agreed, that one face is fixed, 
we see that the algebraic variety is bounded. Therefore we immediately obtain 
the following description of the set 9J2: it consists of finitely many compact 
connected components. In addition, connected components of a bounded alge- 
braic variety are separated from each other by some positive distance, and so it 
follows that if two isometric polyhedra are sufficiently close to each other, then 
they will belong to one connected component of !JJI, and so they are applicable 
to each other. Thus, for polyhedra we have a new version of the answer to 
question 5 in 9 2: if isometric polyhedra are sufficiently close to each other, then 
the isometry between them reduces to a bending. 

Another consequence of the structure of !lJI as an algebraic variety is that if 
two polyhedra are applicable to each other, then the application can be realized 
by an analytic path; in other words, if there is a continuous path in W, then there 
is an analytic path with the same ends, Gluck (1975). Therefore bendings of 
polyhedra can always be sought in the class of bendings that are analytic in the 
parameter. 

Next, for polyhedra we can give an answer to the question formulated in 
Remark 3 on p. 187: an algebraic variety does not have a boundary, so a 
polyhedron M cannot be a boundary point in !IJI of its connected component !R: 
in % there is a path passing through M. Intuitively this means that a polyhedron 
in the process of bending cannot arrive at the position from which a bending 
later goes only by the reverse motion with a repetition of the positions already 
passed through. 

Let us illustrate all that we have said above by an example of bendings of a 
closed planar quadrangle (although here all the dimensions are smaller by one, 
nevertheless the idea of algebraic investigation is the same). Suppose that the 
edges of the quadrangle have lengths,a, b, c, d. There is always an edge 1 such 

III. Local Theory of Bendings of Surfaces 229 

that the two adjacent edges have length no smaller than that of 1. Suppose that 
the length of 1 is b = 1, and that the lengths of the adjacent edges are equal to a 
and c, a > c > 1. We restrict ourselves to a consideration of the following cases 
(we regard the edge 1 as fixed): 

1) a = b = c = 1. Then m, depending on the values of d, has the following 
topological structure: 

A,,) d = 0 YJI = So (two points) 

A,,) 0 < d < 1 !IJI = S’ u S’ (two circles) 

A,,) d = 1 ‘!JJI has the form as in Fig. 7 

A,,) 1 <d <3 9Jl=,Ss’ 

A,,) d = 3 ‘&II is one point; the case d > 3 is impossible. 

2) b = 1, a = c > 1. Then 

A,,) d=O 9Jl=S” 

A,,) O<d<l %R=Ss’uS’ 

A,,) d = 1 YJI has the form as in Fig. 8 

A,,) 1 < d < 2a - 1 9JI = S’ 

A,,) d = 2a - 1 YJI = S’ v S’ 

A,,) 2a - 1 < d < 2a + 1 ‘%JI = S1 

A,,) d = 2a + 1 9JI is one point; the case d > 2a + 1 is impossible. 

Fig. 7 

Fig. 8 
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We can give a similar description of 9JI in the remaining cases, and also generally 
in the case of bendings on the plane of an arbitrary closed n-gon. As to contigura- 
tion spaces of polyhedra, the study of them is still only at an initial stage: 
configuration spaces of octahedra are known, Bushmelev and Sabitov (1990), 
and of so-called degenerate suspensions, Sabitov (1983). Generally it seems that 
problems of the theory of bendings of polyhedra can conventionally be split into 
two large groups: the establishment of the fact of bendability or non-bendability 
of a given polyhedron M, and the description of the configuration space 9Jl for 
a bendable polyhedron M. 

Remark 9. Regarding the 2,, in (35) as variables, we see that the set of all 
polyhedra f: X + E3 together with their metric is an algebraic variety in a 
Euclidean space of dimension q = 3V + I, where I = card r”; the complement to 
this variety in E4\E 3v determines metrics on X that cannot be isometrically 
mapped into E3. 

9.4. Infinitesimal Bendings of Polyhedra and Their Connection with Bend- 
ings. In the geometrical scheme the definition of infinitesimal bendings of poly- 
hedra is analogous to the smooth case. Let pp, 1 d i d V, be the vertices of the 
polyhedron M, and zi” the vectors applied to the points pi, 1 d k < j < n. Let 
us consider a deformation of the polyhedron under which the vertices pi go over 
to the position 

p,(t) = pp + tkzjk’ + . . . + PZI”), 1didV. (36) 

If the lengths of the edges of the polyhedron are changed to the order o(P), t + 0, 
then the deformation (36) is called an infinitesimal bending of order (k, n). 
Analytically this is expressed by the relation 

IPi(l) - PjCt)I = IPO - Pj”l + ok 

(i, j) E f. 

t + 0. 

Since in the case of triangular faces the lengths of the edges determine a metric 
on the whole polyhedron, all the distances on the polyhedron are also changed 
to the order o(P). 

Non-triviality of the infinitesimal bending (36) is ensured if at the three points 
py, pi, pi that determine a fixed face of the polyhedron M the deformation (36) 
leaves these points fixed up to o(P), that is, if z{“’ = ... = zy) = 0, 1 < i < 3, and 
there exists a point pj where zy’ # 0, j > 3. 

The equations of infinitesimal bendings of order (k, n) have the following form 
(on the assumption that in the representation (36) instead of zi’) we write 2zi”, 
k < 1~ n, 1 < i < V): 

l-k 

(pi - pj)(Z$” - JZr’) + 1 (Zim) - zf))(zil-m) - Zr-m)) = 0, 
m=k 

1 = k, . . . . n 
(37) 

(supposing that z!“‘) = 0,O < m < k - 1). In particular, infinitesimal bendings of 

the 1st order are obtained as a solution of the linear system 

(Pi - Pj)Czi - zj) = O, (i, j) E 7. (38) 

In this system for a non-trivial infinitesimal bending there are 3V - 9 un- 
knowns and 3V - 3~ - 3 equations, where x is the Euler characteristic of the 
complex X. 

Since bendings of polyhedra can always be assumed to be analytic in the 
parameter, for bendings we have the representation (36) with n = co, so the 
equations of the bendings are given by the system (37) with n = co and k 3 1. 
As in Theorem 3.1 we thus see that a bendable polyhedron admits infinitesimal 
bendings of order (1, 1) and (1,2). But the connections between bendings and 
infinitesimal bendings of polyhedra are considerably richer than in the smooth 
case. Let us consider this question in more detail. 

If we recall that a polyhedron with V vertices is represented by a point P in 
E3”, then the trajectory of the polyhedron in the process of this bending is 
represented by some curve y in E 3v We know that non-trivial bendings of . 
polyhedra take place in a set of non-rigid polyhedra, which is an algebraic 
variety T whose equation is obtained from the condition rank L < 3V - 9, 
where L is the matrix of the system (38). At each point s E T there is at least 
one 3Vdimensional non-zero vector z(S) = (z,, . . . , zv) with zi = z2 = z3 = 0. A 
bendable polyhedron belongs to T and in the process of bending it remains on 
T. Let y: P = P(t) be its trajectory; then P’(t) is a tangent vector to y and 
simultaneously the vector of an infinitesimal bending of the polyhedron P(t). 
Consequently, a bending of a polyhedron takes place in the set of those non-rigid 
polyhedra for which the field of its infinitesimal bending is tangent to the 
manifold T. Hence we have two conclusions: 1) for infinitesimal bendings of the 
1st order to be extendable to bendings of a polyhedron it is necessary that the 
vector z(S) should belong to the tangent plane of the manifold T: 2) the trajec- 
tory of a bending of a polyhedron is the vector curve on T of the field of vectors 
z(S). In turn, the first requirement distinguishes on T a submanifold T, along 
which z(S) is tangent to T; obviously, the trajectory lies on Tl and we again find 
that the field z(S) must be tangent not only to T, but also to Tl. Extending 
this process, in the end in finitely many steps we distinguish submanifolds T, c 
T,-, c ... c Tl c T such that T, consists entirely of trajectories of bendings of 
the polyhedron, that is, there is a finite algorithm for testing the bendability of 
the polyhedron. 

What we have said above intersects with the fact that non-bendable poly- 
hedra can admit infinitesimal bendings not greater than some order or, in other 
words, if a polyhedron is non-bendable, then for any given k 2 1 it is rigid 
with respect to infinitesimal bendings of order (k, n) for all sufficiently large IZ. 
This connection between bendings and infinitesimal bendings of polyhedra was 
noticed, according to Connelly (1980), by Gromov and is based on the following 
algebraic theorem of Artin (Artin (1969), see also Artin (1968)): for the system of 
polynomial equations f(x, y) = 0, where f = (fi, . . . , f,), x = (xi, . , x,) and 
y = (~1, . . . . yN)r th ere is an integer B, depending on n and N, the total degree d 
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of the polynomials f and a non-negative integer ~1, such that if 

.0x, Y) = 0 (mod xs), 

for some polynomial J(x), then the system has a solution in the form of a 
convergent power series y(x) which coincides with J(x) up to the terms xa. Hence, 
as a consequence, if the system f(x, y) has a solution y(x) in the form of a formal 
power series in powers of x, then it has a solution in the form of a convergent 
power series coinciding with y(x) up to the power x’ specified in advance. 

The system of polynomial equations that needs to be solved in order to find 
a bending of polyhedra is obtained from a representation of the condition for a 
deformation to be isometric in the form 

ApijAzij + AZ; = 0, (i, j) E t 

where Apij = pi - pj, Azij = zi - zj. 
This system consists of I 2nd order equations for 3V unknowns, and the 

application of Artin’s theorem to it leads to the assertion stated above that if a 
polyhedron admits infinitesimal bendings of order (k, n) with sufficiently large 
n, then it is bendable. Moreover, Artin’s theorem in principle enables us to 
solve the question of the extendability of a given infinitesimal bending of order 
(k, n), k > 1, to a bending; we only need to be able to calculate Artin’s number 
/I = /?(l, 3V, 2, n) for the system (40) from (39) and then to verify whether the 
system (40) admits a polynomial solution z approximate in the sense of (39) that 
coincides up to degree n with the given field of infinitesimal bendings of order 
(k 4. 

We conclude this subsection with the following remarks. 

Remark 10. The consideration of analogues of Darboux surfaces for in- 
finitesimal bendings (of the 1st order) of polyhedra does not occur in the litera- 
ture. There exists an analogue of a field of rotations, but the construction in it 
of a diagram of rotations at once runs into specific difficulties. 

Remark 11. As in the smooth case, for infinitesimal bendings of polyhedra we 
have projective invariance. Recently some papers were devoted to this question 
with a critical discussion’. 

Remark 12. We can represent a deformation of a polyhedron under an 
infinitesimal bending of order (k, n) in E3” as some path. Choosing as parameter 
the length of an arc (if k = 1) or a power of it (if k > l), we can obtain a standard 
representation of all equivalent fields of infinitesimal bendings of a given order. 

9.5. Uniquely Determined Polyhedra. If the configuration space YJ of a poly- 
hedron M consists of one or two points, we say that M is uniquely determined 
by its metric. The case when YJI consists of one point can only be in the degener- 
ate situations when the whole polyhedron M is situated on a plane and its metric 

‘On this see, for example, Mathematical Reviews 87h: 52021 a, b, c. 
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is such that the “exit” of M into space is impossible. A tetrahedron, for example, 
has a configuration space of two points. Since unique determination in the 
general class of polyhedra is apparently a very rare property, it is natural to look 
for such features in definite classes of polyhedra. One such class is known - the 
class of convex polyhedra. A famous theorem of Cauchy asserts that two closed 
convex polyhedra uniformly composed of equal faces are congruent, that is, they 
can be superimposed by a motion with a possible addition of a mirror reflection. 
In our conditions we can formulate Cauchy’s theorem as the unique determina- 
tion of a convex polyhedron in the class of convex polyhedra. This theorem with 
different versions of the proofs and with various comments is mentioned in many 
books and surveys (for wider generalizations of it, see Aleksandrov (1950); of the 
later works see, for example, Milka (1986) Berger (1977), Gluck (1975), and 
Kuiper (1979)), so we restrict ourselves to an analysis of its connection with the 
question of bendability of a convex polyhedron. 

If a polyhedron M is strictly convex, then its non-bendability follows from 
Cauchy’s theorem. But if M is not strictly convex, that is, there are vertices 
on it around which the total angle is 27r, then in the course of bending the 
convexity may be broken, so Cauchy’s theorem on the coincidence of M with 
the polyhedron M’ obtained in the course of the bending is inapplicable. 
Aleksandrov showed in Aleksandrov (1950) that if the polyhedron M’ is ob- 
tained by a triangulation of a strictly convex polyhedron M (not necessarily with 
triangular faces) by the addition of vertices only on the edges of M, then such 
a polyhedron M’ is non-bendable; one of the proofs can be obtained as a 
consequence of rigidity of the first order of such a polyhedron. If there are 
“false” vertices on the polyhedron, around which all the faces lie on one plane, 
then such a polyhedron will not be rigid. But it turns out that it remains rigid 
with respect to infinitesimal bendings of the 2nd order, and in such a case it is 
again non-bendable. This result of Connelly (Connelly (1980)) concludes the long 
history of the question of bendings and infinitesimal bendings of closed con- 
vex polyhedra in the same sense as in due course the question of unique de- 
termination of closed convex polyhedra was “closed down” by a theorem of 
Olovyanishnikov, which asserts that a convex polyhedron is uniquely deter- 
mined in the class of convex surfaces (a proof of this theorem can be found in 
Elimov (1948a)). 

9.6. Non-Bendable Polyhedra. The first serious way out from the closed world 
of convex polyhedra to the “open cosmos” of general polyhedra was the investi- 
gation of Connelly (Connelly (1974)) of non-bendable suspensions. Not only the 
result but also the method of this paper is interesting. The combinatorial struc- 
ture of a suspension is perceived from its other name - bipyramid: over a closed 
broken line L of n links there are constructed lateral surfaces of two pyramids, 
one with a vertex at some point N, the other with a vertex at another point S. 
The broken line L is called the equator of the suspension, and the points N and 
S are called the poles of the suspension. The combinatorial image of a suspension 
or the corresponding simplicial complex X can be represented as two convex 
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N 

S 

Fig. 9 

Fig. 10 

n-gonal pyramids with a common planar base L and with vertices N and S on 
different sides of the plane of the base (Fig. 9). 

Under a continuous map f: X + E3, linear on each face, the image f(X) 
can be a non-convex polyhedron in E3, even with self-intersections and self- 
coverings with possibly coincident N and S (Fig. 10). The case N # S was 
considered in Connelly (1974). He showed that if the spatial distance INSI is 
fixed, then such a suspension cannot be bent (for the exclusion of certain degen- 
erate cases, see Sabitov (1983)). If we assume that in the course of bending the 
distance 1 NS( continuously changes, it turns out that we can then construct some 
algebraic function F(x) that is identically zero in a neighbourhood of the point 
x = x0, where x0 is the distance 1 NS( for the original position of the suspension. 
Then extending F(x) to the complex z-plane and studying the behaviour of F(z) 
on different sheets of its Riemann surface, we can obtain information about the 
necessary geometric properties of a bendable suspension. In particular, it turns 
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out that if the suspension bounds a non-zero volume in some sense (for example, 
it is embedded in E3), then such a suspension is non-bendable. 

Thus, the idea of using the methods of the theory of functions of a com- 
plex variable in the theory of bendings of polyhedra consists in the following: 
we need to introduce certain parameters x1, . . . , x, (for example, the spatial 
distances between certain vertices not belonging to one edge), the specification 
of which certainly uniquely determines the position of the polyhedron, together 
with the given lengths of its edges, then establish certain algebraic dependences 

qx I)...) x,)=O,j= l)...) n, that are identically satisfied for values xi, . . . , x, 
sufficiently close to their original values, and then go over to complex variables 
Zl, ...’ z, and consider the equations Fj(zl, . . . , z,) = 0 for values of the argu- 
ments that do not have direct geometrical sense. If we succeed in showing that 
the fullilment of the equalities Fj(z,, . . . , z,) = 0 on Cm leads to’ a contradiction 
with some geometrical properties of the polyhedron, then a polyhedron with 
these properties cannot be bent with the variables xi, . . . , x,, that is, it does not 
change its form by the sense of the choice of parameters xi, . . . , x,. 

Another class of non-convex non-bendable polyhedra consists of pyramids, 
combinatorially definable as polyhedra with II vertices, among which there 
is one vertex from which n - 1 edges start out; of course, it is assumed that 
this polyhedron, like a topological space, is homeomorphic to a closed (with- 
out boundary) manifold. What is interesting here is not only the fact of non- 
bendability (and it is true for all immersed pyramids), but also that there are 
pyramids of any topological form, including non-orientable ones; see Sabitov 
(1989). 

Thus, we draw up the following scheme: embedded polyhedra with n vertices 
among which there is one with degree n - 1 (the degree of a vertex is the number 
of edges issuing from it) are non-bendable - these are pyramids; next, polyhedra 
with n vertices among which there are two with degree n - 2 are also non- 
bendable - these are generalized suspensions (that is, not necessarily homeo- 
morphic to a sphere). Now it is natural to ask whether this series can be extended 
in a general way: are there embedded polyhedra with n vertices among which 
there are k vertices with degree n - k, non-bendable for any k, 3 d k < n - 3, 
on condition that there is no vertex with degree greater than n - k (without 
the last condition there cannot be non-bendability: for example, in the bend- 
able polyhedron of Klaus Stefen (see 9.7 below) with 9 vertices there are 4 
vertices with degree 9 - 4 = 5, moreover in it there is one vertex with degree 
6 > 5). 

The non-bendable polyhedra studied in this section are not all uniquely 
determined, however. Sometimes we have succeeded in constructing polyhedra 
that are isometric but not equal to them, as follows. There is a general method 
for constructing isometric surfaces starting from a known non-rigid surface. Let 
zi be the field of infinitesimal bendings of the 1st order of a polyhedron with 
vertices pi, 1 < i < K Then the two polyhedra M, and M, with vertices pi + tz, 
and pi - tz, will be non-trivially isometric. Since the existence of non-rigid 
suspensions embedded in E3 is known (Aleksandrov and Vladimirova (1962)), 
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we find that for arbitrarily small t > 0 there are two polyhedra situated in the 
t-neighbourhood of each other and non-trivially isometric to each other. On the 
other hand, each of these suspensions M, and M, is non-bendable, so by 9.4 in 
a sufficiently small neighbourhood of each of them there are no other suspen- 
sions isometric to them. 

9.7. Bendable Polyhedra. The difficulty and lack of study of problems of 
bendings associated with non-convex polyhedra are visible at least from the fact 
that after Cauchy’s result for more than 150 years it was not known whether it 
can be extended to all embedded (or even immersed) polyhedra or not. An 
example of a non-immersed bendable polyhedron was constructed by Bricard 
(Bricard (1897)), also long’after Cauchy. 

The first attempt to “estimate” the degree of definability of a polyhedron by 
some a priori specified parameters of it was undertaken by Legendre (Legendre 
(1806), Note VIII). He showed that the number of parameters necessary for a 
determination of the position of the vertices of a polyhedron (of the type of a 
sphere) with known combinatorial structure is equal to the number of its edges. 
It was natural to assume that for such parameters we can take the lengths of the 
edges of the polyhedron, but Legendre himself disproved this assumption. As an 
example he considered a quadrangular prism: knowledge of the lengths of all its 
12 edges does not enable us to restore the prism uniquely, since its bases can be 
chosen to be different in form, but with the same lengths of edges. 

We observe that Legendre’s idea of counterexample is suitable only for 
polyhedra with non-triangular faces, since in the case of triangular faces knowl- 
edge of the lengths of the edges completely determines the form of each face. 
Bricard showed that in the case of triangular faces the lengths of the edges do 
not always uniquely determine the position of the vertices of the polyhedron. He 
considered octahedra and obtained a complete description of types of bendable 
octahedra. In all bendable polyhedra known at present elements of Bricard’s 
bendable octahedra have been used, so to complete the picture we describe their 
metric characteristics and structure in E3. 

An octahedron can be regarded as a suspension with a four-link equator, 
taking as poles any pair of opposite vertices In the figures we shall denote the 
vertices of an octahedron in its combinatorial scheme and the images of its 
vertices under the construction of a bendable octahedron in E3 by the same 
letters. 

1st type of bendable octahedra. Opposite edges of the equator of an octahe- 
dron have equal lengths: A,& = A,&, A,& = A,B,, and a bendable octahe- 
dron in E3 has the following structure. The top “half” NA,B,A,B, of the 
octahedron is realized in E3 in an arbitrary way; the equator in E3 always has 
an axis of symmetry 1 that passes through the midpoints of the segments A,A, 
and B, B, (if the equator is planar, then 1 passes through the point of intersection 
of the diagonals of the parallelogram perpendicular to its plane); as the image of 
S we take the point symmetrical to N with respect to the line 1 (Fig. 11). Then 
the edges of the octahedron have the distribution of lengths shown in Fig. 12; 
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Fig. 11 
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Fig. 12 

bendings of the octahedron repeat the bendings of the quadrangular pyramid 
NA, B, A,B, in E3. 

2nd type. Adjacent edges of the equator of the octahedron are equal: A, B, = 
A, B,, A,B, = A,B,, and a bendable octahedron in E3 has the following struc- 
ture. The top part NA, B, A, B, of the octahedron is realized in E3 in an arbitrary 
way; the equator in E3 always has a plane of symmetry P, which passes through 
the line A, A, and bisects the dihedral angle between the half-planes A, A, B, 
and A, A, B,; for the image of S we take the point symmetrical to N with respect 
to the plane P (Fig. 13). The edges of such an octahedron have the distribution 
of lengths as in Fig. 14, and the bendings of the octahedron repeat the bendings 
of the quadrangular pyramid NA, B, A,B,. 

3rd type. This type is the most difficult to describe. It is characterized by the 
following condition: all three equators of the octahedron are such that in them, 
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Fig. 13 

Fig. 14 

in their planar situation, we can inscribe circles with a common centre, touching 
either the sides of the equators themselves or their extensions (Lebesgue (1967)). 
This means that on each equator the sums of pairs of either opposite sides or 
adjacent sides are equal, but this is not enough: it is necessary that in all six 
tetrahedral angles of the octahedron the opposite planar angles are either equal 
or mutually complementary with respect to 7~. The structure of the corre- 
sponding bendable octahedron in E3 is as follows: the top part NA,B,A,B, of 
the octahedron is realized in E3 in such a way that there is pairwise symmetry 
of the lines NA, and NA,, NB, and NB, with respect to some plane r~ passing 
through the common line of intersection of the bisecting planes of the angles of 
the quadrangle A,B,A,B, (for a given plane u the point N is uniquely deter- 
mined); the image of S is determined as the point obtained by the intersection of 
two lines, one of which is symmetrical to NA, with respect to the plane bisecting 
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Fig. 15 

between A r B, and A 1 B, and the other is symmetrical to NA, with respect to the 
plane bisecting between A,& and A, B,. The bendings of the octahedron repeat 
the bendings of the pyramid NA, B, A,B,. An important difference between 
bendings of the octahedron of the 3rd type and those of the other two types is 
that, in the process of bending, an octahedron of the 3rd type twice takes up a 
position where it all lies on one plane; for a representation of it we most often 
use the planar position of it, see Fig. 15. 

We observe that we can realize each model in the form of a convex 
octahedron, so there are convex octahedra that are non-bendable, but are never- 
theless not uniquely determined in the class of general polyhedra. 

With respect to the metrical structure two or even all three types under a 
definite choice of the lengths of edges can be isometric. This means that some 
octahedra of different types can have coincident configuration spaces. The classi- 
fication of bendable octahedra according to the form of their configuration space 
is carried out in Bushmelev and Sabitov (1990). 

The Bricard octahedra are not embedded or even immersed in E3. The first 
rather complicated example of an embedded bendable polyhedron was con- 
structed by Cormelly in 1977, then in 1978 Stefen found a bendable polyhedron 
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Fig. 16 

Fig. 17 

embedded in E3 that has 9 vertices in all. Descriptions of these polyhedra can be 
found, for example, in Berger (1977), Connelly (1978) and Kuiper (1979). Here 
we describe only the Stefen polyhedron. Let us consider the 1st type of Bricard 
octahedron with the dimensions shown in Fig. 16. We construct in E3 the 
Bricard octahedron, removing from it the faces SA,B, and SA,B,; we obtain, 
with the corresponding situation of vertices, a polyhedron F with boundary 
A,SA2B, that is embedded in E3 (Fig. 17a). It is bent, as part of a bendable 
octahedron, and in the course of bending the distance SB, does not change. 
Therefore we can assume that the “empty” triangle A,SB, is fixed, and in this 
case the movements of the vertex A, under the bending reduce to rotation about 
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the fixed line SB,. We now take another copy of the same polyhedron: let us 
denote it by F’ (Fig. 17b). There are positions F. and F,!, respectively of the 
polyhedra F and F’, obtainable in the course of their bending, such that by 
pasting the sides A, S and A, B, of F, to the corresponding sides A; S’ and A; B; 
of Fi we obtain a polyhedron M with boundary A,SA;B, that is embedded in 
E3. With rotations of the point A, around the line SB, we can associate rotations 
of A; about the same line such that the distance A,A; is not changed, so the 
polyhedron M is bent “in the large”. It remains to paste the boundary of M by 
the “cap” of the two triangles A,SA; and A,A;B, and we obtain a closed 
embedded bendable polyhedron. 

It is natural to ask whether there are bendable polyhedra embedded or 
immersed in E3 with fewer than 9 vertices. It has been shown that among 
polyhedra with fewer than 8 vertices there are no such polyhedra, see Maksimov 
(1987); we can show that there are none of them among polyhedra with 8 
vertices, but for the present only one of torus type (since any polyhedron of genus 
x < 0 has more than 8 vertices there remains only the case of a polyhedron of 
sphere type). 

As we see, the discovery of bendable polyhedra is a very non-trivial problem. 
This is no accident, since there are in a certain sense very few of them. Namely, 
if we return to the representation of polyhedra in the form of points in the space 
E3”, then it turns out that bendable polyhedra can fill only a set of measure zero 
in E3” For polyhedra of the type of a sphere this assertion in an implicit form has 
been known for a long time (Aleksandrov (1950), Ch. 2,9 6 and Poznyak (1960)). 
In an explicitly expressed and specially proved form this result was obtained in 
Gluck (1975) with the use of the following general idea: from the rigidity of the 
1st order there follows non-bendability, and non-rigid polyhedra till only a 
hypersurface in E3” determined by a certain algebraic equation. One would think 
that for polyhedra of higher topological type the property of scarce bendability 
should be obtained “more easily”, since they have more edges for the same 
number of vertices, but nevertheless the proof of this fact was obtained very 
recently (Fogelsanger (1987)) on the basis of the following idea: triangulation of a 
polyhedron is transformed into a simpler form, for which it is proved that almost 
all its realizations in E3 are non-bendable, and on going over from one trian- 
gulation to another the property of non-bendability in the general position is 
preserved. Another proof can be obtained by establishing that the algebraic 
varieties considered in 9.3 and 9.4 and corresponding to bendable polyhedra do 
not coincide with the whole space, and so the set of bendable polyhedra fills no 
more than some algebraic hypersurface in E3”. 

9.8. Conjecture on the Invariance of the Volume of a Bendable Polyhedron. 
For all known examples of bendable polyhedra the following remarkable prop- 
erty holds: the volumes bounded by these polyhedra remain constant in the 
course of their bending (for the Stefen polyhedron this is immediately obvious 
from the description of its bendings in the previous section). Intuitively this 
means that these bendable polyhedra are not suitable for the manufacture of 
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their bellows - if in such polyhedra we remove one face (that is, we make a 
triangular performation) and deform them isometrically, then the air from such 
bellows will not go outside, since the pressureinside will remain constant (by the 
way, this fact must find some technical application, of course). The generally 
accepted conjecture, which should obviously be called the Connelly-Sullivan 
conjecture, is that any closed bendable polyhedron in the course of bending 
bounds a volume of the same quantity. By the intuitive interpretation mentioned 
above this conjecture is figuratively called the “bellows” conjecture. 

Of course, it is tempting to assume that this conjecture is due to Euclid 
(Definition 10 in Book XI of Euclid’s “Elements” states: equal and similar 
solid figures are such as are contained by similar planes equal in number and 
magnitude), but even Cauchy’s theorem cannot be interpreted as a repetition or 
confirmation of Euclid’s idea, since there are reasons for supposing that Euclid 
had in mind only totally specific polyhedra; on this see Milka (1986). 

It is easy to construct examples of isometric polyhedra that bound different 
volumes. On the other hand, we know that the configuration space of a given 
polyhedron as a whole consists of finitely many connected components. There- 
fore the Connelly-Sullivan conjecture can be formulated in a different way as 
follows: all polyhedra isometric to a given one can have only finitely many values 
of generalized volumes (generalized volumes are formally calculated from the 
same formula &Z(pipjpk), where pi are the vertices and the summation is over 
all faces, which gives volumes of embedded polyhedra). Since the volume of a 
polyhedron changes continuously under a bending, from the fact that the num- 
ber of its values is finite it will follow that it remains constant under a bending. 

One possible way of proving the conjecture that the volume is invariant under 
a bending was to establish that the volume is stationary under an infinitesimal 
bending. However, it turned out that there are non-rigid polyhedra whose 
volume under an infinitesimal bending is not stationary; see V.A. Aleksandrov 
(1989). Since, starting from such polyhedra, we can construct two arbitrarily 
close isometric polyhedra (see 9.6) we thus find that for any E > 0 we can 
determine isometric polyhedra situated in an s-neighbourhood of each other and 
having different volumes. If the Connelly-Sullivan conjecture is true, then the 
fact that the volume of a polyhedron is non-stationary under an infinitesimal 
bending of it is an indication that this field of infinitesimal bendings cannot be 
extended to a bending. 

The assumption that an infinitesimal bending of the 1st order can be extended 
to an infinitesimal bending of the 2nd order also does not guarantee that the 
volume is stationary. This is not difficult to verify by the example of non-rigid 
octahedra considered in Gluck (1975). Therefore to obtain a proof that the 
volume of a polyhedron is invariant under a bending through the study of the 
behaviour of the volume under infinitesimal bendings requires conversions to 
infinitesimal bendings of high orders. 

On the contrary, for smooth surfaces there is an encouraging result: for 
all non-rigid surfaces of revolution their volume remains stationary under an 
infinitesimal bending; see V.A. Aleksandrov (1989). Although up to now there 
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are no examples of regular closed bendable surfaces, nevertheless information 
on the behaviour of their volume under a priori assumed bendings can be useful. 

8 10. Concluding Remarks 

Thus, from the general survey of the circle of problems posed in 0 2 we can 
make the deduction that these problems have a more or less developed appara- 
tus for research only in the case of power orders of flattening, and for an 
arbitrary form of flattenings only individual results are known; therefore for the 
problem 1’) from 6 2 no approaches have so far been developed. 

Let us say a few words about problem 7). In the analytic case an immersion 
of the metric (2) in E3 in the form of a surface with points of general position is 
obtained as a solution of a certain Cauchy problem, so the corresponding 
connected components in !IJI for such surfaces are infinite-dimensional. There is 
infinite-dimensionality - without the requirement of analyticity - also in the case 
K # 0; see Theorems 6.3 and 6.4 and the discussion of them. But if the surface 
S has flattening at a marked point, then there are still no results about the 
dimension of the configuration space (set of positions) %s c 9JI of the surface S 
under all possible bendings of it. Generally we can say that the question of 
parametrization of the configuration space of a surface arising in the course of 
bendings of it is not new in the literature: in this connection see 5 9, in which we 
show the finite-dimensionality of the configuration space of a polyhedron - a 
result that goes back to Legendre in a certain sense. In modern works the 
question of parametrization (with the precise statement of parametrization it- 
self) has been repeatedly discussed also for the investigation of bendings of 
surfaces of positive curvature with different boundary conditions. But in these 
works the configuration space % is an ordinary finite-dimensional linear space, 
so the question of possible topological or other singularities in the structure of 
% has not arisen. Apparently the first person who drew attention in the literature 
to the interest in the study of the topological structure of the configuration space 
of bendable polyhedra was Gluck (Gluck (1975)). Since then a number of works 
on this theme have appeared, concerned only with polyhedra, it is true. In the 
smooth case, following Berger, Bryant and Griffrths (1981), the question can be 
put as follows: suppose that two isometric surfaces in correct situation have 
identical osculating paraboloids of some order n; do they then coincide? Their 
coincidence implies that !IJI has dimension that does not exceed the number of 
coefficients of osculating paraboloids of the corresponding order. Such a situa- 
tion occurs in the multidimensional case; see below. However, we should bear in 
mind that there are analytic surfaces that are bendable with the preservation of 
the osculating paraboloid of any preassigned order; see Dorfman (1957). 

In the multidimensional case, in the local theory of bendings of surfaces the 
first classical result was a theorem of Beez in 1878 on the local unique determina- 
tion of a hypersurface M” in R”+l, n > 3, on condition that the subspace of 
degeneracy of its second fundamental form is not very extensive (again an 
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analogue of the absence of flattening of the surface!). For the general type of 
degeneracies and flattenings in the analytic class of surfaces and deformations 
for surfaces, analogues of Elimov’s theorems about their non-bendability and 
rigidity have been established in the “majority” of cases; see Lashchenko (1987) 
and (1989). For convex hypersurfaces tests for rigidity and unique determina- 
tion have been obtained even in nonrsmooth cases; see Sen’kin (1978). In the 
case of codimension greater than one the result of Beez was strengthened by 

Allendoerfer in 1939 up to codimension r < [I i , again for the neighbourhood 

of a point lying in general position in some sense; a detailed account of the 
history and results of Beez, Allendoerfer and others can be found in Spivak 
(1979); for a new account of the proof of Allendoerfer’s theorem see Chern and 
Osserman (198 1). The main observation here is that under certain conditions in 
algebro-differential equations of an immersion of M” in En+’ the algebraic part 
of the system turns out to be a determining part: any solution of it satisfies the 
differential equations of Codazzi’s system. 

Of recent research in this direction we must name above all the article Berger, 
Bryant and Grifliths (1981) with details in Grifliths and Jensen (1987). In these 
papers, depending on the codimension for immersions “in general position” 
it is established that either they are non-bendable or the arbitrariness in the 
immersion is determined by a certain number of numerical parameters or 
functions of several arguments. As an answer to question 7), more interesting are 
the cases of codimension Y d (n - l)(n - 2)/2: then the immersion of M” “in 
general position” in E ‘+ is either uniquely determined (when Y d n, n > 8; or 
Y < 6, n = 7; I < 4, n = 6, 5; r < 3, n = 4) or the configuration space is finite- 
dimensional and under a fixing of the osculating paraboloid of some order the 
surface is not bent. 

For some criteria for local bendability of multidimensional surfaces see 
Jacobowitz (1972a, b), (1982a, b) and Yanenko (1952), (1954). There are still 
only a few papers devoted to the study of local infinitesimal bendings of 
multidimensional surfaces; different criteria for rigidity, depending on the 
codimension and local structure of the surface, can be found in Markov (1980, 
1987), where he gives quite a detailed bibliography. For a global (that is, not 
including local coordinates) definition of infinitesimal bendings of the 1st order 
of surfaces in Riemannian spaces see Viotsekhovskij (1977) and Goldstein and 
Ryan (1975). 

Comments on the References 

Most of the references are cited in the text during the exposition. The history and results of the 
theory of infinitesimal bendings in the 19th century can be found in Darboux (1896) for example. 
Among the recent survey works, the closest to our theme are Chapters 11 and 12 of Spivak (1979) 
(we note that terms that distinguish the concepts of non-bendability and unique determination were 
introduced here in the English language literature possibly for the first time). Unsolved (up to now!) 
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problems can be found in Efimov (1948a). The article Ivanova-Karatopraklieva (1988) is devoted to 
a survey of works on infinitesimal bendings of surfaces of mixed curvature; this is a field in which 
there are still not many results, since even the statements of the problems require new approaches. 
For methods of constructing surfaces with a precisely defined number of fields of infinitesimal 
bendings of the first order see Reshetnyak (1962) and Trotsenko (1980). 

For polyhedra, in 09 we have not touched on an interesting series of questions that connect 
bendings of a polyhedron with bendings of the framework of its edges, nor with problems of 
calculating the stresses in the framework caused by a different distribution of forces in the edges; for 
this see for example Whiteley (1984, 1987a, 1987b) and especially Connelly (1992). In these and other 
works cited in the text polyhedra are also considered in multidimensional spaces. 

Survey articles on immersions are Gromov and Rokhlin (1970), Poznyak (1973) and Poznyak 
and Sokolov (1977); a new survey on bendings of surfaces is given in Ivanova-Karatopraklieva and 
Sabitov (1991) and (1992). 
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